]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
lockdep: lock_set_subclass - reset a held lock's subclass
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
1da177e4
LT
80/*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89/*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98/*
d7876a08 99 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 100 */
d6322faf 101#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 102
6aa645ea
IM
103#define NICE_0_LOAD SCHED_LOAD_SCALE
104#define NICE_0_SHIFT SCHED_LOAD_SHIFT
105
1da177e4
LT
106/*
107 * These are the 'tuning knobs' of the scheduler:
108 *
a4ec24b4 109 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
110 * Timeslices get refilled after they expire.
111 */
1da177e4 112#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 113
d0b27fa7
PZ
114/*
115 * single value that denotes runtime == period, ie unlimited time.
116 */
117#define RUNTIME_INF ((u64)~0ULL)
118
5517d86b
ED
119#ifdef CONFIG_SMP
120/*
121 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
122 * Since cpu_power is a 'constant', we can use a reciprocal divide.
123 */
124static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
125{
126 return reciprocal_divide(load, sg->reciprocal_cpu_power);
127}
128
129/*
130 * Each time a sched group cpu_power is changed,
131 * we must compute its reciprocal value
132 */
133static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
134{
135 sg->__cpu_power += val;
136 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
137}
138#endif
139
e05606d3
IM
140static inline int rt_policy(int policy)
141{
3f33a7ce 142 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
143 return 1;
144 return 0;
145}
146
147static inline int task_has_rt_policy(struct task_struct *p)
148{
149 return rt_policy(p->policy);
150}
151
1da177e4 152/*
6aa645ea 153 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 154 */
6aa645ea
IM
155struct rt_prio_array {
156 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
157 struct list_head queue[MAX_RT_PRIO];
158};
159
d0b27fa7 160struct rt_bandwidth {
ea736ed5
IM
161 /* nests inside the rq lock: */
162 spinlock_t rt_runtime_lock;
163 ktime_t rt_period;
164 u64 rt_runtime;
165 struct hrtimer rt_period_timer;
d0b27fa7
PZ
166};
167
168static struct rt_bandwidth def_rt_bandwidth;
169
170static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
171
172static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
173{
174 struct rt_bandwidth *rt_b =
175 container_of(timer, struct rt_bandwidth, rt_period_timer);
176 ktime_t now;
177 int overrun;
178 int idle = 0;
179
180 for (;;) {
181 now = hrtimer_cb_get_time(timer);
182 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
183
184 if (!overrun)
185 break;
186
187 idle = do_sched_rt_period_timer(rt_b, overrun);
188 }
189
190 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
191}
192
193static
194void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
195{
196 rt_b->rt_period = ns_to_ktime(period);
197 rt_b->rt_runtime = runtime;
198
ac086bc2
PZ
199 spin_lock_init(&rt_b->rt_runtime_lock);
200
d0b27fa7
PZ
201 hrtimer_init(&rt_b->rt_period_timer,
202 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
203 rt_b->rt_period_timer.function = sched_rt_period_timer;
204 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
205}
206
207static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
208{
209 ktime_t now;
210
211 if (rt_b->rt_runtime == RUNTIME_INF)
212 return;
213
214 if (hrtimer_active(&rt_b->rt_period_timer))
215 return;
216
217 spin_lock(&rt_b->rt_runtime_lock);
218 for (;;) {
219 if (hrtimer_active(&rt_b->rt_period_timer))
220 break;
221
222 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
223 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
224 hrtimer_start(&rt_b->rt_period_timer,
225 rt_b->rt_period_timer.expires,
226 HRTIMER_MODE_ABS);
227 }
228 spin_unlock(&rt_b->rt_runtime_lock);
229}
230
231#ifdef CONFIG_RT_GROUP_SCHED
232static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
233{
234 hrtimer_cancel(&rt_b->rt_period_timer);
235}
236#endif
237
712555ee
HC
238/*
239 * sched_domains_mutex serializes calls to arch_init_sched_domains,
240 * detach_destroy_domains and partition_sched_domains.
241 */
242static DEFINE_MUTEX(sched_domains_mutex);
243
052f1dc7 244#ifdef CONFIG_GROUP_SCHED
29f59db3 245
68318b8e
SV
246#include <linux/cgroup.h>
247
29f59db3
SV
248struct cfs_rq;
249
6f505b16
PZ
250static LIST_HEAD(task_groups);
251
29f59db3 252/* task group related information */
4cf86d77 253struct task_group {
052f1dc7 254#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
255 struct cgroup_subsys_state css;
256#endif
052f1dc7
PZ
257
258#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
259 /* schedulable entities of this group on each cpu */
260 struct sched_entity **se;
261 /* runqueue "owned" by this group on each cpu */
262 struct cfs_rq **cfs_rq;
263 unsigned long shares;
052f1dc7
PZ
264#endif
265
266#ifdef CONFIG_RT_GROUP_SCHED
267 struct sched_rt_entity **rt_se;
268 struct rt_rq **rt_rq;
269
d0b27fa7 270 struct rt_bandwidth rt_bandwidth;
052f1dc7 271#endif
6b2d7700 272
ae8393e5 273 struct rcu_head rcu;
6f505b16 274 struct list_head list;
f473aa5e
PZ
275
276 struct task_group *parent;
277 struct list_head siblings;
278 struct list_head children;
29f59db3
SV
279};
280
354d60c2 281#ifdef CONFIG_USER_SCHED
eff766a6
PZ
282
283/*
284 * Root task group.
285 * Every UID task group (including init_task_group aka UID-0) will
286 * be a child to this group.
287 */
288struct task_group root_task_group;
289
052f1dc7 290#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
291/* Default task group's sched entity on each cpu */
292static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
293/* Default task group's cfs_rq on each cpu */
294static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 295#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
296
297#ifdef CONFIG_RT_GROUP_SCHED
298static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
299static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad
DG
300#endif /* CONFIG_RT_GROUP_SCHED */
301#else /* !CONFIG_FAIR_GROUP_SCHED */
eff766a6 302#define root_task_group init_task_group
6d6bc0ad 303#endif /* CONFIG_FAIR_GROUP_SCHED */
6f505b16 304
8ed36996 305/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
306 * a task group's cpu shares.
307 */
8ed36996 308static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 309
052f1dc7 310#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
311#ifdef CONFIG_USER_SCHED
312# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 313#else /* !CONFIG_USER_SCHED */
052f1dc7 314# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 315#endif /* CONFIG_USER_SCHED */
052f1dc7 316
cb4ad1ff 317/*
2e084786
LJ
318 * A weight of 0 or 1 can cause arithmetics problems.
319 * A weight of a cfs_rq is the sum of weights of which entities
320 * are queued on this cfs_rq, so a weight of a entity should not be
321 * too large, so as the shares value of a task group.
cb4ad1ff
MX
322 * (The default weight is 1024 - so there's no practical
323 * limitation from this.)
324 */
18d95a28 325#define MIN_SHARES 2
2e084786 326#define MAX_SHARES (1UL << 18)
18d95a28 327
052f1dc7
PZ
328static int init_task_group_load = INIT_TASK_GROUP_LOAD;
329#endif
330
29f59db3 331/* Default task group.
3a252015 332 * Every task in system belong to this group at bootup.
29f59db3 333 */
434d53b0 334struct task_group init_task_group;
29f59db3
SV
335
336/* return group to which a task belongs */
4cf86d77 337static inline struct task_group *task_group(struct task_struct *p)
29f59db3 338{
4cf86d77 339 struct task_group *tg;
9b5b7751 340
052f1dc7 341#ifdef CONFIG_USER_SCHED
24e377a8 342 tg = p->user->tg;
052f1dc7 343#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
344 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
345 struct task_group, css);
24e377a8 346#else
41a2d6cf 347 tg = &init_task_group;
24e377a8 348#endif
9b5b7751 349 return tg;
29f59db3
SV
350}
351
352/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 353static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 354{
052f1dc7 355#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
356 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
357 p->se.parent = task_group(p)->se[cpu];
052f1dc7 358#endif
6f505b16 359
052f1dc7 360#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
361 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
362 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 363#endif
29f59db3
SV
364}
365
366#else
367
6f505b16 368static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
369static inline struct task_group *task_group(struct task_struct *p)
370{
371 return NULL;
372}
29f59db3 373
052f1dc7 374#endif /* CONFIG_GROUP_SCHED */
29f59db3 375
6aa645ea
IM
376/* CFS-related fields in a runqueue */
377struct cfs_rq {
378 struct load_weight load;
379 unsigned long nr_running;
380
6aa645ea 381 u64 exec_clock;
e9acbff6 382 u64 min_vruntime;
103638d9 383 u64 pair_start;
6aa645ea
IM
384
385 struct rb_root tasks_timeline;
386 struct rb_node *rb_leftmost;
4a55bd5e
PZ
387
388 struct list_head tasks;
389 struct list_head *balance_iterator;
390
391 /*
392 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
393 * It is set to NULL otherwise (i.e when none are currently running).
394 */
aa2ac252 395 struct sched_entity *curr, *next;
ddc97297
PZ
396
397 unsigned long nr_spread_over;
398
62160e3f 399#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
400 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
401
41a2d6cf
IM
402 /*
403 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
404 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
405 * (like users, containers etc.)
406 *
407 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
408 * list is used during load balance.
409 */
41a2d6cf
IM
410 struct list_head leaf_cfs_rq_list;
411 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
412
413#ifdef CONFIG_SMP
c09595f6 414 /*
c8cba857 415 * the part of load.weight contributed by tasks
c09595f6 416 */
c8cba857 417 unsigned long task_weight;
c09595f6 418
c8cba857
PZ
419 /*
420 * h_load = weight * f(tg)
421 *
422 * Where f(tg) is the recursive weight fraction assigned to
423 * this group.
424 */
425 unsigned long h_load;
c09595f6 426
c8cba857
PZ
427 /*
428 * this cpu's part of tg->shares
429 */
430 unsigned long shares;
f1d239f7
PZ
431
432 /*
433 * load.weight at the time we set shares
434 */
435 unsigned long rq_weight;
c09595f6 436#endif
6aa645ea
IM
437#endif
438};
1da177e4 439
6aa645ea
IM
440/* Real-Time classes' related field in a runqueue: */
441struct rt_rq {
442 struct rt_prio_array active;
63489e45 443 unsigned long rt_nr_running;
052f1dc7 444#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
445 int highest_prio; /* highest queued rt task prio */
446#endif
fa85ae24 447#ifdef CONFIG_SMP
73fe6aae 448 unsigned long rt_nr_migratory;
a22d7fc1 449 int overloaded;
fa85ae24 450#endif
6f505b16 451 int rt_throttled;
fa85ae24 452 u64 rt_time;
ac086bc2 453 u64 rt_runtime;
ea736ed5 454 /* Nests inside the rq lock: */
ac086bc2 455 spinlock_t rt_runtime_lock;
6f505b16 456
052f1dc7 457#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
458 unsigned long rt_nr_boosted;
459
6f505b16
PZ
460 struct rq *rq;
461 struct list_head leaf_rt_rq_list;
462 struct task_group *tg;
463 struct sched_rt_entity *rt_se;
464#endif
6aa645ea
IM
465};
466
57d885fe
GH
467#ifdef CONFIG_SMP
468
469/*
470 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
471 * variables. Each exclusive cpuset essentially defines an island domain by
472 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
473 * exclusive cpuset is created, we also create and attach a new root-domain
474 * object.
475 *
57d885fe
GH
476 */
477struct root_domain {
478 atomic_t refcount;
479 cpumask_t span;
480 cpumask_t online;
637f5085 481
0eab9146 482 /*
637f5085
GH
483 * The "RT overload" flag: it gets set if a CPU has more than
484 * one runnable RT task.
485 */
486 cpumask_t rto_mask;
0eab9146 487 atomic_t rto_count;
6e0534f2
GH
488#ifdef CONFIG_SMP
489 struct cpupri cpupri;
490#endif
57d885fe
GH
491};
492
dc938520
GH
493/*
494 * By default the system creates a single root-domain with all cpus as
495 * members (mimicking the global state we have today).
496 */
57d885fe
GH
497static struct root_domain def_root_domain;
498
499#endif
500
1da177e4
LT
501/*
502 * This is the main, per-CPU runqueue data structure.
503 *
504 * Locking rule: those places that want to lock multiple runqueues
505 * (such as the load balancing or the thread migration code), lock
506 * acquire operations must be ordered by ascending &runqueue.
507 */
70b97a7f 508struct rq {
d8016491
IM
509 /* runqueue lock: */
510 spinlock_t lock;
1da177e4
LT
511
512 /*
513 * nr_running and cpu_load should be in the same cacheline because
514 * remote CPUs use both these fields when doing load calculation.
515 */
516 unsigned long nr_running;
6aa645ea
IM
517 #define CPU_LOAD_IDX_MAX 5
518 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 519 unsigned char idle_at_tick;
46cb4b7c 520#ifdef CONFIG_NO_HZ
15934a37 521 unsigned long last_tick_seen;
46cb4b7c
SS
522 unsigned char in_nohz_recently;
523#endif
d8016491
IM
524 /* capture load from *all* tasks on this cpu: */
525 struct load_weight load;
6aa645ea
IM
526 unsigned long nr_load_updates;
527 u64 nr_switches;
528
529 struct cfs_rq cfs;
6f505b16 530 struct rt_rq rt;
6f505b16 531
6aa645ea 532#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
533 /* list of leaf cfs_rq on this cpu: */
534 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
535#endif
536#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 537 struct list_head leaf_rt_rq_list;
1da177e4 538#endif
1da177e4
LT
539
540 /*
541 * This is part of a global counter where only the total sum
542 * over all CPUs matters. A task can increase this counter on
543 * one CPU and if it got migrated afterwards it may decrease
544 * it on another CPU. Always updated under the runqueue lock:
545 */
546 unsigned long nr_uninterruptible;
547
36c8b586 548 struct task_struct *curr, *idle;
c9819f45 549 unsigned long next_balance;
1da177e4 550 struct mm_struct *prev_mm;
6aa645ea 551
3e51f33f 552 u64 clock;
6aa645ea 553
1da177e4
LT
554 atomic_t nr_iowait;
555
556#ifdef CONFIG_SMP
0eab9146 557 struct root_domain *rd;
1da177e4
LT
558 struct sched_domain *sd;
559
560 /* For active balancing */
561 int active_balance;
562 int push_cpu;
d8016491
IM
563 /* cpu of this runqueue: */
564 int cpu;
1f11eb6a 565 int online;
1da177e4 566
a8a51d5e 567 unsigned long avg_load_per_task;
1da177e4 568
36c8b586 569 struct task_struct *migration_thread;
1da177e4
LT
570 struct list_head migration_queue;
571#endif
572
8f4d37ec 573#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
574#ifdef CONFIG_SMP
575 int hrtick_csd_pending;
576 struct call_single_data hrtick_csd;
577#endif
8f4d37ec
PZ
578 struct hrtimer hrtick_timer;
579#endif
580
1da177e4
LT
581#ifdef CONFIG_SCHEDSTATS
582 /* latency stats */
583 struct sched_info rq_sched_info;
584
585 /* sys_sched_yield() stats */
480b9434
KC
586 unsigned int yld_exp_empty;
587 unsigned int yld_act_empty;
588 unsigned int yld_both_empty;
589 unsigned int yld_count;
1da177e4
LT
590
591 /* schedule() stats */
480b9434
KC
592 unsigned int sched_switch;
593 unsigned int sched_count;
594 unsigned int sched_goidle;
1da177e4
LT
595
596 /* try_to_wake_up() stats */
480b9434
KC
597 unsigned int ttwu_count;
598 unsigned int ttwu_local;
b8efb561
IM
599
600 /* BKL stats */
480b9434 601 unsigned int bkl_count;
1da177e4
LT
602#endif
603};
604
f34e3b61 605static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 606
dd41f596
IM
607static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
608{
609 rq->curr->sched_class->check_preempt_curr(rq, p);
610}
611
0a2966b4
CL
612static inline int cpu_of(struct rq *rq)
613{
614#ifdef CONFIG_SMP
615 return rq->cpu;
616#else
617 return 0;
618#endif
619}
620
674311d5
NP
621/*
622 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 623 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
624 *
625 * The domain tree of any CPU may only be accessed from within
626 * preempt-disabled sections.
627 */
48f24c4d
IM
628#define for_each_domain(cpu, __sd) \
629 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
630
631#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
632#define this_rq() (&__get_cpu_var(runqueues))
633#define task_rq(p) cpu_rq(task_cpu(p))
634#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
635
3e51f33f
PZ
636static inline void update_rq_clock(struct rq *rq)
637{
638 rq->clock = sched_clock_cpu(cpu_of(rq));
639}
640
bf5c91ba
IM
641/*
642 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
643 */
644#ifdef CONFIG_SCHED_DEBUG
645# define const_debug __read_mostly
646#else
647# define const_debug static const
648#endif
649
017730c1
IM
650/**
651 * runqueue_is_locked
652 *
653 * Returns true if the current cpu runqueue is locked.
654 * This interface allows printk to be called with the runqueue lock
655 * held and know whether or not it is OK to wake up the klogd.
656 */
657int runqueue_is_locked(void)
658{
659 int cpu = get_cpu();
660 struct rq *rq = cpu_rq(cpu);
661 int ret;
662
663 ret = spin_is_locked(&rq->lock);
664 put_cpu();
665 return ret;
666}
667
bf5c91ba
IM
668/*
669 * Debugging: various feature bits
670 */
f00b45c1
PZ
671
672#define SCHED_FEAT(name, enabled) \
673 __SCHED_FEAT_##name ,
674
bf5c91ba 675enum {
f00b45c1 676#include "sched_features.h"
bf5c91ba
IM
677};
678
f00b45c1
PZ
679#undef SCHED_FEAT
680
681#define SCHED_FEAT(name, enabled) \
682 (1UL << __SCHED_FEAT_##name) * enabled |
683
bf5c91ba 684const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
685#include "sched_features.h"
686 0;
687
688#undef SCHED_FEAT
689
690#ifdef CONFIG_SCHED_DEBUG
691#define SCHED_FEAT(name, enabled) \
692 #name ,
693
983ed7a6 694static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
695#include "sched_features.h"
696 NULL
697};
698
699#undef SCHED_FEAT
700
983ed7a6 701static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
702{
703 filp->private_data = inode->i_private;
704 return 0;
705}
706
707static ssize_t
708sched_feat_read(struct file *filp, char __user *ubuf,
709 size_t cnt, loff_t *ppos)
710{
711 char *buf;
712 int r = 0;
713 int len = 0;
714 int i;
715
716 for (i = 0; sched_feat_names[i]; i++) {
717 len += strlen(sched_feat_names[i]);
718 len += 4;
719 }
720
721 buf = kmalloc(len + 2, GFP_KERNEL);
722 if (!buf)
723 return -ENOMEM;
724
725 for (i = 0; sched_feat_names[i]; i++) {
726 if (sysctl_sched_features & (1UL << i))
727 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
728 else
c24b7c52 729 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
730 }
731
732 r += sprintf(buf + r, "\n");
733 WARN_ON(r >= len + 2);
734
735 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
736
737 kfree(buf);
738
739 return r;
740}
741
742static ssize_t
743sched_feat_write(struct file *filp, const char __user *ubuf,
744 size_t cnt, loff_t *ppos)
745{
746 char buf[64];
747 char *cmp = buf;
748 int neg = 0;
749 int i;
750
751 if (cnt > 63)
752 cnt = 63;
753
754 if (copy_from_user(&buf, ubuf, cnt))
755 return -EFAULT;
756
757 buf[cnt] = 0;
758
c24b7c52 759 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
760 neg = 1;
761 cmp += 3;
762 }
763
764 for (i = 0; sched_feat_names[i]; i++) {
765 int len = strlen(sched_feat_names[i]);
766
767 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
768 if (neg)
769 sysctl_sched_features &= ~(1UL << i);
770 else
771 sysctl_sched_features |= (1UL << i);
772 break;
773 }
774 }
775
776 if (!sched_feat_names[i])
777 return -EINVAL;
778
779 filp->f_pos += cnt;
780
781 return cnt;
782}
783
784static struct file_operations sched_feat_fops = {
785 .open = sched_feat_open,
786 .read = sched_feat_read,
787 .write = sched_feat_write,
788};
789
790static __init int sched_init_debug(void)
791{
f00b45c1
PZ
792 debugfs_create_file("sched_features", 0644, NULL, NULL,
793 &sched_feat_fops);
794
795 return 0;
796}
797late_initcall(sched_init_debug);
798
799#endif
800
801#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 802
b82d9fdd
PZ
803/*
804 * Number of tasks to iterate in a single balance run.
