]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/percpu.c
vmalloc: implement pcpu_get_vm_areas()
[net-next-2.6.git] / mm / percpu.c
CommitLineData
fbf59bc9
TH
1/*
2 * linux/mm/percpu.c - percpu memory allocator
3 *
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
6 *
7 * This file is released under the GPLv2.
8 *
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks in vmalloc area. Each
2f39e637
TH
11 * chunk is consisted of boot-time determined number of units and the
12 * first chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated. ie. in
17 * vmalloc area
fbf59bc9
TH
18 *
19 * c0 c1 c2
20 * ------------------- ------------------- ------------
21 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
22 * ------------------- ...... ------------------- .... ------------
23 *
24 * Allocation is done in offset-size areas of single unit space. Ie,
25 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
2f39e637
TH
26 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
27 * cpus. On NUMA, the mapping can be non-linear and even sparse.
28 * Percpu access can be done by configuring percpu base registers
29 * according to cpu to unit mapping and pcpu_unit_size.
fbf59bc9 30 *
2f39e637
TH
31 * There are usually many small percpu allocations many of them being
32 * as small as 4 bytes. The allocator organizes chunks into lists
fbf59bc9
TH
33 * according to free size and tries to allocate from the fullest one.
34 * Each chunk keeps the maximum contiguous area size hint which is
35 * guaranteed to be eqaul to or larger than the maximum contiguous
36 * area in the chunk. This helps the allocator not to iterate the
37 * chunk maps unnecessarily.
38 *
39 * Allocation state in each chunk is kept using an array of integers
40 * on chunk->map. A positive value in the map represents a free
41 * region and negative allocated. Allocation inside a chunk is done
42 * by scanning this map sequentially and serving the first matching
43 * entry. This is mostly copied from the percpu_modalloc() allocator.
e1b9aa3f
CL
44 * Chunks can be determined from the address using the index field
45 * in the page struct. The index field contains a pointer to the chunk.
fbf59bc9
TH
46 *
47 * To use this allocator, arch code should do the followings.
48 *
e74e3962 49 * - drop CONFIG_HAVE_LEGACY_PER_CPU_AREA
fbf59bc9
TH
50 *
51 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
e0100983
TH
52 * regular address to percpu pointer and back if they need to be
53 * different from the default
fbf59bc9 54 *
8d408b4b
TH
55 * - use pcpu_setup_first_chunk() during percpu area initialization to
56 * setup the first chunk containing the kernel static percpu area
fbf59bc9
TH
57 */
58
59#include <linux/bitmap.h>
60#include <linux/bootmem.h>
fd1e8a1f 61#include <linux/err.h>
fbf59bc9 62#include <linux/list.h>
a530b795 63#include <linux/log2.h>
fbf59bc9
TH
64#include <linux/mm.h>
65#include <linux/module.h>
66#include <linux/mutex.h>
67#include <linux/percpu.h>
68#include <linux/pfn.h>
fbf59bc9 69#include <linux/slab.h>
ccea34b5 70#include <linux/spinlock.h>
fbf59bc9 71#include <linux/vmalloc.h>
a56dbddf 72#include <linux/workqueue.h>
fbf59bc9
TH
73
74#include <asm/cacheflush.h>
e0100983 75#include <asm/sections.h>
fbf59bc9
TH
76#include <asm/tlbflush.h>
77
fbf59bc9
TH
78#define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
79#define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
80
e0100983
TH
81/* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
82#ifndef __addr_to_pcpu_ptr
83#define __addr_to_pcpu_ptr(addr) \
84 (void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr \
85 + (unsigned long)__per_cpu_start)
86#endif
87#ifndef __pcpu_ptr_to_addr
88#define __pcpu_ptr_to_addr(ptr) \
89 (void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr \
90 - (unsigned long)__per_cpu_start)
91#endif
92
fbf59bc9
TH
93struct pcpu_chunk {
94 struct list_head list; /* linked to pcpu_slot lists */
fbf59bc9
TH
95 int free_size; /* free bytes in the chunk */
96 int contig_hint; /* max contiguous size hint */
bba174f5 97 void *base_addr; /* base address of this chunk */
fbf59bc9
TH
98 int map_used; /* # of map entries used */
99 int map_alloc; /* # of map entries allocated */
100 int *map; /* allocation map */
bba174f5 101 struct vm_struct *vm; /* mapped vmalloc region */
8d408b4b 102 bool immutable; /* no [de]population allowed */
ce3141a2 103 unsigned long populated[]; /* populated bitmap */
fbf59bc9
TH
104};
105
40150d37
TH
106static int pcpu_unit_pages __read_mostly;
107static int pcpu_unit_size __read_mostly;
2f39e637 108static int pcpu_nr_units __read_mostly;
40150d37
TH
109static int pcpu_chunk_size __read_mostly;
110static int pcpu_nr_slots __read_mostly;
111static size_t pcpu_chunk_struct_size __read_mostly;
fbf59bc9 112
2f39e637
TH
113/* cpus with the lowest and highest unit numbers */
114static unsigned int pcpu_first_unit_cpu __read_mostly;
115static unsigned int pcpu_last_unit_cpu __read_mostly;
116
fbf59bc9 117/* the address of the first chunk which starts with the kernel static area */
40150d37 118void *pcpu_base_addr __read_mostly;
fbf59bc9
TH
119EXPORT_SYMBOL_GPL(pcpu_base_addr);
120
fb435d52
TH
121static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */
122const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */
2f39e637 123
ae9e6bc9
TH
124/*
125 * The first chunk which always exists. Note that unlike other
126 * chunks, this one can be allocated and mapped in several different
127 * ways and thus often doesn't live in the vmalloc area.
128 */
129static struct pcpu_chunk *pcpu_first_chunk;
130
131/*
132 * Optional reserved chunk. This chunk reserves part of the first
133 * chunk and serves it for reserved allocations. The amount of
134 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
135 * area doesn't exist, the following variables contain NULL and 0
136 * respectively.
137 */
edcb4639 138static struct pcpu_chunk *pcpu_reserved_chunk;
edcb4639
TH
139static int pcpu_reserved_chunk_limit;
140
fbf59bc9 141/*
ccea34b5
TH
142 * Synchronization rules.
143 *
144 * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former
ce3141a2
TH
145 * protects allocation/reclaim paths, chunks, populated bitmap and
146 * vmalloc mapping. The latter is a spinlock and protects the index
147 * data structures - chunk slots, chunks and area maps in chunks.
ccea34b5
TH
148 *
149 * During allocation, pcpu_alloc_mutex is kept locked all the time and
150 * pcpu_lock is grabbed and released as necessary. All actual memory
151 * allocations are done using GFP_KERNEL with pcpu_lock released.
152 *
153 * Free path accesses and alters only the index data structures, so it
154 * can be safely called from atomic context. When memory needs to be
155 * returned to the system, free path schedules reclaim_work which
156 * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
157 * reclaimed, release both locks and frees the chunks. Note that it's
158 * necessary to grab both locks to remove a chunk from circulation as
159 * allocation path might be referencing the chunk with only
160 * pcpu_alloc_mutex locked.
fbf59bc9 161 */
ccea34b5
TH
162static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */
163static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */
fbf59bc9 164
40150d37 165static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
fbf59bc9 166
a56dbddf
TH
167/* reclaim work to release fully free chunks, scheduled from free path */
168static void pcpu_reclaim(struct work_struct *work);
169static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
170
d9b55eeb 171static int __pcpu_size_to_slot(int size)
fbf59bc9 172{
cae3aeb8 173 int highbit = fls(size); /* size is in bytes */
fbf59bc9
TH
174 return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
175}
176
d9b55eeb
TH
177static int pcpu_size_to_slot(int size)
178{
179 if (size == pcpu_unit_size)
180 return pcpu_nr_slots - 1;
181 return __pcpu_size_to_slot(size);
182}
183
fbf59bc9
TH
184static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
185{
186 if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
187 return 0;
188
189 return pcpu_size_to_slot(chunk->free_size);
190}
191
192static int pcpu_page_idx(unsigned int cpu, int page_idx)
193{
2f39e637 194 return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
fbf59bc9
TH
195}
196
fbf59bc9
TH
197static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
198 unsigned int cpu, int page_idx)
199{
bba174f5 200 return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
fb435d52 201 (page_idx << PAGE_SHIFT);
fbf59bc9
TH
202}
203
ce3141a2
TH
204static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
205 unsigned int cpu, int page_idx)
c8a51be4 206{
ce3141a2
TH
207 /* must not be used on pre-mapped chunk */
208 WARN_ON(chunk->immutable);
c8a51be4 209
ce3141a2 210 return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
fbf59bc9
TH
211}
212
e1b9aa3f
CL
213/* set the pointer to a chunk in a page struct */
214static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
215{
216 page->index = (unsigned long)pcpu;
217}
218
219/* obtain pointer to a chunk from a page struct */
220static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
221{
222 return (struct pcpu_chunk *)page->index;
223}
224
ce3141a2
TH
225static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
226{
227 *rs = find_next_zero_bit(chunk->populated, end, *rs);
228 *re = find_next_bit(chunk->populated, end, *rs + 1);
229}
230
231static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
232{
233 *rs = find_next_bit(chunk->populated, end, *rs);
234 *re = find_next_zero_bit(chunk->populated, end, *rs + 1);
235}
236
237/*
238 * (Un)populated page region iterators. Iterate over (un)populated
239 * page regions betwen @start and @end in @chunk. @rs and @re should
240 * be integer variables and will be set to start and end page index of
241 * the current region.
242 */
243#define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
244 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
245 (rs) < (re); \
246 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
247
248#define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
249 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
250 (rs) < (re); \
251 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
252
fbf59bc9 253/**
1880d93b
TH
254 * pcpu_mem_alloc - allocate memory
255 * @size: bytes to allocate
fbf59bc9 256 *
1880d93b
TH
257 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
258 * kzalloc() is used; otherwise, vmalloc() is used. The returned
259 * memory is always zeroed.
fbf59bc9 260 *
ccea34b5
TH
261 * CONTEXT:
262 * Does GFP_KERNEL allocation.
263 *
fbf59bc9 264 * RETURNS:
1880d93b 265 * Pointer to the allocated area on success, NULL on failure.
fbf59bc9 266 */
1880d93b 267static void *pcpu_mem_alloc(size_t size)
fbf59bc9 268{
1880d93b
TH
269 if (size <= PAGE_SIZE)
270 return kzalloc(size, GFP_KERNEL);
271 else {
272 void *ptr = vmalloc(size);
273 if (ptr)
274 memset(ptr, 0, size);
275 return ptr;
276 }
277}
fbf59bc9 278
1880d93b
TH
279/**
280 * pcpu_mem_free - free memory
281 * @ptr: memory to free
282 * @size: size of the area
283 *
284 * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc().
