]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: Update the cpu_power sum during load-balance
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
0d905bca 42#include <linux/perf_counter.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
5517d86b 67#include <linux/reciprocal_div.h>
dff06c15 68#include <linux/unistd.h>
f5ff8422 69#include <linux/pagemap.h>
8f4d37ec 70#include <linux/hrtimer.h>
30914a58 71#include <linux/tick.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2
GH
79#include "sched_cpupri.h"
80
a8d154b0 81#define CREATE_TRACE_POINTS
ad8d75ff 82#include <trace/events/sched.h>
a8d154b0 83
1da177e4
LT
84/*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93/*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102/*
d7876a08 103 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 104 */
d6322faf 105#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 106
6aa645ea
IM
107#define NICE_0_LOAD SCHED_LOAD_SCALE
108#define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
1da177e4
LT
110/*
111 * These are the 'tuning knobs' of the scheduler:
112 *
a4ec24b4 113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
114 * Timeslices get refilled after they expire.
115 */
1da177e4 116#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 117
d0b27fa7
PZ
118/*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121#define RUNTIME_INF ((u64)~0ULL)
122
5517d86b 123#ifdef CONFIG_SMP
fd2ab30b
SN
124
125static void double_rq_lock(struct rq *rq1, struct rq *rq2);
126
5517d86b
ED
127/*
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
130 */
131static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
132{
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
134}
135
136/*
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
139 */
140static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
141{
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
144}
145#endif
146
e05606d3
IM
147static inline int rt_policy(int policy)
148{
3f33a7ce 149 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
150 return 1;
151 return 0;
152}
153
154static inline int task_has_rt_policy(struct task_struct *p)
155{
156 return rt_policy(p->policy);
157}
158
1da177e4 159/*
6aa645ea 160 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 161 */
6aa645ea
IM
162struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO];
165};
166
d0b27fa7 167struct rt_bandwidth {
ea736ed5
IM
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock;
170 ktime_t rt_period;
171 u64 rt_runtime;
172 struct hrtimer rt_period_timer;
d0b27fa7
PZ
173};
174
175static struct rt_bandwidth def_rt_bandwidth;
176
177static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
178
179static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
180{
181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer);
183 ktime_t now;
184 int overrun;
185 int idle = 0;
186
187 for (;;) {
188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
190
191 if (!overrun)
192 break;
193
194 idle = do_sched_rt_period_timer(rt_b, overrun);
195 }
196
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
198}
199
200static
201void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
202{
203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime;
205
ac086bc2
PZ
206 spin_lock_init(&rt_b->rt_runtime_lock);
207
d0b27fa7
PZ
208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
211}
212
c8bfff6d
KH
213static inline int rt_bandwidth_enabled(void)
214{
215 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
216}
217
218static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
219{
220 ktime_t now;
221
cac64d00 222 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
223 return;
224
225 if (hrtimer_active(&rt_b->rt_period_timer))
226 return;
227
228 spin_lock(&rt_b->rt_runtime_lock);
229 for (;;) {
7f1e2ca9
PZ
230 unsigned long delta;
231 ktime_t soft, hard;
232
d0b27fa7
PZ
233 if (hrtimer_active(&rt_b->rt_period_timer))
234 break;
235
236 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
237 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
238
239 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
240 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
241 delta = ktime_to_ns(ktime_sub(hard, soft));
242 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 243 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7
PZ
244 }
245 spin_unlock(&rt_b->rt_runtime_lock);
246}
247
248#ifdef CONFIG_RT_GROUP_SCHED
249static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
250{
251 hrtimer_cancel(&rt_b->rt_period_timer);
252}
253#endif
254
712555ee
HC
255/*
256 * sched_domains_mutex serializes calls to arch_init_sched_domains,
257 * detach_destroy_domains and partition_sched_domains.
258 */
259static DEFINE_MUTEX(sched_domains_mutex);
260
052f1dc7 261#ifdef CONFIG_GROUP_SCHED
29f59db3 262
68318b8e
SV
263#include <linux/cgroup.h>
264
29f59db3
SV
265struct cfs_rq;
266
6f505b16
PZ
267static LIST_HEAD(task_groups);
268
29f59db3 269/* task group related information */
4cf86d77 270struct task_group {
052f1dc7 271#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
272 struct cgroup_subsys_state css;
273#endif
052f1dc7 274
6c415b92
AB
275#ifdef CONFIG_USER_SCHED
276 uid_t uid;
277#endif
278
052f1dc7 279#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
280 /* schedulable entities of this group on each cpu */
281 struct sched_entity **se;
282 /* runqueue "owned" by this group on each cpu */
283 struct cfs_rq **cfs_rq;
284 unsigned long shares;
052f1dc7
PZ
285#endif
286
287#ifdef CONFIG_RT_GROUP_SCHED
288 struct sched_rt_entity **rt_se;
289 struct rt_rq **rt_rq;
290
d0b27fa7 291 struct rt_bandwidth rt_bandwidth;
052f1dc7 292#endif
6b2d7700 293
ae8393e5 294 struct rcu_head rcu;
6f505b16 295 struct list_head list;
f473aa5e
PZ
296
297 struct task_group *parent;
298 struct list_head siblings;
299 struct list_head children;
29f59db3
SV
300};
301
354d60c2 302#ifdef CONFIG_USER_SCHED
eff766a6 303
6c415b92
AB
304/* Helper function to pass uid information to create_sched_user() */
305void set_tg_uid(struct user_struct *user)
306{
307 user->tg->uid = user->uid;
308}
309
eff766a6
PZ
310/*
311 * Root task group.
84e9dabf
AS
312 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group.
eff766a6
PZ
314 */
315struct task_group root_task_group;
316
052f1dc7 317#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
318/* Default task group's sched entity on each cpu */
319static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
320/* Default task group's cfs_rq on each cpu */
84e9dabf 321static DEFINE_PER_CPU(struct cfs_rq, init_tg_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 322#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
323
324#ifdef CONFIG_RT_GROUP_SCHED
325static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
326static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 327#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 328#else /* !CONFIG_USER_SCHED */
eff766a6 329#define root_task_group init_task_group
9a7e0b18 330#endif /* CONFIG_USER_SCHED */
6f505b16 331
8ed36996 332/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
333 * a task group's cpu shares.
334 */
8ed36996 335static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 336
57310a98
PZ
337#ifdef CONFIG_SMP
338static int root_task_group_empty(void)
339{
340 return list_empty(&root_task_group.children);
341}
342#endif
343
052f1dc7 344#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
345#ifdef CONFIG_USER_SCHED
346# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 347#else /* !CONFIG_USER_SCHED */
052f1dc7 348# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 349#endif /* CONFIG_USER_SCHED */
052f1dc7 350
cb4ad1ff 351/*
2e084786
LJ
352 * A weight of 0 or 1 can cause arithmetics problems.
353 * A weight of a cfs_rq is the sum of weights of which entities
354 * are queued on this cfs_rq, so a weight of a entity should not be
355 * too large, so as the shares value of a task group.
cb4ad1ff
MX
356 * (The default weight is 1024 - so there's no practical
357 * limitation from this.)
358 */
18d95a28 359#define MIN_SHARES 2
2e084786 360#define MAX_SHARES (1UL << 18)
18d95a28 361
052f1dc7
PZ
362static int init_task_group_load = INIT_TASK_GROUP_LOAD;
363#endif
364
29f59db3 365/* Default task group.
3a252015 366 * Every task in system belong to this group at bootup.
29f59db3 367 */
434d53b0 368struct task_group init_task_group;
29f59db3
SV
369
370/* return group to which a task belongs */
4cf86d77 371static inline struct task_group *task_group(struct task_struct *p)
29f59db3 372{
4cf86d77 373 struct task_group *tg;
9b5b7751 374
052f1dc7 375#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
376 rcu_read_lock();
377 tg = __task_cred(p)->user->tg;
378 rcu_read_unlock();
052f1dc7 379#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
380 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
381 struct task_group, css);
24e377a8 382#else
41a2d6cf 383 tg = &init_task_group;
24e377a8 384#endif
9b5b7751 385 return tg;
29f59db3
SV
386}
387
388/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 389static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 390{
052f1dc7 391#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
392 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
393 p->se.parent = task_group(p)->se[cpu];
052f1dc7 394#endif
6f505b16 395
052f1dc7 396#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
397 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
398 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 399#endif
29f59db3
SV
400}
401
402#else
403
57310a98
PZ
404#ifdef CONFIG_SMP
405static int root_task_group_empty(void)
406{
407 return 1;
408}
409#endif
410
6f505b16 411static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
412static inline struct task_group *task_group(struct task_struct *p)
413{
414 return NULL;
415}
29f59db3 416
052f1dc7 417#endif /* CONFIG_GROUP_SCHED */
29f59db3 418
6aa645ea
IM
419/* CFS-related fields in a runqueue */
420struct cfs_rq {
421 struct load_weight load;
422 unsigned long nr_running;
423
6aa645ea 424 u64 exec_clock;
e9acbff6 425 u64 min_vruntime;
6aa645ea
IM
426
427 struct rb_root tasks_timeline;
428 struct rb_node *rb_leftmost;
4a55bd5e
PZ
429
430 struct list_head tasks;
431 struct list_head *balance_iterator;
432
433 /*
434 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
435 * It is set to NULL otherwise (i.e when none are currently running).
436 */
4793241b 437 struct sched_entity *curr, *next, *last;
ddc97297 438
5ac5c4d6 439 unsigned int nr_spread_over;
ddc97297 440
62160e3f 441#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
442 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
443
41a2d6cf
IM
444 /*
445 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
446 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
447 * (like users, containers etc.)
448 *
449 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
450 * list is used during load balance.
451 */
41a2d6cf
IM
452 struct list_head leaf_cfs_rq_list;
453 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
454
455#ifdef CONFIG_SMP
c09595f6 456 /*
c8cba857 457 * the part of load.weight contributed by tasks
c09595f6 458 */
c8cba857 459 unsigned long task_weight;
c09595f6 460
c8cba857
PZ
461 /*
462 * h_load = weight * f(tg)
463 *
464 * Where f(tg) is the recursive weight fraction assigned to
465 * this group.
466 */
467 unsigned long h_load;
c09595f6 468
c8cba857
PZ
469 /*
470 * this cpu's part of tg->shares
471 */
472 unsigned long shares;
f1d239f7
PZ
473
474 /*
475 * load.weight at the time we set shares
476 */
477 unsigned long rq_weight;
c09595f6 478#endif
6aa645ea
IM
479#endif
480};
1da177e4 481
6aa645ea
IM
482/* Real-Time classes' related field in a runqueue: */
483struct rt_rq {
484 struct rt_prio_array active;
63489e45 485 unsigned long rt_nr_running;
052f1dc7 486#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
487 struct {
488 int curr; /* highest queued rt task prio */
398a153b 489#ifdef CONFIG_SMP
e864c499 490 int next; /* next highest */
398a153b 491#endif
e864c499 492 } highest_prio;
6f505b16 493#endif
fa85ae24 494#ifdef CONFIG_SMP
73fe6aae 495 unsigned long rt_nr_migratory;
a1ba4d8b 496 unsigned long rt_nr_total;
a22d7fc1 497 int overloaded;
917b627d 498 struct plist_head pushable_tasks;
fa85ae24 499#endif
6f505b16 500 int rt_throttled;
fa85ae24 501 u64 rt_time;
ac086bc2 502 u64 rt_runtime;
ea736ed5 503 /* Nests inside the rq lock: */
ac086bc2 504 spinlock_t rt_runtime_lock;
6f505b16 505
052f1dc7 506#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
507 unsigned long rt_nr_boosted;
508
6f505b16
PZ
509 struct rq *rq;
510 struct list_head leaf_rt_rq_list;
511 struct task_group *tg;
512 struct sched_rt_entity *rt_se;
513#endif
6aa645ea
IM
514};
515
57d885fe
GH
516#ifdef CONFIG_SMP
517
518/*
519 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
520 * variables. Each exclusive cpuset essentially defines an island domain by
521 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
522 * exclusive cpuset is created, we also create and attach a new root-domain
523 * object.
524 *
57d885fe
GH
525 */
526struct root_domain {
527 atomic_t refcount;
c6c4927b
RR
528 cpumask_var_t span;
529 cpumask_var_t online;
637f5085 530
0eab9146 531 /*
637f5085
GH
532 * The "RT overload" flag: it gets set if a CPU has more than
533 * one runnable RT task.
534 */
c6c4927b 535 cpumask_var_t rto_mask;
0eab9146 536 atomic_t rto_count;
6e0534f2
GH
537#ifdef CONFIG_SMP
538 struct cpupri cpupri;
539#endif
7a09b1a2
VS
540#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
541 /*
542 * Preferred wake up cpu nominated by sched_mc balance that will be
543 * used when most cpus are idle in the system indicating overall very
544 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
545 */
546 unsigned int sched_mc_preferred_wakeup_cpu;
547#endif
57d885fe
GH
548};
549
dc938520
GH
550/*
551 * By default the system creates a single root-domain with all cpus as
552 * members (mimicking the global state we have today).
553 */
57d885fe
GH
554static struct root_domain def_root_domain;
555
556#endif
557
1da177e4
LT
558/*
559 * This is the main, per-CPU runqueue data structure.
560 *
561 * Locking rule: those places that want to lock multiple runqueues
562 * (such as the load balancing or the thread migration code), lock
563 * acquire operations must be ordered by ascending &runqueue.
564 */
70b97a7f 565struct rq {
d8016491
IM
566 /* runqueue lock: */
567 spinlock_t lock;
1da177e4
LT
568
569 /*
570 * nr_running and cpu_load should be in the same cacheline because
571 * remote CPUs use both these fields when doing load calculation.
572 */
573 unsigned long nr_running;
6aa645ea
IM
574 #define CPU_LOAD_IDX_MAX 5
575 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 576#ifdef CONFIG_NO_HZ
15934a37 577 unsigned long last_tick_seen;
46cb4b7c
SS
578 unsigned char in_nohz_recently;
579#endif
d8016491
IM
580 /* capture load from *all* tasks on this cpu: */
581 struct load_weight load;
6aa645ea
IM
582 unsigned long nr_load_updates;
583 u64 nr_switches;
23a185ca 584 u64 nr_migrations_in;
6aa645ea
IM
585
586 struct cfs_rq cfs;
6f505b16 587 struct rt_rq rt;
6f505b16 588
6aa645ea 589#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
590 /* list of leaf cfs_rq on this cpu: */
591 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
592#endif
593#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 594 struct list_head leaf_rt_rq_list;
1da177e4 595#endif
1da177e4
LT
596
597 /*
598 * This is part of a global counter where only the total sum
599 * over all CPUs matters. A task can increase this counter on
600 * one CPU and if it got migrated afterwards it may decrease
601 * it on another CPU. Always updated under the runqueue lock:
602 */
603 unsigned long nr_uninterruptible;
604
36c8b586 605 struct task_struct *curr, *idle;
c9819f45 606 unsigned long next_balance;
1da177e4 607 struct mm_struct *prev_mm;
6aa645ea 608
3e51f33f 609 u64 clock;
6aa645ea 610
1da177e4
LT
611 atomic_t nr_iowait;
612
613#ifdef CONFIG_SMP
0eab9146 614 struct root_domain *rd;
1da177e4
LT
615 struct sched_domain *sd;
616
a0a522ce 617 unsigned char idle_at_tick;
1da177e4 618 /* For active balancing */
3f029d3c 619 int post_schedule;
1da177e4
LT
620 int active_balance;
621 int push_cpu;
d8016491
IM
622 /* cpu of this runqueue: */
623 int cpu;
1f11eb6a 624 int online;
1da177e4 625
a8a51d5e 626 unsigned long avg_load_per_task;
1da177e4 627
36c8b586 628 struct task_struct *migration_thread;
1da177e4
LT
629 struct list_head migration_queue;
630#endif
631
dce48a84
TG
632 /* calc_load related fields */
633 unsigned long calc_load_update;
634 long calc_load_active;
635
8f4d37ec 636#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
637#ifdef CONFIG_SMP
638 int hrtick_csd_pending;
639 struct call_single_data hrtick_csd;
640#endif
8f4d37ec
PZ
641 struct hrtimer hrtick_timer;
642#endif
643
1da177e4
LT
644#ifdef CONFIG_SCHEDSTATS
645 /* latency stats */
646 struct sched_info rq_sched_info;
9c2c4802
KC
647 unsigned long long rq_cpu_time;
648 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
649
650 /* sys_sched_yield() stats */
480b9434 651 unsigned int yld_count;
1da177e4
LT
652
653 /* schedule() stats */
480b9434
KC
654 unsigned int sched_switch;
655 unsigned int sched_count;
656 unsigned int sched_goidle;
1da177e4
LT
657
658 /* try_to_wake_up() stats */
480b9434
KC
659 unsigned int ttwu_count;
660 unsigned int ttwu_local;
b8efb561
IM
661
662 /* BKL stats */
480b9434 663 unsigned int bkl_count;
1da177e4
LT
664#endif
665};
666
f34e3b61 667static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 668
15afe09b 669static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 670{
15afe09b 671 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
672}
673
0a2966b4
CL
674static inline int cpu_of(struct rq *rq)
675{
676#ifdef CONFIG_SMP
677 return rq->cpu;
678#else
679 return 0;
680#endif
681}
682
674311d5
NP
683/*
684 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 685 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
686 *
687 * The domain tree of any CPU may only be accessed from within
688 * preempt-disabled sections.
689 */
48f24c4d
IM
690#define for_each_domain(cpu, __sd) \
691 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
692
693#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
694#define this_rq() (&__get_cpu_var(runqueues))
695#define task_rq(p) cpu_rq(task_cpu(p))
696#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 697#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 698
aa9c4c0f 699inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
700{
701 rq->clock = sched_clock_cpu(cpu_of(rq));
702}
703
bf5c91ba
IM
704/*
705 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
706 */
707#ifdef CONFIG_SCHED_DEBUG
708# define const_debug __read_mostly
709#else
710# define const_debug static const
711#endif
712
017730c1
IM
713/**
714 * runqueue_is_locked
715 *
716 * Returns true if the current cpu runqueue is locked.
717 * This interface allows printk to be called with the runqueue lock
718 * held and know whether or not it is OK to wake up the klogd.
719 */
720int runqueue_is_locked(void)
721{
722 int cpu = get_cpu();
723 struct rq *rq = cpu_rq(cpu);
724 int ret;
725
726 ret = spin_is_locked(&rq->lock);
727 put_cpu();
728 return ret;
729}
730
bf5c91ba
IM
731/*
732 * Debugging: various feature bits
733 */
f00b45c1
PZ
734
735#define SCHED_FEAT(name, enabled) \
736 __SCHED_FEAT_##name ,
737
bf5c91ba 738enum {
f00b45c1 739#include "sched_features.h"
bf5c91ba
IM
740};
741
f00b45c1
PZ
742#undef SCHED_FEAT
743
744#define SCHED_FEAT(name, enabled) \
745 (1UL << __SCHED_FEAT_##name) * enabled |
746
bf5c91ba 747const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
748#include "sched_features.h"
749 0;
750
751#undef SCHED_FEAT
752
753#ifdef CONFIG_SCHED_DEBUG
754#define SCHED_FEAT(name, enabled) \
755 #name ,
756
983ed7a6 757static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
758#include "sched_features.h"
759 NULL
760};
761
762#undef SCHED_FEAT
763
34f3a814 764static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 765{
f00b45c1
PZ
766 int i;
767
768 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
769 if (!(sysctl_sched_features & (1UL << i)))
770 seq_puts(m, "NO_");
771 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 772 }
34f3a814 773 seq_puts(m, "\n");
f00b45c1 774
34f3a814 775 return 0;
f00b45c1
PZ
776}
777
778static ssize_t
779sched_feat_write(struct file *filp, const char __user *ubuf,
780 size_t cnt, loff_t *ppos)
781{
782 char buf[64];
783 char *cmp = buf;
784 int neg = 0;
785 int i;
786
787 if (cnt > 63)
788 cnt = 63;
789
790 if (copy_from_user(&buf, ubuf, cnt))
791 return -EFAULT;
792
793 buf[cnt] = 0;
794
c24b7c52 795 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
796 neg = 1;
797 cmp += 3;
798 }
799
800 for (i = 0; sched_feat_names[i]; i++) {
801 int len = strlen(sched_feat_names[i]);
802
803 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
804 if (neg)
805 sysctl_sched_features &= ~(1UL << i);
806 else
807 sysctl_sched_features |= (1UL << i);
808 break;
809 }
810 }
811
812 if (!sched_feat_names[i])
813 return -EINVAL;
814
815 filp->f_pos += cnt;
816
817 return cnt;
818}
819
34f3a814
LZ
820static int sched_feat_open(struct inode *inode, struct file *filp)
821{
822 return single_open(filp, sched_feat_show, NULL);
823}
824
f00b45c1 825static struct file_operations sched_feat_fops = {
34f3a814
LZ
826 .open = sched_feat_open,
827 .write = sched_feat_write,
828 .read = seq_read,
829 .llseek = seq_lseek,
830 .release = single_release,
f00b45c1
PZ
831};
832
833static __init int sched_init_debug(void)
834{
f00b45c1
PZ
835 debugfs_create_file("sched_features", 0644, NULL, NULL,
836 &sched_feat_fops);
837
838 return 0;
839}
840late_initcall(sched_init_debug);
841
842#endif
843
844#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 845
b82d9fdd
PZ
846/*
847 * Number of tasks to iterate in a single balance run.
848 * Limited because this is done with IRQs disabled.
849 */
850const_debug unsigned int sysctl_sched_nr_migrate = 32;
851
2398f2c6
PZ
852/*
853 * ratelimit for updating the group shares.
55cd5340 854 * default: 0.25ms
2398f2c6 855 */
55cd5340 856unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 857
ffda12a1
PZ
858/*
859 * Inject some fuzzyness into changing the per-cpu group shares
860 * this avoids remote rq-locks at the expense of fairness.
861 * default: 4
862 */
863unsigned int sysctl_sched_shares_thresh = 4;
864
fa85ae24 865/*
9f0c1e56 866 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
867 * default: 1s
868 */
9f0c1e56 869unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 870
6892b75e
IM
871static __read_mostly int scheduler_running;
872
9f0c1e56
PZ
873/*
874 * part of the period that we allow rt tasks to run in us.
875 * default: 0.95s
876 */
877int sysctl_sched_rt_runtime = 950000;
fa85ae24 878
d0b27fa7
PZ
879static inline u64 global_rt_period(void)
880{
881 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
882}
883
884static inline u64 global_rt_runtime(void)
885{
e26873bb 886 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
887 return RUNTIME_INF;
888
889 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
890}
fa85ae24 891
1da177e4 892#ifndef prepare_arch_switch
4866cde0
NP
893# define prepare_arch_switch(next) do { } while (0)
894#endif
895#ifndef finish_arch_switch
896# define finish_arch_switch(prev) do { } while (0)
897#endif
898
051a1d1a
DA
899static inline int task_current(struct rq *rq, struct task_struct *p)
900{
901 return rq->curr == p;
902}
903
4866cde0 904#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 905static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 906{
051a1d1a 907 return task_current(rq, p);
4866cde0
NP
908}
909
70b97a7f 910static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
911{
912}
913
70b97a7f 914static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 915{
da04c035
IM
916#ifdef CONFIG_DEBUG_SPINLOCK
917 /* this is a valid case when another task releases the spinlock */
918 rq->lock.owner = current;
919#endif
8a25d5de
IM
920 /*
921 * If we are tracking spinlock dependencies then we have to
922 * fix up the runqueue lock - which gets 'carried over' from
923 * prev into current:
924 */
925 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
926
4866cde0
NP
927 spin_unlock_irq(&rq->lock);
928}
929
930#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 931static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
932{
933#ifdef CONFIG_SMP
934 return p->oncpu;
935#else
051a1d1a 936 return task_current(rq, p);
4866cde0
NP
937#endif
938}
939
70b97a7f 940static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
941{
942#ifdef CONFIG_SMP
943 /*
944 * We can optimise this out completely for !SMP, because the
945 * SMP rebalancing from interrupt is the only thing that cares
946 * here.
947 */
948 next->oncpu = 1;
949#endif
950#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
951 spin_unlock_irq(&rq->lock);
952#else
953 spin_unlock(&rq->lock);
954#endif
955}
956
70b97a7f 957static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
958{
959#ifdef CONFIG_SMP
960 /*
961 * After ->oncpu is cleared, the task can be moved to a different CPU.
962 * We must ensure this doesn't happen until the switch is completely
963 * finished.
964 */
965 smp_wmb();
966 prev->oncpu = 0;
967#endif
968#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
969 local_irq_enable();
1da177e4 970#endif
4866cde0
NP
971}
972#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 973
b29739f9
IM
974/*
975 * __task_rq_lock - lock the runqueue a given task resides on.
976 * Must be called interrupts disabled.
977 */
70b97a7f 978static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
979 __acquires(rq->lock)
980{
3a5c359a
AK
981 for (;;) {
982 struct rq *rq = task_rq(p);
983 spin_lock(&rq->lock);
984 if (likely(rq == task_rq(p)))
985 return rq;
b29739f9 986 spin_unlock(&rq->lock);
b29739f9 987 }
b29739f9
IM
988}
989
1da177e4
LT
990/*
991 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 992 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
993 * explicitly disabling preemption.
994 */
70b97a7f 995static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
996 __acquires(rq->lock)
997{
70b97a7f 998 struct rq *rq;
1da177e4 999
3a5c359a
AK
1000 for (;;) {
1001 local_irq_save(*flags);
1002 rq = task_rq(p);
1003 spin_lock(&rq->lock);
1004 if (likely(rq == task_rq(p)))
1005 return rq;
1da177e4 1006 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 1007 }
1da177e4
LT
1008}
1009
ad474cac
ON
1010void task_rq_unlock_wait(struct task_struct *p)
1011{
1012 struct rq *rq = task_rq(p);
1013
1014 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1015 spin_unlock_wait(&rq->lock);
1016}
1017
a9957449 1018static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1019 __releases(rq->lock)
1020{
1021 spin_unlock(&rq->lock);
1022}
1023
70b97a7f 1024static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1025 __releases(rq->lock)
1026{
1027 spin_unlock_irqrestore(&rq->lock, *flags);
1028}
1029
1da177e4 1030/*
cc2a73b5 1031 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1032 */
a9957449 1033static struct rq *this_rq_lock(void)
1da177e4
LT
1034 __acquires(rq->lock)
1035{
70b97a7f 1036 struct rq *rq;
1da177e4
LT
1037
1038 local_irq_disable();
1039 rq = this_rq();
1040 spin_lock(&rq->lock);
1041
1042 return rq;
1043}
1044
8f4d37ec
PZ
1045#ifdef CONFIG_SCHED_HRTICK
1046/*
1047 * Use HR-timers to deliver accurate preemption points.
1048 *
1049 * Its all a bit involved since we cannot program an hrt while holding the
1050 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1051 * reschedule event.
1052 *
1053 * When we get rescheduled we reprogram the hrtick_timer outside of the
1054 * rq->lock.
1055 */
8f4d37ec
PZ
1056
1057/*
1058 * Use hrtick when:
1059 * - enabled by features
1060 * - hrtimer is actually high res
1061 */
1062static inline int hrtick_enabled(struct rq *rq)
1063{
1064 if (!sched_feat(HRTICK))
1065 return 0;
ba42059f 1066 if (!cpu_active(cpu_of(rq)))
b328ca18 1067 return 0;
8f4d37ec
PZ
1068 return hrtimer_is_hres_active(&rq->hrtick_timer);
1069}
1070
8f4d37ec
PZ
1071static void hrtick_clear(struct rq *rq)
1072{
1073 if (hrtimer_active(&rq->hrtick_timer))
1074 hrtimer_cancel(&rq->hrtick_timer);
1075}
1076
8f4d37ec
PZ
1077/*
1078 * High-resolution timer tick.
1079 * Runs from hardirq context with interrupts disabled.
1080 */
1081static enum hrtimer_restart hrtick(struct hrtimer *timer)
1082{
1083 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1084
1085 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1086
1087 spin_lock(&rq->lock);
3e51f33f 1088 update_rq_clock(rq);
8f4d37ec
PZ
1089 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1090 spin_unlock(&rq->lock);
1091
1092 return HRTIMER_NORESTART;
1093}
1094
95e904c7 1095#ifdef CONFIG_SMP
31656519
PZ
1096/*
1097 * called from hardirq (IPI) context
1098 */
1099static void __hrtick_start(void *arg)
b328ca18 1100{
31656519 1101 struct rq *rq = arg;
b328ca18 1102
31656519
PZ
1103 spin_lock(&rq->lock);
1104 hrtimer_restart(&rq->hrtick_timer);
1105 rq->hrtick_csd_pending = 0;
1106 spin_unlock(&rq->lock);
b328ca18
PZ
1107}
1108
31656519
PZ
1109/*
1110 * Called to set the hrtick timer state.
1111 *
1112 * called with rq->lock held and irqs disabled
1113 */
1114static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1115{
31656519
PZ
1116 struct hrtimer *timer = &rq->hrtick_timer;
1117 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1118
cc584b21 1119 hrtimer_set_expires(timer, time);
31656519
PZ
1120
1121 if (rq == this_rq()) {
1122 hrtimer_restart(timer);
1123 } else if (!rq->hrtick_csd_pending) {
6e275637 1124 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1125 rq->hrtick_csd_pending = 1;
1126 }
b328ca18
PZ
1127}
1128
1129static int
1130hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1131{
1132 int cpu = (int)(long)hcpu;
1133
1134 switch (action) {
1135 case CPU_UP_CANCELED:
1136 case CPU_UP_CANCELED_FROZEN:
1137 case CPU_DOWN_PREPARE:
1138 case CPU_DOWN_PREPARE_FROZEN:
1139 case CPU_DEAD:
1140 case CPU_DEAD_FROZEN:
31656519 1141 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1142 return NOTIFY_OK;
1143 }
1144
1145 return NOTIFY_DONE;
1146}
1147
fa748203 1148static __init void init_hrtick(void)
b328ca18
PZ
1149{
1150 hotcpu_notifier(hotplug_hrtick, 0);
1151}
31656519
PZ
1152#else
1153/*
1154 * Called to set the hrtick timer state.
1155 *
1156 * called with rq->lock held and irqs disabled
1157 */
1158static void hrtick_start(struct rq *rq, u64 delay)
1159{
7f1e2ca9 1160 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1161 HRTIMER_MODE_REL_PINNED, 0);
31656519 1162}
b328ca18 1163
006c75f1 1164static inline void init_hrtick(void)
8f4d37ec 1165{
8f4d37ec 1166}
31656519 1167#endif /* CONFIG_SMP */
8f4d37ec 1168
31656519 1169static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1170{
31656519
PZ
1171#ifdef CONFIG_SMP
1172 rq->hrtick_csd_pending = 0;
8f4d37ec 1173
31656519
PZ
1174 rq->hrtick_csd.flags = 0;
1175 rq->hrtick_csd.func = __hrtick_start;
1176 rq->hrtick_csd.info = rq;
1177#endif
8f4d37ec 1178
31656519
PZ
1179 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1180 rq->hrtick_timer.function = hrtick;
8f4d37ec 1181}
006c75f1 1182#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1183static inline void hrtick_clear(struct rq *rq)
1184{
1185}
1186
8f4d37ec
PZ
1187static inline void init_rq_hrtick(struct rq *rq)
1188{
1189}
1190
b328ca18
PZ
1191static inline void init_hrtick(void)
1192{
1193}
006c75f1 1194#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1195
c24d20db
IM
1196/*
1197 * resched_task - mark a task 'to be rescheduled now'.
1198 *
1199 * On UP this means the setting of the need_resched flag, on SMP it
1200 * might also involve a cross-CPU call to trigger the scheduler on
1201 * the target CPU.
1202 */
1203#ifdef CONFIG_SMP
1204
1205#ifndef tsk_is_polling
1206#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1207#endif
1208
31656519 1209static void resched_task(struct task_struct *p)
c24d20db
IM
1210{
1211 int cpu;
1212
1213 assert_spin_locked(&task_rq(p)->lock);
1214
5ed0cec0 1215 if (test_tsk_need_resched(p))
c24d20db
IM
1216 return;
1217
5ed0cec0 1218 set_tsk_need_resched(p);
c24d20db
IM
1219
1220 cpu = task_cpu(p);
1221 if (cpu == smp_processor_id())
1222 return;
1223
1224 /* NEED_RESCHED must be visible before we test polling */
1225 smp_mb();
1226 if (!tsk_is_polling(p))
1227 smp_send_reschedule(cpu);
1228}
1229
1230static void resched_cpu(int cpu)
1231{
1232 struct rq *rq = cpu_rq(cpu);
1233 unsigned long flags;
1234
1235 if (!spin_trylock_irqsave(&rq->lock, flags))
1236 return;
1237 resched_task(cpu_curr(cpu));
1238 spin_unlock_irqrestore(&rq->lock, flags);
1239}
06d8308c
TG
1240
1241#ifdef CONFIG_NO_HZ
1242/*
1243 * When add_timer_on() enqueues a timer into the timer wheel of an
1244 * idle CPU then this timer might expire before the next timer event
1245 * which is scheduled to wake up that CPU. In case of a completely
1246 * idle system the next event might even be infinite time into the
1247 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1248 * leaves the inner idle loop so the newly added timer is taken into
1249 * account when the CPU goes back to idle and evaluates the timer
1250 * wheel for the next timer event.
1251 */
1252void wake_up_idle_cpu(int cpu)
1253{
1254 struct rq *rq = cpu_rq(cpu);
1255
1256 if (cpu == smp_processor_id())
1257 return;
1258
1259 /*
1260 * This is safe, as this function is called with the timer
1261 * wheel base lock of (cpu) held. When the CPU is on the way
1262 * to idle and has not yet set rq->curr to idle then it will
1263 * be serialized on the timer wheel base lock and take the new
1264 * timer into account automatically.
1265 */
1266 if (rq->curr != rq->idle)
1267 return;
1268
1269 /*
1270 * We can set TIF_RESCHED on the idle task of the other CPU
1271 * lockless. The worst case is that the other CPU runs the
1272 * idle task through an additional NOOP schedule()
1273 */
5ed0cec0 1274 set_tsk_need_resched(rq->idle);
06d8308c
TG
1275
1276 /* NEED_RESCHED must be visible before we test polling */
1277 smp_mb();
1278 if (!tsk_is_polling(rq->idle))
1279 smp_send_reschedule(cpu);
1280}
6d6bc0ad 1281#endif /* CONFIG_NO_HZ */
06d8308c 1282
6d6bc0ad 1283#else /* !CONFIG_SMP */
31656519 1284static void resched_task(struct task_struct *p)
c24d20db
IM
1285{
1286 assert_spin_locked(&task_rq(p)->lock);
31656519 1287 set_tsk_need_resched(p);
c24d20db 1288}
6d6bc0ad 1289#endif /* CONFIG_SMP */
c24d20db 1290
45bf76df
IM
1291#if BITS_PER_LONG == 32
1292# define WMULT_CONST (~0UL)
1293#else
1294# define WMULT_CONST (1UL << 32)
1295#endif
1296
1297#define WMULT_SHIFT 32
1298
194081eb
IM
1299/*
1300 * Shift right and round:
1301 */
cf2ab469 1302#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1303
a7be37ac
PZ
1304/*
1305 * delta *= weight / lw
1306 */
cb1c4fc9 1307static unsigned long
45bf76df
IM
1308calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1309 struct load_weight *lw)
1310{
1311 u64 tmp;
1312
7a232e03
LJ
1313 if (!lw->inv_weight) {
1314 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1315 lw->inv_weight = 1;
1316 else
1317 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1318 / (lw->weight+1);
1319 }
45bf76df
IM
1320
1321 tmp = (u64)delta_exec * weight;
1322 /*
1323 * Check whether we'd overflow the 64-bit multiplication:
1324 */
194081eb 1325 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1326 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1327 WMULT_SHIFT/2);
1328 else
cf2ab469 1329 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1330
ecf691da 1331 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1332}
1333
1091985b 1334static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1335{
1336 lw->weight += inc;
e89996ae 1337 lw->inv_weight = 0;
45bf76df
IM
1338}
1339
1091985b 1340static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1341{
1342 lw->weight -= dec;
e89996ae 1343 lw->inv_weight = 0;
45bf76df
IM
1344}
1345
2dd73a4f
PW
1346/*
1347 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1348 * of tasks with abnormal "nice" values across CPUs the contribution that
1349 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1350 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1351 * scaled version of the new time slice allocation that they receive on time
1352 * slice expiry etc.
1353 */
1354
cce7ade8
PZ
1355#define WEIGHT_IDLEPRIO 3
1356#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1357
1358/*
1359 * Nice levels are multiplicative, with a gentle 10% change for every
1360 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1361 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1362 * that remained on nice 0.
1363 *
1364 * The "10% effect" is relative and cumulative: from _any_ nice level,
1365 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1366 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1367 * If a task goes up by ~10% and another task goes down by ~10% then
1368 * the relative distance between them is ~25%.)
dd41f596
IM
1369 */
1370static const int prio_to_weight[40] = {
254753dc
IM
1371 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1372 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1373 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1374 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1375 /* 0 */ 1024, 820, 655, 526, 423,
1376 /* 5 */ 335, 272, 215, 172, 137,
1377 /* 10 */ 110, 87, 70, 56, 45,
1378 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1379};
1380
5714d2de
IM
1381/*
1382 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1383 *
1384 * In cases where the weight does not change often, we can use the
1385 * precalculated inverse to speed up arithmetics by turning divisions
1386 * into multiplications:
1387 */
dd41f596 1388static const u32 prio_to_wmult[40] = {
254753dc
IM
1389 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1390 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1391 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1392 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1393 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1394 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1395 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1396 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1397};
2dd73a4f 1398
dd41f596
IM
1399static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1400
1401/*
1402 * runqueue iterator, to support SMP load-balancing between different
1403 * scheduling classes, without having to expose their internal data
1404 * structures to the load-balancing proper:
1405 */
1406struct rq_iterator {
1407 void *arg;
1408 struct task_struct *(*start)(void *);
1409 struct task_struct *(*next)(void *);
1410};
1411
e1d1484f
PW
1412#ifdef CONFIG_SMP
1413static unsigned long
1414balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1415 unsigned long max_load_move, struct sched_domain *sd,
1416 enum cpu_idle_type idle, int *all_pinned,
1417 int *this_best_prio, struct rq_iterator *iterator);
1418
1419static int
1420iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1421 struct sched_domain *sd, enum cpu_idle_type idle,
1422 struct rq_iterator *iterator);
e1d1484f 1423#endif
dd41f596 1424
ef12fefa
BR
1425/* Time spent by the tasks of the cpu accounting group executing in ... */
1426enum cpuacct_stat_index {
1427 CPUACCT_STAT_USER, /* ... user mode */
1428 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1429
1430 CPUACCT_STAT_NSTATS,
1431};
1432
d842de87
SV
1433#ifdef CONFIG_CGROUP_CPUACCT
1434static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1435static void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1437#else
1438static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1439static inline void cpuacct_update_stats(struct task_struct *tsk,
1440 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1441#endif
1442
18d95a28
PZ
1443static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1444{
1445 update_load_add(&rq->load, load);
1446}
1447
1448static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1449{
1450 update_load_sub(&rq->load, load);
1451}
1452
7940ca36 1453#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1454typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1455
1456/*
1457 * Iterate the full tree, calling @down when first entering a node and @up when
1458 * leaving it for the final time.
1459 */
eb755805 1460static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1461{
1462 struct task_group *parent, *child;
eb755805 1463 int ret;
c09595f6
PZ
1464
1465 rcu_read_lock();
1466 parent = &root_task_group;
1467down:
eb755805
PZ
1468 ret = (*down)(parent, data);
1469 if (ret)
1470 goto out_unlock;
c09595f6
PZ
1471 list_for_each_entry_rcu(child, &parent->children, siblings) {
1472 parent = child;
1473 goto down;
1474
1475up:
1476 continue;
1477 }
eb755805
PZ
1478 ret = (*up)(parent, data);
1479 if (ret)
1480 goto out_unlock;
c09595f6
PZ
1481
1482 child = parent;
1483 parent = parent->parent;
1484 if (parent)
1485 goto up;
eb755805 1486out_unlock:
c09595f6 1487 rcu_read_unlock();
eb755805
PZ
1488
1489 return ret;
c09595f6
PZ
1490}
1491
eb755805
PZ
1492static int tg_nop(struct task_group *tg, void *data)
1493{
1494 return 0;
c09595f6 1495}
eb755805
PZ
1496#endif
1497
1498#ifdef CONFIG_SMP
1499static unsigned long source_load(int cpu, int type);
1500static unsigned long target_load(int cpu, int type);
1501static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1502
1503static unsigned long cpu_avg_load_per_task(int cpu)
1504{
1505 struct rq *rq = cpu_rq(cpu);
af6d596f 1506 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1507
4cd42620
SR
1508 if (nr_running)
1509 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1510 else
1511 rq->avg_load_per_task = 0;
eb755805
PZ
1512
1513 return rq->avg_load_per_task;
1514}
1515
1516#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1517
34d76c41
PZ
1518struct update_shares_data {
1519 unsigned long rq_weight[NR_CPUS];
1520};
1521
1522static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
1523
c09595f6
PZ
1524static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1525
1526/*
1527 * Calculate and set the cpu's group shares.
