]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: Add SD_PREFER_SIBLING
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
0d905bca 42#include <linux/perf_counter.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
5517d86b 67#include <linux/reciprocal_div.h>
dff06c15 68#include <linux/unistd.h>
f5ff8422 69#include <linux/pagemap.h>
8f4d37ec 70#include <linux/hrtimer.h>
30914a58 71#include <linux/tick.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2
GH
79#include "sched_cpupri.h"
80
a8d154b0 81#define CREATE_TRACE_POINTS
ad8d75ff 82#include <trace/events/sched.h>
a8d154b0 83
1da177e4
LT
84/*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93/*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102/*
d7876a08 103 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 104 */
d6322faf 105#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 106
6aa645ea
IM
107#define NICE_0_LOAD SCHED_LOAD_SCALE
108#define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
1da177e4
LT
110/*
111 * These are the 'tuning knobs' of the scheduler:
112 *
a4ec24b4 113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
114 * Timeslices get refilled after they expire.
115 */
1da177e4 116#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 117
d0b27fa7
PZ
118/*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121#define RUNTIME_INF ((u64)~0ULL)
122
5517d86b 123#ifdef CONFIG_SMP
fd2ab30b
SN
124
125static void double_rq_lock(struct rq *rq1, struct rq *rq2);
126
5517d86b
ED
127/*
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
130 */
131static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
132{
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
134}
135
136/*
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
139 */
140static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
141{
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
144}
145#endif
146
e05606d3
IM
147static inline int rt_policy(int policy)
148{
3f33a7ce 149 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
150 return 1;
151 return 0;
152}
153
154static inline int task_has_rt_policy(struct task_struct *p)
155{
156 return rt_policy(p->policy);
157}
158
1da177e4 159/*
6aa645ea 160 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 161 */
6aa645ea
IM
162struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO];
165};
166
d0b27fa7 167struct rt_bandwidth {
ea736ed5
IM
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock;
170 ktime_t rt_period;
171 u64 rt_runtime;
172 struct hrtimer rt_period_timer;
d0b27fa7
PZ
173};
174
175static struct rt_bandwidth def_rt_bandwidth;
176
177static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
178
179static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
180{
181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer);
183 ktime_t now;
184 int overrun;
185 int idle = 0;
186
187 for (;;) {
188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
190
191 if (!overrun)
192 break;
193
194 idle = do_sched_rt_period_timer(rt_b, overrun);
195 }
196
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
198}
199
200static
201void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
202{
203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime;
205
ac086bc2
PZ
206 spin_lock_init(&rt_b->rt_runtime_lock);
207
d0b27fa7
PZ
208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
211}
212
c8bfff6d
KH
213static inline int rt_bandwidth_enabled(void)
214{
215 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
216}
217
218static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
219{
220 ktime_t now;
221
cac64d00 222 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
223 return;
224
225 if (hrtimer_active(&rt_b->rt_period_timer))
226 return;
227
228 spin_lock(&rt_b->rt_runtime_lock);
229 for (;;) {
7f1e2ca9
PZ
230 unsigned long delta;
231 ktime_t soft, hard;
232
d0b27fa7
PZ
233 if (hrtimer_active(&rt_b->rt_period_timer))
234 break;
235
236 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
237 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
238
239 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
240 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
241 delta = ktime_to_ns(ktime_sub(hard, soft));
242 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
5c333864 243 HRTIMER_MODE_ABS_PINNED, 0);
d0b27fa7
PZ
244 }
245 spin_unlock(&rt_b->rt_runtime_lock);
246}
247
248#ifdef CONFIG_RT_GROUP_SCHED
249static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
250{
251 hrtimer_cancel(&rt_b->rt_period_timer);
252}
253#endif
254
712555ee
HC
255/*
256 * sched_domains_mutex serializes calls to arch_init_sched_domains,
257 * detach_destroy_domains and partition_sched_domains.
258 */
259static DEFINE_MUTEX(sched_domains_mutex);
260
052f1dc7 261#ifdef CONFIG_GROUP_SCHED
29f59db3 262
68318b8e
SV
263#include <linux/cgroup.h>
264
29f59db3
SV
265struct cfs_rq;
266
6f505b16
PZ
267static LIST_HEAD(task_groups);
268
29f59db3 269/* task group related information */
4cf86d77 270struct task_group {
052f1dc7 271#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
272 struct cgroup_subsys_state css;
273#endif
052f1dc7 274
6c415b92
AB
275#ifdef CONFIG_USER_SCHED
276 uid_t uid;
277#endif
278
052f1dc7 279#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
280 /* schedulable entities of this group on each cpu */
281 struct sched_entity **se;
282 /* runqueue "owned" by this group on each cpu */
283 struct cfs_rq **cfs_rq;
284 unsigned long shares;
052f1dc7
PZ
285#endif
286
287#ifdef CONFIG_RT_GROUP_SCHED
288 struct sched_rt_entity **rt_se;
289 struct rt_rq **rt_rq;
290
d0b27fa7 291 struct rt_bandwidth rt_bandwidth;
052f1dc7 292#endif
6b2d7700 293
ae8393e5 294 struct rcu_head rcu;
6f505b16 295 struct list_head list;
f473aa5e
PZ
296
297 struct task_group *parent;
298 struct list_head siblings;
299 struct list_head children;
29f59db3
SV
300};
301
354d60c2 302#ifdef CONFIG_USER_SCHED
eff766a6 303
6c415b92
AB
304/* Helper function to pass uid information to create_sched_user() */
305void set_tg_uid(struct user_struct *user)
306{
307 user->tg->uid = user->uid;
308}
309
eff766a6
PZ
310/*
311 * Root task group.
84e9dabf
AS
312 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group.
eff766a6
PZ
314 */
315struct task_group root_task_group;
316
052f1dc7 317#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
318/* Default task group's sched entity on each cpu */
319static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
320/* Default task group's cfs_rq on each cpu */
84e9dabf 321static DEFINE_PER_CPU(struct cfs_rq, init_tg_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 322#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
323
324#ifdef CONFIG_RT_GROUP_SCHED
325static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
326static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 327#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 328#else /* !CONFIG_USER_SCHED */
eff766a6 329#define root_task_group init_task_group
9a7e0b18 330#endif /* CONFIG_USER_SCHED */
6f505b16 331
8ed36996 332/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
333 * a task group's cpu shares.
334 */
8ed36996 335static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 336
57310a98
PZ
337#ifdef CONFIG_SMP
338static int root_task_group_empty(void)
339{
340 return list_empty(&root_task_group.children);
341}
342#endif
343
052f1dc7 344#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
345#ifdef CONFIG_USER_SCHED
346# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 347#else /* !CONFIG_USER_SCHED */
052f1dc7 348# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 349#endif /* CONFIG_USER_SCHED */
052f1dc7 350
cb4ad1ff 351/*
2e084786
LJ
352 * A weight of 0 or 1 can cause arithmetics problems.
353 * A weight of a cfs_rq is the sum of weights of which entities
354 * are queued on this cfs_rq, so a weight of a entity should not be
355 * too large, so as the shares value of a task group.
cb4ad1ff
MX
356 * (The default weight is 1024 - so there's no practical
357 * limitation from this.)
358 */
18d95a28 359#define MIN_SHARES 2
2e084786 360#define MAX_SHARES (1UL << 18)
18d95a28 361
052f1dc7
PZ
362static int init_task_group_load = INIT_TASK_GROUP_LOAD;
363#endif
364
29f59db3 365/* Default task group.
3a252015 366 * Every task in system belong to this group at bootup.
29f59db3 367 */
434d53b0 368struct task_group init_task_group;
29f59db3
SV
369
370/* return group to which a task belongs */
4cf86d77 371static inline struct task_group *task_group(struct task_struct *p)
29f59db3 372{
4cf86d77 373 struct task_group *tg;
9b5b7751 374
052f1dc7 375#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
376 rcu_read_lock();
377 tg = __task_cred(p)->user->tg;
378 rcu_read_unlock();
052f1dc7 379#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
380 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
381 struct task_group, css);
24e377a8 382#else
41a2d6cf 383 tg = &init_task_group;
24e377a8 384#endif
9b5b7751 385 return tg;
29f59db3
SV
386}
387
388/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 389static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 390{
052f1dc7 391#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
392 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
393 p->se.parent = task_group(p)->se[cpu];
052f1dc7 394#endif
6f505b16 395
052f1dc7 396#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
397 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
398 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 399#endif
29f59db3
SV
400}
401
402#else
403
57310a98
PZ
404#ifdef CONFIG_SMP
405static int root_task_group_empty(void)
406{
407 return 1;
408}
409#endif
410
6f505b16 411static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
412static inline struct task_group *task_group(struct task_struct *p)
413{
414 return NULL;
415}
29f59db3 416
052f1dc7 417#endif /* CONFIG_GROUP_SCHED */
29f59db3 418
6aa645ea
IM
419/* CFS-related fields in a runqueue */
420struct cfs_rq {
421 struct load_weight load;
422 unsigned long nr_running;
423
6aa645ea 424 u64 exec_clock;
e9acbff6 425 u64 min_vruntime;
6aa645ea
IM
426
427 struct rb_root tasks_timeline;
428 struct rb_node *rb_leftmost;
4a55bd5e
PZ
429
430 struct list_head tasks;
431 struct list_head *balance_iterator;
432
433 /*
434 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
435 * It is set to NULL otherwise (i.e when none are currently running).
436 */
4793241b 437 struct sched_entity *curr, *next, *last;
ddc97297 438
5ac5c4d6 439 unsigned int nr_spread_over;
ddc97297 440
62160e3f 441#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
442 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
443
41a2d6cf
IM
444 /*
445 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
446 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
447 * (like users, containers etc.)
448 *
449 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
450 * list is used during load balance.
451 */
41a2d6cf
IM
452 struct list_head leaf_cfs_rq_list;
453 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
454
455#ifdef CONFIG_SMP
c09595f6 456 /*
c8cba857 457 * the part of load.weight contributed by tasks
c09595f6 458 */
c8cba857 459 unsigned long task_weight;
c09595f6 460
c8cba857
PZ
461 /*
462 * h_load = weight * f(tg)
463 *
464 * Where f(tg) is the recursive weight fraction assigned to
465 * this group.
466 */
467 unsigned long h_load;
c09595f6 468
c8cba857
PZ
469 /*
470 * this cpu's part of tg->shares
471 */
472 unsigned long shares;
f1d239f7
PZ
473
474 /*
475 * load.weight at the time we set shares
476 */
477 unsigned long rq_weight;
c09595f6 478#endif
6aa645ea
IM
479#endif
480};
1da177e4 481
6aa645ea
IM
482/* Real-Time classes' related field in a runqueue: */
483struct rt_rq {
484 struct rt_prio_array active;
63489e45 485 unsigned long rt_nr_running;
052f1dc7 486#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
487 struct {
488 int curr; /* highest queued rt task prio */
398a153b 489#ifdef CONFIG_SMP
e864c499 490 int next; /* next highest */
398a153b 491#endif
e864c499 492 } highest_prio;
6f505b16 493#endif
fa85ae24 494#ifdef CONFIG_SMP
73fe6aae 495 unsigned long rt_nr_migratory;
a1ba4d8b 496 unsigned long rt_nr_total;
a22d7fc1 497 int overloaded;
917b627d 498 struct plist_head pushable_tasks;
fa85ae24 499#endif
6f505b16 500 int rt_throttled;
fa85ae24 501 u64 rt_time;
ac086bc2 502 u64 rt_runtime;
ea736ed5 503 /* Nests inside the rq lock: */
ac086bc2 504 spinlock_t rt_runtime_lock;
6f505b16 505
052f1dc7 506#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
507 unsigned long rt_nr_boosted;
508
6f505b16
PZ
509 struct rq *rq;
510 struct list_head leaf_rt_rq_list;
511 struct task_group *tg;
512 struct sched_rt_entity *rt_se;
513#endif
6aa645ea
IM
514};
515
57d885fe
GH
516#ifdef CONFIG_SMP
517
518/*
519 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
520 * variables. Each exclusive cpuset essentially defines an island domain by
521 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
522 * exclusive cpuset is created, we also create and attach a new root-domain
523 * object.
524 *
57d885fe
GH
525 */
526struct root_domain {
527 atomic_t refcount;
c6c4927b
RR
528 cpumask_var_t span;
529 cpumask_var_t online;
637f5085 530
0eab9146 531 /*
637f5085
GH
532 * The "RT overload" flag: it gets set if a CPU has more than
533 * one runnable RT task.
534 */
c6c4927b 535 cpumask_var_t rto_mask;
0eab9146 536 atomic_t rto_count;
6e0534f2
GH
537#ifdef CONFIG_SMP
538 struct cpupri cpupri;
539#endif
7a09b1a2
VS
540#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
541 /*
542 * Preferred wake up cpu nominated by sched_mc balance that will be
543 * used when most cpus are idle in the system indicating overall very
544 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
545 */
546 unsigned int sched_mc_preferred_wakeup_cpu;
547#endif
57d885fe
GH
548};
549
dc938520
GH
550/*
551 * By default the system creates a single root-domain with all cpus as
552 * members (mimicking the global state we have today).
553 */
57d885fe
GH
554static struct root_domain def_root_domain;
555
556#endif
557
1da177e4
LT
558/*
559 * This is the main, per-CPU runqueue data structure.
560 *
561 * Locking rule: those places that want to lock multiple runqueues
562 * (such as the load balancing or the thread migration code), lock
563 * acquire operations must be ordered by ascending &runqueue.
564 */
70b97a7f 565struct rq {
d8016491
IM
566 /* runqueue lock: */
567 spinlock_t lock;
1da177e4
LT
568
569 /*
570 * nr_running and cpu_load should be in the same cacheline because
571 * remote CPUs use both these fields when doing load calculation.
572 */
573 unsigned long nr_running;
6aa645ea
IM
574 #define CPU_LOAD_IDX_MAX 5
575 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 576#ifdef CONFIG_NO_HZ
15934a37 577 unsigned long last_tick_seen;
46cb4b7c
SS
578 unsigned char in_nohz_recently;
579#endif
d8016491
IM
580 /* capture load from *all* tasks on this cpu: */
581 struct load_weight load;
6aa645ea
IM
582 unsigned long nr_load_updates;
583 u64 nr_switches;
23a185ca 584 u64 nr_migrations_in;
6aa645ea
IM
585
586 struct cfs_rq cfs;
6f505b16 587 struct rt_rq rt;
6f505b16 588
6aa645ea 589#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
590 /* list of leaf cfs_rq on this cpu: */
591 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
592#endif
593#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 594 struct list_head leaf_rt_rq_list;
1da177e4 595#endif
1da177e4
LT
596
597 /*
598 * This is part of a global counter where only the total sum
599 * over all CPUs matters. A task can increase this counter on
600 * one CPU and if it got migrated afterwards it may decrease
601 * it on another CPU. Always updated under the runqueue lock:
602 */
603 unsigned long nr_uninterruptible;
604
36c8b586 605 struct task_struct *curr, *idle;
c9819f45 606 unsigned long next_balance;
1da177e4 607 struct mm_struct *prev_mm;
6aa645ea 608
3e51f33f 609 u64 clock;
6aa645ea 610
1da177e4
LT
611 atomic_t nr_iowait;
612
613#ifdef CONFIG_SMP
0eab9146 614 struct root_domain *rd;
1da177e4
LT
615 struct sched_domain *sd;
616
a0a522ce 617 unsigned char idle_at_tick;
1da177e4 618 /* For active balancing */
3f029d3c 619 int post_schedule;
1da177e4
LT
620 int active_balance;
621 int push_cpu;
d8016491
IM
622 /* cpu of this runqueue: */
623 int cpu;
1f11eb6a 624 int online;
1da177e4 625
a8a51d5e 626 unsigned long avg_load_per_task;
1da177e4 627
36c8b586 628 struct task_struct *migration_thread;
1da177e4
LT
629 struct list_head migration_queue;
630#endif
631
dce48a84
TG
632 /* calc_load related fields */
633 unsigned long calc_load_update;
634 long calc_load_active;
635
8f4d37ec 636#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
637#ifdef CONFIG_SMP
638 int hrtick_csd_pending;
639 struct call_single_data hrtick_csd;
640#endif
8f4d37ec
PZ
641 struct hrtimer hrtick_timer;
642#endif
643
1da177e4
LT
644#ifdef CONFIG_SCHEDSTATS
645 /* latency stats */
646 struct sched_info rq_sched_info;
9c2c4802
KC
647 unsigned long long rq_cpu_time;
648 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
649
650 /* sys_sched_yield() stats */
480b9434 651 unsigned int yld_count;
1da177e4
LT
652
653 /* schedule() stats */
480b9434
KC
654 unsigned int sched_switch;
655 unsigned int sched_count;
656 unsigned int sched_goidle;
1da177e4
LT
657
658 /* try_to_wake_up() stats */
480b9434
KC
659 unsigned int ttwu_count;
660 unsigned int ttwu_local;
b8efb561
IM
661
662 /* BKL stats */
480b9434 663 unsigned int bkl_count;
1da177e4
LT
664#endif
665};
666
f34e3b61 667static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 668
15afe09b 669static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 670{
15afe09b 671 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
672}
673
0a2966b4
CL
674static inline int cpu_of(struct rq *rq)
675{
676#ifdef CONFIG_SMP
677 return rq->cpu;
678#else
679 return 0;
680#endif
681}
682
674311d5
NP
683/*
684 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 685 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
686 *
687 * The domain tree of any CPU may only be accessed from within
688 * preempt-disabled sections.
689 */
48f24c4d
IM
690#define for_each_domain(cpu, __sd) \
691 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
692
693#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
694#define this_rq() (&__get_cpu_var(runqueues))
695#define task_rq(p) cpu_rq(task_cpu(p))
696#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
54d35f29 697#define raw_rq() (&__raw_get_cpu_var(runqueues))
1da177e4 698
aa9c4c0f 699inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
700{
701 rq->clock = sched_clock_cpu(cpu_of(rq));
702}
703
bf5c91ba
IM
704/*
705 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
706 */
707#ifdef CONFIG_SCHED_DEBUG
708# define const_debug __read_mostly
709#else
710# define const_debug static const
711#endif
712
017730c1
IM
713/**
714 * runqueue_is_locked
715 *
716 * Returns true if the current cpu runqueue is locked.
717 * This interface allows printk to be called with the runqueue lock
718 * held and know whether or not it is OK to wake up the klogd.
719 */
720int runqueue_is_locked(void)
721{
722 int cpu = get_cpu();
723 struct rq *rq = cpu_rq(cpu);
724 int ret;
725
726 ret = spin_is_locked(&rq->lock);
727 put_cpu();
728 return ret;
729}
730
bf5c91ba
IM
731/*
732 * Debugging: various feature bits
733 */
f00b45c1
PZ
734
735#define SCHED_FEAT(name, enabled) \
736 __SCHED_FEAT_##name ,
737
bf5c91ba 738enum {
f00b45c1 739#include "sched_features.h"
bf5c91ba
IM
740};
741
f00b45c1
PZ
742#undef SCHED_FEAT
743
744#define SCHED_FEAT(name, enabled) \
745 (1UL << __SCHED_FEAT_##name) * enabled |
746
bf5c91ba 747const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
748#include "sched_features.h"
749 0;
750
751#undef SCHED_FEAT
752
753#ifdef CONFIG_SCHED_DEBUG
754#define SCHED_FEAT(name, enabled) \
755 #name ,
756
983ed7a6 757static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
758#include "sched_features.h"
759 NULL
760};
761
762#undef SCHED_FEAT
763
34f3a814 764static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 765{
f00b45c1
PZ
766 int i;
767
768 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
769 if (!(sysctl_sched_features & (1UL << i)))
770 seq_puts(m, "NO_");
771 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 772 }
34f3a814 773 seq_puts(m, "\n");
f00b45c1 774
34f3a814 775 return 0;
f00b45c1
PZ
776}
777
778static ssize_t
779sched_feat_write(struct file *filp, const char __user *ubuf,
780 size_t cnt, loff_t *ppos)
781{
782 char buf[64];
783 char *cmp = buf;
784 int neg = 0;
785 int i;
786
787 if (cnt > 63)
788 cnt = 63;
789
790 if (copy_from_user(&buf, ubuf, cnt))
791 return -EFAULT;
792
793 buf[cnt] = 0;
794
c24b7c52 795 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
796 neg = 1;
797 cmp += 3;
798 }
799
800 for (i = 0; sched_feat_names[i]; i++) {
801 int len = strlen(sched_feat_names[i]);
802
803 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
804 if (neg)
805 sysctl_sched_features &= ~(1UL << i);
806 else
807 sysctl_sched_features |= (1UL << i);
808 break;
809 }
810 }
811
812 if (!sched_feat_names[i])
813 return -EINVAL;
814
815 filp->f_pos += cnt;
816
817 return cnt;
818}
819
34f3a814
LZ
820static int sched_feat_open(struct inode *inode, struct file *filp)
821{
822 return single_open(filp, sched_feat_show, NULL);
823}
824
f00b45c1 825static struct file_operations sched_feat_fops = {
34f3a814
LZ
826 .open = sched_feat_open,
827 .write = sched_feat_write,
828 .read = seq_read,
829 .llseek = seq_lseek,
830 .release = single_release,
f00b45c1
PZ
831};
832
833static __init int sched_init_debug(void)
834{
f00b45c1
PZ
835 debugfs_create_file("sched_features", 0644, NULL, NULL,
836 &sched_feat_fops);
837
838 return 0;
839}
840late_initcall(sched_init_debug);
841
842#endif
843
844#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 845
b82d9fdd
PZ
846/*
847 * Number of tasks to iterate in a single balance run.
848 * Limited because this is done with IRQs disabled.
849 */
850const_debug unsigned int sysctl_sched_nr_migrate = 32;
851
2398f2c6
PZ
852/*
853 * ratelimit for updating the group shares.
55cd5340 854 * default: 0.25ms
2398f2c6 855 */
55cd5340 856unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 857
ffda12a1
PZ
858/*
859 * Inject some fuzzyness into changing the per-cpu group shares
860 * this avoids remote rq-locks at the expense of fairness.
861 * default: 4
862 */
863unsigned int sysctl_sched_shares_thresh = 4;
864
fa85ae24 865/*
9f0c1e56 866 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
867 * default: 1s
868 */
9f0c1e56 869unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 870
6892b75e
IM
871static __read_mostly int scheduler_running;
872
9f0c1e56
PZ
873/*
874 * part of the period that we allow rt tasks to run in us.
875 * default: 0.95s
876 */
877int sysctl_sched_rt_runtime = 950000;
fa85ae24 878
d0b27fa7
PZ
879static inline u64 global_rt_period(void)
880{
881 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
882}
883
884static inline u64 global_rt_runtime(void)
885{
e26873bb 886 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
887 return RUNTIME_INF;
888
889 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
890}
fa85ae24 891
1da177e4 892#ifndef prepare_arch_switch
4866cde0
NP
893# define prepare_arch_switch(next) do { } while (0)
894#endif
895#ifndef finish_arch_switch
896# define finish_arch_switch(prev) do { } while (0)
897#endif
898
051a1d1a
DA
899static inline int task_current(struct rq *rq, struct task_struct *p)
900{
901 return rq->curr == p;
902}
903
4866cde0 904#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 905static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 906{
051a1d1a 907 return task_current(rq, p);
4866cde0
NP
908}
909
70b97a7f 910static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
911{
912}
913
70b97a7f 914static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 915{
da04c035
IM
916#ifdef CONFIG_DEBUG_SPINLOCK
917 /* this is a valid case when another task releases the spinlock */
918 rq->lock.owner = current;
919#endif
8a25d5de
IM
920 /*
921 * If we are tracking spinlock dependencies then we have to
922 * fix up the runqueue lock - which gets 'carried over' from
923 * prev into current:
924 */
925 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
926
4866cde0
NP
927 spin_unlock_irq(&rq->lock);
928}
929
930#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 931static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
932{
933#ifdef CONFIG_SMP
934 return p->oncpu;
935#else
051a1d1a 936 return task_current(rq, p);
4866cde0
NP
937#endif
938}
939
70b97a7f 940static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
941{
942#ifdef CONFIG_SMP
943 /*
944 * We can optimise this out completely for !SMP, because the
945 * SMP rebalancing from interrupt is the only thing that cares
946 * here.
947 */
948 next->oncpu = 1;
949#endif
950#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
951 spin_unlock_irq(&rq->lock);
952#else
953 spin_unlock(&rq->lock);
954#endif
955}
956
70b97a7f 957static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
958{
959#ifdef CONFIG_SMP
960 /*
961 * After ->oncpu is cleared, the task can be moved to a different CPU.
962 * We must ensure this doesn't happen until the switch is completely
963 * finished.
964 */
965 smp_wmb();
966 prev->oncpu = 0;
967#endif
968#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
969 local_irq_enable();
1da177e4 970#endif
4866cde0
NP
971}
972#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 973
b29739f9
IM
974/*
975 * __task_rq_lock - lock the runqueue a given task resides on.
976 * Must be called interrupts disabled.
977 */
70b97a7f 978static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
979 __acquires(rq->lock)
980{
3a5c359a
AK
981 for (;;) {
982 struct rq *rq = task_rq(p);
983 spin_lock(&rq->lock);
984 if (likely(rq == task_rq(p)))
985 return rq;
b29739f9 986 spin_unlock(&rq->lock);
b29739f9 987 }
b29739f9
IM
988}
989
1da177e4
LT
990/*
991 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 992 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
993 * explicitly disabling preemption.
994 */
70b97a7f 995static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
996 __acquires(rq->lock)
997{
70b97a7f 998 struct rq *rq;
1da177e4 999
3a5c359a
AK
1000 for (;;) {
1001 local_irq_save(*flags);
1002 rq = task_rq(p);
1003 spin_lock(&rq->lock);
1004 if (likely(rq == task_rq(p)))
1005 return rq;
1da177e4 1006 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 1007 }
1da177e4
LT
1008}
1009
ad474cac
ON
1010void task_rq_unlock_wait(struct task_struct *p)
1011{
1012 struct rq *rq = task_rq(p);
1013
1014 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1015 spin_unlock_wait(&rq->lock);
1016}
1017
a9957449 1018static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1019 __releases(rq->lock)
1020{
1021 spin_unlock(&rq->lock);
1022}
1023
70b97a7f 1024static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1025 __releases(rq->lock)
1026{
1027 spin_unlock_irqrestore(&rq->lock, *flags);
1028}
1029
1da177e4 1030/*
cc2a73b5 1031 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1032 */
a9957449 1033static struct rq *this_rq_lock(void)
1da177e4
LT
1034 __acquires(rq->lock)
1035{
70b97a7f 1036 struct rq *rq;
1da177e4
LT
1037
1038 local_irq_disable();
1039 rq = this_rq();
1040 spin_lock(&rq->lock);
1041
1042 return rq;
1043}
1044
8f4d37ec
PZ
1045#ifdef CONFIG_SCHED_HRTICK
1046/*
1047 * Use HR-timers to deliver accurate preemption points.
1048 *
1049 * Its all a bit involved since we cannot program an hrt while holding the
1050 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1051 * reschedule event.
1052 *
1053 * When we get rescheduled we reprogram the hrtick_timer outside of the
1054 * rq->lock.
1055 */
8f4d37ec
PZ
1056
1057/*
1058 * Use hrtick when:
1059 * - enabled by features
1060 * - hrtimer is actually high res
1061 */
1062static inline int hrtick_enabled(struct rq *rq)
1063{
1064 if (!sched_feat(HRTICK))
1065 return 0;
ba42059f 1066 if (!cpu_active(cpu_of(rq)))
b328ca18 1067 return 0;
8f4d37ec
PZ
1068 return hrtimer_is_hres_active(&rq->hrtick_timer);
1069}
1070
8f4d37ec
PZ
1071static void hrtick_clear(struct rq *rq)
1072{
1073 if (hrtimer_active(&rq->hrtick_timer))
1074 hrtimer_cancel(&rq->hrtick_timer);
1075}
1076
8f4d37ec
PZ
1077/*
1078 * High-resolution timer tick.
1079 * Runs from hardirq context with interrupts disabled.
1080 */
1081static enum hrtimer_restart hrtick(struct hrtimer *timer)
1082{
1083 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1084
1085 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1086
1087 spin_lock(&rq->lock);
3e51f33f 1088 update_rq_clock(rq);
8f4d37ec
PZ
1089 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1090 spin_unlock(&rq->lock);
1091
1092 return HRTIMER_NORESTART;
1093}
1094
95e904c7 1095#ifdef CONFIG_SMP
31656519
PZ
1096/*
1097 * called from hardirq (IPI) context
1098 */
1099static void __hrtick_start(void *arg)
b328ca18 1100{
31656519 1101 struct rq *rq = arg;
b328ca18 1102
31656519
PZ
1103 spin_lock(&rq->lock);
1104 hrtimer_restart(&rq->hrtick_timer);
1105 rq->hrtick_csd_pending = 0;
1106 spin_unlock(&rq->lock);
b328ca18
PZ
1107}
1108
31656519
PZ
1109/*
1110 * Called to set the hrtick timer state.
1111 *
1112 * called with rq->lock held and irqs disabled
1113 */
1114static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1115{
31656519
PZ
1116 struct hrtimer *timer = &rq->hrtick_timer;
1117 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1118
cc584b21 1119 hrtimer_set_expires(timer, time);
31656519
PZ
1120
1121 if (rq == this_rq()) {
1122 hrtimer_restart(timer);
1123 } else if (!rq->hrtick_csd_pending) {
6e275637 1124 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1125 rq->hrtick_csd_pending = 1;
1126 }
b328ca18
PZ
1127}
1128
1129static int
1130hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1131{
1132 int cpu = (int)(long)hcpu;
1133
1134 switch (action) {
1135 case CPU_UP_CANCELED:
1136 case CPU_UP_CANCELED_FROZEN:
1137 case CPU_DOWN_PREPARE:
1138 case CPU_DOWN_PREPARE_FROZEN:
1139 case CPU_DEAD:
1140 case CPU_DEAD_FROZEN:
31656519 1141 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1142 return NOTIFY_OK;
1143 }
1144
1145 return NOTIFY_DONE;
1146}
1147
fa748203 1148static __init void init_hrtick(void)
b328ca18
PZ
1149{
1150 hotcpu_notifier(hotplug_hrtick, 0);
1151}
31656519
PZ
1152#else
1153/*
1154 * Called to set the hrtick timer state.
1155 *
1156 * called with rq->lock held and irqs disabled
1157 */
1158static void hrtick_start(struct rq *rq, u64 delay)
1159{
7f1e2ca9 1160 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 1161 HRTIMER_MODE_REL_PINNED, 0);
31656519 1162}
b328ca18 1163
006c75f1 1164static inline void init_hrtick(void)
8f4d37ec 1165{
8f4d37ec 1166}
31656519 1167#endif /* CONFIG_SMP */
8f4d37ec 1168
31656519 1169static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1170{
31656519
PZ
1171#ifdef CONFIG_SMP
1172 rq->hrtick_csd_pending = 0;
8f4d37ec 1173
31656519
PZ
1174 rq->hrtick_csd.flags = 0;
1175 rq->hrtick_csd.func = __hrtick_start;
1176 rq->hrtick_csd.info = rq;
1177#endif
8f4d37ec 1178
31656519
PZ
1179 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1180 rq->hrtick_timer.function = hrtick;
8f4d37ec 1181}
006c75f1 1182#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1183static inline void hrtick_clear(struct rq *rq)
1184{
1185}
1186
8f4d37ec
PZ
1187static inline void init_rq_hrtick(struct rq *rq)
1188{
1189}
1190
b328ca18
PZ
1191static inline void init_hrtick(void)
1192{
1193}
006c75f1 1194#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1195
c24d20db
IM
1196/*
1197 * resched_task - mark a task 'to be rescheduled now'.
1198 *
1199 * On UP this means the setting of the need_resched flag, on SMP it
1200 * might also involve a cross-CPU call to trigger the scheduler on
1201 * the target CPU.
1202 */
1203#ifdef CONFIG_SMP
1204
1205#ifndef tsk_is_polling
1206#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1207#endif
1208
31656519 1209static void resched_task(struct task_struct *p)
c24d20db
IM
1210{
1211 int cpu;
1212
1213 assert_spin_locked(&task_rq(p)->lock);
1214
5ed0cec0 1215 if (test_tsk_need_resched(p))
c24d20db
IM
1216 return;
1217
5ed0cec0 1218 set_tsk_need_resched(p);
c24d20db
IM
1219
1220 cpu = task_cpu(p);
1221 if (cpu == smp_processor_id())
1222 return;
1223
1224 /* NEED_RESCHED must be visible before we test polling */
1225 smp_mb();
1226 if (!tsk_is_polling(p))
1227 smp_send_reschedule(cpu);
1228}
1229
1230static void resched_cpu(int cpu)
1231{
1232 struct rq *rq = cpu_rq(cpu);
1233 unsigned long flags;
1234
1235 if (!spin_trylock_irqsave(&rq->lock, flags))
1236 return;
1237 resched_task(cpu_curr(cpu));
1238 spin_unlock_irqrestore(&rq->lock, flags);
1239}
06d8308c
TG
1240
1241#ifdef CONFIG_NO_HZ
1242/*
1243 * When add_timer_on() enqueues a timer into the timer wheel of an
1244 * idle CPU then this timer might expire before the next timer event
1245 * which is scheduled to wake up that CPU. In case of a completely
1246 * idle system the next event might even be infinite time into the
1247 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1248 * leaves the inner idle loop so the newly added timer is taken into
1249 * account when the CPU goes back to idle and evaluates the timer
1250 * wheel for the next timer event.
1251 */
1252void wake_up_idle_cpu(int cpu)
1253{
1254 struct rq *rq = cpu_rq(cpu);
1255
1256 if (cpu == smp_processor_id())
1257 return;
1258
1259 /*
1260 * This is safe, as this function is called with the timer
1261 * wheel base lock of (cpu) held. When the CPU is on the way
1262 * to idle and has not yet set rq->curr to idle then it will
1263 * be serialized on the timer wheel base lock and take the new
1264 * timer into account automatically.
1265 */
1266 if (rq->curr != rq->idle)
1267 return;
1268
1269 /*
1270 * We can set TIF_RESCHED on the idle task of the other CPU
1271 * lockless. The worst case is that the other CPU runs the
1272 * idle task through an additional NOOP schedule()
1273 */
5ed0cec0 1274 set_tsk_need_resched(rq->idle);
06d8308c
TG
1275
1276 /* NEED_RESCHED must be visible before we test polling */
1277 smp_mb();
1278 if (!tsk_is_polling(rq->idle))
1279 smp_send_reschedule(cpu);
1280}
6d6bc0ad 1281#endif /* CONFIG_NO_HZ */
06d8308c 1282
6d6bc0ad 1283#else /* !CONFIG_SMP */
31656519 1284static void resched_task(struct task_struct *p)
c24d20db
IM
1285{
1286 assert_spin_locked(&task_rq(p)->lock);
31656519 1287 set_tsk_need_resched(p);
c24d20db 1288}
6d6bc0ad 1289#endif /* CONFIG_SMP */
c24d20db 1290
45bf76df
IM
1291#if BITS_PER_LONG == 32
1292# define WMULT_CONST (~0UL)
1293#else
1294# define WMULT_CONST (1UL << 32)
1295#endif
1296
1297#define WMULT_SHIFT 32
1298
194081eb
IM
1299/*
1300 * Shift right and round:
1301 */
cf2ab469 1302#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1303
a7be37ac
PZ
1304/*
1305 * delta *= weight / lw
1306 */
cb1c4fc9 1307static unsigned long
45bf76df
IM
1308calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1309 struct load_weight *lw)
1310{
1311 u64 tmp;
1312
7a232e03
LJ
1313 if (!lw->inv_weight) {
1314 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1315 lw->inv_weight = 1;
1316 else
1317 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1318 / (lw->weight+1);
1319 }
45bf76df
IM
1320
1321 tmp = (u64)delta_exec * weight;
1322 /*
1323 * Check whether we'd overflow the 64-bit multiplication:
1324 */
194081eb 1325 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1326 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1327 WMULT_SHIFT/2);
1328 else
cf2ab469 1329 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1330
ecf691da 1331 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1332}
1333
1091985b 1334static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1335{
1336 lw->weight += inc;
e89996ae 1337 lw->inv_weight = 0;
45bf76df
IM
1338}
1339
1091985b 1340static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1341{
1342 lw->weight -= dec;
e89996ae 1343 lw->inv_weight = 0;
45bf76df
IM
1344}
1345
2dd73a4f
PW
1346/*
1347 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1348 * of tasks with abnormal "nice" values across CPUs the contribution that
1349 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1350 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1351 * scaled version of the new time slice allocation that they receive on time
1352 * slice expiry etc.
1353 */
1354
cce7ade8
PZ
1355#define WEIGHT_IDLEPRIO 3
1356#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1357
1358/*
1359 * Nice levels are multiplicative, with a gentle 10% change for every
1360 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1361 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1362 * that remained on nice 0.
1363 *
1364 * The "10% effect" is relative and cumulative: from _any_ nice level,
1365 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1366 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1367 * If a task goes up by ~10% and another task goes down by ~10% then
1368 * the relative distance between them is ~25%.)
dd41f596
IM
1369 */
1370static const int prio_to_weight[40] = {
254753dc
IM
1371 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1372 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1373 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1374 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1375 /* 0 */ 1024, 820, 655, 526, 423,
1376 /* 5 */ 335, 272, 215, 172, 137,
1377 /* 10 */ 110, 87, 70, 56, 45,
1378 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1379};
1380
5714d2de
IM
1381/*
1382 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1383 *
1384 * In cases where the weight does not change often, we can use the
1385 * precalculated inverse to speed up arithmetics by turning divisions
1386 * into multiplications:
1387 */
dd41f596 1388static const u32 prio_to_wmult[40] = {
254753dc
IM
1389 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1390 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1391 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1392 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1393 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1394 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1395 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1396 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1397};
2dd73a4f 1398
dd41f596
IM
1399static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1400
1401/*
1402 * runqueue iterator, to support SMP load-balancing between different
1403 * scheduling classes, without having to expose their internal data
1404 * structures to the load-balancing proper:
1405 */
1406struct rq_iterator {
1407 void *arg;
1408 struct task_struct *(*start)(void *);
1409 struct task_struct *(*next)(void *);
1410};
1411
e1d1484f
PW
1412#ifdef CONFIG_SMP
1413static unsigned long
1414balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1415 unsigned long max_load_move, struct sched_domain *sd,
1416 enum cpu_idle_type idle, int *all_pinned,
1417 int *this_best_prio, struct rq_iterator *iterator);
1418
1419static int
1420iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1421 struct sched_domain *sd, enum cpu_idle_type idle,
1422 struct rq_iterator *iterator);
e1d1484f 1423#endif
dd41f596 1424
ef12fefa
BR
1425/* Time spent by the tasks of the cpu accounting group executing in ... */
1426enum cpuacct_stat_index {
1427 CPUACCT_STAT_USER, /* ... user mode */
1428 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1429
1430 CPUACCT_STAT_NSTATS,
1431};
1432
d842de87
SV
1433#ifdef CONFIG_CGROUP_CPUACCT
1434static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1435static void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1437#else
1438static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1439static inline void cpuacct_update_stats(struct task_struct *tsk,
1440 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1441#endif
1442
18d95a28
PZ
1443static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1444{
1445 update_load_add(&rq->load, load);
1446}
1447
1448static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1449{
1450 update_load_sub(&rq->load, load);
1451}
1452
7940ca36 1453#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1454typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1455
1456/*
1457 * Iterate the full tree, calling @down when first entering a node and @up when
1458 * leaving it for the final time.
1459 */
eb755805 1460static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1461{
1462 struct task_group *parent, *child;
eb755805 1463 int ret;
c09595f6
PZ
1464
1465 rcu_read_lock();
1466 parent = &root_task_group;
1467down:
eb755805
PZ
1468 ret = (*down)(parent, data);
1469 if (ret)
1470 goto out_unlock;
c09595f6
PZ
1471 list_for_each_entry_rcu(child, &parent->children, siblings) {
1472 parent = child;
1473 goto down;
1474
1475up:
1476 continue;
1477 }
eb755805
PZ
1478 ret = (*up)(parent, data);
1479 if (ret)
1480 goto out_unlock;
c09595f6
PZ
1481
1482 child = parent;
1483 parent = parent->parent;
1484 if (parent)
1485 goto up;
eb755805 1486out_unlock:
c09595f6 1487 rcu_read_unlock();
eb755805
PZ
1488
1489 return ret;
c09595f6
PZ
1490}
1491
eb755805
PZ
1492static int tg_nop(struct task_group *tg, void *data)
1493{
1494 return 0;
c09595f6 1495}
eb755805
PZ
1496#endif
1497
1498#ifdef CONFIG_SMP
1499static unsigned long source_load(int cpu, int type);
1500static unsigned long target_load(int cpu, int type);
1501static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1502
1503static unsigned long cpu_avg_load_per_task(int cpu)
1504{
1505 struct rq *rq = cpu_rq(cpu);
af6d596f 1506 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1507
4cd42620
SR
1508 if (nr_running)
1509 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1510 else
1511 rq->avg_load_per_task = 0;
eb755805
PZ
1512
1513 return rq->avg_load_per_task;
1514}
1515
1516#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1517
34d76c41
PZ
1518struct update_shares_data {
1519 unsigned long rq_weight[NR_CPUS];
1520};
1521
1522static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
1523
c09595f6
PZ
1524static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1525
1526/*
1527 * Calculate and set the cpu's group shares.
