]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
perf_counter: Initialize per-cpu context earlier on cpu up
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
0d905bca 42#include <linux/perf_counter.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
5517d86b 67#include <linux/reciprocal_div.h>
dff06c15 68#include <linux/unistd.h>
f5ff8422 69#include <linux/pagemap.h>
8f4d37ec 70#include <linux/hrtimer.h>
30914a58 71#include <linux/tick.h>
434d53b0 72#include <linux/bootmem.h>
f00b45c1
PZ
73#include <linux/debugfs.h>
74#include <linux/ctype.h>
6cd8a4bb 75#include <linux/ftrace.h>
0a16b607 76#include <trace/sched.h>
1da177e4 77
5517d86b 78#include <asm/tlb.h>
838225b4 79#include <asm/irq_regs.h>
1da177e4 80
6e0534f2
GH
81#include "sched_cpupri.h"
82
1da177e4
LT
83/*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92/*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101/*
d7876a08 102 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 103 */
d6322faf 104#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 105
6aa645ea
IM
106#define NICE_0_LOAD SCHED_LOAD_SCALE
107#define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
1da177e4
LT
109/*
110 * These are the 'tuning knobs' of the scheduler:
111 *
a4ec24b4 112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
113 * Timeslices get refilled after they expire.
114 */
1da177e4 115#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 116
d0b27fa7
PZ
117/*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120#define RUNTIME_INF ((u64)~0ULL)
121
7e066fb8
MD
122DEFINE_TRACE(sched_wait_task);
123DEFINE_TRACE(sched_wakeup);
124DEFINE_TRACE(sched_wakeup_new);
125DEFINE_TRACE(sched_switch);
126DEFINE_TRACE(sched_migrate_task);
127
5517d86b 128#ifdef CONFIG_SMP
fd2ab30b
SN
129
130static void double_rq_lock(struct rq *rq1, struct rq *rq2);
131
5517d86b
ED
132/*
133 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
134 * Since cpu_power is a 'constant', we can use a reciprocal divide.
135 */
136static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
137{
138 return reciprocal_divide(load, sg->reciprocal_cpu_power);
139}
140
141/*
142 * Each time a sched group cpu_power is changed,
143 * we must compute its reciprocal value
144 */
145static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
146{
147 sg->__cpu_power += val;
148 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
149}
150#endif
151
e05606d3
IM
152static inline int rt_policy(int policy)
153{
3f33a7ce 154 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
155 return 1;
156 return 0;
157}
158
159static inline int task_has_rt_policy(struct task_struct *p)
160{
161 return rt_policy(p->policy);
162}
163
1da177e4 164/*
6aa645ea 165 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 166 */
6aa645ea
IM
167struct rt_prio_array {
168 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
169 struct list_head queue[MAX_RT_PRIO];
170};
171
d0b27fa7 172struct rt_bandwidth {
ea736ed5
IM
173 /* nests inside the rq lock: */
174 spinlock_t rt_runtime_lock;
175 ktime_t rt_period;
176 u64 rt_runtime;
177 struct hrtimer rt_period_timer;
d0b27fa7
PZ
178};
179
180static struct rt_bandwidth def_rt_bandwidth;
181
182static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
183
184static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
185{
186 struct rt_bandwidth *rt_b =
187 container_of(timer, struct rt_bandwidth, rt_period_timer);
188 ktime_t now;
189 int overrun;
190 int idle = 0;
191
192 for (;;) {
193 now = hrtimer_cb_get_time(timer);
194 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
195
196 if (!overrun)
197 break;
198
199 idle = do_sched_rt_period_timer(rt_b, overrun);
200 }
201
202 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
203}
204
205static
206void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
207{
208 rt_b->rt_period = ns_to_ktime(period);
209 rt_b->rt_runtime = runtime;
210
ac086bc2
PZ
211 spin_lock_init(&rt_b->rt_runtime_lock);
212
d0b27fa7
PZ
213 hrtimer_init(&rt_b->rt_period_timer,
214 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
215 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
216}
217
c8bfff6d
KH
218static inline int rt_bandwidth_enabled(void)
219{
220 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
221}
222
223static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
224{
225 ktime_t now;
226
cac64d00 227 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
228 return;
229
230 if (hrtimer_active(&rt_b->rt_period_timer))
231 return;
232
233 spin_lock(&rt_b->rt_runtime_lock);
234 for (;;) {
7f1e2ca9
PZ
235 unsigned long delta;
236 ktime_t soft, hard;
237
d0b27fa7
PZ
238 if (hrtimer_active(&rt_b->rt_period_timer))
239 break;
240
241 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
242 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
243
244 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
245 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
246 delta = ktime_to_ns(ktime_sub(hard, soft));
247 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
248 HRTIMER_MODE_ABS, 0);
d0b27fa7
PZ
249 }
250 spin_unlock(&rt_b->rt_runtime_lock);
251}
252
253#ifdef CONFIG_RT_GROUP_SCHED
254static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
255{
256 hrtimer_cancel(&rt_b->rt_period_timer);
257}
258#endif
259
712555ee
HC
260/*
261 * sched_domains_mutex serializes calls to arch_init_sched_domains,
262 * detach_destroy_domains and partition_sched_domains.
263 */
264static DEFINE_MUTEX(sched_domains_mutex);
265
052f1dc7 266#ifdef CONFIG_GROUP_SCHED
29f59db3 267
68318b8e
SV
268#include <linux/cgroup.h>
269
29f59db3
SV
270struct cfs_rq;
271
6f505b16
PZ
272static LIST_HEAD(task_groups);
273
29f59db3 274/* task group related information */
4cf86d77 275struct task_group {
052f1dc7 276#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
277 struct cgroup_subsys_state css;
278#endif
052f1dc7 279
6c415b92
AB
280#ifdef CONFIG_USER_SCHED
281 uid_t uid;
282#endif
283
052f1dc7 284#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
285 /* schedulable entities of this group on each cpu */
286 struct sched_entity **se;
287 /* runqueue "owned" by this group on each cpu */
288 struct cfs_rq **cfs_rq;
289 unsigned long shares;
052f1dc7
PZ
290#endif
291
292#ifdef CONFIG_RT_GROUP_SCHED
293 struct sched_rt_entity **rt_se;
294 struct rt_rq **rt_rq;
295
d0b27fa7 296 struct rt_bandwidth rt_bandwidth;
052f1dc7 297#endif
6b2d7700 298
ae8393e5 299 struct rcu_head rcu;
6f505b16 300 struct list_head list;
f473aa5e
PZ
301
302 struct task_group *parent;
303 struct list_head siblings;
304 struct list_head children;
29f59db3
SV
305};
306
354d60c2 307#ifdef CONFIG_USER_SCHED
eff766a6 308
6c415b92
AB
309/* Helper function to pass uid information to create_sched_user() */
310void set_tg_uid(struct user_struct *user)
311{
312 user->tg->uid = user->uid;
313}
314
eff766a6
PZ
315/*
316 * Root task group.
317 * Every UID task group (including init_task_group aka UID-0) will
318 * be a child to this group.
319 */
320struct task_group root_task_group;
321
052f1dc7 322#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
323/* Default task group's sched entity on each cpu */
324static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
325/* Default task group's cfs_rq on each cpu */
326static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 327#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
328
329#ifdef CONFIG_RT_GROUP_SCHED
330static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
331static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 332#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 333#else /* !CONFIG_USER_SCHED */
eff766a6 334#define root_task_group init_task_group
9a7e0b18 335#endif /* CONFIG_USER_SCHED */
6f505b16 336
8ed36996 337/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
338 * a task group's cpu shares.
339 */
8ed36996 340static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 341
57310a98
PZ
342#ifdef CONFIG_SMP
343static int root_task_group_empty(void)
344{
345 return list_empty(&root_task_group.children);
346}
347#endif
348
052f1dc7 349#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
350#ifdef CONFIG_USER_SCHED
351# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 352#else /* !CONFIG_USER_SCHED */
052f1dc7 353# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 354#endif /* CONFIG_USER_SCHED */
052f1dc7 355
cb4ad1ff 356/*
2e084786
LJ
357 * A weight of 0 or 1 can cause arithmetics problems.
358 * A weight of a cfs_rq is the sum of weights of which entities
359 * are queued on this cfs_rq, so a weight of a entity should not be
360 * too large, so as the shares value of a task group.
cb4ad1ff
MX
361 * (The default weight is 1024 - so there's no practical
362 * limitation from this.)
363 */
18d95a28 364#define MIN_SHARES 2
2e084786 365#define MAX_SHARES (1UL << 18)
18d95a28 366
052f1dc7
PZ
367static int init_task_group_load = INIT_TASK_GROUP_LOAD;
368#endif
369
29f59db3 370/* Default task group.
3a252015 371 * Every task in system belong to this group at bootup.
29f59db3 372 */
434d53b0 373struct task_group init_task_group;
29f59db3
SV
374
375/* return group to which a task belongs */
4cf86d77 376static inline struct task_group *task_group(struct task_struct *p)
29f59db3 377{
4cf86d77 378 struct task_group *tg;
9b5b7751 379
052f1dc7 380#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
381 rcu_read_lock();
382 tg = __task_cred(p)->user->tg;
383 rcu_read_unlock();
052f1dc7 384#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
385 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
386 struct task_group, css);
24e377a8 387#else
41a2d6cf 388 tg = &init_task_group;
24e377a8 389#endif
9b5b7751 390 return tg;
29f59db3
SV
391}
392
393/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 394static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 395{
052f1dc7 396#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
397 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
398 p->se.parent = task_group(p)->se[cpu];
052f1dc7 399#endif
6f505b16 400
052f1dc7 401#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
402 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
403 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 404#endif
29f59db3
SV
405}
406
407#else
408
57310a98
PZ
409#ifdef CONFIG_SMP
410static int root_task_group_empty(void)
411{
412 return 1;
413}
414#endif
415
6f505b16 416static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
417static inline struct task_group *task_group(struct task_struct *p)
418{
419 return NULL;
420}
29f59db3 421
052f1dc7 422#endif /* CONFIG_GROUP_SCHED */
29f59db3 423
6aa645ea
IM
424/* CFS-related fields in a runqueue */
425struct cfs_rq {
426 struct load_weight load;
427 unsigned long nr_running;
428
6aa645ea 429 u64 exec_clock;
e9acbff6 430 u64 min_vruntime;
6aa645ea
IM
431
432 struct rb_root tasks_timeline;
433 struct rb_node *rb_leftmost;
4a55bd5e
PZ
434
435 struct list_head tasks;
436 struct list_head *balance_iterator;
437
438 /*
439 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
440 * It is set to NULL otherwise (i.e when none are currently running).
441 */
4793241b 442 struct sched_entity *curr, *next, *last;
ddc97297 443
5ac5c4d6 444 unsigned int nr_spread_over;
ddc97297 445
62160e3f 446#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
447 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
448
41a2d6cf
IM
449 /*
450 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
451 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
452 * (like users, containers etc.)
453 *
454 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
455 * list is used during load balance.
456 */
41a2d6cf
IM
457 struct list_head leaf_cfs_rq_list;
458 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
459
460#ifdef CONFIG_SMP
c09595f6 461 /*
c8cba857 462 * the part of load.weight contributed by tasks
c09595f6 463 */
c8cba857 464 unsigned long task_weight;
c09595f6 465
c8cba857
PZ
466 /*
467 * h_load = weight * f(tg)
468 *
469 * Where f(tg) is the recursive weight fraction assigned to
470 * this group.
471 */
472 unsigned long h_load;
c09595f6 473
c8cba857
PZ
474 /*
475 * this cpu's part of tg->shares
476 */
477 unsigned long shares;
f1d239f7
PZ
478
479 /*
480 * load.weight at the time we set shares
481 */
482 unsigned long rq_weight;
c09595f6 483#endif
6aa645ea
IM
484#endif
485};
1da177e4 486
6aa645ea
IM
487/* Real-Time classes' related field in a runqueue: */
488struct rt_rq {
489 struct rt_prio_array active;
63489e45 490 unsigned long rt_nr_running;
052f1dc7 491#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
492 struct {
493 int curr; /* highest queued rt task prio */
398a153b 494#ifdef CONFIG_SMP
e864c499 495 int next; /* next highest */
398a153b 496#endif
e864c499 497 } highest_prio;
6f505b16 498#endif
fa85ae24 499#ifdef CONFIG_SMP
73fe6aae 500 unsigned long rt_nr_migratory;
a22d7fc1 501 int overloaded;
917b627d 502 struct plist_head pushable_tasks;
fa85ae24 503#endif
6f505b16 504 int rt_throttled;
fa85ae24 505 u64 rt_time;
ac086bc2 506 u64 rt_runtime;
ea736ed5 507 /* Nests inside the rq lock: */
ac086bc2 508 spinlock_t rt_runtime_lock;
6f505b16 509
052f1dc7 510#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
511 unsigned long rt_nr_boosted;
512
6f505b16
PZ
513 struct rq *rq;
514 struct list_head leaf_rt_rq_list;
515 struct task_group *tg;
516 struct sched_rt_entity *rt_se;
517#endif
6aa645ea
IM
518};
519
57d885fe
GH
520#ifdef CONFIG_SMP
521
522/*
523 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
524 * variables. Each exclusive cpuset essentially defines an island domain by
525 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
526 * exclusive cpuset is created, we also create and attach a new root-domain
527 * object.
528 *
57d885fe
GH
529 */
530struct root_domain {
531 atomic_t refcount;
c6c4927b
RR
532 cpumask_var_t span;
533 cpumask_var_t online;
637f5085 534
0eab9146 535 /*
637f5085
GH
536 * The "RT overload" flag: it gets set if a CPU has more than
537 * one runnable RT task.
538 */
c6c4927b 539 cpumask_var_t rto_mask;
0eab9146 540 atomic_t rto_count;
6e0534f2
GH
541#ifdef CONFIG_SMP
542 struct cpupri cpupri;
543#endif
7a09b1a2
VS
544#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
545 /*
546 * Preferred wake up cpu nominated by sched_mc balance that will be
547 * used when most cpus are idle in the system indicating overall very
548 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
549 */
550 unsigned int sched_mc_preferred_wakeup_cpu;
551#endif
57d885fe
GH
552};
553
dc938520
GH
554/*
555 * By default the system creates a single root-domain with all cpus as
556 * members (mimicking the global state we have today).
557 */
57d885fe
GH
558static struct root_domain def_root_domain;
559
560#endif
561
1da177e4
LT
562/*
563 * This is the main, per-CPU runqueue data structure.
564 *
565 * Locking rule: those places that want to lock multiple runqueues
566 * (such as the load balancing or the thread migration code), lock
567 * acquire operations must be ordered by ascending &runqueue.
568 */
70b97a7f 569struct rq {
d8016491
IM
570 /* runqueue lock: */
571 spinlock_t lock;
1da177e4
LT
572
573 /*
574 * nr_running and cpu_load should be in the same cacheline because
575 * remote CPUs use both these fields when doing load calculation.
576 */
577 unsigned long nr_running;
6aa645ea
IM
578 #define CPU_LOAD_IDX_MAX 5
579 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 580#ifdef CONFIG_NO_HZ
15934a37 581 unsigned long last_tick_seen;
46cb4b7c
SS
582 unsigned char in_nohz_recently;
583#endif
d8016491
IM
584 /* capture load from *all* tasks on this cpu: */
585 struct load_weight load;
6aa645ea
IM
586 unsigned long nr_load_updates;
587 u64 nr_switches;
23a185ca 588 u64 nr_migrations_in;
6aa645ea
IM
589
590 struct cfs_rq cfs;
6f505b16 591 struct rt_rq rt;
6f505b16 592
6aa645ea 593#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
594 /* list of leaf cfs_rq on this cpu: */
595 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
596#endif
597#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 598 struct list_head leaf_rt_rq_list;
1da177e4 599#endif
1da177e4
LT
600
601 /*
602 * This is part of a global counter where only the total sum
603 * over all CPUs matters. A task can increase this counter on
604 * one CPU and if it got migrated afterwards it may decrease
605 * it on another CPU. Always updated under the runqueue lock:
606 */
607 unsigned long nr_uninterruptible;
608
36c8b586 609 struct task_struct *curr, *idle;
c9819f45 610 unsigned long next_balance;
1da177e4 611 struct mm_struct *prev_mm;
6aa645ea 612
3e51f33f 613 u64 clock;
6aa645ea 614
1da177e4
LT
615 atomic_t nr_iowait;
616
617#ifdef CONFIG_SMP
0eab9146 618 struct root_domain *rd;
1da177e4
LT
619 struct sched_domain *sd;
620
a0a522ce 621 unsigned char idle_at_tick;
1da177e4
LT
622 /* For active balancing */
623 int active_balance;
624 int push_cpu;
d8016491
IM
625 /* cpu of this runqueue: */
626 int cpu;
1f11eb6a 627 int online;
1da177e4 628
a8a51d5e 629 unsigned long avg_load_per_task;
1da177e4 630
36c8b586 631 struct task_struct *migration_thread;
1da177e4
LT
632 struct list_head migration_queue;
633#endif
634
8f4d37ec 635#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
636#ifdef CONFIG_SMP
637 int hrtick_csd_pending;
638 struct call_single_data hrtick_csd;
639#endif
8f4d37ec
PZ
640 struct hrtimer hrtick_timer;
641#endif
642
1da177e4
LT
643#ifdef CONFIG_SCHEDSTATS
644 /* latency stats */
645 struct sched_info rq_sched_info;
9c2c4802
KC
646 unsigned long long rq_cpu_time;
647 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
648
649 /* sys_sched_yield() stats */
480b9434 650 unsigned int yld_count;
1da177e4
LT
651
652 /* schedule() stats */
480b9434
KC
653 unsigned int sched_switch;
654 unsigned int sched_count;
655 unsigned int sched_goidle;
1da177e4
LT
656
657 /* try_to_wake_up() stats */
480b9434
KC
658 unsigned int ttwu_count;
659 unsigned int ttwu_local;
b8efb561
IM
660
661 /* BKL stats */
480b9434 662 unsigned int bkl_count;
1da177e4
LT
663#endif
664};
665
f34e3b61 666static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 667
15afe09b 668static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 669{
15afe09b 670 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
671}
672
0a2966b4
CL
673static inline int cpu_of(struct rq *rq)
674{
675#ifdef CONFIG_SMP
676 return rq->cpu;
677#else
678 return 0;
679#endif
680}
681
674311d5
NP
682/*
683 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 684 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
685 *
686 * The domain tree of any CPU may only be accessed from within
687 * preempt-disabled sections.
688 */
48f24c4d
IM
689#define for_each_domain(cpu, __sd) \
690 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
691
692#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
693#define this_rq() (&__get_cpu_var(runqueues))
694#define task_rq(p) cpu_rq(task_cpu(p))
695#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
696
aa9c4c0f 697inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
698{
699 rq->clock = sched_clock_cpu(cpu_of(rq));
700}
701
bf5c91ba
IM
702/*
703 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
704 */
705#ifdef CONFIG_SCHED_DEBUG
706# define const_debug __read_mostly
707#else
708# define const_debug static const
709#endif
710
017730c1
IM
711/**
712 * runqueue_is_locked
713 *
714 * Returns true if the current cpu runqueue is locked.
715 * This interface allows printk to be called with the runqueue lock
716 * held and know whether or not it is OK to wake up the klogd.
717 */
718int runqueue_is_locked(void)
719{
720 int cpu = get_cpu();
721 struct rq *rq = cpu_rq(cpu);
722 int ret;
723
724 ret = spin_is_locked(&rq->lock);
725 put_cpu();
726 return ret;
727}
728
bf5c91ba
IM
729/*
730 * Debugging: various feature bits
731 */
f00b45c1
PZ
732
733#define SCHED_FEAT(name, enabled) \
734 __SCHED_FEAT_##name ,
735
bf5c91ba 736enum {
f00b45c1 737#include "sched_features.h"
bf5c91ba
IM
738};
739
f00b45c1
PZ
740#undef SCHED_FEAT
741
742#define SCHED_FEAT(name, enabled) \
743 (1UL << __SCHED_FEAT_##name) * enabled |
744
bf5c91ba 745const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
746#include "sched_features.h"
747 0;
748
749#undef SCHED_FEAT
750
751#ifdef CONFIG_SCHED_DEBUG
752#define SCHED_FEAT(name, enabled) \
753 #name ,
754
983ed7a6 755static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
756#include "sched_features.h"
757 NULL
758};
759
760#undef SCHED_FEAT
761
34f3a814 762static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 763{
f00b45c1
PZ
764 int i;
765
766 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
767 if (!(sysctl_sched_features & (1UL << i)))
768 seq_puts(m, "NO_");
769 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 770 }
34f3a814 771 seq_puts(m, "\n");
f00b45c1 772
34f3a814 773 return 0;
f00b45c1
PZ
774}
775
776static ssize_t
777sched_feat_write(struct file *filp, const char __user *ubuf,
778 size_t cnt, loff_t *ppos)
779{
780 char buf[64];
781 char *cmp = buf;
782 int neg = 0;
783 int i;
784
785 if (cnt > 63)
786 cnt = 63;
787
788 if (copy_from_user(&buf, ubuf, cnt))
789 return -EFAULT;
790
791 buf[cnt] = 0;
792
c24b7c52 793 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
794 neg = 1;
795 cmp += 3;
796 }
797
798 for (i = 0; sched_feat_names[i]; i++) {
799 int len = strlen(sched_feat_names[i]);
800
801 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
802 if (neg)
803 sysctl_sched_features &= ~(1UL << i);
804 else
805 sysctl_sched_features |= (1UL << i);
806 break;
807 }
808 }
809
810 if (!sched_feat_names[i])
811 return -EINVAL;
812
813 filp->f_pos += cnt;
814
815 return cnt;
816}
817
34f3a814
LZ
818static int sched_feat_open(struct inode *inode, struct file *filp)
819{
820 return single_open(filp, sched_feat_show, NULL);
821}
822
f00b45c1 823static struct file_operations sched_feat_fops = {
34f3a814
LZ
824 .open = sched_feat_open,
825 .write = sched_feat_write,
826 .read = seq_read,
827 .llseek = seq_lseek,
828 .release = single_release,
f00b45c1
PZ
829};
830
831static __init int sched_init_debug(void)
832{
f00b45c1
PZ
833 debugfs_create_file("sched_features", 0644, NULL, NULL,
834 &sched_feat_fops);
835
836 return 0;
837}
838late_initcall(sched_init_debug);
839
840#endif
841
842#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 843
b82d9fdd
PZ
844/*
845 * Number of tasks to iterate in a single balance run.
846 * Limited because this is done with IRQs disabled.
847 */
848const_debug unsigned int sysctl_sched_nr_migrate = 32;
849
2398f2c6
PZ
850/*
851 * ratelimit for updating the group shares.
55cd5340 852 * default: 0.25ms
2398f2c6 853 */
55cd5340 854unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 855
ffda12a1
PZ
856/*
857 * Inject some fuzzyness into changing the per-cpu group shares
858 * this avoids remote rq-locks at the expense of fairness.
859 * default: 4
860 */
861unsigned int sysctl_sched_shares_thresh = 4;
862
fa85ae24 863/*
9f0c1e56 864 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
865 * default: 1s
866 */
9f0c1e56 867unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 868
6892b75e
IM
869static __read_mostly int scheduler_running;
870
9f0c1e56
PZ
871/*
872 * part of the period that we allow rt tasks to run in us.
873 * default: 0.95s
874 */
875int sysctl_sched_rt_runtime = 950000;
fa85ae24 876
d0b27fa7
PZ
877static inline u64 global_rt_period(void)
878{
879 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
880}
881
882static inline u64 global_rt_runtime(void)
883{
e26873bb 884 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
885 return RUNTIME_INF;
886
887 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
888}
fa85ae24 889
1da177e4 890#ifndef prepare_arch_switch
4866cde0
NP
891# define prepare_arch_switch(next) do { } while (0)
892#endif
893#ifndef finish_arch_switch
894# define finish_arch_switch(prev) do { } while (0)
895#endif
896
051a1d1a
DA
897static inline int task_current(struct rq *rq, struct task_struct *p)
898{
899 return rq->curr == p;
900}
901
4866cde0 902#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 903static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 904{
051a1d1a 905 return task_current(rq, p);
4866cde0
NP
906}
907
70b97a7f 908static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
909{
910}
911
70b97a7f 912static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 913{
da04c035
IM
914#ifdef CONFIG_DEBUG_SPINLOCK
915 /* this is a valid case when another task releases the spinlock */
916 rq->lock.owner = current;
917#endif
8a25d5de
IM
918 /*
919 * If we are tracking spinlock dependencies then we have to
920 * fix up the runqueue lock - which gets 'carried over' from
921 * prev into current:
922 */
923 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
924
4866cde0
NP
925 spin_unlock_irq(&rq->lock);
926}
927
928#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 929static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
930{
931#ifdef CONFIG_SMP
932 return p->oncpu;
933#else
051a1d1a 934 return task_current(rq, p);
4866cde0
NP
935#endif
936}
937
70b97a7f 938static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
939{
940#ifdef CONFIG_SMP
941 /*
942 * We can optimise this out completely for !SMP, because the
943 * SMP rebalancing from interrupt is the only thing that cares
944 * here.
945 */
946 next->oncpu = 1;
947#endif
948#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
949 spin_unlock_irq(&rq->lock);
950#else
951 spin_unlock(&rq->lock);
952#endif
953}
954
70b97a7f 955static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
956{
957#ifdef CONFIG_SMP
958 /*
959 * After ->oncpu is cleared, the task can be moved to a different CPU.
960 * We must ensure this doesn't happen until the switch is completely
961 * finished.
962 */
963 smp_wmb();
964 prev->oncpu = 0;
965#endif
966#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
967 local_irq_enable();
1da177e4 968#endif
4866cde0
NP
969}
970#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 971
b29739f9
IM
972/*
973 * __task_rq_lock - lock the runqueue a given task resides on.
974 * Must be called interrupts disabled.
975 */
70b97a7f 976static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
977 __acquires(rq->lock)
978{
3a5c359a
AK
979 for (;;) {
980 struct rq *rq = task_rq(p);
981 spin_lock(&rq->lock);
982 if (likely(rq == task_rq(p)))
983 return rq;
b29739f9 984 spin_unlock(&rq->lock);
b29739f9 985 }
b29739f9
IM
986}
987
1da177e4
LT
988/*
989 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 990 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
991 * explicitly disabling preemption.
992 */
70b97a7f 993static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
994 __acquires(rq->lock)
995{
70b97a7f 996 struct rq *rq;
1da177e4 997
3a5c359a
AK
998 for (;;) {
999 local_irq_save(*flags);
1000 rq = task_rq(p);
1001 spin_lock(&rq->lock);
1002 if (likely(rq == task_rq(p)))
1003 return rq;
1da177e4 1004 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 1005 }
1da177e4
LT
1006}
1007
ad474cac
ON
1008void task_rq_unlock_wait(struct task_struct *p)
1009{
1010 struct rq *rq = task_rq(p);
1011
1012 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1013 spin_unlock_wait(&rq->lock);
1014}
1015
a9957449 1016static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1017 __releases(rq->lock)
1018{
1019 spin_unlock(&rq->lock);
1020}
1021
70b97a7f 1022static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1023 __releases(rq->lock)
1024{
1025 spin_unlock_irqrestore(&rq->lock, *flags);
1026}
1027
1da177e4 1028/*
cc2a73b5 1029 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1030 */
a9957449 1031static struct rq *this_rq_lock(void)
1da177e4
LT
1032 __acquires(rq->lock)
1033{
70b97a7f 1034 struct rq *rq;
1da177e4
LT
1035
1036 local_irq_disable();
1037 rq = this_rq();
1038 spin_lock(&rq->lock);
1039
1040 return rq;
1041}
1042
8f4d37ec
PZ
1043#ifdef CONFIG_SCHED_HRTICK
1044/*
1045 * Use HR-timers to deliver accurate preemption points.
1046 *
1047 * Its all a bit involved since we cannot program an hrt while holding the
1048 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1049 * reschedule event.
1050 *
1051 * When we get rescheduled we reprogram the hrtick_timer outside of the
1052 * rq->lock.
1053 */
8f4d37ec
PZ
1054
1055/*
1056 * Use hrtick when:
1057 * - enabled by features
1058 * - hrtimer is actually high res
1059 */
1060static inline int hrtick_enabled(struct rq *rq)
1061{
1062 if (!sched_feat(HRTICK))
1063 return 0;
ba42059f 1064 if (!cpu_active(cpu_of(rq)))
b328ca18 1065 return 0;
8f4d37ec
PZ
1066 return hrtimer_is_hres_active(&rq->hrtick_timer);
1067}
1068
8f4d37ec
PZ
1069static void hrtick_clear(struct rq *rq)
1070{
1071 if (hrtimer_active(&rq->hrtick_timer))
1072 hrtimer_cancel(&rq->hrtick_timer);
1073}
1074
8f4d37ec
PZ
1075/*
1076 * High-resolution timer tick.
1077 * Runs from hardirq context with interrupts disabled.
1078 */
1079static enum hrtimer_restart hrtick(struct hrtimer *timer)
1080{
1081 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1082
1083 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1084
1085 spin_lock(&rq->lock);
3e51f33f 1086 update_rq_clock(rq);
8f4d37ec
PZ
1087 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1088 spin_unlock(&rq->lock);
1089
1090 return HRTIMER_NORESTART;
1091}
1092
95e904c7 1093#ifdef CONFIG_SMP
31656519
PZ
1094/*
1095 * called from hardirq (IPI) context
1096 */
1097static void __hrtick_start(void *arg)
b328ca18 1098{
31656519 1099 struct rq *rq = arg;
b328ca18 1100
31656519
PZ
1101 spin_lock(&rq->lock);
1102 hrtimer_restart(&rq->hrtick_timer);
1103 rq->hrtick_csd_pending = 0;
1104 spin_unlock(&rq->lock);
b328ca18
PZ
1105}
1106
31656519
PZ
1107/*
1108 * Called to set the hrtick timer state.
1109 *
1110 * called with rq->lock held and irqs disabled
1111 */
1112static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1113{
31656519
PZ
1114 struct hrtimer *timer = &rq->hrtick_timer;
1115 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1116
cc584b21 1117 hrtimer_set_expires(timer, time);
31656519
PZ
1118
1119 if (rq == this_rq()) {
1120 hrtimer_restart(timer);
1121 } else if (!rq->hrtick_csd_pending) {
6e275637 1122 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1123 rq->hrtick_csd_pending = 1;
1124 }
b328ca18
PZ
1125}
1126
1127static int
1128hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1129{
1130 int cpu = (int)(long)hcpu;
1131
1132 switch (action) {
1133 case CPU_UP_CANCELED:
1134 case CPU_UP_CANCELED_FROZEN:
1135 case CPU_DOWN_PREPARE:
1136 case CPU_DOWN_PREPARE_FROZEN:
1137 case CPU_DEAD:
1138 case CPU_DEAD_FROZEN:
31656519 1139 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1140 return NOTIFY_OK;
1141 }
1142
1143 return NOTIFY_DONE;
1144}
1145
fa748203 1146static __init void init_hrtick(void)
b328ca18
PZ
1147{
1148 hotcpu_notifier(hotplug_hrtick, 0);
1149}
31656519
PZ
1150#else
1151/*
1152 * Called to set the hrtick timer state.
1153 *
1154 * called with rq->lock held and irqs disabled
1155 */
1156static void hrtick_start(struct rq *rq, u64 delay)
1157{
7f1e2ca9
PZ
1158 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1159 HRTIMER_MODE_REL, 0);
31656519 1160}
b328ca18 1161
006c75f1 1162static inline void init_hrtick(void)
8f4d37ec 1163{
8f4d37ec 1164}
31656519 1165#endif /* CONFIG_SMP */
8f4d37ec 1166
31656519 1167static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1168{
31656519
PZ
1169#ifdef CONFIG_SMP
1170 rq->hrtick_csd_pending = 0;
8f4d37ec 1171
31656519
PZ
1172 rq->hrtick_csd.flags = 0;
1173 rq->hrtick_csd.func = __hrtick_start;
1174 rq->hrtick_csd.info = rq;
1175#endif
8f4d37ec 1176
31656519
PZ
1177 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1178 rq->hrtick_timer.function = hrtick;
8f4d37ec 1179}
006c75f1 1180#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1181static inline void hrtick_clear(struct rq *rq)
1182{
1183}
1184
8f4d37ec
PZ
1185static inline void init_rq_hrtick(struct rq *rq)
1186{
1187}
1188
b328ca18
PZ
1189static inline void init_hrtick(void)
1190{
1191}
006c75f1 1192#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1193
c24d20db
IM
1194/*
1195 * resched_task - mark a task 'to be rescheduled now'.
1196 *
1197 * On UP this means the setting of the need_resched flag, on SMP it
1198 * might also involve a cross-CPU call to trigger the scheduler on
1199 * the target CPU.
1200 */
1201#ifdef CONFIG_SMP
1202
1203#ifndef tsk_is_polling
1204#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1205#endif
1206
31656519 1207static void resched_task(struct task_struct *p)
c24d20db
IM
1208{
1209 int cpu;
1210
1211 assert_spin_locked(&task_rq(p)->lock);
1212
5ed0cec0 1213 if (test_tsk_need_resched(p))
c24d20db
IM
1214 return;
1215
5ed0cec0 1216 set_tsk_need_resched(p);
c24d20db
IM
1217
1218 cpu = task_cpu(p);
1219 if (cpu == smp_processor_id())
1220 return;
1221
1222 /* NEED_RESCHED must be visible before we test polling */
1223 smp_mb();
1224 if (!tsk_is_polling(p))
1225 smp_send_reschedule(cpu);
1226}
1227
1228static void resched_cpu(int cpu)
1229{
1230 struct rq *rq = cpu_rq(cpu);
1231 unsigned long flags;
1232
1233 if (!spin_trylock_irqsave(&rq->lock, flags))
1234 return;
1235 resched_task(cpu_curr(cpu));
1236 spin_unlock_irqrestore(&rq->lock, flags);
1237}
06d8308c
TG
1238
1239#ifdef CONFIG_NO_HZ
1240/*
1241 * When add_timer_on() enqueues a timer into the timer wheel of an
1242 * idle CPU then this timer might expire before the next timer event
1243 * which is scheduled to wake up that CPU. In case of a completely
1244 * idle system the next event might even be infinite time into the
1245 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1246 * leaves the inner idle loop so the newly added timer is taken into
1247 * account when the CPU goes back to idle and evaluates the timer
1248 * wheel for the next timer event.
1249 */
1250void wake_up_idle_cpu(int cpu)
1251{
1252 struct rq *rq = cpu_rq(cpu);
1253
1254 if (cpu == smp_processor_id())
1255 return;
1256
1257 /*
1258 * This is safe, as this function is called with the timer
1259 * wheel base lock of (cpu) held. When the CPU is on the way
1260 * to idle and has not yet set rq->curr to idle then it will
1261 * be serialized on the timer wheel base lock and take the new
1262 * timer into account automatically.
1263 */
1264 if (rq->curr != rq->idle)
1265 return;
1266
1267 /*
1268 * We can set TIF_RESCHED on the idle task of the other CPU
1269 * lockless. The worst case is that the other CPU runs the
1270 * idle task through an additional NOOP schedule()
1271 */
5ed0cec0 1272 set_tsk_need_resched(rq->idle);
06d8308c
TG
1273
1274 /* NEED_RESCHED must be visible before we test polling */
1275 smp_mb();
1276 if (!tsk_is_polling(rq->idle))
1277 smp_send_reschedule(cpu);
1278}
6d6bc0ad 1279#endif /* CONFIG_NO_HZ */
06d8308c 1280
6d6bc0ad 1281#else /* !CONFIG_SMP */
31656519 1282static void resched_task(struct task_struct *p)
c24d20db
IM
1283{
1284 assert_spin_locked(&task_rq(p)->lock);
31656519 1285 set_tsk_need_resched(p);
c24d20db 1286}
6d6bc0ad 1287#endif /* CONFIG_SMP */
c24d20db 1288
45bf76df
IM
1289#if BITS_PER_LONG == 32
1290# define WMULT_CONST (~0UL)
1291#else
1292# define WMULT_CONST (1UL << 32)
1293#endif
1294
1295#define WMULT_SHIFT 32
1296
194081eb
IM
1297/*
1298 * Shift right and round:
1299 */
cf2ab469 1300#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1301
a7be37ac
PZ
1302/*
1303 * delta *= weight / lw
1304 */
cb1c4fc9 1305static unsigned long
45bf76df
IM
1306calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1307 struct load_weight *lw)
1308{
1309 u64 tmp;
1310
7a232e03
LJ
1311 if (!lw->inv_weight) {
1312 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1313 lw->inv_weight = 1;
1314 else
1315 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1316 / (lw->weight+1);
1317 }
45bf76df
IM
1318
1319 tmp = (u64)delta_exec * weight;
1320 /*
1321 * Check whether we'd overflow the 64-bit multiplication:
1322 */
194081eb 1323 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1324 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1325 WMULT_SHIFT/2);
1326 else
cf2ab469 1327 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1328
ecf691da 1329 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1330}
1331
1091985b 1332static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1333{
1334 lw->weight += inc;
e89996ae 1335 lw->inv_weight = 0;
45bf76df
IM
1336}
1337
1091985b 1338static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1339{
1340 lw->weight -= dec;
e89996ae 1341 lw->inv_weight = 0;
45bf76df
IM
1342}
1343
2dd73a4f
PW
1344/*
1345 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1346 * of tasks with abnormal "nice" values across CPUs the contribution that
1347 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1348 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1349 * scaled version of the new time slice allocation that they receive on time
1350 * slice expiry etc.
1351 */
1352
cce7ade8
PZ
1353#define WEIGHT_IDLEPRIO 3
1354#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1355
1356/*
1357 * Nice levels are multiplicative, with a gentle 10% change for every
1358 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1359 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1360 * that remained on nice 0.
1361 *
1362 * The "10% effect" is relative and cumulative: from _any_ nice level,
1363 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1364 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1365 * If a task goes up by ~10% and another task goes down by ~10% then
1366 * the relative distance between them is ~25%.)
dd41f596
IM
1367 */
1368static const int prio_to_weight[40] = {
254753dc
IM
1369 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1370 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1371 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1372 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1373 /* 0 */ 1024, 820, 655, 526, 423,
1374 /* 5 */ 335, 272, 215, 172, 137,
1375 /* 10 */ 110, 87, 70, 56, 45,
1376 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1377};
1378
5714d2de
IM
1379/*
1380 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1381 *
1382 * In cases where the weight does not change often, we can use the
1383 * precalculated inverse to speed up arithmetics by turning divisions
1384 * into multiplications:
1385 */
dd41f596 1386static const u32 prio_to_wmult[40] = {
254753dc
IM
1387 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1388 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1389 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1390 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1391 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1392 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1393 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1394 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1395};
2dd73a4f 1396
dd41f596
IM
1397static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1398
1399/*
1400 * runqueue iterator, to support SMP load-balancing between different
1401 * scheduling classes, without having to expose their internal data
1402 * structures to the load-balancing proper:
1403 */
1404struct rq_iterator {
1405 void *arg;
1406 struct task_struct *(*start)(void *);
1407 struct task_struct *(*next)(void *);
1408};
1409
e1d1484f
PW
1410#ifdef CONFIG_SMP
1411static unsigned long
1412balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1413 unsigned long max_load_move, struct sched_domain *sd,
1414 enum cpu_idle_type idle, int *all_pinned,
1415 int *this_best_prio, struct rq_iterator *iterator);
1416
1417static int
1418iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1419 struct sched_domain *sd, enum cpu_idle_type idle,
1420 struct rq_iterator *iterator);
e1d1484f 1421#endif
dd41f596 1422
ef12fefa
BR
1423/* Time spent by the tasks of the cpu accounting group executing in ... */
1424enum cpuacct_stat_index {
1425 CPUACCT_STAT_USER, /* ... user mode */
1426 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1427
1428 CPUACCT_STAT_NSTATS,
1429};
1430
d842de87
SV
1431#ifdef CONFIG_CGROUP_CPUACCT
1432static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1433static void cpuacct_update_stats(struct task_struct *tsk,
1434 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1435#else
1436static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1437static inline void cpuacct_update_stats(struct task_struct *tsk,
1438 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1439#endif
1440
18d95a28
PZ
1441static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1442{
1443 update_load_add(&rq->load, load);
1444}
1445
1446static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1447{
1448 update_load_sub(&rq->load, load);
1449}
1450
7940ca36 1451#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1452typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1453
1454/*
1455 * Iterate the full tree, calling @down when first entering a node and @up when
1456 * leaving it for the final time.