1528 */
34d76c41
PZ
1529static void update_group_shares_cpu(struct task_group *tg, int cpu,
1530 unsigned long sd_shares,
1531 unsigned long sd_rq_weight,
1532 struct update_shares_data *usd)
18d95a28 1533{
34d76c41 1534 unsigned long shares, rq_weight;
a5004278 1535 int boost = 0;
c09595f6 1536
34d76c41 1537 rq_weight = usd->rq_weight[cpu];
a5004278
PZ
1538 if (!rq_weight) {
1539 boost = 1;
1540 rq_weight = NICE_0_LOAD;
1541 }
c8cba857 1542
c09595f6 1543 /*
a8af7246
PZ
1544 * \Sum_j shares_j * rq_weight_i
1545 * shares_i = -----------------------------
1546 * \Sum_j rq_weight_j
c09595f6 1547 */
ec4e0e2f 1548 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1549 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1550
ffda12a1
PZ
1551 if (abs(shares - tg->se[cpu]->load.weight) >
1552 sysctl_sched_shares_thresh) {
1553 struct rq *rq = cpu_rq(cpu);
1554 unsigned long flags;
c09595f6 1555
ffda12a1 1556 spin_lock_irqsave(&rq->lock, flags);
34d76c41 1557 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1558 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1
PZ
1559 __set_se_shares(tg->se[cpu], shares);
1560 spin_unlock_irqrestore(&rq->lock, flags);
1561 }
18d95a28 1562}
c09595f6
PZ
1563
1564/*
c8cba857
PZ
1565 * Re-compute the task group their per cpu shares over the given domain.
1566 * This needs to be done in a bottom-up fashion because the rq weight of a
1567 * parent group depends on the shares of its child groups.
c09595f6 1568 */
eb755805 1569static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1570{
34d76c41
PZ
1571 unsigned long weight, rq_weight = 0, shares = 0;
1572 struct update_shares_data *usd;
eb755805 1573 struct sched_domain *sd = data;
34d76c41 1574 unsigned long flags;
c8cba857 1575 int i;
c09595f6 1576
34d76c41
PZ
1577 if (!tg->se[0])
1578 return 0;
1579
1580 local_irq_save(flags);
1581 usd = &__get_cpu_var(update_shares_data);
1582
758b2cdc 1583 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41
PZ
1584 weight = tg->cfs_rq[i]->load.weight;
1585 usd->rq_weight[i] = weight;
1586
ec4e0e2f
KC
1587 /*
1588 * If there are currently no tasks on the cpu pretend there
1589 * is one of average load so that when a new task gets to
1590 * run here it will not get delayed by group starvation.
1591 */
ec4e0e2f
KC
1592 if (!weight)
1593 weight = NICE_0_LOAD;
1594
34d76c41 1595 rq_weight += weight;
c8cba857 1596 shares += tg->cfs_rq[i]->shares;
c09595f6 1597 }
c09595f6 1598
c8cba857
PZ
1599 if ((!shares && rq_weight) || shares > tg->shares)
1600 shares = tg->shares;
1601
1602 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1603 shares = tg->shares;
c09595f6 1604
a8af7246 1605 for_each_cpu(i, sched_domain_span(sd))
34d76c41
PZ
1606 update_group_shares_cpu(tg, i, shares, rq_weight, usd);
1607
1608 local_irq_restore(flags);
eb755805
PZ
1609
1610 return 0;
c09595f6
PZ
1611}
1612
1613/*
c8cba857
PZ
1614 * Compute the cpu's hierarchical load factor for each task group.
1615 * This needs to be done in a top-down fashion because the load of a child
1616 * group is a fraction of its parents load.
c09595f6 1617 */
eb755805 1618static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1619{
c8cba857 1620 unsigned long load;
eb755805 1621 long cpu = (long)data;
c09595f6 1622
c8cba857
PZ
1623 if (!tg->parent) {
1624 load = cpu_rq(cpu)->load.weight;
1625 } else {
1626 load = tg->parent->cfs_rq[cpu]->h_load;
1627 load *= tg->cfs_rq[cpu]->shares;
1628 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1629 }
c09595f6 1630
c8cba857 1631 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1632
eb755805 1633 return 0;
c09595f6
PZ
1634}
1635
c8cba857 1636static void update_shares(struct sched_domain *sd)
4d8d595d 1637{
e7097159
PZ
1638 s64 elapsed;
1639 u64 now;
1640
1641 if (root_task_group_empty())
1642 return;
1643
1644 now = cpu_clock(raw_smp_processor_id());
1645 elapsed = now - sd->last_update;
2398f2c6
PZ
1646
1647 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1648 sd->last_update = now;
eb755805 1649 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1650 }
4d8d595d
PZ
1651}
1652
3e5459b4
PZ
1653static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1654{
e7097159
PZ
1655 if (root_task_group_empty())
1656 return;
1657
3e5459b4
PZ
1658 spin_unlock(&rq->lock);
1659 update_shares(sd);
1660 spin_lock(&rq->lock);
1661}
1662
eb755805 1663static void update_h_load(long cpu)
c09595f6 1664{
e7097159
PZ
1665 if (root_task_group_empty())
1666 return;
1667
eb755805 1668 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1669}
1670
c09595f6
PZ
1671#else
1672
c8cba857 1673static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1674{
1675}
1676
3e5459b4
PZ
1677static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1678{
1679}
1680
18d95a28
PZ
1681#endif
1682
8f45e2b5
GH
1683#ifdef CONFIG_PREEMPT
1684
70574a99 1685/*
8f45e2b5
GH
1686 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1687 * way at the expense of forcing extra atomic operations in all
1688 * invocations. This assures that the double_lock is acquired using the
1689 * same underlying policy as the spinlock_t on this architecture, which
1690 * reduces latency compared to the unfair variant below. However, it
1691 * also adds more overhead and therefore may reduce throughput.
70574a99 1692 */
8f45e2b5
GH
1693static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1694 __releases(this_rq->lock)
1695 __acquires(busiest->lock)
1696 __acquires(this_rq->lock)
1697{
1698 spin_unlock(&this_rq->lock);
1699 double_rq_lock(this_rq, busiest);
1700
1701 return 1;
1702}
1703
1704#else
1705/*
1706 * Unfair double_lock_balance: Optimizes throughput at the expense of
1707 * latency by eliminating extra atomic operations when the locks are
1708 * already in proper order on entry. This favors lower cpu-ids and will
1709 * grant the double lock to lower cpus over higher ids under contention,
1710 * regardless of entry order into the function.
1711 */
1712static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1713 __releases(this_rq->lock)
1714 __acquires(busiest->lock)
1715 __acquires(this_rq->lock)
1716{
1717 int ret = 0;
1718
70574a99
AD
1719 if (unlikely(!spin_trylock(&busiest->lock))) {
1720 if (busiest < this_rq) {
1721 spin_unlock(&this_rq->lock);
1722 spin_lock(&busiest->lock);
1723 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1724 ret = 1;
1725 } else
1726 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1727 }
1728 return ret;
1729}
1730
8f45e2b5
GH
1731#endif /* CONFIG_PREEMPT */
1732
1733/*
1734 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1735 */
1736static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1737{
1738 if (unlikely(!irqs_disabled())) {
1739 /* printk() doesn't work good under rq->lock */
1740 spin_unlock(&this_rq->lock);
1741 BUG_ON(1);
1742 }
1743
1744 return _double_lock_balance(this_rq, busiest);
1745}
1746
70574a99
AD
1747static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1748 __releases(busiest->lock)
1749{
1750 spin_unlock(&busiest->lock);
1751 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1752}
18d95a28
PZ
1753#endif
1754
30432094 1755#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1756static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1757{
30432094 1758#ifdef CONFIG_SMP
34e83e85
IM
1759 cfs_rq->shares = shares;
1760#endif
1761}
30432094 1762#endif
e7693a36 1763
dce48a84
TG
1764static void calc_load_account_active(struct rq *this_rq);
1765
dd41f596 1766#include "sched_stats.h"
dd41f596 1767#include "sched_idletask.c"
5522d5d5
IM
1768#include "sched_fair.c"
1769#include "sched_rt.c"
dd41f596
IM
1770#ifdef CONFIG_SCHED_DEBUG
1771# include "sched_debug.c"
1772#endif
1773
1774#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1775#define for_each_class(class) \
1776 for (class = sched_class_highest; class; class = class->next)
dd41f596 1777
c09595f6 1778static void inc_nr_running(struct rq *rq)
9c217245
IM
1779{
1780 rq->nr_running++;
9c217245
IM
1781}
1782
c09595f6 1783static void dec_nr_running(struct rq *rq)
9c217245
IM
1784{
1785 rq->nr_running--;
9c217245
IM
1786}
1787
45bf76df
IM
1788static void set_load_weight(struct task_struct *p)
1789{
1790 if (task_has_rt_policy(p)) {
dd41f596
IM
1791 p->se.load.weight = prio_to_weight[0] * 2;
1792 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1793 return;
1794 }
45bf76df 1795
dd41f596
IM
1796 /*
1797 * SCHED_IDLE tasks get minimal weight:
1798 */
1799 if (p->policy == SCHED_IDLE) {
1800 p->se.load.weight = WEIGHT_IDLEPRIO;
1801 p->se.load.inv_weight = WMULT_IDLEPRIO;
1802 return;
1803 }
71f8bd46 1804
dd41f596
IM
1805 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1806 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1807}
1808
2087a1ad
GH
1809static void update_avg(u64 *avg, u64 sample)
1810{
1811 s64 diff = sample - *avg;
1812 *avg += diff >> 3;
1813}
1814
8159f87e 1815static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1816{
831451ac
PZ
1817 if (wakeup)
1818 p->se.start_runtime = p->se.sum_exec_runtime;
1819
dd41f596 1820 sched_info_queued(p);
fd390f6a 1821 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1822 p->se.on_rq = 1;
71f8bd46
IM
1823}
1824
69be72c1 1825static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1826{
831451ac
PZ
1827 if (sleep) {
1828 if (p->se.last_wakeup) {
1829 update_avg(&p->se.avg_overlap,
1830 p->se.sum_exec_runtime - p->se.last_wakeup);
1831 p->se.last_wakeup = 0;
1832 } else {
1833 update_avg(&p->se.avg_wakeup,
1834 sysctl_sched_wakeup_granularity);
1835 }
2087a1ad
GH
1836 }
1837
46ac22ba 1838 sched_info_dequeued(p);
f02231e5 1839 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1840 p->se.on_rq = 0;
71f8bd46
IM
1841}
1842
14531189 1843/*
dd41f596 1844 * __normal_prio - return the priority that is based on the static prio
14531189 1845 */
14531189
IM
1846static inline int __normal_prio(struct task_struct *p)
1847{
dd41f596 1848 return p->static_prio;
14531189
IM
1849}
1850
b29739f9
IM
1851/*
1852 * Calculate the expected normal priority: i.e. priority
1853 * without taking RT-inheritance into account. Might be
1854 * boosted by interactivity modifiers. Changes upon fork,
1855 * setprio syscalls, and whenever the interactivity
1856 * estimator recalculates.
1857 */
36c8b586 1858static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1859{
1860 int prio;
1861
e05606d3 1862 if (task_has_rt_policy(p))
b29739f9
IM
1863 prio = MAX_RT_PRIO-1 - p->rt_priority;
1864 else
1865 prio = __normal_prio(p);
1866 return prio;
1867}
1868
1869/*
1870 * Calculate the current priority, i.e. the priority
1871 * taken into account by the scheduler. This value might
1872 * be boosted by RT tasks, or might be boosted by
1873 * interactivity modifiers. Will be RT if the task got
1874 * RT-boosted. If not then it returns p->normal_prio.
1875 */
36c8b586 1876static int effective_prio(struct task_struct *p)
b29739f9
IM
1877{
1878 p->normal_prio = normal_prio(p);
1879 /*
1880 * If we are RT tasks or we were boosted to RT priority,
1881 * keep the priority unchanged. Otherwise, update priority
1882 * to the normal priority:
1883 */
1884 if (!rt_prio(p->prio))
1885 return p->normal_prio;
1886 return p->prio;
1887}
1888
1da177e4 1889/*
dd41f596 1890 * activate_task - move a task to the runqueue.
1da177e4 1891 */
dd41f596 1892static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1893{
d9514f6c 1894 if (task_contributes_to_load(p))
dd41f596 1895 rq->nr_uninterruptible--;
1da177e4 1896
8159f87e 1897 enqueue_task(rq, p, wakeup);
c09595f6 1898 inc_nr_running(rq);
1da177e4
LT
1899}
1900
1da177e4
LT
1901/*
1902 * deactivate_task - remove a task from the runqueue.
1903 */
2e1cb74a 1904static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1905{
d9514f6c 1906 if (task_contributes_to_load(p))
dd41f596
IM
1907 rq->nr_uninterruptible++;
1908
69be72c1 1909 dequeue_task(rq, p, sleep);
c09595f6 1910 dec_nr_running(rq);
1da177e4
LT
1911}
1912
1da177e4
LT
1913/**
1914 * task_curr - is this task currently executing on a CPU?
1915 * @p: the task in question.
1916 */
36c8b586 1917inline int task_curr(const struct task_struct *p)
1da177e4
LT
1918{
1919 return cpu_curr(task_cpu(p)) == p;
1920}
1921
dd41f596
IM
1922static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1923{
6f505b16 1924 set_task_rq(p, cpu);
dd41f596 1925#ifdef CONFIG_SMP
ce96b5ac
DA
1926 /*
1927 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1928 * successfuly executed on another CPU. We must ensure that updates of
1929 * per-task data have been completed by this moment.
1930 */
1931 smp_wmb();
dd41f596 1932 task_thread_info(p)->cpu = cpu;
dd41f596 1933#endif
2dd73a4f
PW
1934}
1935
cb469845
SR
1936static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1937 const struct sched_class *prev_class,
1938 int oldprio, int running)
1939{
1940 if (prev_class != p->sched_class) {
1941 if (prev_class->switched_from)
1942 prev_class->switched_from(rq, p, running);
1943 p->sched_class->switched_to(rq, p, running);
1944 } else
1945 p->sched_class->prio_changed(rq, p, oldprio, running);
1946}
1947
1da177e4 1948#ifdef CONFIG_SMP
c65cc870 1949
e958b360
TG
1950/* Used instead of source_load when we know the type == 0 */
1951static unsigned long weighted_cpuload(const int cpu)
1952{
1953 return cpu_rq(cpu)->load.weight;
1954}
1955
cc367732
IM
1956/*
1957 * Is this task likely cache-hot:
1958 */
e7693a36 1959static int
cc367732
IM
1960task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1961{
1962 s64 delta;
1963
f540a608
IM
1964 /*
1965 * Buddy candidates are cache hot:
1966 */
4793241b
PZ
1967 if (sched_feat(CACHE_HOT_BUDDY) &&
1968 (&p->se == cfs_rq_of(&p->se)->next ||
1969 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1970 return 1;
1971
cc367732
IM
1972 if (p->sched_class != &fair_sched_class)
1973 return 0;
1974
6bc1665b
IM
1975 if (sysctl_sched_migration_cost == -1)
1976 return 1;
1977 if (sysctl_sched_migration_cost == 0)
1978 return 0;
1979
cc367732
IM
1980 delta = now - p->se.exec_start;
1981
1982 return delta < (s64)sysctl_sched_migration_cost;
1983}
1984
1985
dd41f596 1986void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1987{
dd41f596
IM
1988 int old_cpu = task_cpu(p);
1989 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1990 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1991 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1992 u64 clock_offset;
dd41f596
IM
1993
1994 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1995
de1d7286 1996 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1997
6cfb0d5d
IM
1998#ifdef CONFIG_SCHEDSTATS
1999 if (p->se.wait_start)
2000 p->se.wait_start -= clock_offset;
dd41f596
IM
2001 if (p->se.sleep_start)
2002 p->se.sleep_start -= clock_offset;
2003 if (p->se.block_start)
2004 p->se.block_start -= clock_offset;
6c594c21 2005#endif
cc367732 2006 if (old_cpu != new_cpu) {
6c594c21 2007 p->se.nr_migrations++;
23a185ca 2008 new_rq->nr_migrations_in++;
6c594c21 2009#ifdef CONFIG_SCHEDSTATS
cc367732
IM
2010 if (task_hot(p, old_rq->clock, NULL))
2011 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 2012#endif
e5289d4a
PZ
2013 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2014 1, 1, NULL, 0);
6c594c21 2015 }
2830cf8c
SV
2016 p->se.vruntime -= old_cfsrq->min_vruntime -
2017 new_cfsrq->min_vruntime;
dd41f596
IM
2018
2019 __set_task_cpu(p, new_cpu);
c65cc870
IM
2020}
2021
70b97a7f 2022struct migration_req {
1da177e4 2023 struct list_head list;
1da177e4 2024
36c8b586 2025 struct task_struct *task;
1da177e4
LT
2026 int dest_cpu;
2027
1da177e4 2028 struct completion done;
70b97a7f 2029};
1da177e4
LT
2030
2031/*
2032 * The task's runqueue lock must be held.
2033 * Returns true if you have to wait for migration thread.
2034 */
36c8b586 2035static int
70b97a7f 2036migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2037{
70b97a7f 2038 struct rq *rq = task_rq(p);
1da177e4
LT
2039
2040 /*
2041 * If the task is not on a runqueue (and not running), then
2042 * it is sufficient to simply update the task's cpu field.
2043 */
dd41f596 2044 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2045 set_task_cpu(p, dest_cpu);
2046 return 0;
2047 }
2048
2049 init_completion(&req->done);
1da177e4
LT
2050 req->task = p;
2051 req->dest_cpu = dest_cpu;
2052 list_add(&req->list, &rq->migration_queue);
48f24c4d 2053
1da177e4
LT
2054 return 1;
2055}
2056
a26b89f0
MM
2057/*
2058 * wait_task_context_switch - wait for a thread to complete at least one
2059 * context switch.
2060 *
2061 * @p must not be current.
2062 */
2063void wait_task_context_switch(struct task_struct *p)
2064{
2065 unsigned long nvcsw, nivcsw, flags;
2066 int running;
2067 struct rq *rq;
2068
2069 nvcsw = p->nvcsw;
2070 nivcsw = p->nivcsw;
2071 for (;;) {
2072 /*
2073 * The runqueue is assigned before the actual context
2074 * switch. We need to take the runqueue lock.
2075 *
2076 * We could check initially without the lock but it is
2077 * very likely that we need to take the lock in every
2078 * iteration.
2079 */
2080 rq = task_rq_lock(p, &flags);
2081 running = task_running(rq, p);
2082 task_rq_unlock(rq, &flags);
2083
2084 if (likely(!running))
2085 break;
2086 /*
2087 * The switch count is incremented before the actual
2088 * context switch. We thus wait for two switches to be
2089 * sure at least one completed.
2090 */
2091 if ((p->nvcsw - nvcsw) > 1)
2092 break;
2093 if ((p->nivcsw - nivcsw) > 1)
2094 break;
2095
2096 cpu_relax();
2097 }
2098}
2099
1da177e4
LT
2100/*
2101 * wait_task_inactive - wait for a thread to unschedule.
2102 *
85ba2d86
RM
2103 * If @match_state is nonzero, it's the @p->state value just checked and
2104 * not expected to change. If it changes, i.e. @p might have woken up,
2105 * then return zero. When we succeed in waiting for @p to be off its CPU,
2106 * we return a positive number (its total switch count). If a second call
2107 * a short while later returns the same number, the caller can be sure that
2108 * @p has remained unscheduled the whole time.
2109 *
1da177e4
LT
2110 * The caller must ensure that the task *will* unschedule sometime soon,
2111 * else this function might spin for a *long* time. This function can't
2112 * be called with interrupts off, or it may introduce deadlock with
2113 * smp_call_function() if an IPI is sent by the same process we are
2114 * waiting to become inactive.
2115 */
85ba2d86 2116unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2117{
2118 unsigned long flags;
dd41f596 2119 int running, on_rq;
85ba2d86 2120 unsigned long ncsw;
70b97a7f 2121 struct rq *rq;
1da177e4 2122
3a5c359a
AK
2123 for (;;) {
2124 /*
2125 * We do the initial early heuristics without holding
2126 * any task-queue locks at all. We'll only try to get
2127 * the runqueue lock when things look like they will
2128 * work out!
2129 */
2130 rq = task_rq(p);
fa490cfd 2131
3a5c359a
AK
2132 /*
2133 * If the task is actively running on another CPU
2134 * still, just relax and busy-wait without holding
2135 * any locks.
2136 *
2137 * NOTE! Since we don't hold any locks, it's not
2138 * even sure that "rq" stays as the right runqueue!
2139 * But we don't care, since "task_running()" will
2140 * return false if the runqueue has changed and p
2141 * is actually now running somewhere else!
2142 */
85ba2d86
RM
2143 while (task_running(rq, p)) {
2144 if (match_state && unlikely(p->state != match_state))
2145 return 0;
3a5c359a 2146 cpu_relax();
85ba2d86 2147 }
fa490cfd 2148
3a5c359a
AK
2149 /*
2150 * Ok, time to look more closely! We need the rq
2151 * lock now, to be *sure*. If we're wrong, we'll
2152 * just go back and repeat.
2153 */
2154 rq = task_rq_lock(p, &flags);
0a16b607 2155 trace_sched_wait_task(rq, p);
3a5c359a
AK
2156 running = task_running(rq, p);
2157 on_rq = p->se.on_rq;
85ba2d86 2158 ncsw = 0;
f31e11d8 2159 if (!match_state || p->state == match_state)
93dcf55f 2160 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2161 task_rq_unlock(rq, &flags);
fa490cfd 2162
85ba2d86
RM
2163 /*
2164 * If it changed from the expected state, bail out now.
2165 */
2166 if (unlikely(!ncsw))
2167 break;
2168
3a5c359a
AK
2169 /*
2170 * Was it really running after all now that we
2171 * checked with the proper locks actually held?
2172 *
2173 * Oops. Go back and try again..
2174 */
2175 if (unlikely(running)) {
2176 cpu_relax();
2177 continue;
2178 }
fa490cfd 2179
3a5c359a
AK
2180 /*
2181 * It's not enough that it's not actively running,
2182 * it must be off the runqueue _entirely_, and not
2183 * preempted!
2184 *
80dd99b3 2185 * So if it was still runnable (but just not actively
3a5c359a
AK
2186 * running right now), it's preempted, and we should
2187 * yield - it could be a while.
2188 */
2189 if (unlikely(on_rq)) {
2190 schedule_timeout_uninterruptible(1);
2191 continue;
2192 }
fa490cfd 2193
3a5c359a
AK
2194 /*
2195 * Ahh, all good. It wasn't running, and it wasn't
2196 * runnable, which means that it will never become
2197 * running in the future either. We're all done!
2198 */
2199 break;
2200 }
85ba2d86
RM
2201
2202 return ncsw;
1da177e4
LT
2203}
2204
2205/***
2206 * kick_process - kick a running thread to enter/exit the kernel
2207 * @p: the to-be-kicked thread
2208 *
2209 * Cause a process which is running on another CPU to enter
2210 * kernel-mode, without any delay. (to get signals handled.)
2211 *
2212 * NOTE: this function doesnt have to take the runqueue lock,
2213 * because all it wants to ensure is that the remote task enters
2214 * the kernel. If the IPI races and the task has been migrated
2215 * to another CPU then no harm is done and the purpose has been
2216 * achieved as well.
2217 */
36c8b586 2218void kick_process(struct task_struct *p)
1da177e4
LT
2219{
2220 int cpu;
2221
2222 preempt_disable();
2223 cpu = task_cpu(p);
2224 if ((cpu != smp_processor_id()) && task_curr(p))
2225 smp_send_reschedule(cpu);
2226 preempt_enable();
2227}
b43e3521 2228EXPORT_SYMBOL_GPL(kick_process);
1da177e4
LT
2229
2230/*
2dd73a4f
PW
2231 * Return a low guess at the load of a migration-source cpu weighted
2232 * according to the scheduling class and "nice" value.
1da177e4
LT
2233 *
2234 * We want to under-estimate the load of migration sources, to
2235 * balance conservatively.
2236 */
a9957449 2237static unsigned long source_load(int cpu, int type)
1da177e4 2238{
70b97a7f 2239 struct rq *rq = cpu_rq(cpu);
dd41f596 2240 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2241
93b75217 2242 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2243 return total;
b910472d 2244
dd41f596 2245 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2246}
2247
2248/*
2dd73a4f
PW
2249 * Return a high guess at the load of a migration-target cpu weighted
2250 * according to the scheduling class and "nice" value.
1da177e4 2251 */
a9957449 2252static unsigned long target_load(int cpu, int type)
1da177e4 2253{
70b97a7f 2254 struct rq *rq = cpu_rq(cpu);
dd41f596 2255 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2256
93b75217 2257 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2258 return total;
3b0bd9bc 2259
dd41f596 2260 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2261}
2262
147cbb4b
NP
2263/*
2264 * find_idlest_group finds and returns the least busy CPU group within the
2265 * domain.
2266 */
2267static struct sched_group *
2268find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2269{
2270 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2271 unsigned long min_load = ULONG_MAX, this_load = 0;
2272 int load_idx = sd->forkexec_idx;
2273 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2274
2275 do {
2276 unsigned long load, avg_load;
2277 int local_group;
2278 int i;
2279
da5a5522 2280 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2281 if (!cpumask_intersects(sched_group_cpus(group),
2282 &p->cpus_allowed))
3a5c359a 2283 continue;
da5a5522 2284
758b2cdc
RR
2285 local_group = cpumask_test_cpu(this_cpu,
2286 sched_group_cpus(group));
147cbb4b
NP
2287
2288 /* Tally up the load of all CPUs in the group */
2289 avg_load = 0;
2290
758b2cdc 2291 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2292 /* Bias balancing toward cpus of our domain */
2293 if (local_group)
2294 load = source_load(i, load_idx);
2295 else
2296 load = target_load(i, load_idx);
2297
2298 avg_load += load;
2299 }
2300
2301 /* Adjust by relative CPU power of the group */
5517d86b
ED
2302 avg_load = sg_div_cpu_power(group,
2303 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2304
2305 if (local_group) {
2306 this_load = avg_load;
2307 this = group;
2308 } else if (avg_load < min_load) {
2309 min_load = avg_load;
2310 idlest = group;
2311 }
3a5c359a 2312 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2313
2314 if (!idlest || 100*this_load < imbalance*min_load)
2315 return NULL;
2316 return idlest;
2317}
2318
2319/*
0feaece9 2320 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2321 */
95cdf3b7 2322static int
758b2cdc 2323find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2324{
2325 unsigned long load, min_load = ULONG_MAX;
2326 int idlest = -1;
2327 int i;
2328
da5a5522 2329 /* Traverse only the allowed CPUs */
758b2cdc 2330 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2331 load = weighted_cpuload(i);
147cbb4b
NP
2332
2333 if (load < min_load || (load == min_load && i == this_cpu)) {
2334 min_load = load;
2335 idlest = i;
2336 }
2337 }
2338
2339 return idlest;
2340}
2341
476d139c
NP
2342/*
2343 * sched_balance_self: balance the current task (running on cpu) in domains
2344 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2345 * SD_BALANCE_EXEC.
2346 *
2347 * Balance, ie. select the least loaded group.
2348 *
2349 * Returns the target CPU number, or the same CPU if no balancing is needed.
2350 *
2351 * preempt must be disabled.
2352 */
2353static int sched_balance_self(int cpu, int flag)
2354{
2355 struct task_struct *t = current;
2356 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2357
c96d145e 2358 for_each_domain(cpu, tmp) {
9761eea8
IM
2359 /*
2360 * If power savings logic is enabled for a domain, stop there.
2361 */
5c45bf27
SS
2362 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2363 break;
476d139c
NP
2364 if (tmp->flags & flag)
2365 sd = tmp;
c96d145e 2366 }
476d139c 2367
039a1c41
PZ
2368 if (sd)
2369 update_shares(sd);
2370
476d139c 2371 while (sd) {
476d139c 2372 struct sched_group *group;
1a848870
SS
2373 int new_cpu, weight;
2374
2375 if (!(sd->flags & flag)) {
2376 sd = sd->child;
2377 continue;
2378 }
476d139c 2379
476d139c 2380 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2381 if (!group) {
2382 sd = sd->child;
2383 continue;
2384 }
476d139c 2385
758b2cdc 2386 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2387 if (new_cpu == -1 || new_cpu == cpu) {
2388 /* Now try balancing at a lower domain level of cpu */
2389 sd = sd->child;
2390 continue;
2391 }
476d139c 2392
1a848870 2393 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2394 cpu = new_cpu;
758b2cdc 2395 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2396 sd = NULL;
476d139c 2397 for_each_domain(cpu, tmp) {
758b2cdc 2398 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2399 break;
2400 if (tmp->flags & flag)
2401 sd = tmp;
2402 }
2403 /* while loop will break here if sd == NULL */
2404 }
2405
2406 return cpu;
2407}
2408
2409#endif /* CONFIG_SMP */
1da177e4 2410
0793a61d
TG
2411/**
2412 * task_oncpu_function_call - call a function on the cpu on which a task runs
2413 * @p: the task to evaluate
2414 * @func: the function to be called
2415 * @info: the function call argument
2416 *
2417 * Calls the function @func when the task is currently running. This might
2418 * be on the current CPU, which just calls the function directly
2419 */
2420void task_oncpu_function_call(struct task_struct *p,
2421 void (*func) (void *info), void *info)
2422{
2423 int cpu;
2424
2425 preempt_disable();
2426 cpu = task_cpu(p);
2427 if (task_curr(p))
2428 smp_call_function_single(cpu, func, info, 1);
2429 preempt_enable();
2430}
2431
1da177e4
LT
2432/***
2433 * try_to_wake_up - wake up a thread
2434 * @p: the to-be-woken-up thread
2435 * @state: the mask of task states that can be woken
2436 * @sync: do a synchronous wakeup?
2437 *
2438 * Put it on the run-queue if it's not already there. The "current"
2439 * thread is always on the run-queue (except when the actual
2440 * re-schedule is in progress), and as such you're allowed to do
2441 * the simpler "current->state = TASK_RUNNING" to mark yourself
2442 * runnable without the overhead of this.
2443 *
2444 * returns failure only if the task is already active.
2445 */
36c8b586 2446static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2447{
cc367732 2448 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2449 unsigned long flags;
2450 long old_state;
70b97a7f 2451 struct rq *rq;
1da177e4 2452
b85d0667
IM
2453 if (!sched_feat(SYNC_WAKEUPS))
2454 sync = 0;
2455
2398f2c6 2456#ifdef CONFIG_SMP
57310a98 2457 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2398f2c6
PZ
2458 struct sched_domain *sd;
2459
2460 this_cpu = raw_smp_processor_id();
2461 cpu = task_cpu(p);
2462
2463 for_each_domain(this_cpu, sd) {
758b2cdc 2464 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2465 update_shares(sd);
2466 break;
2467 }
2468 }
2469 }
2470#endif
2471
04e2f174 2472 smp_wmb();
1da177e4 2473 rq = task_rq_lock(p, &flags);
03e89e45 2474 update_rq_clock(rq);
1da177e4
LT
2475 old_state = p->state;
2476 if (!(old_state & state))
2477 goto out;
2478
dd41f596 2479 if (p->se.on_rq)
1da177e4
LT
2480 goto out_running;
2481
2482 cpu = task_cpu(p);
cc367732 2483 orig_cpu = cpu;
1da177e4
LT
2484 this_cpu = smp_processor_id();
2485
2486#ifdef CONFIG_SMP
2487 if (unlikely(task_running(rq, p)))
2488 goto out_activate;
2489
5d2f5a61
DA
2490 cpu = p->sched_class->select_task_rq(p, sync);
2491 if (cpu != orig_cpu) {
2492 set_task_cpu(p, cpu);
1da177e4
LT
2493 task_rq_unlock(rq, &flags);
2494 /* might preempt at this point */
2495 rq = task_rq_lock(p, &flags);
2496 old_state = p->state;
2497 if (!(old_state & state))
2498 goto out;
dd41f596 2499 if (p->se.on_rq)
1da177e4
LT
2500 goto out_running;
2501
2502 this_cpu = smp_processor_id();
2503 cpu = task_cpu(p);
2504 }
2505
e7693a36
GH
2506#ifdef CONFIG_SCHEDSTATS
2507 schedstat_inc(rq, ttwu_count);
2508 if (cpu == this_cpu)
2509 schedstat_inc(rq, ttwu_local);
2510 else {
2511 struct sched_domain *sd;
2512 for_each_domain(this_cpu, sd) {
758b2cdc 2513 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2514 schedstat_inc(sd, ttwu_wake_remote);
2515 break;
2516 }
2517 }
2518 }
6d6bc0ad 2519#endif /* CONFIG_SCHEDSTATS */
e7693a36 2520
1da177e4
LT
2521out_activate:
2522#endif /* CONFIG_SMP */
cc367732
IM
2523 schedstat_inc(p, se.nr_wakeups);
2524 if (sync)
2525 schedstat_inc(p, se.nr_wakeups_sync);
2526 if (orig_cpu != cpu)
2527 schedstat_inc(p, se.nr_wakeups_migrate);
2528 if (cpu == this_cpu)
2529 schedstat_inc(p, se.nr_wakeups_local);
2530 else
2531 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2532 activate_task(rq, p, 1);
1da177e4
LT
2533 success = 1;
2534
831451ac
PZ
2535 /*
2536 * Only attribute actual wakeups done by this task.
2537 */
2538 if (!in_interrupt()) {
2539 struct sched_entity *se = &current->se;
2540 u64 sample = se->sum_exec_runtime;
2541
2542 if (se->last_wakeup)
2543 sample -= se->last_wakeup;
2544 else
2545 sample -= se->start_runtime;
2546 update_avg(&se->avg_wakeup, sample);
2547
2548 se->last_wakeup = se->sum_exec_runtime;
2549 }
2550
1da177e4 2551out_running:
468a15bb 2552 trace_sched_wakeup(rq, p, success);
15afe09b 2553 check_preempt_curr(rq, p, sync);
4ae7d5ce 2554
1da177e4 2555 p->state = TASK_RUNNING;
9a897c5a
SR
2556#ifdef CONFIG_SMP
2557 if (p->sched_class->task_wake_up)
2558 p->sched_class->task_wake_up(rq, p);
2559#endif
1da177e4
LT
2560out:
2561 task_rq_unlock(rq, &flags);
2562
2563 return success;
2564}
2565
50fa610a
DH
2566/**
2567 * wake_up_process - Wake up a specific process
2568 * @p: The process to be woken up.
2569 *
2570 * Attempt to wake up the nominated process and move it to the set of runnable
2571 * processes. Returns 1 if the process was woken up, 0 if it was already
2572 * running.
2573 *
2574 * It may be assumed that this function implies a write memory barrier before
2575 * changing the task state if and only if any tasks are woken up.
2576 */
7ad5b3a5 2577int wake_up_process(struct task_struct *p)
1da177e4 2578{
d9514f6c 2579 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2580}
1da177e4
LT
2581EXPORT_SYMBOL(wake_up_process);
2582
7ad5b3a5 2583int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2584{
2585 return try_to_wake_up(p, state, 0);
2586}
2587
1da177e4
LT
2588/*
2589 * Perform scheduler related setup for a newly forked process p.
2590 * p is forked by current.
dd41f596
IM
2591 *
2592 * __sched_fork() is basic setup used by init_idle() too:
2593 */
2594static void __sched_fork(struct task_struct *p)
2595{
dd41f596
IM
2596 p->se.exec_start = 0;
2597 p->se.sum_exec_runtime = 0;
f6cf891c 2598 p->se.prev_sum_exec_runtime = 0;
6c594c21 2599 p->se.nr_migrations = 0;
4ae7d5ce
IM
2600 p->se.last_wakeup = 0;
2601 p->se.avg_overlap = 0;
831451ac
PZ
2602 p->se.start_runtime = 0;
2603 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2604
2605#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2606 p->se.wait_start = 0;
2607 p->se.wait_max = 0;
2608 p->se.wait_count = 0;
2609 p->se.wait_sum = 0;
2610
2611 p->se.sleep_start = 0;
2612 p->se.sleep_max = 0;
2613 p->se.sum_sleep_runtime = 0;
2614
2615 p->se.block_start = 0;
2616 p->se.block_max = 0;
2617 p->se.exec_max = 0;
2618 p->se.slice_max = 0;
2619
2620 p->se.nr_migrations_cold = 0;
2621 p->se.nr_failed_migrations_affine = 0;
2622 p->se.nr_failed_migrations_running = 0;
2623 p->se.nr_failed_migrations_hot = 0;
2624 p->se.nr_forced_migrations = 0;
2625 p->se.nr_forced2_migrations = 0;
2626
2627 p->se.nr_wakeups = 0;
2628 p->se.nr_wakeups_sync = 0;
2629 p->se.nr_wakeups_migrate = 0;
2630 p->se.nr_wakeups_local = 0;
2631 p->se.nr_wakeups_remote = 0;
2632 p->se.nr_wakeups_affine = 0;
2633 p->se.nr_wakeups_affine_attempts = 0;
2634 p->se.nr_wakeups_passive = 0;
2635 p->se.nr_wakeups_idle = 0;
2636
6cfb0d5d 2637#endif
476d139c 2638
fa717060 2639 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2640 p->se.on_rq = 0;
4a55bd5e 2641 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2642
e107be36
AK
2643#ifdef CONFIG_PREEMPT_NOTIFIERS
2644 INIT_HLIST_HEAD(&p->preempt_notifiers);
2645#endif
2646
1da177e4
LT
2647 /*
2648 * We mark the process as running here, but have not actually
2649 * inserted it onto the runqueue yet. This guarantees that
2650 * nobody will actually run it, and a signal or other external
2651 * event cannot wake it up and insert it on the runqueue either.
2652 */
2653 p->state = TASK_RUNNING;
dd41f596
IM
2654}
2655
2656/*
2657 * fork()/clone()-time setup:
2658 */
2659void sched_fork(struct task_struct *p, int clone_flags)
2660{
2661 int cpu = get_cpu();
2662
2663 __sched_fork(p);
2664
2665#ifdef CONFIG_SMP
2666 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2667#endif
02e4bac2 2668 set_task_cpu(p, cpu);
b29739f9
IM
2669
2670 /*
b9dc29e7 2671 * Make sure we do not leak PI boosting priority to the child.
b29739f9 2672 */
b9dc29e7 2673 p->prio = current->normal_prio;
ca94c442 2674
b9dc29e7
MG
2675 /*
2676 * Revert to default priority/policy on fork if requested.
2677 */
2678 if (unlikely(p->sched_reset_on_fork)) {
2679 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2680 p->policy = SCHED_NORMAL;
2681
2682 if (p->normal_prio < DEFAULT_PRIO)
2683 p->prio = DEFAULT_PRIO;
2684
6c697bdf
MG
2685 if (PRIO_TO_NICE(p->static_prio) < 0) {
2686 p->static_prio = NICE_TO_PRIO(0);
2687 set_load_weight(p);
2688 }
2689
b9dc29e7
MG
2690 /*
2691 * We don't need the reset flag anymore after the fork. It has
2692 * fulfilled its duty:
2693 */
2694 p->sched_reset_on_fork = 0;
2695 }
ca94c442 2696
2ddbf952
HS
2697 if (!rt_prio(p->prio))
2698 p->sched_class = &fair_sched_class;
b29739f9 2699
52f17b6c 2700#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2701 if (likely(sched_info_on()))
52f17b6c 2702 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2703#endif
d6077cb8 2704#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2705 p->oncpu = 0;
2706#endif
1da177e4 2707#ifdef CONFIG_PREEMPT
4866cde0 2708 /* Want to start with kernel preemption disabled. */
a1261f54 2709 task_thread_info(p)->preempt_count = 1;
1da177e4 2710#endif
917b627d
GH
2711 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2712
476d139c 2713 put_cpu();
1da177e4
LT
2714}
2715
2716/*
2717 * wake_up_new_task - wake up a newly created task for the first time.
2718 *
2719 * This function will do some initial scheduler statistics housekeeping
2720 * that must be done for every newly created context, then puts the task
2721 * on the runqueue and wakes it.
2722 */
7ad5b3a5 2723void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2724{
2725 unsigned long flags;
dd41f596 2726 struct rq *rq;
1da177e4
LT
2727
2728 rq = task_rq_lock(p, &flags);
147cbb4b 2729 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2730 update_rq_clock(rq);
1da177e4
LT
2731
2732 p->prio = effective_prio(p);
2733
b9dca1e0 2734 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2735 activate_task(rq, p, 0);
1da177e4 2736 } else {
1da177e4 2737 /*
dd41f596
IM
2738 * Let the scheduling class do new task startup
2739 * management (if any):
1da177e4 2740 */
ee0827d8 2741 p->sched_class->task_new(rq, p);
c09595f6 2742 inc_nr_running(rq);
1da177e4 2743 }
c71dd42d 2744 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2745 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2746#ifdef CONFIG_SMP
2747 if (p->sched_class->task_wake_up)
2748 p->sched_class->task_wake_up(rq, p);
2749#endif
dd41f596 2750 task_rq_unlock(rq, &flags);
1da177e4
LT
2751}
2752
e107be36
AK
2753#ifdef CONFIG_PREEMPT_NOTIFIERS
2754
2755/**
80dd99b3 2756 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2757 * @notifier: notifier struct to register
e107be36
AK
2758 */
2759void preempt_notifier_register(struct preempt_notifier *notifier)
2760{
2761 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2762}
2763EXPORT_SYMBOL_GPL(preempt_notifier_register);
2764
2765/**
2766 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2767 * @notifier: notifier struct to unregister
e107be36
AK
2768 *
2769 * This is safe to call from within a preemption notifier.
2770 */
2771void preempt_notifier_unregister(struct preempt_notifier *notifier)
2772{
2773 hlist_del(&notifier->link);
2774}
2775EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2776
2777static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2778{
2779 struct preempt_notifier *notifier;
2780 struct hlist_node *node;
2781
2782 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2783 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2784}
2785
2786static void
2787fire_sched_out_preempt_notifiers(struct task_struct *curr,
2788 struct task_struct *next)
2789{
2790 struct preempt_notifier *notifier;
2791 struct hlist_node *node;
2792
2793 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2794 notifier->ops->sched_out(notifier, next);
2795}
2796
6d6bc0ad 2797#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2798
2799static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2800{
2801}
2802
2803static void
2804fire_sched_out_preempt_notifiers(struct task_struct *curr,
2805 struct task_struct *next)
2806{
2807}
2808
6d6bc0ad 2809#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2810
4866cde0
NP
2811/**
2812 * prepare_task_switch - prepare to switch tasks
2813 * @rq: the runqueue preparing to switch
421cee29 2814 * @prev: the current task that is being switched out
4866cde0
NP
2815 * @next: the task we are going to switch to.
2816 *
2817 * This is called with the rq lock held and interrupts off. It must
2818 * be paired with a subsequent finish_task_switch after the context
2819 * switch.