285 */
286static void pcpu_mem_free(void *ptr, size_t size)
287{
fbf59bc9 288 if (size <= PAGE_SIZE)
1880d93b 289 kfree(ptr);
fbf59bc9 290 else
1880d93b 291 vfree(ptr);
fbf59bc9
TH
292}
293
294/**
295 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
296 * @chunk: chunk of interest
297 * @oslot: the previous slot it was on
298 *
299 * This function is called after an allocation or free changed @chunk.
300 * New slot according to the changed state is determined and @chunk is
edcb4639
TH
301 * moved to the slot. Note that the reserved chunk is never put on
302 * chunk slots.
ccea34b5
TH
303 *
304 * CONTEXT:
305 * pcpu_lock.
fbf59bc9
TH
306 */
307static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
308{
309 int nslot = pcpu_chunk_slot(chunk);
310
edcb4639 311 if (chunk != pcpu_reserved_chunk && oslot != nslot) {
fbf59bc9
TH
312 if (oslot < nslot)
313 list_move(&chunk->list, &pcpu_slot[nslot]);
314 else
315 list_move_tail(&chunk->list, &pcpu_slot[nslot]);
316 }
317}
318
fbf59bc9 319/**
e1b9aa3f
CL
320 * pcpu_chunk_addr_search - determine chunk containing specified address
321 * @addr: address for which the chunk needs to be determined.
ccea34b5 322 *
fbf59bc9
TH
323 * RETURNS:
324 * The address of the found chunk.
325 */
326static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
327{
bba174f5 328 void *first_start = pcpu_first_chunk->base_addr;
fbf59bc9 329
ae9e6bc9 330 /* is it in the first chunk? */
79ba6ac8 331 if (addr >= first_start && addr < first_start + pcpu_unit_size) {
ae9e6bc9
TH
332 /* is it in the reserved area? */
333 if (addr < first_start + pcpu_reserved_chunk_limit)
edcb4639 334 return pcpu_reserved_chunk;
ae9e6bc9 335 return pcpu_first_chunk;
edcb4639
TH
336 }
337
2f39e637
TH
338 /*
339 * The address is relative to unit0 which might be unused and
340 * thus unmapped. Offset the address to the unit space of the
341 * current processor before looking it up in the vmalloc
342 * space. Note that any possible cpu id can be used here, so
343 * there's no need to worry about preemption or cpu hotplug.
344 */
fb435d52 345 addr += pcpu_unit_offsets[smp_processor_id()];
e1b9aa3f 346 return pcpu_get_page_chunk(vmalloc_to_page(addr));
fbf59bc9
TH
347}
348
9f7dcf22
TH
349/**
350 * pcpu_extend_area_map - extend area map for allocation
351 * @chunk: target chunk
352 *
353 * Extend area map of @chunk so that it can accomodate an allocation.
354 * A single allocation can split an area into three areas, so this
355 * function makes sure that @chunk->map has at least two extra slots.
356 *
ccea34b5
TH
357 * CONTEXT:
358 * pcpu_alloc_mutex, pcpu_lock. pcpu_lock is released and reacquired
359 * if area map is extended.
360 *
9f7dcf22
TH
361 * RETURNS:
362 * 0 if noop, 1 if successfully extended, -errno on failure.
363 */
364static int pcpu_extend_area_map(struct pcpu_chunk *chunk)
365{
366 int new_alloc;
367 int *new;
368 size_t size;
369
370 /* has enough? */
371 if (chunk->map_alloc >= chunk->map_used + 2)
372 return 0;
373
ccea34b5
TH
374 spin_unlock_irq(&pcpu_lock);
375
9f7dcf22
TH
376 new_alloc = PCPU_DFL_MAP_ALLOC;
377 while (new_alloc < chunk->map_used + 2)
378 new_alloc *= 2;
379
380 new = pcpu_mem_alloc(new_alloc * sizeof(new[0]));
ccea34b5
TH
381 if (!new) {
382 spin_lock_irq(&pcpu_lock);
9f7dcf22 383 return -ENOMEM;
ccea34b5
TH
384 }
385
386 /*
387 * Acquire pcpu_lock and switch to new area map. Only free
388 * could have happened inbetween, so map_used couldn't have
389 * grown.
390 */
391 spin_lock_irq(&pcpu_lock);
392 BUG_ON(new_alloc < chunk->map_used + 2);
9f7dcf22
TH
393
394 size = chunk->map_alloc * sizeof(chunk->map[0]);
395 memcpy(new, chunk->map, size);
396
397 /*
398 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
399 * one of the first chunks and still using static map.
400 */
401 if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
402 pcpu_mem_free(chunk->map, size);
403
404 chunk->map_alloc = new_alloc;
405 chunk->map = new;
406 return 0;
407}
408
fbf59bc9
TH
409/**
410 * pcpu_split_block - split a map block
411 * @chunk: chunk of interest
412 * @i: index of map block to split
cae3aeb8
TH
413 * @head: head size in bytes (can be 0)
414 * @tail: tail size in bytes (can be 0)
fbf59bc9
TH
415 *
416 * Split the @i'th map block into two or three blocks. If @head is
417 * non-zero, @head bytes block is inserted before block @i moving it
418 * to @i+1 and reducing its size by @head bytes.
419 *
420 * If @tail is non-zero, the target block, which can be @i or @i+1
421 * depending on @head, is reduced by @tail bytes and @tail byte block
422 * is inserted after the target block.
423 *
9f7dcf22 424 * @chunk->map must have enough free slots to accomodate the split.
ccea34b5
TH
425 *
426 * CONTEXT:
427 * pcpu_lock.
fbf59bc9 428 */
9f7dcf22
TH
429static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
430 int head, int tail)
fbf59bc9
TH
431{
432 int nr_extra = !!head + !!tail;
1880d93b 433
9f7dcf22 434 BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
fbf59bc9 435
9f7dcf22 436 /* insert new subblocks */
fbf59bc9
TH
437 memmove(&chunk->map[i + nr_extra], &chunk->map[i],
438 sizeof(chunk->map[0]) * (chunk->map_used - i));
439 chunk->map_used += nr_extra;
440
441 if (head) {
442 chunk->map[i + 1] = chunk->map[i] - head;
443 chunk->map[i++] = head;
444 }
445 if (tail) {
446 chunk->map[i++] -= tail;
447 chunk->map[i] = tail;
448 }
fbf59bc9
TH
449}
450
451/**
452 * pcpu_alloc_area - allocate area from a pcpu_chunk
453 * @chunk: chunk of interest
cae3aeb8 454 * @size: wanted size in bytes
fbf59bc9
TH
455 * @align: wanted align
456 *
457 * Try to allocate @size bytes area aligned at @align from @chunk.
458 * Note that this function only allocates the offset. It doesn't
459 * populate or map the area.
460 *
9f7dcf22
TH
461 * @chunk->map must have at least two free slots.
462 *
ccea34b5
TH
463 * CONTEXT:
464 * pcpu_lock.
465 *
fbf59bc9 466 * RETURNS:
9f7dcf22
TH
467 * Allocated offset in @chunk on success, -1 if no matching area is
468 * found.
fbf59bc9
TH
469 */
470static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
471{
472 int oslot = pcpu_chunk_slot(chunk);
473 int max_contig = 0;
474 int i, off;
475
fbf59bc9
TH
476 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
477 bool is_last = i + 1 == chunk->map_used;
478 int head, tail;
479
480 /* extra for alignment requirement */
481 head = ALIGN(off, align) - off;
482 BUG_ON(i == 0 && head != 0);
483
484 if (chunk->map[i] < 0)
485 continue;
486 if (chunk->map[i] < head + size) {
487 max_contig = max(chunk->map[i], max_contig);
488 continue;
489 }
490
491 /*
492 * If head is small or the previous block is free,
493 * merge'em. Note that 'small' is defined as smaller
494 * than sizeof(int), which is very small but isn't too
495 * uncommon for percpu allocations.
496 */
497 if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
498 if (chunk->map[i - 1] > 0)
499 chunk->map[i - 1] += head;
500 else {
501 chunk->map[i - 1] -= head;
502 chunk->free_size -= head;
503 }
504 chunk->map[i] -= head;
505 off += head;
506 head = 0;
507 }
508
509 /* if tail is small, just keep it around */
510 tail = chunk->map[i] - head - size;
511 if (tail < sizeof(int))
512 tail = 0;
513
514 /* split if warranted */
515 if (head || tail) {
9f7dcf22 516 pcpu_split_block(chunk, i, head, tail);
fbf59bc9
TH
517 if (head) {
518 i++;
519 off += head;
520 max_contig = max(chunk->map[i - 1], max_contig);
521 }
522 if (tail)
523 max_contig = max(chunk->map[i + 1], max_contig);
524 }
525
526 /* update hint and mark allocated */
527 if (is_last)
528 chunk->contig_hint = max_contig; /* fully scanned */
529 else
530 chunk->contig_hint = max(chunk->contig_hint,
531 max_contig);
532
533 chunk->free_size -= chunk->map[i];
534 chunk->map[i] = -chunk->map[i];
535
536 pcpu_chunk_relocate(chunk, oslot);
537 return off;
538 }
539
540 chunk->contig_hint = max_contig; /* fully scanned */
541 pcpu_chunk_relocate(chunk, oslot);
542
9f7dcf22
TH
543 /* tell the upper layer that this chunk has no matching area */
544 return -1;
fbf59bc9
TH
545}
546
547/**
548 * pcpu_free_area - free area to a pcpu_chunk
549 * @chunk: chunk of interest
550 * @freeme: offset of area to free
551 *
552 * Free area starting from @freeme to @chunk. Note that this function
553 * only modifies the allocation map. It doesn't depopulate or unmap
554 * the area.
ccea34b5
TH
555 *
556 * CONTEXT:
557 * pcpu_lock.
fbf59bc9
TH
558 */
559static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
560{
561 int oslot = pcpu_chunk_slot(chunk);
562 int i, off;
563
564 for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
565 if (off == freeme)
566 break;
567 BUG_ON(off != freeme);
568 BUG_ON(chunk->map[i] > 0);
569
570 chunk->map[i] = -chunk->map[i];
571 chunk->free_size += chunk->map[i];
572
573 /* merge with previous? */
574 if (i > 0 && chunk->map[i - 1] >= 0) {
575 chunk->map[i - 1] += chunk->map[i];
576 chunk->map_used--;
577 memmove(&chunk->map[i], &chunk->map[i + 1],
578 (chunk->map_used - i) * sizeof(chunk->map[0]));
579 i--;
580 }
581 /* merge with next? */
582 if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
583 chunk->map[i] += chunk->map[i + 1];
584 chunk->map_used--;
585 memmove(&chunk->map[i + 1], &chunk->map[i + 2],
586 (chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
587 }
588
589 chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
590 pcpu_chunk_relocate(chunk, oslot);
591}
592
593/**
ce3141a2
TH
594 * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
595 * @chunk: chunk of interest
596 * @bitmapp: output parameter for bitmap
597 * @may_alloc: may allocate the array
598 *
599 * Returns pointer to array of pointers to struct page and bitmap,
600 * both of which can be indexed with pcpu_page_idx(). The returned
601 * array is cleared to zero and *@bitmapp is copied from
602 * @chunk->populated. Note that there is only one array and bitmap
603 * and access exclusion is the caller's responsibility.