1457 */
eb755805 1458static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1459{
1460 struct task_group *parent, *child;
eb755805 1461 int ret;
c09595f6
PZ
1462
1463 rcu_read_lock();
1464 parent = &root_task_group;
1465down:
eb755805
PZ
1466 ret = (*down)(parent, data);
1467 if (ret)
1468 goto out_unlock;
c09595f6
PZ
1469 list_for_each_entry_rcu(child, &parent->children, siblings) {
1470 parent = child;
1471 goto down;
1472
1473up:
1474 continue;
1475 }
eb755805
PZ
1476 ret = (*up)(parent, data);
1477 if (ret)
1478 goto out_unlock;
c09595f6
PZ
1479
1480 child = parent;
1481 parent = parent->parent;
1482 if (parent)
1483 goto up;
eb755805 1484out_unlock:
c09595f6 1485 rcu_read_unlock();
eb755805
PZ
1486
1487 return ret;
c09595f6
PZ
1488}
1489
eb755805
PZ
1490static int tg_nop(struct task_group *tg, void *data)
1491{
1492 return 0;
c09595f6 1493}
eb755805
PZ
1494#endif
1495
1496#ifdef CONFIG_SMP
1497static unsigned long source_load(int cpu, int type);
1498static unsigned long target_load(int cpu, int type);
1499static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1500
1501static unsigned long cpu_avg_load_per_task(int cpu)
1502{
1503 struct rq *rq = cpu_rq(cpu);
af6d596f 1504 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1505
4cd42620
SR
1506 if (nr_running)
1507 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1508 else
1509 rq->avg_load_per_task = 0;
eb755805
PZ
1510
1511 return rq->avg_load_per_task;
1512}
1513
1514#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1515
c09595f6
PZ
1516static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1517
1518/*
1519 * Calculate and set the cpu's group shares.
1520 */
1521static void
ffda12a1
PZ
1522update_group_shares_cpu(struct task_group *tg, int cpu,
1523 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1524{
c09595f6
PZ
1525 unsigned long shares;
1526 unsigned long rq_weight;
1527
c8cba857 1528 if (!tg->se[cpu])
c09595f6
PZ
1529 return;
1530
ec4e0e2f 1531 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1532
c09595f6
PZ
1533 /*
1534 * \Sum shares * rq_weight
1535 * shares = -----------------------
1536 * \Sum rq_weight
1537 *
1538 */
ec4e0e2f 1539 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1540 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1541
ffda12a1
PZ
1542 if (abs(shares - tg->se[cpu]->load.weight) >
1543 sysctl_sched_shares_thresh) {
1544 struct rq *rq = cpu_rq(cpu);
1545 unsigned long flags;
c09595f6 1546
ffda12a1 1547 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1548 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1549
ffda12a1
PZ
1550 __set_se_shares(tg->se[cpu], shares);
1551 spin_unlock_irqrestore(&rq->lock, flags);
1552 }
18d95a28 1553}
c09595f6
PZ
1554
1555/*
c8cba857
PZ
1556 * Re-compute the task group their per cpu shares over the given domain.
1557 * This needs to be done in a bottom-up fashion because the rq weight of a
1558 * parent group depends on the shares of its child groups.
c09595f6 1559 */
eb755805 1560static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1561{
ec4e0e2f 1562 unsigned long weight, rq_weight = 0;
c8cba857 1563 unsigned long shares = 0;
eb755805 1564 struct sched_domain *sd = data;
c8cba857 1565 int i;
c09595f6 1566
758b2cdc 1567 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1568 /*
1569 * If there are currently no tasks on the cpu pretend there
1570 * is one of average load so that when a new task gets to
1571 * run here it will not get delayed by group starvation.
1572 */
1573 weight = tg->cfs_rq[i]->load.weight;
1574 if (!weight)
1575 weight = NICE_0_LOAD;
1576
1577 tg->cfs_rq[i]->rq_weight = weight;
1578 rq_weight += weight;
c8cba857 1579 shares += tg->cfs_rq[i]->shares;
c09595f6 1580 }
c09595f6 1581
c8cba857
PZ
1582 if ((!shares && rq_weight) || shares > tg->shares)
1583 shares = tg->shares;
1584
1585 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1586 shares = tg->shares;
c09595f6 1587
758b2cdc 1588 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1589 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1590
1591 return 0;
c09595f6
PZ
1592}
1593
1594/*
c8cba857
PZ
1595 * Compute the cpu's hierarchical load factor for each task group.
1596 * This needs to be done in a top-down fashion because the load of a child
1597 * group is a fraction of its parents load.
c09595f6 1598 */
eb755805 1599static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1600{
c8cba857 1601 unsigned long load;
eb755805 1602 long cpu = (long)data;
c09595f6 1603
c8cba857
PZ
1604 if (!tg->parent) {
1605 load = cpu_rq(cpu)->load.weight;
1606 } else {
1607 load = tg->parent->cfs_rq[cpu]->h_load;
1608 load *= tg->cfs_rq[cpu]->shares;
1609 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1610 }
c09595f6 1611
c8cba857 1612 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1613
eb755805 1614 return 0;
c09595f6
PZ
1615}
1616
c8cba857 1617static void update_shares(struct sched_domain *sd)
4d8d595d 1618{
2398f2c6
PZ
1619 u64 now = cpu_clock(raw_smp_processor_id());
1620 s64 elapsed = now - sd->last_update;
1621
1622 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1623 sd->last_update = now;
eb755805 1624 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1625 }
4d8d595d
PZ
1626}
1627
3e5459b4
PZ
1628static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1629{
1630 spin_unlock(&rq->lock);
1631 update_shares(sd);
1632 spin_lock(&rq->lock);
1633}
1634
eb755805 1635static void update_h_load(long cpu)
c09595f6 1636{
eb755805 1637 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1638}
1639
c09595f6
PZ
1640#else
1641
c8cba857 1642static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1643{
1644}
1645
3e5459b4
PZ
1646static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1647{
1648}
1649
18d95a28
PZ
1650#endif
1651
8f45e2b5
GH
1652#ifdef CONFIG_PREEMPT
1653
70574a99 1654/*
8f45e2b5
GH
1655 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1656 * way at the expense of forcing extra atomic operations in all
1657 * invocations. This assures that the double_lock is acquired using the
1658 * same underlying policy as the spinlock_t on this architecture, which
1659 * reduces latency compared to the unfair variant below. However, it
1660 * also adds more overhead and therefore may reduce throughput.
70574a99 1661 */
8f45e2b5
GH
1662static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1663 __releases(this_rq->lock)
1664 __acquires(busiest->lock)
1665 __acquires(this_rq->lock)
1666{
1667 spin_unlock(&this_rq->lock);
1668 double_rq_lock(this_rq, busiest);
1669
1670 return 1;
1671}
1672
1673#else
1674/*
1675 * Unfair double_lock_balance: Optimizes throughput at the expense of
1676 * latency by eliminating extra atomic operations when the locks are
1677 * already in proper order on entry. This favors lower cpu-ids and will
1678 * grant the double lock to lower cpus over higher ids under contention,
1679 * regardless of entry order into the function.
1680 */
1681static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1682 __releases(this_rq->lock)
1683 __acquires(busiest->lock)
1684 __acquires(this_rq->lock)
1685{
1686 int ret = 0;
1687
70574a99
AD
1688 if (unlikely(!spin_trylock(&busiest->lock))) {
1689 if (busiest < this_rq) {
1690 spin_unlock(&this_rq->lock);
1691 spin_lock(&busiest->lock);
1692 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1693 ret = 1;
1694 } else
1695 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1696 }
1697 return ret;
1698}
1699
8f45e2b5
GH
1700#endif /* CONFIG_PREEMPT */
1701
1702/*
1703 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1704 */
1705static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1706{
1707 if (unlikely(!irqs_disabled())) {
1708 /* printk() doesn't work good under rq->lock */
1709 spin_unlock(&this_rq->lock);
1710 BUG_ON(1);
1711 }
1712
1713 return _double_lock_balance(this_rq, busiest);
1714}
1715
70574a99
AD
1716static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1717 __releases(busiest->lock)
1718{
1719 spin_unlock(&busiest->lock);
1720 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1721}
18d95a28
PZ
1722#endif
1723
30432094 1724#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1725static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1726{
30432094 1727#ifdef CONFIG_SMP
34e83e85
IM
1728 cfs_rq->shares = shares;
1729#endif
1730}
30432094 1731#endif
e7693a36 1732
dd41f596 1733#include "sched_stats.h"
dd41f596 1734#include "sched_idletask.c"
5522d5d5
IM
1735#include "sched_fair.c"
1736#include "sched_rt.c"
dd41f596
IM
1737#ifdef CONFIG_SCHED_DEBUG
1738# include "sched_debug.c"
1739#endif
1740
1741#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1742#define for_each_class(class) \
1743 for (class = sched_class_highest; class; class = class->next)
dd41f596 1744
c09595f6 1745static void inc_nr_running(struct rq *rq)
9c217245
IM
1746{
1747 rq->nr_running++;
9c217245
IM
1748}
1749
c09595f6 1750static void dec_nr_running(struct rq *rq)
9c217245
IM
1751{
1752 rq->nr_running--;
9c217245
IM
1753}
1754
45bf76df
IM
1755static void set_load_weight(struct task_struct *p)
1756{
1757 if (task_has_rt_policy(p)) {
dd41f596
IM
1758 p->se.load.weight = prio_to_weight[0] * 2;
1759 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1760 return;
1761 }
45bf76df 1762
dd41f596
IM
1763 /*
1764 * SCHED_IDLE tasks get minimal weight:
1765 */
1766 if (p->policy == SCHED_IDLE) {
1767 p->se.load.weight = WEIGHT_IDLEPRIO;
1768 p->se.load.inv_weight = WMULT_IDLEPRIO;
1769 return;
1770 }
71f8bd46 1771
dd41f596
IM
1772 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1773 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1774}
1775
2087a1ad
GH
1776static void update_avg(u64 *avg, u64 sample)
1777{
1778 s64 diff = sample - *avg;
1779 *avg += diff >> 3;
1780}
1781
8159f87e 1782static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1783{
831451ac
PZ
1784 if (wakeup)
1785 p->se.start_runtime = p->se.sum_exec_runtime;
1786
dd41f596 1787 sched_info_queued(p);
fd390f6a 1788 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1789 p->se.on_rq = 1;
71f8bd46
IM
1790}
1791
69be72c1 1792static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1793{
831451ac
PZ
1794 if (sleep) {
1795 if (p->se.last_wakeup) {
1796 update_avg(&p->se.avg_overlap,
1797 p->se.sum_exec_runtime - p->se.last_wakeup);
1798 p->se.last_wakeup = 0;
1799 } else {
1800 update_avg(&p->se.avg_wakeup,
1801 sysctl_sched_wakeup_granularity);
1802 }
2087a1ad
GH
1803 }
1804
46ac22ba 1805 sched_info_dequeued(p);
f02231e5 1806 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1807 p->se.on_rq = 0;
71f8bd46
IM
1808}
1809
14531189 1810/*
dd41f596 1811 * __normal_prio - return the priority that is based on the static prio
14531189 1812 */
14531189
IM
1813static inline int __normal_prio(struct task_struct *p)
1814{
dd41f596 1815 return p->static_prio;
14531189
IM
1816}
1817
b29739f9
IM
1818/*
1819 * Calculate the expected normal priority: i.e. priority
1820 * without taking RT-inheritance into account. Might be
1821 * boosted by interactivity modifiers. Changes upon fork,
1822 * setprio syscalls, and whenever the interactivity
1823 * estimator recalculates.
1824 */
36c8b586 1825static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1826{
1827 int prio;
1828
e05606d3 1829 if (task_has_rt_policy(p))
b29739f9
IM
1830 prio = MAX_RT_PRIO-1 - p->rt_priority;
1831 else
1832 prio = __normal_prio(p);
1833 return prio;
1834}
1835
1836/*
1837 * Calculate the current priority, i.e. the priority
1838 * taken into account by the scheduler. This value might
1839 * be boosted by RT tasks, or might be boosted by
1840 * interactivity modifiers. Will be RT if the task got
1841 * RT-boosted. If not then it returns p->normal_prio.
1842 */
36c8b586 1843static int effective_prio(struct task_struct *p)
b29739f9
IM
1844{
1845 p->normal_prio = normal_prio(p);
1846 /*
1847 * If we are RT tasks or we were boosted to RT priority,
1848 * keep the priority unchanged. Otherwise, update priority
1849 * to the normal priority:
1850 */
1851 if (!rt_prio(p->prio))
1852 return p->normal_prio;
1853 return p->prio;
1854}
1855
1da177e4 1856/*
dd41f596 1857 * activate_task - move a task to the runqueue.
1da177e4 1858 */
dd41f596 1859static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1860{
d9514f6c 1861 if (task_contributes_to_load(p))
dd41f596 1862 rq->nr_uninterruptible--;
1da177e4 1863
8159f87e 1864 enqueue_task(rq, p, wakeup);
c09595f6 1865 inc_nr_running(rq);
1da177e4
LT
1866}
1867
1da177e4
LT
1868/*
1869 * deactivate_task - remove a task from the runqueue.
1870 */
2e1cb74a 1871static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1872{
d9514f6c 1873 if (task_contributes_to_load(p))
dd41f596
IM
1874 rq->nr_uninterruptible++;
1875
69be72c1 1876 dequeue_task(rq, p, sleep);
c09595f6 1877 dec_nr_running(rq);
1da177e4
LT
1878}
1879
1da177e4
LT
1880/**
1881 * task_curr - is this task currently executing on a CPU?
1882 * @p: the task in question.
1883 */
36c8b586 1884inline int task_curr(const struct task_struct *p)
1da177e4
LT
1885{
1886 return cpu_curr(task_cpu(p)) == p;
1887}
1888
dd41f596
IM
1889static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1890{
6f505b16 1891 set_task_rq(p, cpu);
dd41f596 1892#ifdef CONFIG_SMP
ce96b5ac
DA
1893 /*
1894 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1895 * successfuly executed on another CPU. We must ensure that updates of
1896 * per-task data have been completed by this moment.
1897 */
1898 smp_wmb();
dd41f596 1899 task_thread_info(p)->cpu = cpu;
dd41f596 1900#endif
2dd73a4f
PW
1901}
1902
cb469845
SR
1903static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1904 const struct sched_class *prev_class,
1905 int oldprio, int running)
1906{
1907 if (prev_class != p->sched_class) {
1908 if (prev_class->switched_from)
1909 prev_class->switched_from(rq, p, running);
1910 p->sched_class->switched_to(rq, p, running);
1911 } else
1912 p->sched_class->prio_changed(rq, p, oldprio, running);
1913}
1914
1da177e4 1915#ifdef CONFIG_SMP
c65cc870 1916
e958b360
TG
1917/* Used instead of source_load when we know the type == 0 */
1918static unsigned long weighted_cpuload(const int cpu)
1919{
1920 return cpu_rq(cpu)->load.weight;
1921}
1922
cc367732
IM
1923/*
1924 * Is this task likely cache-hot:
1925 */
e7693a36 1926static int
cc367732
IM
1927task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1928{
1929 s64 delta;
1930
f540a608
IM
1931 /*
1932 * Buddy candidates are cache hot:
1933 */
4793241b
PZ
1934 if (sched_feat(CACHE_HOT_BUDDY) &&
1935 (&p->se == cfs_rq_of(&p->se)->next ||
1936 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1937 return 1;
1938
cc367732
IM
1939 if (p->sched_class != &fair_sched_class)
1940 return 0;
1941
6bc1665b
IM
1942 if (sysctl_sched_migration_cost == -1)
1943 return 1;
1944 if (sysctl_sched_migration_cost == 0)
1945 return 0;
1946
cc367732
IM
1947 delta = now - p->se.exec_start;
1948
1949 return delta < (s64)sysctl_sched_migration_cost;
1950}
1951
1952
dd41f596 1953void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1954{
dd41f596
IM
1955 int old_cpu = task_cpu(p);
1956 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1957 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1958 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1959 u64 clock_offset;
dd41f596
IM
1960
1961 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1962
cbc34ed1
PZ
1963 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1964
6cfb0d5d
IM
1965#ifdef CONFIG_SCHEDSTATS
1966 if (p->se.wait_start)
1967 p->se.wait_start -= clock_offset;
dd41f596
IM
1968 if (p->se.sleep_start)
1969 p->se.sleep_start -= clock_offset;
1970 if (p->se.block_start)
1971 p->se.block_start -= clock_offset;
6c594c21 1972#endif
cc367732 1973 if (old_cpu != new_cpu) {
6c594c21 1974 p->se.nr_migrations++;
23a185ca 1975 new_rq->nr_migrations_in++;
6c594c21 1976#ifdef CONFIG_SCHEDSTATS
cc367732
IM
1977 if (task_hot(p, old_rq->clock, NULL))
1978 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 1979#endif
6c594c21 1980 }
2830cf8c
SV
1981 p->se.vruntime -= old_cfsrq->min_vruntime -
1982 new_cfsrq->min_vruntime;
dd41f596
IM
1983
1984 __set_task_cpu(p, new_cpu);
c65cc870
IM
1985}
1986
70b97a7f 1987struct migration_req {
1da177e4 1988 struct list_head list;
1da177e4 1989
36c8b586 1990 struct task_struct *task;
1da177e4
LT
1991 int dest_cpu;
1992
1da177e4 1993 struct completion done;
70b97a7f 1994};
1da177e4
LT
1995
1996/*
1997 * The task's runqueue lock must be held.
1998 * Returns true if you have to wait for migration thread.
1999 */
36c8b586 2000static int
70b97a7f 2001migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2002{
70b97a7f 2003 struct rq *rq = task_rq(p);
1da177e4
LT
2004
2005 /*
2006 * If the task is not on a runqueue (and not running), then
2007 * it is sufficient to simply update the task's cpu field.
2008 */
dd41f596 2009 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2010 set_task_cpu(p, dest_cpu);
2011 return 0;
2012 }
2013
2014 init_completion(&req->done);
1da177e4
LT
2015 req->task = p;
2016 req->dest_cpu = dest_cpu;
2017 list_add(&req->list, &rq->migration_queue);
48f24c4d 2018
1da177e4
LT
2019 return 1;
2020}
2021
2022/*
2023 * wait_task_inactive - wait for a thread to unschedule.
2024 *
85ba2d86
RM
2025 * If @match_state is nonzero, it's the @p->state value just checked and
2026 * not expected to change. If it changes, i.e. @p might have woken up,
2027 * then return zero. When we succeed in waiting for @p to be off its CPU,
2028 * we return a positive number (its total switch count). If a second call
2029 * a short while later returns the same number, the caller can be sure that
2030 * @p has remained unscheduled the whole time.
2031 *
1da177e4
LT
2032 * The caller must ensure that the task *will* unschedule sometime soon,
2033 * else this function might spin for a *long* time. This function can't
2034 * be called with interrupts off, or it may introduce deadlock with
2035 * smp_call_function() if an IPI is sent by the same process we are
2036 * waiting to become inactive.
2037 */
85ba2d86 2038unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2039{
2040 unsigned long flags;
dd41f596 2041 int running, on_rq;
85ba2d86 2042 unsigned long ncsw;
70b97a7f 2043 struct rq *rq;
1da177e4 2044
3a5c359a
AK
2045 for (;;) {
2046 /*
2047 * We do the initial early heuristics without holding
2048 * any task-queue locks at all. We'll only try to get
2049 * the runqueue lock when things look like they will
2050 * work out!
2051 */
2052 rq = task_rq(p);
fa490cfd 2053
3a5c359a
AK
2054 /*
2055 * If the task is actively running on another CPU
2056 * still, just relax and busy-wait without holding
2057 * any locks.
2058 *
2059 * NOTE! Since we don't hold any locks, it's not
2060 * even sure that "rq" stays as the right runqueue!
2061 * But we don't care, since "task_running()" will
2062 * return false if the runqueue has changed and p
2063 * is actually now running somewhere else!
2064 */
85ba2d86
RM
2065 while (task_running(rq, p)) {
2066 if (match_state && unlikely(p->state != match_state))
2067 return 0;
3a5c359a 2068 cpu_relax();
85ba2d86 2069 }
fa490cfd 2070
3a5c359a
AK
2071 /*
2072 * Ok, time to look more closely! We need the rq
2073 * lock now, to be *sure*. If we're wrong, we'll
2074 * just go back and repeat.
2075 */
2076 rq = task_rq_lock(p, &flags);
0a16b607 2077 trace_sched_wait_task(rq, p);
3a5c359a
AK
2078 running = task_running(rq, p);
2079 on_rq = p->se.on_rq;
85ba2d86 2080 ncsw = 0;
f31e11d8 2081 if (!match_state || p->state == match_state)
93dcf55f 2082 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2083 task_rq_unlock(rq, &flags);
fa490cfd 2084
85ba2d86
RM
2085 /*
2086 * If it changed from the expected state, bail out now.
2087 */
2088 if (unlikely(!ncsw))
2089 break;
2090
3a5c359a
AK
2091 /*
2092 * Was it really running after all now that we
2093 * checked with the proper locks actually held?
2094 *
2095 * Oops. Go back and try again..
2096 */
2097 if (unlikely(running)) {
2098 cpu_relax();
2099 continue;
2100 }
fa490cfd 2101
3a5c359a
AK
2102 /*
2103 * It's not enough that it's not actively running,
2104 * it must be off the runqueue _entirely_, and not
2105 * preempted!
2106 *
80dd99b3 2107 * So if it was still runnable (but just not actively
3a5c359a
AK
2108 * running right now), it's preempted, and we should
2109 * yield - it could be a while.
2110 */
2111 if (unlikely(on_rq)) {
2112 schedule_timeout_uninterruptible(1);
2113 continue;
2114 }
fa490cfd 2115
3a5c359a
AK
2116 /*
2117 * Ahh, all good. It wasn't running, and it wasn't
2118 * runnable, which means that it will never become
2119 * running in the future either. We're all done!
2120 */
2121 break;
2122 }
85ba2d86
RM
2123
2124 return ncsw;
1da177e4
LT
2125}
2126
2127/***
2128 * kick_process - kick a running thread to enter/exit the kernel
2129 * @p: the to-be-kicked thread
2130 *
2131 * Cause a process which is running on another CPU to enter
2132 * kernel-mode, without any delay. (to get signals handled.)
2133 *
2134 * NOTE: this function doesnt have to take the runqueue lock,
2135 * because all it wants to ensure is that the remote task enters
2136 * the kernel. If the IPI races and the task has been migrated
2137 * to another CPU then no harm is done and the purpose has been
2138 * achieved as well.
2139 */
36c8b586 2140void kick_process(struct task_struct *p)
1da177e4
LT
2141{
2142 int cpu;
2143
2144 preempt_disable();
2145 cpu = task_cpu(p);
2146 if ((cpu != smp_processor_id()) && task_curr(p))
2147 smp_send_reschedule(cpu);
2148 preempt_enable();
2149}
2150
2151/*
2dd73a4f
PW
2152 * Return a low guess at the load of a migration-source cpu weighted
2153 * according to the scheduling class and "nice" value.
1da177e4
LT
2154 *
2155 * We want to under-estimate the load of migration sources, to
2156 * balance conservatively.
2157 */
a9957449 2158static unsigned long source_load(int cpu, int type)
1da177e4 2159{
70b97a7f 2160 struct rq *rq = cpu_rq(cpu);
dd41f596 2161 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2162
93b75217 2163 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2164 return total;
b910472d 2165
dd41f596 2166 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2167}
2168
2169/*
2dd73a4f
PW
2170 * Return a high guess at the load of a migration-target cpu weighted
2171 * according to the scheduling class and "nice" value.
1da177e4 2172 */
a9957449 2173static unsigned long target_load(int cpu, int type)
1da177e4 2174{
70b97a7f 2175 struct rq *rq = cpu_rq(cpu);
dd41f596 2176 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2177
93b75217 2178 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2179 return total;
3b0bd9bc 2180
dd41f596 2181 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2182}
2183
147cbb4b
NP
2184/*
2185 * find_idlest_group finds and returns the least busy CPU group within the
2186 * domain.
2187 */
2188static struct sched_group *
2189find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2190{
2191 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2192 unsigned long min_load = ULONG_MAX, this_load = 0;
2193 int load_idx = sd->forkexec_idx;
2194 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2195
2196 do {
2197 unsigned long load, avg_load;
2198 int local_group;
2199 int i;
2200
da5a5522 2201 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2202 if (!cpumask_intersects(sched_group_cpus(group),
2203 &p->cpus_allowed))
3a5c359a 2204 continue;
da5a5522 2205
758b2cdc
RR
2206 local_group = cpumask_test_cpu(this_cpu,
2207 sched_group_cpus(group));
147cbb4b
NP
2208
2209 /* Tally up the load of all CPUs in the group */
2210 avg_load = 0;
2211
758b2cdc 2212 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2213 /* Bias balancing toward cpus of our domain */
2214 if (local_group)
2215 load = source_load(i, load_idx);
2216 else
2217 load = target_load(i, load_idx);
2218
2219 avg_load += load;
2220 }
2221
2222 /* Adjust by relative CPU power of the group */
5517d86b
ED
2223 avg_load = sg_div_cpu_power(group,
2224 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2225
2226 if (local_group) {
2227 this_load = avg_load;
2228 this = group;
2229 } else if (avg_load < min_load) {
2230 min_load = avg_load;
2231 idlest = group;
2232 }
3a5c359a 2233 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2234
2235 if (!idlest || 100*this_load < imbalance*min_load)
2236 return NULL;
2237 return idlest;
2238}
2239
2240/*
0feaece9 2241 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2242 */
95cdf3b7 2243static int
758b2cdc 2244find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2245{
2246 unsigned long load, min_load = ULONG_MAX;
2247 int idlest = -1;
2248 int i;
2249
da5a5522 2250 /* Traverse only the allowed CPUs */
758b2cdc 2251 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2252 load = weighted_cpuload(i);
147cbb4b
NP
2253
2254 if (load < min_load || (load == min_load && i == this_cpu)) {
2255 min_load = load;
2256 idlest = i;
2257 }
2258 }
2259
2260 return idlest;
2261}
2262
476d139c
NP
2263/*
2264 * sched_balance_self: balance the current task (running on cpu) in domains
2265 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2266 * SD_BALANCE_EXEC.
2267 *
2268 * Balance, ie. select the least loaded group.
2269 *
2270 * Returns the target CPU number, or the same CPU if no balancing is needed.
2271 *
2272 * preempt must be disabled.
2273 */
2274static int sched_balance_self(int cpu, int flag)
2275{
2276 struct task_struct *t = current;
2277 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2278
c96d145e 2279 for_each_domain(cpu, tmp) {
9761eea8
IM
2280 /*
2281 * If power savings logic is enabled for a domain, stop there.
2282 */
5c45bf27
SS
2283 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2284 break;
476d139c
NP
2285 if (tmp->flags & flag)
2286 sd = tmp;
c96d145e 2287 }
476d139c 2288
039a1c41
PZ
2289 if (sd)
2290 update_shares(sd);
2291
476d139c 2292 while (sd) {
476d139c 2293 struct sched_group *group;
1a848870
SS
2294 int new_cpu, weight;
2295
2296 if (!(sd->flags & flag)) {
2297 sd = sd->child;
2298 continue;
2299 }
476d139c 2300
476d139c 2301 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2302 if (!group) {
2303 sd = sd->child;
2304 continue;
2305 }
476d139c 2306
758b2cdc 2307 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2308 if (new_cpu == -1 || new_cpu == cpu) {
2309 /* Now try balancing at a lower domain level of cpu */
2310 sd = sd->child;
2311 continue;
2312 }
476d139c 2313
1a848870 2314 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2315 cpu = new_cpu;
758b2cdc 2316 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2317 sd = NULL;
476d139c 2318 for_each_domain(cpu, tmp) {
758b2cdc 2319 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2320 break;
2321 if (tmp->flags & flag)
2322 sd = tmp;
2323 }
2324 /* while loop will break here if sd == NULL */
2325 }
2326
2327 return cpu;
2328}
2329
2330#endif /* CONFIG_SMP */
1da177e4 2331
0793a61d
TG
2332/**
2333 * task_oncpu_function_call - call a function on the cpu on which a task runs
2334 * @p: the task to evaluate
2335 * @func: the function to be called
2336 * @info: the function call argument
2337 *
2338 * Calls the function @func when the task is currently running. This might
2339 * be on the current CPU, which just calls the function directly
2340 */
2341void task_oncpu_function_call(struct task_struct *p,
2342 void (*func) (void *info), void *info)
2343{
2344 int cpu;
2345
2346 preempt_disable();
2347 cpu = task_cpu(p);
2348 if (task_curr(p))
2349 smp_call_function_single(cpu, func, info, 1);
2350 preempt_enable();
2351}
2352
1da177e4
LT
2353/***
2354 * try_to_wake_up - wake up a thread
2355 * @p: the to-be-woken-up thread
2356 * @state: the mask of task states that can be woken
2357 * @sync: do a synchronous wakeup?
2358 *
2359 * Put it on the run-queue if it's not already there. The "current"
2360 * thread is always on the run-queue (except when the actual
2361 * re-schedule is in progress), and as such you're allowed to do
2362 * the simpler "current->state = TASK_RUNNING" to mark yourself
2363 * runnable without the overhead of this.
2364 *
2365 * returns failure only if the task is already active.
2366 */
36c8b586 2367static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2368{
cc367732 2369 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2370 unsigned long flags;
2371 long old_state;
70b97a7f 2372 struct rq *rq;
1da177e4 2373
b85d0667
IM
2374 if (!sched_feat(SYNC_WAKEUPS))
2375 sync = 0;
2376
2398f2c6 2377#ifdef CONFIG_SMP
57310a98 2378 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2398f2c6
PZ
2379 struct sched_domain *sd;
2380
2381 this_cpu = raw_smp_processor_id();
2382 cpu = task_cpu(p);
2383
2384 for_each_domain(this_cpu, sd) {
758b2cdc 2385 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2386 update_shares(sd);
2387 break;
2388 }
2389 }
2390 }
2391#endif
2392
04e2f174 2393 smp_wmb();
1da177e4 2394 rq = task_rq_lock(p, &flags);
03e89e45 2395 update_rq_clock(rq);
1da177e4
LT
2396 old_state = p->state;
2397 if (!(old_state & state))
2398 goto out;
2399
dd41f596 2400 if (p->se.on_rq)
1da177e4
LT
2401 goto out_running;
2402
2403 cpu = task_cpu(p);
cc367732 2404 orig_cpu = cpu;
1da177e4
LT
2405 this_cpu = smp_processor_id();
2406
2407#ifdef CONFIG_SMP
2408 if (unlikely(task_running(rq, p)))
2409 goto out_activate;
2410
5d2f5a61
DA
2411 cpu = p->sched_class->select_task_rq(p, sync);
2412 if (cpu != orig_cpu) {
2413 set_task_cpu(p, cpu);
1da177e4
LT
2414 task_rq_unlock(rq, &flags);
2415 /* might preempt at this point */
2416 rq = task_rq_lock(p, &flags);
2417 old_state = p->state;
2418 if (!(old_state & state))
2419 goto out;
dd41f596 2420 if (p->se.on_rq)
1da177e4
LT
2421 goto out_running;
2422
2423 this_cpu = smp_processor_id();
2424 cpu = task_cpu(p);
2425 }
2426
e7693a36
GH
2427#ifdef CONFIG_SCHEDSTATS
2428 schedstat_inc(rq, ttwu_count);
2429 if (cpu == this_cpu)
2430 schedstat_inc(rq, ttwu_local);
2431 else {
2432 struct sched_domain *sd;
2433 for_each_domain(this_cpu, sd) {
758b2cdc 2434 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2435 schedstat_inc(sd, ttwu_wake_remote);
2436 break;
2437 }
2438 }
2439 }
6d6bc0ad 2440#endif /* CONFIG_SCHEDSTATS */
e7693a36 2441
1da177e4
LT
2442out_activate:
2443#endif /* CONFIG_SMP */
cc367732
IM
2444 schedstat_inc(p, se.nr_wakeups);
2445 if (sync)
2446 schedstat_inc(p, se.nr_wakeups_sync);
2447 if (orig_cpu != cpu)
2448 schedstat_inc(p, se.nr_wakeups_migrate);
2449 if (cpu == this_cpu)
2450 schedstat_inc(p, se.nr_wakeups_local);
2451 else
2452 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2453 activate_task(rq, p, 1);
1da177e4
LT
2454 success = 1;
2455
831451ac
PZ
2456 /*
2457 * Only attribute actual wakeups done by this task.
2458 */
2459 if (!in_interrupt()) {
2460 struct sched_entity *se = &current->se;
2461 u64 sample = se->sum_exec_runtime;
2462
2463 if (se->last_wakeup)
2464 sample -= se->last_wakeup;
2465 else
2466 sample -= se->start_runtime;
2467 update_avg(&se->avg_wakeup, sample);
2468
2469 se->last_wakeup = se->sum_exec_runtime;
2470 }
2471
1da177e4 2472out_running:
468a15bb 2473 trace_sched_wakeup(rq, p, success);
15afe09b 2474 check_preempt_curr(rq, p, sync);
4ae7d5ce 2475
1da177e4 2476 p->state = TASK_RUNNING;
9a897c5a
SR
2477#ifdef CONFIG_SMP
2478 if (p->sched_class->task_wake_up)
2479 p->sched_class->task_wake_up(rq, p);
2480#endif
1da177e4
LT
2481out:
2482 task_rq_unlock(rq, &flags);
2483
2484 return success;
2485}
2486
7ad5b3a5 2487int wake_up_process(struct task_struct *p)
1da177e4 2488{
d9514f6c 2489 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2490}
1da177e4
LT
2491EXPORT_SYMBOL(wake_up_process);
2492
7ad5b3a5 2493int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2494{
2495 return try_to_wake_up(p, state, 0);
2496}
2497
1da177e4
LT
2498/*
2499 * Perform scheduler related setup for a newly forked process p.
2500 * p is forked by current.
dd41f596
IM
2501 *
2502 * __sched_fork() is basic setup used by init_idle() too:
2503 */
2504static void __sched_fork(struct task_struct *p)
2505{
dd41f596
IM
2506 p->se.exec_start = 0;
2507 p->se.sum_exec_runtime = 0;
f6cf891c 2508 p->se.prev_sum_exec_runtime = 0;
6c594c21 2509 p->se.nr_migrations = 0;
4ae7d5ce
IM
2510 p->se.last_wakeup = 0;
2511 p->se.avg_overlap = 0;
831451ac
PZ
2512 p->se.start_runtime = 0;
2513 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2514
2515#ifdef CONFIG_SCHEDSTATS
2516 p->se.wait_start = 0;
dd41f596
IM
2517 p->se.sum_sleep_runtime = 0;
2518 p->se.sleep_start = 0;
dd41f596
IM
2519 p->se.block_start = 0;
2520 p->se.sleep_max = 0;
2521 p->se.block_max = 0;
2522 p->se.exec_max = 0;
eba1ed4b 2523 p->se.slice_max = 0;
dd41f596 2524 p->se.wait_max = 0;
6cfb0d5d 2525#endif
476d139c 2526
fa717060 2527 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2528 p->se.on_rq = 0;
4a55bd5e 2529 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2530
e107be36
AK
2531#ifdef CONFIG_PREEMPT_NOTIFIERS
2532 INIT_HLIST_HEAD(&p->preempt_notifiers);
2533#endif
2534
1da177e4
LT
2535 /*
2536 * We mark the process as running here, but have not actually
2537 * inserted it onto the runqueue yet. This guarantees that
2538 * nobody will actually run it, and a signal or other external
2539 * event cannot wake it up and insert it on the runqueue either.
2540 */
2541 p->state = TASK_RUNNING;
dd41f596
IM
2542}
2543
2544/*
2545 * fork()/clone()-time setup:
2546 */
2547void sched_fork(struct task_struct *p, int clone_flags)
2548{
2549 int cpu = get_cpu();
2550
2551 __sched_fork(p);
2552
2553#ifdef CONFIG_SMP
2554 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2555#endif
02e4bac2 2556 set_task_cpu(p, cpu);
b29739f9
IM
2557
2558 /*
2559 * Make sure we do not leak PI boosting priority to the child:
2560 */
2561 p->prio = current->normal_prio;
2ddbf952
HS
2562 if (!rt_prio(p->prio))
2563 p->sched_class = &fair_sched_class;
b29739f9 2564
52f17b6c 2565#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2566 if (likely(sched_info_on()))
52f17b6c 2567 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2568#endif
d6077cb8 2569#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2570 p->oncpu = 0;
2571#endif
1da177e4 2572#ifdef CONFIG_PREEMPT
4866cde0 2573 /* Want to start with kernel preemption disabled. */
a1261f54 2574 task_thread_info(p)->preempt_count = 1;
1da177e4 2575#endif
917b627d
GH
2576 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2577
476d139c 2578 put_cpu();
1da177e4
LT
2579}
2580
2581/*
2582 * wake_up_new_task - wake up a newly created task for the first time.
2583 *
2584 * This function will do some initial scheduler statistics housekeeping
2585 * that must be done for every newly created context, then puts the task
2586 * on the runqueue and wakes it.
2587 */
7ad5b3a5 2588void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2589{
2590 unsigned long flags;
dd41f596 2591 struct rq *rq;
1da177e4
LT
2592
2593 rq = task_rq_lock(p, &flags);
147cbb4b 2594 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2595 update_rq_clock(rq);
1da177e4
LT
2596
2597 p->prio = effective_prio(p);
2598
b9dca1e0 2599 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2600 activate_task(rq, p, 0);
1da177e4 2601 } else {
1da177e4 2602 /*
dd41f596
IM
2603 * Let the scheduling class do new task startup
2604 * management (if any):
1da177e4 2605 */
ee0827d8 2606 p->sched_class->task_new(rq, p);
c09595f6 2607 inc_nr_running(rq);
1da177e4 2608 }
c71dd42d 2609 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2610 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2611#ifdef CONFIG_SMP
2612 if (p->sched_class->task_wake_up)
2613 p->sched_class->task_wake_up(rq, p);
2614#endif
dd41f596 2615 task_rq_unlock(rq, &flags);
1da177e4
LT
2616}
2617
e107be36
AK
2618#ifdef CONFIG_PREEMPT_NOTIFIERS
2619
2620/**
80dd99b3 2621 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2622 * @notifier: notifier struct to register
e107be36
AK
2623 */
2624void preempt_notifier_register(struct preempt_notifier *notifier)
2625{
2626 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2627}
2628EXPORT_SYMBOL_GPL(preempt_notifier_register);
2629
2630/**
2631 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2632 * @notifier: notifier struct to unregister
e107be36
AK
2633 *
2634 * This is safe to call from within a preemption notifier.
2635 */
2636void preempt_notifier_unregister(struct preempt_notifier *notifier)
2637{
2638 hlist_del(&notifier->link);
2639}
2640EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2641
2642static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2643{
2644 struct preempt_notifier *notifier;
2645 struct hlist_node *node;
2646
2647 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2648 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2649}
2650
2651static void
2652fire_sched_out_preempt_notifiers(struct task_struct *curr,
2653 struct task_struct *next)
2654{
2655 struct preempt_notifier *notifier;
2656 struct hlist_node *node;
2657
2658 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2659 notifier->ops->sched_out(notifier, next);
2660}
2661
6d6bc0ad 2662#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2663
2664static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2665{
2666}
2667
2668static void
2669fire_sched_out_preempt_notifiers(struct task_struct *curr,
2670 struct task_struct *next)
2671{
2672}
2673
6d6bc0ad 2674#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2675
4866cde0
NP
2676/**
2677 * prepare_task_switch - prepare to switch tasks
2678 * @rq: the runqueue preparing to switch
421cee29 2679 * @prev: the current task that is being switched out
4866cde0
NP
2680 * @next: the task we are going to switch to.
2681 *
2682 * This is called with the rq lock held and interrupts off. It must
2683 * be paired with a subsequent finish_task_switch after the context
2684 * switch.