2820 *
2821 * prepare_task_switch sets up locking and calls architecture specific
2822 * hooks.
2823 */
e107be36
AK
2824static inline void
2825prepare_task_switch(struct rq *rq, struct task_struct *prev,
2826 struct task_struct *next)
4866cde0 2827{
e107be36 2828 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2829 prepare_lock_switch(rq, next);
2830 prepare_arch_switch(next);
2831}
2832
1da177e4
LT
2833/**
2834 * finish_task_switch - clean up after a task-switch
344babaa 2835 * @rq: runqueue associated with task-switch
1da177e4
LT
2836 * @prev: the thread we just switched away from.
2837 *
4866cde0
NP
2838 * finish_task_switch must be called after the context switch, paired
2839 * with a prepare_task_switch call before the context switch.
2840 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2841 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2842 *
2843 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2844 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2845 * with the lock held can cause deadlocks; see schedule() for
2846 * details.)
2847 */
3f029d3c 2848static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2849 __releases(rq->lock)
2850{
1da177e4 2851 struct mm_struct *mm = rq->prev_mm;
55a101f8 2852 long prev_state;
1da177e4
LT
2853
2854 rq->prev_mm = NULL;
2855
2856 /*
2857 * A task struct has one reference for the use as "current".
c394cc9f 2858 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2859 * schedule one last time. The schedule call will never return, and
2860 * the scheduled task must drop that reference.
c394cc9f 2861 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2862 * still held, otherwise prev could be scheduled on another cpu, die
2863 * there before we look at prev->state, and then the reference would
2864 * be dropped twice.
2865 * Manfred Spraul <manfred@colorfullife.com>
2866 */
55a101f8 2867 prev_state = prev->state;
4866cde0 2868 finish_arch_switch(prev);
0793a61d 2869 perf_counter_task_sched_in(current, cpu_of(rq));
4866cde0 2870 finish_lock_switch(rq, prev);
e8fa1362 2871
e107be36 2872 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2873 if (mm)
2874 mmdrop(mm);
c394cc9f 2875 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2876 /*
2877 * Remove function-return probe instances associated with this
2878 * task and put them back on the free list.
9761eea8 2879 */
c6fd91f0 2880 kprobe_flush_task(prev);
1da177e4 2881 put_task_struct(prev);
c6fd91f0 2882 }
3f029d3c
GH
2883}
2884
2885#ifdef CONFIG_SMP
2886
2887/* assumes rq->lock is held */
2888static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2889{
2890 if (prev->sched_class->pre_schedule)
2891 prev->sched_class->pre_schedule(rq, prev);
2892}
2893
2894/* rq->lock is NOT held, but preemption is disabled */
2895static inline void post_schedule(struct rq *rq)
2896{
2897 if (rq->post_schedule) {
2898 unsigned long flags;
2899
2900 spin_lock_irqsave(&rq->lock, flags);
2901 if (rq->curr->sched_class->post_schedule)
2902 rq->curr->sched_class->post_schedule(rq);
2903 spin_unlock_irqrestore(&rq->lock, flags);
2904
2905 rq->post_schedule = 0;
2906 }
2907}
2908
2909#else
da19ab51 2910
3f029d3c
GH
2911static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2912{
2913}
2914
2915static inline void post_schedule(struct rq *rq)
2916{
1da177e4
LT
2917}
2918
3f029d3c
GH
2919#endif
2920
1da177e4
LT
2921/**
2922 * schedule_tail - first thing a freshly forked thread must call.
2923 * @prev: the thread we just switched away from.
2924 */
36c8b586 2925asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2926 __releases(rq->lock)
2927{
70b97a7f 2928 struct rq *rq = this_rq();
da19ab51 2929
3f029d3c 2930 finish_task_switch(rq, prev);
da19ab51 2931
3f029d3c
GH
2932 /*
2933 * FIXME: do we need to worry about rq being invalidated by the
2934 * task_switch?
2935 */
2936 post_schedule(rq);
70b97a7f 2937
4866cde0
NP
2938#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2939 /* In this case, finish_task_switch does not reenable preemption */
2940 preempt_enable();
2941#endif
1da177e4 2942 if (current->set_child_tid)
b488893a 2943 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2944}
2945
2946/*
2947 * context_switch - switch to the new MM and the new
2948 * thread's register state.
2949 */
3f029d3c 2950static inline void
70b97a7f 2951context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2952 struct task_struct *next)
1da177e4 2953{
dd41f596 2954 struct mm_struct *mm, *oldmm;
1da177e4 2955
e107be36 2956 prepare_task_switch(rq, prev, next);
0a16b607 2957 trace_sched_switch(rq, prev, next);
dd41f596
IM
2958 mm = next->mm;
2959 oldmm = prev->active_mm;
9226d125
ZA
2960 /*
2961 * For paravirt, this is coupled with an exit in switch_to to
2962 * combine the page table reload and the switch backend into
2963 * one hypercall.
2964 */
224101ed 2965 arch_start_context_switch(prev);
9226d125 2966
dd41f596 2967 if (unlikely(!mm)) {
1da177e4
LT
2968 next->active_mm = oldmm;
2969 atomic_inc(&oldmm->mm_count);
2970 enter_lazy_tlb(oldmm, next);
2971 } else
2972 switch_mm(oldmm, mm, next);
2973
dd41f596 2974 if (unlikely(!prev->mm)) {
1da177e4 2975 prev->active_mm = NULL;
1da177e4
LT
2976 rq->prev_mm = oldmm;
2977 }
3a5f5e48
IM
2978 /*
2979 * Since the runqueue lock will be released by the next
2980 * task (which is an invalid locking op but in the case
2981 * of the scheduler it's an obvious special-case), so we
2982 * do an early lockdep release here:
2983 */
2984#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2985 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2986#endif
1da177e4
LT
2987
2988 /* Here we just switch the register state and the stack. */
2989 switch_to(prev, next, prev);
2990
dd41f596
IM
2991 barrier();
2992 /*
2993 * this_rq must be evaluated again because prev may have moved
2994 * CPUs since it called schedule(), thus the 'rq' on its stack
2995 * frame will be invalid.
2996 */
3f029d3c 2997 finish_task_switch(this_rq(), prev);
1da177e4
LT
2998}
2999
3000/*
3001 * nr_running, nr_uninterruptible and nr_context_switches:
3002 *
3003 * externally visible scheduler statistics: current number of runnable
3004 * threads, current number of uninterruptible-sleeping threads, total
3005 * number of context switches performed since bootup.
3006 */
3007unsigned long nr_running(void)
3008{
3009 unsigned long i, sum = 0;
3010
3011 for_each_online_cpu(i)
3012 sum += cpu_rq(i)->nr_running;
3013
3014 return sum;
3015}
3016
3017unsigned long nr_uninterruptible(void)
3018{
3019 unsigned long i, sum = 0;
3020
0a945022 3021 for_each_possible_cpu(i)
1da177e4
LT
3022 sum += cpu_rq(i)->nr_uninterruptible;
3023
3024 /*
3025 * Since we read the counters lockless, it might be slightly
3026 * inaccurate. Do not allow it to go below zero though:
3027 */
3028 if (unlikely((long)sum < 0))
3029 sum = 0;
3030
3031 return sum;
3032}
3033
3034unsigned long long nr_context_switches(void)
3035{
cc94abfc
SR
3036 int i;
3037 unsigned long long sum = 0;
1da177e4 3038
0a945022 3039 for_each_possible_cpu(i)
1da177e4
LT
3040 sum += cpu_rq(i)->nr_switches;
3041
3042 return sum;
3043}
3044
3045unsigned long nr_iowait(void)
3046{
3047 unsigned long i, sum = 0;
3048
0a945022 3049 for_each_possible_cpu(i)
1da177e4
LT
3050 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3051
3052 return sum;
3053}
3054
dce48a84
TG
3055/* Variables and functions for calc_load */
3056static atomic_long_t calc_load_tasks;
3057static unsigned long calc_load_update;
3058unsigned long avenrun[3];
3059EXPORT_SYMBOL(avenrun);
3060
2d02494f
TG
3061/**
3062 * get_avenrun - get the load average array
3063 * @loads: pointer to dest load array
3064 * @offset: offset to add
3065 * @shift: shift count to shift the result left
3066 *
3067 * These values are estimates at best, so no need for locking.
3068 */
3069void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3070{
3071 loads[0] = (avenrun[0] + offset) << shift;
3072 loads[1] = (avenrun[1] + offset) << shift;
3073 loads[2] = (avenrun[2] + offset) << shift;
3074}
3075
dce48a84
TG
3076static unsigned long
3077calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3078{
dce48a84
TG
3079 load *= exp;
3080 load += active * (FIXED_1 - exp);
3081 return load >> FSHIFT;
3082}
db1b1fef 3083
dce48a84
TG
3084/*
3085 * calc_load - update the avenrun load estimates 10 ticks after the
3086 * CPUs have updated calc_load_tasks.
3087 */
3088void calc_global_load(void)
3089{
3090 unsigned long upd = calc_load_update + 10;
3091 long active;
3092
3093 if (time_before(jiffies, upd))
3094 return;
db1b1fef 3095
dce48a84
TG
3096 active = atomic_long_read(&calc_load_tasks);
3097 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 3098
dce48a84
TG
3099 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3100 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3101 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3102
3103 calc_load_update += LOAD_FREQ;
3104}
3105
3106/*
3107 * Either called from update_cpu_load() or from a cpu going idle
3108 */
3109static void calc_load_account_active(struct rq *this_rq)
3110{
3111 long nr_active, delta;
3112
3113 nr_active = this_rq->nr_running;
3114 nr_active += (long) this_rq->nr_uninterruptible;
3115
3116 if (nr_active != this_rq->calc_load_active) {
3117 delta = nr_active - this_rq->calc_load_active;
3118 this_rq->calc_load_active = nr_active;
3119 atomic_long_add(delta, &calc_load_tasks);
3120 }
db1b1fef
JS
3121}
3122
23a185ca
PM
3123/*
3124 * Externally visible per-cpu scheduler statistics:
23a185ca
PM
3125 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3126 */
23a185ca
PM
3127u64 cpu_nr_migrations(int cpu)
3128{
3129 return cpu_rq(cpu)->nr_migrations_in;
3130}
3131
48f24c4d 3132/*
dd41f596
IM
3133 * Update rq->cpu_load[] statistics. This function is usually called every
3134 * scheduler tick (TICK_NSEC).
48f24c4d 3135 */
dd41f596 3136static void update_cpu_load(struct rq *this_rq)
48f24c4d 3137{
495eca49 3138 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3139 int i, scale;
3140
3141 this_rq->nr_load_updates++;
dd41f596
IM
3142
3143 /* Update our load: */
3144 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3145 unsigned long old_load, new_load;
3146
3147 /* scale is effectively 1 << i now, and >> i divides by scale */
3148
3149 old_load = this_rq->cpu_load[i];
3150 new_load = this_load;
a25707f3
IM
3151 /*
3152 * Round up the averaging division if load is increasing. This
3153 * prevents us from getting stuck on 9 if the load is 10, for
3154 * example.
3155 */
3156 if (new_load > old_load)
3157 new_load += scale-1;
dd41f596
IM
3158 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3159 }
dce48a84
TG
3160
3161 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3162 this_rq->calc_load_update += LOAD_FREQ;
3163 calc_load_account_active(this_rq);
3164 }
48f24c4d
IM
3165}
3166
dd41f596
IM
3167#ifdef CONFIG_SMP
3168
1da177e4
LT
3169/*
3170 * double_rq_lock - safely lock two runqueues
3171 *
3172 * Note this does not disable interrupts like task_rq_lock,
3173 * you need to do so manually before calling.
3174 */
70b97a7f 3175static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3176 __acquires(rq1->lock)
3177 __acquires(rq2->lock)
3178{
054b9108 3179 BUG_ON(!irqs_disabled());
1da177e4
LT
3180 if (rq1 == rq2) {
3181 spin_lock(&rq1->lock);
3182 __acquire(rq2->lock); /* Fake it out ;) */
3183 } else {
c96d145e 3184 if (rq1 < rq2) {
1da177e4 3185 spin_lock(&rq1->lock);
5e710e37 3186 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3187 } else {
3188 spin_lock(&rq2->lock);
5e710e37 3189 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3190 }
3191 }
6e82a3be
IM
3192 update_rq_clock(rq1);
3193 update_rq_clock(rq2);
1da177e4
LT
3194}
3195
3196/*
3197 * double_rq_unlock - safely unlock two runqueues
3198 *
3199 * Note this does not restore interrupts like task_rq_unlock,
3200 * you need to do so manually after calling.
3201 */
70b97a7f 3202static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3203 __releases(rq1->lock)
3204 __releases(rq2->lock)
3205{
3206 spin_unlock(&rq1->lock);
3207 if (rq1 != rq2)
3208 spin_unlock(&rq2->lock);
3209 else
3210 __release(rq2->lock);
3211}
3212
1da177e4
LT
3213/*
3214 * If dest_cpu is allowed for this process, migrate the task to it.
3215 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3216 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3217 * the cpu_allowed mask is restored.
3218 */
36c8b586 3219static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3220{
70b97a7f 3221 struct migration_req req;
1da177e4 3222 unsigned long flags;
70b97a7f 3223 struct rq *rq;
1da177e4
LT
3224
3225 rq = task_rq_lock(p, &flags);
96f874e2 3226 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3227 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3228 goto out;
3229
3230 /* force the process onto the specified CPU */
3231 if (migrate_task(p, dest_cpu, &req)) {
3232 /* Need to wait for migration thread (might exit: take ref). */
3233 struct task_struct *mt = rq->migration_thread;
36c8b586 3234
1da177e4
LT
3235 get_task_struct(mt);
3236 task_rq_unlock(rq, &flags);
3237 wake_up_process(mt);
3238 put_task_struct(mt);
3239 wait_for_completion(&req.done);
36c8b586 3240
1da177e4
LT
3241 return;
3242 }
3243out:
3244 task_rq_unlock(rq, &flags);
3245}
3246
3247/*
476d139c
NP
3248 * sched_exec - execve() is a valuable balancing opportunity, because at
3249 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3250 */
3251void sched_exec(void)
3252{
1da177e4 3253 int new_cpu, this_cpu = get_cpu();
476d139c 3254 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 3255 put_cpu();
476d139c
NP
3256 if (new_cpu != this_cpu)
3257 sched_migrate_task(current, new_cpu);
1da177e4
LT
3258}
3259
3260/*
3261 * pull_task - move a task from a remote runqueue to the local runqueue.
3262 * Both runqueues must be locked.
3263 */
dd41f596
IM
3264static void pull_task(struct rq *src_rq, struct task_struct *p,
3265 struct rq *this_rq, int this_cpu)
1da177e4 3266{
2e1cb74a 3267 deactivate_task(src_rq, p, 0);
1da177e4 3268 set_task_cpu(p, this_cpu);
dd41f596 3269 activate_task(this_rq, p, 0);
1da177e4
LT
3270 /*
3271 * Note that idle threads have a prio of MAX_PRIO, for this test
3272 * to be always true for them.
3273 */
15afe09b 3274 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3275}
3276
3277/*
3278 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3279 */
858119e1 3280static
70b97a7f 3281int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3282 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3283 int *all_pinned)
1da177e4 3284{
708dc512 3285 int tsk_cache_hot = 0;
1da177e4
LT
3286 /*
3287 * We do not migrate tasks that are:
3288 * 1) running (obviously), or
3289 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3290 * 3) are cache-hot on their current CPU.
3291 */
96f874e2 3292 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3293 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3294 return 0;
cc367732 3295 }
81026794
NP
3296 *all_pinned = 0;
3297
cc367732
IM
3298 if (task_running(rq, p)) {
3299 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3300 return 0;
cc367732 3301 }
1da177e4 3302
da84d961
IM
3303 /*
3304 * Aggressive migration if:
3305 * 1) task is cache cold, or
3306 * 2) too many balance attempts have failed.
3307 */
3308
708dc512
LH
3309 tsk_cache_hot = task_hot(p, rq->clock, sd);
3310 if (!tsk_cache_hot ||
3311 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3312#ifdef CONFIG_SCHEDSTATS
708dc512 3313 if (tsk_cache_hot) {
da84d961 3314 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3315 schedstat_inc(p, se.nr_forced_migrations);
3316 }
da84d961
IM
3317#endif
3318 return 1;
3319 }
3320
708dc512 3321 if (tsk_cache_hot) {
cc367732 3322 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3323 return 0;
cc367732 3324 }
1da177e4
LT
3325 return 1;
3326}
3327
e1d1484f
PW
3328static unsigned long
3329balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3330 unsigned long max_load_move, struct sched_domain *sd,
3331 enum cpu_idle_type idle, int *all_pinned,
3332 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3333{
051c6764 3334 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3335 struct task_struct *p;
3336 long rem_load_move = max_load_move;
1da177e4 3337
e1d1484f 3338 if (max_load_move == 0)
1da177e4
LT
3339 goto out;
3340
81026794
NP
3341 pinned = 1;
3342
1da177e4 3343 /*
dd41f596 3344 * Start the load-balancing iterator:
1da177e4 3345 */
dd41f596
IM
3346 p = iterator->start(iterator->arg);
3347next:
b82d9fdd 3348 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3349 goto out;
051c6764
PZ
3350
3351 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3352 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3353 p = iterator->next(iterator->arg);
3354 goto next;
1da177e4
LT
3355 }
3356
dd41f596 3357 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3358 pulled++;
dd41f596 3359 rem_load_move -= p->se.load.weight;
1da177e4 3360
7e96fa58
GH
3361#ifdef CONFIG_PREEMPT
3362 /*
3363 * NEWIDLE balancing is a source of latency, so preemptible kernels
3364 * will stop after the first task is pulled to minimize the critical
3365 * section.
3366 */
3367 if (idle == CPU_NEWLY_IDLE)
3368 goto out;
3369#endif
3370
2dd73a4f 3371 /*
b82d9fdd 3372 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3373 */
e1d1484f 3374 if (rem_load_move > 0) {
a4ac01c3
PW
3375 if (p->prio < *this_best_prio)
3376 *this_best_prio = p->prio;
dd41f596
IM
3377 p = iterator->next(iterator->arg);
3378 goto next;
1da177e4
LT
3379 }
3380out:
3381 /*
e1d1484f 3382 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3383 * so we can safely collect pull_task() stats here rather than
3384 * inside pull_task().
3385 */
3386 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3387
3388 if (all_pinned)
3389 *all_pinned = pinned;
e1d1484f
PW
3390
3391 return max_load_move - rem_load_move;
1da177e4
LT
3392}
3393
dd41f596 3394/*
43010659
PW
3395 * move_tasks tries to move up to max_load_move weighted load from busiest to
3396 * this_rq, as part of a balancing operation within domain "sd".
3397 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3398 *
3399 * Called with both runqueues locked.
3400 */
3401static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3402 unsigned long max_load_move,
dd41f596
IM
3403 struct sched_domain *sd, enum cpu_idle_type idle,
3404 int *all_pinned)
3405{
5522d5d5 3406 const struct sched_class *class = sched_class_highest;
43010659 3407 unsigned long total_load_moved = 0;
a4ac01c3 3408 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3409
3410 do {
43010659
PW
3411 total_load_moved +=
3412 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3413 max_load_move - total_load_moved,
a4ac01c3 3414 sd, idle, all_pinned, &this_best_prio);
dd41f596 3415 class = class->next;
c4acb2c0 3416
7e96fa58
GH
3417#ifdef CONFIG_PREEMPT
3418 /*
3419 * NEWIDLE balancing is a source of latency, so preemptible
3420 * kernels will stop after the first task is pulled to minimize
3421 * the critical section.
3422 */
c4acb2c0
GH
3423 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3424 break;
7e96fa58 3425#endif
43010659 3426 } while (class && max_load_move > total_load_moved);
dd41f596 3427
43010659
PW
3428 return total_load_moved > 0;
3429}
3430
e1d1484f
PW
3431static int
3432iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3433 struct sched_domain *sd, enum cpu_idle_type idle,
3434 struct rq_iterator *iterator)
3435{
3436 struct task_struct *p = iterator->start(iterator->arg);
3437 int pinned = 0;
3438
3439 while (p) {
3440 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3441 pull_task(busiest, p, this_rq, this_cpu);
3442 /*
3443 * Right now, this is only the second place pull_task()
3444 * is called, so we can safely collect pull_task()
3445 * stats here rather than inside pull_task().
3446 */
3447 schedstat_inc(sd, lb_gained[idle]);
3448
3449 return 1;
3450 }
3451 p = iterator->next(iterator->arg);
3452 }
3453
3454 return 0;
3455}
3456
43010659
PW
3457/*
3458 * move_one_task tries to move exactly one task from busiest to this_rq, as
3459 * part of active balancing operations within "domain".
3460 * Returns 1 if successful and 0 otherwise.
3461 *
3462 * Called with both runqueues locked.
3463 */
3464static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3465 struct sched_domain *sd, enum cpu_idle_type idle)
3466{
5522d5d5 3467 const struct sched_class *class;
43010659 3468
cde7e5ca 3469 for_each_class(class) {
e1d1484f 3470 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3471 return 1;
cde7e5ca 3472 }
43010659
PW
3473
3474 return 0;
dd41f596 3475}
67bb6c03 3476/********** Helpers for find_busiest_group ************************/
1da177e4 3477/*
222d656d
GS
3478 * sd_lb_stats - Structure to store the statistics of a sched_domain
3479 * during load balancing.
1da177e4 3480 */
222d656d
GS
3481struct sd_lb_stats {
3482 struct sched_group *busiest; /* Busiest group in this sd */
3483 struct sched_group *this; /* Local group in this sd */
3484 unsigned long total_load; /* Total load of all groups in sd */
3485 unsigned long total_pwr; /* Total power of all groups in sd */
3486 unsigned long avg_load; /* Average load across all groups in sd */
3487
3488 /** Statistics of this group */
3489 unsigned long this_load;
3490 unsigned long this_load_per_task;
3491 unsigned long this_nr_running;
3492
3493 /* Statistics of the busiest group */
3494 unsigned long max_load;
3495 unsigned long busiest_load_per_task;
3496 unsigned long busiest_nr_running;
3497
3498 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3499#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3500 int power_savings_balance; /* Is powersave balance needed for this sd */
3501 struct sched_group *group_min; /* Least loaded group in sd */
3502 struct sched_group *group_leader; /* Group which relieves group_min */
3503 unsigned long min_load_per_task; /* load_per_task in group_min */
3504 unsigned long leader_nr_running; /* Nr running of group_leader */
3505 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3506#endif
222d656d 3507};
1da177e4 3508
d5ac537e 3509/*
381be78f
GS
3510 * sg_lb_stats - stats of a sched_group required for load_balancing
3511 */
3512struct sg_lb_stats {
3513 unsigned long avg_load; /*Avg load across the CPUs of the group */
3514 unsigned long group_load; /* Total load over the CPUs of the group */
3515 unsigned long sum_nr_running; /* Nr tasks running in the group */
3516 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3517 unsigned long group_capacity;
3518 int group_imb; /* Is there an imbalance in the group ? */
3519};
408ed066 3520
67bb6c03
GS
3521/**
3522 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3523 * @group: The group whose first cpu is to be returned.
3524 */
3525static inline unsigned int group_first_cpu(struct sched_group *group)
3526{
3527 return cpumask_first(sched_group_cpus(group));
3528}
3529
3530/**
3531 * get_sd_load_idx - Obtain the load index for a given sched domain.
3532 * @sd: The sched_domain whose load_idx is to be obtained.
3533 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3534 */
3535static inline int get_sd_load_idx(struct sched_domain *sd,
3536 enum cpu_idle_type idle)
3537{
3538 int load_idx;
3539
3540 switch (idle) {
3541 case CPU_NOT_IDLE:
7897986b 3542 load_idx = sd->busy_idx;
67bb6c03
GS
3543 break;
3544
3545 case CPU_NEWLY_IDLE:
7897986b 3546 load_idx = sd->newidle_idx;
67bb6c03
GS
3547 break;
3548 default:
7897986b 3549 load_idx = sd->idle_idx;
67bb6c03
GS
3550 break;
3551 }
1da177e4 3552
67bb6c03
GS
3553 return load_idx;
3554}
1da177e4 3555
1da177e4 3556
c071df18
GS
3557#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3558/**
3559 * init_sd_power_savings_stats - Initialize power savings statistics for
3560 * the given sched_domain, during load balancing.
3561 *
3562 * @sd: Sched domain whose power-savings statistics are to be initialized.
3563 * @sds: Variable containing the statistics for sd.
3564 * @idle: Idle status of the CPU at which we're performing load-balancing.
3565 */
3566static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3567 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3568{
3569 /*
3570 * Busy processors will not participate in power savings
3571 * balance.
3572 */
3573 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3574 sds->power_savings_balance = 0;
3575 else {
3576 sds->power_savings_balance = 1;
3577 sds->min_nr_running = ULONG_MAX;
3578 sds->leader_nr_running = 0;
3579 }
3580}
783609c6 3581
c071df18
GS
3582/**
3583 * update_sd_power_savings_stats - Update the power saving stats for a
3584 * sched_domain while performing load balancing.
3585 *
3586 * @group: sched_group belonging to the sched_domain under consideration.
3587 * @sds: Variable containing the statistics of the sched_domain
3588 * @local_group: Does group contain the CPU for which we're performing
3589 * load balancing ?
3590 * @sgs: Variable containing the statistics of the group.
3591 */
3592static inline void update_sd_power_savings_stats(struct sched_group *group,
3593 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3594{
408ed066 3595
c071df18
GS
3596 if (!sds->power_savings_balance)
3597 return;
1da177e4 3598
c071df18
GS
3599 /*
3600 * If the local group is idle or completely loaded
3601 * no need to do power savings balance at this domain
3602 */
3603 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3604 !sds->this_nr_running))
3605 sds->power_savings_balance = 0;
2dd73a4f 3606
c071df18
GS
3607 /*
3608 * If a group is already running at full capacity or idle,
3609 * don't include that group in power savings calculations
3610 */
3611 if (!sds->power_savings_balance ||
3612 sgs->sum_nr_running >= sgs->group_capacity ||
3613 !sgs->sum_nr_running)
3614 return;
5969fe06 3615
c071df18
GS
3616 /*
3617 * Calculate the group which has the least non-idle load.
3618 * This is the group from where we need to pick up the load
3619 * for saving power
3620 */
3621 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3622 (sgs->sum_nr_running == sds->min_nr_running &&
3623 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3624 sds->group_min = group;
3625 sds->min_nr_running = sgs->sum_nr_running;
3626 sds->min_load_per_task = sgs->sum_weighted_load /
3627 sgs->sum_nr_running;
3628 }
783609c6 3629
c071df18
GS
3630 /*
3631 * Calculate the group which is almost near its
3632 * capacity but still has some space to pick up some load
3633 * from other group and save more power
3634 */
3635 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3636 return;
1da177e4 3637
c071df18
GS
3638 if (sgs->sum_nr_running > sds->leader_nr_running ||
3639 (sgs->sum_nr_running == sds->leader_nr_running &&
3640 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3641 sds->group_leader = group;
3642 sds->leader_nr_running = sgs->sum_nr_running;
3643 }
3644}
408ed066 3645
c071df18 3646/**
d5ac537e 3647 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3648 * @sds: Variable containing the statistics of the sched_domain
3649 * under consideration.
3650 * @this_cpu: Cpu at which we're currently performing load-balancing.
3651 * @imbalance: Variable to store the imbalance.
3652 *
d5ac537e
RD
3653 * Description:
3654 * Check if we have potential to perform some power-savings balance.
3655 * If yes, set the busiest group to be the least loaded group in the
3656 * sched_domain, so that it's CPUs can be put to idle.
3657 *
c071df18
GS
3658 * Returns 1 if there is potential to perform power-savings balance.
3659 * Else returns 0.
3660 */
3661static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3662 int this_cpu, unsigned long *imbalance)
3663{
3664 if (!sds->power_savings_balance)
3665 return 0;
1da177e4 3666
c071df18
GS
3667 if (sds->this != sds->group_leader ||
3668 sds->group_leader == sds->group_min)
3669 return 0;
783609c6 3670
c071df18
GS
3671 *imbalance = sds->min_load_per_task;
3672 sds->busiest = sds->group_min;
1da177e4 3673
c071df18
GS
3674 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3675 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3676 group_first_cpu(sds->group_leader);
3677 }
3678
3679 return 1;
1da177e4 3680
c071df18
GS
3681}
3682#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3683static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3684 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3685{
3686 return;
3687}
408ed066 3688
c071df18
GS
3689static inline void update_sd_power_savings_stats(struct sched_group *group,
3690 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3691{
3692 return;
3693}
3694
3695static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3696 int this_cpu, unsigned long *imbalance)
3697{
3698 return 0;
3699}
3700#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3701
cc9fba7d
PZ
3702static void update_sched_power(struct sched_domain *sd)
3703{
3704 struct sched_domain *child = sd->child;
3705 struct sched_group *group, *sdg = sd->groups;
3706 unsigned long power = sdg->__cpu_power;
3707
3708 if (!child) {
3709 /* compute cpu power for this cpu */
3710 return;
3711 }
3712
3713 sdg->__cpu_power = 0;
3714
3715 group = child->groups;
3716 do {
3717 sdg->__cpu_power += group->__cpu_power;
3718 group = group->next;
3719 } while (group != child->groups);
3720
3721 if (power != sdg->__cpu_power)
3722 sdg->reciprocal_cpu_power = reciprocal_value(sdg->__cpu_power);
3723}
c071df18 3724
1f8c553d
GS
3725/**
3726 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3727 * @group: sched_group whose statistics are to be updated.
3728 * @this_cpu: Cpu for which load balance is currently performed.
3729 * @idle: Idle status of this_cpu
3730 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3731 * @sd_idle: Idle status of the sched_domain containing group.
3732 * @local_group: Does group contain this_cpu.
3733 * @cpus: Set of cpus considered for load balancing.
3734 * @balance: Should we balance.
3735 * @sgs: variable to hold the statistics for this group.
3736 */
cc9fba7d
PZ
3737static inline void update_sg_lb_stats(struct sched_domain *sd,
3738 struct sched_group *group, int this_cpu,
1f8c553d
GS
3739 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3740 int local_group, const struct cpumask *cpus,
3741 int *balance, struct sg_lb_stats *sgs)
3742{
3743 unsigned long load, max_cpu_load, min_cpu_load;
3744 int i;
3745 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3746 unsigned long sum_avg_load_per_task;
3747 unsigned long avg_load_per_task;
3748
cc9fba7d 3749 if (local_group) {
1f8c553d 3750 balance_cpu = group_first_cpu(group);
cc9fba7d
PZ
3751 if (balance_cpu == this_cpu)
3752 update_sched_power(sd);
3753 }
1f8c553d
GS
3754
3755 /* Tally up the load of all CPUs in the group */
3756 sum_avg_load_per_task = avg_load_per_task = 0;
3757 max_cpu_load = 0;
3758 min_cpu_load = ~0UL;
408ed066 3759
1f8c553d
GS
3760 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3761 struct rq *rq = cpu_rq(i);
908a7c1b 3762
1f8c553d
GS
3763 if (*sd_idle && rq->nr_running)
3764 *sd_idle = 0;
5c45bf27 3765
1f8c553d 3766 /* Bias balancing toward cpus of our domain */
1da177e4 3767 if (local_group) {
1f8c553d
GS
3768 if (idle_cpu(i) && !first_idle_cpu) {
3769 first_idle_cpu = 1;
3770 balance_cpu = i;
3771 }
3772
3773 load = target_load(i, load_idx);
3774 } else {
3775 load = source_load(i, load_idx);
3776 if (load > max_cpu_load)
3777 max_cpu_load = load;
3778 if (min_cpu_load > load)
3779 min_cpu_load = load;
1da177e4 3780 }
5c45bf27 3781
1f8c553d
GS
3782 sgs->group_load += load;
3783 sgs->sum_nr_running += rq->nr_running;
3784 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3785
1f8c553d
GS
3786 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3787 }
5c45bf27 3788
1f8c553d
GS
3789 /*
3790 * First idle cpu or the first cpu(busiest) in this sched group
3791 * is eligible for doing load balancing at this and above
3792 * domains. In the newly idle case, we will allow all the cpu's
3793 * to do the newly idle load balance.
3794 */
3795 if (idle != CPU_NEWLY_IDLE && local_group &&
3796 balance_cpu != this_cpu && balance) {
3797 *balance = 0;
3798 return;
3799 }
5c45bf27 3800
1f8c553d
GS
3801 /* Adjust by relative CPU power of the group */
3802 sgs->avg_load = sg_div_cpu_power(group,
3803 sgs->group_load * SCHED_LOAD_SCALE);
5c45bf27 3804
1f8c553d
GS
3805
3806 /*
3807 * Consider the group unbalanced when the imbalance is larger
3808 * than the average weight of two tasks.
3809 *
3810 * APZ: with cgroup the avg task weight can vary wildly and
3811 * might not be a suitable number - should we keep a
3812 * normalized nr_running number somewhere that negates
3813 * the hierarchy?
3814 */
3815 avg_load_per_task = sg_div_cpu_power(group,
3816 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3817
3818 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3819 sgs->group_imb = 1;
3820
3821 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3822
3823}
dd41f596 3824
37abe198
GS
3825/**
3826 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3827 * @sd: sched_domain whose statistics are to be updated.
3828 * @this_cpu: Cpu for which load balance is currently performed.
3829 * @idle: Idle status of this_cpu
3830 * @sd_idle: Idle status of the sched_domain containing group.
3831 * @cpus: Set of cpus considered for load balancing.
3832 * @balance: Should we balance.
3833 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3834 */
37abe198
GS
3835static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3836 enum cpu_idle_type idle, int *sd_idle,
3837 const struct cpumask *cpus, int *balance,
3838 struct sd_lb_stats *sds)
1da177e4 3839{
b5d978e0 3840 struct sched_domain *child = sd->child;
222d656d 3841 struct sched_group *group = sd->groups;
37abe198 3842 struct sg_lb_stats sgs;
b5d978e0
PZ
3843 int load_idx, prefer_sibling = 0;
3844
3845 if (child && child->flags & SD_PREFER_SIBLING)
3846 prefer_sibling = 1;
222d656d 3847
c071df18 3848 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3849 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3850
3851 do {
1da177e4 3852 int local_group;
1da177e4 3853
758b2cdc
RR
3854 local_group = cpumask_test_cpu(this_cpu,
3855 sched_group_cpus(group));
381be78f 3856 memset(&sgs, 0, sizeof(sgs));
cc9fba7d 3857 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
1f8c553d 3858 local_group, cpus, balance, &sgs);
1da177e4 3859
37abe198
GS
3860 if (local_group && balance && !(*balance))
3861 return;
783609c6 3862
37abe198
GS
3863 sds->total_load += sgs.group_load;
3864 sds->total_pwr += group->__cpu_power;
1da177e4 3865
b5d978e0
PZ
3866 /*
3867 * In case the child domain prefers tasks go to siblings
3868 * first, lower the group capacity to one so that we'll try
3869 * and move all the excess tasks away.
3870 */
3871 if (prefer_sibling)
3872 sgs.group_capacity = 1;
3873
1da177e4 3874 if (local_group) {
37abe198
GS
3875 sds->this_load = sgs.avg_load;
3876 sds->this = group;
3877 sds->this_nr_running = sgs.sum_nr_running;
3878 sds->this_load_per_task = sgs.sum_weighted_load;
3879 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3880 (sgs.sum_nr_running > sgs.group_capacity ||
3881 sgs.group_imb)) {
37abe198
GS
3882 sds->max_load = sgs.avg_load;
3883 sds->busiest = group;
3884 sds->busiest_nr_running = sgs.sum_nr_running;
3885 sds->busiest_load_per_task = sgs.sum_weighted_load;
3886 sds->group_imb = sgs.group_imb;
48f24c4d 3887 }
5c45bf27 3888
c071df18 3889 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3890 group = group->next;
3891 } while (group != sd->groups);
37abe198 3892}
1da177e4 3893
2e6f44ae
GS
3894/**
3895 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3896 * amongst the groups of a sched_domain, during
3897 * load balancing.
2e6f44ae
GS
3898 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3899 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3900 * @imbalance: Variable to store the imbalance.
3901 */
3902static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3903 int this_cpu, unsigned long *imbalance)
3904{
3905 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3906 unsigned int imbn = 2;
3907
3908 if (sds->this_nr_running) {
3909 sds->this_load_per_task /= sds->this_nr_running;
3910 if (sds->busiest_load_per_task >
3911 sds->this_load_per_task)
3912 imbn = 1;
3913 } else
3914 sds->this_load_per_task =
3915 cpu_avg_load_per_task(this_cpu);
1da177e4 3916
2e6f44ae
GS
3917 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3918 sds->busiest_load_per_task * imbn) {
3919 *imbalance = sds->busiest_load_per_task;
3920 return;
3921 }
908a7c1b 3922
1da177e4 3923 /*
2e6f44ae
GS
3924 * OK, we don't have enough imbalance to justify moving tasks,
3925 * however we may be able to increase total CPU power used by
3926 * moving them.
1da177e4 3927 */
2dd73a4f 3928
2e6f44ae
GS
3929 pwr_now += sds->busiest->__cpu_power *
3930 min(sds->busiest_load_per_task, sds->max_load);
3931 pwr_now += sds->this->__cpu_power *
3932 min(sds->this_load_per_task, sds->this_load);
3933 pwr_now /= SCHED_LOAD_SCALE;
3934
3935 /* Amount of load we'd subtract */
3936 tmp = sg_div_cpu_power(sds->busiest,
3937 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3938 if (sds->max_load > tmp)
3939 pwr_move += sds->busiest->__cpu_power *
3940 min(sds->busiest_load_per_task, sds->max_load - tmp);
3941
3942 /* Amount of load we'd add */
3943 if (sds->max_load * sds->busiest->__cpu_power <
3944 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3945 tmp = sg_div_cpu_power(sds->this,
3946 sds->max_load * sds->busiest->__cpu_power);
3947 else
3948 tmp = sg_div_cpu_power(sds->this,
3949 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3950 pwr_move += sds->this->__cpu_power *
3951 min(sds->this_load_per_task, sds->this_load + tmp);
3952 pwr_move /= SCHED_LOAD_SCALE;
3953
3954 /* Move if we gain throughput */
3955 if (pwr_move > pwr_now)
3956 *imbalance = sds->busiest_load_per_task;
3957}
dbc523a3
GS
3958
3959/**
3960 * calculate_imbalance - Calculate the amount of imbalance present within the
3961 * groups of a given sched_domain during load balance.
3962 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3963 * @this_cpu: Cpu for which currently load balance is being performed.
3964 * @imbalance: The variable to store the imbalance.
3965 */
3966static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3967 unsigned long *imbalance)
3968{
3969 unsigned long max_pull;
2dd73a4f
PW
3970 /*
3971 * In the presence of smp nice balancing, certain scenarios can have
3972 * max load less than avg load(as we skip the groups at or below
3973 * its cpu_power, while calculating max_load..)
3974 */
dbc523a3 3975 if (sds->max_load < sds->avg_load) {
2dd73a4f 3976 *imbalance = 0;
dbc523a3 3977 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3978 }
0c117f1b
SS
3979
3980 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3981 max_pull = min(sds->max_load - sds->avg_load,
3982 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3983
1da177e4 3984 /* How much load to actually move to equalise the imbalance */
dbc523a3
GS
3985 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3986 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
1da177e4
LT
3987 / SCHED_LOAD_SCALE;
3988
2dd73a4f
PW
3989 /*
3990 * if *imbalance is less than the average load per runnable task
3991 * there is no gaurantee that any tasks will be moved so we'll have
3992 * a think about bumping its value to force at least one task to be
3993 * moved
3994 */
dbc523a3
GS
3995 if (*imbalance < sds->busiest_load_per_task)
3996 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3997
dbc523a3 3998}
37abe198 3999/******* find_busiest_group() helpers end here *********************/
1da177e4 4000
b7bb4c9b
GS
4001/**
4002 * find_busiest_group - Returns the busiest group within the sched_domain
4003 * if there is an imbalance. If there isn't an imbalance, and
4004 * the user has opted for power-savings, it returns a group whose
4005 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4006 * such a group exists.
4007 *
4008 * Also calculates the amount of weighted load which should be moved
4009 * to restore balance.
4010 *
4011 * @sd: The sched_domain whose busiest group is to be returned.
4012 * @this_cpu: The cpu for which load balancing is currently being performed.
4013 * @imbalance: Variable which stores amount of weighted load which should
4014 * be moved to restore balance/put a group to idle.
4015 * @idle: The idle status of this_cpu.
4016 * @sd_idle: The idleness of sd
4017 * @cpus: The set of CPUs under consideration for load-balancing.
4018 * @balance: Pointer to a variable indicating if this_cpu
4019 * is the appropriate cpu to perform load balancing at this_level.
4020 *
4021 * Returns: - the busiest group if imbalance exists.
4022 * - If no imbalance and user has opted for power-savings balance,
4023 * return the least loaded group whose CPUs can be
4024 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
4025 */
4026static struct sched_group *
4027find_busiest_group(struct sched_domain *sd, int this_cpu,
4028 unsigned long *imbalance, enum cpu_idle_type idle,
4029 int *sd_idle, const struct cpumask *cpus, int *balance)
4030{
4031 struct sd_lb_stats sds;
1da177e4 4032
37abe198 4033 memset(&sds, 0, sizeof(sds));
1da177e4 4034
37abe198
GS
4035 /*
4036 * Compute the various statistics relavent for load balancing at
4037 * this level.
4038 */
4039 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4040 balance, &sds);
4041
b7bb4c9b
GS
4042 /* Cases where imbalance does not exist from POV of this_cpu */
4043 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4044 * at this level.
4045 * 2) There is no busy sibling group to pull from.
4046 * 3) This group is the busiest group.
4047 * 4) This group is more busy than the avg busieness at this
4048 * sched_domain.
4049 * 5) The imbalance is within the specified limit.
