]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched, documentation: remove old O(1) scheduler document
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
7e066fb8
MD
121DEFINE_TRACE(sched_wait_task);
122DEFINE_TRACE(sched_wakeup);
123DEFINE_TRACE(sched_wakeup_new);
124DEFINE_TRACE(sched_switch);
125DEFINE_TRACE(sched_migrate_task);
126
5517d86b 127#ifdef CONFIG_SMP
fd2ab30b
SN
128
129static void double_rq_lock(struct rq *rq1, struct rq *rq2);
130
5517d86b
ED
131/*
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
134 */
135static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
136{
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
138}
139
140/*
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
143 */
144static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
145{
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
148}
149#endif
150
e05606d3
IM
151static inline int rt_policy(int policy)
152{
3f33a7ce 153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
154 return 1;
155 return 0;
156}
157
158static inline int task_has_rt_policy(struct task_struct *p)
159{
160 return rt_policy(p->policy);
161}
162
1da177e4 163/*
6aa645ea 164 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 165 */
6aa645ea
IM
166struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
169};
170
d0b27fa7 171struct rt_bandwidth {
ea736ed5
IM
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
d0b27fa7
PZ
177};
178
179static struct rt_bandwidth def_rt_bandwidth;
180
181static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
182
183static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
184{
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
190
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
194
195 if (!overrun)
196 break;
197
198 idle = do_sched_rt_period_timer(rt_b, overrun);
199 }
200
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
202}
203
204static
205void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
206{
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
209
ac086bc2
PZ
210 spin_lock_init(&rt_b->rt_runtime_lock);
211
d0b27fa7
PZ
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
215}
216
c8bfff6d
KH
217static inline int rt_bandwidth_enabled(void)
218{
219 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
220}
221
222static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
223{
224 ktime_t now;
225
cac64d00 226 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
227 return;
228
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
231
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
234 if (hrtimer_active(&rt_b->rt_period_timer))
235 break;
236
237 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
238 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
cc584b21
AV
239 hrtimer_start_expires(&rt_b->rt_period_timer,
240 HRTIMER_MODE_ABS);
d0b27fa7
PZ
241 }
242 spin_unlock(&rt_b->rt_runtime_lock);
243}
244
245#ifdef CONFIG_RT_GROUP_SCHED
246static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
247{
248 hrtimer_cancel(&rt_b->rt_period_timer);
249}
250#endif
251
712555ee
HC
252/*
253 * sched_domains_mutex serializes calls to arch_init_sched_domains,
254 * detach_destroy_domains and partition_sched_domains.
255 */
256static DEFINE_MUTEX(sched_domains_mutex);
257
052f1dc7 258#ifdef CONFIG_GROUP_SCHED
29f59db3 259
68318b8e
SV
260#include <linux/cgroup.h>
261
29f59db3
SV
262struct cfs_rq;
263
6f505b16
PZ
264static LIST_HEAD(task_groups);
265
29f59db3 266/* task group related information */
4cf86d77 267struct task_group {
052f1dc7 268#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
269 struct cgroup_subsys_state css;
270#endif
052f1dc7 271
6c415b92
AB
272#ifdef CONFIG_USER_SCHED
273 uid_t uid;
274#endif
275
052f1dc7 276#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity **se;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq **cfs_rq;
281 unsigned long shares;
052f1dc7
PZ
282#endif
283
284#ifdef CONFIG_RT_GROUP_SCHED
285 struct sched_rt_entity **rt_se;
286 struct rt_rq **rt_rq;
287
d0b27fa7 288 struct rt_bandwidth rt_bandwidth;
052f1dc7 289#endif
6b2d7700 290
ae8393e5 291 struct rcu_head rcu;
6f505b16 292 struct list_head list;
f473aa5e
PZ
293
294 struct task_group *parent;
295 struct list_head siblings;
296 struct list_head children;
29f59db3
SV
297};
298
354d60c2 299#ifdef CONFIG_USER_SCHED
eff766a6 300
6c415b92
AB
301/* Helper function to pass uid information to create_sched_user() */
302void set_tg_uid(struct user_struct *user)
303{
304 user->tg->uid = user->uid;
305}
306
eff766a6
PZ
307/*
308 * Root task group.
309 * Every UID task group (including init_task_group aka UID-0) will
310 * be a child to this group.
311 */
312struct task_group root_task_group;
313
052f1dc7 314#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
315/* Default task group's sched entity on each cpu */
316static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
317/* Default task group's cfs_rq on each cpu */
318static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 319#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
320
321#ifdef CONFIG_RT_GROUP_SCHED
322static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
323static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 324#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 325#else /* !CONFIG_USER_SCHED */
eff766a6 326#define root_task_group init_task_group
9a7e0b18 327#endif /* CONFIG_USER_SCHED */
6f505b16 328
8ed36996 329/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
330 * a task group's cpu shares.
331 */
8ed36996 332static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 333
052f1dc7 334#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
335#ifdef CONFIG_USER_SCHED
336# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 337#else /* !CONFIG_USER_SCHED */
052f1dc7 338# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 339#endif /* CONFIG_USER_SCHED */
052f1dc7 340
cb4ad1ff 341/*
2e084786
LJ
342 * A weight of 0 or 1 can cause arithmetics problems.
343 * A weight of a cfs_rq is the sum of weights of which entities
344 * are queued on this cfs_rq, so a weight of a entity should not be
345 * too large, so as the shares value of a task group.
cb4ad1ff
MX
346 * (The default weight is 1024 - so there's no practical
347 * limitation from this.)
348 */
18d95a28 349#define MIN_SHARES 2
2e084786 350#define MAX_SHARES (1UL << 18)
18d95a28 351
052f1dc7
PZ
352static int init_task_group_load = INIT_TASK_GROUP_LOAD;
353#endif
354
29f59db3 355/* Default task group.
3a252015 356 * Every task in system belong to this group at bootup.
29f59db3 357 */
434d53b0 358struct task_group init_task_group;
29f59db3
SV
359
360/* return group to which a task belongs */
4cf86d77 361static inline struct task_group *task_group(struct task_struct *p)
29f59db3 362{
4cf86d77 363 struct task_group *tg;
9b5b7751 364
052f1dc7 365#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
366 rcu_read_lock();
367 tg = __task_cred(p)->user->tg;
368 rcu_read_unlock();
052f1dc7 369#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
370 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
371 struct task_group, css);
24e377a8 372#else
41a2d6cf 373 tg = &init_task_group;
24e377a8 374#endif
9b5b7751 375 return tg;
29f59db3
SV
376}
377
378/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 379static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 380{
052f1dc7 381#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
382 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
383 p->se.parent = task_group(p)->se[cpu];
052f1dc7 384#endif
6f505b16 385
052f1dc7 386#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
387 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
388 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 389#endif
29f59db3
SV
390}
391
392#else
393
6f505b16 394static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
395static inline struct task_group *task_group(struct task_struct *p)
396{
397 return NULL;
398}
29f59db3 399
052f1dc7 400#endif /* CONFIG_GROUP_SCHED */
29f59db3 401
6aa645ea
IM
402/* CFS-related fields in a runqueue */
403struct cfs_rq {
404 struct load_weight load;
405 unsigned long nr_running;
406
6aa645ea 407 u64 exec_clock;
e9acbff6 408 u64 min_vruntime;
6aa645ea
IM
409
410 struct rb_root tasks_timeline;
411 struct rb_node *rb_leftmost;
4a55bd5e
PZ
412
413 struct list_head tasks;
414 struct list_head *balance_iterator;
415
416 /*
417 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
418 * It is set to NULL otherwise (i.e when none are currently running).
419 */
4793241b 420 struct sched_entity *curr, *next, *last;
ddc97297 421
5ac5c4d6 422 unsigned int nr_spread_over;
ddc97297 423
62160e3f 424#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
425 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
426
41a2d6cf
IM
427 /*
428 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
429 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
430 * (like users, containers etc.)
431 *
432 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
433 * list is used during load balance.
434 */
41a2d6cf
IM
435 struct list_head leaf_cfs_rq_list;
436 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
437
438#ifdef CONFIG_SMP
c09595f6 439 /*
c8cba857 440 * the part of load.weight contributed by tasks
c09595f6 441 */
c8cba857 442 unsigned long task_weight;
c09595f6 443
c8cba857
PZ
444 /*
445 * h_load = weight * f(tg)
446 *
447 * Where f(tg) is the recursive weight fraction assigned to
448 * this group.
449 */
450 unsigned long h_load;
c09595f6 451
c8cba857
PZ
452 /*
453 * this cpu's part of tg->shares
454 */
455 unsigned long shares;
f1d239f7
PZ
456
457 /*
458 * load.weight at the time we set shares
459 */
460 unsigned long rq_weight;
c09595f6 461#endif
6aa645ea
IM
462#endif
463};
1da177e4 464
6aa645ea
IM
465/* Real-Time classes' related field in a runqueue: */
466struct rt_rq {
467 struct rt_prio_array active;
63489e45 468 unsigned long rt_nr_running;
052f1dc7 469#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
470 struct {
471 int curr; /* highest queued rt task prio */
398a153b 472#ifdef CONFIG_SMP
e864c499 473 int next; /* next highest */
398a153b 474#endif
e864c499 475 } highest_prio;
6f505b16 476#endif
fa85ae24 477#ifdef CONFIG_SMP
73fe6aae 478 unsigned long rt_nr_migratory;
a22d7fc1 479 int overloaded;
917b627d 480 struct plist_head pushable_tasks;
fa85ae24 481#endif
6f505b16 482 int rt_throttled;
fa85ae24 483 u64 rt_time;
ac086bc2 484 u64 rt_runtime;
ea736ed5 485 /* Nests inside the rq lock: */
ac086bc2 486 spinlock_t rt_runtime_lock;
6f505b16 487
052f1dc7 488#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
489 unsigned long rt_nr_boosted;
490
6f505b16
PZ
491 struct rq *rq;
492 struct list_head leaf_rt_rq_list;
493 struct task_group *tg;
494 struct sched_rt_entity *rt_se;
495#endif
6aa645ea
IM
496};
497
57d885fe
GH
498#ifdef CONFIG_SMP
499
500/*
501 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
502 * variables. Each exclusive cpuset essentially defines an island domain by
503 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
504 * exclusive cpuset is created, we also create and attach a new root-domain
505 * object.
506 *
57d885fe
GH
507 */
508struct root_domain {
509 atomic_t refcount;
c6c4927b
RR
510 cpumask_var_t span;
511 cpumask_var_t online;
637f5085 512
0eab9146 513 /*
637f5085
GH
514 * The "RT overload" flag: it gets set if a CPU has more than
515 * one runnable RT task.
516 */
c6c4927b 517 cpumask_var_t rto_mask;
0eab9146 518 atomic_t rto_count;
6e0534f2
GH
519#ifdef CONFIG_SMP
520 struct cpupri cpupri;
521#endif
7a09b1a2
VS
522#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
523 /*
524 * Preferred wake up cpu nominated by sched_mc balance that will be
525 * used when most cpus are idle in the system indicating overall very
526 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
527 */
528 unsigned int sched_mc_preferred_wakeup_cpu;
529#endif
57d885fe
GH
530};
531
dc938520
GH
532/*
533 * By default the system creates a single root-domain with all cpus as
534 * members (mimicking the global state we have today).
535 */
57d885fe
GH
536static struct root_domain def_root_domain;
537
538#endif
539
1da177e4
LT
540/*
541 * This is the main, per-CPU runqueue data structure.
542 *
543 * Locking rule: those places that want to lock multiple runqueues
544 * (such as the load balancing or the thread migration code), lock
545 * acquire operations must be ordered by ascending &runqueue.
546 */
70b97a7f 547struct rq {
d8016491
IM
548 /* runqueue lock: */
549 spinlock_t lock;
1da177e4
LT
550
551 /*
552 * nr_running and cpu_load should be in the same cacheline because
553 * remote CPUs use both these fields when doing load calculation.
554 */
555 unsigned long nr_running;
6aa645ea
IM
556 #define CPU_LOAD_IDX_MAX 5
557 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 558#ifdef CONFIG_NO_HZ
15934a37 559 unsigned long last_tick_seen;
46cb4b7c
SS
560 unsigned char in_nohz_recently;
561#endif
d8016491
IM
562 /* capture load from *all* tasks on this cpu: */
563 struct load_weight load;
6aa645ea
IM
564 unsigned long nr_load_updates;
565 u64 nr_switches;
566
567 struct cfs_rq cfs;
6f505b16 568 struct rt_rq rt;
6f505b16 569
6aa645ea 570#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
571 /* list of leaf cfs_rq on this cpu: */
572 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
573#endif
574#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 575 struct list_head leaf_rt_rq_list;
1da177e4 576#endif
1da177e4
LT
577
578 /*
579 * This is part of a global counter where only the total sum
580 * over all CPUs matters. A task can increase this counter on
581 * one CPU and if it got migrated afterwards it may decrease
582 * it on another CPU. Always updated under the runqueue lock:
583 */
584 unsigned long nr_uninterruptible;
585
36c8b586 586 struct task_struct *curr, *idle;
c9819f45 587 unsigned long next_balance;
1da177e4 588 struct mm_struct *prev_mm;
6aa645ea 589
3e51f33f 590 u64 clock;
6aa645ea 591
1da177e4
LT
592 atomic_t nr_iowait;
593
594#ifdef CONFIG_SMP
0eab9146 595 struct root_domain *rd;
1da177e4
LT
596 struct sched_domain *sd;
597
a0a522ce 598 unsigned char idle_at_tick;
1da177e4
LT
599 /* For active balancing */
600 int active_balance;
601 int push_cpu;
d8016491
IM
602 /* cpu of this runqueue: */
603 int cpu;
1f11eb6a 604 int online;
1da177e4 605
a8a51d5e 606 unsigned long avg_load_per_task;
1da177e4 607
36c8b586 608 struct task_struct *migration_thread;
1da177e4
LT
609 struct list_head migration_queue;
610#endif
611
8f4d37ec 612#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
613#ifdef CONFIG_SMP
614 int hrtick_csd_pending;
615 struct call_single_data hrtick_csd;
616#endif
8f4d37ec
PZ
617 struct hrtimer hrtick_timer;
618#endif
619
1da177e4
LT
620#ifdef CONFIG_SCHEDSTATS
621 /* latency stats */
622 struct sched_info rq_sched_info;
9c2c4802
KC
623 unsigned long long rq_cpu_time;
624 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
625
626 /* sys_sched_yield() stats */
480b9434
KC
627 unsigned int yld_exp_empty;
628 unsigned int yld_act_empty;
629 unsigned int yld_both_empty;
630 unsigned int yld_count;
1da177e4
LT
631
632 /* schedule() stats */
480b9434
KC
633 unsigned int sched_switch;
634 unsigned int sched_count;
635 unsigned int sched_goidle;
1da177e4
LT
636
637 /* try_to_wake_up() stats */
480b9434
KC
638 unsigned int ttwu_count;
639 unsigned int ttwu_local;
b8efb561
IM
640
641 /* BKL stats */
480b9434 642 unsigned int bkl_count;
1da177e4
LT
643#endif
644};
645
f34e3b61 646static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 647
15afe09b 648static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 649{
15afe09b 650 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
651}
652
0a2966b4
CL
653static inline int cpu_of(struct rq *rq)
654{
655#ifdef CONFIG_SMP
656 return rq->cpu;
657#else
658 return 0;
659#endif
660}
661
674311d5
NP
662/*
663 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 664 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
665 *
666 * The domain tree of any CPU may only be accessed from within
667 * preempt-disabled sections.
668 */
48f24c4d
IM
669#define for_each_domain(cpu, __sd) \
670 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
671
672#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
673#define this_rq() (&__get_cpu_var(runqueues))
674#define task_rq(p) cpu_rq(task_cpu(p))
675#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
676
3e51f33f
PZ
677static inline void update_rq_clock(struct rq *rq)
678{
679 rq->clock = sched_clock_cpu(cpu_of(rq));
680}
681
bf5c91ba
IM
682/*
683 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
684 */
685#ifdef CONFIG_SCHED_DEBUG
686# define const_debug __read_mostly
687#else
688# define const_debug static const
689#endif
690
017730c1
IM
691/**
692 * runqueue_is_locked
693 *
694 * Returns true if the current cpu runqueue is locked.
695 * This interface allows printk to be called with the runqueue lock
696 * held and know whether or not it is OK to wake up the klogd.
697 */
698int runqueue_is_locked(void)
699{
700 int cpu = get_cpu();
701 struct rq *rq = cpu_rq(cpu);
702 int ret;
703
704 ret = spin_is_locked(&rq->lock);
705 put_cpu();
706 return ret;
707}
708
bf5c91ba
IM
709/*
710 * Debugging: various feature bits
711 */
f00b45c1
PZ
712
713#define SCHED_FEAT(name, enabled) \
714 __SCHED_FEAT_##name ,
715
bf5c91ba 716enum {
f00b45c1 717#include "sched_features.h"
bf5c91ba
IM
718};
719
f00b45c1
PZ
720#undef SCHED_FEAT
721
722#define SCHED_FEAT(name, enabled) \
723 (1UL << __SCHED_FEAT_##name) * enabled |
724
bf5c91ba 725const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
726#include "sched_features.h"
727 0;
728
729#undef SCHED_FEAT
730
731#ifdef CONFIG_SCHED_DEBUG
732#define SCHED_FEAT(name, enabled) \
733 #name ,
734
983ed7a6 735static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
736#include "sched_features.h"
737 NULL
738};
739
740#undef SCHED_FEAT
741
34f3a814 742static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 743{
f00b45c1
PZ
744 int i;
745
746 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
747 if (!(sysctl_sched_features & (1UL << i)))
748 seq_puts(m, "NO_");
749 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 750 }
34f3a814 751 seq_puts(m, "\n");
f00b45c1 752
34f3a814 753 return 0;
f00b45c1
PZ
754}
755
756static ssize_t
757sched_feat_write(struct file *filp, const char __user *ubuf,
758 size_t cnt, loff_t *ppos)
759{
760 char buf[64];
761 char *cmp = buf;
762 int neg = 0;
763 int i;
764
765 if (cnt > 63)
766 cnt = 63;
767
768 if (copy_from_user(&buf, ubuf, cnt))
769 return -EFAULT;
770
771 buf[cnt] = 0;
772
c24b7c52 773 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
774 neg = 1;
775 cmp += 3;
776 }
777
778 for (i = 0; sched_feat_names[i]; i++) {
779 int len = strlen(sched_feat_names[i]);
780
781 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
782 if (neg)
783 sysctl_sched_features &= ~(1UL << i);
784 else
785 sysctl_sched_features |= (1UL << i);
786 break;
787 }
788 }
789
790 if (!sched_feat_names[i])
791 return -EINVAL;
792
793 filp->f_pos += cnt;
794
795 return cnt;
796}
797
34f3a814
LZ
798static int sched_feat_open(struct inode *inode, struct file *filp)
799{
800 return single_open(filp, sched_feat_show, NULL);
801}
802
f00b45c1 803static struct file_operations sched_feat_fops = {
34f3a814
LZ
804 .open = sched_feat_open,
805 .write = sched_feat_write,
806 .read = seq_read,
807 .llseek = seq_lseek,
808 .release = single_release,
f00b45c1
PZ
809};
810
811static __init int sched_init_debug(void)
812{
f00b45c1
PZ
813 debugfs_create_file("sched_features", 0644, NULL, NULL,
814 &sched_feat_fops);
815
816 return 0;
817}
818late_initcall(sched_init_debug);
819
820#endif
821
822#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 823
b82d9fdd
PZ
824/*
825 * Number of tasks to iterate in a single balance run.
826 * Limited because this is done with IRQs disabled.
827 */
828const_debug unsigned int sysctl_sched_nr_migrate = 32;
829
2398f2c6
PZ
830/*
831 * ratelimit for updating the group shares.
55cd5340 832 * default: 0.25ms
2398f2c6 833 */
55cd5340 834unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 835
ffda12a1
PZ
836/*
837 * Inject some fuzzyness into changing the per-cpu group shares
838 * this avoids remote rq-locks at the expense of fairness.
839 * default: 4
840 */
841unsigned int sysctl_sched_shares_thresh = 4;
842
fa85ae24 843/*
9f0c1e56 844 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
845 * default: 1s
846 */
9f0c1e56 847unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 848
6892b75e
IM
849static __read_mostly int scheduler_running;
850
9f0c1e56
PZ
851/*
852 * part of the period that we allow rt tasks to run in us.
853 * default: 0.95s
854 */
855int sysctl_sched_rt_runtime = 950000;
fa85ae24 856
d0b27fa7
PZ
857static inline u64 global_rt_period(void)
858{
859 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
860}
861
862static inline u64 global_rt_runtime(void)
863{
e26873bb 864 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
865 return RUNTIME_INF;
866
867 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
868}
fa85ae24 869
1da177e4 870#ifndef prepare_arch_switch
4866cde0
NP
871# define prepare_arch_switch(next) do { } while (0)
872#endif
873#ifndef finish_arch_switch
874# define finish_arch_switch(prev) do { } while (0)
875#endif
876
051a1d1a
DA
877static inline int task_current(struct rq *rq, struct task_struct *p)
878{
879 return rq->curr == p;
880}
881
4866cde0 882#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 883static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 884{
051a1d1a 885 return task_current(rq, p);
4866cde0
NP
886}
887
70b97a7f 888static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
889{
890}
891
70b97a7f 892static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 893{
da04c035
IM
894#ifdef CONFIG_DEBUG_SPINLOCK
895 /* this is a valid case when another task releases the spinlock */
896 rq->lock.owner = current;
897#endif
8a25d5de
IM
898 /*
899 * If we are tracking spinlock dependencies then we have to
900 * fix up the runqueue lock - which gets 'carried over' from
901 * prev into current:
902 */
903 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
904
4866cde0
NP
905 spin_unlock_irq(&rq->lock);
906}
907
908#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 909static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
910{
911#ifdef CONFIG_SMP
912 return p->oncpu;
913#else
051a1d1a 914 return task_current(rq, p);
4866cde0
NP
915#endif
916}
917
70b97a7f 918static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
919{
920#ifdef CONFIG_SMP
921 /*
922 * We can optimise this out completely for !SMP, because the
923 * SMP rebalancing from interrupt is the only thing that cares
924 * here.
925 */
926 next->oncpu = 1;
927#endif
928#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
929 spin_unlock_irq(&rq->lock);
930#else
931 spin_unlock(&rq->lock);
932#endif
933}
934
70b97a7f 935static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
936{
937#ifdef CONFIG_SMP
938 /*
939 * After ->oncpu is cleared, the task can be moved to a different CPU.
940 * We must ensure this doesn't happen until the switch is completely
941 * finished.
942 */
943 smp_wmb();
944 prev->oncpu = 0;
945#endif
946#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
947 local_irq_enable();
1da177e4 948#endif
4866cde0
NP
949}
950#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 951
b29739f9
IM
952/*
953 * __task_rq_lock - lock the runqueue a given task resides on.
954 * Must be called interrupts disabled.
955 */
70b97a7f 956static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
957 __acquires(rq->lock)
958{
3a5c359a
AK
959 for (;;) {
960 struct rq *rq = task_rq(p);
961 spin_lock(&rq->lock);
962 if (likely(rq == task_rq(p)))
963 return rq;
b29739f9 964 spin_unlock(&rq->lock);
b29739f9 965 }
b29739f9
IM
966}
967
1da177e4
LT
968/*
969 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 970 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
971 * explicitly disabling preemption.
972 */
70b97a7f 973static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
974 __acquires(rq->lock)
975{
70b97a7f 976 struct rq *rq;
1da177e4 977
3a5c359a
AK
978 for (;;) {
979 local_irq_save(*flags);
980 rq = task_rq(p);
981 spin_lock(&rq->lock);
982 if (likely(rq == task_rq(p)))
983 return rq;
1da177e4 984 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 985 }
1da177e4
LT
986}
987
ad474cac
ON
988void task_rq_unlock_wait(struct task_struct *p)
989{
990 struct rq *rq = task_rq(p);
991
992 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
993 spin_unlock_wait(&rq->lock);
994}
995
a9957449 996static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
997 __releases(rq->lock)
998{
999 spin_unlock(&rq->lock);
1000}
1001
70b97a7f 1002static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1003 __releases(rq->lock)
1004{
1005 spin_unlock_irqrestore(&rq->lock, *flags);
1006}
1007
1da177e4 1008/*
cc2a73b5 1009 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1010 */
a9957449 1011static struct rq *this_rq_lock(void)
1da177e4
LT
1012 __acquires(rq->lock)
1013{
70b97a7f 1014 struct rq *rq;
1da177e4
LT
1015
1016 local_irq_disable();
1017 rq = this_rq();
1018 spin_lock(&rq->lock);
1019
1020 return rq;
1021}
1022
8f4d37ec
PZ
1023#ifdef CONFIG_SCHED_HRTICK
1024/*
1025 * Use HR-timers to deliver accurate preemption points.
1026 *
1027 * Its all a bit involved since we cannot program an hrt while holding the
1028 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1029 * reschedule event.
1030 *
1031 * When we get rescheduled we reprogram the hrtick_timer outside of the
1032 * rq->lock.
1033 */
8f4d37ec
PZ
1034
1035/*
1036 * Use hrtick when:
1037 * - enabled by features
1038 * - hrtimer is actually high res
1039 */
1040static inline int hrtick_enabled(struct rq *rq)
1041{
1042 if (!sched_feat(HRTICK))
1043 return 0;
ba42059f 1044 if (!cpu_active(cpu_of(rq)))
b328ca18 1045 return 0;
8f4d37ec
PZ
1046 return hrtimer_is_hres_active(&rq->hrtick_timer);
1047}
1048
8f4d37ec
PZ
1049static void hrtick_clear(struct rq *rq)
1050{
1051 if (hrtimer_active(&rq->hrtick_timer))
1052 hrtimer_cancel(&rq->hrtick_timer);
1053}
1054
8f4d37ec
PZ
1055/*
1056 * High-resolution timer tick.
1057 * Runs from hardirq context with interrupts disabled.
1058 */
1059static enum hrtimer_restart hrtick(struct hrtimer *timer)
1060{
1061 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1062
1063 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1064
1065 spin_lock(&rq->lock);
3e51f33f 1066 update_rq_clock(rq);
8f4d37ec
PZ
1067 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1068 spin_unlock(&rq->lock);
1069
1070 return HRTIMER_NORESTART;
1071}
1072
95e904c7 1073#ifdef CONFIG_SMP
31656519
PZ
1074/*
1075 * called from hardirq (IPI) context
1076 */
1077static void __hrtick_start(void *arg)
b328ca18 1078{
31656519 1079 struct rq *rq = arg;
b328ca18 1080
31656519
PZ
1081 spin_lock(&rq->lock);
1082 hrtimer_restart(&rq->hrtick_timer);
1083 rq->hrtick_csd_pending = 0;
1084 spin_unlock(&rq->lock);
b328ca18
PZ
1085}
1086
31656519
PZ
1087/*
1088 * Called to set the hrtick timer state.
1089 *
1090 * called with rq->lock held and irqs disabled
1091 */
1092static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1093{
31656519
PZ
1094 struct hrtimer *timer = &rq->hrtick_timer;
1095 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1096
cc584b21 1097 hrtimer_set_expires(timer, time);
31656519
PZ
1098
1099 if (rq == this_rq()) {
1100 hrtimer_restart(timer);
1101 } else if (!rq->hrtick_csd_pending) {
1102 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1103 rq->hrtick_csd_pending = 1;
1104 }
b328ca18
PZ
1105}
1106
1107static int
1108hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1109{
1110 int cpu = (int)(long)hcpu;
1111
1112 switch (action) {
1113 case CPU_UP_CANCELED:
1114 case CPU_UP_CANCELED_FROZEN:
1115 case CPU_DOWN_PREPARE:
1116 case CPU_DOWN_PREPARE_FROZEN:
1117 case CPU_DEAD:
1118 case CPU_DEAD_FROZEN:
31656519 1119 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1120 return NOTIFY_OK;
1121 }
1122
1123 return NOTIFY_DONE;
1124}
1125
fa748203 1126static __init void init_hrtick(void)
b328ca18
PZ
1127{
1128 hotcpu_notifier(hotplug_hrtick, 0);
1129}
31656519
PZ
1130#else
1131/*
1132 * Called to set the hrtick timer state.
1133 *
1134 * called with rq->lock held and irqs disabled
1135 */
1136static void hrtick_start(struct rq *rq, u64 delay)
1137{
1138 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1139}
b328ca18 1140
006c75f1 1141static inline void init_hrtick(void)
8f4d37ec 1142{
8f4d37ec 1143}
31656519 1144#endif /* CONFIG_SMP */
8f4d37ec 1145
31656519 1146static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1147{
31656519
PZ
1148#ifdef CONFIG_SMP
1149 rq->hrtick_csd_pending = 0;
8f4d37ec 1150
31656519
PZ
1151 rq->hrtick_csd.flags = 0;
1152 rq->hrtick_csd.func = __hrtick_start;
1153 rq->hrtick_csd.info = rq;
1154#endif
8f4d37ec 1155
31656519
PZ
1156 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1157 rq->hrtick_timer.function = hrtick;
8f4d37ec 1158}
006c75f1 1159#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1160static inline void hrtick_clear(struct rq *rq)
1161{
1162}
1163
8f4d37ec
PZ
1164static inline void init_rq_hrtick(struct rq *rq)
1165{
1166}
1167
b328ca18
PZ
1168static inline void init_hrtick(void)
1169{
1170}
006c75f1 1171#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1172
c24d20db
IM
1173/*
1174 * resched_task - mark a task 'to be rescheduled now'.
1175 *
1176 * On UP this means the setting of the need_resched flag, on SMP it
1177 * might also involve a cross-CPU call to trigger the scheduler on
1178 * the target CPU.
1179 */
1180#ifdef CONFIG_SMP
1181
1182#ifndef tsk_is_polling
1183#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1184#endif
1185
31656519 1186static void resched_task(struct task_struct *p)
c24d20db
IM
1187{
1188 int cpu;
1189
1190 assert_spin_locked(&task_rq(p)->lock);
1191
31656519 1192 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
c24d20db
IM
1193 return;
1194
31656519 1195 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
c24d20db
IM
1196
1197 cpu = task_cpu(p);
1198 if (cpu == smp_processor_id())
1199 return;
1200
1201 /* NEED_RESCHED must be visible before we test polling */
1202 smp_mb();
1203 if (!tsk_is_polling(p))
1204 smp_send_reschedule(cpu);
1205}
1206
1207static void resched_cpu(int cpu)
1208{
1209 struct rq *rq = cpu_rq(cpu);
1210 unsigned long flags;
1211
1212 if (!spin_trylock_irqsave(&rq->lock, flags))
1213 return;
1214 resched_task(cpu_curr(cpu));
1215 spin_unlock_irqrestore(&rq->lock, flags);
1216}
06d8308c
TG
1217
1218#ifdef CONFIG_NO_HZ
1219/*
1220 * When add_timer_on() enqueues a timer into the timer wheel of an
1221 * idle CPU then this timer might expire before the next timer event
1222 * which is scheduled to wake up that CPU. In case of a completely
1223 * idle system the next event might even be infinite time into the
1224 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1225 * leaves the inner idle loop so the newly added timer is taken into
1226 * account when the CPU goes back to idle and evaluates the timer
1227 * wheel for the next timer event.
1228 */
1229void wake_up_idle_cpu(int cpu)
1230{
1231 struct rq *rq = cpu_rq(cpu);
1232
1233 if (cpu == smp_processor_id())
1234 return;
1235
1236 /*
1237 * This is safe, as this function is called with the timer
1238 * wheel base lock of (cpu) held. When the CPU is on the way
1239 * to idle and has not yet set rq->curr to idle then it will
1240 * be serialized on the timer wheel base lock and take the new
1241 * timer into account automatically.
1242 */
1243 if (rq->curr != rq->idle)
1244 return;
1245
1246 /*
1247 * We can set TIF_RESCHED on the idle task of the other CPU
1248 * lockless. The worst case is that the other CPU runs the
1249 * idle task through an additional NOOP schedule()
1250 */
1251 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1252
1253 /* NEED_RESCHED must be visible before we test polling */
1254 smp_mb();
1255 if (!tsk_is_polling(rq->idle))
1256 smp_send_reschedule(cpu);
1257}
6d6bc0ad 1258#endif /* CONFIG_NO_HZ */
06d8308c 1259
6d6bc0ad 1260#else /* !CONFIG_SMP */
31656519 1261static void resched_task(struct task_struct *p)
c24d20db
IM
1262{
1263 assert_spin_locked(&task_rq(p)->lock);
31656519 1264 set_tsk_need_resched(p);
c24d20db 1265}
6d6bc0ad 1266#endif /* CONFIG_SMP */
c24d20db 1267
45bf76df
IM
1268#if BITS_PER_LONG == 32
1269# define WMULT_CONST (~0UL)
1270#else
1271# define WMULT_CONST (1UL << 32)
1272#endif
1273
1274#define WMULT_SHIFT 32
1275
194081eb
IM
1276/*
1277 * Shift right and round:
1278 */
cf2ab469 1279#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1280
a7be37ac
PZ
1281/*
1282 * delta *= weight / lw
1283 */
cb1c4fc9 1284static unsigned long
45bf76df
IM
1285calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1286 struct load_weight *lw)
1287{
1288 u64 tmp;
1289
7a232e03
LJ
1290 if (!lw->inv_weight) {
1291 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1292 lw->inv_weight = 1;
1293 else
1294 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1295 / (lw->weight+1);
1296 }
45bf76df
IM
1297
1298 tmp = (u64)delta_exec * weight;
1299 /*
1300 * Check whether we'd overflow the 64-bit multiplication:
1301 */
194081eb 1302 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1303 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1304 WMULT_SHIFT/2);
1305 else
cf2ab469 1306 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1307
ecf691da 1308 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1309}
1310
1091985b 1311static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1312{
1313 lw->weight += inc;
e89996ae 1314 lw->inv_weight = 0;
45bf76df
IM
1315}
1316
1091985b 1317static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1318{
1319 lw->weight -= dec;
e89996ae 1320 lw->inv_weight = 0;
45bf76df
IM
1321}
1322
2dd73a4f
PW
1323/*
1324 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1325 * of tasks with abnormal "nice" values across CPUs the contribution that
1326 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1327 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1328 * scaled version of the new time slice allocation that they receive on time
1329 * slice expiry etc.
1330 */
1331
cce7ade8
PZ
1332#define WEIGHT_IDLEPRIO 3
1333#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1334
1335/*
1336 * Nice levels are multiplicative, with a gentle 10% change for every
1337 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1338 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1339 * that remained on nice 0.
1340 *
1341 * The "10% effect" is relative and cumulative: from _any_ nice level,
1342 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1343 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1344 * If a task goes up by ~10% and another task goes down by ~10% then
1345 * the relative distance between them is ~25%.)
dd41f596
IM
1346 */
1347static const int prio_to_weight[40] = {
254753dc
IM
1348 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1349 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1350 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1351 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1352 /* 0 */ 1024, 820, 655, 526, 423,
1353 /* 5 */ 335, 272, 215, 172, 137,
1354 /* 10 */ 110, 87, 70, 56, 45,
1355 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1356};
1357
5714d2de
IM
1358/*
1359 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1360 *
1361 * In cases where the weight does not change often, we can use the
1362 * precalculated inverse to speed up arithmetics by turning divisions
1363 * into multiplications:
1364 */
dd41f596 1365static const u32 prio_to_wmult[40] = {
254753dc
IM
1366 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1367 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1368 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1369 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1370 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1371 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1372 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1373 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1374};
2dd73a4f 1375
dd41f596
IM
1376static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1377
1378/*
1379 * runqueue iterator, to support SMP load-balancing between different
1380 * scheduling classes, without having to expose their internal data
1381 * structures to the load-balancing proper:
1382 */
1383struct rq_iterator {
1384 void *arg;
1385 struct task_struct *(*start)(void *);
1386 struct task_struct *(*next)(void *);
1387};
1388
e1d1484f
PW
1389#ifdef CONFIG_SMP
1390static unsigned long
1391balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1392 unsigned long max_load_move, struct sched_domain *sd,
1393 enum cpu_idle_type idle, int *all_pinned,
1394 int *this_best_prio, struct rq_iterator *iterator);
1395
1396static int
1397iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1398 struct sched_domain *sd, enum cpu_idle_type idle,
1399 struct rq_iterator *iterator);
e1d1484f 1400#endif
dd41f596 1401
d842de87
SV
1402#ifdef CONFIG_CGROUP_CPUACCT
1403static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1404#else
1405static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1406#endif
1407
18d95a28
PZ
1408static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1409{
1410 update_load_add(&rq->load, load);
1411}
1412
1413static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1414{
1415 update_load_sub(&rq->load, load);
1416}
1417
7940ca36 1418#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1419typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1420
1421/*
1422 * Iterate the full tree, calling @down when first entering a node and @up when
1423 * leaving it for the final time.