2685 *
2686 * prepare_task_switch sets up locking and calls architecture specific
2687 * hooks.
2688 */
e107be36
AK
2689static inline void
2690prepare_task_switch(struct rq *rq, struct task_struct *prev,
2691 struct task_struct *next)
4866cde0 2692{
e107be36 2693 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2694 prepare_lock_switch(rq, next);
2695 prepare_arch_switch(next);
2696}
2697
1da177e4
LT
2698/**
2699 * finish_task_switch - clean up after a task-switch
344babaa 2700 * @rq: runqueue associated with task-switch
1da177e4
LT
2701 * @prev: the thread we just switched away from.
2702 *
4866cde0
NP
2703 * finish_task_switch must be called after the context switch, paired
2704 * with a prepare_task_switch call before the context switch.
2705 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2706 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2707 *
2708 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2709 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2710 * with the lock held can cause deadlocks; see schedule() for
2711 * details.)
2712 */
a9957449 2713static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2714 __releases(rq->lock)
2715{
1da177e4 2716 struct mm_struct *mm = rq->prev_mm;
55a101f8 2717 long prev_state;
967fc046
GH
2718#ifdef CONFIG_SMP
2719 int post_schedule = 0;
2720
2721 if (current->sched_class->needs_post_schedule)
2722 post_schedule = current->sched_class->needs_post_schedule(rq);
2723#endif
1da177e4
LT
2724
2725 rq->prev_mm = NULL;
2726
2727 /*
2728 * A task struct has one reference for the use as "current".
c394cc9f 2729 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2730 * schedule one last time. The schedule call will never return, and
2731 * the scheduled task must drop that reference.
c394cc9f 2732 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2733 * still held, otherwise prev could be scheduled on another cpu, die
2734 * there before we look at prev->state, and then the reference would
2735 * be dropped twice.
2736 * Manfred Spraul <manfred@colorfullife.com>
2737 */
55a101f8 2738 prev_state = prev->state;
4866cde0 2739 finish_arch_switch(prev);
0793a61d 2740 perf_counter_task_sched_in(current, cpu_of(rq));
4866cde0 2741 finish_lock_switch(rq, prev);
9a897c5a 2742#ifdef CONFIG_SMP
967fc046 2743 if (post_schedule)
9a897c5a
SR
2744 current->sched_class->post_schedule(rq);
2745#endif
e8fa1362 2746
e107be36 2747 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2748 if (mm)
2749 mmdrop(mm);
c394cc9f 2750 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2751 /*
2752 * Remove function-return probe instances associated with this
2753 * task and put them back on the free list.
9761eea8 2754 */
c6fd91f0 2755 kprobe_flush_task(prev);
1da177e4 2756 put_task_struct(prev);
c6fd91f0 2757 }
1da177e4
LT
2758}
2759
2760/**
2761 * schedule_tail - first thing a freshly forked thread must call.
2762 * @prev: the thread we just switched away from.
2763 */
36c8b586 2764asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2765 __releases(rq->lock)
2766{
70b97a7f
IM
2767 struct rq *rq = this_rq();
2768
4866cde0
NP
2769 finish_task_switch(rq, prev);
2770#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2771 /* In this case, finish_task_switch does not reenable preemption */
2772 preempt_enable();
2773#endif
1da177e4 2774 if (current->set_child_tid)
b488893a 2775 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2776}
2777
2778/*
2779 * context_switch - switch to the new MM and the new
2780 * thread's register state.
2781 */
dd41f596 2782static inline void
70b97a7f 2783context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2784 struct task_struct *next)
1da177e4 2785{
dd41f596 2786 struct mm_struct *mm, *oldmm;
1da177e4 2787
e107be36 2788 prepare_task_switch(rq, prev, next);
0a16b607 2789 trace_sched_switch(rq, prev, next);
dd41f596
IM
2790 mm = next->mm;
2791 oldmm = prev->active_mm;
9226d125
ZA
2792 /*
2793 * For paravirt, this is coupled with an exit in switch_to to
2794 * combine the page table reload and the switch backend into
2795 * one hypercall.
2796 */
2797 arch_enter_lazy_cpu_mode();
2798
dd41f596 2799 if (unlikely(!mm)) {
1da177e4
LT
2800 next->active_mm = oldmm;
2801 atomic_inc(&oldmm->mm_count);
2802 enter_lazy_tlb(oldmm, next);
2803 } else
2804 switch_mm(oldmm, mm, next);
2805
dd41f596 2806 if (unlikely(!prev->mm)) {
1da177e4 2807 prev->active_mm = NULL;
1da177e4
LT
2808 rq->prev_mm = oldmm;
2809 }
3a5f5e48
IM
2810 /*
2811 * Since the runqueue lock will be released by the next
2812 * task (which is an invalid locking op but in the case
2813 * of the scheduler it's an obvious special-case), so we
2814 * do an early lockdep release here:
2815 */
2816#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2817 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2818#endif
1da177e4
LT
2819
2820 /* Here we just switch the register state and the stack. */
2821 switch_to(prev, next, prev);
2822
dd41f596
IM
2823 barrier();
2824 /*
2825 * this_rq must be evaluated again because prev may have moved
2826 * CPUs since it called schedule(), thus the 'rq' on its stack
2827 * frame will be invalid.
2828 */
2829 finish_task_switch(this_rq(), prev);
1da177e4
LT
2830}
2831
2832/*
2833 * nr_running, nr_uninterruptible and nr_context_switches:
2834 *
2835 * externally visible scheduler statistics: current number of runnable
2836 * threads, current number of uninterruptible-sleeping threads, total
2837 * number of context switches performed since bootup.
2838 */
2839unsigned long nr_running(void)
2840{
2841 unsigned long i, sum = 0;
2842
2843 for_each_online_cpu(i)
2844 sum += cpu_rq(i)->nr_running;
2845
2846 return sum;
2847}
2848
2849unsigned long nr_uninterruptible(void)
2850{
2851 unsigned long i, sum = 0;
2852
0a945022 2853 for_each_possible_cpu(i)
1da177e4
LT
2854 sum += cpu_rq(i)->nr_uninterruptible;
2855
2856 /*
2857 * Since we read the counters lockless, it might be slightly
2858 * inaccurate. Do not allow it to go below zero though:
2859 */
2860 if (unlikely((long)sum < 0))
2861 sum = 0;
2862
2863 return sum;
2864}
2865
2866unsigned long long nr_context_switches(void)
2867{
cc94abfc
SR
2868 int i;
2869 unsigned long long sum = 0;
1da177e4 2870
0a945022 2871 for_each_possible_cpu(i)
1da177e4
LT
2872 sum += cpu_rq(i)->nr_switches;
2873
2874 return sum;
2875}
2876
2877unsigned long nr_iowait(void)
2878{
2879 unsigned long i, sum = 0;
2880
0a945022 2881 for_each_possible_cpu(i)
1da177e4
LT
2882 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2883
2884 return sum;
2885}
2886
db1b1fef
JS
2887unsigned long nr_active(void)
2888{
2889 unsigned long i, running = 0, uninterruptible = 0;
2890
2891 for_each_online_cpu(i) {
2892 running += cpu_rq(i)->nr_running;
2893 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2894 }
2895
2896 if (unlikely((long)uninterruptible < 0))
2897 uninterruptible = 0;
2898
2899 return running + uninterruptible;
2900}
2901
23a185ca
PM
2902/*
2903 * Externally visible per-cpu scheduler statistics:
23a185ca
PM
2904 * cpu_nr_migrations(cpu) - number of migrations into that cpu
2905 */
23a185ca
PM
2906u64 cpu_nr_migrations(int cpu)
2907{
2908 return cpu_rq(cpu)->nr_migrations_in;
2909}
2910
48f24c4d 2911/*
dd41f596
IM
2912 * Update rq->cpu_load[] statistics. This function is usually called every
2913 * scheduler tick (TICK_NSEC).
48f24c4d 2914 */
dd41f596 2915static void update_cpu_load(struct rq *this_rq)
48f24c4d 2916{
495eca49 2917 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2918 int i, scale;
2919
2920 this_rq->nr_load_updates++;
dd41f596
IM
2921
2922 /* Update our load: */
2923 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2924 unsigned long old_load, new_load;
2925
2926 /* scale is effectively 1 << i now, and >> i divides by scale */
2927
2928 old_load = this_rq->cpu_load[i];
2929 new_load = this_load;
a25707f3
IM
2930 /*
2931 * Round up the averaging division if load is increasing. This
2932 * prevents us from getting stuck on 9 if the load is 10, for
2933 * example.
2934 */
2935 if (new_load > old_load)
2936 new_load += scale-1;
dd41f596
IM
2937 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2938 }
48f24c4d
IM
2939}
2940
dd41f596
IM
2941#ifdef CONFIG_SMP
2942
1da177e4
LT
2943/*
2944 * double_rq_lock - safely lock two runqueues
2945 *
2946 * Note this does not disable interrupts like task_rq_lock,
2947 * you need to do so manually before calling.
2948 */
70b97a7f 2949static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2950 __acquires(rq1->lock)
2951 __acquires(rq2->lock)
2952{
054b9108 2953 BUG_ON(!irqs_disabled());
1da177e4
LT
2954 if (rq1 == rq2) {
2955 spin_lock(&rq1->lock);
2956 __acquire(rq2->lock); /* Fake it out ;) */
2957 } else {
c96d145e 2958 if (rq1 < rq2) {
1da177e4 2959 spin_lock(&rq1->lock);
5e710e37 2960 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2961 } else {
2962 spin_lock(&rq2->lock);
5e710e37 2963 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2964 }
2965 }
6e82a3be
IM
2966 update_rq_clock(rq1);
2967 update_rq_clock(rq2);
1da177e4
LT
2968}
2969
2970/*
2971 * double_rq_unlock - safely unlock two runqueues
2972 *
2973 * Note this does not restore interrupts like task_rq_unlock,
2974 * you need to do so manually after calling.
2975 */
70b97a7f 2976static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2977 __releases(rq1->lock)
2978 __releases(rq2->lock)
2979{
2980 spin_unlock(&rq1->lock);
2981 if (rq1 != rq2)
2982 spin_unlock(&rq2->lock);
2983 else
2984 __release(rq2->lock);
2985}
2986
1da177e4
LT
2987/*
2988 * If dest_cpu is allowed for this process, migrate the task to it.
2989 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2990 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2991 * the cpu_allowed mask is restored.
2992 */
36c8b586 2993static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2994{
70b97a7f 2995 struct migration_req req;
1da177e4 2996 unsigned long flags;
70b97a7f 2997 struct rq *rq;
1da177e4
LT
2998
2999 rq = task_rq_lock(p, &flags);
96f874e2 3000 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3001 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3002 goto out;
3003
3004 /* force the process onto the specified CPU */
3005 if (migrate_task(p, dest_cpu, &req)) {
3006 /* Need to wait for migration thread (might exit: take ref). */
3007 struct task_struct *mt = rq->migration_thread;
36c8b586 3008
1da177e4
LT
3009 get_task_struct(mt);
3010 task_rq_unlock(rq, &flags);
3011 wake_up_process(mt);
3012 put_task_struct(mt);
3013 wait_for_completion(&req.done);
36c8b586 3014
1da177e4
LT
3015 return;
3016 }
3017out:
3018 task_rq_unlock(rq, &flags);
3019}
3020
3021/*
476d139c
NP
3022 * sched_exec - execve() is a valuable balancing opportunity, because at
3023 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3024 */
3025void sched_exec(void)
3026{
1da177e4 3027 int new_cpu, this_cpu = get_cpu();
476d139c 3028 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 3029 put_cpu();
476d139c
NP
3030 if (new_cpu != this_cpu)
3031 sched_migrate_task(current, new_cpu);
1da177e4
LT
3032}
3033
3034/*
3035 * pull_task - move a task from a remote runqueue to the local runqueue.
3036 * Both runqueues must be locked.
3037 */
dd41f596
IM
3038static void pull_task(struct rq *src_rq, struct task_struct *p,
3039 struct rq *this_rq, int this_cpu)
1da177e4 3040{
2e1cb74a 3041 deactivate_task(src_rq, p, 0);
1da177e4 3042 set_task_cpu(p, this_cpu);
dd41f596 3043 activate_task(this_rq, p, 0);
1da177e4
LT
3044 /*
3045 * Note that idle threads have a prio of MAX_PRIO, for this test
3046 * to be always true for them.
3047 */
15afe09b 3048 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3049}
3050
3051/*
3052 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3053 */
858119e1 3054static
70b97a7f 3055int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3056 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3057 int *all_pinned)
1da177e4 3058{
708dc512 3059 int tsk_cache_hot = 0;
1da177e4
LT
3060 /*
3061 * We do not migrate tasks that are:
3062 * 1) running (obviously), or
3063 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3064 * 3) are cache-hot on their current CPU.
3065 */
96f874e2 3066 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3067 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3068 return 0;
cc367732 3069 }
81026794
NP
3070 *all_pinned = 0;
3071
cc367732
IM
3072 if (task_running(rq, p)) {
3073 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3074 return 0;
cc367732 3075 }
1da177e4 3076
da84d961
IM
3077 /*
3078 * Aggressive migration if:
3079 * 1) task is cache cold, or
3080 * 2) too many balance attempts have failed.
3081 */
3082
708dc512
LH
3083 tsk_cache_hot = task_hot(p, rq->clock, sd);
3084 if (!tsk_cache_hot ||
3085 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3086#ifdef CONFIG_SCHEDSTATS
708dc512 3087 if (tsk_cache_hot) {
da84d961 3088 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3089 schedstat_inc(p, se.nr_forced_migrations);
3090 }
da84d961
IM
3091#endif
3092 return 1;
3093 }
3094
708dc512 3095 if (tsk_cache_hot) {
cc367732 3096 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3097 return 0;
cc367732 3098 }
1da177e4
LT
3099 return 1;
3100}
3101
e1d1484f
PW
3102static unsigned long
3103balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3104 unsigned long max_load_move, struct sched_domain *sd,
3105 enum cpu_idle_type idle, int *all_pinned,
3106 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3107{
051c6764 3108 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3109 struct task_struct *p;
3110 long rem_load_move = max_load_move;
1da177e4 3111
e1d1484f 3112 if (max_load_move == 0)
1da177e4
LT
3113 goto out;
3114
81026794
NP
3115 pinned = 1;
3116
1da177e4 3117 /*
dd41f596 3118 * Start the load-balancing iterator:
1da177e4 3119 */
dd41f596
IM
3120 p = iterator->start(iterator->arg);
3121next:
b82d9fdd 3122 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3123 goto out;
051c6764
PZ
3124
3125 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3126 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3127 p = iterator->next(iterator->arg);
3128 goto next;
1da177e4
LT
3129 }
3130
dd41f596 3131 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3132 pulled++;
dd41f596 3133 rem_load_move -= p->se.load.weight;
1da177e4 3134
7e96fa58
GH
3135#ifdef CONFIG_PREEMPT
3136 /*
3137 * NEWIDLE balancing is a source of latency, so preemptible kernels
3138 * will stop after the first task is pulled to minimize the critical
3139 * section.
3140 */
3141 if (idle == CPU_NEWLY_IDLE)
3142 goto out;
3143#endif
3144
2dd73a4f 3145 /*
b82d9fdd 3146 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3147 */
e1d1484f 3148 if (rem_load_move > 0) {
a4ac01c3
PW
3149 if (p->prio < *this_best_prio)
3150 *this_best_prio = p->prio;
dd41f596
IM
3151 p = iterator->next(iterator->arg);
3152 goto next;
1da177e4
LT
3153 }
3154out:
3155 /*
e1d1484f 3156 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3157 * so we can safely collect pull_task() stats here rather than
3158 * inside pull_task().
3159 */
3160 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3161
3162 if (all_pinned)
3163 *all_pinned = pinned;
e1d1484f
PW
3164
3165 return max_load_move - rem_load_move;
1da177e4
LT
3166}
3167
dd41f596 3168/*
43010659
PW
3169 * move_tasks tries to move up to max_load_move weighted load from busiest to
3170 * this_rq, as part of a balancing operation within domain "sd".
3171 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3172 *
3173 * Called with both runqueues locked.
3174 */
3175static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3176 unsigned long max_load_move,
dd41f596
IM
3177 struct sched_domain *sd, enum cpu_idle_type idle,
3178 int *all_pinned)
3179{
5522d5d5 3180 const struct sched_class *class = sched_class_highest;
43010659 3181 unsigned long total_load_moved = 0;
a4ac01c3 3182 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3183
3184 do {
43010659
PW
3185 total_load_moved +=
3186 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3187 max_load_move - total_load_moved,
a4ac01c3 3188 sd, idle, all_pinned, &this_best_prio);
dd41f596 3189 class = class->next;
c4acb2c0 3190
7e96fa58
GH
3191#ifdef CONFIG_PREEMPT
3192 /*
3193 * NEWIDLE balancing is a source of latency, so preemptible
3194 * kernels will stop after the first task is pulled to minimize
3195 * the critical section.
3196 */
c4acb2c0
GH
3197 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3198 break;
7e96fa58 3199#endif
43010659 3200 } while (class && max_load_move > total_load_moved);
dd41f596 3201
43010659
PW
3202 return total_load_moved > 0;
3203}
3204
e1d1484f
PW
3205static int
3206iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3207 struct sched_domain *sd, enum cpu_idle_type idle,
3208 struct rq_iterator *iterator)
3209{
3210 struct task_struct *p = iterator->start(iterator->arg);
3211 int pinned = 0;
3212
3213 while (p) {
3214 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3215 pull_task(busiest, p, this_rq, this_cpu);
3216 /*
3217 * Right now, this is only the second place pull_task()
3218 * is called, so we can safely collect pull_task()
3219 * stats here rather than inside pull_task().
3220 */
3221 schedstat_inc(sd, lb_gained[idle]);
3222
3223 return 1;
3224 }
3225 p = iterator->next(iterator->arg);
3226 }
3227
3228 return 0;
3229}
3230
43010659
PW
3231/*
3232 * move_one_task tries to move exactly one task from busiest to this_rq, as
3233 * part of active balancing operations within "domain".
3234 * Returns 1 if successful and 0 otherwise.
3235 *
3236 * Called with both runqueues locked.
3237 */
3238static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3239 struct sched_domain *sd, enum cpu_idle_type idle)
3240{
5522d5d5 3241 const struct sched_class *class;
43010659
PW
3242
3243 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3244 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3245 return 1;
3246
3247 return 0;
dd41f596 3248}
67bb6c03 3249/********** Helpers for find_busiest_group ************************/
1da177e4 3250/*
222d656d
GS
3251 * sd_lb_stats - Structure to store the statistics of a sched_domain
3252 * during load balancing.
1da177e4 3253 */
222d656d
GS
3254struct sd_lb_stats {
3255 struct sched_group *busiest; /* Busiest group in this sd */
3256 struct sched_group *this; /* Local group in this sd */
3257 unsigned long total_load; /* Total load of all groups in sd */
3258 unsigned long total_pwr; /* Total power of all groups in sd */
3259 unsigned long avg_load; /* Average load across all groups in sd */
3260
3261 /** Statistics of this group */
3262 unsigned long this_load;
3263 unsigned long this_load_per_task;
3264 unsigned long this_nr_running;
3265
3266 /* Statistics of the busiest group */
3267 unsigned long max_load;
3268 unsigned long busiest_load_per_task;
3269 unsigned long busiest_nr_running;
3270
3271 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3272#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3273 int power_savings_balance; /* Is powersave balance needed for this sd */
3274 struct sched_group *group_min; /* Least loaded group in sd */
3275 struct sched_group *group_leader; /* Group which relieves group_min */
3276 unsigned long min_load_per_task; /* load_per_task in group_min */
3277 unsigned long leader_nr_running; /* Nr running of group_leader */
3278 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3279#endif
222d656d 3280};
1da177e4 3281
d5ac537e 3282/*
381be78f
GS
3283 * sg_lb_stats - stats of a sched_group required for load_balancing
3284 */
3285struct sg_lb_stats {
3286 unsigned long avg_load; /*Avg load across the CPUs of the group */
3287 unsigned long group_load; /* Total load over the CPUs of the group */
3288 unsigned long sum_nr_running; /* Nr tasks running in the group */
3289 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3290 unsigned long group_capacity;
3291 int group_imb; /* Is there an imbalance in the group ? */
3292};
3293
67bb6c03
GS
3294/**
3295 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3296 * @group: The group whose first cpu is to be returned.
3297 */
3298static inline unsigned int group_first_cpu(struct sched_group *group)
3299{
3300 return cpumask_first(sched_group_cpus(group));
3301}
3302
3303/**
3304 * get_sd_load_idx - Obtain the load index for a given sched domain.
3305 * @sd: The sched_domain whose load_idx is to be obtained.
3306 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3307 */
3308static inline int get_sd_load_idx(struct sched_domain *sd,
3309 enum cpu_idle_type idle)
3310{
3311 int load_idx;
408ed066 3312
67bb6c03
GS
3313 switch (idle) {
3314 case CPU_NOT_IDLE:
7897986b 3315 load_idx = sd->busy_idx;
67bb6c03
GS
3316 break;
3317
3318 case CPU_NEWLY_IDLE:
7897986b 3319 load_idx = sd->newidle_idx;
67bb6c03
GS
3320 break;
3321 default:
7897986b 3322 load_idx = sd->idle_idx;
67bb6c03
GS
3323 break;
3324 }
1da177e4 3325
67bb6c03
GS
3326 return load_idx;
3327}
1da177e4 3328
1da177e4 3329
c071df18
GS
3330#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3331/**
3332 * init_sd_power_savings_stats - Initialize power savings statistics for
3333 * the given sched_domain, during load balancing.
3334 *
3335 * @sd: Sched domain whose power-savings statistics are to be initialized.
3336 * @sds: Variable containing the statistics for sd.
3337 * @idle: Idle status of the CPU at which we're performing load-balancing.
3338 */
3339static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3340 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3341{
3342 /*
3343 * Busy processors will not participate in power savings
3344 * balance.
3345 */
3346 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3347 sds->power_savings_balance = 0;
3348 else {
3349 sds->power_savings_balance = 1;
3350 sds->min_nr_running = ULONG_MAX;
3351 sds->leader_nr_running = 0;
3352 }
3353}
783609c6 3354
c071df18
GS
3355/**
3356 * update_sd_power_savings_stats - Update the power saving stats for a
3357 * sched_domain while performing load balancing.
3358 *
3359 * @group: sched_group belonging to the sched_domain under consideration.
3360 * @sds: Variable containing the statistics of the sched_domain
3361 * @local_group: Does group contain the CPU for which we're performing
3362 * load balancing ?
3363 * @sgs: Variable containing the statistics of the group.
3364 */
3365static inline void update_sd_power_savings_stats(struct sched_group *group,
3366 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3367{
408ed066 3368
c071df18
GS
3369 if (!sds->power_savings_balance)
3370 return;
1da177e4 3371
c071df18
GS
3372 /*
3373 * If the local group is idle or completely loaded
3374 * no need to do power savings balance at this domain
3375 */
3376 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3377 !sds->this_nr_running))
3378 sds->power_savings_balance = 0;
2dd73a4f 3379
c071df18
GS
3380 /*
3381 * If a group is already running at full capacity or idle,
3382 * don't include that group in power savings calculations
3383 */
3384 if (!sds->power_savings_balance ||
3385 sgs->sum_nr_running >= sgs->group_capacity ||
3386 !sgs->sum_nr_running)
3387 return;
5969fe06 3388
c071df18
GS
3389 /*
3390 * Calculate the group which has the least non-idle load.
3391 * This is the group from where we need to pick up the load
3392 * for saving power
3393 */
3394 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3395 (sgs->sum_nr_running == sds->min_nr_running &&
3396 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3397 sds->group_min = group;
3398 sds->min_nr_running = sgs->sum_nr_running;
3399 sds->min_load_per_task = sgs->sum_weighted_load /
3400 sgs->sum_nr_running;
3401 }
783609c6 3402
c071df18
GS
3403 /*
3404 * Calculate the group which is almost near its
3405 * capacity but still has some space to pick up some load
3406 * from other group and save more power
3407 */
3408 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3409 return;
1da177e4 3410
c071df18
GS
3411 if (sgs->sum_nr_running > sds->leader_nr_running ||
3412 (sgs->sum_nr_running == sds->leader_nr_running &&
3413 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3414 sds->group_leader = group;
3415 sds->leader_nr_running = sgs->sum_nr_running;
3416 }
3417}
408ed066 3418
c071df18 3419/**
d5ac537e 3420 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3421 * @sds: Variable containing the statistics of the sched_domain
3422 * under consideration.
3423 * @this_cpu: Cpu at which we're currently performing load-balancing.
3424 * @imbalance: Variable to store the imbalance.
3425 *
d5ac537e
RD
3426 * Description:
3427 * Check if we have potential to perform some power-savings balance.
3428 * If yes, set the busiest group to be the least loaded group in the
3429 * sched_domain, so that it's CPUs can be put to idle.
3430 *
c071df18
GS
3431 * Returns 1 if there is potential to perform power-savings balance.
3432 * Else returns 0.
3433 */
3434static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3435 int this_cpu, unsigned long *imbalance)
3436{
3437 if (!sds->power_savings_balance)
3438 return 0;
1da177e4 3439
c071df18
GS
3440 if (sds->this != sds->group_leader ||
3441 sds->group_leader == sds->group_min)
3442 return 0;
783609c6 3443
c071df18
GS
3444 *imbalance = sds->min_load_per_task;
3445 sds->busiest = sds->group_min;
1da177e4 3446
c071df18
GS
3447 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3448 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3449 group_first_cpu(sds->group_leader);
3450 }
1da177e4 3451
c071df18 3452 return 1;
408ed066 3453
c071df18
GS
3454}
3455#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3456static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3457 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3458{
3459 return;
3460}
3461
3462static inline void update_sd_power_savings_stats(struct sched_group *group,
3463 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3464{
3465 return;
3466}
3467
3468static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3469 int this_cpu, unsigned long *imbalance)
3470{
3471 return 0;
3472}
3473#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3474
3475
1f8c553d
GS
3476/**
3477 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3478 * @group: sched_group whose statistics are to be updated.
3479 * @this_cpu: Cpu for which load balance is currently performed.
3480 * @idle: Idle status of this_cpu
3481 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3482 * @sd_idle: Idle status of the sched_domain containing group.
3483 * @local_group: Does group contain this_cpu.
3484 * @cpus: Set of cpus considered for load balancing.
3485 * @balance: Should we balance.
3486 * @sgs: variable to hold the statistics for this group.
3487 */
3488static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3489 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3490 int local_group, const struct cpumask *cpus,
3491 int *balance, struct sg_lb_stats *sgs)
3492{
3493 unsigned long load, max_cpu_load, min_cpu_load;
3494 int i;
3495 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3496 unsigned long sum_avg_load_per_task;
3497 unsigned long avg_load_per_task;
3498
3499 if (local_group)
3500 balance_cpu = group_first_cpu(group);
408ed066 3501
1f8c553d
GS
3502 /* Tally up the load of all CPUs in the group */
3503 sum_avg_load_per_task = avg_load_per_task = 0;
3504 max_cpu_load = 0;
3505 min_cpu_load = ~0UL;
908a7c1b 3506
1f8c553d
GS
3507 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3508 struct rq *rq = cpu_rq(i);
5c45bf27 3509
1f8c553d
GS
3510 if (*sd_idle && rq->nr_running)
3511 *sd_idle = 0;
3512
3513 /* Bias balancing toward cpus of our domain */
1da177e4 3514 if (local_group) {
1f8c553d
GS
3515 if (idle_cpu(i) && !first_idle_cpu) {
3516 first_idle_cpu = 1;
3517 balance_cpu = i;
3518 }
3519
3520 load = target_load(i, load_idx);
3521 } else {
3522 load = source_load(i, load_idx);
3523 if (load > max_cpu_load)
3524 max_cpu_load = load;
3525 if (min_cpu_load > load)
3526 min_cpu_load = load;
1da177e4 3527 }
5c45bf27 3528
1f8c553d
GS
3529 sgs->group_load += load;
3530 sgs->sum_nr_running += rq->nr_running;
3531 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3532
1f8c553d
GS
3533 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3534 }
5c45bf27 3535
1f8c553d
GS
3536 /*
3537 * First idle cpu or the first cpu(busiest) in this sched group
3538 * is eligible for doing load balancing at this and above
3539 * domains. In the newly idle case, we will allow all the cpu's
3540 * to do the newly idle load balance.
3541 */
3542 if (idle != CPU_NEWLY_IDLE && local_group &&
3543 balance_cpu != this_cpu && balance) {
3544 *balance = 0;
3545 return;
3546 }
5c45bf27 3547
1f8c553d
GS
3548 /* Adjust by relative CPU power of the group */
3549 sgs->avg_load = sg_div_cpu_power(group,
3550 sgs->group_load * SCHED_LOAD_SCALE);
5c45bf27 3551
1f8c553d
GS
3552
3553 /*
3554 * Consider the group unbalanced when the imbalance is larger
3555 * than the average weight of two tasks.
3556 *
3557 * APZ: with cgroup the avg task weight can vary wildly and
3558 * might not be a suitable number - should we keep a
3559 * normalized nr_running number somewhere that negates
3560 * the hierarchy?
3561 */
3562 avg_load_per_task = sg_div_cpu_power(group,
3563 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3564
3565 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3566 sgs->group_imb = 1;
3567
3568 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3569
3570}
dd41f596 3571
37abe198
GS
3572/**
3573 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3574 * @sd: sched_domain whose statistics are to be updated.
3575 * @this_cpu: Cpu for which load balance is currently performed.
3576 * @idle: Idle status of this_cpu
3577 * @sd_idle: Idle status of the sched_domain containing group.
3578 * @cpus: Set of cpus considered for load balancing.
3579 * @balance: Should we balance.
3580 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3581 */
37abe198
GS
3582static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3583 enum cpu_idle_type idle, int *sd_idle,
3584 const struct cpumask *cpus, int *balance,
3585 struct sd_lb_stats *sds)
1da177e4 3586{
222d656d 3587 struct sched_group *group = sd->groups;
37abe198 3588 struct sg_lb_stats sgs;
222d656d
GS
3589 int load_idx;
3590
c071df18 3591 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3592 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3593
3594 do {
1da177e4 3595 int local_group;
1da177e4 3596
758b2cdc
RR
3597 local_group = cpumask_test_cpu(this_cpu,
3598 sched_group_cpus(group));
381be78f 3599 memset(&sgs, 0, sizeof(sgs));
1f8c553d
GS
3600 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3601 local_group, cpus, balance, &sgs);
1da177e4 3602
37abe198
GS
3603 if (local_group && balance && !(*balance))
3604 return;
783609c6 3605
37abe198
GS
3606 sds->total_load += sgs.group_load;
3607 sds->total_pwr += group->__cpu_power;
1da177e4 3608
1da177e4 3609 if (local_group) {
37abe198
GS
3610 sds->this_load = sgs.avg_load;
3611 sds->this = group;
3612 sds->this_nr_running = sgs.sum_nr_running;
3613 sds->this_load_per_task = sgs.sum_weighted_load;
3614 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3615 (sgs.sum_nr_running > sgs.group_capacity ||
3616 sgs.group_imb)) {
37abe198
GS
3617 sds->max_load = sgs.avg_load;
3618 sds->busiest = group;
3619 sds->busiest_nr_running = sgs.sum_nr_running;
3620 sds->busiest_load_per_task = sgs.sum_weighted_load;
3621 sds->group_imb = sgs.group_imb;
48f24c4d 3622 }
5c45bf27 3623
c071df18 3624 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3625 group = group->next;
3626 } while (group != sd->groups);
3627
37abe198 3628}
1da177e4 3629
2e6f44ae
GS
3630/**
3631 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3632 * amongst the groups of a sched_domain, during
3633 * load balancing.
2e6f44ae
GS
3634 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3635 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3636 * @imbalance: Variable to store the imbalance.
3637 */
3638static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3639 int this_cpu, unsigned long *imbalance)
3640{
3641 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3642 unsigned int imbn = 2;
3643
3644 if (sds->this_nr_running) {
3645 sds->this_load_per_task /= sds->this_nr_running;
3646 if (sds->busiest_load_per_task >
3647 sds->this_load_per_task)
3648 imbn = 1;
3649 } else
3650 sds->this_load_per_task =
3651 cpu_avg_load_per_task(this_cpu);
1da177e4 3652
2e6f44ae
GS
3653 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3654 sds->busiest_load_per_task * imbn) {
3655 *imbalance = sds->busiest_load_per_task;
3656 return;
3657 }
908a7c1b 3658
1da177e4 3659 /*
2e6f44ae
GS
3660 * OK, we don't have enough imbalance to justify moving tasks,
3661 * however we may be able to increase total CPU power used by
3662 * moving them.
1da177e4 3663 */
2dd73a4f 3664
2e6f44ae
GS
3665 pwr_now += sds->busiest->__cpu_power *
3666 min(sds->busiest_load_per_task, sds->max_load);
3667 pwr_now += sds->this->__cpu_power *
3668 min(sds->this_load_per_task, sds->this_load);
3669 pwr_now /= SCHED_LOAD_SCALE;
3670
3671 /* Amount of load we'd subtract */
3672 tmp = sg_div_cpu_power(sds->busiest,
3673 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3674 if (sds->max_load > tmp)
3675 pwr_move += sds->busiest->__cpu_power *
3676 min(sds->busiest_load_per_task, sds->max_load - tmp);
3677
3678 /* Amount of load we'd add */
3679 if (sds->max_load * sds->busiest->__cpu_power <
3680 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3681 tmp = sg_div_cpu_power(sds->this,
3682 sds->max_load * sds->busiest->__cpu_power);
3683 else
3684 tmp = sg_div_cpu_power(sds->this,
3685 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3686 pwr_move += sds->this->__cpu_power *
3687 min(sds->this_load_per_task, sds->this_load + tmp);
3688 pwr_move /= SCHED_LOAD_SCALE;
3689
3690 /* Move if we gain throughput */
3691 if (pwr_move > pwr_now)
3692 *imbalance = sds->busiest_load_per_task;
3693}
dbc523a3
GS
3694
3695/**
3696 * calculate_imbalance - Calculate the amount of imbalance present within the
3697 * groups of a given sched_domain during load balance.
3698 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3699 * @this_cpu: Cpu for which currently load balance is being performed.
3700 * @imbalance: The variable to store the imbalance.
3701 */
3702static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3703 unsigned long *imbalance)
3704{
3705 unsigned long max_pull;
2dd73a4f
PW
3706 /*
3707 * In the presence of smp nice balancing, certain scenarios can have
3708 * max load less than avg load(as we skip the groups at or below
3709 * its cpu_power, while calculating max_load..)
3710 */
dbc523a3 3711 if (sds->max_load < sds->avg_load) {
2dd73a4f 3712 *imbalance = 0;
dbc523a3 3713 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3714 }
0c117f1b
SS
3715
3716 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3717 max_pull = min(sds->max_load - sds->avg_load,
3718 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3719
1da177e4 3720 /* How much load to actually move to equalise the imbalance */
dbc523a3
GS
3721 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3722 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
1da177e4
LT
3723 / SCHED_LOAD_SCALE;
3724
2dd73a4f
PW
3725 /*
3726 * if *imbalance is less than the average load per runnable task
3727 * there is no gaurantee that any tasks will be moved so we'll have
3728 * a think about bumping its value to force at least one task to be
3729 * moved
3730 */
dbc523a3
GS
3731 if (*imbalance < sds->busiest_load_per_task)
3732 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3733
dbc523a3 3734}
37abe198 3735/******* find_busiest_group() helpers end here *********************/
1da177e4 3736
b7bb4c9b
GS
3737/**
3738 * find_busiest_group - Returns the busiest group within the sched_domain
3739 * if there is an imbalance. If there isn't an imbalance, and
3740 * the user has opted for power-savings, it returns a group whose
3741 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3742 * such a group exists.
3743 *
3744 * Also calculates the amount of weighted load which should be moved
3745 * to restore balance.
3746 *
3747 * @sd: The sched_domain whose busiest group is to be returned.
3748 * @this_cpu: The cpu for which load balancing is currently being performed.
3749 * @imbalance: Variable which stores amount of weighted load which should
3750 * be moved to restore balance/put a group to idle.
3751 * @idle: The idle status of this_cpu.
3752 * @sd_idle: The idleness of sd
3753 * @cpus: The set of CPUs under consideration for load-balancing.
3754 * @balance: Pointer to a variable indicating if this_cpu
3755 * is the appropriate cpu to perform load balancing at this_level.
3756 *
3757 * Returns: - the busiest group if imbalance exists.
3758 * - If no imbalance and user has opted for power-savings balance,
3759 * return the least loaded group whose CPUs can be
3760 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3761 */
3762static struct sched_group *
3763find_busiest_group(struct sched_domain *sd, int this_cpu,
3764 unsigned long *imbalance, enum cpu_idle_type idle,
3765 int *sd_idle, const struct cpumask *cpus, int *balance)
3766{
3767 struct sd_lb_stats sds;
1da177e4 3768
37abe198 3769 memset(&sds, 0, sizeof(sds));
1da177e4 3770
37abe198
GS
3771 /*
3772 * Compute the various statistics relavent for load balancing at
3773 * this level.
3774 */
3775 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3776 balance, &sds);
3777
b7bb4c9b
GS
3778 /* Cases where imbalance does not exist from POV of this_cpu */
3779 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3780 * at this level.
3781 * 2) There is no busy sibling group to pull from.
3782 * 3) This group is the busiest group.
3783 * 4) This group is more busy than the avg busieness at this
3784 * sched_domain.
3785 * 5) The imbalance is within the specified limit.
3786 * 6) Any rebalance would lead to ping-pong
3787 */
37abe198
GS
3788 if (balance && !(*balance))
3789 goto ret;
1da177e4 3790
b7bb4c9b
GS
3791 if (!sds.busiest || sds.busiest_nr_running == 0)
3792 goto out_balanced;
1da177e4 3793
b7bb4c9b 3794 if (sds.this_load >= sds.max_load)
1da177e4 3795 goto out_balanced;
1da177e4 3796
222d656d 3797 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 3798
b7bb4c9b
GS
3799 if (sds.this_load >= sds.avg_load)
3800 goto out_balanced;
3801
3802 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
3803 goto out_balanced;
3804
222d656d
GS
3805 sds.busiest_load_per_task /= sds.busiest_nr_running;
3806 if (sds.group_imb)
3807 sds.busiest_load_per_task =
3808 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 3809
1da177e4
LT
3810 /*
3811 * We're trying to get all the cpus to the average_load, so we don't
3812 * want to push ourselves above the average load, nor do we wish to
3813 * reduce the max loaded cpu below the average load, as either of these
3814 * actions would just result in more rebalancing later, and ping-pong
3815 * tasks around. Thus we look for the minimum possible imbalance.
3816 * Negative imbalances (*we* are more loaded than anyone else) will
3817 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3818 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3819 * appear as very large values with unsigned longs.
3820 */
222d656d 3821 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
3822 goto out_balanced;
3823
dbc523a3
GS
3824 /* Looks like there is an imbalance. Compute it */
3825 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 3826 return sds.busiest;
1da177e4
LT
3827
3828out_balanced:
c071df18
GS
3829 /*
3830 * There is no obvious imbalance. But check if we can do some balancing
3831 * to save power.
3832 */
3833 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3834 return sds.busiest;
783609c6 3835ret:
1da177e4
LT
3836 *imbalance = 0;
3837 return NULL;
3838}
3839
3840/*
3841 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3842 */
70b97a7f 3843static struct rq *
d15bcfdb 3844find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3845 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3846{
70b97a7f 3847 struct rq *busiest = NULL, *rq;
2dd73a4f 3848 unsigned long max_load = 0;
1da177e4
LT
3849 int i;
3850
758b2cdc 3851 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3852 unsigned long wl;
0a2966b4 3853
96f874e2 3854 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3855 continue;
3856
48f24c4d 3857 rq = cpu_rq(i);
dd41f596 3858 wl = weighted_cpuload(i);
2dd73a4f 3859
dd41f596 3860 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3861 continue;
1da177e4 3862
dd41f596
IM
3863 if (wl > max_load) {
3864 max_load = wl;
48f24c4d 3865 busiest = rq;
1da177e4
LT
3866 }
3867 }
3868
3869 return busiest;
3870}
3871
77391d71
NP
3872/*
3873 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3874 * so long as it is large enough.