4050 * 6) Any rebalance would lead to ping-pong
4051 */
37abe198
GS
4052 if (balance && !(*balance))
4053 goto ret;
1da177e4 4054
b7bb4c9b
GS
4055 if (!sds.busiest || sds.busiest_nr_running == 0)
4056 goto out_balanced;
1da177e4 4057
b7bb4c9b 4058 if (sds.this_load >= sds.max_load)
1da177e4 4059 goto out_balanced;
1da177e4 4060
222d656d 4061 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 4062
b7bb4c9b
GS
4063 if (sds.this_load >= sds.avg_load)
4064 goto out_balanced;
4065
4066 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
4067 goto out_balanced;
4068
222d656d
GS
4069 sds.busiest_load_per_task /= sds.busiest_nr_running;
4070 if (sds.group_imb)
4071 sds.busiest_load_per_task =
4072 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4073
1da177e4
LT
4074 /*
4075 * We're trying to get all the cpus to the average_load, so we don't
4076 * want to push ourselves above the average load, nor do we wish to
4077 * reduce the max loaded cpu below the average load, as either of these
4078 * actions would just result in more rebalancing later, and ping-pong
4079 * tasks around. Thus we look for the minimum possible imbalance.
4080 * Negative imbalances (*we* are more loaded than anyone else) will
4081 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4082 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4083 * appear as very large values with unsigned longs.
4084 */
222d656d 4085 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4086 goto out_balanced;
4087
dbc523a3
GS
4088 /* Looks like there is an imbalance. Compute it */
4089 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4090 return sds.busiest;
1da177e4
LT
4091
4092out_balanced:
c071df18
GS
4093 /*
4094 * There is no obvious imbalance. But check if we can do some balancing
4095 * to save power.
4096 */
4097 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4098 return sds.busiest;
783609c6 4099ret:
1da177e4
LT
4100 *imbalance = 0;
4101 return NULL;
4102}
4103
4104/*
4105 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4106 */
70b97a7f 4107static struct rq *
d15bcfdb 4108find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4109 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4110{
70b97a7f 4111 struct rq *busiest = NULL, *rq;
2dd73a4f 4112 unsigned long max_load = 0;
1da177e4
LT
4113 int i;
4114
758b2cdc 4115 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 4116 unsigned long wl;
0a2966b4 4117
96f874e2 4118 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4119 continue;
4120
48f24c4d 4121 rq = cpu_rq(i);
dd41f596 4122 wl = weighted_cpuload(i);
2dd73a4f 4123
dd41f596 4124 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4125 continue;
1da177e4 4126
dd41f596
IM
4127 if (wl > max_load) {
4128 max_load = wl;
48f24c4d 4129 busiest = rq;
1da177e4
LT
4130 }
4131 }
4132
4133 return busiest;
4134}
4135
77391d71
NP
4136/*
4137 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4138 * so long as it is large enough.
4139 */
4140#define MAX_PINNED_INTERVAL 512
4141
df7c8e84
RR
4142/* Working cpumask for load_balance and load_balance_newidle. */
4143static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4144
1da177e4
LT
4145/*
4146 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4147 * tasks if there is an imbalance.
1da177e4 4148 */
70b97a7f 4149static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4150 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4151 int *balance)
1da177e4 4152{
43010659 4153 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4154 struct sched_group *group;
1da177e4 4155 unsigned long imbalance;
70b97a7f 4156 struct rq *busiest;
fe2eea3f 4157 unsigned long flags;
df7c8e84 4158 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4159
96f874e2 4160 cpumask_setall(cpus);
7c16ec58 4161
89c4710e
SS
4162 /*
4163 * When power savings policy is enabled for the parent domain, idle
4164 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4165 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4166 * portraying it as CPU_NOT_IDLE.
89c4710e 4167 */
d15bcfdb 4168 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4169 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4170 sd_idle = 1;
1da177e4 4171
2d72376b 4172 schedstat_inc(sd, lb_count[idle]);
1da177e4 4173
0a2966b4 4174redo:
c8cba857 4175 update_shares(sd);
0a2966b4 4176 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4177 cpus, balance);
783609c6 4178
06066714 4179 if (*balance == 0)
783609c6 4180 goto out_balanced;
783609c6 4181
1da177e4
LT
4182 if (!group) {
4183 schedstat_inc(sd, lb_nobusyg[idle]);
4184 goto out_balanced;
4185 }
4186
7c16ec58 4187 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4188 if (!busiest) {
4189 schedstat_inc(sd, lb_nobusyq[idle]);
4190 goto out_balanced;
4191 }
4192
db935dbd 4193 BUG_ON(busiest == this_rq);
1da177e4
LT
4194
4195 schedstat_add(sd, lb_imbalance[idle], imbalance);
4196
43010659 4197 ld_moved = 0;
1da177e4
LT
4198 if (busiest->nr_running > 1) {
4199 /*
4200 * Attempt to move tasks. If find_busiest_group has found
4201 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4202 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4203 * correctly treated as an imbalance.
4204 */
fe2eea3f 4205 local_irq_save(flags);
e17224bf 4206 double_rq_lock(this_rq, busiest);
43010659 4207 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4208 imbalance, sd, idle, &all_pinned);
e17224bf 4209 double_rq_unlock(this_rq, busiest);
fe2eea3f 4210 local_irq_restore(flags);
81026794 4211
46cb4b7c
SS
4212 /*
4213 * some other cpu did the load balance for us.
4214 */
43010659 4215 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4216 resched_cpu(this_cpu);
4217
81026794 4218 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4219 if (unlikely(all_pinned)) {
96f874e2
RR
4220 cpumask_clear_cpu(cpu_of(busiest), cpus);
4221 if (!cpumask_empty(cpus))
0a2966b4 4222 goto redo;
81026794 4223 goto out_balanced;
0a2966b4 4224 }
1da177e4 4225 }
81026794 4226
43010659 4227 if (!ld_moved) {
1da177e4
LT
4228 schedstat_inc(sd, lb_failed[idle]);
4229 sd->nr_balance_failed++;
4230
4231 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4232
fe2eea3f 4233 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4234
4235 /* don't kick the migration_thread, if the curr
4236 * task on busiest cpu can't be moved to this_cpu
4237 */
96f874e2
RR
4238 if (!cpumask_test_cpu(this_cpu,
4239 &busiest->curr->cpus_allowed)) {
fe2eea3f 4240 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4241 all_pinned = 1;
4242 goto out_one_pinned;
4243 }
4244
1da177e4
LT
4245 if (!busiest->active_balance) {
4246 busiest->active_balance = 1;
4247 busiest->push_cpu = this_cpu;
81026794 4248 active_balance = 1;
1da177e4 4249 }
fe2eea3f 4250 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4251 if (active_balance)
1da177e4
LT
4252 wake_up_process(busiest->migration_thread);
4253
4254 /*
4255 * We've kicked active balancing, reset the failure
4256 * counter.
4257 */
39507451 4258 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4259 }
81026794 4260 } else
1da177e4
LT
4261 sd->nr_balance_failed = 0;
4262
81026794 4263 if (likely(!active_balance)) {
1da177e4
LT
4264 /* We were unbalanced, so reset the balancing interval */
4265 sd->balance_interval = sd->min_interval;
81026794
NP
4266 } else {
4267 /*
4268 * If we've begun active balancing, start to back off. This
4269 * case may not be covered by the all_pinned logic if there
4270 * is only 1 task on the busy runqueue (because we don't call
4271 * move_tasks).
4272 */
4273 if (sd->balance_interval < sd->max_interval)
4274 sd->balance_interval *= 2;
1da177e4
LT
4275 }
4276
43010659 4277 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4278 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4279 ld_moved = -1;
4280
4281 goto out;
1da177e4
LT
4282
4283out_balanced:
1da177e4
LT
4284 schedstat_inc(sd, lb_balanced[idle]);
4285
16cfb1c0 4286 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4287
4288out_one_pinned:
1da177e4 4289 /* tune up the balancing interval */
77391d71
NP
4290 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4291 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4292 sd->balance_interval *= 2;
4293
48f24c4d 4294 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4295 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4296 ld_moved = -1;
4297 else
4298 ld_moved = 0;
4299out:
c8cba857
PZ
4300 if (ld_moved)
4301 update_shares(sd);
c09595f6 4302 return ld_moved;
1da177e4
LT
4303}
4304
4305/*
4306 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4307 * tasks if there is an imbalance.
4308 *
d15bcfdb 4309 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4310 * this_rq is locked.
4311 */
48f24c4d 4312static int
df7c8e84 4313load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4314{
4315 struct sched_group *group;
70b97a7f 4316 struct rq *busiest = NULL;
1da177e4 4317 unsigned long imbalance;
43010659 4318 int ld_moved = 0;
5969fe06 4319 int sd_idle = 0;
969bb4e4 4320 int all_pinned = 0;
df7c8e84 4321 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4322
96f874e2 4323 cpumask_setall(cpus);
5969fe06 4324
89c4710e
SS
4325 /*
4326 * When power savings policy is enabled for the parent domain, idle
4327 * sibling can pick up load irrespective of busy siblings. In this case,
4328 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4329 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4330 */
4331 if (sd->flags & SD_SHARE_CPUPOWER &&
4332 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4333 sd_idle = 1;
1da177e4 4334
2d72376b 4335 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4336redo:
3e5459b4 4337 update_shares_locked(this_rq, sd);
d15bcfdb 4338 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4339 &sd_idle, cpus, NULL);
1da177e4 4340 if (!group) {
d15bcfdb 4341 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4342 goto out_balanced;
1da177e4
LT
4343 }
4344
7c16ec58 4345 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4346 if (!busiest) {
d15bcfdb 4347 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4348 goto out_balanced;
1da177e4
LT
4349 }
4350
db935dbd
NP
4351 BUG_ON(busiest == this_rq);
4352
d15bcfdb 4353 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4354
43010659 4355 ld_moved = 0;
d6d5cfaf
NP
4356 if (busiest->nr_running > 1) {
4357 /* Attempt to move tasks */
4358 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4359 /* this_rq->clock is already updated */
4360 update_rq_clock(busiest);
43010659 4361 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4362 imbalance, sd, CPU_NEWLY_IDLE,
4363 &all_pinned);
1b12bbc7 4364 double_unlock_balance(this_rq, busiest);
0a2966b4 4365
969bb4e4 4366 if (unlikely(all_pinned)) {
96f874e2
RR
4367 cpumask_clear_cpu(cpu_of(busiest), cpus);
4368 if (!cpumask_empty(cpus))
0a2966b4
CL
4369 goto redo;
4370 }
d6d5cfaf
NP
4371 }
4372
43010659 4373 if (!ld_moved) {
36dffab6 4374 int active_balance = 0;
ad273b32 4375
d15bcfdb 4376 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4377 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4378 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4379 return -1;
ad273b32
VS
4380
4381 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4382 return -1;
4383
4384 if (sd->nr_balance_failed++ < 2)
4385 return -1;
4386
4387 /*
4388 * The only task running in a non-idle cpu can be moved to this
4389 * cpu in an attempt to completely freeup the other CPU
4390 * package. The same method used to move task in load_balance()
4391 * have been extended for load_balance_newidle() to speedup
4392 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4393 *
4394 * The package power saving logic comes from
4395 * find_busiest_group(). If there are no imbalance, then
4396 * f_b_g() will return NULL. However when sched_mc={1,2} then
4397 * f_b_g() will select a group from which a running task may be
4398 * pulled to this cpu in order to make the other package idle.
4399 * If there is no opportunity to make a package idle and if
4400 * there are no imbalance, then f_b_g() will return NULL and no
4401 * action will be taken in load_balance_newidle().
4402 *
4403 * Under normal task pull operation due to imbalance, there
4404 * will be more than one task in the source run queue and
4405 * move_tasks() will succeed. ld_moved will be true and this
4406 * active balance code will not be triggered.
4407 */
4408
4409 /* Lock busiest in correct order while this_rq is held */
4410 double_lock_balance(this_rq, busiest);
4411
4412 /*
4413 * don't kick the migration_thread, if the curr
4414 * task on busiest cpu can't be moved to this_cpu
4415 */
6ca09dfc 4416 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4417 double_unlock_balance(this_rq, busiest);
4418 all_pinned = 1;
4419 return ld_moved;
4420 }
4421
4422 if (!busiest->active_balance) {
4423 busiest->active_balance = 1;
4424 busiest->push_cpu = this_cpu;
4425 active_balance = 1;
4426 }
4427
4428 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4429 /*
4430 * Should not call ttwu while holding a rq->lock
4431 */
4432 spin_unlock(&this_rq->lock);
ad273b32
VS
4433 if (active_balance)
4434 wake_up_process(busiest->migration_thread);
da8d5089 4435 spin_lock(&this_rq->lock);
ad273b32 4436
5969fe06 4437 } else
16cfb1c0 4438 sd->nr_balance_failed = 0;
1da177e4 4439
3e5459b4 4440 update_shares_locked(this_rq, sd);
43010659 4441 return ld_moved;
16cfb1c0
NP
4442
4443out_balanced:
d15bcfdb 4444 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4445 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4446 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4447 return -1;
16cfb1c0 4448 sd->nr_balance_failed = 0;
48f24c4d 4449
16cfb1c0 4450 return 0;
1da177e4
LT
4451}
4452
4453/*
4454 * idle_balance is called by schedule() if this_cpu is about to become
4455 * idle. Attempts to pull tasks from other CPUs.
4456 */
70b97a7f 4457static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4458{
4459 struct sched_domain *sd;
efbe027e 4460 int pulled_task = 0;
dd41f596 4461 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
4462
4463 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4464 unsigned long interval;
4465
4466 if (!(sd->flags & SD_LOAD_BALANCE))
4467 continue;
4468
4469 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4470 /* If we've pulled tasks over stop searching: */
7c16ec58 4471 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4472 sd);
92c4ca5c
CL
4473
4474 interval = msecs_to_jiffies(sd->balance_interval);
4475 if (time_after(next_balance, sd->last_balance + interval))
4476 next_balance = sd->last_balance + interval;
4477 if (pulled_task)
4478 break;
1da177e4 4479 }
dd41f596 4480 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4481 /*
4482 * We are going idle. next_balance may be set based on
4483 * a busy processor. So reset next_balance.
4484 */
4485 this_rq->next_balance = next_balance;
dd41f596 4486 }
1da177e4
LT
4487}
4488
4489/*
4490 * active_load_balance is run by migration threads. It pushes running tasks
4491 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4492 * running on each physical CPU where possible, and avoids physical /
4493 * logical imbalances.
4494 *
4495 * Called with busiest_rq locked.
4496 */
70b97a7f 4497static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4498{
39507451 4499 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4500 struct sched_domain *sd;
4501 struct rq *target_rq;
39507451 4502
48f24c4d 4503 /* Is there any task to move? */
39507451 4504 if (busiest_rq->nr_running <= 1)
39507451
NP
4505 return;
4506
4507 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4508
4509 /*
39507451 4510 * This condition is "impossible", if it occurs
41a2d6cf 4511 * we need to fix it. Originally reported by
39507451 4512 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4513 */
39507451 4514 BUG_ON(busiest_rq == target_rq);
1da177e4 4515
39507451
NP
4516 /* move a task from busiest_rq to target_rq */
4517 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4518 update_rq_clock(busiest_rq);
4519 update_rq_clock(target_rq);
39507451
NP
4520
4521 /* Search for an sd spanning us and the target CPU. */
c96d145e 4522 for_each_domain(target_cpu, sd) {
39507451 4523 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4524 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4525 break;
c96d145e 4526 }
39507451 4527
48f24c4d 4528 if (likely(sd)) {
2d72376b 4529 schedstat_inc(sd, alb_count);
39507451 4530
43010659
PW
4531 if (move_one_task(target_rq, target_cpu, busiest_rq,
4532 sd, CPU_IDLE))
48f24c4d
IM
4533 schedstat_inc(sd, alb_pushed);
4534 else
4535 schedstat_inc(sd, alb_failed);
4536 }
1b12bbc7 4537 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4538}
4539
46cb4b7c
SS
4540#ifdef CONFIG_NO_HZ
4541static struct {
4542 atomic_t load_balancer;
7d1e6a9b 4543 cpumask_var_t cpu_mask;
f711f609 4544 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4545} nohz ____cacheline_aligned = {
4546 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4547};
4548
eea08f32
AB
4549int get_nohz_load_balancer(void)
4550{
4551 return atomic_read(&nohz.load_balancer);
4552}
4553
f711f609
GS
4554#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4555/**
4556 * lowest_flag_domain - Return lowest sched_domain containing flag.
4557 * @cpu: The cpu whose lowest level of sched domain is to
4558 * be returned.
4559 * @flag: The flag to check for the lowest sched_domain
4560 * for the given cpu.
4561 *
4562 * Returns the lowest sched_domain of a cpu which contains the given flag.
4563 */
4564static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4565{
4566 struct sched_domain *sd;
4567
4568 for_each_domain(cpu, sd)
4569 if (sd && (sd->flags & flag))
4570 break;
4571
4572 return sd;
4573}
4574
4575/**
4576 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4577 * @cpu: The cpu whose domains we're iterating over.
4578 * @sd: variable holding the value of the power_savings_sd
4579 * for cpu.
4580 * @flag: The flag to filter the sched_domains to be iterated.
4581 *
4582 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4583 * set, starting from the lowest sched_domain to the highest.
4584 */
4585#define for_each_flag_domain(cpu, sd, flag) \
4586 for (sd = lowest_flag_domain(cpu, flag); \
4587 (sd && (sd->flags & flag)); sd = sd->parent)
4588
4589/**
4590 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4591 * @ilb_group: group to be checked for semi-idleness
4592 *
4593 * Returns: 1 if the group is semi-idle. 0 otherwise.
4594 *
4595 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4596 * and atleast one non-idle CPU. This helper function checks if the given
4597 * sched_group is semi-idle or not.
4598 */
4599static inline int is_semi_idle_group(struct sched_group *ilb_group)
4600{
4601 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4602 sched_group_cpus(ilb_group));
4603
4604 /*
4605 * A sched_group is semi-idle when it has atleast one busy cpu
4606 * and atleast one idle cpu.
4607 */
4608 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4609 return 0;
4610
4611 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4612 return 0;
4613
4614 return 1;
4615}
4616/**
4617 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4618 * @cpu: The cpu which is nominating a new idle_load_balancer.
4619 *
4620 * Returns: Returns the id of the idle load balancer if it exists,
4621 * Else, returns >= nr_cpu_ids.
4622 *
4623 * This algorithm picks the idle load balancer such that it belongs to a
4624 * semi-idle powersavings sched_domain. The idea is to try and avoid
4625 * completely idle packages/cores just for the purpose of idle load balancing
4626 * when there are other idle cpu's which are better suited for that job.
4627 */
4628static int find_new_ilb(int cpu)
4629{
4630 struct sched_domain *sd;
4631 struct sched_group *ilb_group;
4632
4633 /*
4634 * Have idle load balancer selection from semi-idle packages only
4635 * when power-aware load balancing is enabled
4636 */
4637 if (!(sched_smt_power_savings || sched_mc_power_savings))
4638 goto out_done;
4639
4640 /*
4641 * Optimize for the case when we have no idle CPUs or only one
4642 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4643 */
4644 if (cpumask_weight(nohz.cpu_mask) < 2)
4645 goto out_done;
4646
4647 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4648 ilb_group = sd->groups;
4649
4650 do {
4651 if (is_semi_idle_group(ilb_group))
4652 return cpumask_first(nohz.ilb_grp_nohz_mask);
4653
4654 ilb_group = ilb_group->next;
4655
4656 } while (ilb_group != sd->groups);
4657 }
4658
4659out_done:
4660 return cpumask_first(nohz.cpu_mask);
4661}
4662#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4663static inline int find_new_ilb(int call_cpu)
4664{
6e29ec57 4665 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4666}
4667#endif
4668
7835b98b 4669/*
46cb4b7c
SS
4670 * This routine will try to nominate the ilb (idle load balancing)
4671 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4672 * load balancing on behalf of all those cpus. If all the cpus in the system
4673 * go into this tickless mode, then there will be no ilb owner (as there is
4674 * no need for one) and all the cpus will sleep till the next wakeup event
4675 * arrives...
4676 *
4677 * For the ilb owner, tick is not stopped. And this tick will be used
4678 * for idle load balancing. ilb owner will still be part of
4679 * nohz.cpu_mask..
7835b98b 4680 *
46cb4b7c
SS
4681 * While stopping the tick, this cpu will become the ilb owner if there
4682 * is no other owner. And will be the owner till that cpu becomes busy
4683 * or if all cpus in the system stop their ticks at which point
4684 * there is no need for ilb owner.
4685 *
4686 * When the ilb owner becomes busy, it nominates another owner, during the
4687 * next busy scheduler_tick()
4688 */
4689int select_nohz_load_balancer(int stop_tick)
4690{
4691 int cpu = smp_processor_id();
4692
4693 if (stop_tick) {
46cb4b7c
SS
4694 cpu_rq(cpu)->in_nohz_recently = 1;
4695
483b4ee6
SS
4696 if (!cpu_active(cpu)) {
4697 if (atomic_read(&nohz.load_balancer) != cpu)
4698 return 0;
4699
4700 /*
4701 * If we are going offline and still the leader,
4702 * give up!
4703 */
46cb4b7c
SS
4704 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4705 BUG();
483b4ee6 4706
46cb4b7c
SS
4707 return 0;
4708 }
4709
483b4ee6
SS
4710 cpumask_set_cpu(cpu, nohz.cpu_mask);
4711
46cb4b7c 4712 /* time for ilb owner also to sleep */
7d1e6a9b 4713 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4714 if (atomic_read(&nohz.load_balancer) == cpu)
4715 atomic_set(&nohz.load_balancer, -1);
4716 return 0;
4717 }
4718
4719 if (atomic_read(&nohz.load_balancer) == -1) {
4720 /* make me the ilb owner */
4721 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4722 return 1;
e790fb0b
GS
4723 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4724 int new_ilb;
4725
4726 if (!(sched_smt_power_savings ||
4727 sched_mc_power_savings))
4728 return 1;
4729 /*
4730 * Check to see if there is a more power-efficient
4731 * ilb.
4732 */
4733 new_ilb = find_new_ilb(cpu);
4734 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4735 atomic_set(&nohz.load_balancer, -1);
4736 resched_cpu(new_ilb);
4737 return 0;
4738 }
46cb4b7c 4739 return 1;
e790fb0b 4740 }
46cb4b7c 4741 } else {
7d1e6a9b 4742 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4743 return 0;
4744
7d1e6a9b 4745 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4746
4747 if (atomic_read(&nohz.load_balancer) == cpu)
4748 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4749 BUG();
4750 }
4751 return 0;
4752}
4753#endif
4754
4755static DEFINE_SPINLOCK(balancing);
4756
4757/*
7835b98b
CL
4758 * It checks each scheduling domain to see if it is due to be balanced,
4759 * and initiates a balancing operation if so.
4760 *
4761 * Balancing parameters are set up in arch_init_sched_domains.
4762 */
a9957449 4763static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4764{
46cb4b7c
SS
4765 int balance = 1;
4766 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4767 unsigned long interval;
4768 struct sched_domain *sd;
46cb4b7c 4769 /* Earliest time when we have to do rebalance again */
c9819f45 4770 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4771 int update_next_balance = 0;
d07355f5 4772 int need_serialize;
1da177e4 4773
46cb4b7c 4774 for_each_domain(cpu, sd) {
1da177e4
LT
4775 if (!(sd->flags & SD_LOAD_BALANCE))
4776 continue;
4777
4778 interval = sd->balance_interval;
d15bcfdb 4779 if (idle != CPU_IDLE)
1da177e4
LT
4780 interval *= sd->busy_factor;
4781
4782 /* scale ms to jiffies */
4783 interval = msecs_to_jiffies(interval);
4784 if (unlikely(!interval))
4785 interval = 1;
dd41f596
IM
4786 if (interval > HZ*NR_CPUS/10)
4787 interval = HZ*NR_CPUS/10;
4788
d07355f5 4789 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4790
d07355f5 4791 if (need_serialize) {
08c183f3
CL
4792 if (!spin_trylock(&balancing))
4793 goto out;
4794 }
4795
c9819f45 4796 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4797 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4798 /*
4799 * We've pulled tasks over so either we're no
5969fe06
NP
4800 * longer idle, or one of our SMT siblings is
4801 * not idle.
4802 */
d15bcfdb 4803 idle = CPU_NOT_IDLE;
1da177e4 4804 }
1bd77f2d 4805 sd->last_balance = jiffies;
1da177e4 4806 }
d07355f5 4807 if (need_serialize)
08c183f3
CL
4808 spin_unlock(&balancing);
4809out:
f549da84 4810 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4811 next_balance = sd->last_balance + interval;
f549da84
SS
4812 update_next_balance = 1;
4813 }
783609c6
SS
4814
4815 /*
4816 * Stop the load balance at this level. There is another
4817 * CPU in our sched group which is doing load balancing more
4818 * actively.
4819 */
4820 if (!balance)
4821 break;
1da177e4 4822 }
f549da84
SS
4823
4824 /*
4825 * next_balance will be updated only when there is a need.
4826 * When the cpu is attached to null domain for ex, it will not be
4827 * updated.
4828 */
4829 if (likely(update_next_balance))
4830 rq->next_balance = next_balance;
46cb4b7c
SS
4831}
4832
4833/*
4834 * run_rebalance_domains is triggered when needed from the scheduler tick.
4835 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4836 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4837 */
4838static void run_rebalance_domains(struct softirq_action *h)
4839{
dd41f596
IM
4840 int this_cpu = smp_processor_id();
4841 struct rq *this_rq = cpu_rq(this_cpu);
4842 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4843 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4844
dd41f596 4845 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4846
4847#ifdef CONFIG_NO_HZ
4848 /*
4849 * If this cpu is the owner for idle load balancing, then do the
4850 * balancing on behalf of the other idle cpus whose ticks are
4851 * stopped.
4852 */
dd41f596
IM
4853 if (this_rq->idle_at_tick &&
4854 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4855 struct rq *rq;
4856 int balance_cpu;
4857
7d1e6a9b
RR
4858 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4859 if (balance_cpu == this_cpu)
4860 continue;
4861
46cb4b7c
SS
4862 /*
4863 * If this cpu gets work to do, stop the load balancing
4864 * work being done for other cpus. Next load
4865 * balancing owner will pick it up.
4866 */
4867 if (need_resched())
4868 break;
4869
de0cf899 4870 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4871
4872 rq = cpu_rq(balance_cpu);
dd41f596
IM
4873 if (time_after(this_rq->next_balance, rq->next_balance))
4874 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4875 }
4876 }
4877#endif
4878}
4879
8a0be9ef
FW
4880static inline int on_null_domain(int cpu)
4881{
4882 return !rcu_dereference(cpu_rq(cpu)->sd);
4883}
4884
46cb4b7c
SS
4885/*
4886 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4887 *
4888 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4889 * idle load balancing owner or decide to stop the periodic load balancing,
4890 * if the whole system is idle.
4891 */
dd41f596 4892static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4893{
46cb4b7c
SS
4894#ifdef CONFIG_NO_HZ
4895 /*
4896 * If we were in the nohz mode recently and busy at the current
4897 * scheduler tick, then check if we need to nominate new idle
4898 * load balancer.
4899 */
4900 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4901 rq->in_nohz_recently = 0;
4902
4903 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4904 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4905 atomic_set(&nohz.load_balancer, -1);
4906 }
4907
4908 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4909 int ilb = find_new_ilb(cpu);
46cb4b7c 4910
434d53b0 4911 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4912 resched_cpu(ilb);
4913 }
4914 }
4915
4916 /*
4917 * If this cpu is idle and doing idle load balancing for all the
4918 * cpus with ticks stopped, is it time for that to stop?
4919 */
4920 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4921 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4922 resched_cpu(cpu);
4923 return;
4924 }
4925
4926 /*
4927 * If this cpu is idle and the idle load balancing is done by
4928 * someone else, then no need raise the SCHED_SOFTIRQ
4929 */
4930 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4931 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4932 return;
4933#endif
8a0be9ef
FW
4934 /* Don't need to rebalance while attached to NULL domain */
4935 if (time_after_eq(jiffies, rq->next_balance) &&
4936 likely(!on_null_domain(cpu)))
46cb4b7c 4937 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4938}
dd41f596
IM
4939
4940#else /* CONFIG_SMP */
4941
1da177e4
LT
4942/*
4943 * on UP we do not need to balance between CPUs:
4944 */
70b97a7f 4945static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4946{
4947}
dd41f596 4948
1da177e4
LT
4949#endif
4950
1da177e4
LT
4951DEFINE_PER_CPU(struct kernel_stat, kstat);
4952
4953EXPORT_PER_CPU_SYMBOL(kstat);
4954
4955/*
c5f8d995 4956 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4957 * @p in case that task is currently running.
c5f8d995
HS
4958 *
4959 * Called with task_rq_lock() held on @rq.
1da177e4 4960 */
c5f8d995
HS
4961static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4962{
4963 u64 ns = 0;
4964
4965 if (task_current(rq, p)) {
4966 update_rq_clock(rq);
4967 ns = rq->clock - p->se.exec_start;
4968 if ((s64)ns < 0)
4969 ns = 0;
4970 }
4971
4972 return ns;
4973}
4974
bb34d92f 4975unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4976{
1da177e4 4977 unsigned long flags;
41b86e9c 4978 struct rq *rq;
bb34d92f 4979 u64 ns = 0;
48f24c4d 4980
41b86e9c 4981 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4982 ns = do_task_delta_exec(p, rq);
4983 task_rq_unlock(rq, &flags);
1508487e 4984
c5f8d995
HS
4985 return ns;
4986}
f06febc9 4987
c5f8d995
HS
4988/*
4989 * Return accounted runtime for the task.
4990 * In case the task is currently running, return the runtime plus current's
4991 * pending runtime that have not been accounted yet.
4992 */
4993unsigned long long task_sched_runtime(struct task_struct *p)
4994{
4995 unsigned long flags;
4996 struct rq *rq;
4997 u64 ns = 0;
4998
4999 rq = task_rq_lock(p, &flags);
5000 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
5001 task_rq_unlock(rq, &flags);
5002
5003 return ns;
5004}
48f24c4d 5005
c5f8d995
HS
5006/*
5007 * Return sum_exec_runtime for the thread group.
5008 * In case the task is currently running, return the sum plus current's
5009 * pending runtime that have not been accounted yet.
5010 *
5011 * Note that the thread group might have other running tasks as well,
5012 * so the return value not includes other pending runtime that other
5013 * running tasks might have.
5014 */
5015unsigned long long thread_group_sched_runtime(struct task_struct *p)
5016{
5017 struct task_cputime totals;
5018 unsigned long flags;
5019 struct rq *rq;
5020 u64 ns;
5021
5022 rq = task_rq_lock(p, &flags);
5023 thread_group_cputime(p, &totals);
5024 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 5025 task_rq_unlock(rq, &flags);
48f24c4d 5026
1da177e4
LT
5027 return ns;
5028}
5029
1da177e4
LT
5030/*
5031 * Account user cpu time to a process.
5032 * @p: the process that the cpu time gets accounted to
1da177e4 5033 * @cputime: the cpu time spent in user space since the last update
457533a7 5034 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 5035 */
457533a7
MS
5036void account_user_time(struct task_struct *p, cputime_t cputime,
5037 cputime_t cputime_scaled)
1da177e4
LT
5038{
5039 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5040 cputime64_t tmp;
5041
457533a7 5042 /* Add user time to process. */
1da177e4 5043 p->utime = cputime_add(p->utime, cputime);
457533a7 5044 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5045 account_group_user_time(p, cputime);
1da177e4
LT
5046
5047 /* Add user time to cpustat. */
5048 tmp = cputime_to_cputime64(cputime);
5049 if (TASK_NICE(p) > 0)
5050 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5051 else
5052 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
5053
5054 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
5055 /* Account for user time used */
5056 acct_update_integrals(p);
1da177e4
LT
5057}
5058
94886b84
LV
5059/*
5060 * Account guest cpu time to a process.
5061 * @p: the process that the cpu time gets accounted to
5062 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 5063 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 5064 */
457533a7
MS
5065static void account_guest_time(struct task_struct *p, cputime_t cputime,
5066 cputime_t cputime_scaled)
94886b84
LV
5067{
5068 cputime64_t tmp;
5069 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5070
5071 tmp = cputime_to_cputime64(cputime);
5072
457533a7 5073 /* Add guest time to process. */
94886b84 5074 p->utime = cputime_add(p->utime, cputime);
457533a7 5075 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5076 account_group_user_time(p, cputime);
94886b84
LV
5077 p->gtime = cputime_add(p->gtime, cputime);
5078
457533a7 5079 /* Add guest time to cpustat. */
94886b84
LV
5080 cpustat->user = cputime64_add(cpustat->user, tmp);
5081 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5082}
5083
1da177e4
LT
5084/*
5085 * Account system cpu time to a process.
5086 * @p: the process that the cpu time gets accounted to
5087 * @hardirq_offset: the offset to subtract from hardirq_count()
5088 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5089 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5090 */
5091void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5092 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5093{
5094 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5095 cputime64_t tmp;
5096
983ed7a6 5097 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5098 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5099 return;
5100 }
94886b84 5101
457533a7 5102 /* Add system time to process. */
1da177e4 5103 p->stime = cputime_add(p->stime, cputime);
457533a7 5104 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5105 account_group_system_time(p, cputime);
1da177e4
LT
5106
5107 /* Add system time to cpustat. */
5108 tmp = cputime_to_cputime64(cputime);
5109 if (hardirq_count() - hardirq_offset)
5110 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5111 else if (softirq_count())
5112 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5113 else
79741dd3
MS
5114 cpustat->system = cputime64_add(cpustat->system, tmp);
5115
ef12fefa
BR
5116 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5117
1da177e4
LT
5118 /* Account for system time used */
5119 acct_update_integrals(p);
1da177e4
LT
5120}
5121
c66f08be 5122/*
1da177e4 5123 * Account for involuntary wait time.
1da177e4 5124 * @steal: the cpu time spent in involuntary wait
c66f08be 5125 */
79741dd3 5126void account_steal_time(cputime_t cputime)
c66f08be 5127{
79741dd3
MS
5128 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5129 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5130
5131 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5132}
5133
1da177e4 5134/*
79741dd3
MS
5135 * Account for idle time.
5136 * @cputime: the cpu time spent in idle wait
1da177e4 5137 */
79741dd3 5138void account_idle_time(cputime_t cputime)
1da177e4
LT
5139{
5140 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5141 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5142 struct rq *rq = this_rq();
1da177e4 5143
79741dd3
MS
5144 if (atomic_read(&rq->nr_iowait) > 0)
5145 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5146 else
5147 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5148}
5149
79741dd3
MS
5150#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5151
5152/*
5153 * Account a single tick of cpu time.
5154 * @p: the process that the cpu time gets accounted to
5155 * @user_tick: indicates if the tick is a user or a system tick
5156 */
5157void account_process_tick(struct task_struct *p, int user_tick)
5158{
5159 cputime_t one_jiffy = jiffies_to_cputime(1);
5160 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5161 struct rq *rq = this_rq();
5162
5163 if (user_tick)
5164 account_user_time(p, one_jiffy, one_jiffy_scaled);
f5f293a4 5165 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
79741dd3
MS
5166 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5167 one_jiffy_scaled);
5168 else
5169 account_idle_time(one_jiffy);
5170}
5171
5172/*
5173 * Account multiple ticks of steal time.
5174 * @p: the process from which the cpu time has been stolen
5175 * @ticks: number of stolen ticks
5176 */
5177void account_steal_ticks(unsigned long ticks)
5178{
5179 account_steal_time(jiffies_to_cputime(ticks));
5180}
5181
5182/*
5183 * Account multiple ticks of idle time.
5184 * @ticks: number of stolen ticks
5185 */
5186void account_idle_ticks(unsigned long ticks)
5187{
5188 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5189}
5190
79741dd3
MS
5191#endif
5192
49048622
BS
5193/*
5194 * Use precise platform statistics if available:
5195 */
5196#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5197cputime_t task_utime(struct task_struct *p)
5198{
5199 return p->utime;
5200}
5201
5202cputime_t task_stime(struct task_struct *p)
5203{
5204 return p->stime;
5205}
5206#else
5207cputime_t task_utime(struct task_struct *p)
5208{
5209 clock_t utime = cputime_to_clock_t(p->utime),
5210 total = utime + cputime_to_clock_t(p->stime);
5211 u64 temp;
5212
5213 /*
5214 * Use CFS's precise accounting:
5215 */
5216 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5217
5218 if (total) {
5219 temp *= utime;
5220 do_div(temp, total);
5221 }
5222 utime = (clock_t)temp;
5223
5224 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5225 return p->prev_utime;
5226}
5227
5228cputime_t task_stime(struct task_struct *p)
5229{
5230 clock_t stime;
5231
5232 /*
5233 * Use CFS's precise accounting. (we subtract utime from
5234 * the total, to make sure the total observed by userspace
5235 * grows monotonically - apps rely on that):
5236 */
5237 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5238 cputime_to_clock_t(task_utime(p));
5239
5240 if (stime >= 0)
5241 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5242
5243 return p->prev_stime;
5244}
5245#endif
5246
5247inline cputime_t task_gtime(struct task_struct *p)
5248{
5249 return p->gtime;
5250}
5251
7835b98b
CL
5252/*
5253 * This function gets called by the timer code, with HZ frequency.
5254 * We call it with interrupts disabled.
5255 *
5256 * It also gets called by the fork code, when changing the parent's
5257 * timeslices.
5258 */
5259void scheduler_tick(void)
5260{
7835b98b
CL
5261 int cpu = smp_processor_id();
5262 struct rq *rq = cpu_rq(cpu);
dd41f596 5263 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5264
5265 sched_clock_tick();
dd41f596
IM
5266
5267 spin_lock(&rq->lock);
3e51f33f 5268 update_rq_clock(rq);
f1a438d8 5269 update_cpu_load(rq);
fa85ae24 5270 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5271 spin_unlock(&rq->lock);
7835b98b 5272
e220d2dc
PZ
5273 perf_counter_task_tick(curr, cpu);
5274
e418e1c2 5275#ifdef CONFIG_SMP
dd41f596
IM
5276 rq->idle_at_tick = idle_cpu(cpu);
5277 trigger_load_balance(rq, cpu);
e418e1c2 5278#endif
1da177e4
LT
5279}
5280
132380a0 5281notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5282{
5283 if (in_lock_functions(addr)) {
5284 addr = CALLER_ADDR2;
5285 if (in_lock_functions(addr))
5286 addr = CALLER_ADDR3;
5287 }
5288 return addr;
5289}
1da177e4 5290
7e49fcce
SR
5291#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5292 defined(CONFIG_PREEMPT_TRACER))
5293
43627582 5294void __kprobes add_preempt_count(int val)
1da177e4 5295{
6cd8a4bb 5296#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5297 /*
5298 * Underflow?
5299 */
9a11b49a
IM
5300 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5301 return;
6cd8a4bb 5302#endif
1da177e4 5303 preempt_count() += val;
6cd8a4bb 5304#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5305 /*
5306 * Spinlock count overflowing soon?
5307 */
33859f7f
MOS
5308 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5309 PREEMPT_MASK - 10);
6cd8a4bb
SR
5310#endif
5311 if (preempt_count() == val)
5312 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5313}
5314EXPORT_SYMBOL(add_preempt_count);
5315
43627582 5316void __kprobes sub_preempt_count(int val)
1da177e4 5317{
6cd8a4bb 5318#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5319 /*
5320 * Underflow?
5321 */
01e3eb82 5322 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5323 return;
1da177e4
LT
5324 /*
5325 * Is the spinlock portion underflowing?
5326 */
9a11b49a
IM
5327 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5328 !(preempt_count() & PREEMPT_MASK)))
5329 return;
6cd8a4bb 5330#endif
9a11b49a 5331
6cd8a4bb
SR
5332 if (preempt_count() == val)
5333 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5334 preempt_count() -= val;
5335}
5336EXPORT_SYMBOL(sub_preempt_count);
5337
5338#endif
5339
5340/*
dd41f596 5341 * Print scheduling while atomic bug:
1da177e4 5342 */
dd41f596 5343static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5344{
838225b4
SS
5345 struct pt_regs *regs = get_irq_regs();
5346
5347 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5348 prev->comm, prev->pid, preempt_count());
5349
dd41f596 5350 debug_show_held_locks(prev);
e21f5b15 5351 print_modules();
dd41f596
IM
5352 if (irqs_disabled())
5353 print_irqtrace_events(prev);
838225b4
SS
5354
5355 if (regs)
5356 show_regs(regs);
5357 else
5358 dump_stack();
dd41f596 5359}
1da177e4 5360
dd41f596
IM
5361/*
5362 * Various schedule()-time debugging checks and statistics:
5363 */
5364static inline void schedule_debug(struct task_struct *prev)
5365{
1da177e4 5366 /*
41a2d6cf 5367 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5368 * schedule() atomically, we ignore that path for now.
5369 * Otherwise, whine if we are scheduling when we should not be.
5370 */
3f33a7ce 5371 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5372 __schedule_bug(prev);
5373
1da177e4
LT
5374 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5375
2d72376b 5376 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5377#ifdef CONFIG_SCHEDSTATS
5378 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5379 schedstat_inc(this_rq(), bkl_count);
5380 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5381 }
5382#endif
dd41f596
IM
5383}
5384
df1c99d4
MG
5385static void put_prev_task(struct rq *rq, struct task_struct *prev)
5386{
5387 if (prev->state == TASK_RUNNING) {
5388 u64 runtime = prev->se.sum_exec_runtime;
5389
5390 runtime -= prev->se.prev_sum_exec_runtime;
5391 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5392
5393 /*
5394 * In order to avoid avg_overlap growing stale when we are
5395 * indeed overlapping and hence not getting put to sleep, grow
5396 * the avg_overlap on preemption.
5397 *
5398 * We use the average preemption runtime because that
5399 * correlates to the amount of cache footprint a task can
5400 * build up.
