]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
Merge branches 'tracing/function-graph-tracer' and 'tracing/ring-buffer' into tracing...
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
7e066fb8
MD
121DEFINE_TRACE(sched_wait_task);
122DEFINE_TRACE(sched_wakeup);
123DEFINE_TRACE(sched_wakeup_new);
124DEFINE_TRACE(sched_switch);
125DEFINE_TRACE(sched_migrate_task);
126
5517d86b
ED
127#ifdef CONFIG_SMP
128/*
129 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
130 * Since cpu_power is a 'constant', we can use a reciprocal divide.
131 */
132static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
133{
134 return reciprocal_divide(load, sg->reciprocal_cpu_power);
135}
136
137/*
138 * Each time a sched group cpu_power is changed,
139 * we must compute its reciprocal value
140 */
141static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
142{
143 sg->__cpu_power += val;
144 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
145}
146#endif
147
e05606d3
IM
148static inline int rt_policy(int policy)
149{
3f33a7ce 150 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
151 return 1;
152 return 0;
153}
154
155static inline int task_has_rt_policy(struct task_struct *p)
156{
157 return rt_policy(p->policy);
158}
159
1da177e4 160/*
6aa645ea 161 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 162 */
6aa645ea
IM
163struct rt_prio_array {
164 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
165 struct list_head queue[MAX_RT_PRIO];
166};
167
d0b27fa7 168struct rt_bandwidth {
ea736ed5
IM
169 /* nests inside the rq lock: */
170 spinlock_t rt_runtime_lock;
171 ktime_t rt_period;
172 u64 rt_runtime;
173 struct hrtimer rt_period_timer;
d0b27fa7
PZ
174};
175
176static struct rt_bandwidth def_rt_bandwidth;
177
178static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
179
180static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
181{
182 struct rt_bandwidth *rt_b =
183 container_of(timer, struct rt_bandwidth, rt_period_timer);
184 ktime_t now;
185 int overrun;
186 int idle = 0;
187
188 for (;;) {
189 now = hrtimer_cb_get_time(timer);
190 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
191
192 if (!overrun)
193 break;
194
195 idle = do_sched_rt_period_timer(rt_b, overrun);
196 }
197
198 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
199}
200
201static
202void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
203{
204 rt_b->rt_period = ns_to_ktime(period);
205 rt_b->rt_runtime = runtime;
206
ac086bc2
PZ
207 spin_lock_init(&rt_b->rt_runtime_lock);
208
d0b27fa7
PZ
209 hrtimer_init(&rt_b->rt_period_timer,
210 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
211 rt_b->rt_period_timer.function = sched_rt_period_timer;
ccc7dadf 212 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
d0b27fa7
PZ
213}
214
c8bfff6d
KH
215static inline int rt_bandwidth_enabled(void)
216{
217 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
218}
219
220static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
221{
222 ktime_t now;
223
0b148fa0 224 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
225 return;
226
227 if (hrtimer_active(&rt_b->rt_period_timer))
228 return;
229
230 spin_lock(&rt_b->rt_runtime_lock);
231 for (;;) {
232 if (hrtimer_active(&rt_b->rt_period_timer))
233 break;
234
235 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
236 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
cc584b21
AV
237 hrtimer_start_expires(&rt_b->rt_period_timer,
238 HRTIMER_MODE_ABS);
d0b27fa7
PZ
239 }
240 spin_unlock(&rt_b->rt_runtime_lock);
241}
242
243#ifdef CONFIG_RT_GROUP_SCHED
244static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
245{
246 hrtimer_cancel(&rt_b->rt_period_timer);
247}
248#endif
249
712555ee
HC
250/*
251 * sched_domains_mutex serializes calls to arch_init_sched_domains,
252 * detach_destroy_domains and partition_sched_domains.
253 */
254static DEFINE_MUTEX(sched_domains_mutex);
255
052f1dc7 256#ifdef CONFIG_GROUP_SCHED
29f59db3 257
68318b8e
SV
258#include <linux/cgroup.h>
259
29f59db3
SV
260struct cfs_rq;
261
6f505b16
PZ
262static LIST_HEAD(task_groups);
263
29f59db3 264/* task group related information */
4cf86d77 265struct task_group {
052f1dc7 266#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
267 struct cgroup_subsys_state css;
268#endif
052f1dc7
PZ
269
270#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
271 /* schedulable entities of this group on each cpu */
272 struct sched_entity **se;
273 /* runqueue "owned" by this group on each cpu */
274 struct cfs_rq **cfs_rq;
275 unsigned long shares;
052f1dc7
PZ
276#endif
277
278#ifdef CONFIG_RT_GROUP_SCHED
279 struct sched_rt_entity **rt_se;
280 struct rt_rq **rt_rq;
281
d0b27fa7 282 struct rt_bandwidth rt_bandwidth;
052f1dc7 283#endif
6b2d7700 284
ae8393e5 285 struct rcu_head rcu;
6f505b16 286 struct list_head list;
f473aa5e
PZ
287
288 struct task_group *parent;
289 struct list_head siblings;
290 struct list_head children;
29f59db3
SV
291};
292
354d60c2 293#ifdef CONFIG_USER_SCHED
eff766a6
PZ
294
295/*
296 * Root task group.
297 * Every UID task group (including init_task_group aka UID-0) will
298 * be a child to this group.
299 */
300struct task_group root_task_group;
301
052f1dc7 302#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
303/* Default task group's sched entity on each cpu */
304static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
305/* Default task group's cfs_rq on each cpu */
306static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 307#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
308
309#ifdef CONFIG_RT_GROUP_SCHED
310static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
311static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 312#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 313#else /* !CONFIG_USER_SCHED */
eff766a6 314#define root_task_group init_task_group
9a7e0b18 315#endif /* CONFIG_USER_SCHED */
6f505b16 316
8ed36996 317/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
318 * a task group's cpu shares.
319 */
8ed36996 320static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 321
052f1dc7 322#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
323#ifdef CONFIG_USER_SCHED
324# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 325#else /* !CONFIG_USER_SCHED */
052f1dc7 326# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 327#endif /* CONFIG_USER_SCHED */
052f1dc7 328
cb4ad1ff 329/*
2e084786
LJ
330 * A weight of 0 or 1 can cause arithmetics problems.
331 * A weight of a cfs_rq is the sum of weights of which entities
332 * are queued on this cfs_rq, so a weight of a entity should not be
333 * too large, so as the shares value of a task group.
cb4ad1ff
MX
334 * (The default weight is 1024 - so there's no practical
335 * limitation from this.)
336 */
18d95a28 337#define MIN_SHARES 2
2e084786 338#define MAX_SHARES (1UL << 18)
18d95a28 339
052f1dc7
PZ
340static int init_task_group_load = INIT_TASK_GROUP_LOAD;
341#endif
342
29f59db3 343/* Default task group.
3a252015 344 * Every task in system belong to this group at bootup.
29f59db3 345 */
434d53b0 346struct task_group init_task_group;
29f59db3
SV
347
348/* return group to which a task belongs */
4cf86d77 349static inline struct task_group *task_group(struct task_struct *p)
29f59db3 350{
4cf86d77 351 struct task_group *tg;
9b5b7751 352
052f1dc7 353#ifdef CONFIG_USER_SCHED
24e377a8 354 tg = p->user->tg;
052f1dc7 355#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
24e377a8 358#else
41a2d6cf 359 tg = &init_task_group;
24e377a8 360#endif
9b5b7751 361 return tg;
29f59db3
SV
362}
363
364/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 365static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 366{
052f1dc7 367#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
052f1dc7 370#endif
6f505b16 371
052f1dc7 372#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 375#endif
29f59db3
SV
376}
377
378#else
379
6f505b16 380static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
381static inline struct task_group *task_group(struct task_struct *p)
382{
383 return NULL;
384}
29f59db3 385
052f1dc7 386#endif /* CONFIG_GROUP_SCHED */
29f59db3 387
6aa645ea
IM
388/* CFS-related fields in a runqueue */
389struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
392
6aa645ea 393 u64 exec_clock;
e9acbff6 394 u64 min_vruntime;
6aa645ea
IM
395
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
4a55bd5e
PZ
398
399 struct list_head tasks;
400 struct list_head *balance_iterator;
401
402 /*
403 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
404 * It is set to NULL otherwise (i.e when none are currently running).
405 */
4793241b 406 struct sched_entity *curr, *next, *last;
ddc97297 407
5ac5c4d6 408 unsigned int nr_spread_over;
ddc97297 409
62160e3f 410#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
412
41a2d6cf
IM
413 /*
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
417 *
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
420 */
41a2d6cf
IM
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
423
424#ifdef CONFIG_SMP
c09595f6 425 /*
c8cba857 426 * the part of load.weight contributed by tasks
c09595f6 427 */
c8cba857 428 unsigned long task_weight;
c09595f6 429
c8cba857
PZ
430 /*
431 * h_load = weight * f(tg)
432 *
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
435 */
436 unsigned long h_load;
c09595f6 437
c8cba857
PZ
438 /*
439 * this cpu's part of tg->shares
440 */
441 unsigned long shares;
f1d239f7
PZ
442
443 /*
444 * load.weight at the time we set shares
445 */
446 unsigned long rq_weight;
c09595f6 447#endif
6aa645ea
IM
448#endif
449};
1da177e4 450
6aa645ea
IM
451/* Real-Time classes' related field in a runqueue: */
452struct rt_rq {
453 struct rt_prio_array active;
63489e45 454 unsigned long rt_nr_running;
052f1dc7 455#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
456 int highest_prio; /* highest queued rt task prio */
457#endif
fa85ae24 458#ifdef CONFIG_SMP
73fe6aae 459 unsigned long rt_nr_migratory;
a22d7fc1 460 int overloaded;
fa85ae24 461#endif
6f505b16 462 int rt_throttled;
fa85ae24 463 u64 rt_time;
ac086bc2 464 u64 rt_runtime;
ea736ed5 465 /* Nests inside the rq lock: */
ac086bc2 466 spinlock_t rt_runtime_lock;
6f505b16 467
052f1dc7 468#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
469 unsigned long rt_nr_boosted;
470
6f505b16
PZ
471 struct rq *rq;
472 struct list_head leaf_rt_rq_list;
473 struct task_group *tg;
474 struct sched_rt_entity *rt_se;
475#endif
6aa645ea
IM
476};
477
57d885fe
GH
478#ifdef CONFIG_SMP
479
480/*
481 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
482 * variables. Each exclusive cpuset essentially defines an island domain by
483 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
484 * exclusive cpuset is created, we also create and attach a new root-domain
485 * object.
486 *
57d885fe
GH
487 */
488struct root_domain {
489 atomic_t refcount;
490 cpumask_t span;
491 cpumask_t online;
637f5085 492
0eab9146 493 /*
637f5085
GH
494 * The "RT overload" flag: it gets set if a CPU has more than
495 * one runnable RT task.
496 */
497 cpumask_t rto_mask;
0eab9146 498 atomic_t rto_count;
6e0534f2
GH
499#ifdef CONFIG_SMP
500 struct cpupri cpupri;
501#endif
57d885fe
GH
502};
503
dc938520
GH
504/*
505 * By default the system creates a single root-domain with all cpus as
506 * members (mimicking the global state we have today).
507 */
57d885fe
GH
508static struct root_domain def_root_domain;
509
510#endif
511
1da177e4
LT
512/*
513 * This is the main, per-CPU runqueue data structure.
514 *
515 * Locking rule: those places that want to lock multiple runqueues
516 * (such as the load balancing or the thread migration code), lock
517 * acquire operations must be ordered by ascending &runqueue.
518 */
70b97a7f 519struct rq {
d8016491
IM
520 /* runqueue lock: */
521 spinlock_t lock;
1da177e4
LT
522
523 /*
524 * nr_running and cpu_load should be in the same cacheline because
525 * remote CPUs use both these fields when doing load calculation.
526 */
527 unsigned long nr_running;
6aa645ea
IM
528 #define CPU_LOAD_IDX_MAX 5
529 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 530 unsigned char idle_at_tick;
46cb4b7c 531#ifdef CONFIG_NO_HZ
15934a37 532 unsigned long last_tick_seen;
46cb4b7c
SS
533 unsigned char in_nohz_recently;
534#endif
d8016491
IM
535 /* capture load from *all* tasks on this cpu: */
536 struct load_weight load;
6aa645ea
IM
537 unsigned long nr_load_updates;
538 u64 nr_switches;
539
540 struct cfs_rq cfs;
6f505b16 541 struct rt_rq rt;
6f505b16 542
6aa645ea 543#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
544 /* list of leaf cfs_rq on this cpu: */
545 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
546#endif
547#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 548 struct list_head leaf_rt_rq_list;
1da177e4 549#endif
1da177e4
LT
550
551 /*
552 * This is part of a global counter where only the total sum
553 * over all CPUs matters. A task can increase this counter on
554 * one CPU and if it got migrated afterwards it may decrease
555 * it on another CPU. Always updated under the runqueue lock:
556 */
557 unsigned long nr_uninterruptible;
558
36c8b586 559 struct task_struct *curr, *idle;
c9819f45 560 unsigned long next_balance;
1da177e4 561 struct mm_struct *prev_mm;
6aa645ea 562
3e51f33f 563 u64 clock;
6aa645ea 564
1da177e4
LT
565 atomic_t nr_iowait;
566
567#ifdef CONFIG_SMP
0eab9146 568 struct root_domain *rd;
1da177e4
LT
569 struct sched_domain *sd;
570
571 /* For active balancing */
572 int active_balance;
573 int push_cpu;
d8016491
IM
574 /* cpu of this runqueue: */
575 int cpu;
1f11eb6a 576 int online;
1da177e4 577
a8a51d5e 578 unsigned long avg_load_per_task;
1da177e4 579
36c8b586 580 struct task_struct *migration_thread;
1da177e4
LT
581 struct list_head migration_queue;
582#endif
583
8f4d37ec 584#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
585#ifdef CONFIG_SMP
586 int hrtick_csd_pending;
587 struct call_single_data hrtick_csd;
588#endif
8f4d37ec
PZ
589 struct hrtimer hrtick_timer;
590#endif
591
1da177e4
LT
592#ifdef CONFIG_SCHEDSTATS
593 /* latency stats */
594 struct sched_info rq_sched_info;
595
596 /* sys_sched_yield() stats */
480b9434
KC
597 unsigned int yld_exp_empty;
598 unsigned int yld_act_empty;
599 unsigned int yld_both_empty;
600 unsigned int yld_count;
1da177e4
LT
601
602 /* schedule() stats */
480b9434
KC
603 unsigned int sched_switch;
604 unsigned int sched_count;
605 unsigned int sched_goidle;
1da177e4
LT
606
607 /* try_to_wake_up() stats */
480b9434
KC
608 unsigned int ttwu_count;
609 unsigned int ttwu_local;
b8efb561
IM
610
611 /* BKL stats */
480b9434 612 unsigned int bkl_count;
1da177e4
LT
613#endif
614};
615
f34e3b61 616static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 617
15afe09b 618static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 619{
15afe09b 620 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
621}
622
0a2966b4
CL
623static inline int cpu_of(struct rq *rq)
624{
625#ifdef CONFIG_SMP
626 return rq->cpu;
627#else
628 return 0;
629#endif
630}
631
674311d5
NP
632/*
633 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 634 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
635 *
636 * The domain tree of any CPU may only be accessed from within
637 * preempt-disabled sections.
638 */
48f24c4d
IM
639#define for_each_domain(cpu, __sd) \
640 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
641
642#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
643#define this_rq() (&__get_cpu_var(runqueues))
644#define task_rq(p) cpu_rq(task_cpu(p))
645#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
646
3e51f33f
PZ
647static inline void update_rq_clock(struct rq *rq)
648{
649 rq->clock = sched_clock_cpu(cpu_of(rq));
650}
651
bf5c91ba
IM
652/*
653 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
654 */
655#ifdef CONFIG_SCHED_DEBUG
656# define const_debug __read_mostly
657#else
658# define const_debug static const
659#endif
660
017730c1
IM
661/**
662 * runqueue_is_locked
663 *
664 * Returns true if the current cpu runqueue is locked.
665 * This interface allows printk to be called with the runqueue lock
666 * held and know whether or not it is OK to wake up the klogd.
667 */
668int runqueue_is_locked(void)
669{
670 int cpu = get_cpu();
671 struct rq *rq = cpu_rq(cpu);
672 int ret;
673
674 ret = spin_is_locked(&rq->lock);
675 put_cpu();
676 return ret;
677}
678
bf5c91ba
IM
679/*
680 * Debugging: various feature bits
681 */
f00b45c1
PZ
682
683#define SCHED_FEAT(name, enabled) \
684 __SCHED_FEAT_##name ,
685
bf5c91ba 686enum {
f00b45c1 687#include "sched_features.h"
bf5c91ba
IM
688};
689
f00b45c1
PZ
690#undef SCHED_FEAT
691
692#define SCHED_FEAT(name, enabled) \
693 (1UL << __SCHED_FEAT_##name) * enabled |
694
bf5c91ba 695const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
696#include "sched_features.h"
697 0;
698
699#undef SCHED_FEAT
700
701#ifdef CONFIG_SCHED_DEBUG
702#define SCHED_FEAT(name, enabled) \
703 #name ,
704
983ed7a6 705static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
706#include "sched_features.h"
707 NULL
708};
709
710#undef SCHED_FEAT
711
983ed7a6 712static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
713{
714 filp->private_data = inode->i_private;
715 return 0;
716}
717
718static ssize_t
719sched_feat_read(struct file *filp, char __user *ubuf,
720 size_t cnt, loff_t *ppos)
721{
722 char *buf;
723 int r = 0;
724 int len = 0;
725 int i;
726
727 for (i = 0; sched_feat_names[i]; i++) {
728 len += strlen(sched_feat_names[i]);
729 len += 4;
730 }
731
732 buf = kmalloc(len + 2, GFP_KERNEL);
733 if (!buf)
734 return -ENOMEM;
735
736 for (i = 0; sched_feat_names[i]; i++) {
737 if (sysctl_sched_features & (1UL << i))
738 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
739 else
c24b7c52 740 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
741 }
742
743 r += sprintf(buf + r, "\n");
744 WARN_ON(r >= len + 2);
745
746 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
747
748 kfree(buf);
749
750 return r;
751}
752
753static ssize_t
754sched_feat_write(struct file *filp, const char __user *ubuf,
755 size_t cnt, loff_t *ppos)
756{
757 char buf[64];
758 char *cmp = buf;
759 int neg = 0;
760 int i;
761
762 if (cnt > 63)
763 cnt = 63;
764
765 if (copy_from_user(&buf, ubuf, cnt))
766 return -EFAULT;
767
768 buf[cnt] = 0;
769
c24b7c52 770 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
771 neg = 1;
772 cmp += 3;
773 }
774
775 for (i = 0; sched_feat_names[i]; i++) {
776 int len = strlen(sched_feat_names[i]);
777
778 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
779 if (neg)
780 sysctl_sched_features &= ~(1UL << i);
781 else
782 sysctl_sched_features |= (1UL << i);
783 break;
784 }
785 }
786
787 if (!sched_feat_names[i])
788 return -EINVAL;
789
790 filp->f_pos += cnt;
791
792 return cnt;
793}
794
795static struct file_operations sched_feat_fops = {
796 .open = sched_feat_open,
797 .read = sched_feat_read,
798 .write = sched_feat_write,
799};
800
801static __init int sched_init_debug(void)
802{
f00b45c1
PZ
803 debugfs_create_file("sched_features", 0644, NULL, NULL,
804 &sched_feat_fops);
805
806 return 0;
807}
808late_initcall(sched_init_debug);
809
810#endif
811
812#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 813
b82d9fdd
PZ
814/*
815 * Number of tasks to iterate in a single balance run.
816 * Limited because this is done with IRQs disabled.
817 */
818const_debug unsigned int sysctl_sched_nr_migrate = 32;
819
2398f2c6
PZ
820/*
821 * ratelimit for updating the group shares.
55cd5340 822 * default: 0.25ms
2398f2c6 823 */
55cd5340 824unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 825
ffda12a1
PZ
826/*
827 * Inject some fuzzyness into changing the per-cpu group shares
828 * this avoids remote rq-locks at the expense of fairness.
829 * default: 4
830 */
831unsigned int sysctl_sched_shares_thresh = 4;
832
fa85ae24 833/*
9f0c1e56 834 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
835 * default: 1s
836 */
9f0c1e56 837unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 838
6892b75e
IM
839static __read_mostly int scheduler_running;
840
9f0c1e56
PZ
841/*
842 * part of the period that we allow rt tasks to run in us.
843 * default: 0.95s
844 */
845int sysctl_sched_rt_runtime = 950000;
fa85ae24 846
d0b27fa7
PZ
847static inline u64 global_rt_period(void)
848{
849 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
850}
851
852static inline u64 global_rt_runtime(void)
853{
e26873bb 854 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
855 return RUNTIME_INF;
856
857 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
858}
fa85ae24 859
1da177e4 860#ifndef prepare_arch_switch
4866cde0
NP
861# define prepare_arch_switch(next) do { } while (0)
862#endif
863#ifndef finish_arch_switch
864# define finish_arch_switch(prev) do { } while (0)
865#endif
866
051a1d1a
DA
867static inline int task_current(struct rq *rq, struct task_struct *p)
868{
869 return rq->curr == p;
870}
871
4866cde0 872#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 873static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 874{
051a1d1a 875 return task_current(rq, p);
4866cde0
NP
876}
877
70b97a7f 878static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
879{
880}
881
70b97a7f 882static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 883{
da04c035
IM
884#ifdef CONFIG_DEBUG_SPINLOCK
885 /* this is a valid case when another task releases the spinlock */
886 rq->lock.owner = current;
887#endif
8a25d5de
IM
888 /*
889 * If we are tracking spinlock dependencies then we have to
890 * fix up the runqueue lock - which gets 'carried over' from
891 * prev into current:
892 */
893 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
894
4866cde0
NP
895 spin_unlock_irq(&rq->lock);
896}
897
898#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 899static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
900{
901#ifdef CONFIG_SMP
902 return p->oncpu;
903#else
051a1d1a 904 return task_current(rq, p);
4866cde0
NP
905#endif
906}
907
70b97a7f 908static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
909{
910#ifdef CONFIG_SMP
911 /*
912 * We can optimise this out completely for !SMP, because the
913 * SMP rebalancing from interrupt is the only thing that cares
914 * here.
915 */
916 next->oncpu = 1;
917#endif
918#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
919 spin_unlock_irq(&rq->lock);
920#else
921 spin_unlock(&rq->lock);
922#endif
923}
924
70b97a7f 925static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
926{
927#ifdef CONFIG_SMP
928 /*
929 * After ->oncpu is cleared, the task can be moved to a different CPU.
930 * We must ensure this doesn't happen until the switch is completely
931 * finished.
932 */
933 smp_wmb();
934 prev->oncpu = 0;
935#endif
936#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
937 local_irq_enable();
1da177e4 938#endif
4866cde0
NP
939}
940#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 941
b29739f9
IM
942/*
943 * __task_rq_lock - lock the runqueue a given task resides on.
944 * Must be called interrupts disabled.
945 */
70b97a7f 946static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
947 __acquires(rq->lock)
948{
3a5c359a
AK
949 for (;;) {
950 struct rq *rq = task_rq(p);
951 spin_lock(&rq->lock);
952 if (likely(rq == task_rq(p)))
953 return rq;
b29739f9 954 spin_unlock(&rq->lock);
b29739f9 955 }
b29739f9
IM
956}
957
1da177e4
LT
958/*
959 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 960 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
961 * explicitly disabling preemption.
962 */
70b97a7f 963static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
964 __acquires(rq->lock)
965{
70b97a7f 966 struct rq *rq;
1da177e4 967
3a5c359a
AK
968 for (;;) {
969 local_irq_save(*flags);
970 rq = task_rq(p);
971 spin_lock(&rq->lock);
972 if (likely(rq == task_rq(p)))
973 return rq;
1da177e4 974 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 975 }
1da177e4
LT
976}
977
ad474cac
ON
978void task_rq_unlock_wait(struct task_struct *p)
979{
980 struct rq *rq = task_rq(p);
981
982 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
983 spin_unlock_wait(&rq->lock);
984}
985
a9957449 986static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
987 __releases(rq->lock)
988{
989 spin_unlock(&rq->lock);
990}
991
70b97a7f 992static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
993 __releases(rq->lock)
994{
995 spin_unlock_irqrestore(&rq->lock, *flags);
996}
997
1da177e4 998/*
cc2a73b5 999 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1000 */
a9957449 1001static struct rq *this_rq_lock(void)
1da177e4
LT
1002 __acquires(rq->lock)
1003{
70b97a7f 1004 struct rq *rq;
1da177e4
LT
1005
1006 local_irq_disable();
1007 rq = this_rq();
1008 spin_lock(&rq->lock);
1009
1010 return rq;
1011}
1012
8f4d37ec
PZ
1013#ifdef CONFIG_SCHED_HRTICK
1014/*
1015 * Use HR-timers to deliver accurate preemption points.
1016 *
1017 * Its all a bit involved since we cannot program an hrt while holding the
1018 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1019 * reschedule event.
1020 *
1021 * When we get rescheduled we reprogram the hrtick_timer outside of the
1022 * rq->lock.
1023 */
8f4d37ec
PZ
1024
1025/*
1026 * Use hrtick when:
1027 * - enabled by features
1028 * - hrtimer is actually high res
1029 */
1030static inline int hrtick_enabled(struct rq *rq)
1031{
1032 if (!sched_feat(HRTICK))
1033 return 0;
ba42059f 1034 if (!cpu_active(cpu_of(rq)))
b328ca18 1035 return 0;
8f4d37ec
PZ
1036 return hrtimer_is_hres_active(&rq->hrtick_timer);
1037}
1038
8f4d37ec
PZ
1039static void hrtick_clear(struct rq *rq)
1040{
1041 if (hrtimer_active(&rq->hrtick_timer))
1042 hrtimer_cancel(&rq->hrtick_timer);
1043}
1044
8f4d37ec
PZ
1045/*
1046 * High-resolution timer tick.
1047 * Runs from hardirq context with interrupts disabled.
1048 */
1049static enum hrtimer_restart hrtick(struct hrtimer *timer)
1050{
1051 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1052
1053 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1054
1055 spin_lock(&rq->lock);
3e51f33f 1056 update_rq_clock(rq);
8f4d37ec
PZ
1057 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1058 spin_unlock(&rq->lock);
1059
1060 return HRTIMER_NORESTART;
1061}
1062
95e904c7 1063#ifdef CONFIG_SMP
31656519
PZ
1064/*
1065 * called from hardirq (IPI) context
1066 */
1067static void __hrtick_start(void *arg)
b328ca18 1068{
31656519 1069 struct rq *rq = arg;
b328ca18 1070
31656519
PZ
1071 spin_lock(&rq->lock);
1072 hrtimer_restart(&rq->hrtick_timer);
1073 rq->hrtick_csd_pending = 0;
1074 spin_unlock(&rq->lock);
b328ca18
PZ
1075}
1076
31656519
PZ
1077/*
1078 * Called to set the hrtick timer state.
1079 *
1080 * called with rq->lock held and irqs disabled
1081 */
1082static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1083{
31656519
PZ
1084 struct hrtimer *timer = &rq->hrtick_timer;
1085 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1086
cc584b21 1087 hrtimer_set_expires(timer, time);
31656519
PZ
1088
1089 if (rq == this_rq()) {
1090 hrtimer_restart(timer);
1091 } else if (!rq->hrtick_csd_pending) {
1092 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1093 rq->hrtick_csd_pending = 1;
1094 }
b328ca18
PZ
1095}
1096
1097static int
1098hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1099{
1100 int cpu = (int)(long)hcpu;
1101
1102 switch (action) {
1103 case CPU_UP_CANCELED:
1104 case CPU_UP_CANCELED_FROZEN:
1105 case CPU_DOWN_PREPARE:
1106 case CPU_DOWN_PREPARE_FROZEN:
1107 case CPU_DEAD:
1108 case CPU_DEAD_FROZEN:
31656519 1109 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1110 return NOTIFY_OK;
1111 }
1112
1113 return NOTIFY_DONE;
1114}
1115
fa748203 1116static __init void init_hrtick(void)
b328ca18
PZ
1117{
1118 hotcpu_notifier(hotplug_hrtick, 0);
1119}
31656519
PZ
1120#else
1121/*
1122 * Called to set the hrtick timer state.
1123 *
1124 * called with rq->lock held and irqs disabled
1125 */
1126static void hrtick_start(struct rq *rq, u64 delay)
1127{
1128 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1129}
b328ca18 1130
006c75f1 1131static inline void init_hrtick(void)
8f4d37ec 1132{
8f4d37ec 1133}
31656519 1134#endif /* CONFIG_SMP */
8f4d37ec 1135
31656519 1136static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1137{
31656519
PZ
1138#ifdef CONFIG_SMP
1139 rq->hrtick_csd_pending = 0;
8f4d37ec 1140
31656519
PZ
1141 rq->hrtick_csd.flags = 0;
1142 rq->hrtick_csd.func = __hrtick_start;
1143 rq->hrtick_csd.info = rq;
1144#endif
8f4d37ec 1145
31656519
PZ
1146 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1147 rq->hrtick_timer.function = hrtick;
ccc7dadf 1148 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
8f4d37ec 1149}
006c75f1 1150#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1151static inline void hrtick_clear(struct rq *rq)
1152{
1153}
1154
8f4d37ec
PZ
1155static inline void init_rq_hrtick(struct rq *rq)
1156{
1157}
1158
b328ca18
PZ
1159static inline void init_hrtick(void)
1160{
1161}
006c75f1 1162#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1163
c24d20db
IM
1164/*
1165 * resched_task - mark a task 'to be rescheduled now'.
1166 *
1167 * On UP this means the setting of the need_resched flag, on SMP it
1168 * might also involve a cross-CPU call to trigger the scheduler on
1169 * the target CPU.
1170 */
1171#ifdef CONFIG_SMP
1172
1173#ifndef tsk_is_polling
1174#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1175#endif
1176
31656519 1177static void resched_task(struct task_struct *p)
c24d20db
IM
1178{
1179 int cpu;
1180
1181 assert_spin_locked(&task_rq(p)->lock);
1182
31656519 1183 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
c24d20db
IM
1184 return;
1185
31656519 1186 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
c24d20db
IM
1187
1188 cpu = task_cpu(p);
1189 if (cpu == smp_processor_id())
1190 return;
1191
1192 /* NEED_RESCHED must be visible before we test polling */
1193 smp_mb();
1194 if (!tsk_is_polling(p))
1195 smp_send_reschedule(cpu);
1196}
1197
1198static void resched_cpu(int cpu)
1199{
1200 struct rq *rq = cpu_rq(cpu);
1201 unsigned long flags;
1202
1203 if (!spin_trylock_irqsave(&rq->lock, flags))
1204 return;
1205 resched_task(cpu_curr(cpu));
1206 spin_unlock_irqrestore(&rq->lock, flags);
1207}
06d8308c
TG
1208
1209#ifdef CONFIG_NO_HZ
1210/*
1211 * When add_timer_on() enqueues a timer into the timer wheel of an
1212 * idle CPU then this timer might expire before the next timer event
1213 * which is scheduled to wake up that CPU. In case of a completely
1214 * idle system the next event might even be infinite time into the
1215 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1216 * leaves the inner idle loop so the newly added timer is taken into
1217 * account when the CPU goes back to idle and evaluates the timer
1218 * wheel for the next timer event.
1219 */
1220void wake_up_idle_cpu(int cpu)
1221{
1222 struct rq *rq = cpu_rq(cpu);
1223
1224 if (cpu == smp_processor_id())
1225 return;
1226
1227 /*
1228 * This is safe, as this function is called with the timer
1229 * wheel base lock of (cpu) held. When the CPU is on the way
1230 * to idle and has not yet set rq->curr to idle then it will
1231 * be serialized on the timer wheel base lock and take the new
1232 * timer into account automatically.
1233 */
1234 if (rq->curr != rq->idle)
1235 return;
1236
1237 /*
1238 * We can set TIF_RESCHED on the idle task of the other CPU
1239 * lockless. The worst case is that the other CPU runs the
1240 * idle task through an additional NOOP schedule()
1241 */
1242 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1243
1244 /* NEED_RESCHED must be visible before we test polling */
1245 smp_mb();
1246 if (!tsk_is_polling(rq->idle))
1247 smp_send_reschedule(cpu);
1248}
6d6bc0ad 1249#endif /* CONFIG_NO_HZ */
06d8308c 1250
6d6bc0ad 1251#else /* !CONFIG_SMP */
31656519 1252static void resched_task(struct task_struct *p)
c24d20db
IM
1253{
1254 assert_spin_locked(&task_rq(p)->lock);
31656519 1255 set_tsk_need_resched(p);
c24d20db 1256}
6d6bc0ad 1257#endif /* CONFIG_SMP */
c24d20db 1258
45bf76df
IM
1259#if BITS_PER_LONG == 32
1260# define WMULT_CONST (~0UL)
1261#else
1262# define WMULT_CONST (1UL << 32)
1263#endif
1264
1265#define WMULT_SHIFT 32
1266
194081eb
IM
1267/*
1268 * Shift right and round:
1269 */
cf2ab469 1270#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1271
a7be37ac
PZ
1272/*
1273 * delta *= weight / lw
1274 */
cb1c4fc9 1275static unsigned long
45bf76df
IM
1276calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1277 struct load_weight *lw)
1278{
1279 u64 tmp;
1280
7a232e03
LJ
1281 if (!lw->inv_weight) {
1282 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1283 lw->inv_weight = 1;
1284 else
1285 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1286 / (lw->weight+1);
1287 }
45bf76df
IM
1288
1289 tmp = (u64)delta_exec * weight;
1290 /*
1291 * Check whether we'd overflow the 64-bit multiplication:
1292 */
194081eb 1293 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1294 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1295 WMULT_SHIFT/2);
1296 else
cf2ab469 1297 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1298
ecf691da 1299 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1300}
1301
1091985b 1302static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1303{
1304 lw->weight += inc;
e89996ae 1305 lw->inv_weight = 0;
45bf76df
IM
1306}
1307
1091985b 1308static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1309{
1310 lw->weight -= dec;
e89996ae 1311 lw->inv_weight = 0;
45bf76df
IM
1312}
1313
2dd73a4f
PW
1314/*
1315 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1316 * of tasks with abnormal "nice" values across CPUs the contribution that
1317 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1318 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1319 * scaled version of the new time slice allocation that they receive on time
1320 * slice expiry etc.
1321 */
1322
dd41f596
IM
1323#define WEIGHT_IDLEPRIO 2
1324#define WMULT_IDLEPRIO (1 << 31)
1325
1326/*
1327 * Nice levels are multiplicative, with a gentle 10% change for every
1328 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1329 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1330 * that remained on nice 0.
1331 *
1332 * The "10% effect" is relative and cumulative: from _any_ nice level,
1333 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1334 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1335 * If a task goes up by ~10% and another task goes down by ~10% then
1336 * the relative distance between them is ~25%.)
dd41f596
IM
1337 */
1338static const int prio_to_weight[40] = {
254753dc
IM
1339 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1340 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1341 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1342 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1343 /* 0 */ 1024, 820, 655, 526, 423,
1344 /* 5 */ 335, 272, 215, 172, 137,
1345 /* 10 */ 110, 87, 70, 56, 45,
1346 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1347};
1348
5714d2de
IM
1349/*
1350 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1351 *
1352 * In cases where the weight does not change often, we can use the
1353 * precalculated inverse to speed up arithmetics by turning divisions
1354 * into multiplications:
1355 */
dd41f596 1356static const u32 prio_to_wmult[40] = {
254753dc
IM
1357 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1358 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1359 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1360 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1361 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1362 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1363 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1364 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1365};
2dd73a4f 1366
dd41f596
IM
1367static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1368
1369/*
1370 * runqueue iterator, to support SMP load-balancing between different
1371 * scheduling classes, without having to expose their internal data
1372 * structures to the load-balancing proper:
1373 */
1374struct rq_iterator {
1375 void *arg;
1376 struct task_struct *(*start)(void *);
1377 struct task_struct *(*next)(void *);
1378};
1379
e1d1484f
PW
1380#ifdef CONFIG_SMP
1381static unsigned long
1382balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1383 unsigned long max_load_move, struct sched_domain *sd,
1384 enum cpu_idle_type idle, int *all_pinned,
1385 int *this_best_prio, struct rq_iterator *iterator);
1386
1387static int
1388iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1389 struct sched_domain *sd, enum cpu_idle_type idle,
1390 struct rq_iterator *iterator);
e1d1484f 1391#endif
dd41f596 1392
d842de87
SV
1393#ifdef CONFIG_CGROUP_CPUACCT
1394static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1395#else
1396static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1397#endif
1398
18d95a28
PZ
1399static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1400{
1401 update_load_add(&rq->load, load);
1402}
1403
1404static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1405{
1406 update_load_sub(&rq->load, load);
1407}
1408
7940ca36 1409#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1410typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1411
1412/*
1413 * Iterate the full tree, calling @down when first entering a node and @up when
1414 * leaving it for the final time.