805 * Limited because this is done with IRQs disabled.
806 */
807const_debug unsigned int sysctl_sched_nr_migrate = 32;
808
2398f2c6
PZ
809/*
810 * ratelimit for updating the group shares.
811 * default: 0.5ms
812 */
813const_debug unsigned int sysctl_sched_shares_ratelimit = 500000;
814
fa85ae24 815/*
9f0c1e56 816 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
817 * default: 1s
818 */
9f0c1e56 819unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 820
6892b75e
IM
821static __read_mostly int scheduler_running;
822
9f0c1e56
PZ
823/*
824 * part of the period that we allow rt tasks to run in us.
825 * default: 0.95s
826 */
827int sysctl_sched_rt_runtime = 950000;
fa85ae24 828
d0b27fa7
PZ
829static inline u64 global_rt_period(void)
830{
831 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
832}
833
834static inline u64 global_rt_runtime(void)
835{
836 if (sysctl_sched_rt_period < 0)
837 return RUNTIME_INF;
838
839 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
840}
fa85ae24 841
1da177e4 842#ifndef prepare_arch_switch
4866cde0
NP
843# define prepare_arch_switch(next) do { } while (0)
844#endif
845#ifndef finish_arch_switch
846# define finish_arch_switch(prev) do { } while (0)
847#endif
848
051a1d1a
DA
849static inline int task_current(struct rq *rq, struct task_struct *p)
850{
851 return rq->curr == p;
852}
853
4866cde0 854#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 855static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 856{
051a1d1a 857 return task_current(rq, p);
4866cde0
NP
858}
859
70b97a7f 860static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
861{
862}
863
70b97a7f 864static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 865{
da04c035
IM
866#ifdef CONFIG_DEBUG_SPINLOCK
867 /* this is a valid case when another task releases the spinlock */
868 rq->lock.owner = current;
869#endif
8a25d5de
IM
870 /*
871 * If we are tracking spinlock dependencies then we have to
872 * fix up the runqueue lock - which gets 'carried over' from
873 * prev into current:
874 */
875 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
876
4866cde0
NP
877 spin_unlock_irq(&rq->lock);
878}
879
880#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 881static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
882{
883#ifdef CONFIG_SMP
884 return p->oncpu;
885#else
051a1d1a 886 return task_current(rq, p);
4866cde0
NP
887#endif
888}
889
70b97a7f 890static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
891{
892#ifdef CONFIG_SMP
893 /*
894 * We can optimise this out completely for !SMP, because the
895 * SMP rebalancing from interrupt is the only thing that cares
896 * here.
897 */
898 next->oncpu = 1;
899#endif
900#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
901 spin_unlock_irq(&rq->lock);
902#else
903 spin_unlock(&rq->lock);
904#endif
905}
906
70b97a7f 907static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
908{
909#ifdef CONFIG_SMP
910 /*
911 * After ->oncpu is cleared, the task can be moved to a different CPU.
912 * We must ensure this doesn't happen until the switch is completely
913 * finished.
914 */
915 smp_wmb();
916 prev->oncpu = 0;
917#endif
918#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
919 local_irq_enable();
1da177e4 920#endif
4866cde0
NP
921}
922#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 923
b29739f9
IM
924/*
925 * __task_rq_lock - lock the runqueue a given task resides on.
926 * Must be called interrupts disabled.
927 */
70b97a7f 928static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
929 __acquires(rq->lock)
930{
3a5c359a
AK
931 for (;;) {
932 struct rq *rq = task_rq(p);
933 spin_lock(&rq->lock);
934 if (likely(rq == task_rq(p)))
935 return rq;
b29739f9 936 spin_unlock(&rq->lock);
b29739f9 937 }
b29739f9
IM
938}
939
1da177e4
LT
940/*
941 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 942 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
943 * explicitly disabling preemption.
944 */
70b97a7f 945static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
946 __acquires(rq->lock)
947{
70b97a7f 948 struct rq *rq;
1da177e4 949
3a5c359a
AK
950 for (;;) {
951 local_irq_save(*flags);
952 rq = task_rq(p);
953 spin_lock(&rq->lock);
954 if (likely(rq == task_rq(p)))
955 return rq;
1da177e4 956 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 957 }
1da177e4
LT
958}
959
a9957449 960static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
961 __releases(rq->lock)
962{
963 spin_unlock(&rq->lock);
964}
965
70b97a7f 966static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
967 __releases(rq->lock)
968{
969 spin_unlock_irqrestore(&rq->lock, *flags);
970}
971
1da177e4 972/*
cc2a73b5 973 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 974 */
a9957449 975static struct rq *this_rq_lock(void)
1da177e4
LT
976 __acquires(rq->lock)
977{
70b97a7f 978 struct rq *rq;
1da177e4
LT
979
980 local_irq_disable();
981 rq = this_rq();
982 spin_lock(&rq->lock);
983
984 return rq;
985}
986
8f4d37ec
PZ
987#ifdef CONFIG_SCHED_HRTICK
988/*
989 * Use HR-timers to deliver accurate preemption points.
990 *
991 * Its all a bit involved since we cannot program an hrt while holding the
992 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
993 * reschedule event.
994 *
995 * When we get rescheduled we reprogram the hrtick_timer outside of the
996 * rq->lock.
997 */
8f4d37ec
PZ
998
999/*
1000 * Use hrtick when:
1001 * - enabled by features
1002 * - hrtimer is actually high res
1003 */
1004static inline int hrtick_enabled(struct rq *rq)
1005{
1006 if (!sched_feat(HRTICK))
1007 return 0;
ba42059f 1008 if (!cpu_active(cpu_of(rq)))
b328ca18 1009 return 0;
8f4d37ec
PZ
1010 return hrtimer_is_hres_active(&rq->hrtick_timer);
1011}
1012
8f4d37ec
PZ
1013static void hrtick_clear(struct rq *rq)
1014{
1015 if (hrtimer_active(&rq->hrtick_timer))
1016 hrtimer_cancel(&rq->hrtick_timer);
1017}
1018
8f4d37ec
PZ
1019/*
1020 * High-resolution timer tick.
1021 * Runs from hardirq context with interrupts disabled.
1022 */
1023static enum hrtimer_restart hrtick(struct hrtimer *timer)
1024{
1025 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1026
1027 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1028
1029 spin_lock(&rq->lock);
3e51f33f 1030 update_rq_clock(rq);
8f4d37ec
PZ
1031 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1032 spin_unlock(&rq->lock);
1033
1034 return HRTIMER_NORESTART;
1035}
1036
95e904c7 1037#ifdef CONFIG_SMP
31656519
PZ
1038/*
1039 * called from hardirq (IPI) context
1040 */
1041static void __hrtick_start(void *arg)
b328ca18 1042{
31656519 1043 struct rq *rq = arg;
b328ca18 1044
31656519
PZ
1045 spin_lock(&rq->lock);
1046 hrtimer_restart(&rq->hrtick_timer);
1047 rq->hrtick_csd_pending = 0;
1048 spin_unlock(&rq->lock);
b328ca18
PZ
1049}
1050
31656519
PZ
1051/*
1052 * Called to set the hrtick timer state.
1053 *
1054 * called with rq->lock held and irqs disabled
1055 */
1056static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1057{
31656519
PZ
1058 struct hrtimer *timer = &rq->hrtick_timer;
1059 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1060
31656519
PZ
1061 timer->expires = time;
1062
1063 if (rq == this_rq()) {
1064 hrtimer_restart(timer);
1065 } else if (!rq->hrtick_csd_pending) {
1066 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1067 rq->hrtick_csd_pending = 1;
1068 }
b328ca18
PZ
1069}
1070
1071static int
1072hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1073{
1074 int cpu = (int)(long)hcpu;
1075
1076 switch (action) {
1077 case CPU_UP_CANCELED:
1078 case CPU_UP_CANCELED_FROZEN:
1079 case CPU_DOWN_PREPARE:
1080 case CPU_DOWN_PREPARE_FROZEN:
1081 case CPU_DEAD:
1082 case CPU_DEAD_FROZEN:
31656519 1083 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1084 return NOTIFY_OK;
1085 }
1086
1087 return NOTIFY_DONE;
1088}
1089
1090static void init_hrtick(void)
1091{
1092 hotcpu_notifier(hotplug_hrtick, 0);
1093}
31656519
PZ
1094#else
1095/*
1096 * Called to set the hrtick timer state.
1097 *
1098 * called with rq->lock held and irqs disabled
1099 */
1100static void hrtick_start(struct rq *rq, u64 delay)
1101{
1102 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1103}
b328ca18 1104
31656519 1105static void init_hrtick(void)
8f4d37ec 1106{
8f4d37ec 1107}
31656519 1108#endif /* CONFIG_SMP */
8f4d37ec 1109
31656519 1110static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1111{
31656519
PZ
1112#ifdef CONFIG_SMP
1113 rq->hrtick_csd_pending = 0;
8f4d37ec 1114
31656519
PZ
1115 rq->hrtick_csd.flags = 0;
1116 rq->hrtick_csd.func = __hrtick_start;
1117 rq->hrtick_csd.info = rq;
1118#endif
8f4d37ec 1119
31656519
PZ
1120 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1121 rq->hrtick_timer.function = hrtick;
1122 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
8f4d37ec
PZ
1123}
1124#else
1125static inline void hrtick_clear(struct rq *rq)
1126{
1127}
1128
8f4d37ec
PZ
1129static inline void init_rq_hrtick(struct rq *rq)
1130{
1131}
1132
b328ca18
PZ
1133static inline void init_hrtick(void)
1134{
1135}
8f4d37ec
PZ
1136#endif
1137
c24d20db
IM
1138/*
1139 * resched_task - mark a task 'to be rescheduled now'.
1140 *
1141 * On UP this means the setting of the need_resched flag, on SMP it
1142 * might also involve a cross-CPU call to trigger the scheduler on
1143 * the target CPU.
1144 */
1145#ifdef CONFIG_SMP
1146
1147#ifndef tsk_is_polling
1148#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1149#endif
1150
31656519 1151static void resched_task(struct task_struct *p)
c24d20db
IM
1152{
1153 int cpu;
1154
1155 assert_spin_locked(&task_rq(p)->lock);
1156
31656519 1157 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
c24d20db
IM
1158 return;
1159
31656519 1160 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
c24d20db
IM
1161
1162 cpu = task_cpu(p);
1163 if (cpu == smp_processor_id())
1164 return;
1165
1166 /* NEED_RESCHED must be visible before we test polling */
1167 smp_mb();
1168 if (!tsk_is_polling(p))
1169 smp_send_reschedule(cpu);
1170}
1171
1172static void resched_cpu(int cpu)
1173{
1174 struct rq *rq = cpu_rq(cpu);
1175 unsigned long flags;
1176
1177 if (!spin_trylock_irqsave(&rq->lock, flags))
1178 return;
1179 resched_task(cpu_curr(cpu));
1180 spin_unlock_irqrestore(&rq->lock, flags);
1181}
06d8308c
TG
1182
1183#ifdef CONFIG_NO_HZ
1184/*
1185 * When add_timer_on() enqueues a timer into the timer wheel of an
1186 * idle CPU then this timer might expire before the next timer event
1187 * which is scheduled to wake up that CPU. In case of a completely
1188 * idle system the next event might even be infinite time into the
1189 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1190 * leaves the inner idle loop so the newly added timer is taken into
1191 * account when the CPU goes back to idle and evaluates the timer
1192 * wheel for the next timer event.
1193 */
1194void wake_up_idle_cpu(int cpu)
1195{
1196 struct rq *rq = cpu_rq(cpu);
1197
1198 if (cpu == smp_processor_id())
1199 return;
1200
1201 /*
1202 * This is safe, as this function is called with the timer
1203 * wheel base lock of (cpu) held. When the CPU is on the way
1204 * to idle and has not yet set rq->curr to idle then it will
1205 * be serialized on the timer wheel base lock and take the new
1206 * timer into account automatically.
1207 */
1208 if (rq->curr != rq->idle)
1209 return;
1210
1211 /*
1212 * We can set TIF_RESCHED on the idle task of the other CPU
1213 * lockless. The worst case is that the other CPU runs the
1214 * idle task through an additional NOOP schedule()
1215 */
1216 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1217
1218 /* NEED_RESCHED must be visible before we test polling */
1219 smp_mb();
1220 if (!tsk_is_polling(rq->idle))
1221 smp_send_reschedule(cpu);
1222}
6d6bc0ad 1223#endif /* CONFIG_NO_HZ */
06d8308c 1224
6d6bc0ad 1225#else /* !CONFIG_SMP */
31656519 1226static void resched_task(struct task_struct *p)
c24d20db
IM
1227{
1228 assert_spin_locked(&task_rq(p)->lock);
31656519 1229 set_tsk_need_resched(p);
c24d20db 1230}
6d6bc0ad 1231#endif /* CONFIG_SMP */
c24d20db 1232
45bf76df
IM
1233#if BITS_PER_LONG == 32
1234# define WMULT_CONST (~0UL)
1235#else
1236# define WMULT_CONST (1UL << 32)
1237#endif
1238
1239#define WMULT_SHIFT 32
1240
194081eb
IM
1241/*
1242 * Shift right and round:
1243 */
cf2ab469 1244#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1245
a7be37ac
PZ
1246/*
1247 * delta *= weight / lw
1248 */
cb1c4fc9 1249static unsigned long
45bf76df
IM
1250calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1251 struct load_weight *lw)
1252{
1253 u64 tmp;
1254
7a232e03
LJ
1255 if (!lw->inv_weight) {
1256 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1257 lw->inv_weight = 1;
1258 else
1259 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1260 / (lw->weight+1);
1261 }
45bf76df
IM
1262
1263 tmp = (u64)delta_exec * weight;
1264 /*
1265 * Check whether we'd overflow the 64-bit multiplication:
1266 */
194081eb 1267 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1268 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1269 WMULT_SHIFT/2);
1270 else
cf2ab469 1271 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1272
ecf691da 1273 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1274}
1275
1091985b 1276static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1277{
1278 lw->weight += inc;
e89996ae 1279 lw->inv_weight = 0;
45bf76df
IM
1280}
1281
1091985b 1282static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1283{
1284 lw->weight -= dec;
e89996ae 1285 lw->inv_weight = 0;
45bf76df
IM
1286}
1287
2dd73a4f
PW
1288/*
1289 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1290 * of tasks with abnormal "nice" values across CPUs the contribution that
1291 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1292 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1293 * scaled version of the new time slice allocation that they receive on time
1294 * slice expiry etc.
1295 */
1296
dd41f596
IM
1297#define WEIGHT_IDLEPRIO 2
1298#define WMULT_IDLEPRIO (1 << 31)
1299
1300/*
1301 * Nice levels are multiplicative, with a gentle 10% change for every
1302 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1303 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1304 * that remained on nice 0.
1305 *
1306 * The "10% effect" is relative and cumulative: from _any_ nice level,
1307 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1308 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1309 * If a task goes up by ~10% and another task goes down by ~10% then
1310 * the relative distance between them is ~25%.)
dd41f596
IM
1311 */
1312static const int prio_to_weight[40] = {
254753dc
IM
1313 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1314 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1315 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1316 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1317 /* 0 */ 1024, 820, 655, 526, 423,
1318 /* 5 */ 335, 272, 215, 172, 137,
1319 /* 10 */ 110, 87, 70, 56, 45,
1320 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1321};
1322
5714d2de
IM
1323/*
1324 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1325 *
1326 * In cases where the weight does not change often, we can use the
1327 * precalculated inverse to speed up arithmetics by turning divisions
1328 * into multiplications:
1329 */
dd41f596 1330static const u32 prio_to_wmult[40] = {
254753dc
IM
1331 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1332 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1333 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1334 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1335 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1336 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1337 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1338 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1339};
2dd73a4f 1340
dd41f596
IM
1341static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1342
1343/*
1344 * runqueue iterator, to support SMP load-balancing between different
1345 * scheduling classes, without having to expose their internal data
1346 * structures to the load-balancing proper:
1347 */
1348struct rq_iterator {
1349 void *arg;
1350 struct task_struct *(*start)(void *);
1351 struct task_struct *(*next)(void *);
1352};
1353
e1d1484f
PW
1354#ifdef CONFIG_SMP
1355static unsigned long
1356balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1357 unsigned long max_load_move, struct sched_domain *sd,
1358 enum cpu_idle_type idle, int *all_pinned,
1359 int *this_best_prio, struct rq_iterator *iterator);
1360
1361static int
1362iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1363 struct sched_domain *sd, enum cpu_idle_type idle,
1364 struct rq_iterator *iterator);
e1d1484f 1365#endif
dd41f596 1366
d842de87
SV
1367#ifdef CONFIG_CGROUP_CPUACCT
1368static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1369#else
1370static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1371#endif
1372
18d95a28
PZ
1373static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1374{
1375 update_load_add(&rq->load, load);
1376}
1377
1378static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1379{
1380 update_load_sub(&rq->load, load);
1381}
1382
e7693a36
GH
1383#ifdef CONFIG_SMP
1384static unsigned long source_load(int cpu, int type);
1385static unsigned long target_load(int cpu, int type);
e7693a36 1386static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
c09595f6 1387
a8a51d5e
PZ
1388static unsigned long cpu_avg_load_per_task(int cpu)
1389{
1390 struct rq *rq = cpu_rq(cpu);
1391
1392 if (rq->nr_running)
1393 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1394
1395 return rq->avg_load_per_task;
1396}
18d95a28
PZ
1397
1398#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1399
c8cba857 1400typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
c09595f6
PZ
1401
1402/*
1403 * Iterate the full tree, calling @down when first entering a node and @up when
1404 * leaving it for the final time.
1405 */
c8cba857
PZ
1406static void
1407walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
c09595f6
PZ
1408{
1409 struct task_group *parent, *child;
1410
1411 rcu_read_lock();
1412 parent = &root_task_group;
1413down:
b6a86c74 1414 (*down)(parent, cpu, sd);
c09595f6
PZ
1415 list_for_each_entry_rcu(child, &parent->children, siblings) {
1416 parent = child;
1417 goto down;
1418
1419up:
1420 continue;
1421 }
b6a86c74 1422 (*up)(parent, cpu, sd);
c09595f6
PZ
1423
1424 child = parent;
1425 parent = parent->parent;
1426 if (parent)
1427 goto up;
1428 rcu_read_unlock();
1429}
1430
c09595f6
PZ
1431static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1432
1433/*
1434 * Calculate and set the cpu's group shares.
1435 */
1436static void
b6a86c74 1437__update_group_shares_cpu(struct task_group *tg, int cpu,
c8cba857 1438 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1439{
c09595f6
PZ
1440 int boost = 0;
1441 unsigned long shares;
1442 unsigned long rq_weight;
1443
c8cba857 1444 if (!tg->se[cpu])
c09595f6
PZ
1445 return;
1446
c8cba857 1447 rq_weight = tg->cfs_rq[cpu]->load.weight;
c09595f6
PZ
1448
1449 /*
1450 * If there are currently no tasks on the cpu pretend there is one of
1451 * average load so that when a new task gets to run here it will not
1452 * get delayed by group starvation.
1453 */
1454 if (!rq_weight) {
1455 boost = 1;
1456 rq_weight = NICE_0_LOAD;
1457 }
1458
c8cba857
PZ
1459 if (unlikely(rq_weight > sd_rq_weight))
1460 rq_weight = sd_rq_weight;
1461
c09595f6
PZ
1462 /*
1463 * \Sum shares * rq_weight
1464 * shares = -----------------------
1465 * \Sum rq_weight
1466 *
1467 */
c8cba857 1468 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
c09595f6
PZ
1469
1470 /*
1471 * record the actual number of shares, not the boosted amount.
1472 */
c8cba857 1473 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
f1d239f7 1474 tg->cfs_rq[cpu]->rq_weight = rq_weight;
c09595f6
PZ
1475
1476 if (shares < MIN_SHARES)
1477 shares = MIN_SHARES;
1478 else if (shares > MAX_SHARES)
1479 shares = MAX_SHARES;
1480
c8cba857 1481 __set_se_shares(tg->se[cpu], shares);
18d95a28 1482}
c09595f6
PZ
1483
1484/*
c8cba857
PZ
1485 * Re-compute the task group their per cpu shares over the given domain.