1528 */
34d76c41
PZ
1529static void update_group_shares_cpu(struct task_group *tg, int cpu,
1530 unsigned long sd_shares,
1531 unsigned long sd_rq_weight,
1532 struct update_shares_data *usd)
18d95a28 1533{
34d76c41 1534 unsigned long shares, rq_weight;
a5004278 1535 int boost = 0;
c09595f6 1536
34d76c41 1537 rq_weight = usd->rq_weight[cpu];
a5004278
PZ
1538 if (!rq_weight) {
1539 boost = 1;
1540 rq_weight = NICE_0_LOAD;
1541 }
c8cba857 1542
c09595f6 1543 /*
a8af7246
PZ
1544 * \Sum_j shares_j * rq_weight_i
1545 * shares_i = -----------------------------
1546 * \Sum_j rq_weight_j
c09595f6 1547 */
ec4e0e2f 1548 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1549 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1550
ffda12a1
PZ
1551 if (abs(shares - tg->se[cpu]->load.weight) >
1552 sysctl_sched_shares_thresh) {
1553 struct rq *rq = cpu_rq(cpu);
1554 unsigned long flags;
c09595f6 1555
ffda12a1 1556 spin_lock_irqsave(&rq->lock, flags);
34d76c41 1557 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
a5004278 1558 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
ffda12a1
PZ
1559 __set_se_shares(tg->se[cpu], shares);
1560 spin_unlock_irqrestore(&rq->lock, flags);
1561 }
18d95a28 1562}
c09595f6
PZ
1563
1564/*
c8cba857
PZ
1565 * Re-compute the task group their per cpu shares over the given domain.
1566 * This needs to be done in a bottom-up fashion because the rq weight of a
1567 * parent group depends on the shares of its child groups.
c09595f6 1568 */
eb755805 1569static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1570{
34d76c41
PZ
1571 unsigned long weight, rq_weight = 0, shares = 0;
1572 struct update_shares_data *usd;
eb755805 1573 struct sched_domain *sd = data;
34d76c41 1574 unsigned long flags;
c8cba857 1575 int i;
c09595f6 1576
34d76c41
PZ
1577 if (!tg->se[0])
1578 return 0;
1579
1580 local_irq_save(flags);
1581 usd = &__get_cpu_var(update_shares_data);
1582
758b2cdc 1583 for_each_cpu(i, sched_domain_span(sd)) {
34d76c41
PZ
1584 weight = tg->cfs_rq[i]->load.weight;
1585 usd->rq_weight[i] = weight;
1586
ec4e0e2f
KC
1587 /*
1588 * If there are currently no tasks on the cpu pretend there
1589 * is one of average load so that when a new task gets to
1590 * run here it will not get delayed by group starvation.
1591 */
ec4e0e2f
KC
1592 if (!weight)
1593 weight = NICE_0_LOAD;
1594
34d76c41 1595 rq_weight += weight;
c8cba857 1596 shares += tg->cfs_rq[i]->shares;
c09595f6 1597 }
c09595f6 1598
c8cba857
PZ
1599 if ((!shares && rq_weight) || shares > tg->shares)
1600 shares = tg->shares;
1601
1602 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1603 shares = tg->shares;
c09595f6 1604
a8af7246 1605 for_each_cpu(i, sched_domain_span(sd))
34d76c41
PZ
1606 update_group_shares_cpu(tg, i, shares, rq_weight, usd);
1607
1608 local_irq_restore(flags);
eb755805
PZ
1609
1610 return 0;
c09595f6
PZ
1611}
1612
1613/*
c8cba857
PZ
1614 * Compute the cpu's hierarchical load factor for each task group.
1615 * This needs to be done in a top-down fashion because the load of a child
1616 * group is a fraction of its parents load.
c09595f6 1617 */
eb755805 1618static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1619{
c8cba857 1620 unsigned long load;
eb755805 1621 long cpu = (long)data;
c09595f6 1622
c8cba857
PZ
1623 if (!tg->parent) {
1624 load = cpu_rq(cpu)->load.weight;
1625 } else {
1626 load = tg->parent->cfs_rq[cpu]->h_load;
1627 load *= tg->cfs_rq[cpu]->shares;
1628 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1629 }
c09595f6 1630
c8cba857 1631 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1632
eb755805 1633 return 0;
c09595f6
PZ
1634}
1635
c8cba857 1636static void update_shares(struct sched_domain *sd)
4d8d595d 1637{
e7097159
PZ
1638 s64 elapsed;
1639 u64 now;
1640
1641 if (root_task_group_empty())
1642 return;
1643
1644 now = cpu_clock(raw_smp_processor_id());
1645 elapsed = now - sd->last_update;
2398f2c6
PZ
1646
1647 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1648 sd->last_update = now;
eb755805 1649 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1650 }
4d8d595d
PZ
1651}
1652
3e5459b4
PZ
1653static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1654{
e7097159
PZ
1655 if (root_task_group_empty())
1656 return;
1657
3e5459b4
PZ
1658 spin_unlock(&rq->lock);
1659 update_shares(sd);
1660 spin_lock(&rq->lock);
1661}
1662
eb755805 1663static void update_h_load(long cpu)
c09595f6 1664{
e7097159
PZ
1665 if (root_task_group_empty())
1666 return;
1667
eb755805 1668 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1669}
1670
c09595f6
PZ
1671#else
1672
c8cba857 1673static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1674{
1675}
1676
3e5459b4
PZ
1677static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1678{
1679}
1680
18d95a28
PZ
1681#endif
1682
8f45e2b5
GH
1683#ifdef CONFIG_PREEMPT
1684
70574a99 1685/*
8f45e2b5
GH
1686 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1687 * way at the expense of forcing extra atomic operations in all
1688 * invocations. This assures that the double_lock is acquired using the
1689 * same underlying policy as the spinlock_t on this architecture, which
1690 * reduces latency compared to the unfair variant below. However, it
1691 * also adds more overhead and therefore may reduce throughput.
70574a99 1692 */
8f45e2b5
GH
1693static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1694 __releases(this_rq->lock)
1695 __acquires(busiest->lock)
1696 __acquires(this_rq->lock)
1697{
1698 spin_unlock(&this_rq->lock);
1699 double_rq_lock(this_rq, busiest);
1700
1701 return 1;
1702}
1703
1704#else
1705/*
1706 * Unfair double_lock_balance: Optimizes throughput at the expense of
1707 * latency by eliminating extra atomic operations when the locks are
1708 * already in proper order on entry. This favors lower cpu-ids and will
1709 * grant the double lock to lower cpus over higher ids under contention,
1710 * regardless of entry order into the function.
1711 */
1712static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1713 __releases(this_rq->lock)
1714 __acquires(busiest->lock)
1715 __acquires(this_rq->lock)
1716{
1717 int ret = 0;
1718
70574a99
AD
1719 if (unlikely(!spin_trylock(&busiest->lock))) {
1720 if (busiest < this_rq) {
1721 spin_unlock(&this_rq->lock);
1722 spin_lock(&busiest->lock);
1723 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1724 ret = 1;
1725 } else
1726 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1727 }
1728 return ret;
1729}
1730
8f45e2b5
GH
1731#endif /* CONFIG_PREEMPT */
1732
1733/*
1734 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1735 */
1736static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1737{
1738 if (unlikely(!irqs_disabled())) {
1739 /* printk() doesn't work good under rq->lock */
1740 spin_unlock(&this_rq->lock);
1741 BUG_ON(1);
1742 }
1743
1744 return _double_lock_balance(this_rq, busiest);
1745}
1746
70574a99
AD
1747static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1748 __releases(busiest->lock)
1749{
1750 spin_unlock(&busiest->lock);
1751 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1752}
18d95a28
PZ
1753#endif
1754
30432094 1755#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1756static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1757{
30432094 1758#ifdef CONFIG_SMP
34e83e85
IM
1759 cfs_rq->shares = shares;
1760#endif
1761}
30432094 1762#endif
e7693a36 1763
dce48a84
TG
1764static void calc_load_account_active(struct rq *this_rq);
1765
dd41f596 1766#include "sched_stats.h"
dd41f596 1767#include "sched_idletask.c"
5522d5d5
IM
1768#include "sched_fair.c"
1769#include "sched_rt.c"
dd41f596
IM
1770#ifdef CONFIG_SCHED_DEBUG
1771# include "sched_debug.c"
1772#endif
1773
1774#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1775#define for_each_class(class) \
1776 for (class = sched_class_highest; class; class = class->next)
dd41f596 1777
c09595f6 1778static void inc_nr_running(struct rq *rq)
9c217245
IM
1779{
1780 rq->nr_running++;
9c217245
IM
1781}
1782
c09595f6 1783static void dec_nr_running(struct rq *rq)
9c217245
IM
1784{
1785 rq->nr_running--;
9c217245
IM
1786}
1787
45bf76df
IM
1788static void set_load_weight(struct task_struct *p)
1789{
1790 if (task_has_rt_policy(p)) {
dd41f596
IM
1791 p->se.load.weight = prio_to_weight[0] * 2;
1792 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1793 return;
1794 }
45bf76df 1795
dd41f596
IM
1796 /*
1797 * SCHED_IDLE tasks get minimal weight:
1798 */
1799 if (p->policy == SCHED_IDLE) {
1800 p->se.load.weight = WEIGHT_IDLEPRIO;
1801 p->se.load.inv_weight = WMULT_IDLEPRIO;
1802 return;
1803 }
71f8bd46 1804
dd41f596
IM
1805 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1806 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1807}
1808
2087a1ad
GH
1809static void update_avg(u64 *avg, u64 sample)
1810{
1811 s64 diff = sample - *avg;
1812 *avg += diff >> 3;
1813}
1814
8159f87e 1815static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1816{
831451ac
PZ
1817 if (wakeup)
1818 p->se.start_runtime = p->se.sum_exec_runtime;
1819
dd41f596 1820 sched_info_queued(p);
fd390f6a 1821 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1822 p->se.on_rq = 1;
71f8bd46
IM
1823}
1824
69be72c1 1825static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1826{
831451ac
PZ
1827 if (sleep) {
1828 if (p->se.last_wakeup) {
1829 update_avg(&p->se.avg_overlap,
1830 p->se.sum_exec_runtime - p->se.last_wakeup);
1831 p->se.last_wakeup = 0;
1832 } else {
1833 update_avg(&p->se.avg_wakeup,
1834 sysctl_sched_wakeup_granularity);
1835 }
2087a1ad
GH
1836 }
1837
46ac22ba 1838 sched_info_dequeued(p);
f02231e5 1839 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1840 p->se.on_rq = 0;
71f8bd46
IM
1841}
1842
14531189 1843/*
dd41f596 1844 * __normal_prio - return the priority that is based on the static prio
14531189 1845 */
14531189
IM
1846static inline int __normal_prio(struct task_struct *p)
1847{
dd41f596 1848 return p->static_prio;
14531189
IM
1849}
1850
b29739f9
IM
1851/*
1852 * Calculate the expected normal priority: i.e. priority
1853 * without taking RT-inheritance into account. Might be
1854 * boosted by interactivity modifiers. Changes upon fork,
1855 * setprio syscalls, and whenever the interactivity
1856 * estimator recalculates.
1857 */
36c8b586 1858static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1859{
1860 int prio;
1861
e05606d3 1862 if (task_has_rt_policy(p))
b29739f9
IM
1863 prio = MAX_RT_PRIO-1 - p->rt_priority;
1864 else
1865 prio = __normal_prio(p);
1866 return prio;
1867}
1868
1869/*
1870 * Calculate the current priority, i.e. the priority
1871 * taken into account by the scheduler. This value might
1872 * be boosted by RT tasks, or might be boosted by
1873 * interactivity modifiers. Will be RT if the task got
1874 * RT-boosted. If not then it returns p->normal_prio.
1875 */
36c8b586 1876static int effective_prio(struct task_struct *p)
b29739f9
IM
1877{
1878 p->normal_prio = normal_prio(p);
1879 /*
1880 * If we are RT tasks or we were boosted to RT priority,
1881 * keep the priority unchanged. Otherwise, update priority
1882 * to the normal priority:
1883 */
1884 if (!rt_prio(p->prio))
1885 return p->normal_prio;
1886 return p->prio;
1887}
1888
1da177e4 1889/*
dd41f596 1890 * activate_task - move a task to the runqueue.
1da177e4 1891 */
dd41f596 1892static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1893{
d9514f6c 1894 if (task_contributes_to_load(p))
dd41f596 1895 rq->nr_uninterruptible--;
1da177e4 1896
8159f87e 1897 enqueue_task(rq, p, wakeup);
c09595f6 1898 inc_nr_running(rq);
1da177e4
LT
1899}
1900
1da177e4
LT
1901/*
1902 * deactivate_task - remove a task from the runqueue.
1903 */
2e1cb74a 1904static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1905{
d9514f6c 1906 if (task_contributes_to_load(p))
dd41f596
IM
1907 rq->nr_uninterruptible++;
1908
69be72c1 1909 dequeue_task(rq, p, sleep);
c09595f6 1910 dec_nr_running(rq);
1da177e4
LT
1911}
1912
1da177e4
LT
1913/**
1914 * task_curr - is this task currently executing on a CPU?
1915 * @p: the task in question.
1916 */
36c8b586 1917inline int task_curr(const struct task_struct *p)
1da177e4
LT
1918{
1919 return cpu_curr(task_cpu(p)) == p;
1920}
1921
dd41f596
IM
1922static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1923{
6f505b16 1924 set_task_rq(p, cpu);
dd41f596 1925#ifdef CONFIG_SMP
ce96b5ac
DA
1926 /*
1927 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1928 * successfuly executed on another CPU. We must ensure that updates of
1929 * per-task data have been completed by this moment.
1930 */
1931 smp_wmb();
dd41f596 1932 task_thread_info(p)->cpu = cpu;
dd41f596 1933#endif
2dd73a4f
PW
1934}
1935
cb469845
SR
1936static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1937 const struct sched_class *prev_class,
1938 int oldprio, int running)
1939{
1940 if (prev_class != p->sched_class) {
1941 if (prev_class->switched_from)
1942 prev_class->switched_from(rq, p, running);
1943 p->sched_class->switched_to(rq, p, running);
1944 } else
1945 p->sched_class->prio_changed(rq, p, oldprio, running);
1946}
1947
1da177e4 1948#ifdef CONFIG_SMP
c65cc870 1949
e958b360
TG
1950/* Used instead of source_load when we know the type == 0 */
1951static unsigned long weighted_cpuload(const int cpu)
1952{
1953 return cpu_rq(cpu)->load.weight;
1954}
1955
cc367732
IM
1956/*
1957 * Is this task likely cache-hot:
1958 */
e7693a36 1959static int
cc367732
IM
1960task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1961{
1962 s64 delta;
1963
f540a608
IM
1964 /*
1965 * Buddy candidates are cache hot:
1966 */
4793241b
PZ
1967 if (sched_feat(CACHE_HOT_BUDDY) &&
1968 (&p->se == cfs_rq_of(&p->se)->next ||
1969 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1970 return 1;
1971
cc367732
IM
1972 if (p->sched_class != &fair_sched_class)
1973 return 0;
1974
6bc1665b
IM
1975 if (sysctl_sched_migration_cost == -1)
1976 return 1;
1977 if (sysctl_sched_migration_cost == 0)
1978 return 0;
1979
cc367732
IM
1980 delta = now - p->se.exec_start;
1981
1982 return delta < (s64)sysctl_sched_migration_cost;
1983}
1984
1985
dd41f596 1986void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1987{
dd41f596
IM
1988 int old_cpu = task_cpu(p);
1989 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1990 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1991 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1992 u64 clock_offset;
dd41f596
IM
1993
1994 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1995
de1d7286 1996 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1997
6cfb0d5d
IM
1998#ifdef CONFIG_SCHEDSTATS
1999 if (p->se.wait_start)
2000 p->se.wait_start -= clock_offset;
dd41f596
IM
2001 if (p->se.sleep_start)
2002 p->se.sleep_start -= clock_offset;
2003 if (p->se.block_start)
2004 p->se.block_start -= clock_offset;
6c594c21 2005#endif
cc367732 2006 if (old_cpu != new_cpu) {
6c594c21 2007 p->se.nr_migrations++;
23a185ca 2008 new_rq->nr_migrations_in++;
6c594c21 2009#ifdef CONFIG_SCHEDSTATS
cc367732
IM
2010 if (task_hot(p, old_rq->clock, NULL))
2011 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 2012#endif
e5289d4a
PZ
2013 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2014 1, 1, NULL, 0);
6c594c21 2015 }
2830cf8c
SV
2016 p->se.vruntime -= old_cfsrq->min_vruntime -
2017 new_cfsrq->min_vruntime;
dd41f596
IM
2018
2019 __set_task_cpu(p, new_cpu);
c65cc870
IM
2020}
2021
70b97a7f 2022struct migration_req {
1da177e4 2023 struct list_head list;
1da177e4 2024
36c8b586 2025 struct task_struct *task;
1da177e4
LT
2026 int dest_cpu;
2027
1da177e4 2028 struct completion done;
70b97a7f 2029};
1da177e4
LT
2030
2031/*
2032 * The task's runqueue lock must be held.
2033 * Returns true if you have to wait for migration thread.
2034 */
36c8b586 2035static int
70b97a7f 2036migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2037{
70b97a7f 2038 struct rq *rq = task_rq(p);
1da177e4
LT
2039
2040 /*
2041 * If the task is not on a runqueue (and not running), then
2042 * it is sufficient to simply update the task's cpu field.
2043 */
dd41f596 2044 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2045 set_task_cpu(p, dest_cpu);
2046 return 0;
2047 }
2048
2049 init_completion(&req->done);
1da177e4
LT
2050 req->task = p;
2051 req->dest_cpu = dest_cpu;
2052 list_add(&req->list, &rq->migration_queue);
48f24c4d 2053
1da177e4
LT
2054 return 1;
2055}
2056
a26b89f0
MM
2057/*
2058 * wait_task_context_switch - wait for a thread to complete at least one
2059 * context switch.
2060 *
2061 * @p must not be current.
2062 */
2063void wait_task_context_switch(struct task_struct *p)
2064{
2065 unsigned long nvcsw, nivcsw, flags;
2066 int running;
2067 struct rq *rq;
2068
2069 nvcsw = p->nvcsw;
2070 nivcsw = p->nivcsw;
2071 for (;;) {
2072 /*
2073 * The runqueue is assigned before the actual context
2074 * switch. We need to take the runqueue lock.
2075 *
2076 * We could check initially without the lock but it is
2077 * very likely that we need to take the lock in every
2078 * iteration.
2079 */
2080 rq = task_rq_lock(p, &flags);
2081 running = task_running(rq, p);
2082 task_rq_unlock(rq, &flags);
2083
2084 if (likely(!running))
2085 break;
2086 /*
2087 * The switch count is incremented before the actual
2088 * context switch. We thus wait for two switches to be
2089 * sure at least one completed.
2090 */
2091 if ((p->nvcsw - nvcsw) > 1)
2092 break;
2093 if ((p->nivcsw - nivcsw) > 1)
2094 break;
2095
2096 cpu_relax();
2097 }
2098}
2099
1da177e4
LT
2100/*
2101 * wait_task_inactive - wait for a thread to unschedule.
2102 *
85ba2d86
RM
2103 * If @match_state is nonzero, it's the @p->state value just checked and
2104 * not expected to change. If it changes, i.e. @p might have woken up,
2105 * then return zero. When we succeed in waiting for @p to be off its CPU,
2106 * we return a positive number (its total switch count). If a second call
2107 * a short while later returns the same number, the caller can be sure that
2108 * @p has remained unscheduled the whole time.
2109 *
1da177e4
LT
2110 * The caller must ensure that the task *will* unschedule sometime soon,
2111 * else this function might spin for a *long* time. This function can't
2112 * be called with interrupts off, or it may introduce deadlock with
2113 * smp_call_function() if an IPI is sent by the same process we are
2114 * waiting to become inactive.
2115 */
85ba2d86 2116unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2117{
2118 unsigned long flags;
dd41f596 2119 int running, on_rq;
85ba2d86 2120 unsigned long ncsw;
70b97a7f 2121 struct rq *rq;
1da177e4 2122
3a5c359a
AK
2123 for (;;) {
2124 /*
2125 * We do the initial early heuristics without holding
2126 * any task-queue locks at all. We'll only try to get
2127 * the runqueue lock when things look like they will
2128 * work out!
2129 */
2130 rq = task_rq(p);
fa490cfd 2131
3a5c359a
AK
2132 /*
2133 * If the task is actively running on another CPU
2134 * still, just relax and busy-wait without holding
2135 * any locks.
2136 *
2137 * NOTE! Since we don't hold any locks, it's not
2138 * even sure that "rq" stays as the right runqueue!
2139 * But we don't care, since "task_running()" will
2140 * return false if the runqueue has changed and p
2141 * is actually now running somewhere else!
2142 */
85ba2d86
RM
2143 while (task_running(rq, p)) {
2144 if (match_state && unlikely(p->state != match_state))
2145 return 0;
3a5c359a 2146 cpu_relax();
85ba2d86 2147 }
fa490cfd 2148
3a5c359a
AK
2149 /*
2150 * Ok, time to look more closely! We need the rq
2151 * lock now, to be *sure*. If we're wrong, we'll
2152 * just go back and repeat.
2153 */
2154 rq = task_rq_lock(p, &flags);
0a16b607 2155 trace_sched_wait_task(rq, p);
3a5c359a
AK
2156 running = task_running(rq, p);
2157 on_rq = p->se.on_rq;
85ba2d86 2158 ncsw = 0;
f31e11d8 2159 if (!match_state || p->state == match_state)
93dcf55f 2160 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2161 task_rq_unlock(rq, &flags);
fa490cfd 2162
85ba2d86
RM
2163 /*
2164 * If it changed from the expected state, bail out now.
2165 */
2166 if (unlikely(!ncsw))
2167 break;
2168
3a5c359a
AK
2169 /*
2170 * Was it really running after all now that we
2171 * checked with the proper locks actually held?
2172 *
2173 * Oops. Go back and try again..
2174 */
2175 if (unlikely(running)) {
2176 cpu_relax();
2177 continue;
2178 }
fa490cfd 2179
3a5c359a
AK
2180 /*
2181 * It's not enough that it's not actively running,
2182 * it must be off the runqueue _entirely_, and not
2183 * preempted!
2184 *
80dd99b3 2185 * So if it was still runnable (but just not actively
3a5c359a
AK
2186 * running right now), it's preempted, and we should
2187 * yield - it could be a while.
2188 */
2189 if (unlikely(on_rq)) {
2190 schedule_timeout_uninterruptible(1);
2191 continue;
2192 }
fa490cfd 2193
3a5c359a
AK
2194 /*
2195 * Ahh, all good. It wasn't running, and it wasn't
2196 * runnable, which means that it will never become
2197 * running in the future either. We're all done!
2198 */
2199 break;
2200 }
85ba2d86
RM
2201
2202 return ncsw;
1da177e4
LT
2203}
2204
2205/***
2206 * kick_process - kick a running thread to enter/exit the kernel
2207 * @p: the to-be-kicked thread
2208 *
2209 * Cause a process which is running on another CPU to enter
2210 * kernel-mode, without any delay. (to get signals handled.)
2211 *
2212 * NOTE: this function doesnt have to take the runqueue lock,
2213 * because all it wants to ensure is that the remote task enters
2214 * the kernel. If the IPI races and the task has been migrated
2215 * to another CPU then no harm is done and the purpose has been
2216 * achieved as well.
2217 */
36c8b586 2218void kick_process(struct task_struct *p)
1da177e4
LT
2219{
2220 int cpu;
2221
2222 preempt_disable();
2223 cpu = task_cpu(p);
2224 if ((cpu != smp_processor_id()) && task_curr(p))
2225 smp_send_reschedule(cpu);
2226 preempt_enable();
2227}
b43e3521 2228EXPORT_SYMBOL_GPL(kick_process);
1da177e4
LT
2229
2230/*
2dd73a4f
PW
2231 * Return a low guess at the load of a migration-source cpu weighted
2232 * according to the scheduling class and "nice" value.
1da177e4
LT
2233 *
2234 * We want to under-estimate the load of migration sources, to
2235 * balance conservatively.
2236 */
a9957449 2237static unsigned long source_load(int cpu, int type)
1da177e4 2238{
70b97a7f 2239 struct rq *rq = cpu_rq(cpu);
dd41f596 2240 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2241
93b75217 2242 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2243 return total;
b910472d 2244
dd41f596 2245 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2246}
2247
2248/*
2dd73a4f
PW
2249 * Return a high guess at the load of a migration-target cpu weighted
2250 * according to the scheduling class and "nice" value.
1da177e4 2251 */
a9957449 2252static unsigned long target_load(int cpu, int type)
1da177e4 2253{
70b97a7f 2254 struct rq *rq = cpu_rq(cpu);
dd41f596 2255 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2256
93b75217 2257 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2258 return total;
3b0bd9bc 2259
dd41f596 2260 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2261}
2262
147cbb4b
NP
2263/*
2264 * find_idlest_group finds and returns the least busy CPU group within the
2265 * domain.
2266 */
2267static struct sched_group *
2268find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2269{
2270 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2271 unsigned long min_load = ULONG_MAX, this_load = 0;
2272 int load_idx = sd->forkexec_idx;
2273 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2274
2275 do {
2276 unsigned long load, avg_load;
2277 int local_group;
2278 int i;
2279
da5a5522 2280 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2281 if (!cpumask_intersects(sched_group_cpus(group),
2282 &p->cpus_allowed))
3a5c359a 2283 continue;
da5a5522 2284
758b2cdc
RR
2285 local_group = cpumask_test_cpu(this_cpu,
2286 sched_group_cpus(group));
147cbb4b
NP
2287
2288 /* Tally up the load of all CPUs in the group */
2289 avg_load = 0;
2290
758b2cdc 2291 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2292 /* Bias balancing toward cpus of our domain */
2293 if (local_group)
2294 load = source_load(i, load_idx);
2295 else
2296 load = target_load(i, load_idx);
2297
2298 avg_load += load;
2299 }
2300
2301 /* Adjust by relative CPU power of the group */
5517d86b
ED
2302 avg_load = sg_div_cpu_power(group,
2303 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2304
2305 if (local_group) {
2306 this_load = avg_load;
2307 this = group;
2308 } else if (avg_load < min_load) {
2309 min_load = avg_load;
2310 idlest = group;
2311 }
3a5c359a 2312 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2313
2314 if (!idlest || 100*this_load < imbalance*min_load)
2315 return NULL;
2316 return idlest;
2317}
2318
2319/*
0feaece9 2320 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2321 */
95cdf3b7 2322static int
758b2cdc 2323find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2324{
2325 unsigned long load, min_load = ULONG_MAX;
2326 int idlest = -1;
2327 int i;
2328
da5a5522 2329 /* Traverse only the allowed CPUs */
758b2cdc 2330 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2331 load = weighted_cpuload(i);
147cbb4b
NP
2332
2333 if (load < min_load || (load == min_load && i == this_cpu)) {
2334 min_load = load;
2335 idlest = i;
2336 }
2337 }
2338
2339 return idlest;
2340}
2341
476d139c
NP
2342/*
2343 * sched_balance_self: balance the current task (running on cpu) in domains
2344 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2345 * SD_BALANCE_EXEC.
2346 *
2347 * Balance, ie. select the least loaded group.
2348 *
2349 * Returns the target CPU number, or the same CPU if no balancing is needed.
2350 *
2351 * preempt must be disabled.
2352 */
2353static int sched_balance_self(int cpu, int flag)
2354{
2355 struct task_struct *t = current;
2356 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2357
c96d145e 2358 for_each_domain(cpu, tmp) {
9761eea8
IM
2359 /*
2360 * If power savings logic is enabled for a domain, stop there.
2361 */
5c45bf27
SS
2362 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2363 break;
476d139c
NP
2364 if (tmp->flags & flag)
2365 sd = tmp;
c96d145e 2366 }
476d139c 2367
039a1c41
PZ
2368 if (sd)
2369 update_shares(sd);
2370
476d139c 2371 while (sd) {
476d139c 2372 struct sched_group *group;
1a848870
SS
2373 int new_cpu, weight;
2374
2375 if (!(sd->flags & flag)) {
2376 sd = sd->child;
2377 continue;
2378 }
476d139c 2379
476d139c 2380 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2381 if (!group) {
2382 sd = sd->child;
2383 continue;
2384 }
476d139c 2385
758b2cdc 2386 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2387 if (new_cpu == -1 || new_cpu == cpu) {
2388 /* Now try balancing at a lower domain level of cpu */
2389 sd = sd->child;
2390 continue;
2391 }
476d139c 2392
1a848870 2393 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2394 cpu = new_cpu;
758b2cdc 2395 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2396 sd = NULL;
476d139c 2397 for_each_domain(cpu, tmp) {
758b2cdc 2398 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2399 break;
2400 if (tmp->flags & flag)
2401 sd = tmp;
2402 }
2403 /* while loop will break here if sd == NULL */
2404 }
2405
2406 return cpu;
2407}
2408
2409#endif /* CONFIG_SMP */
1da177e4 2410
0793a61d
TG
2411/**
2412 * task_oncpu_function_call - call a function on the cpu on which a task runs
2413 * @p: the task to evaluate
2414 * @func: the function to be called
2415 * @info: the function call argument
2416 *
2417 * Calls the function @func when the task is currently running. This might
2418 * be on the current CPU, which just calls the function directly
2419 */
2420void task_oncpu_function_call(struct task_struct *p,
2421 void (*func) (void *info), void *info)
2422{
2423 int cpu;
2424
2425 preempt_disable();
2426 cpu = task_cpu(p);
2427 if (task_curr(p))
2428 smp_call_function_single(cpu, func, info, 1);
2429 preempt_enable();
2430}
2431
1da177e4
LT
2432/***
2433 * try_to_wake_up - wake up a thread
2434 * @p: the to-be-woken-up thread
2435 * @state: the mask of task states that can be woken
2436 * @sync: do a synchronous wakeup?
2437 *
2438 * Put it on the run-queue if it's not already there. The "current"
2439 * thread is always on the run-queue (except when the actual
2440 * re-schedule is in progress), and as such you're allowed to do
2441 * the simpler "current->state = TASK_RUNNING" to mark yourself
2442 * runnable without the overhead of this.
2443 *
2444 * returns failure only if the task is already active.
2445 */
36c8b586 2446static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2447{
cc367732 2448 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2449 unsigned long flags;
2450 long old_state;
70b97a7f 2451 struct rq *rq;
1da177e4 2452
b85d0667
IM
2453 if (!sched_feat(SYNC_WAKEUPS))
2454 sync = 0;
2455
2398f2c6 2456#ifdef CONFIG_SMP
57310a98 2457 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2398f2c6
PZ
2458 struct sched_domain *sd;
2459
2460 this_cpu = raw_smp_processor_id();
2461 cpu = task_cpu(p);
2462
2463 for_each_domain(this_cpu, sd) {
758b2cdc 2464 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2465 update_shares(sd);
2466 break;
2467 }
2468 }
2469 }
2470#endif
2471
04e2f174 2472 smp_wmb();
1da177e4 2473 rq = task_rq_lock(p, &flags);
03e89e45 2474 update_rq_clock(rq);
1da177e4
LT
2475 old_state = p->state;
2476 if (!(old_state & state))
2477 goto out;
2478
dd41f596 2479 if (p->se.on_rq)
1da177e4
LT
2480 goto out_running;
2481
2482 cpu = task_cpu(p);
cc367732 2483 orig_cpu = cpu;
1da177e4
LT
2484 this_cpu = smp_processor_id();
2485
2486#ifdef CONFIG_SMP
2487 if (unlikely(task_running(rq, p)))
2488 goto out_activate;
2489
5d2f5a61
DA
2490 cpu = p->sched_class->select_task_rq(p, sync);
2491 if (cpu != orig_cpu) {
2492 set_task_cpu(p, cpu);
1da177e4
LT
2493 task_rq_unlock(rq, &flags);
2494 /* might preempt at this point */
2495 rq = task_rq_lock(p, &flags);
2496 old_state = p->state;
2497 if (!(old_state & state))
2498 goto out;
dd41f596 2499 if (p->se.on_rq)
1da177e4
LT
2500 goto out_running;
2501
2502 this_cpu = smp_processor_id();
2503 cpu = task_cpu(p);
2504 }
2505
e7693a36
GH
2506#ifdef CONFIG_SCHEDSTATS
2507 schedstat_inc(rq, ttwu_count);
2508 if (cpu == this_cpu)
2509 schedstat_inc(rq, ttwu_local);
2510 else {
2511 struct sched_domain *sd;
2512 for_each_domain(this_cpu, sd) {
758b2cdc 2513 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2514 schedstat_inc(sd, ttwu_wake_remote);
2515 break;
2516 }
2517 }
2518 }
6d6bc0ad 2519#endif /* CONFIG_SCHEDSTATS */
e7693a36 2520
1da177e4
LT
2521out_activate:
2522#endif /* CONFIG_SMP */
cc367732
IM
2523 schedstat_inc(p, se.nr_wakeups);
2524 if (sync)
2525 schedstat_inc(p, se.nr_wakeups_sync);
2526 if (orig_cpu != cpu)
2527 schedstat_inc(p, se.nr_wakeups_migrate);
2528 if (cpu == this_cpu)
2529 schedstat_inc(p, se.nr_wakeups_local);
2530 else
2531 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2532 activate_task(rq, p, 1);
1da177e4
LT
2533 success = 1;
2534
831451ac
PZ
2535 /*
2536 * Only attribute actual wakeups done by this task.
2537 */
2538 if (!in_interrupt()) {
2539 struct sched_entity *se = &current->se;
2540 u64 sample = se->sum_exec_runtime;
2541
2542 if (se->last_wakeup)
2543 sample -= se->last_wakeup;
2544 else
2545 sample -= se->start_runtime;
2546 update_avg(&se->avg_wakeup, sample);
2547
2548 se->last_wakeup = se->sum_exec_runtime;
2549 }
2550
1da177e4 2551out_running:
468a15bb 2552 trace_sched_wakeup(rq, p, success);
15afe09b 2553 check_preempt_curr(rq, p, sync);
4ae7d5ce 2554
1da177e4 2555 p->state = TASK_RUNNING;
9a897c5a
SR
2556#ifdef CONFIG_SMP
2557 if (p->sched_class->task_wake_up)
2558 p->sched_class->task_wake_up(rq, p);
2559#endif
1da177e4
LT
2560out:
2561 task_rq_unlock(rq, &flags);
2562
2563 return success;
2564}
2565
50fa610a
DH
2566/**
2567 * wake_up_process - Wake up a specific process
2568 * @p: The process to be woken up.
2569 *
2570 * Attempt to wake up the nominated process and move it to the set of runnable
2571 * processes. Returns 1 if the process was woken up, 0 if it was already
2572 * running.
2573 *
2574 * It may be assumed that this function implies a write memory barrier before
2575 * changing the task state if and only if any tasks are woken up.
2576 */
7ad5b3a5 2577int wake_up_process(struct task_struct *p)
1da177e4 2578{
d9514f6c 2579 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2580}
1da177e4
LT
2581EXPORT_SYMBOL(wake_up_process);
2582
7ad5b3a5 2583int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2584{
2585 return try_to_wake_up(p, state, 0);
2586}
2587
1da177e4
LT
2588/*
2589 * Perform scheduler related setup for a newly forked process p.
2590 * p is forked by current.
dd41f596
IM
2591 *
2592 * __sched_fork() is basic setup used by init_idle() too:
2593 */
2594static void __sched_fork(struct task_struct *p)
2595{
dd41f596
IM
2596 p->se.exec_start = 0;
2597 p->se.sum_exec_runtime = 0;
f6cf891c 2598 p->se.prev_sum_exec_runtime = 0;
6c594c21 2599 p->se.nr_migrations = 0;
4ae7d5ce
IM
2600 p->se.last_wakeup = 0;
2601 p->se.avg_overlap = 0;
831451ac
PZ
2602 p->se.start_runtime = 0;
2603 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2604
2605#ifdef CONFIG_SCHEDSTATS
7793527b
LDM
2606 p->se.wait_start = 0;
2607 p->se.wait_max = 0;
2608 p->se.wait_count = 0;
2609 p->se.wait_sum = 0;
2610
2611 p->se.sleep_start = 0;
2612 p->se.sleep_max = 0;
2613 p->se.sum_sleep_runtime = 0;
2614
2615 p->se.block_start = 0;
2616 p->se.block_max = 0;
2617 p->se.exec_max = 0;
2618 p->se.slice_max = 0;
2619
2620 p->se.nr_migrations_cold = 0;
2621 p->se.nr_failed_migrations_affine = 0;
2622 p->se.nr_failed_migrations_running = 0;
2623 p->se.nr_failed_migrations_hot = 0;
2624 p->se.nr_forced_migrations = 0;
2625 p->se.nr_forced2_migrations = 0;
2626
2627 p->se.nr_wakeups = 0;
2628 p->se.nr_wakeups_sync = 0;
2629 p->se.nr_wakeups_migrate = 0;
2630 p->se.nr_wakeups_local = 0;
2631 p->se.nr_wakeups_remote = 0;
2632 p->se.nr_wakeups_affine = 0;
2633 p->se.nr_wakeups_affine_attempts = 0;
2634 p->se.nr_wakeups_passive = 0;
2635 p->se.nr_wakeups_idle = 0;
2636
6cfb0d5d 2637#endif
476d139c 2638
fa717060 2639 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2640 p->se.on_rq = 0;
4a55bd5e 2641 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2642
e107be36
AK
2643#ifdef CONFIG_PREEMPT_NOTIFIERS
2644 INIT_HLIST_HEAD(&p->preempt_notifiers);
2645#endif
2646
1da177e4
LT
2647 /*
2648 * We mark the process as running here, but have not actually
2649 * inserted it onto the runqueue yet. This guarantees that
2650 * nobody will actually run it, and a signal or other external
2651 * event cannot wake it up and insert it on the runqueue either.
2652 */
2653 p->state = TASK_RUNNING;
dd41f596
IM
2654}
2655
2656/*
2657 * fork()/clone()-time setup:
2658 */
2659void sched_fork(struct task_struct *p, int clone_flags)
2660{
2661 int cpu = get_cpu();
2662
2663 __sched_fork(p);
2664
2665#ifdef CONFIG_SMP
2666 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2667#endif
02e4bac2 2668 set_task_cpu(p, cpu);
b29739f9
IM
2669
2670 /*
b9dc29e7 2671 * Make sure we do not leak PI boosting priority to the child.
b29739f9 2672 */
b9dc29e7 2673 p->prio = current->normal_prio;
ca94c442 2674
b9dc29e7
MG
2675 /*
2676 * Revert to default priority/policy on fork if requested.
2677 */
2678 if (unlikely(p->sched_reset_on_fork)) {
2679 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2680 p->policy = SCHED_NORMAL;
2681
2682 if (p->normal_prio < DEFAULT_PRIO)
2683 p->prio = DEFAULT_PRIO;
2684
6c697bdf
MG
2685 if (PRIO_TO_NICE(p->static_prio) < 0) {
2686 p->static_prio = NICE_TO_PRIO(0);
2687 set_load_weight(p);
2688 }
2689
b9dc29e7
MG
2690 /*
2691 * We don't need the reset flag anymore after the fork. It has
2692 * fulfilled its duty:
2693 */
2694 p->sched_reset_on_fork = 0;
2695 }
ca94c442 2696
2ddbf952
HS
2697 if (!rt_prio(p->prio))
2698 p->sched_class = &fair_sched_class;
b29739f9 2699
52f17b6c 2700#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2701 if (likely(sched_info_on()))
52f17b6c 2702 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2703#endif
d6077cb8 2704#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2705 p->oncpu = 0;
2706#endif
1da177e4 2707#ifdef CONFIG_PREEMPT
4866cde0 2708 /* Want to start with kernel preemption disabled. */
a1261f54 2709 task_thread_info(p)->preempt_count = 1;
1da177e4 2710#endif
917b627d
GH
2711 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2712
476d139c 2713 put_cpu();
1da177e4
LT
2714}
2715
2716/*
2717 * wake_up_new_task - wake up a newly created task for the first time.
2718 *
2719 * This function will do some initial scheduler statistics housekeeping
2720 * that must be done for every newly created context, then puts the task
2721 * on the runqueue and wakes it.
2722 */
7ad5b3a5 2723void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2724{
2725 unsigned long flags;
dd41f596 2726 struct rq *rq;
1da177e4
LT
2727
2728 rq = task_rq_lock(p, &flags);
147cbb4b 2729 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2730 update_rq_clock(rq);
1da177e4
LT
2731
2732 p->prio = effective_prio(p);
2733
b9dca1e0 2734 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2735 activate_task(rq, p, 0);
1da177e4 2736 } else {
1da177e4 2737 /*
dd41f596
IM
2738 * Let the scheduling class do new task startup
2739 * management (if any):
1da177e4 2740 */
ee0827d8 2741 p->sched_class->task_new(rq, p);
c09595f6 2742 inc_nr_running(rq);
1da177e4 2743 }
c71dd42d 2744 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2745 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2746#ifdef CONFIG_SMP
2747 if (p->sched_class->task_wake_up)
2748 p->sched_class->task_wake_up(rq, p);
2749#endif
dd41f596 2750 task_rq_unlock(rq, &flags);
1da177e4
LT
2751}
2752
e107be36
AK
2753#ifdef CONFIG_PREEMPT_NOTIFIERS
2754
2755/**
80dd99b3 2756 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2757 * @notifier: notifier struct to register
e107be36
AK
2758 */
2759void preempt_notifier_register(struct preempt_notifier *notifier)
2760{
2761 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2762}
2763EXPORT_SYMBOL_GPL(preempt_notifier_register);
2764
2765/**
2766 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2767 * @notifier: notifier struct to unregister
e107be36
AK
2768 *
2769 * This is safe to call from within a preemption notifier.
2770 */
2771void preempt_notifier_unregister(struct preempt_notifier *notifier)
2772{
2773 hlist_del(&notifier->link);
2774}
2775EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2776
2777static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2778{
2779 struct preempt_notifier *notifier;
2780 struct hlist_node *node;
2781
2782 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2783 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2784}
2785
2786static void
2787fire_sched_out_preempt_notifiers(struct task_struct *curr,
2788 struct task_struct *next)
2789{
2790 struct preempt_notifier *notifier;
2791 struct hlist_node *node;
2792
2793 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2794 notifier->ops->sched_out(notifier, next);
2795}
2796
6d6bc0ad 2797#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2798
2799static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2800{
2801}
2802
2803static void
2804fire_sched_out_preempt_notifiers(struct task_struct *curr,
2805 struct task_struct *next)
2806{
2807}
2808
6d6bc0ad 2809#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2810
4866cde0
NP
2811/**
2812 * prepare_task_switch - prepare to switch tasks
2813 * @rq: the runqueue preparing to switch
421cee29 2814 * @prev: the current task that is being switched out
4866cde0
NP
2815 * @next: the task we are going to switch to.