3875 */
3876#define MAX_PINNED_INTERVAL 512
3877
df7c8e84
RR
3878/* Working cpumask for load_balance and load_balance_newidle. */
3879static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3880
1da177e4
LT
3881/*
3882 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3883 * tasks if there is an imbalance.
1da177e4 3884 */
70b97a7f 3885static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3886 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 3887 int *balance)
1da177e4 3888{
43010659 3889 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3890 struct sched_group *group;
1da177e4 3891 unsigned long imbalance;
70b97a7f 3892 struct rq *busiest;
fe2eea3f 3893 unsigned long flags;
df7c8e84 3894 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 3895
96f874e2 3896 cpumask_setall(cpus);
7c16ec58 3897
89c4710e
SS
3898 /*
3899 * When power savings policy is enabled for the parent domain, idle
3900 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3901 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3902 * portraying it as CPU_NOT_IDLE.
89c4710e 3903 */
d15bcfdb 3904 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3905 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3906 sd_idle = 1;
1da177e4 3907
2d72376b 3908 schedstat_inc(sd, lb_count[idle]);
1da177e4 3909
0a2966b4 3910redo:
c8cba857 3911 update_shares(sd);
0a2966b4 3912 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3913 cpus, balance);
783609c6 3914
06066714 3915 if (*balance == 0)
783609c6 3916 goto out_balanced;
783609c6 3917
1da177e4
LT
3918 if (!group) {
3919 schedstat_inc(sd, lb_nobusyg[idle]);
3920 goto out_balanced;
3921 }
3922
7c16ec58 3923 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3924 if (!busiest) {
3925 schedstat_inc(sd, lb_nobusyq[idle]);
3926 goto out_balanced;
3927 }
3928
db935dbd 3929 BUG_ON(busiest == this_rq);
1da177e4
LT
3930
3931 schedstat_add(sd, lb_imbalance[idle], imbalance);
3932
43010659 3933 ld_moved = 0;
1da177e4
LT
3934 if (busiest->nr_running > 1) {
3935 /*
3936 * Attempt to move tasks. If find_busiest_group has found
3937 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3938 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3939 * correctly treated as an imbalance.
3940 */
fe2eea3f 3941 local_irq_save(flags);
e17224bf 3942 double_rq_lock(this_rq, busiest);
43010659 3943 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3944 imbalance, sd, idle, &all_pinned);
e17224bf 3945 double_rq_unlock(this_rq, busiest);
fe2eea3f 3946 local_irq_restore(flags);
81026794 3947
46cb4b7c
SS
3948 /*
3949 * some other cpu did the load balance for us.
3950 */
43010659 3951 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3952 resched_cpu(this_cpu);
3953
81026794 3954 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3955 if (unlikely(all_pinned)) {
96f874e2
RR
3956 cpumask_clear_cpu(cpu_of(busiest), cpus);
3957 if (!cpumask_empty(cpus))
0a2966b4 3958 goto redo;
81026794 3959 goto out_balanced;
0a2966b4 3960 }
1da177e4 3961 }
81026794 3962
43010659 3963 if (!ld_moved) {
1da177e4
LT
3964 schedstat_inc(sd, lb_failed[idle]);
3965 sd->nr_balance_failed++;
3966
3967 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3968
fe2eea3f 3969 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3970
3971 /* don't kick the migration_thread, if the curr
3972 * task on busiest cpu can't be moved to this_cpu
3973 */
96f874e2
RR
3974 if (!cpumask_test_cpu(this_cpu,
3975 &busiest->curr->cpus_allowed)) {
fe2eea3f 3976 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3977 all_pinned = 1;
3978 goto out_one_pinned;
3979 }
3980
1da177e4
LT
3981 if (!busiest->active_balance) {
3982 busiest->active_balance = 1;
3983 busiest->push_cpu = this_cpu;
81026794 3984 active_balance = 1;
1da177e4 3985 }
fe2eea3f 3986 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3987 if (active_balance)
1da177e4
LT
3988 wake_up_process(busiest->migration_thread);
3989
3990 /*
3991 * We've kicked active balancing, reset the failure
3992 * counter.
3993 */
39507451 3994 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3995 }
81026794 3996 } else
1da177e4
LT
3997 sd->nr_balance_failed = 0;
3998
81026794 3999 if (likely(!active_balance)) {
1da177e4
LT
4000 /* We were unbalanced, so reset the balancing interval */
4001 sd->balance_interval = sd->min_interval;
81026794
NP
4002 } else {
4003 /*
4004 * If we've begun active balancing, start to back off. This
4005 * case may not be covered by the all_pinned logic if there
4006 * is only 1 task on the busy runqueue (because we don't call
4007 * move_tasks).
4008 */
4009 if (sd->balance_interval < sd->max_interval)
4010 sd->balance_interval *= 2;
1da177e4
LT
4011 }
4012
43010659 4013 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4014 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4015 ld_moved = -1;
4016
4017 goto out;
1da177e4
LT
4018
4019out_balanced:
1da177e4
LT
4020 schedstat_inc(sd, lb_balanced[idle]);
4021
16cfb1c0 4022 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4023
4024out_one_pinned:
1da177e4 4025 /* tune up the balancing interval */
77391d71
NP
4026 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4027 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4028 sd->balance_interval *= 2;
4029
48f24c4d 4030 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4031 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4032 ld_moved = -1;
4033 else
4034 ld_moved = 0;
4035out:
c8cba857
PZ
4036 if (ld_moved)
4037 update_shares(sd);
c09595f6 4038 return ld_moved;
1da177e4
LT
4039}
4040
4041/*
4042 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4043 * tasks if there is an imbalance.
4044 *
d15bcfdb 4045 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4046 * this_rq is locked.
4047 */
48f24c4d 4048static int
df7c8e84 4049load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4050{
4051 struct sched_group *group;
70b97a7f 4052 struct rq *busiest = NULL;
1da177e4 4053 unsigned long imbalance;
43010659 4054 int ld_moved = 0;
5969fe06 4055 int sd_idle = 0;
969bb4e4 4056 int all_pinned = 0;
df7c8e84 4057 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4058
96f874e2 4059 cpumask_setall(cpus);
5969fe06 4060
89c4710e
SS
4061 /*
4062 * When power savings policy is enabled for the parent domain, idle
4063 * sibling can pick up load irrespective of busy siblings. In this case,
4064 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4065 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4066 */
4067 if (sd->flags & SD_SHARE_CPUPOWER &&
4068 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4069 sd_idle = 1;
1da177e4 4070
2d72376b 4071 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4072redo:
3e5459b4 4073 update_shares_locked(this_rq, sd);
d15bcfdb 4074 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4075 &sd_idle, cpus, NULL);
1da177e4 4076 if (!group) {
d15bcfdb 4077 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4078 goto out_balanced;
1da177e4
LT
4079 }
4080
7c16ec58 4081 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4082 if (!busiest) {
d15bcfdb 4083 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4084 goto out_balanced;
1da177e4
LT
4085 }
4086
db935dbd
NP
4087 BUG_ON(busiest == this_rq);
4088
d15bcfdb 4089 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4090
43010659 4091 ld_moved = 0;
d6d5cfaf
NP
4092 if (busiest->nr_running > 1) {
4093 /* Attempt to move tasks */
4094 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4095 /* this_rq->clock is already updated */
4096 update_rq_clock(busiest);
43010659 4097 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4098 imbalance, sd, CPU_NEWLY_IDLE,
4099 &all_pinned);
1b12bbc7 4100 double_unlock_balance(this_rq, busiest);
0a2966b4 4101
969bb4e4 4102 if (unlikely(all_pinned)) {
96f874e2
RR
4103 cpumask_clear_cpu(cpu_of(busiest), cpus);
4104 if (!cpumask_empty(cpus))
0a2966b4
CL
4105 goto redo;
4106 }
d6d5cfaf
NP
4107 }
4108
43010659 4109 if (!ld_moved) {
36dffab6 4110 int active_balance = 0;
ad273b32 4111
d15bcfdb 4112 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4113 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4114 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4115 return -1;
ad273b32
VS
4116
4117 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4118 return -1;
4119
4120 if (sd->nr_balance_failed++ < 2)
4121 return -1;
4122
4123 /*
4124 * The only task running in a non-idle cpu can be moved to this
4125 * cpu in an attempt to completely freeup the other CPU
4126 * package. The same method used to move task in load_balance()
4127 * have been extended for load_balance_newidle() to speedup
4128 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4129 *
4130 * The package power saving logic comes from
4131 * find_busiest_group(). If there are no imbalance, then
4132 * f_b_g() will return NULL. However when sched_mc={1,2} then
4133 * f_b_g() will select a group from which a running task may be
4134 * pulled to this cpu in order to make the other package idle.
4135 * If there is no opportunity to make a package idle and if
4136 * there are no imbalance, then f_b_g() will return NULL and no
4137 * action will be taken in load_balance_newidle().
4138 *
4139 * Under normal task pull operation due to imbalance, there
4140 * will be more than one task in the source run queue and
4141 * move_tasks() will succeed. ld_moved will be true and this
4142 * active balance code will not be triggered.
4143 */
4144
4145 /* Lock busiest in correct order while this_rq is held */
4146 double_lock_balance(this_rq, busiest);
4147
4148 /*
4149 * don't kick the migration_thread, if the curr
4150 * task on busiest cpu can't be moved to this_cpu
4151 */
6ca09dfc 4152 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4153 double_unlock_balance(this_rq, busiest);
4154 all_pinned = 1;
4155 return ld_moved;
4156 }
4157
4158 if (!busiest->active_balance) {
4159 busiest->active_balance = 1;
4160 busiest->push_cpu = this_cpu;
4161 active_balance = 1;
4162 }
4163
4164 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4165 /*
4166 * Should not call ttwu while holding a rq->lock
4167 */
4168 spin_unlock(&this_rq->lock);
ad273b32
VS
4169 if (active_balance)
4170 wake_up_process(busiest->migration_thread);
da8d5089 4171 spin_lock(&this_rq->lock);
ad273b32 4172
5969fe06 4173 } else
16cfb1c0 4174 sd->nr_balance_failed = 0;
1da177e4 4175
3e5459b4 4176 update_shares_locked(this_rq, sd);
43010659 4177 return ld_moved;
16cfb1c0
NP
4178
4179out_balanced:
d15bcfdb 4180 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4181 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4182 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4183 return -1;
16cfb1c0 4184 sd->nr_balance_failed = 0;
48f24c4d 4185
16cfb1c0 4186 return 0;
1da177e4
LT
4187}
4188
4189/*
4190 * idle_balance is called by schedule() if this_cpu is about to become
4191 * idle. Attempts to pull tasks from other CPUs.
4192 */
70b97a7f 4193static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4194{
4195 struct sched_domain *sd;
efbe027e 4196 int pulled_task = 0;
dd41f596 4197 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
4198
4199 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4200 unsigned long interval;
4201
4202 if (!(sd->flags & SD_LOAD_BALANCE))
4203 continue;
4204
4205 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4206 /* If we've pulled tasks over stop searching: */
7c16ec58 4207 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4208 sd);
92c4ca5c
CL
4209
4210 interval = msecs_to_jiffies(sd->balance_interval);
4211 if (time_after(next_balance, sd->last_balance + interval))
4212 next_balance = sd->last_balance + interval;
4213 if (pulled_task)
4214 break;
1da177e4 4215 }
dd41f596 4216 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4217 /*
4218 * We are going idle. next_balance may be set based on
4219 * a busy processor. So reset next_balance.
4220 */
4221 this_rq->next_balance = next_balance;
dd41f596 4222 }
1da177e4
LT
4223}
4224
4225/*
4226 * active_load_balance is run by migration threads. It pushes running tasks
4227 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4228 * running on each physical CPU where possible, and avoids physical /
4229 * logical imbalances.
4230 *
4231 * Called with busiest_rq locked.
4232 */
70b97a7f 4233static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4234{
39507451 4235 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4236 struct sched_domain *sd;
4237 struct rq *target_rq;
39507451 4238
48f24c4d 4239 /* Is there any task to move? */
39507451 4240 if (busiest_rq->nr_running <= 1)
39507451
NP
4241 return;
4242
4243 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4244
4245 /*
39507451 4246 * This condition is "impossible", if it occurs
41a2d6cf 4247 * we need to fix it. Originally reported by
39507451 4248 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4249 */
39507451 4250 BUG_ON(busiest_rq == target_rq);
1da177e4 4251
39507451
NP
4252 /* move a task from busiest_rq to target_rq */
4253 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4254 update_rq_clock(busiest_rq);
4255 update_rq_clock(target_rq);
39507451
NP
4256
4257 /* Search for an sd spanning us and the target CPU. */
c96d145e 4258 for_each_domain(target_cpu, sd) {
39507451 4259 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4260 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4261 break;
c96d145e 4262 }
39507451 4263
48f24c4d 4264 if (likely(sd)) {
2d72376b 4265 schedstat_inc(sd, alb_count);
39507451 4266
43010659
PW
4267 if (move_one_task(target_rq, target_cpu, busiest_rq,
4268 sd, CPU_IDLE))
48f24c4d
IM
4269 schedstat_inc(sd, alb_pushed);
4270 else
4271 schedstat_inc(sd, alb_failed);
4272 }
1b12bbc7 4273 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4274}
4275
46cb4b7c
SS
4276#ifdef CONFIG_NO_HZ
4277static struct {
4278 atomic_t load_balancer;
7d1e6a9b 4279 cpumask_var_t cpu_mask;
46cb4b7c
SS
4280} nohz ____cacheline_aligned = {
4281 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4282};
4283
7835b98b 4284/*
46cb4b7c
SS
4285 * This routine will try to nominate the ilb (idle load balancing)
4286 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4287 * load balancing on behalf of all those cpus. If all the cpus in the system
4288 * go into this tickless mode, then there will be no ilb owner (as there is
4289 * no need for one) and all the cpus will sleep till the next wakeup event
4290 * arrives...
4291 *
4292 * For the ilb owner, tick is not stopped. And this tick will be used
4293 * for idle load balancing. ilb owner will still be part of
4294 * nohz.cpu_mask..
7835b98b 4295 *
46cb4b7c
SS
4296 * While stopping the tick, this cpu will become the ilb owner if there
4297 * is no other owner. And will be the owner till that cpu becomes busy
4298 * or if all cpus in the system stop their ticks at which point
4299 * there is no need for ilb owner.
4300 *
4301 * When the ilb owner becomes busy, it nominates another owner, during the
4302 * next busy scheduler_tick()
4303 */
4304int select_nohz_load_balancer(int stop_tick)
4305{
4306 int cpu = smp_processor_id();
4307
4308 if (stop_tick) {
46cb4b7c
SS
4309 cpu_rq(cpu)->in_nohz_recently = 1;
4310
483b4ee6
SS
4311 if (!cpu_active(cpu)) {
4312 if (atomic_read(&nohz.load_balancer) != cpu)
4313 return 0;
4314
4315 /*
4316 * If we are going offline and still the leader,
4317 * give up!
4318 */
46cb4b7c
SS
4319 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4320 BUG();
483b4ee6 4321
46cb4b7c
SS
4322 return 0;
4323 }
4324
483b4ee6
SS
4325 cpumask_set_cpu(cpu, nohz.cpu_mask);
4326
46cb4b7c 4327 /* time for ilb owner also to sleep */
7d1e6a9b 4328 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4329 if (atomic_read(&nohz.load_balancer) == cpu)
4330 atomic_set(&nohz.load_balancer, -1);
4331 return 0;
4332 }
4333
4334 if (atomic_read(&nohz.load_balancer) == -1) {
4335 /* make me the ilb owner */
4336 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4337 return 1;
4338 } else if (atomic_read(&nohz.load_balancer) == cpu)
4339 return 1;
4340 } else {
7d1e6a9b 4341 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4342 return 0;
4343
7d1e6a9b 4344 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4345
4346 if (atomic_read(&nohz.load_balancer) == cpu)
4347 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4348 BUG();
4349 }
4350 return 0;
4351}
4352#endif
4353
4354static DEFINE_SPINLOCK(balancing);
4355
4356/*
7835b98b
CL
4357 * It checks each scheduling domain to see if it is due to be balanced,
4358 * and initiates a balancing operation if so.
4359 *
4360 * Balancing parameters are set up in arch_init_sched_domains.
4361 */
a9957449 4362static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4363{
46cb4b7c
SS
4364 int balance = 1;
4365 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4366 unsigned long interval;
4367 struct sched_domain *sd;
46cb4b7c 4368 /* Earliest time when we have to do rebalance again */
c9819f45 4369 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4370 int update_next_balance = 0;
d07355f5 4371 int need_serialize;
1da177e4 4372
46cb4b7c 4373 for_each_domain(cpu, sd) {
1da177e4
LT
4374 if (!(sd->flags & SD_LOAD_BALANCE))
4375 continue;
4376
4377 interval = sd->balance_interval;
d15bcfdb 4378 if (idle != CPU_IDLE)
1da177e4
LT
4379 interval *= sd->busy_factor;
4380
4381 /* scale ms to jiffies */
4382 interval = msecs_to_jiffies(interval);
4383 if (unlikely(!interval))
4384 interval = 1;
dd41f596
IM
4385 if (interval > HZ*NR_CPUS/10)
4386 interval = HZ*NR_CPUS/10;
4387
d07355f5 4388 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4389
d07355f5 4390 if (need_serialize) {
08c183f3
CL
4391 if (!spin_trylock(&balancing))
4392 goto out;
4393 }
4394
c9819f45 4395 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4396 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4397 /*
4398 * We've pulled tasks over so either we're no
5969fe06
NP
4399 * longer idle, or one of our SMT siblings is
4400 * not idle.
4401 */
d15bcfdb 4402 idle = CPU_NOT_IDLE;
1da177e4 4403 }
1bd77f2d 4404 sd->last_balance = jiffies;
1da177e4 4405 }
d07355f5 4406 if (need_serialize)
08c183f3
CL
4407 spin_unlock(&balancing);
4408out:
f549da84 4409 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4410 next_balance = sd->last_balance + interval;
f549da84
SS
4411 update_next_balance = 1;
4412 }
783609c6
SS
4413
4414 /*
4415 * Stop the load balance at this level. There is another
4416 * CPU in our sched group which is doing load balancing more
4417 * actively.
4418 */
4419 if (!balance)
4420 break;
1da177e4 4421 }
f549da84
SS
4422
4423 /*
4424 * next_balance will be updated only when there is a need.
4425 * When the cpu is attached to null domain for ex, it will not be
4426 * updated.
4427 */
4428 if (likely(update_next_balance))
4429 rq->next_balance = next_balance;
46cb4b7c
SS
4430}
4431
4432/*
4433 * run_rebalance_domains is triggered when needed from the scheduler tick.
4434 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4435 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4436 */
4437static void run_rebalance_domains(struct softirq_action *h)
4438{
dd41f596
IM
4439 int this_cpu = smp_processor_id();
4440 struct rq *this_rq = cpu_rq(this_cpu);
4441 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4442 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4443
dd41f596 4444 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4445
4446#ifdef CONFIG_NO_HZ
4447 /*
4448 * If this cpu is the owner for idle load balancing, then do the
4449 * balancing on behalf of the other idle cpus whose ticks are
4450 * stopped.
4451 */
dd41f596
IM
4452 if (this_rq->idle_at_tick &&
4453 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4454 struct rq *rq;
4455 int balance_cpu;
4456
7d1e6a9b
RR
4457 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4458 if (balance_cpu == this_cpu)
4459 continue;
4460
46cb4b7c
SS
4461 /*
4462 * If this cpu gets work to do, stop the load balancing
4463 * work being done for other cpus. Next load
4464 * balancing owner will pick it up.
4465 */
4466 if (need_resched())
4467 break;
4468
de0cf899 4469 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4470
4471 rq = cpu_rq(balance_cpu);
dd41f596
IM
4472 if (time_after(this_rq->next_balance, rq->next_balance))
4473 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4474 }
4475 }
4476#endif
4477}
4478
8a0be9ef
FW
4479static inline int on_null_domain(int cpu)
4480{
4481 return !rcu_dereference(cpu_rq(cpu)->sd);
4482}
4483
46cb4b7c
SS
4484/*
4485 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4486 *
4487 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4488 * idle load balancing owner or decide to stop the periodic load balancing,
4489 * if the whole system is idle.
4490 */
dd41f596 4491static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4492{
46cb4b7c
SS
4493#ifdef CONFIG_NO_HZ
4494 /*
4495 * If we were in the nohz mode recently and busy at the current
4496 * scheduler tick, then check if we need to nominate new idle
4497 * load balancer.
4498 */
4499 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4500 rq->in_nohz_recently = 0;
4501
4502 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4503 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4504 atomic_set(&nohz.load_balancer, -1);
4505 }
4506
4507 if (atomic_read(&nohz.load_balancer) == -1) {
4508 /*
4509 * simple selection for now: Nominate the
4510 * first cpu in the nohz list to be the next
4511 * ilb owner.
4512 *
4513 * TBD: Traverse the sched domains and nominate
4514 * the nearest cpu in the nohz.cpu_mask.
4515 */
7d1e6a9b 4516 int ilb = cpumask_first(nohz.cpu_mask);
46cb4b7c 4517
434d53b0 4518 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4519 resched_cpu(ilb);
4520 }
4521 }
4522
4523 /*
4524 * If this cpu is idle and doing idle load balancing for all the
4525 * cpus with ticks stopped, is it time for that to stop?
4526 */
4527 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4528 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4529 resched_cpu(cpu);
4530 return;
4531 }
4532
4533 /*
4534 * If this cpu is idle and the idle load balancing is done by
4535 * someone else, then no need raise the SCHED_SOFTIRQ
4536 */
4537 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4538 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4539 return;
4540#endif
8a0be9ef
FW
4541 /* Don't need to rebalance while attached to NULL domain */
4542 if (time_after_eq(jiffies, rq->next_balance) &&
4543 likely(!on_null_domain(cpu)))
46cb4b7c 4544 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4545}
dd41f596
IM
4546
4547#else /* CONFIG_SMP */
4548
1da177e4
LT
4549/*
4550 * on UP we do not need to balance between CPUs:
4551 */
70b97a7f 4552static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4553{
4554}
dd41f596 4555
1da177e4
LT
4556#endif
4557
1da177e4
LT
4558DEFINE_PER_CPU(struct kernel_stat, kstat);
4559
4560EXPORT_PER_CPU_SYMBOL(kstat);
4561
4562/*
c5f8d995 4563 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4564 * @p in case that task is currently running.
c5f8d995
HS
4565 *
4566 * Called with task_rq_lock() held on @rq.
1da177e4 4567 */
c5f8d995
HS
4568static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4569{
4570 u64 ns = 0;
4571
4572 if (task_current(rq, p)) {
4573 update_rq_clock(rq);
4574 ns = rq->clock - p->se.exec_start;
4575 if ((s64)ns < 0)
4576 ns = 0;
4577 }
4578
4579 return ns;
4580}
4581
bb34d92f 4582unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4583{
1da177e4 4584 unsigned long flags;
41b86e9c 4585 struct rq *rq;
bb34d92f 4586 u64 ns = 0;
48f24c4d 4587
41b86e9c 4588 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4589 ns = do_task_delta_exec(p, rq);
4590 task_rq_unlock(rq, &flags);
1508487e 4591
c5f8d995
HS
4592 return ns;
4593}
f06febc9 4594
c5f8d995
HS
4595/*
4596 * Return accounted runtime for the task.
4597 * In case the task is currently running, return the runtime plus current's
4598 * pending runtime that have not been accounted yet.
4599 */
4600unsigned long long task_sched_runtime(struct task_struct *p)
4601{
4602 unsigned long flags;
4603 struct rq *rq;
4604 u64 ns = 0;
4605
4606 rq = task_rq_lock(p, &flags);
4607 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4608 task_rq_unlock(rq, &flags);
4609
4610 return ns;
4611}
48f24c4d 4612
c5f8d995
HS
4613/*
4614 * Return sum_exec_runtime for the thread group.
4615 * In case the task is currently running, return the sum plus current's
4616 * pending runtime that have not been accounted yet.
4617 *
4618 * Note that the thread group might have other running tasks as well,
4619 * so the return value not includes other pending runtime that other
4620 * running tasks might have.
4621 */
4622unsigned long long thread_group_sched_runtime(struct task_struct *p)
4623{
4624 struct task_cputime totals;
4625 unsigned long flags;
4626 struct rq *rq;
4627 u64 ns;
48f24c4d 4628
c5f8d995
HS
4629 rq = task_rq_lock(p, &flags);
4630 thread_group_cputime(p, &totals);
4631 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4632 task_rq_unlock(rq, &flags);
48f24c4d 4633
1da177e4
LT
4634 return ns;
4635}
4636
1da177e4
LT
4637/*
4638 * Account user cpu time to a process.
4639 * @p: the process that the cpu time gets accounted to
1da177e4 4640 * @cputime: the cpu time spent in user space since the last update
457533a7 4641 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4642 */
457533a7
MS
4643void account_user_time(struct task_struct *p, cputime_t cputime,
4644 cputime_t cputime_scaled)
1da177e4
LT
4645{
4646 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4647 cputime64_t tmp;
4648
457533a7 4649 /* Add user time to process. */
1da177e4 4650 p->utime = cputime_add(p->utime, cputime);
457533a7 4651 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4652 account_group_user_time(p, cputime);
1da177e4
LT
4653
4654 /* Add user time to cpustat. */
4655 tmp = cputime_to_cputime64(cputime);
4656 if (TASK_NICE(p) > 0)
4657 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4658 else
4659 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
4660
4661 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
4662 /* Account for user time used */
4663 acct_update_integrals(p);
1da177e4
LT
4664}
4665
94886b84
LV
4666/*
4667 * Account guest cpu time to a process.
4668 * @p: the process that the cpu time gets accounted to
4669 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4670 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4671 */
457533a7
MS
4672static void account_guest_time(struct task_struct *p, cputime_t cputime,
4673 cputime_t cputime_scaled)
94886b84
LV
4674{
4675 cputime64_t tmp;
4676 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4677
4678 tmp = cputime_to_cputime64(cputime);
4679
457533a7 4680 /* Add guest time to process. */
94886b84 4681 p->utime = cputime_add(p->utime, cputime);
457533a7 4682 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4683 account_group_user_time(p, cputime);
94886b84
LV
4684 p->gtime = cputime_add(p->gtime, cputime);
4685
457533a7 4686 /* Add guest time to cpustat. */
94886b84
LV
4687 cpustat->user = cputime64_add(cpustat->user, tmp);
4688 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4689}
4690
1da177e4
LT
4691/*
4692 * Account system cpu time to a process.
4693 * @p: the process that the cpu time gets accounted to
4694 * @hardirq_offset: the offset to subtract from hardirq_count()
4695 * @cputime: the cpu time spent in kernel space since the last update
457533a7 4696 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
4697 */
4698void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 4699 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
4700{
4701 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
4702 cputime64_t tmp;
4703
983ed7a6 4704 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 4705 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
4706 return;
4707 }
94886b84 4708
457533a7 4709 /* Add system time to process. */
1da177e4 4710 p->stime = cputime_add(p->stime, cputime);
457533a7 4711 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 4712 account_group_system_time(p, cputime);
1da177e4
LT
4713
4714 /* Add system time to cpustat. */
4715 tmp = cputime_to_cputime64(cputime);
4716 if (hardirq_count() - hardirq_offset)
4717 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4718 else if (softirq_count())
4719 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 4720 else
79741dd3
MS
4721 cpustat->system = cputime64_add(cpustat->system, tmp);
4722
ef12fefa
BR
4723 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
4724
1da177e4
LT
4725 /* Account for system time used */
4726 acct_update_integrals(p);
1da177e4
LT
4727}
4728
c66f08be 4729/*
1da177e4 4730 * Account for involuntary wait time.
1da177e4 4731 * @steal: the cpu time spent in involuntary wait
c66f08be 4732 */
79741dd3 4733void account_steal_time(cputime_t cputime)
c66f08be 4734{
79741dd3
MS
4735 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4736 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4737
4738 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
4739}
4740
1da177e4 4741/*
79741dd3
MS
4742 * Account for idle time.
4743 * @cputime: the cpu time spent in idle wait
1da177e4 4744 */
79741dd3 4745void account_idle_time(cputime_t cputime)
1da177e4
LT
4746{
4747 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 4748 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 4749 struct rq *rq = this_rq();
1da177e4 4750
79741dd3
MS
4751 if (atomic_read(&rq->nr_iowait) > 0)
4752 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4753 else
4754 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
4755}
4756
79741dd3
MS
4757#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4758
4759/*
4760 * Account a single tick of cpu time.
4761 * @p: the process that the cpu time gets accounted to
4762 * @user_tick: indicates if the tick is a user or a system tick
4763 */
4764void account_process_tick(struct task_struct *p, int user_tick)
4765{
4766 cputime_t one_jiffy = jiffies_to_cputime(1);
4767 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4768 struct rq *rq = this_rq();
4769
4770 if (user_tick)
4771 account_user_time(p, one_jiffy, one_jiffy_scaled);
f5f293a4 4772 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
79741dd3
MS
4773 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4774 one_jiffy_scaled);
4775 else
4776 account_idle_time(one_jiffy);
4777}
4778
4779/*
4780 * Account multiple ticks of steal time.
4781 * @p: the process from which the cpu time has been stolen
4782 * @ticks: number of stolen ticks
4783 */
4784void account_steal_ticks(unsigned long ticks)
4785{
4786 account_steal_time(jiffies_to_cputime(ticks));
4787}
4788
4789/*
4790 * Account multiple ticks of idle time.
4791 * @ticks: number of stolen ticks
4792 */
4793void account_idle_ticks(unsigned long ticks)
4794{
4795 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4796}
4797
79741dd3
MS
4798#endif
4799
49048622
BS
4800/*
4801 * Use precise platform statistics if available:
4802 */
4803#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4804cputime_t task_utime(struct task_struct *p)
4805{
4806 return p->utime;
4807}
4808
4809cputime_t task_stime(struct task_struct *p)
4810{
4811 return p->stime;
4812}
4813#else
4814cputime_t task_utime(struct task_struct *p)
4815{
4816 clock_t utime = cputime_to_clock_t(p->utime),
4817 total = utime + cputime_to_clock_t(p->stime);
4818 u64 temp;
4819
4820 /*
4821 * Use CFS's precise accounting:
4822 */
4823 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4824
4825 if (total) {
4826 temp *= utime;
4827 do_div(temp, total);
4828 }
4829 utime = (clock_t)temp;
4830
4831 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4832 return p->prev_utime;
4833}
4834
4835cputime_t task_stime(struct task_struct *p)
4836{
4837 clock_t stime;
4838
4839 /*
4840 * Use CFS's precise accounting. (we subtract utime from
4841 * the total, to make sure the total observed by userspace
4842 * grows monotonically - apps rely on that):
4843 */
4844 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4845 cputime_to_clock_t(task_utime(p));
4846
4847 if (stime >= 0)
4848 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4849
4850 return p->prev_stime;
4851}
4852#endif
4853
4854inline cputime_t task_gtime(struct task_struct *p)
4855{
4856 return p->gtime;
4857}
4858
7835b98b
CL
4859/*
4860 * This function gets called by the timer code, with HZ frequency.
4861 * We call it with interrupts disabled.
4862 *
4863 * It also gets called by the fork code, when changing the parent's
4864 * timeslices.
4865 */
4866void scheduler_tick(void)
4867{
7835b98b
CL
4868 int cpu = smp_processor_id();
4869 struct rq *rq = cpu_rq(cpu);
dd41f596 4870 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4871
4872 sched_clock_tick();
dd41f596
IM
4873
4874 spin_lock(&rq->lock);
3e51f33f 4875 update_rq_clock(rq);
f1a438d8 4876 update_cpu_load(rq);
fa85ae24 4877 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4878 spin_unlock(&rq->lock);
7835b98b 4879
e220d2dc
PZ
4880 perf_counter_task_tick(curr, cpu);
4881
e418e1c2 4882#ifdef CONFIG_SMP
dd41f596
IM
4883 rq->idle_at_tick = idle_cpu(cpu);
4884 trigger_load_balance(rq, cpu);
e418e1c2 4885#endif
1da177e4
LT
4886}
4887
132380a0 4888notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
4889{
4890 if (in_lock_functions(addr)) {
4891 addr = CALLER_ADDR2;
4892 if (in_lock_functions(addr))
4893 addr = CALLER_ADDR3;
4894 }
4895 return addr;
4896}
1da177e4 4897
7e49fcce
SR
4898#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4899 defined(CONFIG_PREEMPT_TRACER))
4900
43627582 4901void __kprobes add_preempt_count(int val)
1da177e4 4902{
6cd8a4bb 4903#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4904 /*
4905 * Underflow?
4906 */
9a11b49a
IM
4907 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4908 return;
6cd8a4bb 4909#endif
1da177e4 4910 preempt_count() += val;
6cd8a4bb 4911#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4912 /*
4913 * Spinlock count overflowing soon?
4914 */
33859f7f
MOS
4915 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4916 PREEMPT_MASK - 10);
6cd8a4bb
SR
4917#endif
4918 if (preempt_count() == val)
4919 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4920}
4921EXPORT_SYMBOL(add_preempt_count);
4922
43627582 4923void __kprobes sub_preempt_count(int val)
1da177e4 4924{
6cd8a4bb 4925#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4926 /*
4927 * Underflow?
4928 */
01e3eb82 4929 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4930 return;
1da177e4
LT
4931 /*
4932 * Is the spinlock portion underflowing?
4933 */
9a11b49a
IM
4934 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4935 !(preempt_count() & PREEMPT_MASK)))
4936 return;
6cd8a4bb 4937#endif
9a11b49a 4938
6cd8a4bb
SR
4939 if (preempt_count() == val)
4940 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4941 preempt_count() -= val;
4942}
4943EXPORT_SYMBOL(sub_preempt_count);
4944
4945#endif
4946
4947/*
dd41f596 4948 * Print scheduling while atomic bug:
1da177e4 4949 */
dd41f596 4950static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4951{
838225b4
SS
4952 struct pt_regs *regs = get_irq_regs();
4953
4954 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4955 prev->comm, prev->pid, preempt_count());
4956
dd41f596 4957 debug_show_held_locks(prev);
e21f5b15 4958 print_modules();
dd41f596
IM
4959 if (irqs_disabled())
4960 print_irqtrace_events(prev);
838225b4
SS
4961
4962 if (regs)
4963 show_regs(regs);
4964 else
4965 dump_stack();
dd41f596 4966}
1da177e4 4967
dd41f596
IM
4968/*
4969 * Various schedule()-time debugging checks and statistics:
4970 */
4971static inline void schedule_debug(struct task_struct *prev)
4972{
1da177e4 4973 /*
41a2d6cf 4974 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4975 * schedule() atomically, we ignore that path for now.
4976 * Otherwise, whine if we are scheduling when we should not be.
4977 */
3f33a7ce 4978 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4979 __schedule_bug(prev);
4980
1da177e4
LT
4981 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4982
2d72376b 4983 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4984#ifdef CONFIG_SCHEDSTATS
4985 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4986 schedstat_inc(this_rq(), bkl_count);
4987 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4988 }
4989#endif
dd41f596
IM
4990}
4991
df1c99d4
MG
4992static void put_prev_task(struct rq *rq, struct task_struct *prev)
4993{
4994 if (prev->state == TASK_RUNNING) {
4995 u64 runtime = prev->se.sum_exec_runtime;
4996
4997 runtime -= prev->se.prev_sum_exec_runtime;
4998 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
4999
5000 /*
5001 * In order to avoid avg_overlap growing stale when we are
5002 * indeed overlapping and hence not getting put to sleep, grow
5003 * the avg_overlap on preemption.
5004 *
5005 * We use the average preemption runtime because that
5006 * correlates to the amount of cache footprint a task can
5007 * build up.
5008 */
5009 update_avg(&prev->se.avg_overlap, runtime);
5010 }
5011 prev->sched_class->put_prev_task(rq, prev);
5012}
5013
dd41f596
IM
5014/*
5015 * Pick up the highest-prio task:
5016 */
5017static inline struct task_struct *
b67802ea 5018pick_next_task(struct rq *rq)
dd41f596 5019{
5522d5d5 5020 const struct sched_class *class;
dd41f596 5021 struct task_struct *p;
1da177e4
LT
5022
5023 /*
dd41f596
IM
5024 * Optimization: we know that if all tasks are in
5025 * the fair class we can call that function directly:
1da177e4 5026 */
dd41f596 5027 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5028 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5029 if (likely(p))
5030 return p;
1da177e4
LT
5031 }
5032
dd41f596
IM
5033 class = sched_class_highest;
5034 for ( ; ; ) {
fb8d4724 5035 p = class->pick_next_task(rq);
dd41f596
IM
5036 if (p)
5037 return p;
5038 /*
5039 * Will never be NULL as the idle class always
5040 * returns a non-NULL p:
5041 */
5042 class = class->next;
5043 }
5044}
1da177e4 5045
dd41f596
IM
5046/*
5047 * schedule() is the main scheduler function.
5048 */
41719b03 5049asmlinkage void __sched __schedule(void)
dd41f596
IM
5050{
5051 struct task_struct *prev, *next;
67ca7bde 5052 unsigned long *switch_count;
dd41f596 5053 struct rq *rq;
31656519 5054 int cpu;
dd41f596 5055
dd41f596
IM
5056 cpu = smp_processor_id();
5057 rq = cpu_rq(cpu);
5058 rcu_qsctr_inc(cpu);
5059 prev = rq->curr;
5060 switch_count = &prev->nivcsw;
5061
5062 release_kernel_lock(prev);
5063need_resched_nonpreemptible:
5064
5065 schedule_debug(prev);
1da177e4 5066
31656519 5067 if (sched_feat(HRTICK))
f333fdc9 5068 hrtick_clear(rq);
8f4d37ec 5069
8cd162ce 5070 spin_lock_irq(&rq->lock);
3e51f33f 5071 update_rq_clock(rq);
1e819950 5072 clear_tsk_need_resched(prev);
1da177e4 5073
1da177e4 5074 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5075 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5076 prev->state = TASK_RUNNING;
16882c1e 5077 else
2e1cb74a 5078 deactivate_task(rq, prev, 1);
dd41f596 5079 switch_count = &prev->nvcsw;
1da177e4
LT
5080 }
5081
9a897c5a
SR
5082#ifdef CONFIG_SMP
5083 if (prev->sched_class->pre_schedule)
5084 prev->sched_class->pre_schedule(rq, prev);
5085#endif
f65eda4f 5086
dd41f596 5087 if (unlikely(!rq->nr_running))
1da177e4 5088 idle_balance(cpu, rq);
1da177e4 5089
df1c99d4 5090 put_prev_task(rq, prev);
b67802ea 5091 next = pick_next_task(rq);
1da177e4 5092
1da177e4 5093 if (likely(prev != next)) {
673a90a1 5094 sched_info_switch(prev, next);
564c2b21 5095 perf_counter_task_sched_out(prev, next, cpu);
673a90a1 5096
1da177e4
LT
5097 rq->nr_switches++;
5098 rq->curr = next;
5099 ++*switch_count;
5100
dd41f596 5101 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5102 /*
5103 * the context switch might have flipped the stack from under
5104 * us, hence refresh the local variables.
5105 */
5106 cpu = smp_processor_id();
5107 rq = cpu_rq(cpu);
1da177e4
LT
5108 } else
5109 spin_unlock_irq(&rq->lock);
5110
8f4d37ec 5111 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5112 goto need_resched_nonpreemptible;
41719b03 5113}
8f4d37ec 5114
41719b03
PZ
5115asmlinkage void __sched schedule(void)
5116{
5117need_resched:
5118 preempt_disable();
5119 __schedule();
1da177e4
LT
5120 preempt_enable_no_resched();
5121 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
5122 goto need_resched;
5123}
1da177e4
LT
5124EXPORT_SYMBOL(schedule);
5125
0d66bf6d
PZ
5126#ifdef CONFIG_SMP
5127/*
5128 * Look out! "owner" is an entirely speculative pointer
5129 * access and not reliable.