1486 * This needs to be done in a bottom-up fashion because the rq weight of a
1487 * parent group depends on the shares of its child groups.
c09595f6
PZ
1488 */
1489static void
c8cba857 1490tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1491{
c8cba857
PZ
1492 unsigned long rq_weight = 0;
1493 unsigned long shares = 0;
1494 int i;
c09595f6 1495
c8cba857
PZ
1496 for_each_cpu_mask(i, sd->span) {
1497 rq_weight += tg->cfs_rq[i]->load.weight;
1498 shares += tg->cfs_rq[i]->shares;
c09595f6 1499 }
c09595f6 1500
c8cba857
PZ
1501 if ((!shares && rq_weight) || shares > tg->shares)
1502 shares = tg->shares;
1503
1504 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1505 shares = tg->shares;
c09595f6 1506
cd80917e
PZ
1507 if (!rq_weight)
1508 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1509
c09595f6
PZ
1510 for_each_cpu_mask(i, sd->span) {
1511 struct rq *rq = cpu_rq(i);
1512 unsigned long flags;
1513
1514 spin_lock_irqsave(&rq->lock, flags);
c8cba857 1515 __update_group_shares_cpu(tg, i, shares, rq_weight);
c09595f6
PZ
1516 spin_unlock_irqrestore(&rq->lock, flags);
1517 }
c09595f6
PZ
1518}
1519
1520/*
c8cba857
PZ
1521 * Compute the cpu's hierarchical load factor for each task group.
1522 * This needs to be done in a top-down fashion because the load of a child
1523 * group is a fraction of its parents load.
c09595f6 1524 */
b6a86c74 1525static void
c8cba857 1526tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1527{
c8cba857 1528 unsigned long load;
c09595f6 1529
c8cba857
PZ
1530 if (!tg->parent) {
1531 load = cpu_rq(cpu)->load.weight;
1532 } else {
1533 load = tg->parent->cfs_rq[cpu]->h_load;
1534 load *= tg->cfs_rq[cpu]->shares;
1535 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1536 }
c09595f6 1537
c8cba857 1538 tg->cfs_rq[cpu]->h_load = load;
c09595f6
PZ
1539}
1540
c8cba857
PZ
1541static void
1542tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1543{
c09595f6
PZ
1544}
1545
c8cba857 1546static void update_shares(struct sched_domain *sd)
4d8d595d 1547{
2398f2c6
PZ
1548 u64 now = cpu_clock(raw_smp_processor_id());
1549 s64 elapsed = now - sd->last_update;
1550
1551 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1552 sd->last_update = now;
1553 walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
1554 }
4d8d595d
PZ
1555}
1556
3e5459b4
PZ
1557static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1558{
1559 spin_unlock(&rq->lock);
1560 update_shares(sd);
1561 spin_lock(&rq->lock);
1562}
1563
c8cba857 1564static void update_h_load(int cpu)
c09595f6 1565{
c8cba857 1566 walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
c09595f6
PZ
1567}
1568
c09595f6
PZ
1569#else
1570
c8cba857 1571static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1572{
1573}
1574
3e5459b4
PZ
1575static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1576{
1577}
1578
18d95a28
PZ
1579#endif
1580
18d95a28
PZ
1581#endif
1582
30432094 1583#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1584static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1585{
30432094 1586#ifdef CONFIG_SMP
34e83e85
IM
1587 cfs_rq->shares = shares;
1588#endif
1589}
30432094 1590#endif
e7693a36 1591
dd41f596 1592#include "sched_stats.h"
dd41f596 1593#include "sched_idletask.c"
5522d5d5
IM
1594#include "sched_fair.c"
1595#include "sched_rt.c"
dd41f596
IM
1596#ifdef CONFIG_SCHED_DEBUG
1597# include "sched_debug.c"
1598#endif
1599
1600#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1601#define for_each_class(class) \
1602 for (class = sched_class_highest; class; class = class->next)
dd41f596 1603
c09595f6 1604static void inc_nr_running(struct rq *rq)
9c217245
IM
1605{
1606 rq->nr_running++;
9c217245
IM
1607}
1608
c09595f6 1609static void dec_nr_running(struct rq *rq)
9c217245
IM
1610{
1611 rq->nr_running--;
9c217245
IM
1612}
1613
45bf76df
IM
1614static void set_load_weight(struct task_struct *p)
1615{
1616 if (task_has_rt_policy(p)) {
dd41f596
IM
1617 p->se.load.weight = prio_to_weight[0] * 2;
1618 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1619 return;
1620 }
45bf76df 1621
dd41f596
IM
1622 /*
1623 * SCHED_IDLE tasks get minimal weight:
1624 */
1625 if (p->policy == SCHED_IDLE) {
1626 p->se.load.weight = WEIGHT_IDLEPRIO;
1627 p->se.load.inv_weight = WMULT_IDLEPRIO;
1628 return;
1629 }
71f8bd46 1630
dd41f596
IM
1631 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1632 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1633}
1634
2087a1ad
GH
1635static void update_avg(u64 *avg, u64 sample)
1636{
1637 s64 diff = sample - *avg;
1638 *avg += diff >> 3;
1639}
1640
8159f87e 1641static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1642{
dd41f596 1643 sched_info_queued(p);
fd390f6a 1644 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1645 p->se.on_rq = 1;
71f8bd46
IM
1646}
1647
69be72c1 1648static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1649{
2087a1ad
GH
1650 if (sleep && p->se.last_wakeup) {
1651 update_avg(&p->se.avg_overlap,
1652 p->se.sum_exec_runtime - p->se.last_wakeup);
1653 p->se.last_wakeup = 0;
1654 }
1655
46ac22ba 1656 sched_info_dequeued(p);
f02231e5 1657 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1658 p->se.on_rq = 0;
71f8bd46
IM
1659}
1660
14531189 1661/*
dd41f596 1662 * __normal_prio - return the priority that is based on the static prio
14531189 1663 */
14531189
IM
1664static inline int __normal_prio(struct task_struct *p)
1665{
dd41f596 1666 return p->static_prio;
14531189
IM
1667}
1668
b29739f9
IM
1669/*
1670 * Calculate the expected normal priority: i.e. priority
1671 * without taking RT-inheritance into account. Might be
1672 * boosted by interactivity modifiers. Changes upon fork,
1673 * setprio syscalls, and whenever the interactivity
1674 * estimator recalculates.
1675 */
36c8b586 1676static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1677{
1678 int prio;
1679
e05606d3 1680 if (task_has_rt_policy(p))
b29739f9
IM
1681 prio = MAX_RT_PRIO-1 - p->rt_priority;
1682 else
1683 prio = __normal_prio(p);
1684 return prio;
1685}
1686
1687/*
1688 * Calculate the current priority, i.e. the priority
1689 * taken into account by the scheduler. This value might
1690 * be boosted by RT tasks, or might be boosted by
1691 * interactivity modifiers. Will be RT if the task got
1692 * RT-boosted. If not then it returns p->normal_prio.
1693 */
36c8b586 1694static int effective_prio(struct task_struct *p)
b29739f9
IM
1695{
1696 p->normal_prio = normal_prio(p);
1697 /*
1698 * If we are RT tasks or we were boosted to RT priority,
1699 * keep the priority unchanged. Otherwise, update priority
1700 * to the normal priority:
1701 */
1702 if (!rt_prio(p->prio))
1703 return p->normal_prio;
1704 return p->prio;
1705}
1706
1da177e4 1707/*
dd41f596 1708 * activate_task - move a task to the runqueue.
1da177e4 1709 */
dd41f596 1710static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1711{
d9514f6c 1712 if (task_contributes_to_load(p))
dd41f596 1713 rq->nr_uninterruptible--;
1da177e4 1714
8159f87e 1715 enqueue_task(rq, p, wakeup);
c09595f6 1716 inc_nr_running(rq);
1da177e4
LT
1717}
1718
1da177e4
LT
1719/*
1720 * deactivate_task - remove a task from the runqueue.
1721 */
2e1cb74a 1722static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1723{
d9514f6c 1724 if (task_contributes_to_load(p))
dd41f596
IM
1725 rq->nr_uninterruptible++;
1726
69be72c1 1727 dequeue_task(rq, p, sleep);
c09595f6 1728 dec_nr_running(rq);
1da177e4
LT
1729}
1730
1da177e4
LT
1731/**
1732 * task_curr - is this task currently executing on a CPU?
1733 * @p: the task in question.
1734 */
36c8b586 1735inline int task_curr(const struct task_struct *p)
1da177e4
LT
1736{
1737 return cpu_curr(task_cpu(p)) == p;
1738}
1739
dd41f596
IM
1740static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1741{
6f505b16 1742 set_task_rq(p, cpu);
dd41f596 1743#ifdef CONFIG_SMP
ce96b5ac
DA
1744 /*
1745 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1746 * successfuly executed on another CPU. We must ensure that updates of
1747 * per-task data have been completed by this moment.
1748 */
1749 smp_wmb();
dd41f596 1750 task_thread_info(p)->cpu = cpu;
dd41f596 1751#endif
2dd73a4f
PW
1752}
1753
cb469845
SR
1754static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1755 const struct sched_class *prev_class,
1756 int oldprio, int running)
1757{
1758 if (prev_class != p->sched_class) {
1759 if (prev_class->switched_from)
1760 prev_class->switched_from(rq, p, running);
1761 p->sched_class->switched_to(rq, p, running);
1762 } else
1763 p->sched_class->prio_changed(rq, p, oldprio, running);
1764}
1765
1da177e4 1766#ifdef CONFIG_SMP
c65cc870 1767
e958b360
TG
1768/* Used instead of source_load when we know the type == 0 */
1769static unsigned long weighted_cpuload(const int cpu)
1770{
1771 return cpu_rq(cpu)->load.weight;
1772}
1773
cc367732
IM
1774/*
1775 * Is this task likely cache-hot:
1776 */
e7693a36 1777static int
cc367732
IM
1778task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1779{
1780 s64 delta;
1781
f540a608
IM
1782 /*
1783 * Buddy candidates are cache hot:
1784 */
d25ce4cd 1785 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
1786 return 1;
1787
cc367732
IM
1788 if (p->sched_class != &fair_sched_class)
1789 return 0;
1790
6bc1665b
IM
1791 if (sysctl_sched_migration_cost == -1)
1792 return 1;
1793 if (sysctl_sched_migration_cost == 0)
1794 return 0;
1795
cc367732
IM
1796 delta = now - p->se.exec_start;
1797
1798 return delta < (s64)sysctl_sched_migration_cost;
1799}
1800
1801
dd41f596 1802void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1803{
dd41f596
IM
1804 int old_cpu = task_cpu(p);
1805 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1806 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1807 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1808 u64 clock_offset;
dd41f596
IM
1809
1810 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1811
1812#ifdef CONFIG_SCHEDSTATS
1813 if (p->se.wait_start)
1814 p->se.wait_start -= clock_offset;
dd41f596
IM
1815 if (p->se.sleep_start)
1816 p->se.sleep_start -= clock_offset;
1817 if (p->se.block_start)
1818 p->se.block_start -= clock_offset;
cc367732
IM
1819 if (old_cpu != new_cpu) {
1820 schedstat_inc(p, se.nr_migrations);
1821 if (task_hot(p, old_rq->clock, NULL))
1822 schedstat_inc(p, se.nr_forced2_migrations);
1823 }
6cfb0d5d 1824#endif
2830cf8c
SV
1825 p->se.vruntime -= old_cfsrq->min_vruntime -
1826 new_cfsrq->min_vruntime;
dd41f596
IM
1827
1828 __set_task_cpu(p, new_cpu);
c65cc870
IM
1829}
1830
70b97a7f 1831struct migration_req {
1da177e4 1832 struct list_head list;
1da177e4 1833
36c8b586 1834 struct task_struct *task;
1da177e4
LT
1835 int dest_cpu;
1836
1da177e4 1837 struct completion done;
70b97a7f 1838};
1da177e4
LT
1839
1840/*
1841 * The task's runqueue lock must be held.
1842 * Returns true if you have to wait for migration thread.
1843 */
36c8b586 1844static int
70b97a7f 1845migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1846{
70b97a7f 1847 struct rq *rq = task_rq(p);
1da177e4
LT
1848
1849 /*
1850 * If the task is not on a runqueue (and not running), then
1851 * it is sufficient to simply update the task's cpu field.
1852 */
dd41f596 1853 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1854 set_task_cpu(p, dest_cpu);
1855 return 0;
1856 }
1857
1858 init_completion(&req->done);
1da177e4
LT
1859 req->task = p;
1860 req->dest_cpu = dest_cpu;
1861 list_add(&req->list, &rq->migration_queue);
48f24c4d 1862
1da177e4
LT
1863 return 1;
1864}
1865
1866/*
1867 * wait_task_inactive - wait for a thread to unschedule.
1868 *
85ba2d86
RM
1869 * If @match_state is nonzero, it's the @p->state value just checked and
1870 * not expected to change. If it changes, i.e. @p might have woken up,
1871 * then return zero. When we succeed in waiting for @p to be off its CPU,
1872 * we return a positive number (its total switch count). If a second call
1873 * a short while later returns the same number, the caller can be sure that
1874 * @p has remained unscheduled the whole time.
1875 *
1da177e4
LT
1876 * The caller must ensure that the task *will* unschedule sometime soon,
1877 * else this function might spin for a *long* time. This function can't
1878 * be called with interrupts off, or it may introduce deadlock with
1879 * smp_call_function() if an IPI is sent by the same process we are
1880 * waiting to become inactive.
1881 */
85ba2d86 1882unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1883{
1884 unsigned long flags;
dd41f596 1885 int running, on_rq;
85ba2d86 1886 unsigned long ncsw;
70b97a7f 1887 struct rq *rq;
1da177e4 1888
3a5c359a
AK
1889 for (;;) {
1890 /*
1891 * We do the initial early heuristics without holding
1892 * any task-queue locks at all. We'll only try to get
1893 * the runqueue lock when things look like they will
1894 * work out!
1895 */
1896 rq = task_rq(p);
fa490cfd 1897
3a5c359a
AK
1898 /*
1899 * If the task is actively running on another CPU
1900 * still, just relax and busy-wait without holding
1901 * any locks.
1902 *
1903 * NOTE! Since we don't hold any locks, it's not
1904 * even sure that "rq" stays as the right runqueue!
1905 * But we don't care, since "task_running()" will
1906 * return false if the runqueue has changed and p
1907 * is actually now running somewhere else!
1908 */
85ba2d86
RM
1909 while (task_running(rq, p)) {
1910 if (match_state && unlikely(p->state != match_state))
1911 return 0;
3a5c359a 1912 cpu_relax();
85ba2d86 1913 }
fa490cfd 1914
3a5c359a
AK
1915 /*
1916 * Ok, time to look more closely! We need the rq
1917 * lock now, to be *sure*. If we're wrong, we'll
1918 * just go back and repeat.
1919 */
1920 rq = task_rq_lock(p, &flags);
1921 running = task_running(rq, p);
1922 on_rq = p->se.on_rq;
85ba2d86
RM
1923 ncsw = 0;
1924 if (!match_state || p->state == match_state) {
1925 ncsw = p->nivcsw + p->nvcsw;
1926 if (unlikely(!ncsw))
1927 ncsw = 1;
1928 }
3a5c359a 1929 task_rq_unlock(rq, &flags);
fa490cfd 1930
85ba2d86
RM
1931 /*
1932 * If it changed from the expected state, bail out now.
1933 */
1934 if (unlikely(!ncsw))
1935 break;
1936
3a5c359a
AK
1937 /*
1938 * Was it really running after all now that we
1939 * checked with the proper locks actually held?
1940 *
1941 * Oops. Go back and try again..
1942 */
1943 if (unlikely(running)) {
1944 cpu_relax();
1945 continue;
1946 }
fa490cfd 1947
3a5c359a
AK
1948 /*
1949 * It's not enough that it's not actively running,
1950 * it must be off the runqueue _entirely_, and not
1951 * preempted!
1952 *
1953 * So if it wa still runnable (but just not actively
1954 * running right now), it's preempted, and we should
1955 * yield - it could be a while.
1956 */
1957 if (unlikely(on_rq)) {
1958 schedule_timeout_uninterruptible(1);
1959 continue;
1960 }
fa490cfd 1961
3a5c359a
AK
1962 /*
1963 * Ahh, all good. It wasn't running, and it wasn't
1964 * runnable, which means that it will never become
1965 * running in the future either. We're all done!
1966 */
1967 break;
1968 }
85ba2d86
RM
1969
1970 return ncsw;
1da177e4
LT
1971}
1972
1973/***
1974 * kick_process - kick a running thread to enter/exit the kernel
1975 * @p: the to-be-kicked thread
1976 *
1977 * Cause a process which is running on another CPU to enter
1978 * kernel-mode, without any delay. (to get signals handled.)
1979 *
1980 * NOTE: this function doesnt have to take the runqueue lock,
1981 * because all it wants to ensure is that the remote task enters
1982 * the kernel. If the IPI races and the task has been migrated
1983 * to another CPU then no harm is done and the purpose has been
1984 * achieved as well.
1985 */
36c8b586 1986void kick_process(struct task_struct *p)
1da177e4
LT
1987{
1988 int cpu;
1989
1990 preempt_disable();
1991 cpu = task_cpu(p);
1992 if ((cpu != smp_processor_id()) && task_curr(p))
1993 smp_send_reschedule(cpu);
1994 preempt_enable();
1995}
1996
1997/*
2dd73a4f
PW
1998 * Return a low guess at the load of a migration-source cpu weighted
1999 * according to the scheduling class and "nice" value.
1da177e4
LT
2000 *
2001 * We want to under-estimate the load of migration sources, to
2002 * balance conservatively.
2003 */
a9957449 2004static unsigned long source_load(int cpu, int type)
1da177e4 2005{
70b97a7f 2006 struct rq *rq = cpu_rq(cpu);
dd41f596 2007 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2008
93b75217 2009 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2010 return total;
b910472d 2011
dd41f596 2012 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2013}
2014
2015/*
2dd73a4f
PW
2016 * Return a high guess at the load of a migration-target cpu weighted
2017 * according to the scheduling class and "nice" value.
1da177e4 2018 */
a9957449 2019static unsigned long target_load(int cpu, int type)
1da177e4 2020{
70b97a7f 2021 struct rq *rq = cpu_rq(cpu);
dd41f596 2022 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2023
93b75217 2024 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2025 return total;
3b0bd9bc 2026
dd41f596 2027 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2028}
2029
147cbb4b
NP
2030/*
2031 * find_idlest_group finds and returns the least busy CPU group within the
2032 * domain.
2033 */
2034static struct sched_group *
2035find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2036{
2037 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2038 unsigned long min_load = ULONG_MAX, this_load = 0;
2039 int load_idx = sd->forkexec_idx;
2040 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2041
2042 do {
2043 unsigned long load, avg_load;
2044 int local_group;
2045 int i;
2046
da5a5522
BD
2047 /* Skip over this group if it has no CPUs allowed */
2048 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 2049 continue;
da5a5522 2050
147cbb4b 2051 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
2052
2053 /* Tally up the load of all CPUs in the group */
2054 avg_load = 0;
2055
363ab6f1 2056 for_each_cpu_mask_nr(i, group->cpumask) {
147cbb4b
NP
2057 /* Bias balancing toward cpus of our domain */
2058 if (local_group)
2059 load = source_load(i, load_idx);
2060 else
2061 load = target_load(i, load_idx);
2062
2063 avg_load += load;
2064 }
2065
2066 /* Adjust by relative CPU power of the group */
5517d86b
ED
2067 avg_load = sg_div_cpu_power(group,
2068 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2069
2070 if (local_group) {
2071 this_load = avg_load;
2072 this = group;
2073 } else if (avg_load < min_load) {
2074 min_load = avg_load;
2075 idlest = group;
2076 }
3a5c359a 2077 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2078
2079 if (!idlest || 100*this_load < imbalance*min_load)
2080 return NULL;
2081 return idlest;
2082}
2083
2084/*
0feaece9 2085 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2086 */
95cdf3b7 2087static int
7c16ec58
MT
2088find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2089 cpumask_t *tmp)
147cbb4b
NP
2090{
2091 unsigned long load, min_load = ULONG_MAX;
2092 int idlest = -1;
2093 int i;
2094
da5a5522 2095 /* Traverse only the allowed CPUs */
7c16ec58 2096 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 2097
363ab6f1 2098 for_each_cpu_mask_nr(i, *tmp) {
2dd73a4f 2099 load = weighted_cpuload(i);
147cbb4b
NP
2100
2101 if (load < min_load || (load == min_load && i == this_cpu)) {
2102 min_load = load;
2103 idlest = i;
2104 }
2105 }
2106
2107 return idlest;
2108}
2109
476d139c
NP
2110/*
2111 * sched_balance_self: balance the current task (running on cpu) in domains
2112 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2113 * SD_BALANCE_EXEC.