5401 */
5402 update_avg(&prev->se.avg_overlap, runtime);
5403 }
5404 prev->sched_class->put_prev_task(rq, prev);
5405}
5406
dd41f596
IM
5407/*
5408 * Pick up the highest-prio task:
5409 */
5410static inline struct task_struct *
b67802ea 5411pick_next_task(struct rq *rq)
dd41f596 5412{
5522d5d5 5413 const struct sched_class *class;
dd41f596 5414 struct task_struct *p;
1da177e4
LT
5415
5416 /*
dd41f596
IM
5417 * Optimization: we know that if all tasks are in
5418 * the fair class we can call that function directly:
1da177e4 5419 */
dd41f596 5420 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5421 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5422 if (likely(p))
5423 return p;
1da177e4
LT
5424 }
5425
dd41f596
IM
5426 class = sched_class_highest;
5427 for ( ; ; ) {
fb8d4724 5428 p = class->pick_next_task(rq);
dd41f596
IM
5429 if (p)
5430 return p;
5431 /*
5432 * Will never be NULL as the idle class always
5433 * returns a non-NULL p:
5434 */
5435 class = class->next;
5436 }
5437}
1da177e4 5438
dd41f596
IM
5439/*
5440 * schedule() is the main scheduler function.
5441 */
ff743345 5442asmlinkage void __sched schedule(void)
dd41f596
IM
5443{
5444 struct task_struct *prev, *next;
67ca7bde 5445 unsigned long *switch_count;
dd41f596 5446 struct rq *rq;
31656519 5447 int cpu;
dd41f596 5448
ff743345
PZ
5449need_resched:
5450 preempt_disable();
dd41f596
IM
5451 cpu = smp_processor_id();
5452 rq = cpu_rq(cpu);
5453 rcu_qsctr_inc(cpu);
5454 prev = rq->curr;
5455 switch_count = &prev->nivcsw;
5456
5457 release_kernel_lock(prev);
5458need_resched_nonpreemptible:
5459
5460 schedule_debug(prev);
1da177e4 5461
31656519 5462 if (sched_feat(HRTICK))
f333fdc9 5463 hrtick_clear(rq);
8f4d37ec 5464
8cd162ce 5465 spin_lock_irq(&rq->lock);
3e51f33f 5466 update_rq_clock(rq);
1e819950 5467 clear_tsk_need_resched(prev);
1da177e4 5468
1da177e4 5469 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5470 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5471 prev->state = TASK_RUNNING;
16882c1e 5472 else
2e1cb74a 5473 deactivate_task(rq, prev, 1);
dd41f596 5474 switch_count = &prev->nvcsw;
1da177e4
LT
5475 }
5476
3f029d3c 5477 pre_schedule(rq, prev);
f65eda4f 5478
dd41f596 5479 if (unlikely(!rq->nr_running))
1da177e4 5480 idle_balance(cpu, rq);
1da177e4 5481
df1c99d4 5482 put_prev_task(rq, prev);
b67802ea 5483 next = pick_next_task(rq);
1da177e4 5484
1da177e4 5485 if (likely(prev != next)) {
673a90a1 5486 sched_info_switch(prev, next);
564c2b21 5487 perf_counter_task_sched_out(prev, next, cpu);
673a90a1 5488
1da177e4
LT
5489 rq->nr_switches++;
5490 rq->curr = next;
5491 ++*switch_count;
5492
3f029d3c 5493 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5494 /*
5495 * the context switch might have flipped the stack from under
5496 * us, hence refresh the local variables.
5497 */
5498 cpu = smp_processor_id();
5499 rq = cpu_rq(cpu);
3f029d3c 5500 } else
1da177e4 5501 spin_unlock_irq(&rq->lock);
da19ab51 5502
3f029d3c 5503 post_schedule(rq);
1da177e4 5504
8f4d37ec 5505 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5506 goto need_resched_nonpreemptible;
8f4d37ec 5507
1da177e4 5508 preempt_enable_no_resched();
ff743345 5509 if (need_resched())
1da177e4
LT
5510 goto need_resched;
5511}
1da177e4
LT
5512EXPORT_SYMBOL(schedule);
5513
0d66bf6d
PZ
5514#ifdef CONFIG_SMP
5515/*
5516 * Look out! "owner" is an entirely speculative pointer
5517 * access and not reliable.
5518 */
5519int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5520{
5521 unsigned int cpu;
5522 struct rq *rq;
5523
5524 if (!sched_feat(OWNER_SPIN))
5525 return 0;
5526
5527#ifdef CONFIG_DEBUG_PAGEALLOC
5528 /*
5529 * Need to access the cpu field knowing that
5530 * DEBUG_PAGEALLOC could have unmapped it if
5531 * the mutex owner just released it and exited.
5532 */
5533 if (probe_kernel_address(&owner->cpu, cpu))
5534 goto out;
5535#else
5536 cpu = owner->cpu;
5537#endif
5538
5539 /*
5540 * Even if the access succeeded (likely case),
5541 * the cpu field may no longer be valid.
5542 */
5543 if (cpu >= nr_cpumask_bits)
5544 goto out;
5545
5546 /*
5547 * We need to validate that we can do a
5548 * get_cpu() and that we have the percpu area.
5549 */
5550 if (!cpu_online(cpu))
5551 goto out;
5552
5553 rq = cpu_rq(cpu);
5554
5555 for (;;) {
5556 /*
5557 * Owner changed, break to re-assess state.
5558 */
5559 if (lock->owner != owner)
5560 break;
5561
5562 /*
5563 * Is that owner really running on that cpu?
5564 */
5565 if (task_thread_info(rq->curr) != owner || need_resched())
5566 return 0;
5567
5568 cpu_relax();
5569 }
5570out:
5571 return 1;
5572}
5573#endif
5574
1da177e4
LT
5575#ifdef CONFIG_PREEMPT
5576/*
2ed6e34f 5577 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5578 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5579 * occur there and call schedule directly.
5580 */
5581asmlinkage void __sched preempt_schedule(void)
5582{
5583 struct thread_info *ti = current_thread_info();
6478d880 5584
1da177e4
LT
5585 /*
5586 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5587 * we do not want to preempt the current task. Just return..
1da177e4 5588 */
beed33a8 5589 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5590 return;
5591
3a5c359a
AK
5592 do {
5593 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5594 schedule();
3a5c359a 5595 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5596
3a5c359a
AK
5597 /*
5598 * Check again in case we missed a preemption opportunity
5599 * between schedule and now.
5600 */
5601 barrier();
5ed0cec0 5602 } while (need_resched());
1da177e4 5603}
1da177e4
LT
5604EXPORT_SYMBOL(preempt_schedule);
5605
5606/*
2ed6e34f 5607 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5608 * off of irq context.
5609 * Note, that this is called and return with irqs disabled. This will
5610 * protect us against recursive calling from irq.
5611 */
5612asmlinkage void __sched preempt_schedule_irq(void)
5613{
5614 struct thread_info *ti = current_thread_info();
6478d880 5615
2ed6e34f 5616 /* Catch callers which need to be fixed */
1da177e4
LT
5617 BUG_ON(ti->preempt_count || !irqs_disabled());
5618
3a5c359a
AK
5619 do {
5620 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5621 local_irq_enable();
5622 schedule();
5623 local_irq_disable();
3a5c359a 5624 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5625
3a5c359a
AK
5626 /*
5627 * Check again in case we missed a preemption opportunity
5628 * between schedule and now.
5629 */
5630 barrier();
5ed0cec0 5631 } while (need_resched());
1da177e4
LT
5632}
5633
5634#endif /* CONFIG_PREEMPT */
5635
95cdf3b7
IM
5636int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5637 void *key)
1da177e4 5638{
48f24c4d 5639 return try_to_wake_up(curr->private, mode, sync);
1da177e4 5640}
1da177e4
LT
5641EXPORT_SYMBOL(default_wake_function);
5642
5643/*
41a2d6cf
IM
5644 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5645 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5646 * number) then we wake all the non-exclusive tasks and one exclusive task.
5647 *
5648 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5649 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5650 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5651 */
78ddb08f 5652static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
777c6c5f 5653 int nr_exclusive, int sync, void *key)
1da177e4 5654{
2e45874c 5655 wait_queue_t *curr, *next;
1da177e4 5656
2e45874c 5657 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5658 unsigned flags = curr->flags;
5659
1da177e4 5660 if (curr->func(curr, mode, sync, key) &&
48f24c4d 5661 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5662 break;
5663 }
5664}
5665
5666/**
5667 * __wake_up - wake up threads blocked on a waitqueue.
5668 * @q: the waitqueue
5669 * @mode: which threads
5670 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5671 * @key: is directly passed to the wakeup function
50fa610a
DH
5672 *
5673 * It may be assumed that this function implies a write memory barrier before
5674 * changing the task state if and only if any tasks are woken up.
1da177e4 5675 */
7ad5b3a5 5676void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5677 int nr_exclusive, void *key)
1da177e4
LT
5678{
5679 unsigned long flags;
5680
5681 spin_lock_irqsave(&q->lock, flags);
5682 __wake_up_common(q, mode, nr_exclusive, 0, key);
5683 spin_unlock_irqrestore(&q->lock, flags);
5684}
1da177e4
LT
5685EXPORT_SYMBOL(__wake_up);
5686
5687/*
5688 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5689 */
7ad5b3a5 5690void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5691{
5692 __wake_up_common(q, mode, 1, 0, NULL);
5693}
5694
4ede816a
DL
5695void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5696{
5697 __wake_up_common(q, mode, 1, 0, key);
5698}
5699
1da177e4 5700/**
4ede816a 5701 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5702 * @q: the waitqueue
5703 * @mode: which threads
5704 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5705 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5706 *
5707 * The sync wakeup differs that the waker knows that it will schedule
5708 * away soon, so while the target thread will be woken up, it will not
5709 * be migrated to another CPU - ie. the two threads are 'synchronized'
5710 * with each other. This can prevent needless bouncing between CPUs.
5711 *
5712 * On UP it can prevent extra preemption.
50fa610a
DH
5713 *
5714 * It may be assumed that this function implies a write memory barrier before
5715 * changing the task state if and only if any tasks are woken up.
1da177e4 5716 */
4ede816a
DL
5717void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5718 int nr_exclusive, void *key)
1da177e4
LT
5719{
5720 unsigned long flags;
5721 int sync = 1;
5722
5723 if (unlikely(!q))
5724 return;
5725
5726 if (unlikely(!nr_exclusive))
5727 sync = 0;
5728
5729 spin_lock_irqsave(&q->lock, flags);
4ede816a 5730 __wake_up_common(q, mode, nr_exclusive, sync, key);
1da177e4
LT
5731 spin_unlock_irqrestore(&q->lock, flags);
5732}
4ede816a
DL
5733EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5734
5735/*
5736 * __wake_up_sync - see __wake_up_sync_key()
5737 */
5738void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5739{
5740 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5741}
1da177e4
LT
5742EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5743
65eb3dc6
KD
5744/**
5745 * complete: - signals a single thread waiting on this completion
5746 * @x: holds the state of this particular completion
5747 *
5748 * This will wake up a single thread waiting on this completion. Threads will be
5749 * awakened in the same order in which they were queued.
5750 *
5751 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5752 *
5753 * It may be assumed that this function implies a write memory barrier before
5754 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5755 */
b15136e9 5756void complete(struct completion *x)
1da177e4
LT
5757{
5758 unsigned long flags;
5759
5760 spin_lock_irqsave(&x->wait.lock, flags);
5761 x->done++;
d9514f6c 5762 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5763 spin_unlock_irqrestore(&x->wait.lock, flags);
5764}
5765EXPORT_SYMBOL(complete);
5766
65eb3dc6
KD
5767/**
5768 * complete_all: - signals all threads waiting on this completion
5769 * @x: holds the state of this particular completion
5770 *
5771 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5772 *
5773 * It may be assumed that this function implies a write memory barrier before
5774 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5775 */
b15136e9 5776void complete_all(struct completion *x)
1da177e4
LT
5777{
5778 unsigned long flags;
5779
5780 spin_lock_irqsave(&x->wait.lock, flags);
5781 x->done += UINT_MAX/2;
d9514f6c 5782 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5783 spin_unlock_irqrestore(&x->wait.lock, flags);
5784}
5785EXPORT_SYMBOL(complete_all);
5786
8cbbe86d
AK
5787static inline long __sched
5788do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5789{
1da177e4
LT
5790 if (!x->done) {
5791 DECLARE_WAITQUEUE(wait, current);
5792
5793 wait.flags |= WQ_FLAG_EXCLUSIVE;
5794 __add_wait_queue_tail(&x->wait, &wait);
5795 do {
94d3d824 5796 if (signal_pending_state(state, current)) {
ea71a546
ON
5797 timeout = -ERESTARTSYS;
5798 break;
8cbbe86d
AK
5799 }
5800 __set_current_state(state);
1da177e4
LT
5801 spin_unlock_irq(&x->wait.lock);
5802 timeout = schedule_timeout(timeout);
5803 spin_lock_irq(&x->wait.lock);
ea71a546 5804 } while (!x->done && timeout);
1da177e4 5805 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5806 if (!x->done)
5807 return timeout;
1da177e4
LT
5808 }
5809 x->done--;
ea71a546 5810 return timeout ?: 1;
1da177e4 5811}
1da177e4 5812
8cbbe86d
AK
5813static long __sched
5814wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5815{
1da177e4
LT
5816 might_sleep();
5817
5818 spin_lock_irq(&x->wait.lock);
8cbbe86d 5819 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5820 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5821 return timeout;
5822}
1da177e4 5823
65eb3dc6
KD
5824/**
5825 * wait_for_completion: - waits for completion of a task
5826 * @x: holds the state of this particular completion
5827 *
5828 * This waits to be signaled for completion of a specific task. It is NOT
5829 * interruptible and there is no timeout.
5830 *
5831 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5832 * and interrupt capability. Also see complete().
5833 */
b15136e9 5834void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5835{
5836 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5837}
8cbbe86d 5838EXPORT_SYMBOL(wait_for_completion);
1da177e4 5839
65eb3dc6
KD
5840/**
5841 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5842 * @x: holds the state of this particular completion
5843 * @timeout: timeout value in jiffies
5844 *
5845 * This waits for either a completion of a specific task to be signaled or for a
5846 * specified timeout to expire. The timeout is in jiffies. It is not
5847 * interruptible.
5848 */
b15136e9 5849unsigned long __sched
8cbbe86d 5850wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5851{
8cbbe86d 5852 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5853}
8cbbe86d 5854EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5855
65eb3dc6
KD
5856/**
5857 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5858 * @x: holds the state of this particular completion
5859 *
5860 * This waits for completion of a specific task to be signaled. It is
5861 * interruptible.
5862 */
8cbbe86d 5863int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5864{
51e97990
AK
5865 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5866 if (t == -ERESTARTSYS)
5867 return t;
5868 return 0;
0fec171c 5869}
8cbbe86d 5870EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5871
65eb3dc6
KD
5872/**
5873 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5874 * @x: holds the state of this particular completion
5875 * @timeout: timeout value in jiffies
5876 *
5877 * This waits for either a completion of a specific task to be signaled or for a
5878 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5879 */
b15136e9 5880unsigned long __sched
8cbbe86d
AK
5881wait_for_completion_interruptible_timeout(struct completion *x,
5882 unsigned long timeout)
0fec171c 5883{
8cbbe86d 5884 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5885}
8cbbe86d 5886EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5887
65eb3dc6
KD
5888/**
5889 * wait_for_completion_killable: - waits for completion of a task (killable)
5890 * @x: holds the state of this particular completion
5891 *
5892 * This waits to be signaled for completion of a specific task. It can be
5893 * interrupted by a kill signal.
5894 */
009e577e
MW
5895int __sched wait_for_completion_killable(struct completion *x)
5896{
5897 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5898 if (t == -ERESTARTSYS)
5899 return t;
5900 return 0;
5901}
5902EXPORT_SYMBOL(wait_for_completion_killable);
5903
be4de352
DC
5904/**
5905 * try_wait_for_completion - try to decrement a completion without blocking
5906 * @x: completion structure
5907 *
5908 * Returns: 0 if a decrement cannot be done without blocking
5909 * 1 if a decrement succeeded.
5910 *
5911 * If a completion is being used as a counting completion,
5912 * attempt to decrement the counter without blocking. This
5913 * enables us to avoid waiting if the resource the completion
5914 * is protecting is not available.
5915 */
5916bool try_wait_for_completion(struct completion *x)
5917{
5918 int ret = 1;
5919
5920 spin_lock_irq(&x->wait.lock);
5921 if (!x->done)
5922 ret = 0;
5923 else
5924 x->done--;
5925 spin_unlock_irq(&x->wait.lock);
5926 return ret;
5927}
5928EXPORT_SYMBOL(try_wait_for_completion);
5929
5930/**
5931 * completion_done - Test to see if a completion has any waiters
5932 * @x: completion structure
5933 *
5934 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5935 * 1 if there are no waiters.
5936 *
5937 */
5938bool completion_done(struct completion *x)
5939{
5940 int ret = 1;
5941
5942 spin_lock_irq(&x->wait.lock);
5943 if (!x->done)
5944 ret = 0;
5945 spin_unlock_irq(&x->wait.lock);
5946 return ret;
5947}
5948EXPORT_SYMBOL(completion_done);
5949
8cbbe86d
AK
5950static long __sched
5951sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5952{
0fec171c
IM
5953 unsigned long flags;
5954 wait_queue_t wait;
5955
5956 init_waitqueue_entry(&wait, current);
1da177e4 5957
8cbbe86d 5958 __set_current_state(state);
1da177e4 5959
8cbbe86d
AK
5960 spin_lock_irqsave(&q->lock, flags);
5961 __add_wait_queue(q, &wait);
5962 spin_unlock(&q->lock);
5963 timeout = schedule_timeout(timeout);
5964 spin_lock_irq(&q->lock);
5965 __remove_wait_queue(q, &wait);
5966 spin_unlock_irqrestore(&q->lock, flags);
5967
5968 return timeout;
5969}
5970
5971void __sched interruptible_sleep_on(wait_queue_head_t *q)
5972{
5973 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5974}
1da177e4
LT
5975EXPORT_SYMBOL(interruptible_sleep_on);
5976
0fec171c 5977long __sched
95cdf3b7 5978interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5979{
8cbbe86d 5980 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5981}
1da177e4
LT
5982EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5983
0fec171c 5984void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5985{
8cbbe86d 5986 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5987}
1da177e4
LT
5988EXPORT_SYMBOL(sleep_on);
5989
0fec171c 5990long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5991{
8cbbe86d 5992 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5993}
1da177e4
LT
5994EXPORT_SYMBOL(sleep_on_timeout);
5995
b29739f9
IM
5996#ifdef CONFIG_RT_MUTEXES
5997
5998/*
5999 * rt_mutex_setprio - set the current priority of a task
6000 * @p: task
6001 * @prio: prio value (kernel-internal form)
6002 *
6003 * This function changes the 'effective' priority of a task. It does
6004 * not touch ->normal_prio like __setscheduler().
6005 *
6006 * Used by the rt_mutex code to implement priority inheritance logic.
6007 */
36c8b586 6008void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
6009{
6010 unsigned long flags;
83b699ed 6011 int oldprio, on_rq, running;
70b97a7f 6012 struct rq *rq;
cb469845 6013 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
6014
6015 BUG_ON(prio < 0 || prio > MAX_PRIO);
6016
6017 rq = task_rq_lock(p, &flags);
a8e504d2 6018 update_rq_clock(rq);
b29739f9 6019
d5f9f942 6020 oldprio = p->prio;
dd41f596 6021 on_rq = p->se.on_rq;
051a1d1a 6022 running = task_current(rq, p);
0e1f3483 6023 if (on_rq)
69be72c1 6024 dequeue_task(rq, p, 0);
0e1f3483
HS
6025 if (running)
6026 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
6027
6028 if (rt_prio(prio))
6029 p->sched_class = &rt_sched_class;
6030 else
6031 p->sched_class = &fair_sched_class;
6032
b29739f9
IM
6033 p->prio = prio;
6034
0e1f3483
HS
6035 if (running)
6036 p->sched_class->set_curr_task(rq);
dd41f596 6037 if (on_rq) {
8159f87e 6038 enqueue_task(rq, p, 0);
cb469845
SR
6039
6040 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
6041 }
6042 task_rq_unlock(rq, &flags);
6043}
6044
6045#endif
6046
36c8b586 6047void set_user_nice(struct task_struct *p, long nice)
1da177e4 6048{
dd41f596 6049 int old_prio, delta, on_rq;
1da177e4 6050 unsigned long flags;
70b97a7f 6051 struct rq *rq;
1da177e4
LT
6052
6053 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6054 return;
6055 /*
6056 * We have to be careful, if called from sys_setpriority(),
6057 * the task might be in the middle of scheduling on another CPU.
6058 */
6059 rq = task_rq_lock(p, &flags);
a8e504d2 6060 update_rq_clock(rq);
1da177e4
LT
6061 /*
6062 * The RT priorities are set via sched_setscheduler(), but we still
6063 * allow the 'normal' nice value to be set - but as expected
6064 * it wont have any effect on scheduling until the task is
dd41f596 6065 * SCHED_FIFO/SCHED_RR:
1da177e4 6066 */
e05606d3 6067 if (task_has_rt_policy(p)) {
1da177e4
LT
6068 p->static_prio = NICE_TO_PRIO(nice);
6069 goto out_unlock;
6070 }
dd41f596 6071 on_rq = p->se.on_rq;
c09595f6 6072 if (on_rq)
69be72c1 6073 dequeue_task(rq, p, 0);
1da177e4 6074
1da177e4 6075 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6076 set_load_weight(p);
b29739f9
IM
6077 old_prio = p->prio;
6078 p->prio = effective_prio(p);
6079 delta = p->prio - old_prio;
1da177e4 6080
dd41f596 6081 if (on_rq) {
8159f87e 6082 enqueue_task(rq, p, 0);
1da177e4 6083 /*
d5f9f942
AM
6084 * If the task increased its priority or is running and
6085 * lowered its priority, then reschedule its CPU:
1da177e4 6086 */
d5f9f942 6087 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6088 resched_task(rq->curr);
6089 }
6090out_unlock:
6091 task_rq_unlock(rq, &flags);
6092}
1da177e4
LT
6093EXPORT_SYMBOL(set_user_nice);
6094
e43379f1
MM
6095/*
6096 * can_nice - check if a task can reduce its nice value
6097 * @p: task
6098 * @nice: nice value
6099 */
36c8b586 6100int can_nice(const struct task_struct *p, const int nice)
e43379f1 6101{
024f4747
MM
6102 /* convert nice value [19,-20] to rlimit style value [1,40] */
6103 int nice_rlim = 20 - nice;
48f24c4d 6104
e43379f1
MM
6105 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6106 capable(CAP_SYS_NICE));
6107}
6108
1da177e4
LT
6109#ifdef __ARCH_WANT_SYS_NICE
6110
6111/*
6112 * sys_nice - change the priority of the current process.
6113 * @increment: priority increment
6114 *
6115 * sys_setpriority is a more generic, but much slower function that
6116 * does similar things.
6117 */
5add95d4 6118SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6119{
48f24c4d 6120 long nice, retval;
1da177e4
LT
6121
6122 /*
6123 * Setpriority might change our priority at the same moment.
6124 * We don't have to worry. Conceptually one call occurs first
6125 * and we have a single winner.
6126 */
e43379f1
MM
6127 if (increment < -40)
6128 increment = -40;
1da177e4
LT
6129 if (increment > 40)
6130 increment = 40;
6131
2b8f836f 6132 nice = TASK_NICE(current) + increment;
1da177e4
LT
6133 if (nice < -20)
6134 nice = -20;
6135 if (nice > 19)
6136 nice = 19;
6137
e43379f1
MM
6138 if (increment < 0 && !can_nice(current, nice))
6139 return -EPERM;
6140
1da177e4
LT
6141 retval = security_task_setnice(current, nice);
6142 if (retval)
6143 return retval;
6144
6145 set_user_nice(current, nice);
6146 return 0;
6147}
6148
6149#endif
6150
6151/**
6152 * task_prio - return the priority value of a given task.
6153 * @p: the task in question.
6154 *
6155 * This is the priority value as seen by users in /proc.
6156 * RT tasks are offset by -200. Normal tasks are centered
6157 * around 0, value goes from -16 to +15.
6158 */
36c8b586 6159int task_prio(const struct task_struct *p)
1da177e4
LT
6160{
6161 return p->prio - MAX_RT_PRIO;
6162}
6163
6164/**
6165 * task_nice - return the nice value of a given task.
6166 * @p: the task in question.
6167 */
36c8b586 6168int task_nice(const struct task_struct *p)
1da177e4
LT
6169{
6170 return TASK_NICE(p);
6171}
150d8bed 6172EXPORT_SYMBOL(task_nice);
1da177e4
LT
6173
6174/**
6175 * idle_cpu - is a given cpu idle currently?
6176 * @cpu: the processor in question.
6177 */
6178int idle_cpu(int cpu)
6179{
6180 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6181}
6182
1da177e4
LT
6183/**
6184 * idle_task - return the idle task for a given cpu.
6185 * @cpu: the processor in question.
6186 */
36c8b586 6187struct task_struct *idle_task(int cpu)
1da177e4
LT
6188{
6189 return cpu_rq(cpu)->idle;
6190}
6191
6192/**
6193 * find_process_by_pid - find a process with a matching PID value.
6194 * @pid: the pid in question.
6195 */
a9957449 6196static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6197{
228ebcbe 6198 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6199}
6200
6201/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6202static void
6203__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6204{
dd41f596 6205 BUG_ON(p->se.on_rq);
48f24c4d 6206
1da177e4 6207 p->policy = policy;
dd41f596
IM
6208 switch (p->policy) {
6209 case SCHED_NORMAL:
6210 case SCHED_BATCH:
6211 case SCHED_IDLE:
6212 p->sched_class = &fair_sched_class;
6213 break;
6214 case SCHED_FIFO:
6215 case SCHED_RR:
6216 p->sched_class = &rt_sched_class;
6217 break;
6218 }
6219
1da177e4 6220 p->rt_priority = prio;
b29739f9
IM
6221 p->normal_prio = normal_prio(p);
6222 /* we are holding p->pi_lock already */
6223 p->prio = rt_mutex_getprio(p);
2dd73a4f 6224 set_load_weight(p);
1da177e4
LT
6225}
6226
c69e8d9c
DH
6227/*
6228 * check the target process has a UID that matches the current process's
6229 */
6230static bool check_same_owner(struct task_struct *p)
6231{
6232 const struct cred *cred = current_cred(), *pcred;
6233 bool match;
6234
6235 rcu_read_lock();
6236 pcred = __task_cred(p);
6237 match = (cred->euid == pcred->euid ||
6238 cred->euid == pcred->uid);
6239 rcu_read_unlock();
6240 return match;
6241}
6242
961ccddd
RR
6243static int __sched_setscheduler(struct task_struct *p, int policy,
6244 struct sched_param *param, bool user)
1da177e4 6245{
83b699ed 6246 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6247 unsigned long flags;
cb469845 6248 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6249 struct rq *rq;
ca94c442 6250 int reset_on_fork;
1da177e4 6251
66e5393a
SR
6252 /* may grab non-irq protected spin_locks */
6253 BUG_ON(in_interrupt());
1da177e4
LT
6254recheck:
6255 /* double check policy once rq lock held */
ca94c442
LP
6256 if (policy < 0) {
6257 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6258 policy = oldpolicy = p->policy;
ca94c442
LP
6259 } else {
6260 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6261 policy &= ~SCHED_RESET_ON_FORK;
6262
6263 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6264 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6265 policy != SCHED_IDLE)
6266 return -EINVAL;
6267 }
6268
1da177e4
LT
6269 /*
6270 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6271 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6272 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6273 */
6274 if (param->sched_priority < 0 ||
95cdf3b7 6275 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6276 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6277 return -EINVAL;
e05606d3 6278 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6279 return -EINVAL;
6280
37e4ab3f
OC
6281 /*
6282 * Allow unprivileged RT tasks to decrease priority:
6283 */
961ccddd 6284 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6285 if (rt_policy(policy)) {
8dc3e909 6286 unsigned long rlim_rtprio;
8dc3e909
ON
6287
6288 if (!lock_task_sighand(p, &flags))
6289 return -ESRCH;
6290 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6291 unlock_task_sighand(p, &flags);
6292
6293 /* can't set/change the rt policy */
6294 if (policy != p->policy && !rlim_rtprio)
6295 return -EPERM;
6296
6297 /* can't increase priority */
6298 if (param->sched_priority > p->rt_priority &&
6299 param->sched_priority > rlim_rtprio)
6300 return -EPERM;
6301 }
dd41f596
IM
6302 /*
6303 * Like positive nice levels, dont allow tasks to
6304 * move out of SCHED_IDLE either:
6305 */
6306 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6307 return -EPERM;
5fe1d75f 6308
37e4ab3f 6309 /* can't change other user's priorities */
c69e8d9c 6310 if (!check_same_owner(p))
37e4ab3f 6311 return -EPERM;
ca94c442
LP
6312
6313 /* Normal users shall not reset the sched_reset_on_fork flag */
6314 if (p->sched_reset_on_fork && !reset_on_fork)
6315 return -EPERM;
37e4ab3f 6316 }
1da177e4 6317
725aad24 6318 if (user) {
b68aa230 6319#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6320 /*
6321 * Do not allow realtime tasks into groups that have no runtime
6322 * assigned.
6323 */
9a7e0b18
PZ
6324 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6325 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6326 return -EPERM;
b68aa230
PZ
6327#endif
6328
725aad24
JF
6329 retval = security_task_setscheduler(p, policy, param);
6330 if (retval)
6331 return retval;
6332 }
6333
b29739f9
IM
6334 /*
6335 * make sure no PI-waiters arrive (or leave) while we are
6336 * changing the priority of the task:
6337 */
6338 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6339 /*
6340 * To be able to change p->policy safely, the apropriate
6341 * runqueue lock must be held.
6342 */
b29739f9 6343 rq = __task_rq_lock(p);
1da177e4
LT
6344 /* recheck policy now with rq lock held */
6345 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6346 policy = oldpolicy = -1;
b29739f9
IM
6347 __task_rq_unlock(rq);
6348 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6349 goto recheck;
6350 }
2daa3577 6351 update_rq_clock(rq);
dd41f596 6352 on_rq = p->se.on_rq;
051a1d1a 6353 running = task_current(rq, p);
0e1f3483 6354 if (on_rq)
2e1cb74a 6355 deactivate_task(rq, p, 0);
0e1f3483
HS
6356 if (running)
6357 p->sched_class->put_prev_task(rq, p);
f6b53205 6358
ca94c442
LP
6359 p->sched_reset_on_fork = reset_on_fork;
6360
1da177e4 6361 oldprio = p->prio;
dd41f596 6362 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6363
0e1f3483
HS
6364 if (running)
6365 p->sched_class->set_curr_task(rq);
dd41f596
IM
6366 if (on_rq) {
6367 activate_task(rq, p, 0);
cb469845
SR
6368
6369 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6370 }
b29739f9
IM
6371 __task_rq_unlock(rq);
6372 spin_unlock_irqrestore(&p->pi_lock, flags);
6373
95e02ca9
TG
6374 rt_mutex_adjust_pi(p);
6375
1da177e4
LT
6376 return 0;
6377}
961ccddd
RR
6378
6379/**
6380 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6381 * @p: the task in question.
6382 * @policy: new policy.
6383 * @param: structure containing the new RT priority.
6384 *
6385 * NOTE that the task may be already dead.
6386 */
6387int sched_setscheduler(struct task_struct *p, int policy,
6388 struct sched_param *param)
6389{
6390 return __sched_setscheduler(p, policy, param, true);
6391}
1da177e4
LT
6392EXPORT_SYMBOL_GPL(sched_setscheduler);
6393
961ccddd
RR
6394/**
6395 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6396 * @p: the task in question.
6397 * @policy: new policy.
6398 * @param: structure containing the new RT priority.
6399 *
6400 * Just like sched_setscheduler, only don't bother checking if the
6401 * current context has permission. For example, this is needed in
6402 * stop_machine(): we create temporary high priority worker threads,
6403 * but our caller might not have that capability.
6404 */
6405int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6406 struct sched_param *param)
6407{
6408 return __sched_setscheduler(p, policy, param, false);
6409}
6410
95cdf3b7
IM
6411static int
6412do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6413{
1da177e4
LT
6414 struct sched_param lparam;
6415 struct task_struct *p;
36c8b586 6416 int retval;
1da177e4
LT
6417
6418 if (!param || pid < 0)
6419 return -EINVAL;
6420 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6421 return -EFAULT;
5fe1d75f
ON
6422
6423 rcu_read_lock();
6424 retval = -ESRCH;
1da177e4 6425 p = find_process_by_pid(pid);
5fe1d75f
ON
6426 if (p != NULL)
6427 retval = sched_setscheduler(p, policy, &lparam);
6428 rcu_read_unlock();
36c8b586 6429
1da177e4
LT
6430 return retval;
6431}
6432
6433/**
6434 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6435 * @pid: the pid in question.
6436 * @policy: new policy.
6437 * @param: structure containing the new RT priority.
6438 */
5add95d4
HC
6439SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6440 struct sched_param __user *, param)
1da177e4 6441{
c21761f1
JB
6442 /* negative values for policy are not valid */
6443 if (policy < 0)
6444 return -EINVAL;
6445
1da177e4
LT
6446 return do_sched_setscheduler(pid, policy, param);
6447}
6448
6449/**
6450 * sys_sched_setparam - set/change the RT priority of a thread
6451 * @pid: the pid in question.
6452 * @param: structure containing the new RT priority.
6453 */
5add95d4 6454SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6455{
6456 return do_sched_setscheduler(pid, -1, param);
6457}
6458
6459/**
6460 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6461 * @pid: the pid in question.
6462 */
5add95d4 6463SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6464{
36c8b586 6465 struct task_struct *p;
3a5c359a 6466 int retval;
1da177e4
LT
6467
6468 if (pid < 0)
3a5c359a 6469 return -EINVAL;
1da177e4
LT
6470
6471 retval = -ESRCH;
6472 read_lock(&tasklist_lock);
6473 p = find_process_by_pid(pid);
6474 if (p) {
6475 retval = security_task_getscheduler(p);
6476 if (!retval)
ca94c442
LP
6477 retval = p->policy
6478 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4
LT
6479 }
6480 read_unlock(&tasklist_lock);
1da177e4
LT
6481 return retval;
6482}
6483
6484/**
ca94c442 6485 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6486 * @pid: the pid in question.
6487 * @param: structure containing the RT priority.
6488 */
5add95d4 6489SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6490{
6491 struct sched_param lp;
36c8b586 6492 struct task_struct *p;
3a5c359a 6493 int retval;
1da177e4
LT
6494
6495 if (!param || pid < 0)
3a5c359a 6496 return -EINVAL;
1da177e4
LT
6497
6498 read_lock(&tasklist_lock);
6499 p = find_process_by_pid(pid);
6500 retval = -ESRCH;
6501 if (!p)
6502 goto out_unlock;
6503
6504 retval = security_task_getscheduler(p);
6505 if (retval)
6506 goto out_unlock;
6507
6508 lp.sched_priority = p->rt_priority;
6509 read_unlock(&tasklist_lock);
6510
6511 /*
6512 * This one might sleep, we cannot do it with a spinlock held ...
6513 */
6514 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6515
1da177e4
LT
6516 return retval;
6517
6518out_unlock:
6519 read_unlock(&tasklist_lock);
6520 return retval;
6521}
6522
96f874e2 6523long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6524{
5a16f3d3 6525 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6526 struct task_struct *p;
6527 int retval;
1da177e4 6528
95402b38 6529 get_online_cpus();
1da177e4
LT
6530 read_lock(&tasklist_lock);
6531
6532 p = find_process_by_pid(pid);
6533 if (!p) {
6534 read_unlock(&tasklist_lock);
95402b38 6535 put_online_cpus();
1da177e4
LT
6536 return -ESRCH;
6537 }
6538
6539 /*
6540 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6541 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6542 * usage count and then drop tasklist_lock.
6543 */
6544 get_task_struct(p);
6545 read_unlock(&tasklist_lock);
6546
5a16f3d3
RR
6547 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6548 retval = -ENOMEM;
6549 goto out_put_task;
6550 }
6551 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6552 retval = -ENOMEM;
6553 goto out_free_cpus_allowed;
6554 }
1da177e4 6555 retval = -EPERM;
c69e8d9c 6556 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6557 goto out_unlock;
6558
e7834f8f
DQ
6559 retval = security_task_setscheduler(p, 0, NULL);
6560 if (retval)
6561 goto out_unlock;
6562
5a16f3d3
RR
6563 cpuset_cpus_allowed(p, cpus_allowed);
6564 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6565 again:
5a16f3d3 6566 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6567
8707d8b8 6568 if (!retval) {
5a16f3d3
RR
6569 cpuset_cpus_allowed(p, cpus_allowed);
6570 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6571 /*
6572 * We must have raced with a concurrent cpuset
6573 * update. Just reset the cpus_allowed to the
6574 * cpuset's cpus_allowed
6575 */
5a16f3d3 6576 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6577 goto again;
6578 }
6579 }
1da177e4 6580out_unlock:
5a16f3d3
RR
6581 free_cpumask_var(new_mask);
6582out_free_cpus_allowed:
6583 free_cpumask_var(cpus_allowed);
6584out_put_task:
1da177e4 6585 put_task_struct(p);
95402b38 6586 put_online_cpus();
1da177e4
LT
6587 return retval;
6588}
6589
6590static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6591 struct cpumask *new_mask)
1da177e4 6592{
96f874e2
RR
6593 if (len < cpumask_size())
6594 cpumask_clear(new_mask);
6595 else if (len > cpumask_size())
6596 len = cpumask_size();
6597
1da177e4
LT
6598 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6599}
6600
6601/**
6602 * sys_sched_setaffinity - set the cpu affinity of a process
6603 * @pid: pid of the process
6604 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6605 * @user_mask_ptr: user-space pointer to the new cpu mask
6606 */
5add95d4
HC
6607SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6608 unsigned long __user *, user_mask_ptr)
1da177e4 6609{
5a16f3d3 6610 cpumask_var_t new_mask;
1da177e4
LT
6611 int retval;
6612
5a16f3d3
RR
6613 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6614 return -ENOMEM;
1da177e4 6615
5a16f3d3
RR
6616 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6617 if (retval == 0)
6618 retval = sched_setaffinity(pid, new_mask);
6619 free_cpumask_var(new_mask);
6620 return retval;
1da177e4
LT
6621}
6622
96f874e2 6623long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6624{
36c8b586 6625 struct task_struct *p;
1da177e4 6626 int retval;
1da177e4 6627
95402b38 6628 get_online_cpus();
1da177e4
LT
6629 read_lock(&tasklist_lock);
6630
6631 retval = -ESRCH;
6632 p = find_process_by_pid(pid);
6633 if (!p)
6634 goto out_unlock;
6635
e7834f8f
DQ
6636 retval = security_task_getscheduler(p);
6637 if (retval)
6638 goto out_unlock;
6639
96f874e2 6640 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6641
6642out_unlock:
6643 read_unlock(&tasklist_lock);
95402b38 6644 put_online_cpus();
1da177e4 6645
9531b62f 6646 return retval;
1da177e4
LT
6647}
6648
6649/**
6650 * sys_sched_getaffinity - get the cpu affinity of a process
6651 * @pid: pid of the process
6652 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6653 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6654 */
5add95d4
HC
6655SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6656 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6657{
6658 int ret;
f17c8607 6659 cpumask_var_t mask;
1da177e4 6660
f17c8607 6661 if (len < cpumask_size())
1da177e4
LT
6662 return -EINVAL;
6663
f17c8607
RR
6664 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6665 return -ENOMEM;
1da177e4 6666
f17c8607
RR
6667 ret = sched_getaffinity(pid, mask);
6668 if (ret == 0) {
6669 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6670 ret = -EFAULT;
6671 else
6672 ret = cpumask_size();
6673 }
6674 free_cpumask_var(mask);
1da177e4 6675
f17c8607 6676 return ret;
1da177e4
LT
6677}
6678
6679/**
6680 * sys_sched_yield - yield the current processor to other threads.
6681 *
dd41f596
IM
6682 * This function yields the current CPU to other tasks. If there are no
6683 * other threads running on this CPU then this function will return.
1da177e4 6684 */
5add95d4 6685SYSCALL_DEFINE0(sched_yield)
1da177e4 6686{
70b97a7f 6687 struct rq *rq = this_rq_lock();
1da177e4 6688
2d72376b 6689 schedstat_inc(rq, yld_count);
4530d7ab 6690 current->sched_class->yield_task(rq);
1da177e4
LT
6691
6692 /*
6693 * Since we are going to call schedule() anyway, there's
6694 * no need to preempt or enable interrupts:
6695 */
6696 __release(rq->lock);
8a25d5de 6697 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6698 _raw_spin_unlock(&rq->lock);
6699 preempt_enable_no_resched();
6700
6701 schedule();
6702
6703 return 0;
6704}
6705
d86ee480
PZ
6706static inline int should_resched(void)
6707{
6708 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6709}
6710
e7b38404 6711static void __cond_resched(void)
1da177e4 6712{
e7aaaa69
FW
6713 add_preempt_count(PREEMPT_ACTIVE);
6714 schedule();
6715 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6716}
6717
02b67cc3 6718int __sched _cond_resched(void)
1da177e4 6719{
d86ee480 6720 if (should_resched()) {
1da177e4
LT
6721 __cond_resched();
6722 return 1;
6723 }
6724 return 0;
6725}
02b67cc3 6726EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6727
6728/*
613afbf8 6729 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6730 * call schedule, and on return reacquire the lock.
6731 *
41a2d6cf 6732 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6733 * operations here to prevent schedule() from being called twice (once via
6734 * spin_unlock(), once by hand).