604 *
605 * CONTEXT:
606 * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
607 * Otherwise, don't care.
608 *
609 * RETURNS:
610 * Pointer to temp pages array on success, NULL on failure.
611 */
612static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
613 unsigned long **bitmapp,
614 bool may_alloc)
615{
616 static struct page **pages;
617 static unsigned long *bitmap;
2f39e637 618 size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
ce3141a2
TH
619 size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
620 sizeof(unsigned long);
621
622 if (!pages || !bitmap) {
623 if (may_alloc && !pages)
624 pages = pcpu_mem_alloc(pages_size);
625 if (may_alloc && !bitmap)
626 bitmap = pcpu_mem_alloc(bitmap_size);
627 if (!pages || !bitmap)
628 return NULL;
629 }
630
631 memset(pages, 0, pages_size);
632 bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
633
634 *bitmapp = bitmap;
635 return pages;
636}
637
638/**
639 * pcpu_free_pages - free pages which were allocated for @chunk
640 * @chunk: chunk pages were allocated for
641 * @pages: array of pages to be freed, indexed by pcpu_page_idx()
642 * @populated: populated bitmap
643 * @page_start: page index of the first page to be freed
644 * @page_end: page index of the last page to be freed + 1
645 *
646 * Free pages [@page_start and @page_end) in @pages for all units.
647 * The pages were allocated for @chunk.
648 */
649static void pcpu_free_pages(struct pcpu_chunk *chunk,
650 struct page **pages, unsigned long *populated,
651 int page_start, int page_end)
652{
653 unsigned int cpu;
654 int i;
655
656 for_each_possible_cpu(cpu) {
657 for (i = page_start; i < page_end; i++) {
658 struct page *page = pages[pcpu_page_idx(cpu, i)];
659
660 if (page)
661 __free_page(page);
662 }
663 }
664}
665
666/**
667 * pcpu_alloc_pages - allocates pages for @chunk
668 * @chunk: target chunk
669 * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
670 * @populated: populated bitmap
671 * @page_start: page index of the first page to be allocated
672 * @page_end: page index of the last page to be allocated + 1
673 *
674 * Allocate pages [@page_start,@page_end) into @pages for all units.
675 * The allocation is for @chunk. Percpu core doesn't care about the
676 * content of @pages and will pass it verbatim to pcpu_map_pages().
677 */
678static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
679 struct page **pages, unsigned long *populated,
680 int page_start, int page_end)
681{
682 const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
683 unsigned int cpu;
684 int i;
685
686 for_each_possible_cpu(cpu) {
687 for (i = page_start; i < page_end; i++) {
688 struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
689
690 *pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
691 if (!*pagep) {
692 pcpu_free_pages(chunk, pages, populated,
693 page_start, page_end);
694 return -ENOMEM;
695 }
696 }
697 }
698 return 0;
699}
700
701/**
702 * pcpu_pre_unmap_flush - flush cache prior to unmapping
703 * @chunk: chunk the regions to be flushed belongs to
704 * @page_start: page index of the first page to be flushed
705 * @page_end: page index of the last page to be flushed + 1
706 *
707 * Pages in [@page_start,@page_end) of @chunk are about to be
708 * unmapped. Flush cache. As each flushing trial can be very
709 * expensive, issue flush on the whole region at once rather than
710 * doing it for each cpu. This could be an overkill but is more
711 * scalable.
712 */
713static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
714 int page_start, int page_end)
715{
2f39e637
TH
716 flush_cache_vunmap(
717 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
718 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
ce3141a2
TH
719}
720
721static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
722{
723 unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
724}
725
726/**
727 * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
fbf59bc9 728 * @chunk: chunk of interest
ce3141a2
TH
729 * @pages: pages array which can be used to pass information to free
730 * @populated: populated bitmap
fbf59bc9
TH
731 * @page_start: page index of the first page to unmap
732 * @page_end: page index of the last page to unmap + 1
fbf59bc9
TH
733 *
734 * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
ce3141a2
TH
735 * Corresponding elements in @pages were cleared by the caller and can
736 * be used to carry information to pcpu_free_pages() which will be
737 * called after all unmaps are finished. The caller should call
738 * proper pre/post flush functions.
fbf59bc9 739 */
ce3141a2
TH
740static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
741 struct page **pages, unsigned long *populated,
742 int page_start, int page_end)
fbf59bc9 743{
fbf59bc9 744 unsigned int cpu;
ce3141a2 745 int i;
fbf59bc9 746
ce3141a2
TH
747 for_each_possible_cpu(cpu) {
748 for (i = page_start; i < page_end; i++) {
749 struct page *page;
8d408b4b 750
ce3141a2
TH
751 page = pcpu_chunk_page(chunk, cpu, i);
752 WARN_ON(!page);
753 pages[pcpu_page_idx(cpu, i)] = page;
754 }
755 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
756 page_end - page_start);
757 }
fbf59bc9 758
ce3141a2
TH
759 for (i = page_start; i < page_end; i++)
760 __clear_bit(i, populated);
761}
762
763/**
764 * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
765 * @chunk: pcpu_chunk the regions to be flushed belong to
766 * @page_start: page index of the first page to be flushed
767 * @page_end: page index of the last page to be flushed + 1
768 *
769 * Pages [@page_start,@page_end) of @chunk have been unmapped. Flush
770 * TLB for the regions. This can be skipped if the area is to be
771 * returned to vmalloc as vmalloc will handle TLB flushing lazily.
772 *
773 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
774 * for the whole region.
775 */
776static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
777 int page_start, int page_end)
778{
2f39e637
TH
779 flush_tlb_kernel_range(
780 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
781 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
fbf59bc9
TH
782}
783
c8a51be4
TH
784static int __pcpu_map_pages(unsigned long addr, struct page **pages,
785 int nr_pages)
786{
787 return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
788 PAGE_KERNEL, pages);
789}
790
791/**
ce3141a2 792 * pcpu_map_pages - map pages into a pcpu_chunk
c8a51be4 793 * @chunk: chunk of interest
ce3141a2
TH
794 * @pages: pages array containing pages to be mapped
795 * @populated: populated bitmap
c8a51be4
TH
796 * @page_start: page index of the first page to map
797 * @page_end: page index of the last page to map + 1
798 *
ce3141a2
TH
799 * For each cpu, map pages [@page_start,@page_end) into @chunk. The
800 * caller is responsible for calling pcpu_post_map_flush() after all
801 * mappings are complete.
802 *
803 * This function is responsible for setting corresponding bits in
804 * @chunk->populated bitmap and whatever is necessary for reverse
805 * lookup (addr -> chunk).
c8a51be4 806 */
ce3141a2
TH
807static int pcpu_map_pages(struct pcpu_chunk *chunk,
808 struct page **pages, unsigned long *populated,
809 int page_start, int page_end)
c8a51be4 810{
ce3141a2
TH
811 unsigned int cpu, tcpu;
812 int i, err;
c8a51be4
TH
813
814 for_each_possible_cpu(cpu) {
815 err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
ce3141a2 816 &pages[pcpu_page_idx(cpu, page_start)],
c8a51be4
TH
817 page_end - page_start);
818 if (err < 0)
ce3141a2 819 goto err;
c8a51be4
TH
820 }
821
ce3141a2
TH
822 /* mapping successful, link chunk and mark populated */
823 for (i = page_start; i < page_end; i++) {
824 for_each_possible_cpu(cpu)
825 pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
826 chunk);
827 __set_bit(i, populated);
828 }
829
830 return 0;
831
832err:
833 for_each_possible_cpu(tcpu) {
834 if (tcpu == cpu)
835 break;
836 __pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
837 page_end - page_start);
838 }
839 return err;
840}
841
842/**
843 * pcpu_post_map_flush - flush cache after mapping
844 * @chunk: pcpu_chunk the regions to be flushed belong to
845 * @page_start: page index of the first page to be flushed
846 * @page_end: page index of the last page to be flushed + 1
847 *
848 * Pages [@page_start,@page_end) of @chunk have been mapped. Flush
849 * cache.
850 *
851 * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
852 * for the whole region.
853 */
854static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
855 int page_start, int page_end)
856{
2f39e637
TH
857 flush_cache_vmap(
858 pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
859 pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
c8a51be4
TH
860}
861
fbf59bc9
TH
862/**
863 * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
864 * @chunk: chunk to depopulate
865 * @off: offset to the area to depopulate
cae3aeb8 866 * @size: size of the area to depopulate in bytes
fbf59bc9
TH
867 * @flush: whether to flush cache and tlb or not
868 *
869 * For each cpu, depopulate and unmap pages [@page_start,@page_end)
870 * from @chunk. If @flush is true, vcache is flushed before unmapping
871 * and tlb after.
ccea34b5
TH
872 *
873 * CONTEXT:
874 * pcpu_alloc_mutex.
fbf59bc9 875 */
ce3141a2 876static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
fbf59bc9
TH
877{
878 int page_start = PFN_DOWN(off);
879 int page_end = PFN_UP(off + size);
ce3141a2
TH
880 struct page **pages;
881 unsigned long *populated;
882 int rs, re;
883
884 /* quick path, check whether it's empty already */
885 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
886 if (rs == page_start && re == page_end)
887 return;
888 break;
889 }
fbf59bc9 890
ce3141a2
TH
891 /* immutable chunks can't be depopulated */
892 WARN_ON(chunk->immutable);
fbf59bc9 893
ce3141a2
TH
894 /*
895 * If control reaches here, there must have been at least one
896 * successful population attempt so the temp pages array must
897 * be available now.