2816 *
2817 * This is called with the rq lock held and interrupts off. It must
2818 * be paired with a subsequent finish_task_switch after the context
2819 * switch.
2820 *
2821 * prepare_task_switch sets up locking and calls architecture specific
2822 * hooks.
2823 */
e107be36
AK
2824static inline void
2825prepare_task_switch(struct rq *rq, struct task_struct *prev,
2826 struct task_struct *next)
4866cde0 2827{
e107be36 2828 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2829 prepare_lock_switch(rq, next);
2830 prepare_arch_switch(next);
2831}
2832
1da177e4
LT
2833/**
2834 * finish_task_switch - clean up after a task-switch
344babaa 2835 * @rq: runqueue associated with task-switch
1da177e4
LT
2836 * @prev: the thread we just switched away from.
2837 *
4866cde0
NP
2838 * finish_task_switch must be called after the context switch, paired
2839 * with a prepare_task_switch call before the context switch.
2840 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2841 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2842 *
2843 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2844 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2845 * with the lock held can cause deadlocks; see schedule() for
2846 * details.)
2847 */
3f029d3c 2848static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2849 __releases(rq->lock)
2850{
1da177e4 2851 struct mm_struct *mm = rq->prev_mm;
55a101f8 2852 long prev_state;
1da177e4
LT
2853
2854 rq->prev_mm = NULL;
2855
2856 /*
2857 * A task struct has one reference for the use as "current".
c394cc9f 2858 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2859 * schedule one last time. The schedule call will never return, and
2860 * the scheduled task must drop that reference.
c394cc9f 2861 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2862 * still held, otherwise prev could be scheduled on another cpu, die
2863 * there before we look at prev->state, and then the reference would
2864 * be dropped twice.
2865 * Manfred Spraul <manfred@colorfullife.com>
2866 */
55a101f8 2867 prev_state = prev->state;
4866cde0 2868 finish_arch_switch(prev);
0793a61d 2869 perf_counter_task_sched_in(current, cpu_of(rq));
4866cde0 2870 finish_lock_switch(rq, prev);
e8fa1362 2871
e107be36 2872 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2873 if (mm)
2874 mmdrop(mm);
c394cc9f 2875 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2876 /*
2877 * Remove function-return probe instances associated with this
2878 * task and put them back on the free list.
9761eea8 2879 */
c6fd91f0 2880 kprobe_flush_task(prev);
1da177e4 2881 put_task_struct(prev);
c6fd91f0 2882 }
3f029d3c
GH
2883}
2884
2885#ifdef CONFIG_SMP
2886
2887/* assumes rq->lock is held */
2888static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2889{
2890 if (prev->sched_class->pre_schedule)
2891 prev->sched_class->pre_schedule(rq, prev);
2892}
2893
2894/* rq->lock is NOT held, but preemption is disabled */
2895static inline void post_schedule(struct rq *rq)
2896{
2897 if (rq->post_schedule) {
2898 unsigned long flags;
2899
2900 spin_lock_irqsave(&rq->lock, flags);
2901 if (rq->curr->sched_class->post_schedule)
2902 rq->curr->sched_class->post_schedule(rq);
2903 spin_unlock_irqrestore(&rq->lock, flags);
2904
2905 rq->post_schedule = 0;
2906 }
2907}
2908
2909#else
da19ab51 2910
3f029d3c
GH
2911static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2912{
2913}
2914
2915static inline void post_schedule(struct rq *rq)
2916{
1da177e4
LT
2917}
2918
3f029d3c
GH
2919#endif
2920
1da177e4
LT
2921/**
2922 * schedule_tail - first thing a freshly forked thread must call.
2923 * @prev: the thread we just switched away from.
2924 */
36c8b586 2925asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2926 __releases(rq->lock)
2927{
70b97a7f 2928 struct rq *rq = this_rq();
da19ab51 2929
3f029d3c 2930 finish_task_switch(rq, prev);
da19ab51 2931
3f029d3c
GH
2932 /*
2933 * FIXME: do we need to worry about rq being invalidated by the
2934 * task_switch?
2935 */
2936 post_schedule(rq);
70b97a7f 2937
4866cde0
NP
2938#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2939 /* In this case, finish_task_switch does not reenable preemption */
2940 preempt_enable();
2941#endif
1da177e4 2942 if (current->set_child_tid)
b488893a 2943 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2944}
2945
2946/*
2947 * context_switch - switch to the new MM and the new
2948 * thread's register state.
2949 */
3f029d3c 2950static inline void
70b97a7f 2951context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2952 struct task_struct *next)
1da177e4 2953{
dd41f596 2954 struct mm_struct *mm, *oldmm;
1da177e4 2955
e107be36 2956 prepare_task_switch(rq, prev, next);
0a16b607 2957 trace_sched_switch(rq, prev, next);
dd41f596
IM
2958 mm = next->mm;
2959 oldmm = prev->active_mm;
9226d125
ZA
2960 /*
2961 * For paravirt, this is coupled with an exit in switch_to to
2962 * combine the page table reload and the switch backend into
2963 * one hypercall.
2964 */
224101ed 2965 arch_start_context_switch(prev);
9226d125 2966
dd41f596 2967 if (unlikely(!mm)) {
1da177e4
LT
2968 next->active_mm = oldmm;
2969 atomic_inc(&oldmm->mm_count);
2970 enter_lazy_tlb(oldmm, next);
2971 } else
2972 switch_mm(oldmm, mm, next);
2973
dd41f596 2974 if (unlikely(!prev->mm)) {
1da177e4 2975 prev->active_mm = NULL;
1da177e4
LT
2976 rq->prev_mm = oldmm;
2977 }
3a5f5e48
IM
2978 /*
2979 * Since the runqueue lock will be released by the next
2980 * task (which is an invalid locking op but in the case
2981 * of the scheduler it's an obvious special-case), so we
2982 * do an early lockdep release here:
2983 */
2984#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2985 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2986#endif
1da177e4
LT
2987
2988 /* Here we just switch the register state and the stack. */
2989 switch_to(prev, next, prev);
2990
dd41f596
IM
2991 barrier();
2992 /*
2993 * this_rq must be evaluated again because prev may have moved
2994 * CPUs since it called schedule(), thus the 'rq' on its stack
2995 * frame will be invalid.
2996 */
3f029d3c 2997 finish_task_switch(this_rq(), prev);
1da177e4
LT
2998}
2999
3000/*
3001 * nr_running, nr_uninterruptible and nr_context_switches:
3002 *
3003 * externally visible scheduler statistics: current number of runnable
3004 * threads, current number of uninterruptible-sleeping threads, total
3005 * number of context switches performed since bootup.
3006 */
3007unsigned long nr_running(void)
3008{
3009 unsigned long i, sum = 0;
3010
3011 for_each_online_cpu(i)
3012 sum += cpu_rq(i)->nr_running;
3013
3014 return sum;
3015}
3016
3017unsigned long nr_uninterruptible(void)
3018{
3019 unsigned long i, sum = 0;
3020
0a945022 3021 for_each_possible_cpu(i)
1da177e4
LT
3022 sum += cpu_rq(i)->nr_uninterruptible;
3023
3024 /*
3025 * Since we read the counters lockless, it might be slightly
3026 * inaccurate. Do not allow it to go below zero though:
3027 */
3028 if (unlikely((long)sum < 0))
3029 sum = 0;
3030
3031 return sum;
3032}
3033
3034unsigned long long nr_context_switches(void)
3035{
cc94abfc
SR
3036 int i;
3037 unsigned long long sum = 0;
1da177e4 3038
0a945022 3039 for_each_possible_cpu(i)
1da177e4
LT
3040 sum += cpu_rq(i)->nr_switches;
3041
3042 return sum;
3043}
3044
3045unsigned long nr_iowait(void)
3046{
3047 unsigned long i, sum = 0;
3048
0a945022 3049 for_each_possible_cpu(i)
1da177e4
LT
3050 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3051
3052 return sum;
3053}
3054
dce48a84
TG
3055/* Variables and functions for calc_load */
3056static atomic_long_t calc_load_tasks;
3057static unsigned long calc_load_update;
3058unsigned long avenrun[3];
3059EXPORT_SYMBOL(avenrun);
3060
2d02494f
TG
3061/**
3062 * get_avenrun - get the load average array
3063 * @loads: pointer to dest load array
3064 * @offset: offset to add
3065 * @shift: shift count to shift the result left
3066 *
3067 * These values are estimates at best, so no need for locking.
3068 */
3069void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3070{
3071 loads[0] = (avenrun[0] + offset) << shift;
3072 loads[1] = (avenrun[1] + offset) << shift;
3073 loads[2] = (avenrun[2] + offset) << shift;
3074}
3075
dce48a84
TG
3076static unsigned long
3077calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 3078{
dce48a84
TG
3079 load *= exp;
3080 load += active * (FIXED_1 - exp);
3081 return load >> FSHIFT;
3082}
db1b1fef 3083
dce48a84
TG
3084/*
3085 * calc_load - update the avenrun load estimates 10 ticks after the
3086 * CPUs have updated calc_load_tasks.
3087 */
3088void calc_global_load(void)
3089{
3090 unsigned long upd = calc_load_update + 10;
3091 long active;
3092
3093 if (time_before(jiffies, upd))
3094 return;
db1b1fef 3095
dce48a84
TG
3096 active = atomic_long_read(&calc_load_tasks);
3097 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 3098
dce48a84
TG
3099 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3100 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3101 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3102
3103 calc_load_update += LOAD_FREQ;
3104}
3105
3106/*
3107 * Either called from update_cpu_load() or from a cpu going idle
3108 */
3109static void calc_load_account_active(struct rq *this_rq)
3110{
3111 long nr_active, delta;
3112
3113 nr_active = this_rq->nr_running;
3114 nr_active += (long) this_rq->nr_uninterruptible;
3115
3116 if (nr_active != this_rq->calc_load_active) {
3117 delta = nr_active - this_rq->calc_load_active;
3118 this_rq->calc_load_active = nr_active;
3119 atomic_long_add(delta, &calc_load_tasks);
3120 }
db1b1fef
JS
3121}
3122
23a185ca
PM
3123/*
3124 * Externally visible per-cpu scheduler statistics:
23a185ca
PM
3125 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3126 */
23a185ca
PM
3127u64 cpu_nr_migrations(int cpu)
3128{
3129 return cpu_rq(cpu)->nr_migrations_in;
3130}
3131
48f24c4d 3132/*
dd41f596
IM
3133 * Update rq->cpu_load[] statistics. This function is usually called every
3134 * scheduler tick (TICK_NSEC).
48f24c4d 3135 */
dd41f596 3136static void update_cpu_load(struct rq *this_rq)
48f24c4d 3137{
495eca49 3138 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3139 int i, scale;
3140
3141 this_rq->nr_load_updates++;
dd41f596
IM
3142
3143 /* Update our load: */
3144 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3145 unsigned long old_load, new_load;
3146
3147 /* scale is effectively 1 << i now, and >> i divides by scale */
3148
3149 old_load = this_rq->cpu_load[i];
3150 new_load = this_load;
a25707f3
IM
3151 /*
3152 * Round up the averaging division if load is increasing. This
3153 * prevents us from getting stuck on 9 if the load is 10, for
3154 * example.
3155 */
3156 if (new_load > old_load)
3157 new_load += scale-1;
dd41f596
IM
3158 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3159 }
dce48a84
TG
3160
3161 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3162 this_rq->calc_load_update += LOAD_FREQ;
3163 calc_load_account_active(this_rq);
3164 }
48f24c4d
IM
3165}
3166
dd41f596
IM
3167#ifdef CONFIG_SMP
3168
1da177e4
LT
3169/*
3170 * double_rq_lock - safely lock two runqueues
3171 *
3172 * Note this does not disable interrupts like task_rq_lock,
3173 * you need to do so manually before calling.
3174 */
70b97a7f 3175static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3176 __acquires(rq1->lock)
3177 __acquires(rq2->lock)
3178{
054b9108 3179 BUG_ON(!irqs_disabled());
1da177e4
LT
3180 if (rq1 == rq2) {
3181 spin_lock(&rq1->lock);
3182 __acquire(rq2->lock); /* Fake it out ;) */
3183 } else {
c96d145e 3184 if (rq1 < rq2) {
1da177e4 3185 spin_lock(&rq1->lock);
5e710e37 3186 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3187 } else {
3188 spin_lock(&rq2->lock);
5e710e37 3189 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3190 }
3191 }
6e82a3be
IM
3192 update_rq_clock(rq1);
3193 update_rq_clock(rq2);
1da177e4
LT
3194}
3195
3196/*
3197 * double_rq_unlock - safely unlock two runqueues
3198 *
3199 * Note this does not restore interrupts like task_rq_unlock,
3200 * you need to do so manually after calling.
3201 */
70b97a7f 3202static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3203 __releases(rq1->lock)
3204 __releases(rq2->lock)
3205{
3206 spin_unlock(&rq1->lock);
3207 if (rq1 != rq2)
3208 spin_unlock(&rq2->lock);
3209 else
3210 __release(rq2->lock);
3211}
3212
1da177e4
LT
3213/*
3214 * If dest_cpu is allowed for this process, migrate the task to it.
3215 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3216 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3217 * the cpu_allowed mask is restored.
3218 */
36c8b586 3219static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3220{
70b97a7f 3221 struct migration_req req;
1da177e4 3222 unsigned long flags;
70b97a7f 3223 struct rq *rq;
1da177e4
LT
3224
3225 rq = task_rq_lock(p, &flags);
96f874e2 3226 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3227 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3228 goto out;
3229
3230 /* force the process onto the specified CPU */
3231 if (migrate_task(p, dest_cpu, &req)) {
3232 /* Need to wait for migration thread (might exit: take ref). */
3233 struct task_struct *mt = rq->migration_thread;
36c8b586 3234
1da177e4
LT
3235 get_task_struct(mt);
3236 task_rq_unlock(rq, &flags);
3237 wake_up_process(mt);
3238 put_task_struct(mt);
3239 wait_for_completion(&req.done);
36c8b586 3240
1da177e4
LT
3241 return;
3242 }
3243out:
3244 task_rq_unlock(rq, &flags);
3245}
3246
3247/*
476d139c
NP
3248 * sched_exec - execve() is a valuable balancing opportunity, because at
3249 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3250 */
3251void sched_exec(void)
3252{
1da177e4 3253 int new_cpu, this_cpu = get_cpu();
476d139c 3254 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 3255 put_cpu();
476d139c
NP
3256 if (new_cpu != this_cpu)
3257 sched_migrate_task(current, new_cpu);
1da177e4
LT
3258}
3259
3260/*
3261 * pull_task - move a task from a remote runqueue to the local runqueue.
3262 * Both runqueues must be locked.
3263 */
dd41f596
IM
3264static void pull_task(struct rq *src_rq, struct task_struct *p,
3265 struct rq *this_rq, int this_cpu)
1da177e4 3266{
2e1cb74a 3267 deactivate_task(src_rq, p, 0);
1da177e4 3268 set_task_cpu(p, this_cpu);
dd41f596 3269 activate_task(this_rq, p, 0);
1da177e4
LT
3270 /*
3271 * Note that idle threads have a prio of MAX_PRIO, for this test
3272 * to be always true for them.
3273 */
15afe09b 3274 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3275}
3276
3277/*
3278 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3279 */
858119e1 3280static
70b97a7f 3281int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3282 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3283 int *all_pinned)
1da177e4 3284{
708dc512 3285 int tsk_cache_hot = 0;
1da177e4
LT
3286 /*
3287 * We do not migrate tasks that are:
3288 * 1) running (obviously), or
3289 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3290 * 3) are cache-hot on their current CPU.
3291 */
96f874e2 3292 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3293 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3294 return 0;
cc367732 3295 }
81026794
NP
3296 *all_pinned = 0;
3297
cc367732
IM
3298 if (task_running(rq, p)) {
3299 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3300 return 0;
cc367732 3301 }
1da177e4 3302
da84d961
IM
3303 /*
3304 * Aggressive migration if:
3305 * 1) task is cache cold, or
3306 * 2) too many balance attempts have failed.
3307 */
3308
708dc512
LH
3309 tsk_cache_hot = task_hot(p, rq->clock, sd);
3310 if (!tsk_cache_hot ||
3311 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3312#ifdef CONFIG_SCHEDSTATS
708dc512 3313 if (tsk_cache_hot) {
da84d961 3314 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3315 schedstat_inc(p, se.nr_forced_migrations);
3316 }
da84d961
IM
3317#endif
3318 return 1;
3319 }
3320
708dc512 3321 if (tsk_cache_hot) {
cc367732 3322 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3323 return 0;
cc367732 3324 }
1da177e4
LT
3325 return 1;
3326}
3327
e1d1484f
PW
3328static unsigned long
3329balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3330 unsigned long max_load_move, struct sched_domain *sd,
3331 enum cpu_idle_type idle, int *all_pinned,
3332 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3333{
051c6764 3334 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3335 struct task_struct *p;
3336 long rem_load_move = max_load_move;
1da177e4 3337
e1d1484f 3338 if (max_load_move == 0)
1da177e4
LT
3339 goto out;
3340
81026794
NP
3341 pinned = 1;
3342
1da177e4 3343 /*
dd41f596 3344 * Start the load-balancing iterator:
1da177e4 3345 */
dd41f596
IM
3346 p = iterator->start(iterator->arg);
3347next:
b82d9fdd 3348 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3349 goto out;
051c6764
PZ
3350
3351 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3352 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3353 p = iterator->next(iterator->arg);
3354 goto next;
1da177e4
LT
3355 }
3356
dd41f596 3357 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3358 pulled++;
dd41f596 3359 rem_load_move -= p->se.load.weight;
1da177e4 3360
7e96fa58
GH
3361#ifdef CONFIG_PREEMPT
3362 /*
3363 * NEWIDLE balancing is a source of latency, so preemptible kernels
3364 * will stop after the first task is pulled to minimize the critical
3365 * section.
3366 */
3367 if (idle == CPU_NEWLY_IDLE)
3368 goto out;
3369#endif
3370
2dd73a4f 3371 /*
b82d9fdd 3372 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3373 */
e1d1484f 3374 if (rem_load_move > 0) {
a4ac01c3
PW
3375 if (p->prio < *this_best_prio)
3376 *this_best_prio = p->prio;
dd41f596
IM
3377 p = iterator->next(iterator->arg);
3378 goto next;
1da177e4
LT
3379 }
3380out:
3381 /*
e1d1484f 3382 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3383 * so we can safely collect pull_task() stats here rather than
3384 * inside pull_task().
3385 */
3386 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3387
3388 if (all_pinned)
3389 *all_pinned = pinned;
e1d1484f
PW
3390
3391 return max_load_move - rem_load_move;
1da177e4
LT
3392}
3393
dd41f596 3394/*
43010659
PW
3395 * move_tasks tries to move up to max_load_move weighted load from busiest to
3396 * this_rq, as part of a balancing operation within domain "sd".
3397 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3398 *
3399 * Called with both runqueues locked.
3400 */
3401static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3402 unsigned long max_load_move,
dd41f596
IM
3403 struct sched_domain *sd, enum cpu_idle_type idle,
3404 int *all_pinned)
3405{
5522d5d5 3406 const struct sched_class *class = sched_class_highest;
43010659 3407 unsigned long total_load_moved = 0;
a4ac01c3 3408 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3409
3410 do {
43010659
PW
3411 total_load_moved +=
3412 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3413 max_load_move - total_load_moved,
a4ac01c3 3414 sd, idle, all_pinned, &this_best_prio);
dd41f596 3415 class = class->next;
c4acb2c0 3416
7e96fa58
GH
3417#ifdef CONFIG_PREEMPT
3418 /*
3419 * NEWIDLE balancing is a source of latency, so preemptible
3420 * kernels will stop after the first task is pulled to minimize
3421 * the critical section.
3422 */
c4acb2c0
GH
3423 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3424 break;
7e96fa58 3425#endif
43010659 3426 } while (class && max_load_move > total_load_moved);
dd41f596 3427
43010659
PW
3428 return total_load_moved > 0;
3429}
3430
e1d1484f
PW
3431static int
3432iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3433 struct sched_domain *sd, enum cpu_idle_type idle,
3434 struct rq_iterator *iterator)
3435{
3436 struct task_struct *p = iterator->start(iterator->arg);
3437 int pinned = 0;
3438
3439 while (p) {
3440 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3441 pull_task(busiest, p, this_rq, this_cpu);
3442 /*
3443 * Right now, this is only the second place pull_task()
3444 * is called, so we can safely collect pull_task()
3445 * stats here rather than inside pull_task().
3446 */
3447 schedstat_inc(sd, lb_gained[idle]);
3448
3449 return 1;
3450 }
3451 p = iterator->next(iterator->arg);
3452 }
3453
3454 return 0;
3455}
3456
43010659
PW
3457/*
3458 * move_one_task tries to move exactly one task from busiest to this_rq, as
3459 * part of active balancing operations within "domain".
3460 * Returns 1 if successful and 0 otherwise.
3461 *
3462 * Called with both runqueues locked.
3463 */
3464static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3465 struct sched_domain *sd, enum cpu_idle_type idle)
3466{
5522d5d5 3467 const struct sched_class *class;
43010659 3468
cde7e5ca 3469 for_each_class(class) {
e1d1484f 3470 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659 3471 return 1;
cde7e5ca 3472 }
43010659
PW
3473
3474 return 0;
dd41f596 3475}
67bb6c03 3476/********** Helpers for find_busiest_group ************************/
1da177e4 3477/*
222d656d
GS
3478 * sd_lb_stats - Structure to store the statistics of a sched_domain
3479 * during load balancing.
1da177e4 3480 */
222d656d
GS
3481struct sd_lb_stats {
3482 struct sched_group *busiest; /* Busiest group in this sd */
3483 struct sched_group *this; /* Local group in this sd */
3484 unsigned long total_load; /* Total load of all groups in sd */
3485 unsigned long total_pwr; /* Total power of all groups in sd */
3486 unsigned long avg_load; /* Average load across all groups in sd */
3487
3488 /** Statistics of this group */
3489 unsigned long this_load;
3490 unsigned long this_load_per_task;
3491 unsigned long this_nr_running;
3492
3493 /* Statistics of the busiest group */
3494 unsigned long max_load;
3495 unsigned long busiest_load_per_task;
3496 unsigned long busiest_nr_running;
3497
3498 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3499#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3500 int power_savings_balance; /* Is powersave balance needed for this sd */
3501 struct sched_group *group_min; /* Least loaded group in sd */
3502 struct sched_group *group_leader; /* Group which relieves group_min */
3503 unsigned long min_load_per_task; /* load_per_task in group_min */
3504 unsigned long leader_nr_running; /* Nr running of group_leader */
3505 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3506#endif
222d656d 3507};
1da177e4 3508
d5ac537e 3509/*
381be78f
GS
3510 * sg_lb_stats - stats of a sched_group required for load_balancing
3511 */
3512struct sg_lb_stats {
3513 unsigned long avg_load; /*Avg load across the CPUs of the group */
3514 unsigned long group_load; /* Total load over the CPUs of the group */
3515 unsigned long sum_nr_running; /* Nr tasks running in the group */
3516 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3517 unsigned long group_capacity;
3518 int group_imb; /* Is there an imbalance in the group ? */
3519};
408ed066 3520
67bb6c03
GS
3521/**
3522 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3523 * @group: The group whose first cpu is to be returned.
3524 */
3525static inline unsigned int group_first_cpu(struct sched_group *group)
3526{
3527 return cpumask_first(sched_group_cpus(group));
3528}
3529
3530/**
3531 * get_sd_load_idx - Obtain the load index for a given sched domain.
3532 * @sd: The sched_domain whose load_idx is to be obtained.
3533 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3534 */
3535static inline int get_sd_load_idx(struct sched_domain *sd,
3536 enum cpu_idle_type idle)
3537{
3538 int load_idx;
3539
3540 switch (idle) {
3541 case CPU_NOT_IDLE:
7897986b 3542 load_idx = sd->busy_idx;
67bb6c03
GS
3543 break;
3544
3545 case CPU_NEWLY_IDLE:
7897986b 3546 load_idx = sd->newidle_idx;
67bb6c03
GS
3547 break;
3548 default:
7897986b 3549 load_idx = sd->idle_idx;
67bb6c03
GS
3550 break;
3551 }
1da177e4 3552
67bb6c03
GS
3553 return load_idx;
3554}
1da177e4 3555
1da177e4 3556
c071df18
GS
3557#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3558/**
3559 * init_sd_power_savings_stats - Initialize power savings statistics for
3560 * the given sched_domain, during load balancing.
3561 *
3562 * @sd: Sched domain whose power-savings statistics are to be initialized.
3563 * @sds: Variable containing the statistics for sd.
3564 * @idle: Idle status of the CPU at which we're performing load-balancing.
3565 */
3566static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3567 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3568{
3569 /*
3570 * Busy processors will not participate in power savings
3571 * balance.
3572 */
3573 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3574 sds->power_savings_balance = 0;
3575 else {
3576 sds->power_savings_balance = 1;
3577 sds->min_nr_running = ULONG_MAX;
3578 sds->leader_nr_running = 0;
3579 }
3580}
783609c6 3581
c071df18
GS
3582/**
3583 * update_sd_power_savings_stats - Update the power saving stats for a
3584 * sched_domain while performing load balancing.
3585 *
3586 * @group: sched_group belonging to the sched_domain under consideration.
3587 * @sds: Variable containing the statistics of the sched_domain
3588 * @local_group: Does group contain the CPU for which we're performing
3589 * load balancing ?
3590 * @sgs: Variable containing the statistics of the group.
3591 */
3592static inline void update_sd_power_savings_stats(struct sched_group *group,
3593 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3594{
408ed066 3595
c071df18
GS
3596 if (!sds->power_savings_balance)
3597 return;
1da177e4 3598
c071df18
GS
3599 /*
3600 * If the local group is idle or completely loaded
3601 * no need to do power savings balance at this domain
3602 */
3603 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3604 !sds->this_nr_running))
3605 sds->power_savings_balance = 0;
2dd73a4f 3606
c071df18
GS
3607 /*
3608 * If a group is already running at full capacity or idle,
3609 * don't include that group in power savings calculations
3610 */
3611 if (!sds->power_savings_balance ||
3612 sgs->sum_nr_running >= sgs->group_capacity ||
3613 !sgs->sum_nr_running)
3614 return;
5969fe06 3615
c071df18
GS
3616 /*
3617 * Calculate the group which has the least non-idle load.
3618 * This is the group from where we need to pick up the load
3619 * for saving power
3620 */
3621 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3622 (sgs->sum_nr_running == sds->min_nr_running &&
3623 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3624 sds->group_min = group;
3625 sds->min_nr_running = sgs->sum_nr_running;
3626 sds->min_load_per_task = sgs->sum_weighted_load /
3627 sgs->sum_nr_running;
3628 }
783609c6 3629
c071df18
GS
3630 /*
3631 * Calculate the group which is almost near its
3632 * capacity but still has some space to pick up some load
3633 * from other group and save more power
3634 */
3635 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3636 return;
1da177e4 3637
c071df18
GS
3638 if (sgs->sum_nr_running > sds->leader_nr_running ||
3639 (sgs->sum_nr_running == sds->leader_nr_running &&
3640 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3641 sds->group_leader = group;
3642 sds->leader_nr_running = sgs->sum_nr_running;
3643 }
3644}
408ed066 3645
c071df18 3646/**
d5ac537e 3647 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3648 * @sds: Variable containing the statistics of the sched_domain
3649 * under consideration.
3650 * @this_cpu: Cpu at which we're currently performing load-balancing.
3651 * @imbalance: Variable to store the imbalance.
3652 *
d5ac537e
RD
3653 * Description:
3654 * Check if we have potential to perform some power-savings balance.
3655 * If yes, set the busiest group to be the least loaded group in the
3656 * sched_domain, so that it's CPUs can be put to idle.
3657 *
c071df18
GS
3658 * Returns 1 if there is potential to perform power-savings balance.
3659 * Else returns 0.
3660 */
3661static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3662 int this_cpu, unsigned long *imbalance)
3663{
3664 if (!sds->power_savings_balance)
3665 return 0;
1da177e4 3666
c071df18
GS
3667 if (sds->this != sds->group_leader ||
3668 sds->group_leader == sds->group_min)
3669 return 0;
783609c6 3670
c071df18
GS
3671 *imbalance = sds->min_load_per_task;
3672 sds->busiest = sds->group_min;
1da177e4 3673
c071df18
GS
3674 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3675 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3676 group_first_cpu(sds->group_leader);
3677 }
3678
3679 return 1;
1da177e4 3680
c071df18
GS
3681}
3682#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3683static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3684 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3685{
3686 return;
3687}
408ed066 3688
c071df18
GS
3689static inline void update_sd_power_savings_stats(struct sched_group *group,
3690 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3691{
3692 return;
3693}
3694
3695static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3696 int this_cpu, unsigned long *imbalance)
3697{
3698 return 0;
3699}
3700#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3701
3702
1f8c553d
GS
3703/**
3704 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3705 * @group: sched_group whose statistics are to be updated.
3706 * @this_cpu: Cpu for which load balance is currently performed.
3707 * @idle: Idle status of this_cpu
3708 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3709 * @sd_idle: Idle status of the sched_domain containing group.
3710 * @local_group: Does group contain this_cpu.
3711 * @cpus: Set of cpus considered for load balancing.
3712 * @balance: Should we balance.
3713 * @sgs: variable to hold the statistics for this group.
3714 */
3715static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3716 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3717 int local_group, const struct cpumask *cpus,
3718 int *balance, struct sg_lb_stats *sgs)
3719{
3720 unsigned long load, max_cpu_load, min_cpu_load;
3721 int i;
3722 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3723 unsigned long sum_avg_load_per_task;
3724 unsigned long avg_load_per_task;
3725
3726 if (local_group)
3727 balance_cpu = group_first_cpu(group);
3728
3729 /* Tally up the load of all CPUs in the group */
3730 sum_avg_load_per_task = avg_load_per_task = 0;
3731 max_cpu_load = 0;
3732 min_cpu_load = ~0UL;
408ed066 3733
1f8c553d
GS
3734 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3735 struct rq *rq = cpu_rq(i);
908a7c1b 3736
1f8c553d
GS
3737 if (*sd_idle && rq->nr_running)
3738 *sd_idle = 0;
5c45bf27 3739
1f8c553d 3740 /* Bias balancing toward cpus of our domain */
1da177e4 3741 if (local_group) {
1f8c553d
GS
3742 if (idle_cpu(i) && !first_idle_cpu) {
3743 first_idle_cpu = 1;
3744 balance_cpu = i;
3745 }
3746
3747 load = target_load(i, load_idx);
3748 } else {
3749 load = source_load(i, load_idx);
3750 if (load > max_cpu_load)
3751 max_cpu_load = load;
3752 if (min_cpu_load > load)
3753 min_cpu_load = load;
1da177e4 3754 }
5c45bf27 3755
1f8c553d
GS
3756 sgs->group_load += load;
3757 sgs->sum_nr_running += rq->nr_running;
3758 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3759
1f8c553d
GS
3760 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3761 }
5c45bf27 3762
1f8c553d
GS
3763 /*
3764 * First idle cpu or the first cpu(busiest) in this sched group
3765 * is eligible for doing load balancing at this and above
3766 * domains. In the newly idle case, we will allow all the cpu's
3767 * to do the newly idle load balance.
3768 */
3769 if (idle != CPU_NEWLY_IDLE && local_group &&
3770 balance_cpu != this_cpu && balance) {
3771 *balance = 0;
3772 return;
3773 }
5c45bf27 3774
1f8c553d
GS
3775 /* Adjust by relative CPU power of the group */
3776 sgs->avg_load = sg_div_cpu_power(group,
3777 sgs->group_load * SCHED_LOAD_SCALE);
5c45bf27 3778
1f8c553d
GS
3779
3780 /*
3781 * Consider the group unbalanced when the imbalance is larger
3782 * than the average weight of two tasks.
3783 *
3784 * APZ: with cgroup the avg task weight can vary wildly and
3785 * might not be a suitable number - should we keep a
3786 * normalized nr_running number somewhere that negates
3787 * the hierarchy?
3788 */
3789 avg_load_per_task = sg_div_cpu_power(group,
3790 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3791
3792 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3793 sgs->group_imb = 1;
3794
3795 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3796
3797}
dd41f596 3798
37abe198
GS
3799/**
3800 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3801 * @sd: sched_domain whose statistics are to be updated.
3802 * @this_cpu: Cpu for which load balance is currently performed.
3803 * @idle: Idle status of this_cpu
3804 * @sd_idle: Idle status of the sched_domain containing group.
3805 * @cpus: Set of cpus considered for load balancing.
3806 * @balance: Should we balance.
3807 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3808 */
37abe198
GS
3809static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3810 enum cpu_idle_type idle, int *sd_idle,
3811 const struct cpumask *cpus, int *balance,
3812 struct sd_lb_stats *sds)
1da177e4 3813{
b5d978e0 3814 struct sched_domain *child = sd->child;
222d656d 3815 struct sched_group *group = sd->groups;
37abe198 3816 struct sg_lb_stats sgs;
b5d978e0
PZ
3817 int load_idx, prefer_sibling = 0;
3818
3819 if (child && child->flags & SD_PREFER_SIBLING)
3820 prefer_sibling = 1;
222d656d 3821
c071df18 3822 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3823 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3824
3825 do {
1da177e4 3826 int local_group;
1da177e4 3827
758b2cdc
RR
3828 local_group = cpumask_test_cpu(this_cpu,
3829 sched_group_cpus(group));
381be78f 3830 memset(&sgs, 0, sizeof(sgs));
1f8c553d
GS
3831 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3832 local_group, cpus, balance, &sgs);
1da177e4 3833
37abe198
GS
3834 if (local_group && balance && !(*balance))
3835 return;
783609c6 3836
37abe198
GS
3837 sds->total_load += sgs.group_load;
3838 sds->total_pwr += group->__cpu_power;
1da177e4 3839
b5d978e0
PZ
3840 /*
3841 * In case the child domain prefers tasks go to siblings
3842 * first, lower the group capacity to one so that we'll try
3843 * and move all the excess tasks away.
3844 */
3845 if (prefer_sibling)
3846 sgs.group_capacity = 1;
3847
1da177e4 3848 if (local_group) {
37abe198
GS
3849 sds->this_load = sgs.avg_load;
3850 sds->this = group;
3851 sds->this_nr_running = sgs.sum_nr_running;
3852 sds->this_load_per_task = sgs.sum_weighted_load;
3853 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3854 (sgs.sum_nr_running > sgs.group_capacity ||
3855 sgs.group_imb)) {
37abe198
GS
3856 sds->max_load = sgs.avg_load;
3857 sds->busiest = group;
3858 sds->busiest_nr_running = sgs.sum_nr_running;
3859 sds->busiest_load_per_task = sgs.sum_weighted_load;
3860 sds->group_imb = sgs.group_imb;
48f24c4d 3861 }
5c45bf27 3862
c071df18 3863 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3864 group = group->next;
3865 } while (group != sd->groups);
3866
37abe198 3867}
1da177e4 3868
2e6f44ae
GS
3869/**
3870 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3871 * amongst the groups of a sched_domain, during
3872 * load balancing.
2e6f44ae
GS
3873 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3874 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3875 * @imbalance: Variable to store the imbalance.
3876 */
3877static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3878 int this_cpu, unsigned long *imbalance)
3879{
3880 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3881 unsigned int imbn = 2;
3882
3883 if (sds->this_nr_running) {
3884 sds->this_load_per_task /= sds->this_nr_running;
3885 if (sds->busiest_load_per_task >
3886 sds->this_load_per_task)
3887 imbn = 1;
3888 } else
3889 sds->this_load_per_task =
3890 cpu_avg_load_per_task(this_cpu);
1da177e4 3891
2e6f44ae
GS
3892 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3893 sds->busiest_load_per_task * imbn) {
3894 *imbalance = sds->busiest_load_per_task;
3895 return;
3896 }
908a7c1b 3897
1da177e4 3898 /*
2e6f44ae
GS
3899 * OK, we don't have enough imbalance to justify moving tasks,
3900 * however we may be able to increase total CPU power used by
3901 * moving them.
1da177e4 3902 */
2dd73a4f 3903
2e6f44ae
GS
3904 pwr_now += sds->busiest->__cpu_power *
3905 min(sds->busiest_load_per_task, sds->max_load);
3906 pwr_now += sds->this->__cpu_power *
3907 min(sds->this_load_per_task, sds->this_load);
3908 pwr_now /= SCHED_LOAD_SCALE;
3909
3910 /* Amount of load we'd subtract */
3911 tmp = sg_div_cpu_power(sds->busiest,
3912 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3913 if (sds->max_load > tmp)
3914 pwr_move += sds->busiest->__cpu_power *
3915 min(sds->busiest_load_per_task, sds->max_load - tmp);
3916
3917 /* Amount of load we'd add */
3918 if (sds->max_load * sds->busiest->__cpu_power <
3919 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3920 tmp = sg_div_cpu_power(sds->this,
3921 sds->max_load * sds->busiest->__cpu_power);
3922 else
3923 tmp = sg_div_cpu_power(sds->this,
3924 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3925 pwr_move += sds->this->__cpu_power *
3926 min(sds->this_load_per_task, sds->this_load + tmp);
3927 pwr_move /= SCHED_LOAD_SCALE;
3928
3929 /* Move if we gain throughput */
3930 if (pwr_move > pwr_now)
3931 *imbalance = sds->busiest_load_per_task;
3932}
dbc523a3
GS
3933
3934/**
3935 * calculate_imbalance - Calculate the amount of imbalance present within the
3936 * groups of a given sched_domain during load balance.
3937 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3938 * @this_cpu: Cpu for which currently load balance is being performed.
3939 * @imbalance: The variable to store the imbalance.
3940 */
3941static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3942 unsigned long *imbalance)
3943{
3944 unsigned long max_pull;
2dd73a4f
PW
3945 /*
3946 * In the presence of smp nice balancing, certain scenarios can have
3947 * max load less than avg load(as we skip the groups at or below
3948 * its cpu_power, while calculating max_load..)
3949 */
dbc523a3 3950 if (sds->max_load < sds->avg_load) {
2dd73a4f 3951 *imbalance = 0;
dbc523a3 3952 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3953 }
0c117f1b
SS
3954
3955 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3956 max_pull = min(sds->max_load - sds->avg_load,
3957 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3958
1da177e4 3959 /* How much load to actually move to equalise the imbalance */
dbc523a3
GS
3960 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3961 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
1da177e4
LT
3962 / SCHED_LOAD_SCALE;
3963
2dd73a4f
PW
3964 /*
3965 * if *imbalance is less than the average load per runnable task
3966 * there is no gaurantee that any tasks will be moved so we'll have
3967 * a think about bumping its value to force at least one task to be
3968 * moved
3969 */
dbc523a3
GS
3970 if (*imbalance < sds->busiest_load_per_task)
3971 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3972
dbc523a3 3973}
37abe198 3974/******* find_busiest_group() helpers end here *********************/
1da177e4 3975
b7bb4c9b
GS
3976/**
3977 * find_busiest_group - Returns the busiest group within the sched_domain
3978 * if there is an imbalance. If there isn't an imbalance, and
3979 * the user has opted for power-savings, it returns a group whose
3980 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3981 * such a group exists.
3982 *
3983 * Also calculates the amount of weighted load which should be moved
3984 * to restore balance.
3985 *
3986 * @sd: The sched_domain whose busiest group is to be returned.
3987 * @this_cpu: The cpu for which load balancing is currently being performed.
3988 * @imbalance: Variable which stores amount of weighted load which should
3989 * be moved to restore balance/put a group to idle.
3990 * @idle: The idle status of this_cpu.
3991 * @sd_idle: The idleness of sd
3992 * @cpus: The set of CPUs under consideration for load-balancing.
3993 * @balance: Pointer to a variable indicating if this_cpu
3994 * is the appropriate cpu to perform load balancing at this_level.
3995 *
3996 * Returns: - the busiest group if imbalance exists.
3997 * - If no imbalance and user has opted for power-savings balance,
3998 * return the least loaded group whose CPUs can be
3999 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
4000 */
4001static struct sched_group *
4002find_busiest_group(struct sched_domain *sd, int this_cpu,
4003 unsigned long *imbalance, enum cpu_idle_type idle,
4004 int *sd_idle, const struct cpumask *cpus, int *balance)
4005{
4006 struct sd_lb_stats sds;
1da177e4 4007
37abe198 4008 memset(&sds, 0, sizeof(sds));
1da177e4 4009
37abe198
GS
4010 /*
4011 * Compute the various statistics relavent for load balancing at
4012 * this level.
4013 */
4014 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4015 balance, &sds);
4016
b7bb4c9b
GS
4017 /* Cases where imbalance does not exist from POV of this_cpu */
4018 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4019 * at this level.
4020 * 2) There is no busy sibling group to pull from.
4021 * 3) This group is the busiest group.
4022 * 4) This group is more busy than the avg busieness at this
4023 * sched_domain.
4024 * 5) The imbalance is within the specified limit.
4025 * 6) Any rebalance would lead to ping-pong
4026 */
37abe198
GS
4027 if (balance && !(*balance))
4028 goto ret;
1da177e4 4029
b7bb4c9b
GS
4030 if (!sds.busiest || sds.busiest_nr_running == 0)
4031 goto out_balanced;
1da177e4 4032
b7bb4c9b 4033 if (sds.this_load >= sds.max_load)
1da177e4 4034 goto out_balanced;
1da177e4 4035
222d656d 4036 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 4037
b7bb4c9b
GS
4038 if (sds.this_load >= sds.avg_load)
4039 goto out_balanced;
4040
4041 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
4042 goto out_balanced;
4043
222d656d
GS
4044 sds.busiest_load_per_task /= sds.busiest_nr_running;
4045 if (sds.group_imb)
4046 sds.busiest_load_per_task =
4047 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 4048
1da177e4
LT
4049 /*
4050 * We're trying to get all the cpus to the average_load, so we don't
4051 * want to push ourselves above the average load, nor do we wish to
4052 * reduce the max loaded cpu below the average load, as either of these
4053 * actions would just result in more rebalancing later, and ping-pong
4054 * tasks around. Thus we look for the minimum possible imbalance.
