]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/migrate.c
memcg: fix gfp_mask of callers of charge
[net-next-2.6.git] / mm / migrate.c
CommitLineData
b20a3503
CL
1/*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
cde53535 12 * Christoph Lameter
b20a3503
CL
13 */
14
15#include <linux/migrate.h>
16#include <linux/module.h>
17#include <linux/swap.h>
0697212a 18#include <linux/swapops.h>
b20a3503 19#include <linux/pagemap.h>
e23ca00b 20#include <linux/buffer_head.h>
b20a3503 21#include <linux/mm_inline.h>
b488893a 22#include <linux/nsproxy.h>
b20a3503
CL
23#include <linux/pagevec.h>
24#include <linux/rmap.h>
25#include <linux/topology.h>
26#include <linux/cpu.h>
27#include <linux/cpuset.h>
04e62a29 28#include <linux/writeback.h>
742755a1
CL
29#include <linux/mempolicy.h>
30#include <linux/vmalloc.h>
86c3a764 31#include <linux/security.h>
8a9f3ccd 32#include <linux/memcontrol.h>
4f5ca265 33#include <linux/syscalls.h>
b20a3503
CL
34
35#include "internal.h"
36
b20a3503
CL
37#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
38
b20a3503 39/*
742755a1
CL
40 * migrate_prep() needs to be called before we start compiling a list of pages
41 * to be migrated using isolate_lru_page().
b20a3503
CL
42 */
43int migrate_prep(void)
44{
b20a3503
CL
45 /*
46 * Clear the LRU lists so pages can be isolated.
47 * Note that pages may be moved off the LRU after we have
48 * drained them. Those pages will fail to migrate like other
49 * pages that may be busy.
50 */
51 lru_add_drain_all();
52
53 return 0;
54}
55
b20a3503 56/*
894bc310
LS
57 * Add isolated pages on the list back to the LRU under page lock
58 * to avoid leaking evictable pages back onto unevictable list.
b20a3503
CL
59 *
60 * returns the number of pages put back.
61 */
62int putback_lru_pages(struct list_head *l)
63{
64 struct page *page;
65 struct page *page2;
66 int count = 0;
67
68 list_for_each_entry_safe(page, page2, l, lru) {
e24f0b8f 69 list_del(&page->lru);
894bc310 70 putback_lru_page(page);
b20a3503
CL
71 count++;
72 }
73 return count;
74}
75
0697212a
CL
76/*
77 * Restore a potential migration pte to a working pte entry
78 */
04e62a29 79static void remove_migration_pte(struct vm_area_struct *vma,
0697212a
CL
80 struct page *old, struct page *new)
81{
82 struct mm_struct *mm = vma->vm_mm;
83 swp_entry_t entry;
84 pgd_t *pgd;
85 pud_t *pud;
86 pmd_t *pmd;
87 pte_t *ptep, pte;
88 spinlock_t *ptl;
04e62a29
CL
89 unsigned long addr = page_address_in_vma(new, vma);
90
91 if (addr == -EFAULT)
92 return;
0697212a
CL
93
94 pgd = pgd_offset(mm, addr);
95 if (!pgd_present(*pgd))
96 return;
97
98 pud = pud_offset(pgd, addr);
99 if (!pud_present(*pud))
100 return;
101
102 pmd = pmd_offset(pud, addr);
103 if (!pmd_present(*pmd))
104 return;
105
106 ptep = pte_offset_map(pmd, addr);
107
108 if (!is_swap_pte(*ptep)) {
109 pte_unmap(ptep);
110 return;
111 }
112
113 ptl = pte_lockptr(mm, pmd);
114 spin_lock(ptl);
115 pte = *ptep;
116 if (!is_swap_pte(pte))
117 goto out;
118
119 entry = pte_to_swp_entry(pte);
120
121 if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
122 goto out;
123
98837c7f
HD
124 /*
125 * Yes, ignore the return value from a GFP_ATOMIC mem_cgroup_charge.
126 * Failure is not an option here: we're now expected to remove every
127 * migration pte, and will cause crashes otherwise. Normally this
128 * is not an issue: mem_cgroup_prepare_migration bumped up the old
129 * page_cgroup count for safety, that's now attached to the new page,
130 * so this charge should just be another incrementation of the count,
131 * to keep in balance with rmap.c's mem_cgroup_uncharging. But if
132 * there's been a force_empty, those reference counts may no longer
133 * be reliable, and this charge can actually fail: oh well, we don't
134 * make the situation any worse by proceeding as if it had succeeded.