898 */
899 pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
900 BUG_ON(!pages);
fbf59bc9 901
ce3141a2
TH
902 /* unmap and free */
903 pcpu_pre_unmap_flush(chunk, page_start, page_end);
fbf59bc9 904
ce3141a2
TH
905 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
906 pcpu_unmap_pages(chunk, pages, populated, rs, re);
fbf59bc9 907
ce3141a2
TH
908 /* no need to flush tlb, vmalloc will handle it lazily */
909
910 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
911 pcpu_free_pages(chunk, pages, populated, rs, re);
fbf59bc9 912
ce3141a2
TH
913 /* commit new bitmap */
914 bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
fbf59bc9
TH
915}
916
fbf59bc9
TH
917/**
918 * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
919 * @chunk: chunk of interest
920 * @off: offset to the area to populate
cae3aeb8 921 * @size: size of the area to populate in bytes
fbf59bc9
TH
922 *
923 * For each cpu, populate and map pages [@page_start,@page_end) into
924 * @chunk. The area is cleared on return.
ccea34b5
TH
925 *
926 * CONTEXT:
927 * pcpu_alloc_mutex, does GFP_KERNEL allocation.
fbf59bc9
TH
928 */
929static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
930{
fbf59bc9
TH
931 int page_start = PFN_DOWN(off);
932 int page_end = PFN_UP(off + size);
ce3141a2
TH
933 int free_end = page_start, unmap_end = page_start;
934 struct page **pages;
935 unsigned long *populated;
fbf59bc9 936 unsigned int cpu;
ce3141a2 937 int rs, re, rc;
fbf59bc9 938
ce3141a2
TH
939 /* quick path, check whether all pages are already there */
940 pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) {
941 if (rs == page_start && re == page_end)
942 goto clear;
943 break;
944 }
fbf59bc9 945
ce3141a2
TH
946 /* need to allocate and map pages, this chunk can't be immutable */
947 WARN_ON(chunk->immutable);
fbf59bc9 948
ce3141a2
TH
949 pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
950 if (!pages)
951 return -ENOMEM;
fbf59bc9 952
ce3141a2
TH
953 /* alloc and map */
954 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
955 rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
956 if (rc)
957 goto err_free;
958 free_end = re;
fbf59bc9
TH
959 }
960
ce3141a2
TH
961 pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
962 rc = pcpu_map_pages(chunk, pages, populated, rs, re);
963 if (rc)
964 goto err_unmap;
965 unmap_end = re;
966 }
967 pcpu_post_map_flush(chunk, page_start, page_end);
fbf59bc9 968
ce3141a2
TH
969 /* commit new bitmap */
970 bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
971clear:
fbf59bc9 972 for_each_possible_cpu(cpu)
2f39e637 973 memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
fbf59bc9 974 return 0;
ce3141a2
TH
975
976err_unmap:
977 pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
978 pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
979 pcpu_unmap_pages(chunk, pages, populated, rs, re);
980 pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
981err_free:
982 pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
983 pcpu_free_pages(chunk, pages, populated, rs, re);
984 return rc;
fbf59bc9
TH
985}
986
987static void free_pcpu_chunk(struct pcpu_chunk *chunk)
988{
989 if (!chunk)
990 return;
991 if (chunk->vm)
992 free_vm_area(chunk->vm);
1880d93b 993 pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
fbf59bc9
TH
994 kfree(chunk);
995}
996
997static struct pcpu_chunk *alloc_pcpu_chunk(void)
998{
999 struct pcpu_chunk *chunk;
1000
1001 chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
1002 if (!chunk)
1003 return NULL;
1004
1880d93b 1005 chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
fbf59bc9
TH
1006 chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
1007 chunk->map[chunk->map_used++] = pcpu_unit_size;
1008
142d44b0 1009 chunk->vm = get_vm_area(pcpu_chunk_size, VM_ALLOC);
fbf59bc9
TH
1010 if (!chunk->vm) {
1011 free_pcpu_chunk(chunk);
1012 return NULL;
1013 }
1014
1015 INIT_LIST_HEAD(&chunk->list);
1016 chunk->free_size = pcpu_unit_size;
1017 chunk->contig_hint = pcpu_unit_size;
bba174f5 1018 chunk->base_addr = chunk->vm->addr;
fbf59bc9
TH
1019
1020 return chunk;
1021}
1022
1023/**
edcb4639 1024 * pcpu_alloc - the percpu allocator
cae3aeb8 1025 * @size: size of area to allocate in bytes
fbf59bc9 1026 * @align: alignment of area (max PAGE_SIZE)
edcb4639 1027 * @reserved: allocate from the reserved chunk if available
fbf59bc9 1028 *
ccea34b5
TH
1029 * Allocate percpu area of @size bytes aligned at @align.
1030 *
1031 * CONTEXT:
1032 * Does GFP_KERNEL allocation.
fbf59bc9
TH
1033 *
1034 * RETURNS:
1035 * Percpu pointer to the allocated area on success, NULL on failure.
1036 */
edcb4639 1037static void *pcpu_alloc(size_t size, size_t align, bool reserved)
fbf59bc9 1038{
fbf59bc9
TH
1039 struct pcpu_chunk *chunk;
1040 int slot, off;
1041
8d408b4b 1042 if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
fbf59bc9
TH
1043 WARN(true, "illegal size (%zu) or align (%zu) for "
1044 "percpu allocation\n", size, align);
1045 return NULL;
1046 }
1047
ccea34b5
TH
1048 mutex_lock(&pcpu_alloc_mutex);
1049 spin_lock_irq(&pcpu_lock);
fbf59bc9 1050
edcb4639
TH
1051 /* serve reserved allocations from the reserved chunk if available */
1052 if (reserved && pcpu_reserved_chunk) {
1053 chunk = pcpu_reserved_chunk;
9f7dcf22
TH
1054 if (size > chunk->contig_hint ||
1055 pcpu_extend_area_map(chunk) < 0)
ccea34b5 1056 goto fail_unlock;
edcb4639
TH
1057 off = pcpu_alloc_area(chunk, size, align);
1058 if (off >= 0)
1059 goto area_found;
ccea34b5 1060 goto fail_unlock;
edcb4639
TH
1061 }
1062
ccea34b5 1063restart:
edcb4639 1064 /* search through normal chunks */
fbf59bc9
TH
1065 for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1066 list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1067 if (size > chunk->contig_hint)
1068 continue;
ccea34b5
TH
1069
1070 switch (pcpu_extend_area_map(chunk)) {
1071 case 0:
1072 break;
1073 case 1:
1074 goto restart; /* pcpu_lock dropped, restart */
1075 default:
1076 goto fail_unlock;
1077 }
1078
fbf59bc9
TH
1079 off = pcpu_alloc_area(chunk, size, align);
1080 if (off >= 0)
1081 goto area_found;
fbf59bc9
TH
1082 }
1083 }
1084
1085 /* hmmm... no space left, create a new chunk */
ccea34b5
TH
1086 spin_unlock_irq(&pcpu_lock);
1087
fbf59bc9
TH
1088 chunk = alloc_pcpu_chunk();
1089 if (!chunk)
ccea34b5
TH
1090 goto fail_unlock_mutex;
1091
1092 spin_lock_irq(&pcpu_lock);
fbf59bc9 1093 pcpu_chunk_relocate(chunk, -1);
ccea34b5 1094 goto restart;
fbf59bc9
TH
1095
1096area_found:
ccea34b5
TH
1097 spin_unlock_irq(&pcpu_lock);
1098
fbf59bc9
TH
1099 /* populate, map and clear the area */
1100 if (pcpu_populate_chunk(chunk, off, size)) {
ccea34b5 1101 spin_lock_irq(&pcpu_lock);
fbf59bc9 1102 pcpu_free_area(chunk, off);
ccea34b5 1103 goto fail_unlock;
fbf59bc9
TH
1104 }
1105
ccea34b5
TH
1106 mutex_unlock(&pcpu_alloc_mutex);
1107
bba174f5
TH
1108 /* return address relative to base address */
1109 return __addr_to_pcpu_ptr(chunk->base_addr + off);
ccea34b5
TH
1110
1111fail_unlock:
1112 spin_unlock_irq(&pcpu_lock);
1113fail_unlock_mutex:
1114 mutex_unlock(&pcpu_alloc_mutex);
1115 return NULL;
fbf59bc9 1116}
edcb4639
TH
1117
1118/**
1119 * __alloc_percpu - allocate dynamic percpu area
1120 * @size: size of area to allocate in bytes
1121 * @align: alignment of area (max PAGE_SIZE)
1122 *
1123 * Allocate percpu area of @size bytes aligned at @align. Might
1124 * sleep. Might trigger writeouts.
1125 *
ccea34b5
TH
1126 * CONTEXT:
1127 * Does GFP_KERNEL allocation.
1128 *
edcb4639
TH
1129 * RETURNS:
1130 * Percpu pointer to the allocated area on success, NULL on failure.
1131 */
1132void *__alloc_percpu(size_t size, size_t align)
1133{
1134 return pcpu_alloc(size, align, false);
1135}
fbf59bc9
TH
1136EXPORT_SYMBOL_GPL(__alloc_percpu);
1137
edcb4639
TH
1138/**
1139 * __alloc_reserved_percpu - allocate reserved percpu area
1140 * @size: size of area to allocate in bytes
1141 * @align: alignment of area (max PAGE_SIZE)
1142 *
1143 * Allocate percpu area of @size bytes aligned at @align from reserved
1144 * percpu area if arch has set it up; otherwise, allocation is served
1145 * from the same dynamic area. Might sleep. Might trigger writeouts.
1146 *
ccea34b5
TH
1147 * CONTEXT:
1148 * Does GFP_KERNEL allocation.
1149 *
edcb4639
TH
1150 * RETURNS:
1151 * Percpu pointer to the allocated area on success, NULL on failure.
1152 */
1153void *__alloc_reserved_percpu(size_t size, size_t align)
1154{
1155 return pcpu_alloc(size, align, true);
1156}
1157
a56dbddf
TH
1158/**
1159 * pcpu_reclaim - reclaim fully free chunks, workqueue function
1160 * @work: unused
1161 *
1162 * Reclaim all fully free chunks except for the first one.
ccea34b5
TH
1163 *
1164 * CONTEXT:
1165 * workqueue context.
a56dbddf
TH
1166 */
1167static void pcpu_reclaim(struct work_struct *work)
fbf59bc9 1168{
a56dbddf
TH
1169 LIST_HEAD(todo);
1170 struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
1171 struct pcpu_chunk *chunk, *next;
1172
ccea34b5
TH
1173 mutex_lock(&pcpu_alloc_mutex);
1174 spin_lock_irq(&pcpu_lock);
a56dbddf
TH
1175
1176 list_for_each_entry_safe(chunk, next, head, list) {
1177 WARN_ON(chunk->immutable);
1178
1179 /* spare the first one */
1180 if (chunk == list_first_entry(head, struct pcpu_chunk, list))
1181 continue;
1182
a56dbddf
TH
1183 list_move(&chunk->list, &todo);
1184 }
1185
ccea34b5 1186 spin_unlock_irq(&pcpu_lock);
a56dbddf
TH
1187
1188 list_for_each_entry_safe(chunk, next, &todo, list) {
ce3141a2 1189 pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
a56dbddf
TH
1190 free_pcpu_chunk(chunk);
1191 }
971f3918
TH
1192
1193 mutex_unlock(&pcpu_alloc_mutex);
fbf59bc9
TH
1194}
1195
1196/**
1197 * free_percpu - free percpu area
1198 * @ptr: pointer to area to free
1199 *
ccea34b5
TH
1200 * Free percpu area @ptr.