1415 */
eb755805 1416static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1417{
1418 struct task_group *parent, *child;
eb755805 1419 int ret;
c09595f6
PZ
1420
1421 rcu_read_lock();
1422 parent = &root_task_group;
1423down:
eb755805
PZ
1424 ret = (*down)(parent, data);
1425 if (ret)
1426 goto out_unlock;
c09595f6
PZ
1427 list_for_each_entry_rcu(child, &parent->children, siblings) {
1428 parent = child;
1429 goto down;
1430
1431up:
1432 continue;
1433 }
eb755805
PZ
1434 ret = (*up)(parent, data);
1435 if (ret)
1436 goto out_unlock;
c09595f6
PZ
1437
1438 child = parent;
1439 parent = parent->parent;
1440 if (parent)
1441 goto up;
eb755805 1442out_unlock:
c09595f6 1443 rcu_read_unlock();
eb755805
PZ
1444
1445 return ret;
c09595f6
PZ
1446}
1447
eb755805
PZ
1448static int tg_nop(struct task_group *tg, void *data)
1449{
1450 return 0;
c09595f6 1451}
eb755805
PZ
1452#endif
1453
1454#ifdef CONFIG_SMP
1455static unsigned long source_load(int cpu, int type);
1456static unsigned long target_load(int cpu, int type);
1457static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1458
1459static unsigned long cpu_avg_load_per_task(int cpu)
1460{
1461 struct rq *rq = cpu_rq(cpu);
af6d596f 1462 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1463
4cd42620
SR
1464 if (nr_running)
1465 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1466 else
1467 rq->avg_load_per_task = 0;
eb755805
PZ
1468
1469 return rq->avg_load_per_task;
1470}
1471
1472#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1473
c09595f6
PZ
1474static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1475
1476/*
1477 * Calculate and set the cpu's group shares.
1478 */
1479static void
ffda12a1
PZ
1480update_group_shares_cpu(struct task_group *tg, int cpu,
1481 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1482{
c09595f6
PZ
1483 int boost = 0;
1484 unsigned long shares;
1485 unsigned long rq_weight;
1486
c8cba857 1487 if (!tg->se[cpu])
c09595f6
PZ
1488 return;
1489
c8cba857 1490 rq_weight = tg->cfs_rq[cpu]->load.weight;
c09595f6
PZ
1491
1492 /*
1493 * If there are currently no tasks on the cpu pretend there is one of
1494 * average load so that when a new task gets to run here it will not
1495 * get delayed by group starvation.
1496 */
1497 if (!rq_weight) {
1498 boost = 1;
1499 rq_weight = NICE_0_LOAD;
1500 }
1501
c8cba857
PZ
1502 if (unlikely(rq_weight > sd_rq_weight))
1503 rq_weight = sd_rq_weight;
1504
c09595f6
PZ
1505 /*
1506 * \Sum shares * rq_weight
1507 * shares = -----------------------
1508 * \Sum rq_weight
1509 *
1510 */
c8cba857 1511 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
ffda12a1 1512 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1513
ffda12a1
PZ
1514 if (abs(shares - tg->se[cpu]->load.weight) >
1515 sysctl_sched_shares_thresh) {
1516 struct rq *rq = cpu_rq(cpu);
1517 unsigned long flags;
c09595f6 1518
ffda12a1
PZ
1519 spin_lock_irqsave(&rq->lock, flags);
1520 /*
1521 * record the actual number of shares, not the boosted amount.
1522 */
1523 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1524 tg->cfs_rq[cpu]->rq_weight = rq_weight;
c09595f6 1525
ffda12a1
PZ
1526 __set_se_shares(tg->se[cpu], shares);
1527 spin_unlock_irqrestore(&rq->lock, flags);
1528 }
18d95a28 1529}
c09595f6
PZ
1530
1531/*
c8cba857
PZ
1532 * Re-compute the task group their per cpu shares over the given domain.
1533 * This needs to be done in a bottom-up fashion because the rq weight of a
1534 * parent group depends on the shares of its child groups.
c09595f6 1535 */
eb755805 1536static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1537{
c8cba857
PZ
1538 unsigned long rq_weight = 0;
1539 unsigned long shares = 0;
eb755805 1540 struct sched_domain *sd = data;
c8cba857 1541 int i;
c09595f6 1542
c8cba857
PZ
1543 for_each_cpu_mask(i, sd->span) {
1544 rq_weight += tg->cfs_rq[i]->load.weight;
1545 shares += tg->cfs_rq[i]->shares;
c09595f6 1546 }
c09595f6 1547
c8cba857
PZ
1548 if ((!shares && rq_weight) || shares > tg->shares)
1549 shares = tg->shares;
1550
1551 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1552 shares = tg->shares;
c09595f6 1553
cd80917e
PZ
1554 if (!rq_weight)
1555 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1556
ffda12a1
PZ
1557 for_each_cpu_mask(i, sd->span)
1558 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1559
1560 return 0;
c09595f6
PZ
1561}
1562
1563/*
c8cba857
PZ
1564 * Compute the cpu's hierarchical load factor for each task group.
1565 * This needs to be done in a top-down fashion because the load of a child
1566 * group is a fraction of its parents load.
c09595f6 1567 */
eb755805 1568static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1569{
c8cba857 1570 unsigned long load;
eb755805 1571 long cpu = (long)data;
c09595f6 1572
c8cba857
PZ
1573 if (!tg->parent) {
1574 load = cpu_rq(cpu)->load.weight;
1575 } else {
1576 load = tg->parent->cfs_rq[cpu]->h_load;
1577 load *= tg->cfs_rq[cpu]->shares;
1578 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1579 }
c09595f6 1580
c8cba857 1581 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1582
eb755805 1583 return 0;
c09595f6
PZ
1584}
1585
c8cba857 1586static void update_shares(struct sched_domain *sd)
4d8d595d 1587{
2398f2c6
PZ
1588 u64 now = cpu_clock(raw_smp_processor_id());
1589 s64 elapsed = now - sd->last_update;
1590
1591 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1592 sd->last_update = now;
eb755805 1593 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1594 }
4d8d595d
PZ
1595}
1596
3e5459b4
PZ
1597static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1598{
1599 spin_unlock(&rq->lock);
1600 update_shares(sd);
1601 spin_lock(&rq->lock);
1602}
1603
eb755805 1604static void update_h_load(long cpu)
c09595f6 1605{
eb755805 1606 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1607}
1608
c09595f6
PZ
1609#else
1610
c8cba857 1611static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1612{
1613}
1614
3e5459b4
PZ
1615static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1616{
1617}
1618
18d95a28
PZ
1619#endif
1620
18d95a28
PZ
1621#endif
1622
30432094 1623#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1624static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1625{
30432094 1626#ifdef CONFIG_SMP
34e83e85
IM
1627 cfs_rq->shares = shares;
1628#endif
1629}
30432094 1630#endif
e7693a36 1631
dd41f596 1632#include "sched_stats.h"
dd41f596 1633#include "sched_idletask.c"
5522d5d5
IM
1634#include "sched_fair.c"
1635#include "sched_rt.c"
dd41f596
IM
1636#ifdef CONFIG_SCHED_DEBUG
1637# include "sched_debug.c"
1638#endif
1639
1640#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1641#define for_each_class(class) \
1642 for (class = sched_class_highest; class; class = class->next)
dd41f596 1643
c09595f6 1644static void inc_nr_running(struct rq *rq)
9c217245
IM
1645{
1646 rq->nr_running++;
9c217245
IM
1647}
1648
c09595f6 1649static void dec_nr_running(struct rq *rq)
9c217245
IM
1650{
1651 rq->nr_running--;
9c217245
IM
1652}
1653
45bf76df
IM
1654static void set_load_weight(struct task_struct *p)
1655{
1656 if (task_has_rt_policy(p)) {
dd41f596
IM
1657 p->se.load.weight = prio_to_weight[0] * 2;
1658 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1659 return;
1660 }
45bf76df 1661
dd41f596
IM
1662 /*
1663 * SCHED_IDLE tasks get minimal weight:
1664 */
1665 if (p->policy == SCHED_IDLE) {
1666 p->se.load.weight = WEIGHT_IDLEPRIO;
1667 p->se.load.inv_weight = WMULT_IDLEPRIO;
1668 return;
1669 }
71f8bd46 1670
dd41f596
IM
1671 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1672 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1673}
1674
2087a1ad
GH
1675static void update_avg(u64 *avg, u64 sample)
1676{
1677 s64 diff = sample - *avg;
1678 *avg += diff >> 3;
1679}
1680
8159f87e 1681static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1682{
dd41f596 1683 sched_info_queued(p);
fd390f6a 1684 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1685 p->se.on_rq = 1;
71f8bd46
IM
1686}
1687
69be72c1 1688static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1689{
2087a1ad
GH
1690 if (sleep && p->se.last_wakeup) {
1691 update_avg(&p->se.avg_overlap,
1692 p->se.sum_exec_runtime - p->se.last_wakeup);
1693 p->se.last_wakeup = 0;
1694 }
1695
46ac22ba 1696 sched_info_dequeued(p);
f02231e5 1697 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1698 p->se.on_rq = 0;
71f8bd46
IM
1699}
1700
14531189 1701/*
dd41f596 1702 * __normal_prio - return the priority that is based on the static prio
14531189 1703 */
14531189
IM
1704static inline int __normal_prio(struct task_struct *p)
1705{
dd41f596 1706 return p->static_prio;
14531189
IM
1707}
1708
b29739f9
IM
1709/*
1710 * Calculate the expected normal priority: i.e. priority
1711 * without taking RT-inheritance into account. Might be
1712 * boosted by interactivity modifiers. Changes upon fork,
1713 * setprio syscalls, and whenever the interactivity
1714 * estimator recalculates.
1715 */
36c8b586 1716static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1717{
1718 int prio;
1719
e05606d3 1720 if (task_has_rt_policy(p))
b29739f9
IM
1721 prio = MAX_RT_PRIO-1 - p->rt_priority;
1722 else
1723 prio = __normal_prio(p);
1724 return prio;
1725}
1726
1727/*
1728 * Calculate the current priority, i.e. the priority
1729 * taken into account by the scheduler. This value might
1730 * be boosted by RT tasks, or might be boosted by
1731 * interactivity modifiers. Will be RT if the task got
1732 * RT-boosted. If not then it returns p->normal_prio.
1733 */
36c8b586 1734static int effective_prio(struct task_struct *p)
b29739f9
IM
1735{
1736 p->normal_prio = normal_prio(p);
1737 /*
1738 * If we are RT tasks or we were boosted to RT priority,
1739 * keep the priority unchanged. Otherwise, update priority
1740 * to the normal priority:
1741 */
1742 if (!rt_prio(p->prio))
1743 return p->normal_prio;
1744 return p->prio;
1745}
1746
1da177e4 1747/*
dd41f596 1748 * activate_task - move a task to the runqueue.
1da177e4 1749 */
dd41f596 1750static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1751{
d9514f6c 1752 if (task_contributes_to_load(p))
dd41f596 1753 rq->nr_uninterruptible--;
1da177e4 1754
8159f87e 1755 enqueue_task(rq, p, wakeup);
c09595f6 1756 inc_nr_running(rq);
1da177e4
LT
1757}
1758
1da177e4
LT
1759/*
1760 * deactivate_task - remove a task from the runqueue.
1761 */
2e1cb74a 1762static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1763{
d9514f6c 1764 if (task_contributes_to_load(p))
dd41f596
IM
1765 rq->nr_uninterruptible++;
1766
69be72c1 1767 dequeue_task(rq, p, sleep);
c09595f6 1768 dec_nr_running(rq);
1da177e4
LT
1769}
1770
1da177e4
LT
1771/**
1772 * task_curr - is this task currently executing on a CPU?
1773 * @p: the task in question.
1774 */
36c8b586 1775inline int task_curr(const struct task_struct *p)
1da177e4
LT
1776{
1777 return cpu_curr(task_cpu(p)) == p;
1778}
1779
dd41f596
IM
1780static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1781{
6f505b16 1782 set_task_rq(p, cpu);
dd41f596 1783#ifdef CONFIG_SMP
ce96b5ac
DA
1784 /*
1785 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1786 * successfuly executed on another CPU. We must ensure that updates of
1787 * per-task data have been completed by this moment.
1788 */
1789 smp_wmb();
dd41f596 1790 task_thread_info(p)->cpu = cpu;
dd41f596 1791#endif
2dd73a4f
PW
1792}
1793
cb469845
SR
1794static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1795 const struct sched_class *prev_class,
1796 int oldprio, int running)
1797{
1798 if (prev_class != p->sched_class) {
1799 if (prev_class->switched_from)
1800 prev_class->switched_from(rq, p, running);
1801 p->sched_class->switched_to(rq, p, running);
1802 } else
1803 p->sched_class->prio_changed(rq, p, oldprio, running);
1804}
1805
1da177e4 1806#ifdef CONFIG_SMP
c65cc870 1807
e958b360
TG
1808/* Used instead of source_load when we know the type == 0 */
1809static unsigned long weighted_cpuload(const int cpu)
1810{
1811 return cpu_rq(cpu)->load.weight;
1812}
1813
cc367732
IM
1814/*
1815 * Is this task likely cache-hot:
1816 */
e7693a36 1817static int
cc367732
IM
1818task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1819{
1820 s64 delta;
1821
f540a608
IM
1822 /*
1823 * Buddy candidates are cache hot:
1824 */
4793241b
PZ
1825 if (sched_feat(CACHE_HOT_BUDDY) &&
1826 (&p->se == cfs_rq_of(&p->se)->next ||
1827 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1828 return 1;
1829
cc367732
IM
1830 if (p->sched_class != &fair_sched_class)
1831 return 0;
1832
6bc1665b
IM
1833 if (sysctl_sched_migration_cost == -1)
1834 return 1;
1835 if (sysctl_sched_migration_cost == 0)
1836 return 0;
1837
cc367732
IM
1838 delta = now - p->se.exec_start;
1839
1840 return delta < (s64)sysctl_sched_migration_cost;
1841}
1842
1843
dd41f596 1844void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1845{
dd41f596
IM
1846 int old_cpu = task_cpu(p);
1847 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1848 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1849 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1850 u64 clock_offset;
dd41f596
IM
1851
1852 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1853
1854#ifdef CONFIG_SCHEDSTATS
1855 if (p->se.wait_start)
1856 p->se.wait_start -= clock_offset;
dd41f596
IM
1857 if (p->se.sleep_start)
1858 p->se.sleep_start -= clock_offset;
1859 if (p->se.block_start)
1860 p->se.block_start -= clock_offset;
cc367732
IM
1861 if (old_cpu != new_cpu) {
1862 schedstat_inc(p, se.nr_migrations);
1863 if (task_hot(p, old_rq->clock, NULL))
1864 schedstat_inc(p, se.nr_forced2_migrations);
1865 }
6cfb0d5d 1866#endif
2830cf8c
SV
1867 p->se.vruntime -= old_cfsrq->min_vruntime -
1868 new_cfsrq->min_vruntime;
dd41f596
IM
1869
1870 __set_task_cpu(p, new_cpu);
c65cc870
IM
1871}
1872
70b97a7f 1873struct migration_req {
1da177e4 1874 struct list_head list;
1da177e4 1875
36c8b586 1876 struct task_struct *task;
1da177e4
LT
1877 int dest_cpu;
1878
1da177e4 1879 struct completion done;
70b97a7f 1880};
1da177e4
LT
1881
1882/*
1883 * The task's runqueue lock must be held.
1884 * Returns true if you have to wait for migration thread.
1885 */
36c8b586 1886static int
70b97a7f 1887migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1888{
70b97a7f 1889 struct rq *rq = task_rq(p);
1da177e4
LT
1890
1891 /*
1892 * If the task is not on a runqueue (and not running), then
1893 * it is sufficient to simply update the task's cpu field.
1894 */
dd41f596 1895 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1896 set_task_cpu(p, dest_cpu);
1897 return 0;
1898 }
1899
1900 init_completion(&req->done);
1da177e4
LT
1901 req->task = p;
1902 req->dest_cpu = dest_cpu;
1903 list_add(&req->list, &rq->migration_queue);
48f24c4d 1904
1da177e4
LT
1905 return 1;
1906}
1907
1908/*
1909 * wait_task_inactive - wait for a thread to unschedule.
1910 *
85ba2d86
RM
1911 * If @match_state is nonzero, it's the @p->state value just checked and
1912 * not expected to change. If it changes, i.e. @p might have woken up,
1913 * then return zero. When we succeed in waiting for @p to be off its CPU,
1914 * we return a positive number (its total switch count). If a second call
1915 * a short while later returns the same number, the caller can be sure that
1916 * @p has remained unscheduled the whole time.
1917 *
1da177e4
LT
1918 * The caller must ensure that the task *will* unschedule sometime soon,
1919 * else this function might spin for a *long* time. This function can't
1920 * be called with interrupts off, or it may introduce deadlock with
1921 * smp_call_function() if an IPI is sent by the same process we are
1922 * waiting to become inactive.
1923 */
85ba2d86 1924unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1925{
1926 unsigned long flags;
dd41f596 1927 int running, on_rq;
85ba2d86 1928 unsigned long ncsw;
70b97a7f 1929 struct rq *rq;
1da177e4 1930
3a5c359a
AK
1931 for (;;) {
1932 /*
1933 * We do the initial early heuristics without holding
1934 * any task-queue locks at all. We'll only try to get
1935 * the runqueue lock when things look like they will
1936 * work out!
1937 */
1938 rq = task_rq(p);
fa490cfd 1939
3a5c359a
AK
1940 /*
1941 * If the task is actively running on another CPU
1942 * still, just relax and busy-wait without holding
1943 * any locks.
1944 *
1945 * NOTE! Since we don't hold any locks, it's not
1946 * even sure that "rq" stays as the right runqueue!
1947 * But we don't care, since "task_running()" will
1948 * return false if the runqueue has changed and p
1949 * is actually now running somewhere else!
1950 */
85ba2d86
RM
1951 while (task_running(rq, p)) {
1952 if (match_state && unlikely(p->state != match_state))
1953 return 0;
3a5c359a 1954 cpu_relax();
85ba2d86 1955 }
fa490cfd 1956
3a5c359a
AK
1957 /*
1958 * Ok, time to look more closely! We need the rq
1959 * lock now, to be *sure*. If we're wrong, we'll
1960 * just go back and repeat.
1961 */
1962 rq = task_rq_lock(p, &flags);
0a16b607 1963 trace_sched_wait_task(rq, p);
3a5c359a
AK
1964 running = task_running(rq, p);
1965 on_rq = p->se.on_rq;
85ba2d86 1966 ncsw = 0;
f31e11d8 1967 if (!match_state || p->state == match_state)
93dcf55f 1968 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 1969 task_rq_unlock(rq, &flags);
fa490cfd 1970
85ba2d86
RM
1971 /*
1972 * If it changed from the expected state, bail out now.
1973 */
1974 if (unlikely(!ncsw))
1975 break;
1976
3a5c359a
AK
1977 /*
1978 * Was it really running after all now that we
1979 * checked with the proper locks actually held?
1980 *
1981 * Oops. Go back and try again..
1982 */
1983 if (unlikely(running)) {
1984 cpu_relax();
1985 continue;
1986 }
fa490cfd 1987
3a5c359a
AK
1988 /*
1989 * It's not enough that it's not actively running,
1990 * it must be off the runqueue _entirely_, and not
1991 * preempted!
1992 *
1993 * So if it wa still runnable (but just not actively
1994 * running right now), it's preempted, and we should
1995 * yield - it could be a while.
1996 */
1997 if (unlikely(on_rq)) {
1998 schedule_timeout_uninterruptible(1);
1999 continue;
2000 }
fa490cfd 2001
3a5c359a
AK
2002 /*
2003 * Ahh, all good. It wasn't running, and it wasn't
2004 * runnable, which means that it will never become
2005 * running in the future either. We're all done!
2006 */
2007 break;
2008 }
85ba2d86
RM
2009
2010 return ncsw;
1da177e4
LT
2011}
2012
2013/***
2014 * kick_process - kick a running thread to enter/exit the kernel
2015 * @p: the to-be-kicked thread
2016 *
2017 * Cause a process which is running on another CPU to enter
2018 * kernel-mode, without any delay. (to get signals handled.)
2019 *
2020 * NOTE: this function doesnt have to take the runqueue lock,
2021 * because all it wants to ensure is that the remote task enters
2022 * the kernel. If the IPI races and the task has been migrated
2023 * to another CPU then no harm is done and the purpose has been
2024 * achieved as well.
2025 */
36c8b586 2026void kick_process(struct task_struct *p)
1da177e4
LT
2027{
2028 int cpu;
2029
2030 preempt_disable();
2031 cpu = task_cpu(p);
2032 if ((cpu != smp_processor_id()) && task_curr(p))
2033 smp_send_reschedule(cpu);
2034 preempt_enable();
2035}
2036
2037/*
2dd73a4f
PW
2038 * Return a low guess at the load of a migration-source cpu weighted
2039 * according to the scheduling class and "nice" value.
1da177e4
LT
2040 *
2041 * We want to under-estimate the load of migration sources, to
2042 * balance conservatively.
2043 */
a9957449 2044static unsigned long source_load(int cpu, int type)
1da177e4 2045{
70b97a7f 2046 struct rq *rq = cpu_rq(cpu);
dd41f596 2047 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2048
93b75217 2049 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2050 return total;
b910472d 2051
dd41f596 2052 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2053}
2054
2055/*
2dd73a4f
PW
2056 * Return a high guess at the load of a migration-target cpu weighted
2057 * according to the scheduling class and "nice" value.
1da177e4 2058 */
a9957449 2059static unsigned long target_load(int cpu, int type)
1da177e4 2060{
70b97a7f 2061 struct rq *rq = cpu_rq(cpu);
dd41f596 2062 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2063
93b75217 2064 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2065 return total;
3b0bd9bc 2066
dd41f596 2067 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2068}
2069
147cbb4b
NP
2070/*
2071 * find_idlest_group finds and returns the least busy CPU group within the
2072 * domain.
2073 */
2074static struct sched_group *
2075find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2076{
2077 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2078 unsigned long min_load = ULONG_MAX, this_load = 0;
2079 int load_idx = sd->forkexec_idx;
2080 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2081
2082 do {
2083 unsigned long load, avg_load;
2084 int local_group;
2085 int i;
2086
da5a5522
BD
2087 /* Skip over this group if it has no CPUs allowed */
2088 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 2089 continue;
da5a5522 2090
147cbb4b 2091 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
2092
2093 /* Tally up the load of all CPUs in the group */
2094 avg_load = 0;
2095
363ab6f1 2096 for_each_cpu_mask_nr(i, group->cpumask) {
147cbb4b
NP
2097 /* Bias balancing toward cpus of our domain */
2098 if (local_group)
2099 load = source_load(i, load_idx);
2100 else
2101 load = target_load(i, load_idx);
2102
2103 avg_load += load;
2104 }
2105
2106 /* Adjust by relative CPU power of the group */
5517d86b
ED
2107 avg_load = sg_div_cpu_power(group,
2108 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2109
2110 if (local_group) {
2111 this_load = avg_load;
2112 this = group;
2113 } else if (avg_load < min_load) {
2114 min_load = avg_load;
2115 idlest = group;
2116 }
3a5c359a 2117 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2118
2119 if (!idlest || 100*this_load < imbalance*min_load)
2120 return NULL;
2121 return idlest;
2122}
2123
2124/*
0feaece9 2125 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2126 */
95cdf3b7 2127static int
7c16ec58
MT
2128find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2129 cpumask_t *tmp)
147cbb4b
NP
2130{
2131 unsigned long load, min_load = ULONG_MAX;
2132 int idlest = -1;
2133 int i;
2134
da5a5522 2135 /* Traverse only the allowed CPUs */
7c16ec58 2136 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 2137
363ab6f1 2138 for_each_cpu_mask_nr(i, *tmp) {
2dd73a4f 2139 load = weighted_cpuload(i);
147cbb4b
NP
2140
2141 if (load < min_load || (load == min_load && i == this_cpu)) {
2142 min_load = load;
2143 idlest = i;
2144 }
2145 }
2146
2147 return idlest;
2148}
2149
476d139c
NP
2150/*
2151 * sched_balance_self: balance the current task (running on cpu) in domains
2152 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2153 * SD_BALANCE_EXEC.
2154 *
2155 * Balance, ie. select the least loaded group.
2156 *
2157 * Returns the target CPU number, or the same CPU if no balancing is needed.
2158 *
2159 * preempt must be disabled.
2160 */
2161static int sched_balance_self(int cpu, int flag)
2162{
2163 struct task_struct *t = current;
2164 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2165
c96d145e 2166 for_each_domain(cpu, tmp) {
9761eea8
IM
2167 /*
2168 * If power savings logic is enabled for a domain, stop there.
2169 */
5c45bf27
SS
2170 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2171 break;
476d139c
NP
2172 if (tmp->flags & flag)
2173 sd = tmp;
c96d145e 2174 }
476d139c 2175
039a1c41
PZ
2176 if (sd)
2177 update_shares(sd);
2178
476d139c 2179 while (sd) {
7c16ec58 2180 cpumask_t span, tmpmask;
476d139c 2181 struct sched_group *group;
1a848870
SS
2182 int new_cpu, weight;
2183
2184 if (!(sd->flags & flag)) {
2185 sd = sd->child;
2186 continue;
2187 }
476d139c
NP
2188
2189 span = sd->span;
2190 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2191 if (!group) {
2192 sd = sd->child;
2193 continue;
2194 }
476d139c 2195
7c16ec58 2196 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2197 if (new_cpu == -1 || new_cpu == cpu) {
2198 /* Now try balancing at a lower domain level of cpu */
2199 sd = sd->child;
2200 continue;
2201 }
476d139c 2202
1a848870 2203 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2204 cpu = new_cpu;
476d139c
NP
2205 sd = NULL;
2206 weight = cpus_weight(span);
2207 for_each_domain(cpu, tmp) {
2208 if (weight <= cpus_weight(tmp->span))
2209 break;
2210 if (tmp->flags & flag)
2211 sd = tmp;
2212 }
2213 /* while loop will break here if sd == NULL */
2214 }
2215
2216 return cpu;
2217}
2218
2219#endif /* CONFIG_SMP */
1da177e4 2220
1da177e4
LT
2221/***
2222 * try_to_wake_up - wake up a thread
2223 * @p: the to-be-woken-up thread
2224 * @state: the mask of task states that can be woken
2225 * @sync: do a synchronous wakeup?
2226 *
2227 * Put it on the run-queue if it's not already there. The "current"
2228 * thread is always on the run-queue (except when the actual
2229 * re-schedule is in progress), and as such you're allowed to do
2230 * the simpler "current->state = TASK_RUNNING" to mark yourself
2231 * runnable without the overhead of this.
2232 *
2233 * returns failure only if the task is already active.
2234 */
36c8b586 2235static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2236{
cc367732 2237 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2238 unsigned long flags;
2239 long old_state;
70b97a7f 2240 struct rq *rq;
1da177e4 2241
b85d0667
IM
2242 if (!sched_feat(SYNC_WAKEUPS))
2243 sync = 0;
2244
2398f2c6
PZ
2245#ifdef CONFIG_SMP
2246 if (sched_feat(LB_WAKEUP_UPDATE)) {
2247 struct sched_domain *sd;
2248
2249 this_cpu = raw_smp_processor_id();
2250 cpu = task_cpu(p);
2251
2252 for_each_domain(this_cpu, sd) {
2253 if (cpu_isset(cpu, sd->span)) {
2254 update_shares(sd);
2255 break;
2256 }
2257 }
2258 }
2259#endif
2260
04e2f174 2261 smp_wmb();
1da177e4
LT
2262 rq = task_rq_lock(p, &flags);
2263 old_state = p->state;
2264 if (!(old_state & state))
2265 goto out;
2266
dd41f596 2267 if (p->se.on_rq)
1da177e4
LT
2268 goto out_running;
2269
2270 cpu = task_cpu(p);
cc367732 2271 orig_cpu = cpu;
1da177e4
LT
2272 this_cpu = smp_processor_id();
2273
2274#ifdef CONFIG_SMP
2275 if (unlikely(task_running(rq, p)))
2276 goto out_activate;
2277
5d2f5a61
DA
2278 cpu = p->sched_class->select_task_rq(p, sync);
2279 if (cpu != orig_cpu) {
2280 set_task_cpu(p, cpu);
1da177e4
LT
2281 task_rq_unlock(rq, &flags);
2282 /* might preempt at this point */
2283 rq = task_rq_lock(p, &flags);
2284 old_state = p->state;
2285 if (!(old_state & state))
2286 goto out;
dd41f596 2287 if (p->se.on_rq)
1da177e4
LT
2288 goto out_running;
2289
2290 this_cpu = smp_processor_id();
2291 cpu = task_cpu(p);
2292 }
2293
e7693a36
GH
2294#ifdef CONFIG_SCHEDSTATS
2295 schedstat_inc(rq, ttwu_count);
2296 if (cpu == this_cpu)
2297 schedstat_inc(rq, ttwu_local);
2298 else {
2299 struct sched_domain *sd;
2300 for_each_domain(this_cpu, sd) {
2301 if (cpu_isset(cpu, sd->span)) {
2302 schedstat_inc(sd, ttwu_wake_remote);
2303 break;
2304 }
2305 }
2306 }
6d6bc0ad 2307#endif /* CONFIG_SCHEDSTATS */
e7693a36 2308
1da177e4
LT
2309out_activate:
2310#endif /* CONFIG_SMP */
cc367732
IM
2311 schedstat_inc(p, se.nr_wakeups);
2312 if (sync)
2313 schedstat_inc(p, se.nr_wakeups_sync);
2314 if (orig_cpu != cpu)
2315 schedstat_inc(p, se.nr_wakeups_migrate);
2316 if (cpu == this_cpu)
2317 schedstat_inc(p, se.nr_wakeups_local);
2318 else
2319 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2320 update_rq_clock(rq);
dd41f596 2321 activate_task(rq, p, 1);
1da177e4
LT
2322 success = 1;
2323
2324out_running:
0a16b607 2325 trace_sched_wakeup(rq, p);
15afe09b 2326 check_preempt_curr(rq, p, sync);
4ae7d5ce 2327
1da177e4 2328 p->state = TASK_RUNNING;
9a897c5a
SR
2329#ifdef CONFIG_SMP
2330 if (p->sched_class->task_wake_up)
2331 p->sched_class->task_wake_up(rq, p);
2332#endif
1da177e4 2333out:
2087a1ad
GH
2334 current->se.last_wakeup = current->se.sum_exec_runtime;
2335
1da177e4
LT
2336 task_rq_unlock(rq, &flags);
2337
2338 return success;
2339}
2340
7ad5b3a5 2341int wake_up_process(struct task_struct *p)
1da177e4 2342{
d9514f6c 2343 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2344}
1da177e4
LT
2345EXPORT_SYMBOL(wake_up_process);
2346
7ad5b3a5 2347int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2348{
2349 return try_to_wake_up(p, state, 0);
2350}
2351
1da177e4
LT
2352/*
2353 * Perform scheduler related setup for a newly forked process p.
2354 * p is forked by current.
dd41f596
IM
2355 *
2356 * __sched_fork() is basic setup used by init_idle() too:
2357 */
2358static void __sched_fork(struct task_struct *p)
2359{
dd41f596
IM
2360 p->se.exec_start = 0;
2361 p->se.sum_exec_runtime = 0;
f6cf891c 2362 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2363 p->se.last_wakeup = 0;
2364 p->se.avg_overlap = 0;
6cfb0d5d
IM
2365
2366#ifdef CONFIG_SCHEDSTATS
2367 p->se.wait_start = 0;
dd41f596
IM
2368 p->se.sum_sleep_runtime = 0;
2369 p->se.sleep_start = 0;
dd41f596
IM
2370 p->se.block_start = 0;
2371 p->se.sleep_max = 0;
2372 p->se.block_max = 0;
2373 p->se.exec_max = 0;
eba1ed4b 2374 p->se.slice_max = 0;
dd41f596 2375 p->se.wait_max = 0;
6cfb0d5d 2376#endif
476d139c 2377
fa717060 2378 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2379 p->se.on_rq = 0;
4a55bd5e 2380 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2381
e107be36
AK
2382#ifdef CONFIG_PREEMPT_NOTIFIERS
2383 INIT_HLIST_HEAD(&p->preempt_notifiers);
2384#endif
2385
1da177e4
LT
2386 /*
2387 * We mark the process as running here, but have not actually
2388 * inserted it onto the runqueue yet. This guarantees that
2389 * nobody will actually run it, and a signal or other external
2390 * event cannot wake it up and insert it on the runqueue either.
2391 */
2392 p->state = TASK_RUNNING;
dd41f596
IM
2393}
2394
2395/*
2396 * fork()/clone()-time setup:
2397 */
2398void sched_fork(struct task_struct *p, int clone_flags)
2399{
2400 int cpu = get_cpu();
2401
2402 __sched_fork(p);
2403
2404#ifdef CONFIG_SMP
2405 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2406#endif
02e4bac2 2407 set_task_cpu(p, cpu);
b29739f9
IM
2408
2409 /*
2410 * Make sure we do not leak PI boosting priority to the child:
2411 */
2412 p->prio = current->normal_prio;
2ddbf952
HS
2413 if (!rt_prio(p->prio))
2414 p->sched_class = &fair_sched_class;
b29739f9 2415
52f17b6c 2416#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2417 if (likely(sched_info_on()))
52f17b6c 2418 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2419#endif
d6077cb8 2420#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2421 p->oncpu = 0;
2422#endif
1da177e4 2423#ifdef CONFIG_PREEMPT
4866cde0 2424 /* Want to start with kernel preemption disabled. */
a1261f54 2425 task_thread_info(p)->preempt_count = 1;
1da177e4 2426#endif
476d139c 2427 put_cpu();
1da177e4
LT
2428}
2429
2430/*
2431 * wake_up_new_task - wake up a newly created task for the first time.
2432 *
2433 * This function will do some initial scheduler statistics housekeeping
2434 * that must be done for every newly created context, then puts the task
2435 * on the runqueue and wakes it.
2436 */
7ad5b3a5 2437void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2438{
2439 unsigned long flags;
dd41f596 2440 struct rq *rq;
1da177e4
LT
2441
2442 rq = task_rq_lock(p, &flags);
147cbb4b 2443 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2444 update_rq_clock(rq);
1da177e4
LT
2445
2446 p->prio = effective_prio(p);
2447
b9dca1e0 2448 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2449 activate_task(rq, p, 0);
1da177e4 2450 } else {
1da177e4 2451 /*
dd41f596
IM
2452 * Let the scheduling class do new task startup
2453 * management (if any):
1da177e4 2454 */
ee0827d8 2455 p->sched_class->task_new(rq, p);
c09595f6 2456 inc_nr_running(rq);
1da177e4 2457 }
0a16b607 2458 trace_sched_wakeup_new(rq, p);
15afe09b 2459 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2460#ifdef CONFIG_SMP
2461 if (p->sched_class->task_wake_up)
2462 p->sched_class->task_wake_up(rq, p);
2463#endif
dd41f596 2464 task_rq_unlock(rq, &flags);
1da177e4
LT
2465}
2466
e107be36
AK
2467#ifdef CONFIG_PREEMPT_NOTIFIERS
2468
2469/**
421cee29
RD
2470 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2471 * @notifier: notifier struct to register
e107be36
AK
2472 */
2473void preempt_notifier_register(struct preempt_notifier *notifier)
2474{
2475 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2476}
2477EXPORT_SYMBOL_GPL(preempt_notifier_register);
2478
2479/**
2480 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2481 * @notifier: notifier struct to unregister
e107be36
AK
2482 *
2483 * This is safe to call from within a preemption notifier.