135 */
7a81b88c 136 mem_cgroup_charge_migrate_fixup(new, mm, GFP_ATOMIC);
98837c7f 137
0697212a
CL
138 get_page(new);
139 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
140 if (is_write_migration_entry(entry))
141 pte = pte_mkwrite(pte);
97ee0524 142 flush_cache_page(vma, addr, pte_pfn(pte));
0697212a 143 set_pte_at(mm, addr, ptep, pte);
04e62a29
CL
144
145 if (PageAnon(new))
146 page_add_anon_rmap(new, vma, addr);
147 else
148 page_add_file_rmap(new);
149
150 /* No need to invalidate - it was non-present before */
151 update_mmu_cache(vma, addr, pte);
04e62a29 152
0697212a
CL
153out:
154 pte_unmap_unlock(ptep, ptl);
155}
156
157/*
04e62a29
CL
158 * Note that remove_file_migration_ptes will only work on regular mappings,
159 * Nonlinear mappings do not use migration entries.
160 */
161static void remove_file_migration_ptes(struct page *old, struct page *new)
162{
163 struct vm_area_struct *vma;
164 struct address_space *mapping = page_mapping(new);
165 struct prio_tree_iter iter;
166 pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
167
168 if (!mapping)
169 return;
170
171 spin_lock(&mapping->i_mmap_lock);
172
173 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff)
174 remove_migration_pte(vma, old, new);
175
176 spin_unlock(&mapping->i_mmap_lock);
177}
178
179/*
0697212a
CL
180 * Must hold mmap_sem lock on at least one of the vmas containing
181 * the page so that the anon_vma cannot vanish.
182 */
04e62a29 183static void remove_anon_migration_ptes(struct page *old, struct page *new)
0697212a
CL
184{
185 struct anon_vma *anon_vma;
186 struct vm_area_struct *vma;
187 unsigned long mapping;
188
189 mapping = (unsigned long)new->mapping;
190
191 if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
192 return;
193
194 /*
195 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
196 */
197 anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
198 spin_lock(&anon_vma->lock);
199
200 list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
04e62a29 201 remove_migration_pte(vma, old, new);
0697212a
CL
202
203 spin_unlock(&anon_vma->lock);
204}
205
04e62a29
CL
206/*
207 * Get rid of all migration entries and replace them by
208 * references to the indicated page.
209 */
210static void remove_migration_ptes(struct page *old, struct page *new)
211{
212 if (PageAnon(new))
213 remove_anon_migration_ptes(old, new);
214 else
215 remove_file_migration_ptes(old, new);
216}
217
0697212a
CL
218/*
219 * Something used the pte of a page under migration. We need to
220 * get to the page and wait until migration is finished.
221 * When we return from this function the fault will be retried.
222 *
223 * This function is called from do_swap_page().
224 */
225void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
226 unsigned long address)
227{
228 pte_t *ptep, pte;
229 spinlock_t *ptl;
230 swp_entry_t entry;
231 struct page *page;
232
233 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
234 pte = *ptep;
235 if (!is_swap_pte(pte))
236 goto out;
237
238 entry = pte_to_swp_entry(pte);
239 if (!is_migration_entry(entry))
240 goto out;
241
242 page = migration_entry_to_page(entry);
243
e286781d
NP
244 /*
245 * Once radix-tree replacement of page migration started, page_count
246 * *must* be zero. And, we don't want to call wait_on_page_locked()
247 * against a page without get_page().
248 * So, we use get_page_unless_zero(), here. Even failed, page fault
249 * will occur again.
250 */
251 if (!get_page_unless_zero(page))
252 goto out;
0697212a
CL
253 pte_unmap_unlock(ptep, ptl);
254 wait_on_page_locked(page);
255 put_page(page);
256 return;
257out:
258 pte_unmap_unlock(ptep, ptl);
259}
260
b20a3503 261/*
c3fcf8a5 262 * Replace the page in the mapping.
5b5c7120
CL
263 *
264 * The number of remaining references must be:
265 * 1 for anonymous pages without a mapping
266 * 2 for pages with a mapping
267 * 3 for pages with a mapping and PagePrivate set.
b20a3503 268 */
2d1db3b1
CL
269static int migrate_page_move_mapping(struct address_space *mapping,
270 struct page *newpage, struct page *page)
b20a3503 271{
e286781d 272 int expected_count;
7cf9c2c7 273 void **pslot;
b20a3503 274
6c5240ae 275 if (!mapping) {
0e8c7d0f 276 /* Anonymous page without mapping */
6c5240ae
CL
277 if (page_count(page) != 1)
278 return -EAGAIN;
279 return 0;
280 }
281
19fd6231 282 spin_lock_irq(&mapping->tree_lock);
b20a3503 283
7cf9c2c7
NP
284 pslot = radix_tree_lookup_slot(&mapping->page_tree,
285 page_index(page));
b20a3503 286
e286781d
NP
287 expected_count = 2 + !!PagePrivate(page);
288 if (page_count(page) != expected_count ||
7cf9c2c7 289 (struct page *)radix_tree_deref_slot(pslot) != page) {
19fd6231 290 spin_unlock_irq(&mapping->tree_lock);
e23ca00b 291 return -EAGAIN;
b20a3503
CL
292 }
293
e286781d 294 if (!page_freeze_refs(page, expected_count)) {
19fd6231 295 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
296 return -EAGAIN;
297 }
298
b20a3503
CL
299 /*
300 * Now we know that no one else is looking at the page.