5130 */
5131int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5132{
5133 unsigned int cpu;
5134 struct rq *rq;
5135
5136 if (!sched_feat(OWNER_SPIN))
5137 return 0;
5138
5139#ifdef CONFIG_DEBUG_PAGEALLOC
5140 /*
5141 * Need to access the cpu field knowing that
5142 * DEBUG_PAGEALLOC could have unmapped it if
5143 * the mutex owner just released it and exited.
5144 */
5145 if (probe_kernel_address(&owner->cpu, cpu))
5146 goto out;
5147#else
5148 cpu = owner->cpu;
5149#endif
5150
5151 /*
5152 * Even if the access succeeded (likely case),
5153 * the cpu field may no longer be valid.
5154 */
5155 if (cpu >= nr_cpumask_bits)
5156 goto out;
5157
5158 /*
5159 * We need to validate that we can do a
5160 * get_cpu() and that we have the percpu area.
5161 */
5162 if (!cpu_online(cpu))
5163 goto out;
5164
5165 rq = cpu_rq(cpu);
5166
5167 for (;;) {
5168 /*
5169 * Owner changed, break to re-assess state.
5170 */
5171 if (lock->owner != owner)
5172 break;
5173
5174 /*
5175 * Is that owner really running on that cpu?
5176 */
5177 if (task_thread_info(rq->curr) != owner || need_resched())
5178 return 0;
5179
5180 cpu_relax();
5181 }
5182out:
5183 return 1;
5184}
5185#endif
5186
1da177e4
LT
5187#ifdef CONFIG_PREEMPT
5188/*
2ed6e34f 5189 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5190 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5191 * occur there and call schedule directly.
5192 */
5193asmlinkage void __sched preempt_schedule(void)
5194{
5195 struct thread_info *ti = current_thread_info();
6478d880 5196
1da177e4
LT
5197 /*
5198 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5199 * we do not want to preempt the current task. Just return..
1da177e4 5200 */
beed33a8 5201 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5202 return;
5203
3a5c359a
AK
5204 do {
5205 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5206 schedule();
3a5c359a 5207 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5208
3a5c359a
AK
5209 /*
5210 * Check again in case we missed a preemption opportunity
5211 * between schedule and now.
5212 */
5213 barrier();
5ed0cec0 5214 } while (need_resched());
1da177e4 5215}
1da177e4
LT
5216EXPORT_SYMBOL(preempt_schedule);
5217
5218/*
2ed6e34f 5219 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5220 * off of irq context.
5221 * Note, that this is called and return with irqs disabled. This will
5222 * protect us against recursive calling from irq.
5223 */
5224asmlinkage void __sched preempt_schedule_irq(void)
5225{
5226 struct thread_info *ti = current_thread_info();
6478d880 5227
2ed6e34f 5228 /* Catch callers which need to be fixed */
1da177e4
LT
5229 BUG_ON(ti->preempt_count || !irqs_disabled());
5230
3a5c359a
AK
5231 do {
5232 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5233 local_irq_enable();
5234 schedule();
5235 local_irq_disable();
3a5c359a 5236 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5237
3a5c359a
AK
5238 /*
5239 * Check again in case we missed a preemption opportunity
5240 * between schedule and now.
5241 */
5242 barrier();
5ed0cec0 5243 } while (need_resched());
1da177e4
LT
5244}
5245
5246#endif /* CONFIG_PREEMPT */
5247
95cdf3b7
IM
5248int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5249 void *key)
1da177e4 5250{
48f24c4d 5251 return try_to_wake_up(curr->private, mode, sync);
1da177e4 5252}
1da177e4
LT
5253EXPORT_SYMBOL(default_wake_function);
5254
5255/*
41a2d6cf
IM
5256 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5257 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5258 * number) then we wake all the non-exclusive tasks and one exclusive task.
5259 *
5260 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5261 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5262 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5263 */
777c6c5f
JW
5264void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5265 int nr_exclusive, int sync, void *key)
1da177e4 5266{
2e45874c 5267 wait_queue_t *curr, *next;
1da177e4 5268
2e45874c 5269 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5270 unsigned flags = curr->flags;
5271
1da177e4 5272 if (curr->func(curr, mode, sync, key) &&
48f24c4d 5273 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5274 break;
5275 }
5276}
5277
5278/**
5279 * __wake_up - wake up threads blocked on a waitqueue.
5280 * @q: the waitqueue
5281 * @mode: which threads
5282 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5283 * @key: is directly passed to the wakeup function
1da177e4 5284 */
7ad5b3a5 5285void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5286 int nr_exclusive, void *key)
1da177e4
LT
5287{
5288 unsigned long flags;
5289
5290 spin_lock_irqsave(&q->lock, flags);
5291 __wake_up_common(q, mode, nr_exclusive, 0, key);
5292 spin_unlock_irqrestore(&q->lock, flags);
5293}
1da177e4
LT
5294EXPORT_SYMBOL(__wake_up);
5295
5296/*
5297 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5298 */
7ad5b3a5 5299void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5300{
5301 __wake_up_common(q, mode, 1, 0, NULL);
5302}
5303
4ede816a
DL
5304void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5305{
5306 __wake_up_common(q, mode, 1, 0, key);
5307}
5308
1da177e4 5309/**
4ede816a 5310 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5311 * @q: the waitqueue
5312 * @mode: which threads
5313 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5314 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5315 *
5316 * The sync wakeup differs that the waker knows that it will schedule
5317 * away soon, so while the target thread will be woken up, it will not
5318 * be migrated to another CPU - ie. the two threads are 'synchronized'
5319 * with each other. This can prevent needless bouncing between CPUs.
5320 *
5321 * On UP it can prevent extra preemption.
5322 */
4ede816a
DL
5323void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5324 int nr_exclusive, void *key)
1da177e4
LT
5325{
5326 unsigned long flags;
5327 int sync = 1;
5328
5329 if (unlikely(!q))
5330 return;
5331
5332 if (unlikely(!nr_exclusive))
5333 sync = 0;
5334
5335 spin_lock_irqsave(&q->lock, flags);
4ede816a 5336 __wake_up_common(q, mode, nr_exclusive, sync, key);
1da177e4
LT
5337 spin_unlock_irqrestore(&q->lock, flags);
5338}
4ede816a
DL
5339EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5340
5341/*
5342 * __wake_up_sync - see __wake_up_sync_key()
5343 */
5344void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5345{
5346 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5347}
1da177e4
LT
5348EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5349
65eb3dc6
KD
5350/**
5351 * complete: - signals a single thread waiting on this completion
5352 * @x: holds the state of this particular completion
5353 *
5354 * This will wake up a single thread waiting on this completion. Threads will be
5355 * awakened in the same order in which they were queued.
5356 *
5357 * See also complete_all(), wait_for_completion() and related routines.
5358 */
b15136e9 5359void complete(struct completion *x)
1da177e4
LT
5360{
5361 unsigned long flags;
5362
5363 spin_lock_irqsave(&x->wait.lock, flags);
5364 x->done++;
d9514f6c 5365 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5366 spin_unlock_irqrestore(&x->wait.lock, flags);
5367}
5368EXPORT_SYMBOL(complete);
5369
65eb3dc6
KD
5370/**
5371 * complete_all: - signals all threads waiting on this completion
5372 * @x: holds the state of this particular completion
5373 *
5374 * This will wake up all threads waiting on this particular completion event.
5375 */
b15136e9 5376void complete_all(struct completion *x)
1da177e4
LT
5377{
5378 unsigned long flags;
5379
5380 spin_lock_irqsave(&x->wait.lock, flags);
5381 x->done += UINT_MAX/2;
d9514f6c 5382 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5383 spin_unlock_irqrestore(&x->wait.lock, flags);
5384}
5385EXPORT_SYMBOL(complete_all);
5386
8cbbe86d
AK
5387static inline long __sched
5388do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5389{
1da177e4
LT
5390 if (!x->done) {
5391 DECLARE_WAITQUEUE(wait, current);
5392
5393 wait.flags |= WQ_FLAG_EXCLUSIVE;
5394 __add_wait_queue_tail(&x->wait, &wait);
5395 do {
94d3d824 5396 if (signal_pending_state(state, current)) {
ea71a546
ON
5397 timeout = -ERESTARTSYS;
5398 break;
8cbbe86d
AK
5399 }
5400 __set_current_state(state);
1da177e4
LT
5401 spin_unlock_irq(&x->wait.lock);
5402 timeout = schedule_timeout(timeout);
5403 spin_lock_irq(&x->wait.lock);
ea71a546 5404 } while (!x->done && timeout);
1da177e4 5405 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5406 if (!x->done)
5407 return timeout;
1da177e4
LT
5408 }
5409 x->done--;
ea71a546 5410 return timeout ?: 1;
1da177e4 5411}
1da177e4 5412
8cbbe86d
AK
5413static long __sched
5414wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5415{
1da177e4
LT
5416 might_sleep();
5417
5418 spin_lock_irq(&x->wait.lock);
8cbbe86d 5419 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5420 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5421 return timeout;
5422}
1da177e4 5423
65eb3dc6
KD
5424/**
5425 * wait_for_completion: - waits for completion of a task
5426 * @x: holds the state of this particular completion
5427 *
5428 * This waits to be signaled for completion of a specific task. It is NOT
5429 * interruptible and there is no timeout.
5430 *
5431 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5432 * and interrupt capability. Also see complete().
5433 */
b15136e9 5434void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5435{
5436 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5437}
8cbbe86d 5438EXPORT_SYMBOL(wait_for_completion);
1da177e4 5439
65eb3dc6
KD
5440/**
5441 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5442 * @x: holds the state of this particular completion
5443 * @timeout: timeout value in jiffies
5444 *
5445 * This waits for either a completion of a specific task to be signaled or for a
5446 * specified timeout to expire. The timeout is in jiffies. It is not
5447 * interruptible.
5448 */
b15136e9 5449unsigned long __sched
8cbbe86d 5450wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5451{
8cbbe86d 5452 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5453}
8cbbe86d 5454EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5455
65eb3dc6
KD
5456/**
5457 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5458 * @x: holds the state of this particular completion
5459 *
5460 * This waits for completion of a specific task to be signaled. It is
5461 * interruptible.
5462 */
8cbbe86d 5463int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5464{
51e97990
AK
5465 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5466 if (t == -ERESTARTSYS)
5467 return t;
5468 return 0;
0fec171c 5469}
8cbbe86d 5470EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5471
65eb3dc6
KD
5472/**
5473 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5474 * @x: holds the state of this particular completion
5475 * @timeout: timeout value in jiffies
5476 *
5477 * This waits for either a completion of a specific task to be signaled or for a
5478 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5479 */
b15136e9 5480unsigned long __sched
8cbbe86d
AK
5481wait_for_completion_interruptible_timeout(struct completion *x,
5482 unsigned long timeout)
0fec171c 5483{
8cbbe86d 5484 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5485}
8cbbe86d 5486EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5487
65eb3dc6
KD
5488/**
5489 * wait_for_completion_killable: - waits for completion of a task (killable)
5490 * @x: holds the state of this particular completion
5491 *
5492 * This waits to be signaled for completion of a specific task. It can be
5493 * interrupted by a kill signal.
5494 */
009e577e
MW
5495int __sched wait_for_completion_killable(struct completion *x)
5496{
5497 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5498 if (t == -ERESTARTSYS)
5499 return t;
5500 return 0;
5501}
5502EXPORT_SYMBOL(wait_for_completion_killable);
5503
be4de352
DC
5504/**
5505 * try_wait_for_completion - try to decrement a completion without blocking
5506 * @x: completion structure
5507 *
5508 * Returns: 0 if a decrement cannot be done without blocking
5509 * 1 if a decrement succeeded.
5510 *
5511 * If a completion is being used as a counting completion,
5512 * attempt to decrement the counter without blocking. This
5513 * enables us to avoid waiting if the resource the completion
5514 * is protecting is not available.
5515 */
5516bool try_wait_for_completion(struct completion *x)
5517{
5518 int ret = 1;
5519
5520 spin_lock_irq(&x->wait.lock);
5521 if (!x->done)
5522 ret = 0;
5523 else
5524 x->done--;
5525 spin_unlock_irq(&x->wait.lock);
5526 return ret;
5527}
5528EXPORT_SYMBOL(try_wait_for_completion);
5529
5530/**
5531 * completion_done - Test to see if a completion has any waiters
5532 * @x: completion structure
5533 *
5534 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5535 * 1 if there are no waiters.
5536 *
5537 */
5538bool completion_done(struct completion *x)
5539{
5540 int ret = 1;
5541
5542 spin_lock_irq(&x->wait.lock);
5543 if (!x->done)
5544 ret = 0;
5545 spin_unlock_irq(&x->wait.lock);
5546 return ret;
5547}
5548EXPORT_SYMBOL(completion_done);
5549
8cbbe86d
AK
5550static long __sched
5551sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5552{
0fec171c
IM
5553 unsigned long flags;
5554 wait_queue_t wait;
5555
5556 init_waitqueue_entry(&wait, current);
1da177e4 5557
8cbbe86d 5558 __set_current_state(state);
1da177e4 5559
8cbbe86d
AK
5560 spin_lock_irqsave(&q->lock, flags);
5561 __add_wait_queue(q, &wait);
5562 spin_unlock(&q->lock);
5563 timeout = schedule_timeout(timeout);
5564 spin_lock_irq(&q->lock);
5565 __remove_wait_queue(q, &wait);
5566 spin_unlock_irqrestore(&q->lock, flags);
5567
5568 return timeout;
5569}
5570
5571void __sched interruptible_sleep_on(wait_queue_head_t *q)
5572{
5573 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5574}
1da177e4
LT
5575EXPORT_SYMBOL(interruptible_sleep_on);
5576
0fec171c 5577long __sched
95cdf3b7 5578interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5579{
8cbbe86d 5580 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5581}
1da177e4
LT
5582EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5583
0fec171c 5584void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5585{
8cbbe86d 5586 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5587}
1da177e4
LT
5588EXPORT_SYMBOL(sleep_on);
5589
0fec171c 5590long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5591{
8cbbe86d 5592 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5593}
1da177e4
LT
5594EXPORT_SYMBOL(sleep_on_timeout);
5595
b29739f9
IM
5596#ifdef CONFIG_RT_MUTEXES
5597
5598/*
5599 * rt_mutex_setprio - set the current priority of a task
5600 * @p: task
5601 * @prio: prio value (kernel-internal form)
5602 *
5603 * This function changes the 'effective' priority of a task. It does
5604 * not touch ->normal_prio like __setscheduler().
5605 *
5606 * Used by the rt_mutex code to implement priority inheritance logic.
5607 */
36c8b586 5608void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5609{
5610 unsigned long flags;
83b699ed 5611 int oldprio, on_rq, running;
70b97a7f 5612 struct rq *rq;
cb469845 5613 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5614
5615 BUG_ON(prio < 0 || prio > MAX_PRIO);
5616
5617 rq = task_rq_lock(p, &flags);
a8e504d2 5618 update_rq_clock(rq);
b29739f9 5619
d5f9f942 5620 oldprio = p->prio;
dd41f596 5621 on_rq = p->se.on_rq;
051a1d1a 5622 running = task_current(rq, p);
0e1f3483 5623 if (on_rq)
69be72c1 5624 dequeue_task(rq, p, 0);
0e1f3483
HS
5625 if (running)
5626 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5627
5628 if (rt_prio(prio))
5629 p->sched_class = &rt_sched_class;
5630 else
5631 p->sched_class = &fair_sched_class;
5632
b29739f9
IM
5633 p->prio = prio;
5634
0e1f3483
HS
5635 if (running)
5636 p->sched_class->set_curr_task(rq);
dd41f596 5637 if (on_rq) {
8159f87e 5638 enqueue_task(rq, p, 0);
cb469845
SR
5639
5640 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5641 }
5642 task_rq_unlock(rq, &flags);
5643}
5644
5645#endif
5646
36c8b586 5647void set_user_nice(struct task_struct *p, long nice)
1da177e4 5648{
dd41f596 5649 int old_prio, delta, on_rq;
1da177e4 5650 unsigned long flags;
70b97a7f 5651 struct rq *rq;
1da177e4
LT
5652
5653 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5654 return;
5655 /*
5656 * We have to be careful, if called from sys_setpriority(),
5657 * the task might be in the middle of scheduling on another CPU.
5658 */
5659 rq = task_rq_lock(p, &flags);
a8e504d2 5660 update_rq_clock(rq);
1da177e4
LT
5661 /*
5662 * The RT priorities are set via sched_setscheduler(), but we still
5663 * allow the 'normal' nice value to be set - but as expected
5664 * it wont have any effect on scheduling until the task is
dd41f596 5665 * SCHED_FIFO/SCHED_RR:
1da177e4 5666 */
e05606d3 5667 if (task_has_rt_policy(p)) {
1da177e4
LT
5668 p->static_prio = NICE_TO_PRIO(nice);
5669 goto out_unlock;
5670 }
dd41f596 5671 on_rq = p->se.on_rq;
c09595f6 5672 if (on_rq)
69be72c1 5673 dequeue_task(rq, p, 0);
1da177e4 5674
1da177e4 5675 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5676 set_load_weight(p);
b29739f9
IM
5677 old_prio = p->prio;
5678 p->prio = effective_prio(p);
5679 delta = p->prio - old_prio;
1da177e4 5680
dd41f596 5681 if (on_rq) {
8159f87e 5682 enqueue_task(rq, p, 0);
1da177e4 5683 /*
d5f9f942
AM
5684 * If the task increased its priority or is running and
5685 * lowered its priority, then reschedule its CPU:
1da177e4 5686 */
d5f9f942 5687 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5688 resched_task(rq->curr);
5689 }
5690out_unlock:
5691 task_rq_unlock(rq, &flags);
5692}
1da177e4
LT
5693EXPORT_SYMBOL(set_user_nice);
5694
e43379f1
MM
5695/*
5696 * can_nice - check if a task can reduce its nice value
5697 * @p: task
5698 * @nice: nice value
5699 */
36c8b586 5700int can_nice(const struct task_struct *p, const int nice)
e43379f1 5701{
024f4747
MM
5702 /* convert nice value [19,-20] to rlimit style value [1,40] */
5703 int nice_rlim = 20 - nice;
48f24c4d 5704
e43379f1
MM
5705 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5706 capable(CAP_SYS_NICE));
5707}
5708
1da177e4
LT
5709#ifdef __ARCH_WANT_SYS_NICE
5710
5711/*
5712 * sys_nice - change the priority of the current process.
5713 * @increment: priority increment
5714 *
5715 * sys_setpriority is a more generic, but much slower function that
5716 * does similar things.
5717 */
5add95d4 5718SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5719{
48f24c4d 5720 long nice, retval;
1da177e4
LT
5721
5722 /*
5723 * Setpriority might change our priority at the same moment.
5724 * We don't have to worry. Conceptually one call occurs first
5725 * and we have a single winner.
5726 */
e43379f1
MM
5727 if (increment < -40)
5728 increment = -40;
1da177e4
LT
5729 if (increment > 40)
5730 increment = 40;
5731
2b8f836f 5732 nice = TASK_NICE(current) + increment;
1da177e4
LT
5733 if (nice < -20)
5734 nice = -20;
5735 if (nice > 19)
5736 nice = 19;
5737
e43379f1
MM
5738 if (increment < 0 && !can_nice(current, nice))
5739 return -EPERM;
5740
1da177e4
LT
5741 retval = security_task_setnice(current, nice);
5742 if (retval)
5743 return retval;
5744
5745 set_user_nice(current, nice);
5746 return 0;
5747}
5748
5749#endif
5750
5751/**
5752 * task_prio - return the priority value of a given task.
5753 * @p: the task in question.
5754 *
5755 * This is the priority value as seen by users in /proc.
5756 * RT tasks are offset by -200. Normal tasks are centered
5757 * around 0, value goes from -16 to +15.
5758 */
36c8b586 5759int task_prio(const struct task_struct *p)
1da177e4
LT
5760{
5761 return p->prio - MAX_RT_PRIO;
5762}
5763
5764/**
5765 * task_nice - return the nice value of a given task.
5766 * @p: the task in question.
5767 */
36c8b586 5768int task_nice(const struct task_struct *p)
1da177e4
LT
5769{
5770 return TASK_NICE(p);
5771}
150d8bed 5772EXPORT_SYMBOL(task_nice);
1da177e4
LT
5773
5774/**
5775 * idle_cpu - is a given cpu idle currently?
5776 * @cpu: the processor in question.
5777 */
5778int idle_cpu(int cpu)
5779{
5780 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5781}
5782
1da177e4
LT
5783/**
5784 * idle_task - return the idle task for a given cpu.
5785 * @cpu: the processor in question.
5786 */
36c8b586 5787struct task_struct *idle_task(int cpu)
1da177e4
LT
5788{
5789 return cpu_rq(cpu)->idle;
5790}
5791
5792/**
5793 * find_process_by_pid - find a process with a matching PID value.
5794 * @pid: the pid in question.
5795 */
a9957449 5796static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5797{
228ebcbe 5798 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5799}
5800
5801/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5802static void
5803__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5804{
dd41f596 5805 BUG_ON(p->se.on_rq);
48f24c4d 5806
1da177e4 5807 p->policy = policy;
dd41f596
IM
5808 switch (p->policy) {
5809 case SCHED_NORMAL:
5810 case SCHED_BATCH:
5811 case SCHED_IDLE:
5812 p->sched_class = &fair_sched_class;
5813 break;
5814 case SCHED_FIFO:
5815 case SCHED_RR:
5816 p->sched_class = &rt_sched_class;
5817 break;
5818 }
5819
1da177e4 5820 p->rt_priority = prio;
b29739f9
IM
5821 p->normal_prio = normal_prio(p);
5822 /* we are holding p->pi_lock already */
5823 p->prio = rt_mutex_getprio(p);
2dd73a4f 5824 set_load_weight(p);
1da177e4
LT
5825}
5826
c69e8d9c
DH
5827/*
5828 * check the target process has a UID that matches the current process's
5829 */
5830static bool check_same_owner(struct task_struct *p)
5831{
5832 const struct cred *cred = current_cred(), *pcred;
5833 bool match;
5834
5835 rcu_read_lock();
5836 pcred = __task_cred(p);
5837 match = (cred->euid == pcred->euid ||
5838 cred->euid == pcred->uid);
5839 rcu_read_unlock();
5840 return match;
5841}
5842
961ccddd
RR
5843static int __sched_setscheduler(struct task_struct *p, int policy,
5844 struct sched_param *param, bool user)
1da177e4 5845{
83b699ed 5846 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5847 unsigned long flags;
cb469845 5848 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5849 struct rq *rq;
1da177e4 5850
66e5393a
SR
5851 /* may grab non-irq protected spin_locks */
5852 BUG_ON(in_interrupt());
1da177e4
LT
5853recheck:
5854 /* double check policy once rq lock held */
5855 if (policy < 0)
5856 policy = oldpolicy = p->policy;
5857 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5858 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5859 policy != SCHED_IDLE)
b0a9499c 5860 return -EINVAL;
1da177e4
LT
5861 /*
5862 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5863 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5864 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5865 */
5866 if (param->sched_priority < 0 ||
95cdf3b7 5867 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5868 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5869 return -EINVAL;
e05606d3 5870 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5871 return -EINVAL;
5872
37e4ab3f
OC
5873 /*
5874 * Allow unprivileged RT tasks to decrease priority:
5875 */
961ccddd 5876 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5877 if (rt_policy(policy)) {
8dc3e909 5878 unsigned long rlim_rtprio;
8dc3e909
ON
5879
5880 if (!lock_task_sighand(p, &flags))
5881 return -ESRCH;
5882 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5883 unlock_task_sighand(p, &flags);
5884
5885 /* can't set/change the rt policy */
5886 if (policy != p->policy && !rlim_rtprio)
5887 return -EPERM;
5888
5889 /* can't increase priority */
5890 if (param->sched_priority > p->rt_priority &&
5891 param->sched_priority > rlim_rtprio)
5892 return -EPERM;
5893 }
dd41f596
IM
5894 /*
5895 * Like positive nice levels, dont allow tasks to
5896 * move out of SCHED_IDLE either:
5897 */
5898 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5899 return -EPERM;
5fe1d75f 5900
37e4ab3f 5901 /* can't change other user's priorities */
c69e8d9c 5902 if (!check_same_owner(p))
37e4ab3f
OC
5903 return -EPERM;
5904 }
1da177e4 5905
725aad24 5906 if (user) {
b68aa230 5907#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5908 /*
5909 * Do not allow realtime tasks into groups that have no runtime
5910 * assigned.
5911 */
9a7e0b18
PZ
5912 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5913 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5914 return -EPERM;
b68aa230
PZ
5915#endif
5916
725aad24
JF
5917 retval = security_task_setscheduler(p, policy, param);
5918 if (retval)
5919 return retval;
5920 }
5921
b29739f9
IM
5922 /*
5923 * make sure no PI-waiters arrive (or leave) while we are
5924 * changing the priority of the task:
5925 */
5926 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5927 /*
5928 * To be able to change p->policy safely, the apropriate
5929 * runqueue lock must be held.
5930 */
b29739f9 5931 rq = __task_rq_lock(p);
1da177e4
LT
5932 /* recheck policy now with rq lock held */
5933 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5934 policy = oldpolicy = -1;
b29739f9
IM
5935 __task_rq_unlock(rq);
5936 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5937 goto recheck;
5938 }
2daa3577 5939 update_rq_clock(rq);
dd41f596 5940 on_rq = p->se.on_rq;
051a1d1a 5941 running = task_current(rq, p);
0e1f3483 5942 if (on_rq)
2e1cb74a 5943 deactivate_task(rq, p, 0);
0e1f3483
HS
5944 if (running)
5945 p->sched_class->put_prev_task(rq, p);
f6b53205 5946
1da177e4 5947 oldprio = p->prio;
dd41f596 5948 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5949
0e1f3483
HS
5950 if (running)
5951 p->sched_class->set_curr_task(rq);
dd41f596
IM
5952 if (on_rq) {
5953 activate_task(rq, p, 0);
cb469845
SR
5954
5955 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5956 }
b29739f9
IM
5957 __task_rq_unlock(rq);
5958 spin_unlock_irqrestore(&p->pi_lock, flags);
5959
95e02ca9
TG
5960 rt_mutex_adjust_pi(p);
5961
1da177e4
LT
5962 return 0;
5963}
961ccddd
RR
5964
5965/**
5966 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5967 * @p: the task in question.
5968 * @policy: new policy.
5969 * @param: structure containing the new RT priority.
5970 *
5971 * NOTE that the task may be already dead.
5972 */
5973int sched_setscheduler(struct task_struct *p, int policy,
5974 struct sched_param *param)
5975{
5976 return __sched_setscheduler(p, policy, param, true);
5977}
1da177e4
LT
5978EXPORT_SYMBOL_GPL(sched_setscheduler);
5979
961ccddd
RR
5980/**
5981 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5982 * @p: the task in question.
5983 * @policy: new policy.
5984 * @param: structure containing the new RT priority.
5985 *
5986 * Just like sched_setscheduler, only don't bother checking if the
5987 * current context has permission. For example, this is needed in
5988 * stop_machine(): we create temporary high priority worker threads,
5989 * but our caller might not have that capability.
5990 */
5991int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5992 struct sched_param *param)
5993{
5994 return __sched_setscheduler(p, policy, param, false);
5995}
5996
95cdf3b7
IM
5997static int
5998do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5999{
1da177e4
LT
6000 struct sched_param lparam;
6001 struct task_struct *p;
36c8b586 6002 int retval;
1da177e4
LT
6003
6004 if (!param || pid < 0)
6005 return -EINVAL;
6006 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6007 return -EFAULT;
5fe1d75f
ON
6008
6009 rcu_read_lock();
6010 retval = -ESRCH;
1da177e4 6011 p = find_process_by_pid(pid);
5fe1d75f
ON
6012 if (p != NULL)
6013 retval = sched_setscheduler(p, policy, &lparam);
6014 rcu_read_unlock();
36c8b586 6015
1da177e4
LT
6016 return retval;
6017}
6018
6019/**
6020 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6021 * @pid: the pid in question.
6022 * @policy: new policy.
6023 * @param: structure containing the new RT priority.
6024 */
5add95d4
HC
6025SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6026 struct sched_param __user *, param)
1da177e4 6027{
c21761f1
JB
6028 /* negative values for policy are not valid */
6029 if (policy < 0)
6030 return -EINVAL;
6031
1da177e4
LT
6032 return do_sched_setscheduler(pid, policy, param);
6033}
6034
6035/**
6036 * sys_sched_setparam - set/change the RT priority of a thread
6037 * @pid: the pid in question.
6038 * @param: structure containing the new RT priority.
6039 */
5add95d4 6040SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6041{
6042 return do_sched_setscheduler(pid, -1, param);
6043}
6044
6045/**
6046 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6047 * @pid: the pid in question.
6048 */
5add95d4 6049SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6050{
36c8b586 6051 struct task_struct *p;
3a5c359a 6052 int retval;
1da177e4
LT
6053
6054 if (pid < 0)
3a5c359a 6055 return -EINVAL;
1da177e4
LT
6056
6057 retval = -ESRCH;
6058 read_lock(&tasklist_lock);
6059 p = find_process_by_pid(pid);
6060 if (p) {
6061 retval = security_task_getscheduler(p);
6062 if (!retval)
6063 retval = p->policy;
6064 }
6065 read_unlock(&tasklist_lock);
1da177e4
LT
6066 return retval;
6067}
6068
6069/**
6070 * sys_sched_getscheduler - get the RT priority of a thread
6071 * @pid: the pid in question.
6072 * @param: structure containing the RT priority.
6073 */
5add95d4 6074SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6075{
6076 struct sched_param lp;
36c8b586 6077 struct task_struct *p;
3a5c359a 6078 int retval;
1da177e4
LT
6079
6080 if (!param || pid < 0)
3a5c359a 6081 return -EINVAL;
1da177e4
LT
6082
6083 read_lock(&tasklist_lock);
6084 p = find_process_by_pid(pid);
6085 retval = -ESRCH;
6086 if (!p)
6087 goto out_unlock;
6088
6089 retval = security_task_getscheduler(p);
6090 if (retval)
6091 goto out_unlock;
6092
6093 lp.sched_priority = p->rt_priority;
6094 read_unlock(&tasklist_lock);
6095
6096 /*
6097 * This one might sleep, we cannot do it with a spinlock held ...
6098 */
6099 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6100
1da177e4
LT
6101 return retval;
6102
6103out_unlock:
6104 read_unlock(&tasklist_lock);
6105 return retval;
6106}
6107
96f874e2 6108long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6109{
5a16f3d3 6110 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6111 struct task_struct *p;
6112 int retval;
1da177e4 6113
95402b38 6114 get_online_cpus();
1da177e4
LT
6115 read_lock(&tasklist_lock);
6116
6117 p = find_process_by_pid(pid);
6118 if (!p) {
6119 read_unlock(&tasklist_lock);
95402b38 6120 put_online_cpus();
1da177e4
LT
6121 return -ESRCH;
6122 }
6123
6124 /*
6125 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6126 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6127 * usage count and then drop tasklist_lock.
6128 */
6129 get_task_struct(p);
6130 read_unlock(&tasklist_lock);
6131
5a16f3d3
RR
6132 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6133 retval = -ENOMEM;
6134 goto out_put_task;
6135 }
6136 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6137 retval = -ENOMEM;
6138 goto out_free_cpus_allowed;
6139 }
1da177e4 6140 retval = -EPERM;
c69e8d9c 6141 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6142 goto out_unlock;
6143
e7834f8f
DQ
6144 retval = security_task_setscheduler(p, 0, NULL);
6145 if (retval)
6146 goto out_unlock;
6147
5a16f3d3
RR
6148 cpuset_cpus_allowed(p, cpus_allowed);
6149 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6150 again:
5a16f3d3 6151 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6152
8707d8b8 6153 if (!retval) {
5a16f3d3
RR
6154 cpuset_cpus_allowed(p, cpus_allowed);
6155 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6156 /*
6157 * We must have raced with a concurrent cpuset
6158 * update. Just reset the cpus_allowed to the
6159 * cpuset's cpus_allowed
6160 */
5a16f3d3 6161 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6162 goto again;
6163 }
6164 }
1da177e4 6165out_unlock:
5a16f3d3
RR
6166 free_cpumask_var(new_mask);
6167out_free_cpus_allowed:
6168 free_cpumask_var(cpus_allowed);
6169out_put_task:
1da177e4 6170 put_task_struct(p);
95402b38 6171 put_online_cpus();
1da177e4
LT
6172 return retval;
6173}
6174
6175static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6176 struct cpumask *new_mask)
1da177e4 6177{
96f874e2
RR
6178 if (len < cpumask_size())
6179 cpumask_clear(new_mask);
6180 else if (len > cpumask_size())
6181 len = cpumask_size();
6182
1da177e4
LT
6183 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6184}
6185
6186/**
6187 * sys_sched_setaffinity - set the cpu affinity of a process
6188 * @pid: pid of the process
6189 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6190 * @user_mask_ptr: user-space pointer to the new cpu mask
6191 */
5add95d4
HC
6192SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6193 unsigned long __user *, user_mask_ptr)
1da177e4 6194{
5a16f3d3 6195 cpumask_var_t new_mask;
1da177e4
LT
6196 int retval;
6197
5a16f3d3
RR
6198 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6199 return -ENOMEM;
1da177e4 6200
5a16f3d3
RR
6201 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6202 if (retval == 0)
6203 retval = sched_setaffinity(pid, new_mask);
6204 free_cpumask_var(new_mask);
6205 return retval;
1da177e4
LT
6206}
6207
96f874e2 6208long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6209{
36c8b586 6210 struct task_struct *p;
1da177e4 6211 int retval;
1da177e4 6212
95402b38 6213 get_online_cpus();
1da177e4
LT
6214 read_lock(&tasklist_lock);
6215
6216 retval = -ESRCH;
6217 p = find_process_by_pid(pid);
6218 if (!p)
6219 goto out_unlock;
6220
e7834f8f
DQ
6221 retval = security_task_getscheduler(p);
6222 if (retval)
6223 goto out_unlock;
6224
96f874e2 6225 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6226
6227out_unlock:
6228 read_unlock(&tasklist_lock);
95402b38 6229 put_online_cpus();
1da177e4 6230
9531b62f 6231 return retval;
1da177e4
LT
6232}
6233
6234/**
6235 * sys_sched_getaffinity - get the cpu affinity of a process
6236 * @pid: pid of the process
6237 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6238 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6239 */
5add95d4
HC
6240SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6241 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6242{
6243 int ret;
f17c8607 6244 cpumask_var_t mask;
1da177e4 6245
f17c8607 6246 if (len < cpumask_size())
1da177e4
LT
6247 return -EINVAL;
6248
f17c8607
RR
6249 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6250 return -ENOMEM;
1da177e4 6251
f17c8607
RR
6252 ret = sched_getaffinity(pid, mask);
6253 if (ret == 0) {
6254 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6255 ret = -EFAULT;
6256 else
6257 ret = cpumask_size();
6258 }
6259 free_cpumask_var(mask);
1da177e4 6260
f17c8607 6261 return ret;
1da177e4
LT
6262}
6263
6264/**
6265 * sys_sched_yield - yield the current processor to other threads.
6266 *
dd41f596
IM
6267 * This function yields the current CPU to other tasks. If there are no
6268 * other threads running on this CPU then this function will return.
1da177e4 6269 */
5add95d4 6270SYSCALL_DEFINE0(sched_yield)
1da177e4 6271{
70b97a7f 6272 struct rq *rq = this_rq_lock();
1da177e4 6273
2d72376b 6274 schedstat_inc(rq, yld_count);
4530d7ab 6275 current->sched_class->yield_task(rq);
1da177e4
LT
6276
6277 /*
6278 * Since we are going to call schedule() anyway, there's
6279 * no need to preempt or enable interrupts:
6280 */
6281 __release(rq->lock);
8a25d5de 6282 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6283 _raw_spin_unlock(&rq->lock);
6284 preempt_enable_no_resched();
6285
6286 schedule();
6287
6288 return 0;
6289}
6290
e7b38404 6291static void __cond_resched(void)
1da177e4 6292{
8e0a43d8
IM
6293#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6294 __might_sleep(__FILE__, __LINE__);
6295#endif
5bbcfd90
IM
6296 /*
6297 * The BKS might be reacquired before we have dropped
6298 * PREEMPT_ACTIVE, which could trigger a second
6299 * cond_resched() call.
6300 */
1da177e4
LT
6301 do {
6302 add_preempt_count(PREEMPT_ACTIVE);
6303 schedule();
6304 sub_preempt_count(PREEMPT_ACTIVE);
6305 } while (need_resched());
6306}
6307
02b67cc3 6308int __sched _cond_resched(void)
1da177e4 6309{
9414232f
IM
6310 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6311 system_state == SYSTEM_RUNNING) {
1da177e4
LT
6312 __cond_resched();
6313 return 1;
6314 }
6315 return 0;
6316}
02b67cc3 6317EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6318
6319/*
6320 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6321 * call schedule, and on return reacquire the lock.
6322 *
41a2d6cf 6323 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6324 * operations here to prevent schedule() from being called twice (once via
6325 * spin_unlock(), once by hand).
6326 */
95cdf3b7 6327int cond_resched_lock(spinlock_t *lock)
1da177e4 6328{
95c354fe 6329 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
6330 int ret = 0;
6331
95c354fe 6332 if (spin_needbreak(lock) || resched) {
1da177e4 6333 spin_unlock(lock);
95c354fe
NP
6334 if (resched && need_resched())
6335 __cond_resched();
6336 else
6337 cpu_relax();
6df3cecb 6338 ret = 1;
1da177e4 6339 spin_lock(lock);
1da177e4 6340 }
6df3cecb 6341 return ret;
1da177e4 6342}
1da177e4
LT
6343EXPORT_SYMBOL(cond_resched_lock);
6344
6345int __sched cond_resched_softirq(void)
6346{
6347 BUG_ON(!in_softirq());
6348
9414232f 6349 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 6350 local_bh_enable();
1da177e4
LT
6351 __cond_resched();
6352 local_bh_disable();
6353 return 1;
6354 }
6355 return 0;
6356}
1da177e4
LT
6357EXPORT_SYMBOL(cond_resched_softirq);
6358
1da177e4
LT
6359/**
6360 * yield - yield the current processor to other threads.
6361 *
72fd4a35 6362 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6363 * thread runnable and calls sys_sched_yield().
6364 */
6365void __sched yield(void)
6366{
6367 set_current_state(TASK_RUNNING);
6368 sys_sched_yield();
6369}
1da177e4
LT
6370EXPORT_SYMBOL(yield);
6371
6372/*
41a2d6cf 6373 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
6374 * that process accounting knows that this is a task in IO wait state.
6375 *
6376 * But don't do that if it is a deliberate, throttling IO wait (this task
6377 * has set its backing_dev_info: the queue against which it should throttle)
6378 */
6379void __sched io_schedule(void)
6380{
70b97a7f 6381 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 6382
0ff92245 6383 delayacct_blkio_start();
1da177e4
LT
6384 atomic_inc(&rq->nr_iowait);
6385 schedule();
6386 atomic_dec(&rq->nr_iowait);
0ff92245 6387 delayacct_blkio_end();
1da177e4 6388}
1da177e4
LT
6389EXPORT_SYMBOL(io_schedule);
6390
6391long __sched io_schedule_timeout(long timeout)
6392{
70b97a7f 6393 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
6394 long ret;
6395
0ff92245 6396 delayacct_blkio_start();
1da177e4
LT
6397 atomic_inc(&rq->nr_iowait);
6398 ret = schedule_timeout(timeout);
6399 atomic_dec(&rq->nr_iowait);
0ff92245 6400 delayacct_blkio_end();
1da177e4
LT
6401 return ret;
6402}
6403
6404/**
6405 * sys_sched_get_priority_max - return maximum RT priority.
6406 * @policy: scheduling class.
6407 *
6408 * this syscall returns the maximum rt_priority that can be used
6409 * by a given scheduling class.
6410 */
5add95d4 6411SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6412{
6413 int ret = -EINVAL;
6414
6415 switch (policy) {
6416 case SCHED_FIFO:
6417 case SCHED_RR:
6418 ret = MAX_USER_RT_PRIO-1;
6419 break;
6420 case SCHED_NORMAL:
b0a9499c 6421 case SCHED_BATCH:
dd41f596 6422 case SCHED_IDLE:
1da177e4
LT
6423 ret = 0;
6424 break;
6425 }
6426 return ret;
6427}
6428
6429/**
6430 * sys_sched_get_priority_min - return minimum RT priority.
