]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
perfcounters: hw ops rename
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
5517d86b
ED
121#ifdef CONFIG_SMP
122/*
123 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
124 * Since cpu_power is a 'constant', we can use a reciprocal divide.
125 */
126static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
127{
128 return reciprocal_divide(load, sg->reciprocal_cpu_power);
129}
130
131/*
132 * Each time a sched group cpu_power is changed,
133 * we must compute its reciprocal value
134 */
135static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
136{
137 sg->__cpu_power += val;
138 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
139}
140#endif
141
e05606d3
IM
142static inline int rt_policy(int policy)
143{
3f33a7ce 144 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
145 return 1;
146 return 0;
147}
148
149static inline int task_has_rt_policy(struct task_struct *p)
150{
151 return rt_policy(p->policy);
152}
153
1da177e4 154/*
6aa645ea 155 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 156 */
6aa645ea
IM
157struct rt_prio_array {
158 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
159 struct list_head queue[MAX_RT_PRIO];
160};
161
d0b27fa7 162struct rt_bandwidth {
ea736ed5
IM
163 /* nests inside the rq lock: */
164 spinlock_t rt_runtime_lock;
165 ktime_t rt_period;
166 u64 rt_runtime;
167 struct hrtimer rt_period_timer;
d0b27fa7
PZ
168};
169
170static struct rt_bandwidth def_rt_bandwidth;
171
172static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
173
174static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
175{
176 struct rt_bandwidth *rt_b =
177 container_of(timer, struct rt_bandwidth, rt_period_timer);
178 ktime_t now;
179 int overrun;
180 int idle = 0;
181
182 for (;;) {
183 now = hrtimer_cb_get_time(timer);
184 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
185
186 if (!overrun)
187 break;
188
189 idle = do_sched_rt_period_timer(rt_b, overrun);
190 }
191
192 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
193}
194
195static
196void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
197{
198 rt_b->rt_period = ns_to_ktime(period);
199 rt_b->rt_runtime = runtime;
200
ac086bc2
PZ
201 spin_lock_init(&rt_b->rt_runtime_lock);
202
d0b27fa7
PZ
203 hrtimer_init(&rt_b->rt_period_timer,
204 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
205 rt_b->rt_period_timer.function = sched_rt_period_timer;
ccc7dadf 206 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
d0b27fa7
PZ
207}
208
c8bfff6d
KH
209static inline int rt_bandwidth_enabled(void)
210{
211 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
212}
213
214static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
215{
216 ktime_t now;
217
0b148fa0 218 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
219 return;
220
221 if (hrtimer_active(&rt_b->rt_period_timer))
222 return;
223
224 spin_lock(&rt_b->rt_runtime_lock);
225 for (;;) {
226 if (hrtimer_active(&rt_b->rt_period_timer))
227 break;
228
229 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
230 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
cc584b21
AV
231 hrtimer_start_expires(&rt_b->rt_period_timer,
232 HRTIMER_MODE_ABS);
d0b27fa7
PZ
233 }
234 spin_unlock(&rt_b->rt_runtime_lock);
235}
236
237#ifdef CONFIG_RT_GROUP_SCHED
238static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
239{
240 hrtimer_cancel(&rt_b->rt_period_timer);
241}
242#endif
243
712555ee
HC
244/*
245 * sched_domains_mutex serializes calls to arch_init_sched_domains,
246 * detach_destroy_domains and partition_sched_domains.
247 */
248static DEFINE_MUTEX(sched_domains_mutex);
249
052f1dc7 250#ifdef CONFIG_GROUP_SCHED
29f59db3 251
68318b8e
SV
252#include <linux/cgroup.h>
253
29f59db3
SV
254struct cfs_rq;
255
6f505b16
PZ
256static LIST_HEAD(task_groups);
257
29f59db3 258/* task group related information */
4cf86d77 259struct task_group {
052f1dc7 260#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
261 struct cgroup_subsys_state css;
262#endif
052f1dc7
PZ
263
264#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
265 /* schedulable entities of this group on each cpu */
266 struct sched_entity **se;
267 /* runqueue "owned" by this group on each cpu */
268 struct cfs_rq **cfs_rq;
269 unsigned long shares;
052f1dc7
PZ
270#endif
271
272#ifdef CONFIG_RT_GROUP_SCHED
273 struct sched_rt_entity **rt_se;
274 struct rt_rq **rt_rq;
275
d0b27fa7 276 struct rt_bandwidth rt_bandwidth;
052f1dc7 277#endif
6b2d7700 278
ae8393e5 279 struct rcu_head rcu;
6f505b16 280 struct list_head list;
f473aa5e
PZ
281
282 struct task_group *parent;
283 struct list_head siblings;
284 struct list_head children;
29f59db3
SV
285};
286
354d60c2 287#ifdef CONFIG_USER_SCHED
eff766a6
PZ
288
289/*
290 * Root task group.
291 * Every UID task group (including init_task_group aka UID-0) will
292 * be a child to this group.
293 */
294struct task_group root_task_group;
295
052f1dc7 296#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
297/* Default task group's sched entity on each cpu */
298static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
299/* Default task group's cfs_rq on each cpu */
300static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 301#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
302
303#ifdef CONFIG_RT_GROUP_SCHED
304static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
305static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 306#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 307#else /* !CONFIG_USER_SCHED */
eff766a6 308#define root_task_group init_task_group
9a7e0b18 309#endif /* CONFIG_USER_SCHED */
6f505b16 310
8ed36996 311/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
312 * a task group's cpu shares.
313 */
8ed36996 314static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 315
052f1dc7 316#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
317#ifdef CONFIG_USER_SCHED
318# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 319#else /* !CONFIG_USER_SCHED */
052f1dc7 320# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 321#endif /* CONFIG_USER_SCHED */
052f1dc7 322
cb4ad1ff 323/*
2e084786
LJ
324 * A weight of 0 or 1 can cause arithmetics problems.
325 * A weight of a cfs_rq is the sum of weights of which entities
326 * are queued on this cfs_rq, so a weight of a entity should not be
327 * too large, so as the shares value of a task group.
cb4ad1ff
MX
328 * (The default weight is 1024 - so there's no practical
329 * limitation from this.)
330 */
18d95a28 331#define MIN_SHARES 2
2e084786 332#define MAX_SHARES (1UL << 18)
18d95a28 333
052f1dc7
PZ
334static int init_task_group_load = INIT_TASK_GROUP_LOAD;
335#endif
336
29f59db3 337/* Default task group.
3a252015 338 * Every task in system belong to this group at bootup.
29f59db3 339 */
434d53b0 340struct task_group init_task_group;
29f59db3
SV
341
342/* return group to which a task belongs */
4cf86d77 343static inline struct task_group *task_group(struct task_struct *p)
29f59db3 344{
4cf86d77 345 struct task_group *tg;
9b5b7751 346
052f1dc7 347#ifdef CONFIG_USER_SCHED
24e377a8 348 tg = p->user->tg;
052f1dc7 349#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
350 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
351 struct task_group, css);
24e377a8 352#else
41a2d6cf 353 tg = &init_task_group;
24e377a8 354#endif
9b5b7751 355 return tg;
29f59db3
SV
356}
357
358/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 359static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 360{
052f1dc7 361#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
362 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
363 p->se.parent = task_group(p)->se[cpu];
052f1dc7 364#endif
6f505b16 365
052f1dc7 366#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
367 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
368 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 369#endif
29f59db3
SV
370}
371
372#else
373
6f505b16 374static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
375static inline struct task_group *task_group(struct task_struct *p)
376{
377 return NULL;
378}
29f59db3 379
052f1dc7 380#endif /* CONFIG_GROUP_SCHED */
29f59db3 381
6aa645ea
IM
382/* CFS-related fields in a runqueue */
383struct cfs_rq {
384 struct load_weight load;
385 unsigned long nr_running;
386
6aa645ea 387 u64 exec_clock;
e9acbff6 388 u64 min_vruntime;
6aa645ea
IM
389
390 struct rb_root tasks_timeline;
391 struct rb_node *rb_leftmost;
4a55bd5e
PZ
392
393 struct list_head tasks;
394 struct list_head *balance_iterator;
395
396 /*
397 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
398 * It is set to NULL otherwise (i.e when none are currently running).
399 */
4793241b 400 struct sched_entity *curr, *next, *last;
ddc97297 401
5ac5c4d6 402 unsigned int nr_spread_over;
ddc97297 403
62160e3f 404#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
405 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
406
41a2d6cf
IM
407 /*
408 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
409 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
410 * (like users, containers etc.)
411 *
412 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
413 * list is used during load balance.
414 */
41a2d6cf
IM
415 struct list_head leaf_cfs_rq_list;
416 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
417
418#ifdef CONFIG_SMP
c09595f6 419 /*
c8cba857 420 * the part of load.weight contributed by tasks
c09595f6 421 */
c8cba857 422 unsigned long task_weight;
c09595f6 423
c8cba857
PZ
424 /*
425 * h_load = weight * f(tg)
426 *
427 * Where f(tg) is the recursive weight fraction assigned to
428 * this group.
429 */
430 unsigned long h_load;
c09595f6 431
c8cba857
PZ
432 /*
433 * this cpu's part of tg->shares
434 */
435 unsigned long shares;
f1d239f7
PZ
436
437 /*
438 * load.weight at the time we set shares
439 */
440 unsigned long rq_weight;
c09595f6 441#endif
6aa645ea
IM
442#endif
443};
1da177e4 444
6aa645ea
IM
445/* Real-Time classes' related field in a runqueue: */
446struct rt_rq {
447 struct rt_prio_array active;
63489e45 448 unsigned long rt_nr_running;
052f1dc7 449#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
450 int highest_prio; /* highest queued rt task prio */
451#endif
fa85ae24 452#ifdef CONFIG_SMP
73fe6aae 453 unsigned long rt_nr_migratory;
a22d7fc1 454 int overloaded;
fa85ae24 455#endif
6f505b16 456 int rt_throttled;
fa85ae24 457 u64 rt_time;
ac086bc2 458 u64 rt_runtime;
ea736ed5 459 /* Nests inside the rq lock: */
ac086bc2 460 spinlock_t rt_runtime_lock;
6f505b16 461
052f1dc7 462#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
463 unsigned long rt_nr_boosted;
464
6f505b16
PZ
465 struct rq *rq;
466 struct list_head leaf_rt_rq_list;
467 struct task_group *tg;
468 struct sched_rt_entity *rt_se;
469#endif
6aa645ea
IM
470};
471
57d885fe
GH
472#ifdef CONFIG_SMP
473
474/*
475 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
476 * variables. Each exclusive cpuset essentially defines an island domain by
477 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
478 * exclusive cpuset is created, we also create and attach a new root-domain
479 * object.
480 *
57d885fe
GH
481 */
482struct root_domain {
483 atomic_t refcount;
484 cpumask_t span;
485 cpumask_t online;
637f5085 486
0eab9146 487 /*
637f5085
GH
488 * The "RT overload" flag: it gets set if a CPU has more than
489 * one runnable RT task.
490 */
491 cpumask_t rto_mask;
0eab9146 492 atomic_t rto_count;
6e0534f2
GH
493#ifdef CONFIG_SMP
494 struct cpupri cpupri;
495#endif
57d885fe
GH
496};
497
dc938520
GH
498/*
499 * By default the system creates a single root-domain with all cpus as
500 * members (mimicking the global state we have today).
501 */
57d885fe
GH
502static struct root_domain def_root_domain;
503
504#endif
505
1da177e4
LT
506/*
507 * This is the main, per-CPU runqueue data structure.
508 *
509 * Locking rule: those places that want to lock multiple runqueues
510 * (such as the load balancing or the thread migration code), lock
511 * acquire operations must be ordered by ascending &runqueue.
512 */
70b97a7f 513struct rq {
d8016491
IM
514 /* runqueue lock: */
515 spinlock_t lock;
1da177e4
LT
516
517 /*
518 * nr_running and cpu_load should be in the same cacheline because
519 * remote CPUs use both these fields when doing load calculation.
520 */
521 unsigned long nr_running;
6aa645ea
IM
522 #define CPU_LOAD_IDX_MAX 5
523 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 524 unsigned char idle_at_tick;
46cb4b7c 525#ifdef CONFIG_NO_HZ
15934a37 526 unsigned long last_tick_seen;
46cb4b7c
SS
527 unsigned char in_nohz_recently;
528#endif
d8016491
IM
529 /* capture load from *all* tasks on this cpu: */
530 struct load_weight load;
6aa645ea
IM
531 unsigned long nr_load_updates;
532 u64 nr_switches;
533
534 struct cfs_rq cfs;
6f505b16 535 struct rt_rq rt;
6f505b16 536
6aa645ea 537#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
538 /* list of leaf cfs_rq on this cpu: */
539 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
540#endif
541#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 542 struct list_head leaf_rt_rq_list;
1da177e4 543#endif
1da177e4
LT
544
545 /*
546 * This is part of a global counter where only the total sum
547 * over all CPUs matters. A task can increase this counter on
548 * one CPU and if it got migrated afterwards it may decrease
549 * it on another CPU. Always updated under the runqueue lock:
550 */
551 unsigned long nr_uninterruptible;
552
36c8b586 553 struct task_struct *curr, *idle;
c9819f45 554 unsigned long next_balance;
1da177e4 555 struct mm_struct *prev_mm;
6aa645ea 556
3e51f33f 557 u64 clock;
6aa645ea 558
1da177e4
LT
559 atomic_t nr_iowait;
560
561#ifdef CONFIG_SMP
0eab9146 562 struct root_domain *rd;
1da177e4
LT
563 struct sched_domain *sd;
564
565 /* For active balancing */
566 int active_balance;
567 int push_cpu;
d8016491
IM
568 /* cpu of this runqueue: */
569 int cpu;
1f11eb6a 570 int online;
1da177e4 571
a8a51d5e 572 unsigned long avg_load_per_task;
1da177e4 573
36c8b586 574 struct task_struct *migration_thread;
1da177e4
LT
575 struct list_head migration_queue;
576#endif
577
8f4d37ec 578#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
579#ifdef CONFIG_SMP
580 int hrtick_csd_pending;
581 struct call_single_data hrtick_csd;
582#endif
8f4d37ec
PZ
583 struct hrtimer hrtick_timer;
584#endif
585
1da177e4
LT
586#ifdef CONFIG_SCHEDSTATS
587 /* latency stats */
588 struct sched_info rq_sched_info;
589
590 /* sys_sched_yield() stats */
480b9434
KC
591 unsigned int yld_exp_empty;
592 unsigned int yld_act_empty;
593 unsigned int yld_both_empty;
594 unsigned int yld_count;
1da177e4
LT
595
596 /* schedule() stats */
480b9434
KC
597 unsigned int sched_switch;
598 unsigned int sched_count;
599 unsigned int sched_goidle;
1da177e4
LT
600
601 /* try_to_wake_up() stats */
480b9434
KC
602 unsigned int ttwu_count;
603 unsigned int ttwu_local;
b8efb561
IM
604
605 /* BKL stats */
480b9434 606 unsigned int bkl_count;
1da177e4
LT
607#endif
608};
609
f34e3b61 610static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 611
15afe09b 612static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 613{
15afe09b 614 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
615}
616
0a2966b4
CL
617static inline int cpu_of(struct rq *rq)
618{
619#ifdef CONFIG_SMP
620 return rq->cpu;
621#else
622 return 0;
623#endif
624}
625
674311d5
NP
626/*
627 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 628 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
629 *
630 * The domain tree of any CPU may only be accessed from within
631 * preempt-disabled sections.
632 */
48f24c4d
IM
633#define for_each_domain(cpu, __sd) \
634 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
635
636#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
637#define this_rq() (&__get_cpu_var(runqueues))
638#define task_rq(p) cpu_rq(task_cpu(p))
639#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
640
3e51f33f
PZ
641static inline void update_rq_clock(struct rq *rq)
642{
643 rq->clock = sched_clock_cpu(cpu_of(rq));
644}
645
bf5c91ba
IM
646/*
647 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
648 */
649#ifdef CONFIG_SCHED_DEBUG
650# define const_debug __read_mostly
651#else
652# define const_debug static const
653#endif
654
017730c1
IM
655/**
656 * runqueue_is_locked
657 *
658 * Returns true if the current cpu runqueue is locked.
659 * This interface allows printk to be called with the runqueue lock
660 * held and know whether or not it is OK to wake up the klogd.
661 */
662int runqueue_is_locked(void)
663{
664 int cpu = get_cpu();
665 struct rq *rq = cpu_rq(cpu);
666 int ret;
667
668 ret = spin_is_locked(&rq->lock);
669 put_cpu();
670 return ret;
671}
672
bf5c91ba
IM
673/*
674 * Debugging: various feature bits
675 */
f00b45c1
PZ
676
677#define SCHED_FEAT(name, enabled) \
678 __SCHED_FEAT_##name ,
679
bf5c91ba 680enum {
f00b45c1 681#include "sched_features.h"
bf5c91ba
IM
682};
683
f00b45c1
PZ
684#undef SCHED_FEAT
685
686#define SCHED_FEAT(name, enabled) \
687 (1UL << __SCHED_FEAT_##name) * enabled |
688
bf5c91ba 689const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
690#include "sched_features.h"
691 0;
692
693#undef SCHED_FEAT
694
695#ifdef CONFIG_SCHED_DEBUG
696#define SCHED_FEAT(name, enabled) \
697 #name ,
698
983ed7a6 699static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
700#include "sched_features.h"
701 NULL
702};
703
704#undef SCHED_FEAT
705
983ed7a6 706static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
707{
708 filp->private_data = inode->i_private;
709 return 0;
710}
711
712static ssize_t
713sched_feat_read(struct file *filp, char __user *ubuf,
714 size_t cnt, loff_t *ppos)
715{
716 char *buf;
717 int r = 0;
718 int len = 0;
719 int i;
720
721 for (i = 0; sched_feat_names[i]; i++) {
722 len += strlen(sched_feat_names[i]);
723 len += 4;
724 }
725
726 buf = kmalloc(len + 2, GFP_KERNEL);
727 if (!buf)
728 return -ENOMEM;
729
730 for (i = 0; sched_feat_names[i]; i++) {
731 if (sysctl_sched_features & (1UL << i))
732 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
733 else
c24b7c52 734 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
735 }
736
737 r += sprintf(buf + r, "\n");
738 WARN_ON(r >= len + 2);
739
740 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
741
742 kfree(buf);
743
744 return r;
745}
746
747static ssize_t
748sched_feat_write(struct file *filp, const char __user *ubuf,
749 size_t cnt, loff_t *ppos)
750{
751 char buf[64];
752 char *cmp = buf;
753 int neg = 0;
754 int i;
755
756 if (cnt > 63)
757 cnt = 63;
758
759 if (copy_from_user(&buf, ubuf, cnt))
760 return -EFAULT;
761
762 buf[cnt] = 0;
763
c24b7c52 764 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
765 neg = 1;
766 cmp += 3;
767 }
768
769 for (i = 0; sched_feat_names[i]; i++) {
770 int len = strlen(sched_feat_names[i]);
771
772 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
773 if (neg)
774 sysctl_sched_features &= ~(1UL << i);
775 else
776 sysctl_sched_features |= (1UL << i);
777 break;
778 }
779 }
780
781 if (!sched_feat_names[i])
782 return -EINVAL;
783
784 filp->f_pos += cnt;
785
786 return cnt;
787}
788
789static struct file_operations sched_feat_fops = {
790 .open = sched_feat_open,
791 .read = sched_feat_read,
792 .write = sched_feat_write,
793};
794
795static __init int sched_init_debug(void)
796{
f00b45c1
PZ
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
798 &sched_feat_fops);
799
800 return 0;
801}
802late_initcall(sched_init_debug);
803
804#endif
805
806#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 807
b82d9fdd
PZ
808/*
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
811 */
812const_debug unsigned int sysctl_sched_nr_migrate = 32;
813
2398f2c6
PZ
814/*
815 * ratelimit for updating the group shares.
55cd5340 816 * default: 0.25ms
2398f2c6 817 */
55cd5340 818unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 819
ffda12a1
PZ
820/*
821 * Inject some fuzzyness into changing the per-cpu group shares
822 * this avoids remote rq-locks at the expense of fairness.
823 * default: 4
824 */
825unsigned int sysctl_sched_shares_thresh = 4;
826
fa85ae24 827/*
9f0c1e56 828 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
829 * default: 1s
830 */
9f0c1e56 831unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 832
6892b75e
IM
833static __read_mostly int scheduler_running;
834
9f0c1e56
PZ
835/*
836 * part of the period that we allow rt tasks to run in us.
837 * default: 0.95s
838 */
839int sysctl_sched_rt_runtime = 950000;
fa85ae24 840
d0b27fa7
PZ
841static inline u64 global_rt_period(void)
842{
843 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
844}
845
846static inline u64 global_rt_runtime(void)
847{
e26873bb 848 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
849 return RUNTIME_INF;
850
851 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
852}
fa85ae24 853
1da177e4 854#ifndef prepare_arch_switch
4866cde0
NP
855# define prepare_arch_switch(next) do { } while (0)
856#endif
857#ifndef finish_arch_switch
858# define finish_arch_switch(prev) do { } while (0)
859#endif
860
051a1d1a
DA
861static inline int task_current(struct rq *rq, struct task_struct *p)
862{
863 return rq->curr == p;
864}
865
4866cde0 866#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 867static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 868{
051a1d1a 869 return task_current(rq, p);
4866cde0
NP
870}
871
70b97a7f 872static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
873{
874}
875
70b97a7f 876static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 877{
da04c035
IM
878#ifdef CONFIG_DEBUG_SPINLOCK
879 /* this is a valid case when another task releases the spinlock */
880 rq->lock.owner = current;
881#endif
8a25d5de
IM
882 /*
883 * If we are tracking spinlock dependencies then we have to
884 * fix up the runqueue lock - which gets 'carried over' from
885 * prev into current:
886 */
887 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
888
4866cde0
NP
889 spin_unlock_irq(&rq->lock);
890}
891
892#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 893static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
894{
895#ifdef CONFIG_SMP
896 return p->oncpu;
897#else
051a1d1a 898 return task_current(rq, p);
4866cde0
NP
899#endif
900}
901
70b97a7f 902static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
903{
904#ifdef CONFIG_SMP
905 /*
906 * We can optimise this out completely for !SMP, because the
907 * SMP rebalancing from interrupt is the only thing that cares
908 * here.
909 */
910 next->oncpu = 1;
911#endif
912#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
913 spin_unlock_irq(&rq->lock);
914#else
915 spin_unlock(&rq->lock);
916#endif
917}
918
70b97a7f 919static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
920{
921#ifdef CONFIG_SMP
922 /*
923 * After ->oncpu is cleared, the task can be moved to a different CPU.
924 * We must ensure this doesn't happen until the switch is completely
925 * finished.
926 */
927 smp_wmb();
928 prev->oncpu = 0;
929#endif
930#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
931 local_irq_enable();
1da177e4 932#endif
4866cde0
NP
933}
934#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 935
b29739f9
IM
936/*
937 * __task_rq_lock - lock the runqueue a given task resides on.
938 * Must be called interrupts disabled.
939 */
70b97a7f 940static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
941 __acquires(rq->lock)
942{
3a5c359a
AK
943 for (;;) {
944 struct rq *rq = task_rq(p);
945 spin_lock(&rq->lock);
946 if (likely(rq == task_rq(p)))
947 return rq;
b29739f9 948 spin_unlock(&rq->lock);
b29739f9 949 }
b29739f9
IM
950}
951
1da177e4
LT
952/*
953 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 954 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
955 * explicitly disabling preemption.
956 */
70b97a7f 957static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
958 __acquires(rq->lock)
959{
70b97a7f 960 struct rq *rq;
1da177e4 961
3a5c359a
AK
962 for (;;) {
963 local_irq_save(*flags);
964 rq = task_rq(p);
965 spin_lock(&rq->lock);
966 if (likely(rq == task_rq(p)))
967 return rq;
1da177e4 968 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 969 }
1da177e4
LT
970}
971
ad474cac
ON
972void task_rq_unlock_wait(struct task_struct *p)
973{
974 struct rq *rq = task_rq(p);
975
976 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
977 spin_unlock_wait(&rq->lock);
978}
979
a9957449 980static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
981 __releases(rq->lock)
982{
983 spin_unlock(&rq->lock);
984}
985
70b97a7f 986static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
987 __releases(rq->lock)
988{
989 spin_unlock_irqrestore(&rq->lock, *flags);
990}
991
1da177e4 992/*
cc2a73b5 993 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 994 */
a9957449 995static struct rq *this_rq_lock(void)
1da177e4
LT
996 __acquires(rq->lock)
997{
70b97a7f 998 struct rq *rq;
1da177e4
LT
999
1000 local_irq_disable();
1001 rq = this_rq();
1002 spin_lock(&rq->lock);
1003
1004 return rq;
1005}
1006
8f4d37ec
PZ
1007#ifdef CONFIG_SCHED_HRTICK
1008/*
1009 * Use HR-timers to deliver accurate preemption points.
1010 *
1011 * Its all a bit involved since we cannot program an hrt while holding the
1012 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1013 * reschedule event.
1014 *
1015 * When we get rescheduled we reprogram the hrtick_timer outside of the
1016 * rq->lock.
1017 */
8f4d37ec
PZ
1018
1019/*
1020 * Use hrtick when:
1021 * - enabled by features
1022 * - hrtimer is actually high res
1023 */
1024static inline int hrtick_enabled(struct rq *rq)
1025{
1026 if (!sched_feat(HRTICK))
1027 return 0;
ba42059f 1028 if (!cpu_active(cpu_of(rq)))
b328ca18 1029 return 0;
8f4d37ec
PZ
1030 return hrtimer_is_hres_active(&rq->hrtick_timer);
1031}
1032
8f4d37ec
PZ
1033static void hrtick_clear(struct rq *rq)
1034{
1035 if (hrtimer_active(&rq->hrtick_timer))
1036 hrtimer_cancel(&rq->hrtick_timer);
1037}
1038
8f4d37ec
PZ
1039/*
1040 * High-resolution timer tick.
1041 * Runs from hardirq context with interrupts disabled.
1042 */
1043static enum hrtimer_restart hrtick(struct hrtimer *timer)
1044{
1045 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1046
1047 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1048
1049 spin_lock(&rq->lock);
3e51f33f 1050 update_rq_clock(rq);
8f4d37ec
PZ
1051 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1052 spin_unlock(&rq->lock);
1053
1054 return HRTIMER_NORESTART;
1055}
1056
95e904c7 1057#ifdef CONFIG_SMP
31656519
PZ
1058/*
1059 * called from hardirq (IPI) context
1060 */
1061static void __hrtick_start(void *arg)
b328ca18 1062{
31656519 1063 struct rq *rq = arg;
b328ca18 1064
31656519
PZ
1065 spin_lock(&rq->lock);
1066 hrtimer_restart(&rq->hrtick_timer);
1067 rq->hrtick_csd_pending = 0;
1068 spin_unlock(&rq->lock);
b328ca18
PZ
1069}
1070
31656519
PZ
1071/*
1072 * Called to set the hrtick timer state.
1073 *
1074 * called with rq->lock held and irqs disabled
1075 */
1076static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1077{
31656519
PZ
1078 struct hrtimer *timer = &rq->hrtick_timer;
1079 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1080
cc584b21 1081 hrtimer_set_expires(timer, time);
31656519
PZ
1082
1083 if (rq == this_rq()) {
1084 hrtimer_restart(timer);
1085 } else if (!rq->hrtick_csd_pending) {
1086 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1087 rq->hrtick_csd_pending = 1;
1088 }
b328ca18
PZ
1089}
1090
1091static int
1092hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1093{
1094 int cpu = (int)(long)hcpu;
1095
1096 switch (action) {
1097 case CPU_UP_CANCELED:
1098 case CPU_UP_CANCELED_FROZEN:
1099 case CPU_DOWN_PREPARE:
1100 case CPU_DOWN_PREPARE_FROZEN:
1101 case CPU_DEAD:
1102 case CPU_DEAD_FROZEN:
31656519 1103 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1104 return NOTIFY_OK;
1105 }
1106
1107 return NOTIFY_DONE;
1108}
1109
fa748203 1110static __init void init_hrtick(void)
b328ca18
PZ
1111{
1112 hotcpu_notifier(hotplug_hrtick, 0);
1113}
31656519
PZ
1114#else
1115/*
1116 * Called to set the hrtick timer state.
1117 *
1118 * called with rq->lock held and irqs disabled
1119 */
1120static void hrtick_start(struct rq *rq, u64 delay)
1121{
1122 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1123}
b328ca18 1124
006c75f1 1125static inline void init_hrtick(void)
8f4d37ec 1126{
8f4d37ec 1127}
31656519 1128#endif /* CONFIG_SMP */
8f4d37ec 1129
31656519 1130static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1131{
31656519
PZ
1132#ifdef CONFIG_SMP
1133 rq->hrtick_csd_pending = 0;
8f4d37ec 1134
31656519
PZ
1135 rq->hrtick_csd.flags = 0;
1136 rq->hrtick_csd.func = __hrtick_start;
1137 rq->hrtick_csd.info = rq;
1138#endif
8f4d37ec 1139
31656519
PZ
1140 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1141 rq->hrtick_timer.function = hrtick;
ccc7dadf 1142 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
8f4d37ec 1143}
006c75f1 1144#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1145static inline void hrtick_clear(struct rq *rq)
1146{
1147}
1148
8f4d37ec
PZ
1149static inline void init_rq_hrtick(struct rq *rq)
1150{
1151}
1152
b328ca18
PZ
1153static inline void init_hrtick(void)
1154{
1155}
006c75f1 1156#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1157
c24d20db
IM
1158/*
1159 * resched_task - mark a task 'to be rescheduled now'.
1160 *
1161 * On UP this means the setting of the need_resched flag, on SMP it
1162 * might also involve a cross-CPU call to trigger the scheduler on
1163 * the target CPU.
1164 */
1165#ifdef CONFIG_SMP
1166
1167#ifndef tsk_is_polling
1168#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1169#endif
1170
31656519 1171static void resched_task(struct task_struct *p)
c24d20db
IM
1172{
1173 int cpu;
1174
1175 assert_spin_locked(&task_rq(p)->lock);
1176
31656519 1177 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
c24d20db
IM
1178 return;
1179
31656519 1180 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
c24d20db
IM
1181
1182 cpu = task_cpu(p);
1183 if (cpu == smp_processor_id())
1184 return;
1185
1186 /* NEED_RESCHED must be visible before we test polling */
1187 smp_mb();
1188 if (!tsk_is_polling(p))
1189 smp_send_reschedule(cpu);
1190}
1191
1192static void resched_cpu(int cpu)
1193{
1194 struct rq *rq = cpu_rq(cpu);
1195 unsigned long flags;
1196
1197 if (!spin_trylock_irqsave(&rq->lock, flags))
1198 return;
1199 resched_task(cpu_curr(cpu));
1200 spin_unlock_irqrestore(&rq->lock, flags);
1201}
06d8308c
TG
1202
1203#ifdef CONFIG_NO_HZ
1204/*
1205 * When add_timer_on() enqueues a timer into the timer wheel of an
1206 * idle CPU then this timer might expire before the next timer event
1207 * which is scheduled to wake up that CPU. In case of a completely
1208 * idle system the next event might even be infinite time into the
1209 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1210 * leaves the inner idle loop so the newly added timer is taken into
1211 * account when the CPU goes back to idle and evaluates the timer
1212 * wheel for the next timer event.
1213 */
1214void wake_up_idle_cpu(int cpu)
1215{
1216 struct rq *rq = cpu_rq(cpu);
1217
1218 if (cpu == smp_processor_id())
1219 return;
1220
1221 /*
1222 * This is safe, as this function is called with the timer
1223 * wheel base lock of (cpu) held. When the CPU is on the way
1224 * to idle and has not yet set rq->curr to idle then it will
1225 * be serialized on the timer wheel base lock and take the new
1226 * timer into account automatically.
1227 */
1228 if (rq->curr != rq->idle)
1229 return;
1230
1231 /*
1232 * We can set TIF_RESCHED on the idle task of the other CPU
1233 * lockless. The worst case is that the other CPU runs the
1234 * idle task through an additional NOOP schedule()
1235 */
1236 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1237
1238 /* NEED_RESCHED must be visible before we test polling */
1239 smp_mb();
1240 if (!tsk_is_polling(rq->idle))
1241 smp_send_reschedule(cpu);
1242}
6d6bc0ad 1243#endif /* CONFIG_NO_HZ */
06d8308c 1244
6d6bc0ad 1245#else /* !CONFIG_SMP */
31656519 1246static void resched_task(struct task_struct *p)
c24d20db
IM
1247{
1248 assert_spin_locked(&task_rq(p)->lock);
31656519 1249 set_tsk_need_resched(p);
c24d20db 1250}
6d6bc0ad 1251#endif /* CONFIG_SMP */
c24d20db 1252
45bf76df
IM
1253#if BITS_PER_LONG == 32
1254# define WMULT_CONST (~0UL)
1255#else
1256# define WMULT_CONST (1UL << 32)
1257#endif
1258
1259#define WMULT_SHIFT 32
1260
194081eb
IM
1261/*
1262 * Shift right and round:
1263 */
cf2ab469 1264#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1265
a7be37ac
PZ
1266/*
1267 * delta *= weight / lw
1268 */
cb1c4fc9 1269static unsigned long
45bf76df
IM
1270calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1271 struct load_weight *lw)
1272{
1273 u64 tmp;
1274
7a232e03
LJ
1275 if (!lw->inv_weight) {
1276 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1277 lw->inv_weight = 1;
1278 else
1279 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1280 / (lw->weight+1);
1281 }
45bf76df
IM
1282
1283 tmp = (u64)delta_exec * weight;
1284 /*
1285 * Check whether we'd overflow the 64-bit multiplication:
1286 */
194081eb 1287 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1288 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1289 WMULT_SHIFT/2);
1290 else
cf2ab469 1291 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1292
ecf691da 1293 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1294}
1295
1091985b 1296static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1297{
1298 lw->weight += inc;
e89996ae 1299 lw->inv_weight = 0;
45bf76df
IM
1300}
1301
1091985b 1302static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1303{
1304 lw->weight -= dec;
e89996ae 1305 lw->inv_weight = 0;
45bf76df
IM
1306}
1307
2dd73a4f
PW
1308/*
1309 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1310 * of tasks with abnormal "nice" values across CPUs the contribution that
1311 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1312 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1313 * scaled version of the new time slice allocation that they receive on time
1314 * slice expiry etc.
1315 */
1316
dd41f596
IM
1317#define WEIGHT_IDLEPRIO 2
1318#define WMULT_IDLEPRIO (1 << 31)
1319
1320/*
1321 * Nice levels are multiplicative, with a gentle 10% change for every
1322 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1323 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1324 * that remained on nice 0.
1325 *
1326 * The "10% effect" is relative and cumulative: from _any_ nice level,
1327 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1328 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1329 * If a task goes up by ~10% and another task goes down by ~10% then
1330 * the relative distance between them is ~25%.)
dd41f596
IM
1331 */
1332static const int prio_to_weight[40] = {
254753dc
IM
1333 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1334 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1335 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1336 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1337 /* 0 */ 1024, 820, 655, 526, 423,
1338 /* 5 */ 335, 272, 215, 172, 137,
1339 /* 10 */ 110, 87, 70, 56, 45,
1340 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1341};
1342
5714d2de
IM
1343/*
1344 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1345 *
1346 * In cases where the weight does not change often, we can use the
1347 * precalculated inverse to speed up arithmetics by turning divisions
1348 * into multiplications:
1349 */
dd41f596 1350static const u32 prio_to_wmult[40] = {
254753dc
IM
1351 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1352 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1353 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1354 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1355 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1356 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1357 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1358 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1359};
2dd73a4f 1360
dd41f596
IM
1361static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1362
1363/*
1364 * runqueue iterator, to support SMP load-balancing between different
1365 * scheduling classes, without having to expose their internal data
1366 * structures to the load-balancing proper:
1367 */
1368struct rq_iterator {
1369 void *arg;
1370 struct task_struct *(*start)(void *);
1371 struct task_struct *(*next)(void *);
1372};
1373
e1d1484f
PW
1374#ifdef CONFIG_SMP
1375static unsigned long
1376balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1377 unsigned long max_load_move, struct sched_domain *sd,
1378 enum cpu_idle_type idle, int *all_pinned,
1379 int *this_best_prio, struct rq_iterator *iterator);
1380
1381static int
1382iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1383 struct sched_domain *sd, enum cpu_idle_type idle,
1384 struct rq_iterator *iterator);
e1d1484f 1385#endif
dd41f596 1386
d842de87
SV
1387#ifdef CONFIG_CGROUP_CPUACCT
1388static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1389#else
1390static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1391#endif
1392
18d95a28
PZ
1393static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1394{
1395 update_load_add(&rq->load, load);
1396}
1397
1398static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1399{
1400 update_load_sub(&rq->load, load);
1401}
1402
7940ca36 1403#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1404typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1405
1406/*
1407 * Iterate the full tree, calling @down when first entering a node and @up when
1408 * leaving it for the final time.