4055 * Negative imbalances (*we* are more loaded than anyone else) will
4056 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 4057 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
4058 * appear as very large values with unsigned longs.
4059 */
222d656d 4060 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
4061 goto out_balanced;
4062
dbc523a3
GS
4063 /* Looks like there is an imbalance. Compute it */
4064 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 4065 return sds.busiest;
1da177e4
LT
4066
4067out_balanced:
c071df18
GS
4068 /*
4069 * There is no obvious imbalance. But check if we can do some balancing
4070 * to save power.
4071 */
4072 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4073 return sds.busiest;
783609c6 4074ret:
1da177e4
LT
4075 *imbalance = 0;
4076 return NULL;
4077}
4078
4079/*
4080 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4081 */
70b97a7f 4082static struct rq *
d15bcfdb 4083find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 4084 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 4085{
70b97a7f 4086 struct rq *busiest = NULL, *rq;
2dd73a4f 4087 unsigned long max_load = 0;
1da177e4
LT
4088 int i;
4089
758b2cdc 4090 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 4091 unsigned long wl;
0a2966b4 4092
96f874e2 4093 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
4094 continue;
4095
48f24c4d 4096 rq = cpu_rq(i);
dd41f596 4097 wl = weighted_cpuload(i);
2dd73a4f 4098
dd41f596 4099 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 4100 continue;
1da177e4 4101
dd41f596
IM
4102 if (wl > max_load) {
4103 max_load = wl;
48f24c4d 4104 busiest = rq;
1da177e4
LT
4105 }
4106 }
4107
4108 return busiest;
4109}
4110
77391d71
NP
4111/*
4112 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4113 * so long as it is large enough.
4114 */
4115#define MAX_PINNED_INTERVAL 512
4116
df7c8e84
RR
4117/* Working cpumask for load_balance and load_balance_newidle. */
4118static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4119
1da177e4
LT
4120/*
4121 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4122 * tasks if there is an imbalance.
1da177e4 4123 */
70b97a7f 4124static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4125 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4126 int *balance)
1da177e4 4127{
43010659 4128 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4129 struct sched_group *group;
1da177e4 4130 unsigned long imbalance;
70b97a7f 4131 struct rq *busiest;
fe2eea3f 4132 unsigned long flags;
df7c8e84 4133 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4134
96f874e2 4135 cpumask_setall(cpus);
7c16ec58 4136
89c4710e
SS
4137 /*
4138 * When power savings policy is enabled for the parent domain, idle
4139 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4140 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4141 * portraying it as CPU_NOT_IDLE.
89c4710e 4142 */
d15bcfdb 4143 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4144 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4145 sd_idle = 1;
1da177e4 4146
2d72376b 4147 schedstat_inc(sd, lb_count[idle]);
1da177e4 4148
0a2966b4 4149redo:
c8cba857 4150 update_shares(sd);
0a2966b4 4151 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4152 cpus, balance);
783609c6 4153
06066714 4154 if (*balance == 0)
783609c6 4155 goto out_balanced;
783609c6 4156
1da177e4
LT
4157 if (!group) {
4158 schedstat_inc(sd, lb_nobusyg[idle]);
4159 goto out_balanced;
4160 }
4161
7c16ec58 4162 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4163 if (!busiest) {
4164 schedstat_inc(sd, lb_nobusyq[idle]);
4165 goto out_balanced;
4166 }
4167
db935dbd 4168 BUG_ON(busiest == this_rq);
1da177e4
LT
4169
4170 schedstat_add(sd, lb_imbalance[idle], imbalance);
4171
43010659 4172 ld_moved = 0;
1da177e4
LT
4173 if (busiest->nr_running > 1) {
4174 /*
4175 * Attempt to move tasks. If find_busiest_group has found
4176 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4177 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4178 * correctly treated as an imbalance.
4179 */
fe2eea3f 4180 local_irq_save(flags);
e17224bf 4181 double_rq_lock(this_rq, busiest);
43010659 4182 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4183 imbalance, sd, idle, &all_pinned);
e17224bf 4184 double_rq_unlock(this_rq, busiest);
fe2eea3f 4185 local_irq_restore(flags);
81026794 4186
46cb4b7c
SS
4187 /*
4188 * some other cpu did the load balance for us.
4189 */
43010659 4190 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4191 resched_cpu(this_cpu);
4192
81026794 4193 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4194 if (unlikely(all_pinned)) {
96f874e2
RR
4195 cpumask_clear_cpu(cpu_of(busiest), cpus);
4196 if (!cpumask_empty(cpus))
0a2966b4 4197 goto redo;
81026794 4198 goto out_balanced;
0a2966b4 4199 }
1da177e4 4200 }
81026794 4201
43010659 4202 if (!ld_moved) {
1da177e4
LT
4203 schedstat_inc(sd, lb_failed[idle]);
4204 sd->nr_balance_failed++;
4205
4206 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4207
fe2eea3f 4208 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4209
4210 /* don't kick the migration_thread, if the curr
4211 * task on busiest cpu can't be moved to this_cpu
4212 */
96f874e2
RR
4213 if (!cpumask_test_cpu(this_cpu,
4214 &busiest->curr->cpus_allowed)) {
fe2eea3f 4215 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4216 all_pinned = 1;
4217 goto out_one_pinned;
4218 }
4219
1da177e4
LT
4220 if (!busiest->active_balance) {
4221 busiest->active_balance = 1;
4222 busiest->push_cpu = this_cpu;
81026794 4223 active_balance = 1;
1da177e4 4224 }
fe2eea3f 4225 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4226 if (active_balance)
1da177e4
LT
4227 wake_up_process(busiest->migration_thread);
4228
4229 /*
4230 * We've kicked active balancing, reset the failure
4231 * counter.
4232 */
39507451 4233 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4234 }
81026794 4235 } else
1da177e4
LT
4236 sd->nr_balance_failed = 0;
4237
81026794 4238 if (likely(!active_balance)) {
1da177e4
LT
4239 /* We were unbalanced, so reset the balancing interval */
4240 sd->balance_interval = sd->min_interval;
81026794
NP
4241 } else {
4242 /*
4243 * If we've begun active balancing, start to back off. This
4244 * case may not be covered by the all_pinned logic if there
4245 * is only 1 task on the busy runqueue (because we don't call
4246 * move_tasks).
4247 */
4248 if (sd->balance_interval < sd->max_interval)
4249 sd->balance_interval *= 2;
1da177e4
LT
4250 }
4251
43010659 4252 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4253 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4254 ld_moved = -1;
4255
4256 goto out;
1da177e4
LT
4257
4258out_balanced:
1da177e4
LT
4259 schedstat_inc(sd, lb_balanced[idle]);
4260
16cfb1c0 4261 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4262
4263out_one_pinned:
1da177e4 4264 /* tune up the balancing interval */
77391d71
NP
4265 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4266 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4267 sd->balance_interval *= 2;
4268
48f24c4d 4269 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4270 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4271 ld_moved = -1;
4272 else
4273 ld_moved = 0;
4274out:
c8cba857
PZ
4275 if (ld_moved)
4276 update_shares(sd);
c09595f6 4277 return ld_moved;
1da177e4
LT
4278}
4279
4280/*
4281 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4282 * tasks if there is an imbalance.
4283 *
d15bcfdb 4284 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4285 * this_rq is locked.
4286 */
48f24c4d 4287static int
df7c8e84 4288load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4289{
4290 struct sched_group *group;
70b97a7f 4291 struct rq *busiest = NULL;
1da177e4 4292 unsigned long imbalance;
43010659 4293 int ld_moved = 0;
5969fe06 4294 int sd_idle = 0;
969bb4e4 4295 int all_pinned = 0;
df7c8e84 4296 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4297
96f874e2 4298 cpumask_setall(cpus);
5969fe06 4299
89c4710e
SS
4300 /*
4301 * When power savings policy is enabled for the parent domain, idle
4302 * sibling can pick up load irrespective of busy siblings. In this case,
4303 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4304 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4305 */
4306 if (sd->flags & SD_SHARE_CPUPOWER &&
4307 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4308 sd_idle = 1;
1da177e4 4309
2d72376b 4310 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4311redo:
3e5459b4 4312 update_shares_locked(this_rq, sd);
d15bcfdb 4313 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4314 &sd_idle, cpus, NULL);
1da177e4 4315 if (!group) {
d15bcfdb 4316 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4317 goto out_balanced;
1da177e4
LT
4318 }
4319
7c16ec58 4320 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4321 if (!busiest) {
d15bcfdb 4322 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4323 goto out_balanced;
1da177e4
LT
4324 }
4325
db935dbd
NP
4326 BUG_ON(busiest == this_rq);
4327
d15bcfdb 4328 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4329
43010659 4330 ld_moved = 0;
d6d5cfaf
NP
4331 if (busiest->nr_running > 1) {
4332 /* Attempt to move tasks */
4333 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4334 /* this_rq->clock is already updated */
4335 update_rq_clock(busiest);
43010659 4336 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4337 imbalance, sd, CPU_NEWLY_IDLE,
4338 &all_pinned);
1b12bbc7 4339 double_unlock_balance(this_rq, busiest);
0a2966b4 4340
969bb4e4 4341 if (unlikely(all_pinned)) {
96f874e2
RR
4342 cpumask_clear_cpu(cpu_of(busiest), cpus);
4343 if (!cpumask_empty(cpus))
0a2966b4
CL
4344 goto redo;
4345 }
d6d5cfaf
NP
4346 }
4347
43010659 4348 if (!ld_moved) {
36dffab6 4349 int active_balance = 0;
ad273b32 4350
d15bcfdb 4351 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4352 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4353 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4354 return -1;
ad273b32
VS
4355
4356 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4357 return -1;
4358
4359 if (sd->nr_balance_failed++ < 2)
4360 return -1;
4361
4362 /*
4363 * The only task running in a non-idle cpu can be moved to this
4364 * cpu in an attempt to completely freeup the other CPU
4365 * package. The same method used to move task in load_balance()
4366 * have been extended for load_balance_newidle() to speedup
4367 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4368 *
4369 * The package power saving logic comes from
4370 * find_busiest_group(). If there are no imbalance, then
4371 * f_b_g() will return NULL. However when sched_mc={1,2} then
4372 * f_b_g() will select a group from which a running task may be
4373 * pulled to this cpu in order to make the other package idle.
4374 * If there is no opportunity to make a package idle and if
4375 * there are no imbalance, then f_b_g() will return NULL and no
4376 * action will be taken in load_balance_newidle().
4377 *
4378 * Under normal task pull operation due to imbalance, there
4379 * will be more than one task in the source run queue and
4380 * move_tasks() will succeed. ld_moved will be true and this
4381 * active balance code will not be triggered.
4382 */
4383
4384 /* Lock busiest in correct order while this_rq is held */
4385 double_lock_balance(this_rq, busiest);
4386
4387 /*
4388 * don't kick the migration_thread, if the curr
4389 * task on busiest cpu can't be moved to this_cpu
4390 */
6ca09dfc 4391 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4392 double_unlock_balance(this_rq, busiest);
4393 all_pinned = 1;
4394 return ld_moved;
4395 }
4396
4397 if (!busiest->active_balance) {
4398 busiest->active_balance = 1;
4399 busiest->push_cpu = this_cpu;
4400 active_balance = 1;
4401 }
4402
4403 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4404 /*
4405 * Should not call ttwu while holding a rq->lock
4406 */
4407 spin_unlock(&this_rq->lock);
ad273b32
VS
4408 if (active_balance)
4409 wake_up_process(busiest->migration_thread);
da8d5089 4410 spin_lock(&this_rq->lock);
ad273b32 4411
5969fe06 4412 } else
16cfb1c0 4413 sd->nr_balance_failed = 0;
1da177e4 4414
3e5459b4 4415 update_shares_locked(this_rq, sd);
43010659 4416 return ld_moved;
16cfb1c0
NP
4417
4418out_balanced:
d15bcfdb 4419 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4420 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4421 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4422 return -1;
16cfb1c0 4423 sd->nr_balance_failed = 0;
48f24c4d 4424
16cfb1c0 4425 return 0;
1da177e4
LT
4426}
4427
4428/*
4429 * idle_balance is called by schedule() if this_cpu is about to become
4430 * idle. Attempts to pull tasks from other CPUs.
4431 */
70b97a7f 4432static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4433{
4434 struct sched_domain *sd;
efbe027e 4435 int pulled_task = 0;
dd41f596 4436 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
4437
4438 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4439 unsigned long interval;
4440
4441 if (!(sd->flags & SD_LOAD_BALANCE))
4442 continue;
4443
4444 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4445 /* If we've pulled tasks over stop searching: */
7c16ec58 4446 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4447 sd);
92c4ca5c
CL
4448
4449 interval = msecs_to_jiffies(sd->balance_interval);
4450 if (time_after(next_balance, sd->last_balance + interval))
4451 next_balance = sd->last_balance + interval;
4452 if (pulled_task)
4453 break;
1da177e4 4454 }
dd41f596 4455 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4456 /*
4457 * We are going idle. next_balance may be set based on
4458 * a busy processor. So reset next_balance.
4459 */
4460 this_rq->next_balance = next_balance;
dd41f596 4461 }
1da177e4
LT
4462}
4463
4464/*
4465 * active_load_balance is run by migration threads. It pushes running tasks
4466 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4467 * running on each physical CPU where possible, and avoids physical /
4468 * logical imbalances.
4469 *
4470 * Called with busiest_rq locked.
4471 */
70b97a7f 4472static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4473{
39507451 4474 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4475 struct sched_domain *sd;
4476 struct rq *target_rq;
39507451 4477
48f24c4d 4478 /* Is there any task to move? */
39507451 4479 if (busiest_rq->nr_running <= 1)
39507451
NP
4480 return;
4481
4482 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4483
4484 /*
39507451 4485 * This condition is "impossible", if it occurs
41a2d6cf 4486 * we need to fix it. Originally reported by
39507451 4487 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4488 */
39507451 4489 BUG_ON(busiest_rq == target_rq);
1da177e4 4490
39507451
NP
4491 /* move a task from busiest_rq to target_rq */
4492 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4493 update_rq_clock(busiest_rq);
4494 update_rq_clock(target_rq);
39507451
NP
4495
4496 /* Search for an sd spanning us and the target CPU. */
c96d145e 4497 for_each_domain(target_cpu, sd) {
39507451 4498 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4499 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4500 break;
c96d145e 4501 }
39507451 4502
48f24c4d 4503 if (likely(sd)) {
2d72376b 4504 schedstat_inc(sd, alb_count);
39507451 4505
43010659
PW
4506 if (move_one_task(target_rq, target_cpu, busiest_rq,
4507 sd, CPU_IDLE))
48f24c4d
IM
4508 schedstat_inc(sd, alb_pushed);
4509 else
4510 schedstat_inc(sd, alb_failed);
4511 }
1b12bbc7 4512 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4513}
4514
46cb4b7c
SS
4515#ifdef CONFIG_NO_HZ
4516static struct {
4517 atomic_t load_balancer;
7d1e6a9b 4518 cpumask_var_t cpu_mask;
f711f609 4519 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4520} nohz ____cacheline_aligned = {
4521 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4522};
4523
eea08f32
AB
4524int get_nohz_load_balancer(void)
4525{
4526 return atomic_read(&nohz.load_balancer);
4527}
4528
f711f609
GS
4529#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4530/**
4531 * lowest_flag_domain - Return lowest sched_domain containing flag.
4532 * @cpu: The cpu whose lowest level of sched domain is to
4533 * be returned.
4534 * @flag: The flag to check for the lowest sched_domain
4535 * for the given cpu.
4536 *
4537 * Returns the lowest sched_domain of a cpu which contains the given flag.
4538 */
4539static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4540{
4541 struct sched_domain *sd;
4542
4543 for_each_domain(cpu, sd)
4544 if (sd && (sd->flags & flag))
4545 break;
4546
4547 return sd;
4548}
4549
4550/**
4551 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4552 * @cpu: The cpu whose domains we're iterating over.
4553 * @sd: variable holding the value of the power_savings_sd
4554 * for cpu.
4555 * @flag: The flag to filter the sched_domains to be iterated.
4556 *
4557 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4558 * set, starting from the lowest sched_domain to the highest.
4559 */
4560#define for_each_flag_domain(cpu, sd, flag) \
4561 for (sd = lowest_flag_domain(cpu, flag); \
4562 (sd && (sd->flags & flag)); sd = sd->parent)
4563
4564/**
4565 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4566 * @ilb_group: group to be checked for semi-idleness
4567 *
4568 * Returns: 1 if the group is semi-idle. 0 otherwise.
4569 *
4570 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4571 * and atleast one non-idle CPU. This helper function checks if the given
4572 * sched_group is semi-idle or not.
4573 */
4574static inline int is_semi_idle_group(struct sched_group *ilb_group)
4575{
4576 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4577 sched_group_cpus(ilb_group));
4578
4579 /*
4580 * A sched_group is semi-idle when it has atleast one busy cpu
4581 * and atleast one idle cpu.
4582 */
4583 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4584 return 0;
4585
4586 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4587 return 0;
4588
4589 return 1;
4590}
4591/**
4592 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4593 * @cpu: The cpu which is nominating a new idle_load_balancer.
4594 *
4595 * Returns: Returns the id of the idle load balancer if it exists,
4596 * Else, returns >= nr_cpu_ids.
4597 *
4598 * This algorithm picks the idle load balancer such that it belongs to a
4599 * semi-idle powersavings sched_domain. The idea is to try and avoid
4600 * completely idle packages/cores just for the purpose of idle load balancing
4601 * when there are other idle cpu's which are better suited for that job.
4602 */
4603static int find_new_ilb(int cpu)
4604{
4605 struct sched_domain *sd;
4606 struct sched_group *ilb_group;
4607
4608 /*
4609 * Have idle load balancer selection from semi-idle packages only
4610 * when power-aware load balancing is enabled
4611 */
4612 if (!(sched_smt_power_savings || sched_mc_power_savings))
4613 goto out_done;
4614
4615 /*
4616 * Optimize for the case when we have no idle CPUs or only one
4617 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4618 */
4619 if (cpumask_weight(nohz.cpu_mask) < 2)
4620 goto out_done;
4621
4622 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4623 ilb_group = sd->groups;
4624
4625 do {
4626 if (is_semi_idle_group(ilb_group))
4627 return cpumask_first(nohz.ilb_grp_nohz_mask);
4628
4629 ilb_group = ilb_group->next;
4630
4631 } while (ilb_group != sd->groups);
4632 }
4633
4634out_done:
4635 return cpumask_first(nohz.cpu_mask);
4636}
4637#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4638static inline int find_new_ilb(int call_cpu)
4639{
6e29ec57 4640 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4641}
4642#endif
4643
7835b98b 4644/*
46cb4b7c
SS
4645 * This routine will try to nominate the ilb (idle load balancing)
4646 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4647 * load balancing on behalf of all those cpus. If all the cpus in the system
4648 * go into this tickless mode, then there will be no ilb owner (as there is
4649 * no need for one) and all the cpus will sleep till the next wakeup event
4650 * arrives...
4651 *
4652 * For the ilb owner, tick is not stopped. And this tick will be used
4653 * for idle load balancing. ilb owner will still be part of
4654 * nohz.cpu_mask..
7835b98b 4655 *
46cb4b7c
SS
4656 * While stopping the tick, this cpu will become the ilb owner if there
4657 * is no other owner. And will be the owner till that cpu becomes busy
4658 * or if all cpus in the system stop their ticks at which point
4659 * there is no need for ilb owner.
4660 *
4661 * When the ilb owner becomes busy, it nominates another owner, during the
4662 * next busy scheduler_tick()
4663 */
4664int select_nohz_load_balancer(int stop_tick)
4665{
4666 int cpu = smp_processor_id();
4667
4668 if (stop_tick) {
46cb4b7c
SS
4669 cpu_rq(cpu)->in_nohz_recently = 1;
4670
483b4ee6
SS
4671 if (!cpu_active(cpu)) {
4672 if (atomic_read(&nohz.load_balancer) != cpu)
4673 return 0;
4674
4675 /*
4676 * If we are going offline and still the leader,
4677 * give up!
4678 */
46cb4b7c
SS
4679 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4680 BUG();
483b4ee6 4681
46cb4b7c
SS
4682 return 0;
4683 }
4684
483b4ee6
SS
4685 cpumask_set_cpu(cpu, nohz.cpu_mask);
4686
46cb4b7c 4687 /* time for ilb owner also to sleep */
7d1e6a9b 4688 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4689 if (atomic_read(&nohz.load_balancer) == cpu)
4690 atomic_set(&nohz.load_balancer, -1);
4691 return 0;
4692 }
4693
4694 if (atomic_read(&nohz.load_balancer) == -1) {
4695 /* make me the ilb owner */
4696 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4697 return 1;
e790fb0b
GS
4698 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4699 int new_ilb;
4700
4701 if (!(sched_smt_power_savings ||
4702 sched_mc_power_savings))
4703 return 1;
4704 /*
4705 * Check to see if there is a more power-efficient
4706 * ilb.
4707 */
4708 new_ilb = find_new_ilb(cpu);
4709 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4710 atomic_set(&nohz.load_balancer, -1);
4711 resched_cpu(new_ilb);
4712 return 0;
4713 }
46cb4b7c 4714 return 1;
e790fb0b 4715 }
46cb4b7c 4716 } else {
7d1e6a9b 4717 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4718 return 0;
4719
7d1e6a9b 4720 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4721
4722 if (atomic_read(&nohz.load_balancer) == cpu)
4723 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4724 BUG();
4725 }
4726 return 0;
4727}
4728#endif
4729
4730static DEFINE_SPINLOCK(balancing);
4731
4732/*
7835b98b
CL
4733 * It checks each scheduling domain to see if it is due to be balanced,
4734 * and initiates a balancing operation if so.
4735 *
4736 * Balancing parameters are set up in arch_init_sched_domains.
4737 */
a9957449 4738static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4739{
46cb4b7c
SS
4740 int balance = 1;
4741 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4742 unsigned long interval;
4743 struct sched_domain *sd;
46cb4b7c 4744 /* Earliest time when we have to do rebalance again */
c9819f45 4745 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4746 int update_next_balance = 0;
d07355f5 4747 int need_serialize;
1da177e4 4748
46cb4b7c 4749 for_each_domain(cpu, sd) {
1da177e4
LT
4750 if (!(sd->flags & SD_LOAD_BALANCE))
4751 continue;
4752
4753 interval = sd->balance_interval;
d15bcfdb 4754 if (idle != CPU_IDLE)
1da177e4
LT
4755 interval *= sd->busy_factor;
4756
4757 /* scale ms to jiffies */
4758 interval = msecs_to_jiffies(interval);
4759 if (unlikely(!interval))
4760 interval = 1;
dd41f596
IM
4761 if (interval > HZ*NR_CPUS/10)
4762 interval = HZ*NR_CPUS/10;
4763
d07355f5 4764 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4765
d07355f5 4766 if (need_serialize) {
08c183f3
CL
4767 if (!spin_trylock(&balancing))
4768 goto out;
4769 }
4770
c9819f45 4771 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4772 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4773 /*
4774 * We've pulled tasks over so either we're no
5969fe06
NP
4775 * longer idle, or one of our SMT siblings is
4776 * not idle.
4777 */
d15bcfdb 4778 idle = CPU_NOT_IDLE;
1da177e4 4779 }
1bd77f2d 4780 sd->last_balance = jiffies;
1da177e4 4781 }
d07355f5 4782 if (need_serialize)
08c183f3
CL
4783 spin_unlock(&balancing);
4784out:
f549da84 4785 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4786 next_balance = sd->last_balance + interval;
f549da84
SS
4787 update_next_balance = 1;
4788 }
783609c6
SS
4789
4790 /*
4791 * Stop the load balance at this level. There is another
4792 * CPU in our sched group which is doing load balancing more
4793 * actively.
4794 */
4795 if (!balance)
4796 break;
1da177e4 4797 }
f549da84
SS
4798
4799 /*
4800 * next_balance will be updated only when there is a need.
4801 * When the cpu is attached to null domain for ex, it will not be
4802 * updated.
4803 */
4804 if (likely(update_next_balance))
4805 rq->next_balance = next_balance;
46cb4b7c
SS
4806}
4807
4808/*
4809 * run_rebalance_domains is triggered when needed from the scheduler tick.
4810 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4811 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4812 */
4813static void run_rebalance_domains(struct softirq_action *h)
4814{
dd41f596
IM
4815 int this_cpu = smp_processor_id();
4816 struct rq *this_rq = cpu_rq(this_cpu);
4817 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4818 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4819
dd41f596 4820 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4821
4822#ifdef CONFIG_NO_HZ
4823 /*
4824 * If this cpu is the owner for idle load balancing, then do the
4825 * balancing on behalf of the other idle cpus whose ticks are
4826 * stopped.
4827 */
dd41f596
IM
4828 if (this_rq->idle_at_tick &&
4829 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4830 struct rq *rq;
4831 int balance_cpu;
4832
7d1e6a9b
RR
4833 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4834 if (balance_cpu == this_cpu)
4835 continue;
4836
46cb4b7c
SS
4837 /*
4838 * If this cpu gets work to do, stop the load balancing
4839 * work being done for other cpus. Next load
4840 * balancing owner will pick it up.
4841 */
4842 if (need_resched())
4843 break;
4844
de0cf899 4845 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4846
4847 rq = cpu_rq(balance_cpu);
dd41f596
IM
4848 if (time_after(this_rq->next_balance, rq->next_balance))
4849 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4850 }
4851 }
4852#endif
4853}
4854
8a0be9ef
FW
4855static inline int on_null_domain(int cpu)
4856{
4857 return !rcu_dereference(cpu_rq(cpu)->sd);
4858}
4859
46cb4b7c
SS
4860/*
4861 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4862 *
4863 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4864 * idle load balancing owner or decide to stop the periodic load balancing,
4865 * if the whole system is idle.
4866 */
dd41f596 4867static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4868{
46cb4b7c
SS
4869#ifdef CONFIG_NO_HZ
4870 /*
4871 * If we were in the nohz mode recently and busy at the current
4872 * scheduler tick, then check if we need to nominate new idle
4873 * load balancer.
4874 */
4875 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4876 rq->in_nohz_recently = 0;
4877
4878 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4879 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4880 atomic_set(&nohz.load_balancer, -1);
4881 }
4882
4883 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4884 int ilb = find_new_ilb(cpu);
46cb4b7c 4885
434d53b0 4886 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4887 resched_cpu(ilb);
4888 }
4889 }
4890
4891 /*
4892 * If this cpu is idle and doing idle load balancing for all the
4893 * cpus with ticks stopped, is it time for that to stop?
4894 */
4895 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4896 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4897 resched_cpu(cpu);
4898 return;
4899 }
4900
4901 /*
4902 * If this cpu is idle and the idle load balancing is done by
4903 * someone else, then no need raise the SCHED_SOFTIRQ
4904 */
4905 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4906 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4907 return;
4908#endif
8a0be9ef
FW
4909 /* Don't need to rebalance while attached to NULL domain */
4910 if (time_after_eq(jiffies, rq->next_balance) &&
4911 likely(!on_null_domain(cpu)))
46cb4b7c 4912 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4913}
dd41f596
IM
4914
4915#else /* CONFIG_SMP */
4916
1da177e4
LT
4917/*
4918 * on UP we do not need to balance between CPUs:
4919 */
70b97a7f 4920static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4921{
4922}
dd41f596 4923
1da177e4
LT
4924#endif
4925
1da177e4
LT
4926DEFINE_PER_CPU(struct kernel_stat, kstat);
4927
4928EXPORT_PER_CPU_SYMBOL(kstat);
4929
4930/*
c5f8d995 4931 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4932 * @p in case that task is currently running.
c5f8d995
HS
4933 *
4934 * Called with task_rq_lock() held on @rq.
1da177e4 4935 */
c5f8d995
HS
4936static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4937{
4938 u64 ns = 0;
4939
4940 if (task_current(rq, p)) {
4941 update_rq_clock(rq);
4942 ns = rq->clock - p->se.exec_start;
4943 if ((s64)ns < 0)
4944 ns = 0;
4945 }
4946
4947 return ns;
4948}
4949
bb34d92f 4950unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4951{
1da177e4 4952 unsigned long flags;
41b86e9c 4953 struct rq *rq;
bb34d92f 4954 u64 ns = 0;
48f24c4d 4955
41b86e9c 4956 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4957 ns = do_task_delta_exec(p, rq);
4958 task_rq_unlock(rq, &flags);
1508487e 4959
c5f8d995
HS
4960 return ns;
4961}
f06febc9 4962
c5f8d995
HS
4963/*
4964 * Return accounted runtime for the task.
4965 * In case the task is currently running, return the runtime plus current's
4966 * pending runtime that have not been accounted yet.
4967 */
4968unsigned long long task_sched_runtime(struct task_struct *p)
4969{
4970 unsigned long flags;
4971 struct rq *rq;
4972 u64 ns = 0;
4973
4974 rq = task_rq_lock(p, &flags);
4975 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4976 task_rq_unlock(rq, &flags);
4977
4978 return ns;
4979}
48f24c4d 4980
c5f8d995
HS
4981/*
4982 * Return sum_exec_runtime for the thread group.
4983 * In case the task is currently running, return the sum plus current's
4984 * pending runtime that have not been accounted yet.
4985 *
4986 * Note that the thread group might have other running tasks as well,
4987 * so the return value not includes other pending runtime that other
4988 * running tasks might have.
4989 */
4990unsigned long long thread_group_sched_runtime(struct task_struct *p)
4991{
4992 struct task_cputime totals;
4993 unsigned long flags;
4994 struct rq *rq;
4995 u64 ns;
4996
4997 rq = task_rq_lock(p, &flags);
4998 thread_group_cputime(p, &totals);
4999 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 5000 task_rq_unlock(rq, &flags);
48f24c4d 5001
1da177e4
LT
5002 return ns;
5003}
5004
1da177e4
LT
5005/*
5006 * Account user cpu time to a process.
5007 * @p: the process that the cpu time gets accounted to
1da177e4 5008 * @cputime: the cpu time spent in user space since the last update
457533a7 5009 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 5010 */
457533a7
MS
5011void account_user_time(struct task_struct *p, cputime_t cputime,
5012 cputime_t cputime_scaled)
1da177e4
LT
5013{
5014 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5015 cputime64_t tmp;
5016
457533a7 5017 /* Add user time to process. */
1da177e4 5018 p->utime = cputime_add(p->utime, cputime);
457533a7 5019 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5020 account_group_user_time(p, cputime);
1da177e4
LT
5021
5022 /* Add user time to cpustat. */
5023 tmp = cputime_to_cputime64(cputime);
5024 if (TASK_NICE(p) > 0)
5025 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5026 else
5027 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
5028
5029 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
5030 /* Account for user time used */
5031 acct_update_integrals(p);
1da177e4
LT
5032}
5033
94886b84
LV
5034/*
5035 * Account guest cpu time to a process.
5036 * @p: the process that the cpu time gets accounted to
5037 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 5038 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 5039 */
457533a7
MS
5040static void account_guest_time(struct task_struct *p, cputime_t cputime,
5041 cputime_t cputime_scaled)
94886b84
LV
5042{
5043 cputime64_t tmp;
5044 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5045
5046 tmp = cputime_to_cputime64(cputime);
5047
457533a7 5048 /* Add guest time to process. */
94886b84 5049 p->utime = cputime_add(p->utime, cputime);
457533a7 5050 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 5051 account_group_user_time(p, cputime);
94886b84
LV
5052 p->gtime = cputime_add(p->gtime, cputime);
5053
457533a7 5054 /* Add guest time to cpustat. */
94886b84
LV
5055 cpustat->user = cputime64_add(cpustat->user, tmp);
5056 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5057}
5058
1da177e4
LT
5059/*
5060 * Account system cpu time to a process.
5061 * @p: the process that the cpu time gets accounted to
5062 * @hardirq_offset: the offset to subtract from hardirq_count()
5063 * @cputime: the cpu time spent in kernel space since the last update
457533a7 5064 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
5065 */
5066void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 5067 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
5068{
5069 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
5070 cputime64_t tmp;
5071
983ed7a6 5072 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 5073 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
5074 return;
5075 }
94886b84 5076
457533a7 5077 /* Add system time to process. */
1da177e4 5078 p->stime = cputime_add(p->stime, cputime);
457533a7 5079 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 5080 account_group_system_time(p, cputime);
1da177e4
LT
5081
5082 /* Add system time to cpustat. */
5083 tmp = cputime_to_cputime64(cputime);
5084 if (hardirq_count() - hardirq_offset)
5085 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5086 else if (softirq_count())
5087 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 5088 else
79741dd3
MS
5089 cpustat->system = cputime64_add(cpustat->system, tmp);
5090
ef12fefa
BR
5091 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5092
1da177e4
LT
5093 /* Account for system time used */
5094 acct_update_integrals(p);
1da177e4
LT
5095}
5096
c66f08be 5097/*
1da177e4 5098 * Account for involuntary wait time.
1da177e4 5099 * @steal: the cpu time spent in involuntary wait
c66f08be 5100 */
79741dd3 5101void account_steal_time(cputime_t cputime)
c66f08be 5102{
79741dd3
MS
5103 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5104 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5105
5106 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5107}
5108
1da177e4 5109/*
79741dd3
MS
5110 * Account for idle time.
5111 * @cputime: the cpu time spent in idle wait
1da177e4 5112 */
79741dd3 5113void account_idle_time(cputime_t cputime)
1da177e4
LT
5114{
5115 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5116 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5117 struct rq *rq = this_rq();
1da177e4 5118
79741dd3
MS
5119 if (atomic_read(&rq->nr_iowait) > 0)
5120 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5121 else
5122 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5123}
5124
79741dd3
MS
5125#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5126
5127/*
5128 * Account a single tick of cpu time.
5129 * @p: the process that the cpu time gets accounted to
5130 * @user_tick: indicates if the tick is a user or a system tick
5131 */
5132void account_process_tick(struct task_struct *p, int user_tick)
5133{
5134 cputime_t one_jiffy = jiffies_to_cputime(1);
5135 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5136 struct rq *rq = this_rq();
5137
5138 if (user_tick)
5139 account_user_time(p, one_jiffy, one_jiffy_scaled);
f5f293a4 5140 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
79741dd3
MS
5141 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5142 one_jiffy_scaled);
5143 else
5144 account_idle_time(one_jiffy);
5145}
5146
5147/*
5148 * Account multiple ticks of steal time.
5149 * @p: the process from which the cpu time has been stolen
5150 * @ticks: number of stolen ticks
5151 */
5152void account_steal_ticks(unsigned long ticks)
5153{
5154 account_steal_time(jiffies_to_cputime(ticks));
5155}
5156
5157/*
5158 * Account multiple ticks of idle time.
5159 * @ticks: number of stolen ticks
5160 */
5161void account_idle_ticks(unsigned long ticks)
5162{
5163 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5164}
5165
79741dd3
MS
5166#endif
5167
49048622
BS
5168/*
5169 * Use precise platform statistics if available:
5170 */
5171#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5172cputime_t task_utime(struct task_struct *p)
5173{
5174 return p->utime;
5175}
5176
5177cputime_t task_stime(struct task_struct *p)
5178{
5179 return p->stime;
5180}
5181#else
5182cputime_t task_utime(struct task_struct *p)
5183{
5184 clock_t utime = cputime_to_clock_t(p->utime),
5185 total = utime + cputime_to_clock_t(p->stime);
5186 u64 temp;
5187
5188 /*
5189 * Use CFS's precise accounting:
5190 */
5191 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5192
5193 if (total) {
5194 temp *= utime;
5195 do_div(temp, total);
5196 }
5197 utime = (clock_t)temp;
5198
5199 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5200 return p->prev_utime;
5201}
5202
5203cputime_t task_stime(struct task_struct *p)
5204{
5205 clock_t stime;
5206
5207 /*
5208 * Use CFS's precise accounting. (we subtract utime from
5209 * the total, to make sure the total observed by userspace
5210 * grows monotonically - apps rely on that):
5211 */
5212 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5213 cputime_to_clock_t(task_utime(p));
5214
5215 if (stime >= 0)
5216 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5217
5218 return p->prev_stime;
5219}
5220#endif
5221
5222inline cputime_t task_gtime(struct task_struct *p)
5223{
5224 return p->gtime;
5225}
5226
7835b98b
CL
5227/*
5228 * This function gets called by the timer code, with HZ frequency.
5229 * We call it with interrupts disabled.
5230 *
5231 * It also gets called by the fork code, when changing the parent's
5232 * timeslices.
5233 */
5234void scheduler_tick(void)
5235{
7835b98b
CL
5236 int cpu = smp_processor_id();
5237 struct rq *rq = cpu_rq(cpu);
dd41f596 5238 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5239
5240 sched_clock_tick();
dd41f596
IM
5241
5242 spin_lock(&rq->lock);
3e51f33f 5243 update_rq_clock(rq);
f1a438d8 5244 update_cpu_load(rq);
fa85ae24 5245 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5246 spin_unlock(&rq->lock);
7835b98b 5247
e220d2dc
PZ
5248 perf_counter_task_tick(curr, cpu);
5249
e418e1c2 5250#ifdef CONFIG_SMP
dd41f596
IM
5251 rq->idle_at_tick = idle_cpu(cpu);
5252 trigger_load_balance(rq, cpu);
e418e1c2 5253#endif
1da177e4
LT
5254}
5255
132380a0 5256notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5257{
5258 if (in_lock_functions(addr)) {
5259 addr = CALLER_ADDR2;
5260 if (in_lock_functions(addr))
5261 addr = CALLER_ADDR3;
5262 }
5263 return addr;
5264}
1da177e4 5265
7e49fcce
SR
5266#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5267 defined(CONFIG_PREEMPT_TRACER))
5268
43627582 5269void __kprobes add_preempt_count(int val)
1da177e4 5270{
6cd8a4bb 5271#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5272 /*
5273 * Underflow?
5274 */
9a11b49a
IM
5275 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5276 return;
6cd8a4bb 5277#endif
1da177e4 5278 preempt_count() += val;
6cd8a4bb 5279#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5280 /*
5281 * Spinlock count overflowing soon?
5282 */
33859f7f
MOS
5283 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5284 PREEMPT_MASK - 10);
6cd8a4bb
SR
5285#endif
5286 if (preempt_count() == val)
5287 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5288}
5289EXPORT_SYMBOL(add_preempt_count);
5290
43627582 5291void __kprobes sub_preempt_count(int val)
1da177e4 5292{
6cd8a4bb 5293#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5294 /*
5295 * Underflow?
5296 */
01e3eb82 5297 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5298 return;
1da177e4
LT
5299 /*
5300 * Is the spinlock portion underflowing?
5301 */
9a11b49a
IM
5302 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5303 !(preempt_count() & PREEMPT_MASK)))
5304 return;
6cd8a4bb 5305#endif
9a11b49a 5306
6cd8a4bb
SR
5307 if (preempt_count() == val)
5308 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5309 preempt_count() -= val;
5310}
5311EXPORT_SYMBOL(sub_preempt_count);
5312
5313#endif
5314
5315/*
dd41f596 5316 * Print scheduling while atomic bug:
1da177e4 5317 */
dd41f596 5318static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5319{
838225b4
SS
5320 struct pt_regs *regs = get_irq_regs();
5321
5322 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5323 prev->comm, prev->pid, preempt_count());
5324
dd41f596 5325 debug_show_held_locks(prev);
e21f5b15 5326 print_modules();
dd41f596
IM
5327 if (irqs_disabled())
5328 print_irqtrace_events(prev);
838225b4
SS
5329
5330 if (regs)
5331 show_regs(regs);
5332 else
5333 dump_stack();
dd41f596 5334}
1da177e4 5335
dd41f596
IM
5336/*
5337 * Various schedule()-time debugging checks and statistics:
5338 */
5339static inline void schedule_debug(struct task_struct *prev)
5340{
1da177e4 5341 /*
41a2d6cf 5342 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5343 * schedule() atomically, we ignore that path for now.
5344 * Otherwise, whine if we are scheduling when we should not be.
5345 */
3f33a7ce 5346 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5347 __schedule_bug(prev);
5348
1da177e4
LT
5349 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5350
2d72376b 5351 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5352#ifdef CONFIG_SCHEDSTATS
5353 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5354 schedstat_inc(this_rq(), bkl_count);
5355 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5356 }
5357#endif
dd41f596
IM
5358}
5359
df1c99d4
MG
5360static void put_prev_task(struct rq *rq, struct task_struct *prev)
5361{
5362 if (prev->state == TASK_RUNNING) {
5363 u64 runtime = prev->se.sum_exec_runtime;
5364
5365 runtime -= prev->se.prev_sum_exec_runtime;
5366 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5367
5368 /*
5369 * In order to avoid avg_overlap growing stale when we are
5370 * indeed overlapping and hence not getting put to sleep, grow
5371 * the avg_overlap on preemption.
5372 *
5373 * We use the average preemption runtime because that
5374 * correlates to the amount of cache footprint a task can
5375 * build up.
5376 */
5377 update_avg(&prev->se.avg_overlap, runtime);
5378 }
5379 prev->sched_class->put_prev_task(rq, prev);
5380}
5381
dd41f596
IM
5382/*
5383 * Pick up the highest-prio task:
5384 */
5385static inline struct task_struct *
b67802ea 5386pick_next_task(struct rq *rq)
dd41f596 5387{
5522d5d5 5388 const struct sched_class *class;
dd41f596 5389 struct task_struct *p;
1da177e4
LT
5390
5391 /*
dd41f596
IM
5392 * Optimization: we know that if all tasks are in
5393 * the fair class we can call that function directly:
1da177e4 5394 */
dd41f596 5395 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5396 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5397 if (likely(p))
5398 return p;
1da177e4
LT
5399 }
5400
dd41f596
IM
5401 class = sched_class_highest;
5402 for ( ; ; ) {
fb8d4724 5403 p = class->pick_next_task(rq);
dd41f596
IM
5404 if (p)
5405 return p;
5406 /*
5407 * Will never be NULL as the idle class always
5408 * returns a non-NULL p:
5409 */
5410 class = class->next;
5411 }
5412}
1da177e4 5413
dd41f596
IM
5414/*
5415 * schedule() is the main scheduler function.