1424 */
eb755805 1425static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1426{
1427 struct task_group *parent, *child;
eb755805 1428 int ret;
c09595f6
PZ
1429
1430 rcu_read_lock();
1431 parent = &root_task_group;
1432down:
eb755805
PZ
1433 ret = (*down)(parent, data);
1434 if (ret)
1435 goto out_unlock;
c09595f6
PZ
1436 list_for_each_entry_rcu(child, &parent->children, siblings) {
1437 parent = child;
1438 goto down;
1439
1440up:
1441 continue;
1442 }
eb755805
PZ
1443 ret = (*up)(parent, data);
1444 if (ret)
1445 goto out_unlock;
c09595f6
PZ
1446
1447 child = parent;
1448 parent = parent->parent;
1449 if (parent)
1450 goto up;
eb755805 1451out_unlock:
c09595f6 1452 rcu_read_unlock();
eb755805
PZ
1453
1454 return ret;
c09595f6
PZ
1455}
1456
eb755805
PZ
1457static int tg_nop(struct task_group *tg, void *data)
1458{
1459 return 0;
c09595f6 1460}
eb755805
PZ
1461#endif
1462
1463#ifdef CONFIG_SMP
1464static unsigned long source_load(int cpu, int type);
1465static unsigned long target_load(int cpu, int type);
1466static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1467
1468static unsigned long cpu_avg_load_per_task(int cpu)
1469{
1470 struct rq *rq = cpu_rq(cpu);
af6d596f 1471 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1472
4cd42620
SR
1473 if (nr_running)
1474 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1475 else
1476 rq->avg_load_per_task = 0;
eb755805
PZ
1477
1478 return rq->avg_load_per_task;
1479}
1480
1481#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1482
c09595f6
PZ
1483static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1484
1485/*
1486 * Calculate and set the cpu's group shares.
1487 */
1488static void
ffda12a1
PZ
1489update_group_shares_cpu(struct task_group *tg, int cpu,
1490 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1491{
c09595f6
PZ
1492 unsigned long shares;
1493 unsigned long rq_weight;
1494
c8cba857 1495 if (!tg->se[cpu])
c09595f6
PZ
1496 return;
1497
ec4e0e2f 1498 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1499
c09595f6
PZ
1500 /*
1501 * \Sum shares * rq_weight
1502 * shares = -----------------------
1503 * \Sum rq_weight
1504 *
1505 */
ec4e0e2f 1506 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1507 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1508
ffda12a1
PZ
1509 if (abs(shares - tg->se[cpu]->load.weight) >
1510 sysctl_sched_shares_thresh) {
1511 struct rq *rq = cpu_rq(cpu);
1512 unsigned long flags;
c09595f6 1513
ffda12a1 1514 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1515 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1516
ffda12a1
PZ
1517 __set_se_shares(tg->se[cpu], shares);
1518 spin_unlock_irqrestore(&rq->lock, flags);
1519 }
18d95a28 1520}
c09595f6
PZ
1521
1522/*
c8cba857
PZ
1523 * Re-compute the task group their per cpu shares over the given domain.
1524 * This needs to be done in a bottom-up fashion because the rq weight of a
1525 * parent group depends on the shares of its child groups.
c09595f6 1526 */
eb755805 1527static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1528{
ec4e0e2f 1529 unsigned long weight, rq_weight = 0;
c8cba857 1530 unsigned long shares = 0;
eb755805 1531 struct sched_domain *sd = data;
c8cba857 1532 int i;
c09595f6 1533
758b2cdc 1534 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1535 /*
1536 * If there are currently no tasks on the cpu pretend there
1537 * is one of average load so that when a new task gets to
1538 * run here it will not get delayed by group starvation.
1539 */
1540 weight = tg->cfs_rq[i]->load.weight;
1541 if (!weight)
1542 weight = NICE_0_LOAD;
1543
1544 tg->cfs_rq[i]->rq_weight = weight;
1545 rq_weight += weight;
c8cba857 1546 shares += tg->cfs_rq[i]->shares;
c09595f6 1547 }
c09595f6 1548
c8cba857
PZ
1549 if ((!shares && rq_weight) || shares > tg->shares)
1550 shares = tg->shares;
1551
1552 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1553 shares = tg->shares;
c09595f6 1554
758b2cdc 1555 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1556 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1557
1558 return 0;
c09595f6
PZ
1559}
1560
1561/*
c8cba857
PZ
1562 * Compute the cpu's hierarchical load factor for each task group.
1563 * This needs to be done in a top-down fashion because the load of a child
1564 * group is a fraction of its parents load.
c09595f6 1565 */
eb755805 1566static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1567{
c8cba857 1568 unsigned long load;
eb755805 1569 long cpu = (long)data;
c09595f6 1570
c8cba857
PZ
1571 if (!tg->parent) {
1572 load = cpu_rq(cpu)->load.weight;
1573 } else {
1574 load = tg->parent->cfs_rq[cpu]->h_load;
1575 load *= tg->cfs_rq[cpu]->shares;
1576 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1577 }
c09595f6 1578
c8cba857 1579 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1580
eb755805 1581 return 0;
c09595f6
PZ
1582}
1583
c8cba857 1584static void update_shares(struct sched_domain *sd)
4d8d595d 1585{
2398f2c6
PZ
1586 u64 now = cpu_clock(raw_smp_processor_id());
1587 s64 elapsed = now - sd->last_update;
1588
1589 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1590 sd->last_update = now;
eb755805 1591 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1592 }
4d8d595d
PZ
1593}
1594
3e5459b4
PZ
1595static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1596{
1597 spin_unlock(&rq->lock);
1598 update_shares(sd);
1599 spin_lock(&rq->lock);
1600}
1601
eb755805 1602static void update_h_load(long cpu)
c09595f6 1603{
eb755805 1604 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1605}
1606
c09595f6
PZ
1607#else
1608
c8cba857 1609static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1610{
1611}
1612
3e5459b4
PZ
1613static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1614{
1615}
1616
18d95a28
PZ
1617#endif
1618
8f45e2b5
GH
1619#ifdef CONFIG_PREEMPT
1620
70574a99 1621/*
8f45e2b5
GH
1622 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1623 * way at the expense of forcing extra atomic operations in all
1624 * invocations. This assures that the double_lock is acquired using the
1625 * same underlying policy as the spinlock_t on this architecture, which
1626 * reduces latency compared to the unfair variant below. However, it
1627 * also adds more overhead and therefore may reduce throughput.
70574a99 1628 */
8f45e2b5
GH
1629static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1630 __releases(this_rq->lock)
1631 __acquires(busiest->lock)
1632 __acquires(this_rq->lock)
1633{
1634 spin_unlock(&this_rq->lock);
1635 double_rq_lock(this_rq, busiest);
1636
1637 return 1;
1638}
1639
1640#else
1641/*
1642 * Unfair double_lock_balance: Optimizes throughput at the expense of
1643 * latency by eliminating extra atomic operations when the locks are
1644 * already in proper order on entry. This favors lower cpu-ids and will
1645 * grant the double lock to lower cpus over higher ids under contention,
1646 * regardless of entry order into the function.
1647 */
1648static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1649 __releases(this_rq->lock)
1650 __acquires(busiest->lock)
1651 __acquires(this_rq->lock)
1652{
1653 int ret = 0;
1654
70574a99
AD
1655 if (unlikely(!spin_trylock(&busiest->lock))) {
1656 if (busiest < this_rq) {
1657 spin_unlock(&this_rq->lock);
1658 spin_lock(&busiest->lock);
1659 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1660 ret = 1;
1661 } else
1662 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1663 }
1664 return ret;
1665}
1666
8f45e2b5
GH
1667#endif /* CONFIG_PREEMPT */
1668
1669/*
1670 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1671 */
1672static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1673{
1674 if (unlikely(!irqs_disabled())) {
1675 /* printk() doesn't work good under rq->lock */
1676 spin_unlock(&this_rq->lock);
1677 BUG_ON(1);
1678 }
1679
1680 return _double_lock_balance(this_rq, busiest);
1681}
1682
70574a99
AD
1683static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1684 __releases(busiest->lock)
1685{
1686 spin_unlock(&busiest->lock);
1687 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1688}
18d95a28
PZ
1689#endif
1690
30432094 1691#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1692static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1693{
30432094 1694#ifdef CONFIG_SMP
34e83e85
IM
1695 cfs_rq->shares = shares;
1696#endif
1697}
30432094 1698#endif
e7693a36 1699
dd41f596 1700#include "sched_stats.h"
dd41f596 1701#include "sched_idletask.c"
5522d5d5
IM
1702#include "sched_fair.c"
1703#include "sched_rt.c"
dd41f596
IM
1704#ifdef CONFIG_SCHED_DEBUG
1705# include "sched_debug.c"
1706#endif
1707
1708#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1709#define for_each_class(class) \
1710 for (class = sched_class_highest; class; class = class->next)
dd41f596 1711
c09595f6 1712static void inc_nr_running(struct rq *rq)
9c217245
IM
1713{
1714 rq->nr_running++;
9c217245
IM
1715}
1716
c09595f6 1717static void dec_nr_running(struct rq *rq)
9c217245
IM
1718{
1719 rq->nr_running--;
9c217245
IM
1720}
1721
45bf76df
IM
1722static void set_load_weight(struct task_struct *p)
1723{
1724 if (task_has_rt_policy(p)) {
dd41f596
IM
1725 p->se.load.weight = prio_to_weight[0] * 2;
1726 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1727 return;
1728 }
45bf76df 1729
dd41f596
IM
1730 /*
1731 * SCHED_IDLE tasks get minimal weight:
1732 */
1733 if (p->policy == SCHED_IDLE) {
1734 p->se.load.weight = WEIGHT_IDLEPRIO;
1735 p->se.load.inv_weight = WMULT_IDLEPRIO;
1736 return;
1737 }
71f8bd46 1738
dd41f596
IM
1739 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1740 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1741}
1742
2087a1ad
GH
1743static void update_avg(u64 *avg, u64 sample)
1744{
1745 s64 diff = sample - *avg;
1746 *avg += diff >> 3;
1747}
1748
8159f87e 1749static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1750{
831451ac
PZ
1751 if (wakeup)
1752 p->se.start_runtime = p->se.sum_exec_runtime;
1753
dd41f596 1754 sched_info_queued(p);
fd390f6a 1755 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1756 p->se.on_rq = 1;
71f8bd46
IM
1757}
1758
69be72c1 1759static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1760{
831451ac
PZ
1761 if (sleep) {
1762 if (p->se.last_wakeup) {
1763 update_avg(&p->se.avg_overlap,
1764 p->se.sum_exec_runtime - p->se.last_wakeup);
1765 p->se.last_wakeup = 0;
1766 } else {
1767 update_avg(&p->se.avg_wakeup,
1768 sysctl_sched_wakeup_granularity);
1769 }
2087a1ad
GH
1770 }
1771
46ac22ba 1772 sched_info_dequeued(p);
f02231e5 1773 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1774 p->se.on_rq = 0;
71f8bd46
IM
1775}
1776
14531189 1777/*
dd41f596 1778 * __normal_prio - return the priority that is based on the static prio
14531189 1779 */
14531189
IM
1780static inline int __normal_prio(struct task_struct *p)
1781{
dd41f596 1782 return p->static_prio;
14531189
IM
1783}
1784
b29739f9
IM
1785/*
1786 * Calculate the expected normal priority: i.e. priority
1787 * without taking RT-inheritance into account. Might be
1788 * boosted by interactivity modifiers. Changes upon fork,
1789 * setprio syscalls, and whenever the interactivity
1790 * estimator recalculates.
1791 */
36c8b586 1792static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1793{
1794 int prio;
1795
e05606d3 1796 if (task_has_rt_policy(p))
b29739f9
IM
1797 prio = MAX_RT_PRIO-1 - p->rt_priority;
1798 else
1799 prio = __normal_prio(p);
1800 return prio;
1801}
1802
1803/*
1804 * Calculate the current priority, i.e. the priority
1805 * taken into account by the scheduler. This value might
1806 * be boosted by RT tasks, or might be boosted by
1807 * interactivity modifiers. Will be RT if the task got
1808 * RT-boosted. If not then it returns p->normal_prio.
1809 */
36c8b586 1810static int effective_prio(struct task_struct *p)
b29739f9
IM
1811{
1812 p->normal_prio = normal_prio(p);
1813 /*
1814 * If we are RT tasks or we were boosted to RT priority,
1815 * keep the priority unchanged. Otherwise, update priority
1816 * to the normal priority:
1817 */
1818 if (!rt_prio(p->prio))
1819 return p->normal_prio;
1820 return p->prio;
1821}
1822
1da177e4 1823/*
dd41f596 1824 * activate_task - move a task to the runqueue.
1da177e4 1825 */
dd41f596 1826static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1827{
d9514f6c 1828 if (task_contributes_to_load(p))
dd41f596 1829 rq->nr_uninterruptible--;
1da177e4 1830
8159f87e 1831 enqueue_task(rq, p, wakeup);
c09595f6 1832 inc_nr_running(rq);
1da177e4
LT
1833}
1834
1da177e4
LT
1835/*
1836 * deactivate_task - remove a task from the runqueue.
1837 */
2e1cb74a 1838static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1839{
d9514f6c 1840 if (task_contributes_to_load(p))
dd41f596
IM
1841 rq->nr_uninterruptible++;
1842
69be72c1 1843 dequeue_task(rq, p, sleep);
c09595f6 1844 dec_nr_running(rq);
1da177e4
LT
1845}
1846
1da177e4
LT
1847/**
1848 * task_curr - is this task currently executing on a CPU?
1849 * @p: the task in question.
1850 */
36c8b586 1851inline int task_curr(const struct task_struct *p)
1da177e4
LT
1852{
1853 return cpu_curr(task_cpu(p)) == p;
1854}
1855
dd41f596
IM
1856static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1857{
6f505b16 1858 set_task_rq(p, cpu);
dd41f596 1859#ifdef CONFIG_SMP
ce96b5ac
DA
1860 /*
1861 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1862 * successfuly executed on another CPU. We must ensure that updates of
1863 * per-task data have been completed by this moment.
1864 */
1865 smp_wmb();
dd41f596 1866 task_thread_info(p)->cpu = cpu;
dd41f596 1867#endif
2dd73a4f
PW
1868}
1869
cb469845
SR
1870static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1871 const struct sched_class *prev_class,
1872 int oldprio, int running)
1873{
1874 if (prev_class != p->sched_class) {
1875 if (prev_class->switched_from)
1876 prev_class->switched_from(rq, p, running);
1877 p->sched_class->switched_to(rq, p, running);
1878 } else
1879 p->sched_class->prio_changed(rq, p, oldprio, running);
1880}
1881
1da177e4 1882#ifdef CONFIG_SMP
c65cc870 1883
e958b360
TG
1884/* Used instead of source_load when we know the type == 0 */
1885static unsigned long weighted_cpuload(const int cpu)
1886{
1887 return cpu_rq(cpu)->load.weight;
1888}
1889
cc367732
IM
1890/*
1891 * Is this task likely cache-hot:
1892 */
e7693a36 1893static int
cc367732
IM
1894task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1895{
1896 s64 delta;
1897
f540a608
IM
1898 /*
1899 * Buddy candidates are cache hot:
1900 */
4793241b
PZ
1901 if (sched_feat(CACHE_HOT_BUDDY) &&
1902 (&p->se == cfs_rq_of(&p->se)->next ||
1903 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1904 return 1;
1905
cc367732
IM
1906 if (p->sched_class != &fair_sched_class)
1907 return 0;
1908
6bc1665b
IM
1909 if (sysctl_sched_migration_cost == -1)
1910 return 1;
1911 if (sysctl_sched_migration_cost == 0)
1912 return 0;
1913
cc367732
IM
1914 delta = now - p->se.exec_start;
1915
1916 return delta < (s64)sysctl_sched_migration_cost;
1917}
1918
1919
dd41f596 1920void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1921{
dd41f596
IM
1922 int old_cpu = task_cpu(p);
1923 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1924 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1925 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1926 u64 clock_offset;
dd41f596
IM
1927
1928 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1929
cbc34ed1
PZ
1930 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1931
6cfb0d5d
IM
1932#ifdef CONFIG_SCHEDSTATS
1933 if (p->se.wait_start)
1934 p->se.wait_start -= clock_offset;
dd41f596
IM
1935 if (p->se.sleep_start)
1936 p->se.sleep_start -= clock_offset;
1937 if (p->se.block_start)
1938 p->se.block_start -= clock_offset;
cc367732
IM
1939 if (old_cpu != new_cpu) {
1940 schedstat_inc(p, se.nr_migrations);
1941 if (task_hot(p, old_rq->clock, NULL))
1942 schedstat_inc(p, se.nr_forced2_migrations);
1943 }
6cfb0d5d 1944#endif
2830cf8c
SV
1945 p->se.vruntime -= old_cfsrq->min_vruntime -
1946 new_cfsrq->min_vruntime;
dd41f596
IM
1947
1948 __set_task_cpu(p, new_cpu);
c65cc870
IM
1949}
1950
70b97a7f 1951struct migration_req {
1da177e4 1952 struct list_head list;
1da177e4 1953
36c8b586 1954 struct task_struct *task;
1da177e4
LT
1955 int dest_cpu;
1956
1da177e4 1957 struct completion done;
70b97a7f 1958};
1da177e4
LT
1959
1960/*
1961 * The task's runqueue lock must be held.
1962 * Returns true if you have to wait for migration thread.
1963 */
36c8b586 1964static int
70b97a7f 1965migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1966{
70b97a7f 1967 struct rq *rq = task_rq(p);
1da177e4
LT
1968
1969 /*
1970 * If the task is not on a runqueue (and not running), then
1971 * it is sufficient to simply update the task's cpu field.
1972 */
dd41f596 1973 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1974 set_task_cpu(p, dest_cpu);
1975 return 0;
1976 }
1977
1978 init_completion(&req->done);
1da177e4
LT
1979 req->task = p;
1980 req->dest_cpu = dest_cpu;
1981 list_add(&req->list, &rq->migration_queue);
48f24c4d 1982
1da177e4
LT
1983 return 1;
1984}
1985
1986/*
1987 * wait_task_inactive - wait for a thread to unschedule.
1988 *
85ba2d86
RM
1989 * If @match_state is nonzero, it's the @p->state value just checked and
1990 * not expected to change. If it changes, i.e. @p might have woken up,
1991 * then return zero. When we succeed in waiting for @p to be off its CPU,
1992 * we return a positive number (its total switch count). If a second call
1993 * a short while later returns the same number, the caller can be sure that
1994 * @p has remained unscheduled the whole time.
1995 *
1da177e4
LT
1996 * The caller must ensure that the task *will* unschedule sometime soon,
1997 * else this function might spin for a *long* time. This function can't
1998 * be called with interrupts off, or it may introduce deadlock with
1999 * smp_call_function() if an IPI is sent by the same process we are
2000 * waiting to become inactive.
2001 */
85ba2d86 2002unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2003{
2004 unsigned long flags;
dd41f596 2005 int running, on_rq;
85ba2d86 2006 unsigned long ncsw;
70b97a7f 2007 struct rq *rq;
1da177e4 2008
3a5c359a
AK
2009 for (;;) {
2010 /*
2011 * We do the initial early heuristics without holding
2012 * any task-queue locks at all. We'll only try to get
2013 * the runqueue lock when things look like they will
2014 * work out!
2015 */
2016 rq = task_rq(p);
fa490cfd 2017
3a5c359a
AK
2018 /*
2019 * If the task is actively running on another CPU
2020 * still, just relax and busy-wait without holding
2021 * any locks.
2022 *
2023 * NOTE! Since we don't hold any locks, it's not
2024 * even sure that "rq" stays as the right runqueue!
2025 * But we don't care, since "task_running()" will
2026 * return false if the runqueue has changed and p
2027 * is actually now running somewhere else!
2028 */
85ba2d86
RM
2029 while (task_running(rq, p)) {
2030 if (match_state && unlikely(p->state != match_state))
2031 return 0;
3a5c359a 2032 cpu_relax();
85ba2d86 2033 }
fa490cfd 2034
3a5c359a
AK
2035 /*
2036 * Ok, time to look more closely! We need the rq
2037 * lock now, to be *sure*. If we're wrong, we'll
2038 * just go back and repeat.
2039 */
2040 rq = task_rq_lock(p, &flags);
0a16b607 2041 trace_sched_wait_task(rq, p);
3a5c359a
AK
2042 running = task_running(rq, p);
2043 on_rq = p->se.on_rq;
85ba2d86 2044 ncsw = 0;
f31e11d8 2045 if (!match_state || p->state == match_state)
93dcf55f 2046 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2047 task_rq_unlock(rq, &flags);
fa490cfd 2048
85ba2d86
RM
2049 /*
2050 * If it changed from the expected state, bail out now.
2051 */
2052 if (unlikely(!ncsw))
2053 break;
2054
3a5c359a
AK
2055 /*
2056 * Was it really running after all now that we
2057 * checked with the proper locks actually held?
2058 *
2059 * Oops. Go back and try again..
2060 */
2061 if (unlikely(running)) {
2062 cpu_relax();
2063 continue;
2064 }
fa490cfd 2065
3a5c359a
AK
2066 /*
2067 * It's not enough that it's not actively running,
2068 * it must be off the runqueue _entirely_, and not
2069 * preempted!
2070 *
2071 * So if it wa still runnable (but just not actively
2072 * running right now), it's preempted, and we should
2073 * yield - it could be a while.
2074 */
2075 if (unlikely(on_rq)) {
2076 schedule_timeout_uninterruptible(1);
2077 continue;
2078 }
fa490cfd 2079
3a5c359a
AK
2080 /*
2081 * Ahh, all good. It wasn't running, and it wasn't
2082 * runnable, which means that it will never become
2083 * running in the future either. We're all done!
2084 */
2085 break;
2086 }
85ba2d86
RM
2087
2088 return ncsw;
1da177e4
LT
2089}
2090
2091/***
2092 * kick_process - kick a running thread to enter/exit the kernel
2093 * @p: the to-be-kicked thread
2094 *
2095 * Cause a process which is running on another CPU to enter
2096 * kernel-mode, without any delay. (to get signals handled.)
2097 *
2098 * NOTE: this function doesnt have to take the runqueue lock,
2099 * because all it wants to ensure is that the remote task enters
2100 * the kernel. If the IPI races and the task has been migrated
2101 * to another CPU then no harm is done and the purpose has been
2102 * achieved as well.
2103 */
36c8b586 2104void kick_process(struct task_struct *p)
1da177e4
LT
2105{
2106 int cpu;
2107
2108 preempt_disable();
2109 cpu = task_cpu(p);
2110 if ((cpu != smp_processor_id()) && task_curr(p))
2111 smp_send_reschedule(cpu);
2112 preempt_enable();
2113}
2114
2115/*
2dd73a4f
PW
2116 * Return a low guess at the load of a migration-source cpu weighted
2117 * according to the scheduling class and "nice" value.
1da177e4
LT
2118 *
2119 * We want to under-estimate the load of migration sources, to
2120 * balance conservatively.
2121 */
a9957449 2122static unsigned long source_load(int cpu, int type)
1da177e4 2123{
70b97a7f 2124 struct rq *rq = cpu_rq(cpu);
dd41f596 2125 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2126
93b75217 2127 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2128 return total;
b910472d 2129
dd41f596 2130 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2131}
2132
2133/*
2dd73a4f
PW
2134 * Return a high guess at the load of a migration-target cpu weighted
2135 * according to the scheduling class and "nice" value.
1da177e4 2136 */
a9957449 2137static unsigned long target_load(int cpu, int type)
1da177e4 2138{
70b97a7f 2139 struct rq *rq = cpu_rq(cpu);
dd41f596 2140 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2141
93b75217 2142 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2143 return total;
3b0bd9bc 2144
dd41f596 2145 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2146}
2147
147cbb4b
NP
2148/*
2149 * find_idlest_group finds and returns the least busy CPU group within the
2150 * domain.
2151 */
2152static struct sched_group *
2153find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2154{
2155 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2156 unsigned long min_load = ULONG_MAX, this_load = 0;
2157 int load_idx = sd->forkexec_idx;
2158 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2159
2160 do {
2161 unsigned long load, avg_load;
2162 int local_group;
2163 int i;
2164
da5a5522 2165 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2166 if (!cpumask_intersects(sched_group_cpus(group),
2167 &p->cpus_allowed))
3a5c359a 2168 continue;
da5a5522 2169
758b2cdc
RR
2170 local_group = cpumask_test_cpu(this_cpu,
2171 sched_group_cpus(group));
147cbb4b
NP
2172
2173 /* Tally up the load of all CPUs in the group */
2174 avg_load = 0;
2175
758b2cdc 2176 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2177 /* Bias balancing toward cpus of our domain */
2178 if (local_group)
2179 load = source_load(i, load_idx);
2180 else
2181 load = target_load(i, load_idx);
2182
2183 avg_load += load;
2184 }
2185
2186 /* Adjust by relative CPU power of the group */
5517d86b
ED
2187 avg_load = sg_div_cpu_power(group,
2188 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2189
2190 if (local_group) {
2191 this_load = avg_load;
2192 this = group;
2193 } else if (avg_load < min_load) {
2194 min_load = avg_load;
2195 idlest = group;
2196 }
3a5c359a 2197 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2198
2199 if (!idlest || 100*this_load < imbalance*min_load)
2200 return NULL;
2201 return idlest;
2202}
2203
2204/*
0feaece9 2205 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2206 */
95cdf3b7 2207static int
758b2cdc 2208find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2209{
2210 unsigned long load, min_load = ULONG_MAX;
2211 int idlest = -1;
2212 int i;
2213
da5a5522 2214 /* Traverse only the allowed CPUs */
758b2cdc 2215 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2216 load = weighted_cpuload(i);
147cbb4b
NP
2217
2218 if (load < min_load || (load == min_load && i == this_cpu)) {
2219 min_load = load;
2220 idlest = i;
2221 }
2222 }
2223
2224 return idlest;
2225}
2226
476d139c
NP
2227/*
2228 * sched_balance_self: balance the current task (running on cpu) in domains
2229 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2230 * SD_BALANCE_EXEC.
2231 *
2232 * Balance, ie. select the least loaded group.
2233 *
2234 * Returns the target CPU number, or the same CPU if no balancing is needed.
2235 *
2236 * preempt must be disabled.
2237 */
2238static int sched_balance_self(int cpu, int flag)
2239{
2240 struct task_struct *t = current;
2241 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2242
c96d145e 2243 for_each_domain(cpu, tmp) {
9761eea8
IM
2244 /*
2245 * If power savings logic is enabled for a domain, stop there.
2246 */
5c45bf27
SS
2247 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2248 break;
476d139c
NP
2249 if (tmp->flags & flag)
2250 sd = tmp;
c96d145e 2251 }
476d139c 2252
039a1c41
PZ
2253 if (sd)
2254 update_shares(sd);
2255
476d139c 2256 while (sd) {
476d139c 2257 struct sched_group *group;
1a848870
SS
2258 int new_cpu, weight;
2259
2260 if (!(sd->flags & flag)) {
2261 sd = sd->child;
2262 continue;
2263 }
476d139c 2264
476d139c 2265 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2266 if (!group) {
2267 sd = sd->child;
2268 continue;
2269 }
476d139c 2270
758b2cdc 2271 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2272 if (new_cpu == -1 || new_cpu == cpu) {
2273 /* Now try balancing at a lower domain level of cpu */
2274 sd = sd->child;
2275 continue;
2276 }
476d139c 2277
1a848870 2278 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2279 cpu = new_cpu;
758b2cdc 2280 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2281 sd = NULL;
476d139c 2282 for_each_domain(cpu, tmp) {
758b2cdc 2283 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2284 break;
2285 if (tmp->flags & flag)
2286 sd = tmp;
2287 }
2288 /* while loop will break here if sd == NULL */
2289 }
2290
2291 return cpu;
2292}
2293
2294#endif /* CONFIG_SMP */
1da177e4 2295
1da177e4
LT
2296/***
2297 * try_to_wake_up - wake up a thread
2298 * @p: the to-be-woken-up thread
2299 * @state: the mask of task states that can be woken
2300 * @sync: do a synchronous wakeup?
2301 *
2302 * Put it on the run-queue if it's not already there. The "current"
2303 * thread is always on the run-queue (except when the actual
2304 * re-schedule is in progress), and as such you're allowed to do
2305 * the simpler "current->state = TASK_RUNNING" to mark yourself
2306 * runnable without the overhead of this.
2307 *
2308 * returns failure only if the task is already active.
2309 */
36c8b586 2310static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2311{
cc367732 2312 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2313 unsigned long flags;
2314 long old_state;
70b97a7f 2315 struct rq *rq;
1da177e4 2316
b85d0667
IM
2317 if (!sched_feat(SYNC_WAKEUPS))
2318 sync = 0;
2319
2398f2c6
PZ
2320#ifdef CONFIG_SMP
2321 if (sched_feat(LB_WAKEUP_UPDATE)) {
2322 struct sched_domain *sd;
2323
2324 this_cpu = raw_smp_processor_id();
2325 cpu = task_cpu(p);
2326
2327 for_each_domain(this_cpu, sd) {
758b2cdc 2328 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2329 update_shares(sd);
2330 break;
2331 }
2332 }
2333 }
2334#endif
2335
04e2f174 2336 smp_wmb();
1da177e4 2337 rq = task_rq_lock(p, &flags);
03e89e45 2338 update_rq_clock(rq);
1da177e4
LT
2339 old_state = p->state;
2340 if (!(old_state & state))
2341 goto out;
2342
dd41f596 2343 if (p->se.on_rq)
1da177e4
LT
2344 goto out_running;
2345
2346 cpu = task_cpu(p);
cc367732 2347 orig_cpu = cpu;
1da177e4
LT
2348 this_cpu = smp_processor_id();
2349
2350#ifdef CONFIG_SMP
2351 if (unlikely(task_running(rq, p)))
2352 goto out_activate;
2353
5d2f5a61
DA
2354 cpu = p->sched_class->select_task_rq(p, sync);
2355 if (cpu != orig_cpu) {
2356 set_task_cpu(p, cpu);
1da177e4
LT
2357 task_rq_unlock(rq, &flags);
2358 /* might preempt at this point */
2359 rq = task_rq_lock(p, &flags);
2360 old_state = p->state;
2361 if (!(old_state & state))
2362 goto out;
dd41f596 2363 if (p->se.on_rq)
1da177e4
LT
2364 goto out_running;
2365
2366 this_cpu = smp_processor_id();
2367 cpu = task_cpu(p);
2368 }
2369
e7693a36
GH
2370#ifdef CONFIG_SCHEDSTATS
2371 schedstat_inc(rq, ttwu_count);
2372 if (cpu == this_cpu)
2373 schedstat_inc(rq, ttwu_local);
2374 else {
2375 struct sched_domain *sd;
2376 for_each_domain(this_cpu, sd) {
758b2cdc 2377 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2378 schedstat_inc(sd, ttwu_wake_remote);
2379 break;
2380 }
2381 }
2382 }
6d6bc0ad 2383#endif /* CONFIG_SCHEDSTATS */
e7693a36 2384
1da177e4
LT
2385out_activate:
2386#endif /* CONFIG_SMP */
cc367732
IM
2387 schedstat_inc(p, se.nr_wakeups);
2388 if (sync)
2389 schedstat_inc(p, se.nr_wakeups_sync);
2390 if (orig_cpu != cpu)
2391 schedstat_inc(p, se.nr_wakeups_migrate);
2392 if (cpu == this_cpu)
2393 schedstat_inc(p, se.nr_wakeups_local);
2394 else
2395 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2396 activate_task(rq, p, 1);
1da177e4
LT
2397 success = 1;
2398
831451ac
PZ
2399 /*
2400 * Only attribute actual wakeups done by this task.
2401 */
2402 if (!in_interrupt()) {
2403 struct sched_entity *se = &current->se;
2404 u64 sample = se->sum_exec_runtime;
2405
2406 if (se->last_wakeup)
2407 sample -= se->last_wakeup;
2408 else
2409 sample -= se->start_runtime;
2410 update_avg(&se->avg_wakeup, sample);
2411
2412 se->last_wakeup = se->sum_exec_runtime;
2413 }
2414
1da177e4 2415out_running:
468a15bb 2416 trace_sched_wakeup(rq, p, success);
15afe09b 2417 check_preempt_curr(rq, p, sync);
4ae7d5ce 2418
1da177e4 2419 p->state = TASK_RUNNING;
9a897c5a
SR
2420#ifdef CONFIG_SMP
2421 if (p->sched_class->task_wake_up)
2422 p->sched_class->task_wake_up(rq, p);
2423#endif
1da177e4
LT
2424out:
2425 task_rq_unlock(rq, &flags);
2426
2427 return success;
2428}
2429
7ad5b3a5 2430int wake_up_process(struct task_struct *p)
1da177e4 2431{
d9514f6c 2432 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2433}
1da177e4
LT
2434EXPORT_SYMBOL(wake_up_process);
2435
7ad5b3a5 2436int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2437{
2438 return try_to_wake_up(p, state, 0);
2439}
2440
1da177e4
LT
2441/*
2442 * Perform scheduler related setup for a newly forked process p.
2443 * p is forked by current.
dd41f596
IM
2444 *
2445 * __sched_fork() is basic setup used by init_idle() too:
2446 */
2447static void __sched_fork(struct task_struct *p)
2448{
dd41f596
IM
2449 p->se.exec_start = 0;
2450 p->se.sum_exec_runtime = 0;
f6cf891c 2451 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2452 p->se.last_wakeup = 0;
2453 p->se.avg_overlap = 0;
831451ac
PZ
2454 p->se.start_runtime = 0;
2455 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2456
2457#ifdef CONFIG_SCHEDSTATS
2458 p->se.wait_start = 0;
dd41f596
IM
2459 p->se.sum_sleep_runtime = 0;
2460 p->se.sleep_start = 0;
dd41f596
IM
2461 p->se.block_start = 0;
2462 p->se.sleep_max = 0;
2463 p->se.block_max = 0;
2464 p->se.exec_max = 0;
eba1ed4b 2465 p->se.slice_max = 0;
dd41f596 2466 p->se.wait_max = 0;
6cfb0d5d 2467#endif
476d139c 2468
fa717060 2469 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2470 p->se.on_rq = 0;
4a55bd5e 2471 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2472
e107be36
AK
2473#ifdef CONFIG_PREEMPT_NOTIFIERS
2474 INIT_HLIST_HEAD(&p->preempt_notifiers);
2475#endif
2476
1da177e4
LT
2477 /*
2478 * We mark the process as running here, but have not actually
2479 * inserted it onto the runqueue yet. This guarantees that
2480 * nobody will actually run it, and a signal or other external
2481 * event cannot wake it up and insert it on the runqueue either.
2482 */
2483 p->state = TASK_RUNNING;
dd41f596
IM
2484}
2485
2486/*
2487 * fork()/clone()-time setup:
2488 */
2489void sched_fork(struct task_struct *p, int clone_flags)
2490{
2491 int cpu = get_cpu();
2492
2493 __sched_fork(p);
2494
2495#ifdef CONFIG_SMP
2496 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2497#endif
02e4bac2 2498 set_task_cpu(p, cpu);
b29739f9
IM
2499
2500 /*
2501 * Make sure we do not leak PI boosting priority to the child:
2502 */
2503 p->prio = current->normal_prio;
2ddbf952
HS
2504 if (!rt_prio(p->prio))
2505 p->sched_class = &fair_sched_class;
b29739f9 2506
52f17b6c 2507#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2508 if (likely(sched_info_on()))
52f17b6c 2509 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2510#endif
d6077cb8 2511#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2512 p->oncpu = 0;
2513#endif
1da177e4 2514#ifdef CONFIG_PREEMPT
4866cde0 2515 /* Want to start with kernel preemption disabled. */
a1261f54 2516 task_thread_info(p)->preempt_count = 1;
1da177e4 2517#endif
917b627d
GH
2518 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2519
476d139c 2520 put_cpu();
1da177e4
LT
2521}
2522
2523/*
2524 * wake_up_new_task - wake up a newly created task for the first time.
2525 *
2526 * This function will do some initial scheduler statistics housekeeping
2527 * that must be done for every newly created context, then puts the task
2528 * on the runqueue and wakes it.
2529 */
7ad5b3a5 2530void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2531{
2532 unsigned long flags;
dd41f596 2533 struct rq *rq;
1da177e4
LT
2534
2535 rq = task_rq_lock(p, &flags);
147cbb4b 2536 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2537 update_rq_clock(rq);
1da177e4
LT
2538
2539 p->prio = effective_prio(p);
2540
b9dca1e0 2541 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2542 activate_task(rq, p, 0);
1da177e4 2543 } else {
1da177e4 2544 /*
dd41f596
IM
2545 * Let the scheduling class do new task startup
2546 * management (if any):
1da177e4 2547 */
ee0827d8 2548 p->sched_class->task_new(rq, p);
c09595f6 2549 inc_nr_running(rq);
1da177e4 2550 }
c71dd42d 2551 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2552 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2553#ifdef CONFIG_SMP
2554 if (p->sched_class->task_wake_up)
2555 p->sched_class->task_wake_up(rq, p);
2556#endif
dd41f596 2557 task_rq_unlock(rq, &flags);
1da177e4
LT
2558}
2559
e107be36
AK
2560#ifdef CONFIG_PREEMPT_NOTIFIERS
2561
2562/**
421cee29
RD
2563 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2564 * @notifier: notifier struct to register
e107be36
AK
2565 */
2566void preempt_notifier_register(struct preempt_notifier *notifier)
2567{
2568 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2569}
2570EXPORT_SYMBOL_GPL(preempt_notifier_register);
2571
2572/**
2573 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2574 * @notifier: notifier struct to unregister
e107be36
AK
2575 *
2576 * This is safe to call from within a preemption notifier.