b20a3503 301 */
7cf9c2c7 302 get_page(newpage); /* add cache reference */
b20a3503
CL
303 if (PageSwapCache(page)) {
304 SetPageSwapCache(newpage);
305 set_page_private(newpage, page_private(page));
306 }
307
7cf9c2c7
NP
308 radix_tree_replace_slot(pslot, newpage);
309
e286781d 310 page_unfreeze_refs(page, expected_count);
7cf9c2c7
NP
311 /*
312 * Drop cache reference from old page.
313 * We know this isn't the last reference.
314 */
b20a3503 315 __put_page(page);
7cf9c2c7 316
0e8c7d0f
CL
317 /*
318 * If moved to a different zone then also account
319 * the page for that zone. Other VM counters will be
320 * taken care of when we establish references to the
321 * new page and drop references to the old page.
322 *
323 * Note that anonymous pages are accounted for
324 * via NR_FILE_PAGES and NR_ANON_PAGES if they
325 * are mapped to swap space.
326 */
327 __dec_zone_page_state(page, NR_FILE_PAGES);
328 __inc_zone_page_state(newpage, NR_FILE_PAGES);
329
19fd6231 330 spin_unlock_irq(&mapping->tree_lock);
b20a3503
CL
331
332 return 0;
333}
b20a3503
CL
334
335/*
336 * Copy the page to its new location
337 */
e7340f73 338static void migrate_page_copy(struct page *newpage, struct page *page)
b20a3503 339{
b7abea96
KH
340 int anon;
341
b20a3503
CL
342 copy_highpage(newpage, page);
343
344 if (PageError(page))
345 SetPageError(newpage);
346 if (PageReferenced(page))
347 SetPageReferenced(newpage);
348 if (PageUptodate(page))
349 SetPageUptodate(newpage);
894bc310
LS
350 if (TestClearPageActive(page)) {
351 VM_BUG_ON(PageUnevictable(page));
b20a3503 352 SetPageActive(newpage);
894bc310
LS
353 } else
354 unevictable_migrate_page(newpage, page);
b20a3503
CL
355 if (PageChecked(page))
356 SetPageChecked(newpage);
357 if (PageMappedToDisk(page))
358 SetPageMappedToDisk(newpage);
359
360 if (PageDirty(page)) {
361 clear_page_dirty_for_io(page);
3a902c5f
NP
362 /*
363 * Want to mark the page and the radix tree as dirty, and
364 * redo the accounting that clear_page_dirty_for_io undid,
365 * but we can't use set_page_dirty because that function
366 * is actually a signal that all of the page has become dirty.
367 * Wheras only part of our page may be dirty.
368 */
369 __set_page_dirty_nobuffers(newpage);
b20a3503
CL
370 }
371
b291f000
NP
372 mlock_migrate_page(newpage, page);
373
b20a3503 374 ClearPageSwapCache(page);
b20a3503
CL
375 ClearPagePrivate(page);
376 set_page_private(page, 0);
b7abea96
KH
377 /* page->mapping contains a flag for PageAnon() */
378 anon = PageAnon(page);
b20a3503
CL
379 page->mapping = NULL;
380
b7abea96
KH
381 if (!anon) /* This page was removed from radix-tree. */
382 mem_cgroup_uncharge_cache_page(page);
383
b20a3503
CL
384 /*
385 * If any waiters have accumulated on the new page then
386 * wake them up.
387 */
388 if (PageWriteback(newpage))
389 end_page_writeback(newpage);
390}
b20a3503 391
1d8b85cc
CL
392/************************************************************
393 * Migration functions
394 ***********************************************************/
395
396/* Always fail migration. Used for mappings that are not movable */
2d1db3b1
CL
397int fail_migrate_page(struct address_space *mapping,
398 struct page *newpage, struct page *page)
1d8b85cc
CL
399{
400 return -EIO;
401}
402EXPORT_SYMBOL(fail_migrate_page);
403
b20a3503
CL
404/*
405 * Common logic to directly migrate a single page suitable for
406 * pages that do not use PagePrivate.
407 *
408 * Pages are locked upon entry and exit.
409 */
2d1db3b1
CL
410int migrate_page(struct address_space *mapping,
411 struct page *newpage, struct page *page)
b20a3503
CL
412{
413 int rc;
414
415 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
416
2d1db3b1 417 rc = migrate_page_move_mapping(mapping, newpage, page);
b20a3503
CL
418
419 if (rc)
420 return rc;
421
422 migrate_page_copy(newpage, page);
b20a3503
CL
423 return 0;
424}
425EXPORT_SYMBOL(migrate_page);
426
9361401e 427#ifdef CONFIG_BLOCK
1d8b85cc
CL
428/*
429 * Migration function for pages with buffers. This function can only be used
430 * if the underlying filesystem guarantees that no other references to "page"
431 * exist.