5416 */
ff743345 5417asmlinkage void __sched schedule(void)
dd41f596
IM
5418{
5419 struct task_struct *prev, *next;
67ca7bde 5420 unsigned long *switch_count;
dd41f596 5421 struct rq *rq;
31656519 5422 int cpu;
dd41f596 5423
ff743345
PZ
5424need_resched:
5425 preempt_disable();
dd41f596
IM
5426 cpu = smp_processor_id();
5427 rq = cpu_rq(cpu);
5428 rcu_qsctr_inc(cpu);
5429 prev = rq->curr;
5430 switch_count = &prev->nivcsw;
5431
5432 release_kernel_lock(prev);
5433need_resched_nonpreemptible:
5434
5435 schedule_debug(prev);
1da177e4 5436
31656519 5437 if (sched_feat(HRTICK))
f333fdc9 5438 hrtick_clear(rq);
8f4d37ec 5439
8cd162ce 5440 spin_lock_irq(&rq->lock);
3e51f33f 5441 update_rq_clock(rq);
1e819950 5442 clear_tsk_need_resched(prev);
1da177e4 5443
1da177e4 5444 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5445 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5446 prev->state = TASK_RUNNING;
16882c1e 5447 else
2e1cb74a 5448 deactivate_task(rq, prev, 1);
dd41f596 5449 switch_count = &prev->nvcsw;
1da177e4
LT
5450 }
5451
3f029d3c 5452 pre_schedule(rq, prev);
f65eda4f 5453
dd41f596 5454 if (unlikely(!rq->nr_running))
1da177e4 5455 idle_balance(cpu, rq);
1da177e4 5456
df1c99d4 5457 put_prev_task(rq, prev);
b67802ea 5458 next = pick_next_task(rq);
1da177e4 5459
1da177e4 5460 if (likely(prev != next)) {
673a90a1 5461 sched_info_switch(prev, next);
564c2b21 5462 perf_counter_task_sched_out(prev, next, cpu);
673a90a1 5463
1da177e4
LT
5464 rq->nr_switches++;
5465 rq->curr = next;
5466 ++*switch_count;
5467
3f029d3c 5468 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5469 /*
5470 * the context switch might have flipped the stack from under
5471 * us, hence refresh the local variables.
5472 */
5473 cpu = smp_processor_id();
5474 rq = cpu_rq(cpu);
3f029d3c 5475 } else
1da177e4 5476 spin_unlock_irq(&rq->lock);
da19ab51 5477
3f029d3c 5478 post_schedule(rq);
1da177e4 5479
8f4d37ec 5480 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5481 goto need_resched_nonpreemptible;
8f4d37ec 5482
1da177e4 5483 preempt_enable_no_resched();
ff743345 5484 if (need_resched())
1da177e4
LT
5485 goto need_resched;
5486}
1da177e4
LT
5487EXPORT_SYMBOL(schedule);
5488
0d66bf6d
PZ
5489#ifdef CONFIG_SMP
5490/*
5491 * Look out! "owner" is an entirely speculative pointer
5492 * access and not reliable.
5493 */
5494int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5495{
5496 unsigned int cpu;
5497 struct rq *rq;
5498
5499 if (!sched_feat(OWNER_SPIN))
5500 return 0;
5501
5502#ifdef CONFIG_DEBUG_PAGEALLOC
5503 /*
5504 * Need to access the cpu field knowing that
5505 * DEBUG_PAGEALLOC could have unmapped it if
5506 * the mutex owner just released it and exited.
5507 */
5508 if (probe_kernel_address(&owner->cpu, cpu))
5509 goto out;
5510#else
5511 cpu = owner->cpu;
5512#endif
5513
5514 /*
5515 * Even if the access succeeded (likely case),
5516 * the cpu field may no longer be valid.
5517 */
5518 if (cpu >= nr_cpumask_bits)
5519 goto out;
5520
5521 /*
5522 * We need to validate that we can do a
5523 * get_cpu() and that we have the percpu area.
5524 */
5525 if (!cpu_online(cpu))
5526 goto out;
5527
5528 rq = cpu_rq(cpu);
5529
5530 for (;;) {
5531 /*
5532 * Owner changed, break to re-assess state.
5533 */
5534 if (lock->owner != owner)
5535 break;
5536
5537 /*
5538 * Is that owner really running on that cpu?
5539 */
5540 if (task_thread_info(rq->curr) != owner || need_resched())
5541 return 0;
5542
5543 cpu_relax();
5544 }
5545out:
5546 return 1;
5547}
5548#endif
5549
1da177e4
LT
5550#ifdef CONFIG_PREEMPT
5551/*
2ed6e34f 5552 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5553 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5554 * occur there and call schedule directly.
5555 */
5556asmlinkage void __sched preempt_schedule(void)
5557{
5558 struct thread_info *ti = current_thread_info();
6478d880 5559
1da177e4
LT
5560 /*
5561 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5562 * we do not want to preempt the current task. Just return..
1da177e4 5563 */
beed33a8 5564 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5565 return;
5566
3a5c359a
AK
5567 do {
5568 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5569 schedule();
3a5c359a 5570 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5571
3a5c359a
AK
5572 /*
5573 * Check again in case we missed a preemption opportunity
5574 * between schedule and now.
5575 */
5576 barrier();
5ed0cec0 5577 } while (need_resched());
1da177e4 5578}
1da177e4
LT
5579EXPORT_SYMBOL(preempt_schedule);
5580
5581/*
2ed6e34f 5582 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5583 * off of irq context.
5584 * Note, that this is called and return with irqs disabled. This will
5585 * protect us against recursive calling from irq.
5586 */
5587asmlinkage void __sched preempt_schedule_irq(void)
5588{
5589 struct thread_info *ti = current_thread_info();
6478d880 5590
2ed6e34f 5591 /* Catch callers which need to be fixed */
1da177e4
LT
5592 BUG_ON(ti->preempt_count || !irqs_disabled());
5593
3a5c359a
AK
5594 do {
5595 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5596 local_irq_enable();
5597 schedule();
5598 local_irq_disable();
3a5c359a 5599 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5600
3a5c359a
AK
5601 /*
5602 * Check again in case we missed a preemption opportunity
5603 * between schedule and now.
5604 */
5605 barrier();
5ed0cec0 5606 } while (need_resched());
1da177e4
LT
5607}
5608
5609#endif /* CONFIG_PREEMPT */
5610
95cdf3b7
IM
5611int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5612 void *key)
1da177e4 5613{
48f24c4d 5614 return try_to_wake_up(curr->private, mode, sync);
1da177e4 5615}
1da177e4
LT
5616EXPORT_SYMBOL(default_wake_function);
5617
5618/*
41a2d6cf
IM
5619 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5620 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5621 * number) then we wake all the non-exclusive tasks and one exclusive task.
5622 *
5623 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5624 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5625 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5626 */
78ddb08f 5627static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
777c6c5f 5628 int nr_exclusive, int sync, void *key)
1da177e4 5629{
2e45874c 5630 wait_queue_t *curr, *next;
1da177e4 5631
2e45874c 5632 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5633 unsigned flags = curr->flags;
5634
1da177e4 5635 if (curr->func(curr, mode, sync, key) &&
48f24c4d 5636 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5637 break;
5638 }
5639}
5640
5641/**
5642 * __wake_up - wake up threads blocked on a waitqueue.
5643 * @q: the waitqueue
5644 * @mode: which threads
5645 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5646 * @key: is directly passed to the wakeup function
50fa610a
DH
5647 *
5648 * It may be assumed that this function implies a write memory barrier before
5649 * changing the task state if and only if any tasks are woken up.
1da177e4 5650 */
7ad5b3a5 5651void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5652 int nr_exclusive, void *key)
1da177e4
LT
5653{
5654 unsigned long flags;
5655
5656 spin_lock_irqsave(&q->lock, flags);
5657 __wake_up_common(q, mode, nr_exclusive, 0, key);
5658 spin_unlock_irqrestore(&q->lock, flags);
5659}
1da177e4
LT
5660EXPORT_SYMBOL(__wake_up);
5661
5662/*
5663 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5664 */
7ad5b3a5 5665void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5666{
5667 __wake_up_common(q, mode, 1, 0, NULL);
5668}
5669
4ede816a
DL
5670void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5671{
5672 __wake_up_common(q, mode, 1, 0, key);
5673}
5674
1da177e4 5675/**
4ede816a 5676 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5677 * @q: the waitqueue
5678 * @mode: which threads
5679 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5680 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5681 *
5682 * The sync wakeup differs that the waker knows that it will schedule
5683 * away soon, so while the target thread will be woken up, it will not
5684 * be migrated to another CPU - ie. the two threads are 'synchronized'
5685 * with each other. This can prevent needless bouncing between CPUs.
5686 *
5687 * On UP it can prevent extra preemption.
50fa610a
DH
5688 *
5689 * It may be assumed that this function implies a write memory barrier before
5690 * changing the task state if and only if any tasks are woken up.
1da177e4 5691 */
4ede816a
DL
5692void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5693 int nr_exclusive, void *key)
1da177e4
LT
5694{
5695 unsigned long flags;
5696 int sync = 1;
5697
5698 if (unlikely(!q))
5699 return;
5700
5701 if (unlikely(!nr_exclusive))
5702 sync = 0;
5703
5704 spin_lock_irqsave(&q->lock, flags);
4ede816a 5705 __wake_up_common(q, mode, nr_exclusive, sync, key);
1da177e4
LT
5706 spin_unlock_irqrestore(&q->lock, flags);
5707}
4ede816a
DL
5708EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5709
5710/*
5711 * __wake_up_sync - see __wake_up_sync_key()
5712 */
5713void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5714{
5715 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5716}
1da177e4
LT
5717EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5718
65eb3dc6
KD
5719/**
5720 * complete: - signals a single thread waiting on this completion
5721 * @x: holds the state of this particular completion
5722 *
5723 * This will wake up a single thread waiting on this completion. Threads will be
5724 * awakened in the same order in which they were queued.
5725 *
5726 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5727 *
5728 * It may be assumed that this function implies a write memory barrier before
5729 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5730 */
b15136e9 5731void complete(struct completion *x)
1da177e4
LT
5732{
5733 unsigned long flags;
5734
5735 spin_lock_irqsave(&x->wait.lock, flags);
5736 x->done++;
d9514f6c 5737 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5738 spin_unlock_irqrestore(&x->wait.lock, flags);
5739}
5740EXPORT_SYMBOL(complete);
5741
65eb3dc6
KD
5742/**
5743 * complete_all: - signals all threads waiting on this completion
5744 * @x: holds the state of this particular completion
5745 *
5746 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5747 *
5748 * It may be assumed that this function implies a write memory barrier before
5749 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5750 */
b15136e9 5751void complete_all(struct completion *x)
1da177e4
LT
5752{
5753 unsigned long flags;
5754
5755 spin_lock_irqsave(&x->wait.lock, flags);
5756 x->done += UINT_MAX/2;
d9514f6c 5757 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5758 spin_unlock_irqrestore(&x->wait.lock, flags);
5759}
5760EXPORT_SYMBOL(complete_all);
5761
8cbbe86d
AK
5762static inline long __sched
5763do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5764{
1da177e4
LT
5765 if (!x->done) {
5766 DECLARE_WAITQUEUE(wait, current);
5767
5768 wait.flags |= WQ_FLAG_EXCLUSIVE;
5769 __add_wait_queue_tail(&x->wait, &wait);
5770 do {
94d3d824 5771 if (signal_pending_state(state, current)) {
ea71a546
ON
5772 timeout = -ERESTARTSYS;
5773 break;
8cbbe86d
AK
5774 }
5775 __set_current_state(state);
1da177e4
LT
5776 spin_unlock_irq(&x->wait.lock);
5777 timeout = schedule_timeout(timeout);
5778 spin_lock_irq(&x->wait.lock);
ea71a546 5779 } while (!x->done && timeout);
1da177e4 5780 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5781 if (!x->done)
5782 return timeout;
1da177e4
LT
5783 }
5784 x->done--;
ea71a546 5785 return timeout ?: 1;
1da177e4 5786}
1da177e4 5787
8cbbe86d
AK
5788static long __sched
5789wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5790{
1da177e4
LT
5791 might_sleep();
5792
5793 spin_lock_irq(&x->wait.lock);
8cbbe86d 5794 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5795 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5796 return timeout;
5797}
1da177e4 5798
65eb3dc6
KD
5799/**
5800 * wait_for_completion: - waits for completion of a task
5801 * @x: holds the state of this particular completion
5802 *
5803 * This waits to be signaled for completion of a specific task. It is NOT
5804 * interruptible and there is no timeout.
5805 *
5806 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5807 * and interrupt capability. Also see complete().
5808 */
b15136e9 5809void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5810{
5811 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5812}
8cbbe86d 5813EXPORT_SYMBOL(wait_for_completion);
1da177e4 5814
65eb3dc6
KD
5815/**
5816 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5817 * @x: holds the state of this particular completion
5818 * @timeout: timeout value in jiffies
5819 *
5820 * This waits for either a completion of a specific task to be signaled or for a
5821 * specified timeout to expire. The timeout is in jiffies. It is not
5822 * interruptible.
5823 */
b15136e9 5824unsigned long __sched
8cbbe86d 5825wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5826{
8cbbe86d 5827 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5828}
8cbbe86d 5829EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5830
65eb3dc6
KD
5831/**
5832 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5833 * @x: holds the state of this particular completion
5834 *
5835 * This waits for completion of a specific task to be signaled. It is
5836 * interruptible.
5837 */
8cbbe86d 5838int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5839{
51e97990
AK
5840 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5841 if (t == -ERESTARTSYS)
5842 return t;
5843 return 0;
0fec171c 5844}
8cbbe86d 5845EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5846
65eb3dc6
KD
5847/**
5848 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5849 * @x: holds the state of this particular completion
5850 * @timeout: timeout value in jiffies
5851 *
5852 * This waits for either a completion of a specific task to be signaled or for a
5853 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5854 */
b15136e9 5855unsigned long __sched
8cbbe86d
AK
5856wait_for_completion_interruptible_timeout(struct completion *x,
5857 unsigned long timeout)
0fec171c 5858{
8cbbe86d 5859 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5860}
8cbbe86d 5861EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5862
65eb3dc6
KD
5863/**
5864 * wait_for_completion_killable: - waits for completion of a task (killable)
5865 * @x: holds the state of this particular completion
5866 *
5867 * This waits to be signaled for completion of a specific task. It can be
5868 * interrupted by a kill signal.
5869 */
009e577e
MW
5870int __sched wait_for_completion_killable(struct completion *x)
5871{
5872 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5873 if (t == -ERESTARTSYS)
5874 return t;
5875 return 0;
5876}
5877EXPORT_SYMBOL(wait_for_completion_killable);
5878
be4de352
DC
5879/**
5880 * try_wait_for_completion - try to decrement a completion without blocking
5881 * @x: completion structure
5882 *
5883 * Returns: 0 if a decrement cannot be done without blocking
5884 * 1 if a decrement succeeded.
5885 *
5886 * If a completion is being used as a counting completion,
5887 * attempt to decrement the counter without blocking. This
5888 * enables us to avoid waiting if the resource the completion
5889 * is protecting is not available.
5890 */
5891bool try_wait_for_completion(struct completion *x)
5892{
5893 int ret = 1;
5894
5895 spin_lock_irq(&x->wait.lock);
5896 if (!x->done)
5897 ret = 0;
5898 else
5899 x->done--;
5900 spin_unlock_irq(&x->wait.lock);
5901 return ret;
5902}
5903EXPORT_SYMBOL(try_wait_for_completion);
5904
5905/**
5906 * completion_done - Test to see if a completion has any waiters
5907 * @x: completion structure
5908 *
5909 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5910 * 1 if there are no waiters.
5911 *
5912 */
5913bool completion_done(struct completion *x)
5914{
5915 int ret = 1;
5916
5917 spin_lock_irq(&x->wait.lock);
5918 if (!x->done)
5919 ret = 0;
5920 spin_unlock_irq(&x->wait.lock);
5921 return ret;
5922}
5923EXPORT_SYMBOL(completion_done);
5924
8cbbe86d
AK
5925static long __sched
5926sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5927{
0fec171c
IM
5928 unsigned long flags;
5929 wait_queue_t wait;
5930
5931 init_waitqueue_entry(&wait, current);
1da177e4 5932
8cbbe86d 5933 __set_current_state(state);
1da177e4 5934
8cbbe86d
AK
5935 spin_lock_irqsave(&q->lock, flags);
5936 __add_wait_queue(q, &wait);
5937 spin_unlock(&q->lock);
5938 timeout = schedule_timeout(timeout);
5939 spin_lock_irq(&q->lock);
5940 __remove_wait_queue(q, &wait);
5941 spin_unlock_irqrestore(&q->lock, flags);
5942
5943 return timeout;
5944}
5945
5946void __sched interruptible_sleep_on(wait_queue_head_t *q)
5947{
5948 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5949}
1da177e4
LT
5950EXPORT_SYMBOL(interruptible_sleep_on);
5951
0fec171c 5952long __sched
95cdf3b7 5953interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5954{
8cbbe86d 5955 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5956}
1da177e4
LT
5957EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5958
0fec171c 5959void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5960{
8cbbe86d 5961 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5962}
1da177e4
LT
5963EXPORT_SYMBOL(sleep_on);
5964
0fec171c 5965long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5966{
8cbbe86d 5967 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5968}
1da177e4
LT
5969EXPORT_SYMBOL(sleep_on_timeout);
5970
b29739f9
IM
5971#ifdef CONFIG_RT_MUTEXES
5972
5973/*
5974 * rt_mutex_setprio - set the current priority of a task
5975 * @p: task
5976 * @prio: prio value (kernel-internal form)
5977 *
5978 * This function changes the 'effective' priority of a task. It does
5979 * not touch ->normal_prio like __setscheduler().
5980 *
5981 * Used by the rt_mutex code to implement priority inheritance logic.
5982 */
36c8b586 5983void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5984{
5985 unsigned long flags;
83b699ed 5986 int oldprio, on_rq, running;
70b97a7f 5987 struct rq *rq;
cb469845 5988 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5989
5990 BUG_ON(prio < 0 || prio > MAX_PRIO);
5991
5992 rq = task_rq_lock(p, &flags);
a8e504d2 5993 update_rq_clock(rq);
b29739f9 5994
d5f9f942 5995 oldprio = p->prio;
dd41f596 5996 on_rq = p->se.on_rq;
051a1d1a 5997 running = task_current(rq, p);
0e1f3483 5998 if (on_rq)
69be72c1 5999 dequeue_task(rq, p, 0);
0e1f3483
HS
6000 if (running)
6001 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
6002
6003 if (rt_prio(prio))
6004 p->sched_class = &rt_sched_class;
6005 else
6006 p->sched_class = &fair_sched_class;
6007
b29739f9
IM
6008 p->prio = prio;
6009
0e1f3483
HS
6010 if (running)
6011 p->sched_class->set_curr_task(rq);
dd41f596 6012 if (on_rq) {
8159f87e 6013 enqueue_task(rq, p, 0);
cb469845
SR
6014
6015 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
6016 }
6017 task_rq_unlock(rq, &flags);
6018}
6019
6020#endif
6021
36c8b586 6022void set_user_nice(struct task_struct *p, long nice)
1da177e4 6023{
dd41f596 6024 int old_prio, delta, on_rq;
1da177e4 6025 unsigned long flags;
70b97a7f 6026 struct rq *rq;
1da177e4
LT
6027
6028 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6029 return;
6030 /*
6031 * We have to be careful, if called from sys_setpriority(),
6032 * the task might be in the middle of scheduling on another CPU.
6033 */
6034 rq = task_rq_lock(p, &flags);
a8e504d2 6035 update_rq_clock(rq);
1da177e4
LT
6036 /*
6037 * The RT priorities are set via sched_setscheduler(), but we still
6038 * allow the 'normal' nice value to be set - but as expected
6039 * it wont have any effect on scheduling until the task is
dd41f596 6040 * SCHED_FIFO/SCHED_RR:
1da177e4 6041 */
e05606d3 6042 if (task_has_rt_policy(p)) {
1da177e4
LT
6043 p->static_prio = NICE_TO_PRIO(nice);
6044 goto out_unlock;
6045 }
dd41f596 6046 on_rq = p->se.on_rq;
c09595f6 6047 if (on_rq)
69be72c1 6048 dequeue_task(rq, p, 0);
1da177e4 6049
1da177e4 6050 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 6051 set_load_weight(p);
b29739f9
IM
6052 old_prio = p->prio;
6053 p->prio = effective_prio(p);
6054 delta = p->prio - old_prio;
1da177e4 6055
dd41f596 6056 if (on_rq) {
8159f87e 6057 enqueue_task(rq, p, 0);
1da177e4 6058 /*
d5f9f942
AM
6059 * If the task increased its priority or is running and
6060 * lowered its priority, then reschedule its CPU:
1da177e4 6061 */
d5f9f942 6062 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
6063 resched_task(rq->curr);
6064 }
6065out_unlock:
6066 task_rq_unlock(rq, &flags);
6067}
1da177e4
LT
6068EXPORT_SYMBOL(set_user_nice);
6069
e43379f1
MM
6070/*
6071 * can_nice - check if a task can reduce its nice value
6072 * @p: task
6073 * @nice: nice value
6074 */
36c8b586 6075int can_nice(const struct task_struct *p, const int nice)
e43379f1 6076{
024f4747
MM
6077 /* convert nice value [19,-20] to rlimit style value [1,40] */
6078 int nice_rlim = 20 - nice;
48f24c4d 6079
e43379f1
MM
6080 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6081 capable(CAP_SYS_NICE));
6082}
6083
1da177e4
LT
6084#ifdef __ARCH_WANT_SYS_NICE
6085
6086/*
6087 * sys_nice - change the priority of the current process.
6088 * @increment: priority increment
6089 *
6090 * sys_setpriority is a more generic, but much slower function that
6091 * does similar things.
6092 */
5add95d4 6093SYSCALL_DEFINE1(nice, int, increment)
1da177e4 6094{
48f24c4d 6095 long nice, retval;
1da177e4
LT
6096
6097 /*
6098 * Setpriority might change our priority at the same moment.
6099 * We don't have to worry. Conceptually one call occurs first
6100 * and we have a single winner.
6101 */
e43379f1
MM
6102 if (increment < -40)
6103 increment = -40;
1da177e4
LT
6104 if (increment > 40)
6105 increment = 40;
6106
2b8f836f 6107 nice = TASK_NICE(current) + increment;
1da177e4
LT
6108 if (nice < -20)
6109 nice = -20;
6110 if (nice > 19)
6111 nice = 19;
6112
e43379f1
MM
6113 if (increment < 0 && !can_nice(current, nice))
6114 return -EPERM;
6115
1da177e4
LT
6116 retval = security_task_setnice(current, nice);
6117 if (retval)
6118 return retval;
6119
6120 set_user_nice(current, nice);
6121 return 0;
6122}
6123
6124#endif
6125
6126/**
6127 * task_prio - return the priority value of a given task.
6128 * @p: the task in question.
6129 *
6130 * This is the priority value as seen by users in /proc.
6131 * RT tasks are offset by -200. Normal tasks are centered
6132 * around 0, value goes from -16 to +15.
6133 */
36c8b586 6134int task_prio(const struct task_struct *p)
1da177e4
LT
6135{
6136 return p->prio - MAX_RT_PRIO;
6137}
6138
6139/**
6140 * task_nice - return the nice value of a given task.
6141 * @p: the task in question.
6142 */
36c8b586 6143int task_nice(const struct task_struct *p)
1da177e4
LT
6144{
6145 return TASK_NICE(p);
6146}
150d8bed 6147EXPORT_SYMBOL(task_nice);
1da177e4
LT
6148
6149/**
6150 * idle_cpu - is a given cpu idle currently?
6151 * @cpu: the processor in question.
6152 */
6153int idle_cpu(int cpu)
6154{
6155 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6156}
6157
1da177e4
LT
6158/**
6159 * idle_task - return the idle task for a given cpu.
6160 * @cpu: the processor in question.
6161 */
36c8b586 6162struct task_struct *idle_task(int cpu)
1da177e4
LT
6163{
6164 return cpu_rq(cpu)->idle;
6165}
6166
6167/**
6168 * find_process_by_pid - find a process with a matching PID value.
6169 * @pid: the pid in question.
6170 */
a9957449 6171static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6172{
228ebcbe 6173 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6174}
6175
6176/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6177static void
6178__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6179{
dd41f596 6180 BUG_ON(p->se.on_rq);
48f24c4d 6181
1da177e4 6182 p->policy = policy;
dd41f596
IM
6183 switch (p->policy) {
6184 case SCHED_NORMAL:
6185 case SCHED_BATCH:
6186 case SCHED_IDLE:
6187 p->sched_class = &fair_sched_class;
6188 break;
6189 case SCHED_FIFO:
6190 case SCHED_RR:
6191 p->sched_class = &rt_sched_class;
6192 break;
6193 }
6194
1da177e4 6195 p->rt_priority = prio;
b29739f9
IM
6196 p->normal_prio = normal_prio(p);
6197 /* we are holding p->pi_lock already */
6198 p->prio = rt_mutex_getprio(p);
2dd73a4f 6199 set_load_weight(p);
1da177e4
LT
6200}
6201
c69e8d9c
DH
6202/*
6203 * check the target process has a UID that matches the current process's
6204 */
6205static bool check_same_owner(struct task_struct *p)
6206{
6207 const struct cred *cred = current_cred(), *pcred;
6208 bool match;
6209
6210 rcu_read_lock();
6211 pcred = __task_cred(p);
6212 match = (cred->euid == pcred->euid ||
6213 cred->euid == pcred->uid);
6214 rcu_read_unlock();
6215 return match;
6216}
6217
961ccddd
RR
6218static int __sched_setscheduler(struct task_struct *p, int policy,
6219 struct sched_param *param, bool user)
1da177e4 6220{
83b699ed 6221 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6222 unsigned long flags;
cb469845 6223 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6224 struct rq *rq;
ca94c442 6225 int reset_on_fork;
1da177e4 6226
66e5393a
SR
6227 /* may grab non-irq protected spin_locks */
6228 BUG_ON(in_interrupt());
1da177e4
LT
6229recheck:
6230 /* double check policy once rq lock held */
ca94c442
LP
6231 if (policy < 0) {
6232 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6233 policy = oldpolicy = p->policy;
ca94c442
LP
6234 } else {
6235 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6236 policy &= ~SCHED_RESET_ON_FORK;
6237
6238 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6239 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6240 policy != SCHED_IDLE)
6241 return -EINVAL;
6242 }
6243
1da177e4
LT
6244 /*
6245 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6246 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6247 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6248 */
6249 if (param->sched_priority < 0 ||
95cdf3b7 6250 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6251 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6252 return -EINVAL;
e05606d3 6253 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6254 return -EINVAL;
6255
37e4ab3f
OC
6256 /*
6257 * Allow unprivileged RT tasks to decrease priority:
6258 */
961ccddd 6259 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6260 if (rt_policy(policy)) {
8dc3e909 6261 unsigned long rlim_rtprio;
8dc3e909
ON
6262
6263 if (!lock_task_sighand(p, &flags))
6264 return -ESRCH;
6265 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6266 unlock_task_sighand(p, &flags);
6267
6268 /* can't set/change the rt policy */
6269 if (policy != p->policy && !rlim_rtprio)
6270 return -EPERM;
6271
6272 /* can't increase priority */
6273 if (param->sched_priority > p->rt_priority &&
6274 param->sched_priority > rlim_rtprio)
6275 return -EPERM;
6276 }
dd41f596
IM
6277 /*
6278 * Like positive nice levels, dont allow tasks to
6279 * move out of SCHED_IDLE either:
6280 */
6281 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6282 return -EPERM;
5fe1d75f 6283
37e4ab3f 6284 /* can't change other user's priorities */
c69e8d9c 6285 if (!check_same_owner(p))
37e4ab3f 6286 return -EPERM;
ca94c442
LP
6287
6288 /* Normal users shall not reset the sched_reset_on_fork flag */
6289 if (p->sched_reset_on_fork && !reset_on_fork)
6290 return -EPERM;
37e4ab3f 6291 }
1da177e4 6292
725aad24 6293 if (user) {
b68aa230 6294#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6295 /*
6296 * Do not allow realtime tasks into groups that have no runtime
6297 * assigned.
6298 */
9a7e0b18
PZ
6299 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6300 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6301 return -EPERM;
b68aa230
PZ
6302#endif
6303
725aad24
JF
6304 retval = security_task_setscheduler(p, policy, param);
6305 if (retval)
6306 return retval;
6307 }
6308
b29739f9
IM
6309 /*
6310 * make sure no PI-waiters arrive (or leave) while we are
6311 * changing the priority of the task:
6312 */
6313 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6314 /*
6315 * To be able to change p->policy safely, the apropriate
6316 * runqueue lock must be held.
6317 */
b29739f9 6318 rq = __task_rq_lock(p);
1da177e4
LT
6319 /* recheck policy now with rq lock held */
6320 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6321 policy = oldpolicy = -1;
b29739f9
IM
6322 __task_rq_unlock(rq);
6323 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6324 goto recheck;
6325 }
2daa3577 6326 update_rq_clock(rq);
dd41f596 6327 on_rq = p->se.on_rq;
051a1d1a 6328 running = task_current(rq, p);
0e1f3483 6329 if (on_rq)
2e1cb74a 6330 deactivate_task(rq, p, 0);
0e1f3483
HS
6331 if (running)
6332 p->sched_class->put_prev_task(rq, p);
f6b53205 6333
ca94c442
LP
6334 p->sched_reset_on_fork = reset_on_fork;
6335
1da177e4 6336 oldprio = p->prio;
dd41f596 6337 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6338
0e1f3483
HS
6339 if (running)
6340 p->sched_class->set_curr_task(rq);
dd41f596
IM
6341 if (on_rq) {
6342 activate_task(rq, p, 0);
cb469845
SR
6343
6344 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6345 }
b29739f9
IM
6346 __task_rq_unlock(rq);
6347 spin_unlock_irqrestore(&p->pi_lock, flags);
6348
95e02ca9
TG
6349 rt_mutex_adjust_pi(p);
6350
1da177e4
LT
6351 return 0;
6352}
961ccddd
RR
6353
6354/**
6355 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6356 * @p: the task in question.
6357 * @policy: new policy.
6358 * @param: structure containing the new RT priority.
6359 *
6360 * NOTE that the task may be already dead.
6361 */
6362int sched_setscheduler(struct task_struct *p, int policy,
6363 struct sched_param *param)
6364{
6365 return __sched_setscheduler(p, policy, param, true);
6366}
1da177e4
LT
6367EXPORT_SYMBOL_GPL(sched_setscheduler);
6368
961ccddd
RR
6369/**
6370 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6371 * @p: the task in question.
6372 * @policy: new policy.
6373 * @param: structure containing the new RT priority.
6374 *
6375 * Just like sched_setscheduler, only don't bother checking if the
6376 * current context has permission. For example, this is needed in
6377 * stop_machine(): we create temporary high priority worker threads,
6378 * but our caller might not have that capability.
6379 */
6380int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6381 struct sched_param *param)
6382{
6383 return __sched_setscheduler(p, policy, param, false);
6384}
6385
95cdf3b7
IM
6386static int
6387do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6388{
1da177e4
LT
6389 struct sched_param lparam;
6390 struct task_struct *p;
36c8b586 6391 int retval;
1da177e4
LT
6392
6393 if (!param || pid < 0)
6394 return -EINVAL;
6395 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6396 return -EFAULT;
5fe1d75f
ON
6397
6398 rcu_read_lock();
6399 retval = -ESRCH;
1da177e4 6400 p = find_process_by_pid(pid);
5fe1d75f
ON
6401 if (p != NULL)
6402 retval = sched_setscheduler(p, policy, &lparam);
6403 rcu_read_unlock();
36c8b586 6404
1da177e4
LT
6405 return retval;
6406}
6407
6408/**
6409 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6410 * @pid: the pid in question.
6411 * @policy: new policy.
6412 * @param: structure containing the new RT priority.
6413 */
5add95d4
HC
6414SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6415 struct sched_param __user *, param)
1da177e4 6416{
c21761f1
JB
6417 /* negative values for policy are not valid */
6418 if (policy < 0)
6419 return -EINVAL;
6420
1da177e4
LT
6421 return do_sched_setscheduler(pid, policy, param);
6422}
6423
6424/**
6425 * sys_sched_setparam - set/change the RT priority of a thread
6426 * @pid: the pid in question.
6427 * @param: structure containing the new RT priority.
6428 */
5add95d4 6429SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6430{
6431 return do_sched_setscheduler(pid, -1, param);
6432}
6433
6434/**
6435 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6436 * @pid: the pid in question.
6437 */
5add95d4 6438SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6439{
36c8b586 6440 struct task_struct *p;
3a5c359a 6441 int retval;
1da177e4
LT
6442
6443 if (pid < 0)
3a5c359a 6444 return -EINVAL;
1da177e4
LT
6445
6446 retval = -ESRCH;
6447 read_lock(&tasklist_lock);
6448 p = find_process_by_pid(pid);
6449 if (p) {
6450 retval = security_task_getscheduler(p);
6451 if (!retval)
ca94c442
LP
6452 retval = p->policy
6453 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4
LT
6454 }
6455 read_unlock(&tasklist_lock);
1da177e4
LT
6456 return retval;
6457}
6458
6459/**
ca94c442 6460 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6461 * @pid: the pid in question.
6462 * @param: structure containing the RT priority.
6463 */
5add95d4 6464SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6465{
6466 struct sched_param lp;
36c8b586 6467 struct task_struct *p;
3a5c359a 6468 int retval;
1da177e4
LT
6469
6470 if (!param || pid < 0)
3a5c359a 6471 return -EINVAL;
1da177e4
LT
6472
6473 read_lock(&tasklist_lock);
6474 p = find_process_by_pid(pid);
6475 retval = -ESRCH;
6476 if (!p)
6477 goto out_unlock;
6478
6479 retval = security_task_getscheduler(p);
6480 if (retval)
6481 goto out_unlock;
6482
6483 lp.sched_priority = p->rt_priority;
6484 read_unlock(&tasklist_lock);
6485
6486 /*
6487 * This one might sleep, we cannot do it with a spinlock held ...
6488 */
6489 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6490
1da177e4
LT
6491 return retval;
6492
6493out_unlock:
6494 read_unlock(&tasklist_lock);
6495 return retval;
6496}
6497
96f874e2 6498long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6499{
5a16f3d3 6500 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6501 struct task_struct *p;
6502 int retval;
1da177e4 6503
95402b38 6504 get_online_cpus();
1da177e4
LT
6505 read_lock(&tasklist_lock);
6506
6507 p = find_process_by_pid(pid);
6508 if (!p) {
6509 read_unlock(&tasklist_lock);
95402b38 6510 put_online_cpus();
1da177e4
LT
6511 return -ESRCH;
6512 }
6513
6514 /*
6515 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6516 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6517 * usage count and then drop tasklist_lock.
6518 */
6519 get_task_struct(p);
6520 read_unlock(&tasklist_lock);
6521
5a16f3d3
RR
6522 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6523 retval = -ENOMEM;
6524 goto out_put_task;
6525 }
6526 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6527 retval = -ENOMEM;
6528 goto out_free_cpus_allowed;
6529 }
1da177e4 6530 retval = -EPERM;
c69e8d9c 6531 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6532 goto out_unlock;
6533
e7834f8f
DQ
6534 retval = security_task_setscheduler(p, 0, NULL);
6535 if (retval)
6536 goto out_unlock;
6537
5a16f3d3
RR
6538 cpuset_cpus_allowed(p, cpus_allowed);
6539 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6540 again:
5a16f3d3 6541 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6542
8707d8b8 6543 if (!retval) {
5a16f3d3
RR
6544 cpuset_cpus_allowed(p, cpus_allowed);
6545 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6546 /*
6547 * We must have raced with a concurrent cpuset
6548 * update. Just reset the cpus_allowed to the
6549 * cpuset's cpus_allowed
6550 */
5a16f3d3 6551 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6552 goto again;
6553 }
6554 }
1da177e4 6555out_unlock:
5a16f3d3
RR
6556 free_cpumask_var(new_mask);
6557out_free_cpus_allowed:
6558 free_cpumask_var(cpus_allowed);
6559out_put_task:
1da177e4 6560 put_task_struct(p);
95402b38 6561 put_online_cpus();
1da177e4
LT
6562 return retval;
6563}
6564
6565static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6566 struct cpumask *new_mask)
1da177e4 6567{
96f874e2
RR
6568 if (len < cpumask_size())
6569 cpumask_clear(new_mask);
6570 else if (len > cpumask_size())
6571 len = cpumask_size();
6572
1da177e4
LT
6573 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6574}
6575
6576/**
6577 * sys_sched_setaffinity - set the cpu affinity of a process
6578 * @pid: pid of the process
6579 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6580 * @user_mask_ptr: user-space pointer to the new cpu mask
6581 */
5add95d4
HC
6582SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6583 unsigned long __user *, user_mask_ptr)
1da177e4 6584{
5a16f3d3 6585 cpumask_var_t new_mask;
1da177e4
LT
6586 int retval;
6587
5a16f3d3
RR
6588 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6589 return -ENOMEM;
1da177e4 6590
5a16f3d3
RR
6591 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6592 if (retval == 0)
6593 retval = sched_setaffinity(pid, new_mask);
6594 free_cpumask_var(new_mask);
6595 return retval;
1da177e4
LT
6596}
6597
96f874e2 6598long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6599{
36c8b586 6600 struct task_struct *p;
1da177e4 6601 int retval;
1da177e4 6602
95402b38 6603 get_online_cpus();
1da177e4
LT
6604 read_lock(&tasklist_lock);
6605
6606 retval = -ESRCH;
6607 p = find_process_by_pid(pid);
6608 if (!p)
6609 goto out_unlock;
6610
e7834f8f
DQ
6611 retval = security_task_getscheduler(p);
6612 if (retval)
6613 goto out_unlock;
6614
96f874e2 6615 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6616
6617out_unlock:
6618 read_unlock(&tasklist_lock);
95402b38 6619 put_online_cpus();
1da177e4 6620
9531b62f 6621 return retval;
1da177e4
LT
6622}
6623
6624/**
6625 * sys_sched_getaffinity - get the cpu affinity of a process
6626 * @pid: pid of the process
6627 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6628 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6629 */
5add95d4
HC
6630SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6631 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6632{
6633 int ret;
f17c8607 6634 cpumask_var_t mask;
1da177e4 6635
f17c8607 6636 if (len < cpumask_size())
1da177e4
LT
6637 return -EINVAL;
6638
f17c8607
RR
6639 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6640 return -ENOMEM;
1da177e4 6641
f17c8607
RR
6642 ret = sched_getaffinity(pid, mask);
6643 if (ret == 0) {
6644 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6645 ret = -EFAULT;
6646 else
6647 ret = cpumask_size();
6648 }
6649 free_cpumask_var(mask);
1da177e4 6650
f17c8607 6651 return ret;
1da177e4
LT
6652}
6653
6654/**
6655 * sys_sched_yield - yield the current processor to other threads.
6656 *
dd41f596
IM
6657 * This function yields the current CPU to other tasks. If there are no
6658 * other threads running on this CPU then this function will return.
1da177e4 6659 */
5add95d4 6660SYSCALL_DEFINE0(sched_yield)
1da177e4 6661{
70b97a7f 6662 struct rq *rq = this_rq_lock();
1da177e4 6663
2d72376b 6664 schedstat_inc(rq, yld_count);
4530d7ab 6665 current->sched_class->yield_task(rq);
1da177e4
LT
6666
6667 /*
6668 * Since we are going to call schedule() anyway, there's
6669 * no need to preempt or enable interrupts:
6670 */
6671 __release(rq->lock);
8a25d5de 6672 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6673 _raw_spin_unlock(&rq->lock);
6674 preempt_enable_no_resched();
6675
6676 schedule();
6677
6678 return 0;
6679}
6680
d86ee480
PZ
6681static inline int should_resched(void)
6682{
6683 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6684}
6685
e7b38404 6686static void __cond_resched(void)
1da177e4 6687{
e7aaaa69
FW
6688 add_preempt_count(PREEMPT_ACTIVE);
6689 schedule();
6690 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
6691}
6692
02b67cc3 6693int __sched _cond_resched(void)
1da177e4 6694{
d86ee480 6695 if (should_resched()) {
1da177e4
LT
6696 __cond_resched();
6697 return 1;
6698 }
6699 return 0;
6700}
02b67cc3 6701EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6702
6703/*
613afbf8 6704 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
6705 * call schedule, and on return reacquire the lock.
6706 *
41a2d6cf 6707 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6708 * operations here to prevent schedule() from being called twice (once via
6709 * spin_unlock(), once by hand).
6710 */
613afbf8 6711int __cond_resched_lock(spinlock_t *lock)
1da177e4 6712{
d86ee480 6713 int resched = should_resched();
6df3cecb
JK
6714 int ret = 0;
6715
95c354fe 6716 if (spin_needbreak(lock) || resched) {
1da177e4 6717 spin_unlock(lock);
d86ee480 6718 if (resched)
95c354fe
NP
6719 __cond_resched();
6720 else
6721 cpu_relax();
6df3cecb 6722 ret = 1;
1da177e4 6723 spin_lock(lock);
1da177e4 6724 }
6df3cecb 6725 return ret;
1da177e4 6726}
613afbf8 6727EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 6728
613afbf8 6729int __sched __cond_resched_softirq(void)
1da177e4
LT
6730{
6731 BUG_ON(!in_softirq());
6732
d86ee480 6733 if (should_resched()) {
98d82567 6734 local_bh_enable();
1da177e4
LT
6735 __cond_resched();
6736 local_bh_disable();
6737 return 1;
6738 }
6739 return 0;
6740}
613afbf8 6741EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 6742
1da177e4
LT
6743/**
6744 * yield - yield the current processor to other threads.
6745 *
72fd4a35 6746 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6747 * thread runnable and calls sys_sched_yield().
6748 */
6749void __sched yield(void)
6750{
6751 set_current_state(TASK_RUNNING);
6752 sys_sched_yield();
6753}
1da177e4
LT
6754EXPORT_SYMBOL(yield);
6755
6756/*
41a2d6cf 6757 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
6758 * that process accounting knows that this is a task in IO wait state.