2577 */
2578void preempt_notifier_unregister(struct preempt_notifier *notifier)
2579{
2580 hlist_del(&notifier->link);
2581}
2582EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2583
2584static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2585{
2586 struct preempt_notifier *notifier;
2587 struct hlist_node *node;
2588
2589 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2590 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2591}
2592
2593static void
2594fire_sched_out_preempt_notifiers(struct task_struct *curr,
2595 struct task_struct *next)
2596{
2597 struct preempt_notifier *notifier;
2598 struct hlist_node *node;
2599
2600 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2601 notifier->ops->sched_out(notifier, next);
2602}
2603
6d6bc0ad 2604#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2605
2606static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2607{
2608}
2609
2610static void
2611fire_sched_out_preempt_notifiers(struct task_struct *curr,
2612 struct task_struct *next)
2613{
2614}
2615
6d6bc0ad 2616#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2617
4866cde0
NP
2618/**
2619 * prepare_task_switch - prepare to switch tasks
2620 * @rq: the runqueue preparing to switch
421cee29 2621 * @prev: the current task that is being switched out
4866cde0
NP
2622 * @next: the task we are going to switch to.
2623 *
2624 * This is called with the rq lock held and interrupts off. It must
2625 * be paired with a subsequent finish_task_switch after the context
2626 * switch.
2627 *
2628 * prepare_task_switch sets up locking and calls architecture specific
2629 * hooks.
2630 */
e107be36
AK
2631static inline void
2632prepare_task_switch(struct rq *rq, struct task_struct *prev,
2633 struct task_struct *next)
4866cde0 2634{
e107be36 2635 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2636 prepare_lock_switch(rq, next);
2637 prepare_arch_switch(next);
2638}
2639
1da177e4
LT
2640/**
2641 * finish_task_switch - clean up after a task-switch
344babaa 2642 * @rq: runqueue associated with task-switch
1da177e4
LT
2643 * @prev: the thread we just switched away from.
2644 *
4866cde0
NP
2645 * finish_task_switch must be called after the context switch, paired
2646 * with a prepare_task_switch call before the context switch.
2647 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2648 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2649 *
2650 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2651 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2652 * with the lock held can cause deadlocks; see schedule() for
2653 * details.)
2654 */
a9957449 2655static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2656 __releases(rq->lock)
2657{
1da177e4 2658 struct mm_struct *mm = rq->prev_mm;
55a101f8 2659 long prev_state;
967fc046
GH
2660#ifdef CONFIG_SMP
2661 int post_schedule = 0;
2662
2663 if (current->sched_class->needs_post_schedule)
2664 post_schedule = current->sched_class->needs_post_schedule(rq);
2665#endif
1da177e4
LT
2666
2667 rq->prev_mm = NULL;
2668
2669 /*
2670 * A task struct has one reference for the use as "current".
c394cc9f 2671 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2672 * schedule one last time. The schedule call will never return, and
2673 * the scheduled task must drop that reference.
c394cc9f 2674 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2675 * still held, otherwise prev could be scheduled on another cpu, die
2676 * there before we look at prev->state, and then the reference would
2677 * be dropped twice.
2678 * Manfred Spraul <manfred@colorfullife.com>
2679 */
55a101f8 2680 prev_state = prev->state;
4866cde0
NP
2681 finish_arch_switch(prev);
2682 finish_lock_switch(rq, prev);
9a897c5a 2683#ifdef CONFIG_SMP
967fc046 2684 if (post_schedule)
9a897c5a
SR
2685 current->sched_class->post_schedule(rq);
2686#endif
e8fa1362 2687
e107be36 2688 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2689 if (mm)
2690 mmdrop(mm);
c394cc9f 2691 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2692 /*
2693 * Remove function-return probe instances associated with this
2694 * task and put them back on the free list.
9761eea8 2695 */
c6fd91f0 2696 kprobe_flush_task(prev);
1da177e4 2697 put_task_struct(prev);
c6fd91f0 2698 }
1da177e4
LT
2699}
2700
2701/**
2702 * schedule_tail - first thing a freshly forked thread must call.
2703 * @prev: the thread we just switched away from.
2704 */
36c8b586 2705asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2706 __releases(rq->lock)
2707{
70b97a7f
IM
2708 struct rq *rq = this_rq();
2709
4866cde0
NP
2710 finish_task_switch(rq, prev);
2711#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2712 /* In this case, finish_task_switch does not reenable preemption */
2713 preempt_enable();
2714#endif
1da177e4 2715 if (current->set_child_tid)
b488893a 2716 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2717}
2718
2719/*
2720 * context_switch - switch to the new MM and the new
2721 * thread's register state.
2722 */
dd41f596 2723static inline void
70b97a7f 2724context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2725 struct task_struct *next)
1da177e4 2726{
dd41f596 2727 struct mm_struct *mm, *oldmm;
1da177e4 2728
e107be36 2729 prepare_task_switch(rq, prev, next);
0a16b607 2730 trace_sched_switch(rq, prev, next);
dd41f596
IM
2731 mm = next->mm;
2732 oldmm = prev->active_mm;
9226d125
ZA
2733 /*
2734 * For paravirt, this is coupled with an exit in switch_to to
2735 * combine the page table reload and the switch backend into
2736 * one hypercall.
2737 */
2738 arch_enter_lazy_cpu_mode();
2739
dd41f596 2740 if (unlikely(!mm)) {
1da177e4
LT
2741 next->active_mm = oldmm;
2742 atomic_inc(&oldmm->mm_count);
2743 enter_lazy_tlb(oldmm, next);
2744 } else
2745 switch_mm(oldmm, mm, next);
2746
dd41f596 2747 if (unlikely(!prev->mm)) {
1da177e4 2748 prev->active_mm = NULL;
1da177e4
LT
2749 rq->prev_mm = oldmm;
2750 }
3a5f5e48
IM
2751 /*
2752 * Since the runqueue lock will be released by the next
2753 * task (which is an invalid locking op but in the case
2754 * of the scheduler it's an obvious special-case), so we
2755 * do an early lockdep release here:
2756 */
2757#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2758 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2759#endif
1da177e4
LT
2760
2761 /* Here we just switch the register state and the stack. */
2762 switch_to(prev, next, prev);
2763
dd41f596
IM
2764 barrier();
2765 /*
2766 * this_rq must be evaluated again because prev may have moved
2767 * CPUs since it called schedule(), thus the 'rq' on its stack
2768 * frame will be invalid.
2769 */
2770 finish_task_switch(this_rq(), prev);
1da177e4
LT
2771}
2772
2773/*
2774 * nr_running, nr_uninterruptible and nr_context_switches:
2775 *
2776 * externally visible scheduler statistics: current number of runnable
2777 * threads, current number of uninterruptible-sleeping threads, total
2778 * number of context switches performed since bootup.
2779 */
2780unsigned long nr_running(void)
2781{
2782 unsigned long i, sum = 0;
2783
2784 for_each_online_cpu(i)
2785 sum += cpu_rq(i)->nr_running;
2786
2787 return sum;
2788}
2789
2790unsigned long nr_uninterruptible(void)
2791{
2792 unsigned long i, sum = 0;
2793
0a945022 2794 for_each_possible_cpu(i)
1da177e4
LT
2795 sum += cpu_rq(i)->nr_uninterruptible;
2796
2797 /*
2798 * Since we read the counters lockless, it might be slightly
2799 * inaccurate. Do not allow it to go below zero though:
2800 */
2801 if (unlikely((long)sum < 0))
2802 sum = 0;
2803
2804 return sum;
2805}
2806
2807unsigned long long nr_context_switches(void)
2808{
cc94abfc
SR
2809 int i;
2810 unsigned long long sum = 0;
1da177e4 2811
0a945022 2812 for_each_possible_cpu(i)
1da177e4
LT
2813 sum += cpu_rq(i)->nr_switches;
2814
2815 return sum;
2816}
2817
2818unsigned long nr_iowait(void)
2819{
2820 unsigned long i, sum = 0;
2821
0a945022 2822 for_each_possible_cpu(i)
1da177e4
LT
2823 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2824
2825 return sum;
2826}
2827
db1b1fef
JS
2828unsigned long nr_active(void)
2829{
2830 unsigned long i, running = 0, uninterruptible = 0;
2831
2832 for_each_online_cpu(i) {
2833 running += cpu_rq(i)->nr_running;
2834 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2835 }
2836
2837 if (unlikely((long)uninterruptible < 0))
2838 uninterruptible = 0;
2839
2840 return running + uninterruptible;
2841}
2842
48f24c4d 2843/*
dd41f596
IM
2844 * Update rq->cpu_load[] statistics. This function is usually called every
2845 * scheduler tick (TICK_NSEC).
48f24c4d 2846 */
dd41f596 2847static void update_cpu_load(struct rq *this_rq)
48f24c4d 2848{
495eca49 2849 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2850 int i, scale;
2851
2852 this_rq->nr_load_updates++;
dd41f596
IM
2853
2854 /* Update our load: */
2855 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2856 unsigned long old_load, new_load;
2857
2858 /* scale is effectively 1 << i now, and >> i divides by scale */
2859
2860 old_load = this_rq->cpu_load[i];
2861 new_load = this_load;
a25707f3
IM
2862 /*
2863 * Round up the averaging division if load is increasing. This
2864 * prevents us from getting stuck on 9 if the load is 10, for
2865 * example.
2866 */
2867 if (new_load > old_load)
2868 new_load += scale-1;
dd41f596
IM
2869 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2870 }
48f24c4d
IM
2871}
2872
dd41f596
IM
2873#ifdef CONFIG_SMP
2874
1da177e4
LT
2875/*
2876 * double_rq_lock - safely lock two runqueues
2877 *
2878 * Note this does not disable interrupts like task_rq_lock,
2879 * you need to do so manually before calling.
2880 */
70b97a7f 2881static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2882 __acquires(rq1->lock)
2883 __acquires(rq2->lock)
2884{
054b9108 2885 BUG_ON(!irqs_disabled());
1da177e4
LT
2886 if (rq1 == rq2) {
2887 spin_lock(&rq1->lock);
2888 __acquire(rq2->lock); /* Fake it out ;) */
2889 } else {
c96d145e 2890 if (rq1 < rq2) {
1da177e4 2891 spin_lock(&rq1->lock);
5e710e37 2892 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2893 } else {
2894 spin_lock(&rq2->lock);
5e710e37 2895 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2896 }
2897 }
6e82a3be
IM
2898 update_rq_clock(rq1);
2899 update_rq_clock(rq2);
1da177e4
LT
2900}
2901
2902/*
2903 * double_rq_unlock - safely unlock two runqueues
2904 *
2905 * Note this does not restore interrupts like task_rq_unlock,
2906 * you need to do so manually after calling.
2907 */
70b97a7f 2908static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2909 __releases(rq1->lock)
2910 __releases(rq2->lock)
2911{
2912 spin_unlock(&rq1->lock);
2913 if (rq1 != rq2)
2914 spin_unlock(&rq2->lock);
2915 else
2916 __release(rq2->lock);
2917}
2918
1da177e4
LT
2919/*
2920 * If dest_cpu is allowed for this process, migrate the task to it.
2921 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2922 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2923 * the cpu_allowed mask is restored.
2924 */
36c8b586 2925static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2926{
70b97a7f 2927 struct migration_req req;
1da177e4 2928 unsigned long flags;
70b97a7f 2929 struct rq *rq;
1da177e4
LT
2930
2931 rq = task_rq_lock(p, &flags);
96f874e2 2932 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 2933 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2934 goto out;
2935
2936 /* force the process onto the specified CPU */
2937 if (migrate_task(p, dest_cpu, &req)) {
2938 /* Need to wait for migration thread (might exit: take ref). */
2939 struct task_struct *mt = rq->migration_thread;
36c8b586 2940
1da177e4
LT
2941 get_task_struct(mt);
2942 task_rq_unlock(rq, &flags);
2943 wake_up_process(mt);
2944 put_task_struct(mt);
2945 wait_for_completion(&req.done);
36c8b586 2946
1da177e4
LT
2947 return;
2948 }
2949out:
2950 task_rq_unlock(rq, &flags);
2951}
2952
2953/*
476d139c
NP
2954 * sched_exec - execve() is a valuable balancing opportunity, because at
2955 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2956 */
2957void sched_exec(void)
2958{
1da177e4 2959 int new_cpu, this_cpu = get_cpu();
476d139c 2960 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2961 put_cpu();
476d139c
NP
2962 if (new_cpu != this_cpu)
2963 sched_migrate_task(current, new_cpu);
1da177e4
LT
2964}
2965
2966/*
2967 * pull_task - move a task from a remote runqueue to the local runqueue.
2968 * Both runqueues must be locked.
2969 */
dd41f596
IM
2970static void pull_task(struct rq *src_rq, struct task_struct *p,
2971 struct rq *this_rq, int this_cpu)
1da177e4 2972{
2e1cb74a 2973 deactivate_task(src_rq, p, 0);
1da177e4 2974 set_task_cpu(p, this_cpu);
dd41f596 2975 activate_task(this_rq, p, 0);
1da177e4
LT
2976 /*
2977 * Note that idle threads have a prio of MAX_PRIO, for this test
2978 * to be always true for them.
2979 */
15afe09b 2980 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2981}
2982
2983/*
2984 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2985 */
858119e1 2986static
70b97a7f 2987int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2988 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2989 int *all_pinned)
1da177e4
LT
2990{
2991 /*
2992 * We do not migrate tasks that are:
2993 * 1) running (obviously), or
2994 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2995 * 3) are cache-hot on their current CPU.
2996 */
96f874e2 2997 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 2998 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2999 return 0;
cc367732 3000 }
81026794
NP
3001 *all_pinned = 0;
3002
cc367732
IM
3003 if (task_running(rq, p)) {
3004 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3005 return 0;
cc367732 3006 }
1da177e4 3007
da84d961
IM
3008 /*
3009 * Aggressive migration if:
3010 * 1) task is cache cold, or
3011 * 2) too many balance attempts have failed.
3012 */
3013
6bc1665b
IM
3014 if (!task_hot(p, rq->clock, sd) ||
3015 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3016#ifdef CONFIG_SCHEDSTATS
cc367732 3017 if (task_hot(p, rq->clock, sd)) {
da84d961 3018 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3019 schedstat_inc(p, se.nr_forced_migrations);
3020 }
da84d961
IM
3021#endif
3022 return 1;
3023 }
3024
cc367732
IM
3025 if (task_hot(p, rq->clock, sd)) {
3026 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3027 return 0;
cc367732 3028 }
1da177e4
LT
3029 return 1;
3030}
3031
e1d1484f
PW
3032static unsigned long
3033balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3034 unsigned long max_load_move, struct sched_domain *sd,
3035 enum cpu_idle_type idle, int *all_pinned,
3036 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3037{
051c6764 3038 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3039 struct task_struct *p;
3040 long rem_load_move = max_load_move;
1da177e4 3041
e1d1484f 3042 if (max_load_move == 0)
1da177e4
LT
3043 goto out;
3044
81026794
NP
3045 pinned = 1;
3046
1da177e4 3047 /*
dd41f596 3048 * Start the load-balancing iterator:
1da177e4 3049 */
dd41f596
IM
3050 p = iterator->start(iterator->arg);
3051next:
b82d9fdd 3052 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3053 goto out;
051c6764
PZ
3054
3055 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3056 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3057 p = iterator->next(iterator->arg);
3058 goto next;
1da177e4
LT
3059 }
3060
dd41f596 3061 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3062 pulled++;
dd41f596 3063 rem_load_move -= p->se.load.weight;
1da177e4 3064
7e96fa58
GH
3065#ifdef CONFIG_PREEMPT
3066 /*
3067 * NEWIDLE balancing is a source of latency, so preemptible kernels
3068 * will stop after the first task is pulled to minimize the critical
3069 * section.
3070 */
3071 if (idle == CPU_NEWLY_IDLE)
3072 goto out;
3073#endif
3074
2dd73a4f 3075 /*
b82d9fdd 3076 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3077 */
e1d1484f 3078 if (rem_load_move > 0) {
a4ac01c3
PW
3079 if (p->prio < *this_best_prio)
3080 *this_best_prio = p->prio;
dd41f596
IM
3081 p = iterator->next(iterator->arg);
3082 goto next;
1da177e4
LT
3083 }
3084out:
3085 /*
e1d1484f 3086 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3087 * so we can safely collect pull_task() stats here rather than
3088 * inside pull_task().
3089 */
3090 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3091
3092 if (all_pinned)
3093 *all_pinned = pinned;
e1d1484f
PW
3094
3095 return max_load_move - rem_load_move;
1da177e4
LT
3096}
3097
dd41f596 3098/*
43010659
PW
3099 * move_tasks tries to move up to max_load_move weighted load from busiest to
3100 * this_rq, as part of a balancing operation within domain "sd".
3101 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3102 *
3103 * Called with both runqueues locked.
3104 */
3105static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3106 unsigned long max_load_move,
dd41f596
IM
3107 struct sched_domain *sd, enum cpu_idle_type idle,
3108 int *all_pinned)
3109{
5522d5d5 3110 const struct sched_class *class = sched_class_highest;
43010659 3111 unsigned long total_load_moved = 0;
a4ac01c3 3112 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3113
3114 do {
43010659
PW
3115 total_load_moved +=
3116 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3117 max_load_move - total_load_moved,
a4ac01c3 3118 sd, idle, all_pinned, &this_best_prio);
dd41f596 3119 class = class->next;
c4acb2c0 3120
7e96fa58
GH
3121#ifdef CONFIG_PREEMPT
3122 /*
3123 * NEWIDLE balancing is a source of latency, so preemptible
3124 * kernels will stop after the first task is pulled to minimize
3125 * the critical section.
3126 */
c4acb2c0
GH
3127 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3128 break;
7e96fa58 3129#endif
43010659 3130 } while (class && max_load_move > total_load_moved);
dd41f596 3131
43010659
PW
3132 return total_load_moved > 0;
3133}
3134
e1d1484f
PW
3135static int
3136iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3137 struct sched_domain *sd, enum cpu_idle_type idle,
3138 struct rq_iterator *iterator)
3139{
3140 struct task_struct *p = iterator->start(iterator->arg);
3141 int pinned = 0;
3142
3143 while (p) {
3144 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3145 pull_task(busiest, p, this_rq, this_cpu);
3146 /*
3147 * Right now, this is only the second place pull_task()
3148 * is called, so we can safely collect pull_task()
3149 * stats here rather than inside pull_task().
3150 */
3151 schedstat_inc(sd, lb_gained[idle]);
3152
3153 return 1;
3154 }
3155 p = iterator->next(iterator->arg);
3156 }
3157
3158 return 0;
3159}
3160
43010659
PW
3161/*
3162 * move_one_task tries to move exactly one task from busiest to this_rq, as
3163 * part of active balancing operations within "domain".
3164 * Returns 1 if successful and 0 otherwise.
3165 *
3166 * Called with both runqueues locked.
3167 */
3168static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3169 struct sched_domain *sd, enum cpu_idle_type idle)
3170{
5522d5d5 3171 const struct sched_class *class;
43010659
PW
3172
3173 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3174 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3175 return 1;
3176
3177 return 0;
dd41f596
IM
3178}
3179
1da177e4
LT
3180/*
3181 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3182 * domain. It calculates and returns the amount of weighted load which
3183 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3184 */
3185static struct sched_group *
3186find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3187 unsigned long *imbalance, enum cpu_idle_type idle,
96f874e2 3188 int *sd_idle, const struct cpumask *cpus, int *balance)
1da177e4
LT
3189{
3190 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3191 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3192 unsigned long max_pull;
2dd73a4f
PW
3193 unsigned long busiest_load_per_task, busiest_nr_running;
3194 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3195 int load_idx, group_imb = 0;
5c45bf27
SS
3196#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3197 int power_savings_balance = 1;
3198 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3199 unsigned long min_nr_running = ULONG_MAX;
3200 struct sched_group *group_min = NULL, *group_leader = NULL;
3201#endif
1da177e4
LT
3202
3203 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3204 busiest_load_per_task = busiest_nr_running = 0;
3205 this_load_per_task = this_nr_running = 0;
408ed066 3206
d15bcfdb 3207 if (idle == CPU_NOT_IDLE)
7897986b 3208 load_idx = sd->busy_idx;
d15bcfdb 3209 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3210 load_idx = sd->newidle_idx;
3211 else
3212 load_idx = sd->idle_idx;
1da177e4
LT
3213
3214 do {
908a7c1b 3215 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3216 int local_group;
3217 int i;
908a7c1b 3218 int __group_imb = 0;
783609c6 3219 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3220 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3221 unsigned long sum_avg_load_per_task;
3222 unsigned long avg_load_per_task;
1da177e4 3223
758b2cdc
RR
3224 local_group = cpumask_test_cpu(this_cpu,
3225 sched_group_cpus(group));
1da177e4 3226
783609c6 3227 if (local_group)
758b2cdc 3228 balance_cpu = cpumask_first(sched_group_cpus(group));
783609c6 3229
1da177e4 3230 /* Tally up the load of all CPUs in the group */
2dd73a4f 3231 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3232 sum_avg_load_per_task = avg_load_per_task = 0;
3233
908a7c1b
KC
3234 max_cpu_load = 0;
3235 min_cpu_load = ~0UL;
1da177e4 3236
758b2cdc
RR
3237 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3238 struct rq *rq = cpu_rq(i);
2dd73a4f 3239
9439aab8 3240 if (*sd_idle && rq->nr_running)
5969fe06
NP
3241 *sd_idle = 0;
3242
1da177e4 3243 /* Bias balancing toward cpus of our domain */
783609c6
SS
3244 if (local_group) {
3245 if (idle_cpu(i) && !first_idle_cpu) {
3246 first_idle_cpu = 1;
3247 balance_cpu = i;
3248 }
3249
a2000572 3250 load = target_load(i, load_idx);
908a7c1b 3251 } else {
a2000572 3252 load = source_load(i, load_idx);
908a7c1b
KC
3253 if (load > max_cpu_load)
3254 max_cpu_load = load;
3255 if (min_cpu_load > load)
3256 min_cpu_load = load;
3257 }
1da177e4
LT
3258
3259 avg_load += load;
2dd73a4f 3260 sum_nr_running += rq->nr_running;
dd41f596 3261 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3262
3263 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3264 }
3265
783609c6
SS
3266 /*
3267 * First idle cpu or the first cpu(busiest) in this sched group
3268 * is eligible for doing load balancing at this and above
9439aab8
SS
3269 * domains. In the newly idle case, we will allow all the cpu's
3270 * to do the newly idle load balance.
783609c6 3271 */
9439aab8
SS
3272 if (idle != CPU_NEWLY_IDLE && local_group &&
3273 balance_cpu != this_cpu && balance) {
783609c6
SS
3274 *balance = 0;
3275 goto ret;
3276 }
3277
1da177e4 3278 total_load += avg_load;
5517d86b 3279 total_pwr += group->__cpu_power;
1da177e4
LT
3280
3281 /* Adjust by relative CPU power of the group */
5517d86b
ED
3282 avg_load = sg_div_cpu_power(group,
3283 avg_load * SCHED_LOAD_SCALE);
1da177e4 3284
408ed066
PZ
3285
3286 /*
3287 * Consider the group unbalanced when the imbalance is larger
3288 * than the average weight of two tasks.
3289 *
3290 * APZ: with cgroup the avg task weight can vary wildly and
3291 * might not be a suitable number - should we keep a
3292 * normalized nr_running number somewhere that negates
3293 * the hierarchy?
3294 */
3295 avg_load_per_task = sg_div_cpu_power(group,
3296 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3297
3298 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3299 __group_imb = 1;
3300
5517d86b 3301 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3302
1da177e4
LT
3303 if (local_group) {
3304 this_load = avg_load;
3305 this = group;
2dd73a4f
PW
3306 this_nr_running = sum_nr_running;
3307 this_load_per_task = sum_weighted_load;
3308 } else if (avg_load > max_load &&
908a7c1b 3309 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3310 max_load = avg_load;
3311 busiest = group;
2dd73a4f
PW
3312 busiest_nr_running = sum_nr_running;
3313 busiest_load_per_task = sum_weighted_load;
908a7c1b 3314 group_imb = __group_imb;
1da177e4 3315 }
5c45bf27
SS
3316
3317#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3318 /*
3319 * Busy processors will not participate in power savings
3320 * balance.
3321 */
dd41f596
IM
3322 if (idle == CPU_NOT_IDLE ||
3323 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3324 goto group_next;
5c45bf27
SS
3325
3326 /*
3327 * If the local group is idle or completely loaded
3328 * no need to do power savings balance at this domain
3329 */
3330 if (local_group && (this_nr_running >= group_capacity ||
3331 !this_nr_running))
3332 power_savings_balance = 0;
3333
dd41f596 3334 /*
5c45bf27
SS
3335 * If a group is already running at full capacity or idle,
3336 * don't include that group in power savings calculations
dd41f596
IM
3337 */
3338 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3339 || !sum_nr_running)
dd41f596 3340 goto group_next;
5c45bf27 3341
dd41f596 3342 /*
5c45bf27 3343 * Calculate the group which has the least non-idle load.
dd41f596
IM
3344 * This is the group from where we need to pick up the load
3345 * for saving power
3346 */
3347 if ((sum_nr_running < min_nr_running) ||
3348 (sum_nr_running == min_nr_running &&
d5679bd1 3349 cpumask_first(sched_group_cpus(group)) >
758b2cdc 3350 cpumask_first(sched_group_cpus(group_min)))) {
dd41f596
IM
3351 group_min = group;
3352 min_nr_running = sum_nr_running;
5c45bf27
SS
3353 min_load_per_task = sum_weighted_load /
3354 sum_nr_running;
dd41f596 3355 }
5c45bf27 3356
dd41f596 3357 /*
5c45bf27 3358 * Calculate the group which is almost near its
dd41f596
IM
3359 * capacity but still has some space to pick up some load
3360 * from other group and save more power
3361 */
3362 if (sum_nr_running <= group_capacity - 1) {
3363 if (sum_nr_running > leader_nr_running ||
3364 (sum_nr_running == leader_nr_running &&
d5679bd1 3365 cpumask_first(sched_group_cpus(group)) <
758b2cdc 3366 cpumask_first(sched_group_cpus(group_leader)))) {
dd41f596
IM
3367 group_leader = group;
3368 leader_nr_running = sum_nr_running;
3369 }
48f24c4d 3370 }
5c45bf27
SS
3371group_next:
3372#endif
1da177e4
LT
3373 group = group->next;
3374 } while (group != sd->groups);
3375
2dd73a4f 3376 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3377 goto out_balanced;
3378
3379 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3380
3381 if (this_load >= avg_load ||
3382 100*max_load <= sd->imbalance_pct*this_load)
3383 goto out_balanced;
3384
2dd73a4f 3385 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3386 if (group_imb)
3387 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3388
1da177e4
LT
3389 /*
3390 * We're trying to get all the cpus to the average_load, so we don't
3391 * want to push ourselves above the average load, nor do we wish to
3392 * reduce the max loaded cpu below the average load, as either of these
3393 * actions would just result in more rebalancing later, and ping-pong
3394 * tasks around. Thus we look for the minimum possible imbalance.
3395 * Negative imbalances (*we* are more loaded than anyone else) will
3396 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3397 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3398 * appear as very large values with unsigned longs.
3399 */
2dd73a4f
PW
3400 if (max_load <= busiest_load_per_task)
3401 goto out_balanced;
3402
3403 /*
3404 * In the presence of smp nice balancing, certain scenarios can have
3405 * max load less than avg load(as we skip the groups at or below
3406 * its cpu_power, while calculating max_load..)
3407 */
3408 if (max_load < avg_load) {
3409 *imbalance = 0;
3410 goto small_imbalance;
3411 }
0c117f1b
SS
3412
3413 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3414 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3415
1da177e4 3416 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3417 *imbalance = min(max_pull * busiest->__cpu_power,
3418 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3419 / SCHED_LOAD_SCALE;
3420
2dd73a4f
PW
3421 /*
3422 * if *imbalance is less than the average load per runnable task
3423 * there is no gaurantee that any tasks will be moved so we'll have
3424 * a think about bumping its value to force at least one task to be
3425 * moved
3426 */
7fd0d2dd 3427 if (*imbalance < busiest_load_per_task) {
48f24c4d 3428 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3429 unsigned int imbn;
3430
3431small_imbalance:
3432 pwr_move = pwr_now = 0;
3433 imbn = 2;
3434 if (this_nr_running) {
3435 this_load_per_task /= this_nr_running;
3436 if (busiest_load_per_task > this_load_per_task)
3437 imbn = 1;
3438 } else
408ed066 3439 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3440
01c8c57d 3441 if (max_load - this_load + busiest_load_per_task >=
dd41f596 3442 busiest_load_per_task * imbn) {
2dd73a4f 3443 *imbalance = busiest_load_per_task;
1da177e4
LT
3444 return busiest;
3445 }
3446
3447 /*
3448 * OK, we don't have enough imbalance to justify moving tasks,
3449 * however we may be able to increase total CPU power used by
3450 * moving them.
3451 */
3452
5517d86b
ED
3453 pwr_now += busiest->__cpu_power *
3454 min(busiest_load_per_task, max_load);
3455 pwr_now += this->__cpu_power *
3456 min(this_load_per_task, this_load);
1da177e4
LT
3457 pwr_now /= SCHED_LOAD_SCALE;
3458
3459 /* Amount of load we'd subtract */
5517d86b
ED
3460 tmp = sg_div_cpu_power(busiest,
3461 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3462 if (max_load > tmp)
5517d86b 3463 pwr_move += busiest->__cpu_power *
2dd73a4f 3464 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3465
3466 /* Amount of load we'd add */
5517d86b 3467 if (max_load * busiest->__cpu_power <
33859f7f 3468 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3469 tmp = sg_div_cpu_power(this,
3470 max_load * busiest->__cpu_power);
1da177e4 3471 else
5517d86b
ED
3472 tmp = sg_div_cpu_power(this,
3473 busiest_load_per_task * SCHED_LOAD_SCALE);
3474 pwr_move += this->__cpu_power *
3475 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3476 pwr_move /= SCHED_LOAD_SCALE;
3477
3478 /* Move if we gain throughput */
7fd0d2dd
SS
3479 if (pwr_move > pwr_now)
3480 *imbalance = busiest_load_per_task;
1da177e4
LT
3481 }
3482
1da177e4
LT
3483 return busiest;
3484
3485out_balanced:
5c45bf27 3486#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3487 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3488 goto ret;
1da177e4 3489
5c45bf27
SS
3490 if (this == group_leader && group_leader != group_min) {
3491 *imbalance = min_load_per_task;
7a09b1a2
VS
3492 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3493 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
9924da43 3494 cpumask_first(sched_group_cpus(group_leader));
7a09b1a2 3495 }
5c45bf27
SS
3496 return group_min;
3497 }
5c45bf27 3498#endif
783609c6 3499ret:
1da177e4
LT
3500 *imbalance = 0;
3501 return NULL;
3502}
3503
3504/*
3505 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3506 */
70b97a7f 3507static struct rq *
d15bcfdb 3508find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3509 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3510{
70b97a7f 3511 struct rq *busiest = NULL, *rq;
2dd73a4f 3512 unsigned long max_load = 0;
1da177e4
LT
3513 int i;
3514
758b2cdc 3515 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3516 unsigned long wl;
0a2966b4 3517
96f874e2 3518 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3519 continue;
3520
48f24c4d 3521 rq = cpu_rq(i);
dd41f596 3522 wl = weighted_cpuload(i);
2dd73a4f 3523
dd41f596 3524 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3525 continue;
1da177e4 3526
dd41f596
IM
3527 if (wl > max_load) {
3528 max_load = wl;
48f24c4d 3529 busiest = rq;
1da177e4
LT
3530 }
3531 }
3532
3533 return busiest;
3534}
3535
77391d71
NP
3536/*
3537 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3538 * so long as it is large enough.
3539 */
3540#define MAX_PINNED_INTERVAL 512
3541
1da177e4
LT
3542/*
3543 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3544 * tasks if there is an imbalance.
1da177e4 3545 */
70b97a7f 3546static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3547 struct sched_domain *sd, enum cpu_idle_type idle,
96f874e2 3548 int *balance, struct cpumask *cpus)
1da177e4 3549{
43010659 3550 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3551 struct sched_group *group;
1da177e4 3552 unsigned long imbalance;
70b97a7f 3553 struct rq *busiest;
fe2eea3f 3554 unsigned long flags;
5969fe06 3555
96f874e2 3556 cpumask_setall(cpus);
7c16ec58 3557
89c4710e
SS
3558 /*
3559 * When power savings policy is enabled for the parent domain, idle
3560 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3561 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3562 * portraying it as CPU_NOT_IDLE.
89c4710e 3563 */
d15bcfdb 3564 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3565 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3566 sd_idle = 1;
1da177e4 3567
2d72376b 3568 schedstat_inc(sd, lb_count[idle]);
1da177e4 3569
0a2966b4 3570redo:
c8cba857 3571 update_shares(sd);
0a2966b4 3572 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3573 cpus, balance);
783609c6 3574
06066714 3575 if (*balance == 0)
783609c6 3576 goto out_balanced;
783609c6 3577
1da177e4
LT
3578 if (!group) {
3579 schedstat_inc(sd, lb_nobusyg[idle]);
3580 goto out_balanced;
3581 }
3582
7c16ec58 3583 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3584 if (!busiest) {
3585 schedstat_inc(sd, lb_nobusyq[idle]);
3586 goto out_balanced;
3587 }
3588
db935dbd 3589 BUG_ON(busiest == this_rq);
1da177e4
LT
3590
3591 schedstat_add(sd, lb_imbalance[idle], imbalance);
3592
43010659 3593 ld_moved = 0;
1da177e4
LT
3594 if (busiest->nr_running > 1) {
3595 /*
3596 * Attempt to move tasks. If find_busiest_group has found
3597 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3598 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3599 * correctly treated as an imbalance.
3600 */
fe2eea3f 3601 local_irq_save(flags);
e17224bf 3602 double_rq_lock(this_rq, busiest);
43010659 3603 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3604 imbalance, sd, idle, &all_pinned);
e17224bf 3605 double_rq_unlock(this_rq, busiest);
fe2eea3f 3606 local_irq_restore(flags);
81026794 3607
46cb4b7c
SS
3608 /*
3609 * some other cpu did the load balance for us.
3610 */
43010659 3611 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3612 resched_cpu(this_cpu);
3613
81026794 3614 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3615 if (unlikely(all_pinned)) {
96f874e2
RR
3616 cpumask_clear_cpu(cpu_of(busiest), cpus);
3617 if (!cpumask_empty(cpus))
0a2966b4 3618 goto redo;
81026794 3619 goto out_balanced;
0a2966b4 3620 }
1da177e4 3621 }
81026794 3622
43010659 3623 if (!ld_moved) {
1da177e4
LT
3624 schedstat_inc(sd, lb_failed[idle]);
3625 sd->nr_balance_failed++;
3626
3627 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3628
fe2eea3f 3629 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3630
3631 /* don't kick the migration_thread, if the curr
3632 * task on busiest cpu can't be moved to this_cpu
3633 */
96f874e2
RR
3634 if (!cpumask_test_cpu(this_cpu,
3635 &busiest->curr->cpus_allowed)) {
fe2eea3f 3636 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3637 all_pinned = 1;
3638 goto out_one_pinned;
3639 }
3640
1da177e4
LT
3641 if (!busiest->active_balance) {
3642 busiest->active_balance = 1;
3643 busiest->push_cpu = this_cpu;
81026794 3644 active_balance = 1;
1da177e4 3645 }
fe2eea3f 3646 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3647 if (active_balance)
1da177e4
LT
3648 wake_up_process(busiest->migration_thread);
3649
3650 /*
3651 * We've kicked active balancing, reset the failure
3652 * counter.
3653 */
39507451 3654 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3655 }
81026794 3656 } else
1da177e4
LT
3657 sd->nr_balance_failed = 0;
3658
81026794 3659 if (likely(!active_balance)) {
1da177e4
LT
3660 /* We were unbalanced, so reset the balancing interval */
3661 sd->balance_interval = sd->min_interval;
81026794
NP
3662 } else {
3663 /*
3664 * If we've begun active balancing, start to back off. This
3665 * case may not be covered by the all_pinned logic if there
3666 * is only 1 task on the busy runqueue (because we don't call
3667 * move_tasks).
3668 */
3669 if (sd->balance_interval < sd->max_interval)
3670 sd->balance_interval *= 2;
1da177e4
LT
3671 }
3672
43010659 3673 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3674 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3675 ld_moved = -1;
3676
3677 goto out;
1da177e4
LT
3678
3679out_balanced:
1da177e4
LT
3680 schedstat_inc(sd, lb_balanced[idle]);
3681
16cfb1c0 3682 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3683
3684out_one_pinned:
1da177e4 3685 /* tune up the balancing interval */
77391d71
NP
3686 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3687 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3688 sd->balance_interval *= 2;
3689
48f24c4d 3690 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3691 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3692 ld_moved = -1;
3693 else
3694 ld_moved = 0;
3695out:
c8cba857
PZ
3696 if (ld_moved)
3697 update_shares(sd);
c09595f6 3698 return ld_moved;
1da177e4
LT
3699}
3700
3701/*
3702 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3703 * tasks if there is an imbalance.
3704 *
d15bcfdb 3705 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3706 * this_rq is locked.