432 */
2d1db3b1
CL
433int buffer_migrate_page(struct address_space *mapping,
434 struct page *newpage, struct page *page)
1d8b85cc 435{
1d8b85cc
CL
436 struct buffer_head *bh, *head;
437 int rc;
438
1d8b85cc 439 if (!page_has_buffers(page))
2d1db3b1 440 return migrate_page(mapping, newpage, page);
1d8b85cc
CL
441
442 head = page_buffers(page);
443
2d1db3b1 444 rc = migrate_page_move_mapping(mapping, newpage, page);
1d8b85cc
CL
445
446 if (rc)
447 return rc;
448
449 bh = head;
450 do {
451 get_bh(bh);
452 lock_buffer(bh);
453 bh = bh->b_this_page;
454
455 } while (bh != head);
456
457 ClearPagePrivate(page);
458 set_page_private(newpage, page_private(page));
459 set_page_private(page, 0);
460 put_page(page);
461 get_page(newpage);
462
463 bh = head;
464 do {
465 set_bh_page(bh, newpage, bh_offset(bh));
466 bh = bh->b_this_page;
467
468 } while (bh != head);
469
470 SetPagePrivate(newpage);
471
472 migrate_page_copy(newpage, page);
473
474 bh = head;
475 do {
476 unlock_buffer(bh);
477 put_bh(bh);
478 bh = bh->b_this_page;
479
480 } while (bh != head);
481
482 return 0;
483}
484EXPORT_SYMBOL(buffer_migrate_page);
9361401e 485#endif
1d8b85cc 486
04e62a29
CL
487/*
488 * Writeback a page to clean the dirty state
489 */
490static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 491{
04e62a29
CL
492 struct writeback_control wbc = {
493 .sync_mode = WB_SYNC_NONE,
494 .nr_to_write = 1,
495 .range_start = 0,
496 .range_end = LLONG_MAX,
497 .nonblocking = 1,
498 .for_reclaim = 1
499 };
500 int rc;
501
502 if (!mapping->a_ops->writepage)
503 /* No write method for the address space */
504 return -EINVAL;
505
506 if (!clear_page_dirty_for_io(page))
507 /* Someone else already triggered a write */
508 return -EAGAIN;
509
8351a6e4 510 /*
04e62a29
CL
511 * A dirty page may imply that the underlying filesystem has
512 * the page on some queue. So the page must be clean for
513 * migration. Writeout may mean we loose the lock and the
514 * page state is no longer what we checked for earlier.
515 * At this point we know that the migration attempt cannot
516 * be successful.
8351a6e4 517 */
04e62a29 518 remove_migration_ptes(page, page);
8351a6e4 519
04e62a29 520 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 521
04e62a29
CL
522 if (rc != AOP_WRITEPAGE_ACTIVATE)
523 /* unlocked. Relock */
524 lock_page(page);
525
bda8550d 526 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
527}
528
529/*
530 * Default handling if a filesystem does not provide a migration function.
531 */
532static int fallback_migrate_page(struct address_space *mapping,
533 struct page *newpage, struct page *page)
534{
535 if (PageDirty(page))
536 return writeout(mapping, page);
8351a6e4
CL
537
538 /*
539 * Buffers may be managed in a filesystem specific way.
540 * We must have no buffers or drop them.
541 */
b398f6bf 542 if (PagePrivate(page) &&
8351a6e4
CL
543 !try_to_release_page(page, GFP_KERNEL))
544 return -EAGAIN;
545
546 return migrate_page(mapping, newpage, page);
547}
548
e24f0b8f
CL
549/*
550 * Move a page to a newly allocated page
551 * The page is locked and all ptes have been successfully removed.
552 *
553 * The new page will have replaced the old page if this function
554 * is successful.
894bc310
LS
555 *
556 * Return value:
557 * < 0 - error code
558 * == 0 - success
e24f0b8f
CL
559 */
560static int move_to_new_page(struct page *newpage, struct page *page)
561{
562 struct address_space *mapping;
563 int rc;
564
565 /*
566 * Block others from accessing the page when we get around to
567 * establishing additional references. We are the only one
568 * holding a reference to the new page at this point.
569 */
529ae9aa 570 if (!trylock_page(newpage))
e24f0b8f
CL
571 BUG();
572
573 /* Prepare mapping for the new page.*/
574 newpage->index = page->index;
575 newpage->mapping = page->mapping;
b2e18538
RR
576 if (PageSwapBacked(page))
577 SetPageSwapBacked(newpage);
e24f0b8f
CL
578
579 mapping = page_mapping(page);
580 if (!mapping)
581 rc = migrate_page(mapping, newpage, page);
582 else if (mapping->a_ops->migratepage)
583 /*
584 * Most pages have a mapping and most filesystems
585 * should provide a migration function. Anonymous
586 * pages are part of swap space which also has its
587 * own migration function. This is the most common
588 * path for page migration.