6735 */
613afbf8 6736int __cond_resched_lock(spinlock_t *lock)
1da177e4 6737{
d86ee480 6738 int resched = should_resched();
6df3cecb
JK
6739 int ret = 0;
6740
95c354fe 6741 if (spin_needbreak(lock) || resched) {
1da177e4 6742 spin_unlock(lock);
d86ee480 6743 if (resched)
95c354fe
NP
6744 __cond_resched();
6745 else
6746 cpu_relax();
6df3cecb 6747 ret = 1;
1da177e4 6748 spin_lock(lock);
1da177e4 6749 }
6df3cecb 6750 return ret;
1da177e4 6751}
613afbf8 6752EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6753
613afbf8 6754int __sched __cond_resched_softirq(void)
1da177e4
LT
6755{
6756 BUG_ON(!in_softirq());
6757
d86ee480 6758 if (should_resched()) {
98d82567 6759 local_bh_enable();
1da177e4
LT
6760 __cond_resched();
6761 local_bh_disable();
6762 return 1;
6763 }
6764 return 0;
6765}
613afbf8 6766EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6767
1da177e4
LT
6768/**
6769 * yield - yield the current processor to other threads.
6770 *
72fd4a35 6771 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6772 * thread runnable and calls sys_sched_yield().
6773 */
6774void __sched yield(void)
6775{
6776 set_current_state(TASK_RUNNING);
6777 sys_sched_yield();
6778}
1da177e4
LT
6779EXPORT_SYMBOL(yield);
6780
6781/*
41a2d6cf 6782 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
6783 * that process accounting knows that this is a task in IO wait state.
6784 *
6785 * But don't do that if it is a deliberate, throttling IO wait (this task
6786 * has set its backing_dev_info: the queue against which it should throttle)
6787 */
6788void __sched io_schedule(void)
6789{
54d35f29 6790 struct rq *rq = raw_rq();
1da177e4 6791
0ff92245 6792 delayacct_blkio_start();
1da177e4 6793 atomic_inc(&rq->nr_iowait);
8f0dfc34 6794 current->in_iowait = 1;
1da177e4 6795 schedule();
8f0dfc34 6796 current->in_iowait = 0;
1da177e4 6797 atomic_dec(&rq->nr_iowait);
0ff92245 6798 delayacct_blkio_end();
1da177e4 6799}
1da177e4
LT
6800EXPORT_SYMBOL(io_schedule);
6801
6802long __sched io_schedule_timeout(long timeout)
6803{
54d35f29 6804 struct rq *rq = raw_rq();
1da177e4
LT
6805 long ret;
6806
0ff92245 6807 delayacct_blkio_start();
1da177e4 6808 atomic_inc(&rq->nr_iowait);
8f0dfc34 6809 current->in_iowait = 1;
1da177e4 6810 ret = schedule_timeout(timeout);
8f0dfc34 6811 current->in_iowait = 0;
1da177e4 6812 atomic_dec(&rq->nr_iowait);
0ff92245 6813 delayacct_blkio_end();
1da177e4
LT
6814 return ret;
6815}
6816
6817/**
6818 * sys_sched_get_priority_max - return maximum RT priority.
6819 * @policy: scheduling class.
6820 *
6821 * this syscall returns the maximum rt_priority that can be used
6822 * by a given scheduling class.
6823 */
5add95d4 6824SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6825{
6826 int ret = -EINVAL;
6827
6828 switch (policy) {
6829 case SCHED_FIFO:
6830 case SCHED_RR:
6831 ret = MAX_USER_RT_PRIO-1;
6832 break;
6833 case SCHED_NORMAL:
b0a9499c 6834 case SCHED_BATCH:
dd41f596 6835 case SCHED_IDLE:
1da177e4
LT
6836 ret = 0;
6837 break;
6838 }
6839 return ret;
6840}
6841
6842/**
6843 * sys_sched_get_priority_min - return minimum RT priority.
6844 * @policy: scheduling class.
6845 *
6846 * this syscall returns the minimum rt_priority that can be used
6847 * by a given scheduling class.
6848 */
5add95d4 6849SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6850{
6851 int ret = -EINVAL;
6852
6853 switch (policy) {
6854 case SCHED_FIFO:
6855 case SCHED_RR:
6856 ret = 1;
6857 break;
6858 case SCHED_NORMAL:
b0a9499c 6859 case SCHED_BATCH:
dd41f596 6860 case SCHED_IDLE:
1da177e4
LT
6861 ret = 0;
6862 }
6863 return ret;
6864}
6865
6866/**
6867 * sys_sched_rr_get_interval - return the default timeslice of a process.
6868 * @pid: pid of the process.
6869 * @interval: userspace pointer to the timeslice value.
6870 *
6871 * this syscall writes the default timeslice value of a given process
6872 * into the user-space timespec buffer. A value of '0' means infinity.
6873 */
17da2bd9 6874SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6875 struct timespec __user *, interval)
1da177e4 6876{
36c8b586 6877 struct task_struct *p;
a4ec24b4 6878 unsigned int time_slice;
3a5c359a 6879 int retval;
1da177e4 6880 struct timespec t;
1da177e4
LT
6881
6882 if (pid < 0)
3a5c359a 6883 return -EINVAL;
1da177e4
LT
6884
6885 retval = -ESRCH;
6886 read_lock(&tasklist_lock);
6887 p = find_process_by_pid(pid);
6888 if (!p)
6889 goto out_unlock;
6890
6891 retval = security_task_getscheduler(p);
6892 if (retval)
6893 goto out_unlock;
6894
77034937
IM
6895 /*
6896 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6897 * tasks that are on an otherwise idle runqueue:
6898 */
6899 time_slice = 0;
6900 if (p->policy == SCHED_RR) {
a4ec24b4 6901 time_slice = DEF_TIMESLICE;
1868f958 6902 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6903 struct sched_entity *se = &p->se;
6904 unsigned long flags;
6905 struct rq *rq;
6906
6907 rq = task_rq_lock(p, &flags);
77034937
IM
6908 if (rq->cfs.load.weight)
6909 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6910 task_rq_unlock(rq, &flags);
6911 }
1da177e4 6912 read_unlock(&tasklist_lock);
a4ec24b4 6913 jiffies_to_timespec(time_slice, &t);
1da177e4 6914 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6915 return retval;
3a5c359a 6916
1da177e4
LT
6917out_unlock:
6918 read_unlock(&tasklist_lock);
6919 return retval;
6920}
6921
7c731e0a 6922static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6923
82a1fcb9 6924void sched_show_task(struct task_struct *p)
1da177e4 6925{
1da177e4 6926 unsigned long free = 0;
36c8b586 6927 unsigned state;
1da177e4 6928
1da177e4 6929 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6930 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6931 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6932#if BITS_PER_LONG == 32
1da177e4 6933 if (state == TASK_RUNNING)
cc4ea795 6934 printk(KERN_CONT " running ");
1da177e4 6935 else
cc4ea795 6936 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6937#else
6938 if (state == TASK_RUNNING)
cc4ea795 6939 printk(KERN_CONT " running task ");
1da177e4 6940 else
cc4ea795 6941 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6942#endif
6943#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6944 free = stack_not_used(p);
1da177e4 6945#endif
aa47b7e0
DR
6946 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6947 task_pid_nr(p), task_pid_nr(p->real_parent),
6948 (unsigned long)task_thread_info(p)->flags);
1da177e4 6949
5fb5e6de 6950 show_stack(p, NULL);
1da177e4
LT
6951}
6952
e59e2ae2 6953void show_state_filter(unsigned long state_filter)
1da177e4 6954{
36c8b586 6955 struct task_struct *g, *p;
1da177e4 6956
4bd77321
IM
6957#if BITS_PER_LONG == 32
6958 printk(KERN_INFO
6959 " task PC stack pid father\n");
1da177e4 6960#else
4bd77321
IM
6961 printk(KERN_INFO
6962 " task PC stack pid father\n");
1da177e4
LT
6963#endif
6964 read_lock(&tasklist_lock);
6965 do_each_thread(g, p) {
6966 /*
6967 * reset the NMI-timeout, listing all files on a slow
6968 * console might take alot of time:
6969 */
6970 touch_nmi_watchdog();
39bc89fd 6971 if (!state_filter || (p->state & state_filter))
82a1fcb9 6972 sched_show_task(p);
1da177e4
LT
6973 } while_each_thread(g, p);
6974
04c9167f
JF
6975 touch_all_softlockup_watchdogs();
6976
dd41f596
IM
6977#ifdef CONFIG_SCHED_DEBUG
6978 sysrq_sched_debug_show();
6979#endif
1da177e4 6980 read_unlock(&tasklist_lock);
e59e2ae2
IM
6981 /*
6982 * Only show locks if all tasks are dumped:
6983 */
6984 if (state_filter == -1)
6985 debug_show_all_locks();
1da177e4
LT
6986}
6987
1df21055
IM
6988void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6989{
dd41f596 6990 idle->sched_class = &idle_sched_class;
1df21055
IM
6991}
6992
f340c0d1
IM
6993/**
6994 * init_idle - set up an idle thread for a given CPU
6995 * @idle: task in question
6996 * @cpu: cpu the idle task belongs to
6997 *
6998 * NOTE: this function does not set the idle thread's NEED_RESCHED
6999 * flag, to make booting more robust.
7000 */
5c1e1767 7001void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 7002{
70b97a7f 7003 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
7004 unsigned long flags;
7005
5cbd54ef
IM
7006 spin_lock_irqsave(&rq->lock, flags);
7007
dd41f596
IM
7008 __sched_fork(idle);
7009 idle->se.exec_start = sched_clock();
7010
b29739f9 7011 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 7012 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 7013 __set_task_cpu(idle, cpu);
1da177e4 7014
1da177e4 7015 rq->curr = rq->idle = idle;
4866cde0
NP
7016#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7017 idle->oncpu = 1;
7018#endif
1da177e4
LT
7019 spin_unlock_irqrestore(&rq->lock, flags);
7020
7021 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
7022#if defined(CONFIG_PREEMPT)
7023 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7024#else
a1261f54 7025 task_thread_info(idle)->preempt_count = 0;
8e3e076c 7026#endif
dd41f596
IM
7027 /*
7028 * The idle tasks have their own, simple scheduling class:
7029 */
7030 idle->sched_class = &idle_sched_class;
fb52607a 7031 ftrace_graph_init_task(idle);
1da177e4
LT
7032}
7033
7034/*
7035 * In a system that switches off the HZ timer nohz_cpu_mask
7036 * indicates which cpus entered this state. This is used
7037 * in the rcu update to wait only for active cpus. For system
7038 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 7039 * always be CPU_BITS_NONE.
1da177e4 7040 */
6a7b3dc3 7041cpumask_var_t nohz_cpu_mask;
1da177e4 7042
19978ca6
IM
7043/*
7044 * Increase the granularity value when there are more CPUs,
7045 * because with more CPUs the 'effective latency' as visible
7046 * to users decreases. But the relationship is not linear,
7047 * so pick a second-best guess by going with the log2 of the
7048 * number of CPUs.
7049 *
7050 * This idea comes from the SD scheduler of Con Kolivas:
7051 */
7052static inline void sched_init_granularity(void)
7053{
7054 unsigned int factor = 1 + ilog2(num_online_cpus());
7055 const unsigned long limit = 200000000;
7056
7057 sysctl_sched_min_granularity *= factor;
7058 if (sysctl_sched_min_granularity > limit)
7059 sysctl_sched_min_granularity = limit;
7060
7061 sysctl_sched_latency *= factor;
7062 if (sysctl_sched_latency > limit)
7063 sysctl_sched_latency = limit;
7064
7065 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
7066
7067 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
7068}
7069
1da177e4
LT
7070#ifdef CONFIG_SMP
7071/*
7072 * This is how migration works:
7073 *
70b97a7f 7074 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7075 * runqueue and wake up that CPU's migration thread.
7076 * 2) we down() the locked semaphore => thread blocks.
7077 * 3) migration thread wakes up (implicitly it forces the migrated
7078 * thread off the CPU)
7079 * 4) it gets the migration request and checks whether the migrated
7080 * task is still in the wrong runqueue.
7081 * 5) if it's in the wrong runqueue then the migration thread removes
7082 * it and puts it into the right queue.
7083 * 6) migration thread up()s the semaphore.
7084 * 7) we wake up and the migration is done.
7085 */
7086
7087/*
7088 * Change a given task's CPU affinity. Migrate the thread to a
7089 * proper CPU and schedule it away if the CPU it's executing on
7090 * is removed from the allowed bitmask.
7091 *
7092 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7093 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7094 * call is not atomic; no spinlocks may be held.
7095 */
96f874e2 7096int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7097{
70b97a7f 7098 struct migration_req req;
1da177e4 7099 unsigned long flags;
70b97a7f 7100 struct rq *rq;
48f24c4d 7101 int ret = 0;
1da177e4
LT
7102
7103 rq = task_rq_lock(p, &flags);
96f874e2 7104 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
7105 ret = -EINVAL;
7106 goto out;
7107 }
7108
9985b0ba 7109 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7110 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7111 ret = -EINVAL;
7112 goto out;
7113 }
7114
73fe6aae 7115 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7116 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7117 else {
96f874e2
RR
7118 cpumask_copy(&p->cpus_allowed, new_mask);
7119 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7120 }
7121
1da177e4 7122 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7123 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7124 goto out;
7125
1e5ce4f4 7126 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4 7127 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7128 struct task_struct *mt = rq->migration_thread;
7129
7130 get_task_struct(mt);
1da177e4
LT
7131 task_rq_unlock(rq, &flags);
7132 wake_up_process(rq->migration_thread);
693525e3 7133 put_task_struct(mt);
1da177e4
LT
7134 wait_for_completion(&req.done);
7135 tlb_migrate_finish(p->mm);
7136 return 0;
7137 }
7138out:
7139 task_rq_unlock(rq, &flags);
48f24c4d 7140
1da177e4
LT
7141 return ret;
7142}
cd8ba7cd 7143EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7144
7145/*
41a2d6cf 7146 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7147 * this because either it can't run here any more (set_cpus_allowed()
7148 * away from this CPU, or CPU going down), or because we're
7149 * attempting to rebalance this task on exec (sched_exec).
7150 *
7151 * So we race with normal scheduler movements, but that's OK, as long
7152 * as the task is no longer on this CPU.
efc30814
KK
7153 *
7154 * Returns non-zero if task was successfully migrated.
1da177e4 7155 */
efc30814 7156static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7157{
70b97a7f 7158 struct rq *rq_dest, *rq_src;
dd41f596 7159 int ret = 0, on_rq;
1da177e4 7160
e761b772 7161 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7162 return ret;
1da177e4
LT
7163
7164 rq_src = cpu_rq(src_cpu);
7165 rq_dest = cpu_rq(dest_cpu);
7166
7167 double_rq_lock(rq_src, rq_dest);
7168 /* Already moved. */
7169 if (task_cpu(p) != src_cpu)
b1e38734 7170 goto done;
1da177e4 7171 /* Affinity changed (again). */
96f874e2 7172 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7173 goto fail;
1da177e4 7174
dd41f596 7175 on_rq = p->se.on_rq;
6e82a3be 7176 if (on_rq)
2e1cb74a 7177 deactivate_task(rq_src, p, 0);
6e82a3be 7178
1da177e4 7179 set_task_cpu(p, dest_cpu);
dd41f596
IM
7180 if (on_rq) {
7181 activate_task(rq_dest, p, 0);
15afe09b 7182 check_preempt_curr(rq_dest, p, 0);
1da177e4 7183 }
b1e38734 7184done:
efc30814 7185 ret = 1;
b1e38734 7186fail:
1da177e4 7187 double_rq_unlock(rq_src, rq_dest);
efc30814 7188 return ret;
1da177e4
LT
7189}
7190
7191/*
7192 * migration_thread - this is a highprio system thread that performs
7193 * thread migration by bumping thread off CPU then 'pushing' onto
7194 * another runqueue.
7195 */
95cdf3b7 7196static int migration_thread(void *data)
1da177e4 7197{
1da177e4 7198 int cpu = (long)data;
70b97a7f 7199 struct rq *rq;
1da177e4
LT
7200
7201 rq = cpu_rq(cpu);
7202 BUG_ON(rq->migration_thread != current);
7203
7204 set_current_state(TASK_INTERRUPTIBLE);
7205 while (!kthread_should_stop()) {
70b97a7f 7206 struct migration_req *req;
1da177e4 7207 struct list_head *head;
1da177e4 7208
1da177e4
LT
7209 spin_lock_irq(&rq->lock);
7210
7211 if (cpu_is_offline(cpu)) {
7212 spin_unlock_irq(&rq->lock);
371cbb38 7213 break;
1da177e4
LT
7214 }
7215
7216 if (rq->active_balance) {
7217 active_load_balance(rq, cpu);
7218 rq->active_balance = 0;
7219 }
7220
7221 head = &rq->migration_queue;
7222
7223 if (list_empty(head)) {
7224 spin_unlock_irq(&rq->lock);
7225 schedule();
7226 set_current_state(TASK_INTERRUPTIBLE);
7227 continue;
7228 }
70b97a7f 7229 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7230 list_del_init(head->next);
7231
674311d5
NP
7232 spin_unlock(&rq->lock);
7233 __migrate_task(req->task, cpu, req->dest_cpu);
7234 local_irq_enable();
1da177e4
LT
7235
7236 complete(&req->done);
7237 }
7238 __set_current_state(TASK_RUNNING);
1da177e4 7239
1da177e4
LT
7240 return 0;
7241}
7242
7243#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7244
7245static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7246{
7247 int ret;
7248
7249 local_irq_disable();
7250 ret = __migrate_task(p, src_cpu, dest_cpu);
7251 local_irq_enable();
7252 return ret;
7253}
7254
054b9108 7255/*
3a4fa0a2 7256 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7257 */
48f24c4d 7258static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7259{
70b97a7f 7260 int dest_cpu;
6ca09dfc 7261 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7262
7263again:
7264 /* Look for allowed, online CPU in same node. */
7265 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7266 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7267 goto move;
7268
7269 /* Any allowed, online CPU? */
7270 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7271 if (dest_cpu < nr_cpu_ids)
7272 goto move;
7273
7274 /* No more Mr. Nice Guy. */
7275 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
7276 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7277 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 7278
e76bd8d9
RR
7279 /*
7280 * Don't tell them about moving exiting tasks or
7281 * kernel threads (both mm NULL), since they never
7282 * leave kernel.
7283 */
7284 if (p->mm && printk_ratelimit()) {
7285 printk(KERN_INFO "process %d (%s) no "
7286 "longer affine to cpu%d\n",
7287 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7288 }
e76bd8d9
RR
7289 }
7290
7291move:
7292 /* It can have affinity changed while we were choosing. */
7293 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7294 goto again;
1da177e4
LT
7295}
7296
7297/*
7298 * While a dead CPU has no uninterruptible tasks queued at this point,
7299 * it might still have a nonzero ->nr_uninterruptible counter, because
7300 * for performance reasons the counter is not stricly tracking tasks to
7301 * their home CPUs. So we just add the counter to another CPU's counter,
7302 * to keep the global sum constant after CPU-down:
7303 */
70b97a7f 7304static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7305{
1e5ce4f4 7306 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
7307 unsigned long flags;
7308
7309 local_irq_save(flags);
7310 double_rq_lock(rq_src, rq_dest);
7311 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7312 rq_src->nr_uninterruptible = 0;
7313 double_rq_unlock(rq_src, rq_dest);
7314 local_irq_restore(flags);
7315}
7316
7317/* Run through task list and migrate tasks from the dead cpu. */
7318static void migrate_live_tasks(int src_cpu)
7319{
48f24c4d 7320 struct task_struct *p, *t;
1da177e4 7321
f7b4cddc 7322 read_lock(&tasklist_lock);
1da177e4 7323
48f24c4d
IM
7324 do_each_thread(t, p) {
7325 if (p == current)
1da177e4
LT
7326 continue;
7327
48f24c4d
IM
7328 if (task_cpu(p) == src_cpu)
7329 move_task_off_dead_cpu(src_cpu, p);
7330 } while_each_thread(t, p);
1da177e4 7331
f7b4cddc 7332 read_unlock(&tasklist_lock);
1da177e4
LT
7333}
7334
dd41f596
IM
7335/*
7336 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7337 * It does so by boosting its priority to highest possible.
7338 * Used by CPU offline code.
1da177e4
LT
7339 */
7340void sched_idle_next(void)
7341{
48f24c4d 7342 int this_cpu = smp_processor_id();
70b97a7f 7343 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7344 struct task_struct *p = rq->idle;
7345 unsigned long flags;
7346
7347 /* cpu has to be offline */
48f24c4d 7348 BUG_ON(cpu_online(this_cpu));
1da177e4 7349
48f24c4d
IM
7350 /*
7351 * Strictly not necessary since rest of the CPUs are stopped by now
7352 * and interrupts disabled on the current cpu.
1da177e4
LT
7353 */
7354 spin_lock_irqsave(&rq->lock, flags);
7355
dd41f596 7356 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7357
94bc9a7b
DA
7358 update_rq_clock(rq);
7359 activate_task(rq, p, 0);
1da177e4
LT
7360
7361 spin_unlock_irqrestore(&rq->lock, flags);
7362}
7363
48f24c4d
IM
7364/*
7365 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7366 * offline.
7367 */
7368void idle_task_exit(void)
7369{
7370 struct mm_struct *mm = current->active_mm;
7371
7372 BUG_ON(cpu_online(smp_processor_id()));
7373
7374 if (mm != &init_mm)
7375 switch_mm(mm, &init_mm, current);
7376 mmdrop(mm);
7377}
7378
054b9108 7379/* called under rq->lock with disabled interrupts */
36c8b586 7380static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7381{
70b97a7f 7382 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7383
7384 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7385 BUG_ON(!p->exit_state);
1da177e4
LT
7386
7387 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7388 BUG_ON(p->state == TASK_DEAD);
1da177e4 7389
48f24c4d 7390 get_task_struct(p);
1da177e4
LT
7391
7392 /*
7393 * Drop lock around migration; if someone else moves it,
41a2d6cf 7394 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7395 * fine.
7396 */
f7b4cddc 7397 spin_unlock_irq(&rq->lock);
48f24c4d 7398 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7399 spin_lock_irq(&rq->lock);
1da177e4 7400
48f24c4d 7401 put_task_struct(p);
1da177e4
LT
7402}
7403
7404/* release_task() removes task from tasklist, so we won't find dead tasks. */
7405static void migrate_dead_tasks(unsigned int dead_cpu)
7406{
70b97a7f 7407 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7408 struct task_struct *next;
48f24c4d 7409
dd41f596
IM
7410 for ( ; ; ) {
7411 if (!rq->nr_running)
7412 break;
a8e504d2 7413 update_rq_clock(rq);
b67802ea 7414 next = pick_next_task(rq);
dd41f596
IM
7415 if (!next)
7416 break;
79c53799 7417 next->sched_class->put_prev_task(rq, next);
dd41f596 7418 migrate_dead(dead_cpu, next);
e692ab53 7419
1da177e4
LT
7420 }
7421}
dce48a84
TG
7422
7423/*
7424 * remove the tasks which were accounted by rq from calc_load_tasks.
7425 */
7426static void calc_global_load_remove(struct rq *rq)
7427{
7428 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7429 rq->calc_load_active = 0;
dce48a84 7430}
1da177e4
LT
7431#endif /* CONFIG_HOTPLUG_CPU */
7432
e692ab53
NP
7433#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7434
7435static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7436 {
7437 .procname = "sched_domain",
c57baf1e 7438 .mode = 0555,
e0361851 7439 },
38605cae 7440 {0, },
e692ab53
NP
7441};
7442
7443static struct ctl_table sd_ctl_root[] = {
e0361851 7444 {
c57baf1e 7445 .ctl_name = CTL_KERN,
e0361851 7446 .procname = "kernel",
c57baf1e 7447 .mode = 0555,
e0361851
AD
7448 .child = sd_ctl_dir,
7449 },
38605cae 7450 {0, },
e692ab53
NP
7451};
7452
7453static struct ctl_table *sd_alloc_ctl_entry(int n)
7454{
7455 struct ctl_table *entry =
5cf9f062 7456 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7457
e692ab53
NP
7458 return entry;
7459}
7460
6382bc90
MM
7461static void sd_free_ctl_entry(struct ctl_table **tablep)
7462{
cd790076 7463 struct ctl_table *entry;
6382bc90 7464
cd790076
MM
7465 /*
7466 * In the intermediate directories, both the child directory and
7467 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7468 * will always be set. In the lowest directory the names are
cd790076
MM
7469 * static strings and all have proc handlers.
7470 */
7471 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7472 if (entry->child)
7473 sd_free_ctl_entry(&entry->child);
cd790076
MM
7474 if (entry->proc_handler == NULL)
7475 kfree(entry->procname);
7476 }
6382bc90
MM
7477
7478 kfree(*tablep);
7479 *tablep = NULL;
7480}
7481
e692ab53 7482static void
e0361851 7483set_table_entry(struct ctl_table *entry,
e692ab53
NP
7484 const char *procname, void *data, int maxlen,
7485 mode_t mode, proc_handler *proc_handler)
7486{
e692ab53
NP
7487 entry->procname = procname;
7488 entry->data = data;
7489 entry->maxlen = maxlen;
7490 entry->mode = mode;
7491 entry->proc_handler = proc_handler;
7492}
7493
7494static struct ctl_table *
7495sd_alloc_ctl_domain_table(struct sched_domain *sd)
7496{
a5d8c348 7497 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7498
ad1cdc1d
MM
7499 if (table == NULL)
7500 return NULL;
7501
e0361851 7502 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7503 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7504 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7505 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7506 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7507 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7508 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7509 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7510 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7511 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7512 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7513 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7514 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7515 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7516 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7517 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7518 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7519 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7520 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7521 &sd->cache_nice_tries,
7522 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7523 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7524 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7525 set_table_entry(&table[11], "name", sd->name,
7526 CORENAME_MAX_SIZE, 0444, proc_dostring);
7527 /* &table[12] is terminator */
e692ab53
NP
7528
7529 return table;
7530}
7531
9a4e7159 7532static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7533{
7534 struct ctl_table *entry, *table;
7535 struct sched_domain *sd;
7536 int domain_num = 0, i;
7537 char buf[32];
7538
7539 for_each_domain(cpu, sd)
7540 domain_num++;
7541 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7542 if (table == NULL)
7543 return NULL;
e692ab53
NP
7544
7545 i = 0;
7546 for_each_domain(cpu, sd) {
7547 snprintf(buf, 32, "domain%d", i);
e692ab53 7548 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7549 entry->mode = 0555;
e692ab53
NP
7550 entry->child = sd_alloc_ctl_domain_table(sd);
7551 entry++;
7552 i++;
7553 }
7554 return table;
7555}
7556
7557static struct ctl_table_header *sd_sysctl_header;
6382bc90 7558static void register_sched_domain_sysctl(void)
e692ab53
NP
7559{
7560 int i, cpu_num = num_online_cpus();
7561 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7562 char buf[32];
7563
7378547f
MM
7564 WARN_ON(sd_ctl_dir[0].child);
7565 sd_ctl_dir[0].child = entry;
7566
ad1cdc1d
MM
7567 if (entry == NULL)
7568 return;
7569
97b6ea7b 7570 for_each_online_cpu(i) {
e692ab53 7571 snprintf(buf, 32, "cpu%d", i);
e692ab53 7572 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7573 entry->mode = 0555;
e692ab53 7574 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7575 entry++;
e692ab53 7576 }
7378547f
MM
7577
7578 WARN_ON(sd_sysctl_header);
e692ab53
NP
7579 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7580}
6382bc90 7581
7378547f 7582/* may be called multiple times per register */
6382bc90
MM
7583static void unregister_sched_domain_sysctl(void)
7584{
7378547f
MM
7585 if (sd_sysctl_header)
7586 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7587 sd_sysctl_header = NULL;
7378547f
MM
7588 if (sd_ctl_dir[0].child)
7589 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7590}
e692ab53 7591#else
6382bc90
MM
7592static void register_sched_domain_sysctl(void)
7593{
7594}
7595static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7596{
7597}
7598#endif
7599
1f11eb6a
GH
7600static void set_rq_online(struct rq *rq)
7601{
7602 if (!rq->online) {
7603 const struct sched_class *class;
7604
c6c4927b 7605 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7606 rq->online = 1;
7607
7608 for_each_class(class) {
7609 if (class->rq_online)
7610 class->rq_online(rq);
7611 }
7612 }
7613}
7614
7615static void set_rq_offline(struct rq *rq)
7616{
7617 if (rq->online) {
7618 const struct sched_class *class;
7619
7620 for_each_class(class) {
7621 if (class->rq_offline)
7622 class->rq_offline(rq);
7623 }
7624
c6c4927b 7625 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7626 rq->online = 0;
7627 }
7628}
7629
1da177e4
LT
7630/*
7631 * migration_call - callback that gets triggered when a CPU is added.
7632 * Here we can start up the necessary migration thread for the new CPU.
7633 */
48f24c4d
IM
7634static int __cpuinit
7635migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7636{
1da177e4 7637 struct task_struct *p;
48f24c4d 7638 int cpu = (long)hcpu;
1da177e4 7639 unsigned long flags;
70b97a7f 7640 struct rq *rq;
1da177e4
LT
7641
7642 switch (action) {
5be9361c 7643
1da177e4 7644 case CPU_UP_PREPARE:
8bb78442 7645 case CPU_UP_PREPARE_FROZEN:
dd41f596 7646 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7647 if (IS_ERR(p))
7648 return NOTIFY_BAD;
1da177e4
LT
7649 kthread_bind(p, cpu);
7650 /* Must be high prio: stop_machine expects to yield to it. */
7651 rq = task_rq_lock(p, &flags);
dd41f596 7652 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7653 task_rq_unlock(rq, &flags);
371cbb38 7654 get_task_struct(p);
1da177e4 7655 cpu_rq(cpu)->migration_thread = p;
a468d389 7656 rq->calc_load_update = calc_load_update;
1da177e4 7657 break;
48f24c4d 7658
1da177e4 7659 case CPU_ONLINE:
8bb78442 7660 case CPU_ONLINE_FROZEN:
3a4fa0a2 7661 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7662 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7663
7664 /* Update our root-domain */
7665 rq = cpu_rq(cpu);
7666 spin_lock_irqsave(&rq->lock, flags);
7667 if (rq->rd) {
c6c4927b 7668 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7669
7670 set_rq_online(rq);
1f94ef59
GH
7671 }
7672 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7673 break;
48f24c4d 7674
1da177e4
LT
7675#ifdef CONFIG_HOTPLUG_CPU
7676 case CPU_UP_CANCELED:
8bb78442 7677 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7678 if (!cpu_rq(cpu)->migration_thread)
7679 break;
41a2d6cf 7680 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7681 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7682 cpumask_any(cpu_online_mask));
1da177e4 7683 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7684 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7685 cpu_rq(cpu)->migration_thread = NULL;
7686 break;
48f24c4d 7687
1da177e4 7688 case CPU_DEAD:
8bb78442 7689 case CPU_DEAD_FROZEN:
470fd646 7690 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7691 migrate_live_tasks(cpu);
7692 rq = cpu_rq(cpu);
7693 kthread_stop(rq->migration_thread);
371cbb38 7694 put_task_struct(rq->migration_thread);
1da177e4
LT
7695 rq->migration_thread = NULL;
7696 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7697 spin_lock_irq(&rq->lock);
a8e504d2 7698 update_rq_clock(rq);
2e1cb74a 7699 deactivate_task(rq, rq->idle, 0);
1da177e4 7700 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7701 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7702 rq->idle->sched_class = &idle_sched_class;
1da177e4 7703 migrate_dead_tasks(cpu);
d2da272a 7704 spin_unlock_irq(&rq->lock);
470fd646 7705 cpuset_unlock();
1da177e4
LT
7706 migrate_nr_uninterruptible(rq);
7707 BUG_ON(rq->nr_running != 0);
dce48a84 7708 calc_global_load_remove(rq);
41a2d6cf
IM
7709 /*
7710 * No need to migrate the tasks: it was best-effort if
7711 * they didn't take sched_hotcpu_mutex. Just wake up
7712 * the requestors.
7713 */
1da177e4
LT
7714 spin_lock_irq(&rq->lock);
7715 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7716 struct migration_req *req;
7717
1da177e4 7718 req = list_entry(rq->migration_queue.next,
70b97a7f 7719 struct migration_req, list);
1da177e4 7720 list_del_init(&req->list);
9a2bd244 7721 spin_unlock_irq(&rq->lock);
1da177e4 7722 complete(&req->done);
9a2bd244 7723 spin_lock_irq(&rq->lock);
1da177e4
LT
7724 }
7725 spin_unlock_irq(&rq->lock);
7726 break;
57d885fe 7727
08f503b0
GH
7728 case CPU_DYING:
7729 case CPU_DYING_FROZEN:
57d885fe
GH
7730 /* Update our root-domain */
7731 rq = cpu_rq(cpu);
7732 spin_lock_irqsave(&rq->lock, flags);
7733 if (rq->rd) {
c6c4927b 7734 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7735 set_rq_offline(rq);
57d885fe
GH
7736 }
7737 spin_unlock_irqrestore(&rq->lock, flags);
7738 break;
1da177e4
LT
7739#endif
7740 }
7741 return NOTIFY_OK;
7742}
7743
f38b0820
PM
7744/*
7745 * Register at high priority so that task migration (migrate_all_tasks)
7746 * happens before everything else. This has to be lower priority than
7747 * the notifier in the perf_counter subsystem, though.
1da177e4 7748 */
26c2143b 7749static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7750 .notifier_call = migration_call,
7751 .priority = 10
7752};
7753
7babe8db 7754static int __init migration_init(void)
1da177e4
LT
7755{
7756 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7757 int err;
48f24c4d
IM
7758
7759 /* Start one for the boot CPU: */
07dccf33
AM
7760 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7761 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7762 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7763 register_cpu_notifier(&migration_notifier);
7babe8db 7764
a004cd42 7765 return 0;
1da177e4 7766}
7babe8db 7767early_initcall(migration_init);
1da177e4
LT
7768#endif
7769
7770#ifdef CONFIG_SMP
476f3534 7771
3e9830dc 7772#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7773
7c16ec58 7774static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7775 struct cpumask *groupmask)
1da177e4 7776{
4dcf6aff 7777 struct sched_group *group = sd->groups;
434d53b0 7778 char str[256];
1da177e4 7779
968ea6d8 7780 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7781 cpumask_clear(groupmask);
4dcf6aff
IM
7782
7783 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7784
7785 if (!(sd->flags & SD_LOAD_BALANCE)) {
7786 printk("does not load-balance\n");
7787 if (sd->parent)
7788 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7789 " has parent");
7790 return -1;
41c7ce9a
NP
7791 }
7792
eefd796a 7793 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7794
758b2cdc 7795 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7796 printk(KERN_ERR "ERROR: domain->span does not contain "
7797 "CPU%d\n", cpu);
7798 }
758b2cdc 7799 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7800 printk(KERN_ERR "ERROR: domain->groups does not contain"
7801 " CPU%d\n", cpu);
7802 }
1da177e4 7803
4dcf6aff 7804 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7805 do {
4dcf6aff
IM
7806 if (!group) {
7807 printk("\n");
7808 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7809 break;
7810 }
7811
4dcf6aff
IM
7812 if (!group->__cpu_power) {
7813 printk(KERN_CONT "\n");
7814 printk(KERN_ERR "ERROR: domain->cpu_power not "
7815 "set\n");
7816 break;
7817 }
1da177e4 7818
758b2cdc 7819 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7820 printk(KERN_CONT "\n");
7821 printk(KERN_ERR "ERROR: empty group\n");
7822 break;
7823 }
1da177e4 7824
758b2cdc 7825 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7826 printk(KERN_CONT "\n");
7827 printk(KERN_ERR "ERROR: repeated CPUs\n");
7828 break;
7829 }
1da177e4 7830
758b2cdc 7831 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7832
968ea6d8 7833 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7834
7835 printk(KERN_CONT " %s", str);
7836 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7837 printk(KERN_CONT " (__cpu_power = %d)",
7838 group->__cpu_power);
7839 }
1da177e4 7840
4dcf6aff
IM
7841 group = group->next;
7842 } while (group != sd->groups);
7843 printk(KERN_CONT "\n");
1da177e4 7844
758b2cdc 7845 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7846 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7847
758b2cdc
RR
7848 if (sd->parent &&
7849 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7850 printk(KERN_ERR "ERROR: parent span is not a superset "
7851 "of domain->span\n");
7852 return 0;
7853}
1da177e4 7854
4dcf6aff
IM
7855static void sched_domain_debug(struct sched_domain *sd, int cpu)
7856{
d5dd3db1 7857 cpumask_var_t groupmask;
4dcf6aff 7858 int level = 0;
1da177e4 7859
4dcf6aff
IM
7860 if (!sd) {
7861 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7862 return;
7863 }
1da177e4 7864
4dcf6aff
IM
7865 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7866
d5dd3db1 7867 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7868 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7869 return;
7870 }
7871
4dcf6aff 7872 for (;;) {
7c16ec58 7873 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7874 break;
1da177e4
LT
7875 level++;
7876 sd = sd->parent;
33859f7f 7877 if (!sd)
4dcf6aff
IM
7878 break;
7879 }
d5dd3db1 7880 free_cpumask_var(groupmask);
1da177e4 7881}
6d6bc0ad 7882#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7883# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7884#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7885
1a20ff27 7886static int sd_degenerate(struct sched_domain *sd)
245af2c7 7887{
758b2cdc 7888 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7889 return 1;
7890
7891 /* Following flags need at least 2 groups */
7892 if (sd->flags & (SD_LOAD_BALANCE |
7893 SD_BALANCE_NEWIDLE |
7894 SD_BALANCE_FORK |
89c4710e
SS
7895 SD_BALANCE_EXEC |
7896 SD_SHARE_CPUPOWER |
7897 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7898 if (sd->groups != sd->groups->next)
7899 return 0;
7900 }
7901
7902 /* Following flags don't use groups */
7903 if (sd->flags & (SD_WAKE_IDLE |
7904 SD_WAKE_AFFINE |
7905 SD_WAKE_BALANCE))
7906 return 0;
7907
7908 return 1;
7909}
7910
48f24c4d
IM
7911static int
7912sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7913{
7914 unsigned long cflags = sd->flags, pflags = parent->flags;
7915
7916 if (sd_degenerate(parent))
7917 return 1;
7918
758b2cdc 7919 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7920 return 0;
7921
7922 /* Does parent contain flags not in child? */
7923 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7924 if (cflags & SD_WAKE_AFFINE)
7925 pflags &= ~SD_WAKE_BALANCE;
7926 /* Flags needing groups don't count if only 1 group in parent */
7927 if (parent->groups == parent->groups->next) {
7928 pflags &= ~(SD_LOAD_BALANCE |
7929 SD_BALANCE_NEWIDLE |
7930 SD_BALANCE_FORK |
89c4710e
SS
7931 SD_BALANCE_EXEC |
7932 SD_SHARE_CPUPOWER |
7933 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7934 if (nr_node_ids == 1)
7935 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7936 }
7937 if (~cflags & pflags)
7938 return 0;
7939
7940 return 1;
7941}
7942
c6c4927b
RR
7943static void free_rootdomain(struct root_domain *rd)
7944{
68e74568
RR
7945 cpupri_cleanup(&rd->cpupri);
7946
c6c4927b
RR
7947 free_cpumask_var(rd->rto_mask);
7948 free_cpumask_var(rd->online);
7949 free_cpumask_var(rd->span);
7950 kfree(rd);
7951}
7952
57d885fe
GH
7953static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7954{
a0490fa3 7955 struct root_domain *old_rd = NULL;
57d885fe 7956 unsigned long flags;
57d885fe
GH
7957
7958 spin_lock_irqsave(&rq->lock, flags);
7959
7960 if (rq->rd) {
a0490fa3 7961 old_rd = rq->rd;
57d885fe 7962
c6c4927b 7963 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7964 set_rq_offline(rq);
57d885fe 7965
c6c4927b 7966 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7967
a0490fa3
IM
7968 /*
7969 * If we dont want to free the old_rt yet then
7970 * set old_rd to NULL to skip the freeing later
7971 * in this function:
7972 */
7973 if (!atomic_dec_and_test(&old_rd->refcount))
7974 old_rd = NULL;
57d885fe
GH
7975 }
7976
7977 atomic_inc(&rd->refcount);
7978 rq->rd = rd;
7979
c6c4927b 7980 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 7981 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 7982 set_rq_online(rq);
57d885fe
GH
7983
7984 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7985
7986 if (old_rd)
7987 free_rootdomain(old_rd);
57d885fe
GH
7988}
7989
fd5e1b5d 7990static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 7991{
36b7b6d4
PE
7992 gfp_t gfp = GFP_KERNEL;
7993
57d885fe
GH
7994 memset(rd, 0, sizeof(*rd));
7995
36b7b6d4
PE
7996 if (bootmem)
7997 gfp = GFP_NOWAIT;
c6c4927b 7998
36b7b6d4 7999 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 8000 goto out;
36b7b6d4 8001 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 8002 goto free_span;
36b7b6d4 8003 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 8004 goto free_online;
6e0534f2 8005
0fb53029 8006 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 8007 goto free_rto_mask;
c6c4927b 8008 return 0;
6e0534f2 8009
68e74568
RR
8010free_rto_mask:
8011 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
8012free_online:
8013 free_cpumask_var(rd->online);
8014free_span:
8015 free_cpumask_var(rd->span);
0c910d28 8016out:
c6c4927b 8017 return -ENOMEM;
57d885fe
GH
8018}
8019
8020static void init_defrootdomain(void)
8021{
c6c4927b
RR
8022 init_rootdomain(&def_root_domain, true);
8023
57d885fe
GH
8024 atomic_set(&def_root_domain.refcount, 1);
8025}
8026
dc938520 8027static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
8028{
8029 struct root_domain *rd;
8030
8031 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8032 if (!rd)
8033 return NULL;
8034
c6c4927b
RR
8035 if (init_rootdomain(rd, false) != 0) {
8036 kfree(rd);
8037 return NULL;
8038 }
57d885fe
GH
8039
8040 return rd;
8041}
8042
1da177e4 8043/*
0eab9146 8044 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
8045 * hold the hotplug lock.