6759 *
6760 * But don't do that if it is a deliberate, throttling IO wait (this task
6761 * has set its backing_dev_info: the queue against which it should throttle)
6762 */
6763void __sched io_schedule(void)
6764{
54d35f29 6765 struct rq *rq = raw_rq();
1da177e4 6766
0ff92245 6767 delayacct_blkio_start();
1da177e4 6768 atomic_inc(&rq->nr_iowait);
8f0dfc34 6769 current->in_iowait = 1;
1da177e4 6770 schedule();
8f0dfc34 6771 current->in_iowait = 0;
1da177e4 6772 atomic_dec(&rq->nr_iowait);
0ff92245 6773 delayacct_blkio_end();
1da177e4 6774}
1da177e4
LT
6775EXPORT_SYMBOL(io_schedule);
6776
6777long __sched io_schedule_timeout(long timeout)
6778{
54d35f29 6779 struct rq *rq = raw_rq();
1da177e4
LT
6780 long ret;
6781
0ff92245 6782 delayacct_blkio_start();
1da177e4 6783 atomic_inc(&rq->nr_iowait);
8f0dfc34 6784 current->in_iowait = 1;
1da177e4 6785 ret = schedule_timeout(timeout);
8f0dfc34 6786 current->in_iowait = 0;
1da177e4 6787 atomic_dec(&rq->nr_iowait);
0ff92245 6788 delayacct_blkio_end();
1da177e4
LT
6789 return ret;
6790}
6791
6792/**
6793 * sys_sched_get_priority_max - return maximum RT priority.
6794 * @policy: scheduling class.
6795 *
6796 * this syscall returns the maximum rt_priority that can be used
6797 * by a given scheduling class.
6798 */
5add95d4 6799SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6800{
6801 int ret = -EINVAL;
6802
6803 switch (policy) {
6804 case SCHED_FIFO:
6805 case SCHED_RR:
6806 ret = MAX_USER_RT_PRIO-1;
6807 break;
6808 case SCHED_NORMAL:
b0a9499c 6809 case SCHED_BATCH:
dd41f596 6810 case SCHED_IDLE:
1da177e4
LT
6811 ret = 0;
6812 break;
6813 }
6814 return ret;
6815}
6816
6817/**
6818 * sys_sched_get_priority_min - return minimum RT priority.
6819 * @policy: scheduling class.
6820 *
6821 * this syscall returns the minimum rt_priority that can be used
6822 * by a given scheduling class.
6823 */
5add95d4 6824SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6825{
6826 int ret = -EINVAL;
6827
6828 switch (policy) {
6829 case SCHED_FIFO:
6830 case SCHED_RR:
6831 ret = 1;
6832 break;
6833 case SCHED_NORMAL:
b0a9499c 6834 case SCHED_BATCH:
dd41f596 6835 case SCHED_IDLE:
1da177e4
LT
6836 ret = 0;
6837 }
6838 return ret;
6839}
6840
6841/**
6842 * sys_sched_rr_get_interval - return the default timeslice of a process.
6843 * @pid: pid of the process.
6844 * @interval: userspace pointer to the timeslice value.
6845 *
6846 * this syscall writes the default timeslice value of a given process
6847 * into the user-space timespec buffer. A value of '0' means infinity.
6848 */
17da2bd9 6849SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6850 struct timespec __user *, interval)
1da177e4 6851{
36c8b586 6852 struct task_struct *p;
a4ec24b4 6853 unsigned int time_slice;
3a5c359a 6854 int retval;
1da177e4 6855 struct timespec t;
1da177e4
LT
6856
6857 if (pid < 0)
3a5c359a 6858 return -EINVAL;
1da177e4
LT
6859
6860 retval = -ESRCH;
6861 read_lock(&tasklist_lock);
6862 p = find_process_by_pid(pid);
6863 if (!p)
6864 goto out_unlock;
6865
6866 retval = security_task_getscheduler(p);
6867 if (retval)
6868 goto out_unlock;
6869
77034937
IM
6870 /*
6871 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6872 * tasks that are on an otherwise idle runqueue:
6873 */
6874 time_slice = 0;
6875 if (p->policy == SCHED_RR) {
a4ec24b4 6876 time_slice = DEF_TIMESLICE;
1868f958 6877 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6878 struct sched_entity *se = &p->se;
6879 unsigned long flags;
6880 struct rq *rq;
6881
6882 rq = task_rq_lock(p, &flags);
77034937
IM
6883 if (rq->cfs.load.weight)
6884 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6885 task_rq_unlock(rq, &flags);
6886 }
1da177e4 6887 read_unlock(&tasklist_lock);
a4ec24b4 6888 jiffies_to_timespec(time_slice, &t);
1da177e4 6889 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6890 return retval;
3a5c359a 6891
1da177e4
LT
6892out_unlock:
6893 read_unlock(&tasklist_lock);
6894 return retval;
6895}
6896
7c731e0a 6897static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6898
82a1fcb9 6899void sched_show_task(struct task_struct *p)
1da177e4 6900{
1da177e4 6901 unsigned long free = 0;
36c8b586 6902 unsigned state;
1da177e4 6903
1da177e4 6904 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6905 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6906 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6907#if BITS_PER_LONG == 32
1da177e4 6908 if (state == TASK_RUNNING)
cc4ea795 6909 printk(KERN_CONT " running ");
1da177e4 6910 else
cc4ea795 6911 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6912#else
6913 if (state == TASK_RUNNING)
cc4ea795 6914 printk(KERN_CONT " running task ");
1da177e4 6915 else
cc4ea795 6916 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6917#endif
6918#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6919 free = stack_not_used(p);
1da177e4 6920#endif
aa47b7e0
DR
6921 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6922 task_pid_nr(p), task_pid_nr(p->real_parent),
6923 (unsigned long)task_thread_info(p)->flags);
1da177e4 6924
5fb5e6de 6925 show_stack(p, NULL);
1da177e4
LT
6926}
6927
e59e2ae2 6928void show_state_filter(unsigned long state_filter)
1da177e4 6929{
36c8b586 6930 struct task_struct *g, *p;
1da177e4 6931
4bd77321
IM
6932#if BITS_PER_LONG == 32
6933 printk(KERN_INFO
6934 " task PC stack pid father\n");
1da177e4 6935#else
4bd77321
IM
6936 printk(KERN_INFO
6937 " task PC stack pid father\n");
1da177e4
LT
6938#endif
6939 read_lock(&tasklist_lock);
6940 do_each_thread(g, p) {
6941 /*
6942 * reset the NMI-timeout, listing all files on a slow
6943 * console might take alot of time:
6944 */
6945 touch_nmi_watchdog();
39bc89fd 6946 if (!state_filter || (p->state & state_filter))
82a1fcb9 6947 sched_show_task(p);
1da177e4
LT
6948 } while_each_thread(g, p);
6949
04c9167f
JF
6950 touch_all_softlockup_watchdogs();
6951
dd41f596
IM
6952#ifdef CONFIG_SCHED_DEBUG
6953 sysrq_sched_debug_show();
6954#endif
1da177e4 6955 read_unlock(&tasklist_lock);
e59e2ae2
IM
6956 /*
6957 * Only show locks if all tasks are dumped:
6958 */
6959 if (state_filter == -1)
6960 debug_show_all_locks();
1da177e4
LT
6961}
6962
1df21055
IM
6963void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6964{
dd41f596 6965 idle->sched_class = &idle_sched_class;
1df21055
IM
6966}
6967
f340c0d1
IM
6968/**
6969 * init_idle - set up an idle thread for a given CPU
6970 * @idle: task in question
6971 * @cpu: cpu the idle task belongs to
6972 *
6973 * NOTE: this function does not set the idle thread's NEED_RESCHED
6974 * flag, to make booting more robust.
6975 */
5c1e1767 6976void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6977{
70b97a7f 6978 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6979 unsigned long flags;
6980
5cbd54ef
IM
6981 spin_lock_irqsave(&rq->lock, flags);
6982
dd41f596
IM
6983 __sched_fork(idle);
6984 idle->se.exec_start = sched_clock();
6985
b29739f9 6986 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6987 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6988 __set_task_cpu(idle, cpu);
1da177e4 6989
1da177e4 6990 rq->curr = rq->idle = idle;
4866cde0
NP
6991#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6992 idle->oncpu = 1;
6993#endif
1da177e4
LT
6994 spin_unlock_irqrestore(&rq->lock, flags);
6995
6996 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6997#if defined(CONFIG_PREEMPT)
6998 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6999#else
a1261f54 7000 task_thread_info(idle)->preempt_count = 0;
8e3e076c 7001#endif
dd41f596
IM
7002 /*
7003 * The idle tasks have their own, simple scheduling class:
7004 */
7005 idle->sched_class = &idle_sched_class;
fb52607a 7006 ftrace_graph_init_task(idle);
1da177e4
LT
7007}
7008
7009/*
7010 * In a system that switches off the HZ timer nohz_cpu_mask
7011 * indicates which cpus entered this state. This is used
7012 * in the rcu update to wait only for active cpus. For system
7013 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 7014 * always be CPU_BITS_NONE.
1da177e4 7015 */
6a7b3dc3 7016cpumask_var_t nohz_cpu_mask;
1da177e4 7017
19978ca6
IM
7018/*
7019 * Increase the granularity value when there are more CPUs,
7020 * because with more CPUs the 'effective latency' as visible
7021 * to users decreases. But the relationship is not linear,
7022 * so pick a second-best guess by going with the log2 of the
7023 * number of CPUs.
7024 *
7025 * This idea comes from the SD scheduler of Con Kolivas:
7026 */
7027static inline void sched_init_granularity(void)
7028{
7029 unsigned int factor = 1 + ilog2(num_online_cpus());
7030 const unsigned long limit = 200000000;
7031
7032 sysctl_sched_min_granularity *= factor;
7033 if (sysctl_sched_min_granularity > limit)
7034 sysctl_sched_min_granularity = limit;
7035
7036 sysctl_sched_latency *= factor;
7037 if (sysctl_sched_latency > limit)
7038 sysctl_sched_latency = limit;
7039
7040 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
7041
7042 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
7043}
7044
1da177e4
LT
7045#ifdef CONFIG_SMP
7046/*
7047 * This is how migration works:
7048 *
70b97a7f 7049 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
7050 * runqueue and wake up that CPU's migration thread.
7051 * 2) we down() the locked semaphore => thread blocks.
7052 * 3) migration thread wakes up (implicitly it forces the migrated
7053 * thread off the CPU)
7054 * 4) it gets the migration request and checks whether the migrated
7055 * task is still in the wrong runqueue.
7056 * 5) if it's in the wrong runqueue then the migration thread removes
7057 * it and puts it into the right queue.
7058 * 6) migration thread up()s the semaphore.
7059 * 7) we wake up and the migration is done.
7060 */
7061
7062/*
7063 * Change a given task's CPU affinity. Migrate the thread to a
7064 * proper CPU and schedule it away if the CPU it's executing on
7065 * is removed from the allowed bitmask.
7066 *
7067 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 7068 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
7069 * call is not atomic; no spinlocks may be held.
7070 */
96f874e2 7071int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 7072{
70b97a7f 7073 struct migration_req req;
1da177e4 7074 unsigned long flags;
70b97a7f 7075 struct rq *rq;
48f24c4d 7076 int ret = 0;
1da177e4
LT
7077
7078 rq = task_rq_lock(p, &flags);
96f874e2 7079 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
7080 ret = -EINVAL;
7081 goto out;
7082 }
7083
9985b0ba 7084 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 7085 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
7086 ret = -EINVAL;
7087 goto out;
7088 }
7089
73fe6aae 7090 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 7091 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 7092 else {
96f874e2
RR
7093 cpumask_copy(&p->cpus_allowed, new_mask);
7094 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
7095 }
7096
1da177e4 7097 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 7098 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
7099 goto out;
7100
1e5ce4f4 7101 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4 7102 /* Need help from migration thread: drop lock and wait. */
693525e3
PZ
7103 struct task_struct *mt = rq->migration_thread;
7104
7105 get_task_struct(mt);
1da177e4
LT
7106 task_rq_unlock(rq, &flags);
7107 wake_up_process(rq->migration_thread);
693525e3 7108 put_task_struct(mt);
1da177e4
LT
7109 wait_for_completion(&req.done);
7110 tlb_migrate_finish(p->mm);
7111 return 0;
7112 }
7113out:
7114 task_rq_unlock(rq, &flags);
48f24c4d 7115
1da177e4
LT
7116 return ret;
7117}
cd8ba7cd 7118EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7119
7120/*
41a2d6cf 7121 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7122 * this because either it can't run here any more (set_cpus_allowed()
7123 * away from this CPU, or CPU going down), or because we're
7124 * attempting to rebalance this task on exec (sched_exec).
7125 *
7126 * So we race with normal scheduler movements, but that's OK, as long
7127 * as the task is no longer on this CPU.
efc30814
KK
7128 *
7129 * Returns non-zero if task was successfully migrated.
1da177e4 7130 */
efc30814 7131static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7132{
70b97a7f 7133 struct rq *rq_dest, *rq_src;
dd41f596 7134 int ret = 0, on_rq;
1da177e4 7135
e761b772 7136 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7137 return ret;
1da177e4
LT
7138
7139 rq_src = cpu_rq(src_cpu);
7140 rq_dest = cpu_rq(dest_cpu);
7141
7142 double_rq_lock(rq_src, rq_dest);
7143 /* Already moved. */
7144 if (task_cpu(p) != src_cpu)
b1e38734 7145 goto done;
1da177e4 7146 /* Affinity changed (again). */
96f874e2 7147 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7148 goto fail;
1da177e4 7149
dd41f596 7150 on_rq = p->se.on_rq;
6e82a3be 7151 if (on_rq)
2e1cb74a 7152 deactivate_task(rq_src, p, 0);
6e82a3be 7153
1da177e4 7154 set_task_cpu(p, dest_cpu);
dd41f596
IM
7155 if (on_rq) {
7156 activate_task(rq_dest, p, 0);
15afe09b 7157 check_preempt_curr(rq_dest, p, 0);
1da177e4 7158 }
b1e38734 7159done:
efc30814 7160 ret = 1;
b1e38734 7161fail:
1da177e4 7162 double_rq_unlock(rq_src, rq_dest);
efc30814 7163 return ret;
1da177e4
LT
7164}
7165
7166/*
7167 * migration_thread - this is a highprio system thread that performs
7168 * thread migration by bumping thread off CPU then 'pushing' onto
7169 * another runqueue.
7170 */
95cdf3b7 7171static int migration_thread(void *data)
1da177e4 7172{
1da177e4 7173 int cpu = (long)data;
70b97a7f 7174 struct rq *rq;
1da177e4
LT
7175
7176 rq = cpu_rq(cpu);
7177 BUG_ON(rq->migration_thread != current);
7178
7179 set_current_state(TASK_INTERRUPTIBLE);
7180 while (!kthread_should_stop()) {
70b97a7f 7181 struct migration_req *req;
1da177e4 7182 struct list_head *head;
1da177e4 7183
1da177e4
LT
7184 spin_lock_irq(&rq->lock);
7185
7186 if (cpu_is_offline(cpu)) {
7187 spin_unlock_irq(&rq->lock);
371cbb38 7188 break;
1da177e4
LT
7189 }
7190
7191 if (rq->active_balance) {
7192 active_load_balance(rq, cpu);
7193 rq->active_balance = 0;
7194 }
7195
7196 head = &rq->migration_queue;
7197
7198 if (list_empty(head)) {
7199 spin_unlock_irq(&rq->lock);
7200 schedule();
7201 set_current_state(TASK_INTERRUPTIBLE);
7202 continue;
7203 }
70b97a7f 7204 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7205 list_del_init(head->next);
7206
674311d5
NP
7207 spin_unlock(&rq->lock);
7208 __migrate_task(req->task, cpu, req->dest_cpu);
7209 local_irq_enable();
1da177e4
LT
7210
7211 complete(&req->done);
7212 }
7213 __set_current_state(TASK_RUNNING);
1da177e4 7214
1da177e4
LT
7215 return 0;
7216}
7217
7218#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7219
7220static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7221{
7222 int ret;
7223
7224 local_irq_disable();
7225 ret = __migrate_task(p, src_cpu, dest_cpu);
7226 local_irq_enable();
7227 return ret;
7228}
7229
054b9108 7230/*
3a4fa0a2 7231 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7232 */
48f24c4d 7233static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7234{
70b97a7f 7235 int dest_cpu;
6ca09dfc 7236 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7237
7238again:
7239 /* Look for allowed, online CPU in same node. */
7240 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7241 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7242 goto move;
7243
7244 /* Any allowed, online CPU? */
7245 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7246 if (dest_cpu < nr_cpu_ids)
7247 goto move;
7248
7249 /* No more Mr. Nice Guy. */
7250 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
7251 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7252 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 7253
e76bd8d9
RR
7254 /*
7255 * Don't tell them about moving exiting tasks or
7256 * kernel threads (both mm NULL), since they never
7257 * leave kernel.
7258 */
7259 if (p->mm && printk_ratelimit()) {
7260 printk(KERN_INFO "process %d (%s) no "
7261 "longer affine to cpu%d\n",
7262 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7263 }
e76bd8d9
RR
7264 }
7265
7266move:
7267 /* It can have affinity changed while we were choosing. */
7268 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7269 goto again;
1da177e4
LT
7270}
7271
7272/*
7273 * While a dead CPU has no uninterruptible tasks queued at this point,
7274 * it might still have a nonzero ->nr_uninterruptible counter, because
7275 * for performance reasons the counter is not stricly tracking tasks to
7276 * their home CPUs. So we just add the counter to another CPU's counter,
7277 * to keep the global sum constant after CPU-down:
7278 */
70b97a7f 7279static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7280{
1e5ce4f4 7281 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
7282 unsigned long flags;
7283
7284 local_irq_save(flags);
7285 double_rq_lock(rq_src, rq_dest);
7286 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7287 rq_src->nr_uninterruptible = 0;
7288 double_rq_unlock(rq_src, rq_dest);
7289 local_irq_restore(flags);
7290}
7291
7292/* Run through task list and migrate tasks from the dead cpu. */
7293static void migrate_live_tasks(int src_cpu)
7294{
48f24c4d 7295 struct task_struct *p, *t;
1da177e4 7296
f7b4cddc 7297 read_lock(&tasklist_lock);
1da177e4 7298
48f24c4d
IM
7299 do_each_thread(t, p) {
7300 if (p == current)
1da177e4
LT
7301 continue;
7302
48f24c4d
IM
7303 if (task_cpu(p) == src_cpu)
7304 move_task_off_dead_cpu(src_cpu, p);
7305 } while_each_thread(t, p);
1da177e4 7306
f7b4cddc 7307 read_unlock(&tasklist_lock);
1da177e4
LT
7308}
7309
dd41f596
IM
7310/*
7311 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7312 * It does so by boosting its priority to highest possible.
7313 * Used by CPU offline code.
1da177e4
LT
7314 */
7315void sched_idle_next(void)
7316{
48f24c4d 7317 int this_cpu = smp_processor_id();
70b97a7f 7318 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7319 struct task_struct *p = rq->idle;
7320 unsigned long flags;
7321
7322 /* cpu has to be offline */
48f24c4d 7323 BUG_ON(cpu_online(this_cpu));
1da177e4 7324
48f24c4d
IM
7325 /*
7326 * Strictly not necessary since rest of the CPUs are stopped by now
7327 * and interrupts disabled on the current cpu.
1da177e4
LT
7328 */
7329 spin_lock_irqsave(&rq->lock, flags);
7330
dd41f596 7331 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7332
94bc9a7b
DA
7333 update_rq_clock(rq);
7334 activate_task(rq, p, 0);
1da177e4
LT
7335
7336 spin_unlock_irqrestore(&rq->lock, flags);
7337}
7338
48f24c4d
IM
7339/*
7340 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7341 * offline.
7342 */
7343void idle_task_exit(void)
7344{
7345 struct mm_struct *mm = current->active_mm;
7346
7347 BUG_ON(cpu_online(smp_processor_id()));
7348
7349 if (mm != &init_mm)
7350 switch_mm(mm, &init_mm, current);
7351 mmdrop(mm);
7352}
7353
054b9108 7354/* called under rq->lock with disabled interrupts */
36c8b586 7355static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7356{
70b97a7f 7357 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7358
7359 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7360 BUG_ON(!p->exit_state);
1da177e4
LT
7361
7362 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7363 BUG_ON(p->state == TASK_DEAD);
1da177e4 7364
48f24c4d 7365 get_task_struct(p);
1da177e4
LT
7366
7367 /*
7368 * Drop lock around migration; if someone else moves it,
41a2d6cf 7369 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7370 * fine.
7371 */
f7b4cddc 7372 spin_unlock_irq(&rq->lock);
48f24c4d 7373 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7374 spin_lock_irq(&rq->lock);
1da177e4 7375
48f24c4d 7376 put_task_struct(p);
1da177e4
LT
7377}
7378
7379/* release_task() removes task from tasklist, so we won't find dead tasks. */
7380static void migrate_dead_tasks(unsigned int dead_cpu)
7381{
70b97a7f 7382 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7383 struct task_struct *next;
48f24c4d 7384
dd41f596
IM
7385 for ( ; ; ) {
7386 if (!rq->nr_running)
7387 break;
a8e504d2 7388 update_rq_clock(rq);
b67802ea 7389 next = pick_next_task(rq);
dd41f596
IM
7390 if (!next)
7391 break;
79c53799 7392 next->sched_class->put_prev_task(rq, next);
dd41f596 7393 migrate_dead(dead_cpu, next);
e692ab53 7394
1da177e4
LT
7395 }
7396}
dce48a84
TG
7397
7398/*
7399 * remove the tasks which were accounted by rq from calc_load_tasks.
7400 */
7401static void calc_global_load_remove(struct rq *rq)
7402{
7403 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
a468d389 7404 rq->calc_load_active = 0;
dce48a84 7405}
1da177e4
LT
7406#endif /* CONFIG_HOTPLUG_CPU */
7407
e692ab53
NP
7408#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7409
7410static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7411 {
7412 .procname = "sched_domain",
c57baf1e 7413 .mode = 0555,
e0361851 7414 },
38605cae 7415 {0, },
e692ab53
NP
7416};
7417
7418static struct ctl_table sd_ctl_root[] = {
e0361851 7419 {
c57baf1e 7420 .ctl_name = CTL_KERN,
e0361851 7421 .procname = "kernel",
c57baf1e 7422 .mode = 0555,
e0361851
AD
7423 .child = sd_ctl_dir,
7424 },
38605cae 7425 {0, },
e692ab53
NP
7426};
7427
7428static struct ctl_table *sd_alloc_ctl_entry(int n)
7429{
7430 struct ctl_table *entry =
5cf9f062 7431 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7432
e692ab53
NP
7433 return entry;
7434}
7435
6382bc90
MM
7436static void sd_free_ctl_entry(struct ctl_table **tablep)
7437{
cd790076 7438 struct ctl_table *entry;
6382bc90 7439
cd790076
MM
7440 /*
7441 * In the intermediate directories, both the child directory and
7442 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7443 * will always be set. In the lowest directory the names are
cd790076
MM
7444 * static strings and all have proc handlers.
7445 */
7446 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7447 if (entry->child)
7448 sd_free_ctl_entry(&entry->child);
cd790076
MM
7449 if (entry->proc_handler == NULL)
7450 kfree(entry->procname);
7451 }
6382bc90
MM
7452
7453 kfree(*tablep);
7454 *tablep = NULL;
7455}
7456
e692ab53 7457static void
e0361851 7458set_table_entry(struct ctl_table *entry,
e692ab53
NP
7459 const char *procname, void *data, int maxlen,
7460 mode_t mode, proc_handler *proc_handler)
7461{
e692ab53
NP
7462 entry->procname = procname;
7463 entry->data = data;
7464 entry->maxlen = maxlen;
7465 entry->mode = mode;
7466 entry->proc_handler = proc_handler;
7467}
7468
7469static struct ctl_table *
7470sd_alloc_ctl_domain_table(struct sched_domain *sd)
7471{
a5d8c348 7472 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7473
ad1cdc1d
MM
7474 if (table == NULL)
7475 return NULL;
7476
e0361851 7477 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7478 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7479 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7480 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7481 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7482 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7483 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7484 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7485 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7486 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7487 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7488 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7489 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7490 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7491 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7492 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7493 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7494 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7495 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7496 &sd->cache_nice_tries,
7497 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7498 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7499 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7500 set_table_entry(&table[11], "name", sd->name,
7501 CORENAME_MAX_SIZE, 0444, proc_dostring);
7502 /* &table[12] is terminator */
e692ab53
NP
7503
7504 return table;
7505}
7506
9a4e7159 7507static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7508{
7509 struct ctl_table *entry, *table;
7510 struct sched_domain *sd;
7511 int domain_num = 0, i;
7512 char buf[32];
7513
7514 for_each_domain(cpu, sd)
7515 domain_num++;
7516 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7517 if (table == NULL)
7518 return NULL;
e692ab53
NP
7519
7520 i = 0;
7521 for_each_domain(cpu, sd) {
7522 snprintf(buf, 32, "domain%d", i);
e692ab53 7523 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7524 entry->mode = 0555;
e692ab53
NP
7525 entry->child = sd_alloc_ctl_domain_table(sd);
7526 entry++;
7527 i++;
7528 }
7529 return table;
7530}
7531
7532static struct ctl_table_header *sd_sysctl_header;
6382bc90 7533static void register_sched_domain_sysctl(void)
e692ab53
NP
7534{
7535 int i, cpu_num = num_online_cpus();
7536 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7537 char buf[32];
7538
7378547f
MM
7539 WARN_ON(sd_ctl_dir[0].child);
7540 sd_ctl_dir[0].child = entry;
7541
ad1cdc1d
MM
7542 if (entry == NULL)
7543 return;
7544
97b6ea7b 7545 for_each_online_cpu(i) {
e692ab53 7546 snprintf(buf, 32, "cpu%d", i);
e692ab53 7547 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7548 entry->mode = 0555;
e692ab53 7549 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7550 entry++;
e692ab53 7551 }
7378547f
MM
7552
7553 WARN_ON(sd_sysctl_header);
e692ab53
NP
7554 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7555}
6382bc90 7556
7378547f 7557/* may be called multiple times per register */
6382bc90
MM
7558static void unregister_sched_domain_sysctl(void)
7559{
7378547f
MM
7560 if (sd_sysctl_header)
7561 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7562 sd_sysctl_header = NULL;
7378547f
MM
7563 if (sd_ctl_dir[0].child)
7564 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7565}
e692ab53 7566#else
6382bc90
MM
7567static void register_sched_domain_sysctl(void)
7568{
7569}
7570static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7571{
7572}
7573#endif
7574
1f11eb6a
GH
7575static void set_rq_online(struct rq *rq)
7576{
7577 if (!rq->online) {
7578 const struct sched_class *class;
7579
c6c4927b 7580 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7581 rq->online = 1;
7582
7583 for_each_class(class) {
7584 if (class->rq_online)
7585 class->rq_online(rq);
7586 }
7587 }
7588}
7589
7590static void set_rq_offline(struct rq *rq)
7591{
7592 if (rq->online) {
7593 const struct sched_class *class;
7594
7595 for_each_class(class) {
7596 if (class->rq_offline)
7597 class->rq_offline(rq);
7598 }
7599
c6c4927b 7600 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7601 rq->online = 0;
7602 }
7603}
7604
1da177e4
LT
7605/*
7606 * migration_call - callback that gets triggered when a CPU is added.
7607 * Here we can start up the necessary migration thread for the new CPU.
7608 */
48f24c4d
IM
7609static int __cpuinit
7610migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7611{
1da177e4 7612 struct task_struct *p;
48f24c4d 7613 int cpu = (long)hcpu;
1da177e4 7614 unsigned long flags;
70b97a7f 7615 struct rq *rq;
1da177e4
LT
7616
7617 switch (action) {
5be9361c 7618
1da177e4 7619 case CPU_UP_PREPARE:
8bb78442 7620 case CPU_UP_PREPARE_FROZEN:
dd41f596 7621 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7622 if (IS_ERR(p))
7623 return NOTIFY_BAD;
1da177e4
LT
7624 kthread_bind(p, cpu);
7625 /* Must be high prio: stop_machine expects to yield to it. */
7626 rq = task_rq_lock(p, &flags);
dd41f596 7627 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4 7628 task_rq_unlock(rq, &flags);
371cbb38 7629 get_task_struct(p);
1da177e4 7630 cpu_rq(cpu)->migration_thread = p;
a468d389 7631 rq->calc_load_update = calc_load_update;
1da177e4 7632 break;
48f24c4d 7633
1da177e4 7634 case CPU_ONLINE:
8bb78442 7635 case CPU_ONLINE_FROZEN:
3a4fa0a2 7636 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7637 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7638
7639 /* Update our root-domain */
7640 rq = cpu_rq(cpu);
7641 spin_lock_irqsave(&rq->lock, flags);
7642 if (rq->rd) {
c6c4927b 7643 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7644
7645 set_rq_online(rq);
1f94ef59
GH
7646 }
7647 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7648 break;
48f24c4d 7649
1da177e4
LT
7650#ifdef CONFIG_HOTPLUG_CPU
7651 case CPU_UP_CANCELED:
8bb78442 7652 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7653 if (!cpu_rq(cpu)->migration_thread)
7654 break;
41a2d6cf 7655 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7656 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7657 cpumask_any(cpu_online_mask));
1da177e4 7658 kthread_stop(cpu_rq(cpu)->migration_thread);
371cbb38 7659 put_task_struct(cpu_rq(cpu)->migration_thread);
1da177e4
LT
7660 cpu_rq(cpu)->migration_thread = NULL;
7661 break;
48f24c4d 7662
1da177e4 7663 case CPU_DEAD:
8bb78442 7664 case CPU_DEAD_FROZEN:
470fd646 7665 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7666 migrate_live_tasks(cpu);
7667 rq = cpu_rq(cpu);
7668 kthread_stop(rq->migration_thread);
371cbb38 7669 put_task_struct(rq->migration_thread);
1da177e4
LT
7670 rq->migration_thread = NULL;
7671 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7672 spin_lock_irq(&rq->lock);
a8e504d2 7673 update_rq_clock(rq);
2e1cb74a 7674 deactivate_task(rq, rq->idle, 0);
1da177e4 7675 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7676 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7677 rq->idle->sched_class = &idle_sched_class;
1da177e4 7678 migrate_dead_tasks(cpu);
d2da272a 7679 spin_unlock_irq(&rq->lock);
470fd646 7680 cpuset_unlock();
1da177e4
LT
7681 migrate_nr_uninterruptible(rq);
7682 BUG_ON(rq->nr_running != 0);
dce48a84 7683 calc_global_load_remove(rq);
41a2d6cf
IM
7684 /*
7685 * No need to migrate the tasks: it was best-effort if
7686 * they didn't take sched_hotcpu_mutex. Just wake up
7687 * the requestors.
7688 */
1da177e4
LT
7689 spin_lock_irq(&rq->lock);
7690 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7691 struct migration_req *req;
7692
1da177e4 7693 req = list_entry(rq->migration_queue.next,
70b97a7f 7694 struct migration_req, list);
1da177e4 7695 list_del_init(&req->list);
9a2bd244 7696 spin_unlock_irq(&rq->lock);
1da177e4 7697 complete(&req->done);
9a2bd244 7698 spin_lock_irq(&rq->lock);
1da177e4
LT
7699 }
7700 spin_unlock_irq(&rq->lock);
7701 break;
57d885fe 7702
08f503b0
GH
7703 case CPU_DYING:
7704 case CPU_DYING_FROZEN:
57d885fe
GH
7705 /* Update our root-domain */
7706 rq = cpu_rq(cpu);
7707 spin_lock_irqsave(&rq->lock, flags);
7708 if (rq->rd) {
c6c4927b 7709 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7710 set_rq_offline(rq);
57d885fe
GH
7711 }
7712 spin_unlock_irqrestore(&rq->lock, flags);
7713 break;
1da177e4
LT
7714#endif
7715 }
7716 return NOTIFY_OK;
7717}
7718
f38b0820
PM
7719/*
7720 * Register at high priority so that task migration (migrate_all_tasks)
7721 * happens before everything else. This has to be lower priority than
7722 * the notifier in the perf_counter subsystem, though.
1da177e4 7723 */
26c2143b 7724static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7725 .notifier_call = migration_call,
7726 .priority = 10
7727};
7728
7babe8db 7729static int __init migration_init(void)
1da177e4
LT
7730{
7731 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7732 int err;
48f24c4d
IM
7733
7734 /* Start one for the boot CPU: */
07dccf33
AM
7735 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7736 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7737 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7738 register_cpu_notifier(&migration_notifier);
7babe8db 7739
a004cd42 7740 return 0;
1da177e4 7741}
7babe8db 7742early_initcall(migration_init);
1da177e4
LT
7743#endif
7744
7745#ifdef CONFIG_SMP
476f3534 7746
3e9830dc 7747#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7748
7c16ec58 7749static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7750 struct cpumask *groupmask)
1da177e4 7751{
4dcf6aff 7752 struct sched_group *group = sd->groups;
434d53b0 7753 char str[256];
1da177e4 7754
968ea6d8 7755 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7756 cpumask_clear(groupmask);
4dcf6aff
IM
7757
7758 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7759
7760 if (!(sd->flags & SD_LOAD_BALANCE)) {
7761 printk("does not load-balance\n");
7762 if (sd->parent)
7763 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7764 " has parent");
7765 return -1;
41c7ce9a
NP
7766 }
7767
eefd796a 7768 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7769
758b2cdc 7770 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7771 printk(KERN_ERR "ERROR: domain->span does not contain "
7772 "CPU%d\n", cpu);
7773 }
758b2cdc 7774 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7775 printk(KERN_ERR "ERROR: domain->groups does not contain"
7776 " CPU%d\n", cpu);
7777 }
1da177e4 7778
4dcf6aff 7779 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7780 do {
4dcf6aff
IM
7781 if (!group) {
7782 printk("\n");
7783 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7784 break;
7785 }
7786
4dcf6aff
IM
7787 if (!group->__cpu_power) {
7788 printk(KERN_CONT "\n");
7789 printk(KERN_ERR "ERROR: domain->cpu_power not "
7790 "set\n");
7791 break;
7792 }
1da177e4 7793
758b2cdc 7794 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7795 printk(KERN_CONT "\n");
7796 printk(KERN_ERR "ERROR: empty group\n");
7797 break;
7798 }
1da177e4 7799
758b2cdc 7800 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7801 printk(KERN_CONT "\n");
7802 printk(KERN_ERR "ERROR: repeated CPUs\n");
7803 break;
7804 }
1da177e4 7805
758b2cdc 7806 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7807
968ea6d8 7808 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7809
7810 printk(KERN_CONT " %s", str);
7811 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7812 printk(KERN_CONT " (__cpu_power = %d)",
7813 group->__cpu_power);
7814 }
1da177e4 7815
4dcf6aff
IM
7816 group = group->next;
7817 } while (group != sd->groups);
7818 printk(KERN_CONT "\n");
1da177e4 7819
758b2cdc 7820 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7821 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7822
758b2cdc
RR
7823 if (sd->parent &&
7824 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7825 printk(KERN_ERR "ERROR: parent span is not a superset "
7826 "of domain->span\n");
7827 return 0;
7828}
1da177e4 7829
4dcf6aff
IM
7830static void sched_domain_debug(struct sched_domain *sd, int cpu)
7831{
d5dd3db1 7832 cpumask_var_t groupmask;
4dcf6aff 7833 int level = 0;
1da177e4 7834
4dcf6aff
IM
7835 if (!sd) {
7836 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7837 return;
7838 }
1da177e4 7839
4dcf6aff
IM
7840 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7841
d5dd3db1 7842 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7843 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7844 return;
7845 }
7846
4dcf6aff 7847 for (;;) {
7c16ec58 7848 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7849 break;
1da177e4
LT
7850 level++;
7851 sd = sd->parent;
33859f7f 7852 if (!sd)
4dcf6aff
IM
7853 break;
7854 }
d5dd3db1 7855 free_cpumask_var(groupmask);
1da177e4 7856}
6d6bc0ad 7857#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7858# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7859#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7860
1a20ff27 7861static int sd_degenerate(struct sched_domain *sd)
245af2c7 7862{
758b2cdc 7863 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7864 return 1;
7865
7866 /* Following flags need at least 2 groups */
7867 if (sd->flags & (SD_LOAD_BALANCE |
7868 SD_BALANCE_NEWIDLE |
7869 SD_BALANCE_FORK |
89c4710e
SS
7870 SD_BALANCE_EXEC |
7871 SD_SHARE_CPUPOWER |
7872 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7873 if (sd->groups != sd->groups->next)
7874 return 0;
7875 }
7876
7877 /* Following flags don't use groups */
7878 if (sd->flags & (SD_WAKE_IDLE |
7879 SD_WAKE_AFFINE |
7880 SD_WAKE_BALANCE))
7881 return 0;
7882
7883 return 1;
7884}
7885
48f24c4d
IM
7886static int
7887sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7888{
7889 unsigned long cflags = sd->flags, pflags = parent->flags;
7890
7891 if (sd_degenerate(parent))
7892 return 1;
7893
758b2cdc 7894 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7895 return 0;
7896
7897 /* Does parent contain flags not in child? */
7898 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7899 if (cflags & SD_WAKE_AFFINE)
7900 pflags &= ~SD_WAKE_BALANCE;
7901 /* Flags needing groups don't count if only 1 group in parent */
7902 if (parent->groups == parent->groups->next) {
7903 pflags &= ~(SD_LOAD_BALANCE |
7904 SD_BALANCE_NEWIDLE |
7905 SD_BALANCE_FORK |
89c4710e
SS
7906 SD_BALANCE_EXEC |
7907 SD_SHARE_CPUPOWER |
7908 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7909 if (nr_node_ids == 1)
7910 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7911 }
7912 if (~cflags & pflags)
7913 return 0;
7914
7915 return 1;
7916}
7917
c6c4927b
RR
7918static void free_rootdomain(struct root_domain *rd)
7919{
68e74568
RR
7920 cpupri_cleanup(&rd->cpupri);
7921
c6c4927b
RR
7922 free_cpumask_var(rd->rto_mask);
7923 free_cpumask_var(rd->online);
7924 free_cpumask_var(rd->span);
7925 kfree(rd);
7926}
7927
57d885fe
GH
7928static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7929{
a0490fa3 7930 struct root_domain *old_rd = NULL;
57d885fe 7931 unsigned long flags;
57d885fe
GH
7932
7933 spin_lock_irqsave(&rq->lock, flags);
7934
7935 if (rq->rd) {
a0490fa3 7936 old_rd = rq->rd;
57d885fe 7937
c6c4927b 7938 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7939 set_rq_offline(rq);
57d885fe 7940
c6c4927b 7941 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7942
a0490fa3
IM
7943 /*
7944 * If we dont want to free the old_rt yet then
7945 * set old_rd to NULL to skip the freeing later
7946 * in this function:
7947 */
7948 if (!atomic_dec_and_test(&old_rd->refcount))
7949 old_rd = NULL;
57d885fe
GH
7950 }
7951
7952 atomic_inc(&rd->refcount);
7953 rq->rd = rd;
7954
c6c4927b 7955 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 7956 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 7957 set_rq_online(rq);
57d885fe
GH
7958
7959 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7960
7961 if (old_rd)
7962 free_rootdomain(old_rd);
57d885fe
GH
7963}
7964
fd5e1b5d 7965static int init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 7966{
36b7b6d4
PE
7967 gfp_t gfp = GFP_KERNEL;
7968
57d885fe
GH
7969 memset(rd, 0, sizeof(*rd));
7970
36b7b6d4
PE
7971 if (bootmem)
7972 gfp = GFP_NOWAIT;
c6c4927b 7973
36b7b6d4 7974 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 7975 goto out;
36b7b6d4 7976 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 7977 goto free_span;
36b7b6d4 7978 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 7979 goto free_online;
6e0534f2 7980
0fb53029 7981 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 7982 goto free_rto_mask;
c6c4927b 7983 return 0;
6e0534f2 7984
68e74568
RR
7985free_rto_mask:
7986 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7987free_online:
7988 free_cpumask_var(rd->online);
7989free_span:
7990 free_cpumask_var(rd->span);
0c910d28 7991out:
c6c4927b 7992 return -ENOMEM;
57d885fe
GH
7993}
7994
7995static void init_defrootdomain(void)
7996{
c6c4927b
RR
7997 init_rootdomain(&def_root_domain, true);
7998
57d885fe
GH
7999 atomic_set(&def_root_domain.refcount, 1);
8000}
8001
dc938520 8002static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
8003{
8004 struct root_domain *rd;
8005
8006 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8007 if (!rd)
8008 return NULL;
8009
c6c4927b
RR
8010 if (init_rootdomain(rd, false) != 0) {
8011 kfree(rd);
8012 return NULL;
8013 }
57d885fe
GH
8014
8015 return rd;
8016}
8017
1da177e4 8018/*
0eab9146 8019 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
8020 * hold the hotplug lock.
8021 */
0eab9146
IM
8022static void
8023cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 8024{
70b97a7f 8025 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
8026 struct sched_domain *tmp;
8027
8028 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 8029 for (tmp = sd; tmp; ) {
245af2c7
SS
8030 struct sched_domain *parent = tmp->parent;
8031 if (!parent)
8032 break;
f29c9b1c 8033
1a848870 8034 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 8035 tmp->parent = parent->parent;
1a848870
SS
8036 if (parent->parent)
8037 parent->parent->child = tmp;
f29c9b1c
LZ
8038 } else
8039 tmp = tmp->parent;
245af2c7
SS
8040 }
8041
1a848870 8042 if (sd && sd_degenerate(sd)) {
245af2c7 8043 sd = sd->parent;
1a848870
SS
8044 if (sd)
8045 sd->child = NULL;
8046 }
1da177e4
LT
8047
8048 sched_domain_debug(sd, cpu);
8049
57d885fe 8050 rq_attach_root(rq, rd);
674311d5 8051 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
8052}
8053
8054/* cpus with isolated domains */
dcc30a35 8055static cpumask_var_t cpu_isolated_map;
1da177e4
LT
8056
8057/* Setup the mask of cpus configured for isolated domains */
8058static int __init isolated_cpu_setup(char *str)
8059{
968ea6d8 8060 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
8061 return 1;
8062}
8063
8927f494 8064__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
8065
8066/*
6711cab4
SS
8067 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8068 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
8069 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8070 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
8071 *
8072 * init_sched_build_groups will build a circular linked list of the groups
8073 * covered by the given span, and will set each group's ->cpumask correctly,
8074 * and ->cpu_power to 0.