1409 */
eb755805 1410static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1411{
1412 struct task_group *parent, *child;
eb755805 1413 int ret;
c09595f6
PZ
1414
1415 rcu_read_lock();
1416 parent = &root_task_group;
1417down:
eb755805
PZ
1418 ret = (*down)(parent, data);
1419 if (ret)
1420 goto out_unlock;
c09595f6
PZ
1421 list_for_each_entry_rcu(child, &parent->children, siblings) {
1422 parent = child;
1423 goto down;
1424
1425up:
1426 continue;
1427 }
eb755805
PZ
1428 ret = (*up)(parent, data);
1429 if (ret)
1430 goto out_unlock;
c09595f6
PZ
1431
1432 child = parent;
1433 parent = parent->parent;
1434 if (parent)
1435 goto up;
eb755805 1436out_unlock:
c09595f6 1437 rcu_read_unlock();
eb755805
PZ
1438
1439 return ret;
c09595f6
PZ
1440}
1441
eb755805
PZ
1442static int tg_nop(struct task_group *tg, void *data)
1443{
1444 return 0;
c09595f6 1445}
eb755805
PZ
1446#endif
1447
1448#ifdef CONFIG_SMP
1449static unsigned long source_load(int cpu, int type);
1450static unsigned long target_load(int cpu, int type);
1451static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1452
1453static unsigned long cpu_avg_load_per_task(int cpu)
1454{
1455 struct rq *rq = cpu_rq(cpu);
af6d596f 1456 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1457
4cd42620
SR
1458 if (nr_running)
1459 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1460 else
1461 rq->avg_load_per_task = 0;
eb755805
PZ
1462
1463 return rq->avg_load_per_task;
1464}
1465
1466#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1467
c09595f6
PZ
1468static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1469
1470/*
1471 * Calculate and set the cpu's group shares.
1472 */
1473static void
ffda12a1
PZ
1474update_group_shares_cpu(struct task_group *tg, int cpu,
1475 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1476{
c09595f6
PZ
1477 int boost = 0;
1478 unsigned long shares;
1479 unsigned long rq_weight;
1480
c8cba857 1481 if (!tg->se[cpu])
c09595f6
PZ
1482 return;
1483
c8cba857 1484 rq_weight = tg->cfs_rq[cpu]->load.weight;
c09595f6
PZ
1485
1486 /*
1487 * If there are currently no tasks on the cpu pretend there is one of
1488 * average load so that when a new task gets to run here it will not
1489 * get delayed by group starvation.
1490 */
1491 if (!rq_weight) {
1492 boost = 1;
1493 rq_weight = NICE_0_LOAD;
1494 }
1495
c8cba857
PZ
1496 if (unlikely(rq_weight > sd_rq_weight))
1497 rq_weight = sd_rq_weight;
1498
c09595f6
PZ
1499 /*
1500 * \Sum shares * rq_weight
1501 * shares = -----------------------
1502 * \Sum rq_weight
1503 *
1504 */
c8cba857 1505 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
ffda12a1 1506 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1507
ffda12a1
PZ
1508 if (abs(shares - tg->se[cpu]->load.weight) >
1509 sysctl_sched_shares_thresh) {
1510 struct rq *rq = cpu_rq(cpu);
1511 unsigned long flags;
c09595f6 1512
ffda12a1
PZ
1513 spin_lock_irqsave(&rq->lock, flags);
1514 /*
1515 * record the actual number of shares, not the boosted amount.
1516 */
1517 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1518 tg->cfs_rq[cpu]->rq_weight = rq_weight;
c09595f6 1519
ffda12a1
PZ
1520 __set_se_shares(tg->se[cpu], shares);
1521 spin_unlock_irqrestore(&rq->lock, flags);
1522 }
18d95a28 1523}
c09595f6
PZ
1524
1525/*
c8cba857
PZ
1526 * Re-compute the task group their per cpu shares over the given domain.
1527 * This needs to be done in a bottom-up fashion because the rq weight of a
1528 * parent group depends on the shares of its child groups.
c09595f6 1529 */
eb755805 1530static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1531{
c8cba857
PZ
1532 unsigned long rq_weight = 0;
1533 unsigned long shares = 0;
eb755805 1534 struct sched_domain *sd = data;
c8cba857 1535 int i;
c09595f6 1536
c8cba857
PZ
1537 for_each_cpu_mask(i, sd->span) {
1538 rq_weight += tg->cfs_rq[i]->load.weight;
1539 shares += tg->cfs_rq[i]->shares;
c09595f6 1540 }
c09595f6 1541
c8cba857
PZ
1542 if ((!shares && rq_weight) || shares > tg->shares)
1543 shares = tg->shares;
1544
1545 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1546 shares = tg->shares;
c09595f6 1547
cd80917e
PZ
1548 if (!rq_weight)
1549 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1550
ffda12a1
PZ
1551 for_each_cpu_mask(i, sd->span)
1552 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1553
1554 return 0;
c09595f6
PZ
1555}
1556
1557/*
c8cba857
PZ
1558 * Compute the cpu's hierarchical load factor for each task group.
1559 * This needs to be done in a top-down fashion because the load of a child
1560 * group is a fraction of its parents load.
c09595f6 1561 */
eb755805 1562static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1563{
c8cba857 1564 unsigned long load;
eb755805 1565 long cpu = (long)data;
c09595f6 1566
c8cba857
PZ
1567 if (!tg->parent) {
1568 load = cpu_rq(cpu)->load.weight;
1569 } else {
1570 load = tg->parent->cfs_rq[cpu]->h_load;
1571 load *= tg->cfs_rq[cpu]->shares;
1572 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1573 }
c09595f6 1574
c8cba857 1575 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1576
eb755805 1577 return 0;
c09595f6
PZ
1578}
1579
c8cba857 1580static void update_shares(struct sched_domain *sd)
4d8d595d 1581{
2398f2c6
PZ
1582 u64 now = cpu_clock(raw_smp_processor_id());
1583 s64 elapsed = now - sd->last_update;
1584
1585 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1586 sd->last_update = now;
eb755805 1587 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1588 }
4d8d595d
PZ
1589}
1590
3e5459b4
PZ
1591static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1592{
1593 spin_unlock(&rq->lock);
1594 update_shares(sd);
1595 spin_lock(&rq->lock);
1596}
1597
eb755805 1598static void update_h_load(long cpu)
c09595f6 1599{
eb755805 1600 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1601}
1602
c09595f6
PZ
1603#else
1604
c8cba857 1605static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1606{
1607}
1608
3e5459b4
PZ
1609static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1610{
1611}
1612
18d95a28
PZ
1613#endif
1614
18d95a28
PZ
1615#endif
1616
30432094 1617#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1618static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1619{
30432094 1620#ifdef CONFIG_SMP
34e83e85
IM
1621 cfs_rq->shares = shares;
1622#endif
1623}
30432094 1624#endif
e7693a36 1625
dd41f596 1626#include "sched_stats.h"
dd41f596 1627#include "sched_idletask.c"
5522d5d5
IM
1628#include "sched_fair.c"
1629#include "sched_rt.c"
dd41f596
IM
1630#ifdef CONFIG_SCHED_DEBUG
1631# include "sched_debug.c"
1632#endif
1633
1634#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1635#define for_each_class(class) \
1636 for (class = sched_class_highest; class; class = class->next)
dd41f596 1637
c09595f6 1638static void inc_nr_running(struct rq *rq)
9c217245
IM
1639{
1640 rq->nr_running++;
9c217245
IM
1641}
1642
c09595f6 1643static void dec_nr_running(struct rq *rq)
9c217245
IM
1644{
1645 rq->nr_running--;
9c217245
IM
1646}
1647
45bf76df
IM
1648static void set_load_weight(struct task_struct *p)
1649{
1650 if (task_has_rt_policy(p)) {
dd41f596
IM
1651 p->se.load.weight = prio_to_weight[0] * 2;
1652 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1653 return;
1654 }
45bf76df 1655
dd41f596
IM
1656 /*
1657 * SCHED_IDLE tasks get minimal weight:
1658 */
1659 if (p->policy == SCHED_IDLE) {
1660 p->se.load.weight = WEIGHT_IDLEPRIO;
1661 p->se.load.inv_weight = WMULT_IDLEPRIO;
1662 return;
1663 }
71f8bd46 1664
dd41f596
IM
1665 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1666 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1667}
1668
2087a1ad
GH
1669static void update_avg(u64 *avg, u64 sample)
1670{
1671 s64 diff = sample - *avg;
1672 *avg += diff >> 3;
1673}
1674
8159f87e 1675static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1676{
dd41f596 1677 sched_info_queued(p);
fd390f6a 1678 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1679 p->se.on_rq = 1;
71f8bd46
IM
1680}
1681
69be72c1 1682static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1683{
2087a1ad
GH
1684 if (sleep && p->se.last_wakeup) {
1685 update_avg(&p->se.avg_overlap,
1686 p->se.sum_exec_runtime - p->se.last_wakeup);
1687 p->se.last_wakeup = 0;
1688 }
1689
46ac22ba 1690 sched_info_dequeued(p);
f02231e5 1691 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1692 p->se.on_rq = 0;
71f8bd46
IM
1693}
1694
14531189 1695/*
dd41f596 1696 * __normal_prio - return the priority that is based on the static prio
14531189 1697 */
14531189
IM
1698static inline int __normal_prio(struct task_struct *p)
1699{
dd41f596 1700 return p->static_prio;
14531189
IM
1701}
1702
b29739f9
IM
1703/*
1704 * Calculate the expected normal priority: i.e. priority
1705 * without taking RT-inheritance into account. Might be
1706 * boosted by interactivity modifiers. Changes upon fork,
1707 * setprio syscalls, and whenever the interactivity
1708 * estimator recalculates.
1709 */
36c8b586 1710static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1711{
1712 int prio;
1713
e05606d3 1714 if (task_has_rt_policy(p))
b29739f9
IM
1715 prio = MAX_RT_PRIO-1 - p->rt_priority;
1716 else
1717 prio = __normal_prio(p);
1718 return prio;
1719}
1720
1721/*
1722 * Calculate the current priority, i.e. the priority
1723 * taken into account by the scheduler. This value might
1724 * be boosted by RT tasks, or might be boosted by
1725 * interactivity modifiers. Will be RT if the task got
1726 * RT-boosted. If not then it returns p->normal_prio.
1727 */
36c8b586 1728static int effective_prio(struct task_struct *p)
b29739f9
IM
1729{
1730 p->normal_prio = normal_prio(p);
1731 /*
1732 * If we are RT tasks or we were boosted to RT priority,
1733 * keep the priority unchanged. Otherwise, update priority
1734 * to the normal priority:
1735 */
1736 if (!rt_prio(p->prio))
1737 return p->normal_prio;
1738 return p->prio;
1739}
1740
1da177e4 1741/*
dd41f596 1742 * activate_task - move a task to the runqueue.
1da177e4 1743 */
dd41f596 1744static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1745{
d9514f6c 1746 if (task_contributes_to_load(p))
dd41f596 1747 rq->nr_uninterruptible--;
1da177e4 1748
8159f87e 1749 enqueue_task(rq, p, wakeup);
c09595f6 1750 inc_nr_running(rq);
1da177e4
LT
1751}
1752
1da177e4
LT
1753/*
1754 * deactivate_task - remove a task from the runqueue.
1755 */
2e1cb74a 1756static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1757{
d9514f6c 1758 if (task_contributes_to_load(p))
dd41f596
IM
1759 rq->nr_uninterruptible++;
1760
69be72c1 1761 dequeue_task(rq, p, sleep);
c09595f6 1762 dec_nr_running(rq);
1da177e4
LT
1763}
1764
1da177e4
LT
1765/**
1766 * task_curr - is this task currently executing on a CPU?
1767 * @p: the task in question.
1768 */
36c8b586 1769inline int task_curr(const struct task_struct *p)
1da177e4
LT
1770{
1771 return cpu_curr(task_cpu(p)) == p;
1772}
1773
dd41f596
IM
1774static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1775{
6f505b16 1776 set_task_rq(p, cpu);
dd41f596 1777#ifdef CONFIG_SMP
ce96b5ac
DA
1778 /*
1779 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1780 * successfuly executed on another CPU. We must ensure that updates of
1781 * per-task data have been completed by this moment.
1782 */
1783 smp_wmb();
dd41f596 1784 task_thread_info(p)->cpu = cpu;
dd41f596 1785#endif
2dd73a4f
PW
1786}
1787
cb469845
SR
1788static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1789 const struct sched_class *prev_class,
1790 int oldprio, int running)
1791{
1792 if (prev_class != p->sched_class) {
1793 if (prev_class->switched_from)
1794 prev_class->switched_from(rq, p, running);
1795 p->sched_class->switched_to(rq, p, running);
1796 } else
1797 p->sched_class->prio_changed(rq, p, oldprio, running);
1798}
1799
1da177e4 1800#ifdef CONFIG_SMP
c65cc870 1801
e958b360
TG
1802/* Used instead of source_load when we know the type == 0 */
1803static unsigned long weighted_cpuload(const int cpu)
1804{
1805 return cpu_rq(cpu)->load.weight;
1806}
1807
cc367732
IM
1808/*
1809 * Is this task likely cache-hot:
1810 */
e7693a36 1811static int
cc367732
IM
1812task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1813{
1814 s64 delta;
1815
f540a608
IM
1816 /*
1817 * Buddy candidates are cache hot:
1818 */
4793241b
PZ
1819 if (sched_feat(CACHE_HOT_BUDDY) &&
1820 (&p->se == cfs_rq_of(&p->se)->next ||
1821 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1822 return 1;
1823
cc367732
IM
1824 if (p->sched_class != &fair_sched_class)
1825 return 0;
1826
6bc1665b
IM
1827 if (sysctl_sched_migration_cost == -1)
1828 return 1;
1829 if (sysctl_sched_migration_cost == 0)
1830 return 0;
1831
cc367732
IM
1832 delta = now - p->se.exec_start;
1833
1834 return delta < (s64)sysctl_sched_migration_cost;
1835}
1836
1837
dd41f596 1838void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1839{
dd41f596
IM
1840 int old_cpu = task_cpu(p);
1841 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1842 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1843 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1844 u64 clock_offset;
dd41f596
IM
1845
1846 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1847
1848#ifdef CONFIG_SCHEDSTATS
1849 if (p->se.wait_start)
1850 p->se.wait_start -= clock_offset;
dd41f596
IM
1851 if (p->se.sleep_start)
1852 p->se.sleep_start -= clock_offset;
1853 if (p->se.block_start)
1854 p->se.block_start -= clock_offset;
6c594c21 1855#endif
cc367732 1856 if (old_cpu != new_cpu) {
6c594c21
IM
1857 p->se.nr_migrations++;
1858#ifdef CONFIG_SCHEDSTATS
cc367732
IM
1859 if (task_hot(p, old_rq->clock, NULL))
1860 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 1861#endif
6c594c21 1862 }
2830cf8c
SV
1863 p->se.vruntime -= old_cfsrq->min_vruntime -
1864 new_cfsrq->min_vruntime;
dd41f596
IM
1865
1866 __set_task_cpu(p, new_cpu);
c65cc870
IM
1867}
1868
70b97a7f 1869struct migration_req {
1da177e4 1870 struct list_head list;
1da177e4 1871
36c8b586 1872 struct task_struct *task;
1da177e4
LT
1873 int dest_cpu;
1874
1da177e4 1875 struct completion done;
70b97a7f 1876};
1da177e4
LT
1877
1878/*
1879 * The task's runqueue lock must be held.
1880 * Returns true if you have to wait for migration thread.
1881 */
36c8b586 1882static int
70b97a7f 1883migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1884{
70b97a7f 1885 struct rq *rq = task_rq(p);
1da177e4
LT
1886
1887 /*
1888 * If the task is not on a runqueue (and not running), then
1889 * it is sufficient to simply update the task's cpu field.
1890 */
dd41f596 1891 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1892 set_task_cpu(p, dest_cpu);
1893 return 0;
1894 }
1895
1896 init_completion(&req->done);
1da177e4
LT
1897 req->task = p;
1898 req->dest_cpu = dest_cpu;
1899 list_add(&req->list, &rq->migration_queue);
48f24c4d 1900
1da177e4
LT
1901 return 1;
1902}
1903
1904/*
1905 * wait_task_inactive - wait for a thread to unschedule.
1906 *
85ba2d86
RM
1907 * If @match_state is nonzero, it's the @p->state value just checked and
1908 * not expected to change. If it changes, i.e. @p might have woken up,
1909 * then return zero. When we succeed in waiting for @p to be off its CPU,
1910 * we return a positive number (its total switch count). If a second call
1911 * a short while later returns the same number, the caller can be sure that
1912 * @p has remained unscheduled the whole time.
1913 *
1da177e4
LT
1914 * The caller must ensure that the task *will* unschedule sometime soon,
1915 * else this function might spin for a *long* time. This function can't
1916 * be called with interrupts off, or it may introduce deadlock with
1917 * smp_call_function() if an IPI is sent by the same process we are
1918 * waiting to become inactive.
1919 */
85ba2d86 1920unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1921{
1922 unsigned long flags;
dd41f596 1923 int running, on_rq;
85ba2d86 1924 unsigned long ncsw;
70b97a7f 1925 struct rq *rq;
1da177e4 1926
3a5c359a
AK
1927 for (;;) {
1928 /*
1929 * We do the initial early heuristics without holding
1930 * any task-queue locks at all. We'll only try to get
1931 * the runqueue lock when things look like they will
1932 * work out!
1933 */
1934 rq = task_rq(p);
fa490cfd 1935
3a5c359a
AK
1936 /*
1937 * If the task is actively running on another CPU
1938 * still, just relax and busy-wait without holding
1939 * any locks.
1940 *
1941 * NOTE! Since we don't hold any locks, it's not
1942 * even sure that "rq" stays as the right runqueue!
1943 * But we don't care, since "task_running()" will
1944 * return false if the runqueue has changed and p
1945 * is actually now running somewhere else!
1946 */
85ba2d86
RM
1947 while (task_running(rq, p)) {
1948 if (match_state && unlikely(p->state != match_state))
1949 return 0;
3a5c359a 1950 cpu_relax();
85ba2d86 1951 }
fa490cfd 1952
3a5c359a
AK
1953 /*
1954 * Ok, time to look more closely! We need the rq
1955 * lock now, to be *sure*. If we're wrong, we'll
1956 * just go back and repeat.
1957 */
1958 rq = task_rq_lock(p, &flags);
0a16b607 1959 trace_sched_wait_task(rq, p);
3a5c359a
AK
1960 running = task_running(rq, p);
1961 on_rq = p->se.on_rq;
85ba2d86 1962 ncsw = 0;
f31e11d8 1963 if (!match_state || p->state == match_state)
93dcf55f 1964 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 1965 task_rq_unlock(rq, &flags);
fa490cfd 1966
85ba2d86
RM
1967 /*
1968 * If it changed from the expected state, bail out now.
1969 */
1970 if (unlikely(!ncsw))
1971 break;
1972
3a5c359a
AK
1973 /*
1974 * Was it really running after all now that we
1975 * checked with the proper locks actually held?
1976 *
1977 * Oops. Go back and try again..
1978 */
1979 if (unlikely(running)) {
1980 cpu_relax();
1981 continue;
1982 }
fa490cfd 1983
3a5c359a
AK
1984 /*
1985 * It's not enough that it's not actively running,
1986 * it must be off the runqueue _entirely_, and not
1987 * preempted!
1988 *
1989 * So if it wa still runnable (but just not actively
1990 * running right now), it's preempted, and we should
1991 * yield - it could be a while.
1992 */
1993 if (unlikely(on_rq)) {
1994 schedule_timeout_uninterruptible(1);
1995 continue;
1996 }
fa490cfd 1997
3a5c359a
AK
1998 /*
1999 * Ahh, all good. It wasn't running, and it wasn't
2000 * runnable, which means that it will never become
2001 * running in the future either. We're all done!
2002 */
2003 break;
2004 }
85ba2d86
RM
2005
2006 return ncsw;
1da177e4
LT
2007}
2008
2009/***
2010 * kick_process - kick a running thread to enter/exit the kernel
2011 * @p: the to-be-kicked thread
2012 *
2013 * Cause a process which is running on another CPU to enter
2014 * kernel-mode, without any delay. (to get signals handled.)
2015 *
2016 * NOTE: this function doesnt have to take the runqueue lock,
2017 * because all it wants to ensure is that the remote task enters
2018 * the kernel. If the IPI races and the task has been migrated
2019 * to another CPU then no harm is done and the purpose has been
2020 * achieved as well.
2021 */
36c8b586 2022void kick_process(struct task_struct *p)
1da177e4
LT
2023{
2024 int cpu;
2025
2026 preempt_disable();
2027 cpu = task_cpu(p);
2028 if ((cpu != smp_processor_id()) && task_curr(p))
2029 smp_send_reschedule(cpu);
2030 preempt_enable();
2031}
2032
2033/*
2dd73a4f
PW
2034 * Return a low guess at the load of a migration-source cpu weighted
2035 * according to the scheduling class and "nice" value.
1da177e4
LT
2036 *
2037 * We want to under-estimate the load of migration sources, to
2038 * balance conservatively.
2039 */
a9957449 2040static unsigned long source_load(int cpu, int type)
1da177e4 2041{
70b97a7f 2042 struct rq *rq = cpu_rq(cpu);
dd41f596 2043 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2044
93b75217 2045 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2046 return total;
b910472d 2047
dd41f596 2048 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2049}
2050
2051/*
2dd73a4f
PW
2052 * Return a high guess at the load of a migration-target cpu weighted
2053 * according to the scheduling class and "nice" value.
1da177e4 2054 */
a9957449 2055static unsigned long target_load(int cpu, int type)
1da177e4 2056{
70b97a7f 2057 struct rq *rq = cpu_rq(cpu);
dd41f596 2058 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2059
93b75217 2060 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2061 return total;
3b0bd9bc 2062
dd41f596 2063 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2064}
2065
147cbb4b
NP
2066/*
2067 * find_idlest_group finds and returns the least busy CPU group within the
2068 * domain.
2069 */
2070static struct sched_group *
2071find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2072{
2073 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2074 unsigned long min_load = ULONG_MAX, this_load = 0;
2075 int load_idx = sd->forkexec_idx;
2076 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2077
2078 do {
2079 unsigned long load, avg_load;
2080 int local_group;
2081 int i;
2082
da5a5522
BD
2083 /* Skip over this group if it has no CPUs allowed */
2084 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 2085 continue;
da5a5522 2086
147cbb4b 2087 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
2088
2089 /* Tally up the load of all CPUs in the group */
2090 avg_load = 0;
2091
363ab6f1 2092 for_each_cpu_mask_nr(i, group->cpumask) {
147cbb4b
NP
2093 /* Bias balancing toward cpus of our domain */
2094 if (local_group)
2095 load = source_load(i, load_idx);
2096 else
2097 load = target_load(i, load_idx);
2098
2099 avg_load += load;
2100 }
2101
2102 /* Adjust by relative CPU power of the group */
5517d86b
ED
2103 avg_load = sg_div_cpu_power(group,
2104 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2105
2106 if (local_group) {
2107 this_load = avg_load;
2108 this = group;
2109 } else if (avg_load < min_load) {
2110 min_load = avg_load;
2111 idlest = group;
2112 }
3a5c359a 2113 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2114
2115 if (!idlest || 100*this_load < imbalance*min_load)
2116 return NULL;
2117 return idlest;
2118}
2119
2120/*
0feaece9 2121 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2122 */
95cdf3b7 2123static int
7c16ec58
MT
2124find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2125 cpumask_t *tmp)
147cbb4b
NP
2126{
2127 unsigned long load, min_load = ULONG_MAX;
2128 int idlest = -1;
2129 int i;
2130
da5a5522 2131 /* Traverse only the allowed CPUs */
7c16ec58 2132 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 2133
363ab6f1 2134 for_each_cpu_mask_nr(i, *tmp) {
2dd73a4f 2135 load = weighted_cpuload(i);
147cbb4b
NP
2136
2137 if (load < min_load || (load == min_load && i == this_cpu)) {
2138 min_load = load;
2139 idlest = i;
2140 }
2141 }
2142
2143 return idlest;
2144}
2145
476d139c
NP
2146/*
2147 * sched_balance_self: balance the current task (running on cpu) in domains
2148 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2149 * SD_BALANCE_EXEC.
2150 *
2151 * Balance, ie. select the least loaded group.
2152 *
2153 * Returns the target CPU number, or the same CPU if no balancing is needed.
2154 *
2155 * preempt must be disabled.
2156 */
2157static int sched_balance_self(int cpu, int flag)
2158{
2159 struct task_struct *t = current;
2160 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2161
c96d145e 2162 for_each_domain(cpu, tmp) {
9761eea8
IM
2163 /*
2164 * If power savings logic is enabled for a domain, stop there.
2165 */
5c45bf27
SS
2166 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2167 break;
476d139c
NP
2168 if (tmp->flags & flag)
2169 sd = tmp;
c96d145e 2170 }
476d139c 2171
039a1c41
PZ
2172 if (sd)
2173 update_shares(sd);
2174
476d139c 2175 while (sd) {
7c16ec58 2176 cpumask_t span, tmpmask;
476d139c 2177 struct sched_group *group;
1a848870
SS
2178 int new_cpu, weight;
2179
2180 if (!(sd->flags & flag)) {
2181 sd = sd->child;
2182 continue;
2183 }
476d139c
NP
2184
2185 span = sd->span;
2186 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2187 if (!group) {
2188 sd = sd->child;
2189 continue;
2190 }
476d139c 2191
7c16ec58 2192 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2193 if (new_cpu == -1 || new_cpu == cpu) {
2194 /* Now try balancing at a lower domain level of cpu */
2195 sd = sd->child;
2196 continue;
2197 }
476d139c 2198
1a848870 2199 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2200 cpu = new_cpu;
476d139c
NP
2201 sd = NULL;
2202 weight = cpus_weight(span);
2203 for_each_domain(cpu, tmp) {
2204 if (weight <= cpus_weight(tmp->span))
2205 break;
2206 if (tmp->flags & flag)
2207 sd = tmp;
2208 }
2209 /* while loop will break here if sd == NULL */
2210 }
2211
2212 return cpu;
2213}
2214
2215#endif /* CONFIG_SMP */
1da177e4 2216
0793a61d
TG
2217/**
2218 * task_oncpu_function_call - call a function on the cpu on which a task runs
2219 * @p: the task to evaluate
2220 * @func: the function to be called
2221 * @info: the function call argument
2222 *
2223 * Calls the function @func when the task is currently running. This might
2224 * be on the current CPU, which just calls the function directly
2225 */
2226void task_oncpu_function_call(struct task_struct *p,
2227 void (*func) (void *info), void *info)
2228{
2229 int cpu;
2230
2231 preempt_disable();
2232 cpu = task_cpu(p);
2233 if (task_curr(p))
2234 smp_call_function_single(cpu, func, info, 1);
2235 preempt_enable();
2236}
2237
1da177e4
LT
2238/***
2239 * try_to_wake_up - wake up a thread
2240 * @p: the to-be-woken-up thread
2241 * @state: the mask of task states that can be woken
2242 * @sync: do a synchronous wakeup?
2243 *
2244 * Put it on the run-queue if it's not already there. The "current"
2245 * thread is always on the run-queue (except when the actual
2246 * re-schedule is in progress), and as such you're allowed to do
2247 * the simpler "current->state = TASK_RUNNING" to mark yourself
2248 * runnable without the overhead of this.
2249 *
2250 * returns failure only if the task is already active.
2251 */
36c8b586 2252static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2253{
cc367732 2254 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2255 unsigned long flags;
2256 long old_state;
70b97a7f 2257 struct rq *rq;
1da177e4 2258
b85d0667
IM
2259 if (!sched_feat(SYNC_WAKEUPS))
2260 sync = 0;
2261
2398f2c6
PZ
2262#ifdef CONFIG_SMP
2263 if (sched_feat(LB_WAKEUP_UPDATE)) {
2264 struct sched_domain *sd;
2265
2266 this_cpu = raw_smp_processor_id();
2267 cpu = task_cpu(p);
2268
2269 for_each_domain(this_cpu, sd) {
2270 if (cpu_isset(cpu, sd->span)) {
2271 update_shares(sd);
2272 break;
2273 }
2274 }
2275 }
2276#endif
2277
04e2f174 2278 smp_wmb();
1da177e4
LT
2279 rq = task_rq_lock(p, &flags);
2280 old_state = p->state;
2281 if (!(old_state & state))
2282 goto out;
2283
dd41f596 2284 if (p->se.on_rq)
1da177e4
LT
2285 goto out_running;
2286
2287 cpu = task_cpu(p);
cc367732 2288 orig_cpu = cpu;
1da177e4
LT
2289 this_cpu = smp_processor_id();
2290
2291#ifdef CONFIG_SMP
2292 if (unlikely(task_running(rq, p)))
2293 goto out_activate;
2294
5d2f5a61
DA
2295 cpu = p->sched_class->select_task_rq(p, sync);
2296 if (cpu != orig_cpu) {
2297 set_task_cpu(p, cpu);
1da177e4
LT
2298 task_rq_unlock(rq, &flags);
2299 /* might preempt at this point */
2300 rq = task_rq_lock(p, &flags);
2301 old_state = p->state;
2302 if (!(old_state & state))
2303 goto out;
dd41f596 2304 if (p->se.on_rq)
1da177e4
LT
2305 goto out_running;
2306
2307 this_cpu = smp_processor_id();
2308 cpu = task_cpu(p);
2309 }
2310
e7693a36
GH
2311#ifdef CONFIG_SCHEDSTATS
2312 schedstat_inc(rq, ttwu_count);
2313 if (cpu == this_cpu)
2314 schedstat_inc(rq, ttwu_local);
2315 else {
2316 struct sched_domain *sd;
2317 for_each_domain(this_cpu, sd) {
2318 if (cpu_isset(cpu, sd->span)) {
2319 schedstat_inc(sd, ttwu_wake_remote);
2320 break;
2321 }
2322 }
2323 }
6d6bc0ad 2324#endif /* CONFIG_SCHEDSTATS */
e7693a36 2325
1da177e4
LT
2326out_activate:
2327#endif /* CONFIG_SMP */
cc367732
IM
2328 schedstat_inc(p, se.nr_wakeups);
2329 if (sync)
2330 schedstat_inc(p, se.nr_wakeups_sync);
2331 if (orig_cpu != cpu)
2332 schedstat_inc(p, se.nr_wakeups_migrate);
2333 if (cpu == this_cpu)
2334 schedstat_inc(p, se.nr_wakeups_local);
2335 else
2336 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2337 update_rq_clock(rq);
dd41f596 2338 activate_task(rq, p, 1);
1da177e4
LT
2339 success = 1;
2340
2341out_running:
0a16b607 2342 trace_sched_wakeup(rq, p);
15afe09b 2343 check_preempt_curr(rq, p, sync);
4ae7d5ce 2344
1da177e4 2345 p->state = TASK_RUNNING;
9a897c5a
SR
2346#ifdef CONFIG_SMP
2347 if (p->sched_class->task_wake_up)
2348 p->sched_class->task_wake_up(rq, p);
2349#endif
1da177e4 2350out:
2087a1ad
GH
2351 current->se.last_wakeup = current->se.sum_exec_runtime;
2352
1da177e4
LT
2353 task_rq_unlock(rq, &flags);
2354
2355 return success;
2356}
2357
7ad5b3a5 2358int wake_up_process(struct task_struct *p)
1da177e4 2359{
d9514f6c 2360 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2361}
1da177e4
LT
2362EXPORT_SYMBOL(wake_up_process);
2363
7ad5b3a5 2364int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2365{
2366 return try_to_wake_up(p, state, 0);
2367}
2368
1da177e4
LT
2369/*
2370 * Perform scheduler related setup for a newly forked process p.
2371 * p is forked by current.
dd41f596
IM
2372 *
2373 * __sched_fork() is basic setup used by init_idle() too:
2374 */
2375static void __sched_fork(struct task_struct *p)
2376{
dd41f596
IM
2377 p->se.exec_start = 0;
2378 p->se.sum_exec_runtime = 0;
f6cf891c 2379 p->se.prev_sum_exec_runtime = 0;
6c594c21 2380 p->se.nr_migrations = 0;
4ae7d5ce
IM
2381 p->se.last_wakeup = 0;
2382 p->se.avg_overlap = 0;
6cfb0d5d
IM
2383
2384#ifdef CONFIG_SCHEDSTATS
2385 p->se.wait_start = 0;
dd41f596
IM
2386 p->se.sum_sleep_runtime = 0;
2387 p->se.sleep_start = 0;
dd41f596
IM
2388 p->se.block_start = 0;
2389 p->se.sleep_max = 0;
2390 p->se.block_max = 0;
2391 p->se.exec_max = 0;
eba1ed4b 2392 p->se.slice_max = 0;
dd41f596 2393 p->se.wait_max = 0;
6cfb0d5d 2394#endif
476d139c 2395
fa717060 2396 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2397 p->se.on_rq = 0;
4a55bd5e 2398 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2399
e107be36
AK
2400#ifdef CONFIG_PREEMPT_NOTIFIERS
2401 INIT_HLIST_HEAD(&p->preempt_notifiers);
2402#endif
2403
1da177e4
LT
2404 /*
2405 * We mark the process as running here, but have not actually
2406 * inserted it onto the runqueue yet. This guarantees that
2407 * nobody will actually run it, and a signal or other external
2408 * event cannot wake it up and insert it on the runqueue either.
2409 */
2410 p->state = TASK_RUNNING;
dd41f596
IM
2411}
2412
2413/*
2414 * fork()/clone()-time setup:
2415 */
2416void sched_fork(struct task_struct *p, int clone_flags)
2417{
2418 int cpu = get_cpu();
2419
2420 __sched_fork(p);
2421
2422#ifdef CONFIG_SMP
2423 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2424#endif
02e4bac2 2425 set_task_cpu(p, cpu);
b29739f9
IM
2426
2427 /*
2428 * Make sure we do not leak PI boosting priority to the child:
2429 */
2430 p->prio = current->normal_prio;
2ddbf952
HS
2431 if (!rt_prio(p->prio))
2432 p->sched_class = &fair_sched_class;
b29739f9 2433
52f17b6c 2434#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2435 if (likely(sched_info_on()))
52f17b6c 2436 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2437#endif
d6077cb8 2438#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2439 p->oncpu = 0;
2440#endif
1da177e4 2441#ifdef CONFIG_PREEMPT
4866cde0 2442 /* Want to start with kernel preemption disabled. */
a1261f54 2443 task_thread_info(p)->preempt_count = 1;
1da177e4 2444#endif
476d139c 2445 put_cpu();
1da177e4
LT
2446}
2447
2448/*
2449 * wake_up_new_task - wake up a newly created task for the first time.
2450 *
2451 * This function will do some initial scheduler statistics housekeeping
2452 * that must be done for every newly created context, then puts the task
2453 * on the runqueue and wakes it.
2454 */
7ad5b3a5 2455void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2456{
2457 unsigned long flags;
dd41f596 2458 struct rq *rq;
1da177e4
LT
2459
2460 rq = task_rq_lock(p, &flags);
147cbb4b 2461 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2462 update_rq_clock(rq);
1da177e4
LT
2463
2464 p->prio = effective_prio(p);
2465
b9dca1e0 2466 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2467 activate_task(rq, p, 0);
1da177e4 2468 } else {
1da177e4 2469 /*
dd41f596
IM
2470 * Let the scheduling class do new task startup
2471 * management (if any):
1da177e4 2472 */
ee0827d8 2473 p->sched_class->task_new(rq, p);
c09595f6 2474 inc_nr_running(rq);
1da177e4 2475 }
0a16b607 2476 trace_sched_wakeup_new(rq, p);
15afe09b 2477 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2478#ifdef CONFIG_SMP
2479 if (p->sched_class->task_wake_up)
2480 p->sched_class->task_wake_up(rq, p);
2481#endif
dd41f596 2482 task_rq_unlock(rq, &flags);
1da177e4
LT
2483}
2484
e107be36
AK
2485#ifdef CONFIG_PREEMPT_NOTIFIERS
2486
2487/**
421cee29
RD
2488 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2489 * @notifier: notifier struct to register
e107be36
AK
2490 */
2491void preempt_notifier_register(struct preempt_notifier *notifier)
2492{
2493 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2494}
2495EXPORT_SYMBOL_GPL(preempt_notifier_register);
2496
2497/**
2498 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2499 * @notifier: notifier struct to unregister
e107be36
AK
2500 *
2501 * This is safe to call from within a preemption notifier.