2484 */
2485void preempt_notifier_unregister(struct preempt_notifier *notifier)
2486{
2487 hlist_del(&notifier->link);
2488}
2489EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2490
2491static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2492{
2493 struct preempt_notifier *notifier;
2494 struct hlist_node *node;
2495
2496 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2497 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2498}
2499
2500static void
2501fire_sched_out_preempt_notifiers(struct task_struct *curr,
2502 struct task_struct *next)
2503{
2504 struct preempt_notifier *notifier;
2505 struct hlist_node *node;
2506
2507 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2508 notifier->ops->sched_out(notifier, next);
2509}
2510
6d6bc0ad 2511#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2512
2513static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2514{
2515}
2516
2517static void
2518fire_sched_out_preempt_notifiers(struct task_struct *curr,
2519 struct task_struct *next)
2520{
2521}
2522
6d6bc0ad 2523#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2524
4866cde0
NP
2525/**
2526 * prepare_task_switch - prepare to switch tasks
2527 * @rq: the runqueue preparing to switch
421cee29 2528 * @prev: the current task that is being switched out
4866cde0
NP
2529 * @next: the task we are going to switch to.
2530 *
2531 * This is called with the rq lock held and interrupts off. It must
2532 * be paired with a subsequent finish_task_switch after the context
2533 * switch.
2534 *
2535 * prepare_task_switch sets up locking and calls architecture specific
2536 * hooks.
2537 */
e107be36
AK
2538static inline void
2539prepare_task_switch(struct rq *rq, struct task_struct *prev,
2540 struct task_struct *next)
4866cde0 2541{
e107be36 2542 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2543 prepare_lock_switch(rq, next);
2544 prepare_arch_switch(next);
2545}
2546
1da177e4
LT
2547/**
2548 * finish_task_switch - clean up after a task-switch
344babaa 2549 * @rq: runqueue associated with task-switch
1da177e4
LT
2550 * @prev: the thread we just switched away from.
2551 *
4866cde0
NP
2552 * finish_task_switch must be called after the context switch, paired
2553 * with a prepare_task_switch call before the context switch.
2554 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2555 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2556 *
2557 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2558 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2559 * with the lock held can cause deadlocks; see schedule() for
2560 * details.)
2561 */
a9957449 2562static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2563 __releases(rq->lock)
2564{
1da177e4 2565 struct mm_struct *mm = rq->prev_mm;
55a101f8 2566 long prev_state;
1da177e4
LT
2567
2568 rq->prev_mm = NULL;
2569
2570 /*
2571 * A task struct has one reference for the use as "current".
c394cc9f 2572 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2573 * schedule one last time. The schedule call will never return, and
2574 * the scheduled task must drop that reference.
c394cc9f 2575 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2576 * still held, otherwise prev could be scheduled on another cpu, die
2577 * there before we look at prev->state, and then the reference would
2578 * be dropped twice.
2579 * Manfred Spraul <manfred@colorfullife.com>
2580 */
55a101f8 2581 prev_state = prev->state;
4866cde0
NP
2582 finish_arch_switch(prev);
2583 finish_lock_switch(rq, prev);
9a897c5a
SR
2584#ifdef CONFIG_SMP
2585 if (current->sched_class->post_schedule)
2586 current->sched_class->post_schedule(rq);
2587#endif
e8fa1362 2588
e107be36 2589 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2590 if (mm)
2591 mmdrop(mm);
c394cc9f 2592 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2593 /*
2594 * Remove function-return probe instances associated with this
2595 * task and put them back on the free list.
9761eea8 2596 */
c6fd91f0 2597 kprobe_flush_task(prev);
1da177e4 2598 put_task_struct(prev);
c6fd91f0 2599 }
1da177e4
LT
2600}
2601
2602/**
2603 * schedule_tail - first thing a freshly forked thread must call.
2604 * @prev: the thread we just switched away from.
2605 */
36c8b586 2606asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2607 __releases(rq->lock)
2608{
70b97a7f
IM
2609 struct rq *rq = this_rq();
2610
4866cde0
NP
2611 finish_task_switch(rq, prev);
2612#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2613 /* In this case, finish_task_switch does not reenable preemption */
2614 preempt_enable();
2615#endif
1da177e4 2616 if (current->set_child_tid)
b488893a 2617 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2618}
2619
2620/*
2621 * context_switch - switch to the new MM and the new
2622 * thread's register state.
2623 */
dd41f596 2624static inline void
70b97a7f 2625context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2626 struct task_struct *next)
1da177e4 2627{
dd41f596 2628 struct mm_struct *mm, *oldmm;
1da177e4 2629
e107be36 2630 prepare_task_switch(rq, prev, next);
0a16b607 2631 trace_sched_switch(rq, prev, next);
dd41f596
IM
2632 mm = next->mm;
2633 oldmm = prev->active_mm;
9226d125
ZA
2634 /*
2635 * For paravirt, this is coupled with an exit in switch_to to
2636 * combine the page table reload and the switch backend into
2637 * one hypercall.
2638 */
2639 arch_enter_lazy_cpu_mode();
2640
dd41f596 2641 if (unlikely(!mm)) {
1da177e4
LT
2642 next->active_mm = oldmm;
2643 atomic_inc(&oldmm->mm_count);
2644 enter_lazy_tlb(oldmm, next);
2645 } else
2646 switch_mm(oldmm, mm, next);
2647
dd41f596 2648 if (unlikely(!prev->mm)) {
1da177e4 2649 prev->active_mm = NULL;
1da177e4
LT
2650 rq->prev_mm = oldmm;
2651 }
3a5f5e48
IM
2652 /*
2653 * Since the runqueue lock will be released by the next
2654 * task (which is an invalid locking op but in the case
2655 * of the scheduler it's an obvious special-case), so we
2656 * do an early lockdep release here:
2657 */
2658#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2659 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2660#endif
1da177e4
LT
2661
2662 /* Here we just switch the register state and the stack. */
2663 switch_to(prev, next, prev);
2664
dd41f596
IM
2665 barrier();
2666 /*
2667 * this_rq must be evaluated again because prev may have moved
2668 * CPUs since it called schedule(), thus the 'rq' on its stack
2669 * frame will be invalid.
2670 */
2671 finish_task_switch(this_rq(), prev);
1da177e4
LT
2672}
2673
2674/*
2675 * nr_running, nr_uninterruptible and nr_context_switches:
2676 *
2677 * externally visible scheduler statistics: current number of runnable
2678 * threads, current number of uninterruptible-sleeping threads, total
2679 * number of context switches performed since bootup.
2680 */
2681unsigned long nr_running(void)
2682{
2683 unsigned long i, sum = 0;
2684
2685 for_each_online_cpu(i)
2686 sum += cpu_rq(i)->nr_running;
2687
2688 return sum;
2689}
2690
2691unsigned long nr_uninterruptible(void)
2692{
2693 unsigned long i, sum = 0;
2694
0a945022 2695 for_each_possible_cpu(i)
1da177e4
LT
2696 sum += cpu_rq(i)->nr_uninterruptible;
2697
2698 /*
2699 * Since we read the counters lockless, it might be slightly
2700 * inaccurate. Do not allow it to go below zero though:
2701 */
2702 if (unlikely((long)sum < 0))
2703 sum = 0;
2704
2705 return sum;
2706}
2707
2708unsigned long long nr_context_switches(void)
2709{
cc94abfc
SR
2710 int i;
2711 unsigned long long sum = 0;
1da177e4 2712
0a945022 2713 for_each_possible_cpu(i)
1da177e4
LT
2714 sum += cpu_rq(i)->nr_switches;
2715
2716 return sum;
2717}
2718
2719unsigned long nr_iowait(void)
2720{
2721 unsigned long i, sum = 0;
2722
0a945022 2723 for_each_possible_cpu(i)
1da177e4
LT
2724 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2725
2726 return sum;
2727}
2728
db1b1fef
JS
2729unsigned long nr_active(void)
2730{
2731 unsigned long i, running = 0, uninterruptible = 0;
2732
2733 for_each_online_cpu(i) {
2734 running += cpu_rq(i)->nr_running;
2735 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2736 }
2737
2738 if (unlikely((long)uninterruptible < 0))
2739 uninterruptible = 0;
2740
2741 return running + uninterruptible;
2742}
2743
48f24c4d 2744/*
dd41f596
IM
2745 * Update rq->cpu_load[] statistics. This function is usually called every
2746 * scheduler tick (TICK_NSEC).
48f24c4d 2747 */
dd41f596 2748static void update_cpu_load(struct rq *this_rq)
48f24c4d 2749{
495eca49 2750 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2751 int i, scale;
2752
2753 this_rq->nr_load_updates++;
dd41f596
IM
2754
2755 /* Update our load: */
2756 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2757 unsigned long old_load, new_load;
2758
2759 /* scale is effectively 1 << i now, and >> i divides by scale */
2760
2761 old_load = this_rq->cpu_load[i];
2762 new_load = this_load;
a25707f3
IM
2763 /*
2764 * Round up the averaging division if load is increasing. This
2765 * prevents us from getting stuck on 9 if the load is 10, for
2766 * example.
2767 */
2768 if (new_load > old_load)
2769 new_load += scale-1;
dd41f596
IM
2770 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2771 }
48f24c4d
IM
2772}
2773
dd41f596
IM
2774#ifdef CONFIG_SMP
2775
1da177e4
LT
2776/*
2777 * double_rq_lock - safely lock two runqueues
2778 *
2779 * Note this does not disable interrupts like task_rq_lock,
2780 * you need to do so manually before calling.
2781 */
70b97a7f 2782static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2783 __acquires(rq1->lock)
2784 __acquires(rq2->lock)
2785{
054b9108 2786 BUG_ON(!irqs_disabled());
1da177e4
LT
2787 if (rq1 == rq2) {
2788 spin_lock(&rq1->lock);
2789 __acquire(rq2->lock); /* Fake it out ;) */
2790 } else {
c96d145e 2791 if (rq1 < rq2) {
1da177e4 2792 spin_lock(&rq1->lock);
5e710e37 2793 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2794 } else {
2795 spin_lock(&rq2->lock);
5e710e37 2796 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2797 }
2798 }
6e82a3be
IM
2799 update_rq_clock(rq1);
2800 update_rq_clock(rq2);
1da177e4
LT
2801}
2802
2803/*
2804 * double_rq_unlock - safely unlock two runqueues
2805 *
2806 * Note this does not restore interrupts like task_rq_unlock,
2807 * you need to do so manually after calling.
2808 */
70b97a7f 2809static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2810 __releases(rq1->lock)
2811 __releases(rq2->lock)
2812{
2813 spin_unlock(&rq1->lock);
2814 if (rq1 != rq2)
2815 spin_unlock(&rq2->lock);
2816 else
2817 __release(rq2->lock);
2818}
2819
2820/*
2821 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2822 */
e8fa1362 2823static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2824 __releases(this_rq->lock)
2825 __acquires(busiest->lock)
2826 __acquires(this_rq->lock)
2827{
e8fa1362
SR
2828 int ret = 0;
2829
054b9108
KK
2830 if (unlikely(!irqs_disabled())) {
2831 /* printk() doesn't work good under rq->lock */
2832 spin_unlock(&this_rq->lock);
2833 BUG_ON(1);
2834 }
1da177e4 2835 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2836 if (busiest < this_rq) {
1da177e4
LT
2837 spin_unlock(&this_rq->lock);
2838 spin_lock(&busiest->lock);
5e710e37 2839 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
e8fa1362 2840 ret = 1;
1da177e4 2841 } else
5e710e37 2842 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1da177e4 2843 }
e8fa1362 2844 return ret;
1da177e4
LT
2845}
2846
1b12bbc7
PZ
2847static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2848 __releases(busiest->lock)
2849{
2850 spin_unlock(&busiest->lock);
2851 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2852}
2853
1da177e4
LT
2854/*
2855 * If dest_cpu is allowed for this process, migrate the task to it.
2856 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2857 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2858 * the cpu_allowed mask is restored.
2859 */
36c8b586 2860static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2861{
70b97a7f 2862 struct migration_req req;
1da177e4 2863 unsigned long flags;
70b97a7f 2864 struct rq *rq;
1da177e4
LT
2865
2866 rq = task_rq_lock(p, &flags);
2867 if (!cpu_isset(dest_cpu, p->cpus_allowed)
e761b772 2868 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2869 goto out;
2870
0a16b607 2871 trace_sched_migrate_task(rq, p, dest_cpu);
1da177e4
LT
2872 /* force the process onto the specified CPU */
2873 if (migrate_task(p, dest_cpu, &req)) {
2874 /* Need to wait for migration thread (might exit: take ref). */
2875 struct task_struct *mt = rq->migration_thread;
36c8b586 2876
1da177e4
LT
2877 get_task_struct(mt);
2878 task_rq_unlock(rq, &flags);
2879 wake_up_process(mt);
2880 put_task_struct(mt);
2881 wait_for_completion(&req.done);
36c8b586 2882
1da177e4
LT
2883 return;
2884 }
2885out:
2886 task_rq_unlock(rq, &flags);
2887}
2888
2889/*
476d139c
NP
2890 * sched_exec - execve() is a valuable balancing opportunity, because at
2891 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2892 */
2893void sched_exec(void)
2894{
1da177e4 2895 int new_cpu, this_cpu = get_cpu();
476d139c 2896 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2897 put_cpu();
476d139c
NP
2898 if (new_cpu != this_cpu)
2899 sched_migrate_task(current, new_cpu);
1da177e4
LT
2900}
2901
2902/*
2903 * pull_task - move a task from a remote runqueue to the local runqueue.
2904 * Both runqueues must be locked.
2905 */
dd41f596
IM
2906static void pull_task(struct rq *src_rq, struct task_struct *p,
2907 struct rq *this_rq, int this_cpu)
1da177e4 2908{
2e1cb74a 2909 deactivate_task(src_rq, p, 0);
1da177e4 2910 set_task_cpu(p, this_cpu);
dd41f596 2911 activate_task(this_rq, p, 0);
1da177e4
LT
2912 /*
2913 * Note that idle threads have a prio of MAX_PRIO, for this test
2914 * to be always true for them.
2915 */
15afe09b 2916 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2917}
2918
2919/*
2920 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2921 */
858119e1 2922static
70b97a7f 2923int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2924 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2925 int *all_pinned)
1da177e4
LT
2926{
2927 /*
2928 * We do not migrate tasks that are:
2929 * 1) running (obviously), or
2930 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2931 * 3) are cache-hot on their current CPU.
2932 */
cc367732
IM
2933 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2934 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2935 return 0;
cc367732 2936 }
81026794
NP
2937 *all_pinned = 0;
2938
cc367732
IM
2939 if (task_running(rq, p)) {
2940 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2941 return 0;
cc367732 2942 }
1da177e4 2943
da84d961
IM
2944 /*
2945 * Aggressive migration if:
2946 * 1) task is cache cold, or
2947 * 2) too many balance attempts have failed.
2948 */
2949
6bc1665b
IM
2950 if (!task_hot(p, rq->clock, sd) ||
2951 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2952#ifdef CONFIG_SCHEDSTATS
cc367732 2953 if (task_hot(p, rq->clock, sd)) {
da84d961 2954 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2955 schedstat_inc(p, se.nr_forced_migrations);
2956 }
da84d961
IM
2957#endif
2958 return 1;
2959 }
2960
cc367732
IM
2961 if (task_hot(p, rq->clock, sd)) {
2962 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2963 return 0;
cc367732 2964 }
1da177e4
LT
2965 return 1;
2966}
2967
e1d1484f
PW
2968static unsigned long
2969balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2970 unsigned long max_load_move, struct sched_domain *sd,
2971 enum cpu_idle_type idle, int *all_pinned,
2972 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2973{
051c6764 2974 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
2975 struct task_struct *p;
2976 long rem_load_move = max_load_move;
1da177e4 2977
e1d1484f 2978 if (max_load_move == 0)
1da177e4
LT
2979 goto out;
2980
81026794
NP
2981 pinned = 1;
2982
1da177e4 2983 /*
dd41f596 2984 * Start the load-balancing iterator:
1da177e4 2985 */
dd41f596
IM
2986 p = iterator->start(iterator->arg);
2987next:
b82d9fdd 2988 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2989 goto out;
051c6764
PZ
2990
2991 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 2992 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2993 p = iterator->next(iterator->arg);
2994 goto next;
1da177e4
LT
2995 }
2996
dd41f596 2997 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2998 pulled++;
dd41f596 2999 rem_load_move -= p->se.load.weight;
1da177e4 3000
2dd73a4f 3001 /*
b82d9fdd 3002 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3003 */
e1d1484f 3004 if (rem_load_move > 0) {
a4ac01c3
PW
3005 if (p->prio < *this_best_prio)
3006 *this_best_prio = p->prio;
dd41f596
IM
3007 p = iterator->next(iterator->arg);
3008 goto next;
1da177e4
LT
3009 }
3010out:
3011 /*
e1d1484f 3012 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3013 * so we can safely collect pull_task() stats here rather than
3014 * inside pull_task().
3015 */
3016 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3017
3018 if (all_pinned)
3019 *all_pinned = pinned;
e1d1484f
PW
3020
3021 return max_load_move - rem_load_move;
1da177e4
LT
3022}
3023
dd41f596 3024/*
43010659
PW
3025 * move_tasks tries to move up to max_load_move weighted load from busiest to
3026 * this_rq, as part of a balancing operation within domain "sd".
3027 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3028 *
3029 * Called with both runqueues locked.
3030 */
3031static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3032 unsigned long max_load_move,
dd41f596
IM
3033 struct sched_domain *sd, enum cpu_idle_type idle,
3034 int *all_pinned)
3035{
5522d5d5 3036 const struct sched_class *class = sched_class_highest;
43010659 3037 unsigned long total_load_moved = 0;
a4ac01c3 3038 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3039
3040 do {
43010659
PW
3041 total_load_moved +=
3042 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3043 max_load_move - total_load_moved,
a4ac01c3 3044 sd, idle, all_pinned, &this_best_prio);
dd41f596 3045 class = class->next;
c4acb2c0
GH
3046
3047 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3048 break;
3049
43010659 3050 } while (class && max_load_move > total_load_moved);
dd41f596 3051
43010659
PW
3052 return total_load_moved > 0;
3053}
3054
e1d1484f
PW
3055static int
3056iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3057 struct sched_domain *sd, enum cpu_idle_type idle,
3058 struct rq_iterator *iterator)
3059{
3060 struct task_struct *p = iterator->start(iterator->arg);
3061 int pinned = 0;
3062
3063 while (p) {
3064 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3065 pull_task(busiest, p, this_rq, this_cpu);
3066 /*
3067 * Right now, this is only the second place pull_task()
3068 * is called, so we can safely collect pull_task()
3069 * stats here rather than inside pull_task().
3070 */
3071 schedstat_inc(sd, lb_gained[idle]);
3072
3073 return 1;
3074 }
3075 p = iterator->next(iterator->arg);
3076 }
3077
3078 return 0;
3079}
3080
43010659
PW
3081/*
3082 * move_one_task tries to move exactly one task from busiest to this_rq, as
3083 * part of active balancing operations within "domain".
3084 * Returns 1 if successful and 0 otherwise.
3085 *
3086 * Called with both runqueues locked.
3087 */
3088static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3089 struct sched_domain *sd, enum cpu_idle_type idle)
3090{
5522d5d5 3091 const struct sched_class *class;
43010659
PW
3092
3093 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3094 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3095 return 1;
3096
3097 return 0;
dd41f596
IM
3098}
3099
1da177e4
LT
3100/*
3101 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3102 * domain. It calculates and returns the amount of weighted load which
3103 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3104 */
3105static struct sched_group *
3106find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3107 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 3108 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
3109{
3110 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3111 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3112 unsigned long max_pull;
2dd73a4f
PW
3113 unsigned long busiest_load_per_task, busiest_nr_running;
3114 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3115 int load_idx, group_imb = 0;
5c45bf27
SS
3116#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3117 int power_savings_balance = 1;
3118 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3119 unsigned long min_nr_running = ULONG_MAX;
3120 struct sched_group *group_min = NULL, *group_leader = NULL;
3121#endif
1da177e4
LT
3122
3123 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3124 busiest_load_per_task = busiest_nr_running = 0;
3125 this_load_per_task = this_nr_running = 0;
408ed066 3126
d15bcfdb 3127 if (idle == CPU_NOT_IDLE)
7897986b 3128 load_idx = sd->busy_idx;
d15bcfdb 3129 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3130 load_idx = sd->newidle_idx;
3131 else
3132 load_idx = sd->idle_idx;
1da177e4
LT
3133
3134 do {
908a7c1b 3135 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3136 int local_group;
3137 int i;
908a7c1b 3138 int __group_imb = 0;
783609c6 3139 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3140 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3141 unsigned long sum_avg_load_per_task;
3142 unsigned long avg_load_per_task;
1da177e4
LT
3143
3144 local_group = cpu_isset(this_cpu, group->cpumask);
3145
783609c6
SS
3146 if (local_group)
3147 balance_cpu = first_cpu(group->cpumask);
3148
1da177e4 3149 /* Tally up the load of all CPUs in the group */
2dd73a4f 3150 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3151 sum_avg_load_per_task = avg_load_per_task = 0;
3152
908a7c1b
KC
3153 max_cpu_load = 0;
3154 min_cpu_load = ~0UL;
1da177e4 3155
363ab6f1 3156 for_each_cpu_mask_nr(i, group->cpumask) {
0a2966b4
CL
3157 struct rq *rq;
3158
3159 if (!cpu_isset(i, *cpus))
3160 continue;
3161
3162 rq = cpu_rq(i);
2dd73a4f 3163
9439aab8 3164 if (*sd_idle && rq->nr_running)
5969fe06
NP
3165 *sd_idle = 0;
3166
1da177e4 3167 /* Bias balancing toward cpus of our domain */
783609c6
SS
3168 if (local_group) {
3169 if (idle_cpu(i) && !first_idle_cpu) {
3170 first_idle_cpu = 1;
3171 balance_cpu = i;
3172 }
3173
a2000572 3174 load = target_load(i, load_idx);
908a7c1b 3175 } else {
a2000572 3176 load = source_load(i, load_idx);
908a7c1b
KC
3177 if (load > max_cpu_load)
3178 max_cpu_load = load;
3179 if (min_cpu_load > load)
3180 min_cpu_load = load;
3181 }
1da177e4
LT
3182
3183 avg_load += load;
2dd73a4f 3184 sum_nr_running += rq->nr_running;
dd41f596 3185 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3186
3187 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3188 }
3189
783609c6
SS
3190 /*
3191 * First idle cpu or the first cpu(busiest) in this sched group
3192 * is eligible for doing load balancing at this and above
9439aab8
SS
3193 * domains. In the newly idle case, we will allow all the cpu's
3194 * to do the newly idle load balance.
783609c6 3195 */
9439aab8
SS
3196 if (idle != CPU_NEWLY_IDLE && local_group &&
3197 balance_cpu != this_cpu && balance) {
783609c6
SS
3198 *balance = 0;
3199 goto ret;
3200 }
3201
1da177e4 3202 total_load += avg_load;
5517d86b 3203 total_pwr += group->__cpu_power;
1da177e4
LT
3204
3205 /* Adjust by relative CPU power of the group */
5517d86b
ED
3206 avg_load = sg_div_cpu_power(group,
3207 avg_load * SCHED_LOAD_SCALE);
1da177e4 3208
408ed066
PZ
3209
3210 /*
3211 * Consider the group unbalanced when the imbalance is larger
3212 * than the average weight of two tasks.
3213 *
3214 * APZ: with cgroup the avg task weight can vary wildly and
3215 * might not be a suitable number - should we keep a
3216 * normalized nr_running number somewhere that negates
3217 * the hierarchy?
3218 */
3219 avg_load_per_task = sg_div_cpu_power(group,
3220 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3221
3222 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3223 __group_imb = 1;
3224
5517d86b 3225 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3226
1da177e4
LT
3227 if (local_group) {
3228 this_load = avg_load;
3229 this = group;
2dd73a4f
PW
3230 this_nr_running = sum_nr_running;
3231 this_load_per_task = sum_weighted_load;
3232 } else if (avg_load > max_load &&
908a7c1b 3233 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3234 max_load = avg_load;
3235 busiest = group;
2dd73a4f
PW
3236 busiest_nr_running = sum_nr_running;
3237 busiest_load_per_task = sum_weighted_load;
908a7c1b 3238 group_imb = __group_imb;
1da177e4 3239 }
5c45bf27
SS
3240
3241#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3242 /*
3243 * Busy processors will not participate in power savings
3244 * balance.
3245 */
dd41f596
IM
3246 if (idle == CPU_NOT_IDLE ||
3247 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3248 goto group_next;
5c45bf27
SS
3249
3250 /*
3251 * If the local group is idle or completely loaded
3252 * no need to do power savings balance at this domain
3253 */
3254 if (local_group && (this_nr_running >= group_capacity ||
3255 !this_nr_running))
3256 power_savings_balance = 0;
3257
dd41f596 3258 /*
5c45bf27
SS
3259 * If a group is already running at full capacity or idle,
3260 * don't include that group in power savings calculations
dd41f596
IM
3261 */
3262 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3263 || !sum_nr_running)
dd41f596 3264 goto group_next;
5c45bf27 3265
dd41f596 3266 /*
5c45bf27 3267 * Calculate the group which has the least non-idle load.
dd41f596
IM
3268 * This is the group from where we need to pick up the load
3269 * for saving power
3270 */
3271 if ((sum_nr_running < min_nr_running) ||
3272 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3273 first_cpu(group->cpumask) <
3274 first_cpu(group_min->cpumask))) {
dd41f596
IM
3275 group_min = group;
3276 min_nr_running = sum_nr_running;
5c45bf27
SS
3277 min_load_per_task = sum_weighted_load /
3278 sum_nr_running;
dd41f596 3279 }
5c45bf27 3280
dd41f596 3281 /*
5c45bf27 3282 * Calculate the group which is almost near its
dd41f596
IM
3283 * capacity but still has some space to pick up some load
3284 * from other group and save more power
3285 */
3286 if (sum_nr_running <= group_capacity - 1) {
3287 if (sum_nr_running > leader_nr_running ||
3288 (sum_nr_running == leader_nr_running &&
3289 first_cpu(group->cpumask) >
3290 first_cpu(group_leader->cpumask))) {
3291 group_leader = group;
3292 leader_nr_running = sum_nr_running;
3293 }
48f24c4d 3294 }
5c45bf27
SS
3295group_next:
3296#endif
1da177e4
LT
3297 group = group->next;
3298 } while (group != sd->groups);
3299
2dd73a4f 3300 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3301 goto out_balanced;
3302
3303 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3304
3305 if (this_load >= avg_load ||
3306 100*max_load <= sd->imbalance_pct*this_load)
3307 goto out_balanced;
3308
2dd73a4f 3309 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3310 if (group_imb)
3311 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3312
1da177e4
LT
3313 /*
3314 * We're trying to get all the cpus to the average_load, so we don't
3315 * want to push ourselves above the average load, nor do we wish to
3316 * reduce the max loaded cpu below the average load, as either of these
3317 * actions would just result in more rebalancing later, and ping-pong
3318 * tasks around. Thus we look for the minimum possible imbalance.
3319 * Negative imbalances (*we* are more loaded than anyone else) will
3320 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3321 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3322 * appear as very large values with unsigned longs.
3323 */
2dd73a4f
PW
3324 if (max_load <= busiest_load_per_task)
3325 goto out_balanced;
3326
3327 /*
3328 * In the presence of smp nice balancing, certain scenarios can have
3329 * max load less than avg load(as we skip the groups at or below
3330 * its cpu_power, while calculating max_load..)
3331 */
3332 if (max_load < avg_load) {
3333 *imbalance = 0;
3334 goto small_imbalance;
3335 }
0c117f1b
SS
3336
3337 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3338 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3339
1da177e4 3340 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3341 *imbalance = min(max_pull * busiest->__cpu_power,
3342 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3343 / SCHED_LOAD_SCALE;
3344
2dd73a4f
PW
3345 /*
3346 * if *imbalance is less than the average load per runnable task
3347 * there is no gaurantee that any tasks will be moved so we'll have
3348 * a think about bumping its value to force at least one task to be
3349 * moved
3350 */
7fd0d2dd 3351 if (*imbalance < busiest_load_per_task) {
48f24c4d 3352 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3353 unsigned int imbn;
3354
3355small_imbalance:
3356 pwr_move = pwr_now = 0;
3357 imbn = 2;
3358 if (this_nr_running) {
3359 this_load_per_task /= this_nr_running;
3360 if (busiest_load_per_task > this_load_per_task)
3361 imbn = 1;
3362 } else
408ed066 3363 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3364
01c8c57d 3365 if (max_load - this_load + busiest_load_per_task >=
dd41f596 3366 busiest_load_per_task * imbn) {
2dd73a4f 3367 *imbalance = busiest_load_per_task;
1da177e4
LT
3368 return busiest;
3369 }
3370
3371 /*
3372 * OK, we don't have enough imbalance to justify moving tasks,
3373 * however we may be able to increase total CPU power used by
3374 * moving them.
3375 */
3376
5517d86b
ED
3377 pwr_now += busiest->__cpu_power *
3378 min(busiest_load_per_task, max_load);
3379 pwr_now += this->__cpu_power *
3380 min(this_load_per_task, this_load);
1da177e4
LT
3381 pwr_now /= SCHED_LOAD_SCALE;
3382
3383 /* Amount of load we'd subtract */
5517d86b
ED
3384 tmp = sg_div_cpu_power(busiest,
3385 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3386 if (max_load > tmp)
5517d86b 3387 pwr_move += busiest->__cpu_power *
2dd73a4f 3388 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3389
3390 /* Amount of load we'd add */
5517d86b 3391 if (max_load * busiest->__cpu_power <
33859f7f 3392 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3393 tmp = sg_div_cpu_power(this,
3394 max_load * busiest->__cpu_power);
1da177e4 3395 else
5517d86b
ED
3396 tmp = sg_div_cpu_power(this,
3397 busiest_load_per_task * SCHED_LOAD_SCALE);
3398 pwr_move += this->__cpu_power *
3399 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3400 pwr_move /= SCHED_LOAD_SCALE;
3401
3402 /* Move if we gain throughput */
7fd0d2dd
SS
3403 if (pwr_move > pwr_now)
3404 *imbalance = busiest_load_per_task;
1da177e4
LT
3405 }
3406
1da177e4
LT
3407 return busiest;
3408
3409out_balanced:
5c45bf27 3410#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3411 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3412 goto ret;
1da177e4 3413
5c45bf27
SS
3414 if (this == group_leader && group_leader != group_min) {
3415 *imbalance = min_load_per_task;
3416 return group_min;
3417 }
5c45bf27 3418#endif
783609c6 3419ret:
1da177e4
LT
3420 *imbalance = 0;
3421 return NULL;
3422}
3423
3424/*
3425 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3426 */
70b97a7f 3427static struct rq *
d15bcfdb 3428find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3429 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3430{
70b97a7f 3431 struct rq *busiest = NULL, *rq;
2dd73a4f 3432 unsigned long max_load = 0;
1da177e4
LT
3433 int i;
3434
363ab6f1 3435 for_each_cpu_mask_nr(i, group->cpumask) {
dd41f596 3436 unsigned long wl;
0a2966b4
CL
3437
3438 if (!cpu_isset(i, *cpus))
3439 continue;
3440
48f24c4d 3441 rq = cpu_rq(i);
dd41f596 3442 wl = weighted_cpuload(i);
2dd73a4f 3443
dd41f596 3444 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3445 continue;
1da177e4 3446
dd41f596
IM
3447 if (wl > max_load) {
3448 max_load = wl;
48f24c4d 3449 busiest = rq;
1da177e4
LT
3450 }
3451 }
3452
3453 return busiest;
3454}
3455
77391d71
NP
3456/*
3457 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3458 * so long as it is large enough.
3459 */
3460#define MAX_PINNED_INTERVAL 512
3461
1da177e4
LT
3462/*
3463 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3464 * tasks if there is an imbalance.
1da177e4 3465 */
70b97a7f 3466static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3467 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3468 int *balance, cpumask_t *cpus)
1da177e4 3469{
43010659 3470 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3471 struct sched_group *group;
1da177e4 3472 unsigned long imbalance;
70b97a7f 3473 struct rq *busiest;
fe2eea3f 3474 unsigned long flags;
5969fe06 3475
7c16ec58
MT
3476 cpus_setall(*cpus);
3477
89c4710e
SS
3478 /*
3479 * When power savings policy is enabled for the parent domain, idle
3480 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3481 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3482 * portraying it as CPU_NOT_IDLE.
89c4710e 3483 */
d15bcfdb 3484 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3485 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3486 sd_idle = 1;
1da177e4 3487
2d72376b 3488 schedstat_inc(sd, lb_count[idle]);
1da177e4 3489
0a2966b4 3490redo:
c8cba857 3491 update_shares(sd);
0a2966b4 3492 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3493 cpus, balance);
783609c6 3494
06066714 3495 if (*balance == 0)
783609c6 3496 goto out_balanced;
783609c6 3497
1da177e4
LT
3498 if (!group) {
3499 schedstat_inc(sd, lb_nobusyg[idle]);
3500 goto out_balanced;
3501 }
3502
7c16ec58 3503 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3504 if (!busiest) {
3505 schedstat_inc(sd, lb_nobusyq[idle]);
3506 goto out_balanced;
3507 }
3508
db935dbd 3509 BUG_ON(busiest == this_rq);
1da177e4
LT
3510
3511 schedstat_add(sd, lb_imbalance[idle], imbalance);
3512
43010659 3513 ld_moved = 0;
1da177e4
LT
3514 if (busiest->nr_running > 1) {
3515 /*
3516 * Attempt to move tasks. If find_busiest_group has found
3517 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3518 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3519 * correctly treated as an imbalance.
3520 */
fe2eea3f 3521 local_irq_save(flags);
e17224bf 3522 double_rq_lock(this_rq, busiest);
43010659 3523 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3524 imbalance, sd, idle, &all_pinned);
e17224bf 3525 double_rq_unlock(this_rq, busiest);
fe2eea3f 3526 local_irq_restore(flags);
81026794 3527
46cb4b7c
SS
3528 /*
3529 * some other cpu did the load balance for us.
3530 */
43010659 3531 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3532 resched_cpu(this_cpu);
3533
81026794 3534 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3535 if (unlikely(all_pinned)) {
7c16ec58
MT
3536 cpu_clear(cpu_of(busiest), *cpus);
3537 if (!cpus_empty(*cpus))
0a2966b4 3538 goto redo;
81026794 3539 goto out_balanced;
0a2966b4 3540 }
1da177e4 3541 }
81026794 3542
43010659 3543 if (!ld_moved) {
1da177e4
LT
3544 schedstat_inc(sd, lb_failed[idle]);
3545 sd->nr_balance_failed++;
3546
3547 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3548
fe2eea3f 3549 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3550
3551 /* don't kick the migration_thread, if the curr
3552 * task on busiest cpu can't be moved to this_cpu
3553 */
3554 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3555 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3556 all_pinned = 1;
3557 goto out_one_pinned;
3558 }
3559
1da177e4
LT
3560 if (!busiest->active_balance) {
3561 busiest->active_balance = 1;
3562 busiest->push_cpu = this_cpu;
81026794 3563 active_balance = 1;
1da177e4 3564 }
fe2eea3f 3565 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3566 if (active_balance)
1da177e4
LT
3567 wake_up_process(busiest->migration_thread);
3568
3569 /*
3570 * We've kicked active balancing, reset the failure
3571 * counter.
3572 */
39507451 3573 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3574 }
81026794 3575 } else
1da177e4
LT
3576 sd->nr_balance_failed = 0;
3577
81026794 3578 if (likely(!active_balance)) {
1da177e4
LT
3579 /* We were unbalanced, so reset the balancing interval */
3580 sd->balance_interval = sd->min_interval;
81026794
NP
3581 } else {
3582 /*
3583 * If we've begun active balancing, start to back off. This
3584 * case may not be covered by the all_pinned logic if there
3585 * is only 1 task on the busy runqueue (because we don't call
3586 * move_tasks).
3587 */
3588 if (sd->balance_interval < sd->max_interval)
3589 sd->balance_interval *= 2;
1da177e4
LT
3590 }
3591
43010659 3592 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3593 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3594 ld_moved = -1;
3595
3596 goto out;
1da177e4
LT
3597
3598out_balanced:
1da177e4
LT
3599 schedstat_inc(sd, lb_balanced[idle]);
3600
16cfb1c0 3601 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3602
3603out_one_pinned:
1da177e4 3604 /* tune up the balancing interval */
77391d71
NP
3605 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3606 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3607 sd->balance_interval *= 2;
3608
48f24c4d 3609 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3610 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3611 ld_moved = -1;
3612 else
3613 ld_moved = 0;
3614out:
c8cba857
PZ
3615 if (ld_moved)
3616 update_shares(sd);
c09595f6 3617 return ld_moved;
1da177e4
LT
3618}
3619
3620/*
3621 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3622 * tasks if there is an imbalance.
3623 *
d15bcfdb 3624 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3625 * this_rq is locked.