6431 * @policy: scheduling class.
6432 *
6433 * this syscall returns the minimum rt_priority that can be used
6434 * by a given scheduling class.
6435 */
5add95d4 6436SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6437{
6438 int ret = -EINVAL;
6439
6440 switch (policy) {
6441 case SCHED_FIFO:
6442 case SCHED_RR:
6443 ret = 1;
6444 break;
6445 case SCHED_NORMAL:
b0a9499c 6446 case SCHED_BATCH:
dd41f596 6447 case SCHED_IDLE:
1da177e4
LT
6448 ret = 0;
6449 }
6450 return ret;
6451}
6452
6453/**
6454 * sys_sched_rr_get_interval - return the default timeslice of a process.
6455 * @pid: pid of the process.
6456 * @interval: userspace pointer to the timeslice value.
6457 *
6458 * this syscall writes the default timeslice value of a given process
6459 * into the user-space timespec buffer. A value of '0' means infinity.
6460 */
17da2bd9 6461SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6462 struct timespec __user *, interval)
1da177e4 6463{
36c8b586 6464 struct task_struct *p;
a4ec24b4 6465 unsigned int time_slice;
3a5c359a 6466 int retval;
1da177e4 6467 struct timespec t;
1da177e4
LT
6468
6469 if (pid < 0)
3a5c359a 6470 return -EINVAL;
1da177e4
LT
6471
6472 retval = -ESRCH;
6473 read_lock(&tasklist_lock);
6474 p = find_process_by_pid(pid);
6475 if (!p)
6476 goto out_unlock;
6477
6478 retval = security_task_getscheduler(p);
6479 if (retval)
6480 goto out_unlock;
6481
77034937
IM
6482 /*
6483 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6484 * tasks that are on an otherwise idle runqueue:
6485 */
6486 time_slice = 0;
6487 if (p->policy == SCHED_RR) {
a4ec24b4 6488 time_slice = DEF_TIMESLICE;
1868f958 6489 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6490 struct sched_entity *se = &p->se;
6491 unsigned long flags;
6492 struct rq *rq;
6493
6494 rq = task_rq_lock(p, &flags);
77034937
IM
6495 if (rq->cfs.load.weight)
6496 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6497 task_rq_unlock(rq, &flags);
6498 }
1da177e4 6499 read_unlock(&tasklist_lock);
a4ec24b4 6500 jiffies_to_timespec(time_slice, &t);
1da177e4 6501 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6502 return retval;
3a5c359a 6503
1da177e4
LT
6504out_unlock:
6505 read_unlock(&tasklist_lock);
6506 return retval;
6507}
6508
7c731e0a 6509static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6510
82a1fcb9 6511void sched_show_task(struct task_struct *p)
1da177e4 6512{
1da177e4 6513 unsigned long free = 0;
36c8b586 6514 unsigned state;
1da177e4 6515
1da177e4 6516 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6517 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6518 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6519#if BITS_PER_LONG == 32
1da177e4 6520 if (state == TASK_RUNNING)
cc4ea795 6521 printk(KERN_CONT " running ");
1da177e4 6522 else
cc4ea795 6523 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6524#else
6525 if (state == TASK_RUNNING)
cc4ea795 6526 printk(KERN_CONT " running task ");
1da177e4 6527 else
cc4ea795 6528 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6529#endif
6530#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6531 free = stack_not_used(p);
1da177e4 6532#endif
ba25f9dc 6533 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 6534 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 6535
5fb5e6de 6536 show_stack(p, NULL);
1da177e4
LT
6537}
6538
e59e2ae2 6539void show_state_filter(unsigned long state_filter)
1da177e4 6540{
36c8b586 6541 struct task_struct *g, *p;
1da177e4 6542
4bd77321
IM
6543#if BITS_PER_LONG == 32
6544 printk(KERN_INFO
6545 " task PC stack pid father\n");
1da177e4 6546#else
4bd77321
IM
6547 printk(KERN_INFO
6548 " task PC stack pid father\n");
1da177e4
LT
6549#endif
6550 read_lock(&tasklist_lock);
6551 do_each_thread(g, p) {
6552 /*
6553 * reset the NMI-timeout, listing all files on a slow
6554 * console might take alot of time:
6555 */
6556 touch_nmi_watchdog();
39bc89fd 6557 if (!state_filter || (p->state & state_filter))
82a1fcb9 6558 sched_show_task(p);
1da177e4
LT
6559 } while_each_thread(g, p);
6560
04c9167f
JF
6561 touch_all_softlockup_watchdogs();
6562
dd41f596
IM
6563#ifdef CONFIG_SCHED_DEBUG
6564 sysrq_sched_debug_show();
6565#endif
1da177e4 6566 read_unlock(&tasklist_lock);
e59e2ae2
IM
6567 /*
6568 * Only show locks if all tasks are dumped:
6569 */
6570 if (state_filter == -1)
6571 debug_show_all_locks();
1da177e4
LT
6572}
6573
1df21055
IM
6574void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6575{
dd41f596 6576 idle->sched_class = &idle_sched_class;
1df21055
IM
6577}
6578
f340c0d1
IM
6579/**
6580 * init_idle - set up an idle thread for a given CPU
6581 * @idle: task in question
6582 * @cpu: cpu the idle task belongs to
6583 *
6584 * NOTE: this function does not set the idle thread's NEED_RESCHED
6585 * flag, to make booting more robust.
6586 */
5c1e1767 6587void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6588{
70b97a7f 6589 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6590 unsigned long flags;
6591
5cbd54ef
IM
6592 spin_lock_irqsave(&rq->lock, flags);
6593
dd41f596
IM
6594 __sched_fork(idle);
6595 idle->se.exec_start = sched_clock();
6596
b29739f9 6597 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6598 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6599 __set_task_cpu(idle, cpu);
1da177e4 6600
1da177e4 6601 rq->curr = rq->idle = idle;
4866cde0
NP
6602#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6603 idle->oncpu = 1;
6604#endif
1da177e4
LT
6605 spin_unlock_irqrestore(&rq->lock, flags);
6606
6607 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6608#if defined(CONFIG_PREEMPT)
6609 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6610#else
a1261f54 6611 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6612#endif
dd41f596
IM
6613 /*
6614 * The idle tasks have their own, simple scheduling class:
6615 */
6616 idle->sched_class = &idle_sched_class;
fb52607a 6617 ftrace_graph_init_task(idle);
1da177e4
LT
6618}
6619
6620/*
6621 * In a system that switches off the HZ timer nohz_cpu_mask
6622 * indicates which cpus entered this state. This is used
6623 * in the rcu update to wait only for active cpus. For system
6624 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6625 * always be CPU_BITS_NONE.
1da177e4 6626 */
6a7b3dc3 6627cpumask_var_t nohz_cpu_mask;
1da177e4 6628
19978ca6
IM
6629/*
6630 * Increase the granularity value when there are more CPUs,
6631 * because with more CPUs the 'effective latency' as visible
6632 * to users decreases. But the relationship is not linear,
6633 * so pick a second-best guess by going with the log2 of the
6634 * number of CPUs.
6635 *
6636 * This idea comes from the SD scheduler of Con Kolivas:
6637 */
6638static inline void sched_init_granularity(void)
6639{
6640 unsigned int factor = 1 + ilog2(num_online_cpus());
6641 const unsigned long limit = 200000000;
6642
6643 sysctl_sched_min_granularity *= factor;
6644 if (sysctl_sched_min_granularity > limit)
6645 sysctl_sched_min_granularity = limit;
6646
6647 sysctl_sched_latency *= factor;
6648 if (sysctl_sched_latency > limit)
6649 sysctl_sched_latency = limit;
6650
6651 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6652
6653 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6654}
6655
1da177e4
LT
6656#ifdef CONFIG_SMP
6657/*
6658 * This is how migration works:
6659 *
70b97a7f 6660 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6661 * runqueue and wake up that CPU's migration thread.
6662 * 2) we down() the locked semaphore => thread blocks.
6663 * 3) migration thread wakes up (implicitly it forces the migrated
6664 * thread off the CPU)
6665 * 4) it gets the migration request and checks whether the migrated
6666 * task is still in the wrong runqueue.
6667 * 5) if it's in the wrong runqueue then the migration thread removes
6668 * it and puts it into the right queue.
6669 * 6) migration thread up()s the semaphore.
6670 * 7) we wake up and the migration is done.
6671 */
6672
6673/*
6674 * Change a given task's CPU affinity. Migrate the thread to a
6675 * proper CPU and schedule it away if the CPU it's executing on
6676 * is removed from the allowed bitmask.
6677 *
6678 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6679 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6680 * call is not atomic; no spinlocks may be held.
6681 */
96f874e2 6682int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6683{
70b97a7f 6684 struct migration_req req;
1da177e4 6685 unsigned long flags;
70b97a7f 6686 struct rq *rq;
48f24c4d 6687 int ret = 0;
1da177e4
LT
6688
6689 rq = task_rq_lock(p, &flags);
96f874e2 6690 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
6691 ret = -EINVAL;
6692 goto out;
6693 }
6694
9985b0ba 6695 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 6696 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
6697 ret = -EINVAL;
6698 goto out;
6699 }
6700
73fe6aae 6701 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6702 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6703 else {
96f874e2
RR
6704 cpumask_copy(&p->cpus_allowed, new_mask);
6705 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6706 }
6707
1da177e4 6708 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6709 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6710 goto out;
6711
1e5ce4f4 6712 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
6713 /* Need help from migration thread: drop lock and wait. */
6714 task_rq_unlock(rq, &flags);
6715 wake_up_process(rq->migration_thread);
6716 wait_for_completion(&req.done);
6717 tlb_migrate_finish(p->mm);
6718 return 0;
6719 }
6720out:
6721 task_rq_unlock(rq, &flags);
48f24c4d 6722
1da177e4
LT
6723 return ret;
6724}
cd8ba7cd 6725EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6726
6727/*
41a2d6cf 6728 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6729 * this because either it can't run here any more (set_cpus_allowed()
6730 * away from this CPU, or CPU going down), or because we're
6731 * attempting to rebalance this task on exec (sched_exec).
6732 *
6733 * So we race with normal scheduler movements, but that's OK, as long
6734 * as the task is no longer on this CPU.
efc30814
KK
6735 *
6736 * Returns non-zero if task was successfully migrated.
1da177e4 6737 */
efc30814 6738static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6739{
70b97a7f 6740 struct rq *rq_dest, *rq_src;
dd41f596 6741 int ret = 0, on_rq;
1da177e4 6742
e761b772 6743 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6744 return ret;
1da177e4
LT
6745
6746 rq_src = cpu_rq(src_cpu);
6747 rq_dest = cpu_rq(dest_cpu);
6748
6749 double_rq_lock(rq_src, rq_dest);
6750 /* Already moved. */
6751 if (task_cpu(p) != src_cpu)
b1e38734 6752 goto done;
1da177e4 6753 /* Affinity changed (again). */
96f874e2 6754 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6755 goto fail;
1da177e4 6756
dd41f596 6757 on_rq = p->se.on_rq;
6e82a3be 6758 if (on_rq)
2e1cb74a 6759 deactivate_task(rq_src, p, 0);
6e82a3be 6760
1da177e4 6761 set_task_cpu(p, dest_cpu);
dd41f596
IM
6762 if (on_rq) {
6763 activate_task(rq_dest, p, 0);
15afe09b 6764 check_preempt_curr(rq_dest, p, 0);
1da177e4 6765 }
b1e38734 6766done:
efc30814 6767 ret = 1;
b1e38734 6768fail:
1da177e4 6769 double_rq_unlock(rq_src, rq_dest);
efc30814 6770 return ret;
1da177e4
LT
6771}
6772
6773/*
6774 * migration_thread - this is a highprio system thread that performs
6775 * thread migration by bumping thread off CPU then 'pushing' onto
6776 * another runqueue.
6777 */
95cdf3b7 6778static int migration_thread(void *data)
1da177e4 6779{
1da177e4 6780 int cpu = (long)data;
70b97a7f 6781 struct rq *rq;
1da177e4
LT
6782
6783 rq = cpu_rq(cpu);
6784 BUG_ON(rq->migration_thread != current);
6785
6786 set_current_state(TASK_INTERRUPTIBLE);
6787 while (!kthread_should_stop()) {
70b97a7f 6788 struct migration_req *req;
1da177e4 6789 struct list_head *head;
1da177e4 6790
1da177e4
LT
6791 spin_lock_irq(&rq->lock);
6792
6793 if (cpu_is_offline(cpu)) {
6794 spin_unlock_irq(&rq->lock);
6795 goto wait_to_die;
6796 }
6797
6798 if (rq->active_balance) {
6799 active_load_balance(rq, cpu);
6800 rq->active_balance = 0;
6801 }
6802
6803 head = &rq->migration_queue;
6804
6805 if (list_empty(head)) {
6806 spin_unlock_irq(&rq->lock);
6807 schedule();
6808 set_current_state(TASK_INTERRUPTIBLE);
6809 continue;
6810 }
70b97a7f 6811 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6812 list_del_init(head->next);
6813
674311d5
NP
6814 spin_unlock(&rq->lock);
6815 __migrate_task(req->task, cpu, req->dest_cpu);
6816 local_irq_enable();
1da177e4
LT
6817
6818 complete(&req->done);
6819 }
6820 __set_current_state(TASK_RUNNING);
6821 return 0;
6822
6823wait_to_die:
6824 /* Wait for kthread_stop */
6825 set_current_state(TASK_INTERRUPTIBLE);
6826 while (!kthread_should_stop()) {
6827 schedule();
6828 set_current_state(TASK_INTERRUPTIBLE);
6829 }
6830 __set_current_state(TASK_RUNNING);
6831 return 0;
6832}
6833
6834#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6835
6836static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6837{
6838 int ret;
6839
6840 local_irq_disable();
6841 ret = __migrate_task(p, src_cpu, dest_cpu);
6842 local_irq_enable();
6843 return ret;
6844}
6845
054b9108 6846/*
3a4fa0a2 6847 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 6848 */
48f24c4d 6849static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6850{
70b97a7f 6851 int dest_cpu;
6ca09dfc 6852 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
1da177e4 6853
e76bd8d9
RR
6854again:
6855 /* Look for allowed, online CPU in same node. */
6856 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6857 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6858 goto move;
3a5c359a 6859
e76bd8d9
RR
6860 /* Any allowed, online CPU? */
6861 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6862 if (dest_cpu < nr_cpu_ids)
6863 goto move;
3a5c359a 6864
e76bd8d9
RR
6865 /* No more Mr. Nice Guy. */
6866 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
6867 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6868 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 6869
e76bd8d9
RR
6870 /*
6871 * Don't tell them about moving exiting tasks or
6872 * kernel threads (both mm NULL), since they never
6873 * leave kernel.
6874 */
6875 if (p->mm && printk_ratelimit()) {
6876 printk(KERN_INFO "process %d (%s) no "
6877 "longer affine to cpu%d\n",
6878 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 6879 }
e76bd8d9
RR
6880 }
6881
6882move:
6883 /* It can have affinity changed while we were choosing. */
6884 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6885 goto again;
1da177e4
LT
6886}
6887
6888/*
6889 * While a dead CPU has no uninterruptible tasks queued at this point,
6890 * it might still have a nonzero ->nr_uninterruptible counter, because
6891 * for performance reasons the counter is not stricly tracking tasks to
6892 * their home CPUs. So we just add the counter to another CPU's counter,
6893 * to keep the global sum constant after CPU-down:
6894 */
70b97a7f 6895static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6896{
1e5ce4f4 6897 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
6898 unsigned long flags;
6899
6900 local_irq_save(flags);
6901 double_rq_lock(rq_src, rq_dest);
6902 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6903 rq_src->nr_uninterruptible = 0;
6904 double_rq_unlock(rq_src, rq_dest);
6905 local_irq_restore(flags);
6906}
6907
6908/* Run through task list and migrate tasks from the dead cpu. */
6909static void migrate_live_tasks(int src_cpu)
6910{
48f24c4d 6911 struct task_struct *p, *t;
1da177e4 6912
f7b4cddc 6913 read_lock(&tasklist_lock);
1da177e4 6914
48f24c4d
IM
6915 do_each_thread(t, p) {
6916 if (p == current)
1da177e4
LT
6917 continue;
6918
48f24c4d
IM
6919 if (task_cpu(p) == src_cpu)
6920 move_task_off_dead_cpu(src_cpu, p);
6921 } while_each_thread(t, p);
1da177e4 6922
f7b4cddc 6923 read_unlock(&tasklist_lock);
1da177e4
LT
6924}
6925
dd41f596
IM
6926/*
6927 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6928 * It does so by boosting its priority to highest possible.
6929 * Used by CPU offline code.
1da177e4
LT
6930 */
6931void sched_idle_next(void)
6932{
48f24c4d 6933 int this_cpu = smp_processor_id();
70b97a7f 6934 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6935 struct task_struct *p = rq->idle;
6936 unsigned long flags;
6937
6938 /* cpu has to be offline */
48f24c4d 6939 BUG_ON(cpu_online(this_cpu));
1da177e4 6940
48f24c4d
IM
6941 /*
6942 * Strictly not necessary since rest of the CPUs are stopped by now
6943 * and interrupts disabled on the current cpu.
1da177e4
LT
6944 */
6945 spin_lock_irqsave(&rq->lock, flags);
6946
dd41f596 6947 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6948
94bc9a7b
DA
6949 update_rq_clock(rq);
6950 activate_task(rq, p, 0);
1da177e4
LT
6951
6952 spin_unlock_irqrestore(&rq->lock, flags);
6953}
6954
48f24c4d
IM
6955/*
6956 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6957 * offline.
6958 */
6959void idle_task_exit(void)
6960{
6961 struct mm_struct *mm = current->active_mm;
6962
6963 BUG_ON(cpu_online(smp_processor_id()));
6964
6965 if (mm != &init_mm)
6966 switch_mm(mm, &init_mm, current);
6967 mmdrop(mm);
6968}
6969
054b9108 6970/* called under rq->lock with disabled interrupts */
36c8b586 6971static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6972{
70b97a7f 6973 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6974
6975 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6976 BUG_ON(!p->exit_state);
1da177e4
LT
6977
6978 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6979 BUG_ON(p->state == TASK_DEAD);
1da177e4 6980
48f24c4d 6981 get_task_struct(p);
1da177e4
LT
6982
6983 /*
6984 * Drop lock around migration; if someone else moves it,
41a2d6cf 6985 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6986 * fine.
6987 */
f7b4cddc 6988 spin_unlock_irq(&rq->lock);
48f24c4d 6989 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6990 spin_lock_irq(&rq->lock);
1da177e4 6991
48f24c4d 6992 put_task_struct(p);
1da177e4
LT
6993}
6994
6995/* release_task() removes task from tasklist, so we won't find dead tasks. */
6996static void migrate_dead_tasks(unsigned int dead_cpu)
6997{
70b97a7f 6998 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6999 struct task_struct *next;
48f24c4d 7000
dd41f596
IM
7001 for ( ; ; ) {
7002 if (!rq->nr_running)
7003 break;
a8e504d2 7004 update_rq_clock(rq);
b67802ea 7005 next = pick_next_task(rq);
dd41f596
IM
7006 if (!next)
7007 break;
79c53799 7008 next->sched_class->put_prev_task(rq, next);
dd41f596 7009 migrate_dead(dead_cpu, next);
e692ab53 7010
1da177e4
LT
7011 }
7012}
7013#endif /* CONFIG_HOTPLUG_CPU */
7014
e692ab53
NP
7015#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7016
7017static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7018 {
7019 .procname = "sched_domain",
c57baf1e 7020 .mode = 0555,
e0361851 7021 },
38605cae 7022 {0, },
e692ab53
NP
7023};
7024
7025static struct ctl_table sd_ctl_root[] = {
e0361851 7026 {
c57baf1e 7027 .ctl_name = CTL_KERN,
e0361851 7028 .procname = "kernel",
c57baf1e 7029 .mode = 0555,
e0361851
AD
7030 .child = sd_ctl_dir,
7031 },
38605cae 7032 {0, },
e692ab53
NP
7033};
7034
7035static struct ctl_table *sd_alloc_ctl_entry(int n)
7036{
7037 struct ctl_table *entry =
5cf9f062 7038 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7039
e692ab53
NP
7040 return entry;
7041}
7042
6382bc90
MM
7043static void sd_free_ctl_entry(struct ctl_table **tablep)
7044{
cd790076 7045 struct ctl_table *entry;
6382bc90 7046
cd790076
MM
7047 /*
7048 * In the intermediate directories, both the child directory and
7049 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7050 * will always be set. In the lowest directory the names are
cd790076
MM
7051 * static strings and all have proc handlers.
7052 */
7053 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7054 if (entry->child)
7055 sd_free_ctl_entry(&entry->child);
cd790076
MM
7056 if (entry->proc_handler == NULL)
7057 kfree(entry->procname);
7058 }
6382bc90
MM
7059
7060 kfree(*tablep);
7061 *tablep = NULL;
7062}
7063
e692ab53 7064static void
e0361851 7065set_table_entry(struct ctl_table *entry,
e692ab53
NP
7066 const char *procname, void *data, int maxlen,
7067 mode_t mode, proc_handler *proc_handler)
7068{
e692ab53
NP
7069 entry->procname = procname;
7070 entry->data = data;
7071 entry->maxlen = maxlen;
7072 entry->mode = mode;
7073 entry->proc_handler = proc_handler;
7074}
7075
7076static struct ctl_table *
7077sd_alloc_ctl_domain_table(struct sched_domain *sd)
7078{
a5d8c348 7079 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7080
ad1cdc1d
MM
7081 if (table == NULL)
7082 return NULL;
7083
e0361851 7084 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7085 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7086 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7087 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7088 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7089 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7090 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7091 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7092 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7093 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7094 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7095 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7096 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7097 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7098 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7099 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7100 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7101 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7102 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7103 &sd->cache_nice_tries,
7104 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7105 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7106 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7107 set_table_entry(&table[11], "name", sd->name,
7108 CORENAME_MAX_SIZE, 0444, proc_dostring);
7109 /* &table[12] is terminator */
e692ab53
NP
7110
7111 return table;
7112}
7113
9a4e7159 7114static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7115{
7116 struct ctl_table *entry, *table;
7117 struct sched_domain *sd;
7118 int domain_num = 0, i;
7119 char buf[32];
7120
7121 for_each_domain(cpu, sd)
7122 domain_num++;
7123 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7124 if (table == NULL)
7125 return NULL;
e692ab53
NP
7126
7127 i = 0;
7128 for_each_domain(cpu, sd) {
7129 snprintf(buf, 32, "domain%d", i);
e692ab53 7130 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7131 entry->mode = 0555;
e692ab53
NP
7132 entry->child = sd_alloc_ctl_domain_table(sd);
7133 entry++;
7134 i++;
7135 }
7136 return table;
7137}
7138
7139static struct ctl_table_header *sd_sysctl_header;
6382bc90 7140static void register_sched_domain_sysctl(void)
e692ab53
NP
7141{
7142 int i, cpu_num = num_online_cpus();
7143 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7144 char buf[32];
7145
7378547f
MM
7146 WARN_ON(sd_ctl_dir[0].child);
7147 sd_ctl_dir[0].child = entry;
7148
ad1cdc1d
MM
7149 if (entry == NULL)
7150 return;
7151
97b6ea7b 7152 for_each_online_cpu(i) {
e692ab53 7153 snprintf(buf, 32, "cpu%d", i);
e692ab53 7154 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7155 entry->mode = 0555;
e692ab53 7156 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7157 entry++;
e692ab53 7158 }
7378547f
MM
7159
7160 WARN_ON(sd_sysctl_header);
e692ab53
NP
7161 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7162}
6382bc90 7163
7378547f 7164/* may be called multiple times per register */
6382bc90
MM
7165static void unregister_sched_domain_sysctl(void)
7166{
7378547f
MM
7167 if (sd_sysctl_header)
7168 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7169 sd_sysctl_header = NULL;
7378547f
MM
7170 if (sd_ctl_dir[0].child)
7171 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7172}
e692ab53 7173#else
6382bc90
MM
7174static void register_sched_domain_sysctl(void)
7175{
7176}
7177static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7178{
7179}
7180#endif
7181
1f11eb6a
GH
7182static void set_rq_online(struct rq *rq)
7183{
7184 if (!rq->online) {
7185 const struct sched_class *class;
7186
c6c4927b 7187 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7188 rq->online = 1;
7189
7190 for_each_class(class) {
7191 if (class->rq_online)
7192 class->rq_online(rq);
7193 }
7194 }
7195}
7196
7197static void set_rq_offline(struct rq *rq)
7198{
7199 if (rq->online) {
7200 const struct sched_class *class;
7201
7202 for_each_class(class) {
7203 if (class->rq_offline)
7204 class->rq_offline(rq);
7205 }
7206
c6c4927b 7207 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7208 rq->online = 0;
7209 }
7210}
7211
1da177e4
LT
7212/*
7213 * migration_call - callback that gets triggered when a CPU is added.
7214 * Here we can start up the necessary migration thread for the new CPU.
7215 */
48f24c4d
IM
7216static int __cpuinit
7217migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7218{
1da177e4 7219 struct task_struct *p;
48f24c4d 7220 int cpu = (long)hcpu;
1da177e4 7221 unsigned long flags;
70b97a7f 7222 struct rq *rq;
1da177e4
LT
7223
7224 switch (action) {
5be9361c 7225
1da177e4 7226 case CPU_UP_PREPARE:
8bb78442 7227 case CPU_UP_PREPARE_FROZEN:
dd41f596 7228 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7229 if (IS_ERR(p))
7230 return NOTIFY_BAD;
1da177e4
LT
7231 kthread_bind(p, cpu);
7232 /* Must be high prio: stop_machine expects to yield to it. */
7233 rq = task_rq_lock(p, &flags);
dd41f596 7234 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
7235 task_rq_unlock(rq, &flags);
7236 cpu_rq(cpu)->migration_thread = p;
7237 break;
48f24c4d 7238
1da177e4 7239 case CPU_ONLINE:
8bb78442 7240 case CPU_ONLINE_FROZEN:
3a4fa0a2 7241 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7242 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7243
7244 /* Update our root-domain */
7245 rq = cpu_rq(cpu);
7246 spin_lock_irqsave(&rq->lock, flags);
7247 if (rq->rd) {
c6c4927b 7248 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7249
7250 set_rq_online(rq);
1f94ef59
GH
7251 }
7252 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7253 break;
48f24c4d 7254
1da177e4
LT
7255#ifdef CONFIG_HOTPLUG_CPU
7256 case CPU_UP_CANCELED:
8bb78442 7257 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7258 if (!cpu_rq(cpu)->migration_thread)
7259 break;
41a2d6cf 7260 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7261 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7262 cpumask_any(cpu_online_mask));
1da177e4
LT
7263 kthread_stop(cpu_rq(cpu)->migration_thread);
7264 cpu_rq(cpu)->migration_thread = NULL;
7265 break;
48f24c4d 7266
1da177e4 7267 case CPU_DEAD:
8bb78442 7268 case CPU_DEAD_FROZEN:
470fd646 7269 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7270 migrate_live_tasks(cpu);
7271 rq = cpu_rq(cpu);
7272 kthread_stop(rq->migration_thread);
7273 rq->migration_thread = NULL;
7274 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7275 spin_lock_irq(&rq->lock);
a8e504d2 7276 update_rq_clock(rq);
2e1cb74a 7277 deactivate_task(rq, rq->idle, 0);
1da177e4 7278 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7279 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7280 rq->idle->sched_class = &idle_sched_class;
1da177e4 7281 migrate_dead_tasks(cpu);
d2da272a 7282 spin_unlock_irq(&rq->lock);
470fd646 7283 cpuset_unlock();
1da177e4
LT
7284 migrate_nr_uninterruptible(rq);
7285 BUG_ON(rq->nr_running != 0);
7286
41a2d6cf
IM
7287 /*
7288 * No need to migrate the tasks: it was best-effort if
7289 * they didn't take sched_hotcpu_mutex. Just wake up
7290 * the requestors.
7291 */
1da177e4
LT
7292 spin_lock_irq(&rq->lock);
7293 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7294 struct migration_req *req;
7295
1da177e4 7296 req = list_entry(rq->migration_queue.next,
70b97a7f 7297 struct migration_req, list);
1da177e4 7298 list_del_init(&req->list);
9a2bd244 7299 spin_unlock_irq(&rq->lock);
1da177e4 7300 complete(&req->done);
9a2bd244 7301 spin_lock_irq(&rq->lock);
1da177e4
LT
7302 }
7303 spin_unlock_irq(&rq->lock);
7304 break;
57d885fe 7305
08f503b0
GH
7306 case CPU_DYING:
7307 case CPU_DYING_FROZEN:
57d885fe
GH
7308 /* Update our root-domain */
7309 rq = cpu_rq(cpu);
7310 spin_lock_irqsave(&rq->lock, flags);
7311 if (rq->rd) {
c6c4927b 7312 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7313 set_rq_offline(rq);
57d885fe
GH
7314 }
7315 spin_unlock_irqrestore(&rq->lock, flags);
7316 break;
1da177e4
LT
7317#endif
7318 }
7319 return NOTIFY_OK;
7320}
7321
f38b0820
PM
7322/*
7323 * Register at high priority so that task migration (migrate_all_tasks)
7324 * happens before everything else. This has to be lower priority than
7325 * the notifier in the perf_counter subsystem, though.
1da177e4 7326 */
26c2143b 7327static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7328 .notifier_call = migration_call,
7329 .priority = 10
7330};
7331
7babe8db 7332static int __init migration_init(void)
1da177e4
LT
7333{
7334 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7335 int err;
48f24c4d
IM
7336
7337 /* Start one for the boot CPU: */
07dccf33
AM
7338 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7339 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7340 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7341 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
7342
7343 return err;
1da177e4 7344}
7babe8db 7345early_initcall(migration_init);
1da177e4
LT
7346#endif
7347
7348#ifdef CONFIG_SMP
476f3534 7349
3e9830dc 7350#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7351
7c16ec58 7352static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7353 struct cpumask *groupmask)
1da177e4 7354{
4dcf6aff 7355 struct sched_group *group = sd->groups;
434d53b0 7356 char str[256];
1da177e4 7357
968ea6d8 7358 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7359 cpumask_clear(groupmask);
4dcf6aff
IM
7360
7361 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7362
7363 if (!(sd->flags & SD_LOAD_BALANCE)) {
7364 printk("does not load-balance\n");
7365 if (sd->parent)
7366 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7367 " has parent");
7368 return -1;
41c7ce9a
NP
7369 }
7370
eefd796a 7371 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7372
758b2cdc 7373 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7374 printk(KERN_ERR "ERROR: domain->span does not contain "
7375 "CPU%d\n", cpu);
7376 }
758b2cdc 7377 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7378 printk(KERN_ERR "ERROR: domain->groups does not contain"
7379 " CPU%d\n", cpu);
7380 }
1da177e4 7381
4dcf6aff 7382 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7383 do {
4dcf6aff
IM
7384 if (!group) {
7385 printk("\n");
7386 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7387 break;
7388 }
7389
4dcf6aff
IM
7390 if (!group->__cpu_power) {
7391 printk(KERN_CONT "\n");
7392 printk(KERN_ERR "ERROR: domain->cpu_power not "
7393 "set\n");
7394 break;
7395 }
1da177e4 7396
758b2cdc 7397 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7398 printk(KERN_CONT "\n");
7399 printk(KERN_ERR "ERROR: empty group\n");
7400 break;
7401 }
1da177e4 7402
758b2cdc 7403 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7404 printk(KERN_CONT "\n");
7405 printk(KERN_ERR "ERROR: repeated CPUs\n");
7406 break;
7407 }
1da177e4 7408
758b2cdc 7409 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7410
968ea6d8 7411 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 7412
4dcf6aff 7413 printk(KERN_CONT " %s", str);
381512cf
GS
7414 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7415 printk(KERN_CONT " (__cpu_power = %d)",
7416 group->__cpu_power);
7417 }
1da177e4 7418
4dcf6aff
IM
7419 group = group->next;
7420 } while (group != sd->groups);
7421 printk(KERN_CONT "\n");
1da177e4 7422
758b2cdc 7423 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7424 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7425
758b2cdc
RR
7426 if (sd->parent &&
7427 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7428 printk(KERN_ERR "ERROR: parent span is not a superset "
7429 "of domain->span\n");
7430 return 0;
7431}
1da177e4 7432
4dcf6aff
IM
7433static void sched_domain_debug(struct sched_domain *sd, int cpu)
7434{
d5dd3db1 7435 cpumask_var_t groupmask;
4dcf6aff 7436 int level = 0;
1da177e4 7437
4dcf6aff
IM
7438 if (!sd) {
7439 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7440 return;
7441 }
1da177e4 7442
4dcf6aff
IM
7443 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7444
d5dd3db1 7445 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7446 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7447 return;
7448 }
7449
4dcf6aff 7450 for (;;) {
7c16ec58 7451 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7452 break;
1da177e4
LT
7453 level++;
7454 sd = sd->parent;
33859f7f 7455 if (!sd)
4dcf6aff
IM
7456 break;
7457 }
d5dd3db1 7458 free_cpumask_var(groupmask);
1da177e4 7459}
6d6bc0ad 7460#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7461# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7462#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7463
1a20ff27 7464static int sd_degenerate(struct sched_domain *sd)
245af2c7 7465{
758b2cdc 7466 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7467 return 1;
7468
7469 /* Following flags need at least 2 groups */
7470 if (sd->flags & (SD_LOAD_BALANCE |
7471 SD_BALANCE_NEWIDLE |
7472 SD_BALANCE_FORK |
89c4710e
SS
7473 SD_BALANCE_EXEC |
7474 SD_SHARE_CPUPOWER |
7475 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7476 if (sd->groups != sd->groups->next)
7477 return 0;
7478 }
7479
7480 /* Following flags don't use groups */
7481 if (sd->flags & (SD_WAKE_IDLE |
7482 SD_WAKE_AFFINE |
7483 SD_WAKE_BALANCE))
7484 return 0;
7485
7486 return 1;
7487}
7488
48f24c4d
IM
7489static int
7490sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7491{
7492 unsigned long cflags = sd->flags, pflags = parent->flags;
7493
7494 if (sd_degenerate(parent))
7495 return 1;
7496
758b2cdc 7497 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7498 return 0;
7499
7500 /* Does parent contain flags not in child? */
7501 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7502 if (cflags & SD_WAKE_AFFINE)
7503 pflags &= ~SD_WAKE_BALANCE;
7504 /* Flags needing groups don't count if only 1 group in parent */
7505 if (parent->groups == parent->groups->next) {
7506 pflags &= ~(SD_LOAD_BALANCE |
7507 SD_BALANCE_NEWIDLE |
7508 SD_BALANCE_FORK |
89c4710e
SS
7509 SD_BALANCE_EXEC |
7510 SD_SHARE_CPUPOWER |
7511 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7512 if (nr_node_ids == 1)
7513 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7514 }
7515 if (~cflags & pflags)
7516 return 0;
7517
7518 return 1;
7519}
7520
c6c4927b
RR
7521static void free_rootdomain(struct root_domain *rd)
7522{
68e74568
RR
7523 cpupri_cleanup(&rd->cpupri);
7524
c6c4927b
RR
7525 free_cpumask_var(rd->rto_mask);
7526 free_cpumask_var(rd->online);
7527 free_cpumask_var(rd->span);
7528 kfree(rd);
7529}
7530
57d885fe
GH
7531static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7532{
a0490fa3 7533 struct root_domain *old_rd = NULL;
57d885fe 7534 unsigned long flags;
57d885fe
GH
7535
7536 spin_lock_irqsave(&rq->lock, flags);
7537
7538 if (rq->rd) {
a0490fa3 7539 old_rd = rq->rd;
57d885fe 7540
c6c4927b 7541 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7542 set_rq_offline(rq);
57d885fe 7543
c6c4927b 7544 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7545
a0490fa3
IM
7546 /*
7547 * If we dont want to free the old_rt yet then
7548 * set old_rd to NULL to skip the freeing later
7549 * in this function:
7550 */
7551 if (!atomic_dec_and_test(&old_rd->refcount))
7552 old_rd = NULL;
57d885fe
GH
7553 }
7554
7555 atomic_inc(&rd->refcount);
7556 rq->rd = rd;
7557
c6c4927b
RR
7558 cpumask_set_cpu(rq->cpu, rd->span);
7559 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 7560 set_rq_online(rq);
57d885fe
GH
7561
7562 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7563
7564 if (old_rd)
7565 free_rootdomain(old_rd);
57d885fe
GH
7566}
7567
db2f59c8 7568static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe
GH
7569{
7570 memset(rd, 0, sizeof(*rd));
7571
c6c4927b
RR
7572 if (bootmem) {
7573 alloc_bootmem_cpumask_var(&def_root_domain.span);
7574 alloc_bootmem_cpumask_var(&def_root_domain.online);
7575 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
68e74568 7576 cpupri_init(&rd->cpupri, true);
c6c4927b
RR
7577 return 0;
7578 }
7579
7580 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 7581 goto out;
c6c4927b
RR
7582 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7583 goto free_span;
7584 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7585 goto free_online;
6e0534f2 7586
68e74568
RR
7587 if (cpupri_init(&rd->cpupri, false) != 0)
7588 goto free_rto_mask;
c6c4927b 7589 return 0;
6e0534f2 7590
68e74568
RR
7591free_rto_mask:
7592 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7593free_online:
7594 free_cpumask_var(rd->online);
7595free_span:
7596 free_cpumask_var(rd->span);
0c910d28 7597out:
c6c4927b 7598 return -ENOMEM;
57d885fe
GH
7599}
7600
7601static void init_defrootdomain(void)
7602{
c6c4927b
RR
7603 init_rootdomain(&def_root_domain, true);
7604
57d885fe
GH
7605 atomic_set(&def_root_domain.refcount, 1);
7606}
7607
dc938520 7608static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7609{
7610 struct root_domain *rd;
7611
7612 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7613 if (!rd)
7614 return NULL;
7615
c6c4927b
RR
7616 if (init_rootdomain(rd, false) != 0) {
7617 kfree(rd);
7618 return NULL;
7619 }
57d885fe
GH
7620
7621 return rd;
7622}
7623
1da177e4 7624/*
0eab9146 7625 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7626 * hold the hotplug lock.
7627 */
0eab9146
IM
7628static void
7629cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7630{
70b97a7f 7631 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7632 struct sched_domain *tmp;
7633
7634 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7635 for (tmp = sd; tmp; ) {
245af2c7
SS
7636 struct sched_domain *parent = tmp->parent;
7637 if (!parent)
7638 break;
f29c9b1c 7639
1a848870 7640 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7641 tmp->parent = parent->parent;
1a848870
SS
7642 if (parent->parent)
7643 parent->parent->child = tmp;
f29c9b1c
LZ
7644 } else
7645 tmp = tmp->parent;
245af2c7
SS
7646 }
7647
1a848870 7648 if (sd && sd_degenerate(sd)) {
245af2c7 7649 sd = sd->parent;
1a848870
SS
7650 if (sd)
7651 sd->child = NULL;
7652 }
1da177e4
LT
7653
7654 sched_domain_debug(sd, cpu);
7655
57d885fe 7656 rq_attach_root(rq, rd);
674311d5 7657 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7658}
7659
7660/* cpus with isolated domains */
dcc30a35 7661static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7662
7663/* Setup the mask of cpus configured for isolated domains */
7664static int __init isolated_cpu_setup(char *str)
7665{
968ea6d8 7666 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7667 return 1;
7668}
7669
8927f494 7670__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7671
7672/*
6711cab4
SS
7673 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7674 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7675 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7676 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7677 *
7678 * init_sched_build_groups will build a circular linked list of the groups
7679 * covered by the given span, and will set each group's ->cpumask correctly,
7680 * and ->cpu_power to 0.
7681 */
a616058b 7682static void
96f874e2
RR
7683init_sched_build_groups(const struct cpumask *span,
7684 const struct cpumask *cpu_map,
7685 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7686 struct sched_group **sg,
96f874e2
RR
7687 struct cpumask *tmpmask),
7688 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
7689{
7690 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
7691 int i;
7692
96f874e2 7693 cpumask_clear(covered);
7c16ec58 7694
abcd083a 7695 for_each_cpu(i, span) {
6711cab4 7696 struct sched_group *sg;
7c16ec58 7697 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
7698 int j;
7699
758b2cdc 7700 if (cpumask_test_cpu(i, covered))
1da177e4
LT
7701 continue;
7702
758b2cdc 7703 cpumask_clear(sched_group_cpus(sg));
5517d86b 7704 sg->__cpu_power = 0;
1da177e4 7705
abcd083a 7706 for_each_cpu(j, span) {
7c16ec58 7707 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7708 continue;
7709
96f874e2 7710 cpumask_set_cpu(j, covered);
758b2cdc 7711 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
7712 }
7713 if (!first)
7714 first = sg;
7715 if (last)
7716 last->next = sg;
7717 last = sg;
7718 }
7719 last->next = first;
7720}
7721
9c1cfda2 7722#define SD_NODES_PER_DOMAIN 16
1da177e4 7723
9c1cfda2 7724#ifdef CONFIG_NUMA
198e2f18 7725
9c1cfda2
JH
7726/**
7727 * find_next_best_node - find the next node to include in a sched_domain
7728 * @node: node whose sched_domain we're building
7729 * @used_nodes: nodes already in the sched_domain
7730 *
41a2d6cf 7731 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7732 * finds the closest node not already in the @used_nodes map.
7733 *
7734 * Should use nodemask_t.
7735 */
c5f59f08 7736static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7737{
7738 int i, n, val, min_val, best_node = 0;
7739
7740 min_val = INT_MAX;
7741
076ac2af 7742 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7743 /* Start at @node */
076ac2af 7744 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7745
7746 if (!nr_cpus_node(n))
7747 continue;
7748
7749 /* Skip already used nodes */
c5f59f08 7750 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7751 continue;
7752
7753 /* Simple min distance search */
7754 val = node_distance(node, n);
7755
7756 if (val < min_val) {
7757 min_val = val;
7758 best_node = n;
7759 }
7760 }
7761
c5f59f08 7762 node_set(best_node, *used_nodes);
9c1cfda2
JH
7763 return best_node;
7764}
7765
7766/**
7767 * sched_domain_node_span - get a cpumask for a node's sched_domain
7768 * @node: node whose cpumask we're constructing
73486722 7769 * @span: resulting cpumask
9c1cfda2 7770 *
41a2d6cf 7771 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7772 * should be one that prevents unnecessary balancing, but also spreads tasks
7773 * out optimally.
7774 */
96f874e2 7775static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7776{
c5f59f08 7777 nodemask_t used_nodes;
48f24c4d 7778 int i;
9c1cfda2 7779
6ca09dfc 7780 cpumask_clear(span);
c5f59f08 7781 nodes_clear(used_nodes);
9c1cfda2 7782
6ca09dfc 7783 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7784 node_set(node, used_nodes);
9c1cfda2
JH
7785
7786 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7787 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7788
6ca09dfc 7789 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7790 }
9c1cfda2 7791}
6d6bc0ad 7792#endif /* CONFIG_NUMA */
9c1cfda2 7793
5c45bf27 7794int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7795
6c99e9ad
RR
7796/*
7797 * The cpus mask in sched_group and sched_domain hangs off the end.
7798 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7799 * for nr_cpu_ids < CONFIG_NR_CPUS.
7800 */
7801struct static_sched_group {
7802 struct sched_group sg;
7803 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7804};
7805
7806struct static_sched_domain {
7807 struct sched_domain sd;
7808 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7809};
7810
9c1cfda2 7811/*
48f24c4d 7812 * SMT sched-domains:
9c1cfda2 7813 */
1da177e4 7814#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
7815static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7816static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 7817
41a2d6cf 7818static int
96f874e2
RR
7819cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7820 struct sched_group **sg, struct cpumask *unused)
1da177e4 7821{
6711cab4 7822 if (sg)
6c99e9ad 7823 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
7824 return cpu;
7825}
6d6bc0ad 7826#endif /* CONFIG_SCHED_SMT */
1da177e4 7827
48f24c4d
IM
7828/*
7829 * multi-core sched-domains:
7830 */
1e9f28fa 7831#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
7832static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7833static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 7834#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7835
7836#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7837static int
96f874e2
RR
7838cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7839 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 7840{
6711cab4 7841 int group;
7c16ec58 7842
c69fc56d 7843 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 7844 group = cpumask_first(mask);
6711cab4 7845 if (sg)
6c99e9ad 7846 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 7847 return group;
1e9f28fa
SS
7848}
7849#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7850static int
96f874e2
RR
7851cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7852 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 7853{
6711cab4 7854 if (sg)
6c99e9ad 7855 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
7856 return cpu;
7857}
7858#endif
7859
6c99e9ad
RR
7860static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7861static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 7862
41a2d6cf 7863static int
96f874e2
RR
7864cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7865 struct sched_group **sg, struct cpumask *mask)
1da177e4 7866{
6711cab4 7867 int group;
48f24c4d 7868#ifdef CONFIG_SCHED_MC
6ca09dfc 7869 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 7870 group = cpumask_first(mask);
1e9f28fa 7871#elif defined(CONFIG_SCHED_SMT)
c69fc56d 7872 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 7873 group = cpumask_first(mask);
1da177e4 7874#else
6711cab4 7875 group = cpu;
1da177e4 7876#endif
6711cab4 7877 if (sg)
6c99e9ad 7878 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 7879 return group;
1da177e4
LT
7880}
7881
7882#ifdef CONFIG_NUMA
1da177e4 7883/*
9c1cfda2
JH
7884 * The init_sched_build_groups can't handle what we want to do with node
7885 * groups, so roll our own. Now each node has its own list of groups which
7886 * gets dynamically allocated.
1da177e4 7887 */
62ea9ceb 7888static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 7889static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7890
62ea9ceb 7891static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 7892static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 7893
96f874e2
RR
7894static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7895 struct sched_group **sg,
7896 struct cpumask *nodemask)
9c1cfda2 7897{
6711cab4
SS
7898 int group;
7899
6ca09dfc 7900 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 7901 group = cpumask_first(nodemask);
6711cab4
SS
7902
7903 if (sg)
6c99e9ad 7904 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7905 return group;
1da177e4 7906}
6711cab4 7907
08069033
SS
7908static void init_numa_sched_groups_power(struct sched_group *group_head)
7909{
7910 struct sched_group *sg = group_head;
7911 int j;
7912
7913 if (!sg)
7914 return;
3a5c359a 7915 do {
758b2cdc 7916 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7917 struct sched_domain *sd;
08069033 7918
6c99e9ad 7919 sd = &per_cpu(phys_domains, j).sd;
758b2cdc 7920 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
3a5c359a
AK
7921 /*
7922 * Only add "power" once for each
7923 * physical package.
7924 */
7925 continue;
7926 }
08069033 7927
3a5c359a
AK
7928 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7929 }
7930 sg = sg->next;
7931 } while (sg != group_head);
08069033 7932}
6d6bc0ad 7933#endif /* CONFIG_NUMA */
1da177e4 7934
a616058b 7935#ifdef CONFIG_NUMA
51888ca2 7936/* Free memory allocated for various sched_group structures */
96f874e2
RR
7937static void free_sched_groups(const struct cpumask *cpu_map,
7938 struct cpumask *nodemask)
51888ca2 7939{
a616058b 7940 int cpu, i;
51888ca2 7941
abcd083a 7942 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7943 struct sched_group **sched_group_nodes
7944 = sched_group_nodes_bycpu[cpu];
7945
51888ca2
SV
7946 if (!sched_group_nodes)
7947 continue;
7948
076ac2af 7949 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7950 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7951
6ca09dfc 7952 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7953 if (cpumask_empty(nodemask))
51888ca2
SV
7954 continue;
7955
7956 if (sg == NULL)
7957 continue;
7958 sg = sg->next;
7959next_sg:
7960 oldsg = sg;
7961 sg = sg->next;
7962 kfree(oldsg);
7963 if (oldsg != sched_group_nodes[i])
7964 goto next_sg;
7965 }
7966 kfree(sched_group_nodes);
7967 sched_group_nodes_bycpu[cpu] = NULL;
7968 }
51888ca2 7969}
6d6bc0ad 7970#else /* !CONFIG_NUMA */
96f874e2
RR
7971static void free_sched_groups(const struct cpumask *cpu_map,
7972 struct cpumask *nodemask)
a616058b
SS
7973{
7974}
6d6bc0ad 7975#endif /* CONFIG_NUMA */
51888ca2 7976
89c4710e
SS
7977/*
7978 * Initialize sched groups cpu_power.
7979 *
7980 * cpu_power indicates the capacity of sched group, which is used while
7981 * distributing the load between different sched groups in a sched domain.
7982 * Typically cpu_power for all the groups in a sched domain will be same unless
7983 * there are asymmetries in the topology. If there are asymmetries, group
7984 * having more cpu_power will pickup more load compared to the group having
7985 * less cpu_power.
7986 *
7987 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7988 * the maximum number of tasks a group can handle in the presence of other idle
7989 * or lightly loaded groups in the same sched domain.
7990 */
7991static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7992{
7993 struct sched_domain *child;
7994 struct sched_group *group;
7995
7996 WARN_ON(!sd || !sd->groups);
7997
758b2cdc 7998 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
89c4710e
SS
7999 return;
8000
8001 child = sd->child;
8002
5517d86b
ED
8003 sd->groups->__cpu_power = 0;
8004
89c4710e
SS
8005 /*
8006 * For perf policy, if the groups in child domain share resources
8007 * (for example cores sharing some portions of the cache hierarchy
8008 * or SMT), then set this domain groups cpu_power such that each group
8009 * can handle only one task, when there are other idle groups in the
8010 * same sched domain.
8011 */
8012 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8013 (child->flags &
8014 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 8015 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
8016 return;
8017 }
8018
89c4710e
SS
8019 /*
8020 * add cpu_power of each child group to this groups cpu_power
8021 */
8022 group = child->groups;
8023 do {
5517d86b 8024 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
8025 group = group->next;
8026 } while (group != child->groups);
8027}
8028
7c16ec58
MT
8029/*
8030 * Initializers for schedule domains
8031 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8032 */
8033
a5d8c348
IM
8034#ifdef CONFIG_SCHED_DEBUG
8035# define SD_INIT_NAME(sd, type) sd->name = #type
8036#else
8037# define SD_INIT_NAME(sd, type) do { } while (0)
8038#endif
8039
7c16ec58 8040#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8041
7c16ec58
MT
8042#define SD_INIT_FUNC(type) \
8043static noinline void sd_init_##type(struct sched_domain *sd) \
8044{ \
8045 memset(sd, 0, sizeof(*sd)); \
8046 *sd = SD_##type##_INIT; \
1d3504fc 8047 sd->level = SD_LV_##type; \
a5d8c348 8048 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8049}
8050
8051SD_INIT_FUNC(CPU)
8052#ifdef CONFIG_NUMA
8053 SD_INIT_FUNC(ALLNODES)
8054 SD_INIT_FUNC(NODE)
8055#endif
8056#ifdef CONFIG_SCHED_SMT
8057 SD_INIT_FUNC(SIBLING)
8058#endif
8059#ifdef CONFIG_SCHED_MC
8060 SD_INIT_FUNC(MC)
8061#endif
8062
1d3504fc
HS
8063static int default_relax_domain_level = -1;
8064
8065static int __init setup_relax_domain_level(char *str)
8066{
30e0e178
LZ
8067 unsigned long val;
8068
8069 val = simple_strtoul(str, NULL, 0);
8070 if (val < SD_LV_MAX)
8071 default_relax_domain_level = val;
8072
1d3504fc
HS
8073 return 1;
8074}
8075__setup("relax_domain_level=", setup_relax_domain_level);
8076
8077static void set_domain_attribute(struct sched_domain *sd,
8078 struct sched_domain_attr *attr)
8079{
8080 int request;
8081
8082 if (!attr || attr->relax_domain_level < 0) {
8083 if (default_relax_domain_level < 0)
8084 return;
8085 else
8086 request = default_relax_domain_level;
8087 } else
8088 request = attr->relax_domain_level;
8089 if (request < sd->level) {
8090 /* turn off idle balance on this domain */
8091 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8092 } else {
8093 /* turn on idle balance on this domain */
8094 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8095 }
8096}
8097
1da177e4 8098/*
1a20ff27
DG
8099 * Build sched domains for a given set of cpus and attach the sched domains
8100 * to the individual cpus
1da177e4 8101 */
96f874e2 8102static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 8103 struct sched_domain_attr *attr)
1da177e4 8104{
3404c8d9 8105 int i, err = -ENOMEM;
57d885fe 8106 struct root_domain *rd;
3404c8d9
RR
8107 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8108 tmpmask;
d1b55138 8109#ifdef CONFIG_NUMA
3404c8d9 8110 cpumask_var_t domainspan, covered, notcovered;
d1b55138 8111 struct sched_group **sched_group_nodes = NULL;
6711cab4 8112 int sd_allnodes = 0;
d1b55138 8113
3404c8d9
RR
8114 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8115 goto out;
8116 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8117 goto free_domainspan;
8118 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8119 goto free_covered;
8120#endif
8121
8122 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8123 goto free_notcovered;
8124 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8125 goto free_nodemask;
8126 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8127 goto free_this_sibling_map;
8128 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8129 goto free_this_core_map;
8130 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8131 goto free_send_covered;
8132
8133#ifdef CONFIG_NUMA
d1b55138
JH
8134 /*
8135 * Allocate the per-node list of sched groups
8136 */
076ac2af 8137 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 8138 GFP_KERNEL);
d1b55138
JH
8139 if (!sched_group_nodes) {
8140 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 8141 goto free_tmpmask;
d1b55138 8142 }
d1b55138 8143#endif
1da177e4 8144
dc938520 8145 rd = alloc_rootdomain();
57d885fe
GH
8146 if (!rd) {
8147 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 8148 goto free_sched_groups;
7c16ec58 8149 }
6d21cd62 8150
7c16ec58 8151#ifdef CONFIG_NUMA
96f874e2 8152 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
8153#endif
8154
1da177e4 8155 /*
1a20ff27 8156 * Set up domains for cpus specified by the cpu_map.
1da177e4 8157 */
abcd083a 8158 for_each_cpu(i, cpu_map) {
1da177e4 8159 struct sched_domain *sd = NULL, *p;
1da177e4 8160
6ca09dfc 8161 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
8162
8163#ifdef CONFIG_NUMA
96f874e2
RR
8164 if (cpumask_weight(cpu_map) >
8165 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 8166 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 8167 SD_INIT(sd, ALLNODES);
1d3504fc 8168 set_domain_attribute(sd, attr);
758b2cdc 8169 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 8170 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 8171 p = sd;
6711cab4 8172 sd_allnodes = 1;
9c1cfda2
JH
8173 } else
8174 p = NULL;
8175
62ea9ceb 8176 sd = &per_cpu(node_domains, i).sd;
7c16ec58 8177 SD_INIT(sd, NODE);
1d3504fc 8178 set_domain_attribute(sd, attr);
758b2cdc 8179 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 8180 sd->parent = p;
1a848870
SS
8181 if (p)
8182 p->child = sd;
758b2cdc
RR
8183 cpumask_and(sched_domain_span(sd),
8184 sched_domain_span(sd), cpu_map);
1da177e4
LT
8185#endif
8186
8187 p = sd;
6c99e9ad 8188 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 8189 SD_INIT(sd, CPU);
1d3504fc 8190 set_domain_attribute(sd, attr);
758b2cdc 8191 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 8192 sd->parent = p;
1a848870
SS
8193 if (p)
8194 p->child = sd;
7c16ec58 8195 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 8196
1e9f28fa
SS
8197#ifdef CONFIG_SCHED_MC
8198 p = sd;
6c99e9ad 8199 sd = &per_cpu(core_domains, i).sd;
7c16ec58 8200 SD_INIT(sd, MC);
1d3504fc 8201 set_domain_attribute(sd, attr);
6ca09dfc
MT
8202 cpumask_and(sched_domain_span(sd), cpu_map,
8203 cpu_coregroup_mask(i));
1e9f28fa 8204 sd->parent = p;
1a848870 8205 p->child = sd;
7c16ec58 8206 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
8207#endif
8208
1da177e4
LT
8209#ifdef CONFIG_SCHED_SMT
8210 p = sd;
6c99e9ad 8211 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 8212 SD_INIT(sd, SIBLING);
1d3504fc 8213 set_domain_attribute(sd, attr);
758b2cdc 8214 cpumask_and(sched_domain_span(sd),
c69fc56d 8215 topology_thread_cpumask(i), cpu_map);
1da177e4 8216 sd->parent = p;
1a848870 8217 p->child = sd;
7c16ec58 8218 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
8219#endif
8220 }
8221
8222#ifdef CONFIG_SCHED_SMT
8223 /* Set up CPU (sibling) groups */
abcd083a 8224 for_each_cpu(i, cpu_map) {
96f874e2 8225 cpumask_and(this_sibling_map,
c69fc56d 8226 topology_thread_cpumask(i), cpu_map);
96f874e2 8227 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
8228 continue;
8229
dd41f596 8230 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
8231 &cpu_to_cpu_group,
8232 send_covered, tmpmask);
1da177e4
LT
8233 }
8234#endif
8235
1e9f28fa
SS
8236#ifdef CONFIG_SCHED_MC
8237 /* Set up multi-core groups */
abcd083a 8238 for_each_cpu(i, cpu_map) {
6ca09dfc 8239 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 8240 if (i != cpumask_first(this_core_map))
1e9f28fa 8241 continue;
7c16ec58 8242
dd41f596 8243 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
8244 &cpu_to_core_group,
8245 send_covered, tmpmask);
1e9f28fa
SS
8246 }
8247#endif
8248
1da177e4 8249 /* Set up physical groups */
076ac2af 8250 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 8251 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8252 if (cpumask_empty(nodemask))
1da177e4
LT
8253 continue;
8254
7c16ec58
MT
8255 init_sched_build_groups(nodemask, cpu_map,
8256 &cpu_to_phys_group,
8257 send_covered, tmpmask);
1da177e4
LT
8258 }
8259
8260#ifdef CONFIG_NUMA
8261 /* Set up node groups */
7c16ec58 8262 if (sd_allnodes) {
7c16ec58
MT
8263 init_sched_build_groups(cpu_map, cpu_map,
8264 &cpu_to_allnodes_group,
8265 send_covered, tmpmask);
8266 }
9c1cfda2 8267
076ac2af 8268 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
8269 /* Set up node groups */
8270 struct sched_group *sg, *prev;
9c1cfda2
JH
8271 int j;
8272
96f874e2 8273 cpumask_clear(covered);
6ca09dfc 8274 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8275 if (cpumask_empty(nodemask)) {
d1b55138 8276 sched_group_nodes[i] = NULL;
9c1cfda2 8277 continue;
d1b55138 8278 }
9c1cfda2 8279
4bdbaad3 8280 sched_domain_node_span(i, domainspan);
96f874e2 8281 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 8282
6c99e9ad
RR
8283 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8284 GFP_KERNEL, i);
51888ca2
SV
8285 if (!sg) {
8286 printk(KERN_WARNING "Can not alloc domain group for "
8287 "node %d\n", i);
8288 goto error;
8289 }
9c1cfda2 8290 sched_group_nodes[i] = sg;
abcd083a 8291 for_each_cpu(j, nodemask) {
9c1cfda2 8292 struct sched_domain *sd;
9761eea8 8293
62ea9ceb 8294 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 8295 sd->groups = sg;
9c1cfda2 8296 }
5517d86b 8297 sg->__cpu_power = 0;
758b2cdc 8298 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 8299 sg->next = sg;
96f874e2 8300 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
8301 prev = sg;
8302
076ac2af 8303 for (j = 0; j < nr_node_ids; j++) {
076ac2af 8304 int n = (i + j) % nr_node_ids;
9c1cfda2 8305
96f874e2
RR
8306 cpumask_complement(notcovered, covered);
8307 cpumask_and(tmpmask, notcovered, cpu_map);
8308 cpumask_and(tmpmask, tmpmask, domainspan);
8309 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8310 break;
8311
6ca09dfc 8312 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 8313 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8314 continue;
8315
6c99e9ad
RR
8316 sg = kmalloc_node(sizeof(struct sched_group) +
8317 cpumask_size(),
15f0b676 8318 GFP_KERNEL, i);
9c1cfda2
JH
8319 if (!sg) {
8320 printk(KERN_WARNING
8321 "Can not alloc domain group for node %d\n", j);
51888ca2 8322 goto error;
9c1cfda2 8323 }
5517d86b 8324 sg->__cpu_power = 0;
758b2cdc 8325 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 8326 sg->next = prev->next;
96f874e2 8327 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
8328 prev->next = sg;
8329 prev = sg;
8330 }
9c1cfda2 8331 }
1da177e4
LT
8332#endif
8333
8334 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8335#ifdef CONFIG_SCHED_SMT
abcd083a 8336 for_each_cpu(i, cpu_map) {
6c99e9ad 8337 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 8338
89c4710e 8339 init_sched_groups_power(i, sd);
5c45bf27 8340 }
1da177e4 8341#endif
1e9f28fa 8342#ifdef CONFIG_SCHED_MC
abcd083a 8343 for_each_cpu(i, cpu_map) {
6c99e9ad 8344 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 8345
89c4710e 8346 init_sched_groups_power(i, sd);
5c45bf27
SS
8347 }
8348#endif
1e9f28fa 8349
abcd083a 8350 for_each_cpu(i, cpu_map) {
6c99e9ad 8351 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 8352
89c4710e 8353 init_sched_groups_power(i, sd);
1da177e4
LT
8354 }
8355
9c1cfda2 8356#ifdef CONFIG_NUMA
076ac2af 8357 for (i = 0; i < nr_node_ids; i++)
08069033 8358 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 8359
6711cab4
SS
8360 if (sd_allnodes) {
8361 struct sched_group *sg;
f712c0c7 8362
96f874e2 8363 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 8364 tmpmask);
f712c0c7
SS
8365 init_numa_sched_groups_power(sg);
8366 }
9c1cfda2
JH
8367#endif
8368
1da177e4 8369 /* Attach the domains */
abcd083a 8370 for_each_cpu(i, cpu_map) {
1da177e4
LT
8371 struct sched_domain *sd;
8372#ifdef CONFIG_SCHED_SMT
6c99e9ad 8373 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8374#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8375 sd = &per_cpu(core_domains, i).sd;
1da177e4 8376#else
6c99e9ad 8377 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8378#endif
57d885fe 8379 cpu_attach_domain(sd, rd, i);
1da177e4 8380 }
51888ca2 8381
3404c8d9
RR
8382 err = 0;
8383
8384free_tmpmask:
8385 free_cpumask_var(tmpmask);
8386free_send_covered:
8387 free_cpumask_var(send_covered);
8388free_this_core_map:
8389 free_cpumask_var(this_core_map);
8390free_this_sibling_map:
8391 free_cpumask_var(this_sibling_map);
8392free_nodemask:
8393 free_cpumask_var(nodemask);
8394free_notcovered:
8395#ifdef CONFIG_NUMA
8396 free_cpumask_var(notcovered);
8397free_covered:
8398 free_cpumask_var(covered);
8399free_domainspan:
8400 free_cpumask_var(domainspan);
8401out:
8402#endif
8403 return err;
8404
8405free_sched_groups:
8406#ifdef CONFIG_NUMA
8407 kfree(sched_group_nodes);
8408#endif
8409 goto free_tmpmask;
51888ca2 8410
a616058b 8411#ifdef CONFIG_NUMA
51888ca2 8412error:
7c16ec58 8413 free_sched_groups(cpu_map, tmpmask);
c6c4927b 8414 free_rootdomain(rd);
3404c8d9 8415 goto free_tmpmask;
a616058b 8416#endif
1da177e4 8417}
029190c5 8418
96f874e2 8419static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8420{
8421 return __build_sched_domains(cpu_map, NULL);
8422}
8423
96f874e2 8424static struct cpumask *doms_cur; /* current sched domains */
029190c5 8425static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8426static struct sched_domain_attr *dattr_cur;
8427 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8428
8429/*
8430 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8431 * cpumask) fails, then fallback to a single sched domain,
8432 * as determined by the single cpumask fallback_doms.
029190c5 8433 */
4212823f 8434static cpumask_var_t fallback_doms;
029190c5 8435
ee79d1bd
HC
8436/*
8437 * arch_update_cpu_topology lets virtualized architectures update the
8438 * cpu core maps. It is supposed to return 1 if the topology changed
8439 * or 0 if it stayed the same.
8440 */
8441int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8442{
ee79d1bd 8443 return 0;
22e52b07
HC
8444}
8445
1a20ff27 8446/*
41a2d6cf 8447 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8448 * For now this just excludes isolated cpus, but could be used to
8449 * exclude other special cases in the future.
1a20ff27 8450 */
96f874e2 8451static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8452{
7378547f
MM
8453 int err;
8454
22e52b07 8455 arch_update_cpu_topology();
029190c5 8456 ndoms_cur = 1;
96f874e2 8457 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8458 if (!doms_cur)
4212823f 8459 doms_cur = fallback_doms;
dcc30a35 8460 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8461 dattr_cur = NULL;
7378547f 8462 err = build_sched_domains(doms_cur);
6382bc90 8463 register_sched_domain_sysctl();
7378547f
MM
8464
8465 return err;
1a20ff27
DG
8466}
8467
96f874e2
RR
8468static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8469 struct cpumask *tmpmask)
1da177e4 8470{
7c16ec58 8471 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8472}
1da177e4 8473
1a20ff27
DG
8474/*
8475 * Detach sched domains from a group of cpus specified in cpu_map
8476 * These cpus will now be attached to the NULL domain
8477 */
96f874e2 8478static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8479{
96f874e2
RR
8480 /* Save because hotplug lock held. */
8481 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8482 int i;
8483
abcd083a 8484 for_each_cpu(i, cpu_map)
57d885fe 8485 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8486 synchronize_sched();
96f874e2 8487 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8488}
8489
1d3504fc
HS
8490/* handle null as "default" */
8491static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8492 struct sched_domain_attr *new, int idx_new)
8493{
8494 struct sched_domain_attr tmp;
8495
8496 /* fast path */
8497 if (!new && !cur)
8498 return 1;
8499
8500 tmp = SD_ATTR_INIT;
8501 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8502 new ? (new + idx_new) : &tmp,
8503 sizeof(struct sched_domain_attr));
8504}
8505
029190c5
PJ
8506/*
8507 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8508 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8509 * doms_new[] to the current sched domain partitioning, doms_cur[].
8510 * It destroys each deleted domain and builds each new domain.
8511 *
96f874e2 8512 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8513 * The masks don't intersect (don't overlap.) We should setup one
8514 * sched domain for each mask. CPUs not in any of the cpumasks will
8515 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8516 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8517 * it as it is.
8518 *
41a2d6cf
IM
8519 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8520 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8521 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8522 * ndoms_new == 1, and partition_sched_domains() will fallback to
8523 * the single partition 'fallback_doms', it also forces the domains
8524 * to be rebuilt.
029190c5 8525 *
96f874e2 8526 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8527 * ndoms_new == 0 is a special case for destroying existing domains,
8528 * and it will not create the default domain.
dfb512ec 8529 *
029190c5
PJ
8530 * Call with hotplug lock held
8531 */
96f874e2
RR
8532/* FIXME: Change to struct cpumask *doms_new[] */
8533void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8534 struct sched_domain_attr *dattr_new)
029190c5 8535{
dfb512ec 8536 int i, j, n;
d65bd5ec 8537 int new_topology;
029190c5 8538
712555ee 8539 mutex_lock(&sched_domains_mutex);
a1835615 8540
7378547f
MM
8541 /* always unregister in case we don't destroy any domains */
8542 unregister_sched_domain_sysctl();
8543
d65bd5ec
HC
8544 /* Let architecture update cpu core mappings. */
8545 new_topology = arch_update_cpu_topology();
8546
dfb512ec 8547 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8548
8549 /* Destroy deleted domains */
8550 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8551 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8552 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8553 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8554 goto match1;
8555 }
8556 /* no match - a current sched domain not in new doms_new[] */
8557 detach_destroy_domains(doms_cur + i);
8558match1:
8559 ;
8560 }
8561
e761b772
MK
8562 if (doms_new == NULL) {
8563 ndoms_cur = 0;
4212823f 8564 doms_new = fallback_doms;
dcc30a35 8565 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8566 WARN_ON_ONCE(dattr_new);
e761b772
MK
8567 }
8568
029190c5
PJ
8569 /* Build new domains */
8570 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8571 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8572 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8573 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8574 goto match2;
8575 }
8576 /* no match - add a new doms_new */
1d3504fc
HS
8577 __build_sched_domains(doms_new + i,
8578 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8579match2:
8580 ;
8581 }
8582
8583 /* Remember the new sched domains */
4212823f 8584 if (doms_cur != fallback_doms)
029190c5 8585 kfree(doms_cur);
1d3504fc 8586 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8587 doms_cur = doms_new;
1d3504fc 8588 dattr_cur = dattr_new;
029190c5 8589 ndoms_cur = ndoms_new;
7378547f
MM
8590
8591 register_sched_domain_sysctl();
a1835615 8592
712555ee 8593 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8594}
8595
5c45bf27 8596#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 8597static void arch_reinit_sched_domains(void)
5c45bf27 8598{
95402b38 8599 get_online_cpus();
dfb512ec
MK
8600
8601 /* Destroy domains first to force the rebuild */
8602 partition_sched_domains(0, NULL, NULL);
8603
e761b772 8604 rebuild_sched_domains();
95402b38 8605 put_online_cpus();
5c45bf27
SS
8606}
8607
8608static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8609{
afb8a9b7 8610 unsigned int level = 0;
5c45bf27 8611
afb8a9b7
GS
8612 if (sscanf(buf, "%u", &level) != 1)
8613 return -EINVAL;
8614
8615 /*
8616 * level is always be positive so don't check for
8617 * level < POWERSAVINGS_BALANCE_NONE which is 0
8618 * What happens on 0 or 1 byte write,
8619 * need to check for count as well?
8620 */
5c45bf27 8621
afb8a9b7 8622 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8623 return -EINVAL;
8624
8625 if (smt)
afb8a9b7 8626 sched_smt_power_savings = level;
5c45bf27 8627 else
afb8a9b7 8628 sched_mc_power_savings = level;
5c45bf27 8629
c70f22d2 8630 arch_reinit_sched_domains();
5c45bf27 8631
c70f22d2 8632 return count;
5c45bf27
SS
8633}
8634
5c45bf27 8635#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8636static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8637 char *page)
5c45bf27
SS
8638{
8639 return sprintf(page, "%u\n", sched_mc_power_savings);
8640}
f718cd4a 8641static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8642 const char *buf, size_t count)
5c45bf27
SS
8643{
8644 return sched_power_savings_store(buf, count, 0);
8645}
f718cd4a
AK
8646static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8647 sched_mc_power_savings_show,
8648 sched_mc_power_savings_store);
5c45bf27
SS
8649#endif
8650
8651#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8652static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8653 char *page)
5c45bf27
SS
8654{
8655 return sprintf(page, "%u\n", sched_smt_power_savings);
8656}
f718cd4a 8657static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8658 const char *buf, size_t count)
5c45bf27
SS
8659{
8660 return sched_power_savings_store(buf, count, 1);
8661}
f718cd4a
AK
8662static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8663 sched_smt_power_savings_show,
6707de00
AB
8664 sched_smt_power_savings_store);
8665#endif
8666
39aac648 8667int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
8668{
8669 int err = 0;
8670
8671#ifdef CONFIG_SCHED_SMT
8672 if (smt_capable())
8673 err = sysfs_create_file(&cls->kset.kobj,
8674 &attr_sched_smt_power_savings.attr);
8675#endif
8676#ifdef CONFIG_SCHED_MC
8677 if (!err && mc_capable())
8678 err = sysfs_create_file(&cls->kset.kobj,
8679 &attr_sched_mc_power_savings.attr);
8680#endif
8681 return err;
8682}
6d6bc0ad 8683#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8684
e761b772 8685#ifndef CONFIG_CPUSETS
1da177e4 8686/*
e761b772
MK
8687 * Add online and remove offline CPUs from the scheduler domains.
8688 * When cpusets are enabled they take over this function.
1da177e4
LT
8689 */
8690static int update_sched_domains(struct notifier_block *nfb,
8691 unsigned long action, void *hcpu)
e761b772
MK
8692{
8693 switch (action) {
8694 case CPU_ONLINE:
8695 case CPU_ONLINE_FROZEN:
8696 case CPU_DEAD:
8697 case CPU_DEAD_FROZEN:
dfb512ec 8698 partition_sched_domains(1, NULL, NULL);
e761b772
MK
8699 return NOTIFY_OK;
8700
8701 default:
8702 return NOTIFY_DONE;
8703 }
8704}
8705#endif
8706
8707static int update_runtime(struct notifier_block *nfb,
8708 unsigned long action, void *hcpu)
1da177e4 8709{
7def2be1
PZ
8710 int cpu = (int)(long)hcpu;
8711
1da177e4 8712 switch (action) {
1da177e4 8713 case CPU_DOWN_PREPARE:
8bb78442 8714 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8715 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8716 return NOTIFY_OK;
8717
1da177e4 8718 case CPU_DOWN_FAILED:
8bb78442 8719 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8720 case CPU_ONLINE:
8bb78442 8721 case CPU_ONLINE_FROZEN:
7def2be1 8722 enable_runtime(cpu_rq(cpu));
e761b772
MK
8723 return NOTIFY_OK;
8724
1da177e4
LT
8725 default:
8726 return NOTIFY_DONE;
8727 }
1da177e4 8728}
1da177e4
LT
8729
8730void __init sched_init_smp(void)
8731{
dcc30a35
RR
8732 cpumask_var_t non_isolated_cpus;
8733
8734 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 8735
434d53b0
MT
8736#if defined(CONFIG_NUMA)
8737 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8738 GFP_KERNEL);
8739 BUG_ON(sched_group_nodes_bycpu == NULL);
8740#endif
95402b38 8741 get_online_cpus();
712555ee 8742 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
8743 arch_init_sched_domains(cpu_online_mask);
8744 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8745 if (cpumask_empty(non_isolated_cpus))
8746 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8747 mutex_unlock(&sched_domains_mutex);
95402b38 8748 put_online_cpus();
e761b772
MK
8749
8750#ifndef CONFIG_CPUSETS
1da177e4
LT
8751 /* XXX: Theoretical race here - CPU may be hotplugged now */
8752 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8753#endif
8754
8755 /* RT runtime code needs to handle some hotplug events */
8756 hotcpu_notifier(update_runtime, 0);
8757
b328ca18 8758 init_hrtick();
5c1e1767
NP
8759
8760 /* Move init over to a non-isolated CPU */
dcc30a35 8761 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8762 BUG();
19978ca6 8763 sched_init_granularity();
dcc30a35 8764 free_cpumask_var(non_isolated_cpus);
4212823f
RR
8765
8766 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 8767 init_sched_rt_class();
1da177e4
LT
8768}
8769#else
8770void __init sched_init_smp(void)
8771{
19978ca6 8772 sched_init_granularity();
1da177e4
LT
8773}
8774#endif /* CONFIG_SMP */
8775
8776int in_sched_functions(unsigned long addr)
8777{
1da177e4
LT
8778 return in_lock_functions(addr) ||
8779 (addr >= (unsigned long)__sched_text_start
8780 && addr < (unsigned long)__sched_text_end);
8781}
8782
a9957449 8783static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8784{
8785 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8786 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8787#ifdef CONFIG_FAIR_GROUP_SCHED
8788 cfs_rq->rq = rq;
8789#endif
67e9fb2a 8790 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8791}
8792
fa85ae24
PZ
8793static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8794{
8795 struct rt_prio_array *array;
8796 int i;
8797
8798 array = &rt_rq->active;
8799 for (i = 0; i < MAX_RT_PRIO; i++) {
8800 INIT_LIST_HEAD(array->queue + i);
8801 __clear_bit(i, array->bitmap);
8802 }
8803 /* delimiter for bitsearch: */
8804 __set_bit(MAX_RT_PRIO, array->bitmap);
8805
052f1dc7 8806#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 8807 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 8808#ifdef CONFIG_SMP
e864c499 8809 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 8810#endif
48d5e258 8811#endif
fa85ae24
PZ
8812#ifdef CONFIG_SMP
8813 rt_rq->rt_nr_migratory = 0;
fa85ae24 8814 rt_rq->overloaded = 0;
917b627d 8815 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
fa85ae24
PZ
8816#endif
8817
8818 rt_rq->rt_time = 0;
8819 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8820 rt_rq->rt_runtime = 0;
8821 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8822
052f1dc7 8823#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8824 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8825 rt_rq->rq = rq;
8826#endif
fa85ae24
PZ
8827}
8828
6f505b16 8829#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8830static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8831 struct sched_entity *se, int cpu, int add,
8832 struct sched_entity *parent)
6f505b16 8833{
ec7dc8ac 8834 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8835 tg->cfs_rq[cpu] = cfs_rq;
8836 init_cfs_rq(cfs_rq, rq);
8837 cfs_rq->tg = tg;
8838 if (add)
8839 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8840
8841 tg->se[cpu] = se;
354d60c2
DG
8842 /* se could be NULL for init_task_group */
8843 if (!se)
8844 return;
8845
ec7dc8ac
DG
8846 if (!parent)
8847 se->cfs_rq = &rq->cfs;
8848 else
8849 se->cfs_rq = parent->my_q;
8850
6f505b16
PZ
8851 se->my_q = cfs_rq;
8852 se->load.weight = tg->shares;
e05510d0 8853 se->load.inv_weight = 0;
ec7dc8ac 8854 se->parent = parent;
6f505b16 8855}
052f1dc7 8856#endif
6f505b16 8857
052f1dc7 8858#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8859static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8860 struct sched_rt_entity *rt_se, int cpu, int add,
8861 struct sched_rt_entity *parent)
6f505b16 8862{
ec7dc8ac
DG
8863 struct rq *rq = cpu_rq(cpu);
8864
6f505b16
PZ
8865 tg->rt_rq[cpu] = rt_rq;
8866 init_rt_rq(rt_rq, rq);
8867 rt_rq->tg = tg;
8868 rt_rq->rt_se = rt_se;
ac086bc2 8869 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8870 if (add)
8871 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8872
8873 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8874 if (!rt_se)
8875 return;
8876
ec7dc8ac
DG
8877 if (!parent)
8878 rt_se->rt_rq = &rq->rt;
8879 else
8880 rt_se->rt_rq = parent->my_q;
8881
6f505b16 8882 rt_se->my_q = rt_rq;
ec7dc8ac 8883 rt_se->parent = parent;
6f505b16
PZ
8884 INIT_LIST_HEAD(&rt_se->run_list);
8885}
8886#endif
8887
1da177e4
LT
8888void __init sched_init(void)
8889{
dd41f596 8890 int i, j;
434d53b0
MT
8891 unsigned long alloc_size = 0, ptr;
8892
8893#ifdef CONFIG_FAIR_GROUP_SCHED
8894 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8895#endif
8896#ifdef CONFIG_RT_GROUP_SCHED
8897 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8898#endif
8899#ifdef CONFIG_USER_SCHED
8900 alloc_size *= 2;
df7c8e84
RR
8901#endif
8902#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 8903 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0
MT
8904#endif
8905 /*
8906 * As sched_init() is called before page_alloc is setup,
8907 * we use alloc_bootmem().