8075 */
a616058b 8076static void
96f874e2
RR
8077init_sched_build_groups(const struct cpumask *span,
8078 const struct cpumask *cpu_map,
8079 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 8080 struct sched_group **sg,
96f874e2
RR
8081 struct cpumask *tmpmask),
8082 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
8083{
8084 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
8085 int i;
8086
96f874e2 8087 cpumask_clear(covered);
7c16ec58 8088
abcd083a 8089 for_each_cpu(i, span) {
6711cab4 8090 struct sched_group *sg;
7c16ec58 8091 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
8092 int j;
8093
758b2cdc 8094 if (cpumask_test_cpu(i, covered))
1da177e4
LT
8095 continue;
8096
758b2cdc 8097 cpumask_clear(sched_group_cpus(sg));
5517d86b 8098 sg->__cpu_power = 0;
1da177e4 8099
abcd083a 8100 for_each_cpu(j, span) {
7c16ec58 8101 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8102 continue;
8103
96f874e2 8104 cpumask_set_cpu(j, covered);
758b2cdc 8105 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8106 }
8107 if (!first)
8108 first = sg;
8109 if (last)
8110 last->next = sg;
8111 last = sg;
8112 }
8113 last->next = first;
8114}
8115
9c1cfda2 8116#define SD_NODES_PER_DOMAIN 16
1da177e4 8117
9c1cfda2 8118#ifdef CONFIG_NUMA
198e2f18 8119
9c1cfda2
JH
8120/**
8121 * find_next_best_node - find the next node to include in a sched_domain
8122 * @node: node whose sched_domain we're building
8123 * @used_nodes: nodes already in the sched_domain
8124 *
41a2d6cf 8125 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8126 * finds the closest node not already in the @used_nodes map.
8127 *
8128 * Should use nodemask_t.
8129 */
c5f59f08 8130static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8131{
8132 int i, n, val, min_val, best_node = 0;
8133
8134 min_val = INT_MAX;
8135
076ac2af 8136 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8137 /* Start at @node */
076ac2af 8138 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8139
8140 if (!nr_cpus_node(n))
8141 continue;
8142
8143 /* Skip already used nodes */
c5f59f08 8144 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8145 continue;
8146
8147 /* Simple min distance search */
8148 val = node_distance(node, n);
8149
8150 if (val < min_val) {
8151 min_val = val;
8152 best_node = n;
8153 }
8154 }
8155
c5f59f08 8156 node_set(best_node, *used_nodes);
9c1cfda2
JH
8157 return best_node;
8158}
8159
8160/**
8161 * sched_domain_node_span - get a cpumask for a node's sched_domain
8162 * @node: node whose cpumask we're constructing
73486722 8163 * @span: resulting cpumask
9c1cfda2 8164 *
41a2d6cf 8165 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8166 * should be one that prevents unnecessary balancing, but also spreads tasks
8167 * out optimally.
8168 */
96f874e2 8169static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8170{
c5f59f08 8171 nodemask_t used_nodes;
48f24c4d 8172 int i;
9c1cfda2 8173
6ca09dfc 8174 cpumask_clear(span);
c5f59f08 8175 nodes_clear(used_nodes);
9c1cfda2 8176
6ca09dfc 8177 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8178 node_set(node, used_nodes);
9c1cfda2
JH
8179
8180 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8181 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8182
6ca09dfc 8183 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8184 }
9c1cfda2 8185}
6d6bc0ad 8186#endif /* CONFIG_NUMA */
9c1cfda2 8187
5c45bf27 8188int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8189
6c99e9ad
RR
8190/*
8191 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8192 *
8193 * ( See the the comments in include/linux/sched.h:struct sched_group
8194 * and struct sched_domain. )
6c99e9ad
RR
8195 */
8196struct static_sched_group {
8197 struct sched_group sg;
8198 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8199};
8200
8201struct static_sched_domain {
8202 struct sched_domain sd;
8203 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8204};
8205
49a02c51
AH
8206struct s_data {
8207#ifdef CONFIG_NUMA
8208 int sd_allnodes;
8209 cpumask_var_t domainspan;
8210 cpumask_var_t covered;
8211 cpumask_var_t notcovered;
8212#endif
8213 cpumask_var_t nodemask;
8214 cpumask_var_t this_sibling_map;
8215 cpumask_var_t this_core_map;
8216 cpumask_var_t send_covered;
8217 cpumask_var_t tmpmask;
8218 struct sched_group **sched_group_nodes;
8219 struct root_domain *rd;
8220};
8221
2109b99e
AH
8222enum s_alloc {
8223 sa_sched_groups = 0,
8224 sa_rootdomain,
8225 sa_tmpmask,
8226 sa_send_covered,
8227 sa_this_core_map,
8228 sa_this_sibling_map,
8229 sa_nodemask,
8230 sa_sched_group_nodes,
8231#ifdef CONFIG_NUMA
8232 sa_notcovered,
8233 sa_covered,
8234 sa_domainspan,
8235#endif
8236 sa_none,
8237};
8238
9c1cfda2 8239/*
48f24c4d 8240 * SMT sched-domains:
9c1cfda2 8241 */
1da177e4 8242#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8243static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8244static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8245
41a2d6cf 8246static int
96f874e2
RR
8247cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8248 struct sched_group **sg, struct cpumask *unused)
1da177e4 8249{
6711cab4 8250 if (sg)
6c99e9ad 8251 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8252 return cpu;
8253}
6d6bc0ad 8254#endif /* CONFIG_SCHED_SMT */
1da177e4 8255
48f24c4d
IM
8256/*
8257 * multi-core sched-domains:
8258 */
1e9f28fa 8259#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8260static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8261static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8262#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8263
8264#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8265static int
96f874e2
RR
8266cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8267 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8268{
6711cab4 8269 int group;
7c16ec58 8270
c69fc56d 8271 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8272 group = cpumask_first(mask);
6711cab4 8273 if (sg)
6c99e9ad 8274 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8275 return group;
1e9f28fa
SS
8276}
8277#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8278static int
96f874e2
RR
8279cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8280 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8281{
6711cab4 8282 if (sg)
6c99e9ad 8283 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8284 return cpu;
8285}
8286#endif
8287
6c99e9ad
RR
8288static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8289static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8290
41a2d6cf 8291static int
96f874e2
RR
8292cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8293 struct sched_group **sg, struct cpumask *mask)
1da177e4 8294{
6711cab4 8295 int group;
48f24c4d 8296#ifdef CONFIG_SCHED_MC
6ca09dfc 8297 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8298 group = cpumask_first(mask);
1e9f28fa 8299#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8300 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8301 group = cpumask_first(mask);
1da177e4 8302#else
6711cab4 8303 group = cpu;
1da177e4 8304#endif
6711cab4 8305 if (sg)
6c99e9ad 8306 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8307 return group;
1da177e4
LT
8308}
8309
8310#ifdef CONFIG_NUMA
1da177e4 8311/*
9c1cfda2
JH
8312 * The init_sched_build_groups can't handle what we want to do with node
8313 * groups, so roll our own. Now each node has its own list of groups which
8314 * gets dynamically allocated.
1da177e4 8315 */
62ea9ceb 8316static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8317static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8318
62ea9ceb 8319static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8320static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8321
96f874e2
RR
8322static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8323 struct sched_group **sg,
8324 struct cpumask *nodemask)
9c1cfda2 8325{
6711cab4
SS
8326 int group;
8327
6ca09dfc 8328 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8329 group = cpumask_first(nodemask);
6711cab4
SS
8330
8331 if (sg)
6c99e9ad 8332 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8333 return group;
1da177e4 8334}
6711cab4 8335
08069033
SS
8336static void init_numa_sched_groups_power(struct sched_group *group_head)
8337{
8338 struct sched_group *sg = group_head;
8339 int j;
8340
8341 if (!sg)
8342 return;
3a5c359a 8343 do {
758b2cdc 8344 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8345 struct sched_domain *sd;
08069033 8346
6c99e9ad 8347 sd = &per_cpu(phys_domains, j).sd;
13318a71 8348 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8349 /*
8350 * Only add "power" once for each
8351 * physical package.
8352 */
8353 continue;
8354 }
08069033 8355
3a5c359a
AK
8356 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
8357 }
8358 sg = sg->next;
8359 } while (sg != group_head);
08069033 8360}
0601a88d
AH
8361
8362static int build_numa_sched_groups(struct s_data *d,
8363 const struct cpumask *cpu_map, int num)
8364{
8365 struct sched_domain *sd;
8366 struct sched_group *sg, *prev;
8367 int n, j;
8368
8369 cpumask_clear(d->covered);
8370 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8371 if (cpumask_empty(d->nodemask)) {
8372 d->sched_group_nodes[num] = NULL;
8373 goto out;
8374 }
8375
8376 sched_domain_node_span(num, d->domainspan);
8377 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8378
8379 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8380 GFP_KERNEL, num);
8381 if (!sg) {
8382 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8383 num);
8384 return -ENOMEM;
8385 }
8386 d->sched_group_nodes[num] = sg;
8387
8388 for_each_cpu(j, d->nodemask) {
8389 sd = &per_cpu(node_domains, j).sd;
8390 sd->groups = sg;
8391 }
8392
8393 sg->__cpu_power = 0;
8394 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8395 sg->next = sg;
8396 cpumask_or(d->covered, d->covered, d->nodemask);
8397
8398 prev = sg;
8399 for (j = 0; j < nr_node_ids; j++) {
8400 n = (num + j) % nr_node_ids;
8401 cpumask_complement(d->notcovered, d->covered);
8402 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8403 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8404 if (cpumask_empty(d->tmpmask))
8405 break;
8406 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8407 if (cpumask_empty(d->tmpmask))
8408 continue;
8409 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8410 GFP_KERNEL, num);
8411 if (!sg) {
8412 printk(KERN_WARNING
8413 "Can not alloc domain group for node %d\n", j);
8414 return -ENOMEM;
8415 }
8416 sg->__cpu_power = 0;
8417 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8418 sg->next = prev->next;
8419 cpumask_or(d->covered, d->covered, d->tmpmask);
8420 prev->next = sg;
8421 prev = sg;
8422 }
8423out:
8424 return 0;
8425}
6d6bc0ad 8426#endif /* CONFIG_NUMA */
1da177e4 8427
a616058b 8428#ifdef CONFIG_NUMA
51888ca2 8429/* Free memory allocated for various sched_group structures */
96f874e2
RR
8430static void free_sched_groups(const struct cpumask *cpu_map,
8431 struct cpumask *nodemask)
51888ca2 8432{
a616058b 8433 int cpu, i;
51888ca2 8434
abcd083a 8435 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8436 struct sched_group **sched_group_nodes
8437 = sched_group_nodes_bycpu[cpu];
8438
51888ca2
SV
8439 if (!sched_group_nodes)
8440 continue;
8441
076ac2af 8442 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8443 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8444
6ca09dfc 8445 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8446 if (cpumask_empty(nodemask))
51888ca2
SV
8447 continue;
8448
8449 if (sg == NULL)
8450 continue;
8451 sg = sg->next;
8452next_sg:
8453 oldsg = sg;
8454 sg = sg->next;
8455 kfree(oldsg);
8456 if (oldsg != sched_group_nodes[i])
8457 goto next_sg;
8458 }
8459 kfree(sched_group_nodes);
8460 sched_group_nodes_bycpu[cpu] = NULL;
8461 }
51888ca2 8462}
6d6bc0ad 8463#else /* !CONFIG_NUMA */
96f874e2
RR
8464static void free_sched_groups(const struct cpumask *cpu_map,
8465 struct cpumask *nodemask)
a616058b
SS
8466{
8467}
6d6bc0ad 8468#endif /* CONFIG_NUMA */
51888ca2 8469
89c4710e
SS
8470/*
8471 * Initialize sched groups cpu_power.
8472 *
8473 * cpu_power indicates the capacity of sched group, which is used while
8474 * distributing the load between different sched groups in a sched domain.
8475 * Typically cpu_power for all the groups in a sched domain will be same unless
8476 * there are asymmetries in the topology. If there are asymmetries, group
8477 * having more cpu_power will pickup more load compared to the group having
8478 * less cpu_power.
89c4710e
SS
8479 */
8480static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8481{
8482 struct sched_domain *child;
8483 struct sched_group *group;
f93e65c1
PZ
8484 long power;
8485 int weight;
89c4710e
SS
8486
8487 WARN_ON(!sd || !sd->groups);
8488
13318a71 8489 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8490 return;
8491
8492 child = sd->child;
8493
5517d86b
ED
8494 sd->groups->__cpu_power = 0;
8495
f93e65c1
PZ
8496 if (!child) {
8497 power = SCHED_LOAD_SCALE;
8498 weight = cpumask_weight(sched_domain_span(sd));
8499 /*
8500 * SMT siblings share the power of a single core.
8501 */
8502 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1)
8503 power /= weight;
8504 sg_inc_cpu_power(sd->groups, power);
89c4710e
SS
8505 return;
8506 }
8507
89c4710e 8508 /*
f93e65c1 8509 * Add cpu_power of each child group to this groups cpu_power.
89c4710e
SS
8510 */
8511 group = child->groups;
8512 do {
5517d86b 8513 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
8514 group = group->next;
8515 } while (group != child->groups);
8516}
8517
7c16ec58
MT
8518/*
8519 * Initializers for schedule domains
8520 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8521 */
8522
a5d8c348
IM
8523#ifdef CONFIG_SCHED_DEBUG
8524# define SD_INIT_NAME(sd, type) sd->name = #type
8525#else
8526# define SD_INIT_NAME(sd, type) do { } while (0)
8527#endif
8528
7c16ec58 8529#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8530
7c16ec58
MT
8531#define SD_INIT_FUNC(type) \
8532static noinline void sd_init_##type(struct sched_domain *sd) \
8533{ \
8534 memset(sd, 0, sizeof(*sd)); \
8535 *sd = SD_##type##_INIT; \
1d3504fc 8536 sd->level = SD_LV_##type; \
a5d8c348 8537 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8538}
8539
8540SD_INIT_FUNC(CPU)
8541#ifdef CONFIG_NUMA
8542 SD_INIT_FUNC(ALLNODES)
8543 SD_INIT_FUNC(NODE)
8544#endif
8545#ifdef CONFIG_SCHED_SMT
8546 SD_INIT_FUNC(SIBLING)
8547#endif
8548#ifdef CONFIG_SCHED_MC
8549 SD_INIT_FUNC(MC)
8550#endif
8551
1d3504fc
HS
8552static int default_relax_domain_level = -1;
8553
8554static int __init setup_relax_domain_level(char *str)
8555{
30e0e178
LZ
8556 unsigned long val;
8557
8558 val = simple_strtoul(str, NULL, 0);
8559 if (val < SD_LV_MAX)
8560 default_relax_domain_level = val;
8561
1d3504fc
HS
8562 return 1;
8563}
8564__setup("relax_domain_level=", setup_relax_domain_level);
8565
8566static void set_domain_attribute(struct sched_domain *sd,
8567 struct sched_domain_attr *attr)
8568{
8569 int request;
8570
8571 if (!attr || attr->relax_domain_level < 0) {
8572 if (default_relax_domain_level < 0)
8573 return;
8574 else
8575 request = default_relax_domain_level;
8576 } else
8577 request = attr->relax_domain_level;
8578 if (request < sd->level) {
8579 /* turn off idle balance on this domain */
8580 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8581 } else {
8582 /* turn on idle balance on this domain */
8583 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8584 }
8585}
8586
2109b99e
AH
8587static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8588 const struct cpumask *cpu_map)
8589{
8590 switch (what) {
8591 case sa_sched_groups:
8592 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8593 d->sched_group_nodes = NULL;
8594 case sa_rootdomain:
8595 free_rootdomain(d->rd); /* fall through */
8596 case sa_tmpmask:
8597 free_cpumask_var(d->tmpmask); /* fall through */
8598 case sa_send_covered:
8599 free_cpumask_var(d->send_covered); /* fall through */
8600 case sa_this_core_map:
8601 free_cpumask_var(d->this_core_map); /* fall through */
8602 case sa_this_sibling_map:
8603 free_cpumask_var(d->this_sibling_map); /* fall through */
8604 case sa_nodemask:
8605 free_cpumask_var(d->nodemask); /* fall through */
8606 case sa_sched_group_nodes:
d1b55138 8607#ifdef CONFIG_NUMA
2109b99e
AH
8608 kfree(d->sched_group_nodes); /* fall through */
8609 case sa_notcovered:
8610 free_cpumask_var(d->notcovered); /* fall through */
8611 case sa_covered:
8612 free_cpumask_var(d->covered); /* fall through */
8613 case sa_domainspan:
8614 free_cpumask_var(d->domainspan); /* fall through */
3404c8d9 8615#endif
2109b99e
AH
8616 case sa_none:
8617 break;
8618 }
8619}
3404c8d9 8620
2109b99e
AH
8621static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8622 const struct cpumask *cpu_map)
8623{
3404c8d9 8624#ifdef CONFIG_NUMA
2109b99e
AH
8625 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8626 return sa_none;
8627 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8628 return sa_domainspan;
8629 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8630 return sa_covered;
8631 /* Allocate the per-node list of sched groups */
8632 d->sched_group_nodes = kcalloc(nr_node_ids,
8633 sizeof(struct sched_group *), GFP_KERNEL);
8634 if (!d->sched_group_nodes) {
d1b55138 8635 printk(KERN_WARNING "Can not alloc sched group node list\n");
2109b99e 8636 return sa_notcovered;
d1b55138 8637 }
2109b99e 8638 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
d1b55138 8639#endif
2109b99e
AH
8640 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8641 return sa_sched_group_nodes;
8642 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8643 return sa_nodemask;
8644 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8645 return sa_this_sibling_map;
8646 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8647 return sa_this_core_map;
8648 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8649 return sa_send_covered;
8650 d->rd = alloc_rootdomain();
8651 if (!d->rd) {
57d885fe 8652 printk(KERN_WARNING "Cannot alloc root domain\n");
2109b99e 8653 return sa_tmpmask;
57d885fe 8654 }
2109b99e
AH
8655 return sa_rootdomain;
8656}
57d885fe 8657
7f4588f3
AH
8658static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8659 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8660{
8661 struct sched_domain *sd = NULL;
7c16ec58 8662#ifdef CONFIG_NUMA
7f4588f3 8663 struct sched_domain *parent;
9c1cfda2 8664
7f4588f3
AH
8665 d->sd_allnodes = 0;
8666 if (cpumask_weight(cpu_map) >
8667 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8668 sd = &per_cpu(allnodes_domains, i).sd;
8669 SD_INIT(sd, ALLNODES);
1d3504fc 8670 set_domain_attribute(sd, attr);
7f4588f3
AH
8671 cpumask_copy(sched_domain_span(sd), cpu_map);
8672 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8673 d->sd_allnodes = 1;
8674 }
8675 parent = sd;
8676
8677 sd = &per_cpu(node_domains, i).sd;
8678 SD_INIT(sd, NODE);
8679 set_domain_attribute(sd, attr);
8680 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8681 sd->parent = parent;
8682 if (parent)
8683 parent->child = sd;
8684 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
1da177e4 8685#endif
7f4588f3
AH
8686 return sd;
8687}
1da177e4 8688
87cce662
AH
8689static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8690 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8691 struct sched_domain *parent, int i)
8692{
8693 struct sched_domain *sd;
8694 sd = &per_cpu(phys_domains, i).sd;
8695 SD_INIT(sd, CPU);
8696 set_domain_attribute(sd, attr);
8697 cpumask_copy(sched_domain_span(sd), d->nodemask);
8698 sd->parent = parent;
8699 if (parent)
8700 parent->child = sd;
8701 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8702 return sd;
8703}
1da177e4 8704
410c4081
AH
8705static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8706 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8707 struct sched_domain *parent, int i)
8708{
8709 struct sched_domain *sd = parent;
1e9f28fa 8710#ifdef CONFIG_SCHED_MC
410c4081
AH
8711 sd = &per_cpu(core_domains, i).sd;
8712 SD_INIT(sd, MC);
8713 set_domain_attribute(sd, attr);
8714 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8715 sd->parent = parent;
8716 parent->child = sd;
8717 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
1e9f28fa 8718#endif
410c4081
AH
8719 return sd;
8720}
1e9f28fa 8721
d8173535
AH
8722static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8723 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8724 struct sched_domain *parent, int i)
8725{
8726 struct sched_domain *sd = parent;
1da177e4 8727#ifdef CONFIG_SCHED_SMT
d8173535
AH
8728 sd = &per_cpu(cpu_domains, i).sd;
8729 SD_INIT(sd, SIBLING);
8730 set_domain_attribute(sd, attr);
8731 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8732 sd->parent = parent;
8733 parent->child = sd;
8734 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
1da177e4 8735#endif
d8173535
AH
8736 return sd;
8737}
1da177e4 8738
0e8e85c9
AH
8739static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8740 const struct cpumask *cpu_map, int cpu)
8741{
8742 switch (l) {
1da177e4 8743#ifdef CONFIG_SCHED_SMT
0e8e85c9
AH
8744 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8745 cpumask_and(d->this_sibling_map, cpu_map,
8746 topology_thread_cpumask(cpu));
8747 if (cpu == cpumask_first(d->this_sibling_map))
8748 init_sched_build_groups(d->this_sibling_map, cpu_map,
8749 &cpu_to_cpu_group,
8750 d->send_covered, d->tmpmask);
8751 break;
1da177e4 8752#endif
1e9f28fa 8753#ifdef CONFIG_SCHED_MC
a2af04cd
AH
8754 case SD_LV_MC: /* set up multi-core groups */
8755 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8756 if (cpu == cpumask_first(d->this_core_map))
8757 init_sched_build_groups(d->this_core_map, cpu_map,
8758 &cpu_to_core_group,
8759 d->send_covered, d->tmpmask);
8760 break;
1e9f28fa 8761#endif
86548096
AH
8762 case SD_LV_CPU: /* set up physical groups */
8763 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8764 if (!cpumask_empty(d->nodemask))
8765 init_sched_build_groups(d->nodemask, cpu_map,
8766 &cpu_to_phys_group,
8767 d->send_covered, d->tmpmask);
8768 break;
1da177e4 8769#ifdef CONFIG_NUMA
de616e36
AH
8770 case SD_LV_ALLNODES:
8771 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8772 d->send_covered, d->tmpmask);
8773 break;
8774#endif
0e8e85c9
AH
8775 default:
8776 break;
7c16ec58 8777 }
0e8e85c9 8778}
9c1cfda2 8779
2109b99e
AH
8780/*
8781 * Build sched domains for a given set of cpus and attach the sched domains
8782 * to the individual cpus
8783 */
8784static int __build_sched_domains(const struct cpumask *cpu_map,
8785 struct sched_domain_attr *attr)
8786{
8787 enum s_alloc alloc_state = sa_none;
8788 struct s_data d;
294b0c96 8789 struct sched_domain *sd;
2109b99e 8790 int i;
7c16ec58 8791#ifdef CONFIG_NUMA
2109b99e 8792 d.sd_allnodes = 0;
7c16ec58 8793#endif
9c1cfda2 8794
2109b99e
AH
8795 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8796 if (alloc_state != sa_rootdomain)
8797 goto error;
8798 alloc_state = sa_sched_groups;
9c1cfda2 8799
1da177e4 8800 /*
1a20ff27 8801 * Set up domains for cpus specified by the cpu_map.
1da177e4 8802 */
abcd083a 8803 for_each_cpu(i, cpu_map) {
49a02c51
AH
8804 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8805 cpu_map);
9761eea8 8806
7f4588f3 8807 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
87cce662 8808 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
410c4081 8809 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
d8173535 8810 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
1da177e4 8811 }
9c1cfda2 8812
abcd083a 8813 for_each_cpu(i, cpu_map) {
0e8e85c9 8814 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
a2af04cd 8815 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
1da177e4 8816 }
9c1cfda2 8817
1da177e4 8818 /* Set up physical groups */
86548096
AH
8819 for (i = 0; i < nr_node_ids; i++)
8820 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
9c1cfda2 8821
1da177e4
LT
8822#ifdef CONFIG_NUMA
8823 /* Set up node groups */
de616e36
AH
8824 if (d.sd_allnodes)
8825 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
9c1cfda2 8826
0601a88d
AH
8827 for (i = 0; i < nr_node_ids; i++)
8828 if (build_numa_sched_groups(&d, cpu_map, i))
51888ca2 8829 goto error;
1da177e4
LT
8830#endif
8831
8832 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8833#ifdef CONFIG_SCHED_SMT
abcd083a 8834 for_each_cpu(i, cpu_map) {
294b0c96 8835 sd = &per_cpu(cpu_domains, i).sd;
89c4710e 8836 init_sched_groups_power(i, sd);
5c45bf27 8837 }
1da177e4 8838#endif
1e9f28fa 8839#ifdef CONFIG_SCHED_MC
abcd083a 8840 for_each_cpu(i, cpu_map) {
294b0c96 8841 sd = &per_cpu(core_domains, i).sd;
89c4710e 8842 init_sched_groups_power(i, sd);
5c45bf27
SS
8843 }
8844#endif
1e9f28fa 8845
abcd083a 8846 for_each_cpu(i, cpu_map) {
294b0c96 8847 sd = &per_cpu(phys_domains, i).sd;
89c4710e 8848 init_sched_groups_power(i, sd);
1da177e4
LT
8849 }
8850
9c1cfda2 8851#ifdef CONFIG_NUMA
076ac2af 8852 for (i = 0; i < nr_node_ids; i++)
49a02c51 8853 init_numa_sched_groups_power(d.sched_group_nodes[i]);
9c1cfda2 8854
49a02c51 8855 if (d.sd_allnodes) {
6711cab4 8856 struct sched_group *sg;
f712c0c7 8857
96f874e2 8858 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
49a02c51 8859 d.tmpmask);
f712c0c7
SS
8860 init_numa_sched_groups_power(sg);
8861 }
9c1cfda2
JH
8862#endif
8863
1da177e4 8864 /* Attach the domains */
abcd083a 8865 for_each_cpu(i, cpu_map) {
1da177e4 8866#ifdef CONFIG_SCHED_SMT
6c99e9ad 8867 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8868#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8869 sd = &per_cpu(core_domains, i).sd;
1da177e4 8870#else
6c99e9ad 8871 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8872#endif
49a02c51 8873 cpu_attach_domain(sd, d.rd, i);
1da177e4 8874 }
3404c8d9 8875
2109b99e
AH
8876 d.sched_group_nodes = NULL; /* don't free this we still need it */
8877 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8878 return 0;
51888ca2 8879
51888ca2 8880error:
2109b99e
AH
8881 __free_domain_allocs(&d, alloc_state, cpu_map);
8882 return -ENOMEM;
1da177e4 8883}
029190c5 8884
96f874e2 8885static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8886{
8887 return __build_sched_domains(cpu_map, NULL);
8888}
8889
96f874e2 8890static struct cpumask *doms_cur; /* current sched domains */
029190c5 8891static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8892static struct sched_domain_attr *dattr_cur;
8893 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8894
8895/*
8896 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8897 * cpumask) fails, then fallback to a single sched domain,
8898 * as determined by the single cpumask fallback_doms.
029190c5 8899 */
4212823f 8900static cpumask_var_t fallback_doms;
029190c5 8901
ee79d1bd
HC
8902/*
8903 * arch_update_cpu_topology lets virtualized architectures update the
8904 * cpu core maps. It is supposed to return 1 if the topology changed
8905 * or 0 if it stayed the same.
8906 */
8907int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8908{
ee79d1bd 8909 return 0;
22e52b07
HC
8910}
8911
1a20ff27 8912/*
41a2d6cf 8913 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8914 * For now this just excludes isolated cpus, but could be used to
8915 * exclude other special cases in the future.
1a20ff27 8916 */
96f874e2 8917static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8918{
7378547f
MM
8919 int err;
8920
22e52b07 8921 arch_update_cpu_topology();
029190c5 8922 ndoms_cur = 1;
96f874e2 8923 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8924 if (!doms_cur)
4212823f 8925 doms_cur = fallback_doms;
dcc30a35 8926 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8927 dattr_cur = NULL;
7378547f 8928 err = build_sched_domains(doms_cur);
6382bc90 8929 register_sched_domain_sysctl();
7378547f
MM
8930
8931 return err;
1a20ff27
DG
8932}
8933
96f874e2
RR
8934static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8935 struct cpumask *tmpmask)
1da177e4 8936{
7c16ec58 8937 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8938}
1da177e4 8939
1a20ff27
DG
8940/*
8941 * Detach sched domains from a group of cpus specified in cpu_map
8942 * These cpus will now be attached to the NULL domain
8943 */
96f874e2 8944static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8945{
96f874e2
RR
8946 /* Save because hotplug lock held. */
8947 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8948 int i;
8949
abcd083a 8950 for_each_cpu(i, cpu_map)
57d885fe 8951 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8952 synchronize_sched();
96f874e2 8953 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8954}
8955
1d3504fc
HS
8956/* handle null as "default" */
8957static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8958 struct sched_domain_attr *new, int idx_new)
8959{
8960 struct sched_domain_attr tmp;
8961
8962 /* fast path */
8963 if (!new && !cur)
8964 return 1;
8965
8966 tmp = SD_ATTR_INIT;
8967 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8968 new ? (new + idx_new) : &tmp,
8969 sizeof(struct sched_domain_attr));
8970}
8971
029190c5
PJ
8972/*
8973 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8974 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8975 * doms_new[] to the current sched domain partitioning, doms_cur[].
8976 * It destroys each deleted domain and builds each new domain.
8977 *
96f874e2 8978 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8979 * The masks don't intersect (don't overlap.) We should setup one
8980 * sched domain for each mask. CPUs not in any of the cpumasks will
8981 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8982 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8983 * it as it is.
8984 *
41a2d6cf
IM
8985 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8986 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8987 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8988 * ndoms_new == 1, and partition_sched_domains() will fallback to
8989 * the single partition 'fallback_doms', it also forces the domains
8990 * to be rebuilt.
029190c5 8991 *
96f874e2 8992 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8993 * ndoms_new == 0 is a special case for destroying existing domains,
8994 * and it will not create the default domain.
dfb512ec 8995 *
029190c5
PJ
8996 * Call with hotplug lock held
8997 */
96f874e2
RR
8998/* FIXME: Change to struct cpumask *doms_new[] */
8999void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 9000 struct sched_domain_attr *dattr_new)
029190c5 9001{
dfb512ec 9002 int i, j, n;
d65bd5ec 9003 int new_topology;
029190c5 9004
712555ee 9005 mutex_lock(&sched_domains_mutex);
a1835615 9006
7378547f
MM
9007 /* always unregister in case we don't destroy any domains */
9008 unregister_sched_domain_sysctl();
9009
d65bd5ec
HC
9010 /* Let architecture update cpu core mappings. */
9011 new_topology = arch_update_cpu_topology();
9012
dfb512ec 9013 n = doms_new ? ndoms_new : 0;
029190c5
PJ
9014
9015 /* Destroy deleted domains */
9016 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 9017 for (j = 0; j < n && !new_topology; j++) {
96f874e2 9018 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 9019 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
9020 goto match1;
9021 }
9022 /* no match - a current sched domain not in new doms_new[] */
9023 detach_destroy_domains(doms_cur + i);
9024match1:
9025 ;
9026 }
9027
e761b772
MK
9028 if (doms_new == NULL) {
9029 ndoms_cur = 0;
4212823f 9030 doms_new = fallback_doms;
dcc30a35 9031 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 9032 WARN_ON_ONCE(dattr_new);
e761b772
MK
9033 }
9034
029190c5
PJ
9035 /* Build new domains */
9036 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 9037 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 9038 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 9039 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
9040 goto match2;
9041 }
9042 /* no match - add a new doms_new */
1d3504fc
HS
9043 __build_sched_domains(doms_new + i,
9044 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
9045match2:
9046 ;
9047 }
9048
9049 /* Remember the new sched domains */
4212823f 9050 if (doms_cur != fallback_doms)
029190c5 9051 kfree(doms_cur);
1d3504fc 9052 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 9053 doms_cur = doms_new;
1d3504fc 9054 dattr_cur = dattr_new;
029190c5 9055 ndoms_cur = ndoms_new;
7378547f
MM
9056
9057 register_sched_domain_sysctl();
a1835615 9058
712555ee 9059 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
9060}
9061
5c45bf27 9062#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 9063static void arch_reinit_sched_domains(void)
5c45bf27 9064{
95402b38 9065 get_online_cpus();
dfb512ec
MK
9066
9067 /* Destroy domains first to force the rebuild */
9068 partition_sched_domains(0, NULL, NULL);
9069
e761b772 9070 rebuild_sched_domains();
95402b38 9071 put_online_cpus();
5c45bf27
SS
9072}
9073
9074static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9075{
afb8a9b7 9076 unsigned int level = 0;
5c45bf27 9077
afb8a9b7
GS
9078 if (sscanf(buf, "%u", &level) != 1)
9079 return -EINVAL;
9080
9081 /*
9082 * level is always be positive so don't check for
9083 * level < POWERSAVINGS_BALANCE_NONE which is 0
9084 * What happens on 0 or 1 byte write,
9085 * need to check for count as well?
9086 */
9087
9088 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
9089 return -EINVAL;
9090
9091 if (smt)
afb8a9b7 9092 sched_smt_power_savings = level;
5c45bf27 9093 else
afb8a9b7 9094 sched_mc_power_savings = level;
5c45bf27 9095
c70f22d2 9096 arch_reinit_sched_domains();
5c45bf27 9097
c70f22d2 9098 return count;
5c45bf27
SS
9099}
9100
5c45bf27 9101#ifdef CONFIG_SCHED_MC
f718cd4a
AK
9102static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9103 char *page)
5c45bf27
SS
9104{
9105 return sprintf(page, "%u\n", sched_mc_power_savings);
9106}
f718cd4a 9107static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 9108 const char *buf, size_t count)
5c45bf27
SS
9109{
9110 return sched_power_savings_store(buf, count, 0);
9111}
f718cd4a
AK
9112static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9113 sched_mc_power_savings_show,
9114 sched_mc_power_savings_store);
5c45bf27
SS
9115#endif
9116
9117#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
9118static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9119 char *page)
5c45bf27
SS
9120{
9121 return sprintf(page, "%u\n", sched_smt_power_savings);
9122}
f718cd4a 9123static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 9124 const char *buf, size_t count)
5c45bf27
SS
9125{
9126 return sched_power_savings_store(buf, count, 1);
9127}
f718cd4a
AK
9128static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9129 sched_smt_power_savings_show,
6707de00
AB
9130 sched_smt_power_savings_store);
9131#endif
9132
39aac648 9133int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
9134{
9135 int err = 0;
9136
9137#ifdef CONFIG_SCHED_SMT
9138 if (smt_capable())
9139 err = sysfs_create_file(&cls->kset.kobj,
9140 &attr_sched_smt_power_savings.attr);
9141#endif
9142#ifdef CONFIG_SCHED_MC
9143 if (!err && mc_capable())
9144 err = sysfs_create_file(&cls->kset.kobj,
9145 &attr_sched_mc_power_savings.attr);
9146#endif
9147 return err;
9148}
6d6bc0ad 9149#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 9150
e761b772 9151#ifndef CONFIG_CPUSETS
1da177e4 9152/*
e761b772
MK
9153 * Add online and remove offline CPUs from the scheduler domains.
9154 * When cpusets are enabled they take over this function.
1da177e4
LT
9155 */
9156static int update_sched_domains(struct notifier_block *nfb,
9157 unsigned long action, void *hcpu)
e761b772
MK
9158{
9159 switch (action) {
9160 case CPU_ONLINE:
9161 case CPU_ONLINE_FROZEN:
9162 case CPU_DEAD:
9163 case CPU_DEAD_FROZEN:
dfb512ec 9164 partition_sched_domains(1, NULL, NULL);
e761b772
MK
9165 return NOTIFY_OK;
9166
9167 default:
9168 return NOTIFY_DONE;
9169 }
9170}
9171#endif
9172
9173static int update_runtime(struct notifier_block *nfb,
9174 unsigned long action, void *hcpu)
1da177e4 9175{
7def2be1
PZ
9176 int cpu = (int)(long)hcpu;
9177
1da177e4 9178 switch (action) {
1da177e4 9179 case CPU_DOWN_PREPARE:
8bb78442 9180 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9181 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9182 return NOTIFY_OK;
9183
1da177e4 9184 case CPU_DOWN_FAILED:
8bb78442 9185 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9186 case CPU_ONLINE:
8bb78442 9187 case CPU_ONLINE_FROZEN:
7def2be1 9188 enable_runtime(cpu_rq(cpu));
e761b772
MK
9189 return NOTIFY_OK;
9190
1da177e4
LT
9191 default:
9192 return NOTIFY_DONE;
9193 }
1da177e4 9194}
1da177e4
LT
9195
9196void __init sched_init_smp(void)
9197{
dcc30a35
RR
9198 cpumask_var_t non_isolated_cpus;
9199
9200 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 9201
434d53b0
MT
9202#if defined(CONFIG_NUMA)
9203 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9204 GFP_KERNEL);
9205 BUG_ON(sched_group_nodes_bycpu == NULL);
9206#endif
95402b38 9207 get_online_cpus();
712555ee 9208 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
9209 arch_init_sched_domains(cpu_online_mask);
9210 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9211 if (cpumask_empty(non_isolated_cpus))
9212 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9213 mutex_unlock(&sched_domains_mutex);
95402b38 9214 put_online_cpus();
e761b772
MK
9215
9216#ifndef CONFIG_CPUSETS
1da177e4
LT
9217 /* XXX: Theoretical race here - CPU may be hotplugged now */
9218 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9219#endif
9220
9221 /* RT runtime code needs to handle some hotplug events */
9222 hotcpu_notifier(update_runtime, 0);
9223
b328ca18 9224 init_hrtick();
5c1e1767
NP
9225
9226 /* Move init over to a non-isolated CPU */
dcc30a35 9227 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9228 BUG();
19978ca6 9229 sched_init_granularity();
dcc30a35 9230 free_cpumask_var(non_isolated_cpus);
4212823f
RR
9231
9232 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 9233 init_sched_rt_class();
1da177e4
LT
9234}
9235#else
9236void __init sched_init_smp(void)
9237{
19978ca6 9238 sched_init_granularity();
1da177e4
LT
9239}
9240#endif /* CONFIG_SMP */
9241
cd1bb94b
AB
9242const_debug unsigned int sysctl_timer_migration = 1;
9243
1da177e4
LT
9244int in_sched_functions(unsigned long addr)
9245{
1da177e4
LT
9246 return in_lock_functions(addr) ||
9247 (addr >= (unsigned long)__sched_text_start
9248 && addr < (unsigned long)__sched_text_end);
9249}
9250
a9957449 9251static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9252{
9253 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9254 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9255#ifdef CONFIG_FAIR_GROUP_SCHED
9256 cfs_rq->rq = rq;
9257#endif
67e9fb2a 9258 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9259}
9260
fa85ae24
PZ
9261static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9262{
9263 struct rt_prio_array *array;
9264 int i;
9265
9266 array = &rt_rq->active;
9267 for (i = 0; i < MAX_RT_PRIO; i++) {
9268 INIT_LIST_HEAD(array->queue + i);
9269 __clear_bit(i, array->bitmap);
9270 }
9271 /* delimiter for bitsearch: */
9272 __set_bit(MAX_RT_PRIO, array->bitmap);
9273
052f1dc7 9274#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9275 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9276#ifdef CONFIG_SMP
e864c499 9277 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9278#endif
48d5e258 9279#endif
fa85ae24
PZ
9280#ifdef CONFIG_SMP
9281 rt_rq->rt_nr_migratory = 0;
fa85ae24 9282 rt_rq->overloaded = 0;
c20b08e3 9283 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
fa85ae24
PZ
9284#endif
9285
9286 rt_rq->rt_time = 0;
9287 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9288 rt_rq->rt_runtime = 0;
9289 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9290
052f1dc7 9291#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9292 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9293 rt_rq->rq = rq;
9294#endif
fa85ae24
PZ
9295}
9296
6f505b16 9297#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9298static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9299 struct sched_entity *se, int cpu, int add,
9300 struct sched_entity *parent)
6f505b16 9301{
ec7dc8ac 9302 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9303 tg->cfs_rq[cpu] = cfs_rq;
9304 init_cfs_rq(cfs_rq, rq);
9305 cfs_rq->tg = tg;
9306 if (add)
9307 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9308
9309 tg->se[cpu] = se;
354d60c2
DG
9310 /* se could be NULL for init_task_group */
9311 if (!se)
9312 return;
9313
ec7dc8ac
DG
9314 if (!parent)
9315 se->cfs_rq = &rq->cfs;
9316 else
9317 se->cfs_rq = parent->my_q;
9318
6f505b16
PZ
9319 se->my_q = cfs_rq;
9320 se->load.weight = tg->shares;
e05510d0 9321 se->load.inv_weight = 0;
ec7dc8ac 9322 se->parent = parent;
6f505b16 9323}
052f1dc7 9324#endif
6f505b16 9325
052f1dc7 9326#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9327static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9328 struct sched_rt_entity *rt_se, int cpu, int add,
9329 struct sched_rt_entity *parent)
6f505b16 9330{
ec7dc8ac
DG
9331 struct rq *rq = cpu_rq(cpu);
9332
6f505b16
PZ
9333 tg->rt_rq[cpu] = rt_rq;
9334 init_rt_rq(rt_rq, rq);
9335 rt_rq->tg = tg;
9336 rt_rq->rt_se = rt_se;
ac086bc2 9337 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9338 if (add)
9339 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9340
9341 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9342 if (!rt_se)
9343 return;
9344
ec7dc8ac
DG
9345 if (!parent)
9346 rt_se->rt_rq = &rq->rt;
9347 else
9348 rt_se->rt_rq = parent->my_q;
9349
6f505b16 9350 rt_se->my_q = rt_rq;
ec7dc8ac 9351 rt_se->parent = parent;
6f505b16
PZ
9352 INIT_LIST_HEAD(&rt_se->run_list);
9353}
9354#endif
9355
1da177e4
LT
9356void __init sched_init(void)
9357{
dd41f596 9358 int i, j;
434d53b0
MT
9359 unsigned long alloc_size = 0, ptr;
9360
9361#ifdef CONFIG_FAIR_GROUP_SCHED
9362 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9363#endif
9364#ifdef CONFIG_RT_GROUP_SCHED
9365 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9366#endif
9367#ifdef CONFIG_USER_SCHED
9368 alloc_size *= 2;
df7c8e84
RR
9369#endif
9370#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9371 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0
MT
9372#endif
9373 /*
9374 * As sched_init() is called before page_alloc is setup,
9375 * we use alloc_bootmem().