3626 */
48f24c4d 3627static int
7c16ec58
MT
3628load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3629 cpumask_t *cpus)
1da177e4
LT
3630{
3631 struct sched_group *group;
70b97a7f 3632 struct rq *busiest = NULL;
1da177e4 3633 unsigned long imbalance;
43010659 3634 int ld_moved = 0;
5969fe06 3635 int sd_idle = 0;
969bb4e4 3636 int all_pinned = 0;
7c16ec58
MT
3637
3638 cpus_setall(*cpus);
5969fe06 3639
89c4710e
SS
3640 /*
3641 * When power savings policy is enabled for the parent domain, idle
3642 * sibling can pick up load irrespective of busy siblings. In this case,
3643 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3644 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3645 */
3646 if (sd->flags & SD_SHARE_CPUPOWER &&
3647 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3648 sd_idle = 1;
1da177e4 3649
2d72376b 3650 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3651redo:
3e5459b4 3652 update_shares_locked(this_rq, sd);
d15bcfdb 3653 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3654 &sd_idle, cpus, NULL);
1da177e4 3655 if (!group) {
d15bcfdb 3656 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3657 goto out_balanced;
1da177e4
LT
3658 }
3659
7c16ec58 3660 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3661 if (!busiest) {
d15bcfdb 3662 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3663 goto out_balanced;
1da177e4
LT
3664 }
3665
db935dbd
NP
3666 BUG_ON(busiest == this_rq);
3667
d15bcfdb 3668 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3669
43010659 3670 ld_moved = 0;
d6d5cfaf
NP
3671 if (busiest->nr_running > 1) {
3672 /* Attempt to move tasks */
3673 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3674 /* this_rq->clock is already updated */
3675 update_rq_clock(busiest);
43010659 3676 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3677 imbalance, sd, CPU_NEWLY_IDLE,
3678 &all_pinned);
1b12bbc7 3679 double_unlock_balance(this_rq, busiest);
0a2966b4 3680
969bb4e4 3681 if (unlikely(all_pinned)) {
7c16ec58
MT
3682 cpu_clear(cpu_of(busiest), *cpus);
3683 if (!cpus_empty(*cpus))
0a2966b4
CL
3684 goto redo;
3685 }
d6d5cfaf
NP
3686 }
3687
43010659 3688 if (!ld_moved) {
d15bcfdb 3689 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3690 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3691 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3692 return -1;
3693 } else
16cfb1c0 3694 sd->nr_balance_failed = 0;
1da177e4 3695
3e5459b4 3696 update_shares_locked(this_rq, sd);
43010659 3697 return ld_moved;
16cfb1c0
NP
3698
3699out_balanced:
d15bcfdb 3700 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3701 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3702 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3703 return -1;
16cfb1c0 3704 sd->nr_balance_failed = 0;
48f24c4d 3705
16cfb1c0 3706 return 0;
1da177e4
LT
3707}
3708
3709/*
3710 * idle_balance is called by schedule() if this_cpu is about to become
3711 * idle. Attempts to pull tasks from other CPUs.
3712 */
70b97a7f 3713static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3714{
3715 struct sched_domain *sd;
dd41f596
IM
3716 int pulled_task = -1;
3717 unsigned long next_balance = jiffies + HZ;
7c16ec58 3718 cpumask_t tmpmask;
1da177e4
LT
3719
3720 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3721 unsigned long interval;
3722
3723 if (!(sd->flags & SD_LOAD_BALANCE))
3724 continue;
3725
3726 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3727 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3728 pulled_task = load_balance_newidle(this_cpu, this_rq,
3729 sd, &tmpmask);
92c4ca5c
CL
3730
3731 interval = msecs_to_jiffies(sd->balance_interval);
3732 if (time_after(next_balance, sd->last_balance + interval))
3733 next_balance = sd->last_balance + interval;
3734 if (pulled_task)
3735 break;
1da177e4 3736 }
dd41f596 3737 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3738 /*
3739 * We are going idle. next_balance may be set based on
3740 * a busy processor. So reset next_balance.
3741 */
3742 this_rq->next_balance = next_balance;
dd41f596 3743 }
1da177e4
LT
3744}
3745
3746/*
3747 * active_load_balance is run by migration threads. It pushes running tasks
3748 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3749 * running on each physical CPU where possible, and avoids physical /
3750 * logical imbalances.
3751 *
3752 * Called with busiest_rq locked.
3753 */
70b97a7f 3754static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3755{
39507451 3756 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3757 struct sched_domain *sd;
3758 struct rq *target_rq;
39507451 3759
48f24c4d 3760 /* Is there any task to move? */
39507451 3761 if (busiest_rq->nr_running <= 1)
39507451
NP
3762 return;
3763
3764 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3765
3766 /*
39507451 3767 * This condition is "impossible", if it occurs
41a2d6cf 3768 * we need to fix it. Originally reported by
39507451 3769 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3770 */
39507451 3771 BUG_ON(busiest_rq == target_rq);
1da177e4 3772
39507451
NP
3773 /* move a task from busiest_rq to target_rq */
3774 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3775 update_rq_clock(busiest_rq);
3776 update_rq_clock(target_rq);
39507451
NP
3777
3778 /* Search for an sd spanning us and the target CPU. */
c96d145e 3779 for_each_domain(target_cpu, sd) {
39507451 3780 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3781 cpu_isset(busiest_cpu, sd->span))
39507451 3782 break;
c96d145e 3783 }
39507451 3784
48f24c4d 3785 if (likely(sd)) {
2d72376b 3786 schedstat_inc(sd, alb_count);
39507451 3787
43010659
PW
3788 if (move_one_task(target_rq, target_cpu, busiest_rq,
3789 sd, CPU_IDLE))
48f24c4d
IM
3790 schedstat_inc(sd, alb_pushed);
3791 else
3792 schedstat_inc(sd, alb_failed);
3793 }
1b12bbc7 3794 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
3795}
3796
46cb4b7c
SS
3797#ifdef CONFIG_NO_HZ
3798static struct {
3799 atomic_t load_balancer;
41a2d6cf 3800 cpumask_t cpu_mask;
46cb4b7c
SS
3801} nohz ____cacheline_aligned = {
3802 .load_balancer = ATOMIC_INIT(-1),
3803 .cpu_mask = CPU_MASK_NONE,
3804};
3805
7835b98b 3806/*
46cb4b7c
SS
3807 * This routine will try to nominate the ilb (idle load balancing)
3808 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3809 * load balancing on behalf of all those cpus. If all the cpus in the system
3810 * go into this tickless mode, then there will be no ilb owner (as there is
3811 * no need for one) and all the cpus will sleep till the next wakeup event
3812 * arrives...
3813 *
3814 * For the ilb owner, tick is not stopped. And this tick will be used
3815 * for idle load balancing. ilb owner will still be part of
3816 * nohz.cpu_mask..
7835b98b 3817 *
46cb4b7c
SS
3818 * While stopping the tick, this cpu will become the ilb owner if there
3819 * is no other owner. And will be the owner till that cpu becomes busy
3820 * or if all cpus in the system stop their ticks at which point
3821 * there is no need for ilb owner.
3822 *
3823 * When the ilb owner becomes busy, it nominates another owner, during the
3824 * next busy scheduler_tick()
3825 */
3826int select_nohz_load_balancer(int stop_tick)
3827{
3828 int cpu = smp_processor_id();
3829
3830 if (stop_tick) {
3831 cpu_set(cpu, nohz.cpu_mask);
3832 cpu_rq(cpu)->in_nohz_recently = 1;
3833
3834 /*
3835 * If we are going offline and still the leader, give up!
3836 */
e761b772 3837 if (!cpu_active(cpu) &&
46cb4b7c
SS
3838 atomic_read(&nohz.load_balancer) == cpu) {
3839 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3840 BUG();
3841 return 0;
3842 }
3843
3844 /* time for ilb owner also to sleep */
3845 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3846 if (atomic_read(&nohz.load_balancer) == cpu)
3847 atomic_set(&nohz.load_balancer, -1);
3848 return 0;
3849 }
3850
3851 if (atomic_read(&nohz.load_balancer) == -1) {
3852 /* make me the ilb owner */
3853 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3854 return 1;
3855 } else if (atomic_read(&nohz.load_balancer) == cpu)
3856 return 1;
3857 } else {
3858 if (!cpu_isset(cpu, nohz.cpu_mask))
3859 return 0;
3860
3861 cpu_clear(cpu, nohz.cpu_mask);
3862
3863 if (atomic_read(&nohz.load_balancer) == cpu)
3864 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3865 BUG();
3866 }
3867 return 0;
3868}
3869#endif
3870
3871static DEFINE_SPINLOCK(balancing);
3872
3873/*
7835b98b
CL
3874 * It checks each scheduling domain to see if it is due to be balanced,
3875 * and initiates a balancing operation if so.
3876 *
3877 * Balancing parameters are set up in arch_init_sched_domains.
3878 */
a9957449 3879static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3880{
46cb4b7c
SS
3881 int balance = 1;
3882 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3883 unsigned long interval;
3884 struct sched_domain *sd;
46cb4b7c 3885 /* Earliest time when we have to do rebalance again */
c9819f45 3886 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3887 int update_next_balance = 0;
d07355f5 3888 int need_serialize;
7c16ec58 3889 cpumask_t tmp;
1da177e4 3890
46cb4b7c 3891 for_each_domain(cpu, sd) {
1da177e4
LT
3892 if (!(sd->flags & SD_LOAD_BALANCE))
3893 continue;
3894
3895 interval = sd->balance_interval;
d15bcfdb 3896 if (idle != CPU_IDLE)
1da177e4
LT
3897 interval *= sd->busy_factor;
3898
3899 /* scale ms to jiffies */
3900 interval = msecs_to_jiffies(interval);
3901 if (unlikely(!interval))
3902 interval = 1;
dd41f596
IM
3903 if (interval > HZ*NR_CPUS/10)
3904 interval = HZ*NR_CPUS/10;
3905
d07355f5 3906 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3907
d07355f5 3908 if (need_serialize) {
08c183f3
CL
3909 if (!spin_trylock(&balancing))
3910 goto out;
3911 }
3912
c9819f45 3913 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3914 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3915 /*
3916 * We've pulled tasks over so either we're no
5969fe06
NP
3917 * longer idle, or one of our SMT siblings is
3918 * not idle.
3919 */
d15bcfdb 3920 idle = CPU_NOT_IDLE;
1da177e4 3921 }
1bd77f2d 3922 sd->last_balance = jiffies;
1da177e4 3923 }
d07355f5 3924 if (need_serialize)
08c183f3
CL
3925 spin_unlock(&balancing);
3926out:
f549da84 3927 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3928 next_balance = sd->last_balance + interval;
f549da84
SS
3929 update_next_balance = 1;
3930 }
783609c6
SS
3931
3932 /*
3933 * Stop the load balance at this level. There is another
3934 * CPU in our sched group which is doing load balancing more
3935 * actively.
3936 */
3937 if (!balance)
3938 break;
1da177e4 3939 }
f549da84
SS
3940
3941 /*
3942 * next_balance will be updated only when there is a need.
3943 * When the cpu is attached to null domain for ex, it will not be
3944 * updated.
3945 */
3946 if (likely(update_next_balance))
3947 rq->next_balance = next_balance;
46cb4b7c
SS
3948}
3949
3950/*
3951 * run_rebalance_domains is triggered when needed from the scheduler tick.
3952 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3953 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3954 */
3955static void run_rebalance_domains(struct softirq_action *h)
3956{
dd41f596
IM
3957 int this_cpu = smp_processor_id();
3958 struct rq *this_rq = cpu_rq(this_cpu);
3959 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3960 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3961
dd41f596 3962 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3963
3964#ifdef CONFIG_NO_HZ
3965 /*
3966 * If this cpu is the owner for idle load balancing, then do the
3967 * balancing on behalf of the other idle cpus whose ticks are
3968 * stopped.
3969 */
dd41f596
IM
3970 if (this_rq->idle_at_tick &&
3971 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3972 cpumask_t cpus = nohz.cpu_mask;
3973 struct rq *rq;
3974 int balance_cpu;
3975
dd41f596 3976 cpu_clear(this_cpu, cpus);
363ab6f1 3977 for_each_cpu_mask_nr(balance_cpu, cpus) {
46cb4b7c
SS
3978 /*
3979 * If this cpu gets work to do, stop the load balancing
3980 * work being done for other cpus. Next load
3981 * balancing owner will pick it up.
3982 */
3983 if (need_resched())
3984 break;
3985
de0cf899 3986 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3987
3988 rq = cpu_rq(balance_cpu);
dd41f596
IM
3989 if (time_after(this_rq->next_balance, rq->next_balance))
3990 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3991 }
3992 }
3993#endif
3994}
3995
3996/*
3997 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3998 *
3999 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4000 * idle load balancing owner or decide to stop the periodic load balancing,
4001 * if the whole system is idle.
4002 */
dd41f596 4003static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4004{
46cb4b7c
SS
4005#ifdef CONFIG_NO_HZ
4006 /*
4007 * If we were in the nohz mode recently and busy at the current
4008 * scheduler tick, then check if we need to nominate new idle
4009 * load balancer.
4010 */
4011 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4012 rq->in_nohz_recently = 0;
4013
4014 if (atomic_read(&nohz.load_balancer) == cpu) {
4015 cpu_clear(cpu, nohz.cpu_mask);
4016 atomic_set(&nohz.load_balancer, -1);
4017 }
4018
4019 if (atomic_read(&nohz.load_balancer) == -1) {
4020 /*
4021 * simple selection for now: Nominate the
4022 * first cpu in the nohz list to be the next
4023 * ilb owner.
4024 *
4025 * TBD: Traverse the sched domains and nominate
4026 * the nearest cpu in the nohz.cpu_mask.
4027 */
4028 int ilb = first_cpu(nohz.cpu_mask);
4029
434d53b0 4030 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4031 resched_cpu(ilb);
4032 }
4033 }
4034
4035 /*
4036 * If this cpu is idle and doing idle load balancing for all the
4037 * cpus with ticks stopped, is it time for that to stop?
4038 */
4039 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4040 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4041 resched_cpu(cpu);
4042 return;
4043 }
4044
4045 /*
4046 * If this cpu is idle and the idle load balancing is done by
4047 * someone else, then no need raise the SCHED_SOFTIRQ
4048 */
4049 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4050 cpu_isset(cpu, nohz.cpu_mask))
4051 return;
4052#endif
4053 if (time_after_eq(jiffies, rq->next_balance))
4054 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4055}
dd41f596
IM
4056
4057#else /* CONFIG_SMP */
4058
1da177e4
LT
4059/*
4060 * on UP we do not need to balance between CPUs:
4061 */
70b97a7f 4062static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4063{
4064}
dd41f596 4065
1da177e4
LT
4066#endif
4067
1da177e4
LT
4068DEFINE_PER_CPU(struct kernel_stat, kstat);
4069
4070EXPORT_PER_CPU_SYMBOL(kstat);
4071
4072/*
f06febc9
FM
4073 * Return any ns on the sched_clock that have not yet been banked in
4074 * @p in case that task is currently running.
1da177e4 4075 */
bb34d92f 4076unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4077{
1da177e4 4078 unsigned long flags;
41b86e9c 4079 struct rq *rq;
bb34d92f 4080 u64 ns = 0;
48f24c4d 4081
41b86e9c 4082 rq = task_rq_lock(p, &flags);
1508487e 4083
051a1d1a 4084 if (task_current(rq, p)) {
f06febc9
FM
4085 u64 delta_exec;
4086
a8e504d2
IM
4087 update_rq_clock(rq);
4088 delta_exec = rq->clock - p->se.exec_start;
41b86e9c 4089 if ((s64)delta_exec > 0)
bb34d92f 4090 ns = delta_exec;
41b86e9c 4091 }
48f24c4d 4092
41b86e9c 4093 task_rq_unlock(rq, &flags);
48f24c4d 4094
1da177e4
LT
4095 return ns;
4096}
4097
1da177e4
LT
4098/*
4099 * Account user cpu time to a process.
4100 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4101 * @cputime: the cpu time spent in user space since the last update
4102 */
4103void account_user_time(struct task_struct *p, cputime_t cputime)
4104{
4105 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4106 cputime64_t tmp;
4107
4108 p->utime = cputime_add(p->utime, cputime);
f06febc9 4109 account_group_user_time(p, cputime);
1da177e4
LT
4110
4111 /* Add user time to cpustat. */
4112 tmp = cputime_to_cputime64(cputime);
4113 if (TASK_NICE(p) > 0)
4114 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4115 else
4116 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4117 /* Account for user time used */
4118 acct_update_integrals(p);
1da177e4
LT
4119}
4120
94886b84
LV
4121/*
4122 * Account guest cpu time to a process.
4123 * @p: the process that the cpu time gets accounted to
4124 * @cputime: the cpu time spent in virtual machine since the last update
4125 */
f7402e03 4126static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4127{
4128 cputime64_t tmp;
4129 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4130
4131 tmp = cputime_to_cputime64(cputime);
4132
4133 p->utime = cputime_add(p->utime, cputime);
f06febc9 4134 account_group_user_time(p, cputime);
94886b84
LV
4135 p->gtime = cputime_add(p->gtime, cputime);
4136
4137 cpustat->user = cputime64_add(cpustat->user, tmp);
4138 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4139}
4140
c66f08be
MN
4141/*
4142 * Account scaled user cpu time to a process.
4143 * @p: the process that the cpu time gets accounted to
4144 * @cputime: the cpu time spent in user space since the last update
4145 */
4146void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4147{
4148 p->utimescaled = cputime_add(p->utimescaled, cputime);
4149}
4150
1da177e4
LT
4151/*
4152 * Account system cpu time to a process.
4153 * @p: the process that the cpu time gets accounted to
4154 * @hardirq_offset: the offset to subtract from hardirq_count()
4155 * @cputime: the cpu time spent in kernel space since the last update
4156 */
4157void account_system_time(struct task_struct *p, int hardirq_offset,
4158 cputime_t cputime)
4159{
4160 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4161 struct rq *rq = this_rq();
1da177e4
LT
4162 cputime64_t tmp;
4163
983ed7a6
HH
4164 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4165 account_guest_time(p, cputime);
4166 return;
4167 }
94886b84 4168
1da177e4 4169 p->stime = cputime_add(p->stime, cputime);
f06febc9 4170 account_group_system_time(p, cputime);
1da177e4
LT
4171
4172 /* Add system time to cpustat. */
4173 tmp = cputime_to_cputime64(cputime);
4174 if (hardirq_count() - hardirq_offset)
4175 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4176 else if (softirq_count())
4177 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4178 else if (p != rq->idle)
1da177e4 4179 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4180 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4181 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4182 else
4183 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4184 /* Account for system time used */
4185 acct_update_integrals(p);
1da177e4
LT
4186}
4187
c66f08be
MN
4188/*
4189 * Account scaled system cpu time to a process.
4190 * @p: the process that the cpu time gets accounted to
4191 * @hardirq_offset: the offset to subtract from hardirq_count()
4192 * @cputime: the cpu time spent in kernel space since the last update
4193 */
4194void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4195{
4196 p->stimescaled = cputime_add(p->stimescaled, cputime);
4197}
4198
1da177e4
LT
4199/*
4200 * Account for involuntary wait time.
4201 * @p: the process from which the cpu time has been stolen
4202 * @steal: the cpu time spent in involuntary wait
4203 */
4204void account_steal_time(struct task_struct *p, cputime_t steal)
4205{
4206 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4207 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4208 struct rq *rq = this_rq();
1da177e4
LT
4209
4210 if (p == rq->idle) {
4211 p->stime = cputime_add(p->stime, steal);
f06febc9 4212 account_group_system_time(p, steal);
1da177e4
LT
4213 if (atomic_read(&rq->nr_iowait) > 0)
4214 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4215 else
4216 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4217 } else
1da177e4
LT
4218 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4219}
4220
49048622
BS
4221/*
4222 * Use precise platform statistics if available:
4223 */
4224#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4225cputime_t task_utime(struct task_struct *p)
4226{
4227 return p->utime;
4228}
4229
4230cputime_t task_stime(struct task_struct *p)
4231{
4232 return p->stime;
4233}
4234#else
4235cputime_t task_utime(struct task_struct *p)
4236{
4237 clock_t utime = cputime_to_clock_t(p->utime),
4238 total = utime + cputime_to_clock_t(p->stime);
4239 u64 temp;
4240
4241 /*
4242 * Use CFS's precise accounting:
4243 */
4244 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4245
4246 if (total) {
4247 temp *= utime;
4248 do_div(temp, total);
4249 }
4250 utime = (clock_t)temp;
4251
4252 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4253 return p->prev_utime;
4254}
4255
4256cputime_t task_stime(struct task_struct *p)
4257{
4258 clock_t stime;
4259
4260 /*
4261 * Use CFS's precise accounting. (we subtract utime from
4262 * the total, to make sure the total observed by userspace
4263 * grows monotonically - apps rely on that):
4264 */
4265 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4266 cputime_to_clock_t(task_utime(p));
4267
4268 if (stime >= 0)
4269 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4270
4271 return p->prev_stime;
4272}
4273#endif
4274
4275inline cputime_t task_gtime(struct task_struct *p)
4276{
4277 return p->gtime;
4278}
4279
7835b98b
CL
4280/*
4281 * This function gets called by the timer code, with HZ frequency.
4282 * We call it with interrupts disabled.
4283 *
4284 * It also gets called by the fork code, when changing the parent's
4285 * timeslices.
4286 */
4287void scheduler_tick(void)
4288{
7835b98b
CL
4289 int cpu = smp_processor_id();
4290 struct rq *rq = cpu_rq(cpu);
dd41f596 4291 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4292
4293 sched_clock_tick();
dd41f596
IM
4294
4295 spin_lock(&rq->lock);
3e51f33f 4296 update_rq_clock(rq);
f1a438d8 4297 update_cpu_load(rq);
fa85ae24 4298 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4299 spin_unlock(&rq->lock);
7835b98b 4300
e418e1c2 4301#ifdef CONFIG_SMP
dd41f596
IM
4302 rq->idle_at_tick = idle_cpu(cpu);
4303 trigger_load_balance(rq, cpu);
e418e1c2 4304#endif
1da177e4
LT
4305}
4306
6cd8a4bb
SR
4307#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4308 defined(CONFIG_PREEMPT_TRACER))
4309
4310static inline unsigned long get_parent_ip(unsigned long addr)
4311{
4312 if (in_lock_functions(addr)) {
4313 addr = CALLER_ADDR2;
4314 if (in_lock_functions(addr))
4315 addr = CALLER_ADDR3;
4316 }
4317 return addr;
4318}
1da177e4 4319
43627582 4320void __kprobes add_preempt_count(int val)
1da177e4 4321{
6cd8a4bb 4322#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4323 /*
4324 * Underflow?
4325 */
9a11b49a
IM
4326 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4327 return;
6cd8a4bb 4328#endif
1da177e4 4329 preempt_count() += val;
6cd8a4bb 4330#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4331 /*
4332 * Spinlock count overflowing soon?
4333 */
33859f7f
MOS
4334 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4335 PREEMPT_MASK - 10);
6cd8a4bb
SR
4336#endif
4337 if (preempt_count() == val)
4338 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4339}
4340EXPORT_SYMBOL(add_preempt_count);
4341
43627582 4342void __kprobes sub_preempt_count(int val)
1da177e4 4343{
6cd8a4bb 4344#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4345 /*
4346 * Underflow?
4347 */
9a11b49a
IM
4348 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4349 return;
1da177e4
LT
4350 /*
4351 * Is the spinlock portion underflowing?
4352 */
9a11b49a
IM
4353 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4354 !(preempt_count() & PREEMPT_MASK)))
4355 return;
6cd8a4bb 4356#endif
9a11b49a 4357
6cd8a4bb
SR
4358 if (preempt_count() == val)
4359 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4360 preempt_count() -= val;
4361}
4362EXPORT_SYMBOL(sub_preempt_count);
4363
4364#endif
4365
4366/*
dd41f596 4367 * Print scheduling while atomic bug:
1da177e4 4368 */
dd41f596 4369static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4370{
838225b4
SS
4371 struct pt_regs *regs = get_irq_regs();
4372
4373 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4374 prev->comm, prev->pid, preempt_count());
4375
dd41f596 4376 debug_show_held_locks(prev);
e21f5b15 4377 print_modules();
dd41f596
IM
4378 if (irqs_disabled())
4379 print_irqtrace_events(prev);
838225b4
SS
4380
4381 if (regs)
4382 show_regs(regs);
4383 else
4384 dump_stack();
dd41f596 4385}
1da177e4 4386
dd41f596
IM
4387/*
4388 * Various schedule()-time debugging checks and statistics:
4389 */
4390static inline void schedule_debug(struct task_struct *prev)
4391{
1da177e4 4392 /*
41a2d6cf 4393 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4394 * schedule() atomically, we ignore that path for now.
4395 * Otherwise, whine if we are scheduling when we should not be.
4396 */
3f33a7ce 4397 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4398 __schedule_bug(prev);
4399
1da177e4
LT
4400 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4401
2d72376b 4402 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4403#ifdef CONFIG_SCHEDSTATS
4404 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4405 schedstat_inc(this_rq(), bkl_count);
4406 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4407 }
4408#endif
dd41f596
IM
4409}
4410
4411/*
4412 * Pick up the highest-prio task:
4413 */
4414static inline struct task_struct *
ff95f3df 4415pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4416{
5522d5d5 4417 const struct sched_class *class;
dd41f596 4418 struct task_struct *p;
1da177e4
LT
4419
4420 /*
dd41f596
IM
4421 * Optimization: we know that if all tasks are in
4422 * the fair class we can call that function directly:
1da177e4 4423 */
dd41f596 4424 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4425 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4426 if (likely(p))
4427 return p;
1da177e4
LT
4428 }
4429
dd41f596
IM
4430 class = sched_class_highest;
4431 for ( ; ; ) {
fb8d4724 4432 p = class->pick_next_task(rq);
dd41f596
IM
4433 if (p)
4434 return p;
4435 /*
4436 * Will never be NULL as the idle class always
4437 * returns a non-NULL p:
4438 */
4439 class = class->next;
4440 }
4441}
1da177e4 4442
dd41f596
IM
4443/*
4444 * schedule() is the main scheduler function.
4445 */
4446asmlinkage void __sched schedule(void)
4447{
4448 struct task_struct *prev, *next;
67ca7bde 4449 unsigned long *switch_count;
dd41f596 4450 struct rq *rq;
31656519 4451 int cpu;
dd41f596
IM
4452
4453need_resched:
4454 preempt_disable();
4455 cpu = smp_processor_id();
4456 rq = cpu_rq(cpu);
4457 rcu_qsctr_inc(cpu);
4458 prev = rq->curr;
4459 switch_count = &prev->nivcsw;
4460
4461 release_kernel_lock(prev);
4462need_resched_nonpreemptible:
4463
4464 schedule_debug(prev);
1da177e4 4465
31656519 4466 if (sched_feat(HRTICK))
f333fdc9 4467 hrtick_clear(rq);
8f4d37ec 4468
8cd162ce 4469 spin_lock_irq(&rq->lock);
3e51f33f 4470 update_rq_clock(rq);
1e819950 4471 clear_tsk_need_resched(prev);
1da177e4 4472
1da177e4 4473 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4474 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4475 prev->state = TASK_RUNNING;
16882c1e 4476 else
2e1cb74a 4477 deactivate_task(rq, prev, 1);
dd41f596 4478 switch_count = &prev->nvcsw;
1da177e4
LT
4479 }
4480
9a897c5a
SR
4481#ifdef CONFIG_SMP
4482 if (prev->sched_class->pre_schedule)
4483 prev->sched_class->pre_schedule(rq, prev);
4484#endif
f65eda4f 4485
dd41f596 4486 if (unlikely(!rq->nr_running))
1da177e4 4487 idle_balance(cpu, rq);
1da177e4 4488
31ee529c 4489 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4490 next = pick_next_task(rq, prev);
1da177e4 4491
1da177e4 4492 if (likely(prev != next)) {
673a90a1
DS
4493 sched_info_switch(prev, next);
4494
1da177e4
LT
4495 rq->nr_switches++;
4496 rq->curr = next;
4497 ++*switch_count;
4498
dd41f596 4499 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4500 /*
4501 * the context switch might have flipped the stack from under
4502 * us, hence refresh the local variables.
4503 */
4504 cpu = smp_processor_id();
4505 rq = cpu_rq(cpu);
1da177e4
LT
4506 } else
4507 spin_unlock_irq(&rq->lock);
4508
8f4d37ec 4509 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4510 goto need_resched_nonpreemptible;
8f4d37ec 4511
1da177e4
LT
4512 preempt_enable_no_resched();
4513 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4514 goto need_resched;
4515}
1da177e4
LT
4516EXPORT_SYMBOL(schedule);
4517
4518#ifdef CONFIG_PREEMPT
4519/*
2ed6e34f 4520 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4521 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4522 * occur there and call schedule directly.
4523 */
4524asmlinkage void __sched preempt_schedule(void)
4525{
4526 struct thread_info *ti = current_thread_info();
6478d880 4527
1da177e4
LT
4528 /*
4529 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4530 * we do not want to preempt the current task. Just return..
1da177e4 4531 */
beed33a8 4532 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4533 return;
4534
3a5c359a
AK
4535 do {
4536 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4537 schedule();
3a5c359a 4538 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4539
3a5c359a
AK
4540 /*
4541 * Check again in case we missed a preemption opportunity
4542 * between schedule and now.
4543 */
4544 barrier();
4545 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4546}
1da177e4
LT
4547EXPORT_SYMBOL(preempt_schedule);
4548
4549/*
2ed6e34f 4550 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4551 * off of irq context.
4552 * Note, that this is called and return with irqs disabled. This will
4553 * protect us against recursive calling from irq.
4554 */
4555asmlinkage void __sched preempt_schedule_irq(void)
4556{
4557 struct thread_info *ti = current_thread_info();
6478d880 4558
2ed6e34f 4559 /* Catch callers which need to be fixed */
1da177e4
LT
4560 BUG_ON(ti->preempt_count || !irqs_disabled());
4561
3a5c359a
AK
4562 do {
4563 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4564 local_irq_enable();
4565 schedule();
4566 local_irq_disable();
3a5c359a 4567 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4568
3a5c359a
AK
4569 /*
4570 * Check again in case we missed a preemption opportunity
4571 * between schedule and now.
4572 */
4573 barrier();
4574 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4575}
4576
4577#endif /* CONFIG_PREEMPT */
4578
95cdf3b7
IM
4579int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4580 void *key)
1da177e4 4581{
48f24c4d 4582 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4583}
1da177e4
LT
4584EXPORT_SYMBOL(default_wake_function);
4585
4586/*
41a2d6cf
IM
4587 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4588 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4589 * number) then we wake all the non-exclusive tasks and one exclusive task.
4590 *
4591 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4592 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4593 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4594 */
4595static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4596 int nr_exclusive, int sync, void *key)
4597{
2e45874c 4598 wait_queue_t *curr, *next;
1da177e4 4599
2e45874c 4600 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4601 unsigned flags = curr->flags;
4602
1da177e4 4603 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4604 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4605 break;
4606 }
4607}
4608
4609/**
4610 * __wake_up - wake up threads blocked on a waitqueue.
4611 * @q: the waitqueue
4612 * @mode: which threads
4613 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4614 * @key: is directly passed to the wakeup function
1da177e4 4615 */
7ad5b3a5 4616void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4617 int nr_exclusive, void *key)
1da177e4
LT
4618{
4619 unsigned long flags;
4620
4621 spin_lock_irqsave(&q->lock, flags);
4622 __wake_up_common(q, mode, nr_exclusive, 0, key);
4623 spin_unlock_irqrestore(&q->lock, flags);
4624}
1da177e4
LT
4625EXPORT_SYMBOL(__wake_up);
4626
4627/*
4628 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4629 */
7ad5b3a5 4630void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4631{
4632 __wake_up_common(q, mode, 1, 0, NULL);
4633}
4634
4635/**
67be2dd1 4636 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4637 * @q: the waitqueue
4638 * @mode: which threads
4639 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4640 *
4641 * The sync wakeup differs that the waker knows that it will schedule
4642 * away soon, so while the target thread will be woken up, it will not
4643 * be migrated to another CPU - ie. the two threads are 'synchronized'
4644 * with each other. This can prevent needless bouncing between CPUs.
4645 *
4646 * On UP it can prevent extra preemption.
4647 */
7ad5b3a5 4648void
95cdf3b7 4649__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4650{
4651 unsigned long flags;
4652 int sync = 1;
4653
4654 if (unlikely(!q))
4655 return;
4656
4657 if (unlikely(!nr_exclusive))
4658 sync = 0;
4659
4660 spin_lock_irqsave(&q->lock, flags);
4661 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4662 spin_unlock_irqrestore(&q->lock, flags);
4663}
4664EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4665
65eb3dc6
KD
4666/**
4667 * complete: - signals a single thread waiting on this completion
4668 * @x: holds the state of this particular completion
4669 *
4670 * This will wake up a single thread waiting on this completion. Threads will be
4671 * awakened in the same order in which they were queued.
4672 *
4673 * See also complete_all(), wait_for_completion() and related routines.
4674 */
b15136e9 4675void complete(struct completion *x)
1da177e4
LT
4676{
4677 unsigned long flags;
4678
4679 spin_lock_irqsave(&x->wait.lock, flags);
4680 x->done++;
d9514f6c 4681 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4682 spin_unlock_irqrestore(&x->wait.lock, flags);
4683}
4684EXPORT_SYMBOL(complete);
4685
65eb3dc6
KD
4686/**
4687 * complete_all: - signals all threads waiting on this completion
4688 * @x: holds the state of this particular completion
4689 *
4690 * This will wake up all threads waiting on this particular completion event.
4691 */
b15136e9 4692void complete_all(struct completion *x)
1da177e4
LT
4693{
4694 unsigned long flags;
4695
4696 spin_lock_irqsave(&x->wait.lock, flags);
4697 x->done += UINT_MAX/2;
d9514f6c 4698 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4699 spin_unlock_irqrestore(&x->wait.lock, flags);
4700}
4701EXPORT_SYMBOL(complete_all);
4702
8cbbe86d
AK
4703static inline long __sched
4704do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4705{
1da177e4
LT
4706 if (!x->done) {
4707 DECLARE_WAITQUEUE(wait, current);
4708
4709 wait.flags |= WQ_FLAG_EXCLUSIVE;
4710 __add_wait_queue_tail(&x->wait, &wait);
4711 do {
94d3d824 4712 if (signal_pending_state(state, current)) {
ea71a546
ON
4713 timeout = -ERESTARTSYS;
4714 break;
8cbbe86d
AK
4715 }
4716 __set_current_state(state);
1da177e4
LT
4717 spin_unlock_irq(&x->wait.lock);
4718 timeout = schedule_timeout(timeout);
4719 spin_lock_irq(&x->wait.lock);
ea71a546 4720 } while (!x->done && timeout);
1da177e4 4721 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4722 if (!x->done)
4723 return timeout;
1da177e4
LT
4724 }
4725 x->done--;
ea71a546 4726 return timeout ?: 1;
1da177e4 4727}
1da177e4 4728
8cbbe86d
AK
4729static long __sched
4730wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4731{
1da177e4
LT
4732 might_sleep();
4733
4734 spin_lock_irq(&x->wait.lock);
8cbbe86d 4735 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4736 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4737 return timeout;
4738}
1da177e4 4739
65eb3dc6
KD
4740/**
4741 * wait_for_completion: - waits for completion of a task
4742 * @x: holds the state of this particular completion
4743 *
4744 * This waits to be signaled for completion of a specific task. It is NOT
4745 * interruptible and there is no timeout.
4746 *
4747 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4748 * and interrupt capability. Also see complete().
4749 */
b15136e9 4750void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4751{
4752 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4753}
8cbbe86d 4754EXPORT_SYMBOL(wait_for_completion);
1da177e4 4755
65eb3dc6
KD
4756/**
4757 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4758 * @x: holds the state of this particular completion
4759 * @timeout: timeout value in jiffies
4760 *
4761 * This waits for either a completion of a specific task to be signaled or for a
4762 * specified timeout to expire. The timeout is in jiffies. It is not
4763 * interruptible.
4764 */
b15136e9 4765unsigned long __sched
8cbbe86d 4766wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4767{
8cbbe86d 4768 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4769}
8cbbe86d 4770EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4771
65eb3dc6
KD
4772/**
4773 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4774 * @x: holds the state of this particular completion
4775 *
4776 * This waits for completion of a specific task to be signaled. It is
4777 * interruptible.