3707 */
48f24c4d 3708static int
7c16ec58 3709load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
96f874e2 3710 struct cpumask *cpus)
1da177e4
LT
3711{
3712 struct sched_group *group;
70b97a7f 3713 struct rq *busiest = NULL;
1da177e4 3714 unsigned long imbalance;
43010659 3715 int ld_moved = 0;
5969fe06 3716 int sd_idle = 0;
969bb4e4 3717 int all_pinned = 0;
7c16ec58 3718
96f874e2 3719 cpumask_setall(cpus);
5969fe06 3720
89c4710e
SS
3721 /*
3722 * When power savings policy is enabled for the parent domain, idle
3723 * sibling can pick up load irrespective of busy siblings. In this case,
3724 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3725 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3726 */
3727 if (sd->flags & SD_SHARE_CPUPOWER &&
3728 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3729 sd_idle = 1;
1da177e4 3730
2d72376b 3731 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3732redo:
3e5459b4 3733 update_shares_locked(this_rq, sd);
d15bcfdb 3734 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3735 &sd_idle, cpus, NULL);
1da177e4 3736 if (!group) {
d15bcfdb 3737 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3738 goto out_balanced;
1da177e4
LT
3739 }
3740
7c16ec58 3741 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3742 if (!busiest) {
d15bcfdb 3743 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3744 goto out_balanced;
1da177e4
LT
3745 }
3746
db935dbd
NP
3747 BUG_ON(busiest == this_rq);
3748
d15bcfdb 3749 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3750
43010659 3751 ld_moved = 0;
d6d5cfaf
NP
3752 if (busiest->nr_running > 1) {
3753 /* Attempt to move tasks */
3754 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3755 /* this_rq->clock is already updated */
3756 update_rq_clock(busiest);
43010659 3757 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3758 imbalance, sd, CPU_NEWLY_IDLE,
3759 &all_pinned);
1b12bbc7 3760 double_unlock_balance(this_rq, busiest);
0a2966b4 3761
969bb4e4 3762 if (unlikely(all_pinned)) {
96f874e2
RR
3763 cpumask_clear_cpu(cpu_of(busiest), cpus);
3764 if (!cpumask_empty(cpus))
0a2966b4
CL
3765 goto redo;
3766 }
d6d5cfaf
NP
3767 }
3768
43010659 3769 if (!ld_moved) {
36dffab6 3770 int active_balance = 0;
ad273b32 3771
d15bcfdb 3772 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3773 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3774 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3775 return -1;
ad273b32
VS
3776
3777 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3778 return -1;
3779
3780 if (sd->nr_balance_failed++ < 2)
3781 return -1;
3782
3783 /*
3784 * The only task running in a non-idle cpu can be moved to this
3785 * cpu in an attempt to completely freeup the other CPU
3786 * package. The same method used to move task in load_balance()
3787 * have been extended for load_balance_newidle() to speedup
3788 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3789 *
3790 * The package power saving logic comes from
3791 * find_busiest_group(). If there are no imbalance, then
3792 * f_b_g() will return NULL. However when sched_mc={1,2} then
3793 * f_b_g() will select a group from which a running task may be
3794 * pulled to this cpu in order to make the other package idle.
3795 * If there is no opportunity to make a package idle and if
3796 * there are no imbalance, then f_b_g() will return NULL and no
3797 * action will be taken in load_balance_newidle().
3798 *
3799 * Under normal task pull operation due to imbalance, there
3800 * will be more than one task in the source run queue and
3801 * move_tasks() will succeed. ld_moved will be true and this
3802 * active balance code will not be triggered.
3803 */
3804
3805 /* Lock busiest in correct order while this_rq is held */
3806 double_lock_balance(this_rq, busiest);
3807
3808 /*
3809 * don't kick the migration_thread, if the curr
3810 * task on busiest cpu can't be moved to this_cpu
3811 */
6ca09dfc 3812 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
3813 double_unlock_balance(this_rq, busiest);
3814 all_pinned = 1;
3815 return ld_moved;
3816 }
3817
3818 if (!busiest->active_balance) {
3819 busiest->active_balance = 1;
3820 busiest->push_cpu = this_cpu;
3821 active_balance = 1;
3822 }
3823
3824 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
3825 /*
3826 * Should not call ttwu while holding a rq->lock
3827 */
3828 spin_unlock(&this_rq->lock);
ad273b32
VS
3829 if (active_balance)
3830 wake_up_process(busiest->migration_thread);
da8d5089 3831 spin_lock(&this_rq->lock);
ad273b32 3832
5969fe06 3833 } else
16cfb1c0 3834 sd->nr_balance_failed = 0;
1da177e4 3835
3e5459b4 3836 update_shares_locked(this_rq, sd);
43010659 3837 return ld_moved;
16cfb1c0
NP
3838
3839out_balanced:
d15bcfdb 3840 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3841 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3842 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3843 return -1;
16cfb1c0 3844 sd->nr_balance_failed = 0;
48f24c4d 3845
16cfb1c0 3846 return 0;
1da177e4
LT
3847}
3848
3849/*
3850 * idle_balance is called by schedule() if this_cpu is about to become
3851 * idle. Attempts to pull tasks from other CPUs.
3852 */
70b97a7f 3853static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3854{
3855 struct sched_domain *sd;
efbe027e 3856 int pulled_task = 0;
dd41f596 3857 unsigned long next_balance = jiffies + HZ;
4d2732c6
RR
3858 cpumask_var_t tmpmask;
3859
3860 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3861 return;
1da177e4
LT
3862
3863 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3864 unsigned long interval;
3865
3866 if (!(sd->flags & SD_LOAD_BALANCE))
3867 continue;
3868
3869 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3870 /* If we've pulled tasks over stop searching: */
7c16ec58 3871 pulled_task = load_balance_newidle(this_cpu, this_rq,
4d2732c6 3872 sd, tmpmask);
92c4ca5c
CL
3873
3874 interval = msecs_to_jiffies(sd->balance_interval);
3875 if (time_after(next_balance, sd->last_balance + interval))
3876 next_balance = sd->last_balance + interval;
3877 if (pulled_task)
3878 break;
1da177e4 3879 }
dd41f596 3880 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3881 /*
3882 * We are going idle. next_balance may be set based on
3883 * a busy processor. So reset next_balance.
3884 */
3885 this_rq->next_balance = next_balance;
dd41f596 3886 }
4d2732c6 3887 free_cpumask_var(tmpmask);
1da177e4
LT
3888}
3889
3890/*
3891 * active_load_balance is run by migration threads. It pushes running tasks
3892 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3893 * running on each physical CPU where possible, and avoids physical /
3894 * logical imbalances.
3895 *
3896 * Called with busiest_rq locked.
3897 */
70b97a7f 3898static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3899{
39507451 3900 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3901 struct sched_domain *sd;
3902 struct rq *target_rq;
39507451 3903
48f24c4d 3904 /* Is there any task to move? */
39507451 3905 if (busiest_rq->nr_running <= 1)
39507451
NP
3906 return;
3907
3908 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3909
3910 /*
39507451 3911 * This condition is "impossible", if it occurs
41a2d6cf 3912 * we need to fix it. Originally reported by
39507451 3913 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3914 */
39507451 3915 BUG_ON(busiest_rq == target_rq);
1da177e4 3916
39507451
NP
3917 /* move a task from busiest_rq to target_rq */
3918 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3919 update_rq_clock(busiest_rq);
3920 update_rq_clock(target_rq);
39507451
NP
3921
3922 /* Search for an sd spanning us and the target CPU. */
c96d145e 3923 for_each_domain(target_cpu, sd) {
39507451 3924 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 3925 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 3926 break;
c96d145e 3927 }
39507451 3928
48f24c4d 3929 if (likely(sd)) {
2d72376b 3930 schedstat_inc(sd, alb_count);
39507451 3931
43010659
PW
3932 if (move_one_task(target_rq, target_cpu, busiest_rq,
3933 sd, CPU_IDLE))
48f24c4d
IM
3934 schedstat_inc(sd, alb_pushed);
3935 else
3936 schedstat_inc(sd, alb_failed);
3937 }
1b12bbc7 3938 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
3939}
3940
46cb4b7c
SS
3941#ifdef CONFIG_NO_HZ
3942static struct {
3943 atomic_t load_balancer;
7d1e6a9b 3944 cpumask_var_t cpu_mask;
46cb4b7c
SS
3945} nohz ____cacheline_aligned = {
3946 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
3947};
3948
7835b98b 3949/*
46cb4b7c
SS
3950 * This routine will try to nominate the ilb (idle load balancing)
3951 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3952 * load balancing on behalf of all those cpus. If all the cpus in the system
3953 * go into this tickless mode, then there will be no ilb owner (as there is
3954 * no need for one) and all the cpus will sleep till the next wakeup event
3955 * arrives...
3956 *
3957 * For the ilb owner, tick is not stopped. And this tick will be used
3958 * for idle load balancing. ilb owner will still be part of
3959 * nohz.cpu_mask..
7835b98b 3960 *
46cb4b7c
SS
3961 * While stopping the tick, this cpu will become the ilb owner if there
3962 * is no other owner. And will be the owner till that cpu becomes busy
3963 * or if all cpus in the system stop their ticks at which point
3964 * there is no need for ilb owner.
3965 *
3966 * When the ilb owner becomes busy, it nominates another owner, during the
3967 * next busy scheduler_tick()
3968 */
3969int select_nohz_load_balancer(int stop_tick)
3970{
3971 int cpu = smp_processor_id();
3972
3973 if (stop_tick) {
46cb4b7c
SS
3974 cpu_rq(cpu)->in_nohz_recently = 1;
3975
483b4ee6
SS
3976 if (!cpu_active(cpu)) {
3977 if (atomic_read(&nohz.load_balancer) != cpu)
3978 return 0;
3979
3980 /*
3981 * If we are going offline and still the leader,
3982 * give up!
3983 */
46cb4b7c
SS
3984 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3985 BUG();
483b4ee6 3986
46cb4b7c
SS
3987 return 0;
3988 }
3989
483b4ee6
SS
3990 cpumask_set_cpu(cpu, nohz.cpu_mask);
3991
46cb4b7c 3992 /* time for ilb owner also to sleep */
7d1e6a9b 3993 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
3994 if (atomic_read(&nohz.load_balancer) == cpu)
3995 atomic_set(&nohz.load_balancer, -1);
3996 return 0;
3997 }
3998
3999 if (atomic_read(&nohz.load_balancer) == -1) {
4000 /* make me the ilb owner */
4001 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4002 return 1;
4003 } else if (atomic_read(&nohz.load_balancer) == cpu)
4004 return 1;
4005 } else {
7d1e6a9b 4006 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4007 return 0;
4008
7d1e6a9b 4009 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4010
4011 if (atomic_read(&nohz.load_balancer) == cpu)
4012 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4013 BUG();
4014 }
4015 return 0;
4016}
4017#endif
4018
4019static DEFINE_SPINLOCK(balancing);
4020
4021/*
7835b98b
CL
4022 * It checks each scheduling domain to see if it is due to be balanced,
4023 * and initiates a balancing operation if so.
4024 *
4025 * Balancing parameters are set up in arch_init_sched_domains.
4026 */
a9957449 4027static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4028{
46cb4b7c
SS
4029 int balance = 1;
4030 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4031 unsigned long interval;
4032 struct sched_domain *sd;
46cb4b7c 4033 /* Earliest time when we have to do rebalance again */
c9819f45 4034 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4035 int update_next_balance = 0;
d07355f5 4036 int need_serialize;
a0e90245
RR
4037 cpumask_var_t tmp;
4038
4039 /* Fails alloc? Rebalancing probably not a priority right now. */
4040 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
4041 return;
1da177e4 4042
46cb4b7c 4043 for_each_domain(cpu, sd) {
1da177e4
LT
4044 if (!(sd->flags & SD_LOAD_BALANCE))
4045 continue;
4046
4047 interval = sd->balance_interval;
d15bcfdb 4048 if (idle != CPU_IDLE)
1da177e4
LT
4049 interval *= sd->busy_factor;
4050
4051 /* scale ms to jiffies */
4052 interval = msecs_to_jiffies(interval);
4053 if (unlikely(!interval))
4054 interval = 1;
dd41f596
IM
4055 if (interval > HZ*NR_CPUS/10)
4056 interval = HZ*NR_CPUS/10;
4057
d07355f5 4058 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4059
d07355f5 4060 if (need_serialize) {
08c183f3
CL
4061 if (!spin_trylock(&balancing))
4062 goto out;
4063 }
4064
c9819f45 4065 if (time_after_eq(jiffies, sd->last_balance + interval)) {
a0e90245 4066 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
fa3b6ddc
SS
4067 /*
4068 * We've pulled tasks over so either we're no
5969fe06
NP
4069 * longer idle, or one of our SMT siblings is
4070 * not idle.
4071 */
d15bcfdb 4072 idle = CPU_NOT_IDLE;
1da177e4 4073 }
1bd77f2d 4074 sd->last_balance = jiffies;
1da177e4 4075 }
d07355f5 4076 if (need_serialize)
08c183f3
CL
4077 spin_unlock(&balancing);
4078out:
f549da84 4079 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4080 next_balance = sd->last_balance + interval;
f549da84
SS
4081 update_next_balance = 1;
4082 }
783609c6
SS
4083
4084 /*
4085 * Stop the load balance at this level. There is another
4086 * CPU in our sched group which is doing load balancing more
4087 * actively.
4088 */
4089 if (!balance)
4090 break;
1da177e4 4091 }
f549da84
SS
4092
4093 /*
4094 * next_balance will be updated only when there is a need.
4095 * When the cpu is attached to null domain for ex, it will not be
4096 * updated.
4097 */
4098 if (likely(update_next_balance))
4099 rq->next_balance = next_balance;
a0e90245
RR
4100
4101 free_cpumask_var(tmp);
46cb4b7c
SS
4102}
4103
4104/*
4105 * run_rebalance_domains is triggered when needed from the scheduler tick.
4106 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4107 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4108 */
4109static void run_rebalance_domains(struct softirq_action *h)
4110{
dd41f596
IM
4111 int this_cpu = smp_processor_id();
4112 struct rq *this_rq = cpu_rq(this_cpu);
4113 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4114 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4115
dd41f596 4116 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4117
4118#ifdef CONFIG_NO_HZ
4119 /*
4120 * If this cpu is the owner for idle load balancing, then do the
4121 * balancing on behalf of the other idle cpus whose ticks are
4122 * stopped.
4123 */
dd41f596
IM
4124 if (this_rq->idle_at_tick &&
4125 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4126 struct rq *rq;
4127 int balance_cpu;
4128
7d1e6a9b
RR
4129 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4130 if (balance_cpu == this_cpu)
4131 continue;
4132
46cb4b7c
SS
4133 /*
4134 * If this cpu gets work to do, stop the load balancing
4135 * work being done for other cpus. Next load
4136 * balancing owner will pick it up.
4137 */
4138 if (need_resched())
4139 break;
4140
de0cf899 4141 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4142
4143 rq = cpu_rq(balance_cpu);
dd41f596
IM
4144 if (time_after(this_rq->next_balance, rq->next_balance))
4145 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4146 }
4147 }
4148#endif
4149}
4150
4151/*
4152 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4153 *
4154 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4155 * idle load balancing owner or decide to stop the periodic load balancing,
4156 * if the whole system is idle.
4157 */
dd41f596 4158static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4159{
46cb4b7c
SS
4160#ifdef CONFIG_NO_HZ
4161 /*
4162 * If we were in the nohz mode recently and busy at the current
4163 * scheduler tick, then check if we need to nominate new idle
4164 * load balancer.
4165 */
4166 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4167 rq->in_nohz_recently = 0;
4168
4169 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4170 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4171 atomic_set(&nohz.load_balancer, -1);
4172 }
4173
4174 if (atomic_read(&nohz.load_balancer) == -1) {
4175 /*
4176 * simple selection for now: Nominate the
4177 * first cpu in the nohz list to be the next
4178 * ilb owner.
4179 *
4180 * TBD: Traverse the sched domains and nominate
4181 * the nearest cpu in the nohz.cpu_mask.
4182 */
7d1e6a9b 4183 int ilb = cpumask_first(nohz.cpu_mask);
46cb4b7c 4184
434d53b0 4185 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4186 resched_cpu(ilb);
4187 }
4188 }
4189
4190 /*
4191 * If this cpu is idle and doing idle load balancing for all the
4192 * cpus with ticks stopped, is it time for that to stop?
4193 */
4194 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4195 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4196 resched_cpu(cpu);
4197 return;
4198 }
4199
4200 /*
4201 * If this cpu is idle and the idle load balancing is done by
4202 * someone else, then no need raise the SCHED_SOFTIRQ
4203 */
4204 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4205 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4206 return;
4207#endif
4208 if (time_after_eq(jiffies, rq->next_balance))
4209 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4210}
dd41f596
IM
4211
4212#else /* CONFIG_SMP */
4213
1da177e4
LT
4214/*
4215 * on UP we do not need to balance between CPUs:
4216 */
70b97a7f 4217static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4218{
4219}
dd41f596 4220
1da177e4
LT
4221#endif
4222
1da177e4
LT
4223DEFINE_PER_CPU(struct kernel_stat, kstat);
4224
4225EXPORT_PER_CPU_SYMBOL(kstat);
4226
4227/*
f06febc9
FM
4228 * Return any ns on the sched_clock that have not yet been banked in
4229 * @p in case that task is currently running.
1da177e4 4230 */
bb34d92f 4231unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4232{
1da177e4 4233 unsigned long flags;
41b86e9c 4234 struct rq *rq;
bb34d92f 4235 u64 ns = 0;
48f24c4d 4236
41b86e9c 4237 rq = task_rq_lock(p, &flags);
1508487e 4238
051a1d1a 4239 if (task_current(rq, p)) {
f06febc9
FM
4240 u64 delta_exec;
4241
a8e504d2
IM
4242 update_rq_clock(rq);
4243 delta_exec = rq->clock - p->se.exec_start;
41b86e9c 4244 if ((s64)delta_exec > 0)
bb34d92f 4245 ns = delta_exec;
41b86e9c 4246 }
48f24c4d 4247
41b86e9c 4248 task_rq_unlock(rq, &flags);
48f24c4d 4249
1da177e4
LT
4250 return ns;
4251}
4252
1da177e4
LT
4253/*
4254 * Account user cpu time to a process.
4255 * @p: the process that the cpu time gets accounted to
1da177e4 4256 * @cputime: the cpu time spent in user space since the last update
457533a7 4257 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4258 */
457533a7
MS
4259void account_user_time(struct task_struct *p, cputime_t cputime,
4260 cputime_t cputime_scaled)
1da177e4
LT
4261{
4262 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4263 cputime64_t tmp;
4264
457533a7 4265 /* Add user time to process. */
1da177e4 4266 p->utime = cputime_add(p->utime, cputime);
457533a7 4267 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4268 account_group_user_time(p, cputime);
1da177e4
LT
4269
4270 /* Add user time to cpustat. */
4271 tmp = cputime_to_cputime64(cputime);
4272 if (TASK_NICE(p) > 0)
4273 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4274 else
4275 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4276 /* Account for user time used */
4277 acct_update_integrals(p);
1da177e4
LT
4278}
4279
94886b84
LV
4280/*
4281 * Account guest cpu time to a process.
4282 * @p: the process that the cpu time gets accounted to
4283 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4284 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4285 */
457533a7
MS
4286static void account_guest_time(struct task_struct *p, cputime_t cputime,
4287 cputime_t cputime_scaled)
94886b84
LV
4288{
4289 cputime64_t tmp;
4290 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4291
4292 tmp = cputime_to_cputime64(cputime);
4293
457533a7 4294 /* Add guest time to process. */
94886b84 4295 p->utime = cputime_add(p->utime, cputime);
457533a7 4296 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4297 account_group_user_time(p, cputime);
94886b84
LV
4298 p->gtime = cputime_add(p->gtime, cputime);
4299
457533a7 4300 /* Add guest time to cpustat. */
94886b84
LV
4301 cpustat->user = cputime64_add(cpustat->user, tmp);
4302 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4303}
4304
1da177e4
LT
4305/*
4306 * Account system cpu time to a process.
4307 * @p: the process that the cpu time gets accounted to
4308 * @hardirq_offset: the offset to subtract from hardirq_count()
4309 * @cputime: the cpu time spent in kernel space since the last update
457533a7 4310 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
4311 */
4312void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 4313 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
4314{
4315 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
4316 cputime64_t tmp;
4317
983ed7a6 4318 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 4319 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
4320 return;
4321 }
94886b84 4322
457533a7 4323 /* Add system time to process. */
1da177e4 4324 p->stime = cputime_add(p->stime, cputime);
457533a7 4325 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 4326 account_group_system_time(p, cputime);
1da177e4
LT
4327
4328 /* Add system time to cpustat. */
4329 tmp = cputime_to_cputime64(cputime);
4330 if (hardirq_count() - hardirq_offset)
4331 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4332 else if (softirq_count())
4333 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 4334 else
79741dd3
MS
4335 cpustat->system = cputime64_add(cpustat->system, tmp);
4336
1da177e4
LT
4337 /* Account for system time used */
4338 acct_update_integrals(p);
1da177e4
LT
4339}
4340
c66f08be 4341/*
1da177e4 4342 * Account for involuntary wait time.
1da177e4 4343 * @steal: the cpu time spent in involuntary wait
c66f08be 4344 */
79741dd3 4345void account_steal_time(cputime_t cputime)
c66f08be 4346{
79741dd3
MS
4347 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4348 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4349
4350 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
4351}
4352
1da177e4 4353/*
79741dd3
MS
4354 * Account for idle time.
4355 * @cputime: the cpu time spent in idle wait
1da177e4 4356 */
79741dd3 4357void account_idle_time(cputime_t cputime)
1da177e4
LT
4358{
4359 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 4360 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 4361 struct rq *rq = this_rq();
1da177e4 4362
79741dd3
MS
4363 if (atomic_read(&rq->nr_iowait) > 0)
4364 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4365 else
4366 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
4367}
4368
79741dd3
MS
4369#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4370
4371/*
4372 * Account a single tick of cpu time.
4373 * @p: the process that the cpu time gets accounted to
4374 * @user_tick: indicates if the tick is a user or a system tick
4375 */
4376void account_process_tick(struct task_struct *p, int user_tick)
4377{
4378 cputime_t one_jiffy = jiffies_to_cputime(1);
4379 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4380 struct rq *rq = this_rq();
4381
4382 if (user_tick)
4383 account_user_time(p, one_jiffy, one_jiffy_scaled);
4384 else if (p != rq->idle)
4385 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4386 one_jiffy_scaled);
4387 else
4388 account_idle_time(one_jiffy);
4389}
4390
4391/*
4392 * Account multiple ticks of steal time.
4393 * @p: the process from which the cpu time has been stolen
4394 * @ticks: number of stolen ticks
4395 */
4396void account_steal_ticks(unsigned long ticks)
4397{
4398 account_steal_time(jiffies_to_cputime(ticks));
4399}
4400
4401/*
4402 * Account multiple ticks of idle time.
4403 * @ticks: number of stolen ticks
4404 */
4405void account_idle_ticks(unsigned long ticks)
4406{
4407 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4408}
4409
79741dd3
MS
4410#endif
4411
49048622
BS
4412/*
4413 * Use precise platform statistics if available:
4414 */
4415#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4416cputime_t task_utime(struct task_struct *p)
4417{
4418 return p->utime;
4419}
4420
4421cputime_t task_stime(struct task_struct *p)
4422{
4423 return p->stime;
4424}
4425#else
4426cputime_t task_utime(struct task_struct *p)
4427{
4428 clock_t utime = cputime_to_clock_t(p->utime),
4429 total = utime + cputime_to_clock_t(p->stime);
4430 u64 temp;
4431
4432 /*
4433 * Use CFS's precise accounting:
4434 */
4435 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4436
4437 if (total) {
4438 temp *= utime;
4439 do_div(temp, total);
4440 }
4441 utime = (clock_t)temp;
4442
4443 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4444 return p->prev_utime;
4445}
4446
4447cputime_t task_stime(struct task_struct *p)
4448{
4449 clock_t stime;
4450
4451 /*
4452 * Use CFS's precise accounting. (we subtract utime from
4453 * the total, to make sure the total observed by userspace
4454 * grows monotonically - apps rely on that):
4455 */
4456 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4457 cputime_to_clock_t(task_utime(p));
4458
4459 if (stime >= 0)
4460 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4461
4462 return p->prev_stime;
4463}
4464#endif
4465
4466inline cputime_t task_gtime(struct task_struct *p)
4467{
4468 return p->gtime;
4469}
4470
7835b98b
CL
4471/*
4472 * This function gets called by the timer code, with HZ frequency.
4473 * We call it with interrupts disabled.
4474 *
4475 * It also gets called by the fork code, when changing the parent's
4476 * timeslices.
4477 */
4478void scheduler_tick(void)
4479{
7835b98b
CL
4480 int cpu = smp_processor_id();
4481 struct rq *rq = cpu_rq(cpu);
dd41f596 4482 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4483
4484 sched_clock_tick();
dd41f596
IM
4485
4486 spin_lock(&rq->lock);
3e51f33f 4487 update_rq_clock(rq);
f1a438d8 4488 update_cpu_load(rq);
fa85ae24 4489 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4490 spin_unlock(&rq->lock);
7835b98b 4491
e418e1c2 4492#ifdef CONFIG_SMP
dd41f596
IM
4493 rq->idle_at_tick = idle_cpu(cpu);
4494 trigger_load_balance(rq, cpu);
e418e1c2 4495#endif
1da177e4
LT
4496}
4497
6cd8a4bb
SR
4498#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4499 defined(CONFIG_PREEMPT_TRACER))
4500
4501static inline unsigned long get_parent_ip(unsigned long addr)
4502{
4503 if (in_lock_functions(addr)) {
4504 addr = CALLER_ADDR2;
4505 if (in_lock_functions(addr))
4506 addr = CALLER_ADDR3;
4507 }
4508 return addr;
4509}
1da177e4 4510
43627582 4511void __kprobes add_preempt_count(int val)
1da177e4 4512{
6cd8a4bb 4513#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4514 /*
4515 * Underflow?
4516 */
9a11b49a
IM
4517 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4518 return;
6cd8a4bb 4519#endif
1da177e4 4520 preempt_count() += val;
6cd8a4bb 4521#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4522 /*
4523 * Spinlock count overflowing soon?
4524 */
33859f7f
MOS
4525 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4526 PREEMPT_MASK - 10);
6cd8a4bb
SR
4527#endif
4528 if (preempt_count() == val)
4529 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4530}
4531EXPORT_SYMBOL(add_preempt_count);
4532
43627582 4533void __kprobes sub_preempt_count(int val)
1da177e4 4534{
6cd8a4bb 4535#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4536 /*
4537 * Underflow?
4538 */
01e3eb82 4539 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4540 return;
1da177e4
LT
4541 /*
4542 * Is the spinlock portion underflowing?
4543 */
9a11b49a
IM
4544 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4545 !(preempt_count() & PREEMPT_MASK)))
4546 return;
6cd8a4bb 4547#endif
9a11b49a 4548
6cd8a4bb
SR
4549 if (preempt_count() == val)
4550 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4551 preempt_count() -= val;
4552}
4553EXPORT_SYMBOL(sub_preempt_count);
4554
4555#endif
4556
4557/*
dd41f596 4558 * Print scheduling while atomic bug:
1da177e4 4559 */
dd41f596 4560static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4561{
838225b4
SS
4562 struct pt_regs *regs = get_irq_regs();
4563
4564 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4565 prev->comm, prev->pid, preempt_count());
4566
dd41f596 4567 debug_show_held_locks(prev);
e21f5b15 4568 print_modules();
dd41f596
IM
4569 if (irqs_disabled())
4570 print_irqtrace_events(prev);
838225b4
SS
4571
4572 if (regs)
4573 show_regs(regs);
4574 else
4575 dump_stack();
dd41f596 4576}
1da177e4 4577
dd41f596
IM
4578/*
4579 * Various schedule()-time debugging checks and statistics:
4580 */
4581static inline void schedule_debug(struct task_struct *prev)
4582{
1da177e4 4583 /*
41a2d6cf 4584 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4585 * schedule() atomically, we ignore that path for now.
4586 * Otherwise, whine if we are scheduling when we should not be.
4587 */
3f33a7ce 4588 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4589 __schedule_bug(prev);
4590
1da177e4
LT
4591 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4592
2d72376b 4593 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4594#ifdef CONFIG_SCHEDSTATS
4595 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4596 schedstat_inc(this_rq(), bkl_count);
4597 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4598 }
4599#endif
dd41f596
IM
4600}
4601
4602/*
4603 * Pick up the highest-prio task:
4604 */
4605static inline struct task_struct *
ff95f3df 4606pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4607{
5522d5d5 4608 const struct sched_class *class;
dd41f596 4609 struct task_struct *p;
1da177e4
LT
4610
4611 /*
dd41f596
IM
4612 * Optimization: we know that if all tasks are in
4613 * the fair class we can call that function directly:
1da177e4 4614 */
dd41f596 4615 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4616 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4617 if (likely(p))
4618 return p;
1da177e4
LT
4619 }
4620
dd41f596
IM
4621 class = sched_class_highest;
4622 for ( ; ; ) {
fb8d4724 4623 p = class->pick_next_task(rq);
dd41f596
IM
4624 if (p)
4625 return p;
4626 /*
4627 * Will never be NULL as the idle class always
4628 * returns a non-NULL p:
4629 */
4630 class = class->next;
4631 }
4632}
1da177e4 4633
dd41f596
IM
4634/*
4635 * schedule() is the main scheduler function.
4636 */
4637asmlinkage void __sched schedule(void)
4638{
4639 struct task_struct *prev, *next;
67ca7bde 4640 unsigned long *switch_count;
dd41f596 4641 struct rq *rq;
31656519 4642 int cpu;
dd41f596
IM
4643
4644need_resched:
4645 preempt_disable();
4646 cpu = smp_processor_id();
4647 rq = cpu_rq(cpu);
4648 rcu_qsctr_inc(cpu);
4649 prev = rq->curr;
4650 switch_count = &prev->nivcsw;
4651
4652 release_kernel_lock(prev);
4653need_resched_nonpreemptible:
4654
4655 schedule_debug(prev);
1da177e4 4656
31656519 4657 if (sched_feat(HRTICK))
f333fdc9 4658 hrtick_clear(rq);
8f4d37ec 4659
8cd162ce 4660 spin_lock_irq(&rq->lock);
3e51f33f 4661 update_rq_clock(rq);
1e819950 4662 clear_tsk_need_resched(prev);
1da177e4 4663
1da177e4 4664 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4665 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4666 prev->state = TASK_RUNNING;
16882c1e 4667 else
2e1cb74a 4668 deactivate_task(rq, prev, 1);
dd41f596 4669 switch_count = &prev->nvcsw;
1da177e4
LT
4670 }
4671
9a897c5a
SR
4672#ifdef CONFIG_SMP
4673 if (prev->sched_class->pre_schedule)
4674 prev->sched_class->pre_schedule(rq, prev);
4675#endif
f65eda4f 4676
dd41f596 4677 if (unlikely(!rq->nr_running))
1da177e4 4678 idle_balance(cpu, rq);
1da177e4 4679
31ee529c 4680 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4681 next = pick_next_task(rq, prev);
1da177e4 4682
1da177e4 4683 if (likely(prev != next)) {
673a90a1
DS
4684 sched_info_switch(prev, next);
4685
1da177e4
LT
4686 rq->nr_switches++;
4687 rq->curr = next;
4688 ++*switch_count;
4689
dd41f596 4690 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4691 /*
4692 * the context switch might have flipped the stack from under
4693 * us, hence refresh the local variables.
4694 */
4695 cpu = smp_processor_id();
4696 rq = cpu_rq(cpu);
1da177e4
LT
4697 } else
4698 spin_unlock_irq(&rq->lock);
4699
8f4d37ec 4700 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4701 goto need_resched_nonpreemptible;
8f4d37ec 4702
1da177e4
LT
4703 preempt_enable_no_resched();
4704 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4705 goto need_resched;
4706}
1da177e4
LT
4707EXPORT_SYMBOL(schedule);
4708
4709#ifdef CONFIG_PREEMPT
4710/*
2ed6e34f 4711 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4712 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4713 * occur there and call schedule directly.
4714 */
4715asmlinkage void __sched preempt_schedule(void)
4716{
4717 struct thread_info *ti = current_thread_info();
6478d880 4718
1da177e4
LT
4719 /*
4720 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4721 * we do not want to preempt the current task. Just return..
1da177e4 4722 */
beed33a8 4723 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4724 return;
4725
3a5c359a
AK
4726 do {
4727 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4728 schedule();
3a5c359a 4729 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4730
3a5c359a
AK
4731 /*
4732 * Check again in case we missed a preemption opportunity
4733 * between schedule and now.
4734 */
4735 barrier();
4736 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4737}
1da177e4
LT
4738EXPORT_SYMBOL(preempt_schedule);
4739
4740/*
2ed6e34f 4741 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4742 * off of irq context.
4743 * Note, that this is called and return with irqs disabled. This will
4744 * protect us against recursive calling from irq.
4745 */
4746asmlinkage void __sched preempt_schedule_irq(void)
4747{
4748 struct thread_info *ti = current_thread_info();
6478d880 4749
2ed6e34f 4750 /* Catch callers which need to be fixed */
1da177e4
LT
4751 BUG_ON(ti->preempt_count || !irqs_disabled());
4752
3a5c359a
AK
4753 do {
4754 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4755 local_irq_enable();
4756 schedule();
4757 local_irq_disable();
3a5c359a 4758 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4759
3a5c359a
AK
4760 /*
4761 * Check again in case we missed a preemption opportunity
4762 * between schedule and now.
4763 */
4764 barrier();
4765 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4766}
4767
4768#endif /* CONFIG_PREEMPT */
4769
95cdf3b7
IM
4770int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4771 void *key)
1da177e4 4772{
48f24c4d 4773 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4774}
1da177e4
LT
4775EXPORT_SYMBOL(default_wake_function);
4776
4777/*
41a2d6cf
IM
4778 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4779 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4780 * number) then we wake all the non-exclusive tasks and one exclusive task.
4781 *
4782 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4783 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4784 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4785 */
777c6c5f
JW
4786void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4787 int nr_exclusive, int sync, void *key)
1da177e4 4788{
2e45874c 4789 wait_queue_t *curr, *next;
1da177e4 4790
2e45874c 4791 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4792 unsigned flags = curr->flags;
4793
1da177e4 4794 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4795 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4796 break;
4797 }
4798}
4799
4800/**
4801 * __wake_up - wake up threads blocked on a waitqueue.
4802 * @q: the waitqueue
4803 * @mode: which threads
4804 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4805 * @key: is directly passed to the wakeup function
1da177e4 4806 */
7ad5b3a5 4807void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4808 int nr_exclusive, void *key)
1da177e4
LT
4809{
4810 unsigned long flags;
4811
4812 spin_lock_irqsave(&q->lock, flags);
4813 __wake_up_common(q, mode, nr_exclusive, 0, key);
4814 spin_unlock_irqrestore(&q->lock, flags);
4815}
1da177e4
LT
4816EXPORT_SYMBOL(__wake_up);
4817
4818/*
4819 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4820 */
7ad5b3a5 4821void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4822{
4823 __wake_up_common(q, mode, 1, 0, NULL);
4824}
4825
4826/**
67be2dd1 4827 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4828 * @q: the waitqueue
4829 * @mode: which threads
4830 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4831 *
4832 * The sync wakeup differs that the waker knows that it will schedule
4833 * away soon, so while the target thread will be woken up, it will not
4834 * be migrated to another CPU - ie. the two threads are 'synchronized'
4835 * with each other. This can prevent needless bouncing between CPUs.
4836 *
4837 * On UP it can prevent extra preemption.
4838 */
7ad5b3a5 4839void
95cdf3b7 4840__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4841{
4842 unsigned long flags;
4843 int sync = 1;
4844
4845 if (unlikely(!q))
4846 return;
4847
4848 if (unlikely(!nr_exclusive))
4849 sync = 0;
4850
4851 spin_lock_irqsave(&q->lock, flags);
4852 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4853 spin_unlock_irqrestore(&q->lock, flags);
4854}
4855EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4856
65eb3dc6
KD
4857/**
4858 * complete: - signals a single thread waiting on this completion
4859 * @x: holds the state of this particular completion
4860 *
4861 * This will wake up a single thread waiting on this completion. Threads will be
4862 * awakened in the same order in which they were queued.
4863 *
4864 * See also complete_all(), wait_for_completion() and related routines.
4865 */
b15136e9 4866void complete(struct completion *x)
1da177e4
LT
4867{
4868 unsigned long flags;
4869
4870 spin_lock_irqsave(&x->wait.lock, flags);
4871 x->done++;
d9514f6c 4872 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4873 spin_unlock_irqrestore(&x->wait.lock, flags);
4874}
4875EXPORT_SYMBOL(complete);
4876
65eb3dc6
KD
4877/**
4878 * complete_all: - signals all threads waiting on this completion
4879 * @x: holds the state of this particular completion
4880 *
4881 * This will wake up all threads waiting on this particular completion event.
4882 */
b15136e9 4883void complete_all(struct completion *x)
1da177e4
LT
4884{
4885 unsigned long flags;
4886
4887 spin_lock_irqsave(&x->wait.lock, flags);
4888 x->done += UINT_MAX/2;
d9514f6c 4889 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4890 spin_unlock_irqrestore(&x->wait.lock, flags);
4891}
4892EXPORT_SYMBOL(complete_all);
4893
8cbbe86d
AK
4894static inline long __sched
4895do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4896{
1da177e4
LT
4897 if (!x->done) {
4898 DECLARE_WAITQUEUE(wait, current);
4899
4900 wait.flags |= WQ_FLAG_EXCLUSIVE;
4901 __add_wait_queue_tail(&x->wait, &wait);
4902 do {
94d3d824 4903 if (signal_pending_state(state, current)) {
ea71a546
ON
4904 timeout = -ERESTARTSYS;
4905 break;
8cbbe86d
AK
4906 }
4907 __set_current_state(state);
1da177e4
LT
4908 spin_unlock_irq(&x->wait.lock);
4909 timeout = schedule_timeout(timeout);
4910 spin_lock_irq(&x->wait.lock);
ea71a546 4911 } while (!x->done && timeout);
1da177e4 4912 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4913 if (!x->done)
4914 return timeout;
1da177e4
LT
4915 }
4916 x->done--;
ea71a546 4917 return timeout ?: 1;
1da177e4 4918}
1da177e4 4919
8cbbe86d
AK
4920static long __sched
4921wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4922{
1da177e4
LT
4923 might_sleep();
4924
4925 spin_lock_irq(&x->wait.lock);
8cbbe86d 4926 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4927 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4928 return timeout;
4929}
1da177e4 4930
65eb3dc6
KD
4931/**
4932 * wait_for_completion: - waits for completion of a task
4933 * @x: holds the state of this particular completion
4934 *
4935 * This waits to be signaled for completion of a specific task. It is NOT
4936 * interruptible and there is no timeout.
4937 *
4938 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4939 * and interrupt capability. Also see complete().
4940 */
b15136e9 4941void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4942{
4943 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4944}
8cbbe86d 4945EXPORT_SYMBOL(wait_for_completion);
1da177e4 4946
65eb3dc6
KD
4947/**
4948 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4949 * @x: holds the state of this particular completion
4950 * @timeout: timeout value in jiffies
4951 *
4952 * This waits for either a completion of a specific task to be signaled or for a
4953 * specified timeout to expire. The timeout is in jiffies. It is not
4954 * interruptible.
4955 */
b15136e9 4956unsigned long __sched
8cbbe86d 4957wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4958{
8cbbe86d 4959 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4960}
8cbbe86d 4961EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4962
65eb3dc6
KD
4963/**
4964 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4965 * @x: holds the state of this particular completion
4966 *
4967 * This waits for completion of a specific task to be signaled. It is
4968 * interruptible.
4969 */
8cbbe86d 4970int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4971{
51e97990
AK
4972 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4973 if (t == -ERESTARTSYS)
4974 return t;
4975 return 0;
0fec171c 4976}
8cbbe86d 4977EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4978
65eb3dc6
KD
4979/**
4980 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4981 * @x: holds the state of this particular completion
4982 * @timeout: timeout value in jiffies
4983 *
4984 * This waits for either a completion of a specific task to be signaled or for a
4985 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4986 */
b15136e9 4987unsigned long __sched
8cbbe86d
AK
4988wait_for_completion_interruptible_timeout(struct completion *x,
4989 unsigned long timeout)
0fec171c 4990{
8cbbe86d 4991 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4992}
8cbbe86d 4993EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4994
65eb3dc6
KD
4995/**
4996 * wait_for_completion_killable: - waits for completion of a task (killable)
4997 * @x: holds the state of this particular completion
4998 *
4999 * This waits to be signaled for completion of a specific task. It can be
5000 * interrupted by a kill signal.
5001 */
009e577e
MW
5002int __sched wait_for_completion_killable(struct completion *x)
5003{
5004 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5005 if (t == -ERESTARTSYS)
5006 return t;
5007 return 0;
5008}
5009EXPORT_SYMBOL(wait_for_completion_killable);
5010
be4de352
DC
5011/**
5012 * try_wait_for_completion - try to decrement a completion without blocking
5013 * @x: completion structure
5014 *
5015 * Returns: 0 if a decrement cannot be done without blocking
5016 * 1 if a decrement succeeded.
5017 *
5018 * If a completion is being used as a counting completion,
5019 * attempt to decrement the counter without blocking. This
5020 * enables us to avoid waiting if the resource the completion
5021 * is protecting is not available.
5022 */
5023bool try_wait_for_completion(struct completion *x)
5024{
5025 int ret = 1;
5026
5027 spin_lock_irq(&x->wait.lock);
5028 if (!x->done)
5029 ret = 0;
5030 else
5031 x->done--;
5032 spin_unlock_irq(&x->wait.lock);
5033 return ret;
5034}
5035EXPORT_SYMBOL(try_wait_for_completion);
5036
5037/**
5038 * completion_done - Test to see if a completion has any waiters
5039 * @x: completion structure
5040 *
5041 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5042 * 1 if there are no waiters.
5043 *
5044 */
5045bool completion_done(struct completion *x)
5046{
5047 int ret = 1;
5048
5049 spin_lock_irq(&x->wait.lock);
5050 if (!x->done)
5051 ret = 0;
5052 spin_unlock_irq(&x->wait.lock);
5053 return ret;
5054}
5055EXPORT_SYMBOL(completion_done);
5056
8cbbe86d
AK
5057static long __sched
5058sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5059{
0fec171c
IM
5060 unsigned long flags;
5061 wait_queue_t wait;
5062
5063 init_waitqueue_entry(&wait, current);
1da177e4 5064
8cbbe86d 5065 __set_current_state(state);
1da177e4 5066
8cbbe86d
AK
5067 spin_lock_irqsave(&q->lock, flags);
5068 __add_wait_queue(q, &wait);
5069 spin_unlock(&q->lock);
5070 timeout = schedule_timeout(timeout);
5071 spin_lock_irq(&q->lock);
5072 __remove_wait_queue(q, &wait);
5073 spin_unlock_irqrestore(&q->lock, flags);
5074
5075 return timeout;
5076}
5077
5078void __sched interruptible_sleep_on(wait_queue_head_t *q)
5079{
5080 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5081}
1da177e4
LT
5082EXPORT_SYMBOL(interruptible_sleep_on);
5083
0fec171c 5084long __sched
95cdf3b7 5085interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5086{
8cbbe86d 5087 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5088}
1da177e4
LT
5089EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5090
0fec171c 5091void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5092{
8cbbe86d 5093 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5094}
1da177e4
LT
5095EXPORT_SYMBOL(sleep_on);
5096
0fec171c 5097long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5098{
8cbbe86d 5099 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5100}
1da177e4
LT
5101EXPORT_SYMBOL(sleep_on_timeout);
5102
b29739f9
IM
5103#ifdef CONFIG_RT_MUTEXES
5104
5105/*
5106 * rt_mutex_setprio - set the current priority of a task
5107 * @p: task
5108 * @prio: prio value (kernel-internal form)
5109 *
5110 * This function changes the 'effective' priority of a task. It does
5111 * not touch ->normal_prio like __setscheduler().
5112 *
5113 * Used by the rt_mutex code to implement priority inheritance logic.
5114 */
36c8b586 5115void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5116{
5117 unsigned long flags;
83b699ed 5118 int oldprio, on_rq, running;
70b97a7f 5119 struct rq *rq;
cb469845 5120 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5121
5122 BUG_ON(prio < 0 || prio > MAX_PRIO);
5123
5124 rq = task_rq_lock(p, &flags);
a8e504d2 5125 update_rq_clock(rq);
b29739f9 5126
d5f9f942 5127 oldprio = p->prio;
dd41f596 5128 on_rq = p->se.on_rq;
051a1d1a 5129 running = task_current(rq, p);
0e1f3483 5130 if (on_rq)
69be72c1 5131 dequeue_task(rq, p, 0);
0e1f3483
HS
5132 if (running)
5133 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5134
5135 if (rt_prio(prio))
5136 p->sched_class = &rt_sched_class;
5137 else
5138 p->sched_class = &fair_sched_class;
5139
b29739f9
IM
5140 p->prio = prio;
5141
0e1f3483
HS
5142 if (running)
5143 p->sched_class->set_curr_task(rq);
dd41f596 5144 if (on_rq) {
8159f87e 5145 enqueue_task(rq, p, 0);
cb469845
SR
5146
5147 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5148 }
5149 task_rq_unlock(rq, &flags);
5150}
5151
5152#endif
5153
36c8b586 5154void set_user_nice(struct task_struct *p, long nice)
1da177e4 5155{
dd41f596 5156 int old_prio, delta, on_rq;
1da177e4 5157 unsigned long flags;
70b97a7f 5158 struct rq *rq;
1da177e4
LT
5159
5160 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5161 return;
5162 /*
5163 * We have to be careful, if called from sys_setpriority(),
5164 * the task might be in the middle of scheduling on another CPU.
5165 */
5166 rq = task_rq_lock(p, &flags);
a8e504d2 5167 update_rq_clock(rq);
1da177e4
LT
5168 /*
5169 * The RT priorities are set via sched_setscheduler(), but we still
5170 * allow the 'normal' nice value to be set - but as expected
5171 * it wont have any effect on scheduling until the task is
dd41f596 5172 * SCHED_FIFO/SCHED_RR:
1da177e4 5173 */
e05606d3 5174 if (task_has_rt_policy(p)) {
1da177e4
LT
5175 p->static_prio = NICE_TO_PRIO(nice);
5176 goto out_unlock;
5177 }
dd41f596 5178 on_rq = p->se.on_rq;
c09595f6 5179 if (on_rq)
69be72c1 5180 dequeue_task(rq, p, 0);
1da177e4 5181
1da177e4 5182 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5183 set_load_weight(p);
b29739f9
IM
5184 old_prio = p->prio;
5185 p->prio = effective_prio(p);
5186 delta = p->prio - old_prio;
1da177e4 5187
dd41f596 5188 if (on_rq) {
8159f87e 5189 enqueue_task(rq, p, 0);
1da177e4 5190 /*
d5f9f942
AM
5191 * If the task increased its priority or is running and
5192 * lowered its priority, then reschedule its CPU:
1da177e4 5193 */
d5f9f942 5194 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5195 resched_task(rq->curr);
5196 }
5197out_unlock:
5198 task_rq_unlock(rq, &flags);
5199}
1da177e4
LT
5200EXPORT_SYMBOL(set_user_nice);
5201
e43379f1
MM
5202/*
5203 * can_nice - check if a task can reduce its nice value
5204 * @p: task
5205 * @nice: nice value
5206 */
36c8b586 5207int can_nice(const struct task_struct *p, const int nice)
e43379f1 5208{
024f4747
MM
5209 /* convert nice value [19,-20] to rlimit style value [1,40] */
5210 int nice_rlim = 20 - nice;
48f24c4d 5211
e43379f1
MM
5212 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5213 capable(CAP_SYS_NICE));
5214}
5215
1da177e4
LT
5216#ifdef __ARCH_WANT_SYS_NICE
5217
5218/*
5219 * sys_nice - change the priority of the current process.
5220 * @increment: priority increment
5221 *
5222 * sys_setpriority is a more generic, but much slower function that
5223 * does similar things.
5224 */
5add95d4 5225SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5226{
48f24c4d 5227 long nice, retval;
1da177e4
LT
5228
5229 /*
5230 * Setpriority might change our priority at the same moment.
5231 * We don't have to worry. Conceptually one call occurs first
5232 * and we have a single winner.
5233 */
e43379f1
MM
5234 if (increment < -40)
5235 increment = -40;
1da177e4
LT
5236 if (increment > 40)
5237 increment = 40;
5238
2b8f836f 5239 nice = TASK_NICE(current) + increment;
1da177e4
LT
5240 if (nice < -20)
5241 nice = -20;
5242 if (nice > 19)
5243 nice = 19;
5244
e43379f1
MM
5245 if (increment < 0 && !can_nice(current, nice))
5246 return -EPERM;
5247
1da177e4
LT
5248 retval = security_task_setnice(current, nice);
5249 if (retval)
5250 return retval;
5251
5252 set_user_nice(current, nice);
5253 return 0;
5254}
5255
5256#endif
5257
5258/**
5259 * task_prio - return the priority value of a given task.
5260 * @p: the task in question.
5261 *
5262 * This is the priority value as seen by users in /proc.
5263 * RT tasks are offset by -200. Normal tasks are centered
5264 * around 0, value goes from -16 to +15.
5265 */
36c8b586 5266int task_prio(const struct task_struct *p)
1da177e4
LT
5267{
5268 return p->prio - MAX_RT_PRIO;
5269}
5270
5271/**
5272 * task_nice - return the nice value of a given task.
5273 * @p: the task in question.
5274 */
36c8b586 5275int task_nice(const struct task_struct *p)
1da177e4
LT
5276{
5277 return TASK_NICE(p);
5278}
150d8bed 5279EXPORT_SYMBOL(task_nice);
1da177e4
LT
5280
5281/**
5282 * idle_cpu - is a given cpu idle currently?
5283 * @cpu: the processor in question.
5284 */
5285int idle_cpu(int cpu)
5286{
5287 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5288}
5289
1da177e4
LT
5290/**
5291 * idle_task - return the idle task for a given cpu.
5292 * @cpu: the processor in question.
5293 */
36c8b586 5294struct task_struct *idle_task(int cpu)
1da177e4
LT
5295{
5296 return cpu_rq(cpu)->idle;
5297}
5298
5299/**
5300 * find_process_by_pid - find a process with a matching PID value.
5301 * @pid: the pid in question.
5302 */
a9957449 5303static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5304{
228ebcbe 5305 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5306}
5307
5308/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5309static void
5310__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5311{
dd41f596 5312 BUG_ON(p->se.on_rq);
48f24c4d 5313
1da177e4 5314 p->policy = policy;
dd41f596
IM
5315 switch (p->policy) {
5316 case SCHED_NORMAL:
5317 case SCHED_BATCH:
5318 case SCHED_IDLE:
5319 p->sched_class = &fair_sched_class;
5320 break;
5321 case SCHED_FIFO:
5322 case SCHED_RR:
5323 p->sched_class = &rt_sched_class;
5324 break;
5325 }
5326
1da177e4 5327 p->rt_priority = prio;
b29739f9
IM
5328 p->normal_prio = normal_prio(p);
5329 /* we are holding p->pi_lock already */
5330 p->prio = rt_mutex_getprio(p);
2dd73a4f 5331 set_load_weight(p);
1da177e4
LT
5332}
5333
c69e8d9c
DH
5334/*
5335 * check the target process has a UID that matches the current process's
5336 */
5337static bool check_same_owner(struct task_struct *p)
5338{
5339 const struct cred *cred = current_cred(), *pcred;
5340 bool match;
5341
5342 rcu_read_lock();
5343 pcred = __task_cred(p);
5344 match = (cred->euid == pcred->euid ||
5345 cred->euid == pcred->uid);
5346 rcu_read_unlock();
5347 return match;
5348}
5349
961ccddd
RR
5350static int __sched_setscheduler(struct task_struct *p, int policy,
5351 struct sched_param *param, bool user)
1da177e4 5352{
83b699ed 5353 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5354 unsigned long flags;
cb469845 5355 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5356 struct rq *rq;
1da177e4 5357
66e5393a
SR
5358 /* may grab non-irq protected spin_locks */
5359 BUG_ON(in_interrupt());
1da177e4
LT
5360recheck:
5361 /* double check policy once rq lock held */
5362 if (policy < 0)
5363 policy = oldpolicy = p->policy;
5364 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5365 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5366 policy != SCHED_IDLE)
b0a9499c 5367 return -EINVAL;
1da177e4
LT
5368 /*
5369 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5370 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5371 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5372 */
5373 if (param->sched_priority < 0 ||
95cdf3b7 5374 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5375 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5376 return -EINVAL;
e05606d3 5377 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5378 return -EINVAL;
5379
37e4ab3f
OC
5380 /*
5381 * Allow unprivileged RT tasks to decrease priority:
5382 */
961ccddd 5383 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5384 if (rt_policy(policy)) {
8dc3e909 5385 unsigned long rlim_rtprio;
8dc3e909
ON
5386
5387 if (!lock_task_sighand(p, &flags))
5388 return -ESRCH;
5389 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5390 unlock_task_sighand(p, &flags);
5391
5392 /* can't set/change the rt policy */
5393 if (policy != p->policy && !rlim_rtprio)
5394 return -EPERM;
5395
5396 /* can't increase priority */
5397 if (param->sched_priority > p->rt_priority &&
5398 param->sched_priority > rlim_rtprio)
5399 return -EPERM;
5400 }
dd41f596
IM
5401 /*
5402 * Like positive nice levels, dont allow tasks to
5403 * move out of SCHED_IDLE either:
5404 */
5405 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5406 return -EPERM;
5fe1d75f 5407
37e4ab3f 5408 /* can't change other user's priorities */
c69e8d9c 5409 if (!check_same_owner(p))
37e4ab3f
OC
5410 return -EPERM;
5411 }
1da177e4 5412
725aad24 5413 if (user) {
b68aa230 5414#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5415 /*
5416 * Do not allow realtime tasks into groups that have no runtime
5417 * assigned.
5418 */
9a7e0b18
PZ
5419 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5420 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5421 return -EPERM;
b68aa230
PZ
5422#endif
5423
725aad24
JF
5424 retval = security_task_setscheduler(p, policy, param);
5425 if (retval)
5426 return retval;
5427 }
5428
b29739f9
IM
5429 /*
5430 * make sure no PI-waiters arrive (or leave) while we are
5431 * changing the priority of the task:
5432 */
5433 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5434 /*
5435 * To be able to change p->policy safely, the apropriate
5436 * runqueue lock must be held.
5437 */
b29739f9 5438 rq = __task_rq_lock(p);
1da177e4
LT
5439 /* recheck policy now with rq lock held */
5440 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5441 policy = oldpolicy = -1;
b29739f9
IM
5442 __task_rq_unlock(rq);
5443 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5444 goto recheck;
5445 }
2daa3577 5446 update_rq_clock(rq);
dd41f596 5447 on_rq = p->se.on_rq;
051a1d1a 5448 running = task_current(rq, p);
0e1f3483 5449 if (on_rq)
2e1cb74a 5450 deactivate_task(rq, p, 0);
0e1f3483
HS
5451 if (running)
5452 p->sched_class->put_prev_task(rq, p);
f6b53205 5453
1da177e4 5454 oldprio = p->prio;
dd41f596 5455 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5456
0e1f3483
HS
5457 if (running)
5458 p->sched_class->set_curr_task(rq);
dd41f596
IM
5459 if (on_rq) {
5460 activate_task(rq, p, 0);
cb469845
SR
5461
5462 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5463 }
b29739f9
IM
5464 __task_rq_unlock(rq);
5465 spin_unlock_irqrestore(&p->pi_lock, flags);
5466
95e02ca9
TG
5467 rt_mutex_adjust_pi(p);
5468
1da177e4
LT
5469 return 0;
5470}
961ccddd
RR
5471
5472/**
5473 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5474 * @p: the task in question.
5475 * @policy: new policy.
5476 * @param: structure containing the new RT priority.
5477 *
5478 * NOTE that the task may be already dead.
5479 */
5480int sched_setscheduler(struct task_struct *p, int policy,
5481 struct sched_param *param)
5482{
5483 return __sched_setscheduler(p, policy, param, true);
5484}
1da177e4
LT
5485EXPORT_SYMBOL_GPL(sched_setscheduler);
5486
961ccddd
RR
5487/**
5488 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5489 * @p: the task in question.
5490 * @policy: new policy.
5491 * @param: structure containing the new RT priority.
5492 *
5493 * Just like sched_setscheduler, only don't bother checking if the
5494 * current context has permission. For example, this is needed in
5495 * stop_machine(): we create temporary high priority worker threads,
5496 * but our caller might not have that capability.
5497 */
5498int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5499 struct sched_param *param)
5500{
5501 return __sched_setscheduler(p, policy, param, false);
5502}
5503
95cdf3b7
IM
5504static int
5505do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5506{
1da177e4
LT
5507 struct sched_param lparam;
5508 struct task_struct *p;
36c8b586 5509 int retval;
1da177e4
LT
5510
5511 if (!param || pid < 0)
5512 return -EINVAL;
5513 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5514 return -EFAULT;
5fe1d75f
ON
5515
5516 rcu_read_lock();
5517 retval = -ESRCH;
1da177e4 5518 p = find_process_by_pid(pid);
5fe1d75f
ON
5519 if (p != NULL)
5520 retval = sched_setscheduler(p, policy, &lparam);
5521 rcu_read_unlock();
36c8b586 5522
1da177e4
LT
5523 return retval;
5524}
5525
5526/**
5527 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5528 * @pid: the pid in question.
5529 * @policy: new policy.
5530 * @param: structure containing the new RT priority.
5531 */
5add95d4
HC
5532SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5533 struct sched_param __user *, param)
1da177e4 5534{
c21761f1
JB
5535 /* negative values for policy are not valid */
5536 if (policy < 0)
5537 return -EINVAL;
5538
1da177e4
LT
5539 return do_sched_setscheduler(pid, policy, param);
5540}
5541
5542/**
5543 * sys_sched_setparam - set/change the RT priority of a thread
5544 * @pid: the pid in question.
5545 * @param: structure containing the new RT priority.
5546 */
5add95d4 5547SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5548{
5549 return do_sched_setscheduler(pid, -1, param);
5550}
5551
5552/**
5553 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5554 * @pid: the pid in question.
5555 */
5add95d4 5556SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5557{
36c8b586 5558 struct task_struct *p;
3a5c359a 5559 int retval;
1da177e4
LT
5560
5561 if (pid < 0)
3a5c359a 5562 return -EINVAL;
1da177e4
LT
5563
5564 retval = -ESRCH;
5565 read_lock(&tasklist_lock);
5566 p = find_process_by_pid(pid);
5567 if (p) {
5568 retval = security_task_getscheduler(p);
5569 if (!retval)
5570 retval = p->policy;
5571 }
5572 read_unlock(&tasklist_lock);
1da177e4
LT
5573 return retval;
5574}
5575
5576/**
5577 * sys_sched_getscheduler - get the RT priority of a thread
5578 * @pid: the pid in question.
5579 * @param: structure containing the RT priority.
5580 */
5add95d4 5581SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5582{
5583 struct sched_param lp;
36c8b586 5584 struct task_struct *p;
3a5c359a 5585 int retval;
1da177e4
LT
5586
5587 if (!param || pid < 0)
3a5c359a 5588 return -EINVAL;
1da177e4
LT
5589
5590 read_lock(&tasklist_lock);
5591 p = find_process_by_pid(pid);
5592 retval = -ESRCH;
5593 if (!p)
5594 goto out_unlock;
5595
5596 retval = security_task_getscheduler(p);
5597 if (retval)
5598 goto out_unlock;
5599
5600 lp.sched_priority = p->rt_priority;
5601 read_unlock(&tasklist_lock);
5602
5603 /*
5604 * This one might sleep, we cannot do it with a spinlock held ...
5605 */
5606 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5607
1da177e4
LT
5608 return retval;
5609
5610out_unlock:
5611 read_unlock(&tasklist_lock);
5612 return retval;
5613}
5614
96f874e2 5615long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5616{
5a16f3d3 5617 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5618 struct task_struct *p;
5619 int retval;
1da177e4 5620
95402b38 5621 get_online_cpus();
1da177e4
LT
5622 read_lock(&tasklist_lock);
5623
5624 p = find_process_by_pid(pid);
5625 if (!p) {
5626 read_unlock(&tasklist_lock);
95402b38 5627 put_online_cpus();
1da177e4
LT
5628 return -ESRCH;
5629 }
5630
5631 /*
5632 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5633 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5634 * usage count and then drop tasklist_lock.
5635 */
5636 get_task_struct(p);
5637 read_unlock(&tasklist_lock);
5638
5a16f3d3
RR
5639 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5640 retval = -ENOMEM;
5641 goto out_put_task;
5642 }
5643 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5644 retval = -ENOMEM;
5645 goto out_free_cpus_allowed;
5646 }
1da177e4 5647 retval = -EPERM;
c69e8d9c 5648 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
5649 goto out_unlock;
5650
e7834f8f
DQ
5651 retval = security_task_setscheduler(p, 0, NULL);
5652 if (retval)
5653 goto out_unlock;
5654
5a16f3d3
RR
5655 cpuset_cpus_allowed(p, cpus_allowed);
5656 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 5657 again:
5a16f3d3 5658 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5659
8707d8b8 5660 if (!retval) {
5a16f3d3
RR
5661 cpuset_cpus_allowed(p, cpus_allowed);
5662 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5663 /*
5664 * We must have raced with a concurrent cpuset
5665 * update. Just reset the cpus_allowed to the
5666 * cpuset's cpus_allowed
5667 */
5a16f3d3 5668 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5669 goto again;
5670 }
5671 }
1da177e4 5672out_unlock:
5a16f3d3
RR
5673 free_cpumask_var(new_mask);
5674out_free_cpus_allowed:
5675 free_cpumask_var(cpus_allowed);
5676out_put_task:
1da177e4 5677 put_task_struct(p);
95402b38 5678 put_online_cpus();
1da177e4
LT
5679 return retval;
5680}
5681
5682static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5683 struct cpumask *new_mask)
1da177e4 5684{
96f874e2
RR
5685 if (len < cpumask_size())
5686 cpumask_clear(new_mask);
5687 else if (len > cpumask_size())
5688 len = cpumask_size();
5689
1da177e4
LT
5690 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5691}
5692
5693/**
5694 * sys_sched_setaffinity - set the cpu affinity of a process
5695 * @pid: pid of the process
5696 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5697 * @user_mask_ptr: user-space pointer to the new cpu mask
5698 */
5add95d4
HC
5699SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5700 unsigned long __user *, user_mask_ptr)
1da177e4 5701{
5a16f3d3 5702 cpumask_var_t new_mask;
1da177e4
LT
5703 int retval;
5704
5a16f3d3
RR
5705 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5706 return -ENOMEM;
1da177e4 5707
5a16f3d3
RR
5708 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5709 if (retval == 0)
5710 retval = sched_setaffinity(pid, new_mask);
5711 free_cpumask_var(new_mask);
5712 return retval;
1da177e4
LT
5713}
5714
96f874e2 5715long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5716{
36c8b586 5717 struct task_struct *p;
1da177e4 5718 int retval;
1da177e4 5719
95402b38 5720 get_online_cpus();
1da177e4
LT
5721 read_lock(&tasklist_lock);
5722
5723 retval = -ESRCH;
5724 p = find_process_by_pid(pid);
5725 if (!p)
5726 goto out_unlock;
5727
e7834f8f
DQ
5728 retval = security_task_getscheduler(p);
5729 if (retval)
5730 goto out_unlock;
5731
96f874e2 5732 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
5733
5734out_unlock:
5735 read_unlock(&tasklist_lock);
95402b38 5736 put_online_cpus();
1da177e4 5737
9531b62f 5738 return retval;
1da177e4
LT
5739}
5740
5741/**
5742 * sys_sched_getaffinity - get the cpu affinity of a process
5743 * @pid: pid of the process
5744 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5745 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5746 */
5add95d4
HC
5747SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5748 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5749{
5750 int ret;
f17c8607 5751 cpumask_var_t mask;
1da177e4 5752
f17c8607 5753 if (len < cpumask_size())
1da177e4
LT
5754 return -EINVAL;
5755
f17c8607
RR
5756 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5757 return -ENOMEM;
1da177e4 5758
f17c8607
RR
5759 ret = sched_getaffinity(pid, mask);
5760 if (ret == 0) {
5761 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5762 ret = -EFAULT;
5763 else
5764 ret = cpumask_size();
5765 }
5766 free_cpumask_var(mask);
1da177e4 5767
f17c8607 5768 return ret;
1da177e4
LT
5769}
5770
5771/**
5772 * sys_sched_yield - yield the current processor to other threads.
5773 *
dd41f596
IM
5774 * This function yields the current CPU to other tasks. If there are no
5775 * other threads running on this CPU then this function will return.
1da177e4 5776 */
5add95d4 5777SYSCALL_DEFINE0(sched_yield)
1da177e4 5778{
70b97a7f 5779 struct rq *rq = this_rq_lock();
1da177e4 5780
2d72376b 5781 schedstat_inc(rq, yld_count);
4530d7ab 5782 current->sched_class->yield_task(rq);
1da177e4
LT
5783
5784 /*
5785 * Since we are going to call schedule() anyway, there's
5786 * no need to preempt or enable interrupts:
5787 */
5788 __release(rq->lock);
8a25d5de 5789 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5790 _raw_spin_unlock(&rq->lock);
5791 preempt_enable_no_resched();
5792
5793 schedule();
5794
5795 return 0;
5796}
5797
e7b38404 5798static void __cond_resched(void)
1da177e4 5799{
8e0a43d8
IM
5800#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5801 __might_sleep(__FILE__, __LINE__);
5802#endif
5bbcfd90
IM
5803 /*
5804 * The BKS might be reacquired before we have dropped
5805 * PREEMPT_ACTIVE, which could trigger a second
5806 * cond_resched() call.
5807 */
1da177e4
LT
5808 do {
5809 add_preempt_count(PREEMPT_ACTIVE);
5810 schedule();
5811 sub_preempt_count(PREEMPT_ACTIVE);
5812 } while (need_resched());
5813}
5814
02b67cc3 5815int __sched _cond_resched(void)
1da177e4 5816{
9414232f
IM
5817 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5818 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5819 __cond_resched();
5820 return 1;
5821 }
5822 return 0;
5823}
02b67cc3 5824EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5825
5826/*
5827 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5828 * call schedule, and on return reacquire the lock.
5829 *
41a2d6cf 5830 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5831 * operations here to prevent schedule() from being called twice (once via
5832 * spin_unlock(), once by hand).
5833 */
95cdf3b7 5834int cond_resched_lock(spinlock_t *lock)
1da177e4 5835{
95c354fe 5836 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5837 int ret = 0;
5838
95c354fe 5839 if (spin_needbreak(lock) || resched) {
1da177e4 5840 spin_unlock(lock);
95c354fe
NP
5841 if (resched && need_resched())
5842 __cond_resched();
5843 else
5844 cpu_relax();
6df3cecb 5845 ret = 1;
1da177e4 5846 spin_lock(lock);
1da177e4 5847 }
6df3cecb 5848 return ret;
1da177e4 5849}
1da177e4
LT
5850EXPORT_SYMBOL(cond_resched_lock);
5851
5852int __sched cond_resched_softirq(void)
5853{
5854 BUG_ON(!in_softirq());
5855
9414232f 5856 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5857 local_bh_enable();
1da177e4
LT
5858 __cond_resched();
5859 local_bh_disable();
5860 return 1;
5861 }
5862 return 0;
5863}
1da177e4
LT
5864EXPORT_SYMBOL(cond_resched_softirq);
5865
1da177e4
LT
5866/**
5867 * yield - yield the current processor to other threads.
5868 *
72fd4a35 5869 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5870 * thread runnable and calls sys_sched_yield().
5871 */
5872void __sched yield(void)
5873{
5874 set_current_state(TASK_RUNNING);
5875 sys_sched_yield();
5876}
1da177e4
LT
5877EXPORT_SYMBOL(yield);
5878
5879/*
41a2d6cf 5880 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5881 * that process accounting knows that this is a task in IO wait state.
5882 *
5883 * But don't do that if it is a deliberate, throttling IO wait (this task
5884 * has set its backing_dev_info: the queue against which it should throttle)
5885 */
5886void __sched io_schedule(void)
5887{
70b97a7f 5888 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5889
0ff92245 5890 delayacct_blkio_start();
1da177e4
LT
5891 atomic_inc(&rq->nr_iowait);
5892 schedule();
5893 atomic_dec(&rq->nr_iowait);
0ff92245 5894 delayacct_blkio_end();
1da177e4 5895}
1da177e4
LT
5896EXPORT_SYMBOL(io_schedule);
5897
5898long __sched io_schedule_timeout(long timeout)
5899{
70b97a7f 5900 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5901 long ret;
5902
0ff92245 5903 delayacct_blkio_start();
1da177e4
LT
5904 atomic_inc(&rq->nr_iowait);
5905 ret = schedule_timeout(timeout);
5906 atomic_dec(&rq->nr_iowait);
0ff92245 5907 delayacct_blkio_end();
1da177e4
LT
5908 return ret;
5909}
5910
5911/**
5912 * sys_sched_get_priority_max - return maximum RT priority.
5913 * @policy: scheduling class.
5914 *
5915 * this syscall returns the maximum rt_priority that can be used
5916 * by a given scheduling class.
5917 */
5add95d4 5918SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5919{
5920 int ret = -EINVAL;
5921
5922 switch (policy) {
5923 case SCHED_FIFO:
5924 case SCHED_RR:
5925 ret = MAX_USER_RT_PRIO-1;
5926 break;
5927 case SCHED_NORMAL:
b0a9499c 5928 case SCHED_BATCH:
dd41f596 5929 case SCHED_IDLE:
1da177e4
LT
5930 ret = 0;
5931 break;
5932 }
5933 return ret;
5934}
5935
5936/**
5937 * sys_sched_get_priority_min - return minimum RT priority.
5938 * @policy: scheduling class.
5939 *
5940 * this syscall returns the minimum rt_priority that can be used
5941 * by a given scheduling class.
5942 */
5add95d4 5943SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5944{
5945 int ret = -EINVAL;
5946
5947 switch (policy) {
5948 case SCHED_FIFO:
5949 case SCHED_RR:
5950 ret = 1;
5951 break;
5952 case SCHED_NORMAL:
b0a9499c 5953 case SCHED_BATCH:
dd41f596 5954 case SCHED_IDLE:
1da177e4
LT
5955 ret = 0;
5956 }
5957 return ret;
5958}
5959
5960/**
5961 * sys_sched_rr_get_interval - return the default timeslice of a process.
5962 * @pid: pid of the process.
5963 * @interval: userspace pointer to the timeslice value.
5964 *
5965 * this syscall writes the default timeslice value of a given process
5966 * into the user-space timespec buffer. A value of '0' means infinity.
5967 */
17da2bd9 5968SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5969 struct timespec __user *, interval)
1da177e4 5970{
36c8b586 5971 struct task_struct *p;
a4ec24b4 5972 unsigned int time_slice;
3a5c359a 5973 int retval;
1da177e4 5974 struct timespec t;
1da177e4
LT
5975
5976 if (pid < 0)
3a5c359a 5977 return -EINVAL;
1da177e4
LT
5978
5979 retval = -ESRCH;
5980 read_lock(&tasklist_lock);
5981 p = find_process_by_pid(pid);
5982 if (!p)
5983 goto out_unlock;
5984
5985 retval = security_task_getscheduler(p);
5986 if (retval)
5987 goto out_unlock;
5988
77034937
IM
5989 /*
5990 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5991 * tasks that are on an otherwise idle runqueue:
5992 */
5993 time_slice = 0;
5994 if (p->policy == SCHED_RR) {
a4ec24b4 5995 time_slice = DEF_TIMESLICE;
1868f958 5996 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5997 struct sched_entity *se = &p->se;
5998 unsigned long flags;
5999 struct rq *rq;
6000
6001 rq = task_rq_lock(p, &flags);
77034937
IM
6002 if (rq->cfs.load.weight)
6003 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6004 task_rq_unlock(rq, &flags);
6005 }
1da177e4 6006 read_unlock(&tasklist_lock);
a4ec24b4 6007 jiffies_to_timespec(time_slice, &t);
1da177e4 6008 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6009 return retval;
3a5c359a 6010
1da177e4
LT
6011out_unlock:
6012 read_unlock(&tasklist_lock);
6013 return retval;
6014}
6015
7c731e0a 6016static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6017
82a1fcb9 6018void sched_show_task(struct task_struct *p)
1da177e4 6019{
1da177e4 6020 unsigned long free = 0;
36c8b586 6021 unsigned state;
1da177e4 6022
1da177e4 6023 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6024 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6025 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6026#if BITS_PER_LONG == 32
1da177e4 6027 if (state == TASK_RUNNING)
cc4ea795 6028 printk(KERN_CONT " running ");
1da177e4 6029 else
cc4ea795 6030 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6031#else
6032 if (state == TASK_RUNNING)
cc4ea795 6033 printk(KERN_CONT " running task ");
1da177e4 6034 else
cc4ea795 6035 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6036#endif
6037#ifdef CONFIG_DEBUG_STACK_USAGE
6038 {
10ebffde 6039 unsigned long *n = end_of_stack(p);
1da177e4
LT
6040 while (!*n)
6041 n++;
10ebffde 6042 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
6043 }
6044#endif
ba25f9dc 6045 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 6046 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 6047
5fb5e6de 6048 show_stack(p, NULL);
1da177e4
LT
6049}
6050
e59e2ae2 6051void show_state_filter(unsigned long state_filter)
1da177e4 6052{
36c8b586 6053 struct task_struct *g, *p;
1da177e4 6054
4bd77321
IM
6055#if BITS_PER_LONG == 32
6056 printk(KERN_INFO
6057 " task PC stack pid father\n");
1da177e4 6058#else
4bd77321
IM
6059 printk(KERN_INFO
6060 " task PC stack pid father\n");
1da177e4
LT
6061#endif
6062 read_lock(&tasklist_lock);
6063 do_each_thread(g, p) {
6064 /*
6065 * reset the NMI-timeout, listing all files on a slow
6066 * console might take alot of time:
6067 */
6068 touch_nmi_watchdog();
39bc89fd 6069 if (!state_filter || (p->state & state_filter))
82a1fcb9 6070 sched_show_task(p);
1da177e4
LT
6071 } while_each_thread(g, p);
6072
04c9167f
JF
6073 touch_all_softlockup_watchdogs();
6074
dd41f596
IM
6075#ifdef CONFIG_SCHED_DEBUG
6076 sysrq_sched_debug_show();
6077#endif
1da177e4 6078 read_unlock(&tasklist_lock);
e59e2ae2
IM
6079 /*
6080 * Only show locks if all tasks are dumped:
6081 */
6082 if (state_filter == -1)
6083 debug_show_all_locks();
1da177e4
LT
6084}
6085
1df21055
IM
6086void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6087{
dd41f596 6088 idle->sched_class = &idle_sched_class;
1df21055
IM
6089}
6090
f340c0d1
IM
6091/**
6092 * init_idle - set up an idle thread for a given CPU
6093 * @idle: task in question
6094 * @cpu: cpu the idle task belongs to
6095 *
6096 * NOTE: this function does not set the idle thread's NEED_RESCHED
6097 * flag, to make booting more robust.
6098 */
5c1e1767 6099void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6100{
70b97a7f 6101 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6102 unsigned long flags;
6103
5cbd54ef
IM
6104 spin_lock_irqsave(&rq->lock, flags);
6105
dd41f596
IM
6106 __sched_fork(idle);
6107 idle->se.exec_start = sched_clock();
6108
b29739f9 6109 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6110 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6111 __set_task_cpu(idle, cpu);
1da177e4 6112
1da177e4 6113 rq->curr = rq->idle = idle;
4866cde0
NP
6114#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6115 idle->oncpu = 1;
6116#endif
1da177e4
LT
6117 spin_unlock_irqrestore(&rq->lock, flags);
6118
6119 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6120#if defined(CONFIG_PREEMPT)
6121 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6122#else
a1261f54 6123 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6124#endif
dd41f596
IM
6125 /*
6126 * The idle tasks have their own, simple scheduling class:
6127 */
6128 idle->sched_class = &idle_sched_class;
fb52607a 6129 ftrace_graph_init_task(idle);
1da177e4
LT
6130}
6131
6132/*
6133 * In a system that switches off the HZ timer nohz_cpu_mask
6134 * indicates which cpus entered this state. This is used
6135 * in the rcu update to wait only for active cpus. For system
6136 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6137 * always be CPU_BITS_NONE.
1da177e4 6138 */
6a7b3dc3 6139cpumask_var_t nohz_cpu_mask;
1da177e4 6140
19978ca6
IM
6141/*
6142 * Increase the granularity value when there are more CPUs,
6143 * because with more CPUs the 'effective latency' as visible
6144 * to users decreases. But the relationship is not linear,
6145 * so pick a second-best guess by going with the log2 of the
6146 * number of CPUs.
6147 *
6148 * This idea comes from the SD scheduler of Con Kolivas:
6149 */
6150static inline void sched_init_granularity(void)
6151{
6152 unsigned int factor = 1 + ilog2(num_online_cpus());
6153 const unsigned long limit = 200000000;
6154
6155 sysctl_sched_min_granularity *= factor;
6156 if (sysctl_sched_min_granularity > limit)
6157 sysctl_sched_min_granularity = limit;
6158
6159 sysctl_sched_latency *= factor;
6160 if (sysctl_sched_latency > limit)
6161 sysctl_sched_latency = limit;
6162
6163 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6164
6165 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6166}
6167
1da177e4
LT
6168#ifdef CONFIG_SMP
6169/*
6170 * This is how migration works:
6171 *
70b97a7f 6172 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6173 * runqueue and wake up that CPU's migration thread.
6174 * 2) we down() the locked semaphore => thread blocks.
6175 * 3) migration thread wakes up (implicitly it forces the migrated
6176 * thread off the CPU)
6177 * 4) it gets the migration request and checks whether the migrated
6178 * task is still in the wrong runqueue.
6179 * 5) if it's in the wrong runqueue then the migration thread removes
6180 * it and puts it into the right queue.
6181 * 6) migration thread up()s the semaphore.
6182 * 7) we wake up and the migration is done.
6183 */
6184
6185/*
6186 * Change a given task's CPU affinity. Migrate the thread to a
6187 * proper CPU and schedule it away if the CPU it's executing on
6188 * is removed from the allowed bitmask.
6189 *
6190 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6191 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6192 * call is not atomic; no spinlocks may be held.
6193 */
96f874e2 6194int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6195{
70b97a7f 6196 struct migration_req req;
1da177e4 6197 unsigned long flags;
70b97a7f 6198 struct rq *rq;
48f24c4d 6199 int ret = 0;
1da177e4
LT
6200
6201 rq = task_rq_lock(p, &flags);
96f874e2 6202 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
6203 ret = -EINVAL;
6204 goto out;
6205 }
6206
9985b0ba 6207 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 6208 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
6209 ret = -EINVAL;
6210 goto out;
6211 }
6212
73fe6aae 6213 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6214 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6215 else {
96f874e2
RR
6216 cpumask_copy(&p->cpus_allowed, new_mask);
6217 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6218 }
6219
1da177e4 6220 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6221 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6222 goto out;
6223
1e5ce4f4 6224 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
6225 /* Need help from migration thread: drop lock and wait. */
6226 task_rq_unlock(rq, &flags);
6227 wake_up_process(rq->migration_thread);
6228 wait_for_completion(&req.done);
6229 tlb_migrate_finish(p->mm);
6230 return 0;
6231 }
6232out:
6233 task_rq_unlock(rq, &flags);
48f24c4d 6234
1da177e4
LT
6235 return ret;
6236}
cd8ba7cd 6237EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6238
6239/*
41a2d6cf 6240 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6241 * this because either it can't run here any more (set_cpus_allowed()
6242 * away from this CPU, or CPU going down), or because we're
6243 * attempting to rebalance this task on exec (sched_exec).
6244 *
6245 * So we race with normal scheduler movements, but that's OK, as long
6246 * as the task is no longer on this CPU.
efc30814
KK
6247 *
6248 * Returns non-zero if task was successfully migrated.
1da177e4 6249 */
efc30814 6250static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6251{
70b97a7f 6252 struct rq *rq_dest, *rq_src;
dd41f596 6253 int ret = 0, on_rq;
1da177e4 6254
e761b772 6255 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6256 return ret;
1da177e4
LT
6257
6258 rq_src = cpu_rq(src_cpu);
6259 rq_dest = cpu_rq(dest_cpu);
6260
6261 double_rq_lock(rq_src, rq_dest);
6262 /* Already moved. */
6263 if (task_cpu(p) != src_cpu)
b1e38734 6264 goto done;
1da177e4 6265 /* Affinity changed (again). */
96f874e2 6266 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6267 goto fail;
1da177e4 6268
dd41f596 6269 on_rq = p->se.on_rq;
6e82a3be 6270 if (on_rq)
2e1cb74a 6271 deactivate_task(rq_src, p, 0);
6e82a3be 6272
1da177e4 6273 set_task_cpu(p, dest_cpu);
dd41f596
IM
6274 if (on_rq) {
6275 activate_task(rq_dest, p, 0);
15afe09b 6276 check_preempt_curr(rq_dest, p, 0);
1da177e4 6277 }
b1e38734 6278done:
efc30814 6279 ret = 1;
b1e38734 6280fail:
1da177e4 6281 double_rq_unlock(rq_src, rq_dest);
efc30814 6282 return ret;
1da177e4
LT
6283}
6284
6285/*
6286 * migration_thread - this is a highprio system thread that performs
6287 * thread migration by bumping thread off CPU then 'pushing' onto
6288 * another runqueue.
6289 */
95cdf3b7 6290static int migration_thread(void *data)
1da177e4 6291{
1da177e4 6292 int cpu = (long)data;
70b97a7f 6293 struct rq *rq;
1da177e4
LT
6294
6295 rq = cpu_rq(cpu);
6296 BUG_ON(rq->migration_thread != current);
6297
6298 set_current_state(TASK_INTERRUPTIBLE);
6299 while (!kthread_should_stop()) {
70b97a7f 6300 struct migration_req *req;
1da177e4 6301 struct list_head *head;
1da177e4 6302
1da177e4
LT
6303 spin_lock_irq(&rq->lock);
6304
6305 if (cpu_is_offline(cpu)) {
6306 spin_unlock_irq(&rq->lock);
6307 goto wait_to_die;
6308 }
6309
6310 if (rq->active_balance) {
6311 active_load_balance(rq, cpu);
6312 rq->active_balance = 0;
6313 }
6314
6315 head = &rq->migration_queue;
6316
6317 if (list_empty(head)) {
6318 spin_unlock_irq(&rq->lock);
6319 schedule();
6320 set_current_state(TASK_INTERRUPTIBLE);
6321 continue;
6322 }
70b97a7f 6323 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6324 list_del_init(head->next);
6325
674311d5
NP
6326 spin_unlock(&rq->lock);
6327 __migrate_task(req->task, cpu, req->dest_cpu);
6328 local_irq_enable();
1da177e4
LT
6329
6330 complete(&req->done);
6331 }
6332 __set_current_state(TASK_RUNNING);
6333 return 0;
6334
6335wait_to_die:
6336 /* Wait for kthread_stop */
6337 set_current_state(TASK_INTERRUPTIBLE);
6338 while (!kthread_should_stop()) {
6339 schedule();
6340 set_current_state(TASK_INTERRUPTIBLE);
6341 }
6342 __set_current_state(TASK_RUNNING);
6343 return 0;
6344}
6345
6346#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6347
6348static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6349{
6350 int ret;
6351
6352 local_irq_disable();
6353 ret = __migrate_task(p, src_cpu, dest_cpu);
6354 local_irq_enable();
6355 return ret;
6356}
6357
054b9108 6358/*
3a4fa0a2 6359 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 6360 */
48f24c4d 6361static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6362{
70b97a7f 6363 int dest_cpu;
6ca09dfc 6364 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
6365
6366again:
6367 /* Look for allowed, online CPU in same node. */
6368 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6369 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6370 goto move;
6371
6372 /* Any allowed, online CPU? */
6373 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6374 if (dest_cpu < nr_cpu_ids)
6375 goto move;
6376
6377 /* No more Mr. Nice Guy. */
6378 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
6379 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6380 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 6381
e76bd8d9
RR
6382 /*
6383 * Don't tell them about moving exiting tasks or
6384 * kernel threads (both mm NULL), since they never
6385 * leave kernel.
6386 */
6387 if (p->mm && printk_ratelimit()) {
6388 printk(KERN_INFO "process %d (%s) no "
6389 "longer affine to cpu%d\n",
6390 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 6391 }
e76bd8d9
RR
6392 }
6393
6394move:
6395 /* It can have affinity changed while we were choosing. */
6396 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6397 goto again;
1da177e4
LT
6398}
6399
6400/*
6401 * While a dead CPU has no uninterruptible tasks queued at this point,
6402 * it might still have a nonzero ->nr_uninterruptible counter, because
6403 * for performance reasons the counter is not stricly tracking tasks to
6404 * their home CPUs. So we just add the counter to another CPU's counter,
6405 * to keep the global sum constant after CPU-down:
6406 */
70b97a7f 6407static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6408{
1e5ce4f4 6409 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
6410 unsigned long flags;
6411
6412 local_irq_save(flags);
6413 double_rq_lock(rq_src, rq_dest);
6414 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6415 rq_src->nr_uninterruptible = 0;
6416 double_rq_unlock(rq_src, rq_dest);
6417 local_irq_restore(flags);
6418}
6419
6420/* Run through task list and migrate tasks from the dead cpu. */
6421static void migrate_live_tasks(int src_cpu)
6422{
48f24c4d 6423 struct task_struct *p, *t;
1da177e4 6424
f7b4cddc 6425 read_lock(&tasklist_lock);
1da177e4 6426
48f24c4d
IM
6427 do_each_thread(t, p) {
6428 if (p == current)
1da177e4
LT
6429 continue;
6430
48f24c4d
IM
6431 if (task_cpu(p) == src_cpu)
6432 move_task_off_dead_cpu(src_cpu, p);
6433 } while_each_thread(t, p);
1da177e4 6434
f7b4cddc 6435 read_unlock(&tasklist_lock);
1da177e4
LT
6436}
6437
dd41f596
IM
6438/*
6439 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6440 * It does so by boosting its priority to highest possible.
6441 * Used by CPU offline code.
1da177e4
LT
6442 */
6443void sched_idle_next(void)
6444{
48f24c4d 6445 int this_cpu = smp_processor_id();
70b97a7f 6446 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6447 struct task_struct *p = rq->idle;
6448 unsigned long flags;
6449
6450 /* cpu has to be offline */
48f24c4d 6451 BUG_ON(cpu_online(this_cpu));
1da177e4 6452
48f24c4d
IM
6453 /*
6454 * Strictly not necessary since rest of the CPUs are stopped by now
6455 * and interrupts disabled on the current cpu.
1da177e4
LT
6456 */
6457 spin_lock_irqsave(&rq->lock, flags);
6458
dd41f596 6459 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6460
94bc9a7b
DA
6461 update_rq_clock(rq);
6462 activate_task(rq, p, 0);
1da177e4
LT
6463
6464 spin_unlock_irqrestore(&rq->lock, flags);
6465}
6466
48f24c4d
IM
6467/*
6468 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6469 * offline.
6470 */
6471void idle_task_exit(void)
6472{
6473 struct mm_struct *mm = current->active_mm;
6474
6475 BUG_ON(cpu_online(smp_processor_id()));
6476
6477 if (mm != &init_mm)
6478 switch_mm(mm, &init_mm, current);
6479 mmdrop(mm);
6480}
6481
054b9108 6482/* called under rq->lock with disabled interrupts */
36c8b586 6483static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6484{
70b97a7f 6485 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6486
6487 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6488 BUG_ON(!p->exit_state);
1da177e4
LT
6489
6490 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6491 BUG_ON(p->state == TASK_DEAD);
1da177e4 6492
48f24c4d 6493 get_task_struct(p);
1da177e4
LT
6494
6495 /*
6496 * Drop lock around migration; if someone else moves it,
41a2d6cf 6497 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6498 * fine.
6499 */
f7b4cddc 6500 spin_unlock_irq(&rq->lock);
48f24c4d 6501 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6502 spin_lock_irq(&rq->lock);
1da177e4 6503
48f24c4d 6504 put_task_struct(p);
1da177e4
LT
6505}
6506
6507/* release_task() removes task from tasklist, so we won't find dead tasks. */
6508static void migrate_dead_tasks(unsigned int dead_cpu)
6509{
70b97a7f 6510 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6511 struct task_struct *next;
48f24c4d 6512
dd41f596
IM
6513 for ( ; ; ) {
6514 if (!rq->nr_running)
6515 break;
a8e504d2 6516 update_rq_clock(rq);
ff95f3df 6517 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6518 if (!next)
6519 break;
79c53799 6520 next->sched_class->put_prev_task(rq, next);
dd41f596 6521 migrate_dead(dead_cpu, next);
e692ab53 6522
1da177e4
LT
6523 }
6524}
6525#endif /* CONFIG_HOTPLUG_CPU */
6526
e692ab53
NP
6527#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6528
6529static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6530 {
6531 .procname = "sched_domain",
c57baf1e 6532 .mode = 0555,
e0361851 6533 },
38605cae 6534 {0, },
e692ab53
NP
6535};
6536
6537static struct ctl_table sd_ctl_root[] = {
e0361851 6538 {
c57baf1e 6539 .ctl_name = CTL_KERN,
e0361851 6540 .procname = "kernel",
c57baf1e 6541 .mode = 0555,
e0361851
AD
6542 .child = sd_ctl_dir,
6543 },
38605cae 6544 {0, },
e692ab53
NP
6545};
6546
6547static struct ctl_table *sd_alloc_ctl_entry(int n)
6548{
6549 struct ctl_table *entry =
5cf9f062 6550 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6551
e692ab53
NP
6552 return entry;
6553}
6554
6382bc90
MM
6555static void sd_free_ctl_entry(struct ctl_table **tablep)
6556{
cd790076 6557 struct ctl_table *entry;
6382bc90 6558
cd790076
MM
6559 /*
6560 * In the intermediate directories, both the child directory and
6561 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6562 * will always be set. In the lowest directory the names are
cd790076
MM
6563 * static strings and all have proc handlers.
6564 */
6565 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6566 if (entry->child)
6567 sd_free_ctl_entry(&entry->child);
cd790076
MM
6568 if (entry->proc_handler == NULL)
6569 kfree(entry->procname);
6570 }
6382bc90
MM
6571
6572 kfree(*tablep);
6573 *tablep = NULL;
6574}
6575
e692ab53 6576static void
e0361851 6577set_table_entry(struct ctl_table *entry,
e692ab53
NP
6578 const char *procname, void *data, int maxlen,
6579 mode_t mode, proc_handler *proc_handler)
6580{
e692ab53
NP
6581 entry->procname = procname;
6582 entry->data = data;
6583 entry->maxlen = maxlen;
6584 entry->mode = mode;
6585 entry->proc_handler = proc_handler;
6586}
6587
6588static struct ctl_table *
6589sd_alloc_ctl_domain_table(struct sched_domain *sd)
6590{
a5d8c348 6591 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6592
ad1cdc1d
MM
6593 if (table == NULL)
6594 return NULL;
6595
e0361851 6596 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6597 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6598 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6599 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6600 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6601 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6602 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6603 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6604 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6605 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6606 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6607 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6608 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6609 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6610 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6611 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6612 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6613 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6614 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6615 &sd->cache_nice_tries,
6616 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6617 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6618 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6619 set_table_entry(&table[11], "name", sd->name,
6620 CORENAME_MAX_SIZE, 0444, proc_dostring);
6621 /* &table[12] is terminator */
e692ab53
NP
6622
6623 return table;
6624}
6625
9a4e7159 6626static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6627{
6628 struct ctl_table *entry, *table;
6629 struct sched_domain *sd;
6630 int domain_num = 0, i;
6631 char buf[32];
6632
6633 for_each_domain(cpu, sd)
6634 domain_num++;
6635 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6636 if (table == NULL)
6637 return NULL;
e692ab53
NP
6638
6639 i = 0;
6640 for_each_domain(cpu, sd) {
6641 snprintf(buf, 32, "domain%d", i);
e692ab53 6642 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6643 entry->mode = 0555;
e692ab53
NP
6644 entry->child = sd_alloc_ctl_domain_table(sd);
6645 entry++;
6646 i++;
6647 }
6648 return table;
6649}
6650
6651static struct ctl_table_header *sd_sysctl_header;
6382bc90 6652static void register_sched_domain_sysctl(void)
e692ab53
NP
6653{
6654 int i, cpu_num = num_online_cpus();
6655 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6656 char buf[32];
6657
7378547f
MM
6658 WARN_ON(sd_ctl_dir[0].child);
6659 sd_ctl_dir[0].child = entry;
6660
ad1cdc1d
MM
6661 if (entry == NULL)
6662 return;
6663
97b6ea7b 6664 for_each_online_cpu(i) {
e692ab53 6665 snprintf(buf, 32, "cpu%d", i);
e692ab53 6666 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6667 entry->mode = 0555;
e692ab53 6668 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6669 entry++;
e692ab53 6670 }
7378547f
MM
6671
6672 WARN_ON(sd_sysctl_header);
e692ab53
NP
6673 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6674}
6382bc90 6675
7378547f 6676/* may be called multiple times per register */
6382bc90
MM
6677static void unregister_sched_domain_sysctl(void)
6678{
7378547f
MM
6679 if (sd_sysctl_header)
6680 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6681 sd_sysctl_header = NULL;
7378547f
MM
6682 if (sd_ctl_dir[0].child)
6683 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6684}
e692ab53 6685#else
6382bc90
MM
6686static void register_sched_domain_sysctl(void)
6687{
6688}
6689static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6690{
6691}
6692#endif
6693
1f11eb6a
GH
6694static void set_rq_online(struct rq *rq)
6695{
6696 if (!rq->online) {
6697 const struct sched_class *class;
6698
c6c4927b 6699 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6700 rq->online = 1;
6701
6702 for_each_class(class) {
6703 if (class->rq_online)
6704 class->rq_online(rq);
6705 }
6706 }
6707}
6708
6709static void set_rq_offline(struct rq *rq)
6710{
6711 if (rq->online) {
6712 const struct sched_class *class;
6713
6714 for_each_class(class) {
6715 if (class->rq_offline)
6716 class->rq_offline(rq);
6717 }
6718
c6c4927b 6719 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6720 rq->online = 0;
6721 }
6722}
6723
1da177e4
LT
6724/*
6725 * migration_call - callback that gets triggered when a CPU is added.
6726 * Here we can start up the necessary migration thread for the new CPU.
6727 */
48f24c4d
IM
6728static int __cpuinit
6729migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6730{
1da177e4 6731 struct task_struct *p;
48f24c4d 6732 int cpu = (long)hcpu;
1da177e4 6733 unsigned long flags;
70b97a7f 6734 struct rq *rq;
1da177e4
LT
6735
6736 switch (action) {
5be9361c 6737
1da177e4 6738 case CPU_UP_PREPARE:
8bb78442 6739 case CPU_UP_PREPARE_FROZEN:
dd41f596 6740 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6741 if (IS_ERR(p))
6742 return NOTIFY_BAD;
1da177e4
LT
6743 kthread_bind(p, cpu);
6744 /* Must be high prio: stop_machine expects to yield to it. */
6745 rq = task_rq_lock(p, &flags);
dd41f596 6746 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6747 task_rq_unlock(rq, &flags);
6748 cpu_rq(cpu)->migration_thread = p;
6749 break;
48f24c4d 6750
1da177e4 6751 case CPU_ONLINE:
8bb78442 6752 case CPU_ONLINE_FROZEN:
3a4fa0a2 6753 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6754 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6755
6756 /* Update our root-domain */
6757 rq = cpu_rq(cpu);
6758 spin_lock_irqsave(&rq->lock, flags);
6759 if (rq->rd) {
c6c4927b 6760 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6761
6762 set_rq_online(rq);
1f94ef59
GH
6763 }
6764 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6765 break;
48f24c4d 6766
1da177e4
LT
6767#ifdef CONFIG_HOTPLUG_CPU
6768 case CPU_UP_CANCELED:
8bb78442 6769 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6770 if (!cpu_rq(cpu)->migration_thread)
6771 break;
41a2d6cf 6772 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 6773 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 6774 cpumask_any(cpu_online_mask));
1da177e4
LT
6775 kthread_stop(cpu_rq(cpu)->migration_thread);
6776 cpu_rq(cpu)->migration_thread = NULL;
6777 break;
48f24c4d 6778
1da177e4 6779 case CPU_DEAD:
8bb78442 6780 case CPU_DEAD_FROZEN:
470fd646 6781 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6782 migrate_live_tasks(cpu);
6783 rq = cpu_rq(cpu);
6784 kthread_stop(rq->migration_thread);
6785 rq->migration_thread = NULL;
6786 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6787 spin_lock_irq(&rq->lock);
a8e504d2 6788 update_rq_clock(rq);
2e1cb74a 6789 deactivate_task(rq, rq->idle, 0);
1da177e4 6790 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6791 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6792 rq->idle->sched_class = &idle_sched_class;
1da177e4 6793 migrate_dead_tasks(cpu);
d2da272a 6794 spin_unlock_irq(&rq->lock);
470fd646 6795 cpuset_unlock();
1da177e4
LT
6796 migrate_nr_uninterruptible(rq);
6797 BUG_ON(rq->nr_running != 0);
6798
41a2d6cf
IM
6799 /*
6800 * No need to migrate the tasks: it was best-effort if
6801 * they didn't take sched_hotcpu_mutex. Just wake up
6802 * the requestors.
6803 */
1da177e4
LT
6804 spin_lock_irq(&rq->lock);
6805 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6806 struct migration_req *req;
6807
1da177e4 6808 req = list_entry(rq->migration_queue.next,
70b97a7f 6809 struct migration_req, list);
1da177e4 6810 list_del_init(&req->list);
9a2bd244 6811 spin_unlock_irq(&rq->lock);
1da177e4 6812 complete(&req->done);
9a2bd244 6813 spin_lock_irq(&rq->lock);
1da177e4
LT
6814 }
6815 spin_unlock_irq(&rq->lock);
6816 break;
57d885fe 6817
08f503b0
GH
6818 case CPU_DYING:
6819 case CPU_DYING_FROZEN:
57d885fe
GH
6820 /* Update our root-domain */
6821 rq = cpu_rq(cpu);
6822 spin_lock_irqsave(&rq->lock, flags);
6823 if (rq->rd) {
c6c4927b 6824 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6825 set_rq_offline(rq);
57d885fe
GH
6826 }
6827 spin_unlock_irqrestore(&rq->lock, flags);
6828 break;
1da177e4
LT
6829#endif
6830 }
6831 return NOTIFY_OK;
6832}
6833
6834/* Register at highest priority so that task migration (migrate_all_tasks)
6835 * happens before everything else.
6836 */
26c2143b 6837static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6838 .notifier_call = migration_call,
6839 .priority = 10
6840};
6841
7babe8db 6842static int __init migration_init(void)
1da177e4
LT
6843{
6844 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6845 int err;
48f24c4d
IM
6846
6847 /* Start one for the boot CPU: */
07dccf33
AM
6848 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6849 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6850 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6851 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6852
6853 return err;
1da177e4 6854}
7babe8db 6855early_initcall(migration_init);
1da177e4
LT
6856#endif
6857
6858#ifdef CONFIG_SMP
476f3534 6859
3e9830dc 6860#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6861
7c16ec58 6862static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6863 struct cpumask *groupmask)
1da177e4 6864{
4dcf6aff 6865 struct sched_group *group = sd->groups;
434d53b0 6866 char str[256];
1da177e4 6867
968ea6d8 6868 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6869 cpumask_clear(groupmask);
4dcf6aff
IM
6870
6871 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6872
6873 if (!(sd->flags & SD_LOAD_BALANCE)) {
6874 printk("does not load-balance\n");
6875 if (sd->parent)
6876 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6877 " has parent");
6878 return -1;
41c7ce9a
NP
6879 }
6880
eefd796a 6881 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6882
758b2cdc 6883 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
6884 printk(KERN_ERR "ERROR: domain->span does not contain "
6885 "CPU%d\n", cpu);
6886 }
758b2cdc 6887 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
6888 printk(KERN_ERR "ERROR: domain->groups does not contain"
6889 " CPU%d\n", cpu);
6890 }
1da177e4 6891
4dcf6aff 6892 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6893 do {
4dcf6aff
IM
6894 if (!group) {
6895 printk("\n");
6896 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6897 break;
6898 }
6899
4dcf6aff
IM
6900 if (!group->__cpu_power) {
6901 printk(KERN_CONT "\n");
6902 printk(KERN_ERR "ERROR: domain->cpu_power not "
6903 "set\n");
6904 break;
6905 }
1da177e4 6906
758b2cdc 6907 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
6908 printk(KERN_CONT "\n");
6909 printk(KERN_ERR "ERROR: empty group\n");
6910 break;
6911 }
1da177e4 6912
758b2cdc 6913 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
6914 printk(KERN_CONT "\n");
6915 printk(KERN_ERR "ERROR: repeated CPUs\n");
6916 break;
6917 }
1da177e4 6918
758b2cdc 6919 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6920
968ea6d8 6921 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4dcf6aff 6922 printk(KERN_CONT " %s", str);
1da177e4 6923
4dcf6aff
IM
6924 group = group->next;
6925 } while (group != sd->groups);
6926 printk(KERN_CONT "\n");
1da177e4 6927
758b2cdc 6928 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 6929 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6930
758b2cdc
RR
6931 if (sd->parent &&
6932 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
6933 printk(KERN_ERR "ERROR: parent span is not a superset "
6934 "of domain->span\n");
6935 return 0;
6936}
1da177e4 6937
4dcf6aff
IM
6938static void sched_domain_debug(struct sched_domain *sd, int cpu)
6939{
d5dd3db1 6940 cpumask_var_t groupmask;
4dcf6aff 6941 int level = 0;
1da177e4 6942
4dcf6aff
IM
6943 if (!sd) {
6944 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6945 return;
6946 }
1da177e4 6947
4dcf6aff
IM
6948 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6949
d5dd3db1 6950 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6951 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6952 return;
6953 }
6954
4dcf6aff 6955 for (;;) {
7c16ec58 6956 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6957 break;
1da177e4
LT
6958 level++;
6959 sd = sd->parent;
33859f7f 6960 if (!sd)
4dcf6aff
IM
6961 break;
6962 }
d5dd3db1 6963 free_cpumask_var(groupmask);
1da177e4 6964}
6d6bc0ad 6965#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6966# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6967#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6968
1a20ff27 6969static int sd_degenerate(struct sched_domain *sd)
245af2c7 6970{
758b2cdc 6971 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6972 return 1;
6973
6974 /* Following flags need at least 2 groups */
6975 if (sd->flags & (SD_LOAD_BALANCE |
6976 SD_BALANCE_NEWIDLE |
6977 SD_BALANCE_FORK |
89c4710e
SS
6978 SD_BALANCE_EXEC |
6979 SD_SHARE_CPUPOWER |
6980 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6981 if (sd->groups != sd->groups->next)
6982 return 0;
6983 }
6984
6985 /* Following flags don't use groups */
6986 if (sd->flags & (SD_WAKE_IDLE |
6987 SD_WAKE_AFFINE |
6988 SD_WAKE_BALANCE))
6989 return 0;
6990
6991 return 1;
6992}
6993
48f24c4d
IM
6994static int
6995sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6996{
6997 unsigned long cflags = sd->flags, pflags = parent->flags;
6998
6999 if (sd_degenerate(parent))
7000 return 1;
7001
758b2cdc 7002 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7003 return 0;
7004
7005 /* Does parent contain flags not in child? */
7006 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7007 if (cflags & SD_WAKE_AFFINE)
7008 pflags &= ~SD_WAKE_BALANCE;
7009 /* Flags needing groups don't count if only 1 group in parent */
7010 if (parent->groups == parent->groups->next) {
7011 pflags &= ~(SD_LOAD_BALANCE |
7012 SD_BALANCE_NEWIDLE |
7013 SD_BALANCE_FORK |
89c4710e
SS
7014 SD_BALANCE_EXEC |
7015 SD_SHARE_CPUPOWER |
7016 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7017 if (nr_node_ids == 1)
7018 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7019 }
7020 if (~cflags & pflags)
7021 return 0;
7022
7023 return 1;
7024}
7025
c6c4927b
RR
7026static void free_rootdomain(struct root_domain *rd)
7027{
68e74568
RR
7028 cpupri_cleanup(&rd->cpupri);
7029
c6c4927b
RR
7030 free_cpumask_var(rd->rto_mask);
7031 free_cpumask_var(rd->online);
7032 free_cpumask_var(rd->span);
7033 kfree(rd);
7034}
7035
57d885fe
GH
7036static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7037{
a0490fa3 7038 struct root_domain *old_rd = NULL;
57d885fe 7039 unsigned long flags;
57d885fe
GH
7040
7041 spin_lock_irqsave(&rq->lock, flags);
7042
7043 if (rq->rd) {
a0490fa3 7044 old_rd = rq->rd;
57d885fe 7045
c6c4927b 7046 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7047 set_rq_offline(rq);
57d885fe 7048
c6c4927b 7049 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7050
a0490fa3
IM
7051 /*
7052 * If we dont want to free the old_rt yet then
7053 * set old_rd to NULL to skip the freeing later
7054 * in this function:
7055 */
7056 if (!atomic_dec_and_test(&old_rd->refcount))
7057 old_rd = NULL;
57d885fe
GH
7058 }
7059
7060 atomic_inc(&rd->refcount);
7061 rq->rd = rd;
7062
c6c4927b
RR
7063 cpumask_set_cpu(rq->cpu, rd->span);
7064 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 7065 set_rq_online(rq);
57d885fe
GH
7066
7067 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7068
7069 if (old_rd)
7070 free_rootdomain(old_rd);
57d885fe
GH
7071}
7072
db2f59c8 7073static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe
GH
7074{
7075 memset(rd, 0, sizeof(*rd));
7076
c6c4927b
RR
7077 if (bootmem) {
7078 alloc_bootmem_cpumask_var(&def_root_domain.span);
7079 alloc_bootmem_cpumask_var(&def_root_domain.online);
7080 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
68e74568 7081 cpupri_init(&rd->cpupri, true);
c6c4927b
RR
7082 return 0;
7083 }
7084
7085 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 7086 goto out;
c6c4927b
RR
7087 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7088 goto free_span;
7089 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7090 goto free_online;
6e0534f2 7091
68e74568
RR
7092 if (cpupri_init(&rd->cpupri, false) != 0)
7093 goto free_rto_mask;
c6c4927b 7094 return 0;
6e0534f2 7095
68e74568
RR
7096free_rto_mask:
7097 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7098free_online:
7099 free_cpumask_var(rd->online);
7100free_span:
7101 free_cpumask_var(rd->span);
0c910d28 7102out:
c6c4927b 7103 return -ENOMEM;
57d885fe
GH
7104}
7105
7106static void init_defrootdomain(void)
7107{
c6c4927b
RR
7108 init_rootdomain(&def_root_domain, true);
7109
57d885fe
GH
7110 atomic_set(&def_root_domain.refcount, 1);
7111}
7112
dc938520 7113static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7114{
7115 struct root_domain *rd;
7116
7117 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7118 if (!rd)
7119 return NULL;
7120
c6c4927b
RR
7121 if (init_rootdomain(rd, false) != 0) {
7122 kfree(rd);
7123 return NULL;
7124 }
57d885fe
GH
7125
7126 return rd;
7127}
7128
1da177e4 7129/*
0eab9146 7130 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7131 * hold the hotplug lock.
7132 */
0eab9146
IM
7133static void
7134cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7135{
70b97a7f 7136 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7137 struct sched_domain *tmp;
7138
7139 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7140 for (tmp = sd; tmp; ) {
245af2c7
SS
7141 struct sched_domain *parent = tmp->parent;
7142 if (!parent)
7143 break;
f29c9b1c 7144
1a848870 7145 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7146 tmp->parent = parent->parent;
1a848870
SS
7147 if (parent->parent)
7148 parent->parent->child = tmp;
f29c9b1c
LZ
7149 } else
7150 tmp = tmp->parent;
245af2c7
SS
7151 }
7152
1a848870 7153 if (sd && sd_degenerate(sd)) {
245af2c7 7154 sd = sd->parent;
1a848870
SS
7155 if (sd)
7156 sd->child = NULL;
7157 }
1da177e4
LT
7158
7159 sched_domain_debug(sd, cpu);
7160
57d885fe 7161 rq_attach_root(rq, rd);
674311d5 7162 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7163}
7164
7165/* cpus with isolated domains */
dcc30a35 7166static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7167
7168/* Setup the mask of cpus configured for isolated domains */
7169static int __init isolated_cpu_setup(char *str)
7170{
968ea6d8 7171 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7172 return 1;
7173}
7174
8927f494 7175__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7176
7177/*
6711cab4
SS
7178 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7179 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7180 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7181 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7182 *
7183 * init_sched_build_groups will build a circular linked list of the groups
7184 * covered by the given span, and will set each group's ->cpumask correctly,
7185 * and ->cpu_power to 0.
7186 */
a616058b 7187static void
96f874e2
RR
7188init_sched_build_groups(const struct cpumask *span,
7189 const struct cpumask *cpu_map,
7190 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7191 struct sched_group **sg,
96f874e2
RR
7192 struct cpumask *tmpmask),
7193 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
7194{
7195 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
7196 int i;
7197
96f874e2 7198 cpumask_clear(covered);
7c16ec58 7199
abcd083a 7200 for_each_cpu(i, span) {
6711cab4 7201 struct sched_group *sg;
7c16ec58 7202 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
7203 int j;
7204
758b2cdc 7205 if (cpumask_test_cpu(i, covered))
1da177e4
LT
7206 continue;
7207
758b2cdc 7208 cpumask_clear(sched_group_cpus(sg));
5517d86b 7209 sg->__cpu_power = 0;
1da177e4 7210
abcd083a 7211 for_each_cpu(j, span) {
7c16ec58 7212 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7213 continue;
7214
96f874e2 7215 cpumask_set_cpu(j, covered);
758b2cdc 7216 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
7217 }
7218 if (!first)
7219 first = sg;
7220 if (last)
7221 last->next = sg;
7222 last = sg;
7223 }
7224 last->next = first;
7225}
7226
9c1cfda2 7227#define SD_NODES_PER_DOMAIN 16
1da177e4 7228
9c1cfda2 7229#ifdef CONFIG_NUMA
198e2f18 7230
9c1cfda2
JH
7231/**
7232 * find_next_best_node - find the next node to include in a sched_domain
7233 * @node: node whose sched_domain we're building
7234 * @used_nodes: nodes already in the sched_domain
7235 *
41a2d6cf 7236 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7237 * finds the closest node not already in the @used_nodes map.
7238 *
7239 * Should use nodemask_t.
7240 */
c5f59f08 7241static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7242{
7243 int i, n, val, min_val, best_node = 0;
7244
7245 min_val = INT_MAX;
7246
076ac2af 7247 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7248 /* Start at @node */
076ac2af 7249 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7250
7251 if (!nr_cpus_node(n))
7252 continue;
7253
7254 /* Skip already used nodes */
c5f59f08 7255 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7256 continue;
7257
7258 /* Simple min distance search */
7259 val = node_distance(node, n);
7260
7261 if (val < min_val) {
7262 min_val = val;
7263 best_node = n;
7264 }
7265 }
7266
c5f59f08 7267 node_set(best_node, *used_nodes);
9c1cfda2
JH
7268 return best_node;
7269}
7270
7271/**
7272 * sched_domain_node_span - get a cpumask for a node's sched_domain
7273 * @node: node whose cpumask we're constructing
73486722 7274 * @span: resulting cpumask
9c1cfda2 7275 *
41a2d6cf 7276 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7277 * should be one that prevents unnecessary balancing, but also spreads tasks
7278 * out optimally.
7279 */
96f874e2 7280static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7281{
c5f59f08 7282 nodemask_t used_nodes;
48f24c4d 7283 int i;
9c1cfda2 7284
6ca09dfc 7285 cpumask_clear(span);
c5f59f08 7286 nodes_clear(used_nodes);
9c1cfda2 7287
6ca09dfc 7288 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7289 node_set(node, used_nodes);
9c1cfda2
JH
7290
7291 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7292 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7293
6ca09dfc 7294 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7295 }
9c1cfda2 7296}
6d6bc0ad 7297#endif /* CONFIG_NUMA */
9c1cfda2 7298
5c45bf27 7299int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7300
6c99e9ad
RR
7301/*
7302 * The cpus mask in sched_group and sched_domain hangs off the end.
7303 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7304 * for nr_cpu_ids < CONFIG_NR_CPUS.
7305 */
7306struct static_sched_group {
7307 struct sched_group sg;
7308 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7309};
7310
7311struct static_sched_domain {
7312 struct sched_domain sd;
7313 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7314};
7315
9c1cfda2 7316/*
48f24c4d 7317 * SMT sched-domains:
9c1cfda2 7318 */
1da177e4 7319#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
7320static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7321static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 7322
41a2d6cf 7323static int
96f874e2
RR
7324cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7325 struct sched_group **sg, struct cpumask *unused)
1da177e4 7326{
6711cab4 7327 if (sg)
6c99e9ad 7328 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
7329 return cpu;
7330}
6d6bc0ad 7331#endif /* CONFIG_SCHED_SMT */
1da177e4 7332
48f24c4d
IM
7333/*
7334 * multi-core sched-domains:
7335 */
1e9f28fa 7336#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
7337static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7338static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 7339#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7340
7341#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7342static int
96f874e2
RR
7343cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7344 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 7345{
6711cab4 7346 int group;
7c16ec58 7347
96f874e2
RR
7348 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7349 group = cpumask_first(mask);
6711cab4 7350 if (sg)
6c99e9ad 7351 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 7352 return group;
1e9f28fa
SS
7353}
7354#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7355static int
96f874e2
RR
7356cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7357 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 7358{
6711cab4 7359 if (sg)
6c99e9ad 7360 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
7361 return cpu;
7362}
7363#endif
7364
6c99e9ad
RR
7365static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7366static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 7367
41a2d6cf 7368static int
96f874e2
RR
7369cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7370 struct sched_group **sg, struct cpumask *mask)
1da177e4 7371{
6711cab4 7372 int group;
48f24c4d 7373#ifdef CONFIG_SCHED_MC
6ca09dfc 7374 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 7375 group = cpumask_first(mask);
1e9f28fa 7376#elif defined(CONFIG_SCHED_SMT)
96f874e2
RR
7377 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7378 group = cpumask_first(mask);
1da177e4 7379#else
6711cab4 7380 group = cpu;
1da177e4 7381#endif
6711cab4 7382 if (sg)
6c99e9ad 7383 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 7384 return group;
1da177e4
LT
7385}
7386
7387#ifdef CONFIG_NUMA
1da177e4 7388/*
9c1cfda2
JH
7389 * The init_sched_build_groups can't handle what we want to do with node
7390 * groups, so roll our own. Now each node has its own list of groups which
7391 * gets dynamically allocated.
1da177e4 7392 */
62ea9ceb 7393static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 7394static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7395
62ea9ceb 7396static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 7397static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 7398
96f874e2
RR
7399static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7400 struct sched_group **sg,
7401 struct cpumask *nodemask)
9c1cfda2 7402{
6711cab4
SS
7403 int group;
7404
6ca09dfc 7405 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 7406 group = cpumask_first(nodemask);
6711cab4
SS
7407
7408 if (sg)
6c99e9ad 7409 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7410 return group;
1da177e4 7411}
6711cab4 7412
08069033
SS
7413static void init_numa_sched_groups_power(struct sched_group *group_head)
7414{
7415 struct sched_group *sg = group_head;
7416 int j;
7417
7418 if (!sg)
7419 return;
3a5c359a 7420 do {
758b2cdc 7421 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7422 struct sched_domain *sd;
08069033 7423
6c99e9ad 7424 sd = &per_cpu(phys_domains, j).sd;
758b2cdc 7425 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
3a5c359a
AK
7426 /*
7427 * Only add "power" once for each
7428 * physical package.
7429 */
7430 continue;
7431 }
08069033 7432
3a5c359a
AK
7433 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7434 }
7435 sg = sg->next;
7436 } while (sg != group_head);
08069033 7437}
6d6bc0ad 7438#endif /* CONFIG_NUMA */
1da177e4 7439
a616058b 7440#ifdef CONFIG_NUMA
51888ca2 7441/* Free memory allocated for various sched_group structures */
96f874e2
RR
7442static void free_sched_groups(const struct cpumask *cpu_map,
7443 struct cpumask *nodemask)
51888ca2 7444{
a616058b 7445 int cpu, i;
51888ca2 7446
abcd083a 7447 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7448 struct sched_group **sched_group_nodes
7449 = sched_group_nodes_bycpu[cpu];
7450
51888ca2
SV
7451 if (!sched_group_nodes)
7452 continue;
7453
076ac2af 7454 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7455 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7456
6ca09dfc 7457 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7458 if (cpumask_empty(nodemask))
51888ca2
SV
7459 continue;
7460
7461 if (sg == NULL)
7462 continue;
7463 sg = sg->next;
7464next_sg:
7465 oldsg = sg;
7466 sg = sg->next;
7467 kfree(oldsg);
7468 if (oldsg != sched_group_nodes[i])
7469 goto next_sg;
7470 }
7471 kfree(sched_group_nodes);
7472 sched_group_nodes_bycpu[cpu] = NULL;
7473 }
51888ca2 7474}
6d6bc0ad 7475#else /* !CONFIG_NUMA */
96f874e2
RR
7476static void free_sched_groups(const struct cpumask *cpu_map,
7477 struct cpumask *nodemask)
a616058b
SS
7478{
7479}
6d6bc0ad 7480#endif /* CONFIG_NUMA */
51888ca2 7481
89c4710e
SS
7482/*
7483 * Initialize sched groups cpu_power.
7484 *
7485 * cpu_power indicates the capacity of sched group, which is used while
7486 * distributing the load between different sched groups in a sched domain.
7487 * Typically cpu_power for all the groups in a sched domain will be same unless
7488 * there are asymmetries in the topology. If there are asymmetries, group
7489 * having more cpu_power will pickup more load compared to the group having
7490 * less cpu_power.
7491 *
7492 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7493 * the maximum number of tasks a group can handle in the presence of other idle
7494 * or lightly loaded groups in the same sched domain.
7495 */
7496static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7497{
7498 struct sched_domain *child;
7499 struct sched_group *group;
7500
7501 WARN_ON(!sd || !sd->groups);
7502
758b2cdc 7503 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
89c4710e
SS
7504 return;
7505
7506 child = sd->child;
7507
5517d86b
ED
7508 sd->groups->__cpu_power = 0;
7509
89c4710e
SS
7510 /*
7511 * For perf policy, if the groups in child domain share resources
7512 * (for example cores sharing some portions of the cache hierarchy
7513 * or SMT), then set this domain groups cpu_power such that each group
7514 * can handle only one task, when there are other idle groups in the
7515 * same sched domain.
7516 */
7517 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7518 (child->flags &
7519 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7520 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7521 return;
7522 }
7523
89c4710e
SS
7524 /*
7525 * add cpu_power of each child group to this groups cpu_power
7526 */
7527 group = child->groups;
7528 do {
5517d86b 7529 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7530 group = group->next;
7531 } while (group != child->groups);
7532}
7533
7c16ec58
MT
7534/*
7535 * Initializers for schedule domains
7536 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7537 */
7538
a5d8c348
IM
7539#ifdef CONFIG_SCHED_DEBUG
7540# define SD_INIT_NAME(sd, type) sd->name = #type
7541#else
7542# define SD_INIT_NAME(sd, type) do { } while (0)
7543#endif
7544
7c16ec58 7545#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7546
7c16ec58
MT
7547#define SD_INIT_FUNC(type) \
7548static noinline void sd_init_##type(struct sched_domain *sd) \
7549{ \
7550 memset(sd, 0, sizeof(*sd)); \
7551 *sd = SD_##type##_INIT; \
1d3504fc 7552 sd->level = SD_LV_##type; \
a5d8c348 7553 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7554}
7555
7556SD_INIT_FUNC(CPU)
7557#ifdef CONFIG_NUMA
7558 SD_INIT_FUNC(ALLNODES)
7559 SD_INIT_FUNC(NODE)
7560#endif
7561#ifdef CONFIG_SCHED_SMT
7562 SD_INIT_FUNC(SIBLING)
7563#endif
7564#ifdef CONFIG_SCHED_MC
7565 SD_INIT_FUNC(MC)
7566#endif
7567
1d3504fc
HS
7568static int default_relax_domain_level = -1;
7569
7570static int __init setup_relax_domain_level(char *str)
7571{
30e0e178
LZ
7572 unsigned long val;
7573
7574 val = simple_strtoul(str, NULL, 0);
7575 if (val < SD_LV_MAX)
7576 default_relax_domain_level = val;
7577
1d3504fc
HS
7578 return 1;
7579}
7580__setup("relax_domain_level=", setup_relax_domain_level);
7581
7582static void set_domain_attribute(struct sched_domain *sd,
7583 struct sched_domain_attr *attr)
7584{
7585 int request;
7586
7587 if (!attr || attr->relax_domain_level < 0) {
7588 if (default_relax_domain_level < 0)
7589 return;
7590 else
7591 request = default_relax_domain_level;
7592 } else
7593 request = attr->relax_domain_level;
7594 if (request < sd->level) {
7595 /* turn off idle balance on this domain */
7596 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7597 } else {
7598 /* turn on idle balance on this domain */
7599 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7600 }
7601}
7602
1da177e4 7603/*
1a20ff27
DG
7604 * Build sched domains for a given set of cpus and attach the sched domains
7605 * to the individual cpus
1da177e4 7606 */
96f874e2 7607static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 7608 struct sched_domain_attr *attr)
1da177e4 7609{
3404c8d9 7610 int i, err = -ENOMEM;
57d885fe 7611 struct root_domain *rd;
3404c8d9
RR
7612 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7613 tmpmask;
d1b55138 7614#ifdef CONFIG_NUMA
3404c8d9 7615 cpumask_var_t domainspan, covered, notcovered;
d1b55138 7616 struct sched_group **sched_group_nodes = NULL;
6711cab4 7617 int sd_allnodes = 0;
d1b55138 7618
3404c8d9
RR
7619 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7620 goto out;
7621 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7622 goto free_domainspan;
7623 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7624 goto free_covered;
7625#endif
7626
7627 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7628 goto free_notcovered;
7629 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7630 goto free_nodemask;
7631 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7632 goto free_this_sibling_map;
7633 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7634 goto free_this_core_map;
7635 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7636 goto free_send_covered;
7637
7638#ifdef CONFIG_NUMA
d1b55138
JH
7639 /*
7640 * Allocate the per-node list of sched groups
7641 */
076ac2af 7642 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7643 GFP_KERNEL);
d1b55138
JH
7644 if (!sched_group_nodes) {
7645 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 7646 goto free_tmpmask;
d1b55138 7647 }
d1b55138 7648#endif
1da177e4 7649
dc938520 7650 rd = alloc_rootdomain();
57d885fe
GH
7651 if (!rd) {
7652 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 7653 goto free_sched_groups;
57d885fe
GH
7654 }
7655
7c16ec58 7656#ifdef CONFIG_NUMA
96f874e2 7657 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
7658#endif
7659
1da177e4 7660 /*
1a20ff27 7661 * Set up domains for cpus specified by the cpu_map.
1da177e4 7662 */
abcd083a 7663 for_each_cpu(i, cpu_map) {
1da177e4 7664 struct sched_domain *sd = NULL, *p;
1da177e4 7665
6ca09dfc 7666 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
7667
7668#ifdef CONFIG_NUMA
96f874e2
RR
7669 if (cpumask_weight(cpu_map) >
7670 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 7671 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 7672 SD_INIT(sd, ALLNODES);
1d3504fc 7673 set_domain_attribute(sd, attr);
758b2cdc 7674 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 7675 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7676 p = sd;
6711cab4 7677 sd_allnodes = 1;
9c1cfda2
JH
7678 } else
7679 p = NULL;
7680
62ea9ceb 7681 sd = &per_cpu(node_domains, i).sd;
7c16ec58 7682 SD_INIT(sd, NODE);
1d3504fc 7683 set_domain_attribute(sd, attr);
758b2cdc 7684 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 7685 sd->parent = p;
1a848870
SS
7686 if (p)
7687 p->child = sd;
758b2cdc
RR
7688 cpumask_and(sched_domain_span(sd),
7689 sched_domain_span(sd), cpu_map);
1da177e4
LT
7690#endif
7691
7692 p = sd;
6c99e9ad 7693 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 7694 SD_INIT(sd, CPU);
1d3504fc 7695 set_domain_attribute(sd, attr);
758b2cdc 7696 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 7697 sd->parent = p;
1a848870
SS
7698 if (p)
7699 p->child = sd;
7c16ec58 7700 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7701
1e9f28fa
SS
7702#ifdef CONFIG_SCHED_MC
7703 p = sd;
6c99e9ad 7704 sd = &per_cpu(core_domains, i).sd;
7c16ec58 7705 SD_INIT(sd, MC);
1d3504fc 7706 set_domain_attribute(sd, attr);
6ca09dfc
MT
7707 cpumask_and(sched_domain_span(sd), cpu_map,
7708 cpu_coregroup_mask(i));
1e9f28fa 7709 sd->parent = p;
1a848870 7710 p->child = sd;
7c16ec58 7711 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7712#endif
7713
1da177e4
LT
7714#ifdef CONFIG_SCHED_SMT
7715 p = sd;
6c99e9ad 7716 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 7717 SD_INIT(sd, SIBLING);
1d3504fc 7718 set_domain_attribute(sd, attr);
758b2cdc
RR
7719 cpumask_and(sched_domain_span(sd),
7720 &per_cpu(cpu_sibling_map, i), cpu_map);
1da177e4 7721 sd->parent = p;
1a848870 7722 p->child = sd;
7c16ec58 7723 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7724#endif
7725 }
7726
7727#ifdef CONFIG_SCHED_SMT
7728 /* Set up CPU (sibling) groups */
abcd083a 7729 for_each_cpu(i, cpu_map) {
96f874e2
RR
7730 cpumask_and(this_sibling_map,
7731 &per_cpu(cpu_sibling_map, i), cpu_map);
7732 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
7733 continue;
7734
dd41f596 7735 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7736 &cpu_to_cpu_group,
7737 send_covered, tmpmask);
1da177e4
LT
7738 }
7739#endif
7740
1e9f28fa
SS
7741#ifdef CONFIG_SCHED_MC
7742 /* Set up multi-core groups */
abcd083a 7743 for_each_cpu(i, cpu_map) {
6ca09dfc 7744 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 7745 if (i != cpumask_first(this_core_map))
1e9f28fa 7746 continue;
7c16ec58 7747
dd41f596 7748 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7749 &cpu_to_core_group,
7750 send_covered, tmpmask);
1e9f28fa
SS
7751 }
7752#endif
7753
1da177e4 7754 /* Set up physical groups */
076ac2af 7755 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 7756 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7757 if (cpumask_empty(nodemask))
1da177e4
LT
7758 continue;
7759
7c16ec58
MT
7760 init_sched_build_groups(nodemask, cpu_map,
7761 &cpu_to_phys_group,
7762 send_covered, tmpmask);
1da177e4
LT
7763 }
7764
7765#ifdef CONFIG_NUMA
7766 /* Set up node groups */
7c16ec58 7767 if (sd_allnodes) {
7c16ec58
MT
7768 init_sched_build_groups(cpu_map, cpu_map,
7769 &cpu_to_allnodes_group,
7770 send_covered, tmpmask);
7771 }
9c1cfda2 7772
076ac2af 7773 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7774 /* Set up node groups */
7775 struct sched_group *sg, *prev;
9c1cfda2
JH
7776 int j;
7777
96f874e2 7778 cpumask_clear(covered);
6ca09dfc 7779 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7780 if (cpumask_empty(nodemask)) {
d1b55138 7781 sched_group_nodes[i] = NULL;
9c1cfda2 7782 continue;
d1b55138 7783 }
9c1cfda2 7784
4bdbaad3 7785 sched_domain_node_span(i, domainspan);
96f874e2 7786 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 7787
6c99e9ad
RR
7788 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7789 GFP_KERNEL, i);
51888ca2
SV
7790 if (!sg) {
7791 printk(KERN_WARNING "Can not alloc domain group for "
7792 "node %d\n", i);
7793 goto error;
7794 }
9c1cfda2 7795 sched_group_nodes[i] = sg;
abcd083a 7796 for_each_cpu(j, nodemask) {
9c1cfda2 7797 struct sched_domain *sd;
9761eea8 7798
62ea9ceb 7799 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 7800 sd->groups = sg;
9c1cfda2 7801 }
5517d86b 7802 sg->__cpu_power = 0;
758b2cdc 7803 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 7804 sg->next = sg;
96f874e2 7805 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
7806 prev = sg;
7807
076ac2af 7808 for (j = 0; j < nr_node_ids; j++) {
076ac2af 7809 int n = (i + j) % nr_node_ids;
9c1cfda2 7810
96f874e2
RR
7811 cpumask_complement(notcovered, covered);
7812 cpumask_and(tmpmask, notcovered, cpu_map);
7813 cpumask_and(tmpmask, tmpmask, domainspan);
7814 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7815 break;
7816
6ca09dfc 7817 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 7818 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7819 continue;
7820
6c99e9ad
RR
7821 sg = kmalloc_node(sizeof(struct sched_group) +
7822 cpumask_size(),
15f0b676 7823 GFP_KERNEL, i);
9c1cfda2
JH
7824 if (!sg) {
7825 printk(KERN_WARNING
7826 "Can not alloc domain group for node %d\n", j);
51888ca2 7827 goto error;
9c1cfda2 7828 }
5517d86b 7829 sg->__cpu_power = 0;
758b2cdc 7830 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 7831 sg->next = prev->next;
96f874e2 7832 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
7833 prev->next = sg;
7834 prev = sg;
7835 }
9c1cfda2 7836 }
1da177e4
LT
7837#endif
7838
7839 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7840#ifdef CONFIG_SCHED_SMT
abcd083a 7841 for_each_cpu(i, cpu_map) {
6c99e9ad 7842 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 7843
89c4710e 7844 init_sched_groups_power(i, sd);
5c45bf27 7845 }
1da177e4 7846#endif
1e9f28fa 7847#ifdef CONFIG_SCHED_MC
abcd083a 7848 for_each_cpu(i, cpu_map) {
6c99e9ad 7849 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 7850
89c4710e 7851 init_sched_groups_power(i, sd);
5c45bf27
SS
7852 }
7853#endif
1e9f28fa 7854
abcd083a 7855 for_each_cpu(i, cpu_map) {
6c99e9ad 7856 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 7857
89c4710e 7858 init_sched_groups_power(i, sd);
1da177e4
LT
7859 }
7860
9c1cfda2 7861#ifdef CONFIG_NUMA
076ac2af 7862 for (i = 0; i < nr_node_ids; i++)
08069033 7863 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7864
6711cab4
SS
7865 if (sd_allnodes) {
7866 struct sched_group *sg;
f712c0c7 7867
96f874e2 7868 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 7869 tmpmask);
f712c0c7
SS
7870 init_numa_sched_groups_power(sg);
7871 }
9c1cfda2
JH
7872#endif
7873
1da177e4 7874 /* Attach the domains */
abcd083a 7875 for_each_cpu(i, cpu_map) {
1da177e4
LT
7876 struct sched_domain *sd;
7877#ifdef CONFIG_SCHED_SMT
6c99e9ad 7878 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7879#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7880 sd = &per_cpu(core_domains, i).sd;
1da177e4 7881#else
6c99e9ad 7882 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7883#endif
57d885fe 7884 cpu_attach_domain(sd, rd, i);
1da177e4 7885 }
51888ca2 7886
3404c8d9
RR
7887 err = 0;
7888
7889free_tmpmask:
7890 free_cpumask_var(tmpmask);
7891free_send_covered:
7892 free_cpumask_var(send_covered);
7893free_this_core_map:
7894 free_cpumask_var(this_core_map);
7895free_this_sibling_map:
7896 free_cpumask_var(this_sibling_map);
7897free_nodemask:
7898 free_cpumask_var(nodemask);
7899free_notcovered:
7900#ifdef CONFIG_NUMA
7901 free_cpumask_var(notcovered);
7902free_covered:
7903 free_cpumask_var(covered);
7904free_domainspan:
7905 free_cpumask_var(domainspan);
7906out:
7907#endif
7908 return err;
7909
7910free_sched_groups:
7911#ifdef CONFIG_NUMA
7912 kfree(sched_group_nodes);
7913#endif
7914 goto free_tmpmask;
51888ca2 7915
a616058b 7916#ifdef CONFIG_NUMA
51888ca2 7917error:
7c16ec58 7918 free_sched_groups(cpu_map, tmpmask);
c6c4927b 7919 free_rootdomain(rd);
3404c8d9 7920 goto free_tmpmask;
a616058b 7921#endif
1da177e4 7922}
029190c5 7923
96f874e2 7924static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7925{
7926 return __build_sched_domains(cpu_map, NULL);
7927}
7928
96f874e2 7929static struct cpumask *doms_cur; /* current sched domains */
029190c5 7930static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7931static struct sched_domain_attr *dattr_cur;
7932 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7933
7934/*
7935 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7936 * cpumask) fails, then fallback to a single sched domain,
7937 * as determined by the single cpumask fallback_doms.
029190c5 7938 */
4212823f 7939static cpumask_var_t fallback_doms;
029190c5 7940
ee79d1bd
HC
7941/*
7942 * arch_update_cpu_topology lets virtualized architectures update the
7943 * cpu core maps. It is supposed to return 1 if the topology changed
7944 * or 0 if it stayed the same.
7945 */
7946int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7947{
ee79d1bd 7948 return 0;
22e52b07
HC
7949}
7950
1a20ff27 7951/*
41a2d6cf 7952 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7953 * For now this just excludes isolated cpus, but could be used to
7954 * exclude other special cases in the future.
1a20ff27 7955 */
96f874e2 7956static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7957{
7378547f
MM
7958 int err;
7959
22e52b07 7960 arch_update_cpu_topology();
029190c5 7961 ndoms_cur = 1;
96f874e2 7962 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 7963 if (!doms_cur)
4212823f 7964 doms_cur = fallback_doms;
dcc30a35 7965 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 7966 dattr_cur = NULL;
7378547f 7967 err = build_sched_domains(doms_cur);
6382bc90 7968 register_sched_domain_sysctl();
7378547f
MM
7969
7970 return err;
1a20ff27
DG
7971}
7972
96f874e2
RR
7973static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7974 struct cpumask *tmpmask)
1da177e4 7975{
7c16ec58 7976 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7977}
1da177e4 7978
1a20ff27
DG
7979/*
7980 * Detach sched domains from a group of cpus specified in cpu_map
7981 * These cpus will now be attached to the NULL domain
7982 */
96f874e2 7983static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7984{
96f874e2
RR
7985 /* Save because hotplug lock held. */
7986 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7987 int i;
7988
abcd083a 7989 for_each_cpu(i, cpu_map)
57d885fe 7990 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7991 synchronize_sched();
96f874e2 7992 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7993}
7994
1d3504fc
HS
7995/* handle null as "default" */
7996static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7997 struct sched_domain_attr *new, int idx_new)
7998{
7999 struct sched_domain_attr tmp;
8000
8001 /* fast path */
8002 if (!new && !cur)
8003 return 1;
8004
8005 tmp = SD_ATTR_INIT;
8006 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8007 new ? (new + idx_new) : &tmp,
8008 sizeof(struct sched_domain_attr));
8009}
8010
029190c5
PJ
8011/*
8012 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8013 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8014 * doms_new[] to the current sched domain partitioning, doms_cur[].
8015 * It destroys each deleted domain and builds each new domain.
8016 *
96f874e2 8017 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8018 * The masks don't intersect (don't overlap.) We should setup one
8019 * sched domain for each mask. CPUs not in any of the cpumasks will
8020 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8021 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8022 * it as it is.
8023 *
41a2d6cf
IM
8024 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8025 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8026 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8027 * ndoms_new == 1, and partition_sched_domains() will fallback to
8028 * the single partition 'fallback_doms', it also forces the domains
8029 * to be rebuilt.
029190c5 8030 *
96f874e2 8031 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8032 * ndoms_new == 0 is a special case for destroying existing domains,
8033 * and it will not create the default domain.
dfb512ec 8034 *
029190c5
PJ
8035 * Call with hotplug lock held
8036 */
96f874e2
RR
8037/* FIXME: Change to struct cpumask *doms_new[] */
8038void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8039 struct sched_domain_attr *dattr_new)
029190c5 8040{
dfb512ec 8041 int i, j, n;
d65bd5ec 8042 int new_topology;
029190c5 8043
712555ee 8044 mutex_lock(&sched_domains_mutex);
a1835615 8045
7378547f
MM
8046 /* always unregister in case we don't destroy any domains */
8047 unregister_sched_domain_sysctl();
8048
d65bd5ec
HC
8049 /* Let architecture update cpu core mappings. */
8050 new_topology = arch_update_cpu_topology();
8051
dfb512ec 8052 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8053
8054 /* Destroy deleted domains */
8055 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8056 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8057 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8058 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8059 goto match1;
8060 }
8061 /* no match - a current sched domain not in new doms_new[] */
8062 detach_destroy_domains(doms_cur + i);
8063match1:
8064 ;
8065 }
8066
e761b772
MK
8067 if (doms_new == NULL) {
8068 ndoms_cur = 0;
4212823f 8069 doms_new = fallback_doms;
dcc30a35 8070 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8071 WARN_ON_ONCE(dattr_new);
e761b772
MK
8072 }
8073
029190c5
PJ
8074 /* Build new domains */
8075 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8076 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8077 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8078 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8079 goto match2;
8080 }
8081 /* no match - add a new doms_new */
1d3504fc
HS
8082 __build_sched_domains(doms_new + i,
8083 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8084match2:
8085 ;
8086 }
8087
8088 /* Remember the new sched domains */
4212823f 8089 if (doms_cur != fallback_doms)
029190c5 8090 kfree(doms_cur);
1d3504fc 8091 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8092 doms_cur = doms_new;
1d3504fc 8093 dattr_cur = dattr_new;
029190c5 8094 ndoms_cur = ndoms_new;
7378547f
MM
8095
8096 register_sched_domain_sysctl();
a1835615 8097
712555ee 8098 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8099}
8100
5c45bf27 8101#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 8102static void arch_reinit_sched_domains(void)
5c45bf27 8103{
95402b38 8104 get_online_cpus();
dfb512ec
MK
8105
8106 /* Destroy domains first to force the rebuild */
8107 partition_sched_domains(0, NULL, NULL);
8108
e761b772 8109 rebuild_sched_domains();
95402b38 8110 put_online_cpus();
5c45bf27
SS
8111}
8112
8113static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8114{
afb8a9b7 8115 unsigned int level = 0;
5c45bf27 8116
afb8a9b7
GS
8117 if (sscanf(buf, "%u", &level) != 1)
8118 return -EINVAL;
8119
8120 /*
8121 * level is always be positive so don't check for
8122 * level < POWERSAVINGS_BALANCE_NONE which is 0
8123 * What happens on 0 or 1 byte write,
8124 * need to check for count as well?
8125 */
8126
8127 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8128 return -EINVAL;
8129
8130 if (smt)
afb8a9b7 8131 sched_smt_power_savings = level;
5c45bf27 8132 else
afb8a9b7 8133 sched_mc_power_savings = level;
5c45bf27 8134
c70f22d2 8135 arch_reinit_sched_domains();
5c45bf27 8136
c70f22d2 8137 return count;
5c45bf27
SS
8138}
8139
5c45bf27 8140#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8141static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8142 char *page)
5c45bf27
SS
8143{
8144 return sprintf(page, "%u\n", sched_mc_power_savings);
8145}
f718cd4a 8146static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8147 const char *buf, size_t count)
5c45bf27
SS
8148{
8149 return sched_power_savings_store(buf, count, 0);
8150}
f718cd4a
AK
8151static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8152 sched_mc_power_savings_show,
8153 sched_mc_power_savings_store);
5c45bf27
SS
8154#endif
8155
8156#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8157static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8158 char *page)
5c45bf27
SS
8159{
8160 return sprintf(page, "%u\n", sched_smt_power_savings);
8161}
f718cd4a 8162static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8163 const char *buf, size_t count)
5c45bf27
SS
8164{
8165 return sched_power_savings_store(buf, count, 1);
8166}
f718cd4a
AK
8167static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8168 sched_smt_power_savings_show,
6707de00
AB
8169 sched_smt_power_savings_store);
8170#endif
8171
39aac648 8172int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
8173{
8174 int err = 0;
8175
8176#ifdef CONFIG_SCHED_SMT
8177 if (smt_capable())
8178 err = sysfs_create_file(&cls->kset.kobj,
8179 &attr_sched_smt_power_savings.attr);
8180#endif
8181#ifdef CONFIG_SCHED_MC
8182 if (!err && mc_capable())
8183 err = sysfs_create_file(&cls->kset.kobj,
8184 &attr_sched_mc_power_savings.attr);
8185#endif
8186 return err;
8187}
6d6bc0ad 8188#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8189
e761b772 8190#ifndef CONFIG_CPUSETS
1da177e4 8191/*
e761b772
MK
8192 * Add online and remove offline CPUs from the scheduler domains.
8193 * When cpusets are enabled they take over this function.
1da177e4
LT
8194 */
8195static int update_sched_domains(struct notifier_block *nfb,
8196 unsigned long action, void *hcpu)
e761b772
MK
8197{
8198 switch (action) {
8199 case CPU_ONLINE:
8200 case CPU_ONLINE_FROZEN:
8201 case CPU_DEAD:
8202 case CPU_DEAD_FROZEN:
dfb512ec 8203 partition_sched_domains(1, NULL, NULL);
e761b772
MK
8204 return NOTIFY_OK;
8205
8206 default:
8207 return NOTIFY_DONE;
8208 }
8209}
8210#endif
8211
8212static int update_runtime(struct notifier_block *nfb,
8213 unsigned long action, void *hcpu)
1da177e4 8214{
7def2be1
PZ
8215 int cpu = (int)(long)hcpu;
8216
1da177e4 8217 switch (action) {
1da177e4 8218 case CPU_DOWN_PREPARE:
8bb78442 8219 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8220 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8221 return NOTIFY_OK;
8222
1da177e4 8223 case CPU_DOWN_FAILED:
8bb78442 8224 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8225 case CPU_ONLINE:
8bb78442 8226 case CPU_ONLINE_FROZEN:
7def2be1 8227 enable_runtime(cpu_rq(cpu));
e761b772
MK
8228 return NOTIFY_OK;
8229
1da177e4
LT
8230 default:
8231 return NOTIFY_DONE;
8232 }
1da177e4 8233}
1da177e4
LT
8234
8235void __init sched_init_smp(void)
8236{
dcc30a35
RR
8237 cpumask_var_t non_isolated_cpus;
8238
8239 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 8240
434d53b0
MT
8241#if defined(CONFIG_NUMA)
8242 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8243 GFP_KERNEL);
8244 BUG_ON(sched_group_nodes_bycpu == NULL);
8245#endif
95402b38 8246 get_online_cpus();
712555ee 8247 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
8248 arch_init_sched_domains(cpu_online_mask);
8249 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8250 if (cpumask_empty(non_isolated_cpus))
8251 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8252 mutex_unlock(&sched_domains_mutex);
95402b38 8253 put_online_cpus();
e761b772
MK
8254
8255#ifndef CONFIG_CPUSETS
1da177e4
LT
8256 /* XXX: Theoretical race here - CPU may be hotplugged now */
8257 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8258#endif
8259
8260 /* RT runtime code needs to handle some hotplug events */
8261 hotcpu_notifier(update_runtime, 0);
8262
b328ca18 8263 init_hrtick();
5c1e1767
NP
8264
8265 /* Move init over to a non-isolated CPU */
dcc30a35 8266 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8267 BUG();
19978ca6 8268 sched_init_granularity();
dcc30a35 8269 free_cpumask_var(non_isolated_cpus);
4212823f
RR
8270
8271 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 8272 init_sched_rt_class();
1da177e4
LT
8273}
8274#else
8275void __init sched_init_smp(void)
8276{
19978ca6 8277 sched_init_granularity();
1da177e4
LT
8278}
8279#endif /* CONFIG_SMP */
8280
8281int in_sched_functions(unsigned long addr)
8282{
1da177e4
LT
8283 return in_lock_functions(addr) ||
8284 (addr >= (unsigned long)__sched_text_start
8285 && addr < (unsigned long)__sched_text_end);
8286}
8287
a9957449 8288static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8289{
8290 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8291 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8292#ifdef CONFIG_FAIR_GROUP_SCHED
8293 cfs_rq->rq = rq;
8294#endif
67e9fb2a 8295 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8296}
8297
fa85ae24
PZ
8298static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8299{
8300 struct rt_prio_array *array;
8301 int i;
8302
8303 array = &rt_rq->active;
8304 for (i = 0; i < MAX_RT_PRIO; i++) {
8305 INIT_LIST_HEAD(array->queue + i);
8306 __clear_bit(i, array->bitmap);
8307 }
8308 /* delimiter for bitsearch: */
8309 __set_bit(MAX_RT_PRIO, array->bitmap);
8310
052f1dc7 8311#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 8312 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 8313#ifdef CONFIG_SMP
e864c499 8314 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 8315#endif
48d5e258 8316#endif
fa85ae24
PZ
8317#ifdef CONFIG_SMP
8318 rt_rq->rt_nr_migratory = 0;
fa85ae24 8319 rt_rq->overloaded = 0;
917b627d 8320 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
fa85ae24
PZ
8321#endif
8322
8323 rt_rq->rt_time = 0;
8324 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8325 rt_rq->rt_runtime = 0;
8326 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8327
052f1dc7 8328#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8329 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8330 rt_rq->rq = rq;
8331#endif
fa85ae24
PZ
8332}
8333
6f505b16 8334#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8335static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8336 struct sched_entity *se, int cpu, int add,
8337 struct sched_entity *parent)
6f505b16 8338{
ec7dc8ac 8339 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8340 tg->cfs_rq[cpu] = cfs_rq;
8341 init_cfs_rq(cfs_rq, rq);
8342 cfs_rq->tg = tg;
8343 if (add)
8344 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8345
8346 tg->se[cpu] = se;
354d60c2
DG
8347 /* se could be NULL for init_task_group */
8348 if (!se)
8349 return;
8350
ec7dc8ac
DG
8351 if (!parent)
8352 se->cfs_rq = &rq->cfs;
8353 else
8354 se->cfs_rq = parent->my_q;
8355
6f505b16
PZ
8356 se->my_q = cfs_rq;
8357 se->load.weight = tg->shares;
e05510d0 8358 se->load.inv_weight = 0;
ec7dc8ac 8359 se->parent = parent;
6f505b16 8360}
052f1dc7 8361#endif
6f505b16 8362
052f1dc7 8363#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8364static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8365 struct sched_rt_entity *rt_se, int cpu, int add,
8366 struct sched_rt_entity *parent)
6f505b16 8367{
ec7dc8ac
DG
8368 struct rq *rq = cpu_rq(cpu);
8369
6f505b16
PZ
8370 tg->rt_rq[cpu] = rt_rq;
8371 init_rt_rq(rt_rq, rq);
8372 rt_rq->tg = tg;
8373 rt_rq->rt_se = rt_se;
ac086bc2 8374 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8375 if (add)
8376 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8377
8378 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8379 if (!rt_se)
8380 return;
8381
ec7dc8ac
DG
8382 if (!parent)
8383 rt_se->rt_rq = &rq->rt;
8384 else
8385 rt_se->rt_rq = parent->my_q;
8386
6f505b16 8387 rt_se->my_q = rt_rq;
ec7dc8ac 8388 rt_se->parent = parent;
6f505b16
PZ
8389 INIT_LIST_HEAD(&rt_se->run_list);
8390}
8391#endif
8392
1da177e4
LT
8393void __init sched_init(void)
8394{
dd41f596 8395 int i, j;
434d53b0
MT
8396 unsigned long alloc_size = 0, ptr;
8397
8398#ifdef CONFIG_FAIR_GROUP_SCHED
8399 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8400#endif
8401#ifdef CONFIG_RT_GROUP_SCHED
8402 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8403#endif
8404#ifdef CONFIG_USER_SCHED
8405 alloc_size *= 2;
434d53b0
MT
8406#endif
8407 /*
8408 * As sched_init() is called before page_alloc is setup,
8409 * we use alloc_bootmem().
8410 */
8411 if (alloc_size) {
5a9d3225 8412 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8413
8414#ifdef CONFIG_FAIR_GROUP_SCHED
8415 init_task_group.se = (struct sched_entity **)ptr;
8416 ptr += nr_cpu_ids * sizeof(void **);
8417
8418 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8419 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8420
8421#ifdef CONFIG_USER_SCHED
8422 root_task_group.se = (struct sched_entity **)ptr;
8423 ptr += nr_cpu_ids * sizeof(void **);
8424
8425 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8426 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8427#endif /* CONFIG_USER_SCHED */
8428#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8429#ifdef CONFIG_RT_GROUP_SCHED
8430 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8431 ptr += nr_cpu_ids * sizeof(void **);
8432
8433 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8434 ptr += nr_cpu_ids * sizeof(void **);
8435
8436#ifdef CONFIG_USER_SCHED
8437 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8438 ptr += nr_cpu_ids * sizeof(void **);
8439
8440 root_task_group.rt_rq = (struct rt_rq **)ptr;
8441 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8442#endif /* CONFIG_USER_SCHED */
8443#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8444 }
dd41f596 8445
57d885fe
GH
8446#ifdef CONFIG_SMP
8447 init_defrootdomain();
8448#endif
8449
d0b27fa7
PZ
8450 init_rt_bandwidth(&def_rt_bandwidth,
8451 global_rt_period(), global_rt_runtime());
8452
8453#ifdef CONFIG_RT_GROUP_SCHED
8454 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8455 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8456#ifdef CONFIG_USER_SCHED
8457 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8458 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8459#endif /* CONFIG_USER_SCHED */
8460#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8461
052f1dc7 8462#ifdef CONFIG_GROUP_SCHED
6f505b16 8463 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8464 INIT_LIST_HEAD(&init_task_group.children);
8465
8466#ifdef CONFIG_USER_SCHED
8467 INIT_LIST_HEAD(&root_task_group.children);
8468 init_task_group.parent = &root_task_group;
8469 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8470#endif /* CONFIG_USER_SCHED */
8471#endif /* CONFIG_GROUP_SCHED */
6f505b16 8472
0a945022 8473 for_each_possible_cpu(i) {
70b97a7f 8474 struct rq *rq;
1da177e4
LT
8475
8476 rq = cpu_rq(i);
8477 spin_lock_init(&rq->lock);
7897986b 8478 rq->nr_running = 0;
dd41f596 8479 init_cfs_rq(&rq->cfs, rq);
6f505b16 8480 init_rt_rq(&rq->rt, rq);
dd41f596 8481#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8482 init_task_group.shares = init_task_group_load;
6f505b16 8483 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8484#ifdef CONFIG_CGROUP_SCHED
8485 /*
8486 * How much cpu bandwidth does init_task_group get?
8487 *
8488 * In case of task-groups formed thr' the cgroup filesystem, it
8489 * gets 100% of the cpu resources in the system. This overall
8490 * system cpu resource is divided among the tasks of
8491 * init_task_group and its child task-groups in a fair manner,
8492 * based on each entity's (task or task-group's) weight
8493 * (se->load.weight).
8494 *
8495 * In other words, if init_task_group has 10 tasks of weight
8496 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8497 * then A0's share of the cpu resource is:
8498 *
8499 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8500 *
8501 * We achieve this by letting init_task_group's tasks sit
8502 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8503 */
ec7dc8ac 8504 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8505#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8506 root_task_group.shares = NICE_0_LOAD;
8507 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8508 /*
8509 * In case of task-groups formed thr' the user id of tasks,
8510 * init_task_group represents tasks belonging to root user.
8511 * Hence it forms a sibling of all subsequent groups formed.
8512 * In this case, init_task_group gets only a fraction of overall
8513 * system cpu resource, based on the weight assigned to root
8514 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8515 * by letting tasks of init_task_group sit in a separate cfs_rq
8516 * (init_cfs_rq) and having one entity represent this group of
8517 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8518 */
ec7dc8ac 8519 init_tg_cfs_entry(&init_task_group,
6f505b16 8520 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8521 &per_cpu(init_sched_entity, i), i, 1,
8522 root_task_group.se[i]);
6f505b16 8523
052f1dc7 8524#endif
354d60c2
DG
8525#endif /* CONFIG_FAIR_GROUP_SCHED */
8526
8527 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8528#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8529 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8530#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8531 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8532#elif defined CONFIG_USER_SCHED
eff766a6 8533 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8534 init_tg_rt_entry(&init_task_group,
6f505b16 8535 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8536 &per_cpu(init_sched_rt_entity, i), i, 1,
8537 root_task_group.rt_se[i]);
354d60c2 8538#endif
dd41f596 8539#endif
1da177e4 8540
dd41f596
IM
8541 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8542 rq->cpu_load[j] = 0;
1da177e4 8543#ifdef CONFIG_SMP
41c7ce9a 8544 rq->sd = NULL;
57d885fe 8545 rq->rd = NULL;
1da177e4 8546 rq->active_balance = 0;
dd41f596 8547 rq->next_balance = jiffies;
1da177e4 8548 rq->push_cpu = 0;
0a2966b4 8549 rq->cpu = i;
1f11eb6a 8550 rq->online = 0;
1da177e4
LT
8551 rq->migration_thread = NULL;
8552 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8553 rq_attach_root(rq, &def_root_domain);
1da177e4 8554#endif
8f4d37ec 8555 init_rq_hrtick(rq);
1da177e4 8556 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8557 }
8558
2dd73a4f 8559 set_load_weight(&init_task);
b50f60ce 8560
e107be36
AK
8561#ifdef CONFIG_PREEMPT_NOTIFIERS
8562 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8563#endif
8564
c9819f45 8565#ifdef CONFIG_SMP
962cf36c 8566 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8567#endif
8568
b50f60ce
HC
8569#ifdef CONFIG_RT_MUTEXES
8570 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8571#endif
8572
1da177e4
LT
8573 /*
8574 * The boot idle thread does lazy MMU switching as well:
8575 */
8576 atomic_inc(&init_mm.mm_count);
8577 enter_lazy_tlb(&init_mm, current);
8578
8579 /*
8580 * Make us the idle thread. Technically, schedule() should not be
8581 * called from this thread, however somewhere below it might be,
8582 * but because we are the idle thread, we just pick up running again
8583 * when this runqueue becomes "idle".
8584 */
8585 init_idle(current, smp_processor_id());
dd41f596
IM
8586 /*
8587 * During early bootup we pretend to be a normal task:
8588 */
8589 current->sched_class = &fair_sched_class;
6892b75e 8590
6a7b3dc3
RR
8591 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8592 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
bf4d83f6 8593#ifdef CONFIG_SMP
7d1e6a9b
RR
8594#ifdef CONFIG_NO_HZ
8595 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8596#endif
dcc30a35 8597 alloc_bootmem_cpumask_var(&cpu_isolated_map);
bf4d83f6 8598#endif /* SMP */
6a7b3dc3 8599
6892b75e 8600 scheduler_running = 1;
1da177e4
LT
8601}
8602
8603#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8604void __might_sleep(char *file, int line)
8605{
48f24c4d 8606#ifdef in_atomic
1da177e4
LT
8607 static unsigned long prev_jiffy; /* ratelimiting */
8608
aef745fc
IM
8609 if ((!in_atomic() && !irqs_disabled()) ||
8610 system_state != SYSTEM_RUNNING || oops_in_progress)
8611 return;
8612 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8613 return;
8614 prev_jiffy = jiffies;
8615
8616 printk(KERN_ERR
8617 "BUG: sleeping function called from invalid context at %s:%d\n",
8618 file, line);
8619 printk(KERN_ERR
8620 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8621 in_atomic(), irqs_disabled(),
8622 current->pid, current->comm);
8623
8624 debug_show_held_locks(current);
8625 if (irqs_disabled())
8626 print_irqtrace_events(current);
8627 dump_stack();
1da177e4
LT
8628#endif
8629}
8630EXPORT_SYMBOL(__might_sleep);
8631#endif
8632
8633#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8634static void normalize_task(struct rq *rq, struct task_struct *p)
8635{
8636 int on_rq;
3e51f33f 8637
3a5e4dc1
AK
8638 update_rq_clock(rq);
8639 on_rq = p->se.on_rq;
8640 if (on_rq)
8641 deactivate_task(rq, p, 0);
8642 __setscheduler(rq, p, SCHED_NORMAL, 0);
8643 if (on_rq) {
8644 activate_task(rq, p, 0);
8645 resched_task(rq->curr);
8646 }
8647}
8648
1da177e4
LT
8649void normalize_rt_tasks(void)
8650{
a0f98a1c 8651 struct task_struct *g, *p;
1da177e4 8652 unsigned long flags;
70b97a7f 8653 struct rq *rq;
1da177e4 8654
4cf5d77a 8655 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8656 do_each_thread(g, p) {
178be793
IM
8657 /*
8658 * Only normalize user tasks:
8659 */
8660 if (!p->mm)
8661 continue;
8662
6cfb0d5d 8663 p->se.exec_start = 0;
6cfb0d5d 8664#ifdef CONFIG_SCHEDSTATS
dd41f596 8665 p->se.wait_start = 0;
dd41f596 8666 p->se.sleep_start = 0;
dd41f596 8667 p->se.block_start = 0;
6cfb0d5d 8668#endif
dd41f596
IM
8669
8670 if (!rt_task(p)) {
8671 /*
8672 * Renice negative nice level userspace
8673 * tasks back to 0:
8674 */
8675 if (TASK_NICE(p) < 0 && p->mm)
8676 set_user_nice(p, 0);
1da177e4 8677 continue;
dd41f596 8678 }
1da177e4 8679
4cf5d77a 8680 spin_lock(&p->pi_lock);
b29739f9 8681 rq = __task_rq_lock(p);
1da177e4 8682
178be793 8683 normalize_task(rq, p);
3a5e4dc1 8684
b29739f9 8685 __task_rq_unlock(rq);
4cf5d77a 8686 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8687 } while_each_thread(g, p);
8688
4cf5d77a 8689 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8690}
8691
8692#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8693
8694#ifdef CONFIG_IA64
8695/*
8696 * These functions are only useful for the IA64 MCA handling.
8697 *
8698 * They can only be called when the whole system has been
8699 * stopped - every CPU needs to be quiescent, and no scheduling
8700 * activity can take place. Using them for anything else would
8701 * be a serious bug, and as a result, they aren't even visible
8702 * under any other configuration.
8703 */
8704
8705/**
8706 * curr_task - return the current task for a given cpu.
8707 * @cpu: the processor in question.
8708 *
8709 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8710 */
36c8b586 8711struct task_struct *curr_task(int cpu)
1df5c10a
LT
8712{
8713 return cpu_curr(cpu);
8714}
8715
8716/**
8717 * set_curr_task - set the current task for a given cpu.
8718 * @cpu: the processor in question.
8719 * @p: the task pointer to set.
8720 *
8721 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8722 * are serviced on a separate stack. It allows the architecture to switch the
8723 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8724 * must be called with all CPU's synchronized, and interrupts disabled, the
8725 * and caller must save the original value of the current task (see
8726 * curr_task() above) and restore that value before reenabling interrupts and
8727 * re-starting the system.
8728 *
8729 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8730 */
36c8b586 8731void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8732{
8733 cpu_curr(cpu) = p;
8734}
8735
8736#endif
29f59db3 8737
bccbe08a
PZ
8738#ifdef CONFIG_FAIR_GROUP_SCHED
8739static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8740{
8741 int i;
8742
8743 for_each_possible_cpu(i) {
8744 if (tg->cfs_rq)
8745 kfree(tg->cfs_rq[i]);
8746 if (tg->se)
8747 kfree(tg->se[i]);
6f505b16
PZ
8748 }
8749
8750 kfree(tg->cfs_rq);
8751 kfree(tg->se);
6f505b16
PZ
8752}
8753
ec7dc8ac
DG
8754static
8755int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8756{
29f59db3 8757 struct cfs_rq *cfs_rq;
eab17229 8758 struct sched_entity *se;
9b5b7751 8759 struct rq *rq;
29f59db3
SV
8760 int i;
8761
434d53b0 8762 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8763 if (!tg->cfs_rq)
8764 goto err;
434d53b0 8765 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8766 if (!tg->se)
8767 goto err;
052f1dc7
PZ
8768
8769 tg->shares = NICE_0_LOAD;
29f59db3
SV
8770
8771 for_each_possible_cpu(i) {
9b5b7751 8772 rq = cpu_rq(i);
29f59db3 8773
eab17229
LZ
8774 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8775 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8776 if (!cfs_rq)
8777 goto err;
8778
eab17229
LZ
8779 se = kzalloc_node(sizeof(struct sched_entity),
8780 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8781 if (!se)
8782 goto err;
8783
eab17229 8784 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8785 }
8786
8787 return 1;
8788
8789 err:
8790 return 0;
8791}
8792
8793static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8794{
8795 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8796 &cpu_rq(cpu)->leaf_cfs_rq_list);
8797}
8798
8799static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8800{
8801 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8802}
6d6bc0ad 8803#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8804static inline void free_fair_sched_group(struct task_group *tg)
8805{
8806}
8807
ec7dc8ac
DG
8808static inline
8809int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8810{
8811 return 1;
8812}
8813
8814static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8815{
8816}
8817
8818static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8819{
8820}
6d6bc0ad 8821#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8822
8823#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8824static void free_rt_sched_group(struct task_group *tg)
8825{
8826 int i;
8827
d0b27fa7
PZ
8828 destroy_rt_bandwidth(&tg->rt_bandwidth);
8829
bccbe08a
PZ
8830 for_each_possible_cpu(i) {
8831 if (tg->rt_rq)
8832 kfree(tg->rt_rq[i]);
8833 if (tg->rt_se)
8834 kfree(tg->rt_se[i]);
8835 }
8836
8837 kfree(tg->rt_rq);
8838 kfree(tg->rt_se);
8839}
8840
ec7dc8ac
DG
8841static
8842int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8843{
8844 struct rt_rq *rt_rq;
eab17229 8845 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8846 struct rq *rq;
8847 int i;
8848
434d53b0 8849 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8850 if (!tg->rt_rq)
8851 goto err;
434d53b0 8852 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8853 if (!tg->rt_se)
8854 goto err;
8855
d0b27fa7
PZ
8856 init_rt_bandwidth(&tg->rt_bandwidth,
8857 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8858
8859 for_each_possible_cpu(i) {
8860 rq = cpu_rq(i);
8861
eab17229
LZ
8862 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8863 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8864 if (!rt_rq)
8865 goto err;
29f59db3 8866
eab17229
LZ
8867 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8868 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8869 if (!rt_se)
8870 goto err;
29f59db3 8871
eab17229 8872 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8873 }
8874
bccbe08a
PZ
8875 return 1;
8876
8877 err:
8878 return 0;
8879}
8880
8881static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8882{
8883 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8884 &cpu_rq(cpu)->leaf_rt_rq_list);
8885}
8886
8887static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8888{
8889 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8890}
6d6bc0ad 8891#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8892static inline void free_rt_sched_group(struct task_group *tg)
8893{
8894}
8895
ec7dc8ac
DG
8896static inline
8897int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8898{
8899 return 1;
8900}
8901
8902static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8903{
8904}
8905
8906static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8907{
8908}
6d6bc0ad 8909#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8910
d0b27fa7 8911#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8912static void free_sched_group(struct task_group *tg)
8913{
8914 free_fair_sched_group(tg);
8915 free_rt_sched_group(tg);
8916 kfree(tg);
8917}
8918
8919/* allocate runqueue etc for a new task group */
ec7dc8ac 8920struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8921{
8922 struct task_group *tg;
8923 unsigned long flags;
8924 int i;
8925
8926 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8927 if (!tg)
8928 return ERR_PTR(-ENOMEM);
8929
ec7dc8ac 8930 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8931 goto err;
8932
ec7dc8ac 8933 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8934 goto err;
8935
8ed36996 8936 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8937 for_each_possible_cpu(i) {
bccbe08a
PZ
8938 register_fair_sched_group(tg, i);
8939 register_rt_sched_group(tg, i);
9b5b7751 8940 }
6f505b16 8941 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8942
8943 WARN_ON(!parent); /* root should already exist */
8944
8945 tg->parent = parent;
f473aa5e 8946 INIT_LIST_HEAD(&tg->children);
09f2724a 8947 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8948 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8949
9b5b7751 8950 return tg;
29f59db3
SV
8951
8952err:
6f505b16 8953 free_sched_group(tg);
29f59db3
SV
8954 return ERR_PTR(-ENOMEM);
8955}
8956
9b5b7751 8957/* rcu callback to free various structures associated with a task group */
6f505b16 8958static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8959{
29f59db3 8960 /* now it should be safe to free those cfs_rqs */
6f505b16 8961 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8962}
8963
9b5b7751 8964/* Destroy runqueue etc associated with a task group */
4cf86d77 8965void sched_destroy_group(struct task_group *tg)
29f59db3 8966{
8ed36996 8967 unsigned long flags;
9b5b7751 8968 int i;
29f59db3 8969
8ed36996 8970 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8971 for_each_possible_cpu(i) {
bccbe08a
PZ
8972 unregister_fair_sched_group(tg, i);
8973 unregister_rt_sched_group(tg, i);
9b5b7751 8974 }
6f505b16 8975 list_del_rcu(&tg->list);
f473aa5e 8976 list_del_rcu(&tg->siblings);
8ed36996 8977 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8978
9b5b7751 8979 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8980 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8981}
8982
9b5b7751 8983/* change task's runqueue when it moves between groups.
3a252015
IM
8984 * The caller of this function should have put the task in its new group
8985 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8986 * reflect its new group.
9b5b7751
SV
8987 */
8988void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8989{
8990 int on_rq, running;
8991 unsigned long flags;
8992 struct rq *rq;
8993
8994 rq = task_rq_lock(tsk, &flags);
8995
29f59db3
SV
8996 update_rq_clock(rq);
8997
051a1d1a 8998 running = task_current(rq, tsk);
29f59db3
SV
8999 on_rq = tsk->se.on_rq;
9000
0e1f3483 9001 if (on_rq)
29f59db3 9002 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9003 if (unlikely(running))
9004 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9005
6f505b16 9006 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9007
810b3817
PZ
9008#ifdef CONFIG_FAIR_GROUP_SCHED
9009 if (tsk->sched_class->moved_group)
9010 tsk->sched_class->moved_group(tsk);
9011#endif
9012
0e1f3483
HS
9013 if (unlikely(running))
9014 tsk->sched_class->set_curr_task(rq);
9015 if (on_rq)
7074badb 9016 enqueue_task(rq, tsk, 0);
29f59db3 9017
29f59db3
SV
9018 task_rq_unlock(rq, &flags);
9019}
6d6bc0ad 9020#endif /* CONFIG_GROUP_SCHED */
29f59db3 9021
052f1dc7 9022#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9023static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9024{
9025 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9026 int on_rq;
9027
29f59db3 9028 on_rq = se->on_rq;
62fb1851 9029 if (on_rq)
29f59db3
SV
9030 dequeue_entity(cfs_rq, se, 0);
9031
9032 se->load.weight = shares;
e05510d0 9033 se->load.inv_weight = 0;
29f59db3 9034
62fb1851 9035 if (on_rq)
29f59db3 9036 enqueue_entity(cfs_rq, se, 0);
c09595f6 9037}
62fb1851 9038
c09595f6
PZ
9039static void set_se_shares(struct sched_entity *se, unsigned long shares)
9040{
9041 struct cfs_rq *cfs_rq = se->cfs_rq;
9042 struct rq *rq = cfs_rq->rq;
9043 unsigned long flags;
9044
9045 spin_lock_irqsave(&rq->lock, flags);
9046 __set_se_shares(se, shares);
9047 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9048}
9049
8ed36996
PZ
9050static DEFINE_MUTEX(shares_mutex);
9051
4cf86d77 9052int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9053{
9054 int i;
8ed36996 9055 unsigned long flags;
c61935fd 9056
ec7dc8ac
DG
9057 /*
9058 * We can't change the weight of the root cgroup.
9059 */
9060 if (!tg->se[0])
9061 return -EINVAL;
9062
18d95a28
PZ
9063 if (shares < MIN_SHARES)
9064 shares = MIN_SHARES;
cb4ad1ff
MX
9065 else if (shares > MAX_SHARES)
9066 shares = MAX_SHARES;
62fb1851 9067
8ed36996 9068 mutex_lock(&shares_mutex);
9b5b7751 9069 if (tg->shares == shares)
5cb350ba 9070 goto done;
29f59db3 9071
8ed36996 9072 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9073 for_each_possible_cpu(i)
9074 unregister_fair_sched_group(tg, i);
f473aa5e 9075 list_del_rcu(&tg->siblings);
8ed36996 9076 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
9077
9078 /* wait for any ongoing reference to this group to finish */
9079 synchronize_sched();
9080
9081 /*
9082 * Now we are free to modify the group's share on each cpu
9083 * w/o tripping rebalance_share or load_balance_fair.
9084 */
9b5b7751 9085 tg->shares = shares;
c09595f6
PZ
9086 for_each_possible_cpu(i) {
9087 /*
9088 * force a rebalance
9089 */
9090 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 9091 set_se_shares(tg->se[i], shares);
c09595f6 9092 }
29f59db3 9093
6b2d7700
SV
9094 /*
9095 * Enable load balance activity on this group, by inserting it back on
9096 * each cpu's rq->leaf_cfs_rq_list.
9097 */
8ed36996 9098 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9099 for_each_possible_cpu(i)
9100 register_fair_sched_group(tg, i);
f473aa5e 9101 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9102 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9103done:
8ed36996 9104 mutex_unlock(&shares_mutex);
9b5b7751 9105 return 0;
29f59db3
SV
9106}
9107
5cb350ba
DG
9108unsigned long sched_group_shares(struct task_group *tg)
9109{
9110 return tg->shares;
9111}
052f1dc7 9112#endif
5cb350ba 9113
052f1dc7 9114#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9115/*
9f0c1e56 9116 * Ensure that the real time constraints are schedulable.
6f505b16 9117 */
9f0c1e56
PZ
9118static DEFINE_MUTEX(rt_constraints_mutex);
9119
9120static unsigned long to_ratio(u64 period, u64 runtime)
9121{
9122 if (runtime == RUNTIME_INF)
9a7e0b18 9123 return 1ULL << 20;
9f0c1e56 9124
9a7e0b18 9125 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9126}
9127
9a7e0b18
PZ
9128/* Must be called with tasklist_lock held */
9129static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9130{
9a7e0b18 9131 struct task_struct *g, *p;
b40b2e8e 9132
9a7e0b18
PZ
9133 do_each_thread(g, p) {
9134 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9135 return 1;
9136 } while_each_thread(g, p);
b40b2e8e 9137
9a7e0b18
PZ
9138 return 0;
9139}
b40b2e8e 9140
9a7e0b18
PZ
9141struct rt_schedulable_data {
9142 struct task_group *tg;
9143 u64 rt_period;
9144 u64 rt_runtime;
9145};
b40b2e8e 9146
9a7e0b18
PZ
9147static int tg_schedulable(struct task_group *tg, void *data)
9148{
9149 struct rt_schedulable_data *d = data;
9150 struct task_group *child;
9151 unsigned long total, sum = 0;
9152 u64 period, runtime;
b40b2e8e 9153
9a7e0b18
PZ
9154 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9155 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9156
9a7e0b18
PZ
9157 if (tg == d->tg) {
9158 period = d->rt_period;
9159 runtime = d->rt_runtime;
b40b2e8e 9160 }
b40b2e8e 9161
98a4826b
PZ
9162#ifdef CONFIG_USER_SCHED
9163 if (tg == &root_task_group) {
9164 period = global_rt_period();
9165 runtime = global_rt_runtime();
9166 }
9167#endif
9168
4653f803
PZ
9169 /*
9170 * Cannot have more runtime than the period.
9171 */
9172 if (runtime > period && runtime != RUNTIME_INF)
9173 return -EINVAL;
6f505b16 9174
4653f803
PZ
9175 /*
9176 * Ensure we don't starve existing RT tasks.
9177 */
9a7e0b18
PZ
9178 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9179 return -EBUSY;
6f505b16 9180
9a7e0b18 9181 total = to_ratio(period, runtime);
6f505b16 9182
4653f803
PZ
9183 /*
9184 * Nobody can have more than the global setting allows.
9185 */
9186 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9187 return -EINVAL;
6f505b16 9188
4653f803
PZ
9189 /*
9190 * The sum of our children's runtime should not exceed our own.
9191 */
9a7e0b18
PZ
9192 list_for_each_entry_rcu(child, &tg->children, siblings) {
9193 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9194 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 9195
9a7e0b18
PZ
9196 if (child == d->tg) {
9197 period = d->rt_period;
9198 runtime = d->rt_runtime;
9199 }
6f505b16 9200
9a7e0b18 9201 sum += to_ratio(period, runtime);
9f0c1e56 9202 }
6f505b16 9203
9a7e0b18
PZ
9204 if (sum > total)
9205 return -EINVAL;
9206
9207 return 0;
6f505b16
PZ
9208}
9209
9a7e0b18 9210static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 9211{
9a7e0b18
PZ
9212 struct rt_schedulable_data data = {
9213 .tg = tg,
9214 .rt_period = period,
9215 .rt_runtime = runtime,
9216 };
9217
9218 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
9219}
9220
d0b27fa7
PZ
9221static int tg_set_bandwidth(struct task_group *tg,
9222 u64 rt_period, u64 rt_runtime)
6f505b16 9223{
ac086bc2 9224 int i, err = 0;
9f0c1e56 9225
9f0c1e56 9226 mutex_lock(&rt_constraints_mutex);
521f1a24 9227 read_lock(&tasklist_lock);
9a7e0b18
PZ
9228 err = __rt_schedulable(tg, rt_period, rt_runtime);
9229 if (err)
9f0c1e56 9230 goto unlock;
ac086bc2
PZ
9231
9232 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
9233 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9234 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
9235
9236 for_each_possible_cpu(i) {
9237 struct rt_rq *rt_rq = tg->rt_rq[i];
9238
9239 spin_lock(&rt_rq->rt_runtime_lock);
9240 rt_rq->rt_runtime = rt_runtime;
9241 spin_unlock(&rt_rq->rt_runtime_lock);
9242 }
9243 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 9244 unlock:
521f1a24 9245 read_unlock(&tasklist_lock);
9f0c1e56
PZ
9246 mutex_unlock(&rt_constraints_mutex);
9247
9248 return err;
6f505b16
PZ
9249}
9250
d0b27fa7
PZ
9251int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9252{
9253 u64 rt_runtime, rt_period;
9254
9255 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9256 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9257 if (rt_runtime_us < 0)
9258 rt_runtime = RUNTIME_INF;
9259
9260 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9261}
9262
9f0c1e56
PZ
9263long sched_group_rt_runtime(struct task_group *tg)
9264{
9265 u64 rt_runtime_us;
9266
d0b27fa7 9267 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
9268 return -1;
9269
d0b27fa7 9270 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9271 do_div(rt_runtime_us, NSEC_PER_USEC);
9272 return rt_runtime_us;
9273}
d0b27fa7
PZ
9274
9275int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9276{
9277 u64 rt_runtime, rt_period;
9278
9279 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9280 rt_runtime = tg->rt_bandwidth.rt_runtime;
9281
619b0488
R
9282 if (rt_period == 0)
9283 return -EINVAL;
9284
d0b27fa7
PZ
9285 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9286}
9287
9288long sched_group_rt_period(struct task_group *tg)
9289{
9290 u64 rt_period_us;
9291
9292 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9293 do_div(rt_period_us, NSEC_PER_USEC);
9294 return rt_period_us;
9295}
9296
9297static int sched_rt_global_constraints(void)
9298{
4653f803 9299 u64 runtime, period;
d0b27fa7
PZ
9300 int ret = 0;
9301
ec5d4989
HS
9302 if (sysctl_sched_rt_period <= 0)
9303 return -EINVAL;
9304
4653f803
PZ
9305 runtime = global_rt_runtime();
9306 period = global_rt_period();
9307
9308 /*
9309 * Sanity check on the sysctl variables.
9310 */
9311 if (runtime > period && runtime != RUNTIME_INF)
9312 return -EINVAL;
10b612f4 9313
d0b27fa7 9314 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9315 read_lock(&tasklist_lock);
4653f803 9316 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9317 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9318 mutex_unlock(&rt_constraints_mutex);
9319
9320 return ret;
9321}
54e99124
DG
9322
9323int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9324{
9325 /* Don't accept realtime tasks when there is no way for them to run */
9326 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9327 return 0;
9328
9329 return 1;
9330}
9331
6d6bc0ad 9332#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9333static int sched_rt_global_constraints(void)
9334{
ac086bc2
PZ
9335 unsigned long flags;
9336 int i;
9337
ec5d4989
HS
9338 if (sysctl_sched_rt_period <= 0)
9339 return -EINVAL;
9340
ac086bc2
PZ
9341 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9342 for_each_possible_cpu(i) {
9343 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9344
9345 spin_lock(&rt_rq->rt_runtime_lock);
9346 rt_rq->rt_runtime = global_rt_runtime();
9347 spin_unlock(&rt_rq->rt_runtime_lock);
9348 }
9349 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9350
d0b27fa7
PZ
9351 return 0;
9352}
6d6bc0ad 9353#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9354
9355int sched_rt_handler(struct ctl_table *table, int write,
9356 struct file *filp, void __user *buffer, size_t *lenp,
9357 loff_t *ppos)
9358{
9359 int ret;
9360 int old_period, old_runtime;
9361 static DEFINE_MUTEX(mutex);
9362
9363 mutex_lock(&mutex);
9364 old_period = sysctl_sched_rt_period;
9365 old_runtime = sysctl_sched_rt_runtime;
9366
9367 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9368
9369 if (!ret && write) {
9370 ret = sched_rt_global_constraints();
9371 if (ret) {
9372 sysctl_sched_rt_period = old_period;
9373 sysctl_sched_rt_runtime = old_runtime;
9374 } else {
9375 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9376 def_rt_bandwidth.rt_period =
9377 ns_to_ktime(global_rt_period());
9378 }
9379 }
9380 mutex_unlock(&mutex);
9381
9382 return ret;
9383}
68318b8e 9384
052f1dc7 9385#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9386
9387/* return corresponding task_group object of a cgroup */
2b01dfe3 9388static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9389{
2b01dfe3
PM
9390 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9391 struct task_group, css);
68318b8e
SV
9392}
9393
9394static struct cgroup_subsys_state *
2b01dfe3 9395cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9396{
ec7dc8ac 9397 struct task_group *tg, *parent;
68318b8e 9398
2b01dfe3 9399 if (!cgrp->parent) {
68318b8e 9400 /* This is early initialization for the top cgroup */
68318b8e
SV
9401 return &init_task_group.css;
9402 }
9403
ec7dc8ac
DG
9404 parent = cgroup_tg(cgrp->parent);
9405 tg = sched_create_group(parent);
68318b8e
SV
9406 if (IS_ERR(tg))
9407 return ERR_PTR(-ENOMEM);
9408
68318b8e
SV
9409 return &tg->css;
9410}
9411
41a2d6cf
IM
9412static void
9413cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9414{
2b01dfe3 9415 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9416
9417 sched_destroy_group(tg);
9418}
9419
41a2d6cf
IM
9420static int
9421cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9422 struct task_struct *tsk)
68318b8e 9423{
b68aa230 9424#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9425 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9426 return -EINVAL;
9427#else
68318b8e
SV
9428 /* We don't support RT-tasks being in separate groups */
9429 if (tsk->sched_class != &fair_sched_class)
9430 return -EINVAL;
b68aa230 9431#endif
68318b8e
SV
9432
9433 return 0;
9434}
9435
9436static void
2b01dfe3 9437cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9438 struct cgroup *old_cont, struct task_struct *tsk)
9439{
9440 sched_move_task(tsk);
9441}
9442
052f1dc7 9443#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9444static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9445 u64 shareval)
68318b8e 9446{
2b01dfe3 9447 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9448}
9449
f4c753b7 9450static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9451{
2b01dfe3 9452 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9453
9454 return (u64) tg->shares;
9455}
6d6bc0ad 9456#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9457
052f1dc7 9458#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9459static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9460 s64 val)
6f505b16 9461{
06ecb27c 9462 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9463}
9464
06ecb27c 9465static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9466{
06ecb27c 9467 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9468}
d0b27fa7
PZ
9469
9470static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9471 u64 rt_period_us)
9472{
9473 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9474}
9475
9476static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9477{
9478 return sched_group_rt_period(cgroup_tg(cgrp));
9479}
6d6bc0ad 9480#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9481
fe5c7cc2 9482static struct cftype cpu_files[] = {
052f1dc7 9483#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9484 {
9485 .name = "shares",
f4c753b7
PM
9486 .read_u64 = cpu_shares_read_u64,
9487 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9488 },
052f1dc7
PZ
9489#endif
9490#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9491 {
9f0c1e56 9492 .name = "rt_runtime_us",
06ecb27c
PM
9493 .read_s64 = cpu_rt_runtime_read,
9494 .write_s64 = cpu_rt_runtime_write,
6f505b16 9495 },
d0b27fa7
PZ
9496 {
9497 .name = "rt_period_us",
f4c753b7
PM
9498 .read_u64 = cpu_rt_period_read_uint,
9499 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9500 },
052f1dc7 9501#endif
68318b8e
SV
9502};
9503
9504static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9505{
fe5c7cc2 9506 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9507}
9508
9509struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9510 .name = "cpu",
9511 .create = cpu_cgroup_create,
9512 .destroy = cpu_cgroup_destroy,
9513 .can_attach = cpu_cgroup_can_attach,
9514 .attach = cpu_cgroup_attach,
9515 .populate = cpu_cgroup_populate,
9516 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9517 .early_init = 1,
9518};
9519
052f1dc7 9520#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9521
9522#ifdef CONFIG_CGROUP_CPUACCT
9523
9524/*
9525 * CPU accounting code for task groups.
9526 *
9527 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9528 * (balbir@in.ibm.com).
9529 */
9530
934352f2 9531/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9532struct cpuacct {
9533 struct cgroup_subsys_state css;
9534 /* cpuusage holds pointer to a u64-type object on every cpu */
9535 u64 *cpuusage;
934352f2 9536 struct cpuacct *parent;
d842de87
SV
9537};
9538
9539struct cgroup_subsys cpuacct_subsys;
9540
9541/* return cpu accounting group corresponding to this container */
32cd756a 9542static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9543{
32cd756a 9544 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9545 struct cpuacct, css);
9546}
9547
9548/* return cpu accounting group to which this task belongs */
9549static inline struct cpuacct *task_ca(struct task_struct *tsk)
9550{
9551 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9552 struct cpuacct, css);
9553}
9554
9555/* create a new cpu accounting group */
9556static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9557 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9558{
9559 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9560
9561 if (!ca)
9562 return ERR_PTR(-ENOMEM);
9563
9564 ca->cpuusage = alloc_percpu(u64);
9565 if (!ca->cpuusage) {
9566 kfree(ca);
9567 return ERR_PTR(-ENOMEM);
9568 }
9569
934352f2
BR
9570 if (cgrp->parent)
9571 ca->parent = cgroup_ca(cgrp->parent);
9572
d842de87
SV
9573 return &ca->css;
9574}
9575
9576/* destroy an existing cpu accounting group */
41a2d6cf 9577static void
32cd756a 9578cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9579{
32cd756a 9580 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9581
9582 free_percpu(ca->cpuusage);
9583 kfree(ca);
9584}
9585
720f5498
KC
9586static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9587{
9588 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9589 u64 data;
9590
9591#ifndef CONFIG_64BIT
9592 /*
9593 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9594 */
9595 spin_lock_irq(&cpu_rq(cpu)->lock);
9596 data = *cpuusage;
9597 spin_unlock_irq(&cpu_rq(cpu)->lock);
9598#else
9599 data = *cpuusage;
9600#endif
9601
9602 return data;
9603}
9604
9605static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9606{
9607 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9608
9609#ifndef CONFIG_64BIT
9610 /*
9611 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9612 */
9613 spin_lock_irq(&cpu_rq(cpu)->lock);
9614 *cpuusage = val;
9615 spin_unlock_irq(&cpu_rq(cpu)->lock);
9616#else
9617 *cpuusage = val;
9618#endif
9619}
9620
d842de87 9621/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9622static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9623{
32cd756a 9624 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9625 u64 totalcpuusage = 0;
9626 int i;
9627
720f5498
KC
9628 for_each_present_cpu(i)
9629 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9630
9631 return totalcpuusage;
9632}
9633
0297b803
DG
9634static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9635 u64 reset)
9636{
9637 struct cpuacct *ca = cgroup_ca(cgrp);
9638 int err = 0;
9639 int i;
9640
9641 if (reset) {
9642 err = -EINVAL;
9643 goto out;
9644 }
9645
720f5498
KC
9646 for_each_present_cpu(i)
9647 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9648
0297b803
DG
9649out:
9650 return err;
9651}
9652
e9515c3c
KC
9653static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9654 struct seq_file *m)
9655{
9656 struct cpuacct *ca = cgroup_ca(cgroup);
9657 u64 percpu;
9658 int i;
9659
9660 for_each_present_cpu(i) {
9661 percpu = cpuacct_cpuusage_read(ca, i);
9662 seq_printf(m, "%llu ", (unsigned long long) percpu);
9663 }
9664 seq_printf(m, "\n");
9665 return 0;
9666}
9667
d842de87
SV
9668static struct cftype files[] = {
9669 {
9670 .name = "usage",
f4c753b7
PM
9671 .read_u64 = cpuusage_read,
9672 .write_u64 = cpuusage_write,
d842de87 9673 },
e9515c3c
KC
9674 {
9675 .name = "usage_percpu",
9676 .read_seq_string = cpuacct_percpu_seq_read,
9677 },
9678
d842de87
SV
9679};
9680
32cd756a 9681static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9682{
32cd756a 9683 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9684}
9685
9686/*
9687 * charge this task's execution time to its accounting group.
9688 *
9689 * called with rq->lock held.
9690 */
9691static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9692{
9693 struct cpuacct *ca;
934352f2 9694 int cpu;
d842de87 9695
c40c6f85 9696 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9697 return;
9698
934352f2 9699 cpu = task_cpu(tsk);
d842de87 9700 ca = task_ca(tsk);
d842de87 9701
934352f2
BR
9702 for (; ca; ca = ca->parent) {
9703 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9704 *cpuusage += cputime;
9705 }
9706}
9707
9708struct cgroup_subsys cpuacct_subsys = {
9709 .name = "cpuacct",
9710 .create = cpuacct_create,
9711 .destroy = cpuacct_destroy,
9712 .populate = cpuacct_populate,
9713 .subsys_id = cpuacct_subsys_id,
9714};
9715#endif /* CONFIG_CGROUP_CPUACCT */