2502 */
2503void preempt_notifier_unregister(struct preempt_notifier *notifier)
2504{
2505 hlist_del(&notifier->link);
2506}
2507EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2508
2509static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2510{
2511 struct preempt_notifier *notifier;
2512 struct hlist_node *node;
2513
2514 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2515 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2516}
2517
2518static void
2519fire_sched_out_preempt_notifiers(struct task_struct *curr,
2520 struct task_struct *next)
2521{
2522 struct preempt_notifier *notifier;
2523 struct hlist_node *node;
2524
2525 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2526 notifier->ops->sched_out(notifier, next);
2527}
2528
6d6bc0ad 2529#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2530
2531static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2532{
2533}
2534
2535static void
2536fire_sched_out_preempt_notifiers(struct task_struct *curr,
2537 struct task_struct *next)
2538{
2539}
2540
6d6bc0ad 2541#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2542
4866cde0
NP
2543/**
2544 * prepare_task_switch - prepare to switch tasks
2545 * @rq: the runqueue preparing to switch
421cee29 2546 * @prev: the current task that is being switched out
4866cde0
NP
2547 * @next: the task we are going to switch to.
2548 *
2549 * This is called with the rq lock held and interrupts off. It must
2550 * be paired with a subsequent finish_task_switch after the context
2551 * switch.
2552 *
2553 * prepare_task_switch sets up locking and calls architecture specific
2554 * hooks.
2555 */
e107be36
AK
2556static inline void
2557prepare_task_switch(struct rq *rq, struct task_struct *prev,
2558 struct task_struct *next)
4866cde0 2559{
e107be36 2560 fire_sched_out_preempt_notifiers(prev, next);
0793a61d 2561 perf_counter_task_sched_out(prev, cpu_of(rq));
4866cde0
NP
2562 prepare_lock_switch(rq, next);
2563 prepare_arch_switch(next);
2564}
2565
1da177e4
LT
2566/**
2567 * finish_task_switch - clean up after a task-switch
344babaa 2568 * @rq: runqueue associated with task-switch
1da177e4
LT
2569 * @prev: the thread we just switched away from.
2570 *
4866cde0
NP
2571 * finish_task_switch must be called after the context switch, paired
2572 * with a prepare_task_switch call before the context switch.
2573 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2574 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2575 *
2576 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2577 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2578 * with the lock held can cause deadlocks; see schedule() for
2579 * details.)
2580 */
a9957449 2581static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2582 __releases(rq->lock)
2583{
1da177e4 2584 struct mm_struct *mm = rq->prev_mm;
55a101f8 2585 long prev_state;
1da177e4
LT
2586
2587 rq->prev_mm = NULL;
2588
2589 /*
2590 * A task struct has one reference for the use as "current".
c394cc9f 2591 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2592 * schedule one last time. The schedule call will never return, and
2593 * the scheduled task must drop that reference.
c394cc9f 2594 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2595 * still held, otherwise prev could be scheduled on another cpu, die
2596 * there before we look at prev->state, and then the reference would
2597 * be dropped twice.
2598 * Manfred Spraul <manfred@colorfullife.com>
2599 */
55a101f8 2600 prev_state = prev->state;
4866cde0 2601 finish_arch_switch(prev);
0793a61d 2602 perf_counter_task_sched_in(current, cpu_of(rq));
4866cde0 2603 finish_lock_switch(rq, prev);
9a897c5a
SR
2604#ifdef CONFIG_SMP
2605 if (current->sched_class->post_schedule)
2606 current->sched_class->post_schedule(rq);
2607#endif
e8fa1362 2608
e107be36 2609 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2610 if (mm)
2611 mmdrop(mm);
c394cc9f 2612 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2613 /*
2614 * Remove function-return probe instances associated with this
2615 * task and put them back on the free list.
9761eea8 2616 */
c6fd91f0 2617 kprobe_flush_task(prev);
1da177e4 2618 put_task_struct(prev);
c6fd91f0 2619 }
1da177e4
LT
2620}
2621
2622/**
2623 * schedule_tail - first thing a freshly forked thread must call.
2624 * @prev: the thread we just switched away from.
2625 */
36c8b586 2626asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2627 __releases(rq->lock)
2628{
70b97a7f
IM
2629 struct rq *rq = this_rq();
2630
4866cde0
NP
2631 finish_task_switch(rq, prev);
2632#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2633 /* In this case, finish_task_switch does not reenable preemption */
2634 preempt_enable();
2635#endif
1da177e4 2636 if (current->set_child_tid)
b488893a 2637 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2638}
2639
2640/*
2641 * context_switch - switch to the new MM and the new
2642 * thread's register state.
2643 */
dd41f596 2644static inline void
70b97a7f 2645context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2646 struct task_struct *next)
1da177e4 2647{
dd41f596 2648 struct mm_struct *mm, *oldmm;
1da177e4 2649
e107be36 2650 prepare_task_switch(rq, prev, next);
0a16b607 2651 trace_sched_switch(rq, prev, next);
dd41f596
IM
2652 mm = next->mm;
2653 oldmm = prev->active_mm;
9226d125
ZA
2654 /*
2655 * For paravirt, this is coupled with an exit in switch_to to
2656 * combine the page table reload and the switch backend into
2657 * one hypercall.
2658 */
2659 arch_enter_lazy_cpu_mode();
2660
dd41f596 2661 if (unlikely(!mm)) {
1da177e4
LT
2662 next->active_mm = oldmm;
2663 atomic_inc(&oldmm->mm_count);
2664 enter_lazy_tlb(oldmm, next);
2665 } else
2666 switch_mm(oldmm, mm, next);
2667
dd41f596 2668 if (unlikely(!prev->mm)) {
1da177e4 2669 prev->active_mm = NULL;
1da177e4
LT
2670 rq->prev_mm = oldmm;
2671 }
3a5f5e48
IM
2672 /*
2673 * Since the runqueue lock will be released by the next
2674 * task (which is an invalid locking op but in the case
2675 * of the scheduler it's an obvious special-case), so we
2676 * do an early lockdep release here:
2677 */
2678#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2679 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2680#endif
1da177e4
LT
2681
2682 /* Here we just switch the register state and the stack. */
2683 switch_to(prev, next, prev);
2684
dd41f596
IM
2685 barrier();
2686 /*
2687 * this_rq must be evaluated again because prev may have moved
2688 * CPUs since it called schedule(), thus the 'rq' on its stack
2689 * frame will be invalid.
2690 */
2691 finish_task_switch(this_rq(), prev);
1da177e4
LT
2692}
2693
2694/*
2695 * nr_running, nr_uninterruptible and nr_context_switches:
2696 *
2697 * externally visible scheduler statistics: current number of runnable
2698 * threads, current number of uninterruptible-sleeping threads, total
2699 * number of context switches performed since bootup.
2700 */
2701unsigned long nr_running(void)
2702{
2703 unsigned long i, sum = 0;
2704
2705 for_each_online_cpu(i)
2706 sum += cpu_rq(i)->nr_running;
2707
2708 return sum;
2709}
2710
2711unsigned long nr_uninterruptible(void)
2712{
2713 unsigned long i, sum = 0;
2714
0a945022 2715 for_each_possible_cpu(i)
1da177e4
LT
2716 sum += cpu_rq(i)->nr_uninterruptible;
2717
2718 /*
2719 * Since we read the counters lockless, it might be slightly
2720 * inaccurate. Do not allow it to go below zero though:
2721 */
2722 if (unlikely((long)sum < 0))
2723 sum = 0;
2724
2725 return sum;
2726}
2727
2728unsigned long long nr_context_switches(void)
2729{
cc94abfc
SR
2730 int i;
2731 unsigned long long sum = 0;
1da177e4 2732
0a945022 2733 for_each_possible_cpu(i)
1da177e4
LT
2734 sum += cpu_rq(i)->nr_switches;
2735
2736 return sum;
2737}
2738
2739unsigned long nr_iowait(void)
2740{
2741 unsigned long i, sum = 0;
2742
0a945022 2743 for_each_possible_cpu(i)
1da177e4
LT
2744 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2745
2746 return sum;
2747}
2748
db1b1fef
JS
2749unsigned long nr_active(void)
2750{
2751 unsigned long i, running = 0, uninterruptible = 0;
2752
2753 for_each_online_cpu(i) {
2754 running += cpu_rq(i)->nr_running;
2755 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2756 }
2757
2758 if (unlikely((long)uninterruptible < 0))
2759 uninterruptible = 0;
2760
2761 return running + uninterruptible;
2762}
2763
48f24c4d 2764/*
dd41f596
IM
2765 * Update rq->cpu_load[] statistics. This function is usually called every
2766 * scheduler tick (TICK_NSEC).
48f24c4d 2767 */
dd41f596 2768static void update_cpu_load(struct rq *this_rq)
48f24c4d 2769{
495eca49 2770 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2771 int i, scale;
2772
2773 this_rq->nr_load_updates++;
dd41f596
IM
2774
2775 /* Update our load: */
2776 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2777 unsigned long old_load, new_load;
2778
2779 /* scale is effectively 1 << i now, and >> i divides by scale */
2780
2781 old_load = this_rq->cpu_load[i];
2782 new_load = this_load;
a25707f3
IM
2783 /*
2784 * Round up the averaging division if load is increasing. This
2785 * prevents us from getting stuck on 9 if the load is 10, for
2786 * example.
2787 */
2788 if (new_load > old_load)
2789 new_load += scale-1;
dd41f596
IM
2790 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2791 }
48f24c4d
IM
2792}
2793
dd41f596
IM
2794#ifdef CONFIG_SMP
2795
1da177e4
LT
2796/*
2797 * double_rq_lock - safely lock two runqueues
2798 *
2799 * Note this does not disable interrupts like task_rq_lock,
2800 * you need to do so manually before calling.
2801 */
70b97a7f 2802static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2803 __acquires(rq1->lock)
2804 __acquires(rq2->lock)
2805{
054b9108 2806 BUG_ON(!irqs_disabled());
1da177e4
LT
2807 if (rq1 == rq2) {
2808 spin_lock(&rq1->lock);
2809 __acquire(rq2->lock); /* Fake it out ;) */
2810 } else {
c96d145e 2811 if (rq1 < rq2) {
1da177e4 2812 spin_lock(&rq1->lock);
5e710e37 2813 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2814 } else {
2815 spin_lock(&rq2->lock);
5e710e37 2816 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2817 }
2818 }
6e82a3be
IM
2819 update_rq_clock(rq1);
2820 update_rq_clock(rq2);
1da177e4
LT
2821}
2822
2823/*
2824 * double_rq_unlock - safely unlock two runqueues
2825 *
2826 * Note this does not restore interrupts like task_rq_unlock,
2827 * you need to do so manually after calling.
2828 */
70b97a7f 2829static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2830 __releases(rq1->lock)
2831 __releases(rq2->lock)
2832{
2833 spin_unlock(&rq1->lock);
2834 if (rq1 != rq2)
2835 spin_unlock(&rq2->lock);
2836 else
2837 __release(rq2->lock);
2838}
2839
2840/*
2841 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2842 */
e8fa1362 2843static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2844 __releases(this_rq->lock)
2845 __acquires(busiest->lock)
2846 __acquires(this_rq->lock)
2847{
e8fa1362
SR
2848 int ret = 0;
2849
054b9108
KK
2850 if (unlikely(!irqs_disabled())) {
2851 /* printk() doesn't work good under rq->lock */
2852 spin_unlock(&this_rq->lock);
2853 BUG_ON(1);
2854 }
1da177e4 2855 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2856 if (busiest < this_rq) {
1da177e4
LT
2857 spin_unlock(&this_rq->lock);
2858 spin_lock(&busiest->lock);
5e710e37 2859 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
e8fa1362 2860 ret = 1;
1da177e4 2861 } else
5e710e37 2862 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1da177e4 2863 }
e8fa1362 2864 return ret;
1da177e4
LT
2865}
2866
1b12bbc7
PZ
2867static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2868 __releases(busiest->lock)
2869{
2870 spin_unlock(&busiest->lock);
2871 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2872}
2873
1da177e4
LT
2874/*
2875 * If dest_cpu is allowed for this process, migrate the task to it.
2876 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2877 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2878 * the cpu_allowed mask is restored.
2879 */
36c8b586 2880static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2881{
70b97a7f 2882 struct migration_req req;
1da177e4 2883 unsigned long flags;
70b97a7f 2884 struct rq *rq;
1da177e4
LT
2885
2886 rq = task_rq_lock(p, &flags);
2887 if (!cpu_isset(dest_cpu, p->cpus_allowed)
e761b772 2888 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2889 goto out;
2890
0a16b607 2891 trace_sched_migrate_task(rq, p, dest_cpu);
1da177e4
LT
2892 /* force the process onto the specified CPU */
2893 if (migrate_task(p, dest_cpu, &req)) {
2894 /* Need to wait for migration thread (might exit: take ref). */
2895 struct task_struct *mt = rq->migration_thread;
36c8b586 2896
1da177e4
LT
2897 get_task_struct(mt);
2898 task_rq_unlock(rq, &flags);
2899 wake_up_process(mt);
2900 put_task_struct(mt);
2901 wait_for_completion(&req.done);
36c8b586 2902
1da177e4
LT
2903 return;
2904 }
2905out:
2906 task_rq_unlock(rq, &flags);
2907}
2908
2909/*
476d139c
NP
2910 * sched_exec - execve() is a valuable balancing opportunity, because at
2911 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2912 */
2913void sched_exec(void)
2914{
1da177e4 2915 int new_cpu, this_cpu = get_cpu();
476d139c 2916 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2917 put_cpu();
476d139c
NP
2918 if (new_cpu != this_cpu)
2919 sched_migrate_task(current, new_cpu);
1da177e4
LT
2920}
2921
2922/*
2923 * pull_task - move a task from a remote runqueue to the local runqueue.
2924 * Both runqueues must be locked.
2925 */
dd41f596
IM
2926static void pull_task(struct rq *src_rq, struct task_struct *p,
2927 struct rq *this_rq, int this_cpu)
1da177e4 2928{
2e1cb74a 2929 deactivate_task(src_rq, p, 0);
1da177e4 2930 set_task_cpu(p, this_cpu);
dd41f596 2931 activate_task(this_rq, p, 0);
1da177e4
LT
2932 /*
2933 * Note that idle threads have a prio of MAX_PRIO, for this test
2934 * to be always true for them.
2935 */
15afe09b 2936 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2937}
2938
2939/*
2940 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2941 */
858119e1 2942static
70b97a7f 2943int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2944 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2945 int *all_pinned)
1da177e4
LT
2946{
2947 /*
2948 * We do not migrate tasks that are:
2949 * 1) running (obviously), or
2950 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2951 * 3) are cache-hot on their current CPU.
2952 */
cc367732
IM
2953 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2954 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2955 return 0;
cc367732 2956 }
81026794
NP
2957 *all_pinned = 0;
2958
cc367732
IM
2959 if (task_running(rq, p)) {
2960 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2961 return 0;
cc367732 2962 }
1da177e4 2963
da84d961
IM
2964 /*
2965 * Aggressive migration if:
2966 * 1) task is cache cold, or
2967 * 2) too many balance attempts have failed.
2968 */
2969
6bc1665b
IM
2970 if (!task_hot(p, rq->clock, sd) ||
2971 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2972#ifdef CONFIG_SCHEDSTATS
cc367732 2973 if (task_hot(p, rq->clock, sd)) {
da84d961 2974 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2975 schedstat_inc(p, se.nr_forced_migrations);
2976 }
da84d961
IM
2977#endif
2978 return 1;
2979 }
2980
cc367732
IM
2981 if (task_hot(p, rq->clock, sd)) {
2982 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2983 return 0;
cc367732 2984 }
1da177e4
LT
2985 return 1;
2986}
2987
e1d1484f
PW
2988static unsigned long
2989balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2990 unsigned long max_load_move, struct sched_domain *sd,
2991 enum cpu_idle_type idle, int *all_pinned,
2992 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2993{
051c6764 2994 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
2995 struct task_struct *p;
2996 long rem_load_move = max_load_move;
1da177e4 2997
e1d1484f 2998 if (max_load_move == 0)
1da177e4
LT
2999 goto out;
3000
81026794
NP
3001 pinned = 1;
3002
1da177e4 3003 /*
dd41f596 3004 * Start the load-balancing iterator:
1da177e4 3005 */
dd41f596
IM
3006 p = iterator->start(iterator->arg);
3007next:
b82d9fdd 3008 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3009 goto out;
051c6764
PZ
3010
3011 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3012 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3013 p = iterator->next(iterator->arg);
3014 goto next;
1da177e4
LT
3015 }
3016
dd41f596 3017 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3018 pulled++;
dd41f596 3019 rem_load_move -= p->se.load.weight;
1da177e4 3020
2dd73a4f 3021 /*
b82d9fdd 3022 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3023 */
e1d1484f 3024 if (rem_load_move > 0) {
a4ac01c3
PW
3025 if (p->prio < *this_best_prio)
3026 *this_best_prio = p->prio;
dd41f596
IM
3027 p = iterator->next(iterator->arg);
3028 goto next;
1da177e4
LT
3029 }
3030out:
3031 /*
e1d1484f 3032 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3033 * so we can safely collect pull_task() stats here rather than
3034 * inside pull_task().
3035 */
3036 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3037
3038 if (all_pinned)
3039 *all_pinned = pinned;
e1d1484f
PW
3040
3041 return max_load_move - rem_load_move;
1da177e4
LT
3042}
3043
dd41f596 3044/*
43010659
PW
3045 * move_tasks tries to move up to max_load_move weighted load from busiest to
3046 * this_rq, as part of a balancing operation within domain "sd".
3047 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3048 *
3049 * Called with both runqueues locked.
3050 */
3051static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3052 unsigned long max_load_move,
dd41f596
IM
3053 struct sched_domain *sd, enum cpu_idle_type idle,
3054 int *all_pinned)
3055{
5522d5d5 3056 const struct sched_class *class = sched_class_highest;
43010659 3057 unsigned long total_load_moved = 0;
a4ac01c3 3058 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3059
3060 do {
43010659
PW
3061 total_load_moved +=
3062 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3063 max_load_move - total_load_moved,
a4ac01c3 3064 sd, idle, all_pinned, &this_best_prio);
dd41f596 3065 class = class->next;
c4acb2c0
GH
3066
3067 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3068 break;
3069
43010659 3070 } while (class && max_load_move > total_load_moved);
dd41f596 3071
43010659
PW
3072 return total_load_moved > 0;
3073}
3074
e1d1484f
PW
3075static int
3076iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3077 struct sched_domain *sd, enum cpu_idle_type idle,
3078 struct rq_iterator *iterator)
3079{
3080 struct task_struct *p = iterator->start(iterator->arg);
3081 int pinned = 0;
3082
3083 while (p) {
3084 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3085 pull_task(busiest, p, this_rq, this_cpu);
3086 /*
3087 * Right now, this is only the second place pull_task()
3088 * is called, so we can safely collect pull_task()
3089 * stats here rather than inside pull_task().
3090 */
3091 schedstat_inc(sd, lb_gained[idle]);
3092
3093 return 1;
3094 }
3095 p = iterator->next(iterator->arg);
3096 }
3097
3098 return 0;
3099}
3100
43010659
PW
3101/*
3102 * move_one_task tries to move exactly one task from busiest to this_rq, as
3103 * part of active balancing operations within "domain".
3104 * Returns 1 if successful and 0 otherwise.
3105 *
3106 * Called with both runqueues locked.
3107 */
3108static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3109 struct sched_domain *sd, enum cpu_idle_type idle)
3110{
5522d5d5 3111 const struct sched_class *class;
43010659
PW
3112
3113 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3114 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3115 return 1;
3116
3117 return 0;
dd41f596
IM
3118}
3119
1da177e4
LT
3120/*
3121 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3122 * domain. It calculates and returns the amount of weighted load which
3123 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3124 */
3125static struct sched_group *
3126find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3127 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 3128 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
3129{
3130 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3131 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3132 unsigned long max_pull;
2dd73a4f
PW
3133 unsigned long busiest_load_per_task, busiest_nr_running;
3134 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3135 int load_idx, group_imb = 0;
5c45bf27
SS
3136#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3137 int power_savings_balance = 1;
3138 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3139 unsigned long min_nr_running = ULONG_MAX;
3140 struct sched_group *group_min = NULL, *group_leader = NULL;
3141#endif
1da177e4
LT
3142
3143 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3144 busiest_load_per_task = busiest_nr_running = 0;
3145 this_load_per_task = this_nr_running = 0;
408ed066 3146
d15bcfdb 3147 if (idle == CPU_NOT_IDLE)
7897986b 3148 load_idx = sd->busy_idx;
d15bcfdb 3149 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3150 load_idx = sd->newidle_idx;
3151 else
3152 load_idx = sd->idle_idx;
1da177e4
LT
3153
3154 do {
908a7c1b 3155 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3156 int local_group;
3157 int i;
908a7c1b 3158 int __group_imb = 0;
783609c6 3159 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3160 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3161 unsigned long sum_avg_load_per_task;
3162 unsigned long avg_load_per_task;
1da177e4
LT
3163
3164 local_group = cpu_isset(this_cpu, group->cpumask);
3165
783609c6
SS
3166 if (local_group)
3167 balance_cpu = first_cpu(group->cpumask);
3168
1da177e4 3169 /* Tally up the load of all CPUs in the group */
2dd73a4f 3170 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3171 sum_avg_load_per_task = avg_load_per_task = 0;
3172
908a7c1b
KC
3173 max_cpu_load = 0;
3174 min_cpu_load = ~0UL;
1da177e4 3175
363ab6f1 3176 for_each_cpu_mask_nr(i, group->cpumask) {
0a2966b4
CL
3177 struct rq *rq;
3178
3179 if (!cpu_isset(i, *cpus))
3180 continue;
3181
3182 rq = cpu_rq(i);
2dd73a4f 3183
9439aab8 3184 if (*sd_idle && rq->nr_running)
5969fe06
NP
3185 *sd_idle = 0;
3186
1da177e4 3187 /* Bias balancing toward cpus of our domain */
783609c6
SS
3188 if (local_group) {
3189 if (idle_cpu(i) && !first_idle_cpu) {
3190 first_idle_cpu = 1;
3191 balance_cpu = i;
3192 }
3193
a2000572 3194 load = target_load(i, load_idx);
908a7c1b 3195 } else {
a2000572 3196 load = source_load(i, load_idx);
908a7c1b
KC
3197 if (load > max_cpu_load)
3198 max_cpu_load = load;
3199 if (min_cpu_load > load)
3200 min_cpu_load = load;
3201 }
1da177e4
LT
3202
3203 avg_load += load;
2dd73a4f 3204 sum_nr_running += rq->nr_running;
dd41f596 3205 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3206
3207 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3208 }
3209
783609c6
SS
3210 /*
3211 * First idle cpu or the first cpu(busiest) in this sched group
3212 * is eligible for doing load balancing at this and above
9439aab8
SS
3213 * domains. In the newly idle case, we will allow all the cpu's
3214 * to do the newly idle load balance.
783609c6 3215 */
9439aab8
SS
3216 if (idle != CPU_NEWLY_IDLE && local_group &&
3217 balance_cpu != this_cpu && balance) {
783609c6
SS
3218 *balance = 0;
3219 goto ret;
3220 }
3221
1da177e4 3222 total_load += avg_load;
5517d86b 3223 total_pwr += group->__cpu_power;
1da177e4
LT
3224
3225 /* Adjust by relative CPU power of the group */
5517d86b
ED
3226 avg_load = sg_div_cpu_power(group,
3227 avg_load * SCHED_LOAD_SCALE);
1da177e4 3228
408ed066
PZ
3229
3230 /*
3231 * Consider the group unbalanced when the imbalance is larger
3232 * than the average weight of two tasks.
3233 *
3234 * APZ: with cgroup the avg task weight can vary wildly and
3235 * might not be a suitable number - should we keep a
3236 * normalized nr_running number somewhere that negates
3237 * the hierarchy?
3238 */
3239 avg_load_per_task = sg_div_cpu_power(group,
3240 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3241
3242 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3243 __group_imb = 1;
3244
5517d86b 3245 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3246
1da177e4
LT
3247 if (local_group) {
3248 this_load = avg_load;
3249 this = group;
2dd73a4f
PW
3250 this_nr_running = sum_nr_running;
3251 this_load_per_task = sum_weighted_load;
3252 } else if (avg_load > max_load &&
908a7c1b 3253 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3254 max_load = avg_load;
3255 busiest = group;
2dd73a4f
PW
3256 busiest_nr_running = sum_nr_running;
3257 busiest_load_per_task = sum_weighted_load;
908a7c1b 3258 group_imb = __group_imb;
1da177e4 3259 }
5c45bf27
SS
3260
3261#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3262 /*
3263 * Busy processors will not participate in power savings
3264 * balance.
3265 */
dd41f596
IM
3266 if (idle == CPU_NOT_IDLE ||
3267 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3268 goto group_next;
5c45bf27
SS
3269
3270 /*
3271 * If the local group is idle or completely loaded
3272 * no need to do power savings balance at this domain
3273 */
3274 if (local_group && (this_nr_running >= group_capacity ||
3275 !this_nr_running))
3276 power_savings_balance = 0;
3277
dd41f596 3278 /*
5c45bf27
SS
3279 * If a group is already running at full capacity or idle,
3280 * don't include that group in power savings calculations
dd41f596
IM
3281 */
3282 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3283 || !sum_nr_running)
dd41f596 3284 goto group_next;
5c45bf27 3285
dd41f596 3286 /*
5c45bf27 3287 * Calculate the group which has the least non-idle load.
dd41f596
IM
3288 * This is the group from where we need to pick up the load
3289 * for saving power
3290 */
3291 if ((sum_nr_running < min_nr_running) ||
3292 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3293 first_cpu(group->cpumask) <
3294 first_cpu(group_min->cpumask))) {
dd41f596
IM
3295 group_min = group;
3296 min_nr_running = sum_nr_running;
5c45bf27
SS
3297 min_load_per_task = sum_weighted_load /
3298 sum_nr_running;
dd41f596 3299 }
5c45bf27 3300
dd41f596 3301 /*
5c45bf27 3302 * Calculate the group which is almost near its
dd41f596
IM
3303 * capacity but still has some space to pick up some load
3304 * from other group and save more power
3305 */
3306 if (sum_nr_running <= group_capacity - 1) {
3307 if (sum_nr_running > leader_nr_running ||
3308 (sum_nr_running == leader_nr_running &&
3309 first_cpu(group->cpumask) >
3310 first_cpu(group_leader->cpumask))) {
3311 group_leader = group;
3312 leader_nr_running = sum_nr_running;
3313 }
48f24c4d 3314 }
5c45bf27
SS
3315group_next:
3316#endif
1da177e4
LT
3317 group = group->next;
3318 } while (group != sd->groups);
3319
2dd73a4f 3320 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3321 goto out_balanced;
3322
3323 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3324
3325 if (this_load >= avg_load ||
3326 100*max_load <= sd->imbalance_pct*this_load)
3327 goto out_balanced;
3328
2dd73a4f 3329 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3330 if (group_imb)
3331 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3332
1da177e4
LT
3333 /*
3334 * We're trying to get all the cpus to the average_load, so we don't
3335 * want to push ourselves above the average load, nor do we wish to
3336 * reduce the max loaded cpu below the average load, as either of these
3337 * actions would just result in more rebalancing later, and ping-pong
3338 * tasks around. Thus we look for the minimum possible imbalance.
3339 * Negative imbalances (*we* are more loaded than anyone else) will
3340 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3341 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3342 * appear as very large values with unsigned longs.
3343 */
2dd73a4f
PW
3344 if (max_load <= busiest_load_per_task)
3345 goto out_balanced;
3346
3347 /*
3348 * In the presence of smp nice balancing, certain scenarios can have
3349 * max load less than avg load(as we skip the groups at or below
3350 * its cpu_power, while calculating max_load..)
3351 */
3352 if (max_load < avg_load) {
3353 *imbalance = 0;
3354 goto small_imbalance;
3355 }
0c117f1b
SS
3356
3357 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3358 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3359
1da177e4 3360 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3361 *imbalance = min(max_pull * busiest->__cpu_power,
3362 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3363 / SCHED_LOAD_SCALE;
3364
2dd73a4f
PW
3365 /*
3366 * if *imbalance is less than the average load per runnable task
3367 * there is no gaurantee that any tasks will be moved so we'll have
3368 * a think about bumping its value to force at least one task to be
3369 * moved
3370 */
7fd0d2dd 3371 if (*imbalance < busiest_load_per_task) {
48f24c4d 3372 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3373 unsigned int imbn;
3374
3375small_imbalance:
3376 pwr_move = pwr_now = 0;
3377 imbn = 2;
3378 if (this_nr_running) {
3379 this_load_per_task /= this_nr_running;
3380 if (busiest_load_per_task > this_load_per_task)
3381 imbn = 1;
3382 } else
408ed066 3383 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3384
01c8c57d 3385 if (max_load - this_load + busiest_load_per_task >=
dd41f596 3386 busiest_load_per_task * imbn) {
2dd73a4f 3387 *imbalance = busiest_load_per_task;
1da177e4
LT
3388 return busiest;
3389 }
3390
3391 /*
3392 * OK, we don't have enough imbalance to justify moving tasks,
3393 * however we may be able to increase total CPU power used by
3394 * moving them.
3395 */
3396
5517d86b
ED
3397 pwr_now += busiest->__cpu_power *
3398 min(busiest_load_per_task, max_load);
3399 pwr_now += this->__cpu_power *
3400 min(this_load_per_task, this_load);
1da177e4
LT
3401 pwr_now /= SCHED_LOAD_SCALE;
3402
3403 /* Amount of load we'd subtract */
5517d86b
ED
3404 tmp = sg_div_cpu_power(busiest,
3405 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3406 if (max_load > tmp)
5517d86b 3407 pwr_move += busiest->__cpu_power *
2dd73a4f 3408 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3409
3410 /* Amount of load we'd add */
5517d86b 3411 if (max_load * busiest->__cpu_power <
33859f7f 3412 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3413 tmp = sg_div_cpu_power(this,
3414 max_load * busiest->__cpu_power);
1da177e4 3415 else
5517d86b
ED
3416 tmp = sg_div_cpu_power(this,
3417 busiest_load_per_task * SCHED_LOAD_SCALE);
3418 pwr_move += this->__cpu_power *
3419 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3420 pwr_move /= SCHED_LOAD_SCALE;
3421
3422 /* Move if we gain throughput */
7fd0d2dd
SS
3423 if (pwr_move > pwr_now)
3424 *imbalance = busiest_load_per_task;
1da177e4
LT
3425 }
3426
1da177e4
LT
3427 return busiest;
3428
3429out_balanced:
5c45bf27 3430#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3431 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3432 goto ret;
1da177e4 3433
5c45bf27
SS
3434 if (this == group_leader && group_leader != group_min) {
3435 *imbalance = min_load_per_task;
3436 return group_min;
3437 }
5c45bf27 3438#endif
783609c6 3439ret:
1da177e4
LT
3440 *imbalance = 0;
3441 return NULL;
3442}
3443
3444/*
3445 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3446 */
70b97a7f 3447static struct rq *
d15bcfdb 3448find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3449 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3450{
70b97a7f 3451 struct rq *busiest = NULL, *rq;
2dd73a4f 3452 unsigned long max_load = 0;
1da177e4
LT
3453 int i;
3454
363ab6f1 3455 for_each_cpu_mask_nr(i, group->cpumask) {
dd41f596 3456 unsigned long wl;
0a2966b4
CL
3457
3458 if (!cpu_isset(i, *cpus))
3459 continue;
3460
48f24c4d 3461 rq = cpu_rq(i);
dd41f596 3462 wl = weighted_cpuload(i);
2dd73a4f 3463
dd41f596 3464 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3465 continue;
1da177e4 3466
dd41f596
IM
3467 if (wl > max_load) {
3468 max_load = wl;
48f24c4d 3469 busiest = rq;
1da177e4
LT
3470 }
3471 }
3472
3473 return busiest;
3474}
3475
77391d71
NP
3476/*
3477 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3478 * so long as it is large enough.
3479 */
3480#define MAX_PINNED_INTERVAL 512
3481
1da177e4
LT
3482/*
3483 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3484 * tasks if there is an imbalance.
1da177e4 3485 */
70b97a7f 3486static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3487 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3488 int *balance, cpumask_t *cpus)
1da177e4 3489{
43010659 3490 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3491 struct sched_group *group;
1da177e4 3492 unsigned long imbalance;
70b97a7f 3493 struct rq *busiest;
fe2eea3f 3494 unsigned long flags;
5969fe06 3495
7c16ec58
MT
3496 cpus_setall(*cpus);
3497
89c4710e
SS
3498 /*
3499 * When power savings policy is enabled for the parent domain, idle
3500 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3501 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3502 * portraying it as CPU_NOT_IDLE.
89c4710e 3503 */
d15bcfdb 3504 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3505 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3506 sd_idle = 1;
1da177e4 3507
2d72376b 3508 schedstat_inc(sd, lb_count[idle]);
1da177e4 3509
0a2966b4 3510redo:
c8cba857 3511 update_shares(sd);
0a2966b4 3512 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3513 cpus, balance);
783609c6 3514
06066714 3515 if (*balance == 0)
783609c6 3516 goto out_balanced;
783609c6 3517
1da177e4
LT
3518 if (!group) {
3519 schedstat_inc(sd, lb_nobusyg[idle]);
3520 goto out_balanced;
3521 }
3522
7c16ec58 3523 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3524 if (!busiest) {
3525 schedstat_inc(sd, lb_nobusyq[idle]);
3526 goto out_balanced;
3527 }
3528
db935dbd 3529 BUG_ON(busiest == this_rq);
1da177e4
LT
3530
3531 schedstat_add(sd, lb_imbalance[idle], imbalance);
3532
43010659 3533 ld_moved = 0;
1da177e4
LT
3534 if (busiest->nr_running > 1) {
3535 /*
3536 * Attempt to move tasks. If find_busiest_group has found
3537 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3538 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3539 * correctly treated as an imbalance.
3540 */
fe2eea3f 3541 local_irq_save(flags);
e17224bf 3542 double_rq_lock(this_rq, busiest);
43010659 3543 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3544 imbalance, sd, idle, &all_pinned);
e17224bf 3545 double_rq_unlock(this_rq, busiest);
fe2eea3f 3546 local_irq_restore(flags);
81026794 3547
46cb4b7c
SS
3548 /*
3549 * some other cpu did the load balance for us.
3550 */
43010659 3551 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3552 resched_cpu(this_cpu);
3553
81026794 3554 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3555 if (unlikely(all_pinned)) {
7c16ec58
MT
3556 cpu_clear(cpu_of(busiest), *cpus);
3557 if (!cpus_empty(*cpus))
0a2966b4 3558 goto redo;
81026794 3559 goto out_balanced;
0a2966b4 3560 }
1da177e4 3561 }
81026794 3562
43010659 3563 if (!ld_moved) {
1da177e4
LT
3564 schedstat_inc(sd, lb_failed[idle]);
3565 sd->nr_balance_failed++;
3566
3567 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3568
fe2eea3f 3569 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3570
3571 /* don't kick the migration_thread, if the curr
3572 * task on busiest cpu can't be moved to this_cpu
3573 */
3574 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3575 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3576 all_pinned = 1;
3577 goto out_one_pinned;
3578 }
3579
1da177e4
LT
3580 if (!busiest->active_balance) {
3581 busiest->active_balance = 1;
3582 busiest->push_cpu = this_cpu;
81026794 3583 active_balance = 1;
1da177e4 3584 }
fe2eea3f 3585 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3586 if (active_balance)
1da177e4
LT
3587 wake_up_process(busiest->migration_thread);
3588
3589 /*
3590 * We've kicked active balancing, reset the failure
3591 * counter.
3592 */
39507451 3593 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3594 }
81026794 3595 } else
1da177e4
LT
3596 sd->nr_balance_failed = 0;
3597
81026794 3598 if (likely(!active_balance)) {
1da177e4
LT
3599 /* We were unbalanced, so reset the balancing interval */
3600 sd->balance_interval = sd->min_interval;
81026794
NP
3601 } else {
3602 /*
3603 * If we've begun active balancing, start to back off. This
3604 * case may not be covered by the all_pinned logic if there
3605 * is only 1 task on the busy runqueue (because we don't call
3606 * move_tasks).
3607 */
3608 if (sd->balance_interval < sd->max_interval)
3609 sd->balance_interval *= 2;
1da177e4
LT
3610 }
3611
43010659 3612 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3613 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3614 ld_moved = -1;
3615
3616 goto out;
1da177e4
LT
3617
3618out_balanced:
1da177e4
LT
3619 schedstat_inc(sd, lb_balanced[idle]);
3620
16cfb1c0 3621 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3622
3623out_one_pinned:
1da177e4 3624 /* tune up the balancing interval */
77391d71
NP
3625 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3626 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3627 sd->balance_interval *= 2;
3628
48f24c4d 3629 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3630 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3631 ld_moved = -1;
3632 else
3633 ld_moved = 0;
3634out:
c8cba857
PZ
3635 if (ld_moved)
3636 update_shares(sd);
c09595f6 3637 return ld_moved;
1da177e4
LT
3638}
3639
3640/*
3641 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3642 * tasks if there is an imbalance.
3643 *
d15bcfdb 3644 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3645 * this_rq is locked.
3646 */
48f24c4d 3647static int
7c16ec58
MT
3648load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3649 cpumask_t *cpus)
1da177e4
LT
3650{
3651 struct sched_group *group;
70b97a7f 3652 struct rq *busiest = NULL;
1da177e4 3653 unsigned long imbalance;
43010659 3654 int ld_moved = 0;
5969fe06 3655 int sd_idle = 0;
969bb4e4 3656 int all_pinned = 0;
7c16ec58
MT
3657
3658 cpus_setall(*cpus);
5969fe06 3659
89c4710e
SS
3660 /*
3661 * When power savings policy is enabled for the parent domain, idle
3662 * sibling can pick up load irrespective of busy siblings. In this case,
3663 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3664 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3665 */
3666 if (sd->flags & SD_SHARE_CPUPOWER &&
3667 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3668 sd_idle = 1;
1da177e4 3669
2d72376b 3670 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3671redo:
3e5459b4 3672 update_shares_locked(this_rq, sd);
d15bcfdb 3673 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3674 &sd_idle, cpus, NULL);
1da177e4 3675 if (!group) {
d15bcfdb 3676 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3677 goto out_balanced;
1da177e4
LT
3678 }
3679
7c16ec58 3680 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3681 if (!busiest) {
d15bcfdb 3682 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3683 goto out_balanced;
1da177e4
LT
3684 }
3685
db935dbd
NP
3686 BUG_ON(busiest == this_rq);
3687
d15bcfdb 3688 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3689
43010659 3690 ld_moved = 0;
d6d5cfaf
NP
3691 if (busiest->nr_running > 1) {
3692 /* Attempt to move tasks */
3693 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3694 /* this_rq->clock is already updated */
3695 update_rq_clock(busiest);
43010659 3696 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3697 imbalance, sd, CPU_NEWLY_IDLE,
3698 &all_pinned);
1b12bbc7 3699 double_unlock_balance(this_rq, busiest);
0a2966b4 3700
969bb4e4 3701 if (unlikely(all_pinned)) {
7c16ec58
MT
3702 cpu_clear(cpu_of(busiest), *cpus);
3703 if (!cpus_empty(*cpus))
0a2966b4
CL
3704 goto redo;
3705 }
d6d5cfaf
NP
3706 }
3707
43010659 3708 if (!ld_moved) {
d15bcfdb 3709 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3710 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3711 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3712 return -1;
3713 } else
16cfb1c0 3714 sd->nr_balance_failed = 0;
1da177e4 3715
3e5459b4 3716 update_shares_locked(this_rq, sd);
43010659 3717 return ld_moved;
16cfb1c0
NP
3718
3719out_balanced:
d15bcfdb 3720 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3721 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3722 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3723 return -1;
16cfb1c0 3724 sd->nr_balance_failed = 0;
48f24c4d 3725
16cfb1c0 3726 return 0;
1da177e4
LT
3727}
3728
3729/*
3730 * idle_balance is called by schedule() if this_cpu is about to become
3731 * idle. Attempts to pull tasks from other CPUs.
3732 */
70b97a7f 3733static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3734{
3735 struct sched_domain *sd;
dd41f596
IM
3736 int pulled_task = -1;
3737 unsigned long next_balance = jiffies + HZ;
7c16ec58 3738 cpumask_t tmpmask;
1da177e4
LT
3739
3740 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3741 unsigned long interval;
3742
3743 if (!(sd->flags & SD_LOAD_BALANCE))
3744 continue;
3745
3746 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3747 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3748 pulled_task = load_balance_newidle(this_cpu, this_rq,
3749 sd, &tmpmask);
92c4ca5c
CL
3750
3751 interval = msecs_to_jiffies(sd->balance_interval);
3752 if (time_after(next_balance, sd->last_balance + interval))
3753 next_balance = sd->last_balance + interval;
3754 if (pulled_task)
3755 break;
1da177e4 3756 }
dd41f596 3757 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3758 /*
3759 * We are going idle. next_balance may be set based on
3760 * a busy processor. So reset next_balance.
3761 */
3762 this_rq->next_balance = next_balance;
dd41f596 3763 }
1da177e4
LT
3764}
3765
3766/*
3767 * active_load_balance is run by migration threads. It pushes running tasks
3768 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3769 * running on each physical CPU where possible, and avoids physical /
3770 * logical imbalances.
3771 *
3772 * Called with busiest_rq locked.
3773 */
70b97a7f 3774static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3775{
39507451 3776 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3777 struct sched_domain *sd;
3778 struct rq *target_rq;
39507451 3779
48f24c4d 3780 /* Is there any task to move? */
39507451 3781 if (busiest_rq->nr_running <= 1)
39507451
NP
3782 return;
3783
3784 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3785
3786 /*
39507451 3787 * This condition is "impossible", if it occurs
41a2d6cf 3788 * we need to fix it. Originally reported by
39507451 3789 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3790 */
39507451 3791 BUG_ON(busiest_rq == target_rq);
1da177e4 3792
39507451
NP
3793 /* move a task from busiest_rq to target_rq */
3794 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3795 update_rq_clock(busiest_rq);
3796 update_rq_clock(target_rq);
39507451
NP
3797
3798 /* Search for an sd spanning us and the target CPU. */
c96d145e 3799 for_each_domain(target_cpu, sd) {
39507451 3800 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3801 cpu_isset(busiest_cpu, sd->span))
39507451 3802 break;
c96d145e 3803 }
39507451 3804
48f24c4d 3805 if (likely(sd)) {
2d72376b 3806 schedstat_inc(sd, alb_count);
39507451 3807
43010659
PW
3808 if (move_one_task(target_rq, target_cpu, busiest_rq,
3809 sd, CPU_IDLE))
48f24c4d
IM
3810 schedstat_inc(sd, alb_pushed);
3811 else
3812 schedstat_inc(sd, alb_failed);
3813 }
1b12bbc7 3814 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
3815}
3816
46cb4b7c
SS
3817#ifdef CONFIG_NO_HZ
3818static struct {
3819 atomic_t load_balancer;
41a2d6cf 3820 cpumask_t cpu_mask;
46cb4b7c
SS
3821} nohz ____cacheline_aligned = {
3822 .load_balancer = ATOMIC_INIT(-1),
3823 .cpu_mask = CPU_MASK_NONE,
3824};
3825
7835b98b 3826/*
46cb4b7c
SS
3827 * This routine will try to nominate the ilb (idle load balancing)
3828 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3829 * load balancing on behalf of all those cpus. If all the cpus in the system
3830 * go into this tickless mode, then there will be no ilb owner (as there is
3831 * no need for one) and all the cpus will sleep till the next wakeup event
3832 * arrives...
3833 *
3834 * For the ilb owner, tick is not stopped. And this tick will be used
3835 * for idle load balancing. ilb owner will still be part of
3836 * nohz.cpu_mask..
7835b98b 3837 *
46cb4b7c
SS
3838 * While stopping the tick, this cpu will become the ilb owner if there
3839 * is no other owner. And will be the owner till that cpu becomes busy
3840 * or if all cpus in the system stop their ticks at which point
3841 * there is no need for ilb owner.
3842 *
3843 * When the ilb owner becomes busy, it nominates another owner, during the
3844 * next busy scheduler_tick()
3845 */
3846int select_nohz_load_balancer(int stop_tick)
3847{
3848 int cpu = smp_processor_id();
3849
3850 if (stop_tick) {
3851 cpu_set(cpu, nohz.cpu_mask);
3852 cpu_rq(cpu)->in_nohz_recently = 1;
3853
3854 /*
3855 * If we are going offline and still the leader, give up!
3856 */
e761b772 3857 if (!cpu_active(cpu) &&
46cb4b7c
SS
3858 atomic_read(&nohz.load_balancer) == cpu) {
3859 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3860 BUG();
3861 return 0;
3862 }
3863
3864 /* time for ilb owner also to sleep */
3865 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3866 if (atomic_read(&nohz.load_balancer) == cpu)
3867 atomic_set(&nohz.load_balancer, -1);
3868 return 0;
3869 }
3870
3871 if (atomic_read(&nohz.load_balancer) == -1) {
3872 /* make me the ilb owner */
3873 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3874 return 1;
3875 } else if (atomic_read(&nohz.load_balancer) == cpu)
3876 return 1;
3877 } else {
3878 if (!cpu_isset(cpu, nohz.cpu_mask))
3879 return 0;
3880
3881 cpu_clear(cpu, nohz.cpu_mask);
3882
3883 if (atomic_read(&nohz.load_balancer) == cpu)
3884 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3885 BUG();
3886 }
3887 return 0;
3888}
3889#endif
3890
3891static DEFINE_SPINLOCK(balancing);
3892
3893/*
7835b98b
CL
3894 * It checks each scheduling domain to see if it is due to be balanced,
3895 * and initiates a balancing operation if so.
3896 *
3897 * Balancing parameters are set up in arch_init_sched_domains.
3898 */
a9957449 3899static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3900{
46cb4b7c
SS
3901 int balance = 1;
3902 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3903 unsigned long interval;
3904 struct sched_domain *sd;
46cb4b7c 3905 /* Earliest time when we have to do rebalance again */
c9819f45 3906 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3907 int update_next_balance = 0;
d07355f5 3908 int need_serialize;
7c16ec58 3909 cpumask_t tmp;
1da177e4 3910
46cb4b7c 3911 for_each_domain(cpu, sd) {
1da177e4
LT
3912 if (!(sd->flags & SD_LOAD_BALANCE))
3913 continue;
3914
3915 interval = sd->balance_interval;
d15bcfdb 3916 if (idle != CPU_IDLE)
1da177e4
LT
3917 interval *= sd->busy_factor;
3918
3919 /* scale ms to jiffies */
3920 interval = msecs_to_jiffies(interval);
3921 if (unlikely(!interval))
3922 interval = 1;
dd41f596
IM
3923 if (interval > HZ*NR_CPUS/10)
3924 interval = HZ*NR_CPUS/10;
3925
d07355f5 3926 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3927
d07355f5 3928 if (need_serialize) {
08c183f3
CL
3929 if (!spin_trylock(&balancing))
3930 goto out;
3931 }
3932
c9819f45 3933 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3934 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3935 /*
3936 * We've pulled tasks over so either we're no
5969fe06
NP
3937 * longer idle, or one of our SMT siblings is
3938 * not idle.
3939 */
d15bcfdb 3940 idle = CPU_NOT_IDLE;
1da177e4 3941 }
1bd77f2d 3942 sd->last_balance = jiffies;
1da177e4 3943 }
d07355f5 3944 if (need_serialize)
08c183f3
CL
3945 spin_unlock(&balancing);
3946out:
f549da84 3947 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3948 next_balance = sd->last_balance + interval;
f549da84
SS
3949 update_next_balance = 1;
3950 }
783609c6
SS
3951
3952 /*
3953 * Stop the load balance at this level. There is another
3954 * CPU in our sched group which is doing load balancing more
3955 * actively.
3956 */
3957 if (!balance)
3958 break;
1da177e4 3959 }
f549da84
SS
3960
3961 /*
3962 * next_balance will be updated only when there is a need.
3963 * When the cpu is attached to null domain for ex, it will not be
3964 * updated.
3965 */
3966 if (likely(update_next_balance))
3967 rq->next_balance = next_balance;
46cb4b7c
SS
3968}
3969
3970/*
3971 * run_rebalance_domains is triggered when needed from the scheduler tick.
3972 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3973 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3974 */
3975static void run_rebalance_domains(struct softirq_action *h)
3976{
dd41f596
IM
3977 int this_cpu = smp_processor_id();
3978 struct rq *this_rq = cpu_rq(this_cpu);
3979 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3980 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3981
dd41f596 3982 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3983
3984#ifdef CONFIG_NO_HZ
3985 /*
3986 * If this cpu is the owner for idle load balancing, then do the
3987 * balancing on behalf of the other idle cpus whose ticks are
3988 * stopped.
3989 */
dd41f596
IM
3990 if (this_rq->idle_at_tick &&
3991 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3992 cpumask_t cpus = nohz.cpu_mask;
3993 struct rq *rq;
3994 int balance_cpu;
3995
dd41f596 3996 cpu_clear(this_cpu, cpus);
363ab6f1 3997 for_each_cpu_mask_nr(balance_cpu, cpus) {
46cb4b7c
SS
3998 /*
3999 * If this cpu gets work to do, stop the load balancing
4000 * work being done for other cpus. Next load
4001 * balancing owner will pick it up.
4002 */
4003 if (need_resched())
4004 break;
4005
de0cf899 4006 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4007
4008 rq = cpu_rq(balance_cpu);
dd41f596
IM
4009 if (time_after(this_rq->next_balance, rq->next_balance))
4010 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4011 }
4012 }
4013#endif
4014}
4015
4016/*
4017 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4018 *
4019 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4020 * idle load balancing owner or decide to stop the periodic load balancing,
4021 * if the whole system is idle.
4022 */
dd41f596 4023static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4024{
46cb4b7c
SS
4025#ifdef CONFIG_NO_HZ
4026 /*
4027 * If we were in the nohz mode recently and busy at the current
4028 * scheduler tick, then check if we need to nominate new idle
4029 * load balancer.
4030 */
4031 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4032 rq->in_nohz_recently = 0;
4033
4034 if (atomic_read(&nohz.load_balancer) == cpu) {
4035 cpu_clear(cpu, nohz.cpu_mask);
4036 atomic_set(&nohz.load_balancer, -1);
4037 }
4038
4039 if (atomic_read(&nohz.load_balancer) == -1) {
4040 /*
4041 * simple selection for now: Nominate the
4042 * first cpu in the nohz list to be the next
4043 * ilb owner.
4044 *
4045 * TBD: Traverse the sched domains and nominate
4046 * the nearest cpu in the nohz.cpu_mask.
4047 */
4048 int ilb = first_cpu(nohz.cpu_mask);
4049
434d53b0 4050 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4051 resched_cpu(ilb);
4052 }
4053 }
4054
4055 /*
4056 * If this cpu is idle and doing idle load balancing for all the
4057 * cpus with ticks stopped, is it time for that to stop?
4058 */
4059 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4060 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4061 resched_cpu(cpu);
4062 return;
4063 }
4064
4065 /*
4066 * If this cpu is idle and the idle load balancing is done by
4067 * someone else, then no need raise the SCHED_SOFTIRQ
4068 */
4069 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4070 cpu_isset(cpu, nohz.cpu_mask))
4071 return;
4072#endif
4073 if (time_after_eq(jiffies, rq->next_balance))
4074 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4075}
dd41f596
IM
4076
4077#else /* CONFIG_SMP */
4078
1da177e4
LT
4079/*
4080 * on UP we do not need to balance between CPUs:
4081 */
70b97a7f 4082static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4083{
4084}
dd41f596 4085
1da177e4
LT
4086#endif
4087
1da177e4
LT
4088DEFINE_PER_CPU(struct kernel_stat, kstat);
4089
4090EXPORT_PER_CPU_SYMBOL(kstat);
4091
4092/*
f06febc9
FM
4093 * Return any ns on the sched_clock that have not yet been banked in
4094 * @p in case that task is currently running.
1da177e4 4095 */
bb34d92f 4096unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4097{
1da177e4 4098 unsigned long flags;
41b86e9c 4099 struct rq *rq;
bb34d92f 4100 u64 ns = 0;
48f24c4d 4101
41b86e9c 4102 rq = task_rq_lock(p, &flags);
1508487e 4103
051a1d1a 4104 if (task_current(rq, p)) {
f06febc9
FM
4105 u64 delta_exec;
4106
a8e504d2
IM
4107 update_rq_clock(rq);
4108 delta_exec = rq->clock - p->se.exec_start;
41b86e9c 4109 if ((s64)delta_exec > 0)
bb34d92f 4110 ns = delta_exec;
41b86e9c 4111 }
48f24c4d 4112
41b86e9c 4113 task_rq_unlock(rq, &flags);
48f24c4d 4114
1da177e4
LT
4115 return ns;
4116}
4117
1da177e4
LT
4118/*
4119 * Account user cpu time to a process.
4120 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4121 * @cputime: the cpu time spent in user space since the last update
4122 */
4123void account_user_time(struct task_struct *p, cputime_t cputime)
4124{
4125 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4126 cputime64_t tmp;
4127
4128 p->utime = cputime_add(p->utime, cputime);
f06febc9 4129 account_group_user_time(p, cputime);
1da177e4
LT
4130
4131 /* Add user time to cpustat. */
4132 tmp = cputime_to_cputime64(cputime);
4133 if (TASK_NICE(p) > 0)
4134 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4135 else
4136 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4137 /* Account for user time used */
4138 acct_update_integrals(p);
1da177e4
LT
4139}
4140
94886b84
LV
4141/*
4142 * Account guest cpu time to a process.
4143 * @p: the process that the cpu time gets accounted to
4144 * @cputime: the cpu time spent in virtual machine since the last update
4145 */
f7402e03 4146static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4147{
4148 cputime64_t tmp;
4149 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4150
4151 tmp = cputime_to_cputime64(cputime);
4152
4153 p->utime = cputime_add(p->utime, cputime);
f06febc9 4154 account_group_user_time(p, cputime);
94886b84
LV
4155 p->gtime = cputime_add(p->gtime, cputime);
4156
4157 cpustat->user = cputime64_add(cpustat->user, tmp);
4158 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4159}
4160
c66f08be
MN
4161/*
4162 * Account scaled user cpu time to a process.
4163 * @p: the process that the cpu time gets accounted to
4164 * @cputime: the cpu time spent in user space since the last update
4165 */
4166void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4167{
4168 p->utimescaled = cputime_add(p->utimescaled, cputime);
4169}
4170
1da177e4
LT
4171/*
4172 * Account system cpu time to a process.
4173 * @p: the process that the cpu time gets accounted to
4174 * @hardirq_offset: the offset to subtract from hardirq_count()
4175 * @cputime: the cpu time spent in kernel space since the last update
4176 */
4177void account_system_time(struct task_struct *p, int hardirq_offset,
4178 cputime_t cputime)
4179{
4180 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4181 struct rq *rq = this_rq();
1da177e4
LT
4182 cputime64_t tmp;
4183
983ed7a6
HH
4184 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4185 account_guest_time(p, cputime);
4186 return;
4187 }
94886b84 4188
1da177e4 4189 p->stime = cputime_add(p->stime, cputime);
f06febc9 4190 account_group_system_time(p, cputime);
1da177e4
LT
4191
4192 /* Add system time to cpustat. */
4193 tmp = cputime_to_cputime64(cputime);
4194 if (hardirq_count() - hardirq_offset)
4195 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4196 else if (softirq_count())
4197 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4198 else if (p != rq->idle)
1da177e4 4199 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4200 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4201 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4202 else
4203 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4204 /* Account for system time used */
4205 acct_update_integrals(p);
1da177e4
LT
4206}
4207
c66f08be
MN
4208/*
4209 * Account scaled system cpu time to a process.
4210 * @p: the process that the cpu time gets accounted to
4211 * @hardirq_offset: the offset to subtract from hardirq_count()
4212 * @cputime: the cpu time spent in kernel space since the last update
4213 */
4214void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4215{
4216 p->stimescaled = cputime_add(p->stimescaled, cputime);
4217}
4218
1da177e4
LT
4219/*
4220 * Account for involuntary wait time.
4221 * @p: the process from which the cpu time has been stolen
4222 * @steal: the cpu time spent in involuntary wait
4223 */
4224void account_steal_time(struct task_struct *p, cputime_t steal)
4225{
4226 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4227 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4228 struct rq *rq = this_rq();
1da177e4
LT
4229
4230 if (p == rq->idle) {
4231 p->stime = cputime_add(p->stime, steal);
f06febc9 4232 account_group_system_time(p, steal);
1da177e4
LT
4233 if (atomic_read(&rq->nr_iowait) > 0)
4234 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4235 else
4236 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4237 } else
1da177e4
LT
4238 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4239}
4240
49048622
BS
4241/*
4242 * Use precise platform statistics if available:
4243 */
4244#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4245cputime_t task_utime(struct task_struct *p)
4246{
4247 return p->utime;
4248}
4249
4250cputime_t task_stime(struct task_struct *p)
4251{
4252 return p->stime;
4253}
4254#else
4255cputime_t task_utime(struct task_struct *p)
4256{
4257 clock_t utime = cputime_to_clock_t(p->utime),
4258 total = utime + cputime_to_clock_t(p->stime);
4259 u64 temp;
4260
4261 /*
4262 * Use CFS's precise accounting:
4263 */
4264 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4265
4266 if (total) {
4267 temp *= utime;
4268 do_div(temp, total);
4269 }
4270 utime = (clock_t)temp;
4271
4272 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4273 return p->prev_utime;
4274}
4275
4276cputime_t task_stime(struct task_struct *p)
4277{
4278 clock_t stime;
4279
4280 /*
4281 * Use CFS's precise accounting. (we subtract utime from
4282 * the total, to make sure the total observed by userspace
4283 * grows monotonically - apps rely on that):
4284 */
4285 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4286 cputime_to_clock_t(task_utime(p));
4287
4288 if (stime >= 0)
4289 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4290
4291 return p->prev_stime;
4292}
4293#endif
4294
4295inline cputime_t task_gtime(struct task_struct *p)
4296{
4297 return p->gtime;
4298}
4299
7835b98b
CL
4300/*
4301 * This function gets called by the timer code, with HZ frequency.
4302 * We call it with interrupts disabled.
4303 *
4304 * It also gets called by the fork code, when changing the parent's
4305 * timeslices.
4306 */
4307void scheduler_tick(void)
4308{
7835b98b
CL
4309 int cpu = smp_processor_id();
4310 struct rq *rq = cpu_rq(cpu);
dd41f596 4311 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4312
4313 sched_clock_tick();
dd41f596
IM
4314
4315 spin_lock(&rq->lock);
3e51f33f 4316 update_rq_clock(rq);
f1a438d8 4317 update_cpu_load(rq);
fa85ae24 4318 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4319 spin_unlock(&rq->lock);
7835b98b 4320
e418e1c2 4321#ifdef CONFIG_SMP
dd41f596
IM
4322 rq->idle_at_tick = idle_cpu(cpu);
4323 trigger_load_balance(rq, cpu);
e418e1c2 4324#endif
0793a61d 4325 perf_counter_task_tick(curr, cpu);
1da177e4
LT
4326}
4327
6cd8a4bb
SR
4328#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4329 defined(CONFIG_PREEMPT_TRACER))
4330
4331static inline unsigned long get_parent_ip(unsigned long addr)
4332{
4333 if (in_lock_functions(addr)) {
4334 addr = CALLER_ADDR2;
4335 if (in_lock_functions(addr))
4336 addr = CALLER_ADDR3;
4337 }
4338 return addr;
4339}
1da177e4 4340
43627582 4341void __kprobes add_preempt_count(int val)
1da177e4 4342{
6cd8a4bb 4343#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4344 /*
4345 * Underflow?
4346 */
9a11b49a
IM
4347 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4348 return;
6cd8a4bb 4349#endif
1da177e4 4350 preempt_count() += val;
6cd8a4bb 4351#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4352 /*
4353 * Spinlock count overflowing soon?
4354 */
33859f7f
MOS
4355 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4356 PREEMPT_MASK - 10);
6cd8a4bb
SR
4357#endif
4358 if (preempt_count() == val)
4359 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4360}
4361EXPORT_SYMBOL(add_preempt_count);
4362
43627582 4363void __kprobes sub_preempt_count(int val)
1da177e4 4364{
6cd8a4bb 4365#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4366 /*
4367 * Underflow?
4368 */
9a11b49a
IM
4369 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4370 return;
1da177e4
LT
4371 /*
4372 * Is the spinlock portion underflowing?
4373 */
9a11b49a
IM
4374 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4375 !(preempt_count() & PREEMPT_MASK)))
4376 return;
6cd8a4bb 4377#endif
9a11b49a 4378
6cd8a4bb
SR
4379 if (preempt_count() == val)
4380 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4381 preempt_count() -= val;
4382}
4383EXPORT_SYMBOL(sub_preempt_count);
4384
4385#endif
4386
4387/*
dd41f596 4388 * Print scheduling while atomic bug:
1da177e4 4389 */
dd41f596 4390static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4391{
838225b4
SS
4392 struct pt_regs *regs = get_irq_regs();
4393
4394 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4395 prev->comm, prev->pid, preempt_count());
4396
dd41f596 4397 debug_show_held_locks(prev);
e21f5b15 4398 print_modules();
dd41f596
IM
4399 if (irqs_disabled())
4400 print_irqtrace_events(prev);
838225b4
SS
4401
4402 if (regs)
4403 show_regs(regs);
4404 else
4405 dump_stack();
dd41f596 4406}
1da177e4 4407
dd41f596
IM
4408/*
4409 * Various schedule()-time debugging checks and statistics:
4410 */
4411static inline void schedule_debug(struct task_struct *prev)
4412{
1da177e4 4413 /*
41a2d6cf 4414 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4415 * schedule() atomically, we ignore that path for now.
4416 * Otherwise, whine if we are scheduling when we should not be.
4417 */
3f33a7ce 4418 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4419 __schedule_bug(prev);
4420
1da177e4
LT
4421 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4422
2d72376b 4423 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4424#ifdef CONFIG_SCHEDSTATS
4425 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4426 schedstat_inc(this_rq(), bkl_count);
4427 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4428 }
4429#endif
dd41f596
IM
4430}
4431
4432/*
4433 * Pick up the highest-prio task:
4434 */
4435static inline struct task_struct *
ff95f3df 4436pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4437{
5522d5d5 4438 const struct sched_class *class;
dd41f596 4439 struct task_struct *p;
1da177e4
LT
4440
4441 /*
dd41f596
IM
4442 * Optimization: we know that if all tasks are in
4443 * the fair class we can call that function directly:
1da177e4 4444 */
dd41f596 4445 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4446 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4447 if (likely(p))
4448 return p;
1da177e4
LT
4449 }
4450
dd41f596
IM
4451 class = sched_class_highest;
4452 for ( ; ; ) {
fb8d4724 4453 p = class->pick_next_task(rq);
dd41f596
IM
4454 if (p)
4455 return p;
4456 /*
4457 * Will never be NULL as the idle class always
4458 * returns a non-NULL p:
4459 */
4460 class = class->next;
4461 }
4462}
1da177e4 4463
dd41f596
IM
4464/*
4465 * schedule() is the main scheduler function.
4466 */
4467asmlinkage void __sched schedule(void)
4468{
4469 struct task_struct *prev, *next;
67ca7bde 4470 unsigned long *switch_count;
dd41f596 4471 struct rq *rq;
31656519 4472 int cpu;
dd41f596
IM
4473
4474need_resched:
4475 preempt_disable();
4476 cpu = smp_processor_id();
4477 rq = cpu_rq(cpu);
4478 rcu_qsctr_inc(cpu);
4479 prev = rq->curr;
4480 switch_count = &prev->nivcsw;
4481
4482 release_kernel_lock(prev);
4483need_resched_nonpreemptible:
4484
4485 schedule_debug(prev);
1da177e4 4486
31656519 4487 if (sched_feat(HRTICK))
f333fdc9 4488 hrtick_clear(rq);
8f4d37ec 4489
8cd162ce 4490 spin_lock_irq(&rq->lock);
3e51f33f 4491 update_rq_clock(rq);
1e819950 4492 clear_tsk_need_resched(prev);
1da177e4 4493
1da177e4 4494 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4495 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4496 prev->state = TASK_RUNNING;
16882c1e 4497 else
2e1cb74a 4498 deactivate_task(rq, prev, 1);
dd41f596 4499 switch_count = &prev->nvcsw;
1da177e4
LT
4500 }
4501
9a897c5a
SR
4502#ifdef CONFIG_SMP
4503 if (prev->sched_class->pre_schedule)
4504 prev->sched_class->pre_schedule(rq, prev);
4505#endif
f65eda4f 4506
dd41f596 4507 if (unlikely(!rq->nr_running))
1da177e4 4508 idle_balance(cpu, rq);
1da177e4 4509
31ee529c 4510 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4511 next = pick_next_task(rq, prev);
1da177e4 4512
1da177e4 4513 if (likely(prev != next)) {
673a90a1
DS
4514 sched_info_switch(prev, next);
4515
1da177e4
LT
4516 rq->nr_switches++;
4517 rq->curr = next;
4518 ++*switch_count;
4519
dd41f596 4520 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4521 /*
4522 * the context switch might have flipped the stack from under
4523 * us, hence refresh the local variables.
4524 */
4525 cpu = smp_processor_id();
4526 rq = cpu_rq(cpu);
1da177e4
LT
4527 } else
4528 spin_unlock_irq(&rq->lock);
4529
8f4d37ec 4530 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4531 goto need_resched_nonpreemptible;
8f4d37ec 4532
1da177e4
LT
4533 preempt_enable_no_resched();
4534 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4535 goto need_resched;
4536}
1da177e4
LT
4537EXPORT_SYMBOL(schedule);
4538
4539#ifdef CONFIG_PREEMPT
4540/*
2ed6e34f 4541 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4542 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4543 * occur there and call schedule directly.
4544 */
4545asmlinkage void __sched preempt_schedule(void)
4546{
4547 struct thread_info *ti = current_thread_info();
6478d880 4548
1da177e4
LT
4549 /*
4550 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4551 * we do not want to preempt the current task. Just return..
1da177e4 4552 */
beed33a8 4553 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4554 return;
4555
3a5c359a
AK
4556 do {
4557 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4558 schedule();
3a5c359a 4559 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4560
3a5c359a
AK
4561 /*
4562 * Check again in case we missed a preemption opportunity
4563 * between schedule and now.
4564 */
4565 barrier();
4566 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4567}
1da177e4
LT
4568EXPORT_SYMBOL(preempt_schedule);
4569
4570/*
2ed6e34f 4571 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4572 * off of irq context.
4573 * Note, that this is called and return with irqs disabled. This will
4574 * protect us against recursive calling from irq.
4575 */
4576asmlinkage void __sched preempt_schedule_irq(void)
4577{
4578 struct thread_info *ti = current_thread_info();
6478d880 4579
2ed6e34f 4580 /* Catch callers which need to be fixed */
1da177e4
LT
4581 BUG_ON(ti->preempt_count || !irqs_disabled());
4582
3a5c359a
AK
4583 do {
4584 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4585 local_irq_enable();
4586 schedule();
4587 local_irq_disable();
3a5c359a 4588 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4589
3a5c359a
AK
4590 /*
4591 * Check again in case we missed a preemption opportunity
4592 * between schedule and now.
4593 */
4594 barrier();
4595 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4596}
4597
4598#endif /* CONFIG_PREEMPT */
4599
95cdf3b7
IM
4600int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4601 void *key)
1da177e4 4602{
48f24c4d 4603 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4604}
1da177e4
LT
4605EXPORT_SYMBOL(default_wake_function);
4606
4607/*
41a2d6cf
IM
4608 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4609 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4610 * number) then we wake all the non-exclusive tasks and one exclusive task.
4611 *
4612 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4613 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4614 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4615 */
4616static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4617 int nr_exclusive, int sync, void *key)
4618{
2e45874c 4619 wait_queue_t *curr, *next;
1da177e4 4620
2e45874c 4621 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4622 unsigned flags = curr->flags;
4623
1da177e4 4624 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4625 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4626 break;
4627 }
4628}
4629
4630/**
4631 * __wake_up - wake up threads blocked on a waitqueue.
4632 * @q: the waitqueue
4633 * @mode: which threads
4634 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4635 * @key: is directly passed to the wakeup function
1da177e4 4636 */
7ad5b3a5 4637void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4638 int nr_exclusive, void *key)
1da177e4
LT
4639{
4640 unsigned long flags;
4641
4642 spin_lock_irqsave(&q->lock, flags);
4643 __wake_up_common(q, mode, nr_exclusive, 0, key);
4644 spin_unlock_irqrestore(&q->lock, flags);
4645}
1da177e4
LT
4646EXPORT_SYMBOL(__wake_up);
4647
4648/*
4649 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4650 */
7ad5b3a5 4651void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4652{
4653 __wake_up_common(q, mode, 1, 0, NULL);
4654}
4655
4656/**
67be2dd1 4657 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4658 * @q: the waitqueue
4659 * @mode: which threads
4660 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4661 *
4662 * The sync wakeup differs that the waker knows that it will schedule
4663 * away soon, so while the target thread will be woken up, it will not
4664 * be migrated to another CPU - ie. the two threads are 'synchronized'
4665 * with each other. This can prevent needless bouncing between CPUs.
4666 *
4667 * On UP it can prevent extra preemption.
4668 */
7ad5b3a5 4669void
95cdf3b7 4670__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4671{
4672 unsigned long flags;
4673 int sync = 1;
4674
4675 if (unlikely(!q))
4676 return;
4677
4678 if (unlikely(!nr_exclusive))
4679 sync = 0;
4680
4681 spin_lock_irqsave(&q->lock, flags);
4682 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4683 spin_unlock_irqrestore(&q->lock, flags);
4684}
4685EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4686
65eb3dc6
KD
4687/**
4688 * complete: - signals a single thread waiting on this completion
4689 * @x: holds the state of this particular completion
4690 *
4691 * This will wake up a single thread waiting on this completion. Threads will be
4692 * awakened in the same order in which they were queued.
4693 *
4694 * See also complete_all(), wait_for_completion() and related routines.
4695 */
b15136e9 4696void complete(struct completion *x)
1da177e4
LT
4697{
4698 unsigned long flags;
4699
4700 spin_lock_irqsave(&x->wait.lock, flags);
4701 x->done++;
d9514f6c 4702 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4703 spin_unlock_irqrestore(&x->wait.lock, flags);
4704}
4705EXPORT_SYMBOL(complete);
4706
65eb3dc6
KD
4707/**
4708 * complete_all: - signals all threads waiting on this completion
4709 * @x: holds the state of this particular completion
4710 *
4711 * This will wake up all threads waiting on this particular completion event.
4712 */
b15136e9 4713void complete_all(struct completion *x)
1da177e4
LT
4714{
4715 unsigned long flags;
4716
4717 spin_lock_irqsave(&x->wait.lock, flags);
4718 x->done += UINT_MAX/2;
d9514f6c 4719 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4720 spin_unlock_irqrestore(&x->wait.lock, flags);
4721}
4722EXPORT_SYMBOL(complete_all);
4723
8cbbe86d
AK
4724static inline long __sched
4725do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4726{
1da177e4
LT
4727 if (!x->done) {
4728 DECLARE_WAITQUEUE(wait, current);
4729
4730 wait.flags |= WQ_FLAG_EXCLUSIVE;
4731 __add_wait_queue_tail(&x->wait, &wait);
4732 do {
94d3d824 4733 if (signal_pending_state(state, current)) {
ea71a546
ON
4734 timeout = -ERESTARTSYS;
4735 break;
8cbbe86d
AK
4736 }
4737 __set_current_state(state);
1da177e4
LT
4738 spin_unlock_irq(&x->wait.lock);
4739 timeout = schedule_timeout(timeout);
4740 spin_lock_irq(&x->wait.lock);
ea71a546 4741 } while (!x->done && timeout);
1da177e4 4742 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4743 if (!x->done)
4744 return timeout;
1da177e4
LT
4745 }
4746 x->done--;
ea71a546 4747 return timeout ?: 1;
1da177e4 4748}
1da177e4 4749
8cbbe86d
AK
4750static long __sched
4751wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4752{
1da177e4
LT
4753 might_sleep();
4754
4755 spin_lock_irq(&x->wait.lock);
8cbbe86d 4756 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4757 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4758 return timeout;
4759}
1da177e4 4760
65eb3dc6
KD
4761/**
4762 * wait_for_completion: - waits for completion of a task
4763 * @x: holds the state of this particular completion
4764 *
4765 * This waits to be signaled for completion of a specific task. It is NOT
4766 * interruptible and there is no timeout.
4767 *
4768 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4769 * and interrupt capability. Also see complete().
4770 */
b15136e9 4771void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4772{
4773 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4774}
8cbbe86d 4775EXPORT_SYMBOL(wait_for_completion);
1da177e4 4776
65eb3dc6
KD
4777/**
4778 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4779 * @x: holds the state of this particular completion
4780 * @timeout: timeout value in jiffies
4781 *
4782 * This waits for either a completion of a specific task to be signaled or for a
4783 * specified timeout to expire. The timeout is in jiffies. It is not
4784 * interruptible.