4778 */
8cbbe86d 4779int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4780{
51e97990
AK
4781 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4782 if (t == -ERESTARTSYS)
4783 return t;
4784 return 0;
0fec171c 4785}
8cbbe86d 4786EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4787
65eb3dc6
KD
4788/**
4789 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4790 * @x: holds the state of this particular completion
4791 * @timeout: timeout value in jiffies
4792 *
4793 * This waits for either a completion of a specific task to be signaled or for a
4794 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4795 */
b15136e9 4796unsigned long __sched
8cbbe86d
AK
4797wait_for_completion_interruptible_timeout(struct completion *x,
4798 unsigned long timeout)
0fec171c 4799{
8cbbe86d 4800 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4801}
8cbbe86d 4802EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4803
65eb3dc6
KD
4804/**
4805 * wait_for_completion_killable: - waits for completion of a task (killable)
4806 * @x: holds the state of this particular completion
4807 *
4808 * This waits to be signaled for completion of a specific task. It can be
4809 * interrupted by a kill signal.
4810 */
009e577e
MW
4811int __sched wait_for_completion_killable(struct completion *x)
4812{
4813 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4814 if (t == -ERESTARTSYS)
4815 return t;
4816 return 0;
4817}
4818EXPORT_SYMBOL(wait_for_completion_killable);
4819
be4de352
DC
4820/**
4821 * try_wait_for_completion - try to decrement a completion without blocking
4822 * @x: completion structure
4823 *
4824 * Returns: 0 if a decrement cannot be done without blocking
4825 * 1 if a decrement succeeded.
4826 *
4827 * If a completion is being used as a counting completion,
4828 * attempt to decrement the counter without blocking. This
4829 * enables us to avoid waiting if the resource the completion
4830 * is protecting is not available.
4831 */
4832bool try_wait_for_completion(struct completion *x)
4833{
4834 int ret = 1;
4835
4836 spin_lock_irq(&x->wait.lock);
4837 if (!x->done)
4838 ret = 0;
4839 else
4840 x->done--;
4841 spin_unlock_irq(&x->wait.lock);
4842 return ret;
4843}
4844EXPORT_SYMBOL(try_wait_for_completion);
4845
4846/**
4847 * completion_done - Test to see if a completion has any waiters
4848 * @x: completion structure
4849 *
4850 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4851 * 1 if there are no waiters.
4852 *
4853 */
4854bool completion_done(struct completion *x)
4855{
4856 int ret = 1;
4857
4858 spin_lock_irq(&x->wait.lock);
4859 if (!x->done)
4860 ret = 0;
4861 spin_unlock_irq(&x->wait.lock);
4862 return ret;
4863}
4864EXPORT_SYMBOL(completion_done);
4865
8cbbe86d
AK
4866static long __sched
4867sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4868{
0fec171c
IM
4869 unsigned long flags;
4870 wait_queue_t wait;
4871
4872 init_waitqueue_entry(&wait, current);
1da177e4 4873
8cbbe86d 4874 __set_current_state(state);
1da177e4 4875
8cbbe86d
AK
4876 spin_lock_irqsave(&q->lock, flags);
4877 __add_wait_queue(q, &wait);
4878 spin_unlock(&q->lock);
4879 timeout = schedule_timeout(timeout);
4880 spin_lock_irq(&q->lock);
4881 __remove_wait_queue(q, &wait);
4882 spin_unlock_irqrestore(&q->lock, flags);
4883
4884 return timeout;
4885}
4886
4887void __sched interruptible_sleep_on(wait_queue_head_t *q)
4888{
4889 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4890}
1da177e4
LT
4891EXPORT_SYMBOL(interruptible_sleep_on);
4892
0fec171c 4893long __sched
95cdf3b7 4894interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4895{
8cbbe86d 4896 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4897}
1da177e4
LT
4898EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4899
0fec171c 4900void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4901{
8cbbe86d 4902 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4903}
1da177e4
LT
4904EXPORT_SYMBOL(sleep_on);
4905
0fec171c 4906long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4907{
8cbbe86d 4908 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4909}
1da177e4
LT
4910EXPORT_SYMBOL(sleep_on_timeout);
4911
b29739f9
IM
4912#ifdef CONFIG_RT_MUTEXES
4913
4914/*
4915 * rt_mutex_setprio - set the current priority of a task
4916 * @p: task
4917 * @prio: prio value (kernel-internal form)
4918 *
4919 * This function changes the 'effective' priority of a task. It does
4920 * not touch ->normal_prio like __setscheduler().
4921 *
4922 * Used by the rt_mutex code to implement priority inheritance logic.
4923 */
36c8b586 4924void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4925{
4926 unsigned long flags;
83b699ed 4927 int oldprio, on_rq, running;
70b97a7f 4928 struct rq *rq;
cb469845 4929 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4930
4931 BUG_ON(prio < 0 || prio > MAX_PRIO);
4932
4933 rq = task_rq_lock(p, &flags);
a8e504d2 4934 update_rq_clock(rq);
b29739f9 4935
d5f9f942 4936 oldprio = p->prio;
dd41f596 4937 on_rq = p->se.on_rq;
051a1d1a 4938 running = task_current(rq, p);
0e1f3483 4939 if (on_rq)
69be72c1 4940 dequeue_task(rq, p, 0);
0e1f3483
HS
4941 if (running)
4942 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4943
4944 if (rt_prio(prio))
4945 p->sched_class = &rt_sched_class;
4946 else
4947 p->sched_class = &fair_sched_class;
4948
b29739f9
IM
4949 p->prio = prio;
4950
0e1f3483
HS
4951 if (running)
4952 p->sched_class->set_curr_task(rq);
dd41f596 4953 if (on_rq) {
8159f87e 4954 enqueue_task(rq, p, 0);
cb469845
SR
4955
4956 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4957 }
4958 task_rq_unlock(rq, &flags);
4959}
4960
4961#endif
4962
36c8b586 4963void set_user_nice(struct task_struct *p, long nice)
1da177e4 4964{
dd41f596 4965 int old_prio, delta, on_rq;
1da177e4 4966 unsigned long flags;
70b97a7f 4967 struct rq *rq;
1da177e4
LT
4968
4969 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4970 return;
4971 /*
4972 * We have to be careful, if called from sys_setpriority(),
4973 * the task might be in the middle of scheduling on another CPU.
4974 */
4975 rq = task_rq_lock(p, &flags);
a8e504d2 4976 update_rq_clock(rq);
1da177e4
LT
4977 /*
4978 * The RT priorities are set via sched_setscheduler(), but we still
4979 * allow the 'normal' nice value to be set - but as expected
4980 * it wont have any effect on scheduling until the task is
dd41f596 4981 * SCHED_FIFO/SCHED_RR:
1da177e4 4982 */
e05606d3 4983 if (task_has_rt_policy(p)) {
1da177e4
LT
4984 p->static_prio = NICE_TO_PRIO(nice);
4985 goto out_unlock;
4986 }
dd41f596 4987 on_rq = p->se.on_rq;
c09595f6 4988 if (on_rq)
69be72c1 4989 dequeue_task(rq, p, 0);
1da177e4 4990
1da177e4 4991 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4992 set_load_weight(p);
b29739f9
IM
4993 old_prio = p->prio;
4994 p->prio = effective_prio(p);
4995 delta = p->prio - old_prio;
1da177e4 4996
dd41f596 4997 if (on_rq) {
8159f87e 4998 enqueue_task(rq, p, 0);
1da177e4 4999 /*
d5f9f942
AM
5000 * If the task increased its priority or is running and
5001 * lowered its priority, then reschedule its CPU:
1da177e4 5002 */
d5f9f942 5003 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5004 resched_task(rq->curr);
5005 }
5006out_unlock:
5007 task_rq_unlock(rq, &flags);
5008}
1da177e4
LT
5009EXPORT_SYMBOL(set_user_nice);
5010
e43379f1
MM
5011/*
5012 * can_nice - check if a task can reduce its nice value
5013 * @p: task
5014 * @nice: nice value
5015 */
36c8b586 5016int can_nice(const struct task_struct *p, const int nice)
e43379f1 5017{
024f4747
MM
5018 /* convert nice value [19,-20] to rlimit style value [1,40] */
5019 int nice_rlim = 20 - nice;
48f24c4d 5020
e43379f1
MM
5021 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5022 capable(CAP_SYS_NICE));
5023}
5024
1da177e4
LT
5025#ifdef __ARCH_WANT_SYS_NICE
5026
5027/*
5028 * sys_nice - change the priority of the current process.
5029 * @increment: priority increment
5030 *
5031 * sys_setpriority is a more generic, but much slower function that
5032 * does similar things.
5033 */
5034asmlinkage long sys_nice(int increment)
5035{
48f24c4d 5036 long nice, retval;
1da177e4
LT
5037
5038 /*
5039 * Setpriority might change our priority at the same moment.
5040 * We don't have to worry. Conceptually one call occurs first
5041 * and we have a single winner.
5042 */
e43379f1
MM
5043 if (increment < -40)
5044 increment = -40;
1da177e4
LT
5045 if (increment > 40)
5046 increment = 40;
5047
5048 nice = PRIO_TO_NICE(current->static_prio) + increment;
5049 if (nice < -20)
5050 nice = -20;
5051 if (nice > 19)
5052 nice = 19;
5053
e43379f1
MM
5054 if (increment < 0 && !can_nice(current, nice))
5055 return -EPERM;
5056
1da177e4
LT
5057 retval = security_task_setnice(current, nice);
5058 if (retval)
5059 return retval;
5060
5061 set_user_nice(current, nice);
5062 return 0;
5063}
5064
5065#endif
5066
5067/**
5068 * task_prio - return the priority value of a given task.
5069 * @p: the task in question.
5070 *
5071 * This is the priority value as seen by users in /proc.
5072 * RT tasks are offset by -200. Normal tasks are centered
5073 * around 0, value goes from -16 to +15.
5074 */
36c8b586 5075int task_prio(const struct task_struct *p)
1da177e4
LT
5076{
5077 return p->prio - MAX_RT_PRIO;
5078}
5079
5080/**
5081 * task_nice - return the nice value of a given task.
5082 * @p: the task in question.
5083 */
36c8b586 5084int task_nice(const struct task_struct *p)
1da177e4
LT
5085{
5086 return TASK_NICE(p);
5087}
150d8bed 5088EXPORT_SYMBOL(task_nice);
1da177e4
LT
5089
5090/**
5091 * idle_cpu - is a given cpu idle currently?
5092 * @cpu: the processor in question.
5093 */
5094int idle_cpu(int cpu)
5095{
5096 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5097}
5098
1da177e4
LT
5099/**
5100 * idle_task - return the idle task for a given cpu.
5101 * @cpu: the processor in question.
5102 */
36c8b586 5103struct task_struct *idle_task(int cpu)
1da177e4
LT
5104{
5105 return cpu_rq(cpu)->idle;
5106}
5107
5108/**
5109 * find_process_by_pid - find a process with a matching PID value.
5110 * @pid: the pid in question.
5111 */
a9957449 5112static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5113{
228ebcbe 5114 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5115}
5116
5117/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5118static void
5119__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5120{
dd41f596 5121 BUG_ON(p->se.on_rq);
48f24c4d 5122
1da177e4 5123 p->policy = policy;
dd41f596
IM
5124 switch (p->policy) {
5125 case SCHED_NORMAL:
5126 case SCHED_BATCH:
5127 case SCHED_IDLE:
5128 p->sched_class = &fair_sched_class;
5129 break;
5130 case SCHED_FIFO:
5131 case SCHED_RR:
5132 p->sched_class = &rt_sched_class;
5133 break;
5134 }
5135
1da177e4 5136 p->rt_priority = prio;
b29739f9
IM
5137 p->normal_prio = normal_prio(p);
5138 /* we are holding p->pi_lock already */
5139 p->prio = rt_mutex_getprio(p);
2dd73a4f 5140 set_load_weight(p);
1da177e4
LT
5141}
5142
961ccddd
RR
5143static int __sched_setscheduler(struct task_struct *p, int policy,
5144 struct sched_param *param, bool user)
1da177e4 5145{
83b699ed 5146 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5147 unsigned long flags;
cb469845 5148 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5149 struct rq *rq;
1da177e4 5150
66e5393a
SR
5151 /* may grab non-irq protected spin_locks */
5152 BUG_ON(in_interrupt());
1da177e4
LT
5153recheck:
5154 /* double check policy once rq lock held */
5155 if (policy < 0)
5156 policy = oldpolicy = p->policy;
5157 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5158 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5159 policy != SCHED_IDLE)
b0a9499c 5160 return -EINVAL;
1da177e4
LT
5161 /*
5162 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5163 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5164 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5165 */
5166 if (param->sched_priority < 0 ||
95cdf3b7 5167 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5168 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5169 return -EINVAL;
e05606d3 5170 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5171 return -EINVAL;
5172
37e4ab3f
OC
5173 /*
5174 * Allow unprivileged RT tasks to decrease priority:
5175 */
961ccddd 5176 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5177 if (rt_policy(policy)) {
8dc3e909 5178 unsigned long rlim_rtprio;
8dc3e909
ON
5179
5180 if (!lock_task_sighand(p, &flags))
5181 return -ESRCH;
5182 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5183 unlock_task_sighand(p, &flags);
5184
5185 /* can't set/change the rt policy */
5186 if (policy != p->policy && !rlim_rtprio)
5187 return -EPERM;
5188
5189 /* can't increase priority */
5190 if (param->sched_priority > p->rt_priority &&
5191 param->sched_priority > rlim_rtprio)
5192 return -EPERM;
5193 }
dd41f596
IM
5194 /*
5195 * Like positive nice levels, dont allow tasks to
5196 * move out of SCHED_IDLE either:
5197 */
5198 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5199 return -EPERM;
5fe1d75f 5200
37e4ab3f
OC
5201 /* can't change other user's priorities */
5202 if ((current->euid != p->euid) &&
5203 (current->euid != p->uid))
5204 return -EPERM;
5205 }
1da177e4 5206
725aad24 5207 if (user) {
b68aa230 5208#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5209 /*
5210 * Do not allow realtime tasks into groups that have no runtime
5211 * assigned.
5212 */
9a7e0b18
PZ
5213 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5214 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5215 return -EPERM;
b68aa230
PZ
5216#endif
5217
725aad24
JF
5218 retval = security_task_setscheduler(p, policy, param);
5219 if (retval)
5220 return retval;
5221 }
5222
b29739f9
IM
5223 /*
5224 * make sure no PI-waiters arrive (or leave) while we are
5225 * changing the priority of the task:
5226 */
5227 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5228 /*
5229 * To be able to change p->policy safely, the apropriate
5230 * runqueue lock must be held.
5231 */
b29739f9 5232 rq = __task_rq_lock(p);
1da177e4
LT
5233 /* recheck policy now with rq lock held */
5234 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5235 policy = oldpolicy = -1;
b29739f9
IM
5236 __task_rq_unlock(rq);
5237 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5238 goto recheck;
5239 }
2daa3577 5240 update_rq_clock(rq);
dd41f596 5241 on_rq = p->se.on_rq;
051a1d1a 5242 running = task_current(rq, p);
0e1f3483 5243 if (on_rq)
2e1cb74a 5244 deactivate_task(rq, p, 0);
0e1f3483
HS
5245 if (running)
5246 p->sched_class->put_prev_task(rq, p);
f6b53205 5247
1da177e4 5248 oldprio = p->prio;
dd41f596 5249 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5250
0e1f3483
HS
5251 if (running)
5252 p->sched_class->set_curr_task(rq);
dd41f596
IM
5253 if (on_rq) {
5254 activate_task(rq, p, 0);
cb469845
SR
5255
5256 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5257 }
b29739f9
IM
5258 __task_rq_unlock(rq);
5259 spin_unlock_irqrestore(&p->pi_lock, flags);
5260
95e02ca9
TG
5261 rt_mutex_adjust_pi(p);
5262
1da177e4
LT
5263 return 0;
5264}
961ccddd
RR
5265
5266/**
5267 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5268 * @p: the task in question.
5269 * @policy: new policy.
5270 * @param: structure containing the new RT priority.
5271 *
5272 * NOTE that the task may be already dead.
5273 */
5274int sched_setscheduler(struct task_struct *p, int policy,
5275 struct sched_param *param)
5276{
5277 return __sched_setscheduler(p, policy, param, true);
5278}
1da177e4
LT
5279EXPORT_SYMBOL_GPL(sched_setscheduler);
5280
961ccddd
RR
5281/**
5282 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5283 * @p: the task in question.
5284 * @policy: new policy.
5285 * @param: structure containing the new RT priority.
5286 *
5287 * Just like sched_setscheduler, only don't bother checking if the
5288 * current context has permission. For example, this is needed in
5289 * stop_machine(): we create temporary high priority worker threads,
5290 * but our caller might not have that capability.
5291 */
5292int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5293 struct sched_param *param)
5294{
5295 return __sched_setscheduler(p, policy, param, false);
5296}
5297
95cdf3b7
IM
5298static int
5299do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5300{
1da177e4
LT
5301 struct sched_param lparam;
5302 struct task_struct *p;
36c8b586 5303 int retval;
1da177e4
LT
5304
5305 if (!param || pid < 0)
5306 return -EINVAL;
5307 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5308 return -EFAULT;
5fe1d75f
ON
5309
5310 rcu_read_lock();
5311 retval = -ESRCH;
1da177e4 5312 p = find_process_by_pid(pid);
5fe1d75f
ON
5313 if (p != NULL)
5314 retval = sched_setscheduler(p, policy, &lparam);
5315 rcu_read_unlock();
36c8b586 5316
1da177e4
LT
5317 return retval;
5318}
5319
5320/**
5321 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5322 * @pid: the pid in question.
5323 * @policy: new policy.
5324 * @param: structure containing the new RT priority.
5325 */
41a2d6cf
IM
5326asmlinkage long
5327sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5328{
c21761f1
JB
5329 /* negative values for policy are not valid */
5330 if (policy < 0)
5331 return -EINVAL;
5332
1da177e4
LT
5333 return do_sched_setscheduler(pid, policy, param);
5334}
5335
5336/**
5337 * sys_sched_setparam - set/change the RT priority of a thread
5338 * @pid: the pid in question.
5339 * @param: structure containing the new RT priority.
5340 */
5341asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5342{
5343 return do_sched_setscheduler(pid, -1, param);
5344}
5345
5346/**
5347 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5348 * @pid: the pid in question.
5349 */
5350asmlinkage long sys_sched_getscheduler(pid_t pid)
5351{
36c8b586 5352 struct task_struct *p;
3a5c359a 5353 int retval;
1da177e4
LT
5354
5355 if (pid < 0)
3a5c359a 5356 return -EINVAL;
1da177e4
LT
5357
5358 retval = -ESRCH;
5359 read_lock(&tasklist_lock);
5360 p = find_process_by_pid(pid);
5361 if (p) {
5362 retval = security_task_getscheduler(p);
5363 if (!retval)
5364 retval = p->policy;
5365 }
5366 read_unlock(&tasklist_lock);
1da177e4
LT
5367 return retval;
5368}
5369
5370/**
5371 * sys_sched_getscheduler - get the RT priority of a thread
5372 * @pid: the pid in question.
5373 * @param: structure containing the RT priority.
5374 */
5375asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5376{
5377 struct sched_param lp;
36c8b586 5378 struct task_struct *p;
3a5c359a 5379 int retval;
1da177e4
LT
5380
5381 if (!param || pid < 0)
3a5c359a 5382 return -EINVAL;
1da177e4
LT
5383
5384 read_lock(&tasklist_lock);
5385 p = find_process_by_pid(pid);
5386 retval = -ESRCH;
5387 if (!p)
5388 goto out_unlock;
5389
5390 retval = security_task_getscheduler(p);
5391 if (retval)
5392 goto out_unlock;
5393
5394 lp.sched_priority = p->rt_priority;
5395 read_unlock(&tasklist_lock);
5396
5397 /*
5398 * This one might sleep, we cannot do it with a spinlock held ...
5399 */
5400 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5401
1da177e4
LT
5402 return retval;
5403
5404out_unlock:
5405 read_unlock(&tasklist_lock);
5406 return retval;
5407}
5408
b53e921b 5409long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5410{
1da177e4 5411 cpumask_t cpus_allowed;
b53e921b 5412 cpumask_t new_mask = *in_mask;
36c8b586
IM
5413 struct task_struct *p;
5414 int retval;
1da177e4 5415
95402b38 5416 get_online_cpus();
1da177e4
LT
5417 read_lock(&tasklist_lock);
5418
5419 p = find_process_by_pid(pid);
5420 if (!p) {
5421 read_unlock(&tasklist_lock);
95402b38 5422 put_online_cpus();
1da177e4
LT
5423 return -ESRCH;
5424 }
5425
5426 /*
5427 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5428 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5429 * usage count and then drop tasklist_lock.
5430 */
5431 get_task_struct(p);
5432 read_unlock(&tasklist_lock);
5433
5434 retval = -EPERM;
5435 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5436 !capable(CAP_SYS_NICE))
5437 goto out_unlock;
5438
e7834f8f
DQ
5439 retval = security_task_setscheduler(p, 0, NULL);
5440 if (retval)
5441 goto out_unlock;
5442
f9a86fcb 5443 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5444 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5445 again:
7c16ec58 5446 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5447
8707d8b8 5448 if (!retval) {
f9a86fcb 5449 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5450 if (!cpus_subset(new_mask, cpus_allowed)) {
5451 /*
5452 * We must have raced with a concurrent cpuset
5453 * update. Just reset the cpus_allowed to the
5454 * cpuset's cpus_allowed
5455 */
5456 new_mask = cpus_allowed;
5457 goto again;
5458 }
5459 }
1da177e4
LT
5460out_unlock:
5461 put_task_struct(p);
95402b38 5462 put_online_cpus();
1da177e4
LT
5463 return retval;
5464}
5465
5466static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5467 cpumask_t *new_mask)
5468{
5469 if (len < sizeof(cpumask_t)) {
5470 memset(new_mask, 0, sizeof(cpumask_t));
5471 } else if (len > sizeof(cpumask_t)) {
5472 len = sizeof(cpumask_t);
5473 }
5474 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5475}
5476
5477/**
5478 * sys_sched_setaffinity - set the cpu affinity of a process
5479 * @pid: pid of the process
5480 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5481 * @user_mask_ptr: user-space pointer to the new cpu mask
5482 */
5483asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5484 unsigned long __user *user_mask_ptr)
5485{
5486 cpumask_t new_mask;
5487 int retval;
5488
5489 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5490 if (retval)
5491 return retval;
5492
b53e921b 5493 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5494}
5495
1da177e4
LT
5496long sched_getaffinity(pid_t pid, cpumask_t *mask)
5497{
36c8b586 5498 struct task_struct *p;
1da177e4 5499 int retval;
1da177e4 5500
95402b38 5501 get_online_cpus();
1da177e4
LT
5502 read_lock(&tasklist_lock);
5503
5504 retval = -ESRCH;
5505 p = find_process_by_pid(pid);
5506 if (!p)
5507 goto out_unlock;
5508
e7834f8f
DQ
5509 retval = security_task_getscheduler(p);
5510 if (retval)
5511 goto out_unlock;
5512
2f7016d9 5513 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5514
5515out_unlock:
5516 read_unlock(&tasklist_lock);
95402b38 5517 put_online_cpus();
1da177e4 5518
9531b62f 5519 return retval;
1da177e4
LT
5520}
5521
5522/**
5523 * sys_sched_getaffinity - get the cpu affinity of a process
5524 * @pid: pid of the process
5525 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5526 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5527 */
5528asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5529 unsigned long __user *user_mask_ptr)
5530{
5531 int ret;
5532 cpumask_t mask;
5533
5534 if (len < sizeof(cpumask_t))
5535 return -EINVAL;
5536
5537 ret = sched_getaffinity(pid, &mask);
5538 if (ret < 0)
5539 return ret;
5540
5541 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5542 return -EFAULT;
5543
5544 return sizeof(cpumask_t);
5545}
5546
5547/**
5548 * sys_sched_yield - yield the current processor to other threads.
5549 *
dd41f596
IM
5550 * This function yields the current CPU to other tasks. If there are no
5551 * other threads running on this CPU then this function will return.
1da177e4
LT
5552 */
5553asmlinkage long sys_sched_yield(void)
5554{
70b97a7f 5555 struct rq *rq = this_rq_lock();
1da177e4 5556
2d72376b 5557 schedstat_inc(rq, yld_count);
4530d7ab 5558 current->sched_class->yield_task(rq);
1da177e4
LT
5559
5560 /*
5561 * Since we are going to call schedule() anyway, there's
5562 * no need to preempt or enable interrupts:
5563 */
5564 __release(rq->lock);
8a25d5de 5565 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5566 _raw_spin_unlock(&rq->lock);
5567 preempt_enable_no_resched();
5568
5569 schedule();
5570
5571 return 0;
5572}
5573
e7b38404 5574static void __cond_resched(void)
1da177e4 5575{
8e0a43d8
IM
5576#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5577 __might_sleep(__FILE__, __LINE__);
5578#endif
5bbcfd90
IM
5579 /*
5580 * The BKS might be reacquired before we have dropped
5581 * PREEMPT_ACTIVE, which could trigger a second
5582 * cond_resched() call.
5583 */
1da177e4
LT
5584 do {
5585 add_preempt_count(PREEMPT_ACTIVE);
5586 schedule();
5587 sub_preempt_count(PREEMPT_ACTIVE);
5588 } while (need_resched());
5589}
5590
02b67cc3 5591int __sched _cond_resched(void)
1da177e4 5592{
9414232f
IM
5593 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5594 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5595 __cond_resched();
5596 return 1;
5597 }
5598 return 0;
5599}
02b67cc3 5600EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5601
5602/*
5603 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5604 * call schedule, and on return reacquire the lock.
5605 *
41a2d6cf 5606 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5607 * operations here to prevent schedule() from being called twice (once via
5608 * spin_unlock(), once by hand).
5609 */
95cdf3b7 5610int cond_resched_lock(spinlock_t *lock)
1da177e4 5611{
95c354fe 5612 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5613 int ret = 0;
5614
95c354fe 5615 if (spin_needbreak(lock) || resched) {
1da177e4 5616 spin_unlock(lock);
95c354fe
NP
5617 if (resched && need_resched())
5618 __cond_resched();
5619 else
5620 cpu_relax();
6df3cecb 5621 ret = 1;
1da177e4 5622 spin_lock(lock);
1da177e4 5623 }
6df3cecb 5624 return ret;
1da177e4 5625}
1da177e4
LT
5626EXPORT_SYMBOL(cond_resched_lock);
5627
5628int __sched cond_resched_softirq(void)
5629{
5630 BUG_ON(!in_softirq());
5631
9414232f 5632 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5633 local_bh_enable();
1da177e4
LT
5634 __cond_resched();
5635 local_bh_disable();
5636 return 1;
5637 }
5638 return 0;
5639}
1da177e4
LT
5640EXPORT_SYMBOL(cond_resched_softirq);
5641
1da177e4
LT
5642/**
5643 * yield - yield the current processor to other threads.
5644 *
72fd4a35 5645 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5646 * thread runnable and calls sys_sched_yield().
5647 */
5648void __sched yield(void)
5649{
5650 set_current_state(TASK_RUNNING);
5651 sys_sched_yield();
5652}
1da177e4
LT
5653EXPORT_SYMBOL(yield);
5654
5655/*
41a2d6cf 5656 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5657 * that process accounting knows that this is a task in IO wait state.
5658 *
5659 * But don't do that if it is a deliberate, throttling IO wait (this task
5660 * has set its backing_dev_info: the queue against which it should throttle)
5661 */
5662void __sched io_schedule(void)
5663{
70b97a7f 5664 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5665
0ff92245 5666 delayacct_blkio_start();
1da177e4
LT
5667 atomic_inc(&rq->nr_iowait);
5668 schedule();
5669 atomic_dec(&rq->nr_iowait);
0ff92245 5670 delayacct_blkio_end();
1da177e4 5671}
1da177e4
LT
5672EXPORT_SYMBOL(io_schedule);
5673
5674long __sched io_schedule_timeout(long timeout)
5675{
70b97a7f 5676 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5677 long ret;
5678
0ff92245 5679 delayacct_blkio_start();
1da177e4
LT
5680 atomic_inc(&rq->nr_iowait);
5681 ret = schedule_timeout(timeout);
5682 atomic_dec(&rq->nr_iowait);
0ff92245 5683 delayacct_blkio_end();
1da177e4
LT
5684 return ret;
5685}
5686
5687/**
5688 * sys_sched_get_priority_max - return maximum RT priority.
5689 * @policy: scheduling class.
5690 *
5691 * this syscall returns the maximum rt_priority that can be used
5692 * by a given scheduling class.
5693 */
5694asmlinkage long sys_sched_get_priority_max(int policy)
5695{
5696 int ret = -EINVAL;
5697
5698 switch (policy) {
5699 case SCHED_FIFO:
5700 case SCHED_RR:
5701 ret = MAX_USER_RT_PRIO-1;
5702 break;
5703 case SCHED_NORMAL:
b0a9499c 5704 case SCHED_BATCH:
dd41f596 5705 case SCHED_IDLE:
1da177e4
LT
5706 ret = 0;
5707 break;
5708 }
5709 return ret;
5710}
5711
5712/**
5713 * sys_sched_get_priority_min - return minimum RT priority.
5714 * @policy: scheduling class.
5715 *
5716 * this syscall returns the minimum rt_priority that can be used
5717 * by a given scheduling class.
5718 */
5719asmlinkage long sys_sched_get_priority_min(int policy)
5720{
5721 int ret = -EINVAL;
5722
5723 switch (policy) {
5724 case SCHED_FIFO:
5725 case SCHED_RR:
5726 ret = 1;
5727 break;
5728 case SCHED_NORMAL:
b0a9499c 5729 case SCHED_BATCH:
dd41f596 5730 case SCHED_IDLE:
1da177e4
LT
5731 ret = 0;
5732 }
5733 return ret;
5734}
5735
5736/**
5737 * sys_sched_rr_get_interval - return the default timeslice of a process.
5738 * @pid: pid of the process.
5739 * @interval: userspace pointer to the timeslice value.
5740 *
5741 * this syscall writes the default timeslice value of a given process
5742 * into the user-space timespec buffer. A value of '0' means infinity.
5743 */
5744asmlinkage
5745long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5746{
36c8b586 5747 struct task_struct *p;
a4ec24b4 5748 unsigned int time_slice;
3a5c359a 5749 int retval;
1da177e4 5750 struct timespec t;
1da177e4
LT
5751
5752 if (pid < 0)
3a5c359a 5753 return -EINVAL;
1da177e4
LT
5754
5755 retval = -ESRCH;
5756 read_lock(&tasklist_lock);
5757 p = find_process_by_pid(pid);
5758 if (!p)
5759 goto out_unlock;
5760
5761 retval = security_task_getscheduler(p);
5762 if (retval)
5763 goto out_unlock;
5764
77034937
IM
5765 /*
5766 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5767 * tasks that are on an otherwise idle runqueue:
5768 */
5769 time_slice = 0;
5770 if (p->policy == SCHED_RR) {
a4ec24b4 5771 time_slice = DEF_TIMESLICE;
1868f958 5772 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5773 struct sched_entity *se = &p->se;
5774 unsigned long flags;
5775 struct rq *rq;
5776
5777 rq = task_rq_lock(p, &flags);
77034937
IM
5778 if (rq->cfs.load.weight)
5779 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5780 task_rq_unlock(rq, &flags);
5781 }
1da177e4 5782 read_unlock(&tasklist_lock);
a4ec24b4 5783 jiffies_to_timespec(time_slice, &t);
1da177e4 5784 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5785 return retval;
3a5c359a 5786
1da177e4
LT
5787out_unlock:
5788 read_unlock(&tasklist_lock);
5789 return retval;
5790}
5791
7c731e0a 5792static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5793
82a1fcb9 5794void sched_show_task(struct task_struct *p)
1da177e4 5795{
1da177e4 5796 unsigned long free = 0;
36c8b586 5797 unsigned state;
1da177e4 5798
1da177e4 5799 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5800 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5801 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5802#if BITS_PER_LONG == 32
1da177e4 5803 if (state == TASK_RUNNING)
cc4ea795 5804 printk(KERN_CONT " running ");
1da177e4 5805 else
cc4ea795 5806 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5807#else
5808 if (state == TASK_RUNNING)
cc4ea795 5809 printk(KERN_CONT " running task ");
1da177e4 5810 else
cc4ea795 5811 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5812#endif
5813#ifdef CONFIG_DEBUG_STACK_USAGE
5814 {
10ebffde 5815 unsigned long *n = end_of_stack(p);
1da177e4
LT
5816 while (!*n)
5817 n++;
10ebffde 5818 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5819 }
5820#endif
ba25f9dc 5821 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5822 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5823
5fb5e6de 5824 show_stack(p, NULL);
1da177e4
LT
5825}
5826
e59e2ae2 5827void show_state_filter(unsigned long state_filter)
1da177e4 5828{
36c8b586 5829 struct task_struct *g, *p;
1da177e4 5830
4bd77321
IM
5831#if BITS_PER_LONG == 32
5832 printk(KERN_INFO
5833 " task PC stack pid father\n");
1da177e4 5834#else
4bd77321
IM
5835 printk(KERN_INFO
5836 " task PC stack pid father\n");
1da177e4
LT
5837#endif
5838 read_lock(&tasklist_lock);
5839 do_each_thread(g, p) {
5840 /*
5841 * reset the NMI-timeout, listing all files on a slow
5842 * console might take alot of time:
5843 */
5844 touch_nmi_watchdog();
39bc89fd 5845 if (!state_filter || (p->state & state_filter))
82a1fcb9 5846 sched_show_task(p);
1da177e4
LT
5847 } while_each_thread(g, p);
5848
04c9167f
JF
5849 touch_all_softlockup_watchdogs();
5850
dd41f596
IM
5851#ifdef CONFIG_SCHED_DEBUG
5852 sysrq_sched_debug_show();
5853#endif
1da177e4 5854 read_unlock(&tasklist_lock);
e59e2ae2
IM
5855 /*
5856 * Only show locks if all tasks are dumped:
5857 */
5858 if (state_filter == -1)
5859 debug_show_all_locks();
1da177e4
LT
5860}
5861
1df21055
IM
5862void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5863{
dd41f596 5864 idle->sched_class = &idle_sched_class;
1df21055
IM
5865}
5866
f340c0d1
IM
5867/**
5868 * init_idle - set up an idle thread for a given CPU
5869 * @idle: task in question
5870 * @cpu: cpu the idle task belongs to
5871 *
5872 * NOTE: this function does not set the idle thread's NEED_RESCHED
5873 * flag, to make booting more robust.
5874 */
5c1e1767 5875void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5876{
70b97a7f 5877 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5878 unsigned long flags;
5879
5cbd54ef
IM
5880 spin_lock_irqsave(&rq->lock, flags);
5881
dd41f596
IM
5882 __sched_fork(idle);
5883 idle->se.exec_start = sched_clock();
5884
b29739f9 5885 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5886 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5887 __set_task_cpu(idle, cpu);
1da177e4 5888
1da177e4 5889 rq->curr = rq->idle = idle;
4866cde0
NP
5890#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5891 idle->oncpu = 1;
5892#endif
1da177e4
LT
5893 spin_unlock_irqrestore(&rq->lock, flags);
5894
5895 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5896#if defined(CONFIG_PREEMPT)
5897 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5898#else
a1261f54 5899 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5900#endif
dd41f596
IM
5901 /*
5902 * The idle tasks have their own, simple scheduling class:
5903 */
5904 idle->sched_class = &idle_sched_class;
fb52607a 5905 ftrace_graph_init_task(idle);
1da177e4
LT
5906}
5907
5908/*
5909 * In a system that switches off the HZ timer nohz_cpu_mask
5910 * indicates which cpus entered this state. This is used
5911 * in the rcu update to wait only for active cpus. For system
5912 * which do not switch off the HZ timer nohz_cpu_mask should
5913 * always be CPU_MASK_NONE.
5914 */
5915cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5916
19978ca6
IM
5917/*
5918 * Increase the granularity value when there are more CPUs,
5919 * because with more CPUs the 'effective latency' as visible
5920 * to users decreases. But the relationship is not linear,
5921 * so pick a second-best guess by going with the log2 of the
5922 * number of CPUs.
5923 *
5924 * This idea comes from the SD scheduler of Con Kolivas:
5925 */
5926static inline void sched_init_granularity(void)
5927{
5928 unsigned int factor = 1 + ilog2(num_online_cpus());
5929 const unsigned long limit = 200000000;
5930
5931 sysctl_sched_min_granularity *= factor;
5932 if (sysctl_sched_min_granularity > limit)
5933 sysctl_sched_min_granularity = limit;
5934
5935 sysctl_sched_latency *= factor;
5936 if (sysctl_sched_latency > limit)
5937 sysctl_sched_latency = limit;
5938
5939 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
5940
5941 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
5942}
5943
1da177e4
LT
5944#ifdef CONFIG_SMP
5945/*
5946 * This is how migration works:
5947 *
70b97a7f 5948 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5949 * runqueue and wake up that CPU's migration thread.