1201 *
1202 * CONTEXT:
1203 * Can be called from atomic context.
fbf59bc9
TH
1204 */
1205void free_percpu(void *ptr)
1206{
1207 void *addr = __pcpu_ptr_to_addr(ptr);
1208 struct pcpu_chunk *chunk;
ccea34b5 1209 unsigned long flags;
fbf59bc9
TH
1210 int off;
1211
1212 if (!ptr)
1213 return;
1214
ccea34b5 1215 spin_lock_irqsave(&pcpu_lock, flags);
fbf59bc9
TH
1216
1217 chunk = pcpu_chunk_addr_search(addr);
bba174f5 1218 off = addr - chunk->base_addr;
fbf59bc9
TH
1219
1220 pcpu_free_area(chunk, off);
1221
a56dbddf 1222 /* if there are more than one fully free chunks, wake up grim reaper */
fbf59bc9
TH
1223 if (chunk->free_size == pcpu_unit_size) {
1224 struct pcpu_chunk *pos;
1225
a56dbddf 1226 list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
fbf59bc9 1227 if (pos != chunk) {
a56dbddf 1228 schedule_work(&pcpu_reclaim_work);
fbf59bc9
TH
1229 break;
1230 }
1231 }
1232
ccea34b5 1233 spin_unlock_irqrestore(&pcpu_lock, flags);
fbf59bc9
TH
1234}
1235EXPORT_SYMBOL_GPL(free_percpu);
1236
033e48fb
TH
1237static inline size_t pcpu_calc_fc_sizes(size_t static_size,
1238 size_t reserved_size,
1239 ssize_t *dyn_sizep)
1240{
1241 size_t size_sum;
1242
1243 size_sum = PFN_ALIGN(static_size + reserved_size +
1244 (*dyn_sizep >= 0 ? *dyn_sizep : 0));
1245 if (*dyn_sizep != 0)
1246 *dyn_sizep = size_sum - static_size - reserved_size;
1247
1248 return size_sum;
1249}
1250
033e48fb 1251/**
fd1e8a1f
TH
1252 * pcpu_alloc_alloc_info - allocate percpu allocation info
1253 * @nr_groups: the number of groups
1254 * @nr_units: the number of units
1255 *
1256 * Allocate ai which is large enough for @nr_groups groups containing
1257 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1258 * cpu_map array which is long enough for @nr_units and filled with
1259 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1260 * pointer of other groups.
1261 *
1262 * RETURNS:
1263 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1264 * failure.
1265 */
1266struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1267 int nr_units)
1268{
1269 struct pcpu_alloc_info *ai;
1270 size_t base_size, ai_size;
1271 void *ptr;
1272 int unit;
1273
1274 base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1275 __alignof__(ai->groups[0].cpu_map[0]));
1276 ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1277
1278 ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
1279 if (!ptr)
1280 return NULL;
1281 ai = ptr;
1282 ptr += base_size;
1283
1284 ai->groups[0].cpu_map = ptr;
1285
1286 for (unit = 0; unit < nr_units; unit++)
1287 ai->groups[0].cpu_map[unit] = NR_CPUS;
1288
1289 ai->nr_groups = nr_groups;
1290 ai->__ai_size = PFN_ALIGN(ai_size);
1291
1292 return ai;
1293}
1294
1295/**
1296 * pcpu_free_alloc_info - free percpu allocation info
1297 * @ai: pcpu_alloc_info to free
1298 *
1299 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1300 */
1301void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1302{
1303 free_bootmem(__pa(ai), ai->__ai_size);
1304}
1305
1306/**
1307 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
033e48fb 1308 * @reserved_size: the size of reserved percpu area in bytes
fd1e8a1f
TH
1309 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1310 * @atom_size: allocation atom size
1311 * @cpu_distance_fn: callback to determine distance between cpus, optional
033e48fb 1312 *
fd1e8a1f
TH
1313 * This function determines grouping of units, their mappings to cpus
1314 * and other parameters considering needed percpu size, allocation
1315 * atom size and distances between CPUs.
033e48fb 1316 *
fd1e8a1f
TH
1317 * Groups are always mutliples of atom size and CPUs which are of
1318 * LOCAL_DISTANCE both ways are grouped together and share space for
1319 * units in the same group. The returned configuration is guaranteed
1320 * to have CPUs on different nodes on different groups and >=75% usage
1321 * of allocated virtual address space.
033e48fb
TH
1322 *
1323 * RETURNS:
fd1e8a1f
TH
1324 * On success, pointer to the new allocation_info is returned. On
1325 * failure, ERR_PTR value is returned.
033e48fb 1326 */
fd1e8a1f
TH
1327struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1328 size_t reserved_size, ssize_t dyn_size,
1329 size_t atom_size,
1330 pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
033e48fb
TH
1331{
1332 static int group_map[NR_CPUS] __initdata;
1333 static int group_cnt[NR_CPUS] __initdata;
1334 const size_t static_size = __per_cpu_end - __per_cpu_start;
fd1e8a1f 1335 int group_cnt_max = 0, nr_groups = 1, nr_units = 0;
033e48fb
TH
1336 size_t size_sum, min_unit_size, alloc_size;
1337 int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */
fd1e8a1f 1338 int last_allocs, group, unit;
033e48fb 1339 unsigned int cpu, tcpu;
fd1e8a1f
TH
1340 struct pcpu_alloc_info *ai;
1341 unsigned int *cpu_map;
033e48fb
TH
1342
1343 /*
1344 * Determine min_unit_size, alloc_size and max_upa such that
fd1e8a1f 1345 * alloc_size is multiple of atom_size and is the smallest
033e48fb
TH
1346 * which can accomodate 4k aligned segments which are equal to
1347 * or larger than min_unit_size.
1348 */
fd1e8a1f 1349 size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
033e48fb
TH
1350 min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1351
fd1e8a1f 1352 alloc_size = roundup(min_unit_size, atom_size);
033e48fb
TH
1353 upa = alloc_size / min_unit_size;
1354 while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1355 upa--;
1356 max_upa = upa;
1357
1358 /* group cpus according to their proximity */
1359 for_each_possible_cpu(cpu) {
1360 group = 0;
1361 next_group:
1362 for_each_possible_cpu(tcpu) {
1363 if (cpu == tcpu)
1364 break;
fd1e8a1f 1365 if (group_map[tcpu] == group && cpu_distance_fn &&
033e48fb
TH
1366 (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1367 cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1368 group++;
fd1e8a1f 1369 nr_groups = max(nr_groups, group + 1);
033e48fb
TH
1370 goto next_group;
1371 }
1372 }
1373 group_map[cpu] = group;
1374 group_cnt[group]++;
1375 group_cnt_max = max(group_cnt_max, group_cnt[group]);
1376 }
1377
1378 /*
1379 * Expand unit size until address space usage goes over 75%
1380 * and then as much as possible without using more address
1381 * space.
1382 */
1383 last_allocs = INT_MAX;
1384 for (upa = max_upa; upa; upa--) {
1385 int allocs = 0, wasted = 0;
1386
1387 if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1388 continue;
1389
fd1e8a1f 1390 for (group = 0; group < nr_groups; group++) {
033e48fb
TH
1391 int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1392 allocs += this_allocs;
1393 wasted += this_allocs * upa - group_cnt[group];
1394 }
1395
1396 /*
1397 * Don't accept if wastage is over 25%. The
1398 * greater-than comparison ensures upa==1 always
1399 * passes the following check.
1400 */
1401 if (wasted > num_possible_cpus() / 3)
1402 continue;
1403
1404 /* and then don't consume more memory */
1405 if (allocs > last_allocs)
1406 break;
1407 last_allocs = allocs;
1408 best_upa = upa;
1409 }
fd1e8a1f
TH
1410 upa = best_upa;
1411
1412 /* allocate and fill alloc_info */
1413 for (group = 0; group < nr_groups; group++)
1414 nr_units += roundup(group_cnt[group], upa);
1415
1416 ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1417 if (!ai)
1418 return ERR_PTR(-ENOMEM);
1419 cpu_map = ai->groups[0].cpu_map;
1420
1421 for (group = 0; group < nr_groups; group++) {
1422 ai->groups[group].cpu_map = cpu_map;
1423 cpu_map += roundup(group_cnt[group], upa);
1424 }
1425
1426 ai->static_size = static_size;
1427 ai->reserved_size = reserved_size;
1428 ai->dyn_size = dyn_size;
1429 ai->unit_size = alloc_size / upa;
1430 ai->atom_size = atom_size;
1431 ai->alloc_size = alloc_size;
1432
1433 for (group = 0, unit = 0; group_cnt[group]; group++) {
1434 struct pcpu_group_info *gi = &ai->groups[group];
1435
1436 /*
1437 * Initialize base_offset as if all groups are located
1438 * back-to-back. The caller should update this to
1439 * reflect actual allocation.
1440 */
1441 gi->base_offset = unit * ai->unit_size;
033e48fb 1442
033e48fb
TH
1443 for_each_possible_cpu(cpu)
1444 if (group_map[cpu] == group)
fd1e8a1f
TH
1445 gi->cpu_map[gi->nr_units++] = cpu;
1446 gi->nr_units = roundup(gi->nr_units, upa);
1447 unit += gi->nr_units;
033e48fb 1448 }
fd1e8a1f 1449 BUG_ON(unit != nr_units);
033e48fb 1450
fd1e8a1f 1451 return ai;
033e48fb
TH
1452}
1453
fd1e8a1f
TH
1454/**
1455 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1456 * @lvl: loglevel
1457 * @ai: allocation info to dump
1458 *
1459 * Print out information about @ai using loglevel @lvl.