8908 */
8909 if (alloc_size) {
5a9d3225 8910 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8911
8912#ifdef CONFIG_FAIR_GROUP_SCHED
8913 init_task_group.se = (struct sched_entity **)ptr;
8914 ptr += nr_cpu_ids * sizeof(void **);
8915
8916 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8917 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8918
8919#ifdef CONFIG_USER_SCHED
8920 root_task_group.se = (struct sched_entity **)ptr;
8921 ptr += nr_cpu_ids * sizeof(void **);
8922
8923 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8924 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8925#endif /* CONFIG_USER_SCHED */
8926#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8927#ifdef CONFIG_RT_GROUP_SCHED
8928 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8929 ptr += nr_cpu_ids * sizeof(void **);
8930
8931 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8932 ptr += nr_cpu_ids * sizeof(void **);
8933
8934#ifdef CONFIG_USER_SCHED
8935 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8936 ptr += nr_cpu_ids * sizeof(void **);
8937
8938 root_task_group.rt_rq = (struct rt_rq **)ptr;
8939 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8940#endif /* CONFIG_USER_SCHED */
8941#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
8942#ifdef CONFIG_CPUMASK_OFFSTACK
8943 for_each_possible_cpu(i) {
8944 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8945 ptr += cpumask_size();
8946 }
8947#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 8948 }
dd41f596 8949
57d885fe
GH
8950#ifdef CONFIG_SMP
8951 init_defrootdomain();
8952#endif
8953
d0b27fa7
PZ
8954 init_rt_bandwidth(&def_rt_bandwidth,
8955 global_rt_period(), global_rt_runtime());
8956
8957#ifdef CONFIG_RT_GROUP_SCHED
8958 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8959 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8960#ifdef CONFIG_USER_SCHED
8961 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8962 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8963#endif /* CONFIG_USER_SCHED */
8964#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8965
052f1dc7 8966#ifdef CONFIG_GROUP_SCHED
6f505b16 8967 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8968 INIT_LIST_HEAD(&init_task_group.children);
8969
8970#ifdef CONFIG_USER_SCHED
8971 INIT_LIST_HEAD(&root_task_group.children);
8972 init_task_group.parent = &root_task_group;
8973 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8974#endif /* CONFIG_USER_SCHED */
8975#endif /* CONFIG_GROUP_SCHED */
6f505b16 8976
0a945022 8977 for_each_possible_cpu(i) {
70b97a7f 8978 struct rq *rq;
1da177e4
LT
8979
8980 rq = cpu_rq(i);
8981 spin_lock_init(&rq->lock);
7897986b 8982 rq->nr_running = 0;
dd41f596 8983 init_cfs_rq(&rq->cfs, rq);
6f505b16 8984 init_rt_rq(&rq->rt, rq);
dd41f596 8985#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8986 init_task_group.shares = init_task_group_load;
6f505b16 8987 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8988#ifdef CONFIG_CGROUP_SCHED
8989 /*
8990 * How much cpu bandwidth does init_task_group get?
8991 *
8992 * In case of task-groups formed thr' the cgroup filesystem, it
8993 * gets 100% of the cpu resources in the system. This overall
8994 * system cpu resource is divided among the tasks of
8995 * init_task_group and its child task-groups in a fair manner,
8996 * based on each entity's (task or task-group's) weight
8997 * (se->load.weight).
8998 *
8999 * In other words, if init_task_group has 10 tasks of weight
9000 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9001 * then A0's share of the cpu resource is:
9002 *
0d905bca 9003 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9004 *
9005 * We achieve this by letting init_task_group's tasks sit
9006 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9007 */
ec7dc8ac 9008 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9009#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9010 root_task_group.shares = NICE_0_LOAD;
9011 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9012 /*
9013 * In case of task-groups formed thr' the user id of tasks,
9014 * init_task_group represents tasks belonging to root user.
9015 * Hence it forms a sibling of all subsequent groups formed.
9016 * In this case, init_task_group gets only a fraction of overall
9017 * system cpu resource, based on the weight assigned to root
9018 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9019 * by letting tasks of init_task_group sit in a separate cfs_rq
9020 * (init_cfs_rq) and having one entity represent this group of
9021 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9022 */
ec7dc8ac 9023 init_tg_cfs_entry(&init_task_group,
6f505b16 9024 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
9025 &per_cpu(init_sched_entity, i), i, 1,
9026 root_task_group.se[i]);
6f505b16 9027
052f1dc7 9028#endif
354d60c2
DG
9029#endif /* CONFIG_FAIR_GROUP_SCHED */
9030
9031 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9032#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9033 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9034#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9035 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9036#elif defined CONFIG_USER_SCHED
eff766a6 9037 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9038 init_tg_rt_entry(&init_task_group,
6f505b16 9039 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9040 &per_cpu(init_sched_rt_entity, i), i, 1,
9041 root_task_group.rt_se[i]);
354d60c2 9042#endif
dd41f596 9043#endif
1da177e4 9044
dd41f596
IM
9045 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9046 rq->cpu_load[j] = 0;
1da177e4 9047#ifdef CONFIG_SMP
41c7ce9a 9048 rq->sd = NULL;
57d885fe 9049 rq->rd = NULL;
1da177e4 9050 rq->active_balance = 0;
dd41f596 9051 rq->next_balance = jiffies;
1da177e4 9052 rq->push_cpu = 0;
0a2966b4 9053 rq->cpu = i;
1f11eb6a 9054 rq->online = 0;
1da177e4
LT
9055 rq->migration_thread = NULL;
9056 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9057 rq_attach_root(rq, &def_root_domain);
1da177e4 9058#endif
8f4d37ec 9059 init_rq_hrtick(rq);
1da177e4 9060 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9061 }
9062
2dd73a4f 9063 set_load_weight(&init_task);
b50f60ce 9064
e107be36
AK
9065#ifdef CONFIG_PREEMPT_NOTIFIERS
9066 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9067#endif
9068
c9819f45 9069#ifdef CONFIG_SMP
962cf36c 9070 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9071#endif
9072
b50f60ce
HC
9073#ifdef CONFIG_RT_MUTEXES
9074 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9075#endif
9076
1da177e4
LT
9077 /*
9078 * The boot idle thread does lazy MMU switching as well:
9079 */
9080 atomic_inc(&init_mm.mm_count);
9081 enter_lazy_tlb(&init_mm, current);
9082
9083 /*
9084 * Make us the idle thread. Technically, schedule() should not be
9085 * called from this thread, however somewhere below it might be,
9086 * but because we are the idle thread, we just pick up running again
9087 * when this runqueue becomes "idle".
9088 */
9089 init_idle(current, smp_processor_id());
dd41f596
IM
9090 /*
9091 * During early bootup we pretend to be a normal task:
9092 */
9093 current->sched_class = &fair_sched_class;
6892b75e 9094
6a7b3dc3
RR
9095 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9096 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
bf4d83f6 9097#ifdef CONFIG_SMP
7d1e6a9b
RR
9098#ifdef CONFIG_NO_HZ
9099 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
9100#endif
dcc30a35 9101 alloc_bootmem_cpumask_var(&cpu_isolated_map);
bf4d83f6 9102#endif /* SMP */
6a7b3dc3 9103
0d905bca
IM
9104 perf_counter_init();
9105
6892b75e 9106 scheduler_running = 1;
1da177e4
LT
9107}
9108
9109#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9110void __might_sleep(char *file, int line)
9111{
48f24c4d 9112#ifdef in_atomic
1da177e4
LT
9113 static unsigned long prev_jiffy; /* ratelimiting */
9114
aef745fc
IM
9115 if ((!in_atomic() && !irqs_disabled()) ||
9116 system_state != SYSTEM_RUNNING || oops_in_progress)
9117 return;
9118 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9119 return;
9120 prev_jiffy = jiffies;
9121
9122 printk(KERN_ERR
9123 "BUG: sleeping function called from invalid context at %s:%d\n",
9124 file, line);
9125 printk(KERN_ERR
9126 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9127 in_atomic(), irqs_disabled(),
9128 current->pid, current->comm);
9129
9130 debug_show_held_locks(current);
9131 if (irqs_disabled())
9132 print_irqtrace_events(current);
9133 dump_stack();
1da177e4
LT
9134#endif
9135}
9136EXPORT_SYMBOL(__might_sleep);
9137#endif
9138
9139#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9140static void normalize_task(struct rq *rq, struct task_struct *p)
9141{
9142 int on_rq;
3e51f33f 9143
3a5e4dc1
AK
9144 update_rq_clock(rq);
9145 on_rq = p->se.on_rq;
9146 if (on_rq)
9147 deactivate_task(rq, p, 0);
9148 __setscheduler(rq, p, SCHED_NORMAL, 0);
9149 if (on_rq) {
9150 activate_task(rq, p, 0);
9151 resched_task(rq->curr);
9152 }
9153}
9154
1da177e4
LT
9155void normalize_rt_tasks(void)
9156{
a0f98a1c 9157 struct task_struct *g, *p;
1da177e4 9158 unsigned long flags;
70b97a7f 9159 struct rq *rq;
1da177e4 9160
4cf5d77a 9161 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9162 do_each_thread(g, p) {
178be793
IM
9163 /*
9164 * Only normalize user tasks:
9165 */
9166 if (!p->mm)
9167 continue;
9168
6cfb0d5d 9169 p->se.exec_start = 0;
6cfb0d5d 9170#ifdef CONFIG_SCHEDSTATS
dd41f596 9171 p->se.wait_start = 0;
dd41f596 9172 p->se.sleep_start = 0;
dd41f596 9173 p->se.block_start = 0;
6cfb0d5d 9174#endif
dd41f596
IM
9175
9176 if (!rt_task(p)) {
9177 /*
9178 * Renice negative nice level userspace
9179 * tasks back to 0:
9180 */
9181 if (TASK_NICE(p) < 0 && p->mm)
9182 set_user_nice(p, 0);
1da177e4 9183 continue;
dd41f596 9184 }
1da177e4 9185
4cf5d77a 9186 spin_lock(&p->pi_lock);
b29739f9 9187 rq = __task_rq_lock(p);
1da177e4 9188
178be793 9189 normalize_task(rq, p);
3a5e4dc1 9190
b29739f9 9191 __task_rq_unlock(rq);
4cf5d77a 9192 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9193 } while_each_thread(g, p);
9194
4cf5d77a 9195 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9196}
9197
9198#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9199
9200#ifdef CONFIG_IA64
9201/*
9202 * These functions are only useful for the IA64 MCA handling.
9203 *
9204 * They can only be called when the whole system has been
9205 * stopped - every CPU needs to be quiescent, and no scheduling
9206 * activity can take place. Using them for anything else would
9207 * be a serious bug, and as a result, they aren't even visible
9208 * under any other configuration.
9209 */
9210
9211/**
9212 * curr_task - return the current task for a given cpu.
9213 * @cpu: the processor in question.
9214 *
9215 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9216 */
36c8b586 9217struct task_struct *curr_task(int cpu)
1df5c10a
LT
9218{
9219 return cpu_curr(cpu);
9220}
9221
9222/**
9223 * set_curr_task - set the current task for a given cpu.
9224 * @cpu: the processor in question.
9225 * @p: the task pointer to set.
9226 *
9227 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9228 * are serviced on a separate stack. It allows the architecture to switch the
9229 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9230 * must be called with all CPU's synchronized, and interrupts disabled, the
9231 * and caller must save the original value of the current task (see
9232 * curr_task() above) and restore that value before reenabling interrupts and
9233 * re-starting the system.
9234 *
9235 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9236 */
36c8b586 9237void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9238{
9239 cpu_curr(cpu) = p;
9240}
9241
9242#endif
29f59db3 9243
bccbe08a
PZ
9244#ifdef CONFIG_FAIR_GROUP_SCHED
9245static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9246{
9247 int i;
9248
9249 for_each_possible_cpu(i) {
9250 if (tg->cfs_rq)
9251 kfree(tg->cfs_rq[i]);
9252 if (tg->se)
9253 kfree(tg->se[i]);
6f505b16
PZ
9254 }
9255
9256 kfree(tg->cfs_rq);
9257 kfree(tg->se);
6f505b16
PZ
9258}
9259
ec7dc8ac
DG
9260static
9261int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9262{
29f59db3 9263 struct cfs_rq *cfs_rq;
eab17229 9264 struct sched_entity *se;
9b5b7751 9265 struct rq *rq;
29f59db3
SV
9266 int i;
9267
434d53b0 9268 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9269 if (!tg->cfs_rq)
9270 goto err;
434d53b0 9271 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9272 if (!tg->se)
9273 goto err;
052f1dc7
PZ
9274
9275 tg->shares = NICE_0_LOAD;
29f59db3
SV
9276
9277 for_each_possible_cpu(i) {
9b5b7751 9278 rq = cpu_rq(i);
29f59db3 9279
eab17229
LZ
9280 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9281 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9282 if (!cfs_rq)
9283 goto err;
9284
eab17229
LZ
9285 se = kzalloc_node(sizeof(struct sched_entity),
9286 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9287 if (!se)
9288 goto err;
9289
eab17229 9290 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9291 }
9292
9293 return 1;
9294
9295 err:
9296 return 0;
9297}
9298
9299static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9300{
9301 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9302 &cpu_rq(cpu)->leaf_cfs_rq_list);
9303}
9304
9305static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9306{
9307 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9308}
6d6bc0ad 9309#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9310static inline void free_fair_sched_group(struct task_group *tg)
9311{
9312}
9313
ec7dc8ac
DG
9314static inline
9315int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9316{
9317 return 1;
9318}
9319
9320static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9321{
9322}
9323
9324static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9325{
9326}
6d6bc0ad 9327#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9328
9329#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9330static void free_rt_sched_group(struct task_group *tg)
9331{
9332 int i;
9333
d0b27fa7
PZ
9334 destroy_rt_bandwidth(&tg->rt_bandwidth);
9335
bccbe08a
PZ
9336 for_each_possible_cpu(i) {
9337 if (tg->rt_rq)
9338 kfree(tg->rt_rq[i]);
9339 if (tg->rt_se)
9340 kfree(tg->rt_se[i]);
9341 }
9342
9343 kfree(tg->rt_rq);
9344 kfree(tg->rt_se);
9345}
9346
ec7dc8ac
DG
9347static
9348int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9349{
9350 struct rt_rq *rt_rq;
eab17229 9351 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9352 struct rq *rq;
9353 int i;
9354
434d53b0 9355 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9356 if (!tg->rt_rq)
9357 goto err;
434d53b0 9358 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9359 if (!tg->rt_se)
9360 goto err;
9361
d0b27fa7
PZ
9362 init_rt_bandwidth(&tg->rt_bandwidth,
9363 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9364
9365 for_each_possible_cpu(i) {
9366 rq = cpu_rq(i);
9367
eab17229
LZ
9368 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9369 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9370 if (!rt_rq)
9371 goto err;
29f59db3 9372
eab17229
LZ
9373 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9374 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9375 if (!rt_se)
9376 goto err;
29f59db3 9377
eab17229 9378 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9379 }
9380
bccbe08a
PZ
9381 return 1;
9382
9383 err:
9384 return 0;
9385}
9386
9387static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9388{
9389 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9390 &cpu_rq(cpu)->leaf_rt_rq_list);
9391}
9392
9393static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9394{
9395 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9396}
6d6bc0ad 9397#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9398static inline void free_rt_sched_group(struct task_group *tg)
9399{
9400}
9401
ec7dc8ac
DG
9402static inline
9403int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9404{
9405 return 1;
9406}
9407
9408static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9409{
9410}
9411
9412static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9413{
9414}
6d6bc0ad 9415#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9416
d0b27fa7 9417#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9418static void free_sched_group(struct task_group *tg)
9419{
9420 free_fair_sched_group(tg);
9421 free_rt_sched_group(tg);
9422 kfree(tg);
9423}
9424
9425/* allocate runqueue etc for a new task group */
ec7dc8ac 9426struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9427{
9428 struct task_group *tg;
9429 unsigned long flags;
9430 int i;
9431
9432 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9433 if (!tg)
9434 return ERR_PTR(-ENOMEM);
9435
ec7dc8ac 9436 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9437 goto err;
9438
ec7dc8ac 9439 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9440 goto err;
9441
8ed36996 9442 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9443 for_each_possible_cpu(i) {
bccbe08a
PZ
9444 register_fair_sched_group(tg, i);
9445 register_rt_sched_group(tg, i);
9b5b7751 9446 }
6f505b16 9447 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9448
9449 WARN_ON(!parent); /* root should already exist */
9450
9451 tg->parent = parent;
f473aa5e 9452 INIT_LIST_HEAD(&tg->children);
09f2724a 9453 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9454 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9455
9b5b7751 9456 return tg;
29f59db3
SV
9457
9458err:
6f505b16 9459 free_sched_group(tg);
29f59db3
SV
9460 return ERR_PTR(-ENOMEM);
9461}
9462
9b5b7751 9463/* rcu callback to free various structures associated with a task group */
6f505b16 9464static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9465{
29f59db3 9466 /* now it should be safe to free those cfs_rqs */
6f505b16 9467 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9468}
9469
9b5b7751 9470/* Destroy runqueue etc associated with a task group */
4cf86d77 9471void sched_destroy_group(struct task_group *tg)
29f59db3 9472{
8ed36996 9473 unsigned long flags;
9b5b7751 9474 int i;
29f59db3 9475
8ed36996 9476 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9477 for_each_possible_cpu(i) {
bccbe08a
PZ
9478 unregister_fair_sched_group(tg, i);
9479 unregister_rt_sched_group(tg, i);
9b5b7751 9480 }
6f505b16 9481 list_del_rcu(&tg->list);
f473aa5e 9482 list_del_rcu(&tg->siblings);
8ed36996 9483 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9484
9b5b7751 9485 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9486 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9487}
9488
9b5b7751 9489/* change task's runqueue when it moves between groups.
3a252015
IM
9490 * The caller of this function should have put the task in its new group
9491 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9492 * reflect its new group.
9b5b7751
SV
9493 */
9494void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9495{
9496 int on_rq, running;
9497 unsigned long flags;
9498 struct rq *rq;
9499
9500 rq = task_rq_lock(tsk, &flags);
9501
29f59db3
SV
9502 update_rq_clock(rq);
9503
051a1d1a 9504 running = task_current(rq, tsk);
29f59db3
SV
9505 on_rq = tsk->se.on_rq;
9506
0e1f3483 9507 if (on_rq)
29f59db3 9508 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9509 if (unlikely(running))
9510 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9511
6f505b16 9512 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9513
810b3817
PZ
9514#ifdef CONFIG_FAIR_GROUP_SCHED
9515 if (tsk->sched_class->moved_group)
9516 tsk->sched_class->moved_group(tsk);
9517#endif
9518
0e1f3483
HS
9519 if (unlikely(running))
9520 tsk->sched_class->set_curr_task(rq);
9521 if (on_rq)
7074badb 9522 enqueue_task(rq, tsk, 0);
29f59db3 9523
29f59db3
SV
9524 task_rq_unlock(rq, &flags);
9525}
6d6bc0ad 9526#endif /* CONFIG_GROUP_SCHED */
29f59db3 9527
052f1dc7 9528#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9529static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9530{
9531 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9532 int on_rq;
9533
29f59db3 9534 on_rq = se->on_rq;
62fb1851 9535 if (on_rq)
29f59db3
SV
9536 dequeue_entity(cfs_rq, se, 0);
9537
9538 se->load.weight = shares;
e05510d0 9539 se->load.inv_weight = 0;
29f59db3 9540
62fb1851 9541 if (on_rq)
29f59db3 9542 enqueue_entity(cfs_rq, se, 0);
c09595f6 9543}
62fb1851 9544
c09595f6
PZ
9545static void set_se_shares(struct sched_entity *se, unsigned long shares)
9546{
9547 struct cfs_rq *cfs_rq = se->cfs_rq;
9548 struct rq *rq = cfs_rq->rq;
9549 unsigned long flags;
9550
9551 spin_lock_irqsave(&rq->lock, flags);
9552 __set_se_shares(se, shares);
9553 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9554}
9555
8ed36996
PZ
9556static DEFINE_MUTEX(shares_mutex);
9557
4cf86d77 9558int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9559{
9560 int i;
8ed36996 9561 unsigned long flags;
c61935fd 9562
ec7dc8ac
DG
9563 /*
9564 * We can't change the weight of the root cgroup.
9565 */
9566 if (!tg->se[0])
9567 return -EINVAL;
9568
18d95a28
PZ
9569 if (shares < MIN_SHARES)
9570 shares = MIN_SHARES;
cb4ad1ff
MX
9571 else if (shares > MAX_SHARES)
9572 shares = MAX_SHARES;
62fb1851 9573
8ed36996 9574 mutex_lock(&shares_mutex);
9b5b7751 9575 if (tg->shares == shares)
5cb350ba 9576 goto done;
29f59db3 9577
8ed36996 9578 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9579 for_each_possible_cpu(i)
9580 unregister_fair_sched_group(tg, i);
f473aa5e 9581 list_del_rcu(&tg->siblings);
8ed36996 9582 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
9583
9584 /* wait for any ongoing reference to this group to finish */
9585 synchronize_sched();
9586
9587 /*
9588 * Now we are free to modify the group's share on each cpu
9589 * w/o tripping rebalance_share or load_balance_fair.
9590 */
9b5b7751 9591 tg->shares = shares;
c09595f6
PZ
9592 for_each_possible_cpu(i) {
9593 /*
9594 * force a rebalance
9595 */
9596 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 9597 set_se_shares(tg->se[i], shares);
c09595f6 9598 }
29f59db3 9599
6b2d7700
SV
9600 /*
9601 * Enable load balance activity on this group, by inserting it back on
9602 * each cpu's rq->leaf_cfs_rq_list.
9603 */
8ed36996 9604 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9605 for_each_possible_cpu(i)
9606 register_fair_sched_group(tg, i);
f473aa5e 9607 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9608 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9609done:
8ed36996 9610 mutex_unlock(&shares_mutex);
9b5b7751 9611 return 0;
29f59db3
SV
9612}
9613
5cb350ba
DG
9614unsigned long sched_group_shares(struct task_group *tg)
9615{
9616 return tg->shares;
9617}
052f1dc7 9618#endif
5cb350ba 9619
052f1dc7 9620#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9621/*
9f0c1e56 9622 * Ensure that the real time constraints are schedulable.
6f505b16 9623 */
9f0c1e56
PZ
9624static DEFINE_MUTEX(rt_constraints_mutex);
9625
9626static unsigned long to_ratio(u64 period, u64 runtime)
9627{
9628 if (runtime == RUNTIME_INF)
9a7e0b18 9629 return 1ULL << 20;
9f0c1e56 9630
9a7e0b18 9631 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9632}
9633
9a7e0b18
PZ
9634/* Must be called with tasklist_lock held */
9635static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9636{
9a7e0b18 9637 struct task_struct *g, *p;
b40b2e8e 9638
9a7e0b18
PZ
9639 do_each_thread(g, p) {
9640 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9641 return 1;
9642 } while_each_thread(g, p);
b40b2e8e 9643
9a7e0b18
PZ
9644 return 0;
9645}
b40b2e8e 9646
9a7e0b18
PZ
9647struct rt_schedulable_data {
9648 struct task_group *tg;
9649 u64 rt_period;
9650 u64 rt_runtime;
9651};
b40b2e8e 9652
9a7e0b18
PZ
9653static int tg_schedulable(struct task_group *tg, void *data)
9654{
9655 struct rt_schedulable_data *d = data;
9656 struct task_group *child;
9657 unsigned long total, sum = 0;
9658 u64 period, runtime;
b40b2e8e 9659
9a7e0b18
PZ
9660 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9661 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9662
9a7e0b18
PZ
9663 if (tg == d->tg) {
9664 period = d->rt_period;
9665 runtime = d->rt_runtime;
b40b2e8e 9666 }
b40b2e8e 9667
98a4826b
PZ
9668#ifdef CONFIG_USER_SCHED
9669 if (tg == &root_task_group) {
9670 period = global_rt_period();
9671 runtime = global_rt_runtime();
9672 }
9673#endif
9674
4653f803
PZ
9675 /*
9676 * Cannot have more runtime than the period.
9677 */
9678 if (runtime > period && runtime != RUNTIME_INF)
9679 return -EINVAL;
6f505b16 9680
4653f803
PZ
9681 /*
9682 * Ensure we don't starve existing RT tasks.
9683 */
9a7e0b18
PZ
9684 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9685 return -EBUSY;
6f505b16 9686
9a7e0b18 9687 total = to_ratio(period, runtime);
6f505b16 9688
4653f803
PZ
9689 /*
9690 * Nobody can have more than the global setting allows.
9691 */
9692 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9693 return -EINVAL;
6f505b16 9694
4653f803
PZ
9695 /*
9696 * The sum of our children's runtime should not exceed our own.
9697 */
9a7e0b18
PZ
9698 list_for_each_entry_rcu(child, &tg->children, siblings) {
9699 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9700 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 9701
9a7e0b18
PZ
9702 if (child == d->tg) {
9703 period = d->rt_period;
9704 runtime = d->rt_runtime;
9705 }
6f505b16 9706
9a7e0b18 9707 sum += to_ratio(period, runtime);
9f0c1e56 9708 }
6f505b16 9709
9a7e0b18
PZ
9710 if (sum > total)
9711 return -EINVAL;
9712
9713 return 0;
6f505b16
PZ
9714}
9715
9a7e0b18 9716static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 9717{
9a7e0b18
PZ
9718 struct rt_schedulable_data data = {
9719 .tg = tg,
9720 .rt_period = period,
9721 .rt_runtime = runtime,
9722 };
9723
9724 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
9725}
9726
d0b27fa7
PZ
9727static int tg_set_bandwidth(struct task_group *tg,
9728 u64 rt_period, u64 rt_runtime)
6f505b16 9729{
ac086bc2 9730 int i, err = 0;
9f0c1e56 9731
9f0c1e56 9732 mutex_lock(&rt_constraints_mutex);
521f1a24 9733 read_lock(&tasklist_lock);
9a7e0b18
PZ
9734 err = __rt_schedulable(tg, rt_period, rt_runtime);
9735 if (err)
9f0c1e56 9736 goto unlock;
ac086bc2
PZ
9737
9738 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
9739 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9740 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
9741
9742 for_each_possible_cpu(i) {
9743 struct rt_rq *rt_rq = tg->rt_rq[i];
9744
9745 spin_lock(&rt_rq->rt_runtime_lock);
9746 rt_rq->rt_runtime = rt_runtime;
9747 spin_unlock(&rt_rq->rt_runtime_lock);
9748 }
9749 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 9750 unlock:
521f1a24 9751 read_unlock(&tasklist_lock);
9f0c1e56
PZ
9752 mutex_unlock(&rt_constraints_mutex);
9753
9754 return err;
6f505b16
PZ
9755}
9756
d0b27fa7
PZ
9757int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9758{
9759 u64 rt_runtime, rt_period;
9760
9761 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9762 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9763 if (rt_runtime_us < 0)
9764 rt_runtime = RUNTIME_INF;
9765
9766 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9767}
9768
9f0c1e56
PZ
9769long sched_group_rt_runtime(struct task_group *tg)
9770{
9771 u64 rt_runtime_us;
9772
d0b27fa7 9773 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
9774 return -1;
9775
d0b27fa7 9776 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9777 do_div(rt_runtime_us, NSEC_PER_USEC);
9778 return rt_runtime_us;
9779}
d0b27fa7
PZ
9780
9781int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9782{
9783 u64 rt_runtime, rt_period;
9784
9785 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9786 rt_runtime = tg->rt_bandwidth.rt_runtime;
9787
619b0488
R
9788 if (rt_period == 0)
9789 return -EINVAL;
9790
d0b27fa7
PZ
9791 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9792}
9793
9794long sched_group_rt_period(struct task_group *tg)
9795{
9796 u64 rt_period_us;
9797
9798 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9799 do_div(rt_period_us, NSEC_PER_USEC);
9800 return rt_period_us;
9801}
9802
9803static int sched_rt_global_constraints(void)
9804{
4653f803 9805 u64 runtime, period;
d0b27fa7
PZ
9806 int ret = 0;
9807
ec5d4989
HS
9808 if (sysctl_sched_rt_period <= 0)
9809 return -EINVAL;
9810
4653f803
PZ
9811 runtime = global_rt_runtime();
9812 period = global_rt_period();
9813
9814 /*
9815 * Sanity check on the sysctl variables.
9816 */
9817 if (runtime > period && runtime != RUNTIME_INF)
9818 return -EINVAL;
10b612f4 9819
d0b27fa7 9820 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9821 read_lock(&tasklist_lock);
4653f803 9822 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9823 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9824 mutex_unlock(&rt_constraints_mutex);
9825
9826 return ret;
9827}
54e99124
DG
9828
9829int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9830{
9831 /* Don't accept realtime tasks when there is no way for them to run */
9832 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9833 return 0;
9834
9835 return 1;
9836}
9837
6d6bc0ad 9838#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9839static int sched_rt_global_constraints(void)
9840{
ac086bc2
PZ
9841 unsigned long flags;
9842 int i;
9843
ec5d4989
HS
9844 if (sysctl_sched_rt_period <= 0)
9845 return -EINVAL;
9846
ac086bc2
PZ
9847 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9848 for_each_possible_cpu(i) {
9849 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9850
9851 spin_lock(&rt_rq->rt_runtime_lock);
9852 rt_rq->rt_runtime = global_rt_runtime();
9853 spin_unlock(&rt_rq->rt_runtime_lock);
9854 }
9855 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9856
d0b27fa7
PZ
9857 return 0;
9858}
6d6bc0ad 9859#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9860
9861int sched_rt_handler(struct ctl_table *table, int write,
9862 struct file *filp, void __user *buffer, size_t *lenp,
9863 loff_t *ppos)
9864{
9865 int ret;
9866 int old_period, old_runtime;
9867 static DEFINE_MUTEX(mutex);
9868
9869 mutex_lock(&mutex);
9870 old_period = sysctl_sched_rt_period;
9871 old_runtime = sysctl_sched_rt_runtime;
9872
9873 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9874
9875 if (!ret && write) {
9876 ret = sched_rt_global_constraints();
9877 if (ret) {
9878 sysctl_sched_rt_period = old_period;
9879 sysctl_sched_rt_runtime = old_runtime;
9880 } else {
9881 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9882 def_rt_bandwidth.rt_period =
9883 ns_to_ktime(global_rt_period());
9884 }
9885 }
9886 mutex_unlock(&mutex);
9887
9888 return ret;
9889}
68318b8e 9890
052f1dc7 9891#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9892
9893/* return corresponding task_group object of a cgroup */
2b01dfe3 9894static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9895{
2b01dfe3
PM
9896 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9897 struct task_group, css);
68318b8e
SV
9898}
9899
9900static struct cgroup_subsys_state *
2b01dfe3 9901cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9902{
ec7dc8ac 9903 struct task_group *tg, *parent;
68318b8e 9904
2b01dfe3 9905 if (!cgrp->parent) {
68318b8e 9906 /* This is early initialization for the top cgroup */
68318b8e
SV
9907 return &init_task_group.css;
9908 }
9909
ec7dc8ac
DG
9910 parent = cgroup_tg(cgrp->parent);
9911 tg = sched_create_group(parent);
68318b8e
SV
9912 if (IS_ERR(tg))
9913 return ERR_PTR(-ENOMEM);
9914
68318b8e
SV
9915 return &tg->css;
9916}
9917
41a2d6cf
IM
9918static void
9919cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9920{
2b01dfe3 9921 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9922
9923 sched_destroy_group(tg);
9924}
9925
41a2d6cf
IM
9926static int
9927cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9928 struct task_struct *tsk)
68318b8e 9929{
b68aa230 9930#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9931 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9932 return -EINVAL;
9933#else
68318b8e
SV
9934 /* We don't support RT-tasks being in separate groups */
9935 if (tsk->sched_class != &fair_sched_class)
9936 return -EINVAL;
b68aa230 9937#endif
68318b8e
SV
9938
9939 return 0;
9940}
9941
9942static void
2b01dfe3 9943cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9944 struct cgroup *old_cont, struct task_struct *tsk)
9945{
9946 sched_move_task(tsk);
9947}
9948
052f1dc7 9949#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9950static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9951 u64 shareval)
68318b8e 9952{
2b01dfe3 9953 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9954}
9955
f4c753b7 9956static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9957{
2b01dfe3 9958 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9959
9960 return (u64) tg->shares;
9961}
6d6bc0ad 9962#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9963
052f1dc7 9964#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9965static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9966 s64 val)
6f505b16 9967{
06ecb27c 9968 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9969}
9970
06ecb27c 9971static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9972{
06ecb27c 9973 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9974}
d0b27fa7
PZ
9975
9976static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9977 u64 rt_period_us)
9978{
9979 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9980}
9981
9982static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9983{
9984 return sched_group_rt_period(cgroup_tg(cgrp));
9985}
6d6bc0ad 9986#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9987
fe5c7cc2 9988static struct cftype cpu_files[] = {
052f1dc7 9989#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9990 {
9991 .name = "shares",
f4c753b7
PM
9992 .read_u64 = cpu_shares_read_u64,
9993 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9994 },
052f1dc7
PZ
9995#endif
9996#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9997 {
9f0c1e56 9998 .name = "rt_runtime_us",
06ecb27c
PM
9999 .read_s64 = cpu_rt_runtime_read,
10000 .write_s64 = cpu_rt_runtime_write,
6f505b16 10001 },
d0b27fa7
PZ
10002 {
10003 .name = "rt_period_us",
f4c753b7
PM
10004 .read_u64 = cpu_rt_period_read_uint,
10005 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10006 },
052f1dc7 10007#endif
68318b8e
SV
10008};
10009
10010static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10011{
fe5c7cc2 10012 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10013}
10014
10015struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10016 .name = "cpu",
10017 .create = cpu_cgroup_create,
10018 .destroy = cpu_cgroup_destroy,
10019 .can_attach = cpu_cgroup_can_attach,
10020 .attach = cpu_cgroup_attach,
10021 .populate = cpu_cgroup_populate,
10022 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10023 .early_init = 1,
10024};
10025
052f1dc7 10026#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10027
10028#ifdef CONFIG_CGROUP_CPUACCT
10029
10030/*
10031 * CPU accounting code for task groups.
10032 *
10033 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10034 * (balbir@in.ibm.com).
10035 */
10036
934352f2 10037/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10038struct cpuacct {
10039 struct cgroup_subsys_state css;
10040 /* cpuusage holds pointer to a u64-type object on every cpu */
10041 u64 *cpuusage;
ef12fefa 10042 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10043 struct cpuacct *parent;
d842de87
SV
10044};
10045
10046struct cgroup_subsys cpuacct_subsys;
10047
10048/* return cpu accounting group corresponding to this container */
32cd756a 10049static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10050{
32cd756a 10051 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10052 struct cpuacct, css);
10053}
10054
10055/* return cpu accounting group to which this task belongs */
10056static inline struct cpuacct *task_ca(struct task_struct *tsk)
10057{
10058 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10059 struct cpuacct, css);
10060}
10061
10062/* create a new cpu accounting group */
10063static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10064 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10065{
10066 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10067 int i;
d842de87
SV
10068
10069 if (!ca)
ef12fefa 10070 goto out;
d842de87
SV
10071
10072 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10073 if (!ca->cpuusage)
10074 goto out_free_ca;
10075
10076 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10077 if (percpu_counter_init(&ca->cpustat[i], 0))
10078 goto out_free_counters;
d842de87 10079
934352f2
BR
10080 if (cgrp->parent)
10081 ca->parent = cgroup_ca(cgrp->parent);
10082
d842de87 10083 return &ca->css;
ef12fefa
BR
10084
10085out_free_counters:
10086 while (--i >= 0)
10087 percpu_counter_destroy(&ca->cpustat[i]);
10088 free_percpu(ca->cpuusage);
10089out_free_ca:
10090 kfree(ca);
10091out:
10092 return ERR_PTR(-ENOMEM);
d842de87
SV
10093}
10094
10095/* destroy an existing cpu accounting group */
41a2d6cf 10096static void
32cd756a 10097cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10098{
32cd756a 10099 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10100 int i;
d842de87 10101
ef12fefa
BR
10102 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10103 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10104 free_percpu(ca->cpuusage);
10105 kfree(ca);
10106}
10107
720f5498
KC
10108static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10109{
b36128c8 10110 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10111 u64 data;
10112
10113#ifndef CONFIG_64BIT
10114 /*
10115 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10116 */
10117 spin_lock_irq(&cpu_rq(cpu)->lock);
10118 data = *cpuusage;
10119 spin_unlock_irq(&cpu_rq(cpu)->lock);
10120#else
10121 data = *cpuusage;
10122#endif
10123
10124 return data;
10125}
10126
10127static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10128{
b36128c8 10129 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10130
10131#ifndef CONFIG_64BIT
10132 /*
10133 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10134 */
10135 spin_lock_irq(&cpu_rq(cpu)->lock);
10136 *cpuusage = val;
10137 spin_unlock_irq(&cpu_rq(cpu)->lock);
10138#else
10139 *cpuusage = val;
10140#endif
10141}
10142
d842de87 10143/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10144static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10145{
32cd756a 10146 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10147 u64 totalcpuusage = 0;
10148 int i;
10149
720f5498
KC
10150 for_each_present_cpu(i)
10151 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10152
10153 return totalcpuusage;
10154}
10155
0297b803
DG
10156static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10157 u64 reset)
10158{
10159 struct cpuacct *ca = cgroup_ca(cgrp);
10160 int err = 0;
10161 int i;
10162
10163 if (reset) {
10164 err = -EINVAL;
10165 goto out;
10166 }
10167
720f5498
KC
10168 for_each_present_cpu(i)
10169 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10170
0297b803
DG
10171out:
10172 return err;
10173}
10174
e9515c3c
KC
10175static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10176 struct seq_file *m)
10177{
10178 struct cpuacct *ca = cgroup_ca(cgroup);
10179 u64 percpu;
10180 int i;
10181
10182 for_each_present_cpu(i) {
10183 percpu = cpuacct_cpuusage_read(ca, i);
10184 seq_printf(m, "%llu ", (unsigned long long) percpu);
10185 }
10186 seq_printf(m, "\n");
10187 return 0;
10188}
10189
ef12fefa
BR
10190static const char *cpuacct_stat_desc[] = {
10191 [CPUACCT_STAT_USER] = "user",
10192 [CPUACCT_STAT_SYSTEM] = "system",
10193};
10194
10195static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10196 struct cgroup_map_cb *cb)
10197{
10198 struct cpuacct *ca = cgroup_ca(cgrp);
10199 int i;
10200
10201 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10202 s64 val = percpu_counter_read(&ca->cpustat[i]);
10203 val = cputime64_to_clock_t(val);
10204 cb->fill(cb, cpuacct_stat_desc[i], val);
10205 }
10206 return 0;
10207}
10208
d842de87
SV
10209static struct cftype files[] = {
10210 {
10211 .name = "usage",
f4c753b7
PM
10212 .read_u64 = cpuusage_read,
10213 .write_u64 = cpuusage_write,
d842de87 10214 },
e9515c3c
KC
10215 {
10216 .name = "usage_percpu",
10217 .read_seq_string = cpuacct_percpu_seq_read,
10218 },
ef12fefa
BR
10219 {
10220 .name = "stat",
10221 .read_map = cpuacct_stats_show,
10222 },
d842de87
SV
10223};
10224
32cd756a 10225static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10226{
32cd756a 10227 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10228}
10229
10230/*
10231 * charge this task's execution time to its accounting group.
10232 *
10233 * called with rq->lock held.
10234 */
10235static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10236{
10237 struct cpuacct *ca;
934352f2 10238 int cpu;
d842de87 10239
c40c6f85 10240 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10241 return;
10242
934352f2 10243 cpu = task_cpu(tsk);
a18b83b7
BR
10244
10245 rcu_read_lock();
10246
d842de87 10247 ca = task_ca(tsk);
d842de87 10248
934352f2 10249 for (; ca; ca = ca->parent) {
b36128c8 10250 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10251 *cpuusage += cputime;
10252 }
a18b83b7
BR
10253
10254 rcu_read_unlock();
d842de87
SV
10255}
10256
ef12fefa
BR
10257/*
10258 * Charge the system/user time to the task's accounting group.
10259 */
10260static void cpuacct_update_stats(struct task_struct *tsk,
10261 enum cpuacct_stat_index idx, cputime_t val)
10262{
10263 struct cpuacct *ca;
10264
10265 if (unlikely(!cpuacct_subsys.active))
10266 return;
10267
10268 rcu_read_lock();
10269 ca = task_ca(tsk);
10270
10271 do {
10272 percpu_counter_add(&ca->cpustat[idx], val);
10273 ca = ca->parent;
10274 } while (ca);
10275 rcu_read_unlock();
d842de87
SV
10276}
10277
10278struct cgroup_subsys cpuacct_subsys = {
10279 .name = "cpuacct",
10280 .create = cpuacct_create,
10281 .destroy = cpuacct_destroy,
10282 .populate = cpuacct_populate,
10283 .subsys_id = cpuacct_subsys_id,
10284};
10285#endif /* CONFIG_CGROUP_CPUACCT */