5950 * 2) we down() the locked semaphore => thread blocks.
5951 * 3) migration thread wakes up (implicitly it forces the migrated
5952 * thread off the CPU)
5953 * 4) it gets the migration request and checks whether the migrated
5954 * task is still in the wrong runqueue.
5955 * 5) if it's in the wrong runqueue then the migration thread removes
5956 * it and puts it into the right queue.
5957 * 6) migration thread up()s the semaphore.
5958 * 7) we wake up and the migration is done.
5959 */
5960
5961/*
5962 * Change a given task's CPU affinity. Migrate the thread to a
5963 * proper CPU and schedule it away if the CPU it's executing on
5964 * is removed from the allowed bitmask.
5965 *
5966 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5967 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5968 * call is not atomic; no spinlocks may be held.
5969 */
cd8ba7cd 5970int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5971{
70b97a7f 5972 struct migration_req req;
1da177e4 5973 unsigned long flags;
70b97a7f 5974 struct rq *rq;
48f24c4d 5975 int ret = 0;
1da177e4
LT
5976
5977 rq = task_rq_lock(p, &flags);
cd8ba7cd 5978 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5979 ret = -EINVAL;
5980 goto out;
5981 }
5982
9985b0ba
DR
5983 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5984 !cpus_equal(p->cpus_allowed, *new_mask))) {
5985 ret = -EINVAL;
5986 goto out;
5987 }
5988
73fe6aae 5989 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5990 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5991 else {
cd8ba7cd
MT
5992 p->cpus_allowed = *new_mask;
5993 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5994 }
5995
1da177e4 5996 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5997 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5998 goto out;
5999
cd8ba7cd 6000 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
6001 /* Need help from migration thread: drop lock and wait. */
6002 task_rq_unlock(rq, &flags);
6003 wake_up_process(rq->migration_thread);
6004 wait_for_completion(&req.done);
6005 tlb_migrate_finish(p->mm);
6006 return 0;
6007 }
6008out:
6009 task_rq_unlock(rq, &flags);
48f24c4d 6010
1da177e4
LT
6011 return ret;
6012}
cd8ba7cd 6013EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6014
6015/*
41a2d6cf 6016 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6017 * this because either it can't run here any more (set_cpus_allowed()
6018 * away from this CPU, or CPU going down), or because we're
6019 * attempting to rebalance this task on exec (sched_exec).
6020 *
6021 * So we race with normal scheduler movements, but that's OK, as long
6022 * as the task is no longer on this CPU.
efc30814
KK
6023 *
6024 * Returns non-zero if task was successfully migrated.
1da177e4 6025 */
efc30814 6026static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6027{
70b97a7f 6028 struct rq *rq_dest, *rq_src;
dd41f596 6029 int ret = 0, on_rq;
1da177e4 6030
e761b772 6031 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6032 return ret;
1da177e4
LT
6033
6034 rq_src = cpu_rq(src_cpu);
6035 rq_dest = cpu_rq(dest_cpu);
6036
6037 double_rq_lock(rq_src, rq_dest);
6038 /* Already moved. */
6039 if (task_cpu(p) != src_cpu)
b1e38734 6040 goto done;
1da177e4
LT
6041 /* Affinity changed (again). */
6042 if (!cpu_isset(dest_cpu, p->cpus_allowed))
b1e38734 6043 goto fail;
1da177e4 6044
dd41f596 6045 on_rq = p->se.on_rq;
6e82a3be 6046 if (on_rq)
2e1cb74a 6047 deactivate_task(rq_src, p, 0);
6e82a3be 6048
1da177e4 6049 set_task_cpu(p, dest_cpu);
dd41f596
IM
6050 if (on_rq) {
6051 activate_task(rq_dest, p, 0);
15afe09b 6052 check_preempt_curr(rq_dest, p, 0);
1da177e4 6053 }
b1e38734 6054done:
efc30814 6055 ret = 1;
b1e38734 6056fail:
1da177e4 6057 double_rq_unlock(rq_src, rq_dest);
efc30814 6058 return ret;
1da177e4
LT
6059}
6060
6061/*
6062 * migration_thread - this is a highprio system thread that performs
6063 * thread migration by bumping thread off CPU then 'pushing' onto
6064 * another runqueue.
6065 */
95cdf3b7 6066static int migration_thread(void *data)
1da177e4 6067{
1da177e4 6068 int cpu = (long)data;
70b97a7f 6069 struct rq *rq;
1da177e4
LT
6070
6071 rq = cpu_rq(cpu);
6072 BUG_ON(rq->migration_thread != current);
6073
6074 set_current_state(TASK_INTERRUPTIBLE);
6075 while (!kthread_should_stop()) {
70b97a7f 6076 struct migration_req *req;
1da177e4 6077 struct list_head *head;
1da177e4 6078
1da177e4
LT
6079 spin_lock_irq(&rq->lock);
6080
6081 if (cpu_is_offline(cpu)) {
6082 spin_unlock_irq(&rq->lock);
6083 goto wait_to_die;
6084 }
6085
6086 if (rq->active_balance) {
6087 active_load_balance(rq, cpu);
6088 rq->active_balance = 0;
6089 }
6090
6091 head = &rq->migration_queue;
6092
6093 if (list_empty(head)) {
6094 spin_unlock_irq(&rq->lock);
6095 schedule();
6096 set_current_state(TASK_INTERRUPTIBLE);
6097 continue;
6098 }
70b97a7f 6099 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6100 list_del_init(head->next);
6101
674311d5
NP
6102 spin_unlock(&rq->lock);
6103 __migrate_task(req->task, cpu, req->dest_cpu);
6104 local_irq_enable();
1da177e4
LT
6105
6106 complete(&req->done);
6107 }
6108 __set_current_state(TASK_RUNNING);
6109 return 0;
6110
6111wait_to_die:
6112 /* Wait for kthread_stop */
6113 set_current_state(TASK_INTERRUPTIBLE);
6114 while (!kthread_should_stop()) {
6115 schedule();
6116 set_current_state(TASK_INTERRUPTIBLE);
6117 }
6118 __set_current_state(TASK_RUNNING);
6119 return 0;
6120}
6121
6122#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6123
6124static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6125{
6126 int ret;
6127
6128 local_irq_disable();
6129 ret = __migrate_task(p, src_cpu, dest_cpu);
6130 local_irq_enable();
6131 return ret;
6132}
6133
054b9108 6134/*
3a4fa0a2 6135 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
6136 * NOTE: interrupts should be disabled by the caller
6137 */
48f24c4d 6138static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6139{
efc30814 6140 unsigned long flags;
1da177e4 6141 cpumask_t mask;
70b97a7f
IM
6142 struct rq *rq;
6143 int dest_cpu;
1da177e4 6144
3a5c359a
AK
6145 do {
6146 /* On same node? */
6147 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6148 cpus_and(mask, mask, p->cpus_allowed);
6149 dest_cpu = any_online_cpu(mask);
6150
6151 /* On any allowed CPU? */
434d53b0 6152 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
6153 dest_cpu = any_online_cpu(p->cpus_allowed);
6154
6155 /* No more Mr. Nice Guy. */
434d53b0 6156 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
6157 cpumask_t cpus_allowed;
6158
6159 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
6160 /*
6161 * Try to stay on the same cpuset, where the
6162 * current cpuset may be a subset of all cpus.
6163 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 6164 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
6165 * called within calls to cpuset_lock/cpuset_unlock.
6166 */
3a5c359a 6167 rq = task_rq_lock(p, &flags);
470fd646 6168 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
6169 dest_cpu = any_online_cpu(p->cpus_allowed);
6170 task_rq_unlock(rq, &flags);
1da177e4 6171
3a5c359a
AK
6172 /*
6173 * Don't tell them about moving exiting tasks or
6174 * kernel threads (both mm NULL), since they never
6175 * leave kernel.
6176 */
41a2d6cf 6177 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
6178 printk(KERN_INFO "process %d (%s) no "
6179 "longer affine to cpu%d\n",
41a2d6cf
IM
6180 task_pid_nr(p), p->comm, dead_cpu);
6181 }
3a5c359a 6182 }
f7b4cddc 6183 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
6184}
6185
6186/*
6187 * While a dead CPU has no uninterruptible tasks queued at this point,
6188 * it might still have a nonzero ->nr_uninterruptible counter, because
6189 * for performance reasons the counter is not stricly tracking tasks to
6190 * their home CPUs. So we just add the counter to another CPU's counter,
6191 * to keep the global sum constant after CPU-down:
6192 */
70b97a7f 6193static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6194{
7c16ec58 6195 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
6196 unsigned long flags;
6197
6198 local_irq_save(flags);
6199 double_rq_lock(rq_src, rq_dest);
6200 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6201 rq_src->nr_uninterruptible = 0;
6202 double_rq_unlock(rq_src, rq_dest);
6203 local_irq_restore(flags);
6204}
6205
6206/* Run through task list and migrate tasks from the dead cpu. */
6207static void migrate_live_tasks(int src_cpu)
6208{
48f24c4d 6209 struct task_struct *p, *t;
1da177e4 6210
f7b4cddc 6211 read_lock(&tasklist_lock);
1da177e4 6212
48f24c4d
IM
6213 do_each_thread(t, p) {
6214 if (p == current)
1da177e4
LT
6215 continue;
6216
48f24c4d
IM
6217 if (task_cpu(p) == src_cpu)
6218 move_task_off_dead_cpu(src_cpu, p);
6219 } while_each_thread(t, p);
1da177e4 6220
f7b4cddc 6221 read_unlock(&tasklist_lock);
1da177e4
LT
6222}
6223
dd41f596
IM
6224/*
6225 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6226 * It does so by boosting its priority to highest possible.
6227 * Used by CPU offline code.
1da177e4
LT
6228 */
6229void sched_idle_next(void)
6230{
48f24c4d 6231 int this_cpu = smp_processor_id();
70b97a7f 6232 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6233 struct task_struct *p = rq->idle;
6234 unsigned long flags;
6235
6236 /* cpu has to be offline */
48f24c4d 6237 BUG_ON(cpu_online(this_cpu));
1da177e4 6238
48f24c4d
IM
6239 /*
6240 * Strictly not necessary since rest of the CPUs are stopped by now
6241 * and interrupts disabled on the current cpu.
1da177e4
LT
6242 */
6243 spin_lock_irqsave(&rq->lock, flags);
6244
dd41f596 6245 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6246
94bc9a7b
DA
6247 update_rq_clock(rq);
6248 activate_task(rq, p, 0);
1da177e4
LT
6249
6250 spin_unlock_irqrestore(&rq->lock, flags);
6251}
6252
48f24c4d
IM
6253/*
6254 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6255 * offline.
6256 */
6257void idle_task_exit(void)
6258{
6259 struct mm_struct *mm = current->active_mm;
6260
6261 BUG_ON(cpu_online(smp_processor_id()));
6262
6263 if (mm != &init_mm)
6264 switch_mm(mm, &init_mm, current);
6265 mmdrop(mm);
6266}
6267
054b9108 6268/* called under rq->lock with disabled interrupts */
36c8b586 6269static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6270{
70b97a7f 6271 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6272
6273 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6274 BUG_ON(!p->exit_state);
1da177e4
LT
6275
6276 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6277 BUG_ON(p->state == TASK_DEAD);
1da177e4 6278
48f24c4d 6279 get_task_struct(p);
1da177e4
LT
6280
6281 /*
6282 * Drop lock around migration; if someone else moves it,
41a2d6cf 6283 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6284 * fine.
6285 */
f7b4cddc 6286 spin_unlock_irq(&rq->lock);
48f24c4d 6287 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6288 spin_lock_irq(&rq->lock);
1da177e4 6289
48f24c4d 6290 put_task_struct(p);
1da177e4
LT
6291}
6292
6293/* release_task() removes task from tasklist, so we won't find dead tasks. */
6294static void migrate_dead_tasks(unsigned int dead_cpu)
6295{
70b97a7f 6296 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6297 struct task_struct *next;
48f24c4d 6298
dd41f596
IM
6299 for ( ; ; ) {
6300 if (!rq->nr_running)
6301 break;
a8e504d2 6302 update_rq_clock(rq);
ff95f3df 6303 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6304 if (!next)
6305 break;
79c53799 6306 next->sched_class->put_prev_task(rq, next);
dd41f596 6307 migrate_dead(dead_cpu, next);
e692ab53 6308
1da177e4
LT
6309 }
6310}
6311#endif /* CONFIG_HOTPLUG_CPU */
6312
e692ab53
NP
6313#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6314
6315static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6316 {
6317 .procname = "sched_domain",
c57baf1e 6318 .mode = 0555,
e0361851 6319 },
38605cae 6320 {0, },
e692ab53
NP
6321};
6322
6323static struct ctl_table sd_ctl_root[] = {
e0361851 6324 {
c57baf1e 6325 .ctl_name = CTL_KERN,
e0361851 6326 .procname = "kernel",
c57baf1e 6327 .mode = 0555,
e0361851
AD
6328 .child = sd_ctl_dir,
6329 },
38605cae 6330 {0, },
e692ab53
NP
6331};
6332
6333static struct ctl_table *sd_alloc_ctl_entry(int n)
6334{
6335 struct ctl_table *entry =
5cf9f062 6336 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6337
e692ab53
NP
6338 return entry;
6339}
6340
6382bc90
MM
6341static void sd_free_ctl_entry(struct ctl_table **tablep)
6342{
cd790076 6343 struct ctl_table *entry;
6382bc90 6344
cd790076
MM
6345 /*
6346 * In the intermediate directories, both the child directory and
6347 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6348 * will always be set. In the lowest directory the names are
cd790076
MM
6349 * static strings and all have proc handlers.
6350 */
6351 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6352 if (entry->child)
6353 sd_free_ctl_entry(&entry->child);
cd790076
MM
6354 if (entry->proc_handler == NULL)
6355 kfree(entry->procname);
6356 }
6382bc90
MM
6357
6358 kfree(*tablep);
6359 *tablep = NULL;
6360}
6361
e692ab53 6362static void
e0361851 6363set_table_entry(struct ctl_table *entry,
e692ab53
NP
6364 const char *procname, void *data, int maxlen,
6365 mode_t mode, proc_handler *proc_handler)
6366{
e692ab53
NP
6367 entry->procname = procname;
6368 entry->data = data;
6369 entry->maxlen = maxlen;
6370 entry->mode = mode;
6371 entry->proc_handler = proc_handler;
6372}
6373
6374static struct ctl_table *
6375sd_alloc_ctl_domain_table(struct sched_domain *sd)
6376{
a5d8c348 6377 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6378
ad1cdc1d
MM
6379 if (table == NULL)
6380 return NULL;
6381
e0361851 6382 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6383 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6384 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6385 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6386 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6387 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6388 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6389 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6390 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6391 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6392 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6393 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6394 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6395 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6396 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6397 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6398 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6399 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6400 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6401 &sd->cache_nice_tries,
6402 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6403 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6404 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6405 set_table_entry(&table[11], "name", sd->name,
6406 CORENAME_MAX_SIZE, 0444, proc_dostring);
6407 /* &table[12] is terminator */
e692ab53
NP
6408
6409 return table;
6410}
6411
9a4e7159 6412static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6413{
6414 struct ctl_table *entry, *table;
6415 struct sched_domain *sd;
6416 int domain_num = 0, i;
6417 char buf[32];
6418
6419 for_each_domain(cpu, sd)
6420 domain_num++;
6421 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6422 if (table == NULL)
6423 return NULL;
e692ab53
NP
6424
6425 i = 0;
6426 for_each_domain(cpu, sd) {
6427 snprintf(buf, 32, "domain%d", i);
e692ab53 6428 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6429 entry->mode = 0555;
e692ab53
NP
6430 entry->child = sd_alloc_ctl_domain_table(sd);
6431 entry++;
6432 i++;
6433 }
6434 return table;
6435}
6436
6437static struct ctl_table_header *sd_sysctl_header;
6382bc90 6438static void register_sched_domain_sysctl(void)
e692ab53
NP
6439{
6440 int i, cpu_num = num_online_cpus();
6441 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6442 char buf[32];
6443
7378547f
MM
6444 WARN_ON(sd_ctl_dir[0].child);
6445 sd_ctl_dir[0].child = entry;
6446
ad1cdc1d
MM
6447 if (entry == NULL)
6448 return;
6449
97b6ea7b 6450 for_each_online_cpu(i) {
e692ab53 6451 snprintf(buf, 32, "cpu%d", i);
e692ab53 6452 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6453 entry->mode = 0555;
e692ab53 6454 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6455 entry++;
e692ab53 6456 }
7378547f
MM
6457
6458 WARN_ON(sd_sysctl_header);
e692ab53
NP
6459 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6460}
6382bc90 6461
7378547f 6462/* may be called multiple times per register */
6382bc90
MM
6463static void unregister_sched_domain_sysctl(void)
6464{
7378547f
MM
6465 if (sd_sysctl_header)
6466 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6467 sd_sysctl_header = NULL;
7378547f
MM
6468 if (sd_ctl_dir[0].child)
6469 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6470}
e692ab53 6471#else
6382bc90
MM
6472static void register_sched_domain_sysctl(void)
6473{
6474}
6475static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6476{
6477}
6478#endif
6479
1f11eb6a
GH
6480static void set_rq_online(struct rq *rq)
6481{
6482 if (!rq->online) {
6483 const struct sched_class *class;
6484
6485 cpu_set(rq->cpu, rq->rd->online);
6486 rq->online = 1;
6487
6488 for_each_class(class) {
6489 if (class->rq_online)
6490 class->rq_online(rq);
6491 }
6492 }
6493}
6494
6495static void set_rq_offline(struct rq *rq)
6496{
6497 if (rq->online) {
6498 const struct sched_class *class;
6499
6500 for_each_class(class) {
6501 if (class->rq_offline)
6502 class->rq_offline(rq);
6503 }
6504
6505 cpu_clear(rq->cpu, rq->rd->online);
6506 rq->online = 0;
6507 }
6508}
6509
1da177e4
LT
6510/*
6511 * migration_call - callback that gets triggered when a CPU is added.
6512 * Here we can start up the necessary migration thread for the new CPU.
6513 */
48f24c4d
IM
6514static int __cpuinit
6515migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6516{
1da177e4 6517 struct task_struct *p;
48f24c4d 6518 int cpu = (long)hcpu;
1da177e4 6519 unsigned long flags;
70b97a7f 6520 struct rq *rq;
1da177e4
LT
6521
6522 switch (action) {
5be9361c 6523
1da177e4 6524 case CPU_UP_PREPARE:
8bb78442 6525 case CPU_UP_PREPARE_FROZEN:
dd41f596 6526 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6527 if (IS_ERR(p))
6528 return NOTIFY_BAD;
1da177e4
LT
6529 kthread_bind(p, cpu);
6530 /* Must be high prio: stop_machine expects to yield to it. */
6531 rq = task_rq_lock(p, &flags);
dd41f596 6532 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6533 task_rq_unlock(rq, &flags);
6534 cpu_rq(cpu)->migration_thread = p;
6535 break;
48f24c4d 6536
1da177e4 6537 case CPU_ONLINE:
8bb78442 6538 case CPU_ONLINE_FROZEN:
3a4fa0a2 6539 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6540 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6541
6542 /* Update our root-domain */
6543 rq = cpu_rq(cpu);
6544 spin_lock_irqsave(&rq->lock, flags);
6545 if (rq->rd) {
6546 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a
GH
6547
6548 set_rq_online(rq);
1f94ef59
GH
6549 }
6550 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6551 break;
48f24c4d 6552
1da177e4
LT
6553#ifdef CONFIG_HOTPLUG_CPU
6554 case CPU_UP_CANCELED:
8bb78442 6555 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6556 if (!cpu_rq(cpu)->migration_thread)
6557 break;
41a2d6cf 6558 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6559 kthread_bind(cpu_rq(cpu)->migration_thread,
6560 any_online_cpu(cpu_online_map));
1da177e4
LT
6561 kthread_stop(cpu_rq(cpu)->migration_thread);
6562 cpu_rq(cpu)->migration_thread = NULL;
6563 break;
48f24c4d 6564
1da177e4 6565 case CPU_DEAD:
8bb78442 6566 case CPU_DEAD_FROZEN:
470fd646 6567 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6568 migrate_live_tasks(cpu);
6569 rq = cpu_rq(cpu);
6570 kthread_stop(rq->migration_thread);
6571 rq->migration_thread = NULL;
6572 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6573 spin_lock_irq(&rq->lock);
a8e504d2 6574 update_rq_clock(rq);
2e1cb74a 6575 deactivate_task(rq, rq->idle, 0);
1da177e4 6576 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6577 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6578 rq->idle->sched_class = &idle_sched_class;
1da177e4 6579 migrate_dead_tasks(cpu);
d2da272a 6580 spin_unlock_irq(&rq->lock);
470fd646 6581 cpuset_unlock();
1da177e4
LT
6582 migrate_nr_uninterruptible(rq);
6583 BUG_ON(rq->nr_running != 0);
6584
41a2d6cf
IM
6585 /*
6586 * No need to migrate the tasks: it was best-effort if
6587 * they didn't take sched_hotcpu_mutex. Just wake up
6588 * the requestors.
6589 */
1da177e4
LT
6590 spin_lock_irq(&rq->lock);
6591 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6592 struct migration_req *req;
6593
1da177e4 6594 req = list_entry(rq->migration_queue.next,
70b97a7f 6595 struct migration_req, list);
1da177e4
LT
6596 list_del_init(&req->list);
6597 complete(&req->done);
6598 }
6599 spin_unlock_irq(&rq->lock);
6600 break;
57d885fe 6601
08f503b0
GH
6602 case CPU_DYING:
6603 case CPU_DYING_FROZEN:
57d885fe
GH
6604 /* Update our root-domain */
6605 rq = cpu_rq(cpu);
6606 spin_lock_irqsave(&rq->lock, flags);
6607 if (rq->rd) {
6608 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a 6609 set_rq_offline(rq);
57d885fe
GH
6610 }
6611 spin_unlock_irqrestore(&rq->lock, flags);
6612 break;
1da177e4
LT
6613#endif
6614 }
6615 return NOTIFY_OK;
6616}
6617
6618/* Register at highest priority so that task migration (migrate_all_tasks)
6619 * happens before everything else.
6620 */
26c2143b 6621static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6622 .notifier_call = migration_call,
6623 .priority = 10
6624};
6625
7babe8db 6626static int __init migration_init(void)
1da177e4
LT
6627{
6628 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6629 int err;
48f24c4d
IM
6630
6631 /* Start one for the boot CPU: */
07dccf33
AM
6632 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6633 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6634 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6635 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6636
6637 return err;
1da177e4 6638}
7babe8db 6639early_initcall(migration_init);
1da177e4
LT
6640#endif
6641
6642#ifdef CONFIG_SMP
476f3534 6643
3e9830dc 6644#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6645
099f98c8
GS
6646static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6647{
6648 switch (lvl) {
6649 case SD_LV_NONE:
6650 return "NONE";
6651 case SD_LV_SIBLING:
6652 return "SIBLING";
6653 case SD_LV_MC:
6654 return "MC";
6655 case SD_LV_CPU:
6656 return "CPU";
6657 case SD_LV_NODE:
6658 return "NODE";
6659 case SD_LV_ALLNODES:
6660 return "ALLNODES";
6661 case SD_LV_MAX:
6662 return "MAX";
6663
6664 }
6665 return "MAX";
6666}
6667
7c16ec58
MT
6668static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6669 cpumask_t *groupmask)
1da177e4 6670{
4dcf6aff 6671 struct sched_group *group = sd->groups;
434d53b0 6672 char str[256];
1da177e4 6673
434d53b0 6674 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6675 cpus_clear(*groupmask);
4dcf6aff
IM
6676
6677 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6678
6679 if (!(sd->flags & SD_LOAD_BALANCE)) {
6680 printk("does not load-balance\n");
6681 if (sd->parent)
6682 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6683 " has parent");
6684 return -1;
41c7ce9a
NP
6685 }
6686
099f98c8
GS
6687 printk(KERN_CONT "span %s level %s\n",
6688 str, sd_level_to_string(sd->level));
4dcf6aff
IM
6689
6690 if (!cpu_isset(cpu, sd->span)) {
6691 printk(KERN_ERR "ERROR: domain->span does not contain "
6692 "CPU%d\n", cpu);
6693 }
6694 if (!cpu_isset(cpu, group->cpumask)) {
6695 printk(KERN_ERR "ERROR: domain->groups does not contain"
6696 " CPU%d\n", cpu);
6697 }
1da177e4 6698
4dcf6aff 6699 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6700 do {
4dcf6aff
IM
6701 if (!group) {
6702 printk("\n");
6703 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6704 break;
6705 }
6706
4dcf6aff
IM
6707 if (!group->__cpu_power) {
6708 printk(KERN_CONT "\n");
6709 printk(KERN_ERR "ERROR: domain->cpu_power not "
6710 "set\n");
6711 break;
6712 }
1da177e4 6713
4dcf6aff
IM
6714 if (!cpus_weight(group->cpumask)) {
6715 printk(KERN_CONT "\n");
6716 printk(KERN_ERR "ERROR: empty group\n");
6717 break;
6718 }
1da177e4 6719
7c16ec58 6720 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6721 printk(KERN_CONT "\n");
6722 printk(KERN_ERR "ERROR: repeated CPUs\n");
6723 break;
6724 }
1da177e4 6725
7c16ec58 6726 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6727
434d53b0 6728 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6729 printk(KERN_CONT " %s", str);
1da177e4 6730
4dcf6aff
IM
6731 group = group->next;
6732 } while (group != sd->groups);
6733 printk(KERN_CONT "\n");
1da177e4 6734
7c16ec58 6735 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6736 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6737
7c16ec58 6738 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6739 printk(KERN_ERR "ERROR: parent span is not a superset "
6740 "of domain->span\n");
6741 return 0;
6742}
1da177e4 6743
4dcf6aff
IM
6744static void sched_domain_debug(struct sched_domain *sd, int cpu)
6745{
7c16ec58 6746 cpumask_t *groupmask;
4dcf6aff 6747 int level = 0;
1da177e4 6748
4dcf6aff
IM
6749 if (!sd) {
6750 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6751 return;
6752 }
1da177e4 6753
4dcf6aff
IM
6754 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6755
7c16ec58
MT
6756 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6757 if (!groupmask) {
6758 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6759 return;
6760 }
6761
4dcf6aff 6762 for (;;) {
7c16ec58 6763 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6764 break;
1da177e4
LT
6765 level++;
6766 sd = sd->parent;
33859f7f 6767 if (!sd)
4dcf6aff
IM
6768 break;
6769 }
7c16ec58 6770 kfree(groupmask);
1da177e4 6771}
6d6bc0ad 6772#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6773# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6774#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6775
1a20ff27 6776static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6777{
6778 if (cpus_weight(sd->span) == 1)
6779 return 1;
6780
6781 /* Following flags need at least 2 groups */
6782 if (sd->flags & (SD_LOAD_BALANCE |
6783 SD_BALANCE_NEWIDLE |
6784 SD_BALANCE_FORK |
89c4710e
SS
6785 SD_BALANCE_EXEC |
6786 SD_SHARE_CPUPOWER |
6787 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6788 if (sd->groups != sd->groups->next)
6789 return 0;
6790 }
6791
6792 /* Following flags don't use groups */
6793 if (sd->flags & (SD_WAKE_IDLE |
6794 SD_WAKE_AFFINE |
6795 SD_WAKE_BALANCE))
6796 return 0;
6797
6798 return 1;
6799}
6800
48f24c4d
IM
6801static int
6802sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6803{
6804 unsigned long cflags = sd->flags, pflags = parent->flags;
6805
6806 if (sd_degenerate(parent))
6807 return 1;
6808
6809 if (!cpus_equal(sd->span, parent->span))
6810 return 0;
6811
6812 /* Does parent contain flags not in child? */
6813 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6814 if (cflags & SD_WAKE_AFFINE)
6815 pflags &= ~SD_WAKE_BALANCE;
6816 /* Flags needing groups don't count if only 1 group in parent */
6817 if (parent->groups == parent->groups->next) {
6818 pflags &= ~(SD_LOAD_BALANCE |
6819 SD_BALANCE_NEWIDLE |
6820 SD_BALANCE_FORK |
89c4710e
SS
6821 SD_BALANCE_EXEC |
6822 SD_SHARE_CPUPOWER |
6823 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6824 }
6825 if (~cflags & pflags)
6826 return 0;
6827
6828 return 1;
6829}
6830
57d885fe
GH
6831static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6832{
6833 unsigned long flags;
57d885fe
GH
6834
6835 spin_lock_irqsave(&rq->lock, flags);
6836
6837 if (rq->rd) {
6838 struct root_domain *old_rd = rq->rd;
6839
1f11eb6a
GH
6840 if (cpu_isset(rq->cpu, old_rd->online))
6841 set_rq_offline(rq);
57d885fe 6842
dc938520 6843 cpu_clear(rq->cpu, old_rd->span);
dc938520 6844
57d885fe
GH
6845 if (atomic_dec_and_test(&old_rd->refcount))
6846 kfree(old_rd);
6847 }
6848
6849 atomic_inc(&rd->refcount);
6850 rq->rd = rd;
6851
dc938520 6852 cpu_set(rq->cpu, rd->span);
1f94ef59 6853 if (cpu_isset(rq->cpu, cpu_online_map))
1f11eb6a 6854 set_rq_online(rq);
57d885fe
GH
6855
6856 spin_unlock_irqrestore(&rq->lock, flags);
6857}
6858
dc938520 6859static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6860{
6861 memset(rd, 0, sizeof(*rd));
6862
dc938520
GH
6863 cpus_clear(rd->span);
6864 cpus_clear(rd->online);
6e0534f2
GH
6865
6866 cpupri_init(&rd->cpupri);
57d885fe
GH
6867}
6868
6869static void init_defrootdomain(void)
6870{
dc938520 6871 init_rootdomain(&def_root_domain);
57d885fe
GH
6872 atomic_set(&def_root_domain.refcount, 1);
6873}
6874
dc938520 6875static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6876{
6877 struct root_domain *rd;
6878
6879 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6880 if (!rd)
6881 return NULL;
6882
dc938520 6883 init_rootdomain(rd);
57d885fe
GH
6884
6885 return rd;
6886}
6887
1da177e4 6888/*
0eab9146 6889 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6890 * hold the hotplug lock.
6891 */
0eab9146
IM
6892static void
6893cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6894{
70b97a7f 6895 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6896 struct sched_domain *tmp;
6897
6898 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 6899 for (tmp = sd; tmp; ) {
245af2c7
SS
6900 struct sched_domain *parent = tmp->parent;
6901 if (!parent)
6902 break;
f29c9b1c 6903
1a848870 6904 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6905 tmp->parent = parent->parent;
1a848870
SS
6906 if (parent->parent)
6907 parent->parent->child = tmp;
f29c9b1c
LZ
6908 } else
6909 tmp = tmp->parent;
245af2c7
SS
6910 }
6911
1a848870 6912 if (sd && sd_degenerate(sd)) {
245af2c7 6913 sd = sd->parent;
1a848870
SS
6914 if (sd)
6915 sd->child = NULL;
6916 }
1da177e4
LT
6917
6918 sched_domain_debug(sd, cpu);
6919
57d885fe 6920 rq_attach_root(rq, rd);
674311d5 6921 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6922}
6923
6924/* cpus with isolated domains */
67af63a6 6925static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6926
6927/* Setup the mask of cpus configured for isolated domains */
6928static int __init isolated_cpu_setup(char *str)
6929{
13b40c1e
MT
6930 static int __initdata ints[NR_CPUS];
6931 int i;
1da177e4
LT
6932
6933 str = get_options(str, ARRAY_SIZE(ints), ints);
6934 cpus_clear(cpu_isolated_map);
6935 for (i = 1; i <= ints[0]; i++)
6936 if (ints[i] < NR_CPUS)
6937 cpu_set(ints[i], cpu_isolated_map);
6938 return 1;
6939}
6940
8927f494 6941__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6942
6943/*
6711cab4
SS
6944 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6945 * to a function which identifies what group(along with sched group) a CPU
6946 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6947 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6948 *
6949 * init_sched_build_groups will build a circular linked list of the groups
6950 * covered by the given span, and will set each group's ->cpumask correctly,
6951 * and ->cpu_power to 0.
6952 */
a616058b 6953static void
7c16ec58 6954init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6955 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6956 struct sched_group **sg,
6957 cpumask_t *tmpmask),
6958 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6959{
6960 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6961 int i;
6962
7c16ec58
MT
6963 cpus_clear(*covered);
6964
363ab6f1 6965 for_each_cpu_mask_nr(i, *span) {
6711cab4 6966 struct sched_group *sg;
7c16ec58 6967 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6968 int j;
6969
7c16ec58 6970 if (cpu_isset(i, *covered))
1da177e4
LT
6971 continue;
6972
7c16ec58 6973 cpus_clear(sg->cpumask);
5517d86b 6974 sg->__cpu_power = 0;
1da177e4 6975
363ab6f1 6976 for_each_cpu_mask_nr(j, *span) {
7c16ec58 6977 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6978 continue;
6979
7c16ec58 6980 cpu_set(j, *covered);
1da177e4
LT
6981 cpu_set(j, sg->cpumask);
6982 }
6983 if (!first)
6984 first = sg;
6985 if (last)
6986 last->next = sg;
6987 last = sg;
6988 }
6989 last->next = first;
6990}
6991
9c1cfda2 6992#define SD_NODES_PER_DOMAIN 16
1da177e4 6993
9c1cfda2 6994#ifdef CONFIG_NUMA
198e2f18 6995
9c1cfda2
JH
6996/**
6997 * find_next_best_node - find the next node to include in a sched_domain
6998 * @node: node whose sched_domain we're building
6999 * @used_nodes: nodes already in the sched_domain
7000 *
41a2d6cf 7001 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7002 * finds the closest node not already in the @used_nodes map.
7003 *
7004 * Should use nodemask_t.
7005 */
c5f59f08 7006static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7007{
7008 int i, n, val, min_val, best_node = 0;
7009
7010 min_val = INT_MAX;
7011
076ac2af 7012 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7013 /* Start at @node */
076ac2af 7014 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7015
7016 if (!nr_cpus_node(n))
7017 continue;
7018
7019 /* Skip already used nodes */
c5f59f08 7020 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7021 continue;
7022
7023 /* Simple min distance search */
7024 val = node_distance(node, n);
7025
7026 if (val < min_val) {
7027 min_val = val;
7028 best_node = n;
7029 }
7030 }
7031
c5f59f08 7032 node_set(best_node, *used_nodes);
9c1cfda2
JH
7033 return best_node;
7034}
7035
7036/**
7037 * sched_domain_node_span - get a cpumask for a node's sched_domain
7038 * @node: node whose cpumask we're constructing
73486722 7039 * @span: resulting cpumask
9c1cfda2 7040 *
41a2d6cf 7041 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7042 * should be one that prevents unnecessary balancing, but also spreads tasks
7043 * out optimally.