1460 */
1461static void pcpu_dump_alloc_info(const char *lvl,
1462 const struct pcpu_alloc_info *ai)
033e48fb 1463{
fd1e8a1f 1464 int group_width = 1, cpu_width = 1, width;
033e48fb 1465 char empty_str[] = "--------";
fd1e8a1f
TH
1466 int alloc = 0, alloc_end = 0;
1467 int group, v;
1468 int upa, apl; /* units per alloc, allocs per line */
1469
1470 v = ai->nr_groups;
1471 while (v /= 10)
1472 group_width++;
033e48fb 1473
fd1e8a1f 1474 v = num_possible_cpus();
033e48fb 1475 while (v /= 10)
fd1e8a1f
TH
1476 cpu_width++;
1477 empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
033e48fb 1478
fd1e8a1f
TH
1479 upa = ai->alloc_size / ai->unit_size;
1480 width = upa * (cpu_width + 1) + group_width + 3;
1481 apl = rounddown_pow_of_two(max(60 / width, 1));
033e48fb 1482
fd1e8a1f
TH
1483 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1484 lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1485 ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
033e48fb 1486
fd1e8a1f
TH
1487 for (group = 0; group < ai->nr_groups; group++) {
1488 const struct pcpu_group_info *gi = &ai->groups[group];
1489 int unit = 0, unit_end = 0;
1490
1491 BUG_ON(gi->nr_units % upa);
1492 for (alloc_end += gi->nr_units / upa;
1493 alloc < alloc_end; alloc++) {
1494 if (!(alloc % apl)) {
033e48fb 1495 printk("\n");
fd1e8a1f
TH
1496 printk("%spcpu-alloc: ", lvl);
1497 }
1498 printk("[%0*d] ", group_width, group);
1499
1500 for (unit_end += upa; unit < unit_end; unit++)
1501 if (gi->cpu_map[unit] != NR_CPUS)
1502 printk("%0*d ", cpu_width,
1503 gi->cpu_map[unit]);
1504 else
1505 printk("%s ", empty_str);
033e48fb 1506 }
033e48fb
TH
1507 }
1508 printk("\n");
1509}
033e48fb 1510
fbf59bc9 1511/**
8d408b4b 1512 * pcpu_setup_first_chunk - initialize the first percpu chunk
fd1e8a1f 1513 * @ai: pcpu_alloc_info describing how to percpu area is shaped
38a6be52 1514 * @base_addr: mapped address
8d408b4b
TH
1515 *
1516 * Initialize the first percpu chunk which contains the kernel static
1517 * perpcu area. This function is to be called from arch percpu area
38a6be52 1518 * setup path.
8d408b4b 1519 *
fd1e8a1f
TH
1520 * @ai contains all information necessary to initialize the first
1521 * chunk and prime the dynamic percpu allocator.
1522 *
1523 * @ai->static_size is the size of static percpu area.
1524 *
1525 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
edcb4639
TH
1526 * reserve after the static area in the first chunk. This reserves
1527 * the first chunk such that it's available only through reserved
1528 * percpu allocation. This is primarily used to serve module percpu
1529 * static areas on architectures where the addressing model has
1530 * limited offset range for symbol relocations to guarantee module
1531 * percpu symbols fall inside the relocatable range.
1532 *
fd1e8a1f
TH
1533 * @ai->dyn_size determines the number of bytes available for dynamic
1534 * allocation in the first chunk. The area between @ai->static_size +
1535 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
6074d5b0 1536 *
fd1e8a1f
TH
1537 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1538 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1539 * @ai->dyn_size.
1540 *
1541 * @ai->atom_size is the allocation atom size and used as alignment
1542 * for vm areas.
1543 *
1544 * @ai->alloc_size is the allocation size and always multiple of
1545 * @ai->atom_size. This is larger than @ai->atom_size if
1546 * @ai->unit_size is larger than @ai->atom_size.
1547 *
1548 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1549 * percpu areas. Units which should be colocated are put into the
1550 * same group. Dynamic VM areas will be allocated according to these
1551 * groupings. If @ai->nr_groups is zero, a single group containing
1552 * all units is assumed.
8d408b4b 1553 *
38a6be52
TH
1554 * The caller should have mapped the first chunk at @base_addr and
1555 * copied static data to each unit.
fbf59bc9 1556 *
edcb4639
TH
1557 * If the first chunk ends up with both reserved and dynamic areas, it
1558 * is served by two chunks - one to serve the core static and reserved
1559 * areas and the other for the dynamic area. They share the same vm
1560 * and page map but uses different area allocation map to stay away
1561 * from each other. The latter chunk is circulated in the chunk slots
1562 * and available for dynamic allocation like any other chunks.
1563 *
fbf59bc9 1564 * RETURNS:
fb435d52 1565 * 0 on success, -errno on failure.
fbf59bc9 1566 */
fb435d52
TH
1567int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1568 void *base_addr)
fbf59bc9 1569{
edcb4639 1570 static int smap[2], dmap[2];
fd1e8a1f
TH
1571 size_t dyn_size = ai->dyn_size;
1572 size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
edcb4639 1573 struct pcpu_chunk *schunk, *dchunk = NULL;
fb435d52 1574 unsigned long *unit_off;
fd1e8a1f
TH
1575 unsigned int cpu;
1576 int *unit_map;
1577 int group, unit, i;
fbf59bc9 1578
2f39e637 1579 /* sanity checks */
edcb4639
TH
1580 BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
1581 ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
fd1e8a1f
TH
1582 BUG_ON(ai->nr_groups <= 0);
1583 BUG_ON(!ai->static_size);
38a6be52 1584 BUG_ON(!base_addr);
fd1e8a1f
TH
1585 BUG_ON(ai->unit_size < size_sum);
1586 BUG_ON(ai->unit_size & ~PAGE_MASK);
1587 BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
1588
1589 pcpu_dump_alloc_info(KERN_DEBUG, ai);
8d408b4b 1590
fb435d52 1591 /* determine number of units and initialize unit_map and base */
fd1e8a1f 1592 unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
fb435d52 1593 unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
2f39e637 1594
fd1e8a1f
TH
1595 for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1596 unit_map[cpu] = NR_CPUS;
1597 pcpu_first_unit_cpu = NR_CPUS;
2f39e637 1598
fd1e8a1f
TH
1599 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1600 const struct pcpu_group_info *gi = &ai->groups[group];
2f39e637 1601
fd1e8a1f
TH
1602 for (i = 0; i < gi->nr_units; i++) {
1603 cpu = gi->cpu_map[i];
1604 if (cpu == NR_CPUS)
1605 continue;
2f39e637 1606
fd1e8a1f
TH
1607 BUG_ON(cpu > nr_cpu_ids || !cpu_possible(cpu));
1608 BUG_ON(unit_map[cpu] != NR_CPUS);
1609
1610 unit_map[cpu] = unit + i;
fb435d52
TH
1611 unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1612
fd1e8a1f
TH
1613 if (pcpu_first_unit_cpu == NR_CPUS)
1614 pcpu_first_unit_cpu = cpu;
1615 }
2f39e637 1616 }
fd1e8a1f
TH
1617 pcpu_last_unit_cpu = cpu;
1618 pcpu_nr_units = unit;
1619
1620 for_each_possible_cpu(cpu)
1621 BUG_ON(unit_map[cpu] == NR_CPUS);
1622
1623 pcpu_unit_map = unit_map;
fb435d52 1624 pcpu_unit_offsets = unit_off;
2f39e637
TH
1625
1626 /* determine basic parameters */
fd1e8a1f 1627 pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
d9b55eeb 1628 pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
2f39e637 1629 pcpu_chunk_size = pcpu_nr_units * pcpu_unit_size;
ce3141a2
TH
1630 pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1631 BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
fbf59bc9 1632
d9b55eeb
TH
1633 /*
1634 * Allocate chunk slots. The additional last slot is for
1635 * empty chunks.
1636 */
1637 pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
fbf59bc9
TH
1638 pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1639 for (i = 0; i < pcpu_nr_slots; i++)
1640 INIT_LIST_HEAD(&pcpu_slot[i]);
1641
edcb4639
TH
1642 /*
1643 * Initialize static chunk. If reserved_size is zero, the
1644 * static chunk covers static area + dynamic allocation area
1645 * in the first chunk. If reserved_size is not zero, it
1646 * covers static area + reserved area (mostly used for module
1647 * static percpu allocation).
1648 */
2441d15c
TH
1649 schunk = alloc_bootmem(pcpu_chunk_struct_size);
1650 INIT_LIST_HEAD(&schunk->list);
bba174f5 1651 schunk->base_addr = base_addr;
61ace7fa
TH
1652 schunk->map = smap;
1653 schunk->map_alloc = ARRAY_SIZE(smap);
38a6be52 1654 schunk->immutable = true;
ce3141a2 1655 bitmap_fill(schunk->populated, pcpu_unit_pages);
edcb4639 1656
fd1e8a1f
TH
1657 if (ai->reserved_size) {
1658 schunk->free_size = ai->reserved_size;
ae9e6bc9 1659 pcpu_reserved_chunk = schunk;
fd1e8a1f 1660 pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
edcb4639
TH
1661 } else {
1662 schunk->free_size = dyn_size;
1663 dyn_size = 0; /* dynamic area covered */
1664 }
2441d15c 1665 schunk->contig_hint = schunk->free_size;
fbf59bc9 1666
fd1e8a1f 1667 schunk->map[schunk->map_used++] = -ai->static_size;
61ace7fa
TH
1668 if (schunk->free_size)
1669 schunk->map[schunk->map_used++] = schunk->free_size;
1670
edcb4639
TH
1671 /* init dynamic chunk if necessary */
1672 if (dyn_size) {
ce3141a2 1673 dchunk = alloc_bootmem(pcpu_chunk_struct_size);
edcb4639 1674 INIT_LIST_HEAD(&dchunk->list);
bba174f5 1675 dchunk->base_addr = base_addr;
edcb4639
TH
1676 dchunk->map = dmap;
1677 dchunk->map_alloc = ARRAY_SIZE(dmap);
38a6be52 1678 dchunk->immutable = true;
ce3141a2 1679 bitmap_fill(dchunk->populated, pcpu_unit_pages);
edcb4639
TH
1680
1681 dchunk->contig_hint = dchunk->free_size = dyn_size;
1682 dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1683 dchunk->map[dchunk->map_used++] = dchunk->free_size;
1684 }
1685
2441d15c 1686 /* link the first chunk in */
ae9e6bc9
TH
1687 pcpu_first_chunk = dchunk ?: schunk;
1688 pcpu_chunk_relocate(pcpu_first_chunk, -1);
fbf59bc9
TH
1689
1690 /* we're done */
bba174f5 1691 pcpu_base_addr = base_addr;
fb435d52 1692 return 0;
fbf59bc9 1693}
66c3a757 1694
f58dc01b
TH
1695const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
1696 [PCPU_FC_AUTO] = "auto",
1697 [PCPU_FC_EMBED] = "embed",
1698 [PCPU_FC_PAGE] = "page",
1699 [PCPU_FC_LPAGE] = "lpage",
1700};
1701
1702enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1703
1704static int __init percpu_alloc_setup(char *str)
1705{
1706 if (0)
1707 /* nada */;
1708#ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1709 else if (!strcmp(str, "embed"))
1710 pcpu_chosen_fc = PCPU_FC_EMBED;
1711#endif
1712#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1713 else if (!strcmp(str, "page"))
1714 pcpu_chosen_fc = PCPU_FC_PAGE;
1715#endif
1716#ifdef CONFIG_NEED_PER_CPU_LPAGE_FIRST_CHUNK
1717 else if (!strcmp(str, "lpage"))
1718 pcpu_chosen_fc = PCPU_FC_LPAGE;
1719#endif
1720 else
1721 pr_warning("PERCPU: unknown allocator %s specified\n", str);
1722
1723 return 0;
1724}
1725early_param("percpu_alloc", percpu_alloc_setup);
1726
08fc4580
TH
1727#if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1728 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
66c3a757
TH
1729/**
1730 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
66c3a757
TH
1731 * @reserved_size: the size of reserved percpu area in bytes
1732 * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
66c3a757
TH
1733 *
1734 * This is a helper to ease setting up embedded first percpu chunk and
1735 * can be called where pcpu_setup_first_chunk() is expected.