589 */
590 rc = mapping->a_ops->migratepage(mapping,
591 newpage, page);
592 else
593 rc = fallback_migrate_page(mapping, newpage, page);
594
ae41be37 595 if (!rc) {
e24f0b8f 596 remove_migration_ptes(page, newpage);
ae41be37 597 } else
e24f0b8f
CL
598 newpage->mapping = NULL;
599
600 unlock_page(newpage);
601
602 return rc;
603}
604
605/*
606 * Obtain the lock on page, remove all ptes and migrate the page
607 * to the newly allocated page in newpage.
608 */
95a402c3
CL
609static int unmap_and_move(new_page_t get_new_page, unsigned long private,
610 struct page *page, int force)
e24f0b8f
CL
611{
612 int rc = 0;
742755a1
CL
613 int *result = NULL;
614 struct page *newpage = get_new_page(page, private, &result);
989f89c5 615 int rcu_locked = 0;
ae41be37 616 int charge = 0;
95a402c3
CL
617
618 if (!newpage)
619 return -ENOMEM;
e24f0b8f 620
894bc310 621 if (page_count(page) == 1) {
e24f0b8f 622 /* page was freed from under us. So we are done. */
95a402c3 623 goto move_newpage;
894bc310 624 }
e24f0b8f 625
e8589cc1
KH
626 charge = mem_cgroup_prepare_migration(page, newpage);
627 if (charge == -ENOMEM) {
628 rc = -ENOMEM;
629 goto move_newpage;
630 }
631 /* prepare cgroup just returns 0 or -ENOMEM */
632 BUG_ON(charge);
633
e24f0b8f 634 rc = -EAGAIN;
529ae9aa 635 if (!trylock_page(page)) {
e24f0b8f 636 if (!force)
95a402c3 637 goto move_newpage;
e24f0b8f
CL
638 lock_page(page);
639 }
640
641 if (PageWriteback(page)) {
642 if (!force)
643 goto unlock;
644 wait_on_page_writeback(page);
645 }
e24f0b8f 646 /*
dc386d4d
KH
647 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
648 * we cannot notice that anon_vma is freed while we migrates a page.
649 * This rcu_read_lock() delays freeing anon_vma pointer until the end
650 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
651 * File Caches may use write_page() or lock_page() in migration, then,
652 * just care Anon page here.
dc386d4d 653 */
989f89c5
KH
654 if (PageAnon(page)) {
655 rcu_read_lock();
656 rcu_locked = 1;
657 }
62e1c553 658
dc386d4d 659 /*
62e1c553
SL
660 * Corner case handling:
661 * 1. When a new swap-cache page is read into, it is added to the LRU
662 * and treated as swapcache but it has no rmap yet.
663 * Calling try_to_unmap() against a page->mapping==NULL page will
664 * trigger a BUG. So handle it here.
665 * 2. An orphaned page (see truncate_complete_page) might have
666 * fs-private metadata. The page can be picked up due to memory
667 * offlining. Everywhere else except page reclaim, the page is
668 * invisible to the vm, so the page can not be migrated. So try to
669 * free the metadata, so the page can be freed.
e24f0b8f 670 */
62e1c553
SL
671 if (!page->mapping) {
672 if (!PageAnon(page) && PagePrivate(page)) {
673 /*
674 * Go direct to try_to_free_buffers() here because
675 * a) that's what try_to_release_page() would do anyway
676 * b) we may be under rcu_read_lock() here, so we can't
677 * use GFP_KERNEL which is what try_to_release_page()
678 * needs to be effective.
679 */
680 try_to_free_buffers(page);
681 }
dc386d4d 682 goto rcu_unlock;
62e1c553
SL
683 }
684
dc386d4d 685 /* Establish migration ptes or remove ptes */
e6a1530d 686 try_to_unmap(page, 1);
dc386d4d 687
e6a1530d
CL
688 if (!page_mapped(page))
689 rc = move_to_new_page(newpage, page);
e24f0b8f 690
e8589cc1 691 if (rc)
e24f0b8f 692 remove_migration_ptes(page, page);
dc386d4d 693rcu_unlock:
989f89c5
KH
694 if (rcu_locked)
695 rcu_read_unlock();
e6a1530d 696
e24f0b8f
CL
697unlock:
698 unlock_page(page);
95a402c3 699
e24f0b8f 700 if (rc != -EAGAIN) {
aaa994b3
CL
701 /*
702 * A page that has been migrated has all references
703 * removed and will be freed. A page that has not been
704 * migrated will have kepts its references and be
705 * restored.