2114 *
2115 * Balance, ie. select the least loaded group.
2116 *
2117 * Returns the target CPU number, or the same CPU if no balancing is needed.
2118 *
2119 * preempt must be disabled.
2120 */
2121static int sched_balance_self(int cpu, int flag)
2122{
2123 struct task_struct *t = current;
2124 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2125
c96d145e 2126 for_each_domain(cpu, tmp) {
9761eea8
IM
2127 /*
2128 * If power savings logic is enabled for a domain, stop there.
2129 */
5c45bf27
SS
2130 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2131 break;
476d139c
NP
2132 if (tmp->flags & flag)
2133 sd = tmp;
c96d145e 2134 }
476d139c 2135
039a1c41
PZ
2136 if (sd)
2137 update_shares(sd);
2138
476d139c 2139 while (sd) {
7c16ec58 2140 cpumask_t span, tmpmask;
476d139c 2141 struct sched_group *group;
1a848870
SS
2142 int new_cpu, weight;
2143
2144 if (!(sd->flags & flag)) {
2145 sd = sd->child;
2146 continue;
2147 }
476d139c
NP
2148
2149 span = sd->span;
2150 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2151 if (!group) {
2152 sd = sd->child;
2153 continue;
2154 }
476d139c 2155
7c16ec58 2156 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2157 if (new_cpu == -1 || new_cpu == cpu) {
2158 /* Now try balancing at a lower domain level of cpu */
2159 sd = sd->child;
2160 continue;
2161 }
476d139c 2162
1a848870 2163 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2164 cpu = new_cpu;
476d139c
NP
2165 sd = NULL;
2166 weight = cpus_weight(span);
2167 for_each_domain(cpu, tmp) {
2168 if (weight <= cpus_weight(tmp->span))
2169 break;
2170 if (tmp->flags & flag)
2171 sd = tmp;
2172 }
2173 /* while loop will break here if sd == NULL */
2174 }
2175
2176 return cpu;
2177}
2178
2179#endif /* CONFIG_SMP */
1da177e4 2180
1da177e4
LT
2181/***
2182 * try_to_wake_up - wake up a thread
2183 * @p: the to-be-woken-up thread
2184 * @state: the mask of task states that can be woken
2185 * @sync: do a synchronous wakeup?
2186 *
2187 * Put it on the run-queue if it's not already there. The "current"
2188 * thread is always on the run-queue (except when the actual
2189 * re-schedule is in progress), and as such you're allowed to do
2190 * the simpler "current->state = TASK_RUNNING" to mark yourself
2191 * runnable without the overhead of this.
2192 *
2193 * returns failure only if the task is already active.
2194 */
36c8b586 2195static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2196{
cc367732 2197 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2198 unsigned long flags;
2199 long old_state;
70b97a7f 2200 struct rq *rq;
1da177e4 2201
b85d0667
IM
2202 if (!sched_feat(SYNC_WAKEUPS))
2203 sync = 0;
2204
2398f2c6
PZ
2205#ifdef CONFIG_SMP
2206 if (sched_feat(LB_WAKEUP_UPDATE)) {
2207 struct sched_domain *sd;
2208
2209 this_cpu = raw_smp_processor_id();
2210 cpu = task_cpu(p);
2211
2212 for_each_domain(this_cpu, sd) {
2213 if (cpu_isset(cpu, sd->span)) {
2214 update_shares(sd);
2215 break;
2216 }
2217 }
2218 }
2219#endif
2220
04e2f174 2221 smp_wmb();
1da177e4
LT
2222 rq = task_rq_lock(p, &flags);
2223 old_state = p->state;
2224 if (!(old_state & state))
2225 goto out;
2226
dd41f596 2227 if (p->se.on_rq)
1da177e4
LT
2228 goto out_running;
2229
2230 cpu = task_cpu(p);
cc367732 2231 orig_cpu = cpu;
1da177e4
LT
2232 this_cpu = smp_processor_id();
2233
2234#ifdef CONFIG_SMP
2235 if (unlikely(task_running(rq, p)))
2236 goto out_activate;
2237
5d2f5a61
DA
2238 cpu = p->sched_class->select_task_rq(p, sync);
2239 if (cpu != orig_cpu) {
2240 set_task_cpu(p, cpu);
1da177e4
LT
2241 task_rq_unlock(rq, &flags);
2242 /* might preempt at this point */
2243 rq = task_rq_lock(p, &flags);
2244 old_state = p->state;
2245 if (!(old_state & state))
2246 goto out;
dd41f596 2247 if (p->se.on_rq)
1da177e4
LT
2248 goto out_running;
2249
2250 this_cpu = smp_processor_id();
2251 cpu = task_cpu(p);
2252 }
2253
e7693a36
GH
2254#ifdef CONFIG_SCHEDSTATS
2255 schedstat_inc(rq, ttwu_count);
2256 if (cpu == this_cpu)
2257 schedstat_inc(rq, ttwu_local);
2258 else {
2259 struct sched_domain *sd;
2260 for_each_domain(this_cpu, sd) {
2261 if (cpu_isset(cpu, sd->span)) {
2262 schedstat_inc(sd, ttwu_wake_remote);
2263 break;
2264 }
2265 }
2266 }
6d6bc0ad 2267#endif /* CONFIG_SCHEDSTATS */
e7693a36 2268
1da177e4
LT
2269out_activate:
2270#endif /* CONFIG_SMP */
cc367732
IM
2271 schedstat_inc(p, se.nr_wakeups);
2272 if (sync)
2273 schedstat_inc(p, se.nr_wakeups_sync);
2274 if (orig_cpu != cpu)
2275 schedstat_inc(p, se.nr_wakeups_migrate);
2276 if (cpu == this_cpu)
2277 schedstat_inc(p, se.nr_wakeups_local);
2278 else
2279 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2280 update_rq_clock(rq);
dd41f596 2281 activate_task(rq, p, 1);
1da177e4
LT
2282 success = 1;
2283
2284out_running:
5b82a1b0
MD
2285 trace_mark(kernel_sched_wakeup,
2286 "pid %d state %ld ## rq %p task %p rq->curr %p",
2287 p->pid, p->state, rq, p, rq->curr);
4ae7d5ce
IM
2288 check_preempt_curr(rq, p);
2289
1da177e4 2290 p->state = TASK_RUNNING;
9a897c5a
SR
2291#ifdef CONFIG_SMP
2292 if (p->sched_class->task_wake_up)
2293 p->sched_class->task_wake_up(rq, p);
2294#endif
1da177e4 2295out:
2087a1ad
GH
2296 current->se.last_wakeup = current->se.sum_exec_runtime;
2297
1da177e4
LT
2298 task_rq_unlock(rq, &flags);
2299
2300 return success;
2301}
2302
7ad5b3a5 2303int wake_up_process(struct task_struct *p)
1da177e4 2304{
d9514f6c 2305 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2306}
1da177e4
LT
2307EXPORT_SYMBOL(wake_up_process);
2308
7ad5b3a5 2309int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2310{
2311 return try_to_wake_up(p, state, 0);
2312}
2313
1da177e4
LT
2314/*
2315 * Perform scheduler related setup for a newly forked process p.
2316 * p is forked by current.
dd41f596
IM
2317 *
2318 * __sched_fork() is basic setup used by init_idle() too:
2319 */
2320static void __sched_fork(struct task_struct *p)
2321{
dd41f596
IM
2322 p->se.exec_start = 0;
2323 p->se.sum_exec_runtime = 0;
f6cf891c 2324 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2325 p->se.last_wakeup = 0;
2326 p->se.avg_overlap = 0;
6cfb0d5d
IM
2327
2328#ifdef CONFIG_SCHEDSTATS
2329 p->se.wait_start = 0;
dd41f596
IM
2330 p->se.sum_sleep_runtime = 0;
2331 p->se.sleep_start = 0;
dd41f596
IM
2332 p->se.block_start = 0;
2333 p->se.sleep_max = 0;
2334 p->se.block_max = 0;
2335 p->se.exec_max = 0;
eba1ed4b 2336 p->se.slice_max = 0;
dd41f596 2337 p->se.wait_max = 0;
6cfb0d5d 2338#endif
476d139c 2339
fa717060 2340 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2341 p->se.on_rq = 0;
4a55bd5e 2342 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2343
e107be36
AK
2344#ifdef CONFIG_PREEMPT_NOTIFIERS
2345 INIT_HLIST_HEAD(&p->preempt_notifiers);
2346#endif
2347
1da177e4
LT
2348 /*
2349 * We mark the process as running here, but have not actually
2350 * inserted it onto the runqueue yet. This guarantees that
2351 * nobody will actually run it, and a signal or other external
2352 * event cannot wake it up and insert it on the runqueue either.
2353 */
2354 p->state = TASK_RUNNING;
dd41f596
IM
2355}
2356
2357/*
2358 * fork()/clone()-time setup:
2359 */
2360void sched_fork(struct task_struct *p, int clone_flags)
2361{
2362 int cpu = get_cpu();
2363
2364 __sched_fork(p);
2365
2366#ifdef CONFIG_SMP
2367 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2368#endif
02e4bac2 2369 set_task_cpu(p, cpu);
b29739f9
IM
2370
2371 /*
2372 * Make sure we do not leak PI boosting priority to the child:
2373 */
2374 p->prio = current->normal_prio;
2ddbf952
HS
2375 if (!rt_prio(p->prio))
2376 p->sched_class = &fair_sched_class;
b29739f9 2377
52f17b6c 2378#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2379 if (likely(sched_info_on()))
52f17b6c 2380 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2381#endif
d6077cb8 2382#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2383 p->oncpu = 0;
2384#endif
1da177e4 2385#ifdef CONFIG_PREEMPT
4866cde0 2386 /* Want to start with kernel preemption disabled. */
a1261f54 2387 task_thread_info(p)->preempt_count = 1;
1da177e4 2388#endif
476d139c 2389 put_cpu();
1da177e4
LT
2390}
2391
2392/*
2393 * wake_up_new_task - wake up a newly created task for the first time.
2394 *
2395 * This function will do some initial scheduler statistics housekeeping
2396 * that must be done for every newly created context, then puts the task
2397 * on the runqueue and wakes it.
2398 */
7ad5b3a5 2399void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2400{
2401 unsigned long flags;
dd41f596 2402 struct rq *rq;
1da177e4
LT
2403
2404 rq = task_rq_lock(p, &flags);
147cbb4b 2405 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2406 update_rq_clock(rq);
1da177e4
LT
2407
2408 p->prio = effective_prio(p);
2409
b9dca1e0 2410 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2411 activate_task(rq, p, 0);
1da177e4 2412 } else {
1da177e4 2413 /*
dd41f596
IM
2414 * Let the scheduling class do new task startup
2415 * management (if any):
1da177e4 2416 */
ee0827d8 2417 p->sched_class->task_new(rq, p);
c09595f6 2418 inc_nr_running(rq);
1da177e4 2419 }
5b82a1b0
MD
2420 trace_mark(kernel_sched_wakeup_new,
2421 "pid %d state %ld ## rq %p task %p rq->curr %p",
2422 p->pid, p->state, rq, p, rq->curr);
dd41f596 2423 check_preempt_curr(rq, p);
9a897c5a
SR
2424#ifdef CONFIG_SMP
2425 if (p->sched_class->task_wake_up)
2426 p->sched_class->task_wake_up(rq, p);
2427#endif
dd41f596 2428 task_rq_unlock(rq, &flags);
1da177e4
LT
2429}
2430
e107be36
AK
2431#ifdef CONFIG_PREEMPT_NOTIFIERS
2432
2433/**
421cee29
RD
2434 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2435 * @notifier: notifier struct to register
e107be36
AK
2436 */
2437void preempt_notifier_register(struct preempt_notifier *notifier)
2438{
2439 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2440}
2441EXPORT_SYMBOL_GPL(preempt_notifier_register);
2442
2443/**
2444 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2445 * @notifier: notifier struct to unregister
e107be36
AK
2446 *
2447 * This is safe to call from within a preemption notifier.
2448 */
2449void preempt_notifier_unregister(struct preempt_notifier *notifier)
2450{
2451 hlist_del(&notifier->link);
2452}
2453EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2454
2455static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2456{
2457 struct preempt_notifier *notifier;
2458 struct hlist_node *node;
2459
2460 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2461 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2462}
2463
2464static void
2465fire_sched_out_preempt_notifiers(struct task_struct *curr,
2466 struct task_struct *next)
2467{
2468 struct preempt_notifier *notifier;
2469 struct hlist_node *node;
2470
2471 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2472 notifier->ops->sched_out(notifier, next);
2473}
2474
6d6bc0ad 2475#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2476
2477static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2478{
2479}
2480
2481static void
2482fire_sched_out_preempt_notifiers(struct task_struct *curr,
2483 struct task_struct *next)
2484{
2485}
2486
6d6bc0ad 2487#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2488
4866cde0
NP
2489/**
2490 * prepare_task_switch - prepare to switch tasks
2491 * @rq: the runqueue preparing to switch
421cee29 2492 * @prev: the current task that is being switched out
4866cde0
NP
2493 * @next: the task we are going to switch to.
2494 *
2495 * This is called with the rq lock held and interrupts off. It must
2496 * be paired with a subsequent finish_task_switch after the context
2497 * switch.
2498 *
2499 * prepare_task_switch sets up locking and calls architecture specific
2500 * hooks.
2501 */
e107be36
AK
2502static inline void
2503prepare_task_switch(struct rq *rq, struct task_struct *prev,
2504 struct task_struct *next)
4866cde0 2505{
e107be36 2506 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2507 prepare_lock_switch(rq, next);
2508 prepare_arch_switch(next);
2509}
2510
1da177e4
LT
2511/**
2512 * finish_task_switch - clean up after a task-switch
344babaa 2513 * @rq: runqueue associated with task-switch
1da177e4
LT
2514 * @prev: the thread we just switched away from.
2515 *
4866cde0
NP
2516 * finish_task_switch must be called after the context switch, paired
2517 * with a prepare_task_switch call before the context switch.
2518 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2519 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2520 *
2521 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2522 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2523 * with the lock held can cause deadlocks; see schedule() for
2524 * details.)
2525 */
a9957449 2526static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2527 __releases(rq->lock)
2528{
1da177e4 2529 struct mm_struct *mm = rq->prev_mm;
55a101f8 2530 long prev_state;
1da177e4
LT
2531
2532 rq->prev_mm = NULL;
2533
2534 /*
2535 * A task struct has one reference for the use as "current".
c394cc9f 2536 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2537 * schedule one last time. The schedule call will never return, and
2538 * the scheduled task must drop that reference.
c394cc9f 2539 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2540 * still held, otherwise prev could be scheduled on another cpu, die
2541 * there before we look at prev->state, and then the reference would
2542 * be dropped twice.
2543 * Manfred Spraul <manfred@colorfullife.com>
2544 */
55a101f8 2545 prev_state = prev->state;
4866cde0
NP
2546 finish_arch_switch(prev);
2547 finish_lock_switch(rq, prev);
9a897c5a
SR
2548#ifdef CONFIG_SMP
2549 if (current->sched_class->post_schedule)
2550 current->sched_class->post_schedule(rq);
2551#endif
e8fa1362 2552
e107be36 2553 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2554 if (mm)
2555 mmdrop(mm);
c394cc9f 2556 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2557 /*
2558 * Remove function-return probe instances associated with this
2559 * task and put them back on the free list.
9761eea8 2560 */
c6fd91f0 2561 kprobe_flush_task(prev);
1da177e4 2562 put_task_struct(prev);
c6fd91f0 2563 }
1da177e4
LT
2564}
2565
2566/**
2567 * schedule_tail - first thing a freshly forked thread must call.
2568 * @prev: the thread we just switched away from.
2569 */
36c8b586 2570asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2571 __releases(rq->lock)
2572{
70b97a7f
IM
2573 struct rq *rq = this_rq();
2574
4866cde0
NP
2575 finish_task_switch(rq, prev);
2576#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2577 /* In this case, finish_task_switch does not reenable preemption */
2578 preempt_enable();
2579#endif
1da177e4 2580 if (current->set_child_tid)
b488893a 2581 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2582}
2583
2584/*
2585 * context_switch - switch to the new MM and the new
2586 * thread's register state.
2587 */
dd41f596 2588static inline void
70b97a7f 2589context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2590 struct task_struct *next)
1da177e4 2591{
dd41f596 2592 struct mm_struct *mm, *oldmm;
1da177e4 2593
e107be36 2594 prepare_task_switch(rq, prev, next);
5b82a1b0
MD
2595 trace_mark(kernel_sched_schedule,
2596 "prev_pid %d next_pid %d prev_state %ld "
2597 "## rq %p prev %p next %p",
2598 prev->pid, next->pid, prev->state,
2599 rq, prev, next);
dd41f596
IM
2600 mm = next->mm;
2601 oldmm = prev->active_mm;
9226d125
ZA
2602 /*
2603 * For paravirt, this is coupled with an exit in switch_to to
2604 * combine the page table reload and the switch backend into
2605 * one hypercall.
2606 */
2607 arch_enter_lazy_cpu_mode();
2608
dd41f596 2609 if (unlikely(!mm)) {
1da177e4
LT
2610 next->active_mm = oldmm;
2611 atomic_inc(&oldmm->mm_count);
2612 enter_lazy_tlb(oldmm, next);
2613 } else
2614 switch_mm(oldmm, mm, next);
2615
dd41f596 2616 if (unlikely(!prev->mm)) {
1da177e4 2617 prev->active_mm = NULL;
1da177e4
LT
2618 rq->prev_mm = oldmm;
2619 }
3a5f5e48
IM
2620 /*
2621 * Since the runqueue lock will be released by the next
2622 * task (which is an invalid locking op but in the case
2623 * of the scheduler it's an obvious special-case), so we
2624 * do an early lockdep release here:
2625 */
2626#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2627 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2628#endif
1da177e4
LT
2629
2630 /* Here we just switch the register state and the stack. */
2631 switch_to(prev, next, prev);
2632
dd41f596
IM
2633 barrier();
2634 /*
2635 * this_rq must be evaluated again because prev may have moved
2636 * CPUs since it called schedule(), thus the 'rq' on its stack
2637 * frame will be invalid.
2638 */
2639 finish_task_switch(this_rq(), prev);
1da177e4
LT
2640}
2641
2642/*
2643 * nr_running, nr_uninterruptible and nr_context_switches:
2644 *
2645 * externally visible scheduler statistics: current number of runnable
2646 * threads, current number of uninterruptible-sleeping threads, total
2647 * number of context switches performed since bootup.
2648 */
2649unsigned long nr_running(void)
2650{
2651 unsigned long i, sum = 0;
2652
2653 for_each_online_cpu(i)
2654 sum += cpu_rq(i)->nr_running;
2655
2656 return sum;
2657}
2658
2659unsigned long nr_uninterruptible(void)
2660{
2661 unsigned long i, sum = 0;
2662
0a945022 2663 for_each_possible_cpu(i)
1da177e4
LT
2664 sum += cpu_rq(i)->nr_uninterruptible;
2665
2666 /*
2667 * Since we read the counters lockless, it might be slightly
2668 * inaccurate. Do not allow it to go below zero though:
2669 */
2670 if (unlikely((long)sum < 0))
2671 sum = 0;
2672
2673 return sum;
2674}
2675
2676unsigned long long nr_context_switches(void)
2677{
cc94abfc
SR
2678 int i;
2679 unsigned long long sum = 0;
1da177e4 2680
0a945022 2681 for_each_possible_cpu(i)
1da177e4
LT
2682 sum += cpu_rq(i)->nr_switches;
2683
2684 return sum;
2685}
2686
2687unsigned long nr_iowait(void)
2688{
2689 unsigned long i, sum = 0;
2690
0a945022 2691 for_each_possible_cpu(i)
1da177e4
LT
2692 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2693
2694 return sum;
2695}
2696
db1b1fef
JS
2697unsigned long nr_active(void)
2698{
2699 unsigned long i, running = 0, uninterruptible = 0;
2700
2701 for_each_online_cpu(i) {
2702 running += cpu_rq(i)->nr_running;
2703 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2704 }
2705
2706 if (unlikely((long)uninterruptible < 0))
2707 uninterruptible = 0;
2708
2709 return running + uninterruptible;
2710}
2711
48f24c4d 2712/*
dd41f596
IM
2713 * Update rq->cpu_load[] statistics. This function is usually called every
2714 * scheduler tick (TICK_NSEC).
48f24c4d 2715 */
dd41f596 2716static void update_cpu_load(struct rq *this_rq)
48f24c4d 2717{
495eca49 2718 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2719 int i, scale;
2720
2721 this_rq->nr_load_updates++;
dd41f596
IM
2722
2723 /* Update our load: */
2724 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2725 unsigned long old_load, new_load;
2726
2727 /* scale is effectively 1 << i now, and >> i divides by scale */
2728
2729 old_load = this_rq->cpu_load[i];
2730 new_load = this_load;
a25707f3
IM
2731 /*
2732 * Round up the averaging division if load is increasing. This
2733 * prevents us from getting stuck on 9 if the load is 10, for
2734 * example.
2735 */
2736 if (new_load > old_load)
2737 new_load += scale-1;
dd41f596
IM
2738 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2739 }
48f24c4d
IM
2740}
2741
dd41f596
IM
2742#ifdef CONFIG_SMP
2743
1da177e4
LT
2744/*
2745 * double_rq_lock - safely lock two runqueues
2746 *
2747 * Note this does not disable interrupts like task_rq_lock,
2748 * you need to do so manually before calling.
2749 */
70b97a7f 2750static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2751 __acquires(rq1->lock)
2752 __acquires(rq2->lock)
2753{
054b9108 2754 BUG_ON(!irqs_disabled());
1da177e4
LT
2755 if (rq1 == rq2) {
2756 spin_lock(&rq1->lock);
2757 __acquire(rq2->lock); /* Fake it out ;) */
2758 } else {
c96d145e 2759 if (rq1 < rq2) {
1da177e4 2760 spin_lock(&rq1->lock);
5e710e37 2761 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2762 } else {
2763 spin_lock(&rq2->lock);
5e710e37 2764 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2765 }
2766 }
6e82a3be
IM
2767 update_rq_clock(rq1);
2768 update_rq_clock(rq2);
1da177e4
LT
2769}
2770
2771/*
2772 * double_rq_unlock - safely unlock two runqueues
2773 *
2774 * Note this does not restore interrupts like task_rq_unlock,
2775 * you need to do so manually after calling.
2776 */
70b97a7f 2777static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2778 __releases(rq1->lock)
2779 __releases(rq2->lock)
2780{
2781 spin_unlock(&rq1->lock);
2782 if (rq1 != rq2)
2783 spin_unlock(&rq2->lock);
2784 else
2785 __release(rq2->lock);
2786}
2787
2788/*
2789 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2790 */
e8fa1362 2791static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2792 __releases(this_rq->lock)
2793 __acquires(busiest->lock)
2794 __acquires(this_rq->lock)
2795{
e8fa1362
SR
2796 int ret = 0;
2797
054b9108
KK
2798 if (unlikely(!irqs_disabled())) {
2799 /* printk() doesn't work good under rq->lock */
2800 spin_unlock(&this_rq->lock);
2801 BUG_ON(1);
2802 }
1da177e4 2803 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2804 if (busiest < this_rq) {
1da177e4
LT
2805 spin_unlock(&this_rq->lock);
2806 spin_lock(&busiest->lock);
5e710e37 2807 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
e8fa1362 2808 ret = 1;
1da177e4 2809 } else
5e710e37 2810 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1da177e4 2811 }
e8fa1362 2812 return ret;
1da177e4
LT
2813}
2814
1da177e4
LT
2815/*
2816 * If dest_cpu is allowed for this process, migrate the task to it.
2817 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2818 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2819 * the cpu_allowed mask is restored.
2820 */
36c8b586 2821static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2822{
70b97a7f 2823 struct migration_req req;
1da177e4 2824 unsigned long flags;
70b97a7f 2825 struct rq *rq;
1da177e4
LT
2826
2827 rq = task_rq_lock(p, &flags);
2828 if (!cpu_isset(dest_cpu, p->cpus_allowed)
e761b772 2829 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2830 goto out;
2831
2832 /* force the process onto the specified CPU */
2833 if (migrate_task(p, dest_cpu, &req)) {
2834 /* Need to wait for migration thread (might exit: take ref). */
2835 struct task_struct *mt = rq->migration_thread;
36c8b586 2836
1da177e4
LT
2837 get_task_struct(mt);
2838 task_rq_unlock(rq, &flags);
2839 wake_up_process(mt);
2840 put_task_struct(mt);
2841 wait_for_completion(&req.done);
36c8b586 2842
1da177e4
LT
2843 return;
2844 }
2845out:
2846 task_rq_unlock(rq, &flags);
2847}
2848
2849/*
476d139c
NP
2850 * sched_exec - execve() is a valuable balancing opportunity, because at
2851 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2852 */
2853void sched_exec(void)
2854{
1da177e4 2855 int new_cpu, this_cpu = get_cpu();
476d139c 2856 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2857 put_cpu();
476d139c
NP
2858 if (new_cpu != this_cpu)
2859 sched_migrate_task(current, new_cpu);
1da177e4
LT
2860}
2861
2862/*
2863 * pull_task - move a task from a remote runqueue to the local runqueue.
2864 * Both runqueues must be locked.
2865 */
dd41f596
IM
2866static void pull_task(struct rq *src_rq, struct task_struct *p,
2867 struct rq *this_rq, int this_cpu)
1da177e4 2868{
2e1cb74a 2869 deactivate_task(src_rq, p, 0);
1da177e4 2870 set_task_cpu(p, this_cpu);
dd41f596 2871 activate_task(this_rq, p, 0);
1da177e4
LT
2872 /*
2873 * Note that idle threads have a prio of MAX_PRIO, for this test
2874 * to be always true for them.
2875 */
dd41f596 2876 check_preempt_curr(this_rq, p);
1da177e4
LT
2877}
2878
2879/*
2880 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2881 */
858119e1 2882static
70b97a7f 2883int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2884 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2885 int *all_pinned)
1da177e4
LT
2886{
2887 /*
2888 * We do not migrate tasks that are:
2889 * 1) running (obviously), or
2890 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2891 * 3) are cache-hot on their current CPU.
2892 */
cc367732
IM
2893 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2894 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2895 return 0;
cc367732 2896 }
81026794
NP
2897 *all_pinned = 0;
2898
cc367732
IM
2899 if (task_running(rq, p)) {
2900 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2901 return 0;
cc367732 2902 }
1da177e4 2903
da84d961
IM
2904 /*
2905 * Aggressive migration if:
2906 * 1) task is cache cold, or
2907 * 2) too many balance attempts have failed.
2908 */
2909
6bc1665b
IM
2910 if (!task_hot(p, rq->clock, sd) ||
2911 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2912#ifdef CONFIG_SCHEDSTATS
cc367732 2913 if (task_hot(p, rq->clock, sd)) {
da84d961 2914 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2915 schedstat_inc(p, se.nr_forced_migrations);
2916 }
da84d961
IM
2917#endif
2918 return 1;
2919 }
2920
cc367732
IM
2921 if (task_hot(p, rq->clock, sd)) {
2922 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2923 return 0;
cc367732 2924 }
1da177e4
LT
2925 return 1;
2926}
2927
e1d1484f
PW
2928static unsigned long
2929balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2930 unsigned long max_load_move, struct sched_domain *sd,
2931 enum cpu_idle_type idle, int *all_pinned,
2932 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2933{
051c6764 2934 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
2935 struct task_struct *p;
2936 long rem_load_move = max_load_move;
1da177e4 2937
e1d1484f 2938 if (max_load_move == 0)
1da177e4
LT
2939 goto out;
2940
81026794
NP
2941 pinned = 1;
2942
1da177e4 2943 /*
dd41f596 2944 * Start the load-balancing iterator:
1da177e4 2945 */
dd41f596
IM
2946 p = iterator->start(iterator->arg);
2947next:
b82d9fdd 2948 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2949 goto out;
051c6764
PZ
2950
2951 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 2952 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2953 p = iterator->next(iterator->arg);
2954 goto next;
1da177e4
LT
2955 }
2956
dd41f596 2957 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2958 pulled++;
dd41f596 2959 rem_load_move -= p->se.load.weight;
1da177e4 2960
2dd73a4f 2961 /*
b82d9fdd 2962 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2963 */
e1d1484f 2964 if (rem_load_move > 0) {
a4ac01c3
PW
2965 if (p->prio < *this_best_prio)
2966 *this_best_prio = p->prio;
dd41f596
IM
2967 p = iterator->next(iterator->arg);
2968 goto next;
1da177e4
LT
2969 }
2970out:
2971 /*
e1d1484f 2972 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2973 * so we can safely collect pull_task() stats here rather than
2974 * inside pull_task().
2975 */
2976 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2977
2978 if (all_pinned)
2979 *all_pinned = pinned;
e1d1484f
PW
2980
2981 return max_load_move - rem_load_move;
1da177e4
LT
2982}
2983
dd41f596 2984/*
43010659
PW
2985 * move_tasks tries to move up to max_load_move weighted load from busiest to
2986 * this_rq, as part of a balancing operation within domain "sd".
2987 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2988 *
2989 * Called with both runqueues locked.
2990 */
2991static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2992 unsigned long max_load_move,
dd41f596
IM
2993 struct sched_domain *sd, enum cpu_idle_type idle,
2994 int *all_pinned)
2995{
5522d5d5 2996 const struct sched_class *class = sched_class_highest;
43010659 2997 unsigned long total_load_moved = 0;
a4ac01c3 2998 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2999
3000 do {
43010659
PW
3001 total_load_moved +=
3002 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3003 max_load_move - total_load_moved,
a4ac01c3 3004 sd, idle, all_pinned, &this_best_prio);
dd41f596 3005 class = class->next;
c4acb2c0
GH
3006
3007 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3008 break;
3009
43010659 3010 } while (class && max_load_move > total_load_moved);
dd41f596 3011
43010659
PW
3012 return total_load_moved > 0;
3013}
3014
e1d1484f
PW
3015static int
3016iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3017 struct sched_domain *sd, enum cpu_idle_type idle,
3018 struct rq_iterator *iterator)
3019{
3020 struct task_struct *p = iterator->start(iterator->arg);
3021 int pinned = 0;
3022
3023 while (p) {
3024 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3025 pull_task(busiest, p, this_rq, this_cpu);
3026 /*
3027 * Right now, this is only the second place pull_task()
3028 * is called, so we can safely collect pull_task()
3029 * stats here rather than inside pull_task().
3030 */
3031 schedstat_inc(sd, lb_gained[idle]);
3032
3033 return 1;
3034 }
3035 p = iterator->next(iterator->arg);
3036 }
3037
3038 return 0;
3039}
3040
43010659
PW
3041/*
3042 * move_one_task tries to move exactly one task from busiest to this_rq, as
3043 * part of active balancing operations within "domain".
3044 * Returns 1 if successful and 0 otherwise.
3045 *
3046 * Called with both runqueues locked.
3047 */
3048static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3049 struct sched_domain *sd, enum cpu_idle_type idle)
3050{
5522d5d5 3051 const struct sched_class *class;
43010659
PW
3052
3053 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3054 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3055 return 1;
3056
3057 return 0;
dd41f596
IM
3058}
3059
1da177e4
LT
3060/*
3061 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3062 * domain. It calculates and returns the amount of weighted load which
3063 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3064 */
3065static struct sched_group *
3066find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3067 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 3068 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
3069{
3070 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3071 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3072 unsigned long max_pull;
2dd73a4f
PW
3073 unsigned long busiest_load_per_task, busiest_nr_running;
3074 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3075 int load_idx, group_imb = 0;
5c45bf27
SS
3076#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3077 int power_savings_balance = 1;
3078 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3079 unsigned long min_nr_running = ULONG_MAX;
3080 struct sched_group *group_min = NULL, *group_leader = NULL;
3081#endif
1da177e4
LT
3082
3083 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3084 busiest_load_per_task = busiest_nr_running = 0;
3085 this_load_per_task = this_nr_running = 0;
408ed066 3086
d15bcfdb 3087 if (idle == CPU_NOT_IDLE)
7897986b 3088 load_idx = sd->busy_idx;
d15bcfdb 3089 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3090 load_idx = sd->newidle_idx;
3091 else
3092 load_idx = sd->idle_idx;
1da177e4
LT
3093
3094 do {
908a7c1b 3095 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3096 int local_group;
3097 int i;
908a7c1b 3098 int __group_imb = 0;
783609c6 3099 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3100 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3101 unsigned long sum_avg_load_per_task;
3102 unsigned long avg_load_per_task;
1da177e4
LT
3103
3104 local_group = cpu_isset(this_cpu, group->cpumask);
3105
783609c6
SS
3106 if (local_group)
3107 balance_cpu = first_cpu(group->cpumask);
3108
1da177e4 3109 /* Tally up the load of all CPUs in the group */
2dd73a4f 3110 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3111 sum_avg_load_per_task = avg_load_per_task = 0;
3112
908a7c1b
KC
3113 max_cpu_load = 0;
3114 min_cpu_load = ~0UL;
1da177e4 3115
363ab6f1 3116 for_each_cpu_mask_nr(i, group->cpumask) {
0a2966b4
CL
3117 struct rq *rq;
3118
3119 if (!cpu_isset(i, *cpus))
3120 continue;
3121
3122 rq = cpu_rq(i);
2dd73a4f 3123
9439aab8 3124 if (*sd_idle && rq->nr_running)
5969fe06
NP
3125 *sd_idle = 0;
3126
1da177e4 3127 /* Bias balancing toward cpus of our domain */
783609c6
SS
3128 if (local_group) {
3129 if (idle_cpu(i) && !first_idle_cpu) {
3130 first_idle_cpu = 1;
3131 balance_cpu = i;
3132 }
3133
a2000572 3134 load = target_load(i, load_idx);
908a7c1b 3135 } else {
a2000572 3136 load = source_load(i, load_idx);
908a7c1b
KC
3137 if (load > max_cpu_load)
3138 max_cpu_load = load;
3139 if (min_cpu_load > load)
3140 min_cpu_load = load;
3141 }
1da177e4
LT
3142
3143 avg_load += load;
2dd73a4f 3144 sum_nr_running += rq->nr_running;
dd41f596 3145 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3146
3147 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3148 }
3149
783609c6
SS
3150 /*
3151 * First idle cpu or the first cpu(busiest) in this sched group
3152 * is eligible for doing load balancing at this and above
9439aab8
SS
3153 * domains. In the newly idle case, we will allow all the cpu's
3154 * to do the newly idle load balance.
783609c6 3155 */
9439aab8
SS
3156 if (idle != CPU_NEWLY_IDLE && local_group &&
3157 balance_cpu != this_cpu && balance) {
783609c6
SS
3158 *balance = 0;
3159 goto ret;
3160 }
3161
1da177e4 3162 total_load += avg_load;
5517d86b 3163 total_pwr += group->__cpu_power;
1da177e4
LT
3164
3165 /* Adjust by relative CPU power of the group */
5517d86b
ED
3166 avg_load = sg_div_cpu_power(group,
3167 avg_load * SCHED_LOAD_SCALE);
1da177e4 3168
408ed066
PZ
3169
3170 /*
3171 * Consider the group unbalanced when the imbalance is larger
3172 * than the average weight of two tasks.
3173 *
3174 * APZ: with cgroup the avg task weight can vary wildly and
3175 * might not be a suitable number - should we keep a
3176 * normalized nr_running number somewhere that negates
3177 * the hierarchy?
3178 */
3179 avg_load_per_task = sg_div_cpu_power(group,
3180 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3181
3182 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3183 __group_imb = 1;
3184
5517d86b 3185 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3186
1da177e4
LT
3187 if (local_group) {
3188 this_load = avg_load;
3189 this = group;
2dd73a4f
PW
3190 this_nr_running = sum_nr_running;
3191 this_load_per_task = sum_weighted_load;
3192 } else if (avg_load > max_load &&
908a7c1b 3193 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3194 max_load = avg_load;
3195 busiest = group;
2dd73a4f
PW
3196 busiest_nr_running = sum_nr_running;
3197 busiest_load_per_task = sum_weighted_load;
908a7c1b 3198 group_imb = __group_imb;
1da177e4 3199 }
5c45bf27
SS
3200
3201#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3202 /*
3203 * Busy processors will not participate in power savings
3204 * balance.
3205 */
dd41f596
IM
3206 if (idle == CPU_NOT_IDLE ||
3207 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3208 goto group_next;
5c45bf27
SS
3209
3210 /*
3211 * If the local group is idle or completely loaded
3212 * no need to do power savings balance at this domain
3213 */
3214 if (local_group && (this_nr_running >= group_capacity ||
3215 !this_nr_running))
3216 power_savings_balance = 0;
3217
dd41f596 3218 /*
5c45bf27
SS
3219 * If a group is already running at full capacity or idle,
3220 * don't include that group in power savings calculations
dd41f596
IM
3221 */
3222 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3223 || !sum_nr_running)
dd41f596 3224 goto group_next;
5c45bf27 3225
dd41f596 3226 /*
5c45bf27 3227 * Calculate the group which has the least non-idle load.
dd41f596
IM
3228 * This is the group from where we need to pick up the load
3229 * for saving power
3230 */
3231 if ((sum_nr_running < min_nr_running) ||
3232 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3233 first_cpu(group->cpumask) <
3234 first_cpu(group_min->cpumask))) {
dd41f596
IM
3235 group_min = group;
3236 min_nr_running = sum_nr_running;
5c45bf27
SS
3237 min_load_per_task = sum_weighted_load /
3238 sum_nr_running;
dd41f596 3239 }
5c45bf27 3240
dd41f596 3241 /*
5c45bf27 3242 * Calculate the group which is almost near its
dd41f596
IM
3243 * capacity but still has some space to pick up some load
3244 * from other group and save more power
3245 */
3246 if (sum_nr_running <= group_capacity - 1) {
3247 if (sum_nr_running > leader_nr_running ||
3248 (sum_nr_running == leader_nr_running &&
3249 first_cpu(group->cpumask) >
3250 first_cpu(group_leader->cpumask))) {
3251 group_leader = group;
3252 leader_nr_running = sum_nr_running;
3253 }
48f24c4d 3254 }
5c45bf27
SS
3255group_next:
3256#endif
1da177e4
LT
3257 group = group->next;
3258 } while (group != sd->groups);
3259
2dd73a4f 3260 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3261 goto out_balanced;
3262
3263 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3264
3265 if (this_load >= avg_load ||
3266 100*max_load <= sd->imbalance_pct*this_load)
3267 goto out_balanced;
3268
2dd73a4f 3269 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3270 if (group_imb)
3271 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3272
1da177e4
LT
3273 /*
3274 * We're trying to get all the cpus to the average_load, so we don't
3275 * want to push ourselves above the average load, nor do we wish to
3276 * reduce the max loaded cpu below the average load, as either of these
3277 * actions would just result in more rebalancing later, and ping-pong
3278 * tasks around. Thus we look for the minimum possible imbalance.
3279 * Negative imbalances (*we* are more loaded than anyone else) will
3280 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3281 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3282 * appear as very large values with unsigned longs.
3283 */
2dd73a4f
PW
3284 if (max_load <= busiest_load_per_task)
3285 goto out_balanced;
3286
3287 /*
3288 * In the presence of smp nice balancing, certain scenarios can have
3289 * max load less than avg load(as we skip the groups at or below
3290 * its cpu_power, while calculating max_load..)
3291 */
3292 if (max_load < avg_load) {
3293 *imbalance = 0;
3294 goto small_imbalance;
3295 }
0c117f1b
SS
3296
3297 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3298 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3299
1da177e4 3300 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3301 *imbalance = min(max_pull * busiest->__cpu_power,
3302 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3303 / SCHED_LOAD_SCALE;
3304
2dd73a4f
PW
3305 /*
3306 * if *imbalance is less than the average load per runnable task
3307 * there is no gaurantee that any tasks will be moved so we'll have
3308 * a think about bumping its value to force at least one task to be
3309 * moved
3310 */
7fd0d2dd 3311 if (*imbalance < busiest_load_per_task) {
48f24c4d 3312 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3313 unsigned int imbn;
3314
3315small_imbalance:
3316 pwr_move = pwr_now = 0;
3317 imbn = 2;
3318 if (this_nr_running) {
3319 this_load_per_task /= this_nr_running;
3320 if (busiest_load_per_task > this_load_per_task)
3321 imbn = 1;
3322 } else
408ed066 3323 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3324
408ed066 3325 if (max_load - this_load + 2*busiest_load_per_task >=
dd41f596 3326 busiest_load_per_task * imbn) {
2dd73a4f 3327 *imbalance = busiest_load_per_task;
1da177e4
LT
3328 return busiest;
3329 }
3330
3331 /*
3332 * OK, we don't have enough imbalance to justify moving tasks,
3333 * however we may be able to increase total CPU power used by
3334 * moving them.
3335 */
3336
5517d86b
ED
3337 pwr_now += busiest->__cpu_power *
3338 min(busiest_load_per_task, max_load);
3339 pwr_now += this->__cpu_power *
3340 min(this_load_per_task, this_load);
1da177e4
LT
3341 pwr_now /= SCHED_LOAD_SCALE;
3342
3343 /* Amount of load we'd subtract */
5517d86b
ED
3344 tmp = sg_div_cpu_power(busiest,
3345 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3346 if (max_load > tmp)
5517d86b 3347 pwr_move += busiest->__cpu_power *
2dd73a4f 3348 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3349
3350 /* Amount of load we'd add */
5517d86b 3351 if (max_load * busiest->__cpu_power <
33859f7f 3352 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3353 tmp = sg_div_cpu_power(this,
3354 max_load * busiest->__cpu_power);
1da177e4 3355 else
5517d86b
ED
3356 tmp = sg_div_cpu_power(this,
3357 busiest_load_per_task * SCHED_LOAD_SCALE);
3358 pwr_move += this->__cpu_power *
3359 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3360 pwr_move /= SCHED_LOAD_SCALE;
3361
3362 /* Move if we gain throughput */
7fd0d2dd
SS
3363 if (pwr_move > pwr_now)
3364 *imbalance = busiest_load_per_task;
1da177e4
LT
3365 }
3366
1da177e4
LT
3367 return busiest;
3368
3369out_balanced:
5c45bf27 3370#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3371 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3372 goto ret;
1da177e4 3373
5c45bf27
SS
3374 if (this == group_leader && group_leader != group_min) {
3375 *imbalance = min_load_per_task;
3376 return group_min;
3377 }
5c45bf27 3378#endif
783609c6 3379ret:
1da177e4
LT
3380 *imbalance = 0;
3381 return NULL;
3382}
3383
3384/*
3385 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3386 */
70b97a7f 3387static struct rq *
d15bcfdb 3388find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3389 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3390{
70b97a7f 3391 struct rq *busiest = NULL, *rq;
2dd73a4f 3392 unsigned long max_load = 0;
1da177e4
LT
3393 int i;
3394
363ab6f1 3395 for_each_cpu_mask_nr(i, group->cpumask) {
dd41f596 3396 unsigned long wl;
0a2966b4
CL
3397
3398 if (!cpu_isset(i, *cpus))
3399 continue;
3400
48f24c4d 3401 rq = cpu_rq(i);
dd41f596 3402 wl = weighted_cpuload(i);
2dd73a4f 3403
dd41f596 3404 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3405 continue;
1da177e4 3406
dd41f596
IM
3407 if (wl > max_load) {
3408 max_load = wl;
48f24c4d 3409 busiest = rq;
1da177e4
LT
3410 }
3411 }
3412
3413 return busiest;
3414}
3415
77391d71
NP
3416/*
3417 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3418 * so long as it is large enough.
3419 */
3420#define MAX_PINNED_INTERVAL 512
3421
1da177e4
LT
3422/*
3423 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3424 * tasks if there is an imbalance.
1da177e4 3425 */
70b97a7f 3426static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3427 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3428 int *balance, cpumask_t *cpus)
1da177e4 3429{
43010659 3430 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3431 struct sched_group *group;
1da177e4 3432 unsigned long imbalance;
70b97a7f 3433 struct rq *busiest;
fe2eea3f 3434 unsigned long flags;
5969fe06 3435
7c16ec58
MT
3436 cpus_setall(*cpus);
3437
89c4710e
SS
3438 /*
3439 * When power savings policy is enabled for the parent domain, idle
3440 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3441 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3442 * portraying it as CPU_NOT_IDLE.
89c4710e 3443 */
d15bcfdb 3444 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3445 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3446 sd_idle = 1;
1da177e4 3447
2d72376b 3448 schedstat_inc(sd, lb_count[idle]);
1da177e4 3449
0a2966b4 3450redo:
c8cba857 3451 update_shares(sd);
0a2966b4 3452 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3453 cpus, balance);
783609c6 3454
06066714 3455 if (*balance == 0)
783609c6 3456 goto out_balanced;
783609c6 3457
1da177e4
LT
3458 if (!group) {
3459 schedstat_inc(sd, lb_nobusyg[idle]);
3460 goto out_balanced;
3461 }
3462
7c16ec58 3463 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3464 if (!busiest) {
3465 schedstat_inc(sd, lb_nobusyq[idle]);
3466 goto out_balanced;
3467 }
3468
db935dbd 3469 BUG_ON(busiest == this_rq);
1da177e4
LT
3470
3471 schedstat_add(sd, lb_imbalance[idle], imbalance);
3472
43010659 3473 ld_moved = 0;
1da177e4
LT
3474 if (busiest->nr_running > 1) {
3475 /*
3476 * Attempt to move tasks. If find_busiest_group has found
3477 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3478 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3479 * correctly treated as an imbalance.
3480 */
fe2eea3f 3481 local_irq_save(flags);
e17224bf 3482 double_rq_lock(this_rq, busiest);
43010659 3483 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3484 imbalance, sd, idle, &all_pinned);
e17224bf 3485 double_rq_unlock(this_rq, busiest);
fe2eea3f 3486 local_irq_restore(flags);
81026794 3487
46cb4b7c
SS
3488 /*
3489 * some other cpu did the load balance for us.
3490 */
43010659 3491 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3492 resched_cpu(this_cpu);
3493
81026794 3494 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3495 if (unlikely(all_pinned)) {
7c16ec58
MT
3496 cpu_clear(cpu_of(busiest), *cpus);
3497 if (!cpus_empty(*cpus))
0a2966b4 3498 goto redo;
81026794 3499 goto out_balanced;
0a2966b4 3500 }
1da177e4 3501 }
81026794 3502
43010659 3503 if (!ld_moved) {
1da177e4
LT
3504 schedstat_inc(sd, lb_failed[idle]);
3505 sd->nr_balance_failed++;
3506
3507 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3508
fe2eea3f 3509 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3510
3511 /* don't kick the migration_thread, if the curr
3512 * task on busiest cpu can't be moved to this_cpu
3513 */
3514 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3515 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3516 all_pinned = 1;
3517 goto out_one_pinned;
3518 }
3519
1da177e4
LT
3520 if (!busiest->active_balance) {
3521 busiest->active_balance = 1;
3522 busiest->push_cpu = this_cpu;
81026794 3523 active_balance = 1;
1da177e4 3524 }
fe2eea3f 3525 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3526 if (active_balance)
1da177e4
LT
3527 wake_up_process(busiest->migration_thread);
3528
3529 /*
3530 * We've kicked active balancing, reset the failure
3531 * counter.
3532 */
39507451 3533 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3534 }
81026794 3535 } else
1da177e4
LT
3536 sd->nr_balance_failed = 0;
3537
81026794 3538 if (likely(!active_balance)) {
1da177e4
LT
3539 /* We were unbalanced, so reset the balancing interval */
3540 sd->balance_interval = sd->min_interval;
81026794
NP
3541 } else {
3542 /*
3543 * If we've begun active balancing, start to back off. This
3544 * case may not be covered by the all_pinned logic if there
3545 * is only 1 task on the busy runqueue (because we don't call
3546 * move_tasks).
3547 */
3548 if (sd->balance_interval < sd->max_interval)
3549 sd->balance_interval *= 2;
1da177e4
LT
3550 }
3551
43010659 3552 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3553 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3554 ld_moved = -1;
3555
3556 goto out;
1da177e4
LT
3557
3558out_balanced:
1da177e4
LT
3559 schedstat_inc(sd, lb_balanced[idle]);
3560
16cfb1c0 3561 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3562
3563out_one_pinned:
1da177e4 3564 /* tune up the balancing interval */
77391d71
NP
3565 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3566 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3567 sd->balance_interval *= 2;
3568
48f24c4d 3569 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3570 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3571 ld_moved = -1;
3572 else
3573 ld_moved = 0;
3574out:
c8cba857
PZ
3575 if (ld_moved)
3576 update_shares(sd);
c09595f6 3577 return ld_moved;
1da177e4
LT
3578}
3579
3580/*
3581 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3582 * tasks if there is an imbalance.
3583 *
d15bcfdb 3584 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3585 * this_rq is locked.
3586 */
48f24c4d 3587static int
7c16ec58
MT
3588load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3589 cpumask_t *cpus)
1da177e4
LT
3590{
3591 struct sched_group *group;
70b97a7f 3592 struct rq *busiest = NULL;
1da177e4 3593 unsigned long imbalance;
43010659 3594 int ld_moved = 0;
5969fe06 3595 int sd_idle = 0;
969bb4e4 3596 int all_pinned = 0;
7c16ec58
MT
3597
3598 cpus_setall(*cpus);
5969fe06 3599
89c4710e
SS
3600 /*
3601 * When power savings policy is enabled for the parent domain, idle
3602 * sibling can pick up load irrespective of busy siblings. In this case,
3603 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3604 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3605 */
3606 if (sd->flags & SD_SHARE_CPUPOWER &&
3607 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3608 sd_idle = 1;
1da177e4 3609
2d72376b 3610 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3611redo:
3e5459b4 3612 update_shares_locked(this_rq, sd);
d15bcfdb 3613 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3614 &sd_idle, cpus, NULL);
1da177e4 3615 if (!group) {
d15bcfdb 3616 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3617 goto out_balanced;
1da177e4
LT
3618 }
3619
7c16ec58 3620 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3621 if (!busiest) {
d15bcfdb 3622 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3623 goto out_balanced;
1da177e4
LT
3624 }
3625
db935dbd
NP
3626 BUG_ON(busiest == this_rq);
3627
d15bcfdb 3628 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3629
43010659 3630 ld_moved = 0;
d6d5cfaf
NP
3631 if (busiest->nr_running > 1) {
3632 /* Attempt to move tasks */
3633 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3634 /* this_rq->clock is already updated */
3635 update_rq_clock(busiest);
43010659 3636 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3637 imbalance, sd, CPU_NEWLY_IDLE,
3638 &all_pinned);
d6d5cfaf 3639 spin_unlock(&busiest->lock);
0a2966b4 3640
969bb4e4 3641 if (unlikely(all_pinned)) {
7c16ec58
MT
3642 cpu_clear(cpu_of(busiest), *cpus);
3643 if (!cpus_empty(*cpus))
0a2966b4
CL
3644 goto redo;
3645 }
d6d5cfaf
NP
3646 }
3647
43010659 3648 if (!ld_moved) {
d15bcfdb 3649 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3650 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3651 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3652 return -1;
3653 } else
16cfb1c0 3654 sd->nr_balance_failed = 0;
1da177e4 3655
3e5459b4 3656 update_shares_locked(this_rq, sd);
43010659 3657 return ld_moved;
16cfb1c0
NP
3658
3659out_balanced:
d15bcfdb 3660 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3661 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3662 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3663 return -1;
16cfb1c0 3664 sd->nr_balance_failed = 0;
48f24c4d 3665
16cfb1c0 3666 return 0;
1da177e4
LT
3667}
3668
3669/*
3670 * idle_balance is called by schedule() if this_cpu is about to become
3671 * idle. Attempts to pull tasks from other CPUs.
3672 */
70b97a7f 3673static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3674{
3675 struct sched_domain *sd;
dd41f596
IM
3676 int pulled_task = -1;
3677 unsigned long next_balance = jiffies + HZ;
7c16ec58 3678 cpumask_t tmpmask;
1da177e4
LT
3679
3680 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3681 unsigned long interval;
3682
3683 if (!(sd->flags & SD_LOAD_BALANCE))
3684 continue;
3685
3686 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3687 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3688 pulled_task = load_balance_newidle(this_cpu, this_rq,
3689 sd, &tmpmask);
92c4ca5c
CL
3690
3691 interval = msecs_to_jiffies(sd->balance_interval);
3692 if (time_after(next_balance, sd->last_balance + interval))
3693 next_balance = sd->last_balance + interval;
3694 if (pulled_task)
3695 break;
1da177e4 3696 }
dd41f596 3697 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3698 /*
3699 * We are going idle. next_balance may be set based on
3700 * a busy processor. So reset next_balance.
3701 */
3702 this_rq->next_balance = next_balance;
dd41f596 3703 }
1da177e4
LT
3704}
3705
3706/*
3707 * active_load_balance is run by migration threads. It pushes running tasks
3708 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3709 * running on each physical CPU where possible, and avoids physical /
3710 * logical imbalances.
3711 *
3712 * Called with busiest_rq locked.
3713 */
70b97a7f 3714static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3715{
39507451 3716 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3717 struct sched_domain *sd;
3718 struct rq *target_rq;
39507451 3719
48f24c4d 3720 /* Is there any task to move? */
39507451 3721 if (busiest_rq->nr_running <= 1)
39507451
NP
3722 return;
3723
3724 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3725
3726 /*
39507451 3727 * This condition is "impossible", if it occurs
41a2d6cf 3728 * we need to fix it. Originally reported by
39507451 3729 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3730 */
39507451 3731 BUG_ON(busiest_rq == target_rq);
1da177e4 3732
39507451
NP
3733 /* move a task from busiest_rq to target_rq */
3734 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3735 update_rq_clock(busiest_rq);
3736 update_rq_clock(target_rq);
39507451
NP
3737
3738 /* Search for an sd spanning us and the target CPU. */
c96d145e 3739 for_each_domain(target_cpu, sd) {
39507451 3740 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3741 cpu_isset(busiest_cpu, sd->span))
39507451 3742 break;
c96d145e 3743 }
39507451 3744
48f24c4d 3745 if (likely(sd)) {
2d72376b 3746 schedstat_inc(sd, alb_count);
39507451 3747
43010659
PW
3748 if (move_one_task(target_rq, target_cpu, busiest_rq,
3749 sd, CPU_IDLE))
48f24c4d
IM
3750 schedstat_inc(sd, alb_pushed);
3751 else
3752 schedstat_inc(sd, alb_failed);
3753 }
39507451 3754 spin_unlock(&target_rq->lock);
1da177e4
LT
3755}
3756
46cb4b7c
SS
3757#ifdef CONFIG_NO_HZ
3758static struct {
3759 atomic_t load_balancer;
41a2d6cf 3760 cpumask_t cpu_mask;
46cb4b7c
SS
3761} nohz ____cacheline_aligned = {
3762 .load_balancer = ATOMIC_INIT(-1),
3763 .cpu_mask = CPU_MASK_NONE,
3764};
3765
7835b98b 3766/*
46cb4b7c
SS
3767 * This routine will try to nominate the ilb (idle load balancing)
3768 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3769 * load balancing on behalf of all those cpus. If all the cpus in the system
3770 * go into this tickless mode, then there will be no ilb owner (as there is
3771 * no need for one) and all the cpus will sleep till the next wakeup event
3772 * arrives...
3773 *
3774 * For the ilb owner, tick is not stopped. And this tick will be used
3775 * for idle load balancing. ilb owner will still be part of
3776 * nohz.cpu_mask..
7835b98b 3777 *
46cb4b7c
SS
3778 * While stopping the tick, this cpu will become the ilb owner if there
3779 * is no other owner. And will be the owner till that cpu becomes busy
3780 * or if all cpus in the system stop their ticks at which point
3781 * there is no need for ilb owner.
3782 *
3783 * When the ilb owner becomes busy, it nominates another owner, during the
3784 * next busy scheduler_tick()
3785 */
3786int select_nohz_load_balancer(int stop_tick)
3787{
3788 int cpu = smp_processor_id();
3789
3790 if (stop_tick) {
3791 cpu_set(cpu, nohz.cpu_mask);
3792 cpu_rq(cpu)->in_nohz_recently = 1;
3793
3794 /*
3795 * If we are going offline and still the leader, give up!
3796 */
e761b772 3797 if (!cpu_active(cpu) &&
46cb4b7c
SS
3798 atomic_read(&nohz.load_balancer) == cpu) {
3799 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3800 BUG();
3801 return 0;
3802 }
3803
3804 /* time for ilb owner also to sleep */
3805 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3806 if (atomic_read(&nohz.load_balancer) == cpu)
3807 atomic_set(&nohz.load_balancer, -1);
3808 return 0;
3809 }
3810
3811 if (atomic_read(&nohz.load_balancer) == -1) {
3812 /* make me the ilb owner */
3813 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3814 return 1;
3815 } else if (atomic_read(&nohz.load_balancer) == cpu)
3816 return 1;
3817 } else {
3818 if (!cpu_isset(cpu, nohz.cpu_mask))
3819 return 0;
3820
3821 cpu_clear(cpu, nohz.cpu_mask);
3822
3823 if (atomic_read(&nohz.load_balancer) == cpu)
3824 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3825 BUG();
3826 }
3827 return 0;
3828}
3829#endif
3830
3831static DEFINE_SPINLOCK(balancing);
3832
3833/*
7835b98b
CL
3834 * It checks each scheduling domain to see if it is due to be balanced,
3835 * and initiates a balancing operation if so.
3836 *
3837 * Balancing parameters are set up in arch_init_sched_domains.
3838 */
a9957449 3839static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3840{
46cb4b7c
SS
3841 int balance = 1;
3842 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3843 unsigned long interval;
3844 struct sched_domain *sd;
46cb4b7c 3845 /* Earliest time when we have to do rebalance again */
c9819f45 3846 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3847 int update_next_balance = 0;
d07355f5 3848 int need_serialize;
7c16ec58 3849 cpumask_t tmp;
1da177e4 3850
46cb4b7c 3851 for_each_domain(cpu, sd) {
1da177e4
LT
3852 if (!(sd->flags & SD_LOAD_BALANCE))
3853 continue;
3854
3855 interval = sd->balance_interval;
d15bcfdb 3856 if (idle != CPU_IDLE)
1da177e4
LT
3857 interval *= sd->busy_factor;
3858
3859 /* scale ms to jiffies */
3860 interval = msecs_to_jiffies(interval);
3861 if (unlikely(!interval))
3862 interval = 1;
dd41f596
IM
3863 if (interval > HZ*NR_CPUS/10)
3864 interval = HZ*NR_CPUS/10;
3865
d07355f5 3866 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3867
d07355f5 3868 if (need_serialize) {
08c183f3
CL
3869 if (!spin_trylock(&balancing))
3870 goto out;
3871 }
3872
c9819f45 3873 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3874 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3875 /*
3876 * We've pulled tasks over so either we're no
5969fe06
NP
3877 * longer idle, or one of our SMT siblings is
3878 * not idle.
3879 */
d15bcfdb 3880 idle = CPU_NOT_IDLE;
1da177e4 3881 }
1bd77f2d 3882 sd->last_balance = jiffies;
1da177e4 3883 }
d07355f5 3884 if (need_serialize)
08c183f3
CL
3885 spin_unlock(&balancing);
3886out:
f549da84 3887 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3888 next_balance = sd->last_balance + interval;
f549da84
SS
3889 update_next_balance = 1;
3890 }
783609c6
SS
3891
3892 /*
3893 * Stop the load balance at this level. There is another
3894 * CPU in our sched group which is doing load balancing more
3895 * actively.
3896 */
3897 if (!balance)
3898 break;
1da177e4 3899 }
f549da84
SS
3900
3901 /*
3902 * next_balance will be updated only when there is a need.
3903 * When the cpu is attached to null domain for ex, it will not be
3904 * updated.
3905 */
3906 if (likely(update_next_balance))
3907 rq->next_balance = next_balance;
46cb4b7c
SS
3908}
3909
3910/*
3911 * run_rebalance_domains is triggered when needed from the scheduler tick.
3912 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3913 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3914 */
3915static void run_rebalance_domains(struct softirq_action *h)
3916{
dd41f596
IM
3917 int this_cpu = smp_processor_id();
3918 struct rq *this_rq = cpu_rq(this_cpu);
3919 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3920 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3921
dd41f596 3922 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3923
3924#ifdef CONFIG_NO_HZ
3925 /*
3926 * If this cpu is the owner for idle load balancing, then do the
3927 * balancing on behalf of the other idle cpus whose ticks are
3928 * stopped.
3929 */
dd41f596
IM
3930 if (this_rq->idle_at_tick &&
3931 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3932 cpumask_t cpus = nohz.cpu_mask;
3933 struct rq *rq;
3934 int balance_cpu;
3935
dd41f596 3936 cpu_clear(this_cpu, cpus);
363ab6f1 3937 for_each_cpu_mask_nr(balance_cpu, cpus) {
46cb4b7c
SS
3938 /*
3939 * If this cpu gets work to do, stop the load balancing
3940 * work being done for other cpus. Next load
3941 * balancing owner will pick it up.
3942 */
3943 if (need_resched())
3944 break;
3945
de0cf899 3946 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3947
3948 rq = cpu_rq(balance_cpu);
dd41f596
IM
3949 if (time_after(this_rq->next_balance, rq->next_balance))
3950 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3951 }
3952 }
3953#endif
3954}
3955
3956/*
3957 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3958 *
3959 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3960 * idle load balancing owner or decide to stop the periodic load balancing,
3961 * if the whole system is idle.
3962 */
dd41f596 3963static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3964{
46cb4b7c
SS
3965#ifdef CONFIG_NO_HZ
3966 /*
3967 * If we were in the nohz mode recently and busy at the current
3968 * scheduler tick, then check if we need to nominate new idle
3969 * load balancer.
3970 */
3971 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3972 rq->in_nohz_recently = 0;
3973
3974 if (atomic_read(&nohz.load_balancer) == cpu) {
3975 cpu_clear(cpu, nohz.cpu_mask);
3976 atomic_set(&nohz.load_balancer, -1);
3977 }
3978
3979 if (atomic_read(&nohz.load_balancer) == -1) {
3980 /*
3981 * simple selection for now: Nominate the
3982 * first cpu in the nohz list to be the next
3983 * ilb owner.
3984 *
3985 * TBD: Traverse the sched domains and nominate
3986 * the nearest cpu in the nohz.cpu_mask.
3987 */
3988 int ilb = first_cpu(nohz.cpu_mask);
3989
434d53b0 3990 if (ilb < nr_cpu_ids)
46cb4b7c
SS
3991 resched_cpu(ilb);
3992 }
3993 }
3994
3995 /*
3996 * If this cpu is idle and doing idle load balancing for all the
3997 * cpus with ticks stopped, is it time for that to stop?
3998 */
3999 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4000 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4001 resched_cpu(cpu);
4002 return;
4003 }
4004
4005 /*
4006 * If this cpu is idle and the idle load balancing is done by
4007 * someone else, then no need raise the SCHED_SOFTIRQ
4008 */
4009 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4010 cpu_isset(cpu, nohz.cpu_mask))
4011 return;
4012#endif
4013 if (time_after_eq(jiffies, rq->next_balance))
4014 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4015}
dd41f596
IM
4016
4017#else /* CONFIG_SMP */
4018
1da177e4
LT
4019/*
4020 * on UP we do not need to balance between CPUs:
4021 */
70b97a7f 4022static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4023{
4024}
dd41f596 4025
1da177e4
LT
4026#endif
4027
1da177e4
LT
4028DEFINE_PER_CPU(struct kernel_stat, kstat);
4029
4030EXPORT_PER_CPU_SYMBOL(kstat);
4031
4032/*
41b86e9c
IM
4033 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4034 * that have not yet been banked in case the task is currently running.
1da177e4 4035 */
41b86e9c 4036unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 4037{
1da177e4 4038 unsigned long flags;
41b86e9c
IM
4039 u64 ns, delta_exec;
4040 struct rq *rq;
48f24c4d 4041
41b86e9c
IM
4042 rq = task_rq_lock(p, &flags);
4043 ns = p->se.sum_exec_runtime;
051a1d1a 4044 if (task_current(rq, p)) {
a8e504d2
IM
4045 update_rq_clock(rq);
4046 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
4047 if ((s64)delta_exec > 0)
4048 ns += delta_exec;
4049 }
4050 task_rq_unlock(rq, &flags);
48f24c4d 4051
1da177e4
LT
4052 return ns;
4053}
4054
1da177e4
LT
4055/*
4056 * Account user cpu time to a process.
4057 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4058 * @cputime: the cpu time spent in user space since the last update
4059 */
4060void account_user_time(struct task_struct *p, cputime_t cputime)
4061{
4062 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4063 cputime64_t tmp;
4064
4065 p->utime = cputime_add(p->utime, cputime);
4066
4067 /* Add user time to cpustat. */
4068 tmp = cputime_to_cputime64(cputime);
4069 if (TASK_NICE(p) > 0)
4070 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4071 else
4072 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4073 /* Account for user time used */
4074 acct_update_integrals(p);
1da177e4
LT
4075}
4076
94886b84
LV
4077/*
4078 * Account guest cpu time to a process.
4079 * @p: the process that the cpu time gets accounted to
4080 * @cputime: the cpu time spent in virtual machine since the last update
4081 */
f7402e03 4082static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4083{
4084 cputime64_t tmp;
4085 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4086
4087 tmp = cputime_to_cputime64(cputime);
4088
4089 p->utime = cputime_add(p->utime, cputime);
4090 p->gtime = cputime_add(p->gtime, cputime);
4091
4092 cpustat->user = cputime64_add(cpustat->user, tmp);
4093 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4094}
4095
c66f08be
MN
4096/*
4097 * Account scaled user cpu time to a process.
4098 * @p: the process that the cpu time gets accounted to
4099 * @cputime: the cpu time spent in user space since the last update
4100 */
4101void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4102{
4103 p->utimescaled = cputime_add(p->utimescaled, cputime);
4104}
4105
1da177e4
LT
4106/*
4107 * Account system cpu time to a process.
4108 * @p: the process that the cpu time gets accounted to
4109 * @hardirq_offset: the offset to subtract from hardirq_count()
4110 * @cputime: the cpu time spent in kernel space since the last update
4111 */
4112void account_system_time(struct task_struct *p, int hardirq_offset,
4113 cputime_t cputime)
4114{
4115 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4116 struct rq *rq = this_rq();
1da177e4
LT
4117 cputime64_t tmp;
4118
983ed7a6
HH
4119 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4120 account_guest_time(p, cputime);
4121 return;
4122 }
94886b84 4123
1da177e4
LT
4124 p->stime = cputime_add(p->stime, cputime);
4125
4126 /* Add system time to cpustat. */
4127 tmp = cputime_to_cputime64(cputime);
4128 if (hardirq_count() - hardirq_offset)
4129 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4130 else if (softirq_count())
4131 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4132 else if (p != rq->idle)
1da177e4 4133 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4134 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4135 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4136 else
4137 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4138 /* Account for system time used */
4139 acct_update_integrals(p);
1da177e4
LT
4140}
4141
c66f08be
MN
4142/*
4143 * Account scaled system cpu time to a process.
4144 * @p: the process that the cpu time gets accounted to
4145 * @hardirq_offset: the offset to subtract from hardirq_count()
4146 * @cputime: the cpu time spent in kernel space since the last update
4147 */
4148void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4149{
4150 p->stimescaled = cputime_add(p->stimescaled, cputime);
4151}
4152
1da177e4
LT
4153/*
4154 * Account for involuntary wait time.
4155 * @p: the process from which the cpu time has been stolen
4156 * @steal: the cpu time spent in involuntary wait
4157 */
4158void account_steal_time(struct task_struct *p, cputime_t steal)
4159{
4160 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4161 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4162 struct rq *rq = this_rq();
1da177e4
LT
4163
4164 if (p == rq->idle) {
4165 p->stime = cputime_add(p->stime, steal);
4166 if (atomic_read(&rq->nr_iowait) > 0)
4167 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4168 else
4169 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4170 } else
1da177e4
LT
4171 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4172}
4173
7835b98b
CL
4174/*
4175 * This function gets called by the timer code, with HZ frequency.
4176 * We call it with interrupts disabled.
4177 *
4178 * It also gets called by the fork code, when changing the parent's
4179 * timeslices.
4180 */
4181void scheduler_tick(void)
4182{
7835b98b
CL
4183 int cpu = smp_processor_id();
4184 struct rq *rq = cpu_rq(cpu);
dd41f596 4185 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4186
4187 sched_clock_tick();
dd41f596
IM
4188
4189 spin_lock(&rq->lock);
3e51f33f 4190 update_rq_clock(rq);
f1a438d8 4191 update_cpu_load(rq);
fa85ae24 4192 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4193 spin_unlock(&rq->lock);
7835b98b 4194
e418e1c2 4195#ifdef CONFIG_SMP
dd41f596
IM
4196 rq->idle_at_tick = idle_cpu(cpu);
4197 trigger_load_balance(rq, cpu);
e418e1c2 4198#endif
1da177e4
LT
4199}
4200
6cd8a4bb
SR
4201#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4202 defined(CONFIG_PREEMPT_TRACER))
4203
4204static inline unsigned long get_parent_ip(unsigned long addr)
4205{
4206 if (in_lock_functions(addr)) {
4207 addr = CALLER_ADDR2;
4208 if (in_lock_functions(addr))
4209 addr = CALLER_ADDR3;
4210 }
4211 return addr;
4212}
1da177e4 4213
43627582 4214void __kprobes add_preempt_count(int val)
1da177e4 4215{
6cd8a4bb 4216#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4217 /*
4218 * Underflow?
4219 */
9a11b49a
IM
4220 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4221 return;
6cd8a4bb 4222#endif
1da177e4 4223 preempt_count() += val;
6cd8a4bb 4224#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4225 /*
4226 * Spinlock count overflowing soon?
4227 */
33859f7f
MOS
4228 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4229 PREEMPT_MASK - 10);
6cd8a4bb
SR
4230#endif
4231 if (preempt_count() == val)
4232 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4233}
4234EXPORT_SYMBOL(add_preempt_count);
4235
43627582 4236void __kprobes sub_preempt_count(int val)
1da177e4 4237{
6cd8a4bb 4238#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4239 /*
4240 * Underflow?
4241 */
9a11b49a
IM
4242 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4243 return;
1da177e4
LT
4244 /*
4245 * Is the spinlock portion underflowing?
4246 */
9a11b49a
IM
4247 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4248 !(preempt_count() & PREEMPT_MASK)))
4249 return;
6cd8a4bb 4250#endif
9a11b49a 4251
6cd8a4bb
SR
4252 if (preempt_count() == val)
4253 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4254 preempt_count() -= val;
4255}
4256EXPORT_SYMBOL(sub_preempt_count);
4257
4258#endif
4259
4260/*
dd41f596 4261 * Print scheduling while atomic bug:
1da177e4 4262 */
dd41f596 4263static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4264{
838225b4
SS
4265 struct pt_regs *regs = get_irq_regs();
4266
4267 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4268 prev->comm, prev->pid, preempt_count());
4269
dd41f596 4270 debug_show_held_locks(prev);
e21f5b15 4271 print_modules();
dd41f596
IM
4272 if (irqs_disabled())
4273 print_irqtrace_events(prev);
838225b4
SS
4274
4275 if (regs)
4276 show_regs(regs);
4277 else
4278 dump_stack();
dd41f596 4279}
1da177e4 4280
dd41f596
IM
4281/*
4282 * Various schedule()-time debugging checks and statistics:
4283 */
4284static inline void schedule_debug(struct task_struct *prev)
4285{
1da177e4 4286 /*
41a2d6cf 4287 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4288 * schedule() atomically, we ignore that path for now.
4289 * Otherwise, whine if we are scheduling when we should not be.
4290 */
3f33a7ce 4291 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4292 __schedule_bug(prev);
4293
1da177e4
LT
4294 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4295
2d72376b 4296 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4297#ifdef CONFIG_SCHEDSTATS
4298 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4299 schedstat_inc(this_rq(), bkl_count);
4300 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4301 }
4302#endif
dd41f596
IM
4303}
4304
4305/*
4306 * Pick up the highest-prio task:
4307 */
4308static inline struct task_struct *
ff95f3df 4309pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4310{
5522d5d5 4311 const struct sched_class *class;
dd41f596 4312 struct task_struct *p;
1da177e4
LT
4313
4314 /*
dd41f596
IM
4315 * Optimization: we know that if all tasks are in
4316 * the fair class we can call that function directly:
1da177e4 4317 */
dd41f596 4318 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4319 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4320 if (likely(p))
4321 return p;
1da177e4
LT
4322 }
4323
dd41f596
IM
4324 class = sched_class_highest;
4325 for ( ; ; ) {
fb8d4724 4326 p = class->pick_next_task(rq);
dd41f596
IM
4327 if (p)
4328 return p;
4329 /*
4330 * Will never be NULL as the idle class always
4331 * returns a non-NULL p:
4332 */
4333 class = class->next;
4334 }
4335}
1da177e4 4336
dd41f596
IM
4337/*
4338 * schedule() is the main scheduler function.
4339 */
4340asmlinkage void __sched schedule(void)
4341{
4342 struct task_struct *prev, *next;
67ca7bde 4343 unsigned long *switch_count;
dd41f596 4344 struct rq *rq;
31656519 4345 int cpu;
dd41f596
IM
4346
4347need_resched:
4348 preempt_disable();
4349 cpu = smp_processor_id();
4350 rq = cpu_rq(cpu);
4351 rcu_qsctr_inc(cpu);
4352 prev = rq->curr;
4353 switch_count = &prev->nivcsw;
4354
4355 release_kernel_lock(prev);
4356need_resched_nonpreemptible:
4357
4358 schedule_debug(prev);
1da177e4 4359
31656519 4360 if (sched_feat(HRTICK))
f333fdc9 4361 hrtick_clear(rq);
8f4d37ec 4362
1e819950
IM
4363 /*
4364 * Do the rq-clock update outside the rq lock:
4365 */
4366 local_irq_disable();
3e51f33f 4367 update_rq_clock(rq);
1e819950
IM
4368 spin_lock(&rq->lock);
4369 clear_tsk_need_resched(prev);
1da177e4 4370
1da177e4 4371 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4372 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4373 prev->state = TASK_RUNNING;
16882c1e 4374 else
2e1cb74a 4375 deactivate_task(rq, prev, 1);
dd41f596 4376 switch_count = &prev->nvcsw;
1da177e4
LT
4377 }
4378
9a897c5a
SR
4379#ifdef CONFIG_SMP
4380 if (prev->sched_class->pre_schedule)
4381 prev->sched_class->pre_schedule(rq, prev);
4382#endif
f65eda4f 4383
dd41f596 4384 if (unlikely(!rq->nr_running))
1da177e4 4385 idle_balance(cpu, rq);
1da177e4 4386
31ee529c 4387 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4388 next = pick_next_task(rq, prev);
1da177e4 4389
1da177e4 4390 if (likely(prev != next)) {
673a90a1
DS
4391 sched_info_switch(prev, next);
4392
1da177e4
LT
4393 rq->nr_switches++;
4394 rq->curr = next;
4395 ++*switch_count;
4396
dd41f596 4397 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4398 /*
4399 * the context switch might have flipped the stack from under
4400 * us, hence refresh the local variables.
4401 */
4402 cpu = smp_processor_id();
4403 rq = cpu_rq(cpu);
1da177e4
LT
4404 } else
4405 spin_unlock_irq(&rq->lock);
4406
8f4d37ec 4407 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4408 goto need_resched_nonpreemptible;
8f4d37ec 4409
1da177e4
LT
4410 preempt_enable_no_resched();
4411 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4412 goto need_resched;
4413}
1da177e4
LT
4414EXPORT_SYMBOL(schedule);
4415
4416#ifdef CONFIG_PREEMPT
4417/*
2ed6e34f 4418 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4419 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4420 * occur there and call schedule directly.
4421 */
4422asmlinkage void __sched preempt_schedule(void)
4423{
4424 struct thread_info *ti = current_thread_info();
6478d880 4425
1da177e4
LT
4426 /*
4427 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4428 * we do not want to preempt the current task. Just return..
1da177e4 4429 */
beed33a8 4430 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4431 return;
4432
3a5c359a
AK
4433 do {
4434 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4435 schedule();
3a5c359a 4436 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4437
3a5c359a
AK
4438 /*
4439 * Check again in case we missed a preemption opportunity
4440 * between schedule and now.
4441 */
4442 barrier();
4443 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4444}
1da177e4
LT
4445EXPORT_SYMBOL(preempt_schedule);
4446
4447/*
2ed6e34f 4448 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4449 * off of irq context.
4450 * Note, that this is called and return with irqs disabled. This will
4451 * protect us against recursive calling from irq.
4452 */
4453asmlinkage void __sched preempt_schedule_irq(void)
4454{
4455 struct thread_info *ti = current_thread_info();
6478d880 4456
2ed6e34f 4457 /* Catch callers which need to be fixed */
1da177e4
LT
4458 BUG_ON(ti->preempt_count || !irqs_disabled());
4459
3a5c359a
AK
4460 do {
4461 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4462 local_irq_enable();
4463 schedule();
4464 local_irq_disable();
3a5c359a 4465 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4466
3a5c359a
AK
4467 /*
4468 * Check again in case we missed a preemption opportunity
4469 * between schedule and now.
4470 */
4471 barrier();
4472 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4473}
4474
4475#endif /* CONFIG_PREEMPT */
4476
95cdf3b7
IM
4477int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4478 void *key)
1da177e4 4479{
48f24c4d 4480 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4481}
1da177e4
LT
4482EXPORT_SYMBOL(default_wake_function);
4483
4484/*
41a2d6cf
IM
4485 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4486 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4487 * number) then we wake all the non-exclusive tasks and one exclusive task.
4488 *
4489 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4490 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4491 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4492 */
4493static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4494 int nr_exclusive, int sync, void *key)
4495{
2e45874c 4496 wait_queue_t *curr, *next;
1da177e4 4497
2e45874c 4498 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4499 unsigned flags = curr->flags;
4500
1da177e4 4501 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4502 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4503 break;
4504 }
4505}
4506
4507/**
4508 * __wake_up - wake up threads blocked on a waitqueue.
4509 * @q: the waitqueue
4510 * @mode: which threads
4511 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4512 * @key: is directly passed to the wakeup function
1da177e4 4513 */
7ad5b3a5 4514void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4515 int nr_exclusive, void *key)
1da177e4
LT
4516{
4517 unsigned long flags;
4518
4519 spin_lock_irqsave(&q->lock, flags);
4520 __wake_up_common(q, mode, nr_exclusive, 0, key);
4521 spin_unlock_irqrestore(&q->lock, flags);
4522}
1da177e4
LT
4523EXPORT_SYMBOL(__wake_up);
4524
4525/*
4526 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4527 */
7ad5b3a5 4528void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4529{
4530 __wake_up_common(q, mode, 1, 0, NULL);
4531}
4532
4533/**
67be2dd1 4534 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4535 * @q: the waitqueue
4536 * @mode: which threads
4537 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4538 *
4539 * The sync wakeup differs that the waker knows that it will schedule
4540 * away soon, so while the target thread will be woken up, it will not
4541 * be migrated to another CPU - ie. the two threads are 'synchronized'
4542 * with each other. This can prevent needless bouncing between CPUs.
4543 *
4544 * On UP it can prevent extra preemption.
4545 */
7ad5b3a5 4546void
95cdf3b7 4547__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4548{
4549 unsigned long flags;
4550 int sync = 1;
4551
4552 if (unlikely(!q))
4553 return;
4554
4555 if (unlikely(!nr_exclusive))
4556 sync = 0;
4557
4558 spin_lock_irqsave(&q->lock, flags);
4559 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4560 spin_unlock_irqrestore(&q->lock, flags);
4561}
4562EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4563
b15136e9 4564void complete(struct completion *x)
1da177e4
LT
4565{
4566 unsigned long flags;
4567
4568 spin_lock_irqsave(&x->wait.lock, flags);
4569 x->done++;
d9514f6c 4570 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4571 spin_unlock_irqrestore(&x->wait.lock, flags);
4572}
4573EXPORT_SYMBOL(complete);
4574
b15136e9 4575void complete_all(struct completion *x)
1da177e4
LT
4576{
4577 unsigned long flags;
4578
4579 spin_lock_irqsave(&x->wait.lock, flags);
4580 x->done += UINT_MAX/2;
d9514f6c 4581 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4582 spin_unlock_irqrestore(&x->wait.lock, flags);
4583}
4584EXPORT_SYMBOL(complete_all);
4585
8cbbe86d
AK
4586static inline long __sched
4587do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4588{
1da177e4
LT
4589 if (!x->done) {
4590 DECLARE_WAITQUEUE(wait, current);
4591
4592 wait.flags |= WQ_FLAG_EXCLUSIVE;
4593 __add_wait_queue_tail(&x->wait, &wait);
4594 do {
009e577e
MW
4595 if ((state == TASK_INTERRUPTIBLE &&
4596 signal_pending(current)) ||
4597 (state == TASK_KILLABLE &&
4598 fatal_signal_pending(current))) {
ea71a546
ON
4599 timeout = -ERESTARTSYS;
4600 break;
8cbbe86d
AK
4601 }
4602 __set_current_state(state);
1da177e4
LT
4603 spin_unlock_irq(&x->wait.lock);
4604 timeout = schedule_timeout(timeout);
4605 spin_lock_irq(&x->wait.lock);
ea71a546 4606 } while (!x->done && timeout);
1da177e4 4607 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4608 if (!x->done)
4609 return timeout;
1da177e4
LT
4610 }
4611 x->done--;
ea71a546 4612 return timeout ?: 1;
1da177e4 4613}
1da177e4 4614
8cbbe86d
AK
4615static long __sched
4616wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4617{
1da177e4
LT
4618 might_sleep();
4619
4620 spin_lock_irq(&x->wait.lock);
8cbbe86d 4621 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4622 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4623 return timeout;
4624}
1da177e4 4625
b15136e9 4626void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4627{
4628 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4629}
8cbbe86d 4630EXPORT_SYMBOL(wait_for_completion);
1da177e4 4631
b15136e9 4632unsigned long __sched
8cbbe86d 4633wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4634{
8cbbe86d 4635 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4636}
8cbbe86d 4637EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4638
8cbbe86d 4639int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4640{
51e97990
AK
4641 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4642 if (t == -ERESTARTSYS)
4643 return t;
4644 return 0;
0fec171c 4645}
8cbbe86d 4646EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4647
b15136e9 4648unsigned long __sched
8cbbe86d
AK
4649wait_for_completion_interruptible_timeout(struct completion *x,
4650 unsigned long timeout)
0fec171c 4651{
8cbbe86d 4652 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4653}
8cbbe86d 4654EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4655
009e577e
MW
4656int __sched wait_for_completion_killable(struct completion *x)
4657{
4658 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4659 if (t == -ERESTARTSYS)
4660 return t;
4661 return 0;
4662}
4663EXPORT_SYMBOL(wait_for_completion_killable);
4664
8cbbe86d
AK
4665static long __sched
4666sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4667{
0fec171c
IM
4668 unsigned long flags;
4669 wait_queue_t wait;
4670
4671 init_waitqueue_entry(&wait, current);
1da177e4 4672
8cbbe86d 4673 __set_current_state(state);
1da177e4 4674
8cbbe86d
AK
4675 spin_lock_irqsave(&q->lock, flags);
4676 __add_wait_queue(q, &wait);
4677 spin_unlock(&q->lock);
4678 timeout = schedule_timeout(timeout);
4679 spin_lock_irq(&q->lock);
4680 __remove_wait_queue(q, &wait);
4681 spin_unlock_irqrestore(&q->lock, flags);
4682
4683 return timeout;
4684}
4685
4686void __sched interruptible_sleep_on(wait_queue_head_t *q)
4687{
4688 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4689}
1da177e4
LT
4690EXPORT_SYMBOL(interruptible_sleep_on);
4691
0fec171c 4692long __sched
95cdf3b7 4693interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4694{
8cbbe86d 4695 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4696}
1da177e4
LT
4697EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4698
0fec171c 4699void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4700{
8cbbe86d 4701 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4702}
1da177e4
LT
4703EXPORT_SYMBOL(sleep_on);
4704
0fec171c 4705long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4706{
8cbbe86d 4707 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4708}
1da177e4
LT
4709EXPORT_SYMBOL(sleep_on_timeout);
4710
b29739f9
IM
4711#ifdef CONFIG_RT_MUTEXES
4712
4713/*
4714 * rt_mutex_setprio - set the current priority of a task
4715 * @p: task
4716 * @prio: prio value (kernel-internal form)
4717 *
4718 * This function changes the 'effective' priority of a task. It does
4719 * not touch ->normal_prio like __setscheduler().
4720 *
4721 * Used by the rt_mutex code to implement priority inheritance logic.
4722 */
36c8b586 4723void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4724{
4725 unsigned long flags;
83b699ed 4726 int oldprio, on_rq, running;
70b97a7f 4727 struct rq *rq;
cb469845 4728 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4729
4730 BUG_ON(prio < 0 || prio > MAX_PRIO);
4731
4732 rq = task_rq_lock(p, &flags);
a8e504d2 4733 update_rq_clock(rq);
b29739f9 4734
d5f9f942 4735 oldprio = p->prio;
dd41f596 4736 on_rq = p->se.on_rq;
051a1d1a 4737 running = task_current(rq, p);
0e1f3483 4738 if (on_rq)
69be72c1 4739 dequeue_task(rq, p, 0);
0e1f3483
HS
4740 if (running)
4741 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4742
4743 if (rt_prio(prio))
4744 p->sched_class = &rt_sched_class;
4745 else
4746 p->sched_class = &fair_sched_class;
4747
b29739f9
IM
4748 p->prio = prio;
4749
0e1f3483
HS
4750 if (running)
4751 p->sched_class->set_curr_task(rq);
dd41f596 4752 if (on_rq) {
8159f87e 4753 enqueue_task(rq, p, 0);
cb469845
SR
4754
4755 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4756 }
4757 task_rq_unlock(rq, &flags);
4758}
4759
4760#endif
4761
36c8b586 4762void set_user_nice(struct task_struct *p, long nice)
1da177e4 4763{
dd41f596 4764 int old_prio, delta, on_rq;
1da177e4 4765 unsigned long flags;
70b97a7f 4766 struct rq *rq;
1da177e4
LT
4767
4768 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4769 return;
4770 /*
4771 * We have to be careful, if called from sys_setpriority(),
4772 * the task might be in the middle of scheduling on another CPU.
4773 */
4774 rq = task_rq_lock(p, &flags);
a8e504d2 4775 update_rq_clock(rq);
1da177e4
LT
4776 /*
4777 * The RT priorities are set via sched_setscheduler(), but we still
4778 * allow the 'normal' nice value to be set - but as expected
4779 * it wont have any effect on scheduling until the task is
dd41f596 4780 * SCHED_FIFO/SCHED_RR:
1da177e4 4781 */
e05606d3 4782 if (task_has_rt_policy(p)) {
1da177e4
LT
4783 p->static_prio = NICE_TO_PRIO(nice);
4784 goto out_unlock;
4785 }
dd41f596 4786 on_rq = p->se.on_rq;
c09595f6 4787 if (on_rq)
69be72c1 4788 dequeue_task(rq, p, 0);
1da177e4 4789
1da177e4 4790 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4791 set_load_weight(p);
b29739f9
IM
4792 old_prio = p->prio;
4793 p->prio = effective_prio(p);
4794 delta = p->prio - old_prio;
1da177e4 4795
dd41f596 4796 if (on_rq) {
8159f87e 4797 enqueue_task(rq, p, 0);
1da177e4 4798 /*
d5f9f942
AM
4799 * If the task increased its priority or is running and
4800 * lowered its priority, then reschedule its CPU:
1da177e4 4801 */
d5f9f942 4802 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4803 resched_task(rq->curr);
4804 }
4805out_unlock:
4806 task_rq_unlock(rq, &flags);
4807}
1da177e4
LT
4808EXPORT_SYMBOL(set_user_nice);
4809
e43379f1
MM
4810/*
4811 * can_nice - check if a task can reduce its nice value
4812 * @p: task
4813 * @nice: nice value
4814 */
36c8b586 4815int can_nice(const struct task_struct *p, const int nice)
e43379f1 4816{
024f4747
MM
4817 /* convert nice value [19,-20] to rlimit style value [1,40] */
4818 int nice_rlim = 20 - nice;
48f24c4d 4819
e43379f1
MM
4820 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4821 capable(CAP_SYS_NICE));
4822}
4823
1da177e4
LT
4824#ifdef __ARCH_WANT_SYS_NICE
4825
4826/*
4827 * sys_nice - change the priority of the current process.
4828 * @increment: priority increment
4829 *
4830 * sys_setpriority is a more generic, but much slower function that
4831 * does similar things.
4832 */
4833asmlinkage long sys_nice(int increment)
4834{
48f24c4d 4835 long nice, retval;
1da177e4
LT
4836
4837 /*
4838 * Setpriority might change our priority at the same moment.
4839 * We don't have to worry. Conceptually one call occurs first
4840 * and we have a single winner.
4841 */
e43379f1
MM
4842 if (increment < -40)
4843 increment = -40;
1da177e4
LT
4844 if (increment > 40)
4845 increment = 40;
4846
4847 nice = PRIO_TO_NICE(current->static_prio) + increment;
4848 if (nice < -20)
4849 nice = -20;
4850 if (nice > 19)
4851 nice = 19;
4852
e43379f1
MM
4853 if (increment < 0 && !can_nice(current, nice))
4854 return -EPERM;
4855
1da177e4
LT
4856 retval = security_task_setnice(current, nice);
4857 if (retval)
4858 return retval;
4859
4860 set_user_nice(current, nice);
4861 return 0;
4862}
4863
4864#endif
4865
4866/**
4867 * task_prio - return the priority value of a given task.
4868 * @p: the task in question.
4869 *
4870 * This is the priority value as seen by users in /proc.
4871 * RT tasks are offset by -200. Normal tasks are centered
4872 * around 0, value goes from -16 to +15.
4873 */
36c8b586 4874int task_prio(const struct task_struct *p)
1da177e4
LT
4875{
4876 return p->prio - MAX_RT_PRIO;
4877}
4878
4879/**
4880 * task_nice - return the nice value of a given task.
4881 * @p: the task in question.
4882 */
36c8b586 4883int task_nice(const struct task_struct *p)
1da177e4
LT
4884{
4885 return TASK_NICE(p);
4886}
150d8bed 4887EXPORT_SYMBOL(task_nice);
1da177e4
LT
4888
4889/**
4890 * idle_cpu - is a given cpu idle currently?
4891 * @cpu: the processor in question.
4892 */
4893int idle_cpu(int cpu)
4894{
4895 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4896}
4897
1da177e4
LT
4898/**
4899 * idle_task - return the idle task for a given cpu.
4900 * @cpu: the processor in question.
4901 */
36c8b586 4902struct task_struct *idle_task(int cpu)
1da177e4
LT
4903{
4904 return cpu_rq(cpu)->idle;
4905}
4906
4907/**
4908 * find_process_by_pid - find a process with a matching PID value.
4909 * @pid: the pid in question.
4910 */
a9957449 4911static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4912{
228ebcbe 4913 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4914}
4915
4916/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4917static void
4918__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4919{
dd41f596 4920 BUG_ON(p->se.on_rq);
48f24c4d 4921
1da177e4 4922 p->policy = policy;
dd41f596
IM
4923 switch (p->policy) {
4924 case SCHED_NORMAL:
4925 case SCHED_BATCH:
4926 case SCHED_IDLE:
4927 p->sched_class = &fair_sched_class;
4928 break;
4929 case SCHED_FIFO:
4930 case SCHED_RR:
4931 p->sched_class = &rt_sched_class;
4932 break;
4933 }
4934
1da177e4 4935 p->rt_priority = prio;
b29739f9
IM
4936 p->normal_prio = normal_prio(p);
4937 /* we are holding p->pi_lock already */
4938 p->prio = rt_mutex_getprio(p);
2dd73a4f 4939 set_load_weight(p);
1da177e4
LT
4940}
4941
961ccddd
RR
4942static int __sched_setscheduler(struct task_struct *p, int policy,
4943 struct sched_param *param, bool user)
1da177e4 4944{
83b699ed 4945 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4946 unsigned long flags;
cb469845 4947 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4948 struct rq *rq;
1da177e4 4949
66e5393a
SR
4950 /* may grab non-irq protected spin_locks */
4951 BUG_ON(in_interrupt());
1da177e4
LT
4952recheck:
4953 /* double check policy once rq lock held */
4954 if (policy < 0)
4955 policy = oldpolicy = p->policy;
4956 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4957 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4958 policy != SCHED_IDLE)
b0a9499c 4959 return -EINVAL;
1da177e4
LT
4960 /*
4961 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4962 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4963 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4964 */
4965 if (param->sched_priority < 0 ||
95cdf3b7 4966 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4967 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4968 return -EINVAL;
e05606d3 4969 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4970 return -EINVAL;
4971
37e4ab3f
OC
4972 /*
4973 * Allow unprivileged RT tasks to decrease priority:
4974 */
961ccddd 4975 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4976 if (rt_policy(policy)) {
8dc3e909 4977 unsigned long rlim_rtprio;
8dc3e909
ON
4978
4979 if (!lock_task_sighand(p, &flags))
4980 return -ESRCH;
4981 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4982 unlock_task_sighand(p, &flags);
4983
4984 /* can't set/change the rt policy */
4985 if (policy != p->policy && !rlim_rtprio)
4986 return -EPERM;
4987
4988 /* can't increase priority */
4989 if (param->sched_priority > p->rt_priority &&
4990 param->sched_priority > rlim_rtprio)
4991 return -EPERM;
4992 }
dd41f596
IM
4993 /*
4994 * Like positive nice levels, dont allow tasks to
4995 * move out of SCHED_IDLE either:
4996 */
4997 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4998 return -EPERM;
5fe1d75f 4999
37e4ab3f
OC
5000 /* can't change other user's priorities */
5001 if ((current->euid != p->euid) &&
5002 (current->euid != p->uid))
5003 return -EPERM;
5004 }
1da177e4 5005
b68aa230
PZ
5006#ifdef CONFIG_RT_GROUP_SCHED
5007 /*
5008 * Do not allow realtime tasks into groups that have no runtime
5009 * assigned.
5010 */
961ccddd
RR
5011 if (user
5012 && rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
5013 return -EPERM;
5014#endif
5015
1da177e4
LT
5016 retval = security_task_setscheduler(p, policy, param);
5017 if (retval)
5018 return retval;
b29739f9
IM
5019 /*
5020 * make sure no PI-waiters arrive (or leave) while we are
5021 * changing the priority of the task:
5022 */
5023 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5024 /*
5025 * To be able to change p->policy safely, the apropriate
5026 * runqueue lock must be held.
5027 */
b29739f9 5028 rq = __task_rq_lock(p);
1da177e4
LT
5029 /* recheck policy now with rq lock held */
5030 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5031 policy = oldpolicy = -1;
b29739f9
IM
5032 __task_rq_unlock(rq);
5033 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5034 goto recheck;
5035 }
2daa3577 5036 update_rq_clock(rq);
dd41f596 5037 on_rq = p->se.on_rq;
051a1d1a 5038 running = task_current(rq, p);
0e1f3483 5039 if (on_rq)
2e1cb74a 5040 deactivate_task(rq, p, 0);
0e1f3483
HS
5041 if (running)
5042 p->sched_class->put_prev_task(rq, p);
f6b53205 5043
1da177e4 5044 oldprio = p->prio;
dd41f596 5045 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5046
0e1f3483
HS
5047 if (running)
5048 p->sched_class->set_curr_task(rq);
dd41f596
IM
5049 if (on_rq) {
5050 activate_task(rq, p, 0);
cb469845
SR
5051
5052 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5053 }
b29739f9
IM
5054 __task_rq_unlock(rq);
5055 spin_unlock_irqrestore(&p->pi_lock, flags);
5056
95e02ca9
TG
5057 rt_mutex_adjust_pi(p);
5058
1da177e4
LT
5059 return 0;
5060}
961ccddd
RR
5061
5062/**
5063 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5064 * @p: the task in question.
5065 * @policy: new policy.
5066 * @param: structure containing the new RT priority.
5067 *
5068 * NOTE that the task may be already dead.
5069 */
5070int sched_setscheduler(struct task_struct *p, int policy,
5071 struct sched_param *param)
5072{
5073 return __sched_setscheduler(p, policy, param, true);
5074}
1da177e4
LT
5075EXPORT_SYMBOL_GPL(sched_setscheduler);
5076
961ccddd
RR
5077/**
5078 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5079 * @p: the task in question.
5080 * @policy: new policy.
5081 * @param: structure containing the new RT priority.
5082 *
5083 * Just like sched_setscheduler, only don't bother checking if the
5084 * current context has permission. For example, this is needed in
5085 * stop_machine(): we create temporary high priority worker threads,
5086 * but our caller might not have that capability.
5087 */
5088int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5089 struct sched_param *param)
5090{
5091 return __sched_setscheduler(p, policy, param, false);
5092}
5093
95cdf3b7
IM
5094static int
5095do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5096{
1da177e4
LT
5097 struct sched_param lparam;
5098 struct task_struct *p;
36c8b586 5099 int retval;
1da177e4
LT
5100
5101 if (!param || pid < 0)
5102 return -EINVAL;
5103 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5104 return -EFAULT;
5fe1d75f
ON
5105
5106 rcu_read_lock();
5107 retval = -ESRCH;
1da177e4 5108 p = find_process_by_pid(pid);
5fe1d75f
ON
5109 if (p != NULL)
5110 retval = sched_setscheduler(p, policy, &lparam);
5111 rcu_read_unlock();
36c8b586 5112
1da177e4
LT
5113 return retval;
5114}
5115
5116/**
5117 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5118 * @pid: the pid in question.
5119 * @policy: new policy.
5120 * @param: structure containing the new RT priority.
5121 */
41a2d6cf
IM
5122asmlinkage long
5123sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5124{
c21761f1
JB
5125 /* negative values for policy are not valid */
5126 if (policy < 0)
5127 return -EINVAL;
5128
1da177e4
LT
5129 return do_sched_setscheduler(pid, policy, param);
5130}
5131
5132/**
5133 * sys_sched_setparam - set/change the RT priority of a thread
5134 * @pid: the pid in question.
5135 * @param: structure containing the new RT priority.
5136 */
5137asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5138{
5139 return do_sched_setscheduler(pid, -1, param);
5140}
5141
5142/**
5143 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5144 * @pid: the pid in question.
5145 */
5146asmlinkage long sys_sched_getscheduler(pid_t pid)
5147{
36c8b586 5148 struct task_struct *p;
3a5c359a 5149 int retval;
1da177e4
LT
5150
5151 if (pid < 0)
3a5c359a 5152 return -EINVAL;
1da177e4
LT
5153
5154 retval = -ESRCH;
5155 read_lock(&tasklist_lock);
5156 p = find_process_by_pid(pid);
5157 if (p) {
5158 retval = security_task_getscheduler(p);
5159 if (!retval)
5160 retval = p->policy;
5161 }
5162 read_unlock(&tasklist_lock);
1da177e4
LT
5163 return retval;
5164}
5165
5166/**
5167 * sys_sched_getscheduler - get the RT priority of a thread
5168 * @pid: the pid in question.
5169 * @param: structure containing the RT priority.
5170 */
5171asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5172{
5173 struct sched_param lp;
36c8b586 5174 struct task_struct *p;
3a5c359a 5175 int retval;
1da177e4
LT
5176
5177 if (!param || pid < 0)
3a5c359a 5178 return -EINVAL;
1da177e4
LT
5179
5180 read_lock(&tasklist_lock);
5181 p = find_process_by_pid(pid);
5182 retval = -ESRCH;
5183 if (!p)
5184 goto out_unlock;
5185
5186 retval = security_task_getscheduler(p);
5187 if (retval)
5188 goto out_unlock;
5189
5