8046 */
0eab9146
IM
8047static void
8048cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 8049{
70b97a7f 8050 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
8051 struct sched_domain *tmp;
8052
8053 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 8054 for (tmp = sd; tmp; ) {
245af2c7
SS
8055 struct sched_domain *parent = tmp->parent;
8056 if (!parent)
8057 break;
f29c9b1c 8058
1a848870 8059 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 8060 tmp->parent = parent->parent;
1a848870
SS
8061 if (parent->parent)
8062 parent->parent->child = tmp;
f29c9b1c
LZ
8063 } else
8064 tmp = tmp->parent;
245af2c7
SS
8065 }
8066
1a848870 8067 if (sd && sd_degenerate(sd)) {
245af2c7 8068 sd = sd->parent;
1a848870
SS
8069 if (sd)
8070 sd->child = NULL;
8071 }
1da177e4
LT
8072
8073 sched_domain_debug(sd, cpu);
8074
57d885fe 8075 rq_attach_root(rq, rd);
674311d5 8076 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8077}
8078
8079/* cpus with isolated domains */
dcc30a35 8080static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8081
8082/* Setup the mask of cpus configured for isolated domains */
8083static int __init isolated_cpu_setup(char *str)
8084{
968ea6d8 8085 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8086 return 1;
8087}
8088
8927f494 8089__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8090
8091/*
6711cab4
SS
8092 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8093 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8094 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8095 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8096 *
8097 * init_sched_build_groups will build a circular linked list of the groups
8098 * covered by the given span, and will set each group's ->cpumask correctly,
8099 * and ->cpu_power to 0.
8100 */
a616058b 8101static void
96f874e2
RR
8102init_sched_build_groups(const struct cpumask *span,
8103 const struct cpumask *cpu_map,
8104 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8105 struct sched_group **sg,
96f874e2
RR
8106 struct cpumask *tmpmask),
8107 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8108{
8109 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8110 int i;
8111
96f874e2 8112 cpumask_clear(covered);
7c16ec58 8113
abcd083a 8114 for_each_cpu(i, span) {
6711cab4 8115 struct sched_group *sg;
7c16ec58 8116 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8117 int j;
8118
758b2cdc 8119 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8120 continue;
8121
758b2cdc 8122 cpumask_clear(sched_group_cpus(sg));
5517d86b 8123 sg->__cpu_power = 0;
1da177e4 8124
abcd083a 8125 for_each_cpu(j, span) {
7c16ec58 8126 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8127 continue;
8128
96f874e2 8129 cpumask_set_cpu(j, covered);
758b2cdc 8130 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8131 }
8132 if (!first)
8133 first = sg;
8134 if (last)
8135 last->next = sg;
8136 last = sg;
8137 }
8138 last->next = first;
8139}
8140
9c1cfda2 8141#define SD_NODES_PER_DOMAIN 16
1da177e4 8142
9c1cfda2 8143#ifdef CONFIG_NUMA
198e2f18 8144
9c1cfda2
JH
8145/**
8146 * find_next_best_node - find the next node to include in a sched_domain
8147 * @node: node whose sched_domain we're building
8148 * @used_nodes: nodes already in the sched_domain
8149 *
41a2d6cf 8150 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8151 * finds the closest node not already in the @used_nodes map.
8152 *
8153 * Should use nodemask_t.
8154 */
c5f59f08 8155static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8156{
8157 int i, n, val, min_val, best_node = 0;
8158
8159 min_val = INT_MAX;
8160
076ac2af 8161 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8162 /* Start at @node */
076ac2af 8163 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8164
8165 if (!nr_cpus_node(n))
8166 continue;
8167
8168 /* Skip already used nodes */
c5f59f08 8169 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8170 continue;
8171
8172 /* Simple min distance search */
8173 val = node_distance(node, n);
8174
8175 if (val < min_val) {
8176 min_val = val;
8177 best_node = n;
8178 }
8179 }
8180
c5f59f08 8181 node_set(best_node, *used_nodes);
9c1cfda2
JH
8182 return best_node;
8183}
8184
8185/**
8186 * sched_domain_node_span - get a cpumask for a node's sched_domain
8187 * @node: node whose cpumask we're constructing
73486722 8188 * @span: resulting cpumask
9c1cfda2 8189 *
41a2d6cf 8190 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8191 * should be one that prevents unnecessary balancing, but also spreads tasks
8192 * out optimally.
8193 */
96f874e2 8194static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8195{
c5f59f08 8196 nodemask_t used_nodes;
48f24c4d 8197 int i;
9c1cfda2 8198
6ca09dfc 8199 cpumask_clear(span);
c5f59f08 8200 nodes_clear(used_nodes);
9c1cfda2 8201
6ca09dfc 8202 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8203 node_set(node, used_nodes);
9c1cfda2
JH
8204
8205 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8206 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8207
6ca09dfc 8208 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8209 }
9c1cfda2 8210}
6d6bc0ad 8211#endif /* CONFIG_NUMA */
9c1cfda2 8212
5c45bf27 8213int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8214
6c99e9ad
RR
8215/*
8216 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8217 *
8218 * ( See the the comments in include/linux/sched.h:struct sched_group
8219 * and struct sched_domain. )
6c99e9ad
RR
8220 */
8221struct static_sched_group {
8222 struct sched_group sg;
8223 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8224};
8225
8226struct static_sched_domain {
8227 struct sched_domain sd;
8228 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8229};
8230
49a02c51
AH
8231struct s_data {
8232#ifdef CONFIG_NUMA
8233 int sd_allnodes;
8234 cpumask_var_t domainspan;
8235 cpumask_var_t covered;
8236 cpumask_var_t notcovered;
8237#endif
8238 cpumask_var_t nodemask;
8239 cpumask_var_t this_sibling_map;
8240 cpumask_var_t this_core_map;
8241 cpumask_var_t send_covered;
8242 cpumask_var_t tmpmask;
8243 struct sched_group **sched_group_nodes;
8244 struct root_domain *rd;
8245};
8246
2109b99e
AH
8247enum s_alloc {
8248 sa_sched_groups = 0,
8249 sa_rootdomain,
8250 sa_tmpmask,
8251 sa_send_covered,
8252 sa_this_core_map,
8253 sa_this_sibling_map,
8254 sa_nodemask,
8255 sa_sched_group_nodes,
8256#ifdef CONFIG_NUMA
8257 sa_notcovered,
8258 sa_covered,
8259 sa_domainspan,
8260#endif
8261 sa_none,
8262};
8263
9c1cfda2 8264/*
48f24c4d 8265 * SMT sched-domains:
9c1cfda2 8266 */
1da177e4 8267#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8268static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8269static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8270
41a2d6cf 8271static int
96f874e2
RR
8272cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8273 struct sched_group **sg, struct cpumask *unused)
1da177e4 8274{
6711cab4 8275 if (sg)
6c99e9ad 8276 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8277 return cpu;
8278}
6d6bc0ad 8279#endif /* CONFIG_SCHED_SMT */
1da177e4 8280
48f24c4d
IM
8281/*
8282 * multi-core sched-domains:
8283 */
1e9f28fa 8284#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8285static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8286static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8287#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8288
8289#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8290static int
96f874e2
RR
8291cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8292 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8293{
6711cab4 8294 int group;
7c16ec58 8295
c69fc56d 8296 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8297 group = cpumask_first(mask);
6711cab4 8298 if (sg)
6c99e9ad 8299 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8300 return group;
1e9f28fa
SS
8301}
8302#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8303static int
96f874e2
RR
8304cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8305 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8306{
6711cab4 8307 if (sg)
6c99e9ad 8308 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8309 return cpu;
8310}
8311#endif
8312
6c99e9ad
RR
8313static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8314static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8315
41a2d6cf 8316static int
96f874e2
RR
8317cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8318 struct sched_group **sg, struct cpumask *mask)
1da177e4 8319{
6711cab4 8320 int group;
48f24c4d 8321#ifdef CONFIG_SCHED_MC
6ca09dfc 8322 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8323 group = cpumask_first(mask);
1e9f28fa 8324#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8325 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8326 group = cpumask_first(mask);
1da177e4 8327#else
6711cab4 8328 group = cpu;
1da177e4 8329#endif
6711cab4 8330 if (sg)
6c99e9ad 8331 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8332 return group;
1da177e4
LT
8333}
8334
8335#ifdef CONFIG_NUMA
1da177e4 8336/*
9c1cfda2
JH
8337 * The init_sched_build_groups can't handle what we want to do with node
8338 * groups, so roll our own. Now each node has its own list of groups which
8339 * gets dynamically allocated.
1da177e4 8340 */
62ea9ceb 8341static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8342static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8343
62ea9ceb 8344static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8345static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8346
96f874e2
RR
8347static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8348 struct sched_group **sg,
8349 struct cpumask *nodemask)
9c1cfda2 8350{
6711cab4
SS
8351 int group;
8352
6ca09dfc 8353 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8354 group = cpumask_first(nodemask);
6711cab4
SS
8355
8356 if (sg)
6c99e9ad 8357 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8358 return group;
1da177e4 8359}
6711cab4 8360
08069033
SS
8361static void init_numa_sched_groups_power(struct sched_group *group_head)
8362{
8363 struct sched_group *sg = group_head;
8364 int j;
8365
8366 if (!sg)
8367 return;
3a5c359a 8368 do {
758b2cdc 8369 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8370 struct sched_domain *sd;
08069033 8371
6c99e9ad 8372 sd = &per_cpu(phys_domains, j).sd;
13318a71 8373 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8374 /*
8375 * Only add "power" once for each
8376 * physical package.
8377 */
8378 continue;
8379 }
08069033 8380
3a5c359a
AK
8381 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
8382 }
8383 sg = sg->next;
8384 } while (sg != group_head);
08069033 8385}
0601a88d
AH
8386
8387static int build_numa_sched_groups(struct s_data *d,
8388 const struct cpumask *cpu_map, int num)
8389{
8390 struct sched_domain *sd;
8391 struct sched_group *sg, *prev;
8392 int n, j;
8393
8394 cpumask_clear(d->covered);
8395 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8396 if (cpumask_empty(d->nodemask)) {
8397 d->sched_group_nodes[num] = NULL;
8398 goto out;
8399 }
8400
8401 sched_domain_node_span(num, d->domainspan);
8402 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8403
8404 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8405 GFP_KERNEL, num);
8406 if (!sg) {
8407 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8408 num);
8409 return -ENOMEM;
8410 }
8411 d->sched_group_nodes[num] = sg;
8412
8413 for_each_cpu(j, d->nodemask) {
8414 sd = &per_cpu(node_domains, j).sd;
8415 sd->groups = sg;
8416 }
8417
8418 sg->__cpu_power = 0;
8419 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8420 sg->next = sg;
8421 cpumask_or(d->covered, d->covered, d->nodemask);
8422
8423 prev = sg;
8424 for (j = 0; j < nr_node_ids; j++) {
8425 n = (num + j) % nr_node_ids;
8426 cpumask_complement(d->notcovered, d->covered);
8427 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8428 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8429 if (cpumask_empty(d->tmpmask))
8430 break;
8431 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8432 if (cpumask_empty(d->tmpmask))
8433 continue;
8434 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8435 GFP_KERNEL, num);
8436 if (!sg) {
8437 printk(KERN_WARNING
8438 "Can not alloc domain group for node %d\n", j);
8439 return -ENOMEM;
8440 }
8441 sg->__cpu_power = 0;
8442 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8443 sg->next = prev->next;
8444 cpumask_or(d->covered, d->covered, d->tmpmask);
8445 prev->next = sg;
8446 prev = sg;
8447 }
8448out:
8449 return 0;
8450}
6d6bc0ad 8451#endif /* CONFIG_NUMA */
1da177e4 8452
a616058b 8453#ifdef CONFIG_NUMA
51888ca2 8454/* Free memory allocated for various sched_group structures */
96f874e2
RR
8455static void free_sched_groups(const struct cpumask *cpu_map,
8456 struct cpumask *nodemask)
51888ca2 8457{
a616058b 8458 int cpu, i;
51888ca2 8459
abcd083a 8460 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8461 struct sched_group **sched_group_nodes
8462 = sched_group_nodes_bycpu[cpu];
8463
51888ca2
SV
8464 if (!sched_group_nodes)
8465 continue;
8466
076ac2af 8467 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8468 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8469
6ca09dfc 8470 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8471 if (cpumask_empty(nodemask))
51888ca2
SV
8472 continue;
8473
8474 if (sg == NULL)
8475 continue;
8476 sg = sg->next;
8477next_sg:
8478 oldsg = sg;
8479 sg = sg->next;
8480 kfree(oldsg);
8481 if (oldsg != sched_group_nodes[i])
8482 goto next_sg;
8483 }
8484 kfree(sched_group_nodes);
8485 sched_group_nodes_bycpu[cpu] = NULL;
8486 }
51888ca2 8487}
6d6bc0ad 8488#else /* !CONFIG_NUMA */
96f874e2
RR
8489static void free_sched_groups(const struct cpumask *cpu_map,
8490 struct cpumask *nodemask)
a616058b
SS
8491{
8492}
6d6bc0ad 8493#endif /* CONFIG_NUMA */
51888ca2 8494
89c4710e
SS
8495/*
8496 * Initialize sched groups cpu_power.
8497 *
8498 * cpu_power indicates the capacity of sched group, which is used while
8499 * distributing the load between different sched groups in a sched domain.
8500 * Typically cpu_power for all the groups in a sched domain will be same unless
8501 * there are asymmetries in the topology. If there are asymmetries, group
8502 * having more cpu_power will pickup more load compared to the group having
8503 * less cpu_power.
89c4710e
SS
8504 */
8505static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8506{
8507 struct sched_domain *child;
8508 struct sched_group *group;
f93e65c1
PZ
8509 long power;
8510 int weight;
89c4710e
SS
8511
8512 WARN_ON(!sd || !sd->groups);
8513
13318a71 8514 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8515 return;
8516
8517 child = sd->child;
8518
5517d86b
ED
8519 sd->groups->__cpu_power = 0;
8520
f93e65c1
PZ
8521 if (!child) {
8522 power = SCHED_LOAD_SCALE;
8523 weight = cpumask_weight(sched_domain_span(sd));
8524 /*
8525 * SMT siblings share the power of a single core.
8526 */
8527 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1)
8528 power /= weight;
8529 sg_inc_cpu_power(sd->groups, power);
89c4710e
SS
8530 return;
8531 }
8532
89c4710e 8533 /*
f93e65c1 8534 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8535 */
8536 group = child->groups;
8537 do {
5517d86b 8538 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
8539 group = group->next;
8540 } while (group != child->groups);
8541}
8542
7c16ec58
MT
8543/*
8544 * Initializers for schedule domains
8545 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8546 */
8547
a5d8c348
IM
8548#ifdef CONFIG_SCHED_DEBUG
8549# define SD_INIT_NAME(sd, type) sd->name = #type
8550#else
8551# define SD_INIT_NAME(sd, type) do { } while (0)
8552#endif
8553
7c16ec58 8554#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8555
7c16ec58
MT
8556#define SD_INIT_FUNC(type) \
8557static noinline void sd_init_##type(struct sched_domain *sd) \
8558{ \
8559 memset(sd, 0, sizeof(*sd)); \
8560 *sd = SD_##type##_INIT; \
1d3504fc 8561 sd->level = SD_LV_##type; \
a5d8c348 8562 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8563}
8564
8565SD_INIT_FUNC(CPU)
8566#ifdef CONFIG_NUMA
8567 SD_INIT_FUNC(ALLNODES)
8568 SD_INIT_FUNC(NODE)
8569#endif
8570#ifdef CONFIG_SCHED_SMT
8571 SD_INIT_FUNC(SIBLING)
8572#endif
8573#ifdef CONFIG_SCHED_MC
8574 SD_INIT_FUNC(MC)
8575#endif
8576
1d3504fc
HS
8577static int default_relax_domain_level = -1;
8578
8579static int __init setup_relax_domain_level(char *str)
8580{
30e0e178
LZ
8581 unsigned long val;
8582
8583 val = simple_strtoul(str, NULL, 0);
8584 if (val < SD_LV_MAX)
8585 default_relax_domain_level = val;
8586
1d3504fc
HS
8587 return 1;
8588}
8589__setup("relax_domain_level=", setup_relax_domain_level);
8590
8591static void set_domain_attribute(struct sched_domain *sd,
8592 struct sched_domain_attr *attr)
8593{
8594 int request;
8595
8596 if (!attr || attr->relax_domain_level < 0) {
8597 if (default_relax_domain_level < 0)
8598 return;
8599 else
8600 request = default_relax_domain_level;
8601 } else
8602 request = attr->relax_domain_level;
8603 if (request < sd->level) {
8604 /* turn off idle balance on this domain */
8605 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8606 } else {
8607 /* turn on idle balance on this domain */
8608 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8609 }
8610}
8611
2109b99e
AH
8612static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8613 const struct cpumask *cpu_map)
8614{
8615 switch (what) {
8616 case sa_sched_groups:
8617 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8618 d->sched_group_nodes = NULL;
8619 case sa_rootdomain:
8620 free_rootdomain(d->rd); /* fall through */
8621 case sa_tmpmask:
8622 free_cpumask_var(d->tmpmask); /* fall through */
8623 case sa_send_covered:
8624 free_cpumask_var(d->send_covered); /* fall through */
8625 case sa_this_core_map:
8626 free_cpumask_var(d->this_core_map); /* fall through */
8627 case sa_this_sibling_map:
8628 free_cpumask_var(d->this_sibling_map); /* fall through */
8629 case sa_nodemask:
8630 free_cpumask_var(d->nodemask); /* fall through */
8631 case sa_sched_group_nodes:
d1b55138 8632#ifdef CONFIG_NUMA
2109b99e
AH
8633 kfree(d->sched_group_nodes); /* fall through */
8634 case sa_notcovered:
8635 free_cpumask_var(d->notcovered); /* fall through */
8636 case sa_covered:
8637 free_cpumask_var(d->covered); /* fall through */
8638 case sa_domainspan:
8639 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8640#endif
2109b99e
AH
8641 case sa_none:
8642 break;
8643 }
8644}
3404c8d9 8645
2109b99e
AH
8646static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8647 const struct cpumask *cpu_map)
8648{
3404c8d9 8649#ifdef CONFIG_NUMA
2109b99e
AH
8650 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8651 return sa_none;
8652 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8653 return sa_domainspan;
8654 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8655 return sa_covered;
8656 /* Allocate the per-node list of sched groups */
8657 d->sched_group_nodes = kcalloc(nr_node_ids,
8658 sizeof(struct sched_group *), GFP_KERNEL);
8659 if (!d->sched_group_nodes) {
d1b55138 8660 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 8661 return sa_notcovered;
d1b55138 8662 }
2109b99e 8663 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8664#endif
2109b99e
AH
8665 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8666 return sa_sched_group_nodes;
8667 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8668 return sa_nodemask;
8669 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8670 return sa_this_sibling_map;
8671 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8672 return sa_this_core_map;
8673 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8674 return sa_send_covered;
8675 d->rd = alloc_rootdomain();
8676 if (!d->rd) {
57d885fe 8677 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 8678 return sa_tmpmask;
57d885fe 8679 }
2109b99e
AH
8680 return sa_rootdomain;
8681}
57d885fe 8682
7f4588f3
AH
8683static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8684 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8685{
8686 struct sched_domain *sd = NULL;
7c16ec58 8687#ifdef CONFIG_NUMA
7f4588f3 8688 struct sched_domain *parent;
9c1cfda2 8689
7f4588f3
AH
8690 d->sd_allnodes = 0;
8691 if (cpumask_weight(cpu_map) >
8692 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8693 sd = &per_cpu(allnodes_domains, i).sd;
8694 SD_INIT(sd, ALLNODES);
1d3504fc 8695 set_domain_attribute(sd, attr);
7f4588f3
AH
8696 cpumask_copy(sched_domain_span(sd), cpu_map);
8697 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8698 d->sd_allnodes = 1;
8699 }
8700 parent = sd;
8701
8702 sd = &per_cpu(node_domains, i).sd;
8703 SD_INIT(sd, NODE);
8704 set_domain_attribute(sd, attr);
8705 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8706 sd->parent = parent;
8707 if (parent)
8708 parent->child = sd;
8709 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8710#endif
7f4588f3
AH
8711 return sd;
8712}
1da177e4 8713
87cce662
AH
8714static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8715 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8716 struct sched_domain *parent, int i)
8717{
8718 struct sched_domain *sd;
8719 sd = &per_cpu(phys_domains, i).sd;
8720 SD_INIT(sd, CPU);
8721 set_domain_attribute(sd, attr);
8722 cpumask_copy(sched_domain_span(sd), d->nodemask);
8723 sd->parent = parent;
8724 if (parent)
8725 parent->child = sd;
8726 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8727 return sd;
8728}
1da177e4 8729
410c4081
AH
8730static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8731 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8732 struct sched_domain *parent, int i)
8733{
8734 struct sched_domain *sd = parent;
1e9f28fa 8735#ifdef CONFIG_SCHED_MC
410c4081
AH
8736 sd = &per_cpu(core_domains, i).sd;
8737 SD_INIT(sd, MC);
8738 set_domain_attribute(sd, attr);
8739 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8740 sd->parent = parent;
8741 parent->child = sd;
8742 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8743#endif
410c4081
AH
8744 return sd;
8745}
1e9f28fa 8746
d8173535
AH
8747static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8748 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8749 struct sched_domain *parent, int i)
8750{
8751 struct sched_domain *sd = parent;
1da177e4 8752#ifdef CONFIG_SCHED_SMT
d8173535
AH
8753 sd = &per_cpu(cpu_domains, i).sd;
8754 SD_INIT(sd, SIBLING);
8755 set_domain_attribute(sd, attr);
8756 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8757 sd->parent = parent;
8758 parent->child = sd;
8759 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8760#endif
d8173535
AH
8761 return sd;
8762}
1da177e4 8763
0e8e85c9
AH
8764static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8765 const struct cpumask *cpu_map, int cpu)
8766{
8767 switch (l) {
1da177e4 8768#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8769 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8770 cpumask_and(d->this_sibling_map, cpu_map,
8771 topology_thread_cpumask(cpu));
8772 if (cpu == cpumask_first(d->this_sibling_map))
8773 init_sched_build_groups(d->this_sibling_map, cpu_map,
8774 &cpu_to_cpu_group,
8775 d->send_covered, d->tmpmask);
8776 break;
1da177e4 8777#endif
1e9f28fa 8778#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8779 case SD_LV_MC: /* set up multi-core groups */
8780 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8781 if (cpu == cpumask_first(d->this_core_map))
8782 init_sched_build_groups(d->this_core_map, cpu_map,
8783 &cpu_to_core_group,
8784 d->send_covered, d->tmpmask);
8785 break;
1e9f28fa 8786#endif
86548096
AH
8787 case SD_LV_CPU: /* set up physical groups */
8788 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8789 if (!cpumask_empty(d->nodemask))
8790 init_sched_build_groups(d->nodemask, cpu_map,
8791 &cpu_to_phys_group,
8792 d->send_covered, d->tmpmask);
8793 break;
1da177e4 8794#ifdef CONFIG_NUMA
de616e36
AH
8795 case SD_LV_ALLNODES:
8796 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8797 d->send_covered, d->tmpmask);
8798 break;
8799#endif
0e8e85c9
AH
8800 default:
8801 break;
7c16ec58 8802 }
0e8e85c9 8803}
9c1cfda2 8804
2109b99e
AH
8805/*
8806 * Build sched domains for a given set of cpus and attach the sched domains
8807 * to the individual cpus
8808 */
8809static int __build_sched_domains(const struct cpumask *cpu_map,
8810 struct sched_domain_attr *attr)
8811{
8812 enum s_alloc alloc_state = sa_none;
8813 struct s_data d;
294b0c96 8814 struct sched_domain *sd;
2109b99e 8815 int i;
7c16ec58 8816#ifdef CONFIG_NUMA
2109b99e 8817 d.sd_allnodes = 0;
7c16ec58 8818#endif
9c1cfda2 8819
2109b99e
AH
8820 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8821 if (alloc_state != sa_rootdomain)
8822 goto error;
8823 alloc_state = sa_sched_groups;
9c1cfda2 8824
1da177e4 8825 /*
1a20ff27 8826 * Set up domains for cpus specified by the cpu_map.
1da177e4 8827 */
abcd083a 8828 for_each_cpu(i, cpu_map) {
49a02c51
AH
8829 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8830 cpu_map);
9761eea8 8831
7f4588f3 8832 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8833 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8834 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8835 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8836 }
9c1cfda2 8837
abcd083a 8838 for_each_cpu(i, cpu_map) {
0e8e85c9 8839 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8840 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8841 }
9c1cfda2 8842
1da177e4 8843 /* Set up physical groups */
86548096
AH
8844 for (i = 0; i < nr_node_ids; i++)
8845 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8846
1da177e4
LT
8847#ifdef CONFIG_NUMA
8848 /* Set up node groups */
de616e36
AH
8849 if (d.sd_allnodes)
8850 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8851
0601a88d
AH
8852 for (i = 0; i < nr_node_ids; i++)
8853 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8854 goto error;
1da177e4
LT
8855#endif
8856
8857 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8858#ifdef CONFIG_SCHED_SMT
abcd083a 8859 for_each_cpu(i, cpu_map) {
294b0c96 8860 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8861 init_sched_groups_power(i, sd);
5c45bf27 8862 }
1da177e4 8863#endif
1e9f28fa 8864#ifdef CONFIG_SCHED_MC
abcd083a 8865 for_each_cpu(i, cpu_map) {
294b0c96 8866 sd = &per_cpu(core_domains, i).sd;
89c4710e 8867 init_sched_groups_power(i, sd);
5c45bf27
SS
8868 }
8869#endif
1e9f28fa 8870
abcd083a 8871 for_each_cpu(i, cpu_map) {
294b0c96 8872 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8873 init_sched_groups_power(i, sd);
1da177e4
LT
8874 }
8875
9c1cfda2 8876#ifdef CONFIG_NUMA
076ac2af 8877 for (i = 0; i < nr_node_ids; i++)
49a02c51 8878 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8879
49a02c51 8880 if (d.sd_allnodes) {
6711cab4 8881 struct sched_group *sg;
f712c0c7 8882
96f874e2 8883 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8884 d.tmpmask);
f712c0c7
SS
8885 init_numa_sched_groups_power(sg);
8886 }
9c1cfda2
JH
8887#endif
8888
1da177e4 8889 /* Attach the domains */
abcd083a 8890 for_each_cpu(i, cpu_map) {
1da177e4 8891#ifdef CONFIG_SCHED_SMT
6c99e9ad 8892 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8893#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8894 sd = &per_cpu(core_domains, i).sd;
1da177e4 8895#else
6c99e9ad 8896 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8897#endif
49a02c51 8898 cpu_attach_domain(sd, d.rd, i);
1da177e4 8899 }
3404c8d9 8900
2109b99e
AH
8901 d.sched_group_nodes = NULL; /* don't free this we still need it */
8902 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8903 return 0;
51888ca2 8904
51888ca2 8905error:
2109b99e
AH
8906 __free_domain_allocs(&d, alloc_state, cpu_map);
8907 return -ENOMEM;
1da177e4 8908}
029190c5 8909
96f874e2 8910static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8911{
8912 return __build_sched_domains(cpu_map, NULL);
8913}
8914
96f874e2 8915static struct cpumask *doms_cur; /* current sched domains */
029190c5 8916static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8917static struct sched_domain_attr *dattr_cur;
8918 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8919
8920/*
8921 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8922 * cpumask) fails, then fallback to a single sched domain,
8923 * as determined by the single cpumask fallback_doms.
029190c5 8924 */
4212823f 8925static cpumask_var_t fallback_doms;
029190c5 8926
ee79d1bd
HC
8927/*
8928 * arch_update_cpu_topology lets virtualized architectures update the
8929 * cpu core maps. It is supposed to return 1 if the topology changed
8930 * or 0 if it stayed the same.
8931 */
8932int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8933{
ee79d1bd 8934 return 0;
22e52b07
HC
8935}
8936
1a20ff27 8937/*
41a2d6cf 8938 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8939 * For now this just excludes isolated cpus, but could be used to
8940 * exclude other special cases in the future.
1a20ff27 8941 */
96f874e2 8942static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8943{
7378547f
MM
8944 int err;
8945
22e52b07 8946 arch_update_cpu_topology();
029190c5 8947 ndoms_cur = 1;
96f874e2 8948 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8949 if (!doms_cur)
4212823f 8950 doms_cur = fallback_doms;
dcc30a35 8951 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8952 dattr_cur = NULL;
7378547f 8953 err = build_sched_domains(doms_cur);
6382bc90 8954 register_sched_domain_sysctl();
7378547f
MM
8955
8956 return err;
1a20ff27
DG
8957}
8958
96f874e2
RR
8959static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8960 struct cpumask *tmpmask)
1da177e4 8961{
7c16ec58 8962 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8963}
1da177e4 8964
1a20ff27
DG
8965/*
8966 * Detach sched domains from a group of cpus specified in cpu_map
8967 * These cpus will now be attached to the NULL domain
8968 */
96f874e2 8969static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8970{
96f874e2
RR
8971 /* Save because hotplug lock held. */
8972 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8973 int i;
8974
abcd083a 8975 for_each_cpu(i, cpu_map)
57d885fe 8976 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8977 synchronize_sched();
96f874e2 8978 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8979}
8980
1d3504fc
HS
8981/* handle null as "default" */
8982static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8983 struct sched_domain_attr *new, int idx_new)
8984{
8985 struct sched_domain_attr tmp;
8986
8987 /* fast path */
8988 if (!new && !cur)
8989 return 1;
8990
8991 tmp = SD_ATTR_INIT;
8992 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8993 new ? (new + idx_new) : &tmp,
8994 sizeof(struct sched_domain_attr));
8995}
8996
029190c5
PJ
8997/*
8998 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8999 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
9000 * doms_new[] to the current sched domain partitioning, doms_cur[].
9001 * It destroys each deleted domain and builds each new domain.
9002 *
96f874e2 9003 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
9004 * The masks don't intersect (don't overlap.) We should setup one
9005 * sched domain for each mask. CPUs not in any of the cpumasks will
9006 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
9007 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9008 * it as it is.
9009 *
41a2d6cf
IM
9010 * The passed in 'doms_new' should be kmalloc'd. This routine takes
9011 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
9012 * failed the kmalloc call, then it can pass in doms_new == NULL &&
9013 * ndoms_new == 1, and partition_sched_domains() will fallback to
9014 * the single partition 'fallback_doms', it also forces the domains
9015 * to be rebuilt.
029190c5 9016 *
96f874e2 9017 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
9018 * ndoms_new == 0 is a special case for destroying existing domains,
9019 * and it will not create the default domain.
dfb512ec 9020 *
029190c5
PJ
9021 * Call with hotplug lock held
9022 */
96f874e2
RR
9023/* FIXME: Change to struct cpumask *doms_new[] */
9024void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 9025 struct sched_domain_attr *dattr_new)
029190c5 9026{
dfb512ec 9027 int i, j, n;
d65bd5ec 9028 int new_topology;
029190c5 9029
712555ee 9030 mutex_lock(&sched_domains_mutex);
a1835615 9031
7378547f
MM
9032 /* always unregister in case we don't destroy any domains */
9033 unregister_sched_domain_sysctl();
9034
d65bd5ec
HC
9035 /* Let architecture update cpu core mappings. */
9036 new_topology = arch_update_cpu_topology();
9037
dfb512ec 9038 n = doms_new ? ndoms_new : 0;
029190c5
PJ
9039
9040 /* Destroy deleted domains */
9041 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 9042 for (j = 0; j < n && !new_topology; j++) {
96f874e2 9043 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 9044 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
9045 goto match1;
9046 }
9047 /* no match - a current sched domain not in new doms_new[] */
9048 detach_destroy_domains(doms_cur + i);
9049match1:
9050 ;
9051 }
9052
e761b772
MK
9053 if (doms_new == NULL) {
9054 ndoms_cur = 0;
4212823f 9055 doms_new = fallback_doms;
dcc30a35 9056 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 9057 WARN_ON_ONCE(dattr_new);
e761b772
MK
9058 }
9059
029190c5
PJ
9060 /* Build new domains */
9061 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 9062 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 9063 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 9064 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
9065 goto match2;
9066 }
9067 /* no match - add a new doms_new */
1d3504fc
HS
9068 __build_sched_domains(doms_new + i,
9069 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9070match2:
9071 ;
9072 }
9073
9074 /* Remember the new sched domains */
4212823f 9075 if (doms_cur != fallback_doms)
029190c5 9076 kfree(doms_cur);
1d3504fc 9077 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9078 doms_cur = doms_new;
1d3504fc 9079 dattr_cur = dattr_new;
029190c5 9080 ndoms_cur = ndoms_new;
7378547f
MM
9081
9082 register_sched_domain_sysctl();
a1835615 9083
712555ee 9084 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9085}
9086
5c45bf27 9087#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9088static void arch_reinit_sched_domains(void)
5c45bf27 9089{
95402b38 9090 get_online_cpus();
dfb512ec
MK
9091
9092 /* Destroy domains first to force the rebuild */
9093 partition_sched_domains(0, NULL, NULL);
9094
e761b772 9095 rebuild_sched_domains();
95402b38 9096 put_online_cpus();
5c45bf27
SS
9097}
9098
9099static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9100{
afb8a9b7 9101 unsigned int level = 0;
5c45bf27 9102
afb8a9b7
GS
9103 if (sscanf(buf, "%u", &level) != 1)
9104 return -EINVAL;
9105
9106 /*
9107 * level is always be positive so don't check for
9108 * level < POWERSAVINGS_BALANCE_NONE which is 0
9109 * What happens on 0 or 1 byte write,
9110 * need to check for count as well?
9111 */
9112
9113 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9114 return -EINVAL;
9115
9116 if (smt)
afb8a9b7 9117 sched_smt_power_savings = level;
5c45bf27 9118 else
afb8a9b7 9119 sched_mc_power_savings = level;
5c45bf27 9120
c70f22d2 9121 arch_reinit_sched_domains();
5c45bf27 9122
c70f22d2 9123 return count;
5c45bf27
SS
9124}
9125
5c45bf27 9126#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9127static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9128 char *page)
5c45bf27
SS
9129{
9130 return sprintf(page, "%u\n", sched_mc_power_savings);
9131}
f718cd4a 9132static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9133 const char *buf, size_t count)
5c45bf27
SS
9134{
9135 return sched_power_savings_store(buf, count, 0);
9136}
f718cd4a
AK
9137static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9138 sched_mc_power_savings_show,
9139 sched_mc_power_savings_store);
5c45bf27
SS
9140#endif
9141
9142#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9143static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9144 char *page)
5c45bf27
SS
9145{
9146 return sprintf(page, "%u\n", sched_smt_power_savings);
9147}
f718cd4a 9148static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9149 const char *buf, size_t count)
5c45bf27
SS
9150{
9151 return sched_power_savings_store(buf, count, 1);
9152}
f718cd4a
AK
9153static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9154 sched_smt_power_savings_show,
6707de00
AB
9155 sched_smt_power_savings_store);
9156#endif
9157
39aac648 9158int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9159{
9160 int err = 0;
9161
9162#ifdef CONFIG_SCHED_SMT
9163 if (smt_capable())
9164 err = sysfs_create_file(&cls->kset.kobj,
9165 &attr_sched_smt_power_savings.attr);
9166#endif
9167#ifdef CONFIG_SCHED_MC
9168 if (!err && mc_capable())
9169 err = sysfs_create_file(&cls->kset.kobj,
9170 &attr_sched_mc_power_savings.attr);
9171#endif
9172 return err;
9173}
6d6bc0ad 9174#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9175
e761b772 9176#ifndef CONFIG_CPUSETS
1da177e4 9177/*
e761b772
MK
9178 * Add online and remove offline CPUs from the scheduler domains.
9179 * When cpusets are enabled they take over this function.
1da177e4
LT
9180 */
9181static int update_sched_domains(struct notifier_block *nfb,
9182 unsigned long action, void *hcpu)
e761b772
MK
9183{
9184 switch (action) {
9185 case CPU_ONLINE:
9186 case CPU_ONLINE_FROZEN:
9187 case CPU_DEAD:
9188 case CPU_DEAD_FROZEN:
dfb512ec 9189 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9190 return NOTIFY_OK;
9191
9192 default:
9193 return NOTIFY_DONE;
9194 }
9195}
9196#endif
9197
9198static int update_runtime(struct notifier_block *nfb,
9199 unsigned long action, void *hcpu)
1da177e4 9200{
7def2be1
PZ
9201 int cpu = (int)(long)hcpu;
9202
1da177e4 9203 switch (action) {
1da177e4 9204 case CPU_DOWN_PREPARE:
8bb78442 9205 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9206 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9207 return NOTIFY_OK;
9208
1da177e4 9209 case CPU_DOWN_FAILED:
8bb78442 9210 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9211 case CPU_ONLINE:
8bb78442 9212 case CPU_ONLINE_FROZEN:
7def2be1 9213 enable_runtime(cpu_rq(cpu));
e761b772
MK
9214 return NOTIFY_OK;
9215
1da177e4
LT
9216 default:
9217 return NOTIFY_DONE;
9218 }
1da177e4 9219}
1da177e4
LT
9220
9221void __init sched_init_smp(void)
9222{
dcc30a35
RR
9223 cpumask_var_t non_isolated_cpus;
9224
9225 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 9226
434d53b0
MT
9227#if defined(CONFIG_NUMA)
9228 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9229 GFP_KERNEL);
9230 BUG_ON(sched_group_nodes_bycpu == NULL);
9231#endif
95402b38 9232 get_online_cpus();
712555ee 9233 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
9234 arch_init_sched_domains(cpu_online_mask);
9235 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9236 if (cpumask_empty(non_isolated_cpus))
9237 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9238 mutex_unlock(&sched_domains_mutex);
95402b38 9239 put_online_cpus();
e761b772
MK
9240
9241#ifndef CONFIG_CPUSETS
1da177e4
LT
9242 /* XXX: Theoretical race here - CPU may be hotplugged now */
9243 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9244#endif
9245
9246 /* RT runtime code needs to handle some hotplug events */
9247 hotcpu_notifier(update_runtime, 0);
9248
b328ca18 9249 init_hrtick();
5c1e1767
NP
9250
9251 /* Move init over to a non-isolated CPU */
dcc30a35 9252 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9253 BUG();
19978ca6 9254 sched_init_granularity();
dcc30a35 9255 free_cpumask_var(non_isolated_cpus);
4212823f
RR
9256
9257 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 9258 init_sched_rt_class();
1da177e4
LT
9259}
9260#else
9261void __init sched_init_smp(void)
9262{
19978ca6 9263 sched_init_granularity();
1da177e4
LT
9264}
9265#endif /* CONFIG_SMP */
9266
cd1bb94b
AB
9267const_debug unsigned int sysctl_timer_migration = 1;
9268
1da177e4
LT
9269int in_sched_functions(unsigned long addr)
9270{
1da177e4
LT
9271 return in_lock_functions(addr) ||
9272 (addr >= (unsigned long)__sched_text_start
9273 && addr < (unsigned long)__sched_text_end);
9274}
9275
a9957449 9276static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9277{
9278 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9279 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9280#ifdef CONFIG_FAIR_GROUP_SCHED
9281 cfs_rq->rq = rq;
9282#endif
67e9fb2a 9283 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9284}
9285
fa85ae24
PZ
9286static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9287{
9288 struct rt_prio_array *array;
9289 int i;
9290
9291 array = &rt_rq->active;
9292 for (i = 0; i < MAX_RT_PRIO; i++) {
9293 INIT_LIST_HEAD(array->queue + i);
9294 __clear_bit(i, array->bitmap);
9295 }
9296 /* delimiter for bitsearch: */
9297 __set_bit(MAX_RT_PRIO, array->bitmap);
9298
052f1dc7 9299#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9300 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9301#ifdef CONFIG_SMP
e864c499 9302 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9303#endif
48d5e258 9304#endif
fa85ae24
PZ
9305#ifdef CONFIG_SMP
9306 rt_rq->rt_nr_migratory = 0;
fa85ae24 9307 rt_rq->overloaded = 0;
c20b08e3 9308 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9309#endif
9310
9311 rt_rq->rt_time = 0;
9312 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9313 rt_rq->rt_runtime = 0;
9314 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9315
052f1dc7 9316#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9317 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9318 rt_rq->rq = rq;
9319#endif
fa85ae24
PZ
9320}
9321
6f505b16 9322#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9323static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9324 struct sched_entity *se, int cpu, int add,
9325 struct sched_entity *parent)
6f505b16 9326{
ec7dc8ac 9327 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9328 tg->cfs_rq[cpu] = cfs_rq;
9329 init_cfs_rq(cfs_rq, rq);
9330 cfs_rq->tg = tg;
9331 if (add)
9332 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9333
9334 tg->se[cpu] = se;
354d60c2
DG
9335 /* se could be NULL for init_task_group */
9336 if (!se)
9337 return;
9338
ec7dc8ac
DG
9339 if (!parent)
9340 se->cfs_rq = &rq->cfs;
9341 else
9342 se->cfs_rq = parent->my_q;
9343
6f505b16
PZ
9344 se->my_q = cfs_rq;
9345 se->load.weight = tg->shares;
e05510d0 9346 se->load.inv_weight = 0;
ec7dc8ac 9347 se->parent = parent;
6f505b16 9348}
052f1dc7 9349#endif
6f505b16 9350
052f1dc7 9351#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9352static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9353 struct sched_rt_entity *rt_se, int cpu, int add,
9354 struct sched_rt_entity *parent)
6f505b16 9355{
ec7dc8ac
DG
9356 struct rq *rq = cpu_rq(cpu);
9357
6f505b16
PZ
9358 tg->rt_rq[cpu] = rt_rq;
9359 init_rt_rq(rt_rq, rq);
9360 rt_rq->tg = tg;
9361 rt_rq->rt_se = rt_se;
ac086bc2 9362 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9363 if (add)
9364 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9365
9366 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9367 if (!rt_se)
9368 return;
9369
ec7dc8ac
DG
9370 if (!parent)
9371 rt_se->rt_rq = &rq->rt;
9372 else
9373 rt_se->rt_rq = parent->my_q;
9374
6f505b16 9375 rt_se->my_q = rt_rq;
ec7dc8ac 9376 rt_se->parent = parent;
6f505b16
PZ
9377 INIT_LIST_HEAD(&rt_se->run_list);
9378}
9379#endif
9380
1da177e4
LT
9381void __init sched_init(void)
9382{
dd41f596 9383 int i, j;
434d53b0
MT
9384 unsigned long alloc_size = 0, ptr;
9385
9386#ifdef CONFIG_FAIR_GROUP_SCHED
9387 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9388#endif
9389#ifdef CONFIG_RT_GROUP_SCHED
9390 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9391#endif
9392#ifdef CONFIG_USER_SCHED
9393 alloc_size *= 2;
df7c8e84
RR
9394#endif
9395#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9396 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0
MT
9397#endif
9398 /*
9399 * As sched_init() is called before page_alloc is setup,
9400 * we use alloc_bootmem().