9376 */
9377 if (alloc_size) {
36b7b6d4 9378 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9379
9380#ifdef CONFIG_FAIR_GROUP_SCHED
9381 init_task_group.se = (struct sched_entity **)ptr;
9382 ptr += nr_cpu_ids * sizeof(void **);
9383
9384 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9385 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9386
9387#ifdef CONFIG_USER_SCHED
9388 root_task_group.se = (struct sched_entity **)ptr;
9389 ptr += nr_cpu_ids * sizeof(void **);
9390
9391 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9392 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9393#endif /* CONFIG_USER_SCHED */
9394#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9395#ifdef CONFIG_RT_GROUP_SCHED
9396 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9397 ptr += nr_cpu_ids * sizeof(void **);
9398
9399 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9400 ptr += nr_cpu_ids * sizeof(void **);
9401
9402#ifdef CONFIG_USER_SCHED
9403 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9404 ptr += nr_cpu_ids * sizeof(void **);
9405
9406 root_task_group.rt_rq = (struct rt_rq **)ptr;
9407 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9408#endif /* CONFIG_USER_SCHED */
9409#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9410#ifdef CONFIG_CPUMASK_OFFSTACK
9411 for_each_possible_cpu(i) {
9412 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9413 ptr += cpumask_size();
9414 }
9415#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9416 }
dd41f596 9417
57d885fe
GH
9418#ifdef CONFIG_SMP
9419 init_defrootdomain();
9420#endif
9421
d0b27fa7
PZ
9422 init_rt_bandwidth(&def_rt_bandwidth,
9423 global_rt_period(), global_rt_runtime());
9424
9425#ifdef CONFIG_RT_GROUP_SCHED
9426 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9427 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9428#ifdef CONFIG_USER_SCHED
9429 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9430 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9431#endif /* CONFIG_USER_SCHED */
9432#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9433
052f1dc7 9434#ifdef CONFIG_GROUP_SCHED
6f505b16 9435 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9436 INIT_LIST_HEAD(&init_task_group.children);
9437
9438#ifdef CONFIG_USER_SCHED
9439 INIT_LIST_HEAD(&root_task_group.children);
9440 init_task_group.parent = &root_task_group;
9441 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9442#endif /* CONFIG_USER_SCHED */
9443#endif /* CONFIG_GROUP_SCHED */
6f505b16 9444
0a945022 9445 for_each_possible_cpu(i) {
70b97a7f 9446 struct rq *rq;
1da177e4
LT
9447
9448 rq = cpu_rq(i);
9449 spin_lock_init(&rq->lock);
7897986b 9450 rq->nr_running = 0;
dce48a84
TG
9451 rq->calc_load_active = 0;
9452 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9453 init_cfs_rq(&rq->cfs, rq);
6f505b16 9454 init_rt_rq(&rq->rt, rq);
dd41f596 9455#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9456 init_task_group.shares = init_task_group_load;
6f505b16 9457 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9458#ifdef CONFIG_CGROUP_SCHED
9459 /*
9460 * How much cpu bandwidth does init_task_group get?
9461 *
9462 * In case of task-groups formed thr' the cgroup filesystem, it
9463 * gets 100% of the cpu resources in the system. This overall
9464 * system cpu resource is divided among the tasks of
9465 * init_task_group and its child task-groups in a fair manner,
9466 * based on each entity's (task or task-group's) weight
9467 * (se->load.weight).
9468 *
9469 * In other words, if init_task_group has 10 tasks of weight
9470 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9471 * then A0's share of the cpu resource is:
9472 *
0d905bca 9473 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9474 *
9475 * We achieve this by letting init_task_group's tasks sit
9476 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9477 */
ec7dc8ac 9478 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9479#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9480 root_task_group.shares = NICE_0_LOAD;
9481 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9482 /*
9483 * In case of task-groups formed thr' the user id of tasks,
9484 * init_task_group represents tasks belonging to root user.
9485 * Hence it forms a sibling of all subsequent groups formed.
9486 * In this case, init_task_group gets only a fraction of overall
9487 * system cpu resource, based on the weight assigned to root
9488 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9489 * by letting tasks of init_task_group sit in a separate cfs_rq
84e9dabf 9490 * (init_tg_cfs_rq) and having one entity represent this group of
354d60c2
DG
9491 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9492 */
ec7dc8ac 9493 init_tg_cfs_entry(&init_task_group,
84e9dabf 9494 &per_cpu(init_tg_cfs_rq, i),
eff766a6
PZ
9495 &per_cpu(init_sched_entity, i), i, 1,
9496 root_task_group.se[i]);
6f505b16 9497
052f1dc7 9498#endif
354d60c2
DG
9499#endif /* CONFIG_FAIR_GROUP_SCHED */
9500
9501 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9502#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9503 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9504#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9505 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9506#elif defined CONFIG_USER_SCHED
eff766a6 9507 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9508 init_tg_rt_entry(&init_task_group,
6f505b16 9509 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9510 &per_cpu(init_sched_rt_entity, i), i, 1,
9511 root_task_group.rt_se[i]);
354d60c2 9512#endif
dd41f596 9513#endif
1da177e4 9514
dd41f596
IM
9515 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9516 rq->cpu_load[j] = 0;
1da177e4 9517#ifdef CONFIG_SMP
41c7ce9a 9518 rq->sd = NULL;
57d885fe 9519 rq->rd = NULL;
3f029d3c 9520 rq->post_schedule = 0;
1da177e4 9521 rq->active_balance = 0;
dd41f596 9522 rq->next_balance = jiffies;
1da177e4 9523 rq->push_cpu = 0;
0a2966b4 9524 rq->cpu = i;
1f11eb6a 9525 rq->online = 0;
1da177e4
LT
9526 rq->migration_thread = NULL;
9527 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9528 rq_attach_root(rq, &def_root_domain);
1da177e4 9529#endif
8f4d37ec 9530 init_rq_hrtick(rq);
1da177e4 9531 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9532 }
9533
2dd73a4f 9534 set_load_weight(&init_task);
b50f60ce 9535
e107be36
AK
9536#ifdef CONFIG_PREEMPT_NOTIFIERS
9537 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9538#endif
9539
c9819f45 9540#ifdef CONFIG_SMP
962cf36c 9541 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9542#endif
9543
b50f60ce
HC
9544#ifdef CONFIG_RT_MUTEXES
9545 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9546#endif
9547
1da177e4
LT
9548 /*
9549 * The boot idle thread does lazy MMU switching as well:
9550 */
9551 atomic_inc(&init_mm.mm_count);
9552 enter_lazy_tlb(&init_mm, current);
9553
9554 /*
9555 * Make us the idle thread. Technically, schedule() should not be
9556 * called from this thread, however somewhere below it might be,
9557 * but because we are the idle thread, we just pick up running again
9558 * when this runqueue becomes "idle".
9559 */
9560 init_idle(current, smp_processor_id());
dce48a84
TG
9561
9562 calc_load_update = jiffies + LOAD_FREQ;
9563
dd41f596
IM
9564 /*
9565 * During early bootup we pretend to be a normal task:
9566 */
9567 current->sched_class = &fair_sched_class;
6892b75e 9568
6a7b3dc3 9569 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
4bdddf8f 9570 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9571#ifdef CONFIG_SMP
7d1e6a9b 9572#ifdef CONFIG_NO_HZ
4bdddf8f
PE
9573 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9574 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9575#endif
4bdddf8f 9576 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9577#endif /* SMP */
6a7b3dc3 9578
0d905bca
IM
9579 perf_counter_init();
9580
6892b75e 9581 scheduler_running = 1;
1da177e4
LT
9582}
9583
9584#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
e4aafea2
FW
9585static inline int preempt_count_equals(int preempt_offset)
9586{
9587 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9588
9589 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9590}
9591
9592void __might_sleep(char *file, int line, int preempt_offset)
1da177e4 9593{
48f24c4d 9594#ifdef in_atomic
1da177e4
LT
9595 static unsigned long prev_jiffy; /* ratelimiting */
9596
e4aafea2
FW
9597 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9598 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
9599 return;
9600 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9601 return;
9602 prev_jiffy = jiffies;
9603
9604 printk(KERN_ERR
9605 "BUG: sleeping function called from invalid context at %s:%d\n",
9606 file, line);
9607 printk(KERN_ERR
9608 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9609 in_atomic(), irqs_disabled(),
9610 current->pid, current->comm);
9611
9612 debug_show_held_locks(current);
9613 if (irqs_disabled())
9614 print_irqtrace_events(current);
9615 dump_stack();
1da177e4
LT
9616#endif
9617}
9618EXPORT_SYMBOL(__might_sleep);
9619#endif
9620
9621#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9622static void normalize_task(struct rq *rq, struct task_struct *p)
9623{
9624 int on_rq;
3e51f33f 9625
3a5e4dc1
AK
9626 update_rq_clock(rq);
9627 on_rq = p->se.on_rq;
9628 if (on_rq)
9629 deactivate_task(rq, p, 0);
9630 __setscheduler(rq, p, SCHED_NORMAL, 0);
9631 if (on_rq) {
9632 activate_task(rq, p, 0);
9633 resched_task(rq->curr);
9634 }
9635}
9636
1da177e4
LT
9637void normalize_rt_tasks(void)
9638{
a0f98a1c 9639 struct task_struct *g, *p;
1da177e4 9640 unsigned long flags;
70b97a7f 9641 struct rq *rq;
1da177e4 9642
4cf5d77a 9643 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9644 do_each_thread(g, p) {
178be793
IM
9645 /*
9646 * Only normalize user tasks:
9647 */
9648 if (!p->mm)
9649 continue;
9650
6cfb0d5d 9651 p->se.exec_start = 0;
6cfb0d5d 9652#ifdef CONFIG_SCHEDSTATS
dd41f596 9653 p->se.wait_start = 0;
dd41f596 9654 p->se.sleep_start = 0;
dd41f596 9655 p->se.block_start = 0;
6cfb0d5d 9656#endif
dd41f596
IM
9657
9658 if (!rt_task(p)) {
9659 /*
9660 * Renice negative nice level userspace
9661 * tasks back to 0:
9662 */
9663 if (TASK_NICE(p) < 0 && p->mm)
9664 set_user_nice(p, 0);
1da177e4 9665 continue;
dd41f596 9666 }
1da177e4 9667
4cf5d77a 9668 spin_lock(&p->pi_lock);
b29739f9 9669 rq = __task_rq_lock(p);
1da177e4 9670
178be793 9671 normalize_task(rq, p);
3a5e4dc1 9672
b29739f9 9673 __task_rq_unlock(rq);
4cf5d77a 9674 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9675 } while_each_thread(g, p);
9676
4cf5d77a 9677 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9678}
9679
9680#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9681
9682#ifdef CONFIG_IA64
9683/*
9684 * These functions are only useful for the IA64 MCA handling.
9685 *
9686 * They can only be called when the whole system has been
9687 * stopped - every CPU needs to be quiescent, and no scheduling
9688 * activity can take place. Using them for anything else would
9689 * be a serious bug, and as a result, they aren't even visible
9690 * under any other configuration.
9691 */
9692
9693/**
9694 * curr_task - return the current task for a given cpu.
9695 * @cpu: the processor in question.
9696 *
9697 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9698 */
36c8b586 9699struct task_struct *curr_task(int cpu)
1df5c10a
LT
9700{
9701 return cpu_curr(cpu);
9702}
9703
9704/**
9705 * set_curr_task - set the current task for a given cpu.
9706 * @cpu: the processor in question.
9707 * @p: the task pointer to set.
9708 *
9709 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9710 * are serviced on a separate stack. It allows the architecture to switch the
9711 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9712 * must be called with all CPU's synchronized, and interrupts disabled, the
9713 * and caller must save the original value of the current task (see
9714 * curr_task() above) and restore that value before reenabling interrupts and
9715 * re-starting the system.
9716 *
9717 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9718 */
36c8b586 9719void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9720{
9721 cpu_curr(cpu) = p;
9722}
9723
9724#endif
29f59db3 9725
bccbe08a
PZ
9726#ifdef CONFIG_FAIR_GROUP_SCHED
9727static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9728{
9729 int i;
9730
9731 for_each_possible_cpu(i) {
9732 if (tg->cfs_rq)
9733 kfree(tg->cfs_rq[i]);
9734 if (tg->se)
9735 kfree(tg->se[i]);
6f505b16
PZ
9736 }
9737
9738 kfree(tg->cfs_rq);
9739 kfree(tg->se);
6f505b16
PZ
9740}
9741
ec7dc8ac
DG
9742static
9743int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9744{
29f59db3 9745 struct cfs_rq *cfs_rq;
eab17229 9746 struct sched_entity *se;
9b5b7751 9747 struct rq *rq;
29f59db3
SV
9748 int i;
9749
434d53b0 9750 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9751 if (!tg->cfs_rq)
9752 goto err;
434d53b0 9753 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9754 if (!tg->se)
9755 goto err;
052f1dc7
PZ
9756
9757 tg->shares = NICE_0_LOAD;
29f59db3
SV
9758
9759 for_each_possible_cpu(i) {
9b5b7751 9760 rq = cpu_rq(i);
29f59db3 9761
eab17229
LZ
9762 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9763 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9764 if (!cfs_rq)
9765 goto err;
9766
eab17229
LZ
9767 se = kzalloc_node(sizeof(struct sched_entity),
9768 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9769 if (!se)
9770 goto err;
9771
eab17229 9772 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9773 }
9774
9775 return 1;
9776
9777 err:
9778 return 0;
9779}
9780
9781static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9782{
9783 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9784 &cpu_rq(cpu)->leaf_cfs_rq_list);
9785}
9786
9787static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9788{
9789 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9790}
6d6bc0ad 9791#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9792static inline void free_fair_sched_group(struct task_group *tg)
9793{
9794}
9795
ec7dc8ac
DG
9796static inline
9797int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9798{
9799 return 1;
9800}
9801
9802static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9803{
9804}
9805
9806static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9807{
9808}
6d6bc0ad 9809#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9810
9811#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9812static void free_rt_sched_group(struct task_group *tg)
9813{
9814 int i;
9815
d0b27fa7
PZ
9816 destroy_rt_bandwidth(&tg->rt_bandwidth);
9817
bccbe08a
PZ
9818 for_each_possible_cpu(i) {
9819 if (tg->rt_rq)
9820 kfree(tg->rt_rq[i]);
9821 if (tg->rt_se)
9822 kfree(tg->rt_se[i]);
9823 }
9824
9825 kfree(tg->rt_rq);
9826 kfree(tg->rt_se);
9827}
9828
ec7dc8ac
DG
9829static
9830int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9831{
9832 struct rt_rq *rt_rq;
eab17229 9833 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9834 struct rq *rq;
9835 int i;
9836
434d53b0 9837 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9838 if (!tg->rt_rq)
9839 goto err;
434d53b0 9840 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9841 if (!tg->rt_se)
9842 goto err;
9843
d0b27fa7
PZ
9844 init_rt_bandwidth(&tg->rt_bandwidth,
9845 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9846
9847 for_each_possible_cpu(i) {
9848 rq = cpu_rq(i);
9849
eab17229
LZ
9850 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9851 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9852 if (!rt_rq)
9853 goto err;
29f59db3 9854
eab17229
LZ
9855 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9856 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9857 if (!rt_se)
9858 goto err;
29f59db3 9859
eab17229 9860 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9861 }
9862
bccbe08a
PZ
9863 return 1;
9864
9865 err:
9866 return 0;
9867}
9868
9869static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9870{
9871 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9872 &cpu_rq(cpu)->leaf_rt_rq_list);
9873}
9874
9875static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9876{
9877 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9878}
6d6bc0ad 9879#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9880static inline void free_rt_sched_group(struct task_group *tg)
9881{
9882}
9883
ec7dc8ac
DG
9884static inline
9885int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9886{
9887 return 1;
9888}
9889
9890static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9891{
9892}
9893
9894static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9895{
9896}
6d6bc0ad 9897#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9898
d0b27fa7 9899#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9900static void free_sched_group(struct task_group *tg)
9901{
9902 free_fair_sched_group(tg);
9903 free_rt_sched_group(tg);
9904 kfree(tg);
9905}
9906
9907/* allocate runqueue etc for a new task group */
ec7dc8ac 9908struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9909{
9910 struct task_group *tg;
9911 unsigned long flags;
9912 int i;
9913
9914 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9915 if (!tg)
9916 return ERR_PTR(-ENOMEM);
9917
ec7dc8ac 9918 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9919 goto err;
9920
ec7dc8ac 9921 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9922 goto err;
9923
8ed36996 9924 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9925 for_each_possible_cpu(i) {
bccbe08a
PZ
9926 register_fair_sched_group(tg, i);
9927 register_rt_sched_group(tg, i);
9b5b7751 9928 }
6f505b16 9929 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9930
9931 WARN_ON(!parent); /* root should already exist */
9932
9933 tg->parent = parent;
f473aa5e 9934 INIT_LIST_HEAD(&tg->children);
09f2724a 9935 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9936 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9937
9b5b7751 9938 return tg;
29f59db3
SV
9939
9940err:
6f505b16 9941 free_sched_group(tg);
29f59db3
SV
9942 return ERR_PTR(-ENOMEM);
9943}
9944
9b5b7751 9945/* rcu callback to free various structures associated with a task group */
6f505b16 9946static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9947{
29f59db3 9948 /* now it should be safe to free those cfs_rqs */
6f505b16 9949 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9950}
9951
9b5b7751 9952/* Destroy runqueue etc associated with a task group */
4cf86d77 9953void sched_destroy_group(struct task_group *tg)
29f59db3 9954{
8ed36996 9955 unsigned long flags;
9b5b7751 9956 int i;
29f59db3 9957
8ed36996 9958 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9959 for_each_possible_cpu(i) {
bccbe08a
PZ
9960 unregister_fair_sched_group(tg, i);
9961 unregister_rt_sched_group(tg, i);
9b5b7751 9962 }
6f505b16 9963 list_del_rcu(&tg->list);
f473aa5e 9964 list_del_rcu(&tg->siblings);
8ed36996 9965 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9966
9b5b7751 9967 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9968 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9969}
9970
9b5b7751 9971/* change task's runqueue when it moves between groups.
3a252015
IM
9972 * The caller of this function should have put the task in its new group
9973 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9974 * reflect its new group.
9b5b7751
SV
9975 */
9976void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9977{
9978 int on_rq, running;
9979 unsigned long flags;
9980 struct rq *rq;
9981
9982 rq = task_rq_lock(tsk, &flags);
9983
29f59db3
SV
9984 update_rq_clock(rq);
9985
051a1d1a 9986 running = task_current(rq, tsk);
29f59db3
SV
9987 on_rq = tsk->se.on_rq;
9988
0e1f3483 9989 if (on_rq)
29f59db3 9990 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9991 if (unlikely(running))
9992 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9993
6f505b16 9994 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9995
810b3817
PZ
9996#ifdef CONFIG_FAIR_GROUP_SCHED
9997 if (tsk->sched_class->moved_group)
9998 tsk->sched_class->moved_group(tsk);
9999#endif
10000
0e1f3483
HS
10001 if (unlikely(running))
10002 tsk->sched_class->set_curr_task(rq);
10003 if (on_rq)
7074badb 10004 enqueue_task(rq, tsk, 0);
29f59db3 10005
29f59db3
SV
10006 task_rq_unlock(rq, &flags);
10007}
6d6bc0ad 10008#endif /* CONFIG_GROUP_SCHED */
29f59db3 10009
052f1dc7 10010#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 10011static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
10012{
10013 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
10014 int on_rq;
10015
29f59db3 10016 on_rq = se->on_rq;
62fb1851 10017 if (on_rq)
29f59db3
SV
10018 dequeue_entity(cfs_rq, se, 0);
10019
10020 se->load.weight = shares;
e05510d0 10021 se->load.inv_weight = 0;
29f59db3 10022
62fb1851 10023 if (on_rq)
29f59db3 10024 enqueue_entity(cfs_rq, se, 0);
c09595f6 10025}
62fb1851 10026
c09595f6
PZ
10027static void set_se_shares(struct sched_entity *se, unsigned long shares)
10028{
10029 struct cfs_rq *cfs_rq = se->cfs_rq;
10030 struct rq *rq = cfs_rq->rq;
10031 unsigned long flags;
10032
10033 spin_lock_irqsave(&rq->lock, flags);
10034 __set_se_shares(se, shares);
10035 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
10036}
10037
8ed36996
PZ
10038static DEFINE_MUTEX(shares_mutex);
10039
4cf86d77 10040int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
10041{
10042 int i;
8ed36996 10043 unsigned long flags;
c61935fd 10044
ec7dc8ac
DG
10045 /*
10046 * We can't change the weight of the root cgroup.
10047 */
10048 if (!tg->se[0])
10049 return -EINVAL;
10050
18d95a28
PZ
10051 if (shares < MIN_SHARES)
10052 shares = MIN_SHARES;
cb4ad1ff
MX
10053 else if (shares > MAX_SHARES)
10054 shares = MAX_SHARES;
62fb1851 10055
8ed36996 10056 mutex_lock(&shares_mutex);
9b5b7751 10057 if (tg->shares == shares)
5cb350ba 10058 goto done;
29f59db3 10059
8ed36996 10060 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10061 for_each_possible_cpu(i)
10062 unregister_fair_sched_group(tg, i);
f473aa5e 10063 list_del_rcu(&tg->siblings);
8ed36996 10064 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
10065
10066 /* wait for any ongoing reference to this group to finish */
10067 synchronize_sched();
10068
10069 /*
10070 * Now we are free to modify the group's share on each cpu
10071 * w/o tripping rebalance_share or load_balance_fair.
10072 */
9b5b7751 10073 tg->shares = shares;
c09595f6
PZ
10074 for_each_possible_cpu(i) {
10075 /*
10076 * force a rebalance
10077 */
10078 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 10079 set_se_shares(tg->se[i], shares);
c09595f6 10080 }
29f59db3 10081
6b2d7700
SV
10082 /*
10083 * Enable load balance activity on this group, by inserting it back on
10084 * each cpu's rq->leaf_cfs_rq_list.
10085 */
8ed36996 10086 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
10087 for_each_possible_cpu(i)
10088 register_fair_sched_group(tg, i);
f473aa5e 10089 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 10090 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 10091done:
8ed36996 10092 mutex_unlock(&shares_mutex);
9b5b7751 10093 return 0;
29f59db3
SV
10094}
10095
5cb350ba
DG
10096unsigned long sched_group_shares(struct task_group *tg)
10097{
10098 return tg->shares;
10099}
052f1dc7 10100#endif
5cb350ba 10101
052f1dc7 10102#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10103/*
9f0c1e56 10104 * Ensure that the real time constraints are schedulable.
6f505b16 10105 */
9f0c1e56
PZ
10106static DEFINE_MUTEX(rt_constraints_mutex);
10107
10108static unsigned long to_ratio(u64 period, u64 runtime)
10109{
10110 if (runtime == RUNTIME_INF)
9a7e0b18 10111 return 1ULL << 20;
9f0c1e56 10112
9a7e0b18 10113 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
10114}
10115
9a7e0b18
PZ
10116/* Must be called with tasklist_lock held */
10117static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 10118{
9a7e0b18 10119 struct task_struct *g, *p;
b40b2e8e 10120
9a7e0b18
PZ
10121 do_each_thread(g, p) {
10122 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10123 return 1;
10124 } while_each_thread(g, p);
b40b2e8e 10125
9a7e0b18
PZ
10126 return 0;
10127}
b40b2e8e 10128
9a7e0b18
PZ
10129struct rt_schedulable_data {
10130 struct task_group *tg;
10131 u64 rt_period;
10132 u64 rt_runtime;
10133};
b40b2e8e 10134
9a7e0b18
PZ
10135static int tg_schedulable(struct task_group *tg, void *data)
10136{
10137 struct rt_schedulable_data *d = data;
10138 struct task_group *child;
10139 unsigned long total, sum = 0;
10140 u64 period, runtime;
b40b2e8e 10141
9a7e0b18
PZ
10142 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10143 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 10144
9a7e0b18
PZ
10145 if (tg == d->tg) {
10146 period = d->rt_period;
10147 runtime = d->rt_runtime;
b40b2e8e 10148 }
b40b2e8e 10149
98a4826b
PZ
10150#ifdef CONFIG_USER_SCHED
10151 if (tg == &root_task_group) {
10152 period = global_rt_period();
10153 runtime = global_rt_runtime();
10154 }
10155#endif
10156
4653f803
PZ
10157 /*
10158 * Cannot have more runtime than the period.
10159 */
10160 if (runtime > period && runtime != RUNTIME_INF)
10161 return -EINVAL;
6f505b16 10162
4653f803
PZ
10163 /*
10164 * Ensure we don't starve existing RT tasks.
10165 */
9a7e0b18
PZ
10166 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10167 return -EBUSY;
6f505b16 10168
9a7e0b18 10169 total = to_ratio(period, runtime);
6f505b16 10170
4653f803
PZ
10171 /*
10172 * Nobody can have more than the global setting allows.
10173 */
10174 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10175 return -EINVAL;
6f505b16 10176
4653f803
PZ
10177 /*
10178 * The sum of our children's runtime should not exceed our own.
10179 */
9a7e0b18
PZ
10180 list_for_each_entry_rcu(child, &tg->children, siblings) {
10181 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10182 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10183
9a7e0b18
PZ
10184 if (child == d->tg) {
10185 period = d->rt_period;
10186 runtime = d->rt_runtime;
10187 }
6f505b16 10188
9a7e0b18 10189 sum += to_ratio(period, runtime);
9f0c1e56 10190 }
6f505b16 10191
9a7e0b18
PZ
10192 if (sum > total)
10193 return -EINVAL;
10194
10195 return 0;
6f505b16
PZ
10196}
10197
9a7e0b18 10198static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10199{
9a7e0b18
PZ
10200 struct rt_schedulable_data data = {
10201 .tg = tg,
10202 .rt_period = period,
10203 .rt_runtime = runtime,
10204 };
10205
10206 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10207}
10208
d0b27fa7
PZ
10209static int tg_set_bandwidth(struct task_group *tg,
10210 u64 rt_period, u64 rt_runtime)
6f505b16 10211{
ac086bc2 10212 int i, err = 0;
9f0c1e56 10213
9f0c1e56 10214 mutex_lock(&rt_constraints_mutex);
521f1a24 10215 read_lock(&tasklist_lock);
9a7e0b18
PZ
10216 err = __rt_schedulable(tg, rt_period, rt_runtime);
10217 if (err)
9f0c1e56 10218 goto unlock;
ac086bc2
PZ
10219
10220 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10221 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10222 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10223
10224 for_each_possible_cpu(i) {
10225 struct rt_rq *rt_rq = tg->rt_rq[i];
10226
10227 spin_lock(&rt_rq->rt_runtime_lock);
10228 rt_rq->rt_runtime = rt_runtime;
10229 spin_unlock(&rt_rq->rt_runtime_lock);
10230 }
10231 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10232 unlock:
521f1a24 10233 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10234 mutex_unlock(&rt_constraints_mutex);
10235
10236 return err;
6f505b16
PZ
10237}
10238
d0b27fa7
PZ
10239int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10240{
10241 u64 rt_runtime, rt_period;
10242
10243 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10244 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10245 if (rt_runtime_us < 0)
10246 rt_runtime = RUNTIME_INF;
10247
10248 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10249}
10250
9f0c1e56
PZ
10251long sched_group_rt_runtime(struct task_group *tg)
10252{
10253 u64 rt_runtime_us;
10254
d0b27fa7 10255 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10256 return -1;
10257
d0b27fa7 10258 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10259 do_div(rt_runtime_us, NSEC_PER_USEC);
10260 return rt_runtime_us;
10261}
d0b27fa7
PZ
10262
10263int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10264{
10265 u64 rt_runtime, rt_period;
10266
10267 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10268 rt_runtime = tg->rt_bandwidth.rt_runtime;
10269
619b0488
R
10270 if (rt_period == 0)
10271 return -EINVAL;
10272
d0b27fa7
PZ
10273 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10274}
10275
10276long sched_group_rt_period(struct task_group *tg)
10277{
10278 u64 rt_period_us;
10279
10280 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10281 do_div(rt_period_us, NSEC_PER_USEC);
10282 return rt_period_us;
10283}
10284
10285static int sched_rt_global_constraints(void)
10286{
4653f803 10287 u64 runtime, period;
d0b27fa7
PZ
10288 int ret = 0;
10289
ec5d4989
HS
10290 if (sysctl_sched_rt_period <= 0)
10291 return -EINVAL;
10292
4653f803
PZ
10293 runtime = global_rt_runtime();
10294 period = global_rt_period();
10295
10296 /*
10297 * Sanity check on the sysctl variables.
10298 */
10299 if (runtime > period && runtime != RUNTIME_INF)
10300 return -EINVAL;
10b612f4 10301
d0b27fa7 10302 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10303 read_lock(&tasklist_lock);
4653f803 10304 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10305 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10306 mutex_unlock(&rt_constraints_mutex);
10307
10308 return ret;
10309}
54e99124
DG
10310
10311int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10312{
10313 /* Don't accept realtime tasks when there is no way for them to run */
10314 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10315 return 0;
10316
10317 return 1;
10318}
10319
6d6bc0ad 10320#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10321static int sched_rt_global_constraints(void)
10322{
ac086bc2
PZ
10323 unsigned long flags;
10324 int i;
10325
ec5d4989
HS
10326 if (sysctl_sched_rt_period <= 0)
10327 return -EINVAL;
10328
60aa605d
PZ
10329 /*
10330 * There's always some RT tasks in the root group
10331 * -- migration, kstopmachine etc..
10332 */
10333 if (sysctl_sched_rt_runtime == 0)
10334 return -EBUSY;
10335
ac086bc2
PZ
10336 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10337 for_each_possible_cpu(i) {
10338 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10339
10340 spin_lock(&rt_rq->rt_runtime_lock);
10341 rt_rq->rt_runtime = global_rt_runtime();
10342 spin_unlock(&rt_rq->rt_runtime_lock);
10343 }
10344 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10345
d0b27fa7
PZ
10346 return 0;
10347}
6d6bc0ad 10348#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10349
10350int sched_rt_handler(struct ctl_table *table, int write,
10351 struct file *filp, void __user *buffer, size_t *lenp,
10352 loff_t *ppos)
10353{
10354 int ret;
10355 int old_period, old_runtime;
10356 static DEFINE_MUTEX(mutex);
10357
10358 mutex_lock(&mutex);
10359 old_period = sysctl_sched_rt_period;
10360 old_runtime = sysctl_sched_rt_runtime;
10361
10362 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10363
10364 if (!ret && write) {
10365 ret = sched_rt_global_constraints();
10366 if (ret) {
10367 sysctl_sched_rt_period = old_period;
10368 sysctl_sched_rt_runtime = old_runtime;
10369 } else {
10370 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10371 def_rt_bandwidth.rt_period =
10372 ns_to_ktime(global_rt_period());
10373 }
10374 }
10375 mutex_unlock(&mutex);
10376
10377 return ret;
10378}
68318b8e 10379
052f1dc7 10380#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10381
10382/* return corresponding task_group object of a cgroup */
2b01dfe3 10383static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10384{
2b01dfe3
PM
10385 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10386 struct task_group, css);
68318b8e
SV
10387}
10388
10389static struct cgroup_subsys_state *
2b01dfe3 10390cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10391{
ec7dc8ac 10392 struct task_group *tg, *parent;
68318b8e 10393
2b01dfe3 10394 if (!cgrp->parent) {
68318b8e 10395 /* This is early initialization for the top cgroup */
68318b8e
SV
10396 return &init_task_group.css;
10397 }
10398
ec7dc8ac
DG
10399 parent = cgroup_tg(cgrp->parent);
10400 tg = sched_create_group(parent);
68318b8e
SV
10401 if (IS_ERR(tg))
10402 return ERR_PTR(-ENOMEM);
10403
68318b8e
SV
10404 return &tg->css;
10405}
10406
41a2d6cf
IM
10407static void
10408cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10409{
2b01dfe3 10410 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10411
10412 sched_destroy_group(tg);
10413}
10414
41a2d6cf
IM
10415static int
10416cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10417 struct task_struct *tsk)
68318b8e 10418{
b68aa230 10419#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10420 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10421 return -EINVAL;
10422#else
68318b8e
SV
10423 /* We don't support RT-tasks being in separate groups */
10424 if (tsk->sched_class != &fair_sched_class)
10425 return -EINVAL;
b68aa230 10426#endif
68318b8e
SV
10427
10428 return 0;
10429}
10430
10431static void
2b01dfe3 10432cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
10433 struct cgroup *old_cont, struct task_struct *tsk)
10434{
10435 sched_move_task(tsk);
10436}
10437
052f1dc7 10438#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10439static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10440 u64 shareval)
68318b8e 10441{
2b01dfe3 10442 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10443}
10444
f4c753b7 10445static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10446{
2b01dfe3 10447 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10448
10449 return (u64) tg->shares;
10450}
6d6bc0ad 10451#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10452
052f1dc7 10453#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10454static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10455 s64 val)
6f505b16 10456{
06ecb27c 10457 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10458}
10459
06ecb27c 10460static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10461{
06ecb27c 10462 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10463}
d0b27fa7
PZ
10464
10465static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10466 u64 rt_period_us)
10467{
10468 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10469}
10470
10471static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10472{
10473 return sched_group_rt_period(cgroup_tg(cgrp));
10474}
6d6bc0ad 10475#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10476
fe5c7cc2 10477static struct cftype cpu_files[] = {
052f1dc7 10478#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10479 {
10480 .name = "shares",
f4c753b7
PM
10481 .read_u64 = cpu_shares_read_u64,
10482 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10483 },
052f1dc7
PZ
10484#endif
10485#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10486 {
9f0c1e56 10487 .name = "rt_runtime_us",
06ecb27c
PM
10488 .read_s64 = cpu_rt_runtime_read,
10489 .write_s64 = cpu_rt_runtime_write,
6f505b16 10490 },
d0b27fa7
PZ
10491 {
10492 .name = "rt_period_us",
f4c753b7
PM
10493 .read_u64 = cpu_rt_period_read_uint,
10494 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10495 },
052f1dc7 10496#endif
68318b8e
SV
10497};
10498
10499static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10500{
fe5c7cc2 10501 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10502}
10503
10504struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10505 .name = "cpu",
10506 .create = cpu_cgroup_create,
10507 .destroy = cpu_cgroup_destroy,
10508 .can_attach = cpu_cgroup_can_attach,
10509 .attach = cpu_cgroup_attach,
10510 .populate = cpu_cgroup_populate,
10511 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10512 .early_init = 1,
10513};
10514
052f1dc7 10515#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10516
10517#ifdef CONFIG_CGROUP_CPUACCT
10518
10519/*
10520 * CPU accounting code for task groups.
10521 *
10522 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10523 * (balbir@in.ibm.com).
10524 */
10525
934352f2 10526/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10527struct cpuacct {
10528 struct cgroup_subsys_state css;
10529 /* cpuusage holds pointer to a u64-type object on every cpu */
10530 u64 *cpuusage;
ef12fefa 10531 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10532 struct cpuacct *parent;
d842de87
SV
10533};
10534
10535struct cgroup_subsys cpuacct_subsys;
10536
10537/* return cpu accounting group corresponding to this container */
32cd756a 10538static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10539{
32cd756a 10540 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10541 struct cpuacct, css);
10542}
10543
10544/* return cpu accounting group to which this task belongs */
10545static inline struct cpuacct *task_ca(struct task_struct *tsk)
10546{
10547 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10548 struct cpuacct, css);
10549}
10550
10551/* create a new cpu accounting group */
10552static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10553 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10554{
10555 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10556 int i;
d842de87
SV
10557
10558 if (!ca)
ef12fefa 10559 goto out;
d842de87
SV
10560
10561 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10562 if (!ca->cpuusage)
10563 goto out_free_ca;
10564
10565 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10566 if (percpu_counter_init(&ca->cpustat[i], 0))
10567 goto out_free_counters;
d842de87 10568
934352f2
BR
10569 if (cgrp->parent)
10570 ca->parent = cgroup_ca(cgrp->parent);
10571
d842de87 10572 return &ca->css;
ef12fefa
BR
10573
10574out_free_counters:
10575 while (--i >= 0)
10576 percpu_counter_destroy(&ca->cpustat[i]);
10577 free_percpu(ca->cpuusage);
10578out_free_ca:
10579 kfree(ca);
10580out:
10581 return ERR_PTR(-ENOMEM);
d842de87
SV
10582}
10583
10584/* destroy an existing cpu accounting group */
41a2d6cf 10585static void
32cd756a 10586cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10587{
32cd756a 10588 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10589 int i;
d842de87 10590
ef12fefa
BR
10591 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10592 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10593 free_percpu(ca->cpuusage);
10594 kfree(ca);
10595}
10596
720f5498
KC
10597static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10598{
b36128c8 10599 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10600 u64 data;
10601
10602#ifndef CONFIG_64BIT
10603 /*
10604 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10605 */
10606 spin_lock_irq(&cpu_rq(cpu)->lock);
10607 data = *cpuusage;
10608 spin_unlock_irq(&cpu_rq(cpu)->lock);
10609#else
10610 data = *cpuusage;
10611#endif
10612
10613 return data;
10614}
10615
10616static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10617{
b36128c8 10618 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10619
10620#ifndef CONFIG_64BIT
10621 /*
10622 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10623 */
10624 spin_lock_irq(&cpu_rq(cpu)->lock);
10625 *cpuusage = val;
10626 spin_unlock_irq(&cpu_rq(cpu)->lock);
10627#else
10628 *cpuusage = val;
10629#endif
10630}
10631
d842de87 10632/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10633static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10634{
32cd756a 10635 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10636 u64 totalcpuusage = 0;
10637 int i;
10638
720f5498
KC
10639 for_each_present_cpu(i)
10640 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10641
10642 return totalcpuusage;
10643}
10644
0297b803
DG
10645static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10646 u64 reset)
10647{
10648 struct cpuacct *ca = cgroup_ca(cgrp);
10649 int err = 0;
10650 int i;
10651
10652 if (reset) {
10653 err = -EINVAL;
10654 goto out;
10655 }
10656
720f5498
KC
10657 for_each_present_cpu(i)
10658 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10659
0297b803
DG
10660out:
10661 return err;
10662}
10663
e9515c3c
KC
10664static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10665 struct seq_file *m)
10666{
10667 struct cpuacct *ca = cgroup_ca(cgroup);
10668 u64 percpu;
10669 int i;
10670
10671 for_each_present_cpu(i) {
10672 percpu = cpuacct_cpuusage_read(ca, i);
10673 seq_printf(m, "%llu ", (unsigned long long) percpu);
10674 }
10675 seq_printf(m, "\n");
10676 return 0;
10677}
10678
ef12fefa
BR
10679static const char *cpuacct_stat_desc[] = {
10680 [CPUACCT_STAT_USER] = "user",
10681 [CPUACCT_STAT_SYSTEM] = "system",
10682};
10683
10684static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10685 struct cgroup_map_cb *cb)
10686{
10687 struct cpuacct *ca = cgroup_ca(cgrp);
10688 int i;
10689
10690 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10691 s64 val = percpu_counter_read(&ca->cpustat[i]);
10692 val = cputime64_to_clock_t(val);
10693 cb->fill(cb, cpuacct_stat_desc[i], val);
10694 }
10695 return 0;
10696}
10697
d842de87
SV
10698static struct cftype files[] = {
10699 {
10700 .name = "usage",
f4c753b7
PM
10701 .read_u64 = cpuusage_read,
10702 .write_u64 = cpuusage_write,
d842de87 10703 },
e9515c3c
KC
10704 {
10705 .name = "usage_percpu",
10706 .read_seq_string = cpuacct_percpu_seq_read,
10707 },
ef12fefa
BR
10708 {
10709 .name = "stat",
10710 .read_map = cpuacct_stats_show,
10711 },
d842de87
SV
10712};
10713
32cd756a 10714static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10715{
32cd756a 10716 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10717}
10718
10719/*
10720 * charge this task's execution time to its accounting group.
10721 *
10722 * called with rq->lock held.
10723 */
10724static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10725{
10726 struct cpuacct *ca;
934352f2 10727 int cpu;
d842de87 10728
c40c6f85 10729 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10730 return;
10731
934352f2 10732 cpu = task_cpu(tsk);
a18b83b7
BR
10733
10734 rcu_read_lock();
10735
d842de87 10736 ca = task_ca(tsk);
d842de87 10737
934352f2 10738 for (; ca; ca = ca->parent) {
b36128c8 10739 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10740 *cpuusage += cputime;
10741 }
a18b83b7
BR
10742
10743 rcu_read_unlock();
d842de87
SV
10744}
10745
ef12fefa
BR
10746/*
10747 * Charge the system/user time to the task's accounting group.
10748 */
10749static void cpuacct_update_stats(struct task_struct *tsk,
10750 enum cpuacct_stat_index idx, cputime_t val)
10751{
10752 struct cpuacct *ca;
10753
10754 if (unlikely(!cpuacct_subsys.active))
10755 return;
10756
10757 rcu_read_lock();
10758 ca = task_ca(tsk);
10759
10760 do {
10761 percpu_counter_add(&ca->cpustat[idx], val);
10762 ca = ca->parent;
10763 } while (ca);
10764 rcu_read_unlock();
10765}
10766
d842de87
SV
10767struct cgroup_subsys cpuacct_subsys = {
10768 .name = "cpuacct",
10769 .create = cpuacct_create,
10770 .destroy = cpuacct_destroy,
10771 .populate = cpuacct_populate,
10772 .subsys_id = cpuacct_subsys_id,
10773};
10774#endif /* CONFIG_CGROUP_CPUACCT */