1736 *
1737 * If this function is used to setup the first chunk, it is allocated
1738 * as a contiguous area using bootmem allocator and used as-is without
1739 * being mapped into vmalloc area. This enables the first chunk to
1740 * piggy back on the linear physical mapping which often uses larger
1741 * page size.
1742 *
1743 * When @dyn_size is positive, dynamic area might be larger than
788e5abc
TH
1744 * specified to fill page alignment. When @dyn_size is auto,
1745 * @dyn_size is just big enough to fill page alignment after static
1746 * and reserved areas.
66c3a757
TH
1747 *
1748 * If the needed size is smaller than the minimum or specified unit
1749 * size, the leftover is returned to the bootmem allocator.
1750 *
1751 * RETURNS:
fb435d52 1752 * 0 on success, -errno on failure.
66c3a757 1753 */
fb435d52 1754int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size)
66c3a757 1755{
fd1e8a1f
TH
1756 struct pcpu_alloc_info *ai;
1757 size_t size_sum, chunk_size;
ce3141a2 1758 void *base;
fd1e8a1f 1759 int unit;
fb435d52 1760 int rc;
66c3a757 1761
fd1e8a1f
TH
1762 ai = pcpu_build_alloc_info(reserved_size, dyn_size, PAGE_SIZE, NULL);
1763 if (IS_ERR(ai))
1764 return PTR_ERR(ai);
1765 BUG_ON(ai->nr_groups != 1);
1766 BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
66c3a757 1767
fd1e8a1f
TH
1768 size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1769 chunk_size = ai->unit_size * num_possible_cpus();
fa8a7094 1770
ce3141a2
TH
1771 base = __alloc_bootmem_nopanic(chunk_size, PAGE_SIZE,
1772 __pa(MAX_DMA_ADDRESS));
1773 if (!base) {
fa8a7094
TH
1774 pr_warning("PERCPU: failed to allocate %zu bytes for "
1775 "embedding\n", chunk_size);
fb435d52 1776 rc = -ENOMEM;
fd1e8a1f 1777 goto out_free_ai;
fa8a7094 1778 }
66c3a757
TH
1779
1780 /* return the leftover and copy */
fd1e8a1f
TH
1781 for (unit = 0; unit < num_possible_cpus(); unit++) {
1782 void *ptr = base + unit * ai->unit_size;
1783
1784 free_bootmem(__pa(ptr + size_sum), ai->unit_size - size_sum);
1785 memcpy(ptr, __per_cpu_load, ai->static_size);
66c3a757
TH
1786 }
1787
1788 /* we're ready, commit */
004018e2 1789 pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
fd1e8a1f
TH
1790 PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
1791 ai->dyn_size, ai->unit_size);
d4b95f80 1792
fb435d52 1793 rc = pcpu_setup_first_chunk(ai, base);
fd1e8a1f
TH
1794out_free_ai:
1795 pcpu_free_alloc_info(ai);
fb435d52 1796 return rc;
d4b95f80 1797}
08fc4580
TH
1798#endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK ||
1799 !CONFIG_HAVE_SETUP_PER_CPU_AREA */
d4b95f80 1800
08fc4580 1801#ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
d4b95f80 1802/**
00ae4064 1803 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
d4b95f80
TH
1804 * @reserved_size: the size of reserved percpu area in bytes
1805 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1806 * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
1807 * @populate_pte_fn: function to populate pte
1808 *
00ae4064
TH
1809 * This is a helper to ease setting up page-remapped first percpu
1810 * chunk and can be called where pcpu_setup_first_chunk() is expected.
d4b95f80
TH
1811 *
1812 * This is the basic allocator. Static percpu area is allocated
1813 * page-by-page into vmalloc area.
1814 *
1815 * RETURNS:
fb435d52 1816 * 0 on success, -errno on failure.
d4b95f80 1817 */
fb435d52
TH
1818int __init pcpu_page_first_chunk(size_t reserved_size,
1819 pcpu_fc_alloc_fn_t alloc_fn,
1820 pcpu_fc_free_fn_t free_fn,
1821 pcpu_fc_populate_pte_fn_t populate_pte_fn)
d4b95f80 1822{
8f05a6a6 1823 static struct vm_struct vm;
fd1e8a1f 1824 struct pcpu_alloc_info *ai;
00ae4064 1825 char psize_str[16];
ce3141a2 1826 int unit_pages;
d4b95f80 1827 size_t pages_size;
ce3141a2 1828 struct page **pages;
fb435d52 1829 int unit, i, j, rc;
d4b95f80 1830
00ae4064
TH
1831 snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
1832
fd1e8a1f
TH
1833 ai = pcpu_build_alloc_info(reserved_size, -1, PAGE_SIZE, NULL);
1834 if (IS_ERR(ai))
1835 return PTR_ERR(ai);
1836 BUG_ON(ai->nr_groups != 1);
1837 BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
1838
1839 unit_pages = ai->unit_size >> PAGE_SHIFT;
d4b95f80
TH
1840
1841 /* unaligned allocations can't be freed, round up to page size */
fd1e8a1f
TH
1842 pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
1843 sizeof(pages[0]));
ce3141a2 1844 pages = alloc_bootmem(pages_size);
d4b95f80 1845
8f05a6a6 1846 /* allocate pages */
d4b95f80 1847 j = 0;
fd1e8a1f 1848 for (unit = 0; unit < num_possible_cpus(); unit++)
ce3141a2 1849 for (i = 0; i < unit_pages; i++) {
fd1e8a1f 1850 unsigned int cpu = ai->groups[0].cpu_map[unit];
d4b95f80
TH
1851 void *ptr;
1852
3cbc8565 1853 ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
d4b95f80 1854 if (!ptr) {
00ae4064
TH
1855 pr_warning("PERCPU: failed to allocate %s page "
1856 "for cpu%u\n", psize_str, cpu);
d4b95f80
TH
1857 goto enomem;
1858 }
ce3141a2 1859 pages[j++] = virt_to_page(ptr);
d4b95f80
TH
1860 }
1861
8f05a6a6
TH
1862 /* allocate vm area, map the pages and copy static data */
1863 vm.flags = VM_ALLOC;
fd1e8a1f 1864 vm.size = num_possible_cpus() * ai->unit_size;
8f05a6a6
TH
1865 vm_area_register_early(&vm, PAGE_SIZE);
1866
fd1e8a1f 1867 for (unit = 0; unit < num_possible_cpus(); unit++) {
1d9d3257 1868 unsigned long unit_addr =
fd1e8a1f 1869 (unsigned long)vm.addr + unit * ai->unit_size;
8f05a6a6 1870
ce3141a2 1871 for (i = 0; i < unit_pages; i++)
8f05a6a6
TH
1872 populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
1873
1874 /* pte already populated, the following shouldn't fail */
fb435d52
TH
1875 rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
1876 unit_pages);
1877 if (rc < 0)
1878 panic("failed to map percpu area, err=%d\n", rc);
8f05a6a6
TH
1879
1880 /*
1881 * FIXME: Archs with virtual cache should flush local
1882 * cache for the linear mapping here - something
1883 * equivalent to flush_cache_vmap() on the local cpu.
1884 * flush_cache_vmap() can't be used as most supporting
1885 * data structures are not set up yet.
1886 */
1887
1888 /* copy static data */
fd1e8a1f 1889 memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
8f05a6a6
TH
1890 }
1891
d4b95f80 1892 /* we're ready, commit */
1d9d3257 1893 pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
fd1e8a1f
TH
1894 unit_pages, psize_str, vm.addr, ai->static_size,
1895 ai->reserved_size, ai->dyn_size);
d4b95f80 1896
fb435d52 1897 rc = pcpu_setup_first_chunk(ai, vm.addr);
d4b95f80
TH
1898 goto out_free_ar;
1899
1900enomem:
1901 while (--j >= 0)
ce3141a2 1902 free_fn(page_address(pages[j]), PAGE_SIZE);
fb435d52 1903 rc = -ENOMEM;
d4b95f80 1904out_free_ar:
ce3141a2 1905 free_bootmem(__pa(pages), pages_size);
fd1e8a1f 1906 pcpu_free_alloc_info(ai);
fb435d52 1907 return rc;
d4b95f80 1908}
08fc4580 1909#endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */
d4b95f80 1910
08fc4580 1911#ifdef CONFIG_NEED_PER_CPU_LPAGE_FIRST_CHUNK
8c4bfc6e 1912struct pcpul_ent {
8c4bfc6e 1913 void *ptr;
a530b795 1914 void *map_addr;
8c4bfc6e
TH
1915};
1916
1917static size_t pcpul_size;
a530b795
TH
1918static size_t pcpul_lpage_size;
1919static int pcpul_nr_lpages;
8c4bfc6e 1920static struct pcpul_ent *pcpul_map;
a530b795 1921
fd1e8a1f 1922static bool __init pcpul_unit_to_cpu(int unit, const struct pcpu_alloc_info *ai,
a530b795
TH
1923 unsigned int *cpup)
1924{
fd1e8a1f 1925 int group, cunit;
a530b795 1926
fd1e8a1f
TH
1927 for (group = 0, cunit = 0; group < ai->nr_groups; group++) {
1928 const struct pcpu_group_info *gi = &ai->groups[group];
1929
1930 if (unit < cunit + gi->nr_units) {
a530b795 1931 if (cpup)
fd1e8a1f 1932 *cpup = gi->cpu_map[unit - cunit];
a530b795
TH
1933 return true;
1934 }
fd1e8a1f
TH
1935 cunit += gi->nr_units;
1936 }
a530b795
TH
1937
1938 return false;
1939}
1940
fd1e8a1f
TH
1941static int __init pcpul_cpu_to_unit(int cpu, const struct pcpu_alloc_info *ai)
1942{
1943 int group, unit, i;
1944
1945 for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1946 const struct pcpu_group_info *gi = &ai->groups[group];
1947
1948 for (i = 0; i < gi->nr_units; i++)
1949 if (gi->cpu_map[i] == cpu)
1950 return unit + i;
1951 }
1952 BUG();
1953}
1954
8c4bfc6e
TH
1955/**
1956 * pcpu_lpage_first_chunk - remap the first percpu chunk using large page
fd1e8a1f 1957 * @ai: pcpu_alloc_info
8c4bfc6e
TH
1958 * @alloc_fn: function to allocate percpu lpage, always called with lpage_size
1959 * @free_fn: function to free percpu memory, @size <= lpage_size
1960 * @map_fn: function to map percpu lpage, always called with lpage_size
1961 *
a530b795 1962 * This allocator uses large page to build and map the first chunk.
fd1e8a1f
TH
1963 * Unlike other helpers, the caller should provide fully initialized
1964 * @ai. This can be done using pcpu_build_alloc_info(). This two
1965 * stage initialization is to allow arch code to evaluate the
a530b795
TH
1966 * parameters before committing to it.