7044 */
4bdbaad3 7045static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 7046{
c5f59f08 7047 nodemask_t used_nodes;
c5f59f08 7048 node_to_cpumask_ptr(nodemask, node);
48f24c4d 7049 int i;
9c1cfda2 7050
4bdbaad3 7051 cpus_clear(*span);
c5f59f08 7052 nodes_clear(used_nodes);
9c1cfda2 7053
4bdbaad3 7054 cpus_or(*span, *span, *nodemask);
c5f59f08 7055 node_set(node, used_nodes);
9c1cfda2
JH
7056
7057 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7058 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7059
c5f59f08 7060 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 7061 cpus_or(*span, *span, *nodemask);
9c1cfda2 7062 }
9c1cfda2 7063}
6d6bc0ad 7064#endif /* CONFIG_NUMA */
9c1cfda2 7065
5c45bf27 7066int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7067
9c1cfda2 7068/*
48f24c4d 7069 * SMT sched-domains:
9c1cfda2 7070 */
1da177e4
LT
7071#ifdef CONFIG_SCHED_SMT
7072static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 7073static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 7074
41a2d6cf 7075static int
7c16ec58
MT
7076cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7077 cpumask_t *unused)
1da177e4 7078{
6711cab4
SS
7079 if (sg)
7080 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
7081 return cpu;
7082}
6d6bc0ad 7083#endif /* CONFIG_SCHED_SMT */
1da177e4 7084
48f24c4d
IM
7085/*
7086 * multi-core sched-domains:
7087 */
1e9f28fa
SS
7088#ifdef CONFIG_SCHED_MC
7089static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 7090static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6d6bc0ad 7091#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7092
7093#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7094static int
7c16ec58
MT
7095cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7096 cpumask_t *mask)
1e9f28fa 7097{
6711cab4 7098 int group;
7c16ec58
MT
7099
7100 *mask = per_cpu(cpu_sibling_map, cpu);
7101 cpus_and(*mask, *mask, *cpu_map);
7102 group = first_cpu(*mask);
6711cab4
SS
7103 if (sg)
7104 *sg = &per_cpu(sched_group_core, group);
7105 return group;
1e9f28fa
SS
7106}
7107#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7108static int
7c16ec58
MT
7109cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7110 cpumask_t *unused)
1e9f28fa 7111{
6711cab4
SS
7112 if (sg)
7113 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
7114 return cpu;
7115}
7116#endif
7117
1da177e4 7118static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 7119static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 7120
41a2d6cf 7121static int
7c16ec58
MT
7122cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7123 cpumask_t *mask)
1da177e4 7124{
6711cab4 7125 int group;
48f24c4d 7126#ifdef CONFIG_SCHED_MC
7c16ec58
MT
7127 *mask = cpu_coregroup_map(cpu);
7128 cpus_and(*mask, *mask, *cpu_map);
7129 group = first_cpu(*mask);
1e9f28fa 7130#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
7131 *mask = per_cpu(cpu_sibling_map, cpu);
7132 cpus_and(*mask, *mask, *cpu_map);
7133 group = first_cpu(*mask);
1da177e4 7134#else
6711cab4 7135 group = cpu;
1da177e4 7136#endif
6711cab4
SS
7137 if (sg)
7138 *sg = &per_cpu(sched_group_phys, group);
7139 return group;
1da177e4
LT
7140}
7141
7142#ifdef CONFIG_NUMA
1da177e4 7143/*
9c1cfda2
JH
7144 * The init_sched_build_groups can't handle what we want to do with node
7145 * groups, so roll our own. Now each node has its own list of groups which
7146 * gets dynamically allocated.
1da177e4 7147 */
9c1cfda2 7148static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 7149static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7150
9c1cfda2 7151static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 7152static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 7153
6711cab4 7154static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 7155 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 7156{
6711cab4
SS
7157 int group;
7158
7c16ec58
MT
7159 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7160 cpus_and(*nodemask, *nodemask, *cpu_map);
7161 group = first_cpu(*nodemask);
6711cab4
SS
7162
7163 if (sg)
7164 *sg = &per_cpu(sched_group_allnodes, group);
7165 return group;
1da177e4 7166}
6711cab4 7167
08069033
SS
7168static void init_numa_sched_groups_power(struct sched_group *group_head)
7169{
7170 struct sched_group *sg = group_head;
7171 int j;
7172
7173 if (!sg)
7174 return;
3a5c359a 7175 do {
363ab6f1 7176 for_each_cpu_mask_nr(j, sg->cpumask) {
3a5c359a 7177 struct sched_domain *sd;
08069033 7178
3a5c359a
AK
7179 sd = &per_cpu(phys_domains, j);
7180 if (j != first_cpu(sd->groups->cpumask)) {
7181 /*
7182 * Only add "power" once for each
7183 * physical package.
7184 */
7185 continue;
7186 }
08069033 7187
3a5c359a
AK
7188 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7189 }
7190 sg = sg->next;
7191 } while (sg != group_head);
08069033 7192}
6d6bc0ad 7193#endif /* CONFIG_NUMA */
1da177e4 7194
a616058b 7195#ifdef CONFIG_NUMA
51888ca2 7196/* Free memory allocated for various sched_group structures */
7c16ec58 7197static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 7198{
a616058b 7199 int cpu, i;
51888ca2 7200
363ab6f1 7201 for_each_cpu_mask_nr(cpu, *cpu_map) {
51888ca2
SV
7202 struct sched_group **sched_group_nodes
7203 = sched_group_nodes_bycpu[cpu];
7204
51888ca2
SV
7205 if (!sched_group_nodes)
7206 continue;
7207
076ac2af 7208 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7209 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7210
7c16ec58
MT
7211 *nodemask = node_to_cpumask(i);
7212 cpus_and(*nodemask, *nodemask, *cpu_map);
7213 if (cpus_empty(*nodemask))
51888ca2
SV
7214 continue;
7215
7216 if (sg == NULL)
7217 continue;
7218 sg = sg->next;
7219next_sg:
7220 oldsg = sg;
7221 sg = sg->next;
7222 kfree(oldsg);
7223 if (oldsg != sched_group_nodes[i])
7224 goto next_sg;
7225 }
7226 kfree(sched_group_nodes);
7227 sched_group_nodes_bycpu[cpu] = NULL;
7228 }
51888ca2 7229}
6d6bc0ad 7230#else /* !CONFIG_NUMA */
7c16ec58 7231static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
7232{
7233}
6d6bc0ad 7234#endif /* CONFIG_NUMA */
51888ca2 7235
89c4710e
SS
7236/*
7237 * Initialize sched groups cpu_power.
7238 *
7239 * cpu_power indicates the capacity of sched group, which is used while
7240 * distributing the load between different sched groups in a sched domain.
7241 * Typically cpu_power for all the groups in a sched domain will be same unless
7242 * there are asymmetries in the topology. If there are asymmetries, group
7243 * having more cpu_power will pickup more load compared to the group having
7244 * less cpu_power.
7245 *
7246 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7247 * the maximum number of tasks a group can handle in the presence of other idle
7248 * or lightly loaded groups in the same sched domain.
7249 */
7250static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7251{
7252 struct sched_domain *child;
7253 struct sched_group *group;
7254
7255 WARN_ON(!sd || !sd->groups);
7256
7257 if (cpu != first_cpu(sd->groups->cpumask))
7258 return;
7259
7260 child = sd->child;
7261
5517d86b
ED
7262 sd->groups->__cpu_power = 0;
7263
89c4710e
SS
7264 /*
7265 * For perf policy, if the groups in child domain share resources
7266 * (for example cores sharing some portions of the cache hierarchy
7267 * or SMT), then set this domain groups cpu_power such that each group
7268 * can handle only one task, when there are other idle groups in the
7269 * same sched domain.
7270 */
7271 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7272 (child->flags &
7273 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7274 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7275 return;
7276 }
7277
89c4710e
SS
7278 /*
7279 * add cpu_power of each child group to this groups cpu_power
7280 */
7281 group = child->groups;
7282 do {
5517d86b 7283 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7284 group = group->next;
7285 } while (group != child->groups);
7286}
7287
7c16ec58
MT
7288/*
7289 * Initializers for schedule domains
7290 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7291 */
7292
a5d8c348
IM
7293#ifdef CONFIG_SCHED_DEBUG
7294# define SD_INIT_NAME(sd, type) sd->name = #type
7295#else
7296# define SD_INIT_NAME(sd, type) do { } while (0)
7297#endif
7298
7c16ec58 7299#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7300
7c16ec58
MT
7301#define SD_INIT_FUNC(type) \
7302static noinline void sd_init_##type(struct sched_domain *sd) \
7303{ \
7304 memset(sd, 0, sizeof(*sd)); \
7305 *sd = SD_##type##_INIT; \
1d3504fc 7306 sd->level = SD_LV_##type; \
a5d8c348 7307 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7308}
7309
7310SD_INIT_FUNC(CPU)
7311#ifdef CONFIG_NUMA
7312 SD_INIT_FUNC(ALLNODES)
7313 SD_INIT_FUNC(NODE)
7314#endif
7315#ifdef CONFIG_SCHED_SMT
7316 SD_INIT_FUNC(SIBLING)
7317#endif
7318#ifdef CONFIG_SCHED_MC
7319 SD_INIT_FUNC(MC)
7320#endif
7321
7322/*
7323 * To minimize stack usage kmalloc room for cpumasks and share the
7324 * space as the usage in build_sched_domains() dictates. Used only
7325 * if the amount of space is significant.
7326 */
7327struct allmasks {
7328 cpumask_t tmpmask; /* make this one first */
7329 union {
7330 cpumask_t nodemask;
7331 cpumask_t this_sibling_map;
7332 cpumask_t this_core_map;
7333 };
7334 cpumask_t send_covered;
7335
7336#ifdef CONFIG_NUMA
7337 cpumask_t domainspan;
7338 cpumask_t covered;
7339 cpumask_t notcovered;
7340#endif
7341};
7342
7343#if NR_CPUS > 128
7344#define SCHED_CPUMASK_ALLOC 1
7345#define SCHED_CPUMASK_FREE(v) kfree(v)
7346#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7347#else
7348#define SCHED_CPUMASK_ALLOC 0
7349#define SCHED_CPUMASK_FREE(v)
7350#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7351#endif
7352
7353#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7354 ((unsigned long)(a) + offsetof(struct allmasks, v))
7355
1d3504fc
HS
7356static int default_relax_domain_level = -1;
7357
7358static int __init setup_relax_domain_level(char *str)
7359{
30e0e178
LZ
7360 unsigned long val;
7361
7362 val = simple_strtoul(str, NULL, 0);
7363 if (val < SD_LV_MAX)
7364 default_relax_domain_level = val;
7365
1d3504fc
HS
7366 return 1;
7367}
7368__setup("relax_domain_level=", setup_relax_domain_level);
7369
7370static void set_domain_attribute(struct sched_domain *sd,
7371 struct sched_domain_attr *attr)
7372{
7373 int request;
7374
7375 if (!attr || attr->relax_domain_level < 0) {
7376 if (default_relax_domain_level < 0)
7377 return;
7378 else
7379 request = default_relax_domain_level;
7380 } else
7381 request = attr->relax_domain_level;
7382 if (request < sd->level) {
7383 /* turn off idle balance on this domain */
7384 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7385 } else {
7386 /* turn on idle balance on this domain */
7387 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7388 }
7389}
7390
1da177e4 7391/*
1a20ff27
DG
7392 * Build sched domains for a given set of cpus and attach the sched domains
7393 * to the individual cpus
1da177e4 7394 */
1d3504fc
HS
7395static int __build_sched_domains(const cpumask_t *cpu_map,
7396 struct sched_domain_attr *attr)
1da177e4
LT
7397{
7398 int i;
57d885fe 7399 struct root_domain *rd;
7c16ec58
MT
7400 SCHED_CPUMASK_DECLARE(allmasks);
7401 cpumask_t *tmpmask;
d1b55138
JH
7402#ifdef CONFIG_NUMA
7403 struct sched_group **sched_group_nodes = NULL;
6711cab4 7404 int sd_allnodes = 0;
d1b55138
JH
7405
7406 /*
7407 * Allocate the per-node list of sched groups
7408 */
076ac2af 7409 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7410 GFP_KERNEL);
d1b55138
JH
7411 if (!sched_group_nodes) {
7412 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 7413 return -ENOMEM;
d1b55138 7414 }
d1b55138 7415#endif
1da177e4 7416
dc938520 7417 rd = alloc_rootdomain();
57d885fe
GH
7418 if (!rd) {
7419 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
7420#ifdef CONFIG_NUMA
7421 kfree(sched_group_nodes);
7422#endif
57d885fe
GH
7423 return -ENOMEM;
7424 }
7425
7c16ec58
MT
7426#if SCHED_CPUMASK_ALLOC
7427 /* get space for all scratch cpumask variables */
7428 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7429 if (!allmasks) {
7430 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7431 kfree(rd);
7432#ifdef CONFIG_NUMA
7433 kfree(sched_group_nodes);
7434#endif
7435 return -ENOMEM;
7436 }
7437#endif
7438 tmpmask = (cpumask_t *)allmasks;
7439
7440
7441#ifdef CONFIG_NUMA
7442 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7443#endif
7444
1da177e4 7445 /*
1a20ff27 7446 * Set up domains for cpus specified by the cpu_map.
1da177e4 7447 */
363ab6f1 7448 for_each_cpu_mask_nr(i, *cpu_map) {
1da177e4 7449 struct sched_domain *sd = NULL, *p;
7c16ec58 7450 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7451
7c16ec58
MT
7452 *nodemask = node_to_cpumask(cpu_to_node(i));
7453 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7454
7455#ifdef CONFIG_NUMA
dd41f596 7456 if (cpus_weight(*cpu_map) >
7c16ec58 7457 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7458 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7459 SD_INIT(sd, ALLNODES);
1d3504fc 7460 set_domain_attribute(sd, attr);
9c1cfda2 7461 sd->span = *cpu_map;
7c16ec58 7462 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7463 p = sd;
6711cab4 7464 sd_allnodes = 1;
9c1cfda2
JH
7465 } else
7466 p = NULL;
7467
1da177e4 7468 sd = &per_cpu(node_domains, i);
7c16ec58 7469 SD_INIT(sd, NODE);
1d3504fc 7470 set_domain_attribute(sd, attr);
4bdbaad3 7471 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 7472 sd->parent = p;
1a848870
SS
7473 if (p)
7474 p->child = sd;
9c1cfda2 7475 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7476#endif
7477
7478 p = sd;
7479 sd = &per_cpu(phys_domains, i);
7c16ec58 7480 SD_INIT(sd, CPU);
1d3504fc 7481 set_domain_attribute(sd, attr);
7c16ec58 7482 sd->span = *nodemask;
1da177e4 7483 sd->parent = p;
1a848870
SS
7484 if (p)
7485 p->child = sd;
7c16ec58 7486 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7487
1e9f28fa
SS
7488#ifdef CONFIG_SCHED_MC
7489 p = sd;
7490 sd = &per_cpu(core_domains, i);
7c16ec58 7491 SD_INIT(sd, MC);
1d3504fc 7492 set_domain_attribute(sd, attr);
1e9f28fa
SS
7493 sd->span = cpu_coregroup_map(i);
7494 cpus_and(sd->span, sd->span, *cpu_map);
7495 sd->parent = p;
1a848870 7496 p->child = sd;
7c16ec58 7497 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7498#endif
7499
1da177e4
LT
7500#ifdef CONFIG_SCHED_SMT
7501 p = sd;
7502 sd = &per_cpu(cpu_domains, i);
7c16ec58 7503 SD_INIT(sd, SIBLING);
1d3504fc 7504 set_domain_attribute(sd, attr);
d5a7430d 7505 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7506 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7507 sd->parent = p;
1a848870 7508 p->child = sd;
7c16ec58 7509 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7510#endif
7511 }
7512
7513#ifdef CONFIG_SCHED_SMT
7514 /* Set up CPU (sibling) groups */
363ab6f1 7515 for_each_cpu_mask_nr(i, *cpu_map) {
7c16ec58
MT
7516 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7517 SCHED_CPUMASK_VAR(send_covered, allmasks);
7518
7519 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7520 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7521 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7522 continue;
7523
dd41f596 7524 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7525 &cpu_to_cpu_group,
7526 send_covered, tmpmask);
1da177e4
LT
7527 }
7528#endif
7529
1e9f28fa
SS
7530#ifdef CONFIG_SCHED_MC
7531 /* Set up multi-core groups */
363ab6f1 7532 for_each_cpu_mask_nr(i, *cpu_map) {
7c16ec58
MT
7533 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7534 SCHED_CPUMASK_VAR(send_covered, allmasks);
7535
7536 *this_core_map = cpu_coregroup_map(i);
7537 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7538 if (i != first_cpu(*this_core_map))
1e9f28fa 7539 continue;
7c16ec58 7540
dd41f596 7541 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7542 &cpu_to_core_group,
7543 send_covered, tmpmask);
1e9f28fa
SS
7544 }
7545#endif
7546
1da177e4 7547 /* Set up physical groups */
076ac2af 7548 for (i = 0; i < nr_node_ids; i++) {
7c16ec58
MT
7549 SCHED_CPUMASK_VAR(nodemask, allmasks);
7550 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7551
7c16ec58
MT
7552 *nodemask = node_to_cpumask(i);
7553 cpus_and(*nodemask, *nodemask, *cpu_map);
7554 if (cpus_empty(*nodemask))
1da177e4
LT
7555 continue;
7556
7c16ec58
MT
7557 init_sched_build_groups(nodemask, cpu_map,
7558 &cpu_to_phys_group,
7559 send_covered, tmpmask);
1da177e4
LT
7560 }
7561
7562#ifdef CONFIG_NUMA
7563 /* Set up node groups */
7c16ec58
MT
7564 if (sd_allnodes) {
7565 SCHED_CPUMASK_VAR(send_covered, allmasks);
7566
7567 init_sched_build_groups(cpu_map, cpu_map,
7568 &cpu_to_allnodes_group,
7569 send_covered, tmpmask);
7570 }
9c1cfda2 7571
076ac2af 7572 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7573 /* Set up node groups */
7574 struct sched_group *sg, *prev;
7c16ec58
MT
7575 SCHED_CPUMASK_VAR(nodemask, allmasks);
7576 SCHED_CPUMASK_VAR(domainspan, allmasks);
7577 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7578 int j;
7579
7c16ec58
MT
7580 *nodemask = node_to_cpumask(i);
7581 cpus_clear(*covered);
7582
7583 cpus_and(*nodemask, *nodemask, *cpu_map);
7584 if (cpus_empty(*nodemask)) {
d1b55138 7585 sched_group_nodes[i] = NULL;
9c1cfda2 7586 continue;
d1b55138 7587 }
9c1cfda2 7588
4bdbaad3 7589 sched_domain_node_span(i, domainspan);
7c16ec58 7590 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7591
15f0b676 7592 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7593 if (!sg) {
7594 printk(KERN_WARNING "Can not alloc domain group for "
7595 "node %d\n", i);
7596 goto error;
7597 }
9c1cfda2 7598 sched_group_nodes[i] = sg;
363ab6f1 7599 for_each_cpu_mask_nr(j, *nodemask) {
9c1cfda2 7600 struct sched_domain *sd;
9761eea8 7601
9c1cfda2
JH
7602 sd = &per_cpu(node_domains, j);
7603 sd->groups = sg;
9c1cfda2 7604 }
5517d86b 7605 sg->__cpu_power = 0;
7c16ec58 7606 sg->cpumask = *nodemask;
51888ca2 7607 sg->next = sg;
7c16ec58 7608 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7609 prev = sg;
7610
076ac2af 7611 for (j = 0; j < nr_node_ids; j++) {
7c16ec58 7612 SCHED_CPUMASK_VAR(notcovered, allmasks);
076ac2af 7613 int n = (i + j) % nr_node_ids;
c5f59f08 7614 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7615
7c16ec58
MT
7616 cpus_complement(*notcovered, *covered);
7617 cpus_and(*tmpmask, *notcovered, *cpu_map);
7618 cpus_and(*tmpmask, *tmpmask, *domainspan);
7619 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7620 break;
7621
7c16ec58
MT
7622 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7623 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7624 continue;
7625
15f0b676
SV
7626 sg = kmalloc_node(sizeof(struct sched_group),
7627 GFP_KERNEL, i);
9c1cfda2
JH
7628 if (!sg) {
7629 printk(KERN_WARNING
7630 "Can not alloc domain group for node %d\n", j);
51888ca2 7631 goto error;
9c1cfda2 7632 }
5517d86b 7633 sg->__cpu_power = 0;
7c16ec58 7634 sg->cpumask = *tmpmask;
51888ca2 7635 sg->next = prev->next;
7c16ec58 7636 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7637 prev->next = sg;
7638 prev = sg;
7639 }
9c1cfda2 7640 }
1da177e4
LT
7641#endif
7642
7643 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7644#ifdef CONFIG_SCHED_SMT
363ab6f1 7645 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7646 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7647
89c4710e 7648 init_sched_groups_power(i, sd);
5c45bf27 7649 }
1da177e4 7650#endif
1e9f28fa 7651#ifdef CONFIG_SCHED_MC
363ab6f1 7652 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7653 struct sched_domain *sd = &per_cpu(core_domains, i);
7654
89c4710e 7655 init_sched_groups_power(i, sd);
5c45bf27
SS
7656 }
7657#endif
1e9f28fa 7658
363ab6f1 7659 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7660 struct sched_domain *sd = &per_cpu(phys_domains, i);
7661
89c4710e 7662 init_sched_groups_power(i, sd);
1da177e4
LT
7663 }
7664
9c1cfda2 7665#ifdef CONFIG_NUMA
076ac2af 7666 for (i = 0; i < nr_node_ids; i++)
08069033 7667 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7668
6711cab4
SS
7669 if (sd_allnodes) {
7670 struct sched_group *sg;
f712c0c7 7671
7c16ec58
MT
7672 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7673 tmpmask);
f712c0c7
SS
7674 init_numa_sched_groups_power(sg);
7675 }
9c1cfda2
JH
7676#endif
7677
1da177e4 7678 /* Attach the domains */
363ab6f1 7679 for_each_cpu_mask_nr(i, *cpu_map) {
1da177e4
LT
7680 struct sched_domain *sd;
7681#ifdef CONFIG_SCHED_SMT
7682 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7683#elif defined(CONFIG_SCHED_MC)
7684 sd = &per_cpu(core_domains, i);
1da177e4
LT
7685#else
7686 sd = &per_cpu(phys_domains, i);
7687#endif
57d885fe 7688 cpu_attach_domain(sd, rd, i);
1da177e4 7689 }
51888ca2 7690
7c16ec58 7691 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7692 return 0;
7693
a616058b 7694#ifdef CONFIG_NUMA
51888ca2 7695error:
7c16ec58
MT
7696 free_sched_groups(cpu_map, tmpmask);
7697 SCHED_CPUMASK_FREE((void *)allmasks);
ca3273f9 7698 kfree(rd);
51888ca2 7699 return -ENOMEM;
a616058b 7700#endif
1da177e4 7701}
029190c5 7702
1d3504fc
HS
7703static int build_sched_domains(const cpumask_t *cpu_map)
7704{
7705 return __build_sched_domains(cpu_map, NULL);
7706}
7707
029190c5
PJ
7708static cpumask_t *doms_cur; /* current sched domains */
7709static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7710static struct sched_domain_attr *dattr_cur;
7711 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7712
7713/*
7714 * Special case: If a kmalloc of a doms_cur partition (array of
7715 * cpumask_t) fails, then fallback to a single sched domain,
7716 * as determined by the single cpumask_t fallback_doms.
7717 */
7718static cpumask_t fallback_doms;
7719
22e52b07
HC
7720void __attribute__((weak)) arch_update_cpu_topology(void)
7721{
7722}
7723
1a20ff27 7724/*
41a2d6cf 7725 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7726 * For now this just excludes isolated cpus, but could be used to
7727 * exclude other special cases in the future.
1a20ff27 7728 */
51888ca2 7729static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7730{
7378547f
MM
7731 int err;
7732
22e52b07 7733 arch_update_cpu_topology();
029190c5
PJ
7734 ndoms_cur = 1;
7735 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7736 if (!doms_cur)
7737 doms_cur = &fallback_doms;
7738 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7739 dattr_cur = NULL;
7378547f 7740 err = build_sched_domains(doms_cur);
6382bc90 7741 register_sched_domain_sysctl();
7378547f
MM
7742
7743 return err;
1a20ff27
DG
7744}
7745
7c16ec58
MT
7746static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7747 cpumask_t *tmpmask)
1da177e4 7748{
7c16ec58 7749 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7750}
1da177e4 7751
1a20ff27
DG
7752/*
7753 * Detach sched domains from a group of cpus specified in cpu_map
7754 * These cpus will now be attached to the NULL domain
7755 */
858119e1 7756static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7757{
7c16ec58 7758 cpumask_t tmpmask;
1a20ff27
DG
7759 int i;
7760
6382bc90
MM
7761 unregister_sched_domain_sysctl();
7762
363ab6f1 7763 for_each_cpu_mask_nr(i, *cpu_map)
57d885fe 7764 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7765 synchronize_sched();
7c16ec58 7766 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7767}
7768
1d3504fc
HS
7769/* handle null as "default" */
7770static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7771 struct sched_domain_attr *new, int idx_new)
7772{
7773 struct sched_domain_attr tmp;
7774
7775 /* fast path */
7776 if (!new && !cur)
7777 return 1;
7778
7779 tmp = SD_ATTR_INIT;
7780 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7781 new ? (new + idx_new) : &tmp,
7782 sizeof(struct sched_domain_attr));
7783}
7784
029190c5
PJ
7785/*
7786 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7787 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7788 * doms_new[] to the current sched domain partitioning, doms_cur[].
7789 * It destroys each deleted domain and builds each new domain.
7790 *
7791 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7792 * The masks don't intersect (don't overlap.) We should setup one
7793 * sched domain for each mask. CPUs not in any of the cpumasks will
7794 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7795 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7796 * it as it is.
7797 *
41a2d6cf
IM
7798 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7799 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
7800 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7801 * ndoms_new == 1, and partition_sched_domains() will fallback to
7802 * the single partition 'fallback_doms', it also forces the domains
7803 * to be rebuilt.
029190c5 7804 *
700018e0
LZ
7805 * If doms_new == NULL it will be replaced with cpu_online_map.
7806 * ndoms_new == 0 is a special case for destroying existing domains,
7807 * and it will not create the default domain.
dfb512ec 7808 *
029190c5
PJ
7809 * Call with hotplug lock held
7810 */
1d3504fc
HS
7811void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7812 struct sched_domain_attr *dattr_new)
029190c5 7813{
dfb512ec 7814 int i, j, n;
029190c5 7815
712555ee 7816 mutex_lock(&sched_domains_mutex);
a1835615 7817
7378547f
MM
7818 /* always unregister in case we don't destroy any domains */
7819 unregister_sched_domain_sysctl();
7820
dfb512ec 7821 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7822
7823 /* Destroy deleted domains */
7824 for (i = 0; i < ndoms_cur; i++) {
dfb512ec 7825 for (j = 0; j < n; j++) {
1d3504fc
HS
7826 if (cpus_equal(doms_cur[i], doms_new[j])
7827 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7828 goto match1;
7829 }
7830 /* no match - a current sched domain not in new doms_new[] */
7831 detach_destroy_domains(doms_cur + i);
7832match1:
7833 ;
7834 }
7835
e761b772
MK
7836 if (doms_new == NULL) {
7837 ndoms_cur = 0;
e761b772
MK
7838 doms_new = &fallback_doms;
7839 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7840 dattr_new = NULL;
7841 }
7842
029190c5
PJ
7843 /* Build new domains */
7844 for (i = 0; i < ndoms_new; i++) {
7845 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7846 if (cpus_equal(doms_new[i], doms_cur[j])
7847 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7848 goto match2;
7849 }
7850 /* no match - add a new doms_new */
1d3504fc
HS
7851 __build_sched_domains(doms_new + i,
7852 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7853match2:
7854 ;
7855 }
7856
7857 /* Remember the new sched domains */
7858 if (doms_cur != &fallback_doms)
7859 kfree(doms_cur);
1d3504fc 7860 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7861 doms_cur = doms_new;
1d3504fc 7862 dattr_cur = dattr_new;
029190c5 7863 ndoms_cur = ndoms_new;
7378547f
MM
7864
7865 register_sched_domain_sysctl();
a1835615 7866
712555ee 7867 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7868}
7869
5c45bf27 7870#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7871int arch_reinit_sched_domains(void)
5c45bf27 7872{
95402b38 7873 get_online_cpus();
dfb512ec
MK
7874
7875 /* Destroy domains first to force the rebuild */
7876 partition_sched_domains(0, NULL, NULL);
7877
e761b772 7878 rebuild_sched_domains();
95402b38 7879 put_online_cpus();
dfb512ec 7880
e761b772 7881 return 0;
5c45bf27
SS
7882}
7883
7884static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7885{
7886 int ret;
7887
7888 if (buf[0] != '0' && buf[0] != '1')
7889 return -EINVAL;
7890
7891 if (smt)
7892 sched_smt_power_savings = (buf[0] == '1');
7893 else
7894 sched_mc_power_savings = (buf[0] == '1');
7895
7896 ret = arch_reinit_sched_domains();
7897
7898 return ret ? ret : count;
7899}
7900
5c45bf27 7901#ifdef CONFIG_SCHED_MC
f718cd4a
AK
7902static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7903 char *page)
5c45bf27
SS
7904{
7905 return sprintf(page, "%u\n", sched_mc_power_savings);
7906}
f718cd4a 7907static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 7908 const char *buf, size_t count)
5c45bf27
SS
7909{
7910 return sched_power_savings_store(buf, count, 0);
7911}
f718cd4a
AK
7912static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7913 sched_mc_power_savings_show,
7914 sched_mc_power_savings_store);
5c45bf27
SS
7915#endif
7916
7917#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
7918static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7919 char *page)
5c45bf27
SS
7920{
7921 return sprintf(page, "%u\n", sched_smt_power_savings);
7922}
f718cd4a 7923static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 7924 const char *buf, size_t count)
5c45bf27
SS
7925{
7926 return sched_power_savings_store(buf, count, 1);
7927}
f718cd4a
AK
7928static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7929 sched_smt_power_savings_show,
6707de00
AB
7930 sched_smt_power_savings_store);
7931#endif
7932
7933int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7934{
7935 int err = 0;
7936
7937#ifdef CONFIG_SCHED_SMT
7938 if (smt_capable())
7939 err = sysfs_create_file(&cls->kset.kobj,
7940 &attr_sched_smt_power_savings.attr);
7941#endif
7942#ifdef CONFIG_SCHED_MC
7943 if (!err && mc_capable())
7944 err = sysfs_create_file(&cls->kset.kobj,
7945 &attr_sched_mc_power_savings.attr);
7946#endif
7947 return err;
7948}
6d6bc0ad 7949#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7950
e761b772 7951#ifndef CONFIG_CPUSETS
1da177e4 7952/*
e761b772
MK
7953 * Add online and remove offline CPUs from the scheduler domains.
7954 * When cpusets are enabled they take over this function.
1da177e4
LT
7955 */
7956static int update_sched_domains(struct notifier_block *nfb,
7957 unsigned long action, void *hcpu)
e761b772
MK
7958{
7959 switch (action) {
7960 case CPU_ONLINE:
7961 case CPU_ONLINE_FROZEN:
7962 case CPU_DEAD:
7963 case CPU_DEAD_FROZEN:
dfb512ec 7964 partition_sched_domains(1, NULL, NULL);
e761b772
MK
7965 return NOTIFY_OK;
7966
7967 default:
7968 return NOTIFY_DONE;
7969 }
7970}
7971#endif
7972
7973static int update_runtime(struct notifier_block *nfb,
7974 unsigned long action, void *hcpu)
1da177e4 7975{
7def2be1
PZ
7976 int cpu = (int)(long)hcpu;
7977
1da177e4 7978 switch (action) {
1da177e4 7979 case CPU_DOWN_PREPARE:
8bb78442 7980 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7981 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7982 return NOTIFY_OK;
7983
1da177e4 7984 case CPU_DOWN_FAILED:
8bb78442 7985 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7986 case CPU_ONLINE:
8bb78442 7987 case CPU_ONLINE_FROZEN:
7def2be1 7988 enable_runtime(cpu_rq(cpu));
e761b772
MK
7989 return NOTIFY_OK;
7990
1da177e4
LT
7991 default:
7992 return NOTIFY_DONE;
7993 }
1da177e4 7994}
1da177e4
LT
7995
7996void __init sched_init_smp(void)
7997{
5c1e1767
NP
7998 cpumask_t non_isolated_cpus;
7999
434d53b0
MT
8000#if defined(CONFIG_NUMA)
8001 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8002 GFP_KERNEL);
8003 BUG_ON(sched_group_nodes_bycpu == NULL);
8004#endif
95402b38 8005 get_online_cpus();
712555ee 8006 mutex_lock(&sched_domains_mutex);
1a20ff27 8007 arch_init_sched_domains(&cpu_online_map);
e5e5673f 8008 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
8009 if (cpus_empty(non_isolated_cpus))
8010 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 8011 mutex_unlock(&sched_domains_mutex);
95402b38 8012 put_online_cpus();
e761b772
MK
8013
8014#ifndef CONFIG_CPUSETS
1da177e4
LT
8015 /* XXX: Theoretical race here - CPU may be hotplugged now */
8016 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8017#endif
8018
8019 /* RT runtime code needs to handle some hotplug events */
8020 hotcpu_notifier(update_runtime, 0);
8021
b328ca18 8022 init_hrtick();
5c1e1767
NP
8023
8024 /* Move init over to a non-isolated CPU */
7c16ec58 8025 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 8026 BUG();
19978ca6 8027 sched_init_granularity();
1da177e4
LT
8028}
8029#else
8030void __init sched_init_smp(void)
8031{
19978ca6 8032 sched_init_granularity();
1da177e4
LT
8033}
8034#endif /* CONFIG_SMP */
8035
8036int in_sched_functions(unsigned long addr)
8037{
1da177e4
LT
8038 return in_lock_functions(addr) ||
8039 (addr >= (unsigned long)__sched_text_start
8040 && addr < (unsigned long)__sched_text_end);
8041}
8042
a9957449 8043static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8044{
8045 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8046 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8047#ifdef CONFIG_FAIR_GROUP_SCHED
8048 cfs_rq->rq = rq;
8049#endif
67e9fb2a 8050 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8051}
8052
fa85ae24
PZ
8053static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8054{
8055 struct rt_prio_array *array;
8056 int i;
8057
8058 array = &rt_rq->active;
8059 for (i = 0; i < MAX_RT_PRIO; i++) {
8060 INIT_LIST_HEAD(array->queue + i);
8061 __clear_bit(i, array->bitmap);
8062 }
8063 /* delimiter for bitsearch: */
8064 __set_bit(MAX_RT_PRIO, array->bitmap);
8065
052f1dc7 8066#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
8067 rt_rq->highest_prio = MAX_RT_PRIO;
8068#endif
fa85ae24
PZ
8069#ifdef CONFIG_SMP
8070 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
8071 rt_rq->overloaded = 0;
8072#endif
8073
8074 rt_rq->rt_time = 0;
8075 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8076 rt_rq->rt_runtime = 0;
8077 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8078
052f1dc7 8079#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8080 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8081 rt_rq->rq = rq;
8082#endif
fa85ae24
PZ
8083}
8084
6f505b16 8085#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8086static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8087 struct sched_entity *se, int cpu, int add,
8088 struct sched_entity *parent)
6f505b16 8089{
ec7dc8ac 8090 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8091 tg->cfs_rq[cpu] = cfs_rq;
8092 init_cfs_rq(cfs_rq, rq);
8093 cfs_rq->tg = tg;
8094 if (add)
8095 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8096
8097 tg->se[cpu] = se;
354d60c2
DG
8098 /* se could be NULL for init_task_group */
8099 if (!se)
8100 return;
8101
ec7dc8ac
DG
8102 if (!parent)
8103 se->cfs_rq = &rq->cfs;
8104 else
8105 se->cfs_rq = parent->my_q;
8106
6f505b16
PZ
8107 se->my_q = cfs_rq;
8108 se->load.weight = tg->shares;
e05510d0 8109 se->load.inv_weight = 0;
ec7dc8ac 8110 se->parent = parent;
6f505b16 8111}
052f1dc7 8112#endif
6f505b16 8113
052f1dc7 8114#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8115static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8116 struct sched_rt_entity *rt_se, int cpu, int add,
8117 struct sched_rt_entity *parent)
6f505b16 8118{
ec7dc8ac
DG
8119 struct rq *rq = cpu_rq(cpu);
8120
6f505b16
PZ
8121 tg->rt_rq[cpu] = rt_rq;
8122 init_rt_rq(rt_rq, rq);
8123 rt_rq->tg = tg;
8124 rt_rq->rt_se = rt_se;
ac086bc2 8125 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8126 if (add)
8127 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8128
8129 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8130 if (!rt_se)
8131 return;
8132
ec7dc8ac
DG
8133 if (!parent)
8134 rt_se->rt_rq = &rq->rt;
8135 else
8136 rt_se->rt_rq = parent->my_q;
8137
6f505b16 8138 rt_se->my_q = rt_rq;
ec7dc8ac 8139 rt_se->parent = parent;
6f505b16
PZ
8140 INIT_LIST_HEAD(&rt_se->run_list);
8141}
8142#endif
8143
1da177e4
LT
8144void __init sched_init(void)
8145{
dd41f596 8146 int i, j;
434d53b0
MT
8147 unsigned long alloc_size = 0, ptr;
8148
8149#ifdef CONFIG_FAIR_GROUP_SCHED
8150 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8151#endif
8152#ifdef CONFIG_RT_GROUP_SCHED
8153 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8154#endif
8155#ifdef CONFIG_USER_SCHED
8156 alloc_size *= 2;
434d53b0
MT
8157#endif
8158 /*
8159 * As sched_init() is called before page_alloc is setup,
8160 * we use alloc_bootmem().
8161 */
8162 if (alloc_size) {
5a9d3225 8163 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8164
8165#ifdef CONFIG_FAIR_GROUP_SCHED
8166 init_task_group.se = (struct sched_entity **)ptr;
8167 ptr += nr_cpu_ids * sizeof(void **);
8168
8169 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8170 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8171
8172#ifdef CONFIG_USER_SCHED
8173 root_task_group.se = (struct sched_entity **)ptr;
8174 ptr += nr_cpu_ids * sizeof(void **);
8175
8176 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8177 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8178#endif /* CONFIG_USER_SCHED */
8179#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8180#ifdef CONFIG_RT_GROUP_SCHED
8181 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8182 ptr += nr_cpu_ids * sizeof(void **);
8183
8184 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8185 ptr += nr_cpu_ids * sizeof(void **);
8186
8187#ifdef CONFIG_USER_SCHED
8188 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8189 ptr += nr_cpu_ids * sizeof(void **);
8190
8191 root_task_group.rt_rq = (struct rt_rq **)ptr;
8192 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8193#endif /* CONFIG_USER_SCHED */
8194#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8195 }
dd41f596 8196
57d885fe
GH
8197#ifdef CONFIG_SMP
8198 init_defrootdomain();
8199#endif
8200
d0b27fa7
PZ
8201 init_rt_bandwidth(&def_rt_bandwidth,
8202 global_rt_period(), global_rt_runtime());
8203
8204#ifdef CONFIG_RT_GROUP_SCHED
8205 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8206 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8207#ifdef CONFIG_USER_SCHED
8208 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8209 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8210#endif /* CONFIG_USER_SCHED */
8211#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8212
052f1dc7 8213#ifdef CONFIG_GROUP_SCHED
6f505b16 8214 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8215 INIT_LIST_HEAD(&init_task_group.children);
8216
8217#ifdef CONFIG_USER_SCHED
8218 INIT_LIST_HEAD(&root_task_group.children);
8219 init_task_group.parent = &root_task_group;
8220 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8221#endif /* CONFIG_USER_SCHED */
8222#endif /* CONFIG_GROUP_SCHED */
6f505b16 8223
0a945022 8224 for_each_possible_cpu(i) {
70b97a7f 8225 struct rq *rq;
1da177e4
LT
8226
8227 rq = cpu_rq(i);
8228 spin_lock_init(&rq->lock);
7897986b 8229 rq->nr_running = 0;
dd41f596 8230 init_cfs_rq(&rq->cfs, rq);
6f505b16 8231 init_rt_rq(&rq->rt, rq);
dd41f596 8232#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8233 init_task_group.shares = init_task_group_load;
6f505b16 8234 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8235#ifdef CONFIG_CGROUP_SCHED
8236 /*
8237 * How much cpu bandwidth does init_task_group get?
8238 *
8239 * In case of task-groups formed thr' the cgroup filesystem, it
8240 * gets 100% of the cpu resources in the system. This overall
8241 * system cpu resource is divided among the tasks of
8242 * init_task_group and its child task-groups in a fair manner,
8243 * based on each entity's (task or task-group's) weight
8244 * (se->load.weight).
8245 *
8246 * In other words, if init_task_group has 10 tasks of weight
8247 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8248 * then A0's share of the cpu resource is:
8249 *
8250 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8251 *
8252 * We achieve this by letting init_task_group's tasks sit
8253 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8254 */
ec7dc8ac 8255 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8256#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8257 root_task_group.shares = NICE_0_LOAD;
8258 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8259 /*
8260 * In case of task-groups formed thr' the user id of tasks,
8261 * init_task_group represents tasks belonging to root user.
8262 * Hence it forms a sibling of all subsequent groups formed.
8263 * In this case, init_task_group gets only a fraction of overall
8264 * system cpu resource, based on the weight assigned to root
8265 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8266 * by letting tasks of init_task_group sit in a separate cfs_rq
8267 * (init_cfs_rq) and having one entity represent this group of
8268 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8269 */
ec7dc8ac 8270 init_tg_cfs_entry(&init_task_group,
6f505b16 8271 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8272 &per_cpu(init_sched_entity, i), i, 1,
8273 root_task_group.se[i]);
6f505b16 8274
052f1dc7 8275#endif
354d60c2
DG
8276#endif /* CONFIG_FAIR_GROUP_SCHED */
8277
8278 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8279#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8280 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8281#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8282 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8283#elif defined CONFIG_USER_SCHED
eff766a6 8284 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8285 init_tg_rt_entry(&init_task_group,
6f505b16 8286 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8287 &per_cpu(init_sched_rt_entity, i), i, 1,
8288 root_task_group.rt_se[i]);
354d60c2 8289#endif
dd41f596 8290#endif
1da177e4 8291
dd41f596
IM
8292 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8293 rq->cpu_load[j] = 0;
1da177e4 8294#ifdef CONFIG_SMP
41c7ce9a 8295 rq->sd = NULL;
57d885fe 8296 rq->rd = NULL;
1da177e4 8297 rq->active_balance = 0;
dd41f596 8298 rq->next_balance = jiffies;
1da177e4 8299 rq->push_cpu = 0;
0a2966b4 8300 rq->cpu = i;
1f11eb6a 8301 rq->online = 0;
1da177e4
LT
8302 rq->migration_thread = NULL;
8303 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8304 rq_attach_root(rq, &def_root_domain);
1da177e4 8305#endif
8f4d37ec 8306 init_rq_hrtick(rq);
1da177e4 8307 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8308 }
8309
2dd73a4f 8310 set_load_weight(&init_task);
b50f60ce 8311
e107be36
AK
8312#ifdef CONFIG_PREEMPT_NOTIFIERS
8313 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8314#endif
8315
c9819f45 8316#ifdef CONFIG_SMP
962cf36c 8317 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8318#endif
8319
b50f60ce
HC
8320#ifdef CONFIG_RT_MUTEXES
8321 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8322#endif
8323
1da177e4
LT
8324 /*
8325 * The boot idle thread does lazy MMU switching as well:
8326 */
8327 atomic_inc(&init_mm.mm_count);
8328 enter_lazy_tlb(&init_mm, current);
8329
8330 /*
8331 * Make us the idle thread. Technically, schedule() should not be
8332 * called from this thread, however somewhere below it might be,
8333 * but because we are the idle thread, we just pick up running again
8334 * when this runqueue becomes "idle".
8335 */
8336 init_idle(current, smp_processor_id());
dd41f596
IM
8337 /*
8338 * During early bootup we pretend to be a normal task:
8339 */
8340 current->sched_class = &fair_sched_class;
6892b75e
IM
8341
8342 scheduler_running = 1;
1da177e4
LT
8343}
8344
8345#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8346void __might_sleep(char *file, int line)
8347{
48f24c4d 8348#ifdef in_atomic
1da177e4
LT
8349 static unsigned long prev_jiffy; /* ratelimiting */
8350
aef745fc
IM
8351 if ((!in_atomic() && !irqs_disabled()) ||
8352 system_state != SYSTEM_RUNNING || oops_in_progress)
8353 return;
8354 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8355 return;
8356 prev_jiffy = jiffies;
8357
8358 printk(KERN_ERR
8359 "BUG: sleeping function called from invalid context at %s:%d\n",
8360 file, line);
8361 printk(KERN_ERR
8362 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8363 in_atomic(), irqs_disabled(),
8364 current->pid, current->comm);
8365
8366 debug_show_held_locks(current);
8367 if (irqs_disabled())
8368 print_irqtrace_events(current);
8369 dump_stack();
1da177e4
LT
8370#endif
8371}
8372EXPORT_SYMBOL(__might_sleep);
8373#endif
8374
8375#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8376static void normalize_task(struct rq *rq, struct task_struct *p)
8377{
8378 int on_rq;
3e51f33f 8379
3a5e4dc1
AK
8380 update_rq_clock(rq);
8381 on_rq = p->se.on_rq;
8382 if (on_rq)
8383 deactivate_task(rq, p, 0);
8384 __setscheduler(rq, p, SCHED_NORMAL, 0);
8385 if (on_rq) {
8386 activate_task(rq, p, 0);
8387 resched_task(rq->curr);
8388 }
8389}
8390
1da177e4
LT
8391void normalize_rt_tasks(void)
8392{
a0f98a1c 8393 struct task_struct *g, *p;
1da177e4 8394 unsigned long flags;
70b97a7f 8395 struct rq *rq;
1da177e4 8396
4cf5d77a 8397 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8398 do_each_thread(g, p) {
178be793
IM
8399 /*
8400 * Only normalize user tasks:
8401 */
8402 if (!p->mm)
8403 continue;
8404
6cfb0d5d 8405 p->se.exec_start = 0;
6cfb0d5d 8406#ifdef CONFIG_SCHEDSTATS
dd41f596 8407 p->se.wait_start = 0;
dd41f596 8408 p->se.sleep_start = 0;
dd41f596 8409 p->se.block_start = 0;
6cfb0d5d 8410#endif
dd41f596
IM
8411
8412 if (!rt_task(p)) {
8413 /*
8414 * Renice negative nice level userspace
8415 * tasks back to 0:
8416 */
8417 if (TASK_NICE(p) < 0 && p->mm)
8418 set_user_nice(p, 0);
1da177e4 8419 continue;
dd41f596 8420 }
1da177e4 8421
4cf5d77a 8422 spin_lock(&p->pi_lock);
b29739f9 8423 rq = __task_rq_lock(p);
1da177e4 8424
178be793 8425 normalize_task(rq, p);
3a5e4dc1 8426
b29739f9 8427 __task_rq_unlock(rq);
4cf5d77a 8428 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8429 } while_each_thread(g, p);
8430
4cf5d77a 8431 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8432}
8433
8434#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8435
8436#ifdef CONFIG_IA64
8437/*
8438 * These functions are only useful for the IA64 MCA handling.
8439 *
8440 * They can only be called when the whole system has been
8441 * stopped - every CPU needs to be quiescent, and no scheduling
8442 * activity can take place. Using them for anything else would
8443 * be a serious bug, and as a result, they aren't even visible
8444 * under any other configuration.
8445 */
8446
8447/**
8448 * curr_task - return the current task for a given cpu.
8449 * @cpu: the processor in question.
8450 *
8451 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8452 */
36c8b586 8453struct task_struct *curr_task(int cpu)
1df5c10a
LT
8454{
8455 return cpu_curr(cpu);
8456}
8457
8458/**
8459 * set_curr_task - set the current task for a given cpu.
8460 * @cpu: the processor in question.
8461 * @p: the task pointer to set.
8462 *
8463 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8464 * are serviced on a separate stack. It allows the architecture to switch the
8465 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8466 * must be called with all CPU's synchronized, and interrupts disabled, the
8467 * and caller must save the original value of the current task (see
8468 * curr_task() above) and restore that value before reenabling interrupts and
8469 * re-starting the system.
8470 *
8471 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8472 */
36c8b586 8473void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8474{
8475 cpu_curr(cpu) = p;
8476}
8477
8478#endif
29f59db3 8479
bccbe08a
PZ
8480#ifdef CONFIG_FAIR_GROUP_SCHED
8481static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8482{
8483 int i;
8484
8485 for_each_possible_cpu(i) {
8486 if (tg->cfs_rq)
8487 kfree(tg->cfs_rq[i]);
8488 if (tg->se)
8489 kfree(tg->se[i]);
6f505b16
PZ
8490 }
8491
8492 kfree(tg->cfs_rq);
8493 kfree(tg->se);
6f505b16
PZ
8494}
8495
ec7dc8ac
DG
8496static
8497int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8498{
29f59db3 8499 struct cfs_rq *cfs_rq;
ec7dc8ac 8500 struct sched_entity *se, *parent_se;
9b5b7751 8501 struct rq *rq;
29f59db3
SV
8502 int i;
8503
434d53b0 8504 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8505 if (!tg->cfs_rq)
8506 goto err;
434d53b0 8507 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8508 if (!tg->se)
8509 goto err;
052f1dc7
PZ
8510
8511 tg->shares = NICE_0_LOAD;
29f59db3
SV
8512
8513 for_each_possible_cpu(i) {
9b5b7751 8514 rq = cpu_rq(i);
29f59db3 8515
6f505b16
PZ
8516 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8517 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8518 if (!cfs_rq)
8519 goto err;
8520
6f505b16
PZ
8521 se = kmalloc_node(sizeof(struct sched_entity),
8522 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8523 if (!se)
8524 goto err;
8525
ec7dc8ac
DG
8526 parent_se = parent ? parent->se[i] : NULL;
8527 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8528 }
8529
8530 return 1;
8531
8532 err:
8533 return 0;
8534}
8535
8536static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8537{
8538 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8539 &cpu_rq(cpu)->leaf_cfs_rq_list);
8540}
8541
8542static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8543{
8544 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8545}
6d6bc0ad 8546#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8547static inline void free_fair_sched_group(struct task_group *tg)
8548{
8549}
8550
ec7dc8ac
DG
8551static inline
8552int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8553{
8554 return 1;
8555}
8556
8557static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8558{
8559}
8560
8561static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8562{
8563}
6d6bc0ad 8564#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8565
8566#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8567static void free_rt_sched_group(struct task_group *tg)
8568{
8569 int i;
8570
d0b27fa7
PZ
8571 destroy_rt_bandwidth(&tg->rt_bandwidth);
8572
bccbe08a
PZ
8573 for_each_possible_cpu(i) {
8574 if (tg->rt_rq)
8575 kfree(tg->rt_rq[i]);
8576 if (tg->rt_se)
8577 kfree(tg->rt_se[i]);
8578 }
8579
8580 kfree(tg->rt_rq);
8581 kfree(tg->rt_se);
8582}
8583
ec7dc8ac
DG
8584static
8585int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8586{
8587 struct rt_rq *rt_rq;
ec7dc8ac 8588 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8589 struct rq *rq;
8590 int i;
8591
434d53b0 8592 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8593 if (!tg->rt_rq)
8594 goto err;
434d53b0 8595 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8596 if (!tg->rt_se)
8597 goto err;
8598
d0b27fa7
PZ
8599 init_rt_bandwidth(&tg->rt_bandwidth,
8600 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8601
8602 for_each_possible_cpu(i) {
8603 rq = cpu_rq(i);
8604
6f505b16
PZ
8605 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8606 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8607 if (!rt_rq)
8608 goto err;
29f59db3 8609
6f505b16
PZ
8610 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8611 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8612 if (!rt_se)
8613 goto err;
29f59db3 8614
ec7dc8ac
DG
8615 parent_se = parent ? parent->rt_se[i] : NULL;
8616 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8617 }
8618
bccbe08a
PZ
8619 return 1;
8620
8621 err:
8622 return 0;
8623}
8624
8625static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8626{
8627 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8628 &cpu_rq(cpu)->leaf_rt_rq_list);
8629}
8630
8631static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8632{
8633 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8634}
6d6bc0ad 8635#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8636static inline void free_rt_sched_group(struct task_group *tg)
8637{
8638}
8639
ec7dc8ac
DG
8640static inline
8641int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8642{
8643 return 1;
8644}
8645
8646static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8647{
8648}
8649
8650static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8651{
8652}
6d6bc0ad 8653#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8654
d0b27fa7 8655#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8656static void free_sched_group(struct task_group *tg)
8657{
8658 free_fair_sched_group(tg);
8659 free_rt_sched_group(tg);
8660 kfree(tg);
8661}
8662
8663/* allocate runqueue etc for a new task group */
ec7dc8ac 8664struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8665{
8666 struct task_group *tg;
8667 unsigned long flags;
8668 int i;
8669
8670 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8671 if (!tg)
8672 return ERR_PTR(-ENOMEM);
8673
ec7dc8ac 8674 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8675 goto err;
8676
ec7dc8ac 8677 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8678 goto err;
8679
8ed36996 8680 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8681 for_each_possible_cpu(i) {
bccbe08a
PZ
8682 register_fair_sched_group(tg, i);
8683 register_rt_sched_group(tg, i);
9b5b7751 8684 }
6f505b16 8685 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8686
8687 WARN_ON(!parent); /* root should already exist */
8688
8689 tg->parent = parent;
f473aa5e 8690 INIT_LIST_HEAD(&tg->children);
09f2724a 8691 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8692 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8693
9b5b7751 8694 return tg;
29f59db3
SV
8695
8696err:
6f505b16 8697 free_sched_group(tg);
29f59db3
SV
8698 return ERR_PTR(-ENOMEM);
8699}
8700
9b5b7751 8701/* rcu callback to free various structures associated with a task group */
6f505b16 8702static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8703{
29f59db3 8704 /* now it should be safe to free those cfs_rqs */
6f505b16 8705 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8706}
8707
9b5b7751 8708/* Destroy runqueue etc associated with a task group */
4cf86d77 8709void sched_destroy_group(struct task_group *tg)
29f59db3 8710{
8ed36996 8711 unsigned long flags;
9b5b7751 8712 int i;
29f59db3 8713
8ed36996 8714 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8715 for_each_possible_cpu(i) {
bccbe08a
PZ
8716 unregister_fair_sched_group(tg, i);
8717 unregister_rt_sched_group(tg, i);
9b5b7751 8718 }
6f505b16 8719 list_del_rcu(&tg->list);
f473aa5e 8720 list_del_rcu(&tg->siblings);
8ed36996 8721 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8722
9b5b7751 8723 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8724 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8725}
8726
9b5b7751 8727/* change task's runqueue when it moves between groups.
3a252015
IM
8728 * The caller of this function should have put the task in its new group
8729 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8730 * reflect its new group.
9b5b7751
SV
8731 */
8732void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8733{
8734 int on_rq, running;
8735 unsigned long flags;
8736 struct rq *rq;
8737
8738 rq = task_rq_lock(tsk, &flags);
8739
29f59db3
SV
8740 update_rq_clock(rq);
8741
051a1d1a 8742 running = task_current(rq, tsk);
29f59db3
SV
8743 on_rq = tsk->se.on_rq;
8744
0e1f3483 8745 if (on_rq)
29f59db3 8746 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8747 if (unlikely(running))
8748 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8749
6f505b16 8750 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8751
810b3817
PZ
8752#ifdef CONFIG_FAIR_GROUP_SCHED
8753 if (tsk->sched_class->moved_group)
8754 tsk->sched_class->moved_group(tsk);
8755#endif
8756
0e1f3483
HS
8757 if (unlikely(running))
8758 tsk->sched_class->set_curr_task(rq);
8759 if (on_rq)
7074badb 8760 enqueue_task(rq, tsk, 0);
29f59db3 8761
29f59db3
SV
8762 task_rq_unlock(rq, &flags);
8763}
6d6bc0ad 8764#endif /* CONFIG_GROUP_SCHED */
29f59db3 8765
052f1dc7 8766#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8767static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8768{
8769 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8770 int on_rq;
8771
29f59db3 8772 on_rq = se->on_rq;
62fb1851 8773 if (on_rq)
29f59db3
SV
8774 dequeue_entity(cfs_rq, se, 0);
8775
8776 se->load.weight = shares;
e05510d0 8777 se->load.inv_weight = 0;
29f59db3 8778
62fb1851 8779 if (on_rq)
29f59db3 8780 enqueue_entity(cfs_rq, se, 0);
c09595f6 8781}
62fb1851 8782
c09595f6
PZ
8783static void set_se_shares(struct sched_entity *se, unsigned long shares)
8784{
8785 struct cfs_rq *cfs_rq = se->cfs_rq;
8786 struct rq *rq = cfs_rq->rq;
8787 unsigned long flags;
8788
8789 spin_lock_irqsave(&rq->lock, flags);
8790 __set_se_shares(se, shares);
8791 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8792}
8793
8ed36996
PZ
8794static DEFINE_MUTEX(shares_mutex);
8795
4cf86d77 8796int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8797{
8798 int i;
8ed36996 8799 unsigned long flags;
c61935fd 8800
ec7dc8ac
DG
8801 /*
8802 * We can't change the weight of the root cgroup.
8803 */
8804 if (!tg->se[0])
8805 return -EINVAL;
8806
18d95a28
PZ
8807 if (shares < MIN_SHARES)
8808 shares = MIN_SHARES;
cb4ad1ff
MX
8809 else if (shares > MAX_SHARES)
8810 shares = MAX_SHARES;
62fb1851 8811
8ed36996 8812 mutex_lock(&shares_mutex);
9b5b7751 8813 if (tg->shares == shares)
5cb350ba 8814 goto done;
29f59db3 8815
8ed36996 8816 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8817 for_each_possible_cpu(i)
8818 unregister_fair_sched_group(tg, i);
f473aa5e 8819 list_del_rcu(&tg->siblings);
8ed36996 8820 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8821
8822 /* wait for any ongoing reference to this group to finish */
8823 synchronize_sched();
8824
8825 /*
8826 * Now we are free to modify the group's share on each cpu
8827 * w/o tripping rebalance_share or load_balance_fair.
8828 */
9b5b7751 8829 tg->shares = shares;
c09595f6
PZ
8830 for_each_possible_cpu(i) {
8831 /*
8832 * force a rebalance
8833 */
8834 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8835 set_se_shares(tg->se[i], shares);
c09595f6 8836 }
29f59db3 8837
6b2d7700
SV
8838 /*
8839 * Enable load balance activity on this group, by inserting it back on
8840 * each cpu's rq->leaf_cfs_rq_list.
8841 */
8ed36996 8842 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8843 for_each_possible_cpu(i)
8844 register_fair_sched_group(tg, i);
f473aa5e 8845 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8846 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8847done:
8ed36996 8848 mutex_unlock(&shares_mutex);
9b5b7751 8849 return 0;
29f59db3
SV
8850}
8851
5cb350ba
DG
8852unsigned long sched_group_shares(struct task_group *tg)
8853{
8854 return tg->shares;
8855}
052f1dc7 8856#endif
5cb350ba 8857
052f1dc7 8858#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8859/*
9f0c1e56 8860 * Ensure that the real time constraints are schedulable.
6f505b16 8861 */
9f0c1e56
PZ
8862static DEFINE_MUTEX(rt_constraints_mutex);
8863
8864static unsigned long to_ratio(u64 period, u64 runtime)
8865{
8866 if (runtime == RUNTIME_INF)
9a7e0b18 8867 return 1ULL << 20;
9f0c1e56 8868
9a7e0b18 8869 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
8870}
8871
9a7e0b18
PZ
8872/* Must be called with tasklist_lock held */
8873static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 8874{
9a7e0b18 8875 struct task_struct *g, *p;
b40b2e8e 8876
9a7e0b18
PZ
8877 do_each_thread(g, p) {
8878 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8879 return 1;
8880 } while_each_thread(g, p);
b40b2e8e 8881
9a7e0b18
PZ
8882 return 0;
8883}
b40b2e8e 8884
9a7e0b18
PZ
8885struct rt_schedulable_data {
8886 struct task_group *tg;
8887 u64 rt_period;
8888 u64 rt_runtime;
8889};
b40b2e8e 8890
9a7e0b18
PZ
8891static int tg_schedulable(struct task_group *tg, void *data)
8892{
8893 struct rt_schedulable_data *d = data;
8894 struct task_group *child;
8895 unsigned long total, sum = 0;
8896 u64 period, runtime;
b40b2e8e 8897
9a7e0b18
PZ
8898 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8899 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 8900
9a7e0b18
PZ
8901 if (tg == d->tg) {
8902 period = d->rt_period;
8903 runtime = d->rt_runtime;
b40b2e8e 8904 }
b40b2e8e 8905
4653f803
PZ
8906 /*
8907 * Cannot have more runtime than the period.
8908 */
8909 if (runtime > period && runtime != RUNTIME_INF)
8910 return -EINVAL;
6f505b16 8911
4653f803
PZ
8912 /*
8913 * Ensure we don't starve existing RT tasks.
8914 */
9a7e0b18
PZ
8915 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8916 return -EBUSY;
6f505b16 8917
9a7e0b18 8918 total = to_ratio(period, runtime);
6f505b16 8919
4653f803
PZ
8920 /*
8921 * Nobody can have more than the global setting allows.
8922 */
8923 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8924 return -EINVAL;
6f505b16 8925
4653f803
PZ
8926 /*
8927 * The sum of our children's runtime should not exceed our own.
8928 */
9a7e0b18
PZ
8929 list_for_each_entry_rcu(child, &tg->children, siblings) {
8930 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8931 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 8932
9a7e0b18
PZ
8933 if (child == d->tg) {
8934 period = d->rt_period;
8935 runtime = d->rt_runtime;
8936 }
6f505b16 8937
9a7e0b18 8938 sum += to_ratio(period, runtime);
9f0c1e56 8939 }
6f505b16 8940
9a7e0b18
PZ
8941 if (sum > total)
8942 return -EINVAL;
8943
8944 return 0;
6f505b16
PZ
8945}
8946
9a7e0b18 8947static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 8948{
9a7e0b18
PZ
8949 struct rt_schedulable_data data = {
8950 .tg = tg,
8951 .rt_period = period,
8952 .rt_runtime = runtime,
8953 };
8954
8955 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
8956}
8957
d0b27fa7
PZ
8958static int tg_set_bandwidth(struct task_group *tg,
8959 u64 rt_period, u64 rt_runtime)
6f505b16 8960{
ac086bc2 8961 int i, err = 0;
9f0c1e56 8962
9f0c1e56 8963 mutex_lock(&rt_constraints_mutex);
521f1a24 8964 read_lock(&tasklist_lock);
9a7e0b18
PZ
8965 err = __rt_schedulable(tg, rt_period, rt_runtime);
8966 if (err)
9f0c1e56 8967 goto unlock;
ac086bc2
PZ
8968
8969 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8970 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8971 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8972
8973 for_each_possible_cpu(i) {
8974 struct rt_rq *rt_rq = tg->rt_rq[i];
8975
8976 spin_lock(&rt_rq->rt_runtime_lock);
8977 rt_rq->rt_runtime = rt_runtime;
8978 spin_unlock(&rt_rq->rt_runtime_lock);
8979 }
8980 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8981 unlock:
521f1a24 8982 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8983 mutex_unlock(&rt_constraints_mutex);
8984
8985 return err;
6f505b16
PZ
8986}
8987
d0b27fa7
PZ
8988int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8989{
8990 u64 rt_runtime, rt_period;
8991
8992 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8993 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8994 if (rt_runtime_us < 0)
8995 rt_runtime = RUNTIME_INF;
8996
8997 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8998}
8999
9f0c1e56
PZ
9000long sched_group_rt_runtime(struct task_group *tg)
9001{
9002 u64 rt_runtime_us;
9003
d0b27fa7 9004 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
9005 return -1;
9006
d0b27fa7 9007 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9008 do_div(rt_runtime_us, NSEC_PER_USEC);
9009 return rt_runtime_us;
9010}
d0b27fa7
PZ
9011
9012int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9013{
9014 u64 rt_runtime, rt_period;
9015
9016 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9017 rt_runtime = tg->rt_bandwidth.rt_runtime;
9018
619b0488
R
9019 if (rt_period == 0)
9020 return -EINVAL;
9021
d0b27fa7
PZ
9022 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9023}
9024
9025long sched_group_rt_period(struct task_group *tg)
9026{
9027 u64 rt_period_us;
9028
9029 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9030 do_div(rt_period_us, NSEC_PER_USEC);
9031 return rt_period_us;
9032}
9033
9034static int sched_rt_global_constraints(void)
9035{
4653f803 9036 u64 runtime, period;
d0b27fa7
PZ
9037 int ret = 0;
9038
ec5d4989
HS
9039 if (sysctl_sched_rt_period <= 0)
9040 return -EINVAL;
9041
4653f803
PZ
9042 runtime = global_rt_runtime();
9043 period = global_rt_period();
9044
9045 /*
9046 * Sanity check on the sysctl variables.
9047 */
9048 if (runtime > period && runtime != RUNTIME_INF)
9049 return -EINVAL;
10b612f4 9050
d0b27fa7 9051 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9052 read_lock(&tasklist_lock);
4653f803 9053 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9054 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9055 mutex_unlock(&rt_constraints_mutex);
9056
9057 return ret;
9058}
6d6bc0ad 9059#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9060static int sched_rt_global_constraints(void)
9061{
ac086bc2
PZ
9062 unsigned long flags;
9063 int i;
9064
ec5d4989
HS
9065 if (sysctl_sched_rt_period <= 0)
9066 return -EINVAL;
9067
ac086bc2
PZ
9068 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9069 for_each_possible_cpu(i) {
9070 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9071
9072 spin_lock(&rt_rq->rt_runtime_lock);
9073 rt_rq->rt_runtime = global_rt_runtime();
9074 spin_unlock(&rt_rq->rt_runtime_lock);
9075 }
9076 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9077
d0b27fa7
PZ
9078 return 0;
9079}
6d6bc0ad 9080#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9081
9082int sched_rt_handler(struct ctl_table *table, int write,
9083 struct file *filp, void __user *buffer, size_t *lenp,
9084 loff_t *ppos)
9085{
9086 int ret;
9087 int old_period, old_runtime;
9088 static DEFINE_MUTEX(mutex);
9089
9090 mutex_lock(&mutex);
9091 old_period = sysctl_sched_rt_period;
9092 old_runtime = sysctl_sched_rt_runtime;
9093
9094 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9095
9096 if (!ret && write) {
9097 ret = sched_rt_global_constraints();
9098 if (ret) {
9099 sysctl_sched_rt_period = old_period;
9100 sysctl_sched_rt_runtime = old_runtime;
9101 } else {
9102 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9103 def_rt_bandwidth.rt_period =
9104 ns_to_ktime(global_rt_period());
9105 }
9106 }
9107 mutex_unlock(&mutex);
9108
9109 return ret;
9110}
68318b8e 9111
052f1dc7 9112#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9113
9114/* return corresponding task_group object of a cgroup */
2b01dfe3 9115static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9116{
2b01dfe3
PM
9117 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9118 struct task_group, css);
68318b8e
SV
9119}
9120
9121static struct cgroup_subsys_state *
2b01dfe3 9122cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9123{
ec7dc8ac 9124 struct task_group *tg, *parent;
68318b8e 9125
2b01dfe3 9126 if (!cgrp->parent) {
68318b8e 9127 /* This is early initialization for the top cgroup */
68318b8e
SV
9128 return &init_task_group.css;
9129 }
9130
ec7dc8ac
DG
9131 parent = cgroup_tg(cgrp->parent);
9132 tg = sched_create_group(parent);
68318b8e
SV
9133 if (IS_ERR(tg))
9134 return ERR_PTR(-ENOMEM);
9135
68318b8e
SV
9136 return &tg->css;
9137}
9138
41a2d6cf
IM
9139static void
9140cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9141{
2b01dfe3 9142 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9143
9144 sched_destroy_group(tg);
9145}
9146
41a2d6cf
IM
9147static int
9148cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9149 struct task_struct *tsk)
68318b8e 9150{
b68aa230
PZ
9151#ifdef CONFIG_RT_GROUP_SCHED
9152 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 9153 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
9154 return -EINVAL;
9155#else
68318b8e
SV
9156 /* We don't support RT-tasks being in separate groups */
9157 if (tsk->sched_class != &fair_sched_class)
9158 return -EINVAL;
b68aa230 9159#endif
68318b8e
SV
9160
9161 return 0;
9162}
9163
9164static void
2b01dfe3 9165cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9166 struct cgroup *old_cont, struct task_struct *tsk)
9167{
9168 sched_move_task(tsk);
9169}
9170
052f1dc7 9171#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9172static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9173 u64 shareval)
68318b8e 9174{
2b01dfe3 9175 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9176}
9177
f4c753b7 9178static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9179{
2b01dfe3 9180 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9181
9182 return (u64) tg->shares;
9183}
6d6bc0ad 9184#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9185
052f1dc7 9186#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9187static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9188 s64 val)
6f505b16 9189{
06ecb27c 9190 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9191}
9192
06ecb27c 9193static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9194{
06ecb27c 9195 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9196}
d0b27fa7
PZ
9197
9198static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9199 u64 rt_period_us)
9200{
9201 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9202}
9203
9204static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9205{
9206 return sched_group_rt_period(cgroup_tg(cgrp));
9207}
6d6bc0ad 9208#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9209
fe5c7cc2 9210static struct cftype cpu_files[] = {
052f1dc7 9211#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9212 {
9213 .name = "shares",
f4c753b7
PM
9214 .read_u64 = cpu_shares_read_u64,
9215 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9216 },
052f1dc7
PZ
9217#endif
9218#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9219 {
9f0c1e56 9220 .name = "rt_runtime_us",
06ecb27c
PM
9221 .read_s64 = cpu_rt_runtime_read,
9222 .write_s64 = cpu_rt_runtime_write,
6f505b16 9223 },
d0b27fa7
PZ
9224 {
9225 .name = "rt_period_us",
f4c753b7
PM
9226 .read_u64 = cpu_rt_period_read_uint,
9227 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9228 },
052f1dc7 9229#endif
68318b8e
SV
9230};
9231
9232static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9233{
fe5c7cc2 9234 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9235}
9236
9237struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9238 .name = "cpu",
9239 .create = cpu_cgroup_create,
9240 .destroy = cpu_cgroup_destroy,
9241 .can_attach = cpu_cgroup_can_attach,
9242 .attach = cpu_cgroup_attach,
9243 .populate = cpu_cgroup_populate,
9244 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9245 .early_init = 1,
9246};
9247
052f1dc7 9248#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9249
9250#ifdef CONFIG_CGROUP_CPUACCT
9251
9252/*
9253 * CPU accounting code for task groups.
9254 *
9255 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9256 * (balbir@in.ibm.com).
9257 */
9258
9259/* track cpu usage of a group of tasks */
9260struct cpuacct {
9261 struct cgroup_subsys_state css;
9262 /* cpuusage holds pointer to a u64-type object on every cpu */
9263 u64 *cpuusage;
9264};
9265
9266struct cgroup_subsys cpuacct_subsys;
9267
9268/* return cpu accounting group corresponding to this container */
32cd756a 9269static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9270{
32cd756a 9271 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9272 struct cpuacct, css);
9273}
9274
9275/* return cpu accounting group to which this task belongs */
9276static inline struct cpuacct *task_ca(struct task_struct *tsk)
9277{
9278 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9279 struct cpuacct, css);
9280}
9281
9282/* create a new cpu accounting group */
9283static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9284 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9285{
9286 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9287
9288 if (!ca)
9289 return ERR_PTR(-ENOMEM);
9290
9291 ca->cpuusage = alloc_percpu(u64);
9292 if (!ca->cpuusage) {
9293 kfree(ca);
9294 return ERR_PTR(-ENOMEM);
9295 }
9296
9297 return &ca->css;
9298}
9299
9300/* destroy an existing cpu accounting group */
41a2d6cf 9301static void
32cd756a 9302cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9303{
32cd756a 9304 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9305
9306 free_percpu(ca->cpuusage);
9307 kfree(ca);
9308}
9309
9310/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9311static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9312{
32cd756a 9313 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9314 u64 totalcpuusage = 0;
9315 int i;
9316
9317 for_each_possible_cpu(i) {
9318 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9319
9320 /*
9321 * Take rq->lock to make 64-bit addition safe on 32-bit
9322 * platforms.
9323 */
9324 spin_lock_irq(&cpu_rq(i)->lock);
9325 totalcpuusage += *cpuusage;
9326 spin_unlock_irq(&cpu_rq(i)->lock);
9327 }
9328
9329 return totalcpuusage;
9330}
9331
0297b803
DG
9332static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9333 u64 reset)
9334{
9335 struct cpuacct *ca = cgroup_ca(cgrp);
9336 int err = 0;
9337 int i;
9338
9339 if (reset) {
9340 err = -EINVAL;
9341 goto out;
9342 }
9343
9344 for_each_possible_cpu(i) {
9345 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9346
9347 spin_lock_irq(&cpu_rq(i)->lock);
9348 *cpuusage = 0;
9349 spin_unlock_irq(&cpu_rq(i)->lock);
9350 }
9351out:
9352 return err;
9353}
9354
d842de87
SV
9355static struct cftype files[] = {
9356 {
9357 .name = "usage",
f4c753b7
PM
9358 .read_u64 = cpuusage_read,
9359 .write_u64 = cpuusage_write,
d842de87
SV
9360 },
9361};
9362
32cd756a 9363static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9364{
32cd756a 9365 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9366}
9367
9368/*
9369 * charge this task's execution time to its accounting group.
9370 *
9371 * called with rq->lock held.
9372 */
9373static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9374{
9375 struct cpuacct *ca;
9376
9377 if (!cpuacct_subsys.active)
9378 return;
9379
9380 ca = task_ca(tsk);
9381 if (ca) {
9382 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9383
9384 *cpuusage += cputime;
9385 }
9386}
9387
9388struct cgroup_subsys cpuacct_subsys = {
9389 .name = "cpuacct",
9390 .create = cpuacct_create,
9391 .destroy = cpuacct_destroy,
9392 .populate = cpuacct_populate,
9393 .subsys_id = cpuacct_subsys_id,
9394};
9395#endif /* CONFIG_CGROUP_CPUACCT */