706 */
707 list_del(&page->lru);
894bc310 708 putback_lru_page(page);
e24f0b8f 709 }
95a402c3
CL
710
711move_newpage:
e8589cc1
KH
712 if (!charge)
713 mem_cgroup_end_migration(newpage);
894bc310 714
95a402c3
CL
715 /*
716 * Move the new page to the LRU. If migration was not successful
717 * then this will free the page.
718 */
894bc310
LS
719 putback_lru_page(newpage);
720
742755a1
CL
721 if (result) {
722 if (rc)
723 *result = rc;
724 else
725 *result = page_to_nid(newpage);
726 }
e24f0b8f
CL
727 return rc;
728}
729
b20a3503
CL
730/*
731 * migrate_pages
732 *
95a402c3
CL
733 * The function takes one list of pages to migrate and a function
734 * that determines from the page to be migrated and the private data
735 * the target of the move and allocates the page.
b20a3503
CL
736 *
737 * The function returns after 10 attempts or if no pages
738 * are movable anymore because to has become empty
aaa994b3 739 * or no retryable pages exist anymore. All pages will be
e9534b3f 740 * returned to the LRU or freed.
b20a3503 741 *
95a402c3 742 * Return: Number of pages not migrated or error code.
b20a3503 743 */
95a402c3
CL
744int migrate_pages(struct list_head *from,
745 new_page_t get_new_page, unsigned long private)
b20a3503 746{
e24f0b8f 747 int retry = 1;
b20a3503
CL
748 int nr_failed = 0;
749 int pass = 0;
750 struct page *page;
751 struct page *page2;
752 int swapwrite = current->flags & PF_SWAPWRITE;
753 int rc;
754
755 if (!swapwrite)
756 current->flags |= PF_SWAPWRITE;
757
e24f0b8f
CL
758 for(pass = 0; pass < 10 && retry; pass++) {
759 retry = 0;
b20a3503 760
e24f0b8f 761 list_for_each_entry_safe(page, page2, from, lru) {
e24f0b8f 762 cond_resched();
2d1db3b1 763
95a402c3
CL
764 rc = unmap_and_move(get_new_page, private,
765 page, pass > 2);
2d1db3b1 766
e24f0b8f 767 switch(rc) {
95a402c3
CL
768 case -ENOMEM:
769 goto out;
e24f0b8f 770 case -EAGAIN:
2d1db3b1 771 retry++;
e24f0b8f
CL
772 break;
773 case 0:
e24f0b8f
CL
774 break;
775 default:
2d1db3b1 776 /* Permanent failure */
2d1db3b1 777 nr_failed++;
e24f0b8f 778 break;
2d1db3b1 779 }
b20a3503
CL
780 }
781 }
95a402c3
CL
782 rc = 0;
783out:
b20a3503
CL
784 if (!swapwrite)
785 current->flags &= ~PF_SWAPWRITE;
786
aaa994b3 787 putback_lru_pages(from);
b20a3503 788
95a402c3
CL
789 if (rc)
790 return rc;
b20a3503 791
95a402c3 792 return nr_failed + retry;
b20a3503 793}
95a402c3 794
742755a1
CL
795#ifdef CONFIG_NUMA
796/*
797 * Move a list of individual pages
798 */
799struct page_to_node {
800 unsigned long addr;
801 struct page *page;
802 int node;
803 int status;
804};
805
806static struct page *new_page_node(struct page *p, unsigned long private,
807 int **result)
808{
809 struct page_to_node *pm = (struct page_to_node *)private;
810
811 while (pm->node != MAX_NUMNODES && pm->page != p)
812 pm++;
813
814 if (pm->node == MAX_NUMNODES)
815 return NULL;
816
817 *result = &pm->status;
818
769848c0
MG
819 return alloc_pages_node(pm->node,
820 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
742755a1
CL
821}
822
823/*
824 * Move a set of pages as indicated in the pm array. The addr
825 * field must be set to the virtual address of the page to be moved
826 * and the node number must contain a valid target node.
5e9a0f02 827 * The pm array ends with node = MAX_NUMNODES.
742755a1 828 */
5e9a0f02
BG
829static int do_move_page_to_node_array(struct mm_struct *mm,
830 struct page_to_node *pm,
831 int migrate_all)
742755a1
CL
832{
833 int err;
834 struct page_to_node *pp;
835 LIST_HEAD(pagelist);
836
0aedadf9 837 migrate_prep();
742755a1
CL
838 down_read(&mm->mmap_sem);
839
840 /*
841 * Build a list of pages to migrate
842 */
742755a1
CL
843 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
844 struct vm_area_struct *vma;
845 struct page *page;
846
742755a1
CL
847 err = -EFAULT;
848 vma = find_vma(mm, pp->addr);
0dc952dc 849 if (!vma || !vma_migratable(vma))
742755a1
CL
850 goto set_status;
851
852 page = follow_page(vma, pp->addr, FOLL_GET);
89f5b7da
LT
853
854 err = PTR_ERR(page);
855 if (IS_ERR(page))
856 goto set_status;
857
742755a1
CL
858 err = -ENOENT;
859 if (!page)
860 goto set_status;
861
862 if (PageReserved(page)) /* Check for zero page */
863 goto put_and_set;
864
865 pp->page = page;
866 err = page_to_nid(page);
867
868 if (err == pp->node)
869 /*
870 * Node already in the right place
871 */
872 goto put_and_set;
873
874 err = -EACCES;
875 if (page_mapcount(page) > 1 &&
876 !migrate_all)
877 goto put_and_set;
878
62695a84
NP
879 err = isolate_lru_page(page);
880 if (!err)
881 list_add_tail(&page->lru, &pagelist);
742755a1
CL
882put_and_set:
883 /*
884 * Either remove the duplicate refcount from
885 * isolate_lru_page() or drop the page ref if it was
886 * not isolated.
887 */
888 put_page(page);
889set_status:
890 pp->status = err;
891 }
892
e78bbfa8 893 err = 0;
742755a1
CL
894 if (!list_empty(&pagelist))
895 err = migrate_pages(&pagelist, new_page_node,
896 (unsigned long)pm);
742755a1
CL
897
898 up_read(&mm->mmap_sem);
899 return err;
900}
901
5e9a0f02
BG
902/*
903 * Migrate an array of page address onto an array of nodes and fill
904 * the corresponding array of status.
905 */
906static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
907 unsigned long nr_pages,
908 const void __user * __user *pages,
909 const int __user *nodes,
910 int __user *status, int flags)
911{
3140a227 912 struct page_to_node *pm;
5e9a0f02 913 nodemask_t task_nodes;
3140a227
BG
914 unsigned long chunk_nr_pages;
915 unsigned long chunk_start;
916 int err;
5e9a0f02
BG
917
918 task_nodes = cpuset_mems_allowed(task);
919
3140a227
BG
920 err = -ENOMEM;
921 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
922 if (!pm)
5e9a0f02 923 goto out;
5e9a0f02 924 /*
3140a227
BG
925 * Store a chunk of page_to_node array in a page,
926 * but keep the last one as a marker
5e9a0f02 927 */
3140a227 928 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
5e9a0f02 929
3140a227
BG
930 for (chunk_start = 0;
931 chunk_start < nr_pages;
932 chunk_start += chunk_nr_pages) {
933 int j;
5e9a0f02 934
3140a227
BG
935 if (chunk_start + chunk_nr_pages > nr_pages)
936 chunk_nr_pages = nr_pages - chunk_start;
937
938 /* fill the chunk pm with addrs and nodes from user-space */
939 for (j = 0; j < chunk_nr_pages; j++) {
940 const void __user *p;
5e9a0f02
BG
941 int node;
942
3140a227
BG
943 err = -EFAULT;
944 if (get_user(p, pages + j + chunk_start))
945 goto out_pm;
946 pm[j].addr = (unsigned long) p;
947
948 if (get_user(node, nodes + j + chunk_start))
5e9a0f02
BG
949 goto out_pm;
950
951 err = -ENODEV;
952 if (!node_state(node, N_HIGH_MEMORY))
953 goto out_pm;
954
955 err = -EACCES;
956 if (!node_isset(node, task_nodes))
957 goto out_pm;
958
3140a227
BG
959 pm[j].node = node;
960 }
961
962 /* End marker for this chunk */
963 pm[chunk_nr_pages].node = MAX_NUMNODES;
964
965 /* Migrate this chunk */
966 err = do_move_page_to_node_array(mm, pm,
967 flags & MPOL_MF_MOVE_ALL);
968 if (err < 0)
969 goto out_pm;
5e9a0f02 970
5e9a0f02 971 /* Return status information */
3140a227
BG
972 for (j = 0; j < chunk_nr_pages; j++)
973 if (put_user(pm[j].status, status + j + chunk_start)) {
5e9a0f02 974 err = -EFAULT;
3140a227
BG
975 goto out_pm;
976 }
977 }
978 err = 0;
5e9a0f02
BG
979
980out_pm:
3140a227 981 free_page((unsigned long)pm);
5e9a0f02
BG
982out:
983 return err;
984}
985
742755a1 986/*
2f007e74 987 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 988 */
80bba129
BG
989static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
990 const void __user **pages, int *status)
742755a1 991{
2f007e74 992 unsigned long i;
2f007e74 993
742755a1
CL
994 down_read(&mm->mmap_sem);
995
2f007e74 996 for (i = 0; i < nr_pages; i++) {
80bba129 997 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
998 struct vm_area_struct *vma;
999 struct page *page;
c095adbc 1000 int err = -EFAULT;
2f007e74
BG
1001
1002 vma = find_vma(mm, addr);
742755a1
CL
1003 if (!vma)
1004 goto set_status;
1005
2f007e74 1006 page = follow_page(vma, addr, 0);
89f5b7da
LT
1007
1008 err = PTR_ERR(page);
1009 if (IS_ERR(page))
1010 goto set_status;
1011
742755a1
CL
1012 err = -ENOENT;
1013 /* Use PageReserved to check for zero page */
1014 if (!page || PageReserved(page))
1015 goto set_status;
1016
1017 err = page_to_nid(page);
1018set_status:
80bba129
BG
1019 *status = err;
1020
1021 pages++;
1022 status++;
1023 }
1024
1025 up_read(&mm->mmap_sem);
1026}
1027
1028/*
1029 * Determine the nodes of a user array of pages and store it in
1030 * a user array of status.