1967 *
1968 * Large pages are allocated as directed by @unit_map and other
1969 * parameters and mapped to vmalloc space. Unused holes are returned
1970 * to the page allocator. Note that these holes end up being actively
1971 * mapped twice - once to the physical mapping and to the vmalloc area
1972 * for the first percpu chunk. Depending on architecture, this might
1973 * cause problem when changing page attributes of the returned area.
1974 * These double mapped areas can be detected using
1975 * pcpu_lpage_remapped().
8c4bfc6e
TH
1976 *
1977 * RETURNS:
fb435d52 1978 * 0 on success, -errno on failure.
8c4bfc6e 1979 */
fb435d52
TH
1980int __init pcpu_lpage_first_chunk(const struct pcpu_alloc_info *ai,
1981 pcpu_fc_alloc_fn_t alloc_fn,
1982 pcpu_fc_free_fn_t free_fn,
1983 pcpu_fc_map_fn_t map_fn)
8c4bfc6e 1984{
a530b795 1985 static struct vm_struct vm;
fd1e8a1f
TH
1986 const size_t lpage_size = ai->atom_size;
1987 size_t chunk_size, map_size;
8c4bfc6e 1988 unsigned int cpu;
fb435d52 1989 int i, j, unit, nr_units, rc;
8c4bfc6e 1990
fd1e8a1f
TH
1991 nr_units = 0;
1992 for (i = 0; i < ai->nr_groups; i++)
1993 nr_units += ai->groups[i].nr_units;
8c4bfc6e 1994
fd1e8a1f 1995 chunk_size = ai->unit_size * nr_units;
a530b795
TH
1996 BUG_ON(chunk_size % lpage_size);
1997
fd1e8a1f 1998 pcpul_size = ai->static_size + ai->reserved_size + ai->dyn_size;
a530b795
TH
1999 pcpul_lpage_size = lpage_size;
2000 pcpul_nr_lpages = chunk_size / lpage_size;
8c4bfc6e
TH
2001
2002 /* allocate pointer array and alloc large pages */
a530b795 2003 map_size = pcpul_nr_lpages * sizeof(pcpul_map[0]);
8c4bfc6e
TH
2004 pcpul_map = alloc_bootmem(map_size);
2005
a530b795
TH
2006 /* allocate all pages */
2007 for (i = 0; i < pcpul_nr_lpages; i++) {
2008 size_t offset = i * lpage_size;
fd1e8a1f
TH
2009 int first_unit = offset / ai->unit_size;
2010 int last_unit = (offset + lpage_size - 1) / ai->unit_size;
8c4bfc6e
TH
2011 void *ptr;
2012
a530b795
TH
2013 /* find out which cpu is mapped to this unit */
2014 for (unit = first_unit; unit <= last_unit; unit++)
fd1e8a1f 2015 if (pcpul_unit_to_cpu(unit, ai, &cpu))
a530b795
TH
2016 goto found;
2017 continue;
2018 found:
3cbc8565 2019 ptr = alloc_fn(cpu, lpage_size, lpage_size);
8c4bfc6e
TH
2020 if (!ptr) {
2021 pr_warning("PERCPU: failed to allocate large page "
2022 "for cpu%u\n", cpu);
2023 goto enomem;
2024 }
2025
a530b795
TH
2026 pcpul_map[i].ptr = ptr;
2027 }
8c4bfc6e 2028
a530b795
TH
2029 /* return unused holes */
2030 for (unit = 0; unit < nr_units; unit++) {
fd1e8a1f
TH
2031 size_t start = unit * ai->unit_size;
2032 size_t end = start + ai->unit_size;
a530b795
TH
2033 size_t off, next;
2034
2035 /* don't free used part of occupied unit */
fd1e8a1f 2036 if (pcpul_unit_to_cpu(unit, ai, NULL))
a530b795
TH
2037 start += pcpul_size;
2038
2039 /* unit can span more than one page, punch the holes */
2040 for (off = start; off < end; off = next) {
2041 void *ptr = pcpul_map[off / lpage_size].ptr;
2042 next = min(roundup(off + 1, lpage_size), end);
2043 if (ptr)
2044 free_fn(ptr + off % lpage_size, next - off);
2045 }
8c4bfc6e
TH
2046 }
2047
a530b795
TH
2048 /* allocate address, map and copy */
2049 vm.flags = VM_ALLOC;
2050 vm.size = chunk_size;
fd1e8a1f 2051 vm_area_register_early(&vm, ai->unit_size);
a530b795
TH
2052
2053 for (i = 0; i < pcpul_nr_lpages; i++) {
2054 if (!pcpul_map[i].ptr)
2055 continue;
2056 pcpul_map[i].map_addr = vm.addr + i * lpage_size;
2057 map_fn(pcpul_map[i].ptr, lpage_size, pcpul_map[i].map_addr);
2058 }
8c4bfc6e
TH
2059
2060 for_each_possible_cpu(cpu)
fd1e8a1f
TH
2061 memcpy(vm.addr + pcpul_cpu_to_unit(cpu, ai) * ai->unit_size,
2062 __per_cpu_load, ai->static_size);
8c4bfc6e
TH
2063
2064 /* we're ready, commit */
004018e2 2065 pr_info("PERCPU: large pages @%p s%zu r%zu d%zu u%zu\n",
fd1e8a1f
TH
2066 vm.addr, ai->static_size, ai->reserved_size, ai->dyn_size,
2067 ai->unit_size);
8c4bfc6e 2068
fb435d52 2069 rc = pcpu_setup_first_chunk(ai, vm.addr);
a530b795
TH
2070
2071 /*
2072 * Sort pcpul_map array for pcpu_lpage_remapped(). Unmapped
2073 * lpages are pushed to the end and trimmed.
2074 */
2075 for (i = 0; i < pcpul_nr_lpages - 1; i++)
2076 for (j = i + 1; j < pcpul_nr_lpages; j++) {
2077 struct pcpul_ent tmp;
2078
2079 if (!pcpul_map[j].ptr)
2080 continue;
2081 if (pcpul_map[i].ptr &&
2082 pcpul_map[i].ptr < pcpul_map[j].ptr)
2083 continue;
2084
2085 tmp = pcpul_map[i];
2086 pcpul_map[i] = pcpul_map[j];
2087 pcpul_map[j] = tmp;
2088 }
2089
2090 while (pcpul_nr_lpages && !pcpul_map[pcpul_nr_lpages - 1].ptr)
2091 pcpul_nr_lpages--;
8c4bfc6e 2092
fb435d52 2093 return rc;
8c4bfc6e
TH
2094
2095enomem:
a530b795
TH
2096 for (i = 0; i < pcpul_nr_lpages; i++)
2097 if (pcpul_map[i].ptr)
2098 free_fn(pcpul_map[i].ptr, lpage_size);
8c4bfc6e
TH
2099 free_bootmem(__pa(pcpul_map), map_size);
2100 return -ENOMEM;
2101}
2102
2103/**
2104 * pcpu_lpage_remapped - determine whether a kaddr is in pcpul recycled area
2105 * @kaddr: the kernel address in question
2106 *
2107 * Determine whether @kaddr falls in the pcpul recycled area. This is
2108 * used by pageattr to detect VM aliases and break up the pcpu large
2109 * page mapping such that the same physical page is not mapped under
2110 * different attributes.
2111 *
2112 * The recycled area is always at the tail of a partially used large
2113 * page.
2114 *
2115 * RETURNS:
2116 * Address of corresponding remapped pcpu address if match is found;
2117 * otherwise, NULL.
2118 */
2119void *pcpu_lpage_remapped(void *kaddr)
2120{
a530b795
TH
2121 unsigned long lpage_mask = pcpul_lpage_size - 1;
2122 void *lpage_addr = (void *)((unsigned long)kaddr & ~lpage_mask);
2123 unsigned long offset = (unsigned long)kaddr & lpage_mask;
2124 int left = 0, right = pcpul_nr_lpages - 1;
8c4bfc6e
TH
2125 int pos;
2126
2127 /* pcpul in use at all? */
2128 if (!pcpul_map)
2129 return NULL;
2130
2131 /* okay, perform binary search */
2132 while (left <= right) {
2133 pos = (left + right) / 2;
2134
2135 if (pcpul_map[pos].ptr < lpage_addr)
2136 left = pos + 1;
2137 else if (pcpul_map[pos].ptr > lpage_addr)
2138 right = pos - 1;
a530b795
TH
2139 else
2140 return pcpul_map[pos].map_addr + offset;
8c4bfc6e
TH
2141 }
2142
2143 return NULL;
2144}
08fc4580 2145#endif /* CONFIG_NEED_PER_CPU_LPAGE_FIRST_CHUNK */
8c4bfc6e 2146
e74e3962
TH
2147/*
2148 * Generic percpu area setup.
2149 *
2150 * The embedding helper is used because its behavior closely resembles
2151 * the original non-dynamic generic percpu area setup. This is
2152 * important because many archs have addressing restrictions and might
2153 * fail if the percpu area is located far away from the previous
2154 * location. As an added bonus, in non-NUMA cases, embedding is
2155 * generally a good idea TLB-wise because percpu area can piggy back
2156 * on the physical linear memory mapping which uses large page
2157 * mappings on applicable archs.
2158 */
2159#ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2160unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2161EXPORT_SYMBOL(__per_cpu_offset);
2162
2163void __init setup_per_cpu_areas(void)
2164{
e74e3962
TH
2165 unsigned long delta;
2166 unsigned int cpu;
fb435d52 2167 int rc;
e74e3962
TH
2168
2169 /*
2170 * Always reserve area for module percpu variables. That's
2171 * what the legacy allocator did.
2172 */
fb435d52
TH
2173 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2174 PERCPU_DYNAMIC_RESERVE);
2175 if (rc < 0)
e74e3962
TH
2176 panic("Failed to initialized percpu areas.");
2177
2178 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2179 for_each_possible_cpu(cpu)
fb435d52 2180 __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
e74e3962
TH
2181}
2182#endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */