]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: Add SCHED_RESET_ON_FORK functionality for nice < 0 tasks
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
0d905bca 42#include <linux/perf_counter.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
58#include <linux/kthread.h>
b5aadf7f 59#include <linux/proc_fs.h>
1da177e4 60#include <linux/seq_file.h>
e692ab53 61#include <linux/sysctl.h>
1da177e4
LT
62#include <linux/syscalls.h>
63#include <linux/times.h>
8f0ab514 64#include <linux/tsacct_kern.h>
c6fd91f0 65#include <linux/kprobes.h>
0ff92245 66#include <linux/delayacct.h>
5517d86b 67#include <linux/reciprocal_div.h>
dff06c15 68#include <linux/unistd.h>
f5ff8422 69#include <linux/pagemap.h>
8f4d37ec 70#include <linux/hrtimer.h>
30914a58 71#include <linux/tick.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
1da177e4 75
5517d86b 76#include <asm/tlb.h>
838225b4 77#include <asm/irq_regs.h>
1da177e4 78
6e0534f2
GH
79#include "sched_cpupri.h"
80
a8d154b0 81#define CREATE_TRACE_POINTS
ad8d75ff 82#include <trace/events/sched.h>
a8d154b0 83
1da177e4
LT
84/*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93/*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102/*
d7876a08 103 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 104 */
d6322faf 105#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 106
6aa645ea
IM
107#define NICE_0_LOAD SCHED_LOAD_SCALE
108#define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
1da177e4
LT
110/*
111 * These are the 'tuning knobs' of the scheduler:
112 *
a4ec24b4 113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
114 * Timeslices get refilled after they expire.
115 */
1da177e4 116#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 117
d0b27fa7
PZ
118/*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121#define RUNTIME_INF ((u64)~0ULL)
122
5517d86b 123#ifdef CONFIG_SMP
fd2ab30b
SN
124
125static void double_rq_lock(struct rq *rq1, struct rq *rq2);
126
5517d86b
ED
127/*
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
130 */
131static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
132{
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
134}
135
136/*
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
139 */
140static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
141{
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
144}
145#endif
146
e05606d3
IM
147static inline int rt_policy(int policy)
148{
3f33a7ce 149 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
150 return 1;
151 return 0;
152}
153
154static inline int task_has_rt_policy(struct task_struct *p)
155{
156 return rt_policy(p->policy);
157}
158
1da177e4 159/*
6aa645ea 160 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 161 */
6aa645ea
IM
162struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO];
165};
166
d0b27fa7 167struct rt_bandwidth {
ea736ed5
IM
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock;
170 ktime_t rt_period;
171 u64 rt_runtime;
172 struct hrtimer rt_period_timer;
d0b27fa7
PZ
173};
174
175static struct rt_bandwidth def_rt_bandwidth;
176
177static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
178
179static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
180{
181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer);
183 ktime_t now;
184 int overrun;
185 int idle = 0;
186
187 for (;;) {
188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
190
191 if (!overrun)
192 break;
193
194 idle = do_sched_rt_period_timer(rt_b, overrun);
195 }
196
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
198}
199
200static
201void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
202{
203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime;
205
ac086bc2
PZ
206 spin_lock_init(&rt_b->rt_runtime_lock);
207
d0b27fa7
PZ
208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
211}
212
c8bfff6d
KH
213static inline int rt_bandwidth_enabled(void)
214{
215 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
216}
217
218static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
219{
220 ktime_t now;
221
cac64d00 222 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
223 return;
224
225 if (hrtimer_active(&rt_b->rt_period_timer))
226 return;
227
228 spin_lock(&rt_b->rt_runtime_lock);
229 for (;;) {
7f1e2ca9
PZ
230 unsigned long delta;
231 ktime_t soft, hard;
232
d0b27fa7
PZ
233 if (hrtimer_active(&rt_b->rt_period_timer))
234 break;
235
236 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
237 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
238
239 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
240 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
241 delta = ktime_to_ns(ktime_sub(hard, soft));
242 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
243 HRTIMER_MODE_ABS, 0);
d0b27fa7
PZ
244 }
245 spin_unlock(&rt_b->rt_runtime_lock);
246}
247
248#ifdef CONFIG_RT_GROUP_SCHED
249static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
250{
251 hrtimer_cancel(&rt_b->rt_period_timer);
252}
253#endif
254
712555ee
HC
255/*
256 * sched_domains_mutex serializes calls to arch_init_sched_domains,
257 * detach_destroy_domains and partition_sched_domains.
258 */
259static DEFINE_MUTEX(sched_domains_mutex);
260
052f1dc7 261#ifdef CONFIG_GROUP_SCHED
29f59db3 262
68318b8e
SV
263#include <linux/cgroup.h>
264
29f59db3
SV
265struct cfs_rq;
266
6f505b16
PZ
267static LIST_HEAD(task_groups);
268
29f59db3 269/* task group related information */
4cf86d77 270struct task_group {
052f1dc7 271#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
272 struct cgroup_subsys_state css;
273#endif
052f1dc7 274
6c415b92
AB
275#ifdef CONFIG_USER_SCHED
276 uid_t uid;
277#endif
278
052f1dc7 279#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
280 /* schedulable entities of this group on each cpu */
281 struct sched_entity **se;
282 /* runqueue "owned" by this group on each cpu */
283 struct cfs_rq **cfs_rq;
284 unsigned long shares;
052f1dc7
PZ
285#endif
286
287#ifdef CONFIG_RT_GROUP_SCHED
288 struct sched_rt_entity **rt_se;
289 struct rt_rq **rt_rq;
290
d0b27fa7 291 struct rt_bandwidth rt_bandwidth;
052f1dc7 292#endif
6b2d7700 293
ae8393e5 294 struct rcu_head rcu;
6f505b16 295 struct list_head list;
f473aa5e
PZ
296
297 struct task_group *parent;
298 struct list_head siblings;
299 struct list_head children;
29f59db3
SV
300};
301
354d60c2 302#ifdef CONFIG_USER_SCHED
eff766a6 303
6c415b92
AB
304/* Helper function to pass uid information to create_sched_user() */
305void set_tg_uid(struct user_struct *user)
306{
307 user->tg->uid = user->uid;
308}
309
eff766a6
PZ
310/*
311 * Root task group.
312 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group.
314 */
315struct task_group root_task_group;
316
052f1dc7 317#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
318/* Default task group's sched entity on each cpu */
319static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
320/* Default task group's cfs_rq on each cpu */
321static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 322#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
323
324#ifdef CONFIG_RT_GROUP_SCHED
325static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
326static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 327#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 328#else /* !CONFIG_USER_SCHED */
eff766a6 329#define root_task_group init_task_group
9a7e0b18 330#endif /* CONFIG_USER_SCHED */
6f505b16 331
8ed36996 332/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
333 * a task group's cpu shares.
334 */
8ed36996 335static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 336
57310a98
PZ
337#ifdef CONFIG_SMP
338static int root_task_group_empty(void)
339{
340 return list_empty(&root_task_group.children);
341}
342#endif
343
052f1dc7 344#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
345#ifdef CONFIG_USER_SCHED
346# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 347#else /* !CONFIG_USER_SCHED */
052f1dc7 348# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 349#endif /* CONFIG_USER_SCHED */
052f1dc7 350
cb4ad1ff 351/*
2e084786
LJ
352 * A weight of 0 or 1 can cause arithmetics problems.
353 * A weight of a cfs_rq is the sum of weights of which entities
354 * are queued on this cfs_rq, so a weight of a entity should not be
355 * too large, so as the shares value of a task group.
cb4ad1ff
MX
356 * (The default weight is 1024 - so there's no practical
357 * limitation from this.)
358 */
18d95a28 359#define MIN_SHARES 2
2e084786 360#define MAX_SHARES (1UL << 18)
18d95a28 361
052f1dc7
PZ
362static int init_task_group_load = INIT_TASK_GROUP_LOAD;
363#endif
364
29f59db3 365/* Default task group.
3a252015 366 * Every task in system belong to this group at bootup.
29f59db3 367 */
434d53b0 368struct task_group init_task_group;
29f59db3
SV
369
370/* return group to which a task belongs */
4cf86d77 371static inline struct task_group *task_group(struct task_struct *p)
29f59db3 372{
4cf86d77 373 struct task_group *tg;
9b5b7751 374
052f1dc7 375#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
376 rcu_read_lock();
377 tg = __task_cred(p)->user->tg;
378 rcu_read_unlock();
052f1dc7 379#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
380 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
381 struct task_group, css);
24e377a8 382#else
41a2d6cf 383 tg = &init_task_group;
24e377a8 384#endif
9b5b7751 385 return tg;
29f59db3
SV
386}
387
388/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 389static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 390{
052f1dc7 391#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
392 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
393 p->se.parent = task_group(p)->se[cpu];
052f1dc7 394#endif
6f505b16 395
052f1dc7 396#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
397 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
398 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 399#endif
29f59db3
SV
400}
401
402#else
403
57310a98
PZ
404#ifdef CONFIG_SMP
405static int root_task_group_empty(void)
406{
407 return 1;
408}
409#endif
410
6f505b16 411static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
412static inline struct task_group *task_group(struct task_struct *p)
413{
414 return NULL;
415}
29f59db3 416
052f1dc7 417#endif /* CONFIG_GROUP_SCHED */
29f59db3 418
6aa645ea
IM
419/* CFS-related fields in a runqueue */
420struct cfs_rq {
421 struct load_weight load;
422 unsigned long nr_running;
423
6aa645ea 424 u64 exec_clock;
e9acbff6 425 u64 min_vruntime;
6aa645ea
IM
426
427 struct rb_root tasks_timeline;
428 struct rb_node *rb_leftmost;
4a55bd5e
PZ
429
430 struct list_head tasks;
431 struct list_head *balance_iterator;
432
433 /*
434 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
435 * It is set to NULL otherwise (i.e when none are currently running).
436 */
4793241b 437 struct sched_entity *curr, *next, *last;
ddc97297 438
5ac5c4d6 439 unsigned int nr_spread_over;
ddc97297 440
62160e3f 441#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
442 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
443
41a2d6cf
IM
444 /*
445 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
446 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
447 * (like users, containers etc.)
448 *
449 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
450 * list is used during load balance.
451 */
41a2d6cf
IM
452 struct list_head leaf_cfs_rq_list;
453 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
454
455#ifdef CONFIG_SMP
c09595f6 456 /*
c8cba857 457 * the part of load.weight contributed by tasks
c09595f6 458 */
c8cba857 459 unsigned long task_weight;
c09595f6 460
c8cba857
PZ
461 /*
462 * h_load = weight * f(tg)
463 *
464 * Where f(tg) is the recursive weight fraction assigned to
465 * this group.
466 */
467 unsigned long h_load;
c09595f6 468
c8cba857
PZ
469 /*
470 * this cpu's part of tg->shares
471 */
472 unsigned long shares;
f1d239f7
PZ
473
474 /*
475 * load.weight at the time we set shares
476 */
477 unsigned long rq_weight;
c09595f6 478#endif
6aa645ea
IM
479#endif
480};
1da177e4 481
6aa645ea
IM
482/* Real-Time classes' related field in a runqueue: */
483struct rt_rq {
484 struct rt_prio_array active;
63489e45 485 unsigned long rt_nr_running;
052f1dc7 486#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
487 struct {
488 int curr; /* highest queued rt task prio */
398a153b 489#ifdef CONFIG_SMP
e864c499 490 int next; /* next highest */
398a153b 491#endif
e864c499 492 } highest_prio;
6f505b16 493#endif
fa85ae24 494#ifdef CONFIG_SMP
73fe6aae 495 unsigned long rt_nr_migratory;
a22d7fc1 496 int overloaded;
917b627d 497 struct plist_head pushable_tasks;
fa85ae24 498#endif
6f505b16 499 int rt_throttled;
fa85ae24 500 u64 rt_time;
ac086bc2 501 u64 rt_runtime;
ea736ed5 502 /* Nests inside the rq lock: */
ac086bc2 503 spinlock_t rt_runtime_lock;
6f505b16 504
052f1dc7 505#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
506 unsigned long rt_nr_boosted;
507
6f505b16
PZ
508 struct rq *rq;
509 struct list_head leaf_rt_rq_list;
510 struct task_group *tg;
511 struct sched_rt_entity *rt_se;
512#endif
6aa645ea
IM
513};
514
57d885fe
GH
515#ifdef CONFIG_SMP
516
517/*
518 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
519 * variables. Each exclusive cpuset essentially defines an island domain by
520 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
521 * exclusive cpuset is created, we also create and attach a new root-domain
522 * object.
523 *
57d885fe
GH
524 */
525struct root_domain {
526 atomic_t refcount;
c6c4927b
RR
527 cpumask_var_t span;
528 cpumask_var_t online;
637f5085 529
0eab9146 530 /*
637f5085
GH
531 * The "RT overload" flag: it gets set if a CPU has more than
532 * one runnable RT task.
533 */
c6c4927b 534 cpumask_var_t rto_mask;
0eab9146 535 atomic_t rto_count;
6e0534f2
GH
536#ifdef CONFIG_SMP
537 struct cpupri cpupri;
538#endif
7a09b1a2
VS
539#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
540 /*
541 * Preferred wake up cpu nominated by sched_mc balance that will be
542 * used when most cpus are idle in the system indicating overall very
543 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
544 */
545 unsigned int sched_mc_preferred_wakeup_cpu;
546#endif
57d885fe
GH
547};
548
dc938520
GH
549/*
550 * By default the system creates a single root-domain with all cpus as
551 * members (mimicking the global state we have today).
552 */
57d885fe
GH
553static struct root_domain def_root_domain;
554
555#endif
556
1da177e4
LT
557/*
558 * This is the main, per-CPU runqueue data structure.
559 *
560 * Locking rule: those places that want to lock multiple runqueues
561 * (such as the load balancing or the thread migration code), lock
562 * acquire operations must be ordered by ascending &runqueue.
563 */
70b97a7f 564struct rq {
d8016491
IM
565 /* runqueue lock: */
566 spinlock_t lock;
1da177e4
LT
567
568 /*
569 * nr_running and cpu_load should be in the same cacheline because
570 * remote CPUs use both these fields when doing load calculation.
571 */
572 unsigned long nr_running;
6aa645ea
IM
573 #define CPU_LOAD_IDX_MAX 5
574 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 575#ifdef CONFIG_NO_HZ
15934a37 576 unsigned long last_tick_seen;
46cb4b7c
SS
577 unsigned char in_nohz_recently;
578#endif
d8016491
IM
579 /* capture load from *all* tasks on this cpu: */
580 struct load_weight load;
6aa645ea
IM
581 unsigned long nr_load_updates;
582 u64 nr_switches;
23a185ca 583 u64 nr_migrations_in;
6aa645ea
IM
584
585 struct cfs_rq cfs;
6f505b16 586 struct rt_rq rt;
6f505b16 587
6aa645ea 588#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
589 /* list of leaf cfs_rq on this cpu: */
590 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
591#endif
592#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 593 struct list_head leaf_rt_rq_list;
1da177e4 594#endif
1da177e4
LT
595
596 /*
597 * This is part of a global counter where only the total sum
598 * over all CPUs matters. A task can increase this counter on
599 * one CPU and if it got migrated afterwards it may decrease
600 * it on another CPU. Always updated under the runqueue lock:
601 */
602 unsigned long nr_uninterruptible;
603
36c8b586 604 struct task_struct *curr, *idle;
c9819f45 605 unsigned long next_balance;
1da177e4 606 struct mm_struct *prev_mm;
6aa645ea 607
3e51f33f 608 u64 clock;
6aa645ea 609
1da177e4
LT
610 atomic_t nr_iowait;
611
612#ifdef CONFIG_SMP
0eab9146 613 struct root_domain *rd;
1da177e4
LT
614 struct sched_domain *sd;
615
a0a522ce 616 unsigned char idle_at_tick;
1da177e4
LT
617 /* For active balancing */
618 int active_balance;
619 int push_cpu;
d8016491
IM
620 /* cpu of this runqueue: */
621 int cpu;
1f11eb6a 622 int online;
1da177e4 623
a8a51d5e 624 unsigned long avg_load_per_task;
1da177e4 625
36c8b586 626 struct task_struct *migration_thread;
1da177e4
LT
627 struct list_head migration_queue;
628#endif
629
dce48a84
TG
630 /* calc_load related fields */
631 unsigned long calc_load_update;
632 long calc_load_active;
633
8f4d37ec 634#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
635#ifdef CONFIG_SMP
636 int hrtick_csd_pending;
637 struct call_single_data hrtick_csd;
638#endif
8f4d37ec
PZ
639 struct hrtimer hrtick_timer;
640#endif
641
1da177e4
LT
642#ifdef CONFIG_SCHEDSTATS
643 /* latency stats */
644 struct sched_info rq_sched_info;
9c2c4802
KC
645 unsigned long long rq_cpu_time;
646 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
647
648 /* sys_sched_yield() stats */
480b9434 649 unsigned int yld_count;
1da177e4
LT
650
651 /* schedule() stats */
480b9434
KC
652 unsigned int sched_switch;
653 unsigned int sched_count;
654 unsigned int sched_goidle;
1da177e4
LT
655
656 /* try_to_wake_up() stats */
480b9434
KC
657 unsigned int ttwu_count;
658 unsigned int ttwu_local;
b8efb561
IM
659
660 /* BKL stats */
480b9434 661 unsigned int bkl_count;
1da177e4
LT
662#endif
663};
664
f34e3b61 665static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 666
15afe09b 667static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 668{
15afe09b 669 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
670}
671
0a2966b4
CL
672static inline int cpu_of(struct rq *rq)
673{
674#ifdef CONFIG_SMP
675 return rq->cpu;
676#else
677 return 0;
678#endif
679}
680
674311d5
NP
681/*
682 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 683 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
684 *
685 * The domain tree of any CPU may only be accessed from within
686 * preempt-disabled sections.
687 */
48f24c4d
IM
688#define for_each_domain(cpu, __sd) \
689 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
690
691#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
692#define this_rq() (&__get_cpu_var(runqueues))
693#define task_rq(p) cpu_rq(task_cpu(p))
694#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
695
aa9c4c0f 696inline void update_rq_clock(struct rq *rq)
3e51f33f
PZ
697{
698 rq->clock = sched_clock_cpu(cpu_of(rq));
699}
700
bf5c91ba
IM
701/*
702 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
703 */
704#ifdef CONFIG_SCHED_DEBUG
705# define const_debug __read_mostly
706#else
707# define const_debug static const
708#endif
709
017730c1
IM
710/**
711 * runqueue_is_locked
712 *
713 * Returns true if the current cpu runqueue is locked.
714 * This interface allows printk to be called with the runqueue lock
715 * held and know whether or not it is OK to wake up the klogd.
716 */
717int runqueue_is_locked(void)
718{
719 int cpu = get_cpu();
720 struct rq *rq = cpu_rq(cpu);
721 int ret;
722
723 ret = spin_is_locked(&rq->lock);
724 put_cpu();
725 return ret;
726}
727
bf5c91ba
IM
728/*
729 * Debugging: various feature bits
730 */
f00b45c1
PZ
731
732#define SCHED_FEAT(name, enabled) \
733 __SCHED_FEAT_##name ,
734
bf5c91ba 735enum {
f00b45c1 736#include "sched_features.h"
bf5c91ba
IM
737};
738
f00b45c1
PZ
739#undef SCHED_FEAT
740
741#define SCHED_FEAT(name, enabled) \
742 (1UL << __SCHED_FEAT_##name) * enabled |
743
bf5c91ba 744const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
745#include "sched_features.h"
746 0;
747
748#undef SCHED_FEAT
749
750#ifdef CONFIG_SCHED_DEBUG
751#define SCHED_FEAT(name, enabled) \
752 #name ,
753
983ed7a6 754static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
755#include "sched_features.h"
756 NULL
757};
758
759#undef SCHED_FEAT
760
34f3a814 761static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 762{
f00b45c1
PZ
763 int i;
764
765 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
766 if (!(sysctl_sched_features & (1UL << i)))
767 seq_puts(m, "NO_");
768 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 769 }
34f3a814 770 seq_puts(m, "\n");
f00b45c1 771
34f3a814 772 return 0;
f00b45c1
PZ
773}
774
775static ssize_t
776sched_feat_write(struct file *filp, const char __user *ubuf,
777 size_t cnt, loff_t *ppos)
778{
779 char buf[64];
780 char *cmp = buf;
781 int neg = 0;
782 int i;
783
784 if (cnt > 63)
785 cnt = 63;
786
787 if (copy_from_user(&buf, ubuf, cnt))
788 return -EFAULT;
789
790 buf[cnt] = 0;
791
c24b7c52 792 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
793 neg = 1;
794 cmp += 3;
795 }
796
797 for (i = 0; sched_feat_names[i]; i++) {
798 int len = strlen(sched_feat_names[i]);
799
800 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
801 if (neg)
802 sysctl_sched_features &= ~(1UL << i);
803 else
804 sysctl_sched_features |= (1UL << i);
805 break;
806 }
807 }
808
809 if (!sched_feat_names[i])
810 return -EINVAL;
811
812 filp->f_pos += cnt;
813
814 return cnt;
815}
816
34f3a814
LZ
817static int sched_feat_open(struct inode *inode, struct file *filp)
818{
819 return single_open(filp, sched_feat_show, NULL);
820}
821
f00b45c1 822static struct file_operations sched_feat_fops = {
34f3a814
LZ
823 .open = sched_feat_open,
824 .write = sched_feat_write,
825 .read = seq_read,
826 .llseek = seq_lseek,
827 .release = single_release,
f00b45c1
PZ
828};
829
830static __init int sched_init_debug(void)
831{
f00b45c1
PZ
832 debugfs_create_file("sched_features", 0644, NULL, NULL,
833 &sched_feat_fops);
834
835 return 0;
836}
837late_initcall(sched_init_debug);
838
839#endif
840
841#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 842
b82d9fdd
PZ
843/*
844 * Number of tasks to iterate in a single balance run.
845 * Limited because this is done with IRQs disabled.
846 */
847const_debug unsigned int sysctl_sched_nr_migrate = 32;
848
2398f2c6
PZ
849/*
850 * ratelimit for updating the group shares.
55cd5340 851 * default: 0.25ms
2398f2c6 852 */
55cd5340 853unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 854
ffda12a1
PZ
855/*
856 * Inject some fuzzyness into changing the per-cpu group shares
857 * this avoids remote rq-locks at the expense of fairness.
858 * default: 4
859 */
860unsigned int sysctl_sched_shares_thresh = 4;
861
fa85ae24 862/*
9f0c1e56 863 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
864 * default: 1s
865 */
9f0c1e56 866unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 867
6892b75e
IM
868static __read_mostly int scheduler_running;
869
9f0c1e56
PZ
870/*
871 * part of the period that we allow rt tasks to run in us.
872 * default: 0.95s
873 */
874int sysctl_sched_rt_runtime = 950000;
fa85ae24 875
d0b27fa7
PZ
876static inline u64 global_rt_period(void)
877{
878 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
879}
880
881static inline u64 global_rt_runtime(void)
882{
e26873bb 883 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
884 return RUNTIME_INF;
885
886 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
887}
fa85ae24 888
1da177e4 889#ifndef prepare_arch_switch
4866cde0
NP
890# define prepare_arch_switch(next) do { } while (0)
891#endif
892#ifndef finish_arch_switch
893# define finish_arch_switch(prev) do { } while (0)
894#endif
895
051a1d1a
DA
896static inline int task_current(struct rq *rq, struct task_struct *p)
897{
898 return rq->curr == p;
899}
900
4866cde0 901#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 902static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 903{
051a1d1a 904 return task_current(rq, p);
4866cde0
NP
905}
906
70b97a7f 907static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
908{
909}
910
70b97a7f 911static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 912{
da04c035
IM
913#ifdef CONFIG_DEBUG_SPINLOCK
914 /* this is a valid case when another task releases the spinlock */
915 rq->lock.owner = current;
916#endif
8a25d5de
IM
917 /*
918 * If we are tracking spinlock dependencies then we have to
919 * fix up the runqueue lock - which gets 'carried over' from
920 * prev into current:
921 */
922 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
923
4866cde0
NP
924 spin_unlock_irq(&rq->lock);
925}
926
927#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 928static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
929{
930#ifdef CONFIG_SMP
931 return p->oncpu;
932#else
051a1d1a 933 return task_current(rq, p);
4866cde0
NP
934#endif
935}
936
70b97a7f 937static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
938{
939#ifdef CONFIG_SMP
940 /*
941 * We can optimise this out completely for !SMP, because the
942 * SMP rebalancing from interrupt is the only thing that cares
943 * here.
944 */
945 next->oncpu = 1;
946#endif
947#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
948 spin_unlock_irq(&rq->lock);
949#else
950 spin_unlock(&rq->lock);
951#endif
952}
953
70b97a7f 954static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
955{
956#ifdef CONFIG_SMP
957 /*
958 * After ->oncpu is cleared, the task can be moved to a different CPU.
959 * We must ensure this doesn't happen until the switch is completely
960 * finished.
961 */
962 smp_wmb();
963 prev->oncpu = 0;
964#endif
965#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
966 local_irq_enable();
1da177e4 967#endif
4866cde0
NP
968}
969#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 970
b29739f9
IM
971/*
972 * __task_rq_lock - lock the runqueue a given task resides on.
973 * Must be called interrupts disabled.
974 */
70b97a7f 975static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
976 __acquires(rq->lock)
977{
3a5c359a
AK
978 for (;;) {
979 struct rq *rq = task_rq(p);
980 spin_lock(&rq->lock);
981 if (likely(rq == task_rq(p)))
982 return rq;
b29739f9 983 spin_unlock(&rq->lock);
b29739f9 984 }
b29739f9
IM
985}
986
1da177e4
LT
987/*
988 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 989 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
990 * explicitly disabling preemption.
991 */
70b97a7f 992static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
993 __acquires(rq->lock)
994{
70b97a7f 995 struct rq *rq;
1da177e4 996
3a5c359a
AK
997 for (;;) {
998 local_irq_save(*flags);
999 rq = task_rq(p);
1000 spin_lock(&rq->lock);
1001 if (likely(rq == task_rq(p)))
1002 return rq;
1da177e4 1003 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 1004 }
1da177e4
LT
1005}
1006
ad474cac
ON
1007void task_rq_unlock_wait(struct task_struct *p)
1008{
1009 struct rq *rq = task_rq(p);
1010
1011 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1012 spin_unlock_wait(&rq->lock);
1013}
1014
a9957449 1015static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1016 __releases(rq->lock)
1017{
1018 spin_unlock(&rq->lock);
1019}
1020
70b97a7f 1021static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1022 __releases(rq->lock)
1023{
1024 spin_unlock_irqrestore(&rq->lock, *flags);
1025}
1026
1da177e4 1027/*
cc2a73b5 1028 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1029 */
a9957449 1030static struct rq *this_rq_lock(void)
1da177e4
LT
1031 __acquires(rq->lock)
1032{
70b97a7f 1033 struct rq *rq;
1da177e4
LT
1034
1035 local_irq_disable();
1036 rq = this_rq();
1037 spin_lock(&rq->lock);
1038
1039 return rq;
1040}
1041
8f4d37ec
PZ
1042#ifdef CONFIG_SCHED_HRTICK
1043/*
1044 * Use HR-timers to deliver accurate preemption points.
1045 *
1046 * Its all a bit involved since we cannot program an hrt while holding the
1047 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1048 * reschedule event.
1049 *
1050 * When we get rescheduled we reprogram the hrtick_timer outside of the
1051 * rq->lock.
1052 */
8f4d37ec
PZ
1053
1054/*
1055 * Use hrtick when:
1056 * - enabled by features
1057 * - hrtimer is actually high res
1058 */
1059static inline int hrtick_enabled(struct rq *rq)
1060{
1061 if (!sched_feat(HRTICK))
1062 return 0;
ba42059f 1063 if (!cpu_active(cpu_of(rq)))
b328ca18 1064 return 0;
8f4d37ec
PZ
1065 return hrtimer_is_hres_active(&rq->hrtick_timer);
1066}
1067
8f4d37ec
PZ
1068static void hrtick_clear(struct rq *rq)
1069{
1070 if (hrtimer_active(&rq->hrtick_timer))
1071 hrtimer_cancel(&rq->hrtick_timer);
1072}
1073
8f4d37ec
PZ
1074/*
1075 * High-resolution timer tick.
1076 * Runs from hardirq context with interrupts disabled.
1077 */
1078static enum hrtimer_restart hrtick(struct hrtimer *timer)
1079{
1080 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1081
1082 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1083
1084 spin_lock(&rq->lock);
3e51f33f 1085 update_rq_clock(rq);
8f4d37ec
PZ
1086 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1087 spin_unlock(&rq->lock);
1088
1089 return HRTIMER_NORESTART;
1090}
1091
95e904c7 1092#ifdef CONFIG_SMP
31656519
PZ
1093/*
1094 * called from hardirq (IPI) context
1095 */
1096static void __hrtick_start(void *arg)
b328ca18 1097{
31656519 1098 struct rq *rq = arg;
b328ca18 1099
31656519
PZ
1100 spin_lock(&rq->lock);
1101 hrtimer_restart(&rq->hrtick_timer);
1102 rq->hrtick_csd_pending = 0;
1103 spin_unlock(&rq->lock);
b328ca18
PZ
1104}
1105
31656519
PZ
1106/*
1107 * Called to set the hrtick timer state.
1108 *
1109 * called with rq->lock held and irqs disabled
1110 */
1111static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1112{
31656519
PZ
1113 struct hrtimer *timer = &rq->hrtick_timer;
1114 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1115
cc584b21 1116 hrtimer_set_expires(timer, time);
31656519
PZ
1117
1118 if (rq == this_rq()) {
1119 hrtimer_restart(timer);
1120 } else if (!rq->hrtick_csd_pending) {
6e275637 1121 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1122 rq->hrtick_csd_pending = 1;
1123 }
b328ca18
PZ
1124}
1125
1126static int
1127hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1128{
1129 int cpu = (int)(long)hcpu;
1130
1131 switch (action) {
1132 case CPU_UP_CANCELED:
1133 case CPU_UP_CANCELED_FROZEN:
1134 case CPU_DOWN_PREPARE:
1135 case CPU_DOWN_PREPARE_FROZEN:
1136 case CPU_DEAD:
1137 case CPU_DEAD_FROZEN:
31656519 1138 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1139 return NOTIFY_OK;
1140 }
1141
1142 return NOTIFY_DONE;
1143}
1144
fa748203 1145static __init void init_hrtick(void)
b328ca18
PZ
1146{
1147 hotcpu_notifier(hotplug_hrtick, 0);
1148}
31656519
PZ
1149#else
1150/*
1151 * Called to set the hrtick timer state.
1152 *
1153 * called with rq->lock held and irqs disabled
1154 */
1155static void hrtick_start(struct rq *rq, u64 delay)
1156{
7f1e2ca9
PZ
1157 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1158 HRTIMER_MODE_REL, 0);
31656519 1159}
b328ca18 1160
006c75f1 1161static inline void init_hrtick(void)
8f4d37ec 1162{
8f4d37ec 1163}
31656519 1164#endif /* CONFIG_SMP */
8f4d37ec 1165
31656519 1166static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1167{
31656519
PZ
1168#ifdef CONFIG_SMP
1169 rq->hrtick_csd_pending = 0;
8f4d37ec 1170
31656519
PZ
1171 rq->hrtick_csd.flags = 0;
1172 rq->hrtick_csd.func = __hrtick_start;
1173 rq->hrtick_csd.info = rq;
1174#endif
8f4d37ec 1175
31656519
PZ
1176 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1177 rq->hrtick_timer.function = hrtick;
8f4d37ec 1178}
006c75f1 1179#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1180static inline void hrtick_clear(struct rq *rq)
1181{
1182}
1183
8f4d37ec
PZ
1184static inline void init_rq_hrtick(struct rq *rq)
1185{
1186}
1187
b328ca18
PZ
1188static inline void init_hrtick(void)
1189{
1190}
006c75f1 1191#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1192
c24d20db
IM
1193/*
1194 * resched_task - mark a task 'to be rescheduled now'.
1195 *
1196 * On UP this means the setting of the need_resched flag, on SMP it
1197 * might also involve a cross-CPU call to trigger the scheduler on
1198 * the target CPU.
1199 */
1200#ifdef CONFIG_SMP
1201
1202#ifndef tsk_is_polling
1203#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1204#endif
1205
31656519 1206static void resched_task(struct task_struct *p)
c24d20db
IM
1207{
1208 int cpu;
1209
1210 assert_spin_locked(&task_rq(p)->lock);
1211
5ed0cec0 1212 if (test_tsk_need_resched(p))
c24d20db
IM
1213 return;
1214
5ed0cec0 1215 set_tsk_need_resched(p);
c24d20db
IM
1216
1217 cpu = task_cpu(p);
1218 if (cpu == smp_processor_id())
1219 return;
1220
1221 /* NEED_RESCHED must be visible before we test polling */
1222 smp_mb();
1223 if (!tsk_is_polling(p))
1224 smp_send_reschedule(cpu);
1225}
1226
1227static void resched_cpu(int cpu)
1228{
1229 struct rq *rq = cpu_rq(cpu);
1230 unsigned long flags;
1231
1232 if (!spin_trylock_irqsave(&rq->lock, flags))
1233 return;
1234 resched_task(cpu_curr(cpu));
1235 spin_unlock_irqrestore(&rq->lock, flags);
1236}
06d8308c
TG
1237
1238#ifdef CONFIG_NO_HZ
1239/*
1240 * When add_timer_on() enqueues a timer into the timer wheel of an
1241 * idle CPU then this timer might expire before the next timer event
1242 * which is scheduled to wake up that CPU. In case of a completely
1243 * idle system the next event might even be infinite time into the
1244 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1245 * leaves the inner idle loop so the newly added timer is taken into
1246 * account when the CPU goes back to idle and evaluates the timer
1247 * wheel for the next timer event.
1248 */
1249void wake_up_idle_cpu(int cpu)
1250{
1251 struct rq *rq = cpu_rq(cpu);
1252
1253 if (cpu == smp_processor_id())
1254 return;
1255
1256 /*
1257 * This is safe, as this function is called with the timer
1258 * wheel base lock of (cpu) held. When the CPU is on the way
1259 * to idle and has not yet set rq->curr to idle then it will
1260 * be serialized on the timer wheel base lock and take the new
1261 * timer into account automatically.
1262 */
1263 if (rq->curr != rq->idle)
1264 return;
1265
1266 /*
1267 * We can set TIF_RESCHED on the idle task of the other CPU
1268 * lockless. The worst case is that the other CPU runs the
1269 * idle task through an additional NOOP schedule()
1270 */
5ed0cec0 1271 set_tsk_need_resched(rq->idle);
06d8308c
TG
1272
1273 /* NEED_RESCHED must be visible before we test polling */
1274 smp_mb();
1275 if (!tsk_is_polling(rq->idle))
1276 smp_send_reschedule(cpu);
1277}
6d6bc0ad 1278#endif /* CONFIG_NO_HZ */
06d8308c 1279
6d6bc0ad 1280#else /* !CONFIG_SMP */
31656519 1281static void resched_task(struct task_struct *p)
c24d20db
IM
1282{
1283 assert_spin_locked(&task_rq(p)->lock);
31656519 1284 set_tsk_need_resched(p);
c24d20db 1285}
6d6bc0ad 1286#endif /* CONFIG_SMP */
c24d20db 1287
45bf76df
IM
1288#if BITS_PER_LONG == 32
1289# define WMULT_CONST (~0UL)
1290#else
1291# define WMULT_CONST (1UL << 32)
1292#endif
1293
1294#define WMULT_SHIFT 32
1295
194081eb
IM
1296/*
1297 * Shift right and round:
1298 */
cf2ab469 1299#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1300
a7be37ac
PZ
1301/*
1302 * delta *= weight / lw
1303 */
cb1c4fc9 1304static unsigned long
45bf76df
IM
1305calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1306 struct load_weight *lw)
1307{
1308 u64 tmp;
1309
7a232e03
LJ
1310 if (!lw->inv_weight) {
1311 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1312 lw->inv_weight = 1;
1313 else
1314 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1315 / (lw->weight+1);
1316 }
45bf76df
IM
1317
1318 tmp = (u64)delta_exec * weight;
1319 /*
1320 * Check whether we'd overflow the 64-bit multiplication:
1321 */
194081eb 1322 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1323 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1324 WMULT_SHIFT/2);
1325 else
cf2ab469 1326 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1327
ecf691da 1328 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1329}
1330
1091985b 1331static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1332{
1333 lw->weight += inc;
e89996ae 1334 lw->inv_weight = 0;
45bf76df
IM
1335}
1336
1091985b 1337static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1338{
1339 lw->weight -= dec;
e89996ae 1340 lw->inv_weight = 0;
45bf76df
IM
1341}
1342
2dd73a4f
PW
1343/*
1344 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1345 * of tasks with abnormal "nice" values across CPUs the contribution that
1346 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1347 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1348 * scaled version of the new time slice allocation that they receive on time
1349 * slice expiry etc.
1350 */
1351
cce7ade8
PZ
1352#define WEIGHT_IDLEPRIO 3
1353#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1354
1355/*
1356 * Nice levels are multiplicative, with a gentle 10% change for every
1357 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1358 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1359 * that remained on nice 0.
1360 *
1361 * The "10% effect" is relative and cumulative: from _any_ nice level,
1362 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1363 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1364 * If a task goes up by ~10% and another task goes down by ~10% then
1365 * the relative distance between them is ~25%.)
dd41f596
IM
1366 */
1367static const int prio_to_weight[40] = {
254753dc
IM
1368 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1369 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1370 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1371 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1372 /* 0 */ 1024, 820, 655, 526, 423,
1373 /* 5 */ 335, 272, 215, 172, 137,
1374 /* 10 */ 110, 87, 70, 56, 45,
1375 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1376};
1377
5714d2de
IM
1378/*
1379 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1380 *
1381 * In cases where the weight does not change often, we can use the
1382 * precalculated inverse to speed up arithmetics by turning divisions
1383 * into multiplications:
1384 */
dd41f596 1385static const u32 prio_to_wmult[40] = {
254753dc
IM
1386 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1387 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1388 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1389 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1390 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1391 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1392 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1393 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1394};
2dd73a4f 1395
dd41f596
IM
1396static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1397
1398/*
1399 * runqueue iterator, to support SMP load-balancing between different
1400 * scheduling classes, without having to expose their internal data
1401 * structures to the load-balancing proper:
1402 */
1403struct rq_iterator {
1404 void *arg;
1405 struct task_struct *(*start)(void *);
1406 struct task_struct *(*next)(void *);
1407};
1408
e1d1484f
PW
1409#ifdef CONFIG_SMP
1410static unsigned long
1411balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1412 unsigned long max_load_move, struct sched_domain *sd,
1413 enum cpu_idle_type idle, int *all_pinned,
1414 int *this_best_prio, struct rq_iterator *iterator);
1415
1416static int
1417iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1418 struct sched_domain *sd, enum cpu_idle_type idle,
1419 struct rq_iterator *iterator);
e1d1484f 1420#endif
dd41f596 1421
ef12fefa
BR
1422/* Time spent by the tasks of the cpu accounting group executing in ... */
1423enum cpuacct_stat_index {
1424 CPUACCT_STAT_USER, /* ... user mode */
1425 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1426
1427 CPUACCT_STAT_NSTATS,
1428};
1429
d842de87
SV
1430#ifdef CONFIG_CGROUP_CPUACCT
1431static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1432static void cpuacct_update_stats(struct task_struct *tsk,
1433 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1434#else
1435static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1436static inline void cpuacct_update_stats(struct task_struct *tsk,
1437 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1438#endif
1439
18d95a28
PZ
1440static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1441{
1442 update_load_add(&rq->load, load);
1443}
1444
1445static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1446{
1447 update_load_sub(&rq->load, load);
1448}
1449
7940ca36 1450#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1451typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1452
1453/*
1454 * Iterate the full tree, calling @down when first entering a node and @up when
1455 * leaving it for the final time.
1456 */
eb755805 1457static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1458{
1459 struct task_group *parent, *child;
eb755805 1460 int ret;
c09595f6
PZ
1461
1462 rcu_read_lock();
1463 parent = &root_task_group;
1464down:
eb755805
PZ
1465 ret = (*down)(parent, data);
1466 if (ret)
1467 goto out_unlock;
c09595f6
PZ
1468 list_for_each_entry_rcu(child, &parent->children, siblings) {
1469 parent = child;
1470 goto down;
1471
1472up:
1473 continue;
1474 }
eb755805
PZ
1475 ret = (*up)(parent, data);
1476 if (ret)
1477 goto out_unlock;
c09595f6
PZ
1478
1479 child = parent;
1480 parent = parent->parent;
1481 if (parent)
1482 goto up;
eb755805 1483out_unlock:
c09595f6 1484 rcu_read_unlock();
eb755805
PZ
1485
1486 return ret;
c09595f6
PZ
1487}
1488
eb755805
PZ
1489static int tg_nop(struct task_group *tg, void *data)
1490{
1491 return 0;
c09595f6 1492}
eb755805
PZ
1493#endif
1494
1495#ifdef CONFIG_SMP
1496static unsigned long source_load(int cpu, int type);
1497static unsigned long target_load(int cpu, int type);
1498static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1499
1500static unsigned long cpu_avg_load_per_task(int cpu)
1501{
1502 struct rq *rq = cpu_rq(cpu);
af6d596f 1503 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1504
4cd42620
SR
1505 if (nr_running)
1506 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1507 else
1508 rq->avg_load_per_task = 0;
eb755805
PZ
1509
1510 return rq->avg_load_per_task;
1511}
1512
1513#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1514
c09595f6
PZ
1515static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1516
1517/*
1518 * Calculate and set the cpu's group shares.
1519 */
1520static void
ffda12a1
PZ
1521update_group_shares_cpu(struct task_group *tg, int cpu,
1522 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1523{
c09595f6
PZ
1524 unsigned long shares;
1525 unsigned long rq_weight;
1526
c8cba857 1527 if (!tg->se[cpu])
c09595f6
PZ
1528 return;
1529
ec4e0e2f 1530 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1531
c09595f6
PZ
1532 /*
1533 * \Sum shares * rq_weight
1534 * shares = -----------------------
1535 * \Sum rq_weight
1536 *
1537 */
ec4e0e2f 1538 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1539 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1540
ffda12a1
PZ
1541 if (abs(shares - tg->se[cpu]->load.weight) >
1542 sysctl_sched_shares_thresh) {
1543 struct rq *rq = cpu_rq(cpu);
1544 unsigned long flags;
c09595f6 1545
ffda12a1 1546 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1547 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1548
ffda12a1
PZ
1549 __set_se_shares(tg->se[cpu], shares);
1550 spin_unlock_irqrestore(&rq->lock, flags);
1551 }
18d95a28 1552}
c09595f6
PZ
1553
1554/*
c8cba857
PZ
1555 * Re-compute the task group their per cpu shares over the given domain.
1556 * This needs to be done in a bottom-up fashion because the rq weight of a
1557 * parent group depends on the shares of its child groups.
c09595f6 1558 */
eb755805 1559static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1560{
ec4e0e2f 1561 unsigned long weight, rq_weight = 0;
c8cba857 1562 unsigned long shares = 0;
eb755805 1563 struct sched_domain *sd = data;
c8cba857 1564 int i;
c09595f6 1565
758b2cdc 1566 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1567 /*
1568 * If there are currently no tasks on the cpu pretend there
1569 * is one of average load so that when a new task gets to
1570 * run here it will not get delayed by group starvation.
1571 */
1572 weight = tg->cfs_rq[i]->load.weight;
1573 if (!weight)
1574 weight = NICE_0_LOAD;
1575
1576 tg->cfs_rq[i]->rq_weight = weight;
1577 rq_weight += weight;
c8cba857 1578 shares += tg->cfs_rq[i]->shares;
c09595f6 1579 }
c09595f6 1580
c8cba857
PZ
1581 if ((!shares && rq_weight) || shares > tg->shares)
1582 shares = tg->shares;
1583
1584 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1585 shares = tg->shares;
c09595f6 1586
758b2cdc 1587 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1588 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1589
1590 return 0;
c09595f6
PZ
1591}
1592
1593/*
c8cba857
PZ
1594 * Compute the cpu's hierarchical load factor for each task group.
1595 * This needs to be done in a top-down fashion because the load of a child
1596 * group is a fraction of its parents load.
c09595f6 1597 */
eb755805 1598static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1599{
c8cba857 1600 unsigned long load;
eb755805 1601 long cpu = (long)data;
c09595f6 1602
c8cba857
PZ
1603 if (!tg->parent) {
1604 load = cpu_rq(cpu)->load.weight;
1605 } else {
1606 load = tg->parent->cfs_rq[cpu]->h_load;
1607 load *= tg->cfs_rq[cpu]->shares;
1608 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1609 }
c09595f6 1610
c8cba857 1611 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1612
eb755805 1613 return 0;
c09595f6
PZ
1614}
1615
c8cba857 1616static void update_shares(struct sched_domain *sd)
4d8d595d 1617{
2398f2c6
PZ
1618 u64 now = cpu_clock(raw_smp_processor_id());
1619 s64 elapsed = now - sd->last_update;
1620
1621 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1622 sd->last_update = now;
eb755805 1623 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1624 }
4d8d595d
PZ
1625}
1626
3e5459b4
PZ
1627static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1628{
1629 spin_unlock(&rq->lock);
1630 update_shares(sd);
1631 spin_lock(&rq->lock);
1632}
1633
eb755805 1634static void update_h_load(long cpu)
c09595f6 1635{
eb755805 1636 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1637}
1638
c09595f6
PZ
1639#else
1640
c8cba857 1641static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1642{
1643}
1644
3e5459b4
PZ
1645static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1646{
1647}
1648
18d95a28
PZ
1649#endif
1650
8f45e2b5
GH
1651#ifdef CONFIG_PREEMPT
1652
70574a99 1653/*
8f45e2b5
GH
1654 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1655 * way at the expense of forcing extra atomic operations in all
1656 * invocations. This assures that the double_lock is acquired using the
1657 * same underlying policy as the spinlock_t on this architecture, which
1658 * reduces latency compared to the unfair variant below. However, it
1659 * also adds more overhead and therefore may reduce throughput.
70574a99 1660 */
8f45e2b5
GH
1661static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1662 __releases(this_rq->lock)
1663 __acquires(busiest->lock)
1664 __acquires(this_rq->lock)
1665{
1666 spin_unlock(&this_rq->lock);
1667 double_rq_lock(this_rq, busiest);
1668
1669 return 1;
1670}
1671
1672#else
1673/*
1674 * Unfair double_lock_balance: Optimizes throughput at the expense of
1675 * latency by eliminating extra atomic operations when the locks are
1676 * already in proper order on entry. This favors lower cpu-ids and will
1677 * grant the double lock to lower cpus over higher ids under contention,
1678 * regardless of entry order into the function.
1679 */
1680static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1681 __releases(this_rq->lock)
1682 __acquires(busiest->lock)
1683 __acquires(this_rq->lock)
1684{
1685 int ret = 0;
1686
70574a99
AD
1687 if (unlikely(!spin_trylock(&busiest->lock))) {
1688 if (busiest < this_rq) {
1689 spin_unlock(&this_rq->lock);
1690 spin_lock(&busiest->lock);
1691 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1692 ret = 1;
1693 } else
1694 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1695 }
1696 return ret;
1697}
1698
8f45e2b5
GH
1699#endif /* CONFIG_PREEMPT */
1700
1701/*
1702 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1703 */
1704static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1705{
1706 if (unlikely(!irqs_disabled())) {
1707 /* printk() doesn't work good under rq->lock */
1708 spin_unlock(&this_rq->lock);
1709 BUG_ON(1);
1710 }
1711
1712 return _double_lock_balance(this_rq, busiest);
1713}
1714
70574a99
AD
1715static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1716 __releases(busiest->lock)
1717{
1718 spin_unlock(&busiest->lock);
1719 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1720}
18d95a28
PZ
1721#endif
1722
30432094 1723#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1724static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1725{
30432094 1726#ifdef CONFIG_SMP
34e83e85
IM
1727 cfs_rq->shares = shares;
1728#endif
1729}
30432094 1730#endif
e7693a36 1731
dce48a84
TG
1732static void calc_load_account_active(struct rq *this_rq);
1733
dd41f596 1734#include "sched_stats.h"
dd41f596 1735#include "sched_idletask.c"
5522d5d5
IM
1736#include "sched_fair.c"
1737#include "sched_rt.c"
dd41f596
IM
1738#ifdef CONFIG_SCHED_DEBUG
1739# include "sched_debug.c"
1740#endif
1741
1742#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1743#define for_each_class(class) \
1744 for (class = sched_class_highest; class; class = class->next)
dd41f596 1745
c09595f6 1746static void inc_nr_running(struct rq *rq)
9c217245
IM
1747{
1748 rq->nr_running++;
9c217245
IM
1749}
1750
c09595f6 1751static void dec_nr_running(struct rq *rq)
9c217245
IM
1752{
1753 rq->nr_running--;
9c217245
IM
1754}
1755
45bf76df
IM
1756static void set_load_weight(struct task_struct *p)
1757{
1758 if (task_has_rt_policy(p)) {
dd41f596
IM
1759 p->se.load.weight = prio_to_weight[0] * 2;
1760 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1761 return;
1762 }
45bf76df 1763
dd41f596
IM
1764 /*
1765 * SCHED_IDLE tasks get minimal weight:
1766 */
1767 if (p->policy == SCHED_IDLE) {
1768 p->se.load.weight = WEIGHT_IDLEPRIO;
1769 p->se.load.inv_weight = WMULT_IDLEPRIO;
1770 return;
1771 }
71f8bd46 1772
dd41f596
IM
1773 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1774 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1775}
1776
2087a1ad
GH
1777static void update_avg(u64 *avg, u64 sample)
1778{
1779 s64 diff = sample - *avg;
1780 *avg += diff >> 3;
1781}
1782
8159f87e 1783static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1784{
831451ac
PZ
1785 if (wakeup)
1786 p->se.start_runtime = p->se.sum_exec_runtime;
1787
dd41f596 1788 sched_info_queued(p);
fd390f6a 1789 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1790 p->se.on_rq = 1;
71f8bd46
IM
1791}
1792
69be72c1 1793static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1794{
831451ac
PZ
1795 if (sleep) {
1796 if (p->se.last_wakeup) {
1797 update_avg(&p->se.avg_overlap,
1798 p->se.sum_exec_runtime - p->se.last_wakeup);
1799 p->se.last_wakeup = 0;
1800 } else {
1801 update_avg(&p->se.avg_wakeup,
1802 sysctl_sched_wakeup_granularity);
1803 }
2087a1ad
GH
1804 }
1805
46ac22ba 1806 sched_info_dequeued(p);
f02231e5 1807 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1808 p->se.on_rq = 0;
71f8bd46
IM
1809}
1810
14531189 1811/*
dd41f596 1812 * __normal_prio - return the priority that is based on the static prio
14531189 1813 */
14531189
IM
1814static inline int __normal_prio(struct task_struct *p)
1815{
dd41f596 1816 return p->static_prio;
14531189
IM
1817}
1818
b29739f9
IM
1819/*
1820 * Calculate the expected normal priority: i.e. priority
1821 * without taking RT-inheritance into account. Might be
1822 * boosted by interactivity modifiers. Changes upon fork,
1823 * setprio syscalls, and whenever the interactivity
1824 * estimator recalculates.
1825 */
36c8b586 1826static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1827{
1828 int prio;
1829
e05606d3 1830 if (task_has_rt_policy(p))
b29739f9
IM
1831 prio = MAX_RT_PRIO-1 - p->rt_priority;
1832 else
1833 prio = __normal_prio(p);
1834 return prio;
1835}
1836
1837/*
1838 * Calculate the current priority, i.e. the priority
1839 * taken into account by the scheduler. This value might
1840 * be boosted by RT tasks, or might be boosted by
1841 * interactivity modifiers. Will be RT if the task got
1842 * RT-boosted. If not then it returns p->normal_prio.
1843 */
36c8b586 1844static int effective_prio(struct task_struct *p)
b29739f9
IM
1845{
1846 p->normal_prio = normal_prio(p);
1847 /*
1848 * If we are RT tasks or we were boosted to RT priority,
1849 * keep the priority unchanged. Otherwise, update priority
1850 * to the normal priority:
1851 */
1852 if (!rt_prio(p->prio))
1853 return p->normal_prio;
1854 return p->prio;
1855}
1856
1da177e4 1857/*
dd41f596 1858 * activate_task - move a task to the runqueue.
1da177e4 1859 */
dd41f596 1860static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1861{
d9514f6c 1862 if (task_contributes_to_load(p))
dd41f596 1863 rq->nr_uninterruptible--;
1da177e4 1864
8159f87e 1865 enqueue_task(rq, p, wakeup);
c09595f6 1866 inc_nr_running(rq);
1da177e4
LT
1867}
1868
1da177e4
LT
1869/*
1870 * deactivate_task - remove a task from the runqueue.
1871 */
2e1cb74a 1872static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1873{
d9514f6c 1874 if (task_contributes_to_load(p))
dd41f596
IM
1875 rq->nr_uninterruptible++;
1876
69be72c1 1877 dequeue_task(rq, p, sleep);
c09595f6 1878 dec_nr_running(rq);
1da177e4
LT
1879}
1880
1da177e4
LT
1881/**
1882 * task_curr - is this task currently executing on a CPU?
1883 * @p: the task in question.
1884 */
36c8b586 1885inline int task_curr(const struct task_struct *p)
1da177e4
LT
1886{
1887 return cpu_curr(task_cpu(p)) == p;
1888}
1889
dd41f596
IM
1890static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1891{
6f505b16 1892 set_task_rq(p, cpu);
dd41f596 1893#ifdef CONFIG_SMP
ce96b5ac
DA
1894 /*
1895 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1896 * successfuly executed on another CPU. We must ensure that updates of
1897 * per-task data have been completed by this moment.
1898 */
1899 smp_wmb();
dd41f596 1900 task_thread_info(p)->cpu = cpu;
dd41f596 1901#endif
2dd73a4f
PW
1902}
1903
cb469845
SR
1904static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1905 const struct sched_class *prev_class,
1906 int oldprio, int running)
1907{
1908 if (prev_class != p->sched_class) {
1909 if (prev_class->switched_from)
1910 prev_class->switched_from(rq, p, running);
1911 p->sched_class->switched_to(rq, p, running);
1912 } else
1913 p->sched_class->prio_changed(rq, p, oldprio, running);
1914}
1915
1da177e4 1916#ifdef CONFIG_SMP
c65cc870 1917
e958b360
TG
1918/* Used instead of source_load when we know the type == 0 */
1919static unsigned long weighted_cpuload(const int cpu)
1920{
1921 return cpu_rq(cpu)->load.weight;
1922}
1923
cc367732
IM
1924/*
1925 * Is this task likely cache-hot:
1926 */
e7693a36 1927static int
cc367732
IM
1928task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1929{
1930 s64 delta;
1931
f540a608
IM
1932 /*
1933 * Buddy candidates are cache hot:
1934 */
4793241b
PZ
1935 if (sched_feat(CACHE_HOT_BUDDY) &&
1936 (&p->se == cfs_rq_of(&p->se)->next ||
1937 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1938 return 1;
1939
cc367732
IM
1940 if (p->sched_class != &fair_sched_class)
1941 return 0;
1942
6bc1665b
IM
1943 if (sysctl_sched_migration_cost == -1)
1944 return 1;
1945 if (sysctl_sched_migration_cost == 0)
1946 return 0;
1947
cc367732
IM
1948 delta = now - p->se.exec_start;
1949
1950 return delta < (s64)sysctl_sched_migration_cost;
1951}
1952
1953
dd41f596 1954void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1955{
dd41f596
IM
1956 int old_cpu = task_cpu(p);
1957 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1958 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1959 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1960 u64 clock_offset;
dd41f596
IM
1961
1962 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1963
de1d7286 1964 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1965
6cfb0d5d
IM
1966#ifdef CONFIG_SCHEDSTATS
1967 if (p->se.wait_start)
1968 p->se.wait_start -= clock_offset;
dd41f596
IM
1969 if (p->se.sleep_start)
1970 p->se.sleep_start -= clock_offset;
1971 if (p->se.block_start)
1972 p->se.block_start -= clock_offset;
6c594c21 1973#endif
cc367732 1974 if (old_cpu != new_cpu) {
6c594c21 1975 p->se.nr_migrations++;
23a185ca 1976 new_rq->nr_migrations_in++;
6c594c21 1977#ifdef CONFIG_SCHEDSTATS
cc367732
IM
1978 if (task_hot(p, old_rq->clock, NULL))
1979 schedstat_inc(p, se.nr_forced2_migrations);
6cfb0d5d 1980#endif
3f731ca6 1981 perf_counter_task_migration(p, new_cpu);
6c594c21 1982 }
2830cf8c
SV
1983 p->se.vruntime -= old_cfsrq->min_vruntime -
1984 new_cfsrq->min_vruntime;
dd41f596
IM
1985
1986 __set_task_cpu(p, new_cpu);
c65cc870
IM
1987}
1988
70b97a7f 1989struct migration_req {
1da177e4 1990 struct list_head list;
1da177e4 1991
36c8b586 1992 struct task_struct *task;
1da177e4
LT
1993 int dest_cpu;
1994
1da177e4 1995 struct completion done;
70b97a7f 1996};
1da177e4
LT
1997
1998/*
1999 * The task's runqueue lock must be held.
2000 * Returns true if you have to wait for migration thread.
2001 */
36c8b586 2002static int
70b97a7f 2003migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2004{
70b97a7f 2005 struct rq *rq = task_rq(p);
1da177e4
LT
2006
2007 /*
2008 * If the task is not on a runqueue (and not running), then
2009 * it is sufficient to simply update the task's cpu field.
2010 */
dd41f596 2011 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2012 set_task_cpu(p, dest_cpu);
2013 return 0;
2014 }
2015
2016 init_completion(&req->done);
1da177e4
LT
2017 req->task = p;
2018 req->dest_cpu = dest_cpu;
2019 list_add(&req->list, &rq->migration_queue);
48f24c4d 2020
1da177e4
LT
2021 return 1;
2022}
2023
a26b89f0
MM
2024/*
2025 * wait_task_context_switch - wait for a thread to complete at least one
2026 * context switch.
2027 *
2028 * @p must not be current.
2029 */
2030void wait_task_context_switch(struct task_struct *p)
2031{
2032 unsigned long nvcsw, nivcsw, flags;
2033 int running;
2034 struct rq *rq;
2035
2036 nvcsw = p->nvcsw;
2037 nivcsw = p->nivcsw;
2038 for (;;) {
2039 /*
2040 * The runqueue is assigned before the actual context
2041 * switch. We need to take the runqueue lock.
2042 *
2043 * We could check initially without the lock but it is
2044 * very likely that we need to take the lock in every
2045 * iteration.
2046 */
2047 rq = task_rq_lock(p, &flags);
2048 running = task_running(rq, p);
2049 task_rq_unlock(rq, &flags);
2050
2051 if (likely(!running))
2052 break;
2053 /*
2054 * The switch count is incremented before the actual
2055 * context switch. We thus wait for two switches to be
2056 * sure at least one completed.
2057 */
2058 if ((p->nvcsw - nvcsw) > 1)
2059 break;
2060 if ((p->nivcsw - nivcsw) > 1)
2061 break;
2062
2063 cpu_relax();
2064 }
2065}
2066
1da177e4
LT
2067/*
2068 * wait_task_inactive - wait for a thread to unschedule.
2069 *
85ba2d86
RM
2070 * If @match_state is nonzero, it's the @p->state value just checked and
2071 * not expected to change. If it changes, i.e. @p might have woken up,
2072 * then return zero. When we succeed in waiting for @p to be off its CPU,
2073 * we return a positive number (its total switch count). If a second call
2074 * a short while later returns the same number, the caller can be sure that
2075 * @p has remained unscheduled the whole time.
2076 *
1da177e4
LT
2077 * The caller must ensure that the task *will* unschedule sometime soon,
2078 * else this function might spin for a *long* time. This function can't
2079 * be called with interrupts off, or it may introduce deadlock with
2080 * smp_call_function() if an IPI is sent by the same process we are
2081 * waiting to become inactive.
2082 */
85ba2d86 2083unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2084{
2085 unsigned long flags;
dd41f596 2086 int running, on_rq;
85ba2d86 2087 unsigned long ncsw;
70b97a7f 2088 struct rq *rq;
1da177e4 2089
3a5c359a
AK
2090 for (;;) {
2091 /*
2092 * We do the initial early heuristics without holding
2093 * any task-queue locks at all. We'll only try to get
2094 * the runqueue lock when things look like they will
2095 * work out!
2096 */
2097 rq = task_rq(p);
fa490cfd 2098
3a5c359a
AK
2099 /*
2100 * If the task is actively running on another CPU
2101 * still, just relax and busy-wait without holding
2102 * any locks.
2103 *
2104 * NOTE! Since we don't hold any locks, it's not
2105 * even sure that "rq" stays as the right runqueue!
2106 * But we don't care, since "task_running()" will
2107 * return false if the runqueue has changed and p
2108 * is actually now running somewhere else!
2109 */
85ba2d86
RM
2110 while (task_running(rq, p)) {
2111 if (match_state && unlikely(p->state != match_state))
2112 return 0;
3a5c359a 2113 cpu_relax();
85ba2d86 2114 }
fa490cfd 2115
3a5c359a
AK
2116 /*
2117 * Ok, time to look more closely! We need the rq
2118 * lock now, to be *sure*. If we're wrong, we'll
2119 * just go back and repeat.
2120 */
2121 rq = task_rq_lock(p, &flags);
0a16b607 2122 trace_sched_wait_task(rq, p);
3a5c359a
AK
2123 running = task_running(rq, p);
2124 on_rq = p->se.on_rq;
85ba2d86 2125 ncsw = 0;
f31e11d8 2126 if (!match_state || p->state == match_state)
93dcf55f 2127 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2128 task_rq_unlock(rq, &flags);
fa490cfd 2129
85ba2d86
RM
2130 /*
2131 * If it changed from the expected state, bail out now.
2132 */
2133 if (unlikely(!ncsw))
2134 break;
2135
3a5c359a
AK
2136 /*
2137 * Was it really running after all now that we
2138 * checked with the proper locks actually held?
2139 *
2140 * Oops. Go back and try again..
2141 */
2142 if (unlikely(running)) {
2143 cpu_relax();
2144 continue;
2145 }
fa490cfd 2146
3a5c359a
AK
2147 /*
2148 * It's not enough that it's not actively running,
2149 * it must be off the runqueue _entirely_, and not
2150 * preempted!
2151 *
80dd99b3 2152 * So if it was still runnable (but just not actively
3a5c359a
AK
2153 * running right now), it's preempted, and we should
2154 * yield - it could be a while.
2155 */
2156 if (unlikely(on_rq)) {
2157 schedule_timeout_uninterruptible(1);
2158 continue;
2159 }
fa490cfd 2160
3a5c359a
AK
2161 /*
2162 * Ahh, all good. It wasn't running, and it wasn't
2163 * runnable, which means that it will never become
2164 * running in the future either. We're all done!
2165 */
2166 break;
2167 }
85ba2d86
RM
2168
2169 return ncsw;
1da177e4
LT
2170}
2171
2172/***
2173 * kick_process - kick a running thread to enter/exit the kernel
2174 * @p: the to-be-kicked thread
2175 *
2176 * Cause a process which is running on another CPU to enter
2177 * kernel-mode, without any delay. (to get signals handled.)
2178 *
2179 * NOTE: this function doesnt have to take the runqueue lock,
2180 * because all it wants to ensure is that the remote task enters
2181 * the kernel. If the IPI races and the task has been migrated
2182 * to another CPU then no harm is done and the purpose has been
2183 * achieved as well.
2184 */
36c8b586 2185void kick_process(struct task_struct *p)
1da177e4
LT
2186{
2187 int cpu;
2188
2189 preempt_disable();
2190 cpu = task_cpu(p);
2191 if ((cpu != smp_processor_id()) && task_curr(p))
2192 smp_send_reschedule(cpu);
2193 preempt_enable();
2194}
b43e3521 2195EXPORT_SYMBOL_GPL(kick_process);
1da177e4
LT
2196
2197/*
2dd73a4f
PW
2198 * Return a low guess at the load of a migration-source cpu weighted
2199 * according to the scheduling class and "nice" value.
1da177e4
LT
2200 *
2201 * We want to under-estimate the load of migration sources, to
2202 * balance conservatively.
2203 */
a9957449 2204static unsigned long source_load(int cpu, int type)
1da177e4 2205{
70b97a7f 2206 struct rq *rq = cpu_rq(cpu);
dd41f596 2207 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2208
93b75217 2209 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2210 return total;
b910472d 2211
dd41f596 2212 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2213}
2214
2215/*
2dd73a4f
PW
2216 * Return a high guess at the load of a migration-target cpu weighted
2217 * according to the scheduling class and "nice" value.
1da177e4 2218 */
a9957449 2219static unsigned long target_load(int cpu, int type)
1da177e4 2220{
70b97a7f 2221 struct rq *rq = cpu_rq(cpu);
dd41f596 2222 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2223
93b75217 2224 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2225 return total;
3b0bd9bc 2226
dd41f596 2227 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2228}
2229
147cbb4b
NP
2230/*
2231 * find_idlest_group finds and returns the least busy CPU group within the
2232 * domain.
2233 */
2234static struct sched_group *
2235find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2236{
2237 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2238 unsigned long min_load = ULONG_MAX, this_load = 0;
2239 int load_idx = sd->forkexec_idx;
2240 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2241
2242 do {
2243 unsigned long load, avg_load;
2244 int local_group;
2245 int i;
2246
da5a5522 2247 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2248 if (!cpumask_intersects(sched_group_cpus(group),
2249 &p->cpus_allowed))
3a5c359a 2250 continue;
da5a5522 2251
758b2cdc
RR
2252 local_group = cpumask_test_cpu(this_cpu,
2253 sched_group_cpus(group));
147cbb4b
NP
2254
2255 /* Tally up the load of all CPUs in the group */
2256 avg_load = 0;
2257
758b2cdc 2258 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2259 /* Bias balancing toward cpus of our domain */
2260 if (local_group)
2261 load = source_load(i, load_idx);
2262 else
2263 load = target_load(i, load_idx);
2264
2265 avg_load += load;
2266 }
2267
2268 /* Adjust by relative CPU power of the group */
5517d86b
ED
2269 avg_load = sg_div_cpu_power(group,
2270 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2271
2272 if (local_group) {
2273 this_load = avg_load;
2274 this = group;
2275 } else if (avg_load < min_load) {
2276 min_load = avg_load;
2277 idlest = group;
2278 }
3a5c359a 2279 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2280
2281 if (!idlest || 100*this_load < imbalance*min_load)
2282 return NULL;
2283 return idlest;
2284}
2285
2286/*
0feaece9 2287 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2288 */
95cdf3b7 2289static int
758b2cdc 2290find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2291{
2292 unsigned long load, min_load = ULONG_MAX;
2293 int idlest = -1;
2294 int i;
2295
da5a5522 2296 /* Traverse only the allowed CPUs */
758b2cdc 2297 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2298 load = weighted_cpuload(i);
147cbb4b
NP
2299
2300 if (load < min_load || (load == min_load && i == this_cpu)) {
2301 min_load = load;
2302 idlest = i;
2303 }
2304 }
2305
2306 return idlest;
2307}
2308
476d139c
NP
2309/*
2310 * sched_balance_self: balance the current task (running on cpu) in domains
2311 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2312 * SD_BALANCE_EXEC.
2313 *
2314 * Balance, ie. select the least loaded group.
2315 *
2316 * Returns the target CPU number, or the same CPU if no balancing is needed.
2317 *
2318 * preempt must be disabled.
2319 */
2320static int sched_balance_self(int cpu, int flag)
2321{
2322 struct task_struct *t = current;
2323 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2324
c96d145e 2325 for_each_domain(cpu, tmp) {
9761eea8
IM
2326 /*
2327 * If power savings logic is enabled for a domain, stop there.
2328 */
5c45bf27
SS
2329 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2330 break;
476d139c
NP
2331 if (tmp->flags & flag)
2332 sd = tmp;
c96d145e 2333 }
476d139c 2334
039a1c41
PZ
2335 if (sd)
2336 update_shares(sd);
2337
476d139c 2338 while (sd) {
476d139c 2339 struct sched_group *group;
1a848870
SS
2340 int new_cpu, weight;
2341
2342 if (!(sd->flags & flag)) {
2343 sd = sd->child;
2344 continue;
2345 }
476d139c 2346
476d139c 2347 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2348 if (!group) {
2349 sd = sd->child;
2350 continue;
2351 }
476d139c 2352
758b2cdc 2353 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2354 if (new_cpu == -1 || new_cpu == cpu) {
2355 /* Now try balancing at a lower domain level of cpu */
2356 sd = sd->child;
2357 continue;
2358 }
476d139c 2359
1a848870 2360 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2361 cpu = new_cpu;
758b2cdc 2362 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2363 sd = NULL;
476d139c 2364 for_each_domain(cpu, tmp) {
758b2cdc 2365 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2366 break;
2367 if (tmp->flags & flag)
2368 sd = tmp;
2369 }
2370 /* while loop will break here if sd == NULL */
2371 }
2372
2373 return cpu;
2374}
2375
2376#endif /* CONFIG_SMP */
1da177e4 2377
0793a61d
TG
2378/**
2379 * task_oncpu_function_call - call a function on the cpu on which a task runs
2380 * @p: the task to evaluate
2381 * @func: the function to be called
2382 * @info: the function call argument
2383 *
2384 * Calls the function @func when the task is currently running. This might
2385 * be on the current CPU, which just calls the function directly
2386 */
2387void task_oncpu_function_call(struct task_struct *p,
2388 void (*func) (void *info), void *info)
2389{
2390 int cpu;
2391
2392 preempt_disable();
2393 cpu = task_cpu(p);
2394 if (task_curr(p))
2395 smp_call_function_single(cpu, func, info, 1);
2396 preempt_enable();
2397}
2398
1da177e4
LT
2399/***
2400 * try_to_wake_up - wake up a thread
2401 * @p: the to-be-woken-up thread
2402 * @state: the mask of task states that can be woken
2403 * @sync: do a synchronous wakeup?
2404 *
2405 * Put it on the run-queue if it's not already there. The "current"
2406 * thread is always on the run-queue (except when the actual
2407 * re-schedule is in progress), and as such you're allowed to do
2408 * the simpler "current->state = TASK_RUNNING" to mark yourself
2409 * runnable without the overhead of this.
2410 *
2411 * returns failure only if the task is already active.
2412 */
36c8b586 2413static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2414{
cc367732 2415 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2416 unsigned long flags;
2417 long old_state;
70b97a7f 2418 struct rq *rq;
1da177e4 2419
b85d0667
IM
2420 if (!sched_feat(SYNC_WAKEUPS))
2421 sync = 0;
2422
2398f2c6 2423#ifdef CONFIG_SMP
57310a98 2424 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2398f2c6
PZ
2425 struct sched_domain *sd;
2426
2427 this_cpu = raw_smp_processor_id();
2428 cpu = task_cpu(p);
2429
2430 for_each_domain(this_cpu, sd) {
758b2cdc 2431 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2432 update_shares(sd);
2433 break;
2434 }
2435 }
2436 }
2437#endif
2438
04e2f174 2439 smp_wmb();
1da177e4 2440 rq = task_rq_lock(p, &flags);
03e89e45 2441 update_rq_clock(rq);
1da177e4
LT
2442 old_state = p->state;
2443 if (!(old_state & state))
2444 goto out;
2445
dd41f596 2446 if (p->se.on_rq)
1da177e4
LT
2447 goto out_running;
2448
2449 cpu = task_cpu(p);
cc367732 2450 orig_cpu = cpu;
1da177e4
LT
2451 this_cpu = smp_processor_id();
2452
2453#ifdef CONFIG_SMP
2454 if (unlikely(task_running(rq, p)))
2455 goto out_activate;
2456
5d2f5a61
DA
2457 cpu = p->sched_class->select_task_rq(p, sync);
2458 if (cpu != orig_cpu) {
2459 set_task_cpu(p, cpu);
1da177e4
LT
2460 task_rq_unlock(rq, &flags);
2461 /* might preempt at this point */
2462 rq = task_rq_lock(p, &flags);
2463 old_state = p->state;
2464 if (!(old_state & state))
2465 goto out;
dd41f596 2466 if (p->se.on_rq)
1da177e4
LT
2467 goto out_running;
2468
2469 this_cpu = smp_processor_id();
2470 cpu = task_cpu(p);
2471 }
2472
e7693a36
GH
2473#ifdef CONFIG_SCHEDSTATS
2474 schedstat_inc(rq, ttwu_count);
2475 if (cpu == this_cpu)
2476 schedstat_inc(rq, ttwu_local);
2477 else {
2478 struct sched_domain *sd;
2479 for_each_domain(this_cpu, sd) {
758b2cdc 2480 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2481 schedstat_inc(sd, ttwu_wake_remote);
2482 break;
2483 }
2484 }
2485 }
6d6bc0ad 2486#endif /* CONFIG_SCHEDSTATS */
e7693a36 2487
1da177e4
LT
2488out_activate:
2489#endif /* CONFIG_SMP */
cc367732
IM
2490 schedstat_inc(p, se.nr_wakeups);
2491 if (sync)
2492 schedstat_inc(p, se.nr_wakeups_sync);
2493 if (orig_cpu != cpu)
2494 schedstat_inc(p, se.nr_wakeups_migrate);
2495 if (cpu == this_cpu)
2496 schedstat_inc(p, se.nr_wakeups_local);
2497 else
2498 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2499 activate_task(rq, p, 1);
1da177e4
LT
2500 success = 1;
2501
831451ac
PZ
2502 /*
2503 * Only attribute actual wakeups done by this task.
2504 */
2505 if (!in_interrupt()) {
2506 struct sched_entity *se = &current->se;
2507 u64 sample = se->sum_exec_runtime;
2508
2509 if (se->last_wakeup)
2510 sample -= se->last_wakeup;
2511 else
2512 sample -= se->start_runtime;
2513 update_avg(&se->avg_wakeup, sample);
2514
2515 se->last_wakeup = se->sum_exec_runtime;
2516 }
2517
1da177e4 2518out_running:
468a15bb 2519 trace_sched_wakeup(rq, p, success);
15afe09b 2520 check_preempt_curr(rq, p, sync);
4ae7d5ce 2521
1da177e4 2522 p->state = TASK_RUNNING;
9a897c5a
SR
2523#ifdef CONFIG_SMP
2524 if (p->sched_class->task_wake_up)
2525 p->sched_class->task_wake_up(rq, p);
2526#endif
1da177e4
LT
2527out:
2528 task_rq_unlock(rq, &flags);
2529
2530 return success;
2531}
2532
50fa610a
DH
2533/**
2534 * wake_up_process - Wake up a specific process
2535 * @p: The process to be woken up.
2536 *
2537 * Attempt to wake up the nominated process and move it to the set of runnable
2538 * processes. Returns 1 if the process was woken up, 0 if it was already
2539 * running.
2540 *
2541 * It may be assumed that this function implies a write memory barrier before
2542 * changing the task state if and only if any tasks are woken up.
2543 */
7ad5b3a5 2544int wake_up_process(struct task_struct *p)
1da177e4 2545{
d9514f6c 2546 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2547}
1da177e4
LT
2548EXPORT_SYMBOL(wake_up_process);
2549
7ad5b3a5 2550int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2551{
2552 return try_to_wake_up(p, state, 0);
2553}
2554
1da177e4
LT
2555/*
2556 * Perform scheduler related setup for a newly forked process p.
2557 * p is forked by current.
dd41f596
IM
2558 *
2559 * __sched_fork() is basic setup used by init_idle() too:
2560 */
2561static void __sched_fork(struct task_struct *p)
2562{
dd41f596
IM
2563 p->se.exec_start = 0;
2564 p->se.sum_exec_runtime = 0;
f6cf891c 2565 p->se.prev_sum_exec_runtime = 0;
6c594c21 2566 p->se.nr_migrations = 0;
4ae7d5ce
IM
2567 p->se.last_wakeup = 0;
2568 p->se.avg_overlap = 0;
831451ac
PZ
2569 p->se.start_runtime = 0;
2570 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2571
2572#ifdef CONFIG_SCHEDSTATS
2573 p->se.wait_start = 0;
dd41f596
IM
2574 p->se.sum_sleep_runtime = 0;
2575 p->se.sleep_start = 0;
dd41f596
IM
2576 p->se.block_start = 0;
2577 p->se.sleep_max = 0;
2578 p->se.block_max = 0;
2579 p->se.exec_max = 0;
eba1ed4b 2580 p->se.slice_max = 0;
dd41f596 2581 p->se.wait_max = 0;
6cfb0d5d 2582#endif
476d139c 2583
fa717060 2584 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2585 p->se.on_rq = 0;
4a55bd5e 2586 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2587
e107be36
AK
2588#ifdef CONFIG_PREEMPT_NOTIFIERS
2589 INIT_HLIST_HEAD(&p->preempt_notifiers);
2590#endif
2591
1da177e4
LT
2592 /*
2593 * We mark the process as running here, but have not actually
2594 * inserted it onto the runqueue yet. This guarantees that
2595 * nobody will actually run it, and a signal or other external
2596 * event cannot wake it up and insert it on the runqueue either.
2597 */
2598 p->state = TASK_RUNNING;
dd41f596
IM
2599}
2600
2601/*
2602 * fork()/clone()-time setup:
2603 */
2604void sched_fork(struct task_struct *p, int clone_flags)
2605{
2606 int cpu = get_cpu();
2607
2608 __sched_fork(p);
2609
2610#ifdef CONFIG_SMP
2611 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2612#endif
02e4bac2 2613 set_task_cpu(p, cpu);
b29739f9
IM
2614
2615 /*
b9dc29e7 2616 * Make sure we do not leak PI boosting priority to the child.
b29739f9 2617 */
b9dc29e7 2618 p->prio = current->normal_prio;
ca94c442 2619
b9dc29e7
MG
2620 /*
2621 * Revert to default priority/policy on fork if requested.
2622 */
2623 if (unlikely(p->sched_reset_on_fork)) {
2624 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2625 p->policy = SCHED_NORMAL;
2626
2627 if (p->normal_prio < DEFAULT_PRIO)
2628 p->prio = DEFAULT_PRIO;
2629
6c697bdf
MG
2630 if (PRIO_TO_NICE(p->static_prio) < 0) {
2631 p->static_prio = NICE_TO_PRIO(0);
2632 set_load_weight(p);
2633 }
2634
b9dc29e7
MG
2635 /*
2636 * We don't need the reset flag anymore after the fork. It has
2637 * fulfilled its duty:
2638 */
2639 p->sched_reset_on_fork = 0;
2640 }
ca94c442 2641
2ddbf952
HS
2642 if (!rt_prio(p->prio))
2643 p->sched_class = &fair_sched_class;
b29739f9 2644
52f17b6c 2645#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2646 if (likely(sched_info_on()))
52f17b6c 2647 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2648#endif
d6077cb8 2649#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2650 p->oncpu = 0;
2651#endif
1da177e4 2652#ifdef CONFIG_PREEMPT
4866cde0 2653 /* Want to start with kernel preemption disabled. */
a1261f54 2654 task_thread_info(p)->preempt_count = 1;
1da177e4 2655#endif
917b627d
GH
2656 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2657
476d139c 2658 put_cpu();
1da177e4
LT
2659}
2660
2661/*
2662 * wake_up_new_task - wake up a newly created task for the first time.
2663 *
2664 * This function will do some initial scheduler statistics housekeeping
2665 * that must be done for every newly created context, then puts the task
2666 * on the runqueue and wakes it.
2667 */
7ad5b3a5 2668void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2669{
2670 unsigned long flags;
dd41f596 2671 struct rq *rq;
1da177e4
LT
2672
2673 rq = task_rq_lock(p, &flags);
147cbb4b 2674 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2675 update_rq_clock(rq);
1da177e4
LT
2676
2677 p->prio = effective_prio(p);
2678
b9dca1e0 2679 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2680 activate_task(rq, p, 0);
1da177e4 2681 } else {
1da177e4 2682 /*
dd41f596
IM
2683 * Let the scheduling class do new task startup
2684 * management (if any):
1da177e4 2685 */
ee0827d8 2686 p->sched_class->task_new(rq, p);
c09595f6 2687 inc_nr_running(rq);
1da177e4 2688 }
c71dd42d 2689 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2690 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2691#ifdef CONFIG_SMP
2692 if (p->sched_class->task_wake_up)
2693 p->sched_class->task_wake_up(rq, p);
2694#endif
dd41f596 2695 task_rq_unlock(rq, &flags);
1da177e4
LT
2696}
2697
e107be36
AK
2698#ifdef CONFIG_PREEMPT_NOTIFIERS
2699
2700/**
80dd99b3 2701 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2702 * @notifier: notifier struct to register
e107be36
AK
2703 */
2704void preempt_notifier_register(struct preempt_notifier *notifier)
2705{
2706 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2707}
2708EXPORT_SYMBOL_GPL(preempt_notifier_register);
2709
2710/**
2711 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2712 * @notifier: notifier struct to unregister
e107be36
AK
2713 *
2714 * This is safe to call from within a preemption notifier.
2715 */
2716void preempt_notifier_unregister(struct preempt_notifier *notifier)
2717{
2718 hlist_del(&notifier->link);
2719}
2720EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2721
2722static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2723{
2724 struct preempt_notifier *notifier;
2725 struct hlist_node *node;
2726
2727 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2728 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2729}
2730
2731static void
2732fire_sched_out_preempt_notifiers(struct task_struct *curr,
2733 struct task_struct *next)
2734{
2735 struct preempt_notifier *notifier;
2736 struct hlist_node *node;
2737
2738 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2739 notifier->ops->sched_out(notifier, next);
2740}
2741
6d6bc0ad 2742#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2743
2744static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2745{
2746}
2747
2748static void
2749fire_sched_out_preempt_notifiers(struct task_struct *curr,
2750 struct task_struct *next)
2751{
2752}
2753
6d6bc0ad 2754#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2755
4866cde0
NP
2756/**
2757 * prepare_task_switch - prepare to switch tasks
2758 * @rq: the runqueue preparing to switch
421cee29 2759 * @prev: the current task that is being switched out
4866cde0
NP
2760 * @next: the task we are going to switch to.
2761 *
2762 * This is called with the rq lock held and interrupts off. It must
2763 * be paired with a subsequent finish_task_switch after the context
2764 * switch.
2765 *
2766 * prepare_task_switch sets up locking and calls architecture specific
2767 * hooks.
2768 */
e107be36
AK
2769static inline void
2770prepare_task_switch(struct rq *rq, struct task_struct *prev,
2771 struct task_struct *next)
4866cde0 2772{
e107be36 2773 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2774 prepare_lock_switch(rq, next);
2775 prepare_arch_switch(next);
2776}
2777
1da177e4
LT
2778/**
2779 * finish_task_switch - clean up after a task-switch
344babaa 2780 * @rq: runqueue associated with task-switch
1da177e4
LT
2781 * @prev: the thread we just switched away from.
2782 *
4866cde0
NP
2783 * finish_task_switch must be called after the context switch, paired
2784 * with a prepare_task_switch call before the context switch.
2785 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2786 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2787 *
2788 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2789 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2790 * with the lock held can cause deadlocks; see schedule() for
2791 * details.)
2792 */
a9957449 2793static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2794 __releases(rq->lock)
2795{
1da177e4 2796 struct mm_struct *mm = rq->prev_mm;
55a101f8 2797 long prev_state;
967fc046
GH
2798#ifdef CONFIG_SMP
2799 int post_schedule = 0;
2800
2801 if (current->sched_class->needs_post_schedule)
2802 post_schedule = current->sched_class->needs_post_schedule(rq);
2803#endif
1da177e4
LT
2804
2805 rq->prev_mm = NULL;
2806
2807 /*
2808 * A task struct has one reference for the use as "current".
c394cc9f 2809 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2810 * schedule one last time. The schedule call will never return, and
2811 * the scheduled task must drop that reference.
c394cc9f 2812 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2813 * still held, otherwise prev could be scheduled on another cpu, die
2814 * there before we look at prev->state, and then the reference would
2815 * be dropped twice.
2816 * Manfred Spraul <manfred@colorfullife.com>
2817 */
55a101f8 2818 prev_state = prev->state;
4866cde0 2819 finish_arch_switch(prev);
0793a61d 2820 perf_counter_task_sched_in(current, cpu_of(rq));
4866cde0 2821 finish_lock_switch(rq, prev);
9a897c5a 2822#ifdef CONFIG_SMP
967fc046 2823 if (post_schedule)
9a897c5a
SR
2824 current->sched_class->post_schedule(rq);
2825#endif
e8fa1362 2826
e107be36 2827 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2828 if (mm)
2829 mmdrop(mm);
c394cc9f 2830 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2831 /*
2832 * Remove function-return probe instances associated with this
2833 * task and put them back on the free list.
9761eea8 2834 */
c6fd91f0 2835 kprobe_flush_task(prev);
1da177e4 2836 put_task_struct(prev);
c6fd91f0 2837 }
1da177e4
LT
2838}
2839
2840/**
2841 * schedule_tail - first thing a freshly forked thread must call.
2842 * @prev: the thread we just switched away from.
2843 */
36c8b586 2844asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2845 __releases(rq->lock)
2846{
70b97a7f
IM
2847 struct rq *rq = this_rq();
2848
4866cde0
NP
2849 finish_task_switch(rq, prev);
2850#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2851 /* In this case, finish_task_switch does not reenable preemption */
2852 preempt_enable();
2853#endif
1da177e4 2854 if (current->set_child_tid)
b488893a 2855 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2856}
2857
2858/*
2859 * context_switch - switch to the new MM and the new
2860 * thread's register state.
2861 */
dd41f596 2862static inline void
70b97a7f 2863context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2864 struct task_struct *next)
1da177e4 2865{
dd41f596 2866 struct mm_struct *mm, *oldmm;
1da177e4 2867
e107be36 2868 prepare_task_switch(rq, prev, next);
0a16b607 2869 trace_sched_switch(rq, prev, next);
dd41f596
IM
2870 mm = next->mm;
2871 oldmm = prev->active_mm;
9226d125
ZA
2872 /*
2873 * For paravirt, this is coupled with an exit in switch_to to
2874 * combine the page table reload and the switch backend into
2875 * one hypercall.
2876 */
224101ed 2877 arch_start_context_switch(prev);
9226d125 2878
dd41f596 2879 if (unlikely(!mm)) {
1da177e4
LT
2880 next->active_mm = oldmm;
2881 atomic_inc(&oldmm->mm_count);
2882 enter_lazy_tlb(oldmm, next);
2883 } else
2884 switch_mm(oldmm, mm, next);
2885
dd41f596 2886 if (unlikely(!prev->mm)) {
1da177e4 2887 prev->active_mm = NULL;
1da177e4
LT
2888 rq->prev_mm = oldmm;
2889 }
3a5f5e48
IM
2890 /*
2891 * Since the runqueue lock will be released by the next
2892 * task (which is an invalid locking op but in the case
2893 * of the scheduler it's an obvious special-case), so we
2894 * do an early lockdep release here:
2895 */
2896#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2897 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2898#endif
1da177e4
LT
2899
2900 /* Here we just switch the register state and the stack. */
2901 switch_to(prev, next, prev);
2902
dd41f596
IM
2903 barrier();
2904 /*
2905 * this_rq must be evaluated again because prev may have moved
2906 * CPUs since it called schedule(), thus the 'rq' on its stack
2907 * frame will be invalid.
2908 */
2909 finish_task_switch(this_rq(), prev);
1da177e4
LT
2910}
2911
2912/*
2913 * nr_running, nr_uninterruptible and nr_context_switches:
2914 *
2915 * externally visible scheduler statistics: current number of runnable
2916 * threads, current number of uninterruptible-sleeping threads, total
2917 * number of context switches performed since bootup.
2918 */
2919unsigned long nr_running(void)
2920{
2921 unsigned long i, sum = 0;
2922
2923 for_each_online_cpu(i)
2924 sum += cpu_rq(i)->nr_running;
2925
2926 return sum;
2927}
2928
2929unsigned long nr_uninterruptible(void)
2930{
2931 unsigned long i, sum = 0;
2932
0a945022 2933 for_each_possible_cpu(i)
1da177e4
LT
2934 sum += cpu_rq(i)->nr_uninterruptible;
2935
2936 /*
2937 * Since we read the counters lockless, it might be slightly
2938 * inaccurate. Do not allow it to go below zero though:
2939 */
2940 if (unlikely((long)sum < 0))
2941 sum = 0;
2942
2943 return sum;
2944}
2945
2946unsigned long long nr_context_switches(void)
2947{
cc94abfc
SR
2948 int i;
2949 unsigned long long sum = 0;
1da177e4 2950
0a945022 2951 for_each_possible_cpu(i)
1da177e4
LT
2952 sum += cpu_rq(i)->nr_switches;
2953
2954 return sum;
2955}
2956
2957unsigned long nr_iowait(void)
2958{
2959 unsigned long i, sum = 0;
2960
0a945022 2961 for_each_possible_cpu(i)
1da177e4
LT
2962 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2963
2964 return sum;
2965}
2966
dce48a84
TG
2967/* Variables and functions for calc_load */
2968static atomic_long_t calc_load_tasks;
2969static unsigned long calc_load_update;
2970unsigned long avenrun[3];
2971EXPORT_SYMBOL(avenrun);
2972
2d02494f
TG
2973/**
2974 * get_avenrun - get the load average array
2975 * @loads: pointer to dest load array
2976 * @offset: offset to add
2977 * @shift: shift count to shift the result left
2978 *
2979 * These values are estimates at best, so no need for locking.
2980 */
2981void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2982{
2983 loads[0] = (avenrun[0] + offset) << shift;
2984 loads[1] = (avenrun[1] + offset) << shift;
2985 loads[2] = (avenrun[2] + offset) << shift;
2986}
2987
dce48a84
TG
2988static unsigned long
2989calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2990{
dce48a84
TG
2991 load *= exp;
2992 load += active * (FIXED_1 - exp);
2993 return load >> FSHIFT;
2994}
db1b1fef 2995
dce48a84
TG
2996/*
2997 * calc_load - update the avenrun load estimates 10 ticks after the
2998 * CPUs have updated calc_load_tasks.
2999 */
3000void calc_global_load(void)
3001{
3002 unsigned long upd = calc_load_update + 10;
3003 long active;
3004
3005 if (time_before(jiffies, upd))
3006 return;
db1b1fef 3007
dce48a84
TG
3008 active = atomic_long_read(&calc_load_tasks);
3009 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 3010
dce48a84
TG
3011 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3012 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3013 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3014
3015 calc_load_update += LOAD_FREQ;
3016}
3017
3018/*
3019 * Either called from update_cpu_load() or from a cpu going idle
3020 */
3021static void calc_load_account_active(struct rq *this_rq)
3022{
3023 long nr_active, delta;
3024
3025 nr_active = this_rq->nr_running;
3026 nr_active += (long) this_rq->nr_uninterruptible;
3027
3028 if (nr_active != this_rq->calc_load_active) {
3029 delta = nr_active - this_rq->calc_load_active;
3030 this_rq->calc_load_active = nr_active;
3031 atomic_long_add(delta, &calc_load_tasks);
3032 }
db1b1fef
JS
3033}
3034
23a185ca
PM
3035/*
3036 * Externally visible per-cpu scheduler statistics:
23a185ca
PM
3037 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3038 */
23a185ca
PM
3039u64 cpu_nr_migrations(int cpu)
3040{
3041 return cpu_rq(cpu)->nr_migrations_in;
3042}
3043
48f24c4d 3044/*
dd41f596
IM
3045 * Update rq->cpu_load[] statistics. This function is usually called every
3046 * scheduler tick (TICK_NSEC).
48f24c4d 3047 */
dd41f596 3048static void update_cpu_load(struct rq *this_rq)
48f24c4d 3049{
495eca49 3050 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
3051 int i, scale;
3052
3053 this_rq->nr_load_updates++;
dd41f596
IM
3054
3055 /* Update our load: */
3056 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3057 unsigned long old_load, new_load;
3058
3059 /* scale is effectively 1 << i now, and >> i divides by scale */
3060
3061 old_load = this_rq->cpu_load[i];
3062 new_load = this_load;
a25707f3
IM
3063 /*
3064 * Round up the averaging division if load is increasing. This
3065 * prevents us from getting stuck on 9 if the load is 10, for
3066 * example.
3067 */
3068 if (new_load > old_load)
3069 new_load += scale-1;
dd41f596
IM
3070 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3071 }
dce48a84
TG
3072
3073 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3074 this_rq->calc_load_update += LOAD_FREQ;
3075 calc_load_account_active(this_rq);
3076 }
48f24c4d
IM
3077}
3078
dd41f596
IM
3079#ifdef CONFIG_SMP
3080
1da177e4
LT
3081/*
3082 * double_rq_lock - safely lock two runqueues
3083 *
3084 * Note this does not disable interrupts like task_rq_lock,
3085 * you need to do so manually before calling.
3086 */
70b97a7f 3087static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3088 __acquires(rq1->lock)
3089 __acquires(rq2->lock)
3090{
054b9108 3091 BUG_ON(!irqs_disabled());
1da177e4
LT
3092 if (rq1 == rq2) {
3093 spin_lock(&rq1->lock);
3094 __acquire(rq2->lock); /* Fake it out ;) */
3095 } else {
c96d145e 3096 if (rq1 < rq2) {
1da177e4 3097 spin_lock(&rq1->lock);
5e710e37 3098 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3099 } else {
3100 spin_lock(&rq2->lock);
5e710e37 3101 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
3102 }
3103 }
6e82a3be
IM
3104 update_rq_clock(rq1);
3105 update_rq_clock(rq2);
1da177e4
LT
3106}
3107
3108/*
3109 * double_rq_unlock - safely unlock two runqueues
3110 *
3111 * Note this does not restore interrupts like task_rq_unlock,
3112 * you need to do so manually after calling.
3113 */
70b97a7f 3114static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3115 __releases(rq1->lock)
3116 __releases(rq2->lock)
3117{
3118 spin_unlock(&rq1->lock);
3119 if (rq1 != rq2)
3120 spin_unlock(&rq2->lock);
3121 else
3122 __release(rq2->lock);
3123}
3124
1da177e4
LT
3125/*
3126 * If dest_cpu is allowed for this process, migrate the task to it.
3127 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3128 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3129 * the cpu_allowed mask is restored.
3130 */
36c8b586 3131static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3132{
70b97a7f 3133 struct migration_req req;
1da177e4 3134 unsigned long flags;
70b97a7f 3135 struct rq *rq;
1da177e4
LT
3136
3137 rq = task_rq_lock(p, &flags);
96f874e2 3138 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3139 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3140 goto out;
3141
3142 /* force the process onto the specified CPU */
3143 if (migrate_task(p, dest_cpu, &req)) {
3144 /* Need to wait for migration thread (might exit: take ref). */
3145 struct task_struct *mt = rq->migration_thread;
36c8b586 3146
1da177e4
LT
3147 get_task_struct(mt);
3148 task_rq_unlock(rq, &flags);
3149 wake_up_process(mt);
3150 put_task_struct(mt);
3151 wait_for_completion(&req.done);
36c8b586 3152
1da177e4
LT
3153 return;
3154 }
3155out:
3156 task_rq_unlock(rq, &flags);
3157}
3158
3159/*
476d139c
NP
3160 * sched_exec - execve() is a valuable balancing opportunity, because at
3161 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3162 */
3163void sched_exec(void)
3164{
1da177e4 3165 int new_cpu, this_cpu = get_cpu();
476d139c 3166 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 3167 put_cpu();
476d139c
NP
3168 if (new_cpu != this_cpu)
3169 sched_migrate_task(current, new_cpu);
1da177e4
LT
3170}
3171
3172/*
3173 * pull_task - move a task from a remote runqueue to the local runqueue.
3174 * Both runqueues must be locked.
3175 */
dd41f596
IM
3176static void pull_task(struct rq *src_rq, struct task_struct *p,
3177 struct rq *this_rq, int this_cpu)
1da177e4 3178{
2e1cb74a 3179 deactivate_task(src_rq, p, 0);
1da177e4 3180 set_task_cpu(p, this_cpu);
dd41f596 3181 activate_task(this_rq, p, 0);
1da177e4
LT
3182 /*
3183 * Note that idle threads have a prio of MAX_PRIO, for this test
3184 * to be always true for them.
3185 */
15afe09b 3186 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3187}
3188
3189/*
3190 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3191 */
858119e1 3192static
70b97a7f 3193int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3194 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3195 int *all_pinned)
1da177e4 3196{
708dc512 3197 int tsk_cache_hot = 0;
1da177e4
LT
3198 /*
3199 * We do not migrate tasks that are:
3200 * 1) running (obviously), or
3201 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3202 * 3) are cache-hot on their current CPU.
3203 */
96f874e2 3204 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3205 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3206 return 0;
cc367732 3207 }
81026794
NP
3208 *all_pinned = 0;
3209
cc367732
IM
3210 if (task_running(rq, p)) {
3211 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3212 return 0;
cc367732 3213 }
1da177e4 3214
da84d961
IM
3215 /*
3216 * Aggressive migration if:
3217 * 1) task is cache cold, or
3218 * 2) too many balance attempts have failed.
3219 */
3220
708dc512
LH
3221 tsk_cache_hot = task_hot(p, rq->clock, sd);
3222 if (!tsk_cache_hot ||
3223 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3224#ifdef CONFIG_SCHEDSTATS
708dc512 3225 if (tsk_cache_hot) {
da84d961 3226 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3227 schedstat_inc(p, se.nr_forced_migrations);
3228 }
da84d961
IM
3229#endif
3230 return 1;
3231 }
3232
708dc512 3233 if (tsk_cache_hot) {
cc367732 3234 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3235 return 0;
cc367732 3236 }
1da177e4
LT
3237 return 1;
3238}
3239
e1d1484f
PW
3240static unsigned long
3241balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3242 unsigned long max_load_move, struct sched_domain *sd,
3243 enum cpu_idle_type idle, int *all_pinned,
3244 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3245{
051c6764 3246 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3247 struct task_struct *p;
3248 long rem_load_move = max_load_move;
1da177e4 3249
e1d1484f 3250 if (max_load_move == 0)
1da177e4
LT
3251 goto out;
3252
81026794
NP
3253 pinned = 1;
3254
1da177e4 3255 /*
dd41f596 3256 * Start the load-balancing iterator:
1da177e4 3257 */
dd41f596
IM
3258 p = iterator->start(iterator->arg);
3259next:
b82d9fdd 3260 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3261 goto out;
051c6764
PZ
3262
3263 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3264 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3265 p = iterator->next(iterator->arg);
3266 goto next;
1da177e4
LT
3267 }
3268
dd41f596 3269 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3270 pulled++;
dd41f596 3271 rem_load_move -= p->se.load.weight;
1da177e4 3272
7e96fa58
GH
3273#ifdef CONFIG_PREEMPT
3274 /*
3275 * NEWIDLE balancing is a source of latency, so preemptible kernels
3276 * will stop after the first task is pulled to minimize the critical
3277 * section.
3278 */
3279 if (idle == CPU_NEWLY_IDLE)
3280 goto out;
3281#endif
3282
2dd73a4f 3283 /*
b82d9fdd 3284 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3285 */
e1d1484f 3286 if (rem_load_move > 0) {
a4ac01c3
PW
3287 if (p->prio < *this_best_prio)
3288 *this_best_prio = p->prio;
dd41f596
IM
3289 p = iterator->next(iterator->arg);
3290 goto next;
1da177e4
LT
3291 }
3292out:
3293 /*
e1d1484f 3294 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3295 * so we can safely collect pull_task() stats here rather than
3296 * inside pull_task().
3297 */
3298 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3299
3300 if (all_pinned)
3301 *all_pinned = pinned;
e1d1484f
PW
3302
3303 return max_load_move - rem_load_move;
1da177e4
LT
3304}
3305
dd41f596 3306/*
43010659
PW
3307 * move_tasks tries to move up to max_load_move weighted load from busiest to
3308 * this_rq, as part of a balancing operation within domain "sd".
3309 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3310 *
3311 * Called with both runqueues locked.
3312 */
3313static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3314 unsigned long max_load_move,
dd41f596
IM
3315 struct sched_domain *sd, enum cpu_idle_type idle,
3316 int *all_pinned)
3317{
5522d5d5 3318 const struct sched_class *class = sched_class_highest;
43010659 3319 unsigned long total_load_moved = 0;
a4ac01c3 3320 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3321
3322 do {
43010659
PW
3323 total_load_moved +=
3324 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3325 max_load_move - total_load_moved,
a4ac01c3 3326 sd, idle, all_pinned, &this_best_prio);
dd41f596 3327 class = class->next;
c4acb2c0 3328
7e96fa58
GH
3329#ifdef CONFIG_PREEMPT
3330 /*
3331 * NEWIDLE balancing is a source of latency, so preemptible
3332 * kernels will stop after the first task is pulled to minimize
3333 * the critical section.
3334 */
c4acb2c0
GH
3335 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3336 break;
7e96fa58 3337#endif
43010659 3338 } while (class && max_load_move > total_load_moved);
dd41f596 3339
43010659
PW
3340 return total_load_moved > 0;
3341}
3342
e1d1484f
PW
3343static int
3344iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3345 struct sched_domain *sd, enum cpu_idle_type idle,
3346 struct rq_iterator *iterator)
3347{
3348 struct task_struct *p = iterator->start(iterator->arg);
3349 int pinned = 0;
3350
3351 while (p) {
3352 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3353 pull_task(busiest, p, this_rq, this_cpu);
3354 /*
3355 * Right now, this is only the second place pull_task()
3356 * is called, so we can safely collect pull_task()
3357 * stats here rather than inside pull_task().
3358 */
3359 schedstat_inc(sd, lb_gained[idle]);
3360
3361 return 1;
3362 }
3363 p = iterator->next(iterator->arg);
3364 }
3365
3366 return 0;
3367}
3368
43010659
PW
3369/*
3370 * move_one_task tries to move exactly one task from busiest to this_rq, as
3371 * part of active balancing operations within "domain".
3372 * Returns 1 if successful and 0 otherwise.
3373 *
3374 * Called with both runqueues locked.
3375 */
3376static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3377 struct sched_domain *sd, enum cpu_idle_type idle)
3378{
5522d5d5 3379 const struct sched_class *class;
43010659
PW
3380
3381 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3382 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3383 return 1;
3384
3385 return 0;
dd41f596 3386}
67bb6c03 3387/********** Helpers for find_busiest_group ************************/
1da177e4 3388/*
222d656d
GS
3389 * sd_lb_stats - Structure to store the statistics of a sched_domain
3390 * during load balancing.
1da177e4 3391 */
222d656d
GS
3392struct sd_lb_stats {
3393 struct sched_group *busiest; /* Busiest group in this sd */
3394 struct sched_group *this; /* Local group in this sd */
3395 unsigned long total_load; /* Total load of all groups in sd */
3396 unsigned long total_pwr; /* Total power of all groups in sd */
3397 unsigned long avg_load; /* Average load across all groups in sd */
3398
3399 /** Statistics of this group */
3400 unsigned long this_load;
3401 unsigned long this_load_per_task;
3402 unsigned long this_nr_running;
3403
3404 /* Statistics of the busiest group */
3405 unsigned long max_load;
3406 unsigned long busiest_load_per_task;
3407 unsigned long busiest_nr_running;
3408
3409 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3410#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3411 int power_savings_balance; /* Is powersave balance needed for this sd */
3412 struct sched_group *group_min; /* Least loaded group in sd */
3413 struct sched_group *group_leader; /* Group which relieves group_min */
3414 unsigned long min_load_per_task; /* load_per_task in group_min */
3415 unsigned long leader_nr_running; /* Nr running of group_leader */
3416 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3417#endif
222d656d 3418};
1da177e4 3419
d5ac537e 3420/*
381be78f
GS
3421 * sg_lb_stats - stats of a sched_group required for load_balancing
3422 */
3423struct sg_lb_stats {
3424 unsigned long avg_load; /*Avg load across the CPUs of the group */
3425 unsigned long group_load; /* Total load over the CPUs of the group */
3426 unsigned long sum_nr_running; /* Nr tasks running in the group */
3427 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3428 unsigned long group_capacity;
3429 int group_imb; /* Is there an imbalance in the group ? */
3430};
408ed066 3431
67bb6c03
GS
3432/**
3433 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3434 * @group: The group whose first cpu is to be returned.
3435 */
3436static inline unsigned int group_first_cpu(struct sched_group *group)
3437{
3438 return cpumask_first(sched_group_cpus(group));
3439}
3440
3441/**
3442 * get_sd_load_idx - Obtain the load index for a given sched domain.
3443 * @sd: The sched_domain whose load_idx is to be obtained.
3444 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3445 */
3446static inline int get_sd_load_idx(struct sched_domain *sd,
3447 enum cpu_idle_type idle)
3448{
3449 int load_idx;
3450
3451 switch (idle) {
3452 case CPU_NOT_IDLE:
7897986b 3453 load_idx = sd->busy_idx;
67bb6c03
GS
3454 break;
3455
3456 case CPU_NEWLY_IDLE:
7897986b 3457 load_idx = sd->newidle_idx;
67bb6c03
GS
3458 break;
3459 default:
7897986b 3460 load_idx = sd->idle_idx;
67bb6c03
GS
3461 break;
3462 }
1da177e4 3463
67bb6c03
GS
3464 return load_idx;
3465}
1da177e4 3466
1da177e4 3467
c071df18
GS
3468#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3469/**
3470 * init_sd_power_savings_stats - Initialize power savings statistics for
3471 * the given sched_domain, during load balancing.
3472 *
3473 * @sd: Sched domain whose power-savings statistics are to be initialized.
3474 * @sds: Variable containing the statistics for sd.
3475 * @idle: Idle status of the CPU at which we're performing load-balancing.
3476 */
3477static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3478 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3479{
3480 /*
3481 * Busy processors will not participate in power savings
3482 * balance.
3483 */
3484 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3485 sds->power_savings_balance = 0;
3486 else {
3487 sds->power_savings_balance = 1;
3488 sds->min_nr_running = ULONG_MAX;
3489 sds->leader_nr_running = 0;
3490 }
3491}
783609c6 3492
c071df18
GS
3493/**
3494 * update_sd_power_savings_stats - Update the power saving stats for a
3495 * sched_domain while performing load balancing.
3496 *
3497 * @group: sched_group belonging to the sched_domain under consideration.
3498 * @sds: Variable containing the statistics of the sched_domain
3499 * @local_group: Does group contain the CPU for which we're performing
3500 * load balancing ?
3501 * @sgs: Variable containing the statistics of the group.
3502 */
3503static inline void update_sd_power_savings_stats(struct sched_group *group,
3504 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3505{
408ed066 3506
c071df18
GS
3507 if (!sds->power_savings_balance)
3508 return;
1da177e4 3509
c071df18
GS
3510 /*
3511 * If the local group is idle or completely loaded
3512 * no need to do power savings balance at this domain
3513 */
3514 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3515 !sds->this_nr_running))
3516 sds->power_savings_balance = 0;
2dd73a4f 3517
c071df18
GS
3518 /*
3519 * If a group is already running at full capacity or idle,
3520 * don't include that group in power savings calculations
3521 */
3522 if (!sds->power_savings_balance ||
3523 sgs->sum_nr_running >= sgs->group_capacity ||
3524 !sgs->sum_nr_running)
3525 return;
5969fe06 3526
c071df18
GS
3527 /*
3528 * Calculate the group which has the least non-idle load.
3529 * This is the group from where we need to pick up the load
3530 * for saving power
3531 */
3532 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3533 (sgs->sum_nr_running == sds->min_nr_running &&
3534 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3535 sds->group_min = group;
3536 sds->min_nr_running = sgs->sum_nr_running;
3537 sds->min_load_per_task = sgs->sum_weighted_load /
3538 sgs->sum_nr_running;
3539 }
783609c6 3540
c071df18
GS
3541 /*
3542 * Calculate the group which is almost near its
3543 * capacity but still has some space to pick up some load
3544 * from other group and save more power
3545 */
3546 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3547 return;
1da177e4 3548
c071df18
GS
3549 if (sgs->sum_nr_running > sds->leader_nr_running ||
3550 (sgs->sum_nr_running == sds->leader_nr_running &&
3551 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3552 sds->group_leader = group;
3553 sds->leader_nr_running = sgs->sum_nr_running;
3554 }
3555}
408ed066 3556
c071df18 3557/**
d5ac537e 3558 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3559 * @sds: Variable containing the statistics of the sched_domain
3560 * under consideration.
3561 * @this_cpu: Cpu at which we're currently performing load-balancing.
3562 * @imbalance: Variable to store the imbalance.
3563 *
d5ac537e
RD
3564 * Description:
3565 * Check if we have potential to perform some power-savings balance.
3566 * If yes, set the busiest group to be the least loaded group in the
3567 * sched_domain, so that it's CPUs can be put to idle.
3568 *
c071df18
GS
3569 * Returns 1 if there is potential to perform power-savings balance.
3570 * Else returns 0.
3571 */
3572static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3573 int this_cpu, unsigned long *imbalance)
3574{
3575 if (!sds->power_savings_balance)
3576 return 0;
1da177e4 3577
c071df18
GS
3578 if (sds->this != sds->group_leader ||
3579 sds->group_leader == sds->group_min)
3580 return 0;
783609c6 3581
c071df18
GS
3582 *imbalance = sds->min_load_per_task;
3583 sds->busiest = sds->group_min;
1da177e4 3584
c071df18
GS
3585 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3586 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3587 group_first_cpu(sds->group_leader);
3588 }
3589
3590 return 1;
1da177e4 3591
c071df18
GS
3592}
3593#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3594static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3595 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3596{
3597 return;
3598}
408ed066 3599
c071df18
GS
3600static inline void update_sd_power_savings_stats(struct sched_group *group,
3601 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3602{
3603 return;
3604}
3605
3606static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3607 int this_cpu, unsigned long *imbalance)
3608{
3609 return 0;
3610}
3611#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3612
3613
1f8c553d
GS
3614/**
3615 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3616 * @group: sched_group whose statistics are to be updated.
3617 * @this_cpu: Cpu for which load balance is currently performed.
3618 * @idle: Idle status of this_cpu
3619 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3620 * @sd_idle: Idle status of the sched_domain containing group.
3621 * @local_group: Does group contain this_cpu.
3622 * @cpus: Set of cpus considered for load balancing.
3623 * @balance: Should we balance.
3624 * @sgs: variable to hold the statistics for this group.
3625 */
3626static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3627 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3628 int local_group, const struct cpumask *cpus,
3629 int *balance, struct sg_lb_stats *sgs)
3630{
3631 unsigned long load, max_cpu_load, min_cpu_load;
3632 int i;
3633 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3634 unsigned long sum_avg_load_per_task;
3635 unsigned long avg_load_per_task;
3636
3637 if (local_group)
3638 balance_cpu = group_first_cpu(group);
3639
3640 /* Tally up the load of all CPUs in the group */
3641 sum_avg_load_per_task = avg_load_per_task = 0;
3642 max_cpu_load = 0;
3643 min_cpu_load = ~0UL;
408ed066 3644
1f8c553d
GS
3645 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3646 struct rq *rq = cpu_rq(i);
908a7c1b 3647
1f8c553d
GS
3648 if (*sd_idle && rq->nr_running)
3649 *sd_idle = 0;
5c45bf27 3650
1f8c553d 3651 /* Bias balancing toward cpus of our domain */
1da177e4 3652 if (local_group) {
1f8c553d
GS
3653 if (idle_cpu(i) && !first_idle_cpu) {
3654 first_idle_cpu = 1;
3655 balance_cpu = i;
3656 }
3657
3658 load = target_load(i, load_idx);
3659 } else {
3660 load = source_load(i, load_idx);
3661 if (load > max_cpu_load)
3662 max_cpu_load = load;
3663 if (min_cpu_load > load)
3664 min_cpu_load = load;
1da177e4 3665 }
5c45bf27 3666
1f8c553d
GS
3667 sgs->group_load += load;
3668 sgs->sum_nr_running += rq->nr_running;
3669 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3670
1f8c553d
GS
3671 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3672 }
5c45bf27 3673
1f8c553d
GS
3674 /*
3675 * First idle cpu or the first cpu(busiest) in this sched group
3676 * is eligible for doing load balancing at this and above
3677 * domains. In the newly idle case, we will allow all the cpu's
3678 * to do the newly idle load balance.
3679 */
3680 if (idle != CPU_NEWLY_IDLE && local_group &&
3681 balance_cpu != this_cpu && balance) {
3682 *balance = 0;
3683 return;
3684 }
5c45bf27 3685
1f8c553d
GS
3686 /* Adjust by relative CPU power of the group */
3687 sgs->avg_load = sg_div_cpu_power(group,
3688 sgs->group_load * SCHED_LOAD_SCALE);
5c45bf27 3689
1f8c553d
GS
3690
3691 /*
3692 * Consider the group unbalanced when the imbalance is larger
3693 * than the average weight of two tasks.
3694 *
3695 * APZ: with cgroup the avg task weight can vary wildly and
3696 * might not be a suitable number - should we keep a
3697 * normalized nr_running number somewhere that negates
3698 * the hierarchy?
3699 */
3700 avg_load_per_task = sg_div_cpu_power(group,
3701 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3702
3703 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3704 sgs->group_imb = 1;
3705
3706 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3707
3708}
dd41f596 3709
37abe198
GS
3710/**
3711 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3712 * @sd: sched_domain whose statistics are to be updated.
3713 * @this_cpu: Cpu for which load balance is currently performed.
3714 * @idle: Idle status of this_cpu
3715 * @sd_idle: Idle status of the sched_domain containing group.
3716 * @cpus: Set of cpus considered for load balancing.
3717 * @balance: Should we balance.
3718 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3719 */
37abe198
GS
3720static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3721 enum cpu_idle_type idle, int *sd_idle,
3722 const struct cpumask *cpus, int *balance,
3723 struct sd_lb_stats *sds)
1da177e4 3724{
222d656d 3725 struct sched_group *group = sd->groups;
37abe198 3726 struct sg_lb_stats sgs;
222d656d
GS
3727 int load_idx;
3728
c071df18 3729 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3730 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3731
3732 do {
1da177e4 3733 int local_group;
1da177e4 3734
758b2cdc
RR
3735 local_group = cpumask_test_cpu(this_cpu,
3736 sched_group_cpus(group));
381be78f 3737 memset(&sgs, 0, sizeof(sgs));
1f8c553d
GS
3738 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3739 local_group, cpus, balance, &sgs);
1da177e4 3740
37abe198
GS
3741 if (local_group && balance && !(*balance))
3742 return;
783609c6 3743
37abe198
GS
3744 sds->total_load += sgs.group_load;
3745 sds->total_pwr += group->__cpu_power;
1da177e4 3746
1da177e4 3747 if (local_group) {
37abe198
GS
3748 sds->this_load = sgs.avg_load;
3749 sds->this = group;
3750 sds->this_nr_running = sgs.sum_nr_running;
3751 sds->this_load_per_task = sgs.sum_weighted_load;
3752 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3753 (sgs.sum_nr_running > sgs.group_capacity ||
3754 sgs.group_imb)) {
37abe198
GS
3755 sds->max_load = sgs.avg_load;
3756 sds->busiest = group;
3757 sds->busiest_nr_running = sgs.sum_nr_running;
3758 sds->busiest_load_per_task = sgs.sum_weighted_load;
3759 sds->group_imb = sgs.group_imb;
48f24c4d 3760 }
5c45bf27 3761
c071df18 3762 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3763 group = group->next;
3764 } while (group != sd->groups);
3765
37abe198 3766}
1da177e4 3767
2e6f44ae
GS
3768/**
3769 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3770 * amongst the groups of a sched_domain, during
3771 * load balancing.
2e6f44ae
GS
3772 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3773 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3774 * @imbalance: Variable to store the imbalance.
3775 */
3776static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3777 int this_cpu, unsigned long *imbalance)
3778{
3779 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3780 unsigned int imbn = 2;
3781
3782 if (sds->this_nr_running) {
3783 sds->this_load_per_task /= sds->this_nr_running;
3784 if (sds->busiest_load_per_task >
3785 sds->this_load_per_task)
3786 imbn = 1;
3787 } else
3788 sds->this_load_per_task =
3789 cpu_avg_load_per_task(this_cpu);
1da177e4 3790
2e6f44ae
GS
3791 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3792 sds->busiest_load_per_task * imbn) {
3793 *imbalance = sds->busiest_load_per_task;
3794 return;
3795 }
908a7c1b 3796
1da177e4 3797 /*
2e6f44ae
GS
3798 * OK, we don't have enough imbalance to justify moving tasks,
3799 * however we may be able to increase total CPU power used by
3800 * moving them.
1da177e4 3801 */
2dd73a4f 3802
2e6f44ae
GS
3803 pwr_now += sds->busiest->__cpu_power *
3804 min(sds->busiest_load_per_task, sds->max_load);
3805 pwr_now += sds->this->__cpu_power *
3806 min(sds->this_load_per_task, sds->this_load);
3807 pwr_now /= SCHED_LOAD_SCALE;
3808
3809 /* Amount of load we'd subtract */
3810 tmp = sg_div_cpu_power(sds->busiest,
3811 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3812 if (sds->max_load > tmp)
3813 pwr_move += sds->busiest->__cpu_power *
3814 min(sds->busiest_load_per_task, sds->max_load - tmp);
3815
3816 /* Amount of load we'd add */
3817 if (sds->max_load * sds->busiest->__cpu_power <
3818 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3819 tmp = sg_div_cpu_power(sds->this,
3820 sds->max_load * sds->busiest->__cpu_power);
3821 else
3822 tmp = sg_div_cpu_power(sds->this,
3823 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3824 pwr_move += sds->this->__cpu_power *
3825 min(sds->this_load_per_task, sds->this_load + tmp);
3826 pwr_move /= SCHED_LOAD_SCALE;
3827
3828 /* Move if we gain throughput */
3829 if (pwr_move > pwr_now)
3830 *imbalance = sds->busiest_load_per_task;
3831}
dbc523a3
GS
3832
3833/**
3834 * calculate_imbalance - Calculate the amount of imbalance present within the
3835 * groups of a given sched_domain during load balance.
3836 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3837 * @this_cpu: Cpu for which currently load balance is being performed.
3838 * @imbalance: The variable to store the imbalance.
3839 */
3840static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3841 unsigned long *imbalance)
3842{
3843 unsigned long max_pull;
2dd73a4f
PW
3844 /*
3845 * In the presence of smp nice balancing, certain scenarios can have
3846 * max load less than avg load(as we skip the groups at or below
3847 * its cpu_power, while calculating max_load..)
3848 */
dbc523a3 3849 if (sds->max_load < sds->avg_load) {
2dd73a4f 3850 *imbalance = 0;
dbc523a3 3851 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3852 }
0c117f1b
SS
3853
3854 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3855 max_pull = min(sds->max_load - sds->avg_load,
3856 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3857
1da177e4 3858 /* How much load to actually move to equalise the imbalance */
dbc523a3
GS
3859 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3860 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
1da177e4
LT
3861 / SCHED_LOAD_SCALE;
3862
2dd73a4f
PW
3863 /*
3864 * if *imbalance is less than the average load per runnable task
3865 * there is no gaurantee that any tasks will be moved so we'll have
3866 * a think about bumping its value to force at least one task to be
3867 * moved
3868 */
dbc523a3
GS
3869 if (*imbalance < sds->busiest_load_per_task)
3870 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3871
dbc523a3 3872}
37abe198 3873/******* find_busiest_group() helpers end here *********************/
1da177e4 3874
b7bb4c9b
GS
3875/**
3876 * find_busiest_group - Returns the busiest group within the sched_domain
3877 * if there is an imbalance. If there isn't an imbalance, and
3878 * the user has opted for power-savings, it returns a group whose
3879 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3880 * such a group exists.
3881 *
3882 * Also calculates the amount of weighted load which should be moved
3883 * to restore balance.
3884 *
3885 * @sd: The sched_domain whose busiest group is to be returned.
3886 * @this_cpu: The cpu for which load balancing is currently being performed.
3887 * @imbalance: Variable which stores amount of weighted load which should
3888 * be moved to restore balance/put a group to idle.
3889 * @idle: The idle status of this_cpu.
3890 * @sd_idle: The idleness of sd
3891 * @cpus: The set of CPUs under consideration for load-balancing.
3892 * @balance: Pointer to a variable indicating if this_cpu
3893 * is the appropriate cpu to perform load balancing at this_level.
3894 *
3895 * Returns: - the busiest group if imbalance exists.
3896 * - If no imbalance and user has opted for power-savings balance,
3897 * return the least loaded group whose CPUs can be
3898 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3899 */
3900static struct sched_group *
3901find_busiest_group(struct sched_domain *sd, int this_cpu,
3902 unsigned long *imbalance, enum cpu_idle_type idle,
3903 int *sd_idle, const struct cpumask *cpus, int *balance)
3904{
3905 struct sd_lb_stats sds;
1da177e4 3906
37abe198 3907 memset(&sds, 0, sizeof(sds));
1da177e4 3908
37abe198
GS
3909 /*
3910 * Compute the various statistics relavent for load balancing at
3911 * this level.
3912 */
3913 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3914 balance, &sds);
3915
b7bb4c9b
GS
3916 /* Cases where imbalance does not exist from POV of this_cpu */
3917 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3918 * at this level.
3919 * 2) There is no busy sibling group to pull from.
3920 * 3) This group is the busiest group.
3921 * 4) This group is more busy than the avg busieness at this
3922 * sched_domain.
3923 * 5) The imbalance is within the specified limit.
3924 * 6) Any rebalance would lead to ping-pong
3925 */
37abe198
GS
3926 if (balance && !(*balance))
3927 goto ret;
1da177e4 3928
b7bb4c9b
GS
3929 if (!sds.busiest || sds.busiest_nr_running == 0)
3930 goto out_balanced;
1da177e4 3931
b7bb4c9b 3932 if (sds.this_load >= sds.max_load)
1da177e4 3933 goto out_balanced;
1da177e4 3934
222d656d 3935 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 3936
b7bb4c9b
GS
3937 if (sds.this_load >= sds.avg_load)
3938 goto out_balanced;
3939
3940 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
3941 goto out_balanced;
3942
222d656d
GS
3943 sds.busiest_load_per_task /= sds.busiest_nr_running;
3944 if (sds.group_imb)
3945 sds.busiest_load_per_task =
3946 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 3947
1da177e4
LT
3948 /*
3949 * We're trying to get all the cpus to the average_load, so we don't
3950 * want to push ourselves above the average load, nor do we wish to
3951 * reduce the max loaded cpu below the average load, as either of these
3952 * actions would just result in more rebalancing later, and ping-pong
3953 * tasks around. Thus we look for the minimum possible imbalance.
3954 * Negative imbalances (*we* are more loaded than anyone else) will
3955 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3956 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3957 * appear as very large values with unsigned longs.
3958 */
222d656d 3959 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
3960 goto out_balanced;
3961
dbc523a3
GS
3962 /* Looks like there is an imbalance. Compute it */
3963 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 3964 return sds.busiest;
1da177e4
LT
3965
3966out_balanced:
c071df18
GS
3967 /*
3968 * There is no obvious imbalance. But check if we can do some balancing
3969 * to save power.
3970 */
3971 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3972 return sds.busiest;
783609c6 3973ret:
1da177e4
LT
3974 *imbalance = 0;
3975 return NULL;
3976}
3977
3978/*
3979 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3980 */
70b97a7f 3981static struct rq *
d15bcfdb 3982find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3983 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3984{
70b97a7f 3985 struct rq *busiest = NULL, *rq;
2dd73a4f 3986 unsigned long max_load = 0;
1da177e4
LT
3987 int i;
3988
758b2cdc 3989 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3990 unsigned long wl;
0a2966b4 3991
96f874e2 3992 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3993 continue;
3994
48f24c4d 3995 rq = cpu_rq(i);
dd41f596 3996 wl = weighted_cpuload(i);
2dd73a4f 3997
dd41f596 3998 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3999 continue;
1da177e4 4000
dd41f596
IM
4001 if (wl > max_load) {
4002 max_load = wl;
48f24c4d 4003 busiest = rq;
1da177e4
LT
4004 }
4005 }
4006
4007 return busiest;
4008}
4009
77391d71
NP
4010/*
4011 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4012 * so long as it is large enough.
4013 */
4014#define MAX_PINNED_INTERVAL 512
4015
df7c8e84
RR
4016/* Working cpumask for load_balance and load_balance_newidle. */
4017static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4018
1da177e4
LT
4019/*
4020 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4021 * tasks if there is an imbalance.
1da177e4 4022 */
70b97a7f 4023static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 4024 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 4025 int *balance)
1da177e4 4026{
43010659 4027 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 4028 struct sched_group *group;
1da177e4 4029 unsigned long imbalance;
70b97a7f 4030 struct rq *busiest;
fe2eea3f 4031 unsigned long flags;
df7c8e84 4032 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 4033
96f874e2 4034 cpumask_setall(cpus);
7c16ec58 4035
89c4710e
SS
4036 /*
4037 * When power savings policy is enabled for the parent domain, idle
4038 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 4039 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 4040 * portraying it as CPU_NOT_IDLE.
89c4710e 4041 */
d15bcfdb 4042 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4043 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4044 sd_idle = 1;
1da177e4 4045
2d72376b 4046 schedstat_inc(sd, lb_count[idle]);
1da177e4 4047
0a2966b4 4048redo:
c8cba857 4049 update_shares(sd);
0a2966b4 4050 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 4051 cpus, balance);
783609c6 4052
06066714 4053 if (*balance == 0)
783609c6 4054 goto out_balanced;
783609c6 4055
1da177e4
LT
4056 if (!group) {
4057 schedstat_inc(sd, lb_nobusyg[idle]);
4058 goto out_balanced;
4059 }
4060
7c16ec58 4061 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
4062 if (!busiest) {
4063 schedstat_inc(sd, lb_nobusyq[idle]);
4064 goto out_balanced;
4065 }
4066
db935dbd 4067 BUG_ON(busiest == this_rq);
1da177e4
LT
4068
4069 schedstat_add(sd, lb_imbalance[idle], imbalance);
4070
43010659 4071 ld_moved = 0;
1da177e4
LT
4072 if (busiest->nr_running > 1) {
4073 /*
4074 * Attempt to move tasks. If find_busiest_group has found
4075 * an imbalance but busiest->nr_running <= 1, the group is
43010659 4076 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
4077 * correctly treated as an imbalance.
4078 */
fe2eea3f 4079 local_irq_save(flags);
e17224bf 4080 double_rq_lock(this_rq, busiest);
43010659 4081 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 4082 imbalance, sd, idle, &all_pinned);
e17224bf 4083 double_rq_unlock(this_rq, busiest);
fe2eea3f 4084 local_irq_restore(flags);
81026794 4085
46cb4b7c
SS
4086 /*
4087 * some other cpu did the load balance for us.
4088 */
43010659 4089 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
4090 resched_cpu(this_cpu);
4091
81026794 4092 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 4093 if (unlikely(all_pinned)) {
96f874e2
RR
4094 cpumask_clear_cpu(cpu_of(busiest), cpus);
4095 if (!cpumask_empty(cpus))
0a2966b4 4096 goto redo;
81026794 4097 goto out_balanced;
0a2966b4 4098 }
1da177e4 4099 }
81026794 4100
43010659 4101 if (!ld_moved) {
1da177e4
LT
4102 schedstat_inc(sd, lb_failed[idle]);
4103 sd->nr_balance_failed++;
4104
4105 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 4106
fe2eea3f 4107 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
4108
4109 /* don't kick the migration_thread, if the curr
4110 * task on busiest cpu can't be moved to this_cpu
4111 */
96f874e2
RR
4112 if (!cpumask_test_cpu(this_cpu,
4113 &busiest->curr->cpus_allowed)) {
fe2eea3f 4114 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4115 all_pinned = 1;
4116 goto out_one_pinned;
4117 }
4118
1da177e4
LT
4119 if (!busiest->active_balance) {
4120 busiest->active_balance = 1;
4121 busiest->push_cpu = this_cpu;
81026794 4122 active_balance = 1;
1da177e4 4123 }
fe2eea3f 4124 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4125 if (active_balance)
1da177e4
LT
4126 wake_up_process(busiest->migration_thread);
4127
4128 /*
4129 * We've kicked active balancing, reset the failure
4130 * counter.
4131 */
39507451 4132 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4133 }
81026794 4134 } else
1da177e4
LT
4135 sd->nr_balance_failed = 0;
4136
81026794 4137 if (likely(!active_balance)) {
1da177e4
LT
4138 /* We were unbalanced, so reset the balancing interval */
4139 sd->balance_interval = sd->min_interval;
81026794
NP
4140 } else {
4141 /*
4142 * If we've begun active balancing, start to back off. This
4143 * case may not be covered by the all_pinned logic if there
4144 * is only 1 task on the busy runqueue (because we don't call
4145 * move_tasks).
4146 */
4147 if (sd->balance_interval < sd->max_interval)
4148 sd->balance_interval *= 2;
1da177e4
LT
4149 }
4150
43010659 4151 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4152 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4153 ld_moved = -1;
4154
4155 goto out;
1da177e4
LT
4156
4157out_balanced:
1da177e4
LT
4158 schedstat_inc(sd, lb_balanced[idle]);
4159
16cfb1c0 4160 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4161
4162out_one_pinned:
1da177e4 4163 /* tune up the balancing interval */
77391d71
NP
4164 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4165 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4166 sd->balance_interval *= 2;
4167
48f24c4d 4168 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4169 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4170 ld_moved = -1;
4171 else
4172 ld_moved = 0;
4173out:
c8cba857
PZ
4174 if (ld_moved)
4175 update_shares(sd);
c09595f6 4176 return ld_moved;
1da177e4
LT
4177}
4178
4179/*
4180 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4181 * tasks if there is an imbalance.
4182 *
d15bcfdb 4183 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4184 * this_rq is locked.
4185 */
48f24c4d 4186static int
df7c8e84 4187load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4188{
4189 struct sched_group *group;
70b97a7f 4190 struct rq *busiest = NULL;
1da177e4 4191 unsigned long imbalance;
43010659 4192 int ld_moved = 0;
5969fe06 4193 int sd_idle = 0;
969bb4e4 4194 int all_pinned = 0;
df7c8e84 4195 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4196
96f874e2 4197 cpumask_setall(cpus);
5969fe06 4198
89c4710e
SS
4199 /*
4200 * When power savings policy is enabled for the parent domain, idle
4201 * sibling can pick up load irrespective of busy siblings. In this case,
4202 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4203 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4204 */
4205 if (sd->flags & SD_SHARE_CPUPOWER &&
4206 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4207 sd_idle = 1;
1da177e4 4208
2d72376b 4209 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4210redo:
3e5459b4 4211 update_shares_locked(this_rq, sd);
d15bcfdb 4212 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4213 &sd_idle, cpus, NULL);
1da177e4 4214 if (!group) {
d15bcfdb 4215 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4216 goto out_balanced;
1da177e4
LT
4217 }
4218
7c16ec58 4219 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4220 if (!busiest) {
d15bcfdb 4221 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4222 goto out_balanced;
1da177e4
LT
4223 }
4224
db935dbd
NP
4225 BUG_ON(busiest == this_rq);
4226
d15bcfdb 4227 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4228
43010659 4229 ld_moved = 0;
d6d5cfaf
NP
4230 if (busiest->nr_running > 1) {
4231 /* Attempt to move tasks */
4232 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4233 /* this_rq->clock is already updated */
4234 update_rq_clock(busiest);
43010659 4235 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4236 imbalance, sd, CPU_NEWLY_IDLE,
4237 &all_pinned);
1b12bbc7 4238 double_unlock_balance(this_rq, busiest);
0a2966b4 4239
969bb4e4 4240 if (unlikely(all_pinned)) {
96f874e2
RR
4241 cpumask_clear_cpu(cpu_of(busiest), cpus);
4242 if (!cpumask_empty(cpus))
0a2966b4
CL
4243 goto redo;
4244 }
d6d5cfaf
NP
4245 }
4246
43010659 4247 if (!ld_moved) {
36dffab6 4248 int active_balance = 0;
ad273b32 4249
d15bcfdb 4250 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4251 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4252 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4253 return -1;
ad273b32
VS
4254
4255 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4256 return -1;
4257
4258 if (sd->nr_balance_failed++ < 2)
4259 return -1;
4260
4261 /*
4262 * The only task running in a non-idle cpu can be moved to this
4263 * cpu in an attempt to completely freeup the other CPU
4264 * package. The same method used to move task in load_balance()
4265 * have been extended for load_balance_newidle() to speedup
4266 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4267 *
4268 * The package power saving logic comes from
4269 * find_busiest_group(). If there are no imbalance, then
4270 * f_b_g() will return NULL. However when sched_mc={1,2} then
4271 * f_b_g() will select a group from which a running task may be
4272 * pulled to this cpu in order to make the other package idle.
4273 * If there is no opportunity to make a package idle and if
4274 * there are no imbalance, then f_b_g() will return NULL and no
4275 * action will be taken in load_balance_newidle().
4276 *
4277 * Under normal task pull operation due to imbalance, there
4278 * will be more than one task in the source run queue and
4279 * move_tasks() will succeed. ld_moved will be true and this
4280 * active balance code will not be triggered.
4281 */
4282
4283 /* Lock busiest in correct order while this_rq is held */
4284 double_lock_balance(this_rq, busiest);
4285
4286 /*
4287 * don't kick the migration_thread, if the curr
4288 * task on busiest cpu can't be moved to this_cpu
4289 */
6ca09dfc 4290 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4291 double_unlock_balance(this_rq, busiest);
4292 all_pinned = 1;
4293 return ld_moved;
4294 }
4295
4296 if (!busiest->active_balance) {
4297 busiest->active_balance = 1;
4298 busiest->push_cpu = this_cpu;
4299 active_balance = 1;
4300 }
4301
4302 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4303 /*
4304 * Should not call ttwu while holding a rq->lock
4305 */
4306 spin_unlock(&this_rq->lock);
ad273b32
VS
4307 if (active_balance)
4308 wake_up_process(busiest->migration_thread);
da8d5089 4309 spin_lock(&this_rq->lock);
ad273b32 4310
5969fe06 4311 } else
16cfb1c0 4312 sd->nr_balance_failed = 0;
1da177e4 4313
3e5459b4 4314 update_shares_locked(this_rq, sd);
43010659 4315 return ld_moved;
16cfb1c0
NP
4316
4317out_balanced:
d15bcfdb 4318 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4319 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4320 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4321 return -1;
16cfb1c0 4322 sd->nr_balance_failed = 0;
48f24c4d 4323
16cfb1c0 4324 return 0;
1da177e4
LT
4325}
4326
4327/*
4328 * idle_balance is called by schedule() if this_cpu is about to become
4329 * idle. Attempts to pull tasks from other CPUs.
4330 */
70b97a7f 4331static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4332{
4333 struct sched_domain *sd;
efbe027e 4334 int pulled_task = 0;
dd41f596 4335 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
4336
4337 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4338 unsigned long interval;
4339
4340 if (!(sd->flags & SD_LOAD_BALANCE))
4341 continue;
4342
4343 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4344 /* If we've pulled tasks over stop searching: */
7c16ec58 4345 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4346 sd);
92c4ca5c
CL
4347
4348 interval = msecs_to_jiffies(sd->balance_interval);
4349 if (time_after(next_balance, sd->last_balance + interval))
4350 next_balance = sd->last_balance + interval;
4351 if (pulled_task)
4352 break;
1da177e4 4353 }
dd41f596 4354 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4355 /*
4356 * We are going idle. next_balance may be set based on
4357 * a busy processor. So reset next_balance.
4358 */
4359 this_rq->next_balance = next_balance;
dd41f596 4360 }
1da177e4
LT
4361}
4362
4363/*
4364 * active_load_balance is run by migration threads. It pushes running tasks
4365 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4366 * running on each physical CPU where possible, and avoids physical /
4367 * logical imbalances.
4368 *
4369 * Called with busiest_rq locked.
4370 */
70b97a7f 4371static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4372{
39507451 4373 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4374 struct sched_domain *sd;
4375 struct rq *target_rq;
39507451 4376
48f24c4d 4377 /* Is there any task to move? */
39507451 4378 if (busiest_rq->nr_running <= 1)
39507451
NP
4379 return;
4380
4381 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4382
4383 /*
39507451 4384 * This condition is "impossible", if it occurs
41a2d6cf 4385 * we need to fix it. Originally reported by
39507451 4386 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4387 */
39507451 4388 BUG_ON(busiest_rq == target_rq);
1da177e4 4389
39507451
NP
4390 /* move a task from busiest_rq to target_rq */
4391 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4392 update_rq_clock(busiest_rq);
4393 update_rq_clock(target_rq);
39507451
NP
4394
4395 /* Search for an sd spanning us and the target CPU. */
c96d145e 4396 for_each_domain(target_cpu, sd) {
39507451 4397 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4398 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4399 break;
c96d145e 4400 }
39507451 4401
48f24c4d 4402 if (likely(sd)) {
2d72376b 4403 schedstat_inc(sd, alb_count);
39507451 4404
43010659
PW
4405 if (move_one_task(target_rq, target_cpu, busiest_rq,
4406 sd, CPU_IDLE))
48f24c4d
IM
4407 schedstat_inc(sd, alb_pushed);
4408 else
4409 schedstat_inc(sd, alb_failed);
4410 }
1b12bbc7 4411 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4412}
4413
46cb4b7c
SS
4414#ifdef CONFIG_NO_HZ
4415static struct {
4416 atomic_t load_balancer;
7d1e6a9b 4417 cpumask_var_t cpu_mask;
f711f609 4418 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4419} nohz ____cacheline_aligned = {
4420 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4421};
4422
f711f609
GS
4423#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4424/**
4425 * lowest_flag_domain - Return lowest sched_domain containing flag.
4426 * @cpu: The cpu whose lowest level of sched domain is to
4427 * be returned.
4428 * @flag: The flag to check for the lowest sched_domain
4429 * for the given cpu.
4430 *
4431 * Returns the lowest sched_domain of a cpu which contains the given flag.
4432 */
4433static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4434{
4435 struct sched_domain *sd;
4436
4437 for_each_domain(cpu, sd)
4438 if (sd && (sd->flags & flag))
4439 break;
4440
4441 return sd;
4442}
4443
4444/**
4445 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4446 * @cpu: The cpu whose domains we're iterating over.
4447 * @sd: variable holding the value of the power_savings_sd
4448 * for cpu.
4449 * @flag: The flag to filter the sched_domains to be iterated.
4450 *
4451 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4452 * set, starting from the lowest sched_domain to the highest.
4453 */
4454#define for_each_flag_domain(cpu, sd, flag) \
4455 for (sd = lowest_flag_domain(cpu, flag); \
4456 (sd && (sd->flags & flag)); sd = sd->parent)
4457
4458/**
4459 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4460 * @ilb_group: group to be checked for semi-idleness
4461 *
4462 * Returns: 1 if the group is semi-idle. 0 otherwise.
4463 *
4464 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4465 * and atleast one non-idle CPU. This helper function checks if the given
4466 * sched_group is semi-idle or not.
4467 */
4468static inline int is_semi_idle_group(struct sched_group *ilb_group)
4469{
4470 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4471 sched_group_cpus(ilb_group));
4472
4473 /*
4474 * A sched_group is semi-idle when it has atleast one busy cpu
4475 * and atleast one idle cpu.
4476 */
4477 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4478 return 0;
4479
4480 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4481 return 0;
4482
4483 return 1;
4484}
4485/**
4486 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4487 * @cpu: The cpu which is nominating a new idle_load_balancer.
4488 *
4489 * Returns: Returns the id of the idle load balancer if it exists,
4490 * Else, returns >= nr_cpu_ids.
4491 *
4492 * This algorithm picks the idle load balancer such that it belongs to a
4493 * semi-idle powersavings sched_domain. The idea is to try and avoid
4494 * completely idle packages/cores just for the purpose of idle load balancing
4495 * when there are other idle cpu's which are better suited for that job.
4496 */
4497static int find_new_ilb(int cpu)
4498{
4499 struct sched_domain *sd;
4500 struct sched_group *ilb_group;
4501
4502 /*
4503 * Have idle load balancer selection from semi-idle packages only
4504 * when power-aware load balancing is enabled
4505 */
4506 if (!(sched_smt_power_savings || sched_mc_power_savings))
4507 goto out_done;
4508
4509 /*
4510 * Optimize for the case when we have no idle CPUs or only one
4511 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4512 */
4513 if (cpumask_weight(nohz.cpu_mask) < 2)
4514 goto out_done;
4515
4516 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4517 ilb_group = sd->groups;
4518
4519 do {
4520 if (is_semi_idle_group(ilb_group))
4521 return cpumask_first(nohz.ilb_grp_nohz_mask);
4522
4523 ilb_group = ilb_group->next;
4524
4525 } while (ilb_group != sd->groups);
4526 }
4527
4528out_done:
4529 return cpumask_first(nohz.cpu_mask);
4530}
4531#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4532static inline int find_new_ilb(int call_cpu)
4533{
6e29ec57 4534 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4535}
4536#endif
4537
7835b98b 4538/*
46cb4b7c
SS
4539 * This routine will try to nominate the ilb (idle load balancing)
4540 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4541 * load balancing on behalf of all those cpus. If all the cpus in the system
4542 * go into this tickless mode, then there will be no ilb owner (as there is
4543 * no need for one) and all the cpus will sleep till the next wakeup event
4544 * arrives...
4545 *
4546 * For the ilb owner, tick is not stopped. And this tick will be used
4547 * for idle load balancing. ilb owner will still be part of
4548 * nohz.cpu_mask..
7835b98b 4549 *
46cb4b7c
SS
4550 * While stopping the tick, this cpu will become the ilb owner if there
4551 * is no other owner. And will be the owner till that cpu becomes busy
4552 * or if all cpus in the system stop their ticks at which point
4553 * there is no need for ilb owner.
4554 *
4555 * When the ilb owner becomes busy, it nominates another owner, during the
4556 * next busy scheduler_tick()
4557 */
4558int select_nohz_load_balancer(int stop_tick)
4559{
4560 int cpu = smp_processor_id();
4561
4562 if (stop_tick) {
46cb4b7c
SS
4563 cpu_rq(cpu)->in_nohz_recently = 1;
4564
483b4ee6
SS
4565 if (!cpu_active(cpu)) {
4566 if (atomic_read(&nohz.load_balancer) != cpu)
4567 return 0;
4568
4569 /*
4570 * If we are going offline and still the leader,
4571 * give up!
4572 */
46cb4b7c
SS
4573 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4574 BUG();
483b4ee6 4575
46cb4b7c
SS
4576 return 0;
4577 }
4578
483b4ee6
SS
4579 cpumask_set_cpu(cpu, nohz.cpu_mask);
4580
46cb4b7c 4581 /* time for ilb owner also to sleep */
7d1e6a9b 4582 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4583 if (atomic_read(&nohz.load_balancer) == cpu)
4584 atomic_set(&nohz.load_balancer, -1);
4585 return 0;
4586 }
4587
4588 if (atomic_read(&nohz.load_balancer) == -1) {
4589 /* make me the ilb owner */
4590 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4591 return 1;
e790fb0b
GS
4592 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4593 int new_ilb;
4594
4595 if (!(sched_smt_power_savings ||
4596 sched_mc_power_savings))
4597 return 1;
4598 /*
4599 * Check to see if there is a more power-efficient
4600 * ilb.
4601 */
4602 new_ilb = find_new_ilb(cpu);
4603 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4604 atomic_set(&nohz.load_balancer, -1);
4605 resched_cpu(new_ilb);
4606 return 0;
4607 }
46cb4b7c 4608 return 1;
e790fb0b 4609 }
46cb4b7c 4610 } else {
7d1e6a9b 4611 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4612 return 0;
4613
7d1e6a9b 4614 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4615
4616 if (atomic_read(&nohz.load_balancer) == cpu)
4617 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4618 BUG();
4619 }
4620 return 0;
4621}
4622#endif
4623
4624static DEFINE_SPINLOCK(balancing);
4625
4626/*
7835b98b
CL
4627 * It checks each scheduling domain to see if it is due to be balanced,
4628 * and initiates a balancing operation if so.
4629 *
4630 * Balancing parameters are set up in arch_init_sched_domains.
4631 */
a9957449 4632static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4633{
46cb4b7c
SS
4634 int balance = 1;
4635 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4636 unsigned long interval;
4637 struct sched_domain *sd;
46cb4b7c 4638 /* Earliest time when we have to do rebalance again */
c9819f45 4639 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4640 int update_next_balance = 0;
d07355f5 4641 int need_serialize;
1da177e4 4642
46cb4b7c 4643 for_each_domain(cpu, sd) {
1da177e4
LT
4644 if (!(sd->flags & SD_LOAD_BALANCE))
4645 continue;
4646
4647 interval = sd->balance_interval;
d15bcfdb 4648 if (idle != CPU_IDLE)
1da177e4
LT
4649 interval *= sd->busy_factor;
4650
4651 /* scale ms to jiffies */
4652 interval = msecs_to_jiffies(interval);
4653 if (unlikely(!interval))
4654 interval = 1;
dd41f596
IM
4655 if (interval > HZ*NR_CPUS/10)
4656 interval = HZ*NR_CPUS/10;
4657
d07355f5 4658 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4659
d07355f5 4660 if (need_serialize) {
08c183f3
CL
4661 if (!spin_trylock(&balancing))
4662 goto out;
4663 }
4664
c9819f45 4665 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4666 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4667 /*
4668 * We've pulled tasks over so either we're no
5969fe06
NP
4669 * longer idle, or one of our SMT siblings is
4670 * not idle.
4671 */
d15bcfdb 4672 idle = CPU_NOT_IDLE;
1da177e4 4673 }
1bd77f2d 4674 sd->last_balance = jiffies;
1da177e4 4675 }
d07355f5 4676 if (need_serialize)
08c183f3
CL
4677 spin_unlock(&balancing);
4678out:
f549da84 4679 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4680 next_balance = sd->last_balance + interval;
f549da84
SS
4681 update_next_balance = 1;
4682 }
783609c6
SS
4683
4684 /*
4685 * Stop the load balance at this level. There is another
4686 * CPU in our sched group which is doing load balancing more
4687 * actively.
4688 */
4689 if (!balance)
4690 break;
1da177e4 4691 }
f549da84
SS
4692
4693 /*
4694 * next_balance will be updated only when there is a need.
4695 * When the cpu is attached to null domain for ex, it will not be
4696 * updated.
4697 */
4698 if (likely(update_next_balance))
4699 rq->next_balance = next_balance;
46cb4b7c
SS
4700}
4701
4702/*
4703 * run_rebalance_domains is triggered when needed from the scheduler tick.
4704 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4705 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4706 */
4707static void run_rebalance_domains(struct softirq_action *h)
4708{
dd41f596
IM
4709 int this_cpu = smp_processor_id();
4710 struct rq *this_rq = cpu_rq(this_cpu);
4711 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4712 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4713
dd41f596 4714 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4715
4716#ifdef CONFIG_NO_HZ
4717 /*
4718 * If this cpu is the owner for idle load balancing, then do the
4719 * balancing on behalf of the other idle cpus whose ticks are
4720 * stopped.
4721 */
dd41f596
IM
4722 if (this_rq->idle_at_tick &&
4723 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4724 struct rq *rq;
4725 int balance_cpu;
4726
7d1e6a9b
RR
4727 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4728 if (balance_cpu == this_cpu)
4729 continue;
4730
46cb4b7c
SS
4731 /*
4732 * If this cpu gets work to do, stop the load balancing
4733 * work being done for other cpus. Next load
4734 * balancing owner will pick it up.
4735 */
4736 if (need_resched())
4737 break;
4738
de0cf899 4739 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4740
4741 rq = cpu_rq(balance_cpu);
dd41f596
IM
4742 if (time_after(this_rq->next_balance, rq->next_balance))
4743 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4744 }
4745 }
4746#endif
4747}
4748
8a0be9ef
FW
4749static inline int on_null_domain(int cpu)
4750{
4751 return !rcu_dereference(cpu_rq(cpu)->sd);
4752}
4753
46cb4b7c
SS
4754/*
4755 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4756 *
4757 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4758 * idle load balancing owner or decide to stop the periodic load balancing,
4759 * if the whole system is idle.
4760 */
dd41f596 4761static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4762{
46cb4b7c
SS
4763#ifdef CONFIG_NO_HZ
4764 /*
4765 * If we were in the nohz mode recently and busy at the current
4766 * scheduler tick, then check if we need to nominate new idle
4767 * load balancer.
4768 */
4769 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4770 rq->in_nohz_recently = 0;
4771
4772 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4773 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4774 atomic_set(&nohz.load_balancer, -1);
4775 }
4776
4777 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4778 int ilb = find_new_ilb(cpu);
46cb4b7c 4779
434d53b0 4780 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4781 resched_cpu(ilb);
4782 }
4783 }
4784
4785 /*
4786 * If this cpu is idle and doing idle load balancing for all the
4787 * cpus with ticks stopped, is it time for that to stop?
4788 */
4789 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4790 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4791 resched_cpu(cpu);
4792 return;
4793 }
4794
4795 /*
4796 * If this cpu is idle and the idle load balancing is done by
4797 * someone else, then no need raise the SCHED_SOFTIRQ
4798 */
4799 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4800 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4801 return;
4802#endif
8a0be9ef
FW
4803 /* Don't need to rebalance while attached to NULL domain */
4804 if (time_after_eq(jiffies, rq->next_balance) &&
4805 likely(!on_null_domain(cpu)))
46cb4b7c 4806 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4807}
dd41f596
IM
4808
4809#else /* CONFIG_SMP */
4810
1da177e4
LT
4811/*
4812 * on UP we do not need to balance between CPUs:
4813 */
70b97a7f 4814static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4815{
4816}
dd41f596 4817
1da177e4
LT
4818#endif
4819
1da177e4
LT
4820DEFINE_PER_CPU(struct kernel_stat, kstat);
4821
4822EXPORT_PER_CPU_SYMBOL(kstat);
4823
4824/*
c5f8d995 4825 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4826 * @p in case that task is currently running.
c5f8d995
HS
4827 *
4828 * Called with task_rq_lock() held on @rq.
1da177e4 4829 */
c5f8d995
HS
4830static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4831{
4832 u64 ns = 0;
4833
4834 if (task_current(rq, p)) {
4835 update_rq_clock(rq);
4836 ns = rq->clock - p->se.exec_start;
4837 if ((s64)ns < 0)
4838 ns = 0;
4839 }
4840
4841 return ns;
4842}
4843
bb34d92f 4844unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4845{
1da177e4 4846 unsigned long flags;
41b86e9c 4847 struct rq *rq;
bb34d92f 4848 u64 ns = 0;
48f24c4d 4849
41b86e9c 4850 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4851 ns = do_task_delta_exec(p, rq);
4852 task_rq_unlock(rq, &flags);
1508487e 4853
c5f8d995
HS
4854 return ns;
4855}
f06febc9 4856
c5f8d995
HS
4857/*
4858 * Return accounted runtime for the task.
4859 * In case the task is currently running, return the runtime plus current's
4860 * pending runtime that have not been accounted yet.
4861 */
4862unsigned long long task_sched_runtime(struct task_struct *p)
4863{
4864 unsigned long flags;
4865 struct rq *rq;
4866 u64 ns = 0;
4867
4868 rq = task_rq_lock(p, &flags);
4869 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4870 task_rq_unlock(rq, &flags);
4871
4872 return ns;
4873}
48f24c4d 4874
c5f8d995
HS
4875/*
4876 * Return sum_exec_runtime for the thread group.
4877 * In case the task is currently running, return the sum plus current's
4878 * pending runtime that have not been accounted yet.
4879 *
4880 * Note that the thread group might have other running tasks as well,
4881 * so the return value not includes other pending runtime that other
4882 * running tasks might have.
4883 */
4884unsigned long long thread_group_sched_runtime(struct task_struct *p)
4885{
4886 struct task_cputime totals;
4887 unsigned long flags;
4888 struct rq *rq;
4889 u64 ns;
4890
4891 rq = task_rq_lock(p, &flags);
4892 thread_group_cputime(p, &totals);
4893 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4894 task_rq_unlock(rq, &flags);
48f24c4d 4895
1da177e4
LT
4896 return ns;
4897}
4898
1da177e4
LT
4899/*
4900 * Account user cpu time to a process.
4901 * @p: the process that the cpu time gets accounted to
1da177e4 4902 * @cputime: the cpu time spent in user space since the last update
457533a7 4903 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4904 */
457533a7
MS
4905void account_user_time(struct task_struct *p, cputime_t cputime,
4906 cputime_t cputime_scaled)
1da177e4
LT
4907{
4908 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4909 cputime64_t tmp;
4910
457533a7 4911 /* Add user time to process. */
1da177e4 4912 p->utime = cputime_add(p->utime, cputime);
457533a7 4913 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4914 account_group_user_time(p, cputime);
1da177e4
LT
4915
4916 /* Add user time to cpustat. */
4917 tmp = cputime_to_cputime64(cputime);
4918 if (TASK_NICE(p) > 0)
4919 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4920 else
4921 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
4922
4923 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
4924 /* Account for user time used */
4925 acct_update_integrals(p);
1da177e4
LT
4926}
4927
94886b84
LV
4928/*
4929 * Account guest cpu time to a process.
4930 * @p: the process that the cpu time gets accounted to
4931 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4932 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4933 */
457533a7
MS
4934static void account_guest_time(struct task_struct *p, cputime_t cputime,
4935 cputime_t cputime_scaled)
94886b84
LV
4936{
4937 cputime64_t tmp;
4938 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4939
4940 tmp = cputime_to_cputime64(cputime);
4941
457533a7 4942 /* Add guest time to process. */
94886b84 4943 p->utime = cputime_add(p->utime, cputime);
457533a7 4944 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4945 account_group_user_time(p, cputime);
94886b84
LV
4946 p->gtime = cputime_add(p->gtime, cputime);
4947
457533a7 4948 /* Add guest time to cpustat. */
94886b84
LV
4949 cpustat->user = cputime64_add(cpustat->user, tmp);
4950 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4951}
4952
1da177e4
LT
4953/*
4954 * Account system cpu time to a process.
4955 * @p: the process that the cpu time gets accounted to
4956 * @hardirq_offset: the offset to subtract from hardirq_count()
4957 * @cputime: the cpu time spent in kernel space since the last update
457533a7 4958 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
4959 */
4960void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 4961 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
4962{
4963 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
4964 cputime64_t tmp;
4965
983ed7a6 4966 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 4967 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
4968 return;
4969 }
94886b84 4970
457533a7 4971 /* Add system time to process. */
1da177e4 4972 p->stime = cputime_add(p->stime, cputime);
457533a7 4973 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 4974 account_group_system_time(p, cputime);
1da177e4
LT
4975
4976 /* Add system time to cpustat. */
4977 tmp = cputime_to_cputime64(cputime);
4978 if (hardirq_count() - hardirq_offset)
4979 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4980 else if (softirq_count())
4981 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 4982 else
79741dd3
MS
4983 cpustat->system = cputime64_add(cpustat->system, tmp);
4984
ef12fefa
BR
4985 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
4986
1da177e4
LT
4987 /* Account for system time used */
4988 acct_update_integrals(p);
1da177e4
LT
4989}
4990
c66f08be 4991/*
1da177e4 4992 * Account for involuntary wait time.
1da177e4 4993 * @steal: the cpu time spent in involuntary wait
c66f08be 4994 */
79741dd3 4995void account_steal_time(cputime_t cputime)
c66f08be 4996{
79741dd3
MS
4997 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4998 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4999
5000 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
5001}
5002
1da177e4 5003/*
79741dd3
MS
5004 * Account for idle time.
5005 * @cputime: the cpu time spent in idle wait
1da177e4 5006 */
79741dd3 5007void account_idle_time(cputime_t cputime)
1da177e4
LT
5008{
5009 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 5010 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 5011 struct rq *rq = this_rq();
1da177e4 5012
79741dd3
MS
5013 if (atomic_read(&rq->nr_iowait) > 0)
5014 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5015 else
5016 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
5017}
5018
79741dd3
MS
5019#ifndef CONFIG_VIRT_CPU_ACCOUNTING
5020
5021/*
5022 * Account a single tick of cpu time.
5023 * @p: the process that the cpu time gets accounted to
5024 * @user_tick: indicates if the tick is a user or a system tick
5025 */
5026void account_process_tick(struct task_struct *p, int user_tick)
5027{
5028 cputime_t one_jiffy = jiffies_to_cputime(1);
5029 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5030 struct rq *rq = this_rq();
5031
5032 if (user_tick)
5033 account_user_time(p, one_jiffy, one_jiffy_scaled);
f5f293a4 5034 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
79741dd3
MS
5035 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5036 one_jiffy_scaled);
5037 else
5038 account_idle_time(one_jiffy);
5039}
5040
5041/*
5042 * Account multiple ticks of steal time.
5043 * @p: the process from which the cpu time has been stolen
5044 * @ticks: number of stolen ticks
5045 */
5046void account_steal_ticks(unsigned long ticks)
5047{
5048 account_steal_time(jiffies_to_cputime(ticks));
5049}
5050
5051/*
5052 * Account multiple ticks of idle time.
5053 * @ticks: number of stolen ticks
5054 */
5055void account_idle_ticks(unsigned long ticks)
5056{
5057 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
5058}
5059
79741dd3
MS
5060#endif
5061
49048622
BS
5062/*
5063 * Use precise platform statistics if available:
5064 */
5065#ifdef CONFIG_VIRT_CPU_ACCOUNTING
5066cputime_t task_utime(struct task_struct *p)
5067{
5068 return p->utime;
5069}
5070
5071cputime_t task_stime(struct task_struct *p)
5072{
5073 return p->stime;
5074}
5075#else
5076cputime_t task_utime(struct task_struct *p)
5077{
5078 clock_t utime = cputime_to_clock_t(p->utime),
5079 total = utime + cputime_to_clock_t(p->stime);
5080 u64 temp;
5081
5082 /*
5083 * Use CFS's precise accounting:
5084 */
5085 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5086
5087 if (total) {
5088 temp *= utime;
5089 do_div(temp, total);
5090 }
5091 utime = (clock_t)temp;
5092
5093 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5094 return p->prev_utime;
5095}
5096
5097cputime_t task_stime(struct task_struct *p)
5098{
5099 clock_t stime;
5100
5101 /*
5102 * Use CFS's precise accounting. (we subtract utime from
5103 * the total, to make sure the total observed by userspace
5104 * grows monotonically - apps rely on that):
5105 */
5106 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5107 cputime_to_clock_t(task_utime(p));
5108
5109 if (stime >= 0)
5110 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5111
5112 return p->prev_stime;
5113}
5114#endif
5115
5116inline cputime_t task_gtime(struct task_struct *p)
5117{
5118 return p->gtime;
5119}
5120
7835b98b
CL
5121/*
5122 * This function gets called by the timer code, with HZ frequency.
5123 * We call it with interrupts disabled.
5124 *
5125 * It also gets called by the fork code, when changing the parent's
5126 * timeslices.
5127 */
5128void scheduler_tick(void)
5129{
7835b98b
CL
5130 int cpu = smp_processor_id();
5131 struct rq *rq = cpu_rq(cpu);
dd41f596 5132 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5133
5134 sched_clock_tick();
dd41f596
IM
5135
5136 spin_lock(&rq->lock);
3e51f33f 5137 update_rq_clock(rq);
f1a438d8 5138 update_cpu_load(rq);
fa85ae24 5139 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5140 spin_unlock(&rq->lock);
7835b98b 5141
e220d2dc
PZ
5142 perf_counter_task_tick(curr, cpu);
5143
e418e1c2 5144#ifdef CONFIG_SMP
dd41f596
IM
5145 rq->idle_at_tick = idle_cpu(cpu);
5146 trigger_load_balance(rq, cpu);
e418e1c2 5147#endif
1da177e4
LT
5148}
5149
132380a0 5150notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5151{
5152 if (in_lock_functions(addr)) {
5153 addr = CALLER_ADDR2;
5154 if (in_lock_functions(addr))
5155 addr = CALLER_ADDR3;
5156 }
5157 return addr;
5158}
1da177e4 5159
7e49fcce
SR
5160#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5161 defined(CONFIG_PREEMPT_TRACER))
5162
43627582 5163void __kprobes add_preempt_count(int val)
1da177e4 5164{
6cd8a4bb 5165#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5166 /*
5167 * Underflow?
5168 */
9a11b49a
IM
5169 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5170 return;
6cd8a4bb 5171#endif
1da177e4 5172 preempt_count() += val;
6cd8a4bb 5173#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5174 /*
5175 * Spinlock count overflowing soon?
5176 */
33859f7f
MOS
5177 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5178 PREEMPT_MASK - 10);
6cd8a4bb
SR
5179#endif
5180 if (preempt_count() == val)
5181 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5182}
5183EXPORT_SYMBOL(add_preempt_count);
5184
43627582 5185void __kprobes sub_preempt_count(int val)
1da177e4 5186{
6cd8a4bb 5187#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5188 /*
5189 * Underflow?
5190 */
01e3eb82 5191 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5192 return;
1da177e4
LT
5193 /*
5194 * Is the spinlock portion underflowing?
5195 */
9a11b49a
IM
5196 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5197 !(preempt_count() & PREEMPT_MASK)))
5198 return;
6cd8a4bb 5199#endif
9a11b49a 5200
6cd8a4bb
SR
5201 if (preempt_count() == val)
5202 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5203 preempt_count() -= val;
5204}
5205EXPORT_SYMBOL(sub_preempt_count);
5206
5207#endif
5208
5209/*
dd41f596 5210 * Print scheduling while atomic bug:
1da177e4 5211 */
dd41f596 5212static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5213{
838225b4
SS
5214 struct pt_regs *regs = get_irq_regs();
5215
5216 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5217 prev->comm, prev->pid, preempt_count());
5218
dd41f596 5219 debug_show_held_locks(prev);
e21f5b15 5220 print_modules();
dd41f596
IM
5221 if (irqs_disabled())
5222 print_irqtrace_events(prev);
838225b4
SS
5223
5224 if (regs)
5225 show_regs(regs);
5226 else
5227 dump_stack();
dd41f596 5228}
1da177e4 5229
dd41f596
IM
5230/*
5231 * Various schedule()-time debugging checks and statistics:
5232 */
5233static inline void schedule_debug(struct task_struct *prev)
5234{
1da177e4 5235 /*
41a2d6cf 5236 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5237 * schedule() atomically, we ignore that path for now.
5238 * Otherwise, whine if we are scheduling when we should not be.
5239 */
3f33a7ce 5240 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5241 __schedule_bug(prev);
5242
1da177e4
LT
5243 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5244
2d72376b 5245 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5246#ifdef CONFIG_SCHEDSTATS
5247 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5248 schedstat_inc(this_rq(), bkl_count);
5249 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5250 }
5251#endif
dd41f596
IM
5252}
5253
df1c99d4
MG
5254static void put_prev_task(struct rq *rq, struct task_struct *prev)
5255{
5256 if (prev->state == TASK_RUNNING) {
5257 u64 runtime = prev->se.sum_exec_runtime;
5258
5259 runtime -= prev->se.prev_sum_exec_runtime;
5260 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5261
5262 /*
5263 * In order to avoid avg_overlap growing stale when we are
5264 * indeed overlapping and hence not getting put to sleep, grow
5265 * the avg_overlap on preemption.
5266 *
5267 * We use the average preemption runtime because that
5268 * correlates to the amount of cache footprint a task can
5269 * build up.
5270 */
5271 update_avg(&prev->se.avg_overlap, runtime);
5272 }
5273 prev->sched_class->put_prev_task(rq, prev);
5274}
5275
dd41f596
IM
5276/*
5277 * Pick up the highest-prio task:
5278 */
5279static inline struct task_struct *
b67802ea 5280pick_next_task(struct rq *rq)
dd41f596 5281{
5522d5d5 5282 const struct sched_class *class;
dd41f596 5283 struct task_struct *p;
1da177e4
LT
5284
5285 /*
dd41f596
IM
5286 * Optimization: we know that if all tasks are in
5287 * the fair class we can call that function directly:
1da177e4 5288 */
dd41f596 5289 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5290 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5291 if (likely(p))
5292 return p;
1da177e4
LT
5293 }
5294
dd41f596
IM
5295 class = sched_class_highest;
5296 for ( ; ; ) {
fb8d4724 5297 p = class->pick_next_task(rq);
dd41f596
IM
5298 if (p)
5299 return p;
5300 /*
5301 * Will never be NULL as the idle class always
5302 * returns a non-NULL p:
5303 */
5304 class = class->next;
5305 }
5306}
1da177e4 5307
dd41f596
IM
5308/*
5309 * schedule() is the main scheduler function.
5310 */
ff743345 5311asmlinkage void __sched schedule(void)
dd41f596
IM
5312{
5313 struct task_struct *prev, *next;
67ca7bde 5314 unsigned long *switch_count;
dd41f596 5315 struct rq *rq;
31656519 5316 int cpu;
dd41f596 5317
ff743345
PZ
5318need_resched:
5319 preempt_disable();
dd41f596
IM
5320 cpu = smp_processor_id();
5321 rq = cpu_rq(cpu);
5322 rcu_qsctr_inc(cpu);
5323 prev = rq->curr;
5324 switch_count = &prev->nivcsw;
5325
5326 release_kernel_lock(prev);
5327need_resched_nonpreemptible:
5328
5329 schedule_debug(prev);
1da177e4 5330
31656519 5331 if (sched_feat(HRTICK))
f333fdc9 5332 hrtick_clear(rq);
8f4d37ec 5333
8cd162ce 5334 spin_lock_irq(&rq->lock);
3e51f33f 5335 update_rq_clock(rq);
1e819950 5336 clear_tsk_need_resched(prev);
1da177e4 5337
1da177e4 5338 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5339 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5340 prev->state = TASK_RUNNING;
16882c1e 5341 else
2e1cb74a 5342 deactivate_task(rq, prev, 1);
dd41f596 5343 switch_count = &prev->nvcsw;
1da177e4
LT
5344 }
5345
9a897c5a
SR
5346#ifdef CONFIG_SMP
5347 if (prev->sched_class->pre_schedule)
5348 prev->sched_class->pre_schedule(rq, prev);
5349#endif
f65eda4f 5350
dd41f596 5351 if (unlikely(!rq->nr_running))
1da177e4 5352 idle_balance(cpu, rq);
1da177e4 5353
df1c99d4 5354 put_prev_task(rq, prev);
b67802ea 5355 next = pick_next_task(rq);
1da177e4 5356
1da177e4 5357 if (likely(prev != next)) {
673a90a1 5358 sched_info_switch(prev, next);
564c2b21 5359 perf_counter_task_sched_out(prev, next, cpu);
673a90a1 5360
1da177e4
LT
5361 rq->nr_switches++;
5362 rq->curr = next;
5363 ++*switch_count;
5364
dd41f596 5365 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5366 /*
5367 * the context switch might have flipped the stack from under
5368 * us, hence refresh the local variables.
5369 */
5370 cpu = smp_processor_id();
5371 rq = cpu_rq(cpu);
1da177e4
LT
5372 } else
5373 spin_unlock_irq(&rq->lock);
5374
8f4d37ec 5375 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5376 goto need_resched_nonpreemptible;
8f4d37ec 5377
1da177e4 5378 preempt_enable_no_resched();
ff743345 5379 if (need_resched())
1da177e4
LT
5380 goto need_resched;
5381}
1da177e4
LT
5382EXPORT_SYMBOL(schedule);
5383
0d66bf6d
PZ
5384#ifdef CONFIG_SMP
5385/*
5386 * Look out! "owner" is an entirely speculative pointer
5387 * access and not reliable.
5388 */
5389int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5390{
5391 unsigned int cpu;
5392 struct rq *rq;
5393
5394 if (!sched_feat(OWNER_SPIN))
5395 return 0;
5396
5397#ifdef CONFIG_DEBUG_PAGEALLOC
5398 /*
5399 * Need to access the cpu field knowing that
5400 * DEBUG_PAGEALLOC could have unmapped it if
5401 * the mutex owner just released it and exited.
5402 */
5403 if (probe_kernel_address(&owner->cpu, cpu))
5404 goto out;
5405#else
5406 cpu = owner->cpu;
5407#endif
5408
5409 /*
5410 * Even if the access succeeded (likely case),
5411 * the cpu field may no longer be valid.
5412 */
5413 if (cpu >= nr_cpumask_bits)
5414 goto out;
5415
5416 /*
5417 * We need to validate that we can do a
5418 * get_cpu() and that we have the percpu area.
5419 */
5420 if (!cpu_online(cpu))
5421 goto out;
5422
5423 rq = cpu_rq(cpu);
5424
5425 for (;;) {
5426 /*
5427 * Owner changed, break to re-assess state.
5428 */
5429 if (lock->owner != owner)
5430 break;
5431
5432 /*
5433 * Is that owner really running on that cpu?
5434 */
5435 if (task_thread_info(rq->curr) != owner || need_resched())
5436 return 0;
5437
5438 cpu_relax();
5439 }
5440out:
5441 return 1;
5442}
5443#endif
5444
1da177e4
LT
5445#ifdef CONFIG_PREEMPT
5446/*
2ed6e34f 5447 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5448 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5449 * occur there and call schedule directly.
5450 */
5451asmlinkage void __sched preempt_schedule(void)
5452{
5453 struct thread_info *ti = current_thread_info();
6478d880 5454
1da177e4
LT
5455 /*
5456 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5457 * we do not want to preempt the current task. Just return..
1da177e4 5458 */
beed33a8 5459 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5460 return;
5461
3a5c359a
AK
5462 do {
5463 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5464 schedule();
3a5c359a 5465 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5466
3a5c359a
AK
5467 /*
5468 * Check again in case we missed a preemption opportunity
5469 * between schedule and now.
5470 */
5471 barrier();
5ed0cec0 5472 } while (need_resched());
1da177e4 5473}
1da177e4
LT
5474EXPORT_SYMBOL(preempt_schedule);
5475
5476/*
2ed6e34f 5477 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5478 * off of irq context.
5479 * Note, that this is called and return with irqs disabled. This will
5480 * protect us against recursive calling from irq.
5481 */
5482asmlinkage void __sched preempt_schedule_irq(void)
5483{
5484 struct thread_info *ti = current_thread_info();
6478d880 5485
2ed6e34f 5486 /* Catch callers which need to be fixed */
1da177e4
LT
5487 BUG_ON(ti->preempt_count || !irqs_disabled());
5488
3a5c359a
AK
5489 do {
5490 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5491 local_irq_enable();
5492 schedule();
5493 local_irq_disable();
3a5c359a 5494 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5495
3a5c359a
AK
5496 /*
5497 * Check again in case we missed a preemption opportunity
5498 * between schedule and now.
5499 */
5500 barrier();
5ed0cec0 5501 } while (need_resched());
1da177e4
LT
5502}
5503
5504#endif /* CONFIG_PREEMPT */
5505
95cdf3b7
IM
5506int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5507 void *key)
1da177e4 5508{
48f24c4d 5509 return try_to_wake_up(curr->private, mode, sync);
1da177e4 5510}
1da177e4
LT
5511EXPORT_SYMBOL(default_wake_function);
5512
5513/*
41a2d6cf
IM
5514 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5515 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5516 * number) then we wake all the non-exclusive tasks and one exclusive task.
5517 *
5518 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5519 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5520 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5521 */
78ddb08f 5522static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
777c6c5f 5523 int nr_exclusive, int sync, void *key)
1da177e4 5524{
2e45874c 5525 wait_queue_t *curr, *next;
1da177e4 5526
2e45874c 5527 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5528 unsigned flags = curr->flags;
5529
1da177e4 5530 if (curr->func(curr, mode, sync, key) &&
48f24c4d 5531 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5532 break;
5533 }
5534}
5535
5536/**
5537 * __wake_up - wake up threads blocked on a waitqueue.
5538 * @q: the waitqueue
5539 * @mode: which threads
5540 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5541 * @key: is directly passed to the wakeup function
50fa610a
DH
5542 *
5543 * It may be assumed that this function implies a write memory barrier before
5544 * changing the task state if and only if any tasks are woken up.
1da177e4 5545 */
7ad5b3a5 5546void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5547 int nr_exclusive, void *key)
1da177e4
LT
5548{
5549 unsigned long flags;
5550
5551 spin_lock_irqsave(&q->lock, flags);
5552 __wake_up_common(q, mode, nr_exclusive, 0, key);
5553 spin_unlock_irqrestore(&q->lock, flags);
5554}
1da177e4
LT
5555EXPORT_SYMBOL(__wake_up);
5556
5557/*
5558 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5559 */
7ad5b3a5 5560void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5561{
5562 __wake_up_common(q, mode, 1, 0, NULL);
5563}
5564
4ede816a
DL
5565void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5566{
5567 __wake_up_common(q, mode, 1, 0, key);
5568}
5569
1da177e4 5570/**
4ede816a 5571 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5572 * @q: the waitqueue
5573 * @mode: which threads
5574 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5575 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5576 *
5577 * The sync wakeup differs that the waker knows that it will schedule
5578 * away soon, so while the target thread will be woken up, it will not
5579 * be migrated to another CPU - ie. the two threads are 'synchronized'
5580 * with each other. This can prevent needless bouncing between CPUs.
5581 *
5582 * On UP it can prevent extra preemption.
50fa610a
DH
5583 *
5584 * It may be assumed that this function implies a write memory barrier before
5585 * changing the task state if and only if any tasks are woken up.
1da177e4 5586 */
4ede816a
DL
5587void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5588 int nr_exclusive, void *key)
1da177e4
LT
5589{
5590 unsigned long flags;
5591 int sync = 1;
5592
5593 if (unlikely(!q))
5594 return;
5595
5596 if (unlikely(!nr_exclusive))
5597 sync = 0;
5598
5599 spin_lock_irqsave(&q->lock, flags);
4ede816a 5600 __wake_up_common(q, mode, nr_exclusive, sync, key);
1da177e4
LT
5601 spin_unlock_irqrestore(&q->lock, flags);
5602}
4ede816a
DL
5603EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5604
5605/*
5606 * __wake_up_sync - see __wake_up_sync_key()
5607 */
5608void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5609{
5610 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5611}
1da177e4
LT
5612EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5613
65eb3dc6
KD
5614/**
5615 * complete: - signals a single thread waiting on this completion
5616 * @x: holds the state of this particular completion
5617 *
5618 * This will wake up a single thread waiting on this completion. Threads will be
5619 * awakened in the same order in which they were queued.
5620 *
5621 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
5622 *
5623 * It may be assumed that this function implies a write memory barrier before
5624 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5625 */
b15136e9 5626void complete(struct completion *x)
1da177e4
LT
5627{
5628 unsigned long flags;
5629
5630 spin_lock_irqsave(&x->wait.lock, flags);
5631 x->done++;
d9514f6c 5632 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5633 spin_unlock_irqrestore(&x->wait.lock, flags);
5634}
5635EXPORT_SYMBOL(complete);
5636
65eb3dc6
KD
5637/**
5638 * complete_all: - signals all threads waiting on this completion
5639 * @x: holds the state of this particular completion
5640 *
5641 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
5642 *
5643 * It may be assumed that this function implies a write memory barrier before
5644 * changing the task state if and only if any tasks are woken up.
65eb3dc6 5645 */
b15136e9 5646void complete_all(struct completion *x)
1da177e4
LT
5647{
5648 unsigned long flags;
5649
5650 spin_lock_irqsave(&x->wait.lock, flags);
5651 x->done += UINT_MAX/2;
d9514f6c 5652 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5653 spin_unlock_irqrestore(&x->wait.lock, flags);
5654}
5655EXPORT_SYMBOL(complete_all);
5656
8cbbe86d
AK
5657static inline long __sched
5658do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5659{
1da177e4
LT
5660 if (!x->done) {
5661 DECLARE_WAITQUEUE(wait, current);
5662
5663 wait.flags |= WQ_FLAG_EXCLUSIVE;
5664 __add_wait_queue_tail(&x->wait, &wait);
5665 do {
94d3d824 5666 if (signal_pending_state(state, current)) {
ea71a546
ON
5667 timeout = -ERESTARTSYS;
5668 break;
8cbbe86d
AK
5669 }
5670 __set_current_state(state);
1da177e4
LT
5671 spin_unlock_irq(&x->wait.lock);
5672 timeout = schedule_timeout(timeout);
5673 spin_lock_irq(&x->wait.lock);
ea71a546 5674 } while (!x->done && timeout);
1da177e4 5675 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5676 if (!x->done)
5677 return timeout;
1da177e4
LT
5678 }
5679 x->done--;
ea71a546 5680 return timeout ?: 1;
1da177e4 5681}
1da177e4 5682
8cbbe86d
AK
5683static long __sched
5684wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5685{
1da177e4
LT
5686 might_sleep();
5687
5688 spin_lock_irq(&x->wait.lock);
8cbbe86d 5689 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5690 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5691 return timeout;
5692}
1da177e4 5693
65eb3dc6
KD
5694/**
5695 * wait_for_completion: - waits for completion of a task
5696 * @x: holds the state of this particular completion
5697 *
5698 * This waits to be signaled for completion of a specific task. It is NOT
5699 * interruptible and there is no timeout.
5700 *
5701 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5702 * and interrupt capability. Also see complete().
5703 */
b15136e9 5704void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5705{
5706 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5707}
8cbbe86d 5708EXPORT_SYMBOL(wait_for_completion);
1da177e4 5709
65eb3dc6
KD
5710/**
5711 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5712 * @x: holds the state of this particular completion
5713 * @timeout: timeout value in jiffies
5714 *
5715 * This waits for either a completion of a specific task to be signaled or for a
5716 * specified timeout to expire. The timeout is in jiffies. It is not
5717 * interruptible.
5718 */
b15136e9 5719unsigned long __sched
8cbbe86d 5720wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5721{
8cbbe86d 5722 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5723}
8cbbe86d 5724EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5725
65eb3dc6
KD
5726/**
5727 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5728 * @x: holds the state of this particular completion
5729 *
5730 * This waits for completion of a specific task to be signaled. It is
5731 * interruptible.
5732 */
8cbbe86d 5733int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5734{
51e97990
AK
5735 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5736 if (t == -ERESTARTSYS)
5737 return t;
5738 return 0;
0fec171c 5739}
8cbbe86d 5740EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5741
65eb3dc6
KD
5742/**
5743 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5744 * @x: holds the state of this particular completion
5745 * @timeout: timeout value in jiffies
5746 *
5747 * This waits for either a completion of a specific task to be signaled or for a
5748 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5749 */
b15136e9 5750unsigned long __sched
8cbbe86d
AK
5751wait_for_completion_interruptible_timeout(struct completion *x,
5752 unsigned long timeout)
0fec171c 5753{
8cbbe86d 5754 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5755}
8cbbe86d 5756EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5757
65eb3dc6
KD
5758/**
5759 * wait_for_completion_killable: - waits for completion of a task (killable)
5760 * @x: holds the state of this particular completion
5761 *
5762 * This waits to be signaled for completion of a specific task. It can be
5763 * interrupted by a kill signal.
5764 */
009e577e
MW
5765int __sched wait_for_completion_killable(struct completion *x)
5766{
5767 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5768 if (t == -ERESTARTSYS)
5769 return t;
5770 return 0;
5771}
5772EXPORT_SYMBOL(wait_for_completion_killable);
5773
be4de352
DC
5774/**
5775 * try_wait_for_completion - try to decrement a completion without blocking
5776 * @x: completion structure
5777 *
5778 * Returns: 0 if a decrement cannot be done without blocking
5779 * 1 if a decrement succeeded.
5780 *
5781 * If a completion is being used as a counting completion,
5782 * attempt to decrement the counter without blocking. This
5783 * enables us to avoid waiting if the resource the completion
5784 * is protecting is not available.
5785 */
5786bool try_wait_for_completion(struct completion *x)
5787{
5788 int ret = 1;
5789
5790 spin_lock_irq(&x->wait.lock);
5791 if (!x->done)
5792 ret = 0;
5793 else
5794 x->done--;
5795 spin_unlock_irq(&x->wait.lock);
5796 return ret;
5797}
5798EXPORT_SYMBOL(try_wait_for_completion);
5799
5800/**
5801 * completion_done - Test to see if a completion has any waiters
5802 * @x: completion structure
5803 *
5804 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5805 * 1 if there are no waiters.
5806 *
5807 */
5808bool completion_done(struct completion *x)
5809{
5810 int ret = 1;
5811
5812 spin_lock_irq(&x->wait.lock);
5813 if (!x->done)
5814 ret = 0;
5815 spin_unlock_irq(&x->wait.lock);
5816 return ret;
5817}
5818EXPORT_SYMBOL(completion_done);
5819
8cbbe86d
AK
5820static long __sched
5821sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5822{
0fec171c
IM
5823 unsigned long flags;
5824 wait_queue_t wait;
5825
5826 init_waitqueue_entry(&wait, current);
1da177e4 5827
8cbbe86d 5828 __set_current_state(state);
1da177e4 5829
8cbbe86d
AK
5830 spin_lock_irqsave(&q->lock, flags);
5831 __add_wait_queue(q, &wait);
5832 spin_unlock(&q->lock);
5833 timeout = schedule_timeout(timeout);
5834 spin_lock_irq(&q->lock);
5835 __remove_wait_queue(q, &wait);
5836 spin_unlock_irqrestore(&q->lock, flags);
5837
5838 return timeout;
5839}
5840
5841void __sched interruptible_sleep_on(wait_queue_head_t *q)
5842{
5843 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5844}
1da177e4
LT
5845EXPORT_SYMBOL(interruptible_sleep_on);
5846
0fec171c 5847long __sched
95cdf3b7 5848interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5849{
8cbbe86d 5850 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5851}
1da177e4
LT
5852EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5853
0fec171c 5854void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5855{
8cbbe86d 5856 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5857}
1da177e4
LT
5858EXPORT_SYMBOL(sleep_on);
5859
0fec171c 5860long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5861{
8cbbe86d 5862 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5863}
1da177e4
LT
5864EXPORT_SYMBOL(sleep_on_timeout);
5865
b29739f9
IM
5866#ifdef CONFIG_RT_MUTEXES
5867
5868/*
5869 * rt_mutex_setprio - set the current priority of a task
5870 * @p: task
5871 * @prio: prio value (kernel-internal form)
5872 *
5873 * This function changes the 'effective' priority of a task. It does
5874 * not touch ->normal_prio like __setscheduler().
5875 *
5876 * Used by the rt_mutex code to implement priority inheritance logic.
5877 */
36c8b586 5878void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5879{
5880 unsigned long flags;
83b699ed 5881 int oldprio, on_rq, running;
70b97a7f 5882 struct rq *rq;
cb469845 5883 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5884
5885 BUG_ON(prio < 0 || prio > MAX_PRIO);
5886
5887 rq = task_rq_lock(p, &flags);
a8e504d2 5888 update_rq_clock(rq);
b29739f9 5889
d5f9f942 5890 oldprio = p->prio;
dd41f596 5891 on_rq = p->se.on_rq;
051a1d1a 5892 running = task_current(rq, p);
0e1f3483 5893 if (on_rq)
69be72c1 5894 dequeue_task(rq, p, 0);
0e1f3483
HS
5895 if (running)
5896 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5897
5898 if (rt_prio(prio))
5899 p->sched_class = &rt_sched_class;
5900 else
5901 p->sched_class = &fair_sched_class;
5902
b29739f9
IM
5903 p->prio = prio;
5904
0e1f3483
HS
5905 if (running)
5906 p->sched_class->set_curr_task(rq);
dd41f596 5907 if (on_rq) {
8159f87e 5908 enqueue_task(rq, p, 0);
cb469845
SR
5909
5910 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5911 }
5912 task_rq_unlock(rq, &flags);
5913}
5914
5915#endif
5916
36c8b586 5917void set_user_nice(struct task_struct *p, long nice)
1da177e4 5918{
dd41f596 5919 int old_prio, delta, on_rq;
1da177e4 5920 unsigned long flags;
70b97a7f 5921 struct rq *rq;
1da177e4
LT
5922
5923 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5924 return;
5925 /*
5926 * We have to be careful, if called from sys_setpriority(),
5927 * the task might be in the middle of scheduling on another CPU.
5928 */
5929 rq = task_rq_lock(p, &flags);
a8e504d2 5930 update_rq_clock(rq);
1da177e4
LT
5931 /*
5932 * The RT priorities are set via sched_setscheduler(), but we still
5933 * allow the 'normal' nice value to be set - but as expected
5934 * it wont have any effect on scheduling until the task is
dd41f596 5935 * SCHED_FIFO/SCHED_RR:
1da177e4 5936 */
e05606d3 5937 if (task_has_rt_policy(p)) {
1da177e4
LT
5938 p->static_prio = NICE_TO_PRIO(nice);
5939 goto out_unlock;
5940 }
dd41f596 5941 on_rq = p->se.on_rq;
c09595f6 5942 if (on_rq)
69be72c1 5943 dequeue_task(rq, p, 0);
1da177e4 5944
1da177e4 5945 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5946 set_load_weight(p);
b29739f9
IM
5947 old_prio = p->prio;
5948 p->prio = effective_prio(p);
5949 delta = p->prio - old_prio;
1da177e4 5950
dd41f596 5951 if (on_rq) {
8159f87e 5952 enqueue_task(rq, p, 0);
1da177e4 5953 /*
d5f9f942
AM
5954 * If the task increased its priority or is running and
5955 * lowered its priority, then reschedule its CPU:
1da177e4 5956 */
d5f9f942 5957 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5958 resched_task(rq->curr);
5959 }
5960out_unlock:
5961 task_rq_unlock(rq, &flags);
5962}
1da177e4
LT
5963EXPORT_SYMBOL(set_user_nice);
5964
e43379f1
MM
5965/*
5966 * can_nice - check if a task can reduce its nice value
5967 * @p: task
5968 * @nice: nice value
5969 */
36c8b586 5970int can_nice(const struct task_struct *p, const int nice)
e43379f1 5971{
024f4747
MM
5972 /* convert nice value [19,-20] to rlimit style value [1,40] */
5973 int nice_rlim = 20 - nice;
48f24c4d 5974
e43379f1
MM
5975 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5976 capable(CAP_SYS_NICE));
5977}
5978
1da177e4
LT
5979#ifdef __ARCH_WANT_SYS_NICE
5980
5981/*
5982 * sys_nice - change the priority of the current process.
5983 * @increment: priority increment
5984 *
5985 * sys_setpriority is a more generic, but much slower function that
5986 * does similar things.
5987 */
5add95d4 5988SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5989{
48f24c4d 5990 long nice, retval;
1da177e4
LT
5991
5992 /*
5993 * Setpriority might change our priority at the same moment.
5994 * We don't have to worry. Conceptually one call occurs first
5995 * and we have a single winner.
5996 */
e43379f1
MM
5997 if (increment < -40)
5998 increment = -40;
1da177e4
LT
5999 if (increment > 40)
6000 increment = 40;
6001
2b8f836f 6002 nice = TASK_NICE(current) + increment;
1da177e4
LT
6003 if (nice < -20)
6004 nice = -20;
6005 if (nice > 19)
6006 nice = 19;
6007
e43379f1
MM
6008 if (increment < 0 && !can_nice(current, nice))
6009 return -EPERM;
6010
1da177e4
LT
6011 retval = security_task_setnice(current, nice);
6012 if (retval)
6013 return retval;
6014
6015 set_user_nice(current, nice);
6016 return 0;
6017}
6018
6019#endif
6020
6021/**
6022 * task_prio - return the priority value of a given task.
6023 * @p: the task in question.
6024 *
6025 * This is the priority value as seen by users in /proc.
6026 * RT tasks are offset by -200. Normal tasks are centered
6027 * around 0, value goes from -16 to +15.
6028 */
36c8b586 6029int task_prio(const struct task_struct *p)
1da177e4
LT
6030{
6031 return p->prio - MAX_RT_PRIO;
6032}
6033
6034/**
6035 * task_nice - return the nice value of a given task.
6036 * @p: the task in question.
6037 */
36c8b586 6038int task_nice(const struct task_struct *p)
1da177e4
LT
6039{
6040 return TASK_NICE(p);
6041}
150d8bed 6042EXPORT_SYMBOL(task_nice);
1da177e4
LT
6043
6044/**
6045 * idle_cpu - is a given cpu idle currently?
6046 * @cpu: the processor in question.
6047 */
6048int idle_cpu(int cpu)
6049{
6050 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6051}
6052
1da177e4
LT
6053/**
6054 * idle_task - return the idle task for a given cpu.
6055 * @cpu: the processor in question.
6056 */
36c8b586 6057struct task_struct *idle_task(int cpu)
1da177e4
LT
6058{
6059 return cpu_rq(cpu)->idle;
6060}
6061
6062/**
6063 * find_process_by_pid - find a process with a matching PID value.
6064 * @pid: the pid in question.
6065 */
a9957449 6066static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 6067{
228ebcbe 6068 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
6069}
6070
6071/* Actually do priority change: must hold rq lock. */
dd41f596
IM
6072static void
6073__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 6074{
dd41f596 6075 BUG_ON(p->se.on_rq);
48f24c4d 6076
1da177e4 6077 p->policy = policy;
dd41f596
IM
6078 switch (p->policy) {
6079 case SCHED_NORMAL:
6080 case SCHED_BATCH:
6081 case SCHED_IDLE:
6082 p->sched_class = &fair_sched_class;
6083 break;
6084 case SCHED_FIFO:
6085 case SCHED_RR:
6086 p->sched_class = &rt_sched_class;
6087 break;
6088 }
6089
1da177e4 6090 p->rt_priority = prio;
b29739f9
IM
6091 p->normal_prio = normal_prio(p);
6092 /* we are holding p->pi_lock already */
6093 p->prio = rt_mutex_getprio(p);
2dd73a4f 6094 set_load_weight(p);
1da177e4
LT
6095}
6096
c69e8d9c
DH
6097/*
6098 * check the target process has a UID that matches the current process's
6099 */
6100static bool check_same_owner(struct task_struct *p)
6101{
6102 const struct cred *cred = current_cred(), *pcred;
6103 bool match;
6104
6105 rcu_read_lock();
6106 pcred = __task_cred(p);
6107 match = (cred->euid == pcred->euid ||
6108 cred->euid == pcred->uid);
6109 rcu_read_unlock();
6110 return match;
6111}
6112
961ccddd
RR
6113static int __sched_setscheduler(struct task_struct *p, int policy,
6114 struct sched_param *param, bool user)
1da177e4 6115{
83b699ed 6116 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 6117 unsigned long flags;
cb469845 6118 const struct sched_class *prev_class = p->sched_class;
70b97a7f 6119 struct rq *rq;
ca94c442 6120 int reset_on_fork;
1da177e4 6121
66e5393a
SR
6122 /* may grab non-irq protected spin_locks */
6123 BUG_ON(in_interrupt());
1da177e4
LT
6124recheck:
6125 /* double check policy once rq lock held */
ca94c442
LP
6126 if (policy < 0) {
6127 reset_on_fork = p->sched_reset_on_fork;
1da177e4 6128 policy = oldpolicy = p->policy;
ca94c442
LP
6129 } else {
6130 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6131 policy &= ~SCHED_RESET_ON_FORK;
6132
6133 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6134 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6135 policy != SCHED_IDLE)
6136 return -EINVAL;
6137 }
6138
1da177e4
LT
6139 /*
6140 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6141 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6142 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6143 */
6144 if (param->sched_priority < 0 ||
95cdf3b7 6145 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6146 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6147 return -EINVAL;
e05606d3 6148 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6149 return -EINVAL;
6150
37e4ab3f
OC
6151 /*
6152 * Allow unprivileged RT tasks to decrease priority:
6153 */
961ccddd 6154 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6155 if (rt_policy(policy)) {
8dc3e909 6156 unsigned long rlim_rtprio;
8dc3e909
ON
6157
6158 if (!lock_task_sighand(p, &flags))
6159 return -ESRCH;
6160 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6161 unlock_task_sighand(p, &flags);
6162
6163 /* can't set/change the rt policy */
6164 if (policy != p->policy && !rlim_rtprio)
6165 return -EPERM;
6166
6167 /* can't increase priority */
6168 if (param->sched_priority > p->rt_priority &&
6169 param->sched_priority > rlim_rtprio)
6170 return -EPERM;
6171 }
dd41f596
IM
6172 /*
6173 * Like positive nice levels, dont allow tasks to
6174 * move out of SCHED_IDLE either:
6175 */
6176 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6177 return -EPERM;
5fe1d75f 6178
37e4ab3f 6179 /* can't change other user's priorities */
c69e8d9c 6180 if (!check_same_owner(p))
37e4ab3f 6181 return -EPERM;
ca94c442
LP
6182
6183 /* Normal users shall not reset the sched_reset_on_fork flag */
6184 if (p->sched_reset_on_fork && !reset_on_fork)
6185 return -EPERM;
37e4ab3f 6186 }
1da177e4 6187
725aad24 6188 if (user) {
b68aa230 6189#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6190 /*
6191 * Do not allow realtime tasks into groups that have no runtime
6192 * assigned.
6193 */
9a7e0b18
PZ
6194 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6195 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6196 return -EPERM;
b68aa230
PZ
6197#endif
6198
725aad24
JF
6199 retval = security_task_setscheduler(p, policy, param);
6200 if (retval)
6201 return retval;
6202 }
6203
b29739f9
IM
6204 /*
6205 * make sure no PI-waiters arrive (or leave) while we are
6206 * changing the priority of the task:
6207 */
6208 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6209 /*
6210 * To be able to change p->policy safely, the apropriate
6211 * runqueue lock must be held.
6212 */
b29739f9 6213 rq = __task_rq_lock(p);
1da177e4
LT
6214 /* recheck policy now with rq lock held */
6215 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6216 policy = oldpolicy = -1;
b29739f9
IM
6217 __task_rq_unlock(rq);
6218 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6219 goto recheck;
6220 }
2daa3577 6221 update_rq_clock(rq);
dd41f596 6222 on_rq = p->se.on_rq;
051a1d1a 6223 running = task_current(rq, p);
0e1f3483 6224 if (on_rq)
2e1cb74a 6225 deactivate_task(rq, p, 0);
0e1f3483
HS
6226 if (running)
6227 p->sched_class->put_prev_task(rq, p);
f6b53205 6228
ca94c442
LP
6229 p->sched_reset_on_fork = reset_on_fork;
6230
1da177e4 6231 oldprio = p->prio;
dd41f596 6232 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6233
0e1f3483
HS
6234 if (running)
6235 p->sched_class->set_curr_task(rq);
dd41f596
IM
6236 if (on_rq) {
6237 activate_task(rq, p, 0);
cb469845
SR
6238
6239 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6240 }
b29739f9
IM
6241 __task_rq_unlock(rq);
6242 spin_unlock_irqrestore(&p->pi_lock, flags);
6243
95e02ca9
TG
6244 rt_mutex_adjust_pi(p);
6245
1da177e4
LT
6246 return 0;
6247}
961ccddd
RR
6248
6249/**
6250 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6251 * @p: the task in question.
6252 * @policy: new policy.
6253 * @param: structure containing the new RT priority.
6254 *
6255 * NOTE that the task may be already dead.
6256 */
6257int sched_setscheduler(struct task_struct *p, int policy,
6258 struct sched_param *param)
6259{
6260 return __sched_setscheduler(p, policy, param, true);
6261}
1da177e4
LT
6262EXPORT_SYMBOL_GPL(sched_setscheduler);
6263
961ccddd
RR
6264/**
6265 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6266 * @p: the task in question.
6267 * @policy: new policy.
6268 * @param: structure containing the new RT priority.
6269 *
6270 * Just like sched_setscheduler, only don't bother checking if the
6271 * current context has permission. For example, this is needed in
6272 * stop_machine(): we create temporary high priority worker threads,
6273 * but our caller might not have that capability.
6274 */
6275int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6276 struct sched_param *param)
6277{
6278 return __sched_setscheduler(p, policy, param, false);
6279}
6280
95cdf3b7
IM
6281static int
6282do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6283{
1da177e4
LT
6284 struct sched_param lparam;
6285 struct task_struct *p;
36c8b586 6286 int retval;
1da177e4
LT
6287
6288 if (!param || pid < 0)
6289 return -EINVAL;
6290 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6291 return -EFAULT;
5fe1d75f
ON
6292
6293 rcu_read_lock();
6294 retval = -ESRCH;
1da177e4 6295 p = find_process_by_pid(pid);
5fe1d75f
ON
6296 if (p != NULL)
6297 retval = sched_setscheduler(p, policy, &lparam);
6298 rcu_read_unlock();
36c8b586 6299
1da177e4
LT
6300 return retval;
6301}
6302
6303/**
6304 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6305 * @pid: the pid in question.
6306 * @policy: new policy.
6307 * @param: structure containing the new RT priority.
6308 */
5add95d4
HC
6309SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6310 struct sched_param __user *, param)
1da177e4 6311{
c21761f1
JB
6312 /* negative values for policy are not valid */
6313 if (policy < 0)
6314 return -EINVAL;
6315
1da177e4
LT
6316 return do_sched_setscheduler(pid, policy, param);
6317}
6318
6319/**
6320 * sys_sched_setparam - set/change the RT priority of a thread
6321 * @pid: the pid in question.
6322 * @param: structure containing the new RT priority.
6323 */
5add95d4 6324SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6325{
6326 return do_sched_setscheduler(pid, -1, param);
6327}
6328
6329/**
6330 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6331 * @pid: the pid in question.
6332 */
5add95d4 6333SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6334{
36c8b586 6335 struct task_struct *p;
3a5c359a 6336 int retval;
1da177e4
LT
6337
6338 if (pid < 0)
3a5c359a 6339 return -EINVAL;
1da177e4
LT
6340
6341 retval = -ESRCH;
6342 read_lock(&tasklist_lock);
6343 p = find_process_by_pid(pid);
6344 if (p) {
6345 retval = security_task_getscheduler(p);
6346 if (!retval)
ca94c442
LP
6347 retval = p->policy
6348 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4
LT
6349 }
6350 read_unlock(&tasklist_lock);
1da177e4
LT
6351 return retval;
6352}
6353
6354/**
ca94c442 6355 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
6356 * @pid: the pid in question.
6357 * @param: structure containing the RT priority.
6358 */
5add95d4 6359SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6360{
6361 struct sched_param lp;
36c8b586 6362 struct task_struct *p;
3a5c359a 6363 int retval;
1da177e4
LT
6364
6365 if (!param || pid < 0)
3a5c359a 6366 return -EINVAL;
1da177e4
LT
6367
6368 read_lock(&tasklist_lock);
6369 p = find_process_by_pid(pid);
6370 retval = -ESRCH;
6371 if (!p)
6372 goto out_unlock;
6373
6374 retval = security_task_getscheduler(p);
6375 if (retval)
6376 goto out_unlock;
6377
6378 lp.sched_priority = p->rt_priority;
6379 read_unlock(&tasklist_lock);
6380
6381 /*
6382 * This one might sleep, we cannot do it with a spinlock held ...
6383 */
6384 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6385
1da177e4
LT
6386 return retval;
6387
6388out_unlock:
6389 read_unlock(&tasklist_lock);
6390 return retval;
6391}
6392
96f874e2 6393long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6394{
5a16f3d3 6395 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6396 struct task_struct *p;
6397 int retval;
1da177e4 6398
95402b38 6399 get_online_cpus();
1da177e4
LT
6400 read_lock(&tasklist_lock);
6401
6402 p = find_process_by_pid(pid);
6403 if (!p) {
6404 read_unlock(&tasklist_lock);
95402b38 6405 put_online_cpus();
1da177e4
LT
6406 return -ESRCH;
6407 }
6408
6409 /*
6410 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6411 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6412 * usage count and then drop tasklist_lock.
6413 */
6414 get_task_struct(p);
6415 read_unlock(&tasklist_lock);
6416
5a16f3d3
RR
6417 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6418 retval = -ENOMEM;
6419 goto out_put_task;
6420 }
6421 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6422 retval = -ENOMEM;
6423 goto out_free_cpus_allowed;
6424 }
1da177e4 6425 retval = -EPERM;
c69e8d9c 6426 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6427 goto out_unlock;
6428
e7834f8f
DQ
6429 retval = security_task_setscheduler(p, 0, NULL);
6430 if (retval)
6431 goto out_unlock;
6432
5a16f3d3
RR
6433 cpuset_cpus_allowed(p, cpus_allowed);
6434 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6435 again:
5a16f3d3 6436 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6437
8707d8b8 6438 if (!retval) {
5a16f3d3
RR
6439 cpuset_cpus_allowed(p, cpus_allowed);
6440 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6441 /*
6442 * We must have raced with a concurrent cpuset
6443 * update. Just reset the cpus_allowed to the
6444 * cpuset's cpus_allowed
6445 */
5a16f3d3 6446 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6447 goto again;
6448 }
6449 }
1da177e4 6450out_unlock:
5a16f3d3
RR
6451 free_cpumask_var(new_mask);
6452out_free_cpus_allowed:
6453 free_cpumask_var(cpus_allowed);
6454out_put_task:
1da177e4 6455 put_task_struct(p);
95402b38 6456 put_online_cpus();
1da177e4
LT
6457 return retval;
6458}
6459
6460static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6461 struct cpumask *new_mask)
1da177e4 6462{
96f874e2
RR
6463 if (len < cpumask_size())
6464 cpumask_clear(new_mask);
6465 else if (len > cpumask_size())
6466 len = cpumask_size();
6467
1da177e4
LT
6468 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6469}
6470
6471/**
6472 * sys_sched_setaffinity - set the cpu affinity of a process
6473 * @pid: pid of the process
6474 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6475 * @user_mask_ptr: user-space pointer to the new cpu mask
6476 */
5add95d4
HC
6477SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6478 unsigned long __user *, user_mask_ptr)
1da177e4 6479{
5a16f3d3 6480 cpumask_var_t new_mask;
1da177e4
LT
6481 int retval;
6482
5a16f3d3
RR
6483 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6484 return -ENOMEM;
1da177e4 6485
5a16f3d3
RR
6486 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6487 if (retval == 0)
6488 retval = sched_setaffinity(pid, new_mask);
6489 free_cpumask_var(new_mask);
6490 return retval;
1da177e4
LT
6491}
6492
96f874e2 6493long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6494{
36c8b586 6495 struct task_struct *p;
1da177e4 6496 int retval;
1da177e4 6497
95402b38 6498 get_online_cpus();
1da177e4
LT
6499 read_lock(&tasklist_lock);
6500
6501 retval = -ESRCH;
6502 p = find_process_by_pid(pid);
6503 if (!p)
6504 goto out_unlock;
6505
e7834f8f
DQ
6506 retval = security_task_getscheduler(p);
6507 if (retval)
6508 goto out_unlock;
6509
96f874e2 6510 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6511
6512out_unlock:
6513 read_unlock(&tasklist_lock);
95402b38 6514 put_online_cpus();
1da177e4 6515
9531b62f 6516 return retval;
1da177e4
LT
6517}
6518
6519/**
6520 * sys_sched_getaffinity - get the cpu affinity of a process
6521 * @pid: pid of the process
6522 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6523 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6524 */
5add95d4
HC
6525SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6526 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6527{
6528 int ret;
f17c8607 6529 cpumask_var_t mask;
1da177e4 6530
f17c8607 6531 if (len < cpumask_size())
1da177e4
LT
6532 return -EINVAL;
6533
f17c8607
RR
6534 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6535 return -ENOMEM;
1da177e4 6536
f17c8607
RR
6537 ret = sched_getaffinity(pid, mask);
6538 if (ret == 0) {
6539 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6540 ret = -EFAULT;
6541 else
6542 ret = cpumask_size();
6543 }
6544 free_cpumask_var(mask);
1da177e4 6545
f17c8607 6546 return ret;
1da177e4
LT
6547}
6548
6549/**
6550 * sys_sched_yield - yield the current processor to other threads.
6551 *
dd41f596
IM
6552 * This function yields the current CPU to other tasks. If there are no
6553 * other threads running on this CPU then this function will return.
1da177e4 6554 */
5add95d4 6555SYSCALL_DEFINE0(sched_yield)
1da177e4 6556{
70b97a7f 6557 struct rq *rq = this_rq_lock();
1da177e4 6558
2d72376b 6559 schedstat_inc(rq, yld_count);
4530d7ab 6560 current->sched_class->yield_task(rq);
1da177e4
LT
6561
6562 /*
6563 * Since we are going to call schedule() anyway, there's
6564 * no need to preempt or enable interrupts:
6565 */
6566 __release(rq->lock);
8a25d5de 6567 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6568 _raw_spin_unlock(&rq->lock);
6569 preempt_enable_no_resched();
6570
6571 schedule();
6572
6573 return 0;
6574}
6575
e7b38404 6576static void __cond_resched(void)
1da177e4 6577{
8e0a43d8
IM
6578#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6579 __might_sleep(__FILE__, __LINE__);
6580#endif
5bbcfd90
IM
6581 /*
6582 * The BKS might be reacquired before we have dropped
6583 * PREEMPT_ACTIVE, which could trigger a second
6584 * cond_resched() call.
6585 */
1da177e4
LT
6586 do {
6587 add_preempt_count(PREEMPT_ACTIVE);
6588 schedule();
6589 sub_preempt_count(PREEMPT_ACTIVE);
6590 } while (need_resched());
6591}
6592
02b67cc3 6593int __sched _cond_resched(void)
1da177e4 6594{
9414232f
IM
6595 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6596 system_state == SYSTEM_RUNNING) {
1da177e4
LT
6597 __cond_resched();
6598 return 1;
6599 }
6600 return 0;
6601}
02b67cc3 6602EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6603
6604/*
6605 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6606 * call schedule, and on return reacquire the lock.
6607 *
41a2d6cf 6608 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6609 * operations here to prevent schedule() from being called twice (once via
6610 * spin_unlock(), once by hand).
6611 */
95cdf3b7 6612int cond_resched_lock(spinlock_t *lock)
1da177e4 6613{
95c354fe 6614 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
6615 int ret = 0;
6616
95c354fe 6617 if (spin_needbreak(lock) || resched) {
1da177e4 6618 spin_unlock(lock);
95c354fe
NP
6619 if (resched && need_resched())
6620 __cond_resched();
6621 else
6622 cpu_relax();
6df3cecb 6623 ret = 1;
1da177e4 6624 spin_lock(lock);
1da177e4 6625 }
6df3cecb 6626 return ret;
1da177e4 6627}
1da177e4
LT
6628EXPORT_SYMBOL(cond_resched_lock);
6629
6630int __sched cond_resched_softirq(void)
6631{
6632 BUG_ON(!in_softirq());
6633
9414232f 6634 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 6635 local_bh_enable();
1da177e4
LT
6636 __cond_resched();
6637 local_bh_disable();
6638 return 1;
6639 }
6640 return 0;
6641}
1da177e4
LT
6642EXPORT_SYMBOL(cond_resched_softirq);
6643
1da177e4
LT
6644/**
6645 * yield - yield the current processor to other threads.
6646 *
72fd4a35 6647 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6648 * thread runnable and calls sys_sched_yield().
6649 */
6650void __sched yield(void)
6651{
6652 set_current_state(TASK_RUNNING);
6653 sys_sched_yield();
6654}
1da177e4
LT
6655EXPORT_SYMBOL(yield);
6656
6657/*
41a2d6cf 6658 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
6659 * that process accounting knows that this is a task in IO wait state.
6660 *
6661 * But don't do that if it is a deliberate, throttling IO wait (this task
6662 * has set its backing_dev_info: the queue against which it should throttle)
6663 */
6664void __sched io_schedule(void)
6665{
70b97a7f 6666 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 6667
0ff92245 6668 delayacct_blkio_start();
1da177e4
LT
6669 atomic_inc(&rq->nr_iowait);
6670 schedule();
6671 atomic_dec(&rq->nr_iowait);
0ff92245 6672 delayacct_blkio_end();
1da177e4 6673}
1da177e4
LT
6674EXPORT_SYMBOL(io_schedule);
6675
6676long __sched io_schedule_timeout(long timeout)
6677{
70b97a7f 6678 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
6679 long ret;
6680
0ff92245 6681 delayacct_blkio_start();
1da177e4
LT
6682 atomic_inc(&rq->nr_iowait);
6683 ret = schedule_timeout(timeout);
6684 atomic_dec(&rq->nr_iowait);
0ff92245 6685 delayacct_blkio_end();
1da177e4
LT
6686 return ret;
6687}
6688
6689/**
6690 * sys_sched_get_priority_max - return maximum RT priority.
6691 * @policy: scheduling class.
6692 *
6693 * this syscall returns the maximum rt_priority that can be used
6694 * by a given scheduling class.
6695 */
5add95d4 6696SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6697{
6698 int ret = -EINVAL;
6699
6700 switch (policy) {
6701 case SCHED_FIFO:
6702 case SCHED_RR:
6703 ret = MAX_USER_RT_PRIO-1;
6704 break;
6705 case SCHED_NORMAL:
b0a9499c 6706 case SCHED_BATCH:
dd41f596 6707 case SCHED_IDLE:
1da177e4
LT
6708 ret = 0;
6709 break;
6710 }
6711 return ret;
6712}
6713
6714/**
6715 * sys_sched_get_priority_min - return minimum RT priority.
6716 * @policy: scheduling class.
6717 *
6718 * this syscall returns the minimum rt_priority that can be used
6719 * by a given scheduling class.
6720 */
5add95d4 6721SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6722{
6723 int ret = -EINVAL;
6724
6725 switch (policy) {
6726 case SCHED_FIFO:
6727 case SCHED_RR:
6728 ret = 1;
6729 break;
6730 case SCHED_NORMAL:
b0a9499c 6731 case SCHED_BATCH:
dd41f596 6732 case SCHED_IDLE:
1da177e4
LT
6733 ret = 0;
6734 }
6735 return ret;
6736}
6737
6738/**
6739 * sys_sched_rr_get_interval - return the default timeslice of a process.
6740 * @pid: pid of the process.
6741 * @interval: userspace pointer to the timeslice value.
6742 *
6743 * this syscall writes the default timeslice value of a given process
6744 * into the user-space timespec buffer. A value of '0' means infinity.
6745 */
17da2bd9 6746SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6747 struct timespec __user *, interval)
1da177e4 6748{
36c8b586 6749 struct task_struct *p;
a4ec24b4 6750 unsigned int time_slice;
3a5c359a 6751 int retval;
1da177e4 6752 struct timespec t;
1da177e4
LT
6753
6754 if (pid < 0)
3a5c359a 6755 return -EINVAL;
1da177e4
LT
6756
6757 retval = -ESRCH;
6758 read_lock(&tasklist_lock);
6759 p = find_process_by_pid(pid);
6760 if (!p)
6761 goto out_unlock;
6762
6763 retval = security_task_getscheduler(p);
6764 if (retval)
6765 goto out_unlock;
6766
77034937
IM
6767 /*
6768 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6769 * tasks that are on an otherwise idle runqueue:
6770 */
6771 time_slice = 0;
6772 if (p->policy == SCHED_RR) {
a4ec24b4 6773 time_slice = DEF_TIMESLICE;
1868f958 6774 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6775 struct sched_entity *se = &p->se;
6776 unsigned long flags;
6777 struct rq *rq;
6778
6779 rq = task_rq_lock(p, &flags);
77034937
IM
6780 if (rq->cfs.load.weight)
6781 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6782 task_rq_unlock(rq, &flags);
6783 }
1da177e4 6784 read_unlock(&tasklist_lock);
a4ec24b4 6785 jiffies_to_timespec(time_slice, &t);
1da177e4 6786 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6787 return retval;
3a5c359a 6788
1da177e4
LT
6789out_unlock:
6790 read_unlock(&tasklist_lock);
6791 return retval;
6792}
6793
7c731e0a 6794static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6795
82a1fcb9 6796void sched_show_task(struct task_struct *p)
1da177e4 6797{
1da177e4 6798 unsigned long free = 0;
36c8b586 6799 unsigned state;
1da177e4 6800
1da177e4 6801 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6802 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6803 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6804#if BITS_PER_LONG == 32
1da177e4 6805 if (state == TASK_RUNNING)
cc4ea795 6806 printk(KERN_CONT " running ");
1da177e4 6807 else
cc4ea795 6808 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6809#else
6810 if (state == TASK_RUNNING)
cc4ea795 6811 printk(KERN_CONT " running task ");
1da177e4 6812 else
cc4ea795 6813 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6814#endif
6815#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6816 free = stack_not_used(p);
1da177e4 6817#endif
aa47b7e0
DR
6818 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6819 task_pid_nr(p), task_pid_nr(p->real_parent),
6820 (unsigned long)task_thread_info(p)->flags);
1da177e4 6821
5fb5e6de 6822 show_stack(p, NULL);
1da177e4
LT
6823}
6824
e59e2ae2 6825void show_state_filter(unsigned long state_filter)
1da177e4 6826{
36c8b586 6827 struct task_struct *g, *p;
1da177e4 6828
4bd77321
IM
6829#if BITS_PER_LONG == 32
6830 printk(KERN_INFO
6831 " task PC stack pid father\n");
1da177e4 6832#else
4bd77321
IM
6833 printk(KERN_INFO
6834 " task PC stack pid father\n");
1da177e4
LT
6835#endif
6836 read_lock(&tasklist_lock);
6837 do_each_thread(g, p) {
6838 /*
6839 * reset the NMI-timeout, listing all files on a slow
6840 * console might take alot of time:
6841 */
6842 touch_nmi_watchdog();
39bc89fd 6843 if (!state_filter || (p->state & state_filter))
82a1fcb9 6844 sched_show_task(p);
1da177e4
LT
6845 } while_each_thread(g, p);
6846
04c9167f
JF
6847 touch_all_softlockup_watchdogs();
6848
dd41f596
IM
6849#ifdef CONFIG_SCHED_DEBUG
6850 sysrq_sched_debug_show();
6851#endif
1da177e4 6852 read_unlock(&tasklist_lock);
e59e2ae2
IM
6853 /*
6854 * Only show locks if all tasks are dumped:
6855 */
6856 if (state_filter == -1)
6857 debug_show_all_locks();
1da177e4
LT
6858}
6859
1df21055
IM
6860void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6861{
dd41f596 6862 idle->sched_class = &idle_sched_class;
1df21055
IM
6863}
6864
f340c0d1
IM
6865/**
6866 * init_idle - set up an idle thread for a given CPU
6867 * @idle: task in question
6868 * @cpu: cpu the idle task belongs to
6869 *
6870 * NOTE: this function does not set the idle thread's NEED_RESCHED
6871 * flag, to make booting more robust.
6872 */
5c1e1767 6873void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6874{
70b97a7f 6875 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6876 unsigned long flags;
6877
5cbd54ef
IM
6878 spin_lock_irqsave(&rq->lock, flags);
6879
dd41f596
IM
6880 __sched_fork(idle);
6881 idle->se.exec_start = sched_clock();
6882
b29739f9 6883 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6884 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6885 __set_task_cpu(idle, cpu);
1da177e4 6886
1da177e4 6887 rq->curr = rq->idle = idle;
4866cde0
NP
6888#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6889 idle->oncpu = 1;
6890#endif
1da177e4
LT
6891 spin_unlock_irqrestore(&rq->lock, flags);
6892
6893 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6894#if defined(CONFIG_PREEMPT)
6895 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6896#else
a1261f54 6897 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6898#endif
dd41f596
IM
6899 /*
6900 * The idle tasks have their own, simple scheduling class:
6901 */
6902 idle->sched_class = &idle_sched_class;
fb52607a 6903 ftrace_graph_init_task(idle);
1da177e4
LT
6904}
6905
6906/*
6907 * In a system that switches off the HZ timer nohz_cpu_mask
6908 * indicates which cpus entered this state. This is used
6909 * in the rcu update to wait only for active cpus. For system
6910 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6911 * always be CPU_BITS_NONE.
1da177e4 6912 */
6a7b3dc3 6913cpumask_var_t nohz_cpu_mask;
1da177e4 6914
19978ca6
IM
6915/*
6916 * Increase the granularity value when there are more CPUs,
6917 * because with more CPUs the 'effective latency' as visible
6918 * to users decreases. But the relationship is not linear,
6919 * so pick a second-best guess by going with the log2 of the
6920 * number of CPUs.
6921 *
6922 * This idea comes from the SD scheduler of Con Kolivas:
6923 */
6924static inline void sched_init_granularity(void)
6925{
6926 unsigned int factor = 1 + ilog2(num_online_cpus());
6927 const unsigned long limit = 200000000;
6928
6929 sysctl_sched_min_granularity *= factor;
6930 if (sysctl_sched_min_granularity > limit)
6931 sysctl_sched_min_granularity = limit;
6932
6933 sysctl_sched_latency *= factor;
6934 if (sysctl_sched_latency > limit)
6935 sysctl_sched_latency = limit;
6936
6937 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6938
6939 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6940}
6941
1da177e4
LT
6942#ifdef CONFIG_SMP
6943/*
6944 * This is how migration works:
6945 *
70b97a7f 6946 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6947 * runqueue and wake up that CPU's migration thread.
6948 * 2) we down() the locked semaphore => thread blocks.
6949 * 3) migration thread wakes up (implicitly it forces the migrated
6950 * thread off the CPU)
6951 * 4) it gets the migration request and checks whether the migrated
6952 * task is still in the wrong runqueue.
6953 * 5) if it's in the wrong runqueue then the migration thread removes
6954 * it and puts it into the right queue.
6955 * 6) migration thread up()s the semaphore.
6956 * 7) we wake up and the migration is done.
6957 */
6958
6959/*
6960 * Change a given task's CPU affinity. Migrate the thread to a
6961 * proper CPU and schedule it away if the CPU it's executing on
6962 * is removed from the allowed bitmask.
6963 *
6964 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6965 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6966 * call is not atomic; no spinlocks may be held.
6967 */
96f874e2 6968int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6969{
70b97a7f 6970 struct migration_req req;
1da177e4 6971 unsigned long flags;
70b97a7f 6972 struct rq *rq;
48f24c4d 6973 int ret = 0;
1da177e4
LT
6974
6975 rq = task_rq_lock(p, &flags);
96f874e2 6976 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
6977 ret = -EINVAL;
6978 goto out;
6979 }
6980
9985b0ba 6981 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 6982 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
6983 ret = -EINVAL;
6984 goto out;
6985 }
6986
73fe6aae 6987 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6988 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6989 else {
96f874e2
RR
6990 cpumask_copy(&p->cpus_allowed, new_mask);
6991 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6992 }
6993
1da177e4 6994 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6995 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6996 goto out;
6997
1e5ce4f4 6998 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
6999 /* Need help from migration thread: drop lock and wait. */
7000 task_rq_unlock(rq, &flags);
7001 wake_up_process(rq->migration_thread);
7002 wait_for_completion(&req.done);
7003 tlb_migrate_finish(p->mm);
7004 return 0;
7005 }
7006out:
7007 task_rq_unlock(rq, &flags);
48f24c4d 7008
1da177e4
LT
7009 return ret;
7010}
cd8ba7cd 7011EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
7012
7013/*
41a2d6cf 7014 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
7015 * this because either it can't run here any more (set_cpus_allowed()
7016 * away from this CPU, or CPU going down), or because we're
7017 * attempting to rebalance this task on exec (sched_exec).
7018 *
7019 * So we race with normal scheduler movements, but that's OK, as long
7020 * as the task is no longer on this CPU.
efc30814
KK
7021 *
7022 * Returns non-zero if task was successfully migrated.
1da177e4 7023 */
efc30814 7024static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 7025{
70b97a7f 7026 struct rq *rq_dest, *rq_src;
dd41f596 7027 int ret = 0, on_rq;
1da177e4 7028
e761b772 7029 if (unlikely(!cpu_active(dest_cpu)))
efc30814 7030 return ret;
1da177e4
LT
7031
7032 rq_src = cpu_rq(src_cpu);
7033 rq_dest = cpu_rq(dest_cpu);
7034
7035 double_rq_lock(rq_src, rq_dest);
7036 /* Already moved. */
7037 if (task_cpu(p) != src_cpu)
b1e38734 7038 goto done;
1da177e4 7039 /* Affinity changed (again). */
96f874e2 7040 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 7041 goto fail;
1da177e4 7042
dd41f596 7043 on_rq = p->se.on_rq;
6e82a3be 7044 if (on_rq)
2e1cb74a 7045 deactivate_task(rq_src, p, 0);
6e82a3be 7046
1da177e4 7047 set_task_cpu(p, dest_cpu);
dd41f596
IM
7048 if (on_rq) {
7049 activate_task(rq_dest, p, 0);
15afe09b 7050 check_preempt_curr(rq_dest, p, 0);
1da177e4 7051 }
b1e38734 7052done:
efc30814 7053 ret = 1;
b1e38734 7054fail:
1da177e4 7055 double_rq_unlock(rq_src, rq_dest);
efc30814 7056 return ret;
1da177e4
LT
7057}
7058
7059/*
7060 * migration_thread - this is a highprio system thread that performs
7061 * thread migration by bumping thread off CPU then 'pushing' onto
7062 * another runqueue.
7063 */
95cdf3b7 7064static int migration_thread(void *data)
1da177e4 7065{
1da177e4 7066 int cpu = (long)data;
70b97a7f 7067 struct rq *rq;
1da177e4
LT
7068
7069 rq = cpu_rq(cpu);
7070 BUG_ON(rq->migration_thread != current);
7071
7072 set_current_state(TASK_INTERRUPTIBLE);
7073 while (!kthread_should_stop()) {
70b97a7f 7074 struct migration_req *req;
1da177e4 7075 struct list_head *head;
1da177e4 7076
1da177e4
LT
7077 spin_lock_irq(&rq->lock);
7078
7079 if (cpu_is_offline(cpu)) {
7080 spin_unlock_irq(&rq->lock);
7081 goto wait_to_die;
7082 }
7083
7084 if (rq->active_balance) {
7085 active_load_balance(rq, cpu);
7086 rq->active_balance = 0;
7087 }
7088
7089 head = &rq->migration_queue;
7090
7091 if (list_empty(head)) {
7092 spin_unlock_irq(&rq->lock);
7093 schedule();
7094 set_current_state(TASK_INTERRUPTIBLE);
7095 continue;
7096 }
70b97a7f 7097 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
7098 list_del_init(head->next);
7099
674311d5
NP
7100 spin_unlock(&rq->lock);
7101 __migrate_task(req->task, cpu, req->dest_cpu);
7102 local_irq_enable();
1da177e4
LT
7103
7104 complete(&req->done);
7105 }
7106 __set_current_state(TASK_RUNNING);
7107 return 0;
7108
7109wait_to_die:
7110 /* Wait for kthread_stop */
7111 set_current_state(TASK_INTERRUPTIBLE);
7112 while (!kthread_should_stop()) {
7113 schedule();
7114 set_current_state(TASK_INTERRUPTIBLE);
7115 }
7116 __set_current_state(TASK_RUNNING);
7117 return 0;
7118}
7119
7120#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
7121
7122static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7123{
7124 int ret;
7125
7126 local_irq_disable();
7127 ret = __migrate_task(p, src_cpu, dest_cpu);
7128 local_irq_enable();
7129 return ret;
7130}
7131
054b9108 7132/*
3a4fa0a2 7133 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 7134 */
48f24c4d 7135static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 7136{
70b97a7f 7137 int dest_cpu;
6ca09dfc 7138 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
7139
7140again:
7141 /* Look for allowed, online CPU in same node. */
7142 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7143 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7144 goto move;
7145
7146 /* Any allowed, online CPU? */
7147 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7148 if (dest_cpu < nr_cpu_ids)
7149 goto move;
7150
7151 /* No more Mr. Nice Guy. */
7152 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
7153 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7154 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 7155
e76bd8d9
RR
7156 /*
7157 * Don't tell them about moving exiting tasks or
7158 * kernel threads (both mm NULL), since they never
7159 * leave kernel.
7160 */
7161 if (p->mm && printk_ratelimit()) {
7162 printk(KERN_INFO "process %d (%s) no "
7163 "longer affine to cpu%d\n",
7164 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7165 }
e76bd8d9
RR
7166 }
7167
7168move:
7169 /* It can have affinity changed while we were choosing. */
7170 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7171 goto again;
1da177e4
LT
7172}
7173
7174/*
7175 * While a dead CPU has no uninterruptible tasks queued at this point,
7176 * it might still have a nonzero ->nr_uninterruptible counter, because
7177 * for performance reasons the counter is not stricly tracking tasks to
7178 * their home CPUs. So we just add the counter to another CPU's counter,
7179 * to keep the global sum constant after CPU-down:
7180 */
70b97a7f 7181static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7182{
1e5ce4f4 7183 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
7184 unsigned long flags;
7185
7186 local_irq_save(flags);
7187 double_rq_lock(rq_src, rq_dest);
7188 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7189 rq_src->nr_uninterruptible = 0;
7190 double_rq_unlock(rq_src, rq_dest);
7191 local_irq_restore(flags);
7192}
7193
7194/* Run through task list and migrate tasks from the dead cpu. */
7195static void migrate_live_tasks(int src_cpu)
7196{
48f24c4d 7197 struct task_struct *p, *t;
1da177e4 7198
f7b4cddc 7199 read_lock(&tasklist_lock);
1da177e4 7200
48f24c4d
IM
7201 do_each_thread(t, p) {
7202 if (p == current)
1da177e4
LT
7203 continue;
7204
48f24c4d
IM
7205 if (task_cpu(p) == src_cpu)
7206 move_task_off_dead_cpu(src_cpu, p);
7207 } while_each_thread(t, p);
1da177e4 7208
f7b4cddc 7209 read_unlock(&tasklist_lock);
1da177e4
LT
7210}
7211
dd41f596
IM
7212/*
7213 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7214 * It does so by boosting its priority to highest possible.
7215 * Used by CPU offline code.
1da177e4
LT
7216 */
7217void sched_idle_next(void)
7218{
48f24c4d 7219 int this_cpu = smp_processor_id();
70b97a7f 7220 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7221 struct task_struct *p = rq->idle;
7222 unsigned long flags;
7223
7224 /* cpu has to be offline */
48f24c4d 7225 BUG_ON(cpu_online(this_cpu));
1da177e4 7226
48f24c4d
IM
7227 /*
7228 * Strictly not necessary since rest of the CPUs are stopped by now
7229 * and interrupts disabled on the current cpu.
1da177e4
LT
7230 */
7231 spin_lock_irqsave(&rq->lock, flags);
7232
dd41f596 7233 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7234
94bc9a7b
DA
7235 update_rq_clock(rq);
7236 activate_task(rq, p, 0);
1da177e4
LT
7237
7238 spin_unlock_irqrestore(&rq->lock, flags);
7239}
7240
48f24c4d
IM
7241/*
7242 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7243 * offline.
7244 */
7245void idle_task_exit(void)
7246{
7247 struct mm_struct *mm = current->active_mm;
7248
7249 BUG_ON(cpu_online(smp_processor_id()));
7250
7251 if (mm != &init_mm)
7252 switch_mm(mm, &init_mm, current);
7253 mmdrop(mm);
7254}
7255
054b9108 7256/* called under rq->lock with disabled interrupts */
36c8b586 7257static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7258{
70b97a7f 7259 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7260
7261 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7262 BUG_ON(!p->exit_state);
1da177e4
LT
7263
7264 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7265 BUG_ON(p->state == TASK_DEAD);
1da177e4 7266
48f24c4d 7267 get_task_struct(p);
1da177e4
LT
7268
7269 /*
7270 * Drop lock around migration; if someone else moves it,
41a2d6cf 7271 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7272 * fine.
7273 */
f7b4cddc 7274 spin_unlock_irq(&rq->lock);
48f24c4d 7275 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7276 spin_lock_irq(&rq->lock);
1da177e4 7277
48f24c4d 7278 put_task_struct(p);
1da177e4
LT
7279}
7280
7281/* release_task() removes task from tasklist, so we won't find dead tasks. */
7282static void migrate_dead_tasks(unsigned int dead_cpu)
7283{
70b97a7f 7284 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7285 struct task_struct *next;
48f24c4d 7286
dd41f596
IM
7287 for ( ; ; ) {
7288 if (!rq->nr_running)
7289 break;
a8e504d2 7290 update_rq_clock(rq);
b67802ea 7291 next = pick_next_task(rq);
dd41f596
IM
7292 if (!next)
7293 break;
79c53799 7294 next->sched_class->put_prev_task(rq, next);
dd41f596 7295 migrate_dead(dead_cpu, next);
e692ab53 7296
1da177e4
LT
7297 }
7298}
dce48a84
TG
7299
7300/*
7301 * remove the tasks which were accounted by rq from calc_load_tasks.
7302 */
7303static void calc_global_load_remove(struct rq *rq)
7304{
7305 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7306}
1da177e4
LT
7307#endif /* CONFIG_HOTPLUG_CPU */
7308
e692ab53
NP
7309#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7310
7311static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7312 {
7313 .procname = "sched_domain",
c57baf1e 7314 .mode = 0555,
e0361851 7315 },
38605cae 7316 {0, },
e692ab53
NP
7317};
7318
7319static struct ctl_table sd_ctl_root[] = {
e0361851 7320 {
c57baf1e 7321 .ctl_name = CTL_KERN,
e0361851 7322 .procname = "kernel",
c57baf1e 7323 .mode = 0555,
e0361851
AD
7324 .child = sd_ctl_dir,
7325 },
38605cae 7326 {0, },
e692ab53
NP
7327};
7328
7329static struct ctl_table *sd_alloc_ctl_entry(int n)
7330{
7331 struct ctl_table *entry =
5cf9f062 7332 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7333
e692ab53
NP
7334 return entry;
7335}
7336
6382bc90
MM
7337static void sd_free_ctl_entry(struct ctl_table **tablep)
7338{
cd790076 7339 struct ctl_table *entry;
6382bc90 7340
cd790076
MM
7341 /*
7342 * In the intermediate directories, both the child directory and
7343 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7344 * will always be set. In the lowest directory the names are
cd790076
MM
7345 * static strings and all have proc handlers.
7346 */
7347 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7348 if (entry->child)
7349 sd_free_ctl_entry(&entry->child);
cd790076
MM
7350 if (entry->proc_handler == NULL)
7351 kfree(entry->procname);
7352 }
6382bc90
MM
7353
7354 kfree(*tablep);
7355 *tablep = NULL;
7356}
7357
e692ab53 7358static void
e0361851 7359set_table_entry(struct ctl_table *entry,
e692ab53
NP
7360 const char *procname, void *data, int maxlen,
7361 mode_t mode, proc_handler *proc_handler)
7362{
e692ab53
NP
7363 entry->procname = procname;
7364 entry->data = data;
7365 entry->maxlen = maxlen;
7366 entry->mode = mode;
7367 entry->proc_handler = proc_handler;
7368}
7369
7370static struct ctl_table *
7371sd_alloc_ctl_domain_table(struct sched_domain *sd)
7372{
a5d8c348 7373 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7374
ad1cdc1d
MM
7375 if (table == NULL)
7376 return NULL;
7377
e0361851 7378 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7379 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7380 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7381 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7382 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7383 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7384 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7385 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7386 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7387 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7388 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7389 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7390 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7391 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7392 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7393 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7394 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7395 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7396 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7397 &sd->cache_nice_tries,
7398 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7399 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7400 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7401 set_table_entry(&table[11], "name", sd->name,
7402 CORENAME_MAX_SIZE, 0444, proc_dostring);
7403 /* &table[12] is terminator */
e692ab53
NP
7404
7405 return table;
7406}
7407
9a4e7159 7408static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7409{
7410 struct ctl_table *entry, *table;
7411 struct sched_domain *sd;
7412 int domain_num = 0, i;
7413 char buf[32];
7414
7415 for_each_domain(cpu, sd)
7416 domain_num++;
7417 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7418 if (table == NULL)
7419 return NULL;
e692ab53
NP
7420
7421 i = 0;
7422 for_each_domain(cpu, sd) {
7423 snprintf(buf, 32, "domain%d", i);
e692ab53 7424 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7425 entry->mode = 0555;
e692ab53
NP
7426 entry->child = sd_alloc_ctl_domain_table(sd);
7427 entry++;
7428 i++;
7429 }
7430 return table;
7431}
7432
7433static struct ctl_table_header *sd_sysctl_header;
6382bc90 7434static void register_sched_domain_sysctl(void)
e692ab53
NP
7435{
7436 int i, cpu_num = num_online_cpus();
7437 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7438 char buf[32];
7439
7378547f
MM
7440 WARN_ON(sd_ctl_dir[0].child);
7441 sd_ctl_dir[0].child = entry;
7442
ad1cdc1d
MM
7443 if (entry == NULL)
7444 return;
7445
97b6ea7b 7446 for_each_online_cpu(i) {
e692ab53 7447 snprintf(buf, 32, "cpu%d", i);
e692ab53 7448 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7449 entry->mode = 0555;
e692ab53 7450 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7451 entry++;
e692ab53 7452 }
7378547f
MM
7453
7454 WARN_ON(sd_sysctl_header);
e692ab53
NP
7455 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7456}
6382bc90 7457
7378547f 7458/* may be called multiple times per register */
6382bc90
MM
7459static void unregister_sched_domain_sysctl(void)
7460{
7378547f
MM
7461 if (sd_sysctl_header)
7462 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7463 sd_sysctl_header = NULL;
7378547f
MM
7464 if (sd_ctl_dir[0].child)
7465 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7466}
e692ab53 7467#else
6382bc90
MM
7468static void register_sched_domain_sysctl(void)
7469{
7470}
7471static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7472{
7473}
7474#endif
7475
1f11eb6a
GH
7476static void set_rq_online(struct rq *rq)
7477{
7478 if (!rq->online) {
7479 const struct sched_class *class;
7480
c6c4927b 7481 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7482 rq->online = 1;
7483
7484 for_each_class(class) {
7485 if (class->rq_online)
7486 class->rq_online(rq);
7487 }
7488 }
7489}
7490
7491static void set_rq_offline(struct rq *rq)
7492{
7493 if (rq->online) {
7494 const struct sched_class *class;
7495
7496 for_each_class(class) {
7497 if (class->rq_offline)
7498 class->rq_offline(rq);
7499 }
7500
c6c4927b 7501 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7502 rq->online = 0;
7503 }
7504}
7505
1da177e4
LT
7506/*
7507 * migration_call - callback that gets triggered when a CPU is added.
7508 * Here we can start up the necessary migration thread for the new CPU.
7509 */
48f24c4d
IM
7510static int __cpuinit
7511migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7512{
1da177e4 7513 struct task_struct *p;
48f24c4d 7514 int cpu = (long)hcpu;
1da177e4 7515 unsigned long flags;
70b97a7f 7516 struct rq *rq;
1da177e4
LT
7517
7518 switch (action) {
5be9361c 7519
1da177e4 7520 case CPU_UP_PREPARE:
8bb78442 7521 case CPU_UP_PREPARE_FROZEN:
dd41f596 7522 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7523 if (IS_ERR(p))
7524 return NOTIFY_BAD;
1da177e4
LT
7525 kthread_bind(p, cpu);
7526 /* Must be high prio: stop_machine expects to yield to it. */
7527 rq = task_rq_lock(p, &flags);
dd41f596 7528 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
7529 task_rq_unlock(rq, &flags);
7530 cpu_rq(cpu)->migration_thread = p;
7531 break;
48f24c4d 7532
1da177e4 7533 case CPU_ONLINE:
8bb78442 7534 case CPU_ONLINE_FROZEN:
3a4fa0a2 7535 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7536 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7537
7538 /* Update our root-domain */
7539 rq = cpu_rq(cpu);
7540 spin_lock_irqsave(&rq->lock, flags);
dce48a84
TG
7541 rq->calc_load_update = calc_load_update;
7542 rq->calc_load_active = 0;
1f94ef59 7543 if (rq->rd) {
c6c4927b 7544 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7545
7546 set_rq_online(rq);
1f94ef59
GH
7547 }
7548 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7549 break;
48f24c4d 7550
1da177e4
LT
7551#ifdef CONFIG_HOTPLUG_CPU
7552 case CPU_UP_CANCELED:
8bb78442 7553 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7554 if (!cpu_rq(cpu)->migration_thread)
7555 break;
41a2d6cf 7556 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7557 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7558 cpumask_any(cpu_online_mask));
1da177e4
LT
7559 kthread_stop(cpu_rq(cpu)->migration_thread);
7560 cpu_rq(cpu)->migration_thread = NULL;
7561 break;
48f24c4d 7562
1da177e4 7563 case CPU_DEAD:
8bb78442 7564 case CPU_DEAD_FROZEN:
470fd646 7565 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7566 migrate_live_tasks(cpu);
7567 rq = cpu_rq(cpu);
7568 kthread_stop(rq->migration_thread);
7569 rq->migration_thread = NULL;
7570 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7571 spin_lock_irq(&rq->lock);
a8e504d2 7572 update_rq_clock(rq);
2e1cb74a 7573 deactivate_task(rq, rq->idle, 0);
1da177e4 7574 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7575 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7576 rq->idle->sched_class = &idle_sched_class;
1da177e4 7577 migrate_dead_tasks(cpu);
d2da272a 7578 spin_unlock_irq(&rq->lock);
470fd646 7579 cpuset_unlock();
1da177e4
LT
7580 migrate_nr_uninterruptible(rq);
7581 BUG_ON(rq->nr_running != 0);
dce48a84 7582 calc_global_load_remove(rq);
41a2d6cf
IM
7583 /*
7584 * No need to migrate the tasks: it was best-effort if
7585 * they didn't take sched_hotcpu_mutex. Just wake up
7586 * the requestors.
7587 */
1da177e4
LT
7588 spin_lock_irq(&rq->lock);
7589 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7590 struct migration_req *req;
7591
1da177e4 7592 req = list_entry(rq->migration_queue.next,
70b97a7f 7593 struct migration_req, list);
1da177e4 7594 list_del_init(&req->list);
9a2bd244 7595 spin_unlock_irq(&rq->lock);
1da177e4 7596 complete(&req->done);
9a2bd244 7597 spin_lock_irq(&rq->lock);
1da177e4
LT
7598 }
7599 spin_unlock_irq(&rq->lock);
7600 break;
57d885fe 7601
08f503b0
GH
7602 case CPU_DYING:
7603 case CPU_DYING_FROZEN:
57d885fe
GH
7604 /* Update our root-domain */
7605 rq = cpu_rq(cpu);
7606 spin_lock_irqsave(&rq->lock, flags);
7607 if (rq->rd) {
c6c4927b 7608 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7609 set_rq_offline(rq);
57d885fe
GH
7610 }
7611 spin_unlock_irqrestore(&rq->lock, flags);
7612 break;
1da177e4
LT
7613#endif
7614 }
7615 return NOTIFY_OK;
7616}
7617
f38b0820
PM
7618/*
7619 * Register at high priority so that task migration (migrate_all_tasks)
7620 * happens before everything else. This has to be lower priority than
7621 * the notifier in the perf_counter subsystem, though.
1da177e4 7622 */
26c2143b 7623static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7624 .notifier_call = migration_call,
7625 .priority = 10
7626};
7627
7babe8db 7628static int __init migration_init(void)
1da177e4
LT
7629{
7630 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7631 int err;
48f24c4d
IM
7632
7633 /* Start one for the boot CPU: */
07dccf33
AM
7634 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7635 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7636 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7637 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
7638
7639 return err;
1da177e4 7640}
7babe8db 7641early_initcall(migration_init);
1da177e4
LT
7642#endif
7643
7644#ifdef CONFIG_SMP
476f3534 7645
3e9830dc 7646#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7647
7c16ec58 7648static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7649 struct cpumask *groupmask)
1da177e4 7650{
4dcf6aff 7651 struct sched_group *group = sd->groups;
434d53b0 7652 char str[256];
1da177e4 7653
968ea6d8 7654 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7655 cpumask_clear(groupmask);
4dcf6aff
IM
7656
7657 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7658
7659 if (!(sd->flags & SD_LOAD_BALANCE)) {
7660 printk("does not load-balance\n");
7661 if (sd->parent)
7662 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7663 " has parent");
7664 return -1;
41c7ce9a
NP
7665 }
7666
eefd796a 7667 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7668
758b2cdc 7669 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7670 printk(KERN_ERR "ERROR: domain->span does not contain "
7671 "CPU%d\n", cpu);
7672 }
758b2cdc 7673 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7674 printk(KERN_ERR "ERROR: domain->groups does not contain"
7675 " CPU%d\n", cpu);
7676 }
1da177e4 7677
4dcf6aff 7678 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7679 do {
4dcf6aff
IM
7680 if (!group) {
7681 printk("\n");
7682 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7683 break;
7684 }
7685
4dcf6aff
IM
7686 if (!group->__cpu_power) {
7687 printk(KERN_CONT "\n");
7688 printk(KERN_ERR "ERROR: domain->cpu_power not "
7689 "set\n");
7690 break;
7691 }
1da177e4 7692
758b2cdc 7693 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7694 printk(KERN_CONT "\n");
7695 printk(KERN_ERR "ERROR: empty group\n");
7696 break;
7697 }
1da177e4 7698
758b2cdc 7699 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7700 printk(KERN_CONT "\n");
7701 printk(KERN_ERR "ERROR: repeated CPUs\n");
7702 break;
7703 }
1da177e4 7704
758b2cdc 7705 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7706
968ea6d8 7707 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7708
7709 printk(KERN_CONT " %s", str);
7710 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7711 printk(KERN_CONT " (__cpu_power = %d)",
7712 group->__cpu_power);
7713 }
1da177e4 7714
4dcf6aff
IM
7715 group = group->next;
7716 } while (group != sd->groups);
7717 printk(KERN_CONT "\n");
1da177e4 7718
758b2cdc 7719 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7720 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7721
758b2cdc
RR
7722 if (sd->parent &&
7723 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7724 printk(KERN_ERR "ERROR: parent span is not a superset "
7725 "of domain->span\n");
7726 return 0;
7727}
1da177e4 7728
4dcf6aff
IM
7729static void sched_domain_debug(struct sched_domain *sd, int cpu)
7730{
d5dd3db1 7731 cpumask_var_t groupmask;
4dcf6aff 7732 int level = 0;
1da177e4 7733
4dcf6aff
IM
7734 if (!sd) {
7735 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7736 return;
7737 }
1da177e4 7738
4dcf6aff
IM
7739 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7740
d5dd3db1 7741 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7742 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7743 return;
7744 }
7745
4dcf6aff 7746 for (;;) {
7c16ec58 7747 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7748 break;
1da177e4
LT
7749 level++;
7750 sd = sd->parent;
33859f7f 7751 if (!sd)
4dcf6aff
IM
7752 break;
7753 }
d5dd3db1 7754 free_cpumask_var(groupmask);
1da177e4 7755}
6d6bc0ad 7756#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7757# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7758#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7759
1a20ff27 7760static int sd_degenerate(struct sched_domain *sd)
245af2c7 7761{
758b2cdc 7762 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7763 return 1;
7764
7765 /* Following flags need at least 2 groups */
7766 if (sd->flags & (SD_LOAD_BALANCE |
7767 SD_BALANCE_NEWIDLE |
7768 SD_BALANCE_FORK |
89c4710e
SS
7769 SD_BALANCE_EXEC |
7770 SD_SHARE_CPUPOWER |
7771 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7772 if (sd->groups != sd->groups->next)
7773 return 0;
7774 }
7775
7776 /* Following flags don't use groups */
7777 if (sd->flags & (SD_WAKE_IDLE |
7778 SD_WAKE_AFFINE |
7779 SD_WAKE_BALANCE))
7780 return 0;
7781
7782 return 1;
7783}
7784
48f24c4d
IM
7785static int
7786sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7787{
7788 unsigned long cflags = sd->flags, pflags = parent->flags;
7789
7790 if (sd_degenerate(parent))
7791 return 1;
7792
758b2cdc 7793 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7794 return 0;
7795
7796 /* Does parent contain flags not in child? */
7797 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7798 if (cflags & SD_WAKE_AFFINE)
7799 pflags &= ~SD_WAKE_BALANCE;
7800 /* Flags needing groups don't count if only 1 group in parent */
7801 if (parent->groups == parent->groups->next) {
7802 pflags &= ~(SD_LOAD_BALANCE |
7803 SD_BALANCE_NEWIDLE |
7804 SD_BALANCE_FORK |
89c4710e
SS
7805 SD_BALANCE_EXEC |
7806 SD_SHARE_CPUPOWER |
7807 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7808 if (nr_node_ids == 1)
7809 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7810 }
7811 if (~cflags & pflags)
7812 return 0;
7813
7814 return 1;
7815}
7816
c6c4927b
RR
7817static void free_rootdomain(struct root_domain *rd)
7818{
68e74568
RR
7819 cpupri_cleanup(&rd->cpupri);
7820
c6c4927b
RR
7821 free_cpumask_var(rd->rto_mask);
7822 free_cpumask_var(rd->online);
7823 free_cpumask_var(rd->span);
7824 kfree(rd);
7825}
7826
57d885fe
GH
7827static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7828{
a0490fa3 7829 struct root_domain *old_rd = NULL;
57d885fe 7830 unsigned long flags;
57d885fe
GH
7831
7832 spin_lock_irqsave(&rq->lock, flags);
7833
7834 if (rq->rd) {
a0490fa3 7835 old_rd = rq->rd;
57d885fe 7836
c6c4927b 7837 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7838 set_rq_offline(rq);
57d885fe 7839
c6c4927b 7840 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7841
a0490fa3
IM
7842 /*
7843 * If we dont want to free the old_rt yet then
7844 * set old_rd to NULL to skip the freeing later
7845 * in this function:
7846 */
7847 if (!atomic_dec_and_test(&old_rd->refcount))
7848 old_rd = NULL;
57d885fe
GH
7849 }
7850
7851 atomic_inc(&rd->refcount);
7852 rq->rd = rd;
7853
c6c4927b
RR
7854 cpumask_set_cpu(rq->cpu, rd->span);
7855 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 7856 set_rq_online(rq);
57d885fe
GH
7857
7858 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7859
7860 if (old_rd)
7861 free_rootdomain(old_rd);
57d885fe
GH
7862}
7863
db2f59c8 7864static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe 7865{
36b7b6d4
PE
7866 gfp_t gfp = GFP_KERNEL;
7867
57d885fe
GH
7868 memset(rd, 0, sizeof(*rd));
7869
36b7b6d4
PE
7870 if (bootmem)
7871 gfp = GFP_NOWAIT;
c6c4927b 7872
36b7b6d4 7873 if (!alloc_cpumask_var(&rd->span, gfp))
0c910d28 7874 goto out;
36b7b6d4 7875 if (!alloc_cpumask_var(&rd->online, gfp))
c6c4927b 7876 goto free_span;
36b7b6d4 7877 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
c6c4927b 7878 goto free_online;
6e0534f2 7879
0fb53029 7880 if (cpupri_init(&rd->cpupri, bootmem) != 0)
68e74568 7881 goto free_rto_mask;
c6c4927b 7882 return 0;
6e0534f2 7883
68e74568
RR
7884free_rto_mask:
7885 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7886free_online:
7887 free_cpumask_var(rd->online);
7888free_span:
7889 free_cpumask_var(rd->span);
0c910d28 7890out:
c6c4927b 7891 return -ENOMEM;
57d885fe
GH
7892}
7893
7894static void init_defrootdomain(void)
7895{
c6c4927b
RR
7896 init_rootdomain(&def_root_domain, true);
7897
57d885fe
GH
7898 atomic_set(&def_root_domain.refcount, 1);
7899}
7900
dc938520 7901static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7902{
7903 struct root_domain *rd;
7904
7905 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7906 if (!rd)
7907 return NULL;
7908
c6c4927b
RR
7909 if (init_rootdomain(rd, false) != 0) {
7910 kfree(rd);
7911 return NULL;
7912 }
57d885fe
GH
7913
7914 return rd;
7915}
7916
1da177e4 7917/*
0eab9146 7918 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7919 * hold the hotplug lock.
7920 */
0eab9146
IM
7921static void
7922cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7923{
70b97a7f 7924 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7925 struct sched_domain *tmp;
7926
7927 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7928 for (tmp = sd; tmp; ) {
245af2c7
SS
7929 struct sched_domain *parent = tmp->parent;
7930 if (!parent)
7931 break;
f29c9b1c 7932
1a848870 7933 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7934 tmp->parent = parent->parent;
1a848870
SS
7935 if (parent->parent)
7936 parent->parent->child = tmp;
f29c9b1c
LZ
7937 } else
7938 tmp = tmp->parent;
245af2c7
SS
7939 }
7940
1a848870 7941 if (sd && sd_degenerate(sd)) {
245af2c7 7942 sd = sd->parent;
1a848870
SS
7943 if (sd)
7944 sd->child = NULL;
7945 }
1da177e4
LT
7946
7947 sched_domain_debug(sd, cpu);
7948
57d885fe 7949 rq_attach_root(rq, rd);
674311d5 7950 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7951}
7952
7953/* cpus with isolated domains */
dcc30a35 7954static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7955
7956/* Setup the mask of cpus configured for isolated domains */
7957static int __init isolated_cpu_setup(char *str)
7958{
968ea6d8 7959 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7960 return 1;
7961}
7962
8927f494 7963__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7964
7965/*
6711cab4
SS
7966 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7967 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7968 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7969 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7970 *
7971 * init_sched_build_groups will build a circular linked list of the groups
7972 * covered by the given span, and will set each group's ->cpumask correctly,
7973 * and ->cpu_power to 0.
7974 */
a616058b 7975static void
96f874e2
RR
7976init_sched_build_groups(const struct cpumask *span,
7977 const struct cpumask *cpu_map,
7978 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7979 struct sched_group **sg,
96f874e2
RR
7980 struct cpumask *tmpmask),
7981 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
7982{
7983 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
7984 int i;
7985
96f874e2 7986 cpumask_clear(covered);
7c16ec58 7987
abcd083a 7988 for_each_cpu(i, span) {
6711cab4 7989 struct sched_group *sg;
7c16ec58 7990 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
7991 int j;
7992
758b2cdc 7993 if (cpumask_test_cpu(i, covered))
1da177e4
LT
7994 continue;
7995
758b2cdc 7996 cpumask_clear(sched_group_cpus(sg));
5517d86b 7997 sg->__cpu_power = 0;
1da177e4 7998
abcd083a 7999 for_each_cpu(j, span) {
7c16ec58 8000 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
8001 continue;
8002
96f874e2 8003 cpumask_set_cpu(j, covered);
758b2cdc 8004 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
8005 }
8006 if (!first)
8007 first = sg;
8008 if (last)
8009 last->next = sg;
8010 last = sg;
8011 }
8012 last->next = first;
8013}
8014
9c1cfda2 8015#define SD_NODES_PER_DOMAIN 16
1da177e4 8016
9c1cfda2 8017#ifdef CONFIG_NUMA
198e2f18 8018
9c1cfda2
JH
8019/**
8020 * find_next_best_node - find the next node to include in a sched_domain
8021 * @node: node whose sched_domain we're building
8022 * @used_nodes: nodes already in the sched_domain
8023 *
41a2d6cf 8024 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
8025 * finds the closest node not already in the @used_nodes map.
8026 *
8027 * Should use nodemask_t.
8028 */
c5f59f08 8029static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
8030{
8031 int i, n, val, min_val, best_node = 0;
8032
8033 min_val = INT_MAX;
8034
076ac2af 8035 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 8036 /* Start at @node */
076ac2af 8037 n = (node + i) % nr_node_ids;
9c1cfda2
JH
8038
8039 if (!nr_cpus_node(n))
8040 continue;
8041
8042 /* Skip already used nodes */
c5f59f08 8043 if (node_isset(n, *used_nodes))
9c1cfda2
JH
8044 continue;
8045
8046 /* Simple min distance search */
8047 val = node_distance(node, n);
8048
8049 if (val < min_val) {
8050 min_val = val;
8051 best_node = n;
8052 }
8053 }
8054
c5f59f08 8055 node_set(best_node, *used_nodes);
9c1cfda2
JH
8056 return best_node;
8057}
8058
8059/**
8060 * sched_domain_node_span - get a cpumask for a node's sched_domain
8061 * @node: node whose cpumask we're constructing
73486722 8062 * @span: resulting cpumask
9c1cfda2 8063 *
41a2d6cf 8064 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
8065 * should be one that prevents unnecessary balancing, but also spreads tasks
8066 * out optimally.
8067 */
96f874e2 8068static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 8069{
c5f59f08 8070 nodemask_t used_nodes;
48f24c4d 8071 int i;
9c1cfda2 8072
6ca09dfc 8073 cpumask_clear(span);
c5f59f08 8074 nodes_clear(used_nodes);
9c1cfda2 8075
6ca09dfc 8076 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 8077 node_set(node, used_nodes);
9c1cfda2
JH
8078
8079 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 8080 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 8081
6ca09dfc 8082 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 8083 }
9c1cfda2 8084}
6d6bc0ad 8085#endif /* CONFIG_NUMA */
9c1cfda2 8086
5c45bf27 8087int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 8088
6c99e9ad
RR
8089/*
8090 * The cpus mask in sched_group and sched_domain hangs off the end.
4200efd9
IM
8091 *
8092 * ( See the the comments in include/linux/sched.h:struct sched_group
8093 * and struct sched_domain. )
6c99e9ad
RR
8094 */
8095struct static_sched_group {
8096 struct sched_group sg;
8097 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8098};
8099
8100struct static_sched_domain {
8101 struct sched_domain sd;
8102 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8103};
8104
9c1cfda2 8105/*
48f24c4d 8106 * SMT sched-domains:
9c1cfda2 8107 */
1da177e4 8108#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
8109static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8110static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 8111
41a2d6cf 8112static int
96f874e2
RR
8113cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8114 struct sched_group **sg, struct cpumask *unused)
1da177e4 8115{
6711cab4 8116 if (sg)
6c99e9ad 8117 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
8118 return cpu;
8119}
6d6bc0ad 8120#endif /* CONFIG_SCHED_SMT */
1da177e4 8121
48f24c4d
IM
8122/*
8123 * multi-core sched-domains:
8124 */
1e9f28fa 8125#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
8126static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8127static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 8128#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
8129
8130#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 8131static int
96f874e2
RR
8132cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8133 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 8134{
6711cab4 8135 int group;
7c16ec58 8136
c69fc56d 8137 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8138 group = cpumask_first(mask);
6711cab4 8139 if (sg)
6c99e9ad 8140 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8141 return group;
1e9f28fa
SS
8142}
8143#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8144static int
96f874e2
RR
8145cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8146 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8147{
6711cab4 8148 if (sg)
6c99e9ad 8149 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8150 return cpu;
8151}
8152#endif
8153
6c99e9ad
RR
8154static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8155static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8156
41a2d6cf 8157static int
96f874e2
RR
8158cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8159 struct sched_group **sg, struct cpumask *mask)
1da177e4 8160{
6711cab4 8161 int group;
48f24c4d 8162#ifdef CONFIG_SCHED_MC
6ca09dfc 8163 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8164 group = cpumask_first(mask);
1e9f28fa 8165#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8166 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8167 group = cpumask_first(mask);
1da177e4 8168#else
6711cab4 8169 group = cpu;
1da177e4 8170#endif
6711cab4 8171 if (sg)
6c99e9ad 8172 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8173 return group;
1da177e4
LT
8174}
8175
8176#ifdef CONFIG_NUMA
1da177e4 8177/*
9c1cfda2
JH
8178 * The init_sched_build_groups can't handle what we want to do with node
8179 * groups, so roll our own. Now each node has its own list of groups which
8180 * gets dynamically allocated.
1da177e4 8181 */
62ea9ceb 8182static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8183static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8184
62ea9ceb 8185static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8186static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8187
96f874e2
RR
8188static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8189 struct sched_group **sg,
8190 struct cpumask *nodemask)
9c1cfda2 8191{
6711cab4
SS
8192 int group;
8193
6ca09dfc 8194 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8195 group = cpumask_first(nodemask);
6711cab4
SS
8196
8197 if (sg)
6c99e9ad 8198 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8199 return group;
1da177e4 8200}
6711cab4 8201
08069033
SS
8202static void init_numa_sched_groups_power(struct sched_group *group_head)
8203{
8204 struct sched_group *sg = group_head;
8205 int j;
8206
8207 if (!sg)
8208 return;
3a5c359a 8209 do {
758b2cdc 8210 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8211 struct sched_domain *sd;
08069033 8212
6c99e9ad 8213 sd = &per_cpu(phys_domains, j).sd;
13318a71 8214 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8215 /*
8216 * Only add "power" once for each
8217 * physical package.
8218 */
8219 continue;
8220 }
08069033 8221
3a5c359a
AK
8222 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
8223 }
8224 sg = sg->next;
8225 } while (sg != group_head);
08069033 8226}
6d6bc0ad 8227#endif /* CONFIG_NUMA */
1da177e4 8228
a616058b 8229#ifdef CONFIG_NUMA
51888ca2 8230/* Free memory allocated for various sched_group structures */
96f874e2
RR
8231static void free_sched_groups(const struct cpumask *cpu_map,
8232 struct cpumask *nodemask)
51888ca2 8233{
a616058b 8234 int cpu, i;
51888ca2 8235
abcd083a 8236 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8237 struct sched_group **sched_group_nodes
8238 = sched_group_nodes_bycpu[cpu];
8239
51888ca2
SV
8240 if (!sched_group_nodes)
8241 continue;
8242
076ac2af 8243 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8244 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8245
6ca09dfc 8246 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8247 if (cpumask_empty(nodemask))
51888ca2
SV
8248 continue;
8249
8250 if (sg == NULL)
8251 continue;
8252 sg = sg->next;
8253next_sg:
8254 oldsg = sg;
8255 sg = sg->next;
8256 kfree(oldsg);
8257 if (oldsg != sched_group_nodes[i])
8258 goto next_sg;
8259 }
8260 kfree(sched_group_nodes);
8261 sched_group_nodes_bycpu[cpu] = NULL;
8262 }
51888ca2 8263}
6d6bc0ad 8264#else /* !CONFIG_NUMA */
96f874e2
RR
8265static void free_sched_groups(const struct cpumask *cpu_map,
8266 struct cpumask *nodemask)
a616058b
SS
8267{
8268}
6d6bc0ad 8269#endif /* CONFIG_NUMA */
51888ca2 8270
89c4710e
SS
8271/*
8272 * Initialize sched groups cpu_power.
8273 *
8274 * cpu_power indicates the capacity of sched group, which is used while
8275 * distributing the load between different sched groups in a sched domain.
8276 * Typically cpu_power for all the groups in a sched domain will be same unless
8277 * there are asymmetries in the topology. If there are asymmetries, group
8278 * having more cpu_power will pickup more load compared to the group having
8279 * less cpu_power.
8280 *
8281 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8282 * the maximum number of tasks a group can handle in the presence of other idle
8283 * or lightly loaded groups in the same sched domain.
8284 */
8285static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8286{
8287 struct sched_domain *child;
8288 struct sched_group *group;
8289
8290 WARN_ON(!sd || !sd->groups);
8291
13318a71 8292 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8293 return;
8294
8295 child = sd->child;
8296
5517d86b
ED
8297 sd->groups->__cpu_power = 0;
8298
89c4710e
SS
8299 /*
8300 * For perf policy, if the groups in child domain share resources
8301 * (for example cores sharing some portions of the cache hierarchy
8302 * or SMT), then set this domain groups cpu_power such that each group
8303 * can handle only one task, when there are other idle groups in the
8304 * same sched domain.
8305 */
8306 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8307 (child->flags &
8308 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 8309 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
8310 return;
8311 }
8312
89c4710e
SS
8313 /*
8314 * add cpu_power of each child group to this groups cpu_power
8315 */
8316 group = child->groups;
8317 do {
5517d86b 8318 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
8319 group = group->next;
8320 } while (group != child->groups);
8321}
8322
7c16ec58
MT
8323/*
8324 * Initializers for schedule domains
8325 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8326 */
8327
a5d8c348
IM
8328#ifdef CONFIG_SCHED_DEBUG
8329# define SD_INIT_NAME(sd, type) sd->name = #type
8330#else
8331# define SD_INIT_NAME(sd, type) do { } while (0)
8332#endif
8333
7c16ec58 8334#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8335
7c16ec58
MT
8336#define SD_INIT_FUNC(type) \
8337static noinline void sd_init_##type(struct sched_domain *sd) \
8338{ \
8339 memset(sd, 0, sizeof(*sd)); \
8340 *sd = SD_##type##_INIT; \
1d3504fc 8341 sd->level = SD_LV_##type; \
a5d8c348 8342 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8343}
8344
8345SD_INIT_FUNC(CPU)
8346#ifdef CONFIG_NUMA
8347 SD_INIT_FUNC(ALLNODES)
8348 SD_INIT_FUNC(NODE)
8349#endif
8350#ifdef CONFIG_SCHED_SMT
8351 SD_INIT_FUNC(SIBLING)
8352#endif
8353#ifdef CONFIG_SCHED_MC
8354 SD_INIT_FUNC(MC)
8355#endif
8356
1d3504fc
HS
8357static int default_relax_domain_level = -1;
8358
8359static int __init setup_relax_domain_level(char *str)
8360{
30e0e178
LZ
8361 unsigned long val;
8362
8363 val = simple_strtoul(str, NULL, 0);
8364 if (val < SD_LV_MAX)
8365 default_relax_domain_level = val;
8366
1d3504fc
HS
8367 return 1;
8368}
8369__setup("relax_domain_level=", setup_relax_domain_level);
8370
8371static void set_domain_attribute(struct sched_domain *sd,
8372 struct sched_domain_attr *attr)
8373{
8374 int request;
8375
8376 if (!attr || attr->relax_domain_level < 0) {
8377 if (default_relax_domain_level < 0)
8378 return;
8379 else
8380 request = default_relax_domain_level;
8381 } else
8382 request = attr->relax_domain_level;
8383 if (request < sd->level) {
8384 /* turn off idle balance on this domain */
8385 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8386 } else {
8387 /* turn on idle balance on this domain */
8388 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8389 }
8390}
8391
1da177e4 8392/*
1a20ff27
DG
8393 * Build sched domains for a given set of cpus and attach the sched domains
8394 * to the individual cpus
1da177e4 8395 */
96f874e2 8396static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 8397 struct sched_domain_attr *attr)
1da177e4 8398{
3404c8d9 8399 int i, err = -ENOMEM;
57d885fe 8400 struct root_domain *rd;
3404c8d9
RR
8401 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8402 tmpmask;
d1b55138 8403#ifdef CONFIG_NUMA
3404c8d9 8404 cpumask_var_t domainspan, covered, notcovered;
d1b55138 8405 struct sched_group **sched_group_nodes = NULL;
6711cab4 8406 int sd_allnodes = 0;
d1b55138 8407
3404c8d9
RR
8408 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8409 goto out;
8410 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8411 goto free_domainspan;
8412 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8413 goto free_covered;
8414#endif
8415
8416 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8417 goto free_notcovered;
8418 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8419 goto free_nodemask;
8420 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8421 goto free_this_sibling_map;
8422 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8423 goto free_this_core_map;
8424 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8425 goto free_send_covered;
8426
8427#ifdef CONFIG_NUMA
d1b55138
JH
8428 /*
8429 * Allocate the per-node list of sched groups
8430 */
076ac2af 8431 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 8432 GFP_KERNEL);
d1b55138
JH
8433 if (!sched_group_nodes) {
8434 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 8435 goto free_tmpmask;
d1b55138 8436 }
d1b55138 8437#endif
1da177e4 8438
dc938520 8439 rd = alloc_rootdomain();
57d885fe
GH
8440 if (!rd) {
8441 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 8442 goto free_sched_groups;
57d885fe
GH
8443 }
8444
7c16ec58 8445#ifdef CONFIG_NUMA
96f874e2 8446 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
8447#endif
8448
1da177e4 8449 /*
1a20ff27 8450 * Set up domains for cpus specified by the cpu_map.
1da177e4 8451 */
abcd083a 8452 for_each_cpu(i, cpu_map) {
1da177e4 8453 struct sched_domain *sd = NULL, *p;
1da177e4 8454
6ca09dfc 8455 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
8456
8457#ifdef CONFIG_NUMA
96f874e2
RR
8458 if (cpumask_weight(cpu_map) >
8459 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 8460 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 8461 SD_INIT(sd, ALLNODES);
1d3504fc 8462 set_domain_attribute(sd, attr);
758b2cdc 8463 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 8464 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 8465 p = sd;
6711cab4 8466 sd_allnodes = 1;
9c1cfda2
JH
8467 } else
8468 p = NULL;
8469
62ea9ceb 8470 sd = &per_cpu(node_domains, i).sd;
7c16ec58 8471 SD_INIT(sd, NODE);
1d3504fc 8472 set_domain_attribute(sd, attr);
758b2cdc 8473 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 8474 sd->parent = p;
1a848870
SS
8475 if (p)
8476 p->child = sd;
758b2cdc
RR
8477 cpumask_and(sched_domain_span(sd),
8478 sched_domain_span(sd), cpu_map);
1da177e4
LT
8479#endif
8480
8481 p = sd;
6c99e9ad 8482 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 8483 SD_INIT(sd, CPU);
1d3504fc 8484 set_domain_attribute(sd, attr);
758b2cdc 8485 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 8486 sd->parent = p;
1a848870
SS
8487 if (p)
8488 p->child = sd;
7c16ec58 8489 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 8490
1e9f28fa
SS
8491#ifdef CONFIG_SCHED_MC
8492 p = sd;
6c99e9ad 8493 sd = &per_cpu(core_domains, i).sd;
7c16ec58 8494 SD_INIT(sd, MC);
1d3504fc 8495 set_domain_attribute(sd, attr);
6ca09dfc
MT
8496 cpumask_and(sched_domain_span(sd), cpu_map,
8497 cpu_coregroup_mask(i));
1e9f28fa 8498 sd->parent = p;
1a848870 8499 p->child = sd;
7c16ec58 8500 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
8501#endif
8502
1da177e4
LT
8503#ifdef CONFIG_SCHED_SMT
8504 p = sd;
6c99e9ad 8505 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 8506 SD_INIT(sd, SIBLING);
1d3504fc 8507 set_domain_attribute(sd, attr);
758b2cdc 8508 cpumask_and(sched_domain_span(sd),
c69fc56d 8509 topology_thread_cpumask(i), cpu_map);
1da177e4 8510 sd->parent = p;
1a848870 8511 p->child = sd;
7c16ec58 8512 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
8513#endif
8514 }
8515
8516#ifdef CONFIG_SCHED_SMT
8517 /* Set up CPU (sibling) groups */
abcd083a 8518 for_each_cpu(i, cpu_map) {
96f874e2 8519 cpumask_and(this_sibling_map,
c69fc56d 8520 topology_thread_cpumask(i), cpu_map);
96f874e2 8521 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
8522 continue;
8523
dd41f596 8524 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
8525 &cpu_to_cpu_group,
8526 send_covered, tmpmask);
1da177e4
LT
8527 }
8528#endif
8529
1e9f28fa
SS
8530#ifdef CONFIG_SCHED_MC
8531 /* Set up multi-core groups */
abcd083a 8532 for_each_cpu(i, cpu_map) {
6ca09dfc 8533 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 8534 if (i != cpumask_first(this_core_map))
1e9f28fa 8535 continue;
7c16ec58 8536
dd41f596 8537 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
8538 &cpu_to_core_group,
8539 send_covered, tmpmask);
1e9f28fa
SS
8540 }
8541#endif
8542
1da177e4 8543 /* Set up physical groups */
076ac2af 8544 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 8545 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8546 if (cpumask_empty(nodemask))
1da177e4
LT
8547 continue;
8548
7c16ec58
MT
8549 init_sched_build_groups(nodemask, cpu_map,
8550 &cpu_to_phys_group,
8551 send_covered, tmpmask);
1da177e4
LT
8552 }
8553
8554#ifdef CONFIG_NUMA
8555 /* Set up node groups */
7c16ec58 8556 if (sd_allnodes) {
7c16ec58
MT
8557 init_sched_build_groups(cpu_map, cpu_map,
8558 &cpu_to_allnodes_group,
8559 send_covered, tmpmask);
8560 }
9c1cfda2 8561
076ac2af 8562 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
8563 /* Set up node groups */
8564 struct sched_group *sg, *prev;
9c1cfda2
JH
8565 int j;
8566
96f874e2 8567 cpumask_clear(covered);
6ca09dfc 8568 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8569 if (cpumask_empty(nodemask)) {
d1b55138 8570 sched_group_nodes[i] = NULL;
9c1cfda2 8571 continue;
d1b55138 8572 }
9c1cfda2 8573
4bdbaad3 8574 sched_domain_node_span(i, domainspan);
96f874e2 8575 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 8576
6c99e9ad
RR
8577 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8578 GFP_KERNEL, i);
51888ca2
SV
8579 if (!sg) {
8580 printk(KERN_WARNING "Can not alloc domain group for "
8581 "node %d\n", i);
8582 goto error;
8583 }
9c1cfda2 8584 sched_group_nodes[i] = sg;
abcd083a 8585 for_each_cpu(j, nodemask) {
9c1cfda2 8586 struct sched_domain *sd;
9761eea8 8587
62ea9ceb 8588 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 8589 sd->groups = sg;
9c1cfda2 8590 }
5517d86b 8591 sg->__cpu_power = 0;
758b2cdc 8592 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 8593 sg->next = sg;
96f874e2 8594 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
8595 prev = sg;
8596
076ac2af 8597 for (j = 0; j < nr_node_ids; j++) {
076ac2af 8598 int n = (i + j) % nr_node_ids;
9c1cfda2 8599
96f874e2
RR
8600 cpumask_complement(notcovered, covered);
8601 cpumask_and(tmpmask, notcovered, cpu_map);
8602 cpumask_and(tmpmask, tmpmask, domainspan);
8603 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8604 break;
8605
6ca09dfc 8606 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 8607 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8608 continue;
8609
6c99e9ad
RR
8610 sg = kmalloc_node(sizeof(struct sched_group) +
8611 cpumask_size(),
15f0b676 8612 GFP_KERNEL, i);
9c1cfda2
JH
8613 if (!sg) {
8614 printk(KERN_WARNING
8615 "Can not alloc domain group for node %d\n", j);
51888ca2 8616 goto error;
9c1cfda2 8617 }
5517d86b 8618 sg->__cpu_power = 0;
758b2cdc 8619 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 8620 sg->next = prev->next;
96f874e2 8621 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
8622 prev->next = sg;
8623 prev = sg;
8624 }
9c1cfda2 8625 }
1da177e4
LT
8626#endif
8627
8628 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8629#ifdef CONFIG_SCHED_SMT
abcd083a 8630 for_each_cpu(i, cpu_map) {
6c99e9ad 8631 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 8632
89c4710e 8633 init_sched_groups_power(i, sd);
5c45bf27 8634 }
1da177e4 8635#endif
1e9f28fa 8636#ifdef CONFIG_SCHED_MC
abcd083a 8637 for_each_cpu(i, cpu_map) {
6c99e9ad 8638 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 8639
89c4710e 8640 init_sched_groups_power(i, sd);
5c45bf27
SS
8641 }
8642#endif
1e9f28fa 8643
abcd083a 8644 for_each_cpu(i, cpu_map) {
6c99e9ad 8645 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 8646
89c4710e 8647 init_sched_groups_power(i, sd);
1da177e4
LT
8648 }
8649
9c1cfda2 8650#ifdef CONFIG_NUMA
076ac2af 8651 for (i = 0; i < nr_node_ids; i++)
08069033 8652 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 8653
6711cab4
SS
8654 if (sd_allnodes) {
8655 struct sched_group *sg;
f712c0c7 8656
96f874e2 8657 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 8658 tmpmask);
f712c0c7
SS
8659 init_numa_sched_groups_power(sg);
8660 }
9c1cfda2
JH
8661#endif
8662
1da177e4 8663 /* Attach the domains */
abcd083a 8664 for_each_cpu(i, cpu_map) {
1da177e4
LT
8665 struct sched_domain *sd;
8666#ifdef CONFIG_SCHED_SMT
6c99e9ad 8667 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8668#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8669 sd = &per_cpu(core_domains, i).sd;
1da177e4 8670#else
6c99e9ad 8671 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8672#endif
57d885fe 8673 cpu_attach_domain(sd, rd, i);
1da177e4 8674 }
51888ca2 8675
3404c8d9
RR
8676 err = 0;
8677
8678free_tmpmask:
8679 free_cpumask_var(tmpmask);
8680free_send_covered:
8681 free_cpumask_var(send_covered);
8682free_this_core_map:
8683 free_cpumask_var(this_core_map);
8684free_this_sibling_map:
8685 free_cpumask_var(this_sibling_map);
8686free_nodemask:
8687 free_cpumask_var(nodemask);
8688free_notcovered:
8689#ifdef CONFIG_NUMA
8690 free_cpumask_var(notcovered);
8691free_covered:
8692 free_cpumask_var(covered);
8693free_domainspan:
8694 free_cpumask_var(domainspan);
8695out:
8696#endif
8697 return err;
8698
8699free_sched_groups:
8700#ifdef CONFIG_NUMA
8701 kfree(sched_group_nodes);
8702#endif
8703 goto free_tmpmask;
51888ca2 8704
a616058b 8705#ifdef CONFIG_NUMA
51888ca2 8706error:
7c16ec58 8707 free_sched_groups(cpu_map, tmpmask);
c6c4927b 8708 free_rootdomain(rd);
3404c8d9 8709 goto free_tmpmask;
a616058b 8710#endif
1da177e4 8711}
029190c5 8712
96f874e2 8713static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8714{
8715 return __build_sched_domains(cpu_map, NULL);
8716}
8717
96f874e2 8718static struct cpumask *doms_cur; /* current sched domains */
029190c5 8719static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8720static struct sched_domain_attr *dattr_cur;
8721 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8722
8723/*
8724 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8725 * cpumask) fails, then fallback to a single sched domain,
8726 * as determined by the single cpumask fallback_doms.
029190c5 8727 */
4212823f 8728static cpumask_var_t fallback_doms;
029190c5 8729
ee79d1bd
HC
8730/*
8731 * arch_update_cpu_topology lets virtualized architectures update the
8732 * cpu core maps. It is supposed to return 1 if the topology changed
8733 * or 0 if it stayed the same.
8734 */
8735int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8736{
ee79d1bd 8737 return 0;
22e52b07
HC
8738}
8739
1a20ff27 8740/*
41a2d6cf 8741 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8742 * For now this just excludes isolated cpus, but could be used to
8743 * exclude other special cases in the future.
1a20ff27 8744 */
96f874e2 8745static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8746{
7378547f
MM
8747 int err;
8748
22e52b07 8749 arch_update_cpu_topology();
029190c5 8750 ndoms_cur = 1;
96f874e2 8751 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8752 if (!doms_cur)
4212823f 8753 doms_cur = fallback_doms;
dcc30a35 8754 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8755 dattr_cur = NULL;
7378547f 8756 err = build_sched_domains(doms_cur);
6382bc90 8757 register_sched_domain_sysctl();
7378547f
MM
8758
8759 return err;
1a20ff27
DG
8760}
8761
96f874e2
RR
8762static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8763 struct cpumask *tmpmask)
1da177e4 8764{
7c16ec58 8765 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8766}
1da177e4 8767
1a20ff27
DG
8768/*
8769 * Detach sched domains from a group of cpus specified in cpu_map
8770 * These cpus will now be attached to the NULL domain
8771 */
96f874e2 8772static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8773{
96f874e2
RR
8774 /* Save because hotplug lock held. */
8775 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8776 int i;
8777
abcd083a 8778 for_each_cpu(i, cpu_map)
57d885fe 8779 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8780 synchronize_sched();
96f874e2 8781 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8782}
8783
1d3504fc
HS
8784/* handle null as "default" */
8785static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8786 struct sched_domain_attr *new, int idx_new)
8787{
8788 struct sched_domain_attr tmp;
8789
8790 /* fast path */
8791 if (!new && !cur)
8792 return 1;
8793
8794 tmp = SD_ATTR_INIT;
8795 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8796 new ? (new + idx_new) : &tmp,
8797 sizeof(struct sched_domain_attr));
8798}
8799
029190c5
PJ
8800/*
8801 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8802 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8803 * doms_new[] to the current sched domain partitioning, doms_cur[].
8804 * It destroys each deleted domain and builds each new domain.
8805 *
96f874e2 8806 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8807 * The masks don't intersect (don't overlap.) We should setup one
8808 * sched domain for each mask. CPUs not in any of the cpumasks will
8809 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8810 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8811 * it as it is.
8812 *
41a2d6cf
IM
8813 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8814 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8815 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8816 * ndoms_new == 1, and partition_sched_domains() will fallback to
8817 * the single partition 'fallback_doms', it also forces the domains
8818 * to be rebuilt.
029190c5 8819 *
96f874e2 8820 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8821 * ndoms_new == 0 is a special case for destroying existing domains,
8822 * and it will not create the default domain.
dfb512ec 8823 *
029190c5
PJ
8824 * Call with hotplug lock held
8825 */
96f874e2
RR
8826/* FIXME: Change to struct cpumask *doms_new[] */
8827void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8828 struct sched_domain_attr *dattr_new)
029190c5 8829{
dfb512ec 8830 int i, j, n;
d65bd5ec 8831 int new_topology;
029190c5 8832
712555ee 8833 mutex_lock(&sched_domains_mutex);
a1835615 8834
7378547f
MM
8835 /* always unregister in case we don't destroy any domains */
8836 unregister_sched_domain_sysctl();
8837
d65bd5ec
HC
8838 /* Let architecture update cpu core mappings. */
8839 new_topology = arch_update_cpu_topology();
8840
dfb512ec 8841 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8842
8843 /* Destroy deleted domains */
8844 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8845 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8846 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8847 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8848 goto match1;
8849 }
8850 /* no match - a current sched domain not in new doms_new[] */
8851 detach_destroy_domains(doms_cur + i);
8852match1:
8853 ;
8854 }
8855
e761b772
MK
8856 if (doms_new == NULL) {
8857 ndoms_cur = 0;
4212823f 8858 doms_new = fallback_doms;
dcc30a35 8859 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8860 WARN_ON_ONCE(dattr_new);
e761b772
MK
8861 }
8862
029190c5
PJ
8863 /* Build new domains */
8864 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8865 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8866 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8867 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8868 goto match2;
8869 }
8870 /* no match - add a new doms_new */
1d3504fc
HS
8871 __build_sched_domains(doms_new + i,
8872 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8873match2:
8874 ;
8875 }
8876
8877 /* Remember the new sched domains */
4212823f 8878 if (doms_cur != fallback_doms)
029190c5 8879 kfree(doms_cur);
1d3504fc 8880 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8881 doms_cur = doms_new;
1d3504fc 8882 dattr_cur = dattr_new;
029190c5 8883 ndoms_cur = ndoms_new;
7378547f
MM
8884
8885 register_sched_domain_sysctl();
a1835615 8886
712555ee 8887 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8888}
8889
5c45bf27 8890#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 8891static void arch_reinit_sched_domains(void)
5c45bf27 8892{
95402b38 8893 get_online_cpus();
dfb512ec
MK
8894
8895 /* Destroy domains first to force the rebuild */
8896 partition_sched_domains(0, NULL, NULL);
8897
e761b772 8898 rebuild_sched_domains();
95402b38 8899 put_online_cpus();
5c45bf27
SS
8900}
8901
8902static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8903{
afb8a9b7 8904 unsigned int level = 0;
5c45bf27 8905
afb8a9b7
GS
8906 if (sscanf(buf, "%u", &level) != 1)
8907 return -EINVAL;
8908
8909 /*
8910 * level is always be positive so don't check for
8911 * level < POWERSAVINGS_BALANCE_NONE which is 0
8912 * What happens on 0 or 1 byte write,
8913 * need to check for count as well?
8914 */
8915
8916 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8917 return -EINVAL;
8918
8919 if (smt)
afb8a9b7 8920 sched_smt_power_savings = level;
5c45bf27 8921 else
afb8a9b7 8922 sched_mc_power_savings = level;
5c45bf27 8923
c70f22d2 8924 arch_reinit_sched_domains();
5c45bf27 8925
c70f22d2 8926 return count;
5c45bf27
SS
8927}
8928
5c45bf27 8929#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8930static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8931 char *page)
5c45bf27
SS
8932{
8933 return sprintf(page, "%u\n", sched_mc_power_savings);
8934}
f718cd4a 8935static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8936 const char *buf, size_t count)
5c45bf27
SS
8937{
8938 return sched_power_savings_store(buf, count, 0);
8939}
f718cd4a
AK
8940static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8941 sched_mc_power_savings_show,
8942 sched_mc_power_savings_store);
5c45bf27
SS
8943#endif
8944
8945#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8946static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8947 char *page)
5c45bf27
SS
8948{
8949 return sprintf(page, "%u\n", sched_smt_power_savings);
8950}
f718cd4a 8951static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8952 const char *buf, size_t count)
5c45bf27
SS
8953{
8954 return sched_power_savings_store(buf, count, 1);
8955}
f718cd4a
AK
8956static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8957 sched_smt_power_savings_show,
6707de00
AB
8958 sched_smt_power_savings_store);
8959#endif
8960
39aac648 8961int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
8962{
8963 int err = 0;
8964
8965#ifdef CONFIG_SCHED_SMT
8966 if (smt_capable())
8967 err = sysfs_create_file(&cls->kset.kobj,
8968 &attr_sched_smt_power_savings.attr);
8969#endif
8970#ifdef CONFIG_SCHED_MC
8971 if (!err && mc_capable())
8972 err = sysfs_create_file(&cls->kset.kobj,
8973 &attr_sched_mc_power_savings.attr);
8974#endif
8975 return err;
8976}
6d6bc0ad 8977#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8978
e761b772 8979#ifndef CONFIG_CPUSETS
1da177e4 8980/*
e761b772
MK
8981 * Add online and remove offline CPUs from the scheduler domains.
8982 * When cpusets are enabled they take over this function.
1da177e4
LT
8983 */
8984static int update_sched_domains(struct notifier_block *nfb,
8985 unsigned long action, void *hcpu)
e761b772
MK
8986{
8987 switch (action) {
8988 case CPU_ONLINE:
8989 case CPU_ONLINE_FROZEN:
8990 case CPU_DEAD:
8991 case CPU_DEAD_FROZEN:
dfb512ec 8992 partition_sched_domains(1, NULL, NULL);
e761b772
MK
8993 return NOTIFY_OK;
8994
8995 default:
8996 return NOTIFY_DONE;
8997 }
8998}
8999#endif
9000
9001static int update_runtime(struct notifier_block *nfb,
9002 unsigned long action, void *hcpu)
1da177e4 9003{
7def2be1
PZ
9004 int cpu = (int)(long)hcpu;
9005
1da177e4 9006 switch (action) {
1da177e4 9007 case CPU_DOWN_PREPARE:
8bb78442 9008 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 9009 disable_runtime(cpu_rq(cpu));
1da177e4
LT
9010 return NOTIFY_OK;
9011
1da177e4 9012 case CPU_DOWN_FAILED:
8bb78442 9013 case CPU_DOWN_FAILED_FROZEN:
1da177e4 9014 case CPU_ONLINE:
8bb78442 9015 case CPU_ONLINE_FROZEN:
7def2be1 9016 enable_runtime(cpu_rq(cpu));
e761b772
MK
9017 return NOTIFY_OK;
9018
1da177e4
LT
9019 default:
9020 return NOTIFY_DONE;
9021 }
1da177e4 9022}
1da177e4
LT
9023
9024void __init sched_init_smp(void)
9025{
dcc30a35
RR
9026 cpumask_var_t non_isolated_cpus;
9027
9028 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 9029
434d53b0
MT
9030#if defined(CONFIG_NUMA)
9031 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9032 GFP_KERNEL);
9033 BUG_ON(sched_group_nodes_bycpu == NULL);
9034#endif
95402b38 9035 get_online_cpus();
712555ee 9036 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
9037 arch_init_sched_domains(cpu_online_mask);
9038 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9039 if (cpumask_empty(non_isolated_cpus))
9040 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 9041 mutex_unlock(&sched_domains_mutex);
95402b38 9042 put_online_cpus();
e761b772
MK
9043
9044#ifndef CONFIG_CPUSETS
1da177e4
LT
9045 /* XXX: Theoretical race here - CPU may be hotplugged now */
9046 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
9047#endif
9048
9049 /* RT runtime code needs to handle some hotplug events */
9050 hotcpu_notifier(update_runtime, 0);
9051
b328ca18 9052 init_hrtick();
5c1e1767
NP
9053
9054 /* Move init over to a non-isolated CPU */
dcc30a35 9055 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 9056 BUG();
19978ca6 9057 sched_init_granularity();
dcc30a35 9058 free_cpumask_var(non_isolated_cpus);
4212823f
RR
9059
9060 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 9061 init_sched_rt_class();
1da177e4
LT
9062}
9063#else
9064void __init sched_init_smp(void)
9065{
19978ca6 9066 sched_init_granularity();
1da177e4
LT
9067}
9068#endif /* CONFIG_SMP */
9069
9070int in_sched_functions(unsigned long addr)
9071{
1da177e4
LT
9072 return in_lock_functions(addr) ||
9073 (addr >= (unsigned long)__sched_text_start
9074 && addr < (unsigned long)__sched_text_end);
9075}
9076
a9957449 9077static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
9078{
9079 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 9080 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
9081#ifdef CONFIG_FAIR_GROUP_SCHED
9082 cfs_rq->rq = rq;
9083#endif
67e9fb2a 9084 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
9085}
9086
fa85ae24
PZ
9087static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9088{
9089 struct rt_prio_array *array;
9090 int i;
9091
9092 array = &rt_rq->active;
9093 for (i = 0; i < MAX_RT_PRIO; i++) {
9094 INIT_LIST_HEAD(array->queue + i);
9095 __clear_bit(i, array->bitmap);
9096 }
9097 /* delimiter for bitsearch: */
9098 __set_bit(MAX_RT_PRIO, array->bitmap);
9099
052f1dc7 9100#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 9101 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 9102#ifdef CONFIG_SMP
e864c499 9103 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 9104#endif
48d5e258 9105#endif
fa85ae24
PZ
9106#ifdef CONFIG_SMP
9107 rt_rq->rt_nr_migratory = 0;
fa85ae24 9108 rt_rq->overloaded = 0;
917b627d 9109 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
fa85ae24
PZ
9110#endif
9111
9112 rt_rq->rt_time = 0;
9113 rt_rq->rt_throttled = 0;
ac086bc2
PZ
9114 rt_rq->rt_runtime = 0;
9115 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 9116
052f1dc7 9117#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 9118 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
9119 rt_rq->rq = rq;
9120#endif
fa85ae24
PZ
9121}
9122
6f505b16 9123#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
9124static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9125 struct sched_entity *se, int cpu, int add,
9126 struct sched_entity *parent)
6f505b16 9127{
ec7dc8ac 9128 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
9129 tg->cfs_rq[cpu] = cfs_rq;
9130 init_cfs_rq(cfs_rq, rq);
9131 cfs_rq->tg = tg;
9132 if (add)
9133 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9134
9135 tg->se[cpu] = se;
354d60c2
DG
9136 /* se could be NULL for init_task_group */
9137 if (!se)
9138 return;
9139
ec7dc8ac
DG
9140 if (!parent)
9141 se->cfs_rq = &rq->cfs;
9142 else
9143 se->cfs_rq = parent->my_q;
9144
6f505b16
PZ
9145 se->my_q = cfs_rq;
9146 se->load.weight = tg->shares;
e05510d0 9147 se->load.inv_weight = 0;
ec7dc8ac 9148 se->parent = parent;
6f505b16 9149}
052f1dc7 9150#endif
6f505b16 9151
052f1dc7 9152#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9153static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9154 struct sched_rt_entity *rt_se, int cpu, int add,
9155 struct sched_rt_entity *parent)
6f505b16 9156{
ec7dc8ac
DG
9157 struct rq *rq = cpu_rq(cpu);
9158
6f505b16
PZ
9159 tg->rt_rq[cpu] = rt_rq;
9160 init_rt_rq(rt_rq, rq);
9161 rt_rq->tg = tg;
9162 rt_rq->rt_se = rt_se;
ac086bc2 9163 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9164 if (add)
9165 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9166
9167 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9168 if (!rt_se)
9169 return;
9170
ec7dc8ac
DG
9171 if (!parent)
9172 rt_se->rt_rq = &rq->rt;
9173 else
9174 rt_se->rt_rq = parent->my_q;
9175
6f505b16 9176 rt_se->my_q = rt_rq;
ec7dc8ac 9177 rt_se->parent = parent;
6f505b16
PZ
9178 INIT_LIST_HEAD(&rt_se->run_list);
9179}
9180#endif
9181
1da177e4
LT
9182void __init sched_init(void)
9183{
dd41f596 9184 int i, j;
434d53b0
MT
9185 unsigned long alloc_size = 0, ptr;
9186
9187#ifdef CONFIG_FAIR_GROUP_SCHED
9188 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9189#endif
9190#ifdef CONFIG_RT_GROUP_SCHED
9191 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9192#endif
9193#ifdef CONFIG_USER_SCHED
9194 alloc_size *= 2;
df7c8e84
RR
9195#endif
9196#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9197 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0
MT
9198#endif
9199 /*
9200 * As sched_init() is called before page_alloc is setup,
9201 * we use alloc_bootmem().
9202 */
9203 if (alloc_size) {
36b7b6d4 9204 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
9205
9206#ifdef CONFIG_FAIR_GROUP_SCHED
9207 init_task_group.se = (struct sched_entity **)ptr;
9208 ptr += nr_cpu_ids * sizeof(void **);
9209
9210 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9211 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9212
9213#ifdef CONFIG_USER_SCHED
9214 root_task_group.se = (struct sched_entity **)ptr;
9215 ptr += nr_cpu_ids * sizeof(void **);
9216
9217 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9218 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9219#endif /* CONFIG_USER_SCHED */
9220#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9221#ifdef CONFIG_RT_GROUP_SCHED
9222 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9223 ptr += nr_cpu_ids * sizeof(void **);
9224
9225 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9226 ptr += nr_cpu_ids * sizeof(void **);
9227
9228#ifdef CONFIG_USER_SCHED
9229 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9230 ptr += nr_cpu_ids * sizeof(void **);
9231
9232 root_task_group.rt_rq = (struct rt_rq **)ptr;
9233 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9234#endif /* CONFIG_USER_SCHED */
9235#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9236#ifdef CONFIG_CPUMASK_OFFSTACK
9237 for_each_possible_cpu(i) {
9238 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9239 ptr += cpumask_size();
9240 }
9241#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9242 }
dd41f596 9243
57d885fe
GH
9244#ifdef CONFIG_SMP
9245 init_defrootdomain();
9246#endif
9247
d0b27fa7
PZ
9248 init_rt_bandwidth(&def_rt_bandwidth,
9249 global_rt_period(), global_rt_runtime());
9250
9251#ifdef CONFIG_RT_GROUP_SCHED
9252 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9253 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9254#ifdef CONFIG_USER_SCHED
9255 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9256 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9257#endif /* CONFIG_USER_SCHED */
9258#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9259
052f1dc7 9260#ifdef CONFIG_GROUP_SCHED
6f505b16 9261 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9262 INIT_LIST_HEAD(&init_task_group.children);
9263
9264#ifdef CONFIG_USER_SCHED
9265 INIT_LIST_HEAD(&root_task_group.children);
9266 init_task_group.parent = &root_task_group;
9267 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9268#endif /* CONFIG_USER_SCHED */
9269#endif /* CONFIG_GROUP_SCHED */
6f505b16 9270
0a945022 9271 for_each_possible_cpu(i) {
70b97a7f 9272 struct rq *rq;
1da177e4
LT
9273
9274 rq = cpu_rq(i);
9275 spin_lock_init(&rq->lock);
7897986b 9276 rq->nr_running = 0;
dce48a84
TG
9277 rq->calc_load_active = 0;
9278 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9279 init_cfs_rq(&rq->cfs, rq);
6f505b16 9280 init_rt_rq(&rq->rt, rq);
dd41f596 9281#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9282 init_task_group.shares = init_task_group_load;
6f505b16 9283 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9284#ifdef CONFIG_CGROUP_SCHED
9285 /*
9286 * How much cpu bandwidth does init_task_group get?
9287 *
9288 * In case of task-groups formed thr' the cgroup filesystem, it
9289 * gets 100% of the cpu resources in the system. This overall
9290 * system cpu resource is divided among the tasks of
9291 * init_task_group and its child task-groups in a fair manner,
9292 * based on each entity's (task or task-group's) weight
9293 * (se->load.weight).
9294 *
9295 * In other words, if init_task_group has 10 tasks of weight
9296 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9297 * then A0's share of the cpu resource is:
9298 *
0d905bca 9299 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2
DG
9300 *
9301 * We achieve this by letting init_task_group's tasks sit
9302 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9303 */
ec7dc8ac 9304 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9305#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9306 root_task_group.shares = NICE_0_LOAD;
9307 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9308 /*
9309 * In case of task-groups formed thr' the user id of tasks,
9310 * init_task_group represents tasks belonging to root user.
9311 * Hence it forms a sibling of all subsequent groups formed.
9312 * In this case, init_task_group gets only a fraction of overall
9313 * system cpu resource, based on the weight assigned to root
9314 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9315 * by letting tasks of init_task_group sit in a separate cfs_rq
9316 * (init_cfs_rq) and having one entity represent this group of
9317 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9318 */
ec7dc8ac 9319 init_tg_cfs_entry(&init_task_group,
6f505b16 9320 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
9321 &per_cpu(init_sched_entity, i), i, 1,
9322 root_task_group.se[i]);
6f505b16 9323
052f1dc7 9324#endif
354d60c2
DG
9325#endif /* CONFIG_FAIR_GROUP_SCHED */
9326
9327 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9328#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9329 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9330#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9331 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9332#elif defined CONFIG_USER_SCHED
eff766a6 9333 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9334 init_tg_rt_entry(&init_task_group,
6f505b16 9335 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9336 &per_cpu(init_sched_rt_entity, i), i, 1,
9337 root_task_group.rt_se[i]);
354d60c2 9338#endif
dd41f596 9339#endif
1da177e4 9340
dd41f596
IM
9341 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9342 rq->cpu_load[j] = 0;
1da177e4 9343#ifdef CONFIG_SMP
41c7ce9a 9344 rq->sd = NULL;
57d885fe 9345 rq->rd = NULL;
1da177e4 9346 rq->active_balance = 0;
dd41f596 9347 rq->next_balance = jiffies;
1da177e4 9348 rq->push_cpu = 0;
0a2966b4 9349 rq->cpu = i;
1f11eb6a 9350 rq->online = 0;
1da177e4
LT
9351 rq->migration_thread = NULL;
9352 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9353 rq_attach_root(rq, &def_root_domain);
1da177e4 9354#endif
8f4d37ec 9355 init_rq_hrtick(rq);
1da177e4 9356 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9357 }
9358
2dd73a4f 9359 set_load_weight(&init_task);
b50f60ce 9360
e107be36
AK
9361#ifdef CONFIG_PREEMPT_NOTIFIERS
9362 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9363#endif
9364
c9819f45 9365#ifdef CONFIG_SMP
962cf36c 9366 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9367#endif
9368
b50f60ce
HC
9369#ifdef CONFIG_RT_MUTEXES
9370 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9371#endif
9372
1da177e4
LT
9373 /*
9374 * The boot idle thread does lazy MMU switching as well:
9375 */
9376 atomic_inc(&init_mm.mm_count);
9377 enter_lazy_tlb(&init_mm, current);
9378
9379 /*
9380 * Make us the idle thread. Technically, schedule() should not be
9381 * called from this thread, however somewhere below it might be,
9382 * but because we are the idle thread, we just pick up running again
9383 * when this runqueue becomes "idle".
9384 */
9385 init_idle(current, smp_processor_id());
dce48a84
TG
9386
9387 calc_load_update = jiffies + LOAD_FREQ;
9388
dd41f596
IM
9389 /*
9390 * During early bootup we pretend to be a normal task:
9391 */
9392 current->sched_class = &fair_sched_class;
6892b75e 9393
6a7b3dc3 9394 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
4bdddf8f 9395 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
bf4d83f6 9396#ifdef CONFIG_SMP
7d1e6a9b 9397#ifdef CONFIG_NO_HZ
4bdddf8f
PE
9398 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9399 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7d1e6a9b 9400#endif
4bdddf8f 9401 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
bf4d83f6 9402#endif /* SMP */
6a7b3dc3 9403
0d905bca
IM
9404 perf_counter_init();
9405
6892b75e 9406 scheduler_running = 1;
1da177e4
LT
9407}
9408
9409#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9410void __might_sleep(char *file, int line)
9411{
48f24c4d 9412#ifdef in_atomic
1da177e4
LT
9413 static unsigned long prev_jiffy; /* ratelimiting */
9414
aef745fc
IM
9415 if ((!in_atomic() && !irqs_disabled()) ||
9416 system_state != SYSTEM_RUNNING || oops_in_progress)
9417 return;
9418 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9419 return;
9420 prev_jiffy = jiffies;
9421
9422 printk(KERN_ERR
9423 "BUG: sleeping function called from invalid context at %s:%d\n",
9424 file, line);
9425 printk(KERN_ERR
9426 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9427 in_atomic(), irqs_disabled(),
9428 current->pid, current->comm);
9429
9430 debug_show_held_locks(current);
9431 if (irqs_disabled())
9432 print_irqtrace_events(current);
9433 dump_stack();
1da177e4
LT
9434#endif
9435}
9436EXPORT_SYMBOL(__might_sleep);
9437#endif
9438
9439#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9440static void normalize_task(struct rq *rq, struct task_struct *p)
9441{
9442 int on_rq;
3e51f33f 9443
3a5e4dc1
AK
9444 update_rq_clock(rq);
9445 on_rq = p->se.on_rq;
9446 if (on_rq)
9447 deactivate_task(rq, p, 0);
9448 __setscheduler(rq, p, SCHED_NORMAL, 0);
9449 if (on_rq) {
9450 activate_task(rq, p, 0);
9451 resched_task(rq->curr);
9452 }
9453}
9454
1da177e4
LT
9455void normalize_rt_tasks(void)
9456{
a0f98a1c 9457 struct task_struct *g, *p;
1da177e4 9458 unsigned long flags;
70b97a7f 9459 struct rq *rq;
1da177e4 9460
4cf5d77a 9461 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9462 do_each_thread(g, p) {
178be793
IM
9463 /*
9464 * Only normalize user tasks:
9465 */
9466 if (!p->mm)
9467 continue;
9468
6cfb0d5d 9469 p->se.exec_start = 0;
6cfb0d5d 9470#ifdef CONFIG_SCHEDSTATS
dd41f596 9471 p->se.wait_start = 0;
dd41f596 9472 p->se.sleep_start = 0;
dd41f596 9473 p->se.block_start = 0;
6cfb0d5d 9474#endif
dd41f596
IM
9475
9476 if (!rt_task(p)) {
9477 /*
9478 * Renice negative nice level userspace
9479 * tasks back to 0:
9480 */
9481 if (TASK_NICE(p) < 0 && p->mm)
9482 set_user_nice(p, 0);
1da177e4 9483 continue;
dd41f596 9484 }
1da177e4 9485
4cf5d77a 9486 spin_lock(&p->pi_lock);
b29739f9 9487 rq = __task_rq_lock(p);
1da177e4 9488
178be793 9489 normalize_task(rq, p);
3a5e4dc1 9490
b29739f9 9491 __task_rq_unlock(rq);
4cf5d77a 9492 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9493 } while_each_thread(g, p);
9494
4cf5d77a 9495 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9496}
9497
9498#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9499
9500#ifdef CONFIG_IA64
9501/*
9502 * These functions are only useful for the IA64 MCA handling.
9503 *
9504 * They can only be called when the whole system has been
9505 * stopped - every CPU needs to be quiescent, and no scheduling
9506 * activity can take place. Using them for anything else would
9507 * be a serious bug, and as a result, they aren't even visible
9508 * under any other configuration.
9509 */
9510
9511/**
9512 * curr_task - return the current task for a given cpu.
9513 * @cpu: the processor in question.
9514 *
9515 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9516 */
36c8b586 9517struct task_struct *curr_task(int cpu)
1df5c10a
LT
9518{
9519 return cpu_curr(cpu);
9520}
9521
9522/**
9523 * set_curr_task - set the current task for a given cpu.
9524 * @cpu: the processor in question.
9525 * @p: the task pointer to set.
9526 *
9527 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9528 * are serviced on a separate stack. It allows the architecture to switch the
9529 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9530 * must be called with all CPU's synchronized, and interrupts disabled, the
9531 * and caller must save the original value of the current task (see
9532 * curr_task() above) and restore that value before reenabling interrupts and
9533 * re-starting the system.
9534 *
9535 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9536 */
36c8b586 9537void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9538{
9539 cpu_curr(cpu) = p;
9540}
9541
9542#endif
29f59db3 9543
bccbe08a
PZ
9544#ifdef CONFIG_FAIR_GROUP_SCHED
9545static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9546{
9547 int i;
9548
9549 for_each_possible_cpu(i) {
9550 if (tg->cfs_rq)
9551 kfree(tg->cfs_rq[i]);
9552 if (tg->se)
9553 kfree(tg->se[i]);
6f505b16
PZ
9554 }
9555
9556 kfree(tg->cfs_rq);
9557 kfree(tg->se);
6f505b16
PZ
9558}
9559
ec7dc8ac
DG
9560static
9561int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9562{
29f59db3 9563 struct cfs_rq *cfs_rq;
eab17229 9564 struct sched_entity *se;
9b5b7751 9565 struct rq *rq;
29f59db3
SV
9566 int i;
9567
434d53b0 9568 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9569 if (!tg->cfs_rq)
9570 goto err;
434d53b0 9571 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9572 if (!tg->se)
9573 goto err;
052f1dc7
PZ
9574
9575 tg->shares = NICE_0_LOAD;
29f59db3
SV
9576
9577 for_each_possible_cpu(i) {
9b5b7751 9578 rq = cpu_rq(i);
29f59db3 9579
eab17229
LZ
9580 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9581 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9582 if (!cfs_rq)
9583 goto err;
9584
eab17229
LZ
9585 se = kzalloc_node(sizeof(struct sched_entity),
9586 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9587 if (!se)
9588 goto err;
9589
eab17229 9590 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9591 }
9592
9593 return 1;
9594
9595 err:
9596 return 0;
9597}
9598
9599static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9600{
9601 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9602 &cpu_rq(cpu)->leaf_cfs_rq_list);
9603}
9604
9605static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9606{
9607 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9608}
6d6bc0ad 9609#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9610static inline void free_fair_sched_group(struct task_group *tg)
9611{
9612}
9613
ec7dc8ac
DG
9614static inline
9615int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9616{
9617 return 1;
9618}
9619
9620static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9621{
9622}
9623
9624static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9625{
9626}
6d6bc0ad 9627#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9628
9629#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9630static void free_rt_sched_group(struct task_group *tg)
9631{
9632 int i;
9633
d0b27fa7
PZ
9634 destroy_rt_bandwidth(&tg->rt_bandwidth);
9635
bccbe08a
PZ
9636 for_each_possible_cpu(i) {
9637 if (tg->rt_rq)
9638 kfree(tg->rt_rq[i]);
9639 if (tg->rt_se)
9640 kfree(tg->rt_se[i]);
9641 }
9642
9643 kfree(tg->rt_rq);
9644 kfree(tg->rt_se);
9645}
9646
ec7dc8ac
DG
9647static
9648int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9649{
9650 struct rt_rq *rt_rq;
eab17229 9651 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9652 struct rq *rq;
9653 int i;
9654
434d53b0 9655 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9656 if (!tg->rt_rq)
9657 goto err;
434d53b0 9658 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9659 if (!tg->rt_se)
9660 goto err;
9661
d0b27fa7
PZ
9662 init_rt_bandwidth(&tg->rt_bandwidth,
9663 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9664
9665 for_each_possible_cpu(i) {
9666 rq = cpu_rq(i);
9667
eab17229
LZ
9668 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9669 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9670 if (!rt_rq)
9671 goto err;
29f59db3 9672
eab17229
LZ
9673 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9674 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9675 if (!rt_se)
9676 goto err;
29f59db3 9677
eab17229 9678 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9679 }
9680
bccbe08a
PZ
9681 return 1;
9682
9683 err:
9684 return 0;
9685}
9686
9687static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9688{
9689 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9690 &cpu_rq(cpu)->leaf_rt_rq_list);
9691}
9692
9693static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9694{
9695 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9696}
6d6bc0ad 9697#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9698static inline void free_rt_sched_group(struct task_group *tg)
9699{
9700}
9701
ec7dc8ac
DG
9702static inline
9703int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9704{
9705 return 1;
9706}
9707
9708static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9709{
9710}
9711
9712static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9713{
9714}
6d6bc0ad 9715#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9716
d0b27fa7 9717#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9718static void free_sched_group(struct task_group *tg)
9719{
9720 free_fair_sched_group(tg);
9721 free_rt_sched_group(tg);
9722 kfree(tg);
9723}
9724
9725/* allocate runqueue etc for a new task group */
ec7dc8ac 9726struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9727{
9728 struct task_group *tg;
9729 unsigned long flags;
9730 int i;
9731
9732 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9733 if (!tg)
9734 return ERR_PTR(-ENOMEM);
9735
ec7dc8ac 9736 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9737 goto err;
9738
ec7dc8ac 9739 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9740 goto err;
9741
8ed36996 9742 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9743 for_each_possible_cpu(i) {
bccbe08a
PZ
9744 register_fair_sched_group(tg, i);
9745 register_rt_sched_group(tg, i);
9b5b7751 9746 }
6f505b16 9747 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9748
9749 WARN_ON(!parent); /* root should already exist */
9750
9751 tg->parent = parent;
f473aa5e 9752 INIT_LIST_HEAD(&tg->children);
09f2724a 9753 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9754 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9755
9b5b7751 9756 return tg;
29f59db3
SV
9757
9758err:
6f505b16 9759 free_sched_group(tg);
29f59db3
SV
9760 return ERR_PTR(-ENOMEM);
9761}
9762
9b5b7751 9763/* rcu callback to free various structures associated with a task group */
6f505b16 9764static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9765{
29f59db3 9766 /* now it should be safe to free those cfs_rqs */
6f505b16 9767 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9768}
9769
9b5b7751 9770/* Destroy runqueue etc associated with a task group */
4cf86d77 9771void sched_destroy_group(struct task_group *tg)
29f59db3 9772{
8ed36996 9773 unsigned long flags;
9b5b7751 9774 int i;
29f59db3 9775
8ed36996 9776 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9777 for_each_possible_cpu(i) {
bccbe08a
PZ
9778 unregister_fair_sched_group(tg, i);
9779 unregister_rt_sched_group(tg, i);
9b5b7751 9780 }
6f505b16 9781 list_del_rcu(&tg->list);
f473aa5e 9782 list_del_rcu(&tg->siblings);
8ed36996 9783 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9784
9b5b7751 9785 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9786 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9787}
9788
9b5b7751 9789/* change task's runqueue when it moves between groups.
3a252015
IM
9790 * The caller of this function should have put the task in its new group
9791 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9792 * reflect its new group.
9b5b7751
SV
9793 */
9794void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9795{
9796 int on_rq, running;
9797 unsigned long flags;
9798 struct rq *rq;
9799
9800 rq = task_rq_lock(tsk, &flags);
9801
29f59db3
SV
9802 update_rq_clock(rq);
9803
051a1d1a 9804 running = task_current(rq, tsk);
29f59db3
SV
9805 on_rq = tsk->se.on_rq;
9806
0e1f3483 9807 if (on_rq)
29f59db3 9808 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9809 if (unlikely(running))
9810 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9811
6f505b16 9812 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9813
810b3817
PZ
9814#ifdef CONFIG_FAIR_GROUP_SCHED
9815 if (tsk->sched_class->moved_group)
9816 tsk->sched_class->moved_group(tsk);
9817#endif
9818
0e1f3483
HS
9819 if (unlikely(running))
9820 tsk->sched_class->set_curr_task(rq);
9821 if (on_rq)
7074badb 9822 enqueue_task(rq, tsk, 0);
29f59db3 9823
29f59db3
SV
9824 task_rq_unlock(rq, &flags);
9825}
6d6bc0ad 9826#endif /* CONFIG_GROUP_SCHED */
29f59db3 9827
052f1dc7 9828#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9829static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9830{
9831 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9832 int on_rq;
9833
29f59db3 9834 on_rq = se->on_rq;
62fb1851 9835 if (on_rq)
29f59db3
SV
9836 dequeue_entity(cfs_rq, se, 0);
9837
9838 se->load.weight = shares;
e05510d0 9839 se->load.inv_weight = 0;
29f59db3 9840
62fb1851 9841 if (on_rq)
29f59db3 9842 enqueue_entity(cfs_rq, se, 0);
c09595f6 9843}
62fb1851 9844
c09595f6
PZ
9845static void set_se_shares(struct sched_entity *se, unsigned long shares)
9846{
9847 struct cfs_rq *cfs_rq = se->cfs_rq;
9848 struct rq *rq = cfs_rq->rq;
9849 unsigned long flags;
9850
9851 spin_lock_irqsave(&rq->lock, flags);
9852 __set_se_shares(se, shares);
9853 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9854}
9855
8ed36996
PZ
9856static DEFINE_MUTEX(shares_mutex);
9857
4cf86d77 9858int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9859{
9860 int i;
8ed36996 9861 unsigned long flags;
c61935fd 9862
ec7dc8ac
DG
9863 /*
9864 * We can't change the weight of the root cgroup.
9865 */
9866 if (!tg->se[0])
9867 return -EINVAL;
9868
18d95a28
PZ
9869 if (shares < MIN_SHARES)
9870 shares = MIN_SHARES;
cb4ad1ff
MX
9871 else if (shares > MAX_SHARES)
9872 shares = MAX_SHARES;
62fb1851 9873
8ed36996 9874 mutex_lock(&shares_mutex);
9b5b7751 9875 if (tg->shares == shares)
5cb350ba 9876 goto done;
29f59db3 9877
8ed36996 9878 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9879 for_each_possible_cpu(i)
9880 unregister_fair_sched_group(tg, i);
f473aa5e 9881 list_del_rcu(&tg->siblings);
8ed36996 9882 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
9883
9884 /* wait for any ongoing reference to this group to finish */
9885 synchronize_sched();
9886
9887 /*
9888 * Now we are free to modify the group's share on each cpu
9889 * w/o tripping rebalance_share or load_balance_fair.
9890 */
9b5b7751 9891 tg->shares = shares;
c09595f6
PZ
9892 for_each_possible_cpu(i) {
9893 /*
9894 * force a rebalance
9895 */
9896 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 9897 set_se_shares(tg->se[i], shares);
c09595f6 9898 }
29f59db3 9899
6b2d7700
SV
9900 /*
9901 * Enable load balance activity on this group, by inserting it back on
9902 * each cpu's rq->leaf_cfs_rq_list.
9903 */
8ed36996 9904 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9905 for_each_possible_cpu(i)
9906 register_fair_sched_group(tg, i);
f473aa5e 9907 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9908 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9909done:
8ed36996 9910 mutex_unlock(&shares_mutex);
9b5b7751 9911 return 0;
29f59db3
SV
9912}
9913
5cb350ba
DG
9914unsigned long sched_group_shares(struct task_group *tg)
9915{
9916 return tg->shares;
9917}
052f1dc7 9918#endif
5cb350ba 9919
052f1dc7 9920#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9921/*
9f0c1e56 9922 * Ensure that the real time constraints are schedulable.
6f505b16 9923 */
9f0c1e56
PZ
9924static DEFINE_MUTEX(rt_constraints_mutex);
9925
9926static unsigned long to_ratio(u64 period, u64 runtime)
9927{
9928 if (runtime == RUNTIME_INF)
9a7e0b18 9929 return 1ULL << 20;
9f0c1e56 9930
9a7e0b18 9931 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9932}
9933
9a7e0b18
PZ
9934/* Must be called with tasklist_lock held */
9935static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9936{
9a7e0b18 9937 struct task_struct *g, *p;
b40b2e8e 9938
9a7e0b18
PZ
9939 do_each_thread(g, p) {
9940 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9941 return 1;
9942 } while_each_thread(g, p);
b40b2e8e 9943
9a7e0b18
PZ
9944 return 0;
9945}
b40b2e8e 9946
9a7e0b18
PZ
9947struct rt_schedulable_data {
9948 struct task_group *tg;
9949 u64 rt_period;
9950 u64 rt_runtime;
9951};
b40b2e8e 9952
9a7e0b18
PZ
9953static int tg_schedulable(struct task_group *tg, void *data)
9954{
9955 struct rt_schedulable_data *d = data;
9956 struct task_group *child;
9957 unsigned long total, sum = 0;
9958 u64 period, runtime;
b40b2e8e 9959
9a7e0b18
PZ
9960 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9961 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9962
9a7e0b18
PZ
9963 if (tg == d->tg) {
9964 period = d->rt_period;
9965 runtime = d->rt_runtime;
b40b2e8e 9966 }
b40b2e8e 9967
98a4826b
PZ
9968#ifdef CONFIG_USER_SCHED
9969 if (tg == &root_task_group) {
9970 period = global_rt_period();
9971 runtime = global_rt_runtime();
9972 }
9973#endif
9974
4653f803
PZ
9975 /*
9976 * Cannot have more runtime than the period.
9977 */
9978 if (runtime > period && runtime != RUNTIME_INF)
9979 return -EINVAL;
6f505b16 9980
4653f803
PZ
9981 /*
9982 * Ensure we don't starve existing RT tasks.
9983 */
9a7e0b18
PZ
9984 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9985 return -EBUSY;
6f505b16 9986
9a7e0b18 9987 total = to_ratio(period, runtime);
6f505b16 9988
4653f803
PZ
9989 /*
9990 * Nobody can have more than the global setting allows.
9991 */
9992 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9993 return -EINVAL;
6f505b16 9994
4653f803
PZ
9995 /*
9996 * The sum of our children's runtime should not exceed our own.
9997 */
9a7e0b18
PZ
9998 list_for_each_entry_rcu(child, &tg->children, siblings) {
9999 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10000 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 10001
9a7e0b18
PZ
10002 if (child == d->tg) {
10003 period = d->rt_period;
10004 runtime = d->rt_runtime;
10005 }
6f505b16 10006
9a7e0b18 10007 sum += to_ratio(period, runtime);
9f0c1e56 10008 }
6f505b16 10009
9a7e0b18
PZ
10010 if (sum > total)
10011 return -EINVAL;
10012
10013 return 0;
6f505b16
PZ
10014}
10015
9a7e0b18 10016static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 10017{
9a7e0b18
PZ
10018 struct rt_schedulable_data data = {
10019 .tg = tg,
10020 .rt_period = period,
10021 .rt_runtime = runtime,
10022 };
10023
10024 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
10025}
10026
d0b27fa7
PZ
10027static int tg_set_bandwidth(struct task_group *tg,
10028 u64 rt_period, u64 rt_runtime)
6f505b16 10029{
ac086bc2 10030 int i, err = 0;
9f0c1e56 10031
9f0c1e56 10032 mutex_lock(&rt_constraints_mutex);
521f1a24 10033 read_lock(&tasklist_lock);
9a7e0b18
PZ
10034 err = __rt_schedulable(tg, rt_period, rt_runtime);
10035 if (err)
9f0c1e56 10036 goto unlock;
ac086bc2
PZ
10037
10038 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
10039 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10040 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
10041
10042 for_each_possible_cpu(i) {
10043 struct rt_rq *rt_rq = tg->rt_rq[i];
10044
10045 spin_lock(&rt_rq->rt_runtime_lock);
10046 rt_rq->rt_runtime = rt_runtime;
10047 spin_unlock(&rt_rq->rt_runtime_lock);
10048 }
10049 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 10050 unlock:
521f1a24 10051 read_unlock(&tasklist_lock);
9f0c1e56
PZ
10052 mutex_unlock(&rt_constraints_mutex);
10053
10054 return err;
6f505b16
PZ
10055}
10056
d0b27fa7
PZ
10057int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10058{
10059 u64 rt_runtime, rt_period;
10060
10061 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10062 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10063 if (rt_runtime_us < 0)
10064 rt_runtime = RUNTIME_INF;
10065
10066 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10067}
10068
9f0c1e56
PZ
10069long sched_group_rt_runtime(struct task_group *tg)
10070{
10071 u64 rt_runtime_us;
10072
d0b27fa7 10073 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
10074 return -1;
10075
d0b27fa7 10076 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
10077 do_div(rt_runtime_us, NSEC_PER_USEC);
10078 return rt_runtime_us;
10079}
d0b27fa7
PZ
10080
10081int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10082{
10083 u64 rt_runtime, rt_period;
10084
10085 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10086 rt_runtime = tg->rt_bandwidth.rt_runtime;
10087
619b0488
R
10088 if (rt_period == 0)
10089 return -EINVAL;
10090
d0b27fa7
PZ
10091 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10092}
10093
10094long sched_group_rt_period(struct task_group *tg)
10095{
10096 u64 rt_period_us;
10097
10098 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10099 do_div(rt_period_us, NSEC_PER_USEC);
10100 return rt_period_us;
10101}
10102
10103static int sched_rt_global_constraints(void)
10104{
4653f803 10105 u64 runtime, period;
d0b27fa7
PZ
10106 int ret = 0;
10107
ec5d4989
HS
10108 if (sysctl_sched_rt_period <= 0)
10109 return -EINVAL;
10110
4653f803
PZ
10111 runtime = global_rt_runtime();
10112 period = global_rt_period();
10113
10114 /*
10115 * Sanity check on the sysctl variables.
10116 */
10117 if (runtime > period && runtime != RUNTIME_INF)
10118 return -EINVAL;
10b612f4 10119
d0b27fa7 10120 mutex_lock(&rt_constraints_mutex);
9a7e0b18 10121 read_lock(&tasklist_lock);
4653f803 10122 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 10123 read_unlock(&tasklist_lock);
d0b27fa7
PZ
10124 mutex_unlock(&rt_constraints_mutex);
10125
10126 return ret;
10127}
54e99124
DG
10128
10129int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10130{
10131 /* Don't accept realtime tasks when there is no way for them to run */
10132 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10133 return 0;
10134
10135 return 1;
10136}
10137
6d6bc0ad 10138#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10139static int sched_rt_global_constraints(void)
10140{
ac086bc2
PZ
10141 unsigned long flags;
10142 int i;
10143
ec5d4989
HS
10144 if (sysctl_sched_rt_period <= 0)
10145 return -EINVAL;
10146
60aa605d
PZ
10147 /*
10148 * There's always some RT tasks in the root group
10149 * -- migration, kstopmachine etc..
10150 */
10151 if (sysctl_sched_rt_runtime == 0)
10152 return -EBUSY;
10153
ac086bc2
PZ
10154 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10155 for_each_possible_cpu(i) {
10156 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10157
10158 spin_lock(&rt_rq->rt_runtime_lock);
10159 rt_rq->rt_runtime = global_rt_runtime();
10160 spin_unlock(&rt_rq->rt_runtime_lock);
10161 }
10162 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10163
d0b27fa7
PZ
10164 return 0;
10165}
6d6bc0ad 10166#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10167
10168int sched_rt_handler(struct ctl_table *table, int write,
10169 struct file *filp, void __user *buffer, size_t *lenp,
10170 loff_t *ppos)
10171{
10172 int ret;
10173 int old_period, old_runtime;
10174 static DEFINE_MUTEX(mutex);
10175
10176 mutex_lock(&mutex);
10177 old_period = sysctl_sched_rt_period;
10178 old_runtime = sysctl_sched_rt_runtime;
10179
10180 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10181
10182 if (!ret && write) {
10183 ret = sched_rt_global_constraints();
10184 if (ret) {
10185 sysctl_sched_rt_period = old_period;
10186 sysctl_sched_rt_runtime = old_runtime;
10187 } else {
10188 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10189 def_rt_bandwidth.rt_period =
10190 ns_to_ktime(global_rt_period());
10191 }
10192 }
10193 mutex_unlock(&mutex);
10194
10195 return ret;
10196}
68318b8e 10197
052f1dc7 10198#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10199
10200/* return corresponding task_group object of a cgroup */
2b01dfe3 10201static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10202{
2b01dfe3
PM
10203 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10204 struct task_group, css);
68318b8e
SV
10205}
10206
10207static struct cgroup_subsys_state *
2b01dfe3 10208cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10209{
ec7dc8ac 10210 struct task_group *tg, *parent;
68318b8e 10211
2b01dfe3 10212 if (!cgrp->parent) {
68318b8e 10213 /* This is early initialization for the top cgroup */
68318b8e
SV
10214 return &init_task_group.css;
10215 }
10216
ec7dc8ac
DG
10217 parent = cgroup_tg(cgrp->parent);
10218 tg = sched_create_group(parent);
68318b8e
SV
10219 if (IS_ERR(tg))
10220 return ERR_PTR(-ENOMEM);
10221
68318b8e
SV
10222 return &tg->css;
10223}
10224
41a2d6cf
IM
10225static void
10226cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10227{
2b01dfe3 10228 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10229
10230 sched_destroy_group(tg);
10231}
10232
41a2d6cf
IM
10233static int
10234cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10235 struct task_struct *tsk)
68318b8e 10236{
b68aa230 10237#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10238 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10239 return -EINVAL;
10240#else
68318b8e
SV
10241 /* We don't support RT-tasks being in separate groups */
10242 if (tsk->sched_class != &fair_sched_class)
10243 return -EINVAL;
b68aa230 10244#endif
68318b8e
SV
10245
10246 return 0;
10247}
10248
10249static void
2b01dfe3 10250cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
10251 struct cgroup *old_cont, struct task_struct *tsk)
10252{
10253 sched_move_task(tsk);
10254}
10255
052f1dc7 10256#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10257static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10258 u64 shareval)
68318b8e 10259{
2b01dfe3 10260 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10261}
10262
f4c753b7 10263static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10264{
2b01dfe3 10265 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10266
10267 return (u64) tg->shares;
10268}
6d6bc0ad 10269#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10270
052f1dc7 10271#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10272static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10273 s64 val)
6f505b16 10274{
06ecb27c 10275 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10276}
10277
06ecb27c 10278static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10279{
06ecb27c 10280 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10281}
d0b27fa7
PZ
10282
10283static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10284 u64 rt_period_us)
10285{
10286 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10287}
10288
10289static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10290{
10291 return sched_group_rt_period(cgroup_tg(cgrp));
10292}
6d6bc0ad 10293#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10294
fe5c7cc2 10295static struct cftype cpu_files[] = {
052f1dc7 10296#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10297 {
10298 .name = "shares",
f4c753b7
PM
10299 .read_u64 = cpu_shares_read_u64,
10300 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10301 },
052f1dc7
PZ
10302#endif
10303#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10304 {
9f0c1e56 10305 .name = "rt_runtime_us",
06ecb27c
PM
10306 .read_s64 = cpu_rt_runtime_read,
10307 .write_s64 = cpu_rt_runtime_write,
6f505b16 10308 },
d0b27fa7
PZ
10309 {
10310 .name = "rt_period_us",
f4c753b7
PM
10311 .read_u64 = cpu_rt_period_read_uint,
10312 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10313 },
052f1dc7 10314#endif
68318b8e
SV
10315};
10316
10317static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10318{
fe5c7cc2 10319 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10320}
10321
10322struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10323 .name = "cpu",
10324 .create = cpu_cgroup_create,
10325 .destroy = cpu_cgroup_destroy,
10326 .can_attach = cpu_cgroup_can_attach,
10327 .attach = cpu_cgroup_attach,
10328 .populate = cpu_cgroup_populate,
10329 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10330 .early_init = 1,
10331};
10332
052f1dc7 10333#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10334
10335#ifdef CONFIG_CGROUP_CPUACCT
10336
10337/*
10338 * CPU accounting code for task groups.
10339 *
10340 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10341 * (balbir@in.ibm.com).
10342 */
10343
934352f2 10344/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10345struct cpuacct {
10346 struct cgroup_subsys_state css;
10347 /* cpuusage holds pointer to a u64-type object on every cpu */
10348 u64 *cpuusage;
ef12fefa 10349 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10350 struct cpuacct *parent;
d842de87
SV
10351};
10352
10353struct cgroup_subsys cpuacct_subsys;
10354
10355/* return cpu accounting group corresponding to this container */
32cd756a 10356static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10357{
32cd756a 10358 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10359 struct cpuacct, css);
10360}
10361
10362/* return cpu accounting group to which this task belongs */
10363static inline struct cpuacct *task_ca(struct task_struct *tsk)
10364{
10365 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10366 struct cpuacct, css);
10367}
10368
10369/* create a new cpu accounting group */
10370static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10371 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10372{
10373 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10374 int i;
d842de87
SV
10375
10376 if (!ca)
ef12fefa 10377 goto out;
d842de87
SV
10378
10379 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10380 if (!ca->cpuusage)
10381 goto out_free_ca;
10382
10383 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10384 if (percpu_counter_init(&ca->cpustat[i], 0))
10385 goto out_free_counters;
d842de87 10386
934352f2
BR
10387 if (cgrp->parent)
10388 ca->parent = cgroup_ca(cgrp->parent);
10389
d842de87 10390 return &ca->css;
ef12fefa
BR
10391
10392out_free_counters:
10393 while (--i >= 0)
10394 percpu_counter_destroy(&ca->cpustat[i]);
10395 free_percpu(ca->cpuusage);
10396out_free_ca:
10397 kfree(ca);
10398out:
10399 return ERR_PTR(-ENOMEM);
d842de87
SV
10400}
10401
10402/* destroy an existing cpu accounting group */
41a2d6cf 10403static void
32cd756a 10404cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10405{
32cd756a 10406 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10407 int i;
d842de87 10408
ef12fefa
BR
10409 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10410 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10411 free_percpu(ca->cpuusage);
10412 kfree(ca);
10413}
10414
720f5498
KC
10415static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10416{
b36128c8 10417 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10418 u64 data;
10419
10420#ifndef CONFIG_64BIT
10421 /*
10422 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10423 */
10424 spin_lock_irq(&cpu_rq(cpu)->lock);
10425 data = *cpuusage;
10426 spin_unlock_irq(&cpu_rq(cpu)->lock);
10427#else
10428 data = *cpuusage;
10429#endif
10430
10431 return data;
10432}
10433
10434static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10435{
b36128c8 10436 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10437
10438#ifndef CONFIG_64BIT
10439 /*
10440 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10441 */
10442 spin_lock_irq(&cpu_rq(cpu)->lock);
10443 *cpuusage = val;
10444 spin_unlock_irq(&cpu_rq(cpu)->lock);
10445#else
10446 *cpuusage = val;
10447#endif
10448}
10449
d842de87 10450/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10451static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10452{
32cd756a 10453 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10454 u64 totalcpuusage = 0;
10455 int i;
10456
720f5498
KC
10457 for_each_present_cpu(i)
10458 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10459
10460 return totalcpuusage;
10461}
10462
0297b803
DG
10463static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10464 u64 reset)
10465{
10466 struct cpuacct *ca = cgroup_ca(cgrp);
10467 int err = 0;
10468 int i;
10469
10470 if (reset) {
10471 err = -EINVAL;
10472 goto out;
10473 }
10474
720f5498
KC
10475 for_each_present_cpu(i)
10476 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10477
0297b803
DG
10478out:
10479 return err;
10480}
10481
e9515c3c
KC
10482static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10483 struct seq_file *m)
10484{
10485 struct cpuacct *ca = cgroup_ca(cgroup);
10486 u64 percpu;
10487 int i;
10488
10489 for_each_present_cpu(i) {
10490 percpu = cpuacct_cpuusage_read(ca, i);
10491 seq_printf(m, "%llu ", (unsigned long long) percpu);
10492 }
10493 seq_printf(m, "\n");
10494 return 0;
10495}
10496
ef12fefa
BR
10497static const char *cpuacct_stat_desc[] = {
10498 [CPUACCT_STAT_USER] = "user",
10499 [CPUACCT_STAT_SYSTEM] = "system",
10500};
10501
10502static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10503 struct cgroup_map_cb *cb)
10504{
10505 struct cpuacct *ca = cgroup_ca(cgrp);
10506 int i;
10507
10508 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10509 s64 val = percpu_counter_read(&ca->cpustat[i]);
10510 val = cputime64_to_clock_t(val);
10511 cb->fill(cb, cpuacct_stat_desc[i], val);
10512 }
10513 return 0;
10514}
10515
d842de87
SV
10516static struct cftype files[] = {
10517 {
10518 .name = "usage",
f4c753b7
PM
10519 .read_u64 = cpuusage_read,
10520 .write_u64 = cpuusage_write,
d842de87 10521 },
e9515c3c
KC
10522 {
10523 .name = "usage_percpu",
10524 .read_seq_string = cpuacct_percpu_seq_read,
10525 },
ef12fefa
BR
10526 {
10527 .name = "stat",
10528 .read_map = cpuacct_stats_show,
10529 },
d842de87
SV
10530};
10531
32cd756a 10532static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10533{
32cd756a 10534 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10535}
10536
10537/*
10538 * charge this task's execution time to its accounting group.
10539 *
10540 * called with rq->lock held.
10541 */
10542static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10543{
10544 struct cpuacct *ca;
934352f2 10545 int cpu;
d842de87 10546
c40c6f85 10547 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10548 return;
10549
934352f2 10550 cpu = task_cpu(tsk);
a18b83b7
BR
10551
10552 rcu_read_lock();
10553
d842de87 10554 ca = task_ca(tsk);
d842de87 10555
934352f2 10556 for (; ca; ca = ca->parent) {
b36128c8 10557 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10558 *cpuusage += cputime;
10559 }
a18b83b7
BR
10560
10561 rcu_read_unlock();
d842de87
SV
10562}
10563
ef12fefa
BR
10564/*
10565 * Charge the system/user time to the task's accounting group.
10566 */
10567static void cpuacct_update_stats(struct task_struct *tsk,
10568 enum cpuacct_stat_index idx, cputime_t val)
10569{
10570 struct cpuacct *ca;
10571
10572 if (unlikely(!cpuacct_subsys.active))
10573 return;
10574
10575 rcu_read_lock();
10576 ca = task_ca(tsk);
10577
10578 do {
10579 percpu_counter_add(&ca->cpustat[idx], val);
10580 ca = ca->parent;
10581 } while (ca);
10582 rcu_read_unlock();
10583}
10584
d842de87
SV
10585struct cgroup_subsys cpuacct_subsys = {
10586 .name = "cpuacct",
10587 .create = cpuacct_create,
10588 .destroy = cpuacct_destroy,
10589 .populate = cpuacct_populate,
10590 .subsys_id = cpuacct_subsys_id,
10591};
10592#endif /* CONFIG_CGROUP_CPUACCT */