9401 */
9402 if (alloc_size) {
36b7b6d4 9403 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9404
9405#ifdef CONFIG_FAIR_GROUP_SCHED
9406 init_task_group.se = (struct sched_entity **)ptr;
9407 ptr += nr_cpu_ids * sizeof(void **);
9408
9409 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9410 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9411
9412#ifdef CONFIG_USER_SCHED
9413 root_task_group.se = (struct sched_entity **)ptr;
9414 ptr += nr_cpu_ids * sizeof(void **);
9415
9416 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9417 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9418#endif /* CONFIG_USER_SCHED */
9419#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9420#ifdef CONFIG_RT_GROUP_SCHED
9421 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9422 ptr += nr_cpu_ids * sizeof(void **);
9423
9424 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9425 ptr += nr_cpu_ids * sizeof(void **);
9426
9427#ifdef CONFIG_USER_SCHED
9428 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9429 ptr += nr_cpu_ids * sizeof(void **);
9430
9431 root_task_group.rt_rq = (struct rt_rq **)ptr;
9432 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9433#endif /* CONFIG_USER_SCHED */
9434#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9435#ifdef CONFIG_CPUMASK_OFFSTACK
9436 for_each_possible_cpu(i) {
9437 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9438 ptr += cpumask_size();
9439 }
9440#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9441 }
dd41f596 9442
57d885fe
GH
9443#ifdef CONFIG_SMP
9444 init_defrootdomain();
9445#endif
9446
d0b27fa7
PZ
9447 init_rt_bandwidth(&def_rt_bandwidth,
9448 global_rt_period(), global_rt_runtime());
9449
9450#ifdef CONFIG_RT_GROUP_SCHED
9451 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9452 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9453#ifdef CONFIG_USER_SCHED
9454 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9455 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9456#endif /* CONFIG_USER_SCHED */
9457#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9458
052f1dc7 9459#ifdef CONFIG_GROUP_SCHED
6f505b16 9460 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9461 INIT_LIST_HEAD(&init_task_group.children);
9462
9463#ifdef CONFIG_USER_SCHED
9464 INIT_LIST_HEAD(&root_task_group.children);
9465 init_task_group.parent = &root_task_group;
9466 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9467#endif /* CONFIG_USER_SCHED */
9468#endif /* CONFIG_GROUP_SCHED */
6f505b16 9469
0a945022 9470 for_each_possible_cpu(i) {
70b97a7f 9471 struct rq *rq;
1da177e4
LT
9472
9473 rq = cpu_rq(i);
9474 spin_lock_init(&rq->lock);
7897986b 9475 rq->nr_running = 0;
dce48a84
TG
9476 rq->calc_load_active = 0;
9477 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9478 init_cfs_rq(&rq->cfs, rq);
6f505b16 9479 init_rt_rq(&rq->rt, rq);
dd41f596 9480#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9481 init_task_group.shares = init_task_group_load;
6f505b16 9482 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9483#ifdef CONFIG_CGROUP_SCHED
9484 /*
9485 * How much cpu bandwidth does init_task_group get?
9486 *
9487 * In case of task-groups formed thr' the cgroup filesystem, it
9488 * gets 100% of the cpu resources in the system. This overall
9489 * system cpu resource is divided among the tasks of
9490 * init_task_group and its child task-groups in a fair manner,
9491 * based on each entity's (task or task-group's) weight
9492 * (se->load.weight).
9493 *
9494 * In other words, if init_task_group has 10 tasks of weight
9495 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9496 * then A0's share of the cpu resource is:
9497 *
0d905bca 9498 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9499 *
9500 * We achieve this by letting init_task_group's tasks sit
9501 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9502 */
ec7dc8ac 9503 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9504#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9505 root_task_group.shares = NICE_0_LOAD;
9506 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9507 /*
9508 * In case of task-groups formed thr' the user id of tasks,
9509 * init_task_group represents tasks belonging to root user.
9510 * Hence it forms a sibling of all subsequent groups formed.
9511 * In this case, init_task_group gets only a fraction of overall
9512 * system cpu resource, based on the weight assigned to root
9513 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9514 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9515 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9516 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9517 */
ec7dc8ac 9518 init_tg_cfs_entry(&init_task_group,
84e9dabf 9519 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9520 &per_cpu(init_sched_entity, i), i, 1,
9521 root_task_group.se[i]);
6f505b16 9522
052f1dc7 9523#endif
354d60c2
DG
9524#endif /* CONFIG_FAIR_GROUP_SCHED */
9525
9526 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9527#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9528 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9529#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9530 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9531#elif defined CONFIG_USER_SCHED
eff766a6 9532 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9533 init_tg_rt_entry(&init_task_group,
6f505b16 9534 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9535 &per_cpu(init_sched_rt_entity, i), i, 1,
9536 root_task_group.rt_se[i]);
354d60c2 9537#endif
dd41f596 9538#endif
1da177e4 9539
dd41f596
IM
9540 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9541 rq->cpu_load[j] = 0;
1da177e4 9542#ifdef CONFIG_SMP
41c7ce9a 9543 rq->sd = NULL;
57d885fe 9544 rq->rd = NULL;
3f029d3c 9545 rq->post_schedule = 0;
1da177e4 9546 rq->active_balance = 0;
dd41f596 9547 rq->next_balance = jiffies;
1da177e4 9548 rq->push_cpu = 0;
0a2966b4 9549 rq->cpu = i;
1f11eb6a 9550 rq->online = 0;
1da177e4
LT
9551 rq->migration_thread = NULL;
9552 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9553 rq_attach_root(rq, &def_root_domain);
1da177e4 9554#endif
8f4d37ec 9555 init_rq_hrtick(rq);
1da177e4 9556 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9557 }
9558
2dd73a4f 9559 set_load_weight(&init_task);
b50f60ce 9560
e107be36
AK
9561#ifdef CONFIG_PREEMPT_NOTIFIERS
9562 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9563#endif
9564
c9819f45 9565#ifdef CONFIG_SMP
962cf36c 9566 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9567#endif
9568
b50f60ce
HC
9569#ifdef CONFIG_RT_MUTEXES
9570 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9571#endif
9572
1da177e4
LT
9573 /*
9574 * The boot idle thread does lazy MMU switching as well:
9575 */
9576 atomic_inc(&init_mm.mm_count);
9577 enter_lazy_tlb(&init_mm, current);
9578
9579 /*
9580 * Make us the idle thread. Technically, schedule() should not be
9581 * called from this thread, however somewhere below it might be,
9582 * but because we are the idle thread, we just pick up running again
9583 * when this runqueue becomes "idle".
9584 */
9585 init_idle(current, smp_processor_id());
dce48a84
TG
9586
9587 calc_load_update = jiffies + LOAD_FREQ;
9588
dd41f596
IM
9589 /*
9590 * During early bootup we pretend to be a normal task:
9591 */
9592 current->sched_class = &fair_sched_class;
6892b75e 9593
6a7b3dc3 9594 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
4bdddf8f 9595 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9596#ifdef CONFIG_SMP
7d1e6a9b 9597#ifdef CONFIG_NO_HZ
4bdddf8f
PE
9598 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9599 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9600#endif
4bdddf8f 9601 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9602#endif /* SMP */
6a7b3dc3 9603
0d905bca
IM
9604 perf_counter_init();
9605
6892b75e 9606 scheduler_running = 1;
1da177e4
LT
9607}
9608
9609#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9610static inline int preempt_count_equals(int preempt_offset)
9611{
9612 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9613
9614 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9615}
9616
9617void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9618{
48f24c4d 9619#ifdef in_atomic
1da177e4
LT
9620 static unsigned long prev_jiffy; /* ratelimiting */
9621
e4aafea2
FW
9622 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9623 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9624 return;
9625 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9626 return;
9627 prev_jiffy = jiffies;
9628
9629 printk(KERN_ERR
9630 "BUG: sleeping function called from invalid context at %s:%d\n",
9631 file, line);
9632 printk(KERN_ERR
9633 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9634 in_atomic(), irqs_disabled(),
9635 current->pid, current->comm);
9636
9637 debug_show_held_locks(current);
9638 if (irqs_disabled())
9639 print_irqtrace_events(current);
9640 dump_stack();
1da177e4
LT
9641#endif
9642}
9643EXPORT_SYMBOL(__might_sleep);
9644#endif
9645
9646#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9647static void normalize_task(struct rq *rq, struct task_struct *p)
9648{
9649 int on_rq;
3e51f33f 9650
3a5e4dc1
AK
9651 update_rq_clock(rq);
9652 on_rq = p->se.on_rq;
9653 if (on_rq)
9654 deactivate_task(rq, p, 0);
9655 __setscheduler(rq, p, SCHED_NORMAL, 0);
9656 if (on_rq) {
9657 activate_task(rq, p, 0);
9658 resched_task(rq->curr);
9659 }
9660}
9661
1da177e4
LT
9662void normalize_rt_tasks(void)
9663{
a0f98a1c 9664 struct task_struct *g, *p;
1da177e4 9665 unsigned long flags;
70b97a7f 9666 struct rq *rq;
1da177e4 9667
4cf5d77a 9668 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9669 do_each_thread(g, p) {
178be793
IM
9670 /*
9671 * Only normalize user tasks:
9672 */
9673 if (!p->mm)
9674 continue;
9675
6cfb0d5d 9676 p->se.exec_start = 0;
6cfb0d5d 9677#ifdef CONFIG_SCHEDSTATS
dd41f596 9678 p->se.wait_start = 0;
dd41f596 9679 p->se.sleep_start = 0;
dd41f596 9680 p->se.block_start = 0;
6cfb0d5d 9681#endif
dd41f596
IM
9682
9683 if (!rt_task(p)) {
9684 /*
9685 * Renice negative nice level userspace
9686 * tasks back to 0:
9687 */
9688 if (TASK_NICE(p) < 0 && p->mm)
9689 set_user_nice(p, 0);
1da177e4 9690 continue;
dd41f596 9691 }
1da177e4 9692
4cf5d77a 9693 spin_lock(&p->pi_lock);
b29739f9 9694 rq = __task_rq_lock(p);
1da177e4 9695
178be793 9696 normalize_task(rq, p);
3a5e4dc1 9697
b29739f9 9698 __task_rq_unlock(rq);
4cf5d77a 9699 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9700 } while_each_thread(g, p);
9701
4cf5d77a 9702 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9703}
9704
9705#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9706
9707#ifdef CONFIG_IA64
9708/*
9709 * These functions are only useful for the IA64 MCA handling.
9710 *
9711 * They can only be called when the whole system has been
9712 * stopped - every CPU needs to be quiescent, and no scheduling
9713 * activity can take place. Using them for anything else would
9714 * be a serious bug, and as a result, they aren't even visible
9715 * under any other configuration.
9716 */
9717
9718/**
9719 * curr_task - return the current task for a given cpu.
9720 * @cpu: the processor in question.
9721 *
9722 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9723 */
36c8b586 9724struct task_struct *curr_task(int cpu)
1df5c10a
LT
9725{
9726 return cpu_curr(cpu);
9727}
9728
9729/**
9730 * set_curr_task - set the current task for a given cpu.
9731 * @cpu: the processor in question.
9732 * @p: the task pointer to set.
9733 *
9734 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9735 * are serviced on a separate stack. It allows the architecture to switch the
9736 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9737 * must be called with all CPU's synchronized, and interrupts disabled, the
9738 * and caller must save the original value of the current task (see
9739 * curr_task() above) and restore that value before reenabling interrupts and
9740 * re-starting the system.
9741 *
9742 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9743 */
36c8b586 9744void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9745{
9746 cpu_curr(cpu) = p;
9747}
9748
9749#endif
29f59db3 9750
bccbe08a
PZ
9751#ifdef CONFIG_FAIR_GROUP_SCHED
9752static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9753{
9754 int i;
9755
9756 for_each_possible_cpu(i) {
9757 if (tg->cfs_rq)
9758 kfree(tg->cfs_rq[i]);
9759 if (tg->se)
9760 kfree(tg->se[i]);
6f505b16
PZ
9761 }
9762
9763 kfree(tg->cfs_rq);
9764 kfree(tg->se);
6f505b16
PZ
9765}
9766
ec7dc8ac
DG
9767static
9768int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9769{
29f59db3 9770 struct cfs_rq *cfs_rq;
eab17229 9771 struct sched_entity *se;
9b5b7751 9772 struct rq *rq;
29f59db3
SV
9773 int i;
9774
434d53b0 9775 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9776 if (!tg->cfs_rq)
9777 goto err;
434d53b0 9778 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9779 if (!tg->se)
9780 goto err;
052f1dc7
PZ
9781
9782 tg->shares = NICE_0_LOAD;
29f59db3
SV
9783
9784 for_each_possible_cpu(i) {
9b5b7751 9785 rq = cpu_rq(i);
29f59db3 9786
eab17229
LZ
9787 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9788 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9789 if (!cfs_rq)
9790 goto err;
9791
eab17229
LZ
9792 se = kzalloc_node(sizeof(struct sched_entity),
9793 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9794 if (!se)
9795 goto err;
9796
eab17229 9797 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9798 }
9799
9800 return 1;
9801
9802 err:
9803 return 0;
9804}
9805
9806static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9807{
9808 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9809 &cpu_rq(cpu)->leaf_cfs_rq_list);
9810}
9811
9812static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9813{
9814 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9815}
6d6bc0ad 9816#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9817static inline void free_fair_sched_group(struct task_group *tg)
9818{
9819}
9820
ec7dc8ac
DG
9821static inline
9822int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9823{
9824 return 1;
9825}
9826
9827static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9828{
9829}
9830
9831static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9832{
9833}
6d6bc0ad 9834#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9835
9836#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9837static void free_rt_sched_group(struct task_group *tg)
9838{
9839 int i;
9840
d0b27fa7
PZ
9841 destroy_rt_bandwidth(&tg->rt_bandwidth);
9842
bccbe08a
PZ
9843 for_each_possible_cpu(i) {
9844 if (tg->rt_rq)
9845 kfree(tg->rt_rq[i]);
9846 if (tg->rt_se)
9847 kfree(tg->rt_se[i]);
9848 }
9849
9850 kfree(tg->rt_rq);
9851 kfree(tg->rt_se);
9852}
9853
ec7dc8ac
DG
9854static
9855int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9856{
9857 struct rt_rq *rt_rq;
eab17229 9858 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9859 struct rq *rq;
9860 int i;
9861
434d53b0 9862 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9863 if (!tg->rt_rq)
9864 goto err;
434d53b0 9865 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9866 if (!tg->rt_se)
9867 goto err;
9868
d0b27fa7
PZ
9869 init_rt_bandwidth(&tg->rt_bandwidth,
9870 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9871
9872 for_each_possible_cpu(i) {
9873 rq = cpu_rq(i);
9874
eab17229
LZ
9875 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9876 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9877 if (!rt_rq)
9878 goto err;
29f59db3 9879
eab17229
LZ
9880 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9881 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9882 if (!rt_se)
9883 goto err;
29f59db3 9884
eab17229 9885 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9886 }
9887
bccbe08a
PZ
9888 return 1;
9889
9890 err:
9891 return 0;
9892}
9893
9894static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9895{
9896 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9897 &cpu_rq(cpu)->leaf_rt_rq_list);
9898}
9899
9900static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9901{
9902 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9903}
6d6bc0ad 9904#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9905static inline void free_rt_sched_group(struct task_group *tg)
9906{
9907}
9908
ec7dc8ac
DG
9909static inline
9910int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9911{
9912 return 1;
9913}
9914
9915static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9916{
9917}
9918
9919static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9920{
9921}
6d6bc0ad 9922#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9923
d0b27fa7 9924#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9925static void free_sched_group(struct task_group *tg)
9926{
9927 free_fair_sched_group(tg);
9928 free_rt_sched_group(tg);
9929 kfree(tg);
9930}
9931
9932/* allocate runqueue etc for a new task group */
ec7dc8ac 9933struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9934{
9935 struct task_group *tg;
9936 unsigned long flags;
9937 int i;
9938
9939 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9940 if (!tg)
9941 return ERR_PTR(-ENOMEM);
9942
ec7dc8ac 9943 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9944 goto err;
9945
ec7dc8ac 9946 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9947 goto err;
9948
8ed36996 9949 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9950 for_each_possible_cpu(i) {
bccbe08a
PZ
9951 register_fair_sched_group(tg, i);
9952 register_rt_sched_group(tg, i);
9b5b7751 9953 }
6f505b16 9954 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9955
9956 WARN_ON(!parent); /* root should already exist */
9957
9958 tg->parent = parent;
f473aa5e 9959 INIT_LIST_HEAD(&tg->children);
09f2724a 9960 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9961 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9962
9b5b7751 9963 return tg;
29f59db3
SV
9964
9965err:
6f505b16 9966 free_sched_group(tg);
29f59db3
SV
9967 return ERR_PTR(-ENOMEM);
9968}
9969
9b5b7751 9970/* rcu callback to free various structures associated with a task group */
6f505b16 9971static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9972{
29f59db3 9973 /* now it should be safe to free those cfs_rqs */
6f505b16 9974 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9975}
9976
9b5b7751 9977/* Destroy runqueue etc associated with a task group */
4cf86d77 9978void sched_destroy_group(struct task_group *tg)
29f59db3 9979{
8ed36996 9980 unsigned long flags;
9b5b7751 9981 int i;
29f59db3 9982
8ed36996 9983 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9984 for_each_possible_cpu(i) {
bccbe08a
PZ
9985 unregister_fair_sched_group(tg, i);
9986 unregister_rt_sched_group(tg, i);
9b5b7751 9987 }
6f505b16 9988 list_del_rcu(&tg->list);
f473aa5e 9989 list_del_rcu(&tg->siblings);
8ed36996 9990 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9991
9b5b7751 9992 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9993 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9994}
9995
9b5b7751 9996/* change task's runqueue when it moves between groups.
3a252015
IM
9997 * The caller of this function should have put the task in its new group
9998 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9999 * reflect its new group.
9b5b7751
SV
10000 */
10001void sched_move_task(struct task_struct *tsk)
29f59db3
SV
10002{
10003 int on_rq, running;
10004 unsigned long flags;
10005 struct rq *rq;
10006
10007 rq = task_rq_lock(tsk, &flags);
10008
29f59db3
SV
10009 update_rq_clock(rq);
10010
051a1d1a 10011 running = task_current(rq, tsk);
29f59db3
SV
10012 on_rq = tsk->se.on_rq;
10013
0e1f3483 10014 if (on_rq)
29f59db3 10015 dequeue_task(rq, tsk, 0);
0e1f3483
HS
10016 if (unlikely(running))
10017 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 10018
6f505b16 10019 set_task_rq(tsk, task_cpu(tsk));
29f59db3 10020
810b3817
PZ
10021#ifdef CONFIG_FAIR_GROUP_SCHED
10022 if (tsk->sched_class->moved_group)
10023 tsk->sched_class->moved_group(tsk);
10024#endif
10025
0e1f3483
HS
10026 if (unlikely(running))
10027 tsk->sched_class->set_curr_task(rq);
10028 if (on_rq)
7074badb 10029 enqueue_task(rq, tsk, 0);
29f59db3 10030
29f59db3
SV
10031 task_rq_unlock(rq, &flags);
10032}
6d6bc0ad 10033#endif /* CONFIG_GROUP_SCHED */
29f59db3 10034
052f1dc7 10035#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 10036static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
10037{
10038 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
10039 int on_rq;
10040
29f59db3 10041 on_rq = se->on_rq;
62fb1851 10042 if (on_rq)
29f59db3
SV
10043 dequeue_entity(cfs_rq, se, 0);
10044
10045 se->load.weight = shares;
e05510d0 10046 se->load.inv_weight = 0;
29f59db3 10047
62fb1851 10048 if (on_rq)
29f59db3 10049 enqueue_entity(cfs_rq, se, 0);
c09595f6 10050}
62fb1851 10051
c09595f6
PZ
10052static void set_se_shares(struct sched_entity *se, unsigned long shares)
10053{
10054 struct cfs_rq *cfs_rq = se->cfs_rq;
10055 struct rq *rq = cfs_rq->rq;
10056 unsigned long flags;
10057
10058 spin_lock_irqsave(&rq->lock, flags);
10059 __set_se_shares(se, shares);
10060 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
10061}
10062
8ed36996
PZ
10063static DEFINE_MUTEX(shares_mutex);
10064
4cf86d77 10065int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
10066{
10067 int i;
8ed36996 10068 unsigned long flags;
c61935fd 10069
ec7dc8ac
DG
10070 /*
10071 * We can't change the weight of the root cgroup.
10072 */
10073 if (!tg->se[0])
10074 return -EINVAL;
10075
18d95a28
PZ
10076 if (shares < MIN_SHARES)
10077 shares = MIN_SHARES;
cb4ad1ff
MX
10078 else if (shares > MAX_SHARES)
10079 shares = MAX_SHARES;
62fb1851 10080
8ed36996 10081 mutex_lock(&shares_mutex);
9b5b7751 10082 if (tg->shares == shares)
5cb350ba 10083 goto done;
29f59db3 10084
8ed36996 10085 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10086 for_each_possible_cpu(i)
10087 unregister_fair_sched_group(tg, i);
f473aa5e 10088 list_del_rcu(&tg->siblings);
8ed36996 10089 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10090
10091 /* wait for any ongoing reference to this group to finish */
10092 synchronize_sched();
10093
10094 /*
10095 * Now we are free to modify the group's share on each cpu
10096 * w/o tripping rebalance_share or load_balance_fair.
10097 */
9b5b7751 10098 tg->shares = shares;
c09595f6
PZ
10099 for_each_possible_cpu(i) {
10100 /*
10101 * force a rebalance
10102 */
10103 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10104 set_se_shares(tg->se[i], shares);
c09595f6 10105 }
29f59db3 10106
6b2d7700
SV
10107 /*
10108 * Enable load balance activity on this group, by inserting it back on
10109 * each cpu's rq->leaf_cfs_rq_list.
10110 */
8ed36996 10111 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10112 for_each_possible_cpu(i)
10113 register_fair_sched_group(tg, i);
f473aa5e 10114 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10115 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10116done:
8ed36996 10117 mutex_unlock(&shares_mutex);
9b5b7751 10118 return 0;
29f59db3
SV
10119}
10120
5cb350ba
DG
10121unsigned long sched_group_shares(struct task_group *tg)
10122{
10123 return tg->shares;
10124}
052f1dc7 10125#endif
5cb350ba 10126
052f1dc7 10127#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10128/*
9f0c1e56 10129 * Ensure that the real time constraints are schedulable.
6f505b16 10130 */
9f0c1e56
PZ
10131static DEFINE_MUTEX(rt_constraints_mutex);
10132
10133static unsigned long to_ratio(u64 period, u64 runtime)
10134{
10135 if (runtime == RUNTIME_INF)
9a7e0b18 10136 return 1ULL << 20;
9f0c1e56 10137
9a7e0b18 10138 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10139}
10140
9a7e0b18
PZ
10141/* Must be called with tasklist_lock held */
10142static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10143{
9a7e0b18 10144 struct task_struct *g, *p;
b40b2e8e 10145
9a7e0b18
PZ
10146 do_each_thread(g, p) {
10147 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10148 return 1;
10149 } while_each_thread(g, p);
b40b2e8e 10150
9a7e0b18
PZ
10151 return 0;
10152}
b40b2e8e 10153
9a7e0b18
PZ
10154struct rt_schedulable_data {
10155 struct task_group *tg;
10156 u64 rt_period;
10157 u64 rt_runtime;
10158};
b40b2e8e 10159
9a7e0b18
PZ
10160static int tg_schedulable(struct task_group *tg, void *data)
10161{
10162 struct rt_schedulable_data *d = data;
10163 struct task_group *child;
10164 unsigned long total, sum = 0;
10165 u64 period, runtime;
b40b2e8e 10166
9a7e0b18
PZ
10167 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10168 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10169
9a7e0b18
PZ
10170 if (tg == d->tg) {
10171 period = d->rt_period;
10172 runtime = d->rt_runtime;
b40b2e8e 10173 }
b40b2e8e 10174
98a4826b
PZ
10175#ifdef CONFIG_USER_SCHED
10176 if (tg == &root_task_group) {
10177 period = global_rt_period();
10178 runtime = global_rt_runtime();
10179 }
10180#endif
10181
4653f803
PZ
10182 /*
10183 * Cannot have more runtime than the period.
10184 */
10185 if (runtime > period && runtime != RUNTIME_INF)
10186 return -EINVAL;
6f505b16 10187
4653f803
PZ
10188 /*
10189 * Ensure we don't starve existing RT tasks.
10190 */
9a7e0b18
PZ
10191 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10192 return -EBUSY;
6f505b16 10193
9a7e0b18 10194 total = to_ratio(period, runtime);
6f505b16 10195
4653f803
PZ
10196 /*
10197 * Nobody can have more than the global setting allows.
10198 */
10199 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10200 return -EINVAL;
6f505b16 10201
4653f803
PZ
10202 /*
10203 * The sum of our children's runtime should not exceed our own.
10204 */
9a7e0b18
PZ
10205 list_for_each_entry_rcu(child, &tg->children, siblings) {
10206 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10207 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10208
9a7e0b18
PZ
10209 if (child == d->tg) {
10210 period = d->rt_period;
10211 runtime = d->rt_runtime;
10212 }
6f505b16 10213
9a7e0b18 10214 sum += to_ratio(period, runtime);
9f0c1e56 10215 }
6f505b16 10216
9a7e0b18
PZ
10217 if (sum > total)
10218 return -EINVAL;
10219
10220 return 0;
6f505b16
PZ
10221}
10222
9a7e0b18 10223static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10224{
9a7e0b18
PZ
10225 struct rt_schedulable_data data = {
10226 .tg = tg,
10227 .rt_period = period,
10228 .rt_runtime = runtime,
10229 };
10230
10231 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10232}
10233
d0b27fa7
PZ
10234static int tg_set_bandwidth(struct task_group *tg,
10235 u64 rt_period, u64 rt_runtime)
6f505b16 10236{
ac086bc2 10237 int i, err = 0;
9f0c1e56 10238
9f0c1e56 10239 mutex_lock(&rt_constraints_mutex);
521f1a24 10240 read_lock(&tasklist_lock);
9a7e0b18
PZ
10241 err = __rt_schedulable(tg, rt_period, rt_runtime);
10242 if (err)
9f0c1e56 10243 goto unlock;
ac086bc2
PZ
10244
10245 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10246 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10247 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10248
10249 for_each_possible_cpu(i) {
10250 struct rt_rq *rt_rq = tg->rt_rq[i];
10251
10252 spin_lock(&rt_rq->rt_runtime_lock);
10253 rt_rq->rt_runtime = rt_runtime;
10254 spin_unlock(&rt_rq->rt_runtime_lock);
10255 }
10256 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10257 unlock:
521f1a24 10258 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10259 mutex_unlock(&rt_constraints_mutex);
10260
10261 return err;
6f505b16
PZ
10262}
10263
d0b27fa7
PZ
10264int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10265{
10266 u64 rt_runtime, rt_period;
10267
10268 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10269 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10270 if (rt_runtime_us < 0)
10271 rt_runtime = RUNTIME_INF;
10272
10273 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10274}
10275
9f0c1e56
PZ
10276long sched_group_rt_runtime(struct task_group *tg)
10277{
10278 u64 rt_runtime_us;
10279
d0b27fa7 10280 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10281 return -1;
10282
d0b27fa7 10283 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10284 do_div(rt_runtime_us, NSEC_PER_USEC);
10285 return rt_runtime_us;
10286}
d0b27fa7
PZ
10287
10288int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10289{
10290 u64 rt_runtime, rt_period;
10291
10292 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10293 rt_runtime = tg->rt_bandwidth.rt_runtime;
10294
619b0488
R
10295 if (rt_period == 0)
10296 return -EINVAL;
10297
d0b27fa7
PZ
10298 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10299}
10300
10301long sched_group_rt_period(struct task_group *tg)
10302{
10303 u64 rt_period_us;
10304
10305 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10306 do_div(rt_period_us, NSEC_PER_USEC);
10307 return rt_period_us;
10308}
10309
10310static int sched_rt_global_constraints(void)
10311{
4653f803 10312 u64 runtime, period;
d0b27fa7
PZ
10313 int ret = 0;
10314
ec5d4989
HS
10315 if (sysctl_sched_rt_period <= 0)
10316 return -EINVAL;
10317
4653f803
PZ
10318 runtime = global_rt_runtime();
10319 period = global_rt_period();
10320
10321 /*
10322 * Sanity check on the sysctl variables.
10323 */
10324 if (runtime > period && runtime != RUNTIME_INF)
10325 return -EINVAL;
10b612f4 10326
d0b27fa7 10327 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10328 read_lock(&tasklist_lock);
4653f803 10329 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10330 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10331 mutex_unlock(&rt_constraints_mutex);
10332
10333 return ret;
10334}
54e99124
DG
10335
10336int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10337{
10338 /* Don't accept realtime tasks when there is no way for them to run */
10339 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10340 return 0;
10341
10342 return 1;
10343}
10344
6d6bc0ad 10345#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10346static int sched_rt_global_constraints(void)
10347{
ac086bc2
PZ
10348 unsigned long flags;
10349 int i;
10350
ec5d4989
HS
10351 if (sysctl_sched_rt_period <= 0)
10352 return -EINVAL;
10353
60aa605d
PZ
10354 /*
10355 * There's always some RT tasks in the root group
10356 * -- migration, kstopmachine etc..
10357 */
10358 if (sysctl_sched_rt_runtime == 0)
10359 return -EBUSY;
10360
ac086bc2
PZ
10361 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10362 for_each_possible_cpu(i) {
10363 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10364
10365 spin_lock(&rt_rq->rt_runtime_lock);
10366 rt_rq->rt_runtime = global_rt_runtime();
10367 spin_unlock(&rt_rq->rt_runtime_lock);
10368 }
10369 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10370
d0b27fa7
PZ
10371 return 0;
10372}
6d6bc0ad 10373#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10374
10375int sched_rt_handler(struct ctl_table *table, int write,
10376 struct file *filp, void __user *buffer, size_t *lenp,
10377 loff_t *ppos)
10378{
10379 int ret;
10380 int old_period, old_runtime;
10381 static DEFINE_MUTEX(mutex);
10382
10383 mutex_lock(&mutex);
10384 old_period = sysctl_sched_rt_period;
10385 old_runtime = sysctl_sched_rt_runtime;
10386
10387 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10388
10389 if (!ret && write) {
10390 ret = sched_rt_global_constraints();
10391 if (ret) {
10392 sysctl_sched_rt_period = old_period;
10393 sysctl_sched_rt_runtime = old_runtime;
10394 } else {
10395 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10396 def_rt_bandwidth.rt_period =
10397 ns_to_ktime(global_rt_period());
10398 }
10399 }
10400 mutex_unlock(&mutex);
10401
10402 return ret;
10403}
68318b8e 10404
052f1dc7 10405#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10406
10407/* return corresponding task_group object of a cgroup */
2b01dfe3 10408static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10409{
2b01dfe3
PM
10410 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10411 struct task_group, css);
68318b8e
SV
10412}
10413
10414static struct cgroup_subsys_state *
2b01dfe3 10415cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10416{
ec7dc8ac 10417 struct task_group *tg, *parent;
68318b8e 10418
2b01dfe3 10419 if (!cgrp->parent) {
68318b8e 10420 /* This is early initialization for the top cgroup */
68318b8e
SV
10421 return &init_task_group.css;
10422 }
10423
ec7dc8ac
DG
10424 parent = cgroup_tg(cgrp->parent);
10425 tg = sched_create_group(parent);
68318b8e
SV
10426 if (IS_ERR(tg))
10427 return ERR_PTR(-ENOMEM);
10428
68318b8e
SV
10429 return &tg->css;
10430}
10431
41a2d6cf
IM
10432static void
10433cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10434{
2b01dfe3 10435 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10436
10437 sched_destroy_group(tg);
10438}
10439
41a2d6cf
IM
10440static int
10441cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10442 struct task_struct *tsk)
68318b8e 10443{
b68aa230 10444#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10445 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10446 return -EINVAL;
10447#else
68318b8e
SV
10448 /* We don't support RT-tasks being in separate groups */
10449 if (tsk->sched_class != &fair_sched_class)
10450 return -EINVAL;
b68aa230 10451#endif
68318b8e
SV
10452
10453 return 0;
10454}
10455
10456static void
2b01dfe3 10457cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
10458 struct cgroup *old_cont, struct task_struct *tsk)
10459{
10460 sched_move_task(tsk);
10461}
10462
052f1dc7 10463#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10464static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10465 u64 shareval)
68318b8e 10466{
2b01dfe3 10467 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10468}
10469
f4c753b7 10470static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10471{
2b01dfe3 10472 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10473
10474 return (u64) tg->shares;
10475}
6d6bc0ad 10476#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10477
052f1dc7 10478#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10479static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10480 s64 val)
6f505b16 10481{
06ecb27c 10482 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10483}
10484
06ecb27c 10485static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10486{
06ecb27c 10487 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10488}
d0b27fa7
PZ
10489
10490static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10491 u64 rt_period_us)
10492{
10493 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10494}
10495
10496static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10497{
10498 return sched_group_rt_period(cgroup_tg(cgrp));
10499}
6d6bc0ad 10500#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10501
fe5c7cc2 10502static struct cftype cpu_files[] = {
052f1dc7 10503#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10504 {
10505 .name = "shares",
f4c753b7
PM
10506 .read_u64 = cpu_shares_read_u64,
10507 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10508 },
052f1dc7
PZ
10509#endif
10510#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10511 {
9f0c1e56 10512 .name = "rt_runtime_us",
06ecb27c
PM
10513 .read_s64 = cpu_rt_runtime_read,
10514 .write_s64 = cpu_rt_runtime_write,
6f505b16 10515 },
d0b27fa7
PZ
10516 {
10517 .name = "rt_period_us",
f4c753b7
PM
10518 .read_u64 = cpu_rt_period_read_uint,
10519 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10520 },
052f1dc7 10521#endif
68318b8e
SV
10522};
10523
10524static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10525{
fe5c7cc2 10526 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10527}
10528
10529struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10530 .name = "cpu",
10531 .create = cpu_cgroup_create,
10532 .destroy = cpu_cgroup_destroy,
10533 .can_attach = cpu_cgroup_can_attach,
10534 .attach = cpu_cgroup_attach,
10535 .populate = cpu_cgroup_populate,
10536 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10537 .early_init = 1,
10538};
10539
052f1dc7 10540#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10541
10542#ifdef CONFIG_CGROUP_CPUACCT
10543
10544/*
10545 * CPU accounting code for task groups.
10546 *
10547 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10548 * (balbir@in.ibm.com).
10549 */
10550
934352f2 10551/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10552struct cpuacct {
10553 struct cgroup_subsys_state css;
10554 /* cpuusage holds pointer to a u64-type object on every cpu */
10555 u64 *cpuusage;
ef12fefa 10556 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10557 struct cpuacct *parent;
d842de87
SV
10558};
10559
10560struct cgroup_subsys cpuacct_subsys;
10561
10562/* return cpu accounting group corresponding to this container */
32cd756a 10563static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10564{
32cd756a 10565 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10566 struct cpuacct, css);
10567}
10568
10569/* return cpu accounting group to which this task belongs */
10570static inline struct cpuacct *task_ca(struct task_struct *tsk)
10571{
10572 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10573 struct cpuacct, css);
10574}
10575
10576/* create a new cpu accounting group */
10577static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10578 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10579{
10580 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10581 int i;
d842de87
SV
10582
10583 if (!ca)
ef12fefa 10584 goto out;
d842de87
SV
10585
10586 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10587 if (!ca->cpuusage)
10588 goto out_free_ca;
10589
10590 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10591 if (percpu_counter_init(&ca->cpustat[i], 0))
10592 goto out_free_counters;
d842de87 10593
934352f2
BR
10594 if (cgrp->parent)
10595 ca->parent = cgroup_ca(cgrp->parent);
10596
d842de87 10597 return &ca->css;
ef12fefa
BR
10598
10599out_free_counters:
10600 while (--i >= 0)
10601 percpu_counter_destroy(&ca->cpustat[i]);
10602 free_percpu(ca->cpuusage);
10603out_free_ca:
10604 kfree(ca);
10605out:
10606 return ERR_PTR(-ENOMEM);
d842de87
SV
10607}
10608
10609/* destroy an existing cpu accounting group */
41a2d6cf 10610static void
32cd756a 10611cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10612{
32cd756a 10613 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10614 int i;
d842de87 10615
ef12fefa
BR
10616 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10617 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10618 free_percpu(ca->cpuusage);
10619 kfree(ca);
10620}
10621
720f5498
KC
10622static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10623{
b36128c8 10624 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10625 u64 data;
10626
10627#ifndef CONFIG_64BIT
10628 /*
10629 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10630 */
10631 spin_lock_irq(&cpu_rq(cpu)->lock);
10632 data = *cpuusage;
10633 spin_unlock_irq(&cpu_rq(cpu)->lock);
10634#else
10635 data = *cpuusage;
10636#endif
10637
10638 return data;
10639}
10640
10641static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10642{
b36128c8 10643 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10644
10645#ifndef CONFIG_64BIT
10646 /*
10647 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10648 */
10649 spin_lock_irq(&cpu_rq(cpu)->lock);
10650 *cpuusage = val;
10651 spin_unlock_irq(&cpu_rq(cpu)->lock);
10652#else
10653 *cpuusage = val;
10654#endif
10655}
10656
d842de87 10657/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10658static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10659{
32cd756a 10660 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10661 u64 totalcpuusage = 0;
10662 int i;
10663
720f5498
KC
10664 for_each_present_cpu(i)
10665 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10666
10667 return totalcpuusage;
10668}
10669
0297b803
DG
10670static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10671 u64 reset)
10672{
10673 struct cpuacct *ca = cgroup_ca(cgrp);
10674 int err = 0;
10675 int i;
10676
10677 if (reset) {
10678 err = -EINVAL;
10679 goto out;
10680 }
10681
720f5498
KC
10682 for_each_present_cpu(i)
10683 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10684
0297b803
DG
10685out:
10686 return err;
10687}
10688
e9515c3c
KC
10689static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10690 struct seq_file *m)
10691{
10692 struct cpuacct *ca = cgroup_ca(cgroup);
10693 u64 percpu;
10694 int i;
10695
10696 for_each_present_cpu(i) {
10697 percpu = cpuacct_cpuusage_read(ca, i);
10698 seq_printf(m, "%llu ", (unsigned long long) percpu);
10699 }
10700 seq_printf(m, "\n");
10701 return 0;
10702}
10703
ef12fefa
BR
10704static const char *cpuacct_stat_desc[] = {
10705 [CPUACCT_STAT_USER] = "user",
10706 [CPUACCT_STAT_SYSTEM] = "system",
10707};
10708
10709static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10710 struct cgroup_map_cb *cb)
10711{
10712 struct cpuacct *ca = cgroup_ca(cgrp);
10713 int i;
10714
10715 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10716 s64 val = percpu_counter_read(&ca->cpustat[i]);
10717 val = cputime64_to_clock_t(val);
10718 cb->fill(cb, cpuacct_stat_desc[i], val);
10719 }
10720 return 0;
10721}
10722
d842de87
SV
10723static struct cftype files[] = {
10724 {
10725 .name = "usage",
f4c753b7
PM
10726 .read_u64 = cpuusage_read,
10727 .write_u64 = cpuusage_write,
d842de87 10728 },
e9515c3c
KC
10729 {
10730 .name = "usage_percpu",
10731 .read_seq_string = cpuacct_percpu_seq_read,
10732 },
ef12fefa
BR
10733 {
10734 .name = "stat",
10735 .read_map = cpuacct_stats_show,
10736 },
d842de87
SV
10737};
10738
32cd756a 10739static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10740{
32cd756a 10741 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10742}
10743
10744/*
10745 * charge this task's execution time to its accounting group.
10746 *
10747 * called with rq->lock held.
10748 */
10749static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10750{
10751 struct cpuacct *ca;
934352f2 10752 int cpu;
d842de87 10753
c40c6f85 10754 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10755 return;
10756
934352f2 10757 cpu = task_cpu(tsk);
a18b83b7
BR
10758
10759 rcu_read_lock();
10760
d842de87 10761 ca = task_ca(tsk);
d842de87 10762
934352f2 10763 for (; ca; ca = ca->parent) {
b36128c8 10764 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10765 *cpuusage += cputime;
10766 }
a18b83b7
BR
10767
10768 rcu_read_unlock();
d842de87
SV
10769}
10770
ef12fefa
BR
10771/*
10772 * Charge the system/user time to the task's accounting group.
10773 */
10774static void cpuacct_update_stats(struct task_struct *tsk,
10775 enum cpuacct_stat_index idx, cputime_t val)
10776{
10777 struct cpuacct *ca;
10778
10779 if (unlikely(!cpuacct_subsys.active))
10780 return;
10781
10782 rcu_read_lock();
10783 ca = task_ca(tsk);
10784
10785 do {
10786 percpu_counter_add(&ca->cpustat[idx], val);
10787 ca = ca->parent;
10788 } while (ca);
10789 rcu_read_unlock();
10790}
10791
d842de87
SV
10792struct cgroup_subsys cpuacct_subsys = {
10793 .name = "cpuacct",
10794 .create = cpuacct_create,
10795 .destroy = cpuacct_destroy,
10796 .populate = cpuacct_populate,
10797 .subsys_id = cpuacct_subsys_id,
10798};
10799#endif /* CONFIG_CGROUP_CPUACCT */