1031 */
1032static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1033 const void __user * __user *pages,
1034 int __user *status)
1035{
1036#define DO_PAGES_STAT_CHUNK_NR 16
1037 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1038 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1039 unsigned long i, chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1040 int err;
1041
1042 for (i = 0; i < nr_pages; i += chunk_nr) {
1043 if (chunk_nr + i > nr_pages)
1044 chunk_nr = nr_pages - i;
1045
1046 err = copy_from_user(chunk_pages, &pages[i],
1047 chunk_nr * sizeof(*chunk_pages));
1048 if (err) {
1049 err = -EFAULT;
1050 goto out;
1051 }
1052
1053 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1054
1055 err = copy_to_user(&status[i], chunk_status,
1056 chunk_nr * sizeof(*chunk_status));
1057 if (err) {
1058 err = -EFAULT;
1059 goto out;
1060 }
742755a1 1061 }
2f007e74 1062 err = 0;
742755a1 1063
2f007e74 1064out:
2f007e74 1065 return err;
742755a1
CL
1066}
1067
1068/*
1069 * Move a list of pages in the address space of the currently executing
1070 * process.
1071 */
1072asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages,
1073 const void __user * __user *pages,
1074 const int __user *nodes,
1075 int __user *status, int flags)
1076{
c69e8d9c 1077 const struct cred *cred = current_cred(), *tcred;
742755a1 1078 struct task_struct *task;
742755a1 1079 struct mm_struct *mm;
5e9a0f02 1080 int err;
742755a1
CL
1081
1082 /* Check flags */
1083 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1084 return -EINVAL;
1085
1086 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1087 return -EPERM;
1088
1089 /* Find the mm_struct */
1090 read_lock(&tasklist_lock);
228ebcbe 1091 task = pid ? find_task_by_vpid(pid) : current;
742755a1
CL
1092 if (!task) {
1093 read_unlock(&tasklist_lock);
1094 return -ESRCH;
1095 }
1096 mm = get_task_mm(task);
1097 read_unlock(&tasklist_lock);
1098
1099 if (!mm)
1100 return -EINVAL;
1101
1102 /*
1103 * Check if this process has the right to modify the specified
1104 * process. The right exists if the process has administrative
1105 * capabilities, superuser privileges or the same
1106 * userid as the target process.
1107 */
c69e8d9c
DH
1108 rcu_read_lock();
1109 tcred = __task_cred(task);
b6dff3ec
DH
1110 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1111 cred->uid != tcred->suid && cred->uid != tcred->uid &&
742755a1 1112 !capable(CAP_SYS_NICE)) {
c69e8d9c 1113 rcu_read_unlock();
742755a1 1114 err = -EPERM;
5e9a0f02 1115 goto out;
742755a1 1116 }
c69e8d9c 1117 rcu_read_unlock();
742755a1 1118
86c3a764
DQ
1119 err = security_task_movememory(task);
1120 if (err)
5e9a0f02 1121 goto out;
86c3a764 1122
5e9a0f02
BG
1123 if (nodes) {
1124 err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1125 flags);
1126 } else {
2f007e74 1127 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1
CL
1128 }
1129
742755a1 1130out:
742755a1
CL
1131 mmput(mm);
1132 return err;
1133}
742755a1 1134
7b2259b3
CL
1135/*
1136 * Call migration functions in the vma_ops that may prepare
1137 * memory in a vm for migration. migration functions may perform
1138 * the migration for vmas that do not have an underlying page struct.
1139 */
1140int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1141 const nodemask_t *from, unsigned long flags)
1142{
1143 struct vm_area_struct *vma;
1144 int err = 0;
1145
1146 for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) {
1147 if (vma->vm_ops && vma->vm_ops->migrate) {
1148 err = vma->vm_ops->migrate(vma, to, from, flags);
1149 if (err)
1150 break;
1151 }
1152 }
1153 return err;
1154}
83d1674a 1155#endif