4785 */
b15136e9 4786unsigned long __sched
8cbbe86d 4787wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4788{
8cbbe86d 4789 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4790}
8cbbe86d 4791EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4792
65eb3dc6
KD
4793/**
4794 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4795 * @x: holds the state of this particular completion
4796 *
4797 * This waits for completion of a specific task to be signaled. It is
4798 * interruptible.
4799 */
8cbbe86d 4800int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4801{
51e97990
AK
4802 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4803 if (t == -ERESTARTSYS)
4804 return t;
4805 return 0;
0fec171c 4806}
8cbbe86d 4807EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4808
65eb3dc6
KD
4809/**
4810 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4811 * @x: holds the state of this particular completion
4812 * @timeout: timeout value in jiffies
4813 *
4814 * This waits for either a completion of a specific task to be signaled or for a
4815 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4816 */
b15136e9 4817unsigned long __sched
8cbbe86d
AK
4818wait_for_completion_interruptible_timeout(struct completion *x,
4819 unsigned long timeout)
0fec171c 4820{
8cbbe86d 4821 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4822}
8cbbe86d 4823EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4824
65eb3dc6
KD
4825/**
4826 * wait_for_completion_killable: - waits for completion of a task (killable)
4827 * @x: holds the state of this particular completion
4828 *
4829 * This waits to be signaled for completion of a specific task. It can be
4830 * interrupted by a kill signal.
4831 */
009e577e
MW
4832int __sched wait_for_completion_killable(struct completion *x)
4833{
4834 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4835 if (t == -ERESTARTSYS)
4836 return t;
4837 return 0;
4838}
4839EXPORT_SYMBOL(wait_for_completion_killable);
4840
be4de352
DC
4841/**
4842 * try_wait_for_completion - try to decrement a completion without blocking
4843 * @x: completion structure
4844 *
4845 * Returns: 0 if a decrement cannot be done without blocking
4846 * 1 if a decrement succeeded.
4847 *
4848 * If a completion is being used as a counting completion,
4849 * attempt to decrement the counter without blocking. This
4850 * enables us to avoid waiting if the resource the completion
4851 * is protecting is not available.
4852 */
4853bool try_wait_for_completion(struct completion *x)
4854{
4855 int ret = 1;
4856
4857 spin_lock_irq(&x->wait.lock);
4858 if (!x->done)
4859 ret = 0;
4860 else
4861 x->done--;
4862 spin_unlock_irq(&x->wait.lock);
4863 return ret;
4864}
4865EXPORT_SYMBOL(try_wait_for_completion);
4866
4867/**
4868 * completion_done - Test to see if a completion has any waiters
4869 * @x: completion structure
4870 *
4871 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4872 * 1 if there are no waiters.
4873 *
4874 */
4875bool completion_done(struct completion *x)
4876{
4877 int ret = 1;
4878
4879 spin_lock_irq(&x->wait.lock);
4880 if (!x->done)
4881 ret = 0;
4882 spin_unlock_irq(&x->wait.lock);
4883 return ret;
4884}
4885EXPORT_SYMBOL(completion_done);
4886
8cbbe86d
AK
4887static long __sched
4888sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4889{
0fec171c
IM
4890 unsigned long flags;
4891 wait_queue_t wait;
4892
4893 init_waitqueue_entry(&wait, current);
1da177e4 4894
8cbbe86d 4895 __set_current_state(state);
1da177e4 4896
8cbbe86d
AK
4897 spin_lock_irqsave(&q->lock, flags);
4898 __add_wait_queue(q, &wait);
4899 spin_unlock(&q->lock);
4900 timeout = schedule_timeout(timeout);
4901 spin_lock_irq(&q->lock);
4902 __remove_wait_queue(q, &wait);
4903 spin_unlock_irqrestore(&q->lock, flags);
4904
4905 return timeout;
4906}
4907
4908void __sched interruptible_sleep_on(wait_queue_head_t *q)
4909{
4910 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4911}
1da177e4
LT
4912EXPORT_SYMBOL(interruptible_sleep_on);
4913
0fec171c 4914long __sched
95cdf3b7 4915interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4916{
8cbbe86d 4917 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4918}
1da177e4
LT
4919EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4920
0fec171c 4921void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4922{
8cbbe86d 4923 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4924}
1da177e4
LT
4925EXPORT_SYMBOL(sleep_on);
4926
0fec171c 4927long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4928{
8cbbe86d 4929 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4930}
1da177e4
LT
4931EXPORT_SYMBOL(sleep_on_timeout);
4932
b29739f9
IM
4933#ifdef CONFIG_RT_MUTEXES
4934
4935/*
4936 * rt_mutex_setprio - set the current priority of a task
4937 * @p: task
4938 * @prio: prio value (kernel-internal form)
4939 *
4940 * This function changes the 'effective' priority of a task. It does
4941 * not touch ->normal_prio like __setscheduler().
4942 *
4943 * Used by the rt_mutex code to implement priority inheritance logic.
4944 */
36c8b586 4945void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4946{
4947 unsigned long flags;
83b699ed 4948 int oldprio, on_rq, running;
70b97a7f 4949 struct rq *rq;
cb469845 4950 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4951
4952 BUG_ON(prio < 0 || prio > MAX_PRIO);
4953
4954 rq = task_rq_lock(p, &flags);
a8e504d2 4955 update_rq_clock(rq);
b29739f9 4956
d5f9f942 4957 oldprio = p->prio;
dd41f596 4958 on_rq = p->se.on_rq;
051a1d1a 4959 running = task_current(rq, p);
0e1f3483 4960 if (on_rq)
69be72c1 4961 dequeue_task(rq, p, 0);
0e1f3483
HS
4962 if (running)
4963 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4964
4965 if (rt_prio(prio))
4966 p->sched_class = &rt_sched_class;
4967 else
4968 p->sched_class = &fair_sched_class;
4969
b29739f9
IM
4970 p->prio = prio;
4971
0e1f3483
HS
4972 if (running)
4973 p->sched_class->set_curr_task(rq);
dd41f596 4974 if (on_rq) {
8159f87e 4975 enqueue_task(rq, p, 0);
cb469845
SR
4976
4977 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4978 }
4979 task_rq_unlock(rq, &flags);
4980}
4981
4982#endif
4983
36c8b586 4984void set_user_nice(struct task_struct *p, long nice)
1da177e4 4985{
dd41f596 4986 int old_prio, delta, on_rq;
1da177e4 4987 unsigned long flags;
70b97a7f 4988 struct rq *rq;
1da177e4
LT
4989
4990 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4991 return;
4992 /*
4993 * We have to be careful, if called from sys_setpriority(),
4994 * the task might be in the middle of scheduling on another CPU.
4995 */
4996 rq = task_rq_lock(p, &flags);
a8e504d2 4997 update_rq_clock(rq);
1da177e4
LT
4998 /*
4999 * The RT priorities are set via sched_setscheduler(), but we still
5000 * allow the 'normal' nice value to be set - but as expected
5001 * it wont have any effect on scheduling until the task is
dd41f596 5002 * SCHED_FIFO/SCHED_RR:
1da177e4 5003 */
e05606d3 5004 if (task_has_rt_policy(p)) {
1da177e4
LT
5005 p->static_prio = NICE_TO_PRIO(nice);
5006 goto out_unlock;
5007 }
dd41f596 5008 on_rq = p->se.on_rq;
c09595f6 5009 if (on_rq)
69be72c1 5010 dequeue_task(rq, p, 0);
1da177e4 5011
1da177e4 5012 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5013 set_load_weight(p);
b29739f9
IM
5014 old_prio = p->prio;
5015 p->prio = effective_prio(p);
5016 delta = p->prio - old_prio;
1da177e4 5017
dd41f596 5018 if (on_rq) {
8159f87e 5019 enqueue_task(rq, p, 0);
1da177e4 5020 /*
d5f9f942
AM
5021 * If the task increased its priority or is running and
5022 * lowered its priority, then reschedule its CPU:
1da177e4 5023 */
d5f9f942 5024 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5025 resched_task(rq->curr);
5026 }
5027out_unlock:
5028 task_rq_unlock(rq, &flags);
5029}
1da177e4
LT
5030EXPORT_SYMBOL(set_user_nice);
5031
e43379f1
MM
5032/*
5033 * can_nice - check if a task can reduce its nice value
5034 * @p: task
5035 * @nice: nice value
5036 */
36c8b586 5037int can_nice(const struct task_struct *p, const int nice)
e43379f1 5038{
024f4747
MM
5039 /* convert nice value [19,-20] to rlimit style value [1,40] */
5040 int nice_rlim = 20 - nice;
48f24c4d 5041
e43379f1
MM
5042 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5043 capable(CAP_SYS_NICE));
5044}
5045
1da177e4
LT
5046#ifdef __ARCH_WANT_SYS_NICE
5047
5048/*
5049 * sys_nice - change the priority of the current process.
5050 * @increment: priority increment
5051 *
5052 * sys_setpriority is a more generic, but much slower function that
5053 * does similar things.
5054 */
5055asmlinkage long sys_nice(int increment)
5056{
48f24c4d 5057 long nice, retval;
1da177e4
LT
5058
5059 /*
5060 * Setpriority might change our priority at the same moment.
5061 * We don't have to worry. Conceptually one call occurs first
5062 * and we have a single winner.
5063 */
e43379f1
MM
5064 if (increment < -40)
5065 increment = -40;
1da177e4
LT
5066 if (increment > 40)
5067 increment = 40;
5068
5069 nice = PRIO_TO_NICE(current->static_prio) + increment;
5070 if (nice < -20)
5071 nice = -20;
5072 if (nice > 19)
5073 nice = 19;
5074
e43379f1
MM
5075 if (increment < 0 && !can_nice(current, nice))
5076 return -EPERM;
5077
1da177e4
LT
5078 retval = security_task_setnice(current, nice);
5079 if (retval)
5080 return retval;
5081
5082 set_user_nice(current, nice);
5083 return 0;
5084}
5085
5086#endif
5087
5088/**
5089 * task_prio - return the priority value of a given task.
5090 * @p: the task in question.
5091 *
5092 * This is the priority value as seen by users in /proc.
5093 * RT tasks are offset by -200. Normal tasks are centered
5094 * around 0, value goes from -16 to +15.
5095 */
36c8b586 5096int task_prio(const struct task_struct *p)
1da177e4
LT
5097{
5098 return p->prio - MAX_RT_PRIO;
5099}
5100
5101/**
5102 * task_nice - return the nice value of a given task.
5103 * @p: the task in question.
5104 */
36c8b586 5105int task_nice(const struct task_struct *p)
1da177e4
LT
5106{
5107 return TASK_NICE(p);
5108}
150d8bed 5109EXPORT_SYMBOL(task_nice);
1da177e4
LT
5110
5111/**
5112 * idle_cpu - is a given cpu idle currently?
5113 * @cpu: the processor in question.
5114 */
5115int idle_cpu(int cpu)
5116{
5117 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5118}
5119
1da177e4
LT
5120/**
5121 * idle_task - return the idle task for a given cpu.
5122 * @cpu: the processor in question.
5123 */
36c8b586 5124struct task_struct *idle_task(int cpu)
1da177e4
LT
5125{
5126 return cpu_rq(cpu)->idle;
5127}
5128
5129/**
5130 * find_process_by_pid - find a process with a matching PID value.
5131 * @pid: the pid in question.
5132 */
a9957449 5133static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5134{
228ebcbe 5135 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5136}
5137
5138/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5139static void
5140__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5141{
dd41f596 5142 BUG_ON(p->se.on_rq);
48f24c4d 5143
1da177e4 5144 p->policy = policy;
dd41f596
IM
5145 switch (p->policy) {
5146 case SCHED_NORMAL:
5147 case SCHED_BATCH:
5148 case SCHED_IDLE:
5149 p->sched_class = &fair_sched_class;
5150 break;
5151 case SCHED_FIFO:
5152 case SCHED_RR:
5153 p->sched_class = &rt_sched_class;
5154 break;
5155 }
5156
1da177e4 5157 p->rt_priority = prio;
b29739f9
IM
5158 p->normal_prio = normal_prio(p);
5159 /* we are holding p->pi_lock already */
5160 p->prio = rt_mutex_getprio(p);
2dd73a4f 5161 set_load_weight(p);
1da177e4
LT
5162}
5163
961ccddd
RR
5164static int __sched_setscheduler(struct task_struct *p, int policy,
5165 struct sched_param *param, bool user)
1da177e4 5166{
83b699ed 5167 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5168 unsigned long flags;
cb469845 5169 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5170 struct rq *rq;
1da177e4 5171
66e5393a
SR
5172 /* may grab non-irq protected spin_locks */
5173 BUG_ON(in_interrupt());
1da177e4
LT
5174recheck:
5175 /* double check policy once rq lock held */
5176 if (policy < 0)
5177 policy = oldpolicy = p->policy;
5178 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5179 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5180 policy != SCHED_IDLE)
b0a9499c 5181 return -EINVAL;
1da177e4
LT
5182 /*
5183 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5184 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5185 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5186 */
5187 if (param->sched_priority < 0 ||
95cdf3b7 5188 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5189 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5190 return -EINVAL;
e05606d3 5191 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5192 return -EINVAL;
5193
37e4ab3f
OC
5194 /*
5195 * Allow unprivileged RT tasks to decrease priority:
5196 */
961ccddd 5197 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5198 if (rt_policy(policy)) {
8dc3e909 5199 unsigned long rlim_rtprio;
8dc3e909
ON
5200
5201 if (!lock_task_sighand(p, &flags))
5202 return -ESRCH;
5203 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5204 unlock_task_sighand(p, &flags);
5205
5206 /* can't set/change the rt policy */
5207 if (policy != p->policy && !rlim_rtprio)
5208 return -EPERM;
5209
5210 /* can't increase priority */
5211 if (param->sched_priority > p->rt_priority &&
5212 param->sched_priority > rlim_rtprio)
5213 return -EPERM;
5214 }
dd41f596
IM
5215 /*
5216 * Like positive nice levels, dont allow tasks to
5217 * move out of SCHED_IDLE either:
5218 */
5219 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5220 return -EPERM;
5fe1d75f 5221
37e4ab3f
OC
5222 /* can't change other user's priorities */
5223 if ((current->euid != p->euid) &&
5224 (current->euid != p->uid))
5225 return -EPERM;
5226 }
1da177e4 5227
725aad24 5228 if (user) {
b68aa230 5229#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5230 /*
5231 * Do not allow realtime tasks into groups that have no runtime
5232 * assigned.
5233 */
9a7e0b18
PZ
5234 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5235 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5236 return -EPERM;
b68aa230
PZ
5237#endif
5238
725aad24
JF
5239 retval = security_task_setscheduler(p, policy, param);
5240 if (retval)
5241 return retval;
5242 }
5243
b29739f9
IM
5244 /*
5245 * make sure no PI-waiters arrive (or leave) while we are
5246 * changing the priority of the task:
5247 */
5248 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5249 /*
5250 * To be able to change p->policy safely, the apropriate
5251 * runqueue lock must be held.
5252 */
b29739f9 5253 rq = __task_rq_lock(p);
1da177e4
LT
5254 /* recheck policy now with rq lock held */
5255 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5256 policy = oldpolicy = -1;
b29739f9
IM
5257 __task_rq_unlock(rq);
5258 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5259 goto recheck;
5260 }
2daa3577 5261 update_rq_clock(rq);
dd41f596 5262 on_rq = p->se.on_rq;
051a1d1a 5263 running = task_current(rq, p);
0e1f3483 5264 if (on_rq)
2e1cb74a 5265 deactivate_task(rq, p, 0);
0e1f3483
HS
5266 if (running)
5267 p->sched_class->put_prev_task(rq, p);
f6b53205 5268
1da177e4 5269 oldprio = p->prio;
dd41f596 5270 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5271
0e1f3483
HS
5272 if (running)
5273 p->sched_class->set_curr_task(rq);
dd41f596
IM
5274 if (on_rq) {
5275 activate_task(rq, p, 0);
cb469845
SR
5276
5277 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5278 }
b29739f9
IM
5279 __task_rq_unlock(rq);
5280 spin_unlock_irqrestore(&p->pi_lock, flags);
5281
95e02ca9
TG
5282 rt_mutex_adjust_pi(p);
5283
1da177e4
LT
5284 return 0;
5285}
961ccddd
RR
5286
5287/**
5288 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5289 * @p: the task in question.
5290 * @policy: new policy.
5291 * @param: structure containing the new RT priority.
5292 *
5293 * NOTE that the task may be already dead.
5294 */
5295int sched_setscheduler(struct task_struct *p, int policy,
5296 struct sched_param *param)
5297{
5298 return __sched_setscheduler(p, policy, param, true);
5299}
1da177e4
LT
5300EXPORT_SYMBOL_GPL(sched_setscheduler);
5301
961ccddd
RR
5302/**
5303 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5304 * @p: the task in question.
5305 * @policy: new policy.
5306 * @param: structure containing the new RT priority.
5307 *
5308 * Just like sched_setscheduler, only don't bother checking if the
5309 * current context has permission. For example, this is needed in
5310 * stop_machine(): we create temporary high priority worker threads,
5311 * but our caller might not have that capability.
5312 */
5313int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5314 struct sched_param *param)
5315{
5316 return __sched_setscheduler(p, policy, param, false);
5317}
5318
95cdf3b7
IM
5319static int
5320do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5321{
1da177e4
LT
5322 struct sched_param lparam;
5323 struct task_struct *p;
36c8b586 5324 int retval;
1da177e4
LT
5325
5326 if (!param || pid < 0)
5327 return -EINVAL;
5328 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5329 return -EFAULT;
5fe1d75f
ON
5330
5331 rcu_read_lock();
5332 retval = -ESRCH;
1da177e4 5333 p = find_process_by_pid(pid);
5fe1d75f
ON
5334 if (p != NULL)
5335 retval = sched_setscheduler(p, policy, &lparam);
5336 rcu_read_unlock();
36c8b586 5337
1da177e4
LT
5338 return retval;
5339}
5340
5341/**
5342 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5343 * @pid: the pid in question.
5344 * @policy: new policy.
5345 * @param: structure containing the new RT priority.
5346 */
41a2d6cf
IM
5347asmlinkage long
5348sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5349{
c21761f1
JB
5350 /* negative values for policy are not valid */
5351 if (policy < 0)
5352 return -EINVAL;
5353
1da177e4
LT
5354 return do_sched_setscheduler(pid, policy, param);
5355}
5356
5357/**
5358 * sys_sched_setparam - set/change the RT priority of a thread
5359 * @pid: the pid in question.
5360 * @param: structure containing the new RT priority.
5361 */
5362asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5363{
5364 return do_sched_setscheduler(pid, -1, param);
5365}
5366
5367/**
5368 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5369 * @pid: the pid in question.
5370 */
5371asmlinkage long sys_sched_getscheduler(pid_t pid)
5372{
36c8b586 5373 struct task_struct *p;
3a5c359a 5374 int retval;
1da177e4
LT
5375
5376 if (pid < 0)
3a5c359a 5377 return -EINVAL;
1da177e4
LT
5378
5379 retval = -ESRCH;
5380 read_lock(&tasklist_lock);
5381 p = find_process_by_pid(pid);
5382 if (p) {
5383 retval = security_task_getscheduler(p);
5384 if (!retval)
5385 retval = p->policy;
5386 }
5387 read_unlock(&tasklist_lock);
1da177e4
LT
5388 return retval;
5389}
5390
5391/**
5392 * sys_sched_getscheduler - get the RT priority of a thread
5393 * @pid: the pid in question.
5394 * @param: structure containing the RT priority.
5395 */
5396asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5397{
5398 struct sched_param lp;
36c8b586 5399 struct task_struct *p;
3a5c359a 5400 int retval;
1da177e4
LT
5401
5402 if (!param || pid < 0)
3a5c359a 5403 return -EINVAL;
1da177e4
LT
5404
5405 read_lock(&tasklist_lock);
5406 p = find_process_by_pid(pid);
5407 retval = -ESRCH;
5408 if (!p)
5409 goto out_unlock;
5410
5411 retval = security_task_getscheduler(p);
5412 if (retval)
5413 goto out_unlock;
5414
5415 lp.sched_priority = p->rt_priority;
5416 read_unlock(&tasklist_lock);
5417
5418 /*
5419 * This one might sleep, we cannot do it with a spinlock held ...
5420 */
5421 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5422
1da177e4
LT
5423 return retval;
5424
5425out_unlock:
5426 read_unlock(&tasklist_lock);
5427 return retval;
5428}
5429
b53e921b 5430long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5431{
1da177e4 5432 cpumask_t cpus_allowed;
b53e921b 5433 cpumask_t new_mask = *in_mask;
36c8b586
IM
5434 struct task_struct *p;
5435 int retval;
1da177e4 5436
95402b38 5437 get_online_cpus();
1da177e4
LT
5438 read_lock(&tasklist_lock);
5439
5440 p = find_process_by_pid(pid);
5441 if (!p) {
5442 read_unlock(&tasklist_lock);
95402b38 5443 put_online_cpus();
1da177e4
LT
5444 return -ESRCH;
5445 }
5446
5447 /*
5448 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5449 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5450 * usage count and then drop tasklist_lock.
5451 */
5452 get_task_struct(p);
5453 read_unlock(&tasklist_lock);
5454
5455 retval = -EPERM;
5456 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5457 !capable(CAP_SYS_NICE))
5458 goto out_unlock;
5459
e7834f8f
DQ
5460 retval = security_task_setscheduler(p, 0, NULL);
5461 if (retval)
5462 goto out_unlock;
5463
f9a86fcb 5464 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5465 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5466 again:
7c16ec58 5467 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5468
8707d8b8 5469 if (!retval) {
f9a86fcb 5470 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5471 if (!cpus_subset(new_mask, cpus_allowed)) {
5472 /*
5473 * We must have raced with a concurrent cpuset
5474 * update. Just reset the cpus_allowed to the
5475 * cpuset's cpus_allowed
5476 */
5477 new_mask = cpus_allowed;
5478 goto again;
5479 }
5480 }
1da177e4
LT
5481out_unlock:
5482 put_task_struct(p);
95402b38 5483 put_online_cpus();
1da177e4
LT
5484 return retval;
5485}
5486
5487static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5488 cpumask_t *new_mask)
5489{
5490 if (len < sizeof(cpumask_t)) {
5491 memset(new_mask, 0, sizeof(cpumask_t));
5492 } else if (len > sizeof(cpumask_t)) {
5493 len = sizeof(cpumask_t);
5494 }
5495 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5496}
5497
5498/**
5499 * sys_sched_setaffinity - set the cpu affinity of a process
5500 * @pid: pid of the process
5501 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5502 * @user_mask_ptr: user-space pointer to the new cpu mask
5503 */
5504asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5505 unsigned long __user *user_mask_ptr)
5506{
5507 cpumask_t new_mask;
5508 int retval;
5509
5510 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5511 if (retval)
5512 return retval;
5513
b53e921b 5514 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5515}
5516
1da177e4
LT
5517long sched_getaffinity(pid_t pid, cpumask_t *mask)
5518{
36c8b586 5519 struct task_struct *p;
1da177e4 5520 int retval;
1da177e4 5521
95402b38 5522 get_online_cpus();
1da177e4
LT
5523 read_lock(&tasklist_lock);
5524
5525 retval = -ESRCH;
5526 p = find_process_by_pid(pid);
5527 if (!p)
5528 goto out_unlock;
5529
e7834f8f
DQ
5530 retval = security_task_getscheduler(p);
5531 if (retval)
5532 goto out_unlock;
5533
2f7016d9 5534 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5535
5536out_unlock:
5537 read_unlock(&tasklist_lock);
95402b38 5538 put_online_cpus();
1da177e4 5539
9531b62f 5540 return retval;
1da177e4
LT
5541}
5542
5543/**
5544 * sys_sched_getaffinity - get the cpu affinity of a process
5545 * @pid: pid of the process
5546 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5547 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5548 */
5549asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5550 unsigned long __user *user_mask_ptr)
5551{
5552 int ret;
5553 cpumask_t mask;
5554
5555 if (len < sizeof(cpumask_t))
5556 return -EINVAL;
5557
5558 ret = sched_getaffinity(pid, &mask);
5559 if (ret < 0)
5560 return ret;
5561
5562 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5563 return -EFAULT;
5564
5565 return sizeof(cpumask_t);
5566}
5567
5568/**
5569 * sys_sched_yield - yield the current processor to other threads.
5570 *
dd41f596
IM
5571 * This function yields the current CPU to other tasks. If there are no
5572 * other threads running on this CPU then this function will return.
1da177e4
LT
5573 */
5574asmlinkage long sys_sched_yield(void)
5575{
70b97a7f 5576 struct rq *rq = this_rq_lock();
1da177e4 5577
2d72376b 5578 schedstat_inc(rq, yld_count);
4530d7ab 5579 current->sched_class->yield_task(rq);
1da177e4
LT
5580
5581 /*
5582 * Since we are going to call schedule() anyway, there's
5583 * no need to preempt or enable interrupts:
5584 */
5585 __release(rq->lock);
8a25d5de 5586 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5587 _raw_spin_unlock(&rq->lock);
5588 preempt_enable_no_resched();
5589
5590 schedule();
5591
5592 return 0;
5593}
5594
e7b38404 5595static void __cond_resched(void)
1da177e4 5596{
8e0a43d8
IM
5597#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5598 __might_sleep(__FILE__, __LINE__);
5599#endif
5bbcfd90
IM
5600 /*
5601 * The BKS might be reacquired before we have dropped
5602 * PREEMPT_ACTIVE, which could trigger a second
5603 * cond_resched() call.
5604 */
1da177e4
LT
5605 do {
5606 add_preempt_count(PREEMPT_ACTIVE);
5607 schedule();
5608 sub_preempt_count(PREEMPT_ACTIVE);
5609 } while (need_resched());
5610}
5611
02b67cc3 5612int __sched _cond_resched(void)
1da177e4 5613{
9414232f
IM
5614 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5615 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5616 __cond_resched();
5617 return 1;
5618 }
5619 return 0;
5620}
02b67cc3 5621EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5622
5623/*
5624 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5625 * call schedule, and on return reacquire the lock.
5626 *
41a2d6cf 5627 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5628 * operations here to prevent schedule() from being called twice (once via
5629 * spin_unlock(), once by hand).
5630 */
95cdf3b7 5631int cond_resched_lock(spinlock_t *lock)
1da177e4 5632{
95c354fe 5633 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5634 int ret = 0;
5635
95c354fe 5636 if (spin_needbreak(lock) || resched) {
1da177e4 5637 spin_unlock(lock);
95c354fe
NP
5638 if (resched && need_resched())
5639 __cond_resched();
5640 else
5641 cpu_relax();
6df3cecb 5642 ret = 1;
1da177e4 5643 spin_lock(lock);
1da177e4 5644 }
6df3cecb 5645 return ret;
1da177e4 5646}
1da177e4
LT
5647EXPORT_SYMBOL(cond_resched_lock);
5648
5649int __sched cond_resched_softirq(void)
5650{
5651 BUG_ON(!in_softirq());
5652
9414232f 5653 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5654 local_bh_enable();
1da177e4
LT
5655 __cond_resched();
5656 local_bh_disable();
5657 return 1;
5658 }
5659 return 0;
5660}
1da177e4
LT
5661EXPORT_SYMBOL(cond_resched_softirq);
5662
1da177e4
LT
5663/**
5664 * yield - yield the current processor to other threads.
5665 *
72fd4a35 5666 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5667 * thread runnable and calls sys_sched_yield().
5668 */
5669void __sched yield(void)
5670{
5671 set_current_state(TASK_RUNNING);
5672 sys_sched_yield();
5673}
1da177e4
LT
5674EXPORT_SYMBOL(yield);
5675
5676/*
41a2d6cf 5677 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5678 * that process accounting knows that this is a task in IO wait state.
5679 *
5680 * But don't do that if it is a deliberate, throttling IO wait (this task
5681 * has set its backing_dev_info: the queue against which it should throttle)
5682 */
5683void __sched io_schedule(void)
5684{
70b97a7f 5685 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5686
0ff92245 5687 delayacct_blkio_start();
1da177e4
LT
5688 atomic_inc(&rq->nr_iowait);
5689 schedule();
5690 atomic_dec(&rq->nr_iowait);
0ff92245 5691 delayacct_blkio_end();
1da177e4 5692}
1da177e4
LT
5693EXPORT_SYMBOL(io_schedule);
5694
5695long __sched io_schedule_timeout(long timeout)
5696{
70b97a7f 5697 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5698 long ret;
5699
0ff92245 5700 delayacct_blkio_start();
1da177e4
LT
5701 atomic_inc(&rq->nr_iowait);
5702 ret = schedule_timeout(timeout);
5703 atomic_dec(&rq->nr_iowait);
0ff92245 5704 delayacct_blkio_end();
1da177e4
LT
5705 return ret;
5706}
5707
5708/**
5709 * sys_sched_get_priority_max - return maximum RT priority.
5710 * @policy: scheduling class.
5711 *
5712 * this syscall returns the maximum rt_priority that can be used
5713 * by a given scheduling class.
5714 */
5715asmlinkage long sys_sched_get_priority_max(int policy)
5716{
5717 int ret = -EINVAL;
5718
5719 switch (policy) {
5720 case SCHED_FIFO:
5721 case SCHED_RR:
5722 ret = MAX_USER_RT_PRIO-1;
5723 break;
5724 case SCHED_NORMAL:
b0a9499c 5725 case SCHED_BATCH:
dd41f596 5726 case SCHED_IDLE:
1da177e4
LT
5727 ret = 0;
5728 break;
5729 }
5730 return ret;
5731}
5732
5733/**
5734 * sys_sched_get_priority_min - return minimum RT priority.
5735 * @policy: scheduling class.
5736 *
5737 * this syscall returns the minimum rt_priority that can be used
5738 * by a given scheduling class.
5739 */
5740asmlinkage long sys_sched_get_priority_min(int policy)
5741{
5742 int ret = -EINVAL;
5743
5744 switch (policy) {
5745 case SCHED_FIFO:
5746 case SCHED_RR:
5747 ret = 1;
5748 break;
5749 case SCHED_NORMAL:
b0a9499c 5750 case SCHED_BATCH:
dd41f596 5751 case SCHED_IDLE:
1da177e4
LT
5752 ret = 0;
5753 }
5754 return ret;
5755}
5756
5757/**
5758 * sys_sched_rr_get_interval - return the default timeslice of a process.
5759 * @pid: pid of the process.
5760 * @interval: userspace pointer to the timeslice value.
5761 *
5762 * this syscall writes the default timeslice value of a given process
5763 * into the user-space timespec buffer. A value of '0' means infinity.
5764 */
5765asmlinkage
5766long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5767{
36c8b586 5768 struct task_struct *p;
a4ec24b4 5769 unsigned int time_slice;
3a5c359a 5770 int retval;
1da177e4 5771 struct timespec t;
1da177e4
LT
5772
5773 if (pid < 0)
3a5c359a 5774 return -EINVAL;
1da177e4
LT
5775
5776 retval = -ESRCH;
5777 read_lock(&tasklist_lock);
5778 p = find_process_by_pid(pid);
5779 if (!p)
5780 goto out_unlock;
5781
5782 retval = security_task_getscheduler(p);
5783 if (retval)
5784 goto out_unlock;
5785
77034937
IM
5786 /*
5787 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5788 * tasks that are on an otherwise idle runqueue:
5789 */
5790 time_slice = 0;
5791 if (p->policy == SCHED_RR) {
a4ec24b4 5792 time_slice = DEF_TIMESLICE;
1868f958 5793 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5794 struct sched_entity *se = &p->se;
5795 unsigned long flags;
5796 struct rq *rq;
5797
5798 rq = task_rq_lock(p, &flags);
77034937
IM
5799 if (rq->cfs.load.weight)
5800 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5801 task_rq_unlock(rq, &flags);
5802 }
1da177e4 5803 read_unlock(&tasklist_lock);
a4ec24b4 5804 jiffies_to_timespec(time_slice, &t);
1da177e4 5805 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5806 return retval;
3a5c359a 5807
1da177e4
LT
5808out_unlock:
5809 read_unlock(&tasklist_lock);
5810 return retval;
5811}
5812
7c731e0a 5813static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5814
82a1fcb9 5815void sched_show_task(struct task_struct *p)
1da177e4 5816{
1da177e4 5817 unsigned long free = 0;
36c8b586 5818 unsigned state;
1da177e4 5819
1da177e4 5820 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5821 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5822 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5823#if BITS_PER_LONG == 32
1da177e4 5824 if (state == TASK_RUNNING)
cc4ea795 5825 printk(KERN_CONT " running ");
1da177e4 5826 else
cc4ea795 5827 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5828#else
5829 if (state == TASK_RUNNING)
cc4ea795 5830 printk(KERN_CONT " running task ");
1da177e4 5831 else
cc4ea795 5832 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5833#endif
5834#ifdef CONFIG_DEBUG_STACK_USAGE
5835 {
10ebffde 5836 unsigned long *n = end_of_stack(p);
1da177e4
LT
5837 while (!*n)
5838 n++;
10ebffde 5839 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5840 }
5841#endif
ba25f9dc 5842 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5843 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5844
5fb5e6de 5845 show_stack(p, NULL);
1da177e4
LT
5846}
5847
e59e2ae2 5848void show_state_filter(unsigned long state_filter)
1da177e4 5849{
36c8b586 5850 struct task_struct *g, *p;
1da177e4 5851
4bd77321
IM
5852#if BITS_PER_LONG == 32
5853 printk(KERN_INFO
5854 " task PC stack pid father\n");
1da177e4 5855#else
4bd77321
IM
5856 printk(KERN_INFO
5857 " task PC stack pid father\n");
1da177e4
LT
5858#endif
5859 read_lock(&tasklist_lock);
5860 do_each_thread(g, p) {
5861 /*
5862 * reset the NMI-timeout, listing all files on a slow
5863 * console might take alot of time:
5864 */
5865 touch_nmi_watchdog();
39bc89fd 5866 if (!state_filter || (p->state & state_filter))
82a1fcb9 5867 sched_show_task(p);
1da177e4
LT
5868 } while_each_thread(g, p);
5869
04c9167f
JF
5870 touch_all_softlockup_watchdogs();
5871
dd41f596
IM
5872#ifdef CONFIG_SCHED_DEBUG
5873 sysrq_sched_debug_show();
5874#endif
1da177e4 5875 read_unlock(&tasklist_lock);
e59e2ae2
IM
5876 /*
5877 * Only show locks if all tasks are dumped:
5878 */
5879 if (state_filter == -1)
5880 debug_show_all_locks();
1da177e4
LT
5881}
5882
1df21055
IM
5883void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5884{
dd41f596 5885 idle->sched_class = &idle_sched_class;
1df21055
IM
5886}
5887
f340c0d1
IM
5888/**
5889 * init_idle - set up an idle thread for a given CPU
5890 * @idle: task in question
5891 * @cpu: cpu the idle task belongs to
5892 *
5893 * NOTE: this function does not set the idle thread's NEED_RESCHED
5894 * flag, to make booting more robust.
5895 */
5c1e1767 5896void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5897{
70b97a7f 5898 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5899 unsigned long flags;
5900
5cbd54ef
IM
5901 spin_lock_irqsave(&rq->lock, flags);
5902
dd41f596
IM
5903 __sched_fork(idle);
5904 idle->se.exec_start = sched_clock();
5905
b29739f9 5906 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5907 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5908 __set_task_cpu(idle, cpu);
1da177e4 5909
1da177e4 5910 rq->curr = rq->idle = idle;
4866cde0
NP
5911#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5912 idle->oncpu = 1;
5913#endif
1da177e4
LT
5914 spin_unlock_irqrestore(&rq->lock, flags);
5915
5916 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5917#if defined(CONFIG_PREEMPT)
5918 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5919#else
a1261f54 5920 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5921#endif
dd41f596
IM
5922 /*
5923 * The idle tasks have their own, simple scheduling class:
5924 */
5925 idle->sched_class = &idle_sched_class;
1da177e4
LT
5926}
5927
5928/*
5929 * In a system that switches off the HZ timer nohz_cpu_mask
5930 * indicates which cpus entered this state. This is used
5931 * in the rcu update to wait only for active cpus. For system
5932 * which do not switch off the HZ timer nohz_cpu_mask should
5933 * always be CPU_MASK_NONE.
5934 */
5935cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5936
19978ca6
IM
5937/*
5938 * Increase the granularity value when there are more CPUs,
5939 * because with more CPUs the 'effective latency' as visible
5940 * to users decreases. But the relationship is not linear,
5941 * so pick a second-best guess by going with the log2 of the
5942 * number of CPUs.
5943 *
5944 * This idea comes from the SD scheduler of Con Kolivas:
5945 */
5946static inline void sched_init_granularity(void)
5947{
5948 unsigned int factor = 1 + ilog2(num_online_cpus());
5949 const unsigned long limit = 200000000;
5950
5951 sysctl_sched_min_granularity *= factor;
5952 if (sysctl_sched_min_granularity > limit)
5953 sysctl_sched_min_granularity = limit;
5954
5955 sysctl_sched_latency *= factor;
5956 if (sysctl_sched_latency > limit)
5957 sysctl_sched_latency = limit;
5958
5959 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
5960
5961 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
5962}
5963
1da177e4
LT
5964#ifdef CONFIG_SMP
5965/*
5966 * This is how migration works:
5967 *
70b97a7f 5968 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5969 * runqueue and wake up that CPU's migration thread.
5970 * 2) we down() the locked semaphore => thread blocks.
5971 * 3) migration thread wakes up (implicitly it forces the migrated
5972 * thread off the CPU)
5973 * 4) it gets the migration request and checks whether the migrated
5974 * task is still in the wrong runqueue.
5975 * 5) if it's in the wrong runqueue then the migration thread removes
5976 * it and puts it into the right queue.
5977 * 6) migration thread up()s the semaphore.
5978 * 7) we wake up and the migration is done.
5979 */
5980
5981/*
5982 * Change a given task's CPU affinity. Migrate the thread to a
5983 * proper CPU and schedule it away if the CPU it's executing on
5984 * is removed from the allowed bitmask.
5985 *
5986 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5987 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5988 * call is not atomic; no spinlocks may be held.
5989 */
cd8ba7cd 5990int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5991{
70b97a7f 5992 struct migration_req req;
1da177e4 5993 unsigned long flags;
70b97a7f 5994 struct rq *rq;
48f24c4d 5995 int ret = 0;
1da177e4
LT
5996
5997 rq = task_rq_lock(p, &flags);
cd8ba7cd 5998 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5999 ret = -EINVAL;
6000 goto out;
6001 }
6002
9985b0ba
DR
6003 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6004 !cpus_equal(p->cpus_allowed, *new_mask))) {
6005 ret = -EINVAL;
6006 goto out;
6007 }
6008
73fe6aae 6009 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6010 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6011 else {
cd8ba7cd
MT
6012 p->cpus_allowed = *new_mask;
6013 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
6014 }
6015
1da177e4 6016 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 6017 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
6018 goto out;
6019
cd8ba7cd 6020 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
6021 /* Need help from migration thread: drop lock and wait. */
6022 task_rq_unlock(rq, &flags);
6023 wake_up_process(rq->migration_thread);
6024 wait_for_completion(&req.done);
6025 tlb_migrate_finish(p->mm);
6026 return 0;
6027 }
6028out:
6029 task_rq_unlock(rq, &flags);
48f24c4d 6030
1da177e4
LT
6031 return ret;
6032}
cd8ba7cd 6033EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6034
6035/*
41a2d6cf 6036 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6037 * this because either it can't run here any more (set_cpus_allowed()
6038 * away from this CPU, or CPU going down), or because we're
6039 * attempting to rebalance this task on exec (sched_exec).
6040 *
6041 * So we race with normal scheduler movements, but that's OK, as long
6042 * as the task is no longer on this CPU.
efc30814
KK
6043 *
6044 * Returns non-zero if task was successfully migrated.
1da177e4 6045 */
efc30814 6046static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6047{
70b97a7f 6048 struct rq *rq_dest, *rq_src;
dd41f596 6049 int ret = 0, on_rq;
1da177e4 6050
e761b772 6051 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6052 return ret;
1da177e4
LT
6053
6054 rq_src = cpu_rq(src_cpu);
6055 rq_dest = cpu_rq(dest_cpu);
6056
6057 double_rq_lock(rq_src, rq_dest);
6058 /* Already moved. */
6059 if (task_cpu(p) != src_cpu)
b1e38734 6060 goto done;
1da177e4
LT
6061 /* Affinity changed (again). */
6062 if (!cpu_isset(dest_cpu, p->cpus_allowed))
b1e38734 6063 goto fail;
1da177e4 6064
dd41f596 6065 on_rq = p->se.on_rq;
6e82a3be 6066 if (on_rq)
2e1cb74a 6067 deactivate_task(rq_src, p, 0);
6e82a3be 6068
1da177e4 6069 set_task_cpu(p, dest_cpu);
dd41f596
IM
6070 if (on_rq) {
6071 activate_task(rq_dest, p, 0);
15afe09b 6072 check_preempt_curr(rq_dest, p, 0);
1da177e4 6073 }
b1e38734 6074done:
efc30814 6075 ret = 1;
b1e38734 6076fail:
1da177e4 6077 double_rq_unlock(rq_src, rq_dest);
efc30814 6078 return ret;
1da177e4
LT
6079}
6080
6081/*
6082 * migration_thread - this is a highprio system thread that performs
6083 * thread migration by bumping thread off CPU then 'pushing' onto
6084 * another runqueue.
6085 */
95cdf3b7 6086static int migration_thread(void *data)
1da177e4 6087{
1da177e4 6088 int cpu = (long)data;
70b97a7f 6089 struct rq *rq;
1da177e4
LT
6090
6091 rq = cpu_rq(cpu);
6092 BUG_ON(rq->migration_thread != current);
6093
6094 set_current_state(TASK_INTERRUPTIBLE);
6095 while (!kthread_should_stop()) {
70b97a7f 6096 struct migration_req *req;
1da177e4 6097 struct list_head *head;
1da177e4 6098
1da177e4
LT
6099 spin_lock_irq(&rq->lock);
6100
6101 if (cpu_is_offline(cpu)) {
6102 spin_unlock_irq(&rq->lock);
6103 goto wait_to_die;
6104 }
6105
6106 if (rq->active_balance) {
6107 active_load_balance(rq, cpu);
6108 rq->active_balance = 0;
6109 }
6110
6111 head = &rq->migration_queue;
6112
6113 if (list_empty(head)) {
6114 spin_unlock_irq(&rq->lock);
6115 schedule();
6116 set_current_state(TASK_INTERRUPTIBLE);
6117 continue;
6118 }
70b97a7f 6119 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6120 list_del_init(head->next);
6121
674311d5
NP
6122 spin_unlock(&rq->lock);
6123 __migrate_task(req->task, cpu, req->dest_cpu);
6124 local_irq_enable();
1da177e4
LT
6125
6126 complete(&req->done);
6127 }
6128 __set_current_state(TASK_RUNNING);
6129 return 0;
6130
6131wait_to_die:
6132 /* Wait for kthread_stop */
6133 set_current_state(TASK_INTERRUPTIBLE);
6134 while (!kthread_should_stop()) {
6135 schedule();
6136 set_current_state(TASK_INTERRUPTIBLE);
6137 }
6138 __set_current_state(TASK_RUNNING);
6139 return 0;
6140}
6141
6142#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6143
6144static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6145{
6146 int ret;
6147
6148 local_irq_disable();
6149 ret = __migrate_task(p, src_cpu, dest_cpu);
6150 local_irq_enable();
6151 return ret;
6152}
6153
054b9108 6154/*
3a4fa0a2 6155 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
6156 * NOTE: interrupts should be disabled by the caller
6157 */
48f24c4d 6158static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6159{
efc30814 6160 unsigned long flags;
1da177e4 6161 cpumask_t mask;
70b97a7f
IM
6162 struct rq *rq;
6163 int dest_cpu;
1da177e4 6164
3a5c359a
AK
6165 do {
6166 /* On same node? */
6167 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6168 cpus_and(mask, mask, p->cpus_allowed);
6169 dest_cpu = any_online_cpu(mask);
6170
6171 /* On any allowed CPU? */
434d53b0 6172 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
6173 dest_cpu = any_online_cpu(p->cpus_allowed);
6174
6175 /* No more Mr. Nice Guy. */
434d53b0 6176 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
6177 cpumask_t cpus_allowed;
6178
6179 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
6180 /*
6181 * Try to stay on the same cpuset, where the
6182 * current cpuset may be a subset of all cpus.
6183 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 6184 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
6185 * called within calls to cpuset_lock/cpuset_unlock.
6186 */
3a5c359a 6187 rq = task_rq_lock(p, &flags);
470fd646 6188 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
6189 dest_cpu = any_online_cpu(p->cpus_allowed);
6190 task_rq_unlock(rq, &flags);
1da177e4 6191
3a5c359a
AK
6192 /*
6193 * Don't tell them about moving exiting tasks or
6194 * kernel threads (both mm NULL), since they never
6195 * leave kernel.
6196 */
41a2d6cf 6197 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
6198 printk(KERN_INFO "process %d (%s) no "
6199 "longer affine to cpu%d\n",
41a2d6cf
IM
6200 task_pid_nr(p), p->comm, dead_cpu);
6201 }
3a5c359a 6202 }
f7b4cddc 6203 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
6204}
6205
6206/*
6207 * While a dead CPU has no uninterruptible tasks queued at this point,
6208 * it might still have a nonzero ->nr_uninterruptible counter, because
6209 * for performance reasons the counter is not stricly tracking tasks to
6210 * their home CPUs. So we just add the counter to another CPU's counter,
6211 * to keep the global sum constant after CPU-down:
6212 */
70b97a7f 6213static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6214{
7c16ec58 6215 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
6216 unsigned long flags;
6217
6218 local_irq_save(flags);
6219 double_rq_lock(rq_src, rq_dest);
6220 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6221 rq_src->nr_uninterruptible = 0;
6222 double_rq_unlock(rq_src, rq_dest);
6223 local_irq_restore(flags);
6224}
6225
6226/* Run through task list and migrate tasks from the dead cpu. */
6227static void migrate_live_tasks(int src_cpu)
6228{
48f24c4d 6229 struct task_struct *p, *t;
1da177e4 6230
f7b4cddc 6231 read_lock(&tasklist_lock);
1da177e4 6232
48f24c4d
IM
6233 do_each_thread(t, p) {
6234 if (p == current)
1da177e4
LT
6235 continue;
6236
48f24c4d
IM
6237 if (task_cpu(p) == src_cpu)
6238 move_task_off_dead_cpu(src_cpu, p);
6239 } while_each_thread(t, p);
1da177e4 6240
f7b4cddc 6241 read_unlock(&tasklist_lock);
1da177e4
LT
6242}
6243
dd41f596
IM
6244/*
6245 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6246 * It does so by boosting its priority to highest possible.
6247 * Used by CPU offline code.
1da177e4
LT
6248 */
6249void sched_idle_next(void)
6250{
48f24c4d 6251 int this_cpu = smp_processor_id();
70b97a7f 6252 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6253 struct task_struct *p = rq->idle;
6254 unsigned long flags;
6255
6256 /* cpu has to be offline */
48f24c4d 6257 BUG_ON(cpu_online(this_cpu));
1da177e4 6258
48f24c4d
IM
6259 /*
6260 * Strictly not necessary since rest of the CPUs are stopped by now
6261 * and interrupts disabled on the current cpu.
1da177e4
LT
6262 */
6263 spin_lock_irqsave(&rq->lock, flags);
6264
dd41f596 6265 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6266
94bc9a7b
DA
6267 update_rq_clock(rq);
6268 activate_task(rq, p, 0);
1da177e4
LT
6269
6270 spin_unlock_irqrestore(&rq->lock, flags);
6271}
6272
48f24c4d
IM
6273/*
6274 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6275 * offline.
6276 */
6277void idle_task_exit(void)
6278{
6279 struct mm_struct *mm = current->active_mm;
6280
6281 BUG_ON(cpu_online(smp_processor_id()));
6282
6283 if (mm != &init_mm)
6284 switch_mm(mm, &init_mm, current);
6285 mmdrop(mm);
6286}
6287
054b9108 6288/* called under rq->lock with disabled interrupts */
36c8b586 6289static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6290{
70b97a7f 6291 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6292
6293 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6294 BUG_ON(!p->exit_state);
1da177e4
LT
6295
6296 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6297 BUG_ON(p->state == TASK_DEAD);
1da177e4 6298
48f24c4d 6299 get_task_struct(p);
1da177e4
LT
6300
6301 /*
6302 * Drop lock around migration; if someone else moves it,
41a2d6cf 6303 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6304 * fine.
6305 */
f7b4cddc 6306 spin_unlock_irq(&rq->lock);
48f24c4d 6307 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6308 spin_lock_irq(&rq->lock);
1da177e4 6309
48f24c4d 6310 put_task_struct(p);
1da177e4
LT
6311}
6312
6313/* release_task() removes task from tasklist, so we won't find dead tasks. */
6314static void migrate_dead_tasks(unsigned int dead_cpu)
6315{
70b97a7f 6316 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6317 struct task_struct *next;
48f24c4d 6318
dd41f596
IM
6319 for ( ; ; ) {
6320 if (!rq->nr_running)
6321 break;
a8e504d2 6322 update_rq_clock(rq);
ff95f3df 6323 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6324 if (!next)
6325 break;
79c53799 6326 next->sched_class->put_prev_task(rq, next);
dd41f596 6327 migrate_dead(dead_cpu, next);
e692ab53 6328
1da177e4
LT
6329 }
6330}
6331#endif /* CONFIG_HOTPLUG_CPU */
6332
e692ab53
NP
6333#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6334
6335static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6336 {
6337 .procname = "sched_domain",
c57baf1e 6338 .mode = 0555,
e0361851 6339 },
38605cae 6340 {0, },
e692ab53
NP
6341};
6342
6343static struct ctl_table sd_ctl_root[] = {
e0361851 6344 {
c57baf1e 6345 .ctl_name = CTL_KERN,
e0361851 6346 .procname = "kernel",
c57baf1e 6347 .mode = 0555,
e0361851
AD
6348 .child = sd_ctl_dir,
6349 },
38605cae 6350 {0, },
e692ab53
NP
6351};
6352
6353static struct ctl_table *sd_alloc_ctl_entry(int n)
6354{
6355 struct ctl_table *entry =
5cf9f062 6356 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6357
e692ab53
NP
6358 return entry;
6359}
6360
6382bc90
MM
6361static void sd_free_ctl_entry(struct ctl_table **tablep)
6362{
cd790076 6363 struct ctl_table *entry;
6382bc90 6364
cd790076
MM
6365 /*
6366 * In the intermediate directories, both the child directory and
6367 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6368 * will always be set. In the lowest directory the names are
cd790076
MM
6369 * static strings and all have proc handlers.
6370 */
6371 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6372 if (entry->child)
6373 sd_free_ctl_entry(&entry->child);
cd790076
MM
6374 if (entry->proc_handler == NULL)
6375 kfree(entry->procname);
6376 }
6382bc90
MM
6377
6378 kfree(*tablep);
6379 *tablep = NULL;
6380}
6381
e692ab53 6382static void
e0361851 6383set_table_entry(struct ctl_table *entry,
e692ab53
NP
6384 const char *procname, void *data, int maxlen,
6385 mode_t mode, proc_handler *proc_handler)
6386{
e692ab53
NP
6387 entry->procname = procname;
6388 entry->data = data;
6389 entry->maxlen = maxlen;
6390 entry->mode = mode;
6391 entry->proc_handler = proc_handler;
6392}
6393
6394static struct ctl_table *
6395sd_alloc_ctl_domain_table(struct sched_domain *sd)
6396{
a5d8c348 6397 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6398
ad1cdc1d
MM
6399 if (table == NULL)
6400 return NULL;
6401
e0361851 6402 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6403 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6404 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6405 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6406 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6407 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6408 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6409 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6410 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6411 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6412 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6413 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6414 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6415 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6416 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6417 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6418 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6419 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6420 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6421 &sd->cache_nice_tries,
6422 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6423 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6424 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6425 set_table_entry(&table[11], "name", sd->name,
6426 CORENAME_MAX_SIZE, 0444, proc_dostring);
6427 /* &table[12] is terminator */
e692ab53
NP
6428
6429 return table;
6430}
6431
9a4e7159 6432static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6433{
6434 struct ctl_table *entry, *table;
6435 struct sched_domain *sd;
6436 int domain_num = 0, i;
6437 char buf[32];
6438
6439 for_each_domain(cpu, sd)
6440 domain_num++;
6441 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6442 if (table == NULL)
6443 return NULL;
e692ab53
NP
6444
6445 i = 0;
6446 for_each_domain(cpu, sd) {
6447 snprintf(buf, 32, "domain%d", i);
e692ab53 6448 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6449 entry->mode = 0555;
e692ab53
NP
6450 entry->child = sd_alloc_ctl_domain_table(sd);
6451 entry++;
6452 i++;
6453 }
6454 return table;
6455}
6456
6457static struct ctl_table_header *sd_sysctl_header;
6382bc90 6458static void register_sched_domain_sysctl(void)
e692ab53
NP
6459{
6460 int i, cpu_num = num_online_cpus();
6461 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6462 char buf[32];
6463
7378547f
MM
6464 WARN_ON(sd_ctl_dir[0].child);
6465 sd_ctl_dir[0].child = entry;
6466
ad1cdc1d
MM
6467 if (entry == NULL)
6468 return;
6469
97b6ea7b 6470 for_each_online_cpu(i) {
e692ab53 6471 snprintf(buf, 32, "cpu%d", i);
e692ab53 6472 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6473 entry->mode = 0555;
e692ab53 6474 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6475 entry++;
e692ab53 6476 }
7378547f
MM
6477
6478 WARN_ON(sd_sysctl_header);
e692ab53
NP
6479 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6480}
6382bc90 6481
7378547f 6482/* may be called multiple times per register */
6382bc90
MM
6483static void unregister_sched_domain_sysctl(void)
6484{
7378547f
MM
6485 if (sd_sysctl_header)
6486 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6487 sd_sysctl_header = NULL;
7378547f
MM
6488 if (sd_ctl_dir[0].child)
6489 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6490}
e692ab53 6491#else
6382bc90
MM
6492static void register_sched_domain_sysctl(void)
6493{
6494}
6495static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6496{
6497}
6498#endif
6499
1f11eb6a
GH
6500static void set_rq_online(struct rq *rq)
6501{
6502 if (!rq->online) {
6503 const struct sched_class *class;
6504
6505 cpu_set(rq->cpu, rq->rd->online);
6506 rq->online = 1;
6507
6508 for_each_class(class) {
6509 if (class->rq_online)
6510 class->rq_online(rq);
6511 }
6512 }
6513}
6514
6515static void set_rq_offline(struct rq *rq)
6516{
6517 if (rq->online) {
6518 const struct sched_class *class;
6519
6520 for_each_class(class) {
6521 if (class->rq_offline)
6522 class->rq_offline(rq);
6523 }
6524
6525 cpu_clear(rq->cpu, rq->rd->online);
6526 rq->online = 0;
6527 }
6528}
6529
1da177e4
LT
6530/*
6531 * migration_call - callback that gets triggered when a CPU is added.
6532 * Here we can start up the necessary migration thread for the new CPU.
6533 */
48f24c4d
IM
6534static int __cpuinit
6535migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6536{
1da177e4 6537 struct task_struct *p;
48f24c4d 6538 int cpu = (long)hcpu;
1da177e4 6539 unsigned long flags;
70b97a7f 6540 struct rq *rq;
1da177e4
LT
6541
6542 switch (action) {
5be9361c 6543
1da177e4 6544 case CPU_UP_PREPARE:
8bb78442 6545 case CPU_UP_PREPARE_FROZEN:
dd41f596 6546 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6547 if (IS_ERR(p))
6548 return NOTIFY_BAD;
1da177e4
LT
6549 kthread_bind(p, cpu);
6550 /* Must be high prio: stop_machine expects to yield to it. */
6551 rq = task_rq_lock(p, &flags);
dd41f596 6552 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6553 task_rq_unlock(rq, &flags);
6554 cpu_rq(cpu)->migration_thread = p;
6555 break;
48f24c4d 6556
1da177e4 6557 case CPU_ONLINE:
8bb78442 6558 case CPU_ONLINE_FROZEN:
3a4fa0a2 6559 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6560 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6561
6562 /* Update our root-domain */
6563 rq = cpu_rq(cpu);
6564 spin_lock_irqsave(&rq->lock, flags);
6565 if (rq->rd) {
6566 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a
GH
6567
6568 set_rq_online(rq);
1f94ef59
GH
6569 }
6570 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6571 break;
48f24c4d 6572
1da177e4
LT
6573#ifdef CONFIG_HOTPLUG_CPU
6574 case CPU_UP_CANCELED:
8bb78442 6575 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6576 if (!cpu_rq(cpu)->migration_thread)
6577 break;
41a2d6cf 6578 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6579 kthread_bind(cpu_rq(cpu)->migration_thread,
6580 any_online_cpu(cpu_online_map));
1da177e4
LT
6581 kthread_stop(cpu_rq(cpu)->migration_thread);
6582 cpu_rq(cpu)->migration_thread = NULL;
6583 break;
48f24c4d 6584
1da177e4 6585 case CPU_DEAD:
8bb78442 6586 case CPU_DEAD_FROZEN:
470fd646 6587 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6588 migrate_live_tasks(cpu);
6589 rq = cpu_rq(cpu);
6590 kthread_stop(rq->migration_thread);
6591 rq->migration_thread = NULL;
6592 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6593 spin_lock_irq(&rq->lock);
a8e504d2 6594 update_rq_clock(rq);
2e1cb74a 6595 deactivate_task(rq, rq->idle, 0);
1da177e4 6596 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6597 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6598 rq->idle->sched_class = &idle_sched_class;
1da177e4 6599 migrate_dead_tasks(cpu);
d2da272a 6600 spin_unlock_irq(&rq->lock);
470fd646 6601 cpuset_unlock();
1da177e4
LT
6602 migrate_nr_uninterruptible(rq);
6603 BUG_ON(rq->nr_running != 0);
6604
41a2d6cf
IM
6605 /*
6606 * No need to migrate the tasks: it was best-effort if
6607 * they didn't take sched_hotcpu_mutex. Just wake up
6608 * the requestors.
6609 */
1da177e4
LT
6610 spin_lock_irq(&rq->lock);
6611 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6612 struct migration_req *req;
6613
1da177e4 6614 req = list_entry(rq->migration_queue.next,
70b97a7f 6615 struct migration_req, list);
1da177e4 6616 list_del_init(&req->list);
9a2bd244 6617 spin_unlock_irq(&rq->lock);
1da177e4 6618 complete(&req->done);
9a2bd244 6619 spin_lock_irq(&rq->lock);
1da177e4
LT
6620 }
6621 spin_unlock_irq(&rq->lock);
6622 break;
57d885fe 6623
08f503b0
GH
6624 case CPU_DYING:
6625 case CPU_DYING_FROZEN:
57d885fe
GH
6626 /* Update our root-domain */
6627 rq = cpu_rq(cpu);
6628 spin_lock_irqsave(&rq->lock, flags);
6629 if (rq->rd) {
6630 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a 6631 set_rq_offline(rq);
57d885fe
GH
6632 }
6633 spin_unlock_irqrestore(&rq->lock, flags);
6634 break;
1da177e4
LT
6635#endif
6636 }
6637 return NOTIFY_OK;
6638}
6639
6640/* Register at highest priority so that task migration (migrate_all_tasks)
6641 * happens before everything else.
6642 */
26c2143b 6643static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6644 .notifier_call = migration_call,
6645 .priority = 10
6646};
6647
7babe8db 6648static int __init migration_init(void)
1da177e4
LT
6649{
6650 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6651 int err;
48f24c4d
IM
6652
6653 /* Start one for the boot CPU: */
07dccf33
AM
6654 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6655 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6656 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6657 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6658
6659 return err;
1da177e4 6660}
7babe8db 6661early_initcall(migration_init);
1da177e4
LT
6662#endif
6663
6664#ifdef CONFIG_SMP
476f3534 6665
3e9830dc 6666#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6667
099f98c8
GS
6668static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6669{
6670 switch (lvl) {
6671 case SD_LV_NONE:
6672 return "NONE";
6673 case SD_LV_SIBLING:
6674 return "SIBLING";
6675 case SD_LV_MC:
6676 return "MC";
6677 case SD_LV_CPU:
6678 return "CPU";
6679 case SD_LV_NODE:
6680 return "NODE";
6681 case SD_LV_ALLNODES:
6682 return "ALLNODES";
6683 case SD_LV_MAX:
6684 return "MAX";
6685
6686 }
6687 return "MAX";
6688}
6689
7c16ec58
MT
6690static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6691 cpumask_t *groupmask)
1da177e4 6692{
4dcf6aff 6693 struct sched_group *group = sd->groups;
434d53b0 6694 char str[256];
1da177e4 6695
434d53b0 6696 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6697 cpus_clear(*groupmask);
4dcf6aff
IM
6698
6699 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6700
6701 if (!(sd->flags & SD_LOAD_BALANCE)) {
6702 printk("does not load-balance\n");
6703 if (sd->parent)
6704 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6705 " has parent");
6706 return -1;
41c7ce9a
NP
6707 }
6708
099f98c8
GS
6709 printk(KERN_CONT "span %s level %s\n",
6710 str, sd_level_to_string(sd->level));
4dcf6aff
IM
6711
6712 if (!cpu_isset(cpu, sd->span)) {
6713 printk(KERN_ERR "ERROR: domain->span does not contain "
6714 "CPU%d\n", cpu);
6715 }
6716 if (!cpu_isset(cpu, group->cpumask)) {
6717 printk(KERN_ERR "ERROR: domain->groups does not contain"
6718 " CPU%d\n", cpu);
6719 }
1da177e4 6720
4dcf6aff 6721 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6722 do {
4dcf6aff
IM
6723 if (!group) {
6724 printk("\n");
6725 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6726 break;
6727 }
6728
4dcf6aff
IM
6729 if (!group->__cpu_power) {
6730 printk(KERN_CONT "\n");
6731 printk(KERN_ERR "ERROR: domain->cpu_power not "
6732 "set\n");
6733 break;
6734 }
1da177e4 6735
4dcf6aff
IM
6736 if (!cpus_weight(group->cpumask)) {
6737 printk(KERN_CONT "\n");
6738 printk(KERN_ERR "ERROR: empty group\n");
6739 break;
6740 }
1da177e4 6741
7c16ec58 6742 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6743 printk(KERN_CONT "\n");
6744 printk(KERN_ERR "ERROR: repeated CPUs\n");
6745 break;
6746 }
1da177e4 6747
7c16ec58 6748 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6749
434d53b0 6750 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6751 printk(KERN_CONT " %s", str);
1da177e4 6752
4dcf6aff
IM
6753 group = group->next;
6754 } while (group != sd->groups);
6755 printk(KERN_CONT "\n");
1da177e4 6756
7c16ec58 6757 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6758 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6759
7c16ec58 6760 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6761 printk(KERN_ERR "ERROR: parent span is not a superset "
6762 "of domain->span\n");
6763 return 0;
6764}
1da177e4 6765
4dcf6aff
IM
6766static void sched_domain_debug(struct sched_domain *sd, int cpu)
6767{
7c16ec58 6768 cpumask_t *groupmask;
4dcf6aff 6769 int level = 0;
1da177e4 6770
4dcf6aff
IM
6771 if (!sd) {
6772 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6773 return;
6774 }
1da177e4 6775
4dcf6aff
IM
6776 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6777
7c16ec58
MT
6778 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6779 if (!groupmask) {
6780 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6781 return;
6782 }
6783
4dcf6aff 6784 for (;;) {
7c16ec58 6785 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6786 break;
1da177e4
LT
6787 level++;
6788 sd = sd->parent;
33859f7f 6789 if (!sd)
4dcf6aff
IM
6790 break;
6791 }
7c16ec58 6792 kfree(groupmask);
1da177e4 6793}
6d6bc0ad 6794#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6795# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6796#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6797
1a20ff27 6798static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6799{
6800 if (cpus_weight(sd->span) == 1)
6801 return 1;
6802
6803 /* Following flags need at least 2 groups */
6804 if (sd->flags & (SD_LOAD_BALANCE |
6805 SD_BALANCE_NEWIDLE |
6806 SD_BALANCE_FORK |
89c4710e
SS
6807 SD_BALANCE_EXEC |
6808 SD_SHARE_CPUPOWER |
6809 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6810 if (sd->groups != sd->groups->next)
6811 return 0;
6812 }
6813
6814 /* Following flags don't use groups */
6815 if (sd->flags & (SD_WAKE_IDLE |
6816 SD_WAKE_AFFINE |
6817 SD_WAKE_BALANCE))
6818 return 0;
6819
6820 return 1;
6821}
6822
48f24c4d
IM
6823static int
6824sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6825{
6826 unsigned long cflags = sd->flags, pflags = parent->flags;
6827
6828 if (sd_degenerate(parent))
6829 return 1;
6830
6831 if (!cpus_equal(sd->span, parent->span))
6832 return 0;
6833
6834 /* Does parent contain flags not in child? */
6835 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6836 if (cflags & SD_WAKE_AFFINE)
6837 pflags &= ~SD_WAKE_BALANCE;
6838 /* Flags needing groups don't count if only 1 group in parent */
6839 if (parent->groups == parent->groups->next) {
6840 pflags &= ~(SD_LOAD_BALANCE |
6841 SD_BALANCE_NEWIDLE |
6842 SD_BALANCE_FORK |
89c4710e
SS
6843 SD_BALANCE_EXEC |
6844 SD_SHARE_CPUPOWER |
6845 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6846 }
6847 if (~cflags & pflags)
6848 return 0;
6849
6850 return 1;
6851}
6852
57d885fe
GH
6853static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6854{
6855 unsigned long flags;
57d885fe
GH
6856
6857 spin_lock_irqsave(&rq->lock, flags);
6858
6859 if (rq->rd) {
6860 struct root_domain *old_rd = rq->rd;
6861
1f11eb6a
GH
6862 if (cpu_isset(rq->cpu, old_rd->online))
6863 set_rq_offline(rq);
57d885fe 6864
dc938520 6865 cpu_clear(rq->cpu, old_rd->span);
dc938520 6866
57d885fe
GH
6867 if (atomic_dec_and_test(&old_rd->refcount))
6868 kfree(old_rd);
6869 }
6870
6871 atomic_inc(&rd->refcount);
6872 rq->rd = rd;
6873
dc938520 6874 cpu_set(rq->cpu, rd->span);
1f94ef59 6875 if (cpu_isset(rq->cpu, cpu_online_map))
1f11eb6a 6876 set_rq_online(rq);
57d885fe
GH
6877
6878 spin_unlock_irqrestore(&rq->lock, flags);
6879}
6880
dc938520 6881static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6882{
6883 memset(rd, 0, sizeof(*rd));
6884
dc938520
GH
6885 cpus_clear(rd->span);
6886 cpus_clear(rd->online);
6e0534f2
GH
6887
6888 cpupri_init(&rd->cpupri);
57d885fe
GH
6889}
6890
6891static void init_defrootdomain(void)
6892{
dc938520 6893 init_rootdomain(&def_root_domain);
57d885fe
GH
6894 atomic_set(&def_root_domain.refcount, 1);
6895}
6896
dc938520 6897static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6898{
6899 struct root_domain *rd;
6900
6901 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6902 if (!rd)
6903 return NULL;
6904
dc938520 6905 init_rootdomain(rd);
57d885fe
GH
6906
6907 return rd;
6908}
6909
1da177e4 6910/*
0eab9146 6911 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6912 * hold the hotplug lock.
6913 */
0eab9146
IM
6914static void
6915cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6916{
70b97a7f 6917 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6918 struct sched_domain *tmp;
6919
6920 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6921 for (tmp = sd; tmp; ) {
245af2c7
SS
6922 struct sched_domain *parent = tmp->parent;
6923 if (!parent)
6924 break;
f29c9b1c 6925
1a848870 6926 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6927 tmp->parent = parent->parent;
1a848870
SS
6928 if (parent->parent)
6929 parent->parent->child = tmp;
f29c9b1c
LZ
6930 } else
6931 tmp = tmp->parent;
245af2c7
SS
6932 }
6933
1a848870 6934 if (sd && sd_degenerate(sd)) {
245af2c7 6935 sd = sd->parent;
1a848870
SS
6936 if (sd)
6937 sd->child = NULL;
6938 }
1da177e4
LT
6939
6940 sched_domain_debug(sd, cpu);
6941
57d885fe 6942 rq_attach_root(rq, rd);
674311d5 6943 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6944}
6945
6946/* cpus with isolated domains */
67af63a6 6947static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6948
6949/* Setup the mask of cpus configured for isolated domains */
6950static int __init isolated_cpu_setup(char *str)
6951{
13b40c1e
MT
6952 static int __initdata ints[NR_CPUS];
6953 int i;
1da177e4
LT
6954
6955 str = get_options(str, ARRAY_SIZE(ints), ints);
6956 cpus_clear(cpu_isolated_map);
6957 for (i = 1; i <= ints[0]; i++)
6958 if (ints[i] < NR_CPUS)
6959 cpu_set(ints[i], cpu_isolated_map);
6960 return 1;
6961}
6962
8927f494 6963__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6964
6965/*
6711cab4
SS
6966 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6967 * to a function which identifies what group(along with sched group) a CPU
6968 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6969 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6970 *
6971 * init_sched_build_groups will build a circular linked list of the groups
6972 * covered by the given span, and will set each group's ->cpumask correctly,
6973 * and ->cpu_power to 0.
6974 */
a616058b 6975static void
7c16ec58 6976init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6977 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6978 struct sched_group **sg,
6979 cpumask_t *tmpmask),
6980 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6981{
6982 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6983 int i;
6984
7c16ec58
MT
6985 cpus_clear(*covered);
6986
363ab6f1 6987 for_each_cpu_mask_nr(i, *span) {
6711cab4 6988 struct sched_group *sg;
7c16ec58 6989 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6990 int j;
6991
7c16ec58 6992 if (cpu_isset(i, *covered))
1da177e4
LT
6993 continue;
6994
7c16ec58 6995 cpus_clear(sg->cpumask);
5517d86b 6996 sg->__cpu_power = 0;
1da177e4 6997
363ab6f1 6998 for_each_cpu_mask_nr(j, *span) {
7c16ec58 6999 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7000 continue;
7001
7c16ec58 7002 cpu_set(j, *covered);
1da177e4
LT
7003 cpu_set(j, sg->cpumask);
7004 }
7005 if (!first)
7006 first = sg;
7007 if (last)
7008 last->next = sg;
7009 last = sg;
7010 }
7011 last->next = first;
7012}
7013
9c1cfda2 7014#define SD_NODES_PER_DOMAIN 16
1da177e4 7015
9c1cfda2 7016#ifdef CONFIG_NUMA
198e2f18 7017
9c1cfda2
JH
7018/**
7019 * find_next_best_node - find the next node to include in a sched_domain
7020 * @node: node whose sched_domain we're building
7021 * @used_nodes: nodes already in the sched_domain
7022 *
41a2d6cf 7023 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7024 * finds the closest node not already in the @used_nodes map.
7025 *
7026 * Should use nodemask_t.
7027 */
c5f59f08 7028static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7029{
7030 int i, n, val, min_val, best_node = 0;
7031
7032 min_val = INT_MAX;
7033
076ac2af 7034 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7035 /* Start at @node */
076ac2af 7036 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7037
7038 if (!nr_cpus_node(n))
7039 continue;
7040
7041 /* Skip already used nodes */
c5f59f08 7042 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7043 continue;
7044
7045 /* Simple min distance search */
7046 val = node_distance(node, n);
7047
7048 if (val < min_val) {
7049 min_val = val;
7050 best_node = n;
7051 }
7052 }
7053
c5f59f08 7054 node_set(best_node, *used_nodes);
9c1cfda2
JH
7055 return best_node;
7056}
7057
7058/**
7059 * sched_domain_node_span - get a cpumask for a node's sched_domain
7060 * @node: node whose cpumask we're constructing
73486722 7061 * @span: resulting cpumask
9c1cfda2 7062 *
41a2d6cf 7063 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7064 * should be one that prevents unnecessary balancing, but also spreads tasks
7065 * out optimally.
7066 */
4bdbaad3 7067static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 7068{
c5f59f08 7069 nodemask_t used_nodes;
c5f59f08 7070 node_to_cpumask_ptr(nodemask, node);
48f24c4d 7071 int i;
9c1cfda2 7072
4bdbaad3 7073 cpus_clear(*span);
c5f59f08 7074 nodes_clear(used_nodes);
9c1cfda2 7075
4bdbaad3 7076 cpus_or(*span, *span, *nodemask);
c5f59f08 7077 node_set(node, used_nodes);
9c1cfda2
JH
7078
7079 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7080 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7081
c5f59f08 7082 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 7083 cpus_or(*span, *span, *nodemask);
9c1cfda2 7084 }
9c1cfda2 7085}
6d6bc0ad 7086#endif /* CONFIG_NUMA */
9c1cfda2 7087
5c45bf27 7088int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7089
9c1cfda2 7090/*
48f24c4d 7091 * SMT sched-domains:
9c1cfda2 7092 */
1da177e4
LT
7093#ifdef CONFIG_SCHED_SMT
7094static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 7095static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 7096
41a2d6cf 7097static int
7c16ec58
MT
7098cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7099 cpumask_t *unused)
1da177e4 7100{
6711cab4
SS
7101 if (sg)
7102 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
7103 return cpu;
7104}
6d6bc0ad 7105#endif /* CONFIG_SCHED_SMT */
1da177e4 7106
48f24c4d
IM
7107/*
7108 * multi-core sched-domains:
7109 */
1e9f28fa
SS
7110#ifdef CONFIG_SCHED_MC
7111static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 7112static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6d6bc0ad 7113#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7114
7115#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7116static int
7c16ec58
MT
7117cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7118 cpumask_t *mask)
1e9f28fa 7119{
6711cab4 7120 int group;
7c16ec58
MT
7121
7122 *mask = per_cpu(cpu_sibling_map, cpu);
7123 cpus_and(*mask, *mask, *cpu_map);
7124 group = first_cpu(*mask);
6711cab4
SS
7125 if (sg)
7126 *sg = &per_cpu(sched_group_core, group);
7127 return group;
1e9f28fa
SS
7128}
7129#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7130static int
7c16ec58
MT
7131cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7132 cpumask_t *unused)
1e9f28fa 7133{
6711cab4
SS
7134 if (sg)
7135 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
7136 return cpu;
7137}
7138#endif
7139
1da177e4 7140static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 7141static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 7142
41a2d6cf 7143static int
7c16ec58
MT
7144cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7145 cpumask_t *mask)
1da177e4 7146{
6711cab4 7147 int group;
48f24c4d 7148#ifdef CONFIG_SCHED_MC
7c16ec58
MT
7149 *mask = cpu_coregroup_map(cpu);
7150 cpus_and(*mask, *mask, *cpu_map);
7151 group = first_cpu(*mask);
1e9f28fa 7152#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
7153 *mask = per_cpu(cpu_sibling_map, cpu);
7154 cpus_and(*mask, *mask, *cpu_map);
7155 group = first_cpu(*mask);
1da177e4 7156#else
6711cab4 7157 group = cpu;
1da177e4 7158#endif
6711cab4
SS
7159 if (sg)
7160 *sg = &per_cpu(sched_group_phys, group);
7161 return group;
1da177e4
LT
7162}
7163
7164#ifdef CONFIG_NUMA
1da177e4 7165/*
9c1cfda2
JH
7166 * The init_sched_build_groups can't handle what we want to do with node
7167 * groups, so roll our own. Now each node has its own list of groups which
7168 * gets dynamically allocated.
1da177e4 7169 */
9c1cfda2 7170static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 7171static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7172
9c1cfda2 7173static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 7174static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 7175
6711cab4 7176static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 7177 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 7178{
6711cab4
SS
7179 int group;
7180
7c16ec58
MT
7181 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7182 cpus_and(*nodemask, *nodemask, *cpu_map);
7183 group = first_cpu(*nodemask);
6711cab4
SS
7184
7185 if (sg)
7186 *sg = &per_cpu(sched_group_allnodes, group);
7187 return group;
1da177e4 7188}
6711cab4 7189
08069033
SS
7190static void init_numa_sched_groups_power(struct sched_group *group_head)
7191{
7192 struct sched_group *sg = group_head;
7193 int j;
7194
7195 if (!sg)
7196 return;
3a5c359a 7197 do {
363ab6f1 7198 for_each_cpu_mask_nr(j, sg->cpumask) {
3a5c359a 7199 struct sched_domain *sd;
08069033 7200
3a5c359a
AK
7201 sd = &per_cpu(phys_domains, j);
7202 if (j != first_cpu(sd->groups->cpumask)) {
7203 /*
7204 * Only add "power" once for each
7205 * physical package.
7206 */
7207 continue;
7208 }
08069033 7209
3a5c359a
AK
7210 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7211 }
7212 sg = sg->next;
7213 } while (sg != group_head);
08069033 7214}
6d6bc0ad 7215#endif /* CONFIG_NUMA */
1da177e4 7216
a616058b 7217#ifdef CONFIG_NUMA
51888ca2 7218/* Free memory allocated for various sched_group structures */
7c16ec58 7219static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 7220{
a616058b 7221 int cpu, i;
51888ca2 7222
363ab6f1 7223 for_each_cpu_mask_nr(cpu, *cpu_map) {
51888ca2
SV
7224 struct sched_group **sched_group_nodes
7225 = sched_group_nodes_bycpu[cpu];
7226
51888ca2
SV
7227 if (!sched_group_nodes)
7228 continue;
7229
076ac2af 7230 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7231 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7232
7c16ec58
MT
7233 *nodemask = node_to_cpumask(i);
7234 cpus_and(*nodemask, *nodemask, *cpu_map);
7235 if (cpus_empty(*nodemask))
51888ca2
SV
7236 continue;
7237
7238 if (sg == NULL)
7239 continue;
7240 sg = sg->next;
7241next_sg:
7242 oldsg = sg;
7243 sg = sg->next;
7244 kfree(oldsg);
7245 if (oldsg != sched_group_nodes[i])
7246 goto next_sg;
7247 }
7248 kfree(sched_group_nodes);
7249 sched_group_nodes_bycpu[cpu] = NULL;
7250 }
51888ca2 7251}
6d6bc0ad 7252#else /* !CONFIG_NUMA */
7c16ec58 7253static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
7254{
7255}
6d6bc0ad 7256#endif /* CONFIG_NUMA */
51888ca2 7257
89c4710e
SS
7258/*
7259 * Initialize sched groups cpu_power.
7260 *
7261 * cpu_power indicates the capacity of sched group, which is used while
7262 * distributing the load between different sched groups in a sched domain.
7263 * Typically cpu_power for all the groups in a sched domain will be same unless
7264 * there are asymmetries in the topology. If there are asymmetries, group
7265 * having more cpu_power will pickup more load compared to the group having
7266 * less cpu_power.
7267 *
7268 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7269 * the maximum number of tasks a group can handle in the presence of other idle
7270 * or lightly loaded groups in the same sched domain.
7271 */
7272static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7273{
7274 struct sched_domain *child;
7275 struct sched_group *group;
7276
7277 WARN_ON(!sd || !sd->groups);
7278
7279 if (cpu != first_cpu(sd->groups->cpumask))
7280 return;
7281
7282 child = sd->child;
7283
5517d86b
ED
7284 sd->groups->__cpu_power = 0;
7285
89c4710e
SS
7286 /*
7287 * For perf policy, if the groups in child domain share resources
7288 * (for example cores sharing some portions of the cache hierarchy
7289 * or SMT), then set this domain groups cpu_power such that each group
7290 * can handle only one task, when there are other idle groups in the
7291 * same sched domain.
7292 */
7293 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7294 (child->flags &
7295 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7296 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7297 return;
7298 }
7299
89c4710e
SS
7300 /*
7301 * add cpu_power of each child group to this groups cpu_power
7302 */
7303 group = child->groups;
7304 do {
5517d86b 7305 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7306 group = group->next;
7307 } while (group != child->groups);
7308}
7309
7c16ec58
MT
7310/*
7311 * Initializers for schedule domains
7312 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7313 */
7314
a5d8c348
IM
7315#ifdef CONFIG_SCHED_DEBUG
7316# define SD_INIT_NAME(sd, type) sd->name = #type
7317#else
7318# define SD_INIT_NAME(sd, type) do { } while (0)
7319#endif
7320
7c16ec58 7321#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7322
7c16ec58
MT
7323#define SD_INIT_FUNC(type) \
7324static noinline void sd_init_##type(struct sched_domain *sd) \
7325{ \
7326 memset(sd, 0, sizeof(*sd)); \
7327 *sd = SD_##type##_INIT; \
1d3504fc 7328 sd->level = SD_LV_##type; \
a5d8c348 7329 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7330}
7331
7332SD_INIT_FUNC(CPU)
7333#ifdef CONFIG_NUMA
7334 SD_INIT_FUNC(ALLNODES)
7335 SD_INIT_FUNC(NODE)
7336#endif
7337#ifdef CONFIG_SCHED_SMT
7338 SD_INIT_FUNC(SIBLING)
7339#endif
7340#ifdef CONFIG_SCHED_MC
7341 SD_INIT_FUNC(MC)
7342#endif
7343
7344/*
7345 * To minimize stack usage kmalloc room for cpumasks and share the
7346 * space as the usage in build_sched_domains() dictates. Used only
7347 * if the amount of space is significant.
7348 */
7349struct allmasks {
7350 cpumask_t tmpmask; /* make this one first */
7351 union {
7352 cpumask_t nodemask;
7353 cpumask_t this_sibling_map;
7354 cpumask_t this_core_map;
7355 };
7356 cpumask_t send_covered;
7357
7358#ifdef CONFIG_NUMA
7359 cpumask_t domainspan;
7360 cpumask_t covered;
7361 cpumask_t notcovered;
7362#endif
7363};
7364
7365#if NR_CPUS > 128
7366#define SCHED_CPUMASK_ALLOC 1
7367#define SCHED_CPUMASK_FREE(v) kfree(v)
7368#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7369#else
7370#define SCHED_CPUMASK_ALLOC 0
7371#define SCHED_CPUMASK_FREE(v)
7372#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7373#endif
7374
7375#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7376 ((unsigned long)(a) + offsetof(struct allmasks, v))
7377
1d3504fc
HS
7378static int default_relax_domain_level = -1;
7379
7380static int __init setup_relax_domain_level(char *str)
7381{
30e0e178
LZ
7382 unsigned long val;
7383
7384 val = simple_strtoul(str, NULL, 0);
7385 if (val < SD_LV_MAX)
7386 default_relax_domain_level = val;
7387
1d3504fc
HS
7388 return 1;
7389}
7390__setup("relax_domain_level=", setup_relax_domain_level);
7391
7392static void set_domain_attribute(struct sched_domain *sd,
7393 struct sched_domain_attr *attr)
7394{
7395 int request;
7396
7397 if (!attr || attr->relax_domain_level < 0) {
7398 if (default_relax_domain_level < 0)
7399 return;
7400 else
7401 request = default_relax_domain_level;
7402 } else
7403 request = attr->relax_domain_level;
7404 if (request < sd->level) {
7405 /* turn off idle balance on this domain */
7406 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7407 } else {
7408 /* turn on idle balance on this domain */
7409 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7410 }
7411}
7412
1da177e4 7413/*
1a20ff27
DG
7414 * Build sched domains for a given set of cpus and attach the sched domains
7415 * to the individual cpus
1da177e4 7416 */
1d3504fc
HS
7417static int __build_sched_domains(const cpumask_t *cpu_map,
7418 struct sched_domain_attr *attr)
1da177e4
LT
7419{
7420 int i;
57d885fe 7421 struct root_domain *rd;
7c16ec58
MT
7422 SCHED_CPUMASK_DECLARE(allmasks);
7423 cpumask_t *tmpmask;
d1b55138
JH
7424#ifdef CONFIG_NUMA
7425 struct sched_group **sched_group_nodes = NULL;
6711cab4 7426 int sd_allnodes = 0;
d1b55138
JH
7427
7428 /*
7429 * Allocate the per-node list of sched groups
7430 */
076ac2af 7431 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7432 GFP_KERNEL);
d1b55138
JH
7433 if (!sched_group_nodes) {
7434 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 7435 return -ENOMEM;
d1b55138 7436 }
d1b55138 7437#endif
1da177e4 7438
dc938520 7439 rd = alloc_rootdomain();
57d885fe
GH
7440 if (!rd) {
7441 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
7442#ifdef CONFIG_NUMA
7443 kfree(sched_group_nodes);
7444#endif
57d885fe
GH
7445 return -ENOMEM;
7446 }
7447
7c16ec58
MT
7448#if SCHED_CPUMASK_ALLOC
7449 /* get space for all scratch cpumask variables */
7450 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7451 if (!allmasks) {
7452 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7453 kfree(rd);
7454#ifdef CONFIG_NUMA
7455 kfree(sched_group_nodes);
7456#endif
7457 return -ENOMEM;
7458 }
7459#endif
7460 tmpmask = (cpumask_t *)allmasks;
7461
7462
7463#ifdef CONFIG_NUMA
7464 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7465#endif
7466
1da177e4 7467 /*
1a20ff27 7468 * Set up domains for cpus specified by the cpu_map.
1da177e4 7469 */
363ab6f1 7470 for_each_cpu_mask_nr(i, *cpu_map) {
1da177e4 7471 struct sched_domain *sd = NULL, *p;
7c16ec58 7472 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7473
7c16ec58
MT
7474 *nodemask = node_to_cpumask(cpu_to_node(i));
7475 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7476
7477#ifdef CONFIG_NUMA
dd41f596 7478 if (cpus_weight(*cpu_map) >
7c16ec58 7479 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7480 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7481 SD_INIT(sd, ALLNODES);
1d3504fc 7482 set_domain_attribute(sd, attr);
9c1cfda2 7483 sd->span = *cpu_map;
7c16ec58 7484 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7485 p = sd;
6711cab4 7486 sd_allnodes = 1;
9c1cfda2
JH
7487 } else
7488 p = NULL;
7489
1da177e4 7490 sd = &per_cpu(node_domains, i);
7c16ec58 7491 SD_INIT(sd, NODE);
1d3504fc 7492 set_domain_attribute(sd, attr);
4bdbaad3 7493 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 7494 sd->parent = p;
1a848870
SS
7495 if (p)
7496 p->child = sd;
9c1cfda2 7497 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7498#endif
7499
7500 p = sd;
7501 sd = &per_cpu(phys_domains, i);
7c16ec58 7502 SD_INIT(sd, CPU);
1d3504fc 7503 set_domain_attribute(sd, attr);
7c16ec58 7504 sd->span = *nodemask;
1da177e4 7505 sd->parent = p;
1a848870
SS
7506 if (p)
7507 p->child = sd;
7c16ec58 7508 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7509
1e9f28fa
SS
7510#ifdef CONFIG_SCHED_MC
7511 p = sd;
7512 sd = &per_cpu(core_domains, i);
7c16ec58 7513 SD_INIT(sd, MC);
1d3504fc 7514 set_domain_attribute(sd, attr);
1e9f28fa
SS
7515 sd->span = cpu_coregroup_map(i);
7516 cpus_and(sd->span, sd->span, *cpu_map);
7517 sd->parent = p;
1a848870 7518 p->child = sd;
7c16ec58 7519 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7520#endif
7521
1da177e4
LT
7522#ifdef CONFIG_SCHED_SMT
7523 p = sd;
7524 sd = &per_cpu(cpu_domains, i);
7c16ec58 7525 SD_INIT(sd, SIBLING);
1d3504fc 7526 set_domain_attribute(sd, attr);
d5a7430d 7527 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7528 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7529 sd->parent = p;
1a848870 7530 p->child = sd;
7c16ec58 7531 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7532#endif
7533 }
7534
7535#ifdef CONFIG_SCHED_SMT
7536 /* Set up CPU (sibling) groups */
363ab6f1 7537 for_each_cpu_mask_nr(i, *cpu_map) {
7c16ec58
MT
7538 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7539 SCHED_CPUMASK_VAR(send_covered, allmasks);
7540
7541 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7542 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7543 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7544 continue;
7545
dd41f596 7546 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7547 &cpu_to_cpu_group,
7548 send_covered, tmpmask);
1da177e4
LT
7549 }
7550#endif
7551
1e9f28fa
SS
7552#ifdef CONFIG_SCHED_MC
7553 /* Set up multi-core groups */
363ab6f1 7554 for_each_cpu_mask_nr(i, *cpu_map) {
7c16ec58
MT
7555 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7556 SCHED_CPUMASK_VAR(send_covered, allmasks);
7557
7558 *this_core_map = cpu_coregroup_map(i);
7559 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7560 if (i != first_cpu(*this_core_map))
1e9f28fa 7561 continue;
7c16ec58 7562
dd41f596 7563 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7564 &cpu_to_core_group,
7565 send_covered, tmpmask);
1e9f28fa
SS
7566 }
7567#endif
7568
1da177e4 7569 /* Set up physical groups */
076ac2af 7570 for (i = 0; i < nr_node_ids; i++) {
7c16ec58
MT
7571 SCHED_CPUMASK_VAR(nodemask, allmasks);
7572 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7573
7c16ec58
MT
7574 *nodemask = node_to_cpumask(i);
7575 cpus_and(*nodemask, *nodemask, *cpu_map);
7576 if (cpus_empty(*nodemask))
1da177e4
LT
7577 continue;
7578
7c16ec58
MT
7579 init_sched_build_groups(nodemask, cpu_map,
7580 &cpu_to_phys_group,
7581 send_covered, tmpmask);
1da177e4
LT
7582 }
7583
7584#ifdef CONFIG_NUMA
7585 /* Set up node groups */
7c16ec58
MT
7586 if (sd_allnodes) {
7587 SCHED_CPUMASK_VAR(send_covered, allmasks);
7588
7589 init_sched_build_groups(cpu_map, cpu_map,
7590 &cpu_to_allnodes_group,
7591 send_covered, tmpmask);
7592 }
9c1cfda2 7593
076ac2af 7594 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7595 /* Set up node groups */
7596 struct sched_group *sg, *prev;
7c16ec58
MT
7597 SCHED_CPUMASK_VAR(nodemask, allmasks);
7598 SCHED_CPUMASK_VAR(domainspan, allmasks);
7599 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7600 int j;
7601
7c16ec58
MT
7602 *nodemask = node_to_cpumask(i);
7603 cpus_clear(*covered);
7604
7605 cpus_and(*nodemask, *nodemask, *cpu_map);
7606 if (cpus_empty(*nodemask)) {
d1b55138 7607 sched_group_nodes[i] = NULL;
9c1cfda2 7608 continue;
d1b55138 7609 }
9c1cfda2 7610
4bdbaad3 7611 sched_domain_node_span(i, domainspan);
7c16ec58 7612 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7613
15f0b676 7614 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7615 if (!sg) {
7616 printk(KERN_WARNING "Can not alloc domain group for "
7617 "node %d\n", i);
7618 goto error;
7619 }
9c1cfda2 7620 sched_group_nodes[i] = sg;
363ab6f1 7621 for_each_cpu_mask_nr(j, *nodemask) {
9c1cfda2 7622 struct sched_domain *sd;
9761eea8 7623
9c1cfda2
JH
7624 sd = &per_cpu(node_domains, j);
7625 sd->groups = sg;
9c1cfda2 7626 }
5517d86b 7627 sg->__cpu_power = 0;
7c16ec58 7628 sg->cpumask = *nodemask;
51888ca2 7629 sg->next = sg;
7c16ec58 7630 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7631 prev = sg;
7632
076ac2af 7633 for (j = 0; j < nr_node_ids; j++) {
7c16ec58 7634 SCHED_CPUMASK_VAR(notcovered, allmasks);
076ac2af 7635 int n = (i + j) % nr_node_ids;
c5f59f08 7636 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7637
7c16ec58
MT
7638 cpus_complement(*notcovered, *covered);
7639 cpus_and(*tmpmask, *notcovered, *cpu_map);
7640 cpus_and(*tmpmask, *tmpmask, *domainspan);
7641 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7642 break;
7643
7c16ec58
MT
7644 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7645 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7646 continue;
7647
15f0b676
SV
7648 sg = kmalloc_node(sizeof(struct sched_group),
7649 GFP_KERNEL, i);
9c1cfda2
JH
7650 if (!sg) {
7651 printk(KERN_WARNING
7652 "Can not alloc domain group for node %d\n", j);
51888ca2 7653 goto error;
9c1cfda2 7654 }
5517d86b 7655 sg->__cpu_power = 0;
7c16ec58 7656 sg->cpumask = *tmpmask;
51888ca2 7657 sg->next = prev->next;
7c16ec58 7658 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7659 prev->next = sg;
7660 prev = sg;
7661 }
9c1cfda2 7662 }
1da177e4
LT
7663#endif
7664
7665 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7666#ifdef CONFIG_SCHED_SMT
363ab6f1 7667 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7668 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7669
89c4710e 7670 init_sched_groups_power(i, sd);
5c45bf27 7671 }
1da177e4 7672#endif
1e9f28fa 7673#ifdef CONFIG_SCHED_MC
363ab6f1 7674 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7675 struct sched_domain *sd = &per_cpu(core_domains, i);
7676
89c4710e 7677 init_sched_groups_power(i, sd);
5c45bf27
SS
7678 }
7679#endif
1e9f28fa 7680
363ab6f1 7681 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7682 struct sched_domain *sd = &per_cpu(phys_domains, i);
7683
89c4710e 7684 init_sched_groups_power(i, sd);
1da177e4
LT
7685 }
7686
9c1cfda2 7687#ifdef CONFIG_NUMA
076ac2af 7688 for (i = 0; i < nr_node_ids; i++)
08069033 7689 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7690
6711cab4
SS
7691 if (sd_allnodes) {
7692 struct sched_group *sg;
f712c0c7 7693
7c16ec58
MT
7694 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7695 tmpmask);
f712c0c7
SS
7696 init_numa_sched_groups_power(sg);
7697 }
9c1cfda2
JH
7698#endif
7699
1da177e4 7700 /* Attach the domains */
363ab6f1 7701 for_each_cpu_mask_nr(i, *cpu_map) {
1da177e4
LT
7702 struct sched_domain *sd;
7703#ifdef CONFIG_SCHED_SMT
7704 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7705#elif defined(CONFIG_SCHED_MC)
7706 sd = &per_cpu(core_domains, i);
1da177e4
LT
7707#else
7708 sd = &per_cpu(phys_domains, i);
7709#endif
57d885fe 7710 cpu_attach_domain(sd, rd, i);
1da177e4 7711 }
51888ca2 7712
7c16ec58 7713 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7714 return 0;
7715
a616058b 7716#ifdef CONFIG_NUMA
51888ca2 7717error:
7c16ec58
MT
7718 free_sched_groups(cpu_map, tmpmask);
7719 SCHED_CPUMASK_FREE((void *)allmasks);
ca3273f9 7720 kfree(rd);
51888ca2 7721 return -ENOMEM;
a616058b 7722#endif
1da177e4 7723}
029190c5 7724
1d3504fc
HS
7725static int build_sched_domains(const cpumask_t *cpu_map)
7726{
7727 return __build_sched_domains(cpu_map, NULL);
7728}
7729
029190c5
PJ
7730static cpumask_t *doms_cur; /* current sched domains */
7731static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7732static struct sched_domain_attr *dattr_cur;
7733 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7734
7735/*
7736 * Special case: If a kmalloc of a doms_cur partition (array of
7737 * cpumask_t) fails, then fallback to a single sched domain,
7738 * as determined by the single cpumask_t fallback_doms.
7739 */
7740static cpumask_t fallback_doms;
7741
22e52b07
HC
7742void __attribute__((weak)) arch_update_cpu_topology(void)
7743{
7744}
7745
1a20ff27 7746/*
41a2d6cf 7747 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7748 * For now this just excludes isolated cpus, but could be used to
7749 * exclude other special cases in the future.
1a20ff27 7750 */
51888ca2 7751static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7752{
7378547f
MM
7753 int err;
7754
22e52b07 7755 arch_update_cpu_topology();
029190c5
PJ
7756 ndoms_cur = 1;
7757 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7758 if (!doms_cur)
7759 doms_cur = &fallback_doms;
7760 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7761 dattr_cur = NULL;
7378547f 7762 err = build_sched_domains(doms_cur);
6382bc90 7763 register_sched_domain_sysctl();
7378547f
MM
7764
7765 return err;
1a20ff27
DG
7766}
7767
7c16ec58
MT
7768static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7769 cpumask_t *tmpmask)
1da177e4 7770{
7c16ec58 7771 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7772}
1da177e4 7773
1a20ff27
DG
7774/*
7775 * Detach sched domains from a group of cpus specified in cpu_map
7776 * These cpus will now be attached to the NULL domain
7777 */
858119e1 7778static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7779{
7c16ec58 7780 cpumask_t tmpmask;
1a20ff27
DG
7781 int i;
7782
6382bc90
MM
7783 unregister_sched_domain_sysctl();
7784
363ab6f1 7785 for_each_cpu_mask_nr(i, *cpu_map)
57d885fe 7786 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7787 synchronize_sched();
7c16ec58 7788 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7789}
7790
1d3504fc
HS
7791/* handle null as "default" */
7792static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7793 struct sched_domain_attr *new, int idx_new)
7794{
7795 struct sched_domain_attr tmp;
7796
7797 /* fast path */
7798 if (!new && !cur)
7799 return 1;
7800
7801 tmp = SD_ATTR_INIT;
7802 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7803 new ? (new + idx_new) : &tmp,
7804 sizeof(struct sched_domain_attr));
7805}
7806
029190c5
PJ
7807/*
7808 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7809 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7810 * doms_new[] to the current sched domain partitioning, doms_cur[].
7811 * It destroys each deleted domain and builds each new domain.
7812 *
7813 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7814 * The masks don't intersect (don't overlap.) We should setup one
7815 * sched domain for each mask. CPUs not in any of the cpumasks will
7816 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7817 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7818 * it as it is.
7819 *
41a2d6cf
IM
7820 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7821 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
7822 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7823 * ndoms_new == 1, and partition_sched_domains() will fallback to
7824 * the single partition 'fallback_doms', it also forces the domains
7825 * to be rebuilt.
029190c5 7826 *
700018e0
LZ
7827 * If doms_new == NULL it will be replaced with cpu_online_map.
7828 * ndoms_new == 0 is a special case for destroying existing domains,
7829 * and it will not create the default domain.
dfb512ec 7830 *
029190c5
PJ
7831 * Call with hotplug lock held
7832 */
1d3504fc
HS
7833void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7834 struct sched_domain_attr *dattr_new)
029190c5 7835{
dfb512ec 7836 int i, j, n;
029190c5 7837
712555ee 7838 mutex_lock(&sched_domains_mutex);
a1835615 7839
7378547f
MM
7840 /* always unregister in case we don't destroy any domains */
7841 unregister_sched_domain_sysctl();
7842
dfb512ec 7843 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7844
7845 /* Destroy deleted domains */
7846 for (i = 0; i < ndoms_cur; i++) {
dfb512ec 7847 for (j = 0; j < n; j++) {
1d3504fc
HS
7848 if (cpus_equal(doms_cur[i], doms_new[j])
7849 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7850 goto match1;
7851 }
7852 /* no match - a current sched domain not in new doms_new[] */
7853 detach_destroy_domains(doms_cur + i);
7854match1:
7855 ;
7856 }
7857
e761b772
MK
7858 if (doms_new == NULL) {
7859 ndoms_cur = 0;
e761b772
MK
7860 doms_new = &fallback_doms;
7861 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7862 dattr_new = NULL;
7863 }
7864
029190c5
PJ
7865 /* Build new domains */
7866 for (i = 0; i < ndoms_new; i++) {
7867 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7868 if (cpus_equal(doms_new[i], doms_cur[j])
7869 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7870 goto match2;
7871 }
7872 /* no match - add a new doms_new */
1d3504fc
HS
7873 __build_sched_domains(doms_new + i,
7874 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7875match2:
7876 ;
7877 }
7878
7879 /* Remember the new sched domains */
7880 if (doms_cur != &fallback_doms)
7881 kfree(doms_cur);
1d3504fc 7882 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7883 doms_cur = doms_new;
1d3504fc 7884 dattr_cur = dattr_new;
029190c5 7885 ndoms_cur = ndoms_new;
7378547f
MM
7886
7887 register_sched_domain_sysctl();
a1835615 7888
712555ee 7889 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7890}
7891
5c45bf27 7892#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7893int arch_reinit_sched_domains(void)
5c45bf27 7894{
95402b38 7895 get_online_cpus();
dfb512ec
MK
7896
7897 /* Destroy domains first to force the rebuild */
7898 partition_sched_domains(0, NULL, NULL);
7899
e761b772 7900 rebuild_sched_domains();
95402b38 7901 put_online_cpus();
dfb512ec 7902
e761b772 7903 return 0;
5c45bf27
SS
7904}
7905
7906static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7907{
7908 int ret;
7909
7910 if (buf[0] != '0' && buf[0] != '1')
7911 return -EINVAL;
7912
7913 if (smt)
7914 sched_smt_power_savings = (buf[0] == '1');
7915 else
7916 sched_mc_power_savings = (buf[0] == '1');
7917
7918 ret = arch_reinit_sched_domains();
7919
7920 return ret ? ret : count;
7921}
7922
5c45bf27 7923#ifdef CONFIG_SCHED_MC
f718cd4a
AK
7924static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7925 char *page)
5c45bf27
SS
7926{
7927 return sprintf(page, "%u\n", sched_mc_power_savings);
7928}
f718cd4a 7929static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 7930 const char *buf, size_t count)
5c45bf27
SS
7931{
7932 return sched_power_savings_store(buf, count, 0);
7933}
f718cd4a
AK
7934static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7935 sched_mc_power_savings_show,
7936 sched_mc_power_savings_store);
5c45bf27
SS
7937#endif
7938
7939#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
7940static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7941 char *page)
5c45bf27
SS
7942{
7943 return sprintf(page, "%u\n", sched_smt_power_savings);
7944}
f718cd4a 7945static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 7946 const char *buf, size_t count)
5c45bf27
SS
7947{
7948 return sched_power_savings_store(buf, count, 1);
7949}
f718cd4a
AK
7950static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7951 sched_smt_power_savings_show,
6707de00
AB
7952 sched_smt_power_savings_store);
7953#endif
7954
7955int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7956{
7957 int err = 0;
7958
7959#ifdef CONFIG_SCHED_SMT
7960 if (smt_capable())
7961 err = sysfs_create_file(&cls->kset.kobj,
7962 &attr_sched_smt_power_savings.attr);
7963#endif
7964#ifdef CONFIG_SCHED_MC
7965 if (!err && mc_capable())
7966 err = sysfs_create_file(&cls->kset.kobj,
7967 &attr_sched_mc_power_savings.attr);
7968#endif
7969 return err;
7970}
6d6bc0ad 7971#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7972
e761b772 7973#ifndef CONFIG_CPUSETS
1da177e4 7974/*
e761b772
MK
7975 * Add online and remove offline CPUs from the scheduler domains.
7976 * When cpusets are enabled they take over this function.
1da177e4
LT
7977 */
7978static int update_sched_domains(struct notifier_block *nfb,
7979 unsigned long action, void *hcpu)
e761b772
MK
7980{
7981 switch (action) {
7982 case CPU_ONLINE:
7983 case CPU_ONLINE_FROZEN:
7984 case CPU_DEAD:
7985 case CPU_DEAD_FROZEN:
dfb512ec 7986 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7987 return NOTIFY_OK;
7988
7989 default:
7990 return NOTIFY_DONE;
7991 }
7992}
7993#endif
7994
7995static int update_runtime(struct notifier_block *nfb,
7996 unsigned long action, void *hcpu)
1da177e4 7997{
7def2be1
PZ
7998 int cpu = (int)(long)hcpu;
7999
1da177e4 8000 switch (action) {
1da177e4 8001 case CPU_DOWN_PREPARE:
8bb78442 8002 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8003 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8004 return NOTIFY_OK;
8005
1da177e4 8006 case CPU_DOWN_FAILED:
8bb78442 8007 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8008 case CPU_ONLINE:
8bb78442 8009 case CPU_ONLINE_FROZEN:
7def2be1 8010 enable_runtime(cpu_rq(cpu));
e761b772
MK
8011 return NOTIFY_OK;
8012
1da177e4
LT
8013 default:
8014 return NOTIFY_DONE;
8015 }
1da177e4 8016}
1da177e4
LT
8017
8018void __init sched_init_smp(void)
8019{
5c1e1767
NP
8020 cpumask_t non_isolated_cpus;
8021
434d53b0
MT
8022#if defined(CONFIG_NUMA)
8023 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8024 GFP_KERNEL);
8025 BUG_ON(sched_group_nodes_bycpu == NULL);
8026#endif
95402b38 8027 get_online_cpus();
712555ee 8028 mutex_lock(&sched_domains_mutex);
1a20ff27 8029 arch_init_sched_domains(&cpu_online_map);
e5e5673f 8030 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
8031 if (cpus_empty(non_isolated_cpus))
8032 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 8033 mutex_unlock(&sched_domains_mutex);
95402b38 8034 put_online_cpus();
e761b772
MK
8035
8036#ifndef CONFIG_CPUSETS
1da177e4
LT
8037 /* XXX: Theoretical race here - CPU may be hotplugged now */
8038 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8039#endif
8040
8041 /* RT runtime code needs to handle some hotplug events */
8042 hotcpu_notifier(update_runtime, 0);
8043
b328ca18 8044 init_hrtick();
5c1e1767
NP
8045
8046 /* Move init over to a non-isolated CPU */
7c16ec58 8047 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 8048 BUG();
19978ca6 8049 sched_init_granularity();
1da177e4
LT
8050}
8051#else
8052void __init sched_init_smp(void)
8053{
19978ca6 8054 sched_init_granularity();
1da177e4
LT
8055}
8056#endif /* CONFIG_SMP */
8057
8058int in_sched_functions(unsigned long addr)
8059{
1da177e4
LT
8060 return in_lock_functions(addr) ||
8061 (addr >= (unsigned long)__sched_text_start
8062 && addr < (unsigned long)__sched_text_end);
8063}
8064
a9957449 8065static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8066{
8067 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8068 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8069#ifdef CONFIG_FAIR_GROUP_SCHED
8070 cfs_rq->rq = rq;
8071#endif
67e9fb2a 8072 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8073}
8074
fa85ae24
PZ
8075static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8076{
8077 struct rt_prio_array *array;
8078 int i;
8079
8080 array = &rt_rq->active;
8081 for (i = 0; i < MAX_RT_PRIO; i++) {
8082 INIT_LIST_HEAD(array->queue + i);
8083 __clear_bit(i, array->bitmap);
8084 }
8085 /* delimiter for bitsearch: */
8086 __set_bit(MAX_RT_PRIO, array->bitmap);
8087
052f1dc7 8088#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
8089 rt_rq->highest_prio = MAX_RT_PRIO;
8090#endif
fa85ae24
PZ
8091#ifdef CONFIG_SMP
8092 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
8093 rt_rq->overloaded = 0;
8094#endif
8095
8096 rt_rq->rt_time = 0;
8097 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8098 rt_rq->rt_runtime = 0;
8099 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8100
052f1dc7 8101#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8102 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8103 rt_rq->rq = rq;
8104#endif
fa85ae24
PZ
8105}
8106
6f505b16 8107#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8108static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8109 struct sched_entity *se, int cpu, int add,
8110 struct sched_entity *parent)
6f505b16 8111{
ec7dc8ac 8112 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8113 tg->cfs_rq[cpu] = cfs_rq;
8114 init_cfs_rq(cfs_rq, rq);
8115 cfs_rq->tg = tg;
8116 if (add)
8117 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8118
8119 tg->se[cpu] = se;
354d60c2
DG
8120 /* se could be NULL for init_task_group */
8121 if (!se)
8122 return;
8123
ec7dc8ac
DG
8124 if (!parent)
8125 se->cfs_rq = &rq->cfs;
8126 else
8127 se->cfs_rq = parent->my_q;
8128
6f505b16
PZ
8129 se->my_q = cfs_rq;
8130 se->load.weight = tg->shares;
e05510d0 8131 se->load.inv_weight = 0;
ec7dc8ac 8132 se->parent = parent;
6f505b16 8133}
052f1dc7 8134#endif
6f505b16 8135
052f1dc7 8136#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8137static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8138 struct sched_rt_entity *rt_se, int cpu, int add,
8139 struct sched_rt_entity *parent)
6f505b16 8140{
ec7dc8ac
DG
8141 struct rq *rq = cpu_rq(cpu);
8142
6f505b16
PZ
8143 tg->rt_rq[cpu] = rt_rq;
8144 init_rt_rq(rt_rq, rq);
8145 rt_rq->tg = tg;
8146 rt_rq->rt_se = rt_se;
ac086bc2 8147 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8148 if (add)
8149 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8150
8151 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8152 if (!rt_se)
8153 return;
8154
ec7dc8ac
DG
8155 if (!parent)
8156 rt_se->rt_rq = &rq->rt;
8157 else
8158 rt_se->rt_rq = parent->my_q;
8159
6f505b16 8160 rt_se->my_q = rt_rq;
ec7dc8ac 8161 rt_se->parent = parent;
6f505b16
PZ
8162 INIT_LIST_HEAD(&rt_se->run_list);
8163}
8164#endif
8165
1da177e4
LT
8166void __init sched_init(void)
8167{
dd41f596 8168 int i, j;
434d53b0
MT
8169 unsigned long alloc_size = 0, ptr;
8170
8171#ifdef CONFIG_FAIR_GROUP_SCHED
8172 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8173#endif
8174#ifdef CONFIG_RT_GROUP_SCHED
8175 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8176#endif
8177#ifdef CONFIG_USER_SCHED
8178 alloc_size *= 2;
434d53b0
MT
8179#endif
8180 /*
8181 * As sched_init() is called before page_alloc is setup,
8182 * we use alloc_bootmem().
8183 */
8184 if (alloc_size) {
5a9d3225 8185 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8186
8187#ifdef CONFIG_FAIR_GROUP_SCHED
8188 init_task_group.se = (struct sched_entity **)ptr;
8189 ptr += nr_cpu_ids * sizeof(void **);
8190
8191 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8192 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8193
8194#ifdef CONFIG_USER_SCHED
8195 root_task_group.se = (struct sched_entity **)ptr;
8196 ptr += nr_cpu_ids * sizeof(void **);
8197
8198 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8199 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8200#endif /* CONFIG_USER_SCHED */
8201#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8202#ifdef CONFIG_RT_GROUP_SCHED
8203 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8204 ptr += nr_cpu_ids * sizeof(void **);
8205
8206 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8207 ptr += nr_cpu_ids * sizeof(void **);
8208
8209#ifdef CONFIG_USER_SCHED
8210 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8211 ptr += nr_cpu_ids * sizeof(void **);
8212
8213 root_task_group.rt_rq = (struct rt_rq **)ptr;
8214 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8215#endif /* CONFIG_USER_SCHED */
8216#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8217 }
dd41f596 8218
57d885fe
GH
8219#ifdef CONFIG_SMP
8220 init_defrootdomain();
8221#endif
8222
d0b27fa7
PZ
8223 init_rt_bandwidth(&def_rt_bandwidth,
8224 global_rt_period(), global_rt_runtime());
8225
8226#ifdef CONFIG_RT_GROUP_SCHED
8227 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8228 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8229#ifdef CONFIG_USER_SCHED
8230 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8231 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8232#endif /* CONFIG_USER_SCHED */
8233#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8234
052f1dc7 8235#ifdef CONFIG_GROUP_SCHED
6f505b16 8236 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8237 INIT_LIST_HEAD(&init_task_group.children);
8238
8239#ifdef CONFIG_USER_SCHED
8240 INIT_LIST_HEAD(&root_task_group.children);
8241 init_task_group.parent = &root_task_group;
8242 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8243#endif /* CONFIG_USER_SCHED */
8244#endif /* CONFIG_GROUP_SCHED */
6f505b16 8245
0a945022 8246 for_each_possible_cpu(i) {
70b97a7f 8247 struct rq *rq;
1da177e4
LT
8248
8249 rq = cpu_rq(i);
8250 spin_lock_init(&rq->lock);
7897986b 8251 rq->nr_running = 0;
dd41f596 8252 init_cfs_rq(&rq->cfs, rq);
6f505b16 8253 init_rt_rq(&rq->rt, rq);
dd41f596 8254#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8255 init_task_group.shares = init_task_group_load;
6f505b16 8256 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8257#ifdef CONFIG_CGROUP_SCHED
8258 /*
8259 * How much cpu bandwidth does init_task_group get?
8260 *
8261 * In case of task-groups formed thr' the cgroup filesystem, it
8262 * gets 100% of the cpu resources in the system. This overall
8263 * system cpu resource is divided among the tasks of
8264 * init_task_group and its child task-groups in a fair manner,
8265 * based on each entity's (task or task-group's) weight
8266 * (se->load.weight).
8267 *
8268 * In other words, if init_task_group has 10 tasks of weight
8269 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8270 * then A0's share of the cpu resource is:
8271 *
8272 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8273 *
8274 * We achieve this by letting init_task_group's tasks sit
8275 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8276 */
ec7dc8ac 8277 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8278#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8279 root_task_group.shares = NICE_0_LOAD;
8280 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8281 /*
8282 * In case of task-groups formed thr' the user id of tasks,
8283 * init_task_group represents tasks belonging to root user.
8284 * Hence it forms a sibling of all subsequent groups formed.
8285 * In this case, init_task_group gets only a fraction of overall
8286 * system cpu resource, based on the weight assigned to root
8287 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8288 * by letting tasks of init_task_group sit in a separate cfs_rq
8289 * (init_cfs_rq) and having one entity represent this group of
8290 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8291 */
ec7dc8ac 8292 init_tg_cfs_entry(&init_task_group,
6f505b16 8293 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8294 &per_cpu(init_sched_entity, i), i, 1,
8295 root_task_group.se[i]);
6f505b16 8296
052f1dc7 8297#endif
354d60c2
DG
8298#endif /* CONFIG_FAIR_GROUP_SCHED */
8299
8300 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8301#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8302 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8303#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8304 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8305#elif defined CONFIG_USER_SCHED
eff766a6 8306 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8307 init_tg_rt_entry(&init_task_group,
6f505b16 8308 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8309 &per_cpu(init_sched_rt_entity, i), i, 1,
8310 root_task_group.rt_se[i]);
354d60c2 8311#endif
dd41f596 8312#endif
1da177e4 8313
dd41f596
IM
8314 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8315 rq->cpu_load[j] = 0;
1da177e4 8316#ifdef CONFIG_SMP
41c7ce9a 8317 rq->sd = NULL;
57d885fe 8318 rq->rd = NULL;
1da177e4 8319 rq->active_balance = 0;
dd41f596 8320 rq->next_balance = jiffies;
1da177e4 8321 rq->push_cpu = 0;
0a2966b4 8322 rq->cpu = i;
1f11eb6a 8323 rq->online = 0;
1da177e4
LT
8324 rq->migration_thread = NULL;
8325 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8326 rq_attach_root(rq, &def_root_domain);
1da177e4 8327#endif
8f4d37ec 8328 init_rq_hrtick(rq);
1da177e4 8329 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8330 }
8331
2dd73a4f 8332 set_load_weight(&init_task);
b50f60ce 8333
e107be36
AK
8334#ifdef CONFIG_PREEMPT_NOTIFIERS
8335 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8336#endif
8337
c9819f45 8338#ifdef CONFIG_SMP
962cf36c 8339 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8340#endif
8341
b50f60ce
HC
8342#ifdef CONFIG_RT_MUTEXES
8343 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8344#endif
8345
1da177e4
LT
8346 /*
8347 * The boot idle thread does lazy MMU switching as well:
8348 */
8349 atomic_inc(&init_mm.mm_count);
8350 enter_lazy_tlb(&init_mm, current);
8351
8352 /*
8353 * Make us the idle thread. Technically, schedule() should not be
8354 * called from this thread, however somewhere below it might be,
8355 * but because we are the idle thread, we just pick up running again
8356 * when this runqueue becomes "idle".
8357 */
8358 init_idle(current, smp_processor_id());
dd41f596
IM
8359 /*
8360 * During early bootup we pretend to be a normal task:
8361 */
8362 current->sched_class = &fair_sched_class;
6892b75e
IM
8363
8364 scheduler_running = 1;
1da177e4
LT
8365}
8366
8367#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8368void __might_sleep(char *file, int line)
8369{
48f24c4d 8370#ifdef in_atomic
1da177e4
LT
8371 static unsigned long prev_jiffy; /* ratelimiting */
8372
aef745fc
IM
8373 if ((!in_atomic() && !irqs_disabled()) ||
8374 system_state != SYSTEM_RUNNING || oops_in_progress)
8375 return;
8376 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8377 return;
8378 prev_jiffy = jiffies;
8379
8380 printk(KERN_ERR
8381 "BUG: sleeping function called from invalid context at %s:%d\n",
8382 file, line);
8383 printk(KERN_ERR
8384 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8385 in_atomic(), irqs_disabled(),
8386 current->pid, current->comm);
8387
8388 debug_show_held_locks(current);
8389 if (irqs_disabled())
8390 print_irqtrace_events(current);
8391 dump_stack();
1da177e4
LT
8392#endif
8393}
8394EXPORT_SYMBOL(__might_sleep);
8395#endif
8396
8397#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8398static void normalize_task(struct rq *rq, struct task_struct *p)
8399{
8400 int on_rq;
3e51f33f 8401
3a5e4dc1
AK
8402 update_rq_clock(rq);
8403 on_rq = p->se.on_rq;
8404 if (on_rq)
8405 deactivate_task(rq, p, 0);
8406 __setscheduler(rq, p, SCHED_NORMAL, 0);
8407 if (on_rq) {
8408 activate_task(rq, p, 0);
8409 resched_task(rq->curr);
8410 }
8411}
8412
1da177e4
LT
8413void normalize_rt_tasks(void)
8414{
a0f98a1c 8415 struct task_struct *g, *p;
1da177e4 8416 unsigned long flags;
70b97a7f 8417 struct rq *rq;
1da177e4 8418
4cf5d77a 8419 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8420 do_each_thread(g, p) {
178be793
IM
8421 /*
8422 * Only normalize user tasks:
8423 */
8424 if (!p->mm)
8425 continue;
8426
6cfb0d5d 8427 p->se.exec_start = 0;
6cfb0d5d 8428#ifdef CONFIG_SCHEDSTATS
dd41f596 8429 p->se.wait_start = 0;
dd41f596 8430 p->se.sleep_start = 0;
dd41f596 8431 p->se.block_start = 0;
6cfb0d5d 8432#endif
dd41f596
IM
8433
8434 if (!rt_task(p)) {
8435 /*
8436 * Renice negative nice level userspace
8437 * tasks back to 0:
8438 */
8439 if (TASK_NICE(p) < 0 && p->mm)
8440 set_user_nice(p, 0);
1da177e4 8441 continue;
dd41f596 8442 }
1da177e4 8443
4cf5d77a 8444 spin_lock(&p->pi_lock);
b29739f9 8445 rq = __task_rq_lock(p);
1da177e4 8446
178be793 8447 normalize_task(rq, p);
3a5e4dc1 8448
b29739f9 8449 __task_rq_unlock(rq);
4cf5d77a 8450 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8451 } while_each_thread(g, p);
8452
4cf5d77a 8453 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8454}
8455
8456#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8457
8458#ifdef CONFIG_IA64
8459/*
8460 * These functions are only useful for the IA64 MCA handling.
8461 *
8462 * They can only be called when the whole system has been
8463 * stopped - every CPU needs to be quiescent, and no scheduling
8464 * activity can take place. Using them for anything else would
8465 * be a serious bug, and as a result, they aren't even visible
8466 * under any other configuration.
8467 */
8468
8469/**
8470 * curr_task - return the current task for a given cpu.
8471 * @cpu: the processor in question.
8472 *
8473 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8474 */
36c8b586 8475struct task_struct *curr_task(int cpu)
1df5c10a
LT
8476{
8477 return cpu_curr(cpu);
8478}
8479
8480/**
8481 * set_curr_task - set the current task for a given cpu.
8482 * @cpu: the processor in question.
8483 * @p: the task pointer to set.
8484 *
8485 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8486 * are serviced on a separate stack. It allows the architecture to switch the
8487 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8488 * must be called with all CPU's synchronized, and interrupts disabled, the
8489 * and caller must save the original value of the current task (see
8490 * curr_task() above) and restore that value before reenabling interrupts and
8491 * re-starting the system.
8492 *
8493 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8494 */
36c8b586 8495void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8496{
8497 cpu_curr(cpu) = p;
8498}
8499
8500#endif
29f59db3 8501
bccbe08a
PZ
8502#ifdef CONFIG_FAIR_GROUP_SCHED
8503static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8504{
8505 int i;
8506
8507 for_each_possible_cpu(i) {
8508 if (tg->cfs_rq)
8509 kfree(tg->cfs_rq[i]);
8510 if (tg->se)
8511 kfree(tg->se[i]);
6f505b16
PZ
8512 }
8513
8514 kfree(tg->cfs_rq);
8515 kfree(tg->se);
6f505b16
PZ
8516}
8517
ec7dc8ac
DG
8518static
8519int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8520{
29f59db3 8521 struct cfs_rq *cfs_rq;
ec7dc8ac 8522 struct sched_entity *se, *parent_se;
9b5b7751 8523 struct rq *rq;
29f59db3
SV
8524 int i;
8525
434d53b0 8526 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8527 if (!tg->cfs_rq)
8528 goto err;
434d53b0 8529 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8530 if (!tg->se)
8531 goto err;
052f1dc7
PZ
8532
8533 tg->shares = NICE_0_LOAD;
29f59db3
SV
8534
8535 for_each_possible_cpu(i) {
9b5b7751 8536 rq = cpu_rq(i);
29f59db3 8537
6f505b16
PZ
8538 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8539 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8540 if (!cfs_rq)
8541 goto err;
8542
6f505b16
PZ
8543 se = kmalloc_node(sizeof(struct sched_entity),
8544 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8545 if (!se)
8546 goto err;
8547
ec7dc8ac
DG
8548 parent_se = parent ? parent->se[i] : NULL;
8549 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8550 }
8551
8552 return 1;
8553
8554 err:
8555 return 0;
8556}
8557
8558static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8559{
8560 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8561 &cpu_rq(cpu)->leaf_cfs_rq_list);
8562}
8563
8564static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8565{
8566 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8567}
6d6bc0ad 8568#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8569static inline void free_fair_sched_group(struct task_group *tg)
8570{
8571}
8572
ec7dc8ac
DG
8573static inline
8574int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8575{
8576 return 1;
8577}
8578
8579static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8580{
8581}
8582
8583static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8584{
8585}
6d6bc0ad 8586#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8587
8588#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8589static void free_rt_sched_group(struct task_group *tg)
8590{
8591 int i;
8592
d0b27fa7
PZ
8593 destroy_rt_bandwidth(&tg->rt_bandwidth);
8594
bccbe08a
PZ
8595 for_each_possible_cpu(i) {
8596 if (tg->rt_rq)
8597 kfree(tg->rt_rq[i]);
8598 if (tg->rt_se)
8599 kfree(tg->rt_se[i]);
8600 }
8601
8602 kfree(tg->rt_rq);
8603 kfree(tg->rt_se);
8604}
8605
ec7dc8ac
DG
8606static
8607int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8608{
8609 struct rt_rq *rt_rq;
ec7dc8ac 8610 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8611 struct rq *rq;
8612 int i;
8613
434d53b0 8614 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8615 if (!tg->rt_rq)
8616 goto err;
434d53b0 8617 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8618 if (!tg->rt_se)
8619 goto err;
8620
d0b27fa7
PZ
8621 init_rt_bandwidth(&tg->rt_bandwidth,
8622 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8623
8624 for_each_possible_cpu(i) {
8625 rq = cpu_rq(i);
8626
6f505b16
PZ
8627 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8628 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8629 if (!rt_rq)
8630 goto err;
29f59db3 8631
6f505b16
PZ
8632 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8633 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8634 if (!rt_se)
8635 goto err;
29f59db3 8636
ec7dc8ac
DG
8637 parent_se = parent ? parent->rt_se[i] : NULL;
8638 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8639 }
8640
bccbe08a
PZ
8641 return 1;
8642
8643 err:
8644 return 0;
8645}
8646
8647static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8648{
8649 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8650 &cpu_rq(cpu)->leaf_rt_rq_list);
8651}
8652
8653static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8654{
8655 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8656}
6d6bc0ad 8657#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8658static inline void free_rt_sched_group(struct task_group *tg)
8659{
8660}
8661
ec7dc8ac
DG
8662static inline
8663int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8664{
8665 return 1;
8666}
8667
8668static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8669{
8670}
8671
8672static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8673{
8674}
6d6bc0ad 8675#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8676
d0b27fa7 8677#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8678static void free_sched_group(struct task_group *tg)
8679{
8680 free_fair_sched_group(tg);
8681 free_rt_sched_group(tg);
8682 kfree(tg);
8683}
8684
8685/* allocate runqueue etc for a new task group */
ec7dc8ac 8686struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8687{
8688 struct task_group *tg;
8689 unsigned long flags;
8690 int i;
8691
8692 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8693 if (!tg)
8694 return ERR_PTR(-ENOMEM);
8695
ec7dc8ac 8696 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8697 goto err;
8698
ec7dc8ac 8699 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8700 goto err;
8701
8ed36996 8702 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8703 for_each_possible_cpu(i) {
bccbe08a
PZ
8704 register_fair_sched_group(tg, i);
8705 register_rt_sched_group(tg, i);
9b5b7751 8706 }
6f505b16 8707 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8708
8709 WARN_ON(!parent); /* root should already exist */
8710
8711 tg->parent = parent;
f473aa5e 8712 INIT_LIST_HEAD(&tg->children);
09f2724a 8713 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8714 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8715
9b5b7751 8716 return tg;
29f59db3
SV
8717
8718err:
6f505b16 8719 free_sched_group(tg);
29f59db3
SV
8720 return ERR_PTR(-ENOMEM);
8721}
8722
9b5b7751 8723/* rcu callback to free various structures associated with a task group */
6f505b16 8724static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8725{
29f59db3 8726 /* now it should be safe to free those cfs_rqs */
6f505b16 8727 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8728}
8729
9b5b7751 8730/* Destroy runqueue etc associated with a task group */
4cf86d77 8731void sched_destroy_group(struct task_group *tg)
29f59db3 8732{
8ed36996 8733 unsigned long flags;
9b5b7751 8734 int i;
29f59db3 8735
8ed36996 8736 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8737 for_each_possible_cpu(i) {
bccbe08a
PZ
8738 unregister_fair_sched_group(tg, i);
8739 unregister_rt_sched_group(tg, i);
9b5b7751 8740 }
6f505b16 8741 list_del_rcu(&tg->list);
f473aa5e 8742 list_del_rcu(&tg->siblings);
8ed36996 8743 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8744
9b5b7751 8745 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8746 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8747}
8748
9b5b7751 8749/* change task's runqueue when it moves between groups.
3a252015
IM
8750 * The caller of this function should have put the task in its new group
8751 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8752 * reflect its new group.
9b5b7751
SV
8753 */
8754void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8755{
8756 int on_rq, running;
8757 unsigned long flags;
8758 struct rq *rq;
8759
8760 rq = task_rq_lock(tsk, &flags);
8761
29f59db3
SV
8762 update_rq_clock(rq);
8763
051a1d1a 8764 running = task_current(rq, tsk);
29f59db3
SV
8765 on_rq = tsk->se.on_rq;
8766
0e1f3483 8767 if (on_rq)
29f59db3 8768 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8769 if (unlikely(running))
8770 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8771
6f505b16 8772 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8773
810b3817
PZ
8774#ifdef CONFIG_FAIR_GROUP_SCHED
8775 if (tsk->sched_class->moved_group)
8776 tsk->sched_class->moved_group(tsk);
8777#endif
8778
0e1f3483
HS
8779 if (unlikely(running))
8780 tsk->sched_class->set_curr_task(rq);
8781 if (on_rq)
7074badb 8782 enqueue_task(rq, tsk, 0);
29f59db3 8783
29f59db3
SV
8784 task_rq_unlock(rq, &flags);
8785}
6d6bc0ad 8786#endif /* CONFIG_GROUP_SCHED */
29f59db3 8787
052f1dc7 8788#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8789static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8790{
8791 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8792 int on_rq;
8793
29f59db3 8794 on_rq = se->on_rq;
62fb1851 8795 if (on_rq)
29f59db3
SV
8796 dequeue_entity(cfs_rq, se, 0);
8797
8798 se->load.weight = shares;
e05510d0 8799 se->load.inv_weight = 0;
29f59db3 8800
62fb1851 8801 if (on_rq)
29f59db3 8802 enqueue_entity(cfs_rq, se, 0);
c09595f6 8803}
62fb1851 8804
c09595f6
PZ
8805static void set_se_shares(struct sched_entity *se, unsigned long shares)
8806{
8807 struct cfs_rq *cfs_rq = se->cfs_rq;
8808 struct rq *rq = cfs_rq->rq;
8809 unsigned long flags;
8810
8811 spin_lock_irqsave(&rq->lock, flags);
8812 __set_se_shares(se, shares);
8813 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8814}
8815
8ed36996
PZ
8816static DEFINE_MUTEX(shares_mutex);
8817
4cf86d77 8818int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8819{
8820 int i;
8ed36996 8821 unsigned long flags;
c61935fd 8822
ec7dc8ac
DG
8823 /*
8824 * We can't change the weight of the root cgroup.
8825 */
8826 if (!tg->se[0])
8827 return -EINVAL;
8828
18d95a28
PZ
8829 if (shares < MIN_SHARES)
8830 shares = MIN_SHARES;
cb4ad1ff
MX
8831 else if (shares > MAX_SHARES)
8832 shares = MAX_SHARES;
62fb1851 8833
8ed36996 8834 mutex_lock(&shares_mutex);
9b5b7751 8835 if (tg->shares == shares)
5cb350ba 8836 goto done;
29f59db3 8837
8ed36996 8838 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8839 for_each_possible_cpu(i)
8840 unregister_fair_sched_group(tg, i);
f473aa5e 8841 list_del_rcu(&tg->siblings);
8ed36996 8842 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8843
8844 /* wait for any ongoing reference to this group to finish */
8845 synchronize_sched();
8846
8847 /*
8848 * Now we are free to modify the group's share on each cpu
8849 * w/o tripping rebalance_share or load_balance_fair.
8850 */
9b5b7751 8851 tg->shares = shares;
c09595f6
PZ
8852 for_each_possible_cpu(i) {
8853 /*
8854 * force a rebalance
8855 */
8856 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8857 set_se_shares(tg->se[i], shares);
c09595f6 8858 }
29f59db3 8859
6b2d7700
SV
8860 /*
8861 * Enable load balance activity on this group, by inserting it back on
8862 * each cpu's rq->leaf_cfs_rq_list.
8863 */
8ed36996 8864 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8865 for_each_possible_cpu(i)
8866 register_fair_sched_group(tg, i);
f473aa5e 8867 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8868 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8869done:
8ed36996 8870 mutex_unlock(&shares_mutex);
9b5b7751 8871 return 0;
29f59db3
SV
8872}
8873
5cb350ba
DG
8874unsigned long sched_group_shares(struct task_group *tg)
8875{
8876 return tg->shares;
8877}
052f1dc7 8878#endif
5cb350ba 8879
052f1dc7 8880#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8881/*
9f0c1e56 8882 * Ensure that the real time constraints are schedulable.
6f505b16 8883 */
9f0c1e56
PZ
8884static DEFINE_MUTEX(rt_constraints_mutex);
8885
8886static unsigned long to_ratio(u64 period, u64 runtime)
8887{
8888 if (runtime == RUNTIME_INF)
9a7e0b18 8889 return 1ULL << 20;
9f0c1e56 8890
9a7e0b18 8891 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8892}
8893
9a7e0b18
PZ
8894/* Must be called with tasklist_lock held */
8895static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8896{
9a7e0b18 8897 struct task_struct *g, *p;
b40b2e8e 8898
9a7e0b18
PZ
8899 do_each_thread(g, p) {
8900 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8901 return 1;
8902 } while_each_thread(g, p);
b40b2e8e 8903
9a7e0b18
PZ
8904 return 0;
8905}
b40b2e8e 8906
9a7e0b18
PZ
8907struct rt_schedulable_data {
8908 struct task_group *tg;
8909 u64 rt_period;
8910 u64 rt_runtime;
8911};
b40b2e8e 8912
9a7e0b18
PZ
8913static int tg_schedulable(struct task_group *tg, void *data)
8914{
8915 struct rt_schedulable_data *d = data;
8916 struct task_group *child;
8917 unsigned long total, sum = 0;
8918 u64 period, runtime;
b40b2e8e 8919
9a7e0b18
PZ
8920 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8921 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8922
9a7e0b18
PZ
8923 if (tg == d->tg) {
8924 period = d->rt_period;
8925 runtime = d->rt_runtime;
b40b2e8e 8926 }
b40b2e8e 8927
4653f803
PZ
8928 /*
8929 * Cannot have more runtime than the period.
8930 */
8931 if (runtime > period && runtime != RUNTIME_INF)
8932 return -EINVAL;
6f505b16 8933
4653f803
PZ
8934 /*
8935 * Ensure we don't starve existing RT tasks.
8936 */
9a7e0b18
PZ
8937 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8938 return -EBUSY;
6f505b16 8939
9a7e0b18 8940 total = to_ratio(period, runtime);
6f505b16 8941
4653f803
PZ
8942 /*
8943 * Nobody can have more than the global setting allows.
8944 */
8945 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8946 return -EINVAL;
6f505b16 8947
4653f803
PZ
8948 /*
8949 * The sum of our children's runtime should not exceed our own.
8950 */
9a7e0b18
PZ
8951 list_for_each_entry_rcu(child, &tg->children, siblings) {
8952 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8953 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8954
9a7e0b18
PZ
8955 if (child == d->tg) {
8956 period = d->rt_period;
8957 runtime = d->rt_runtime;
8958 }
6f505b16 8959
9a7e0b18 8960 sum += to_ratio(period, runtime);
9f0c1e56 8961 }
6f505b16 8962
9a7e0b18
PZ
8963 if (sum > total)
8964 return -EINVAL;
8965
8966 return 0;
6f505b16
PZ
8967}
8968
9a7e0b18 8969static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8970{
9a7e0b18
PZ
8971 struct rt_schedulable_data data = {
8972 .tg = tg,
8973 .rt_period = period,
8974 .rt_runtime = runtime,
8975 };
8976
8977 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8978}
8979
d0b27fa7
PZ
8980static int tg_set_bandwidth(struct task_group *tg,
8981 u64 rt_period, u64 rt_runtime)
6f505b16 8982{
ac086bc2 8983 int i, err = 0;
9f0c1e56 8984
9f0c1e56 8985 mutex_lock(&rt_constraints_mutex);
521f1a24 8986 read_lock(&tasklist_lock);
9a7e0b18
PZ
8987 err = __rt_schedulable(tg, rt_period, rt_runtime);
8988 if (err)
9f0c1e56 8989 goto unlock;
ac086bc2
PZ
8990
8991 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8992 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8993 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8994
8995 for_each_possible_cpu(i) {
8996 struct rt_rq *rt_rq = tg->rt_rq[i];
8997
8998 spin_lock(&rt_rq->rt_runtime_lock);
8999 rt_rq->rt_runtime = rt_runtime;
9000 spin_unlock(&rt_rq->rt_runtime_lock);
9001 }
9002 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 9003 unlock:
521f1a24 9004 read_unlock(&tasklist_lock);
9f0c1e56
PZ
9005 mutex_unlock(&rt_constraints_mutex);
9006
9007 return err;
6f505b16
PZ
9008}
9009
d0b27fa7
PZ
9010int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9011{
9012 u64 rt_runtime, rt_period;
9013
9014 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9015 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9016 if (rt_runtime_us < 0)
9017 rt_runtime = RUNTIME_INF;
9018
9019 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9020}
9021
9f0c1e56
PZ
9022long sched_group_rt_runtime(struct task_group *tg)
9023{
9024 u64 rt_runtime_us;
9025
d0b27fa7 9026 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
9027 return -1;
9028
d0b27fa7 9029 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9030 do_div(rt_runtime_us, NSEC_PER_USEC);
9031 return rt_runtime_us;
9032}
d0b27fa7
PZ
9033
9034int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9035{
9036 u64 rt_runtime, rt_period;
9037
9038 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9039 rt_runtime = tg->rt_bandwidth.rt_runtime;
9040
619b0488
R
9041 if (rt_period == 0)
9042 return -EINVAL;
9043
d0b27fa7
PZ
9044 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9045}
9046
9047long sched_group_rt_period(struct task_group *tg)
9048{
9049 u64 rt_period_us;
9050
9051 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9052 do_div(rt_period_us, NSEC_PER_USEC);
9053 return rt_period_us;
9054}
9055
9056static int sched_rt_global_constraints(void)
9057{
4653f803 9058 u64 runtime, period;
d0b27fa7
PZ
9059 int ret = 0;
9060
ec5d4989
HS
9061 if (sysctl_sched_rt_period <= 0)
9062 return -EINVAL;
9063
4653f803
PZ
9064 runtime = global_rt_runtime();
9065 period = global_rt_period();
9066
9067 /*
9068 * Sanity check on the sysctl variables.
9069 */
9070 if (runtime > period && runtime != RUNTIME_INF)
9071 return -EINVAL;
10b612f4 9072
d0b27fa7 9073 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9074 read_lock(&tasklist_lock);
4653f803 9075 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9076 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9077 mutex_unlock(&rt_constraints_mutex);
9078
9079 return ret;
9080}
6d6bc0ad 9081#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9082static int sched_rt_global_constraints(void)
9083{
ac086bc2
PZ
9084 unsigned long flags;
9085 int i;
9086
ec5d4989
HS
9087 if (sysctl_sched_rt_period <= 0)
9088 return -EINVAL;
9089
ac086bc2
PZ
9090 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9091 for_each_possible_cpu(i) {
9092 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9093
9094 spin_lock(&rt_rq->rt_runtime_lock);
9095 rt_rq->rt_runtime = global_rt_runtime();
9096 spin_unlock(&rt_rq->rt_runtime_lock);
9097 }
9098 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9099
d0b27fa7
PZ
9100 return 0;
9101}
6d6bc0ad 9102#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9103
9104int sched_rt_handler(struct ctl_table *table, int write,
9105 struct file *filp, void __user *buffer, size_t *lenp,
9106 loff_t *ppos)
9107{
9108 int ret;
9109 int old_period, old_runtime;
9110 static DEFINE_MUTEX(mutex);
9111
9112 mutex_lock(&mutex);
9113 old_period = sysctl_sched_rt_period;
9114 old_runtime = sysctl_sched_rt_runtime;
9115
9116 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9117
9118 if (!ret && write) {
9119 ret = sched_rt_global_constraints();
9120 if (ret) {
9121 sysctl_sched_rt_period = old_period;
9122 sysctl_sched_rt_runtime = old_runtime;
9123 } else {
9124 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9125 def_rt_bandwidth.rt_period =
9126 ns_to_ktime(global_rt_period());
9127 }
9128 }
9129 mutex_unlock(&mutex);
9130
9131 return ret;
9132}
68318b8e 9133
052f1dc7 9134#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9135
9136/* return corresponding task_group object of a cgroup */
2b01dfe3 9137static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9138{
2b01dfe3
PM
9139 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9140 struct task_group, css);
68318b8e
SV
9141}
9142
9143static struct cgroup_subsys_state *
2b01dfe3 9144cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9145{
ec7dc8ac 9146 struct task_group *tg, *parent;
68318b8e 9147
2b01dfe3 9148 if (!cgrp->parent) {
68318b8e 9149 /* This is early initialization for the top cgroup */
68318b8e
SV
9150 return &init_task_group.css;
9151 }
9152
ec7dc8ac
DG
9153 parent = cgroup_tg(cgrp->parent);
9154 tg = sched_create_group(parent);
68318b8e
SV
9155 if (IS_ERR(tg))
9156 return ERR_PTR(-ENOMEM);
9157
68318b8e
SV
9158 return &tg->css;
9159}
9160
41a2d6cf
IM
9161static void
9162cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9163{
2b01dfe3 9164 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9165
9166 sched_destroy_group(tg);
9167}
9168
41a2d6cf
IM
9169static int
9170cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9171 struct task_struct *tsk)
68318b8e 9172{
b68aa230
PZ
9173#ifdef CONFIG_RT_GROUP_SCHED
9174 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 9175 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
9176 return -EINVAL;
9177#else
68318b8e
SV
9178 /* We don't support RT-tasks being in separate groups */
9179 if (tsk->sched_class != &fair_sched_class)
9180 return -EINVAL;
b68aa230 9181#endif
68318b8e
SV
9182
9183 return 0;
9184}
9185
9186static void
2b01dfe3 9187cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9188 struct cgroup *old_cont, struct task_struct *tsk)
9189{
9190 sched_move_task(tsk);
9191}
9192
052f1dc7 9193#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9194static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9195 u64 shareval)
68318b8e 9196{
2b01dfe3 9197 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9198}
9199
f4c753b7 9200static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9201{
2b01dfe3 9202 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9203
9204 return (u64) tg->shares;
9205}
6d6bc0ad 9206#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9207
052f1dc7 9208#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9209static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9210 s64 val)
6f505b16 9211{
06ecb27c 9212 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9213}
9214
06ecb27c 9215static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9216{
06ecb27c 9217 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9218}
d0b27fa7
PZ
9219
9220static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9221 u64 rt_period_us)
9222{
9223 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9224}
9225
9226static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9227{
9228 return sched_group_rt_period(cgroup_tg(cgrp));
9229}
6d6bc0ad 9230#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9231
fe5c7cc2 9232static struct cftype cpu_files[] = {
052f1dc7 9233#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9234 {
9235 .name = "shares",
f4c753b7
PM
9236 .read_u64 = cpu_shares_read_u64,
9237 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9238 },
052f1dc7
PZ
9239#endif
9240#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9241 {
9f0c1e56 9242 .name = "rt_runtime_us",
06ecb27c
PM
9243 .read_s64 = cpu_rt_runtime_read,
9244 .write_s64 = cpu_rt_runtime_write,
6f505b16 9245 },
d0b27fa7
PZ
9246 {
9247 .name = "rt_period_us",
f4c753b7
PM
9248 .read_u64 = cpu_rt_period_read_uint,
9249 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9250 },
052f1dc7 9251#endif
68318b8e
SV
9252};
9253
9254static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9255{
fe5c7cc2 9256 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9257}
9258
9259struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9260 .name = "cpu",
9261 .create = cpu_cgroup_create,
9262 .destroy = cpu_cgroup_destroy,
9263 .can_attach = cpu_cgroup_can_attach,
9264 .attach = cpu_cgroup_attach,
9265 .populate = cpu_cgroup_populate,
9266 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9267 .early_init = 1,
9268};
9269
052f1dc7 9270#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9271
9272#ifdef CONFIG_CGROUP_CPUACCT
9273
9274/*
9275 * CPU accounting code for task groups.
9276 *
9277 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9278 * (balbir@in.ibm.com).
9279 */
9280
9281/* track cpu usage of a group of tasks */
9282struct cpuacct {
9283 struct cgroup_subsys_state css;
9284 /* cpuusage holds pointer to a u64-type object on every cpu */
9285 u64 *cpuusage;
9286};
9287
9288struct cgroup_subsys cpuacct_subsys;
9289
9290/* return cpu accounting group corresponding to this container */
32cd756a 9291static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9292{
32cd756a 9293 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9294 struct cpuacct, css);
9295}
9296
9297/* return cpu accounting group to which this task belongs */
9298static inline struct cpuacct *task_ca(struct task_struct *tsk)
9299{
9300 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9301 struct cpuacct, css);
9302}
9303
9304/* create a new cpu accounting group */
9305static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9306 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9307{
9308 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9309
9310 if (!ca)
9311 return ERR_PTR(-ENOMEM);
9312
9313 ca->cpuusage = alloc_percpu(u64);
9314 if (!ca->cpuusage) {
9315 kfree(ca);
9316 return ERR_PTR(-ENOMEM);
9317 }
9318
9319 return &ca->css;
9320}
9321
9322/* destroy an existing cpu accounting group */
41a2d6cf 9323static void
32cd756a 9324cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9325{
32cd756a 9326 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9327
9328 free_percpu(ca->cpuusage);
9329 kfree(ca);
9330}
9331
9332/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9333static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9334{
32cd756a 9335 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9336 u64 totalcpuusage = 0;
9337 int i;
9338
9339 for_each_possible_cpu(i) {
9340 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9341
9342 /*
9343 * Take rq->lock to make 64-bit addition safe on 32-bit
9344 * platforms.
9345 */
9346 spin_lock_irq(&cpu_rq(i)->lock);
9347 totalcpuusage += *cpuusage;
9348 spin_unlock_irq(&cpu_rq(i)->lock);
9349 }
9350
9351 return totalcpuusage;
9352}
9353
0297b803
DG
9354static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9355 u64 reset)
9356{
9357 struct cpuacct *ca = cgroup_ca(cgrp);
9358 int err = 0;
9359 int i;
9360
9361 if (reset) {
9362 err = -EINVAL;
9363 goto out;
9364 }
9365
9366 for_each_possible_cpu(i) {
9367 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9368
9369 spin_lock_irq(&cpu_rq(i)->lock);
9370 *cpuusage = 0;
9371 spin_unlock_irq(&cpu_rq(i)->lock);
9372 }
9373out:
9374 return err;
9375}
9376
d842de87
SV
9377static struct cftype files[] = {
9378 {
9379 .name = "usage",
f4c753b7
PM
9380 .read_u64 = cpuusage_read,
9381 .write_u64 = cpuusage_write,
d842de87
SV
9382 },
9383};
9384
32cd756a 9385static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9386{
32cd756a 9387 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9388}
9389
9390/*
9391 * charge this task's execution time to its accounting group.
9392 *
9393 * called with rq->lock held.
9394 */
9395static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9396{
9397 struct cpuacct *ca;
9398
9399 if (!cpuacct_subsys.active)
9400 return;
9401
9402 ca = task_ca(tsk);
9403 if (ca) {
9404 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9405
9406 *cpuusage += cputime;
9407 }
9408}
9409
9410struct cgroup_subsys cpuacct_subsys = {
9411 .name = "cpuacct",
9412 .create = cpuacct_create,
9413 .destroy = cpuacct_destroy,
9414 .populate = cpuacct_populate,
9415 .subsys_id = cpuacct_subsys_id,
9416};
9417#endif /* CONFIG_CGROUP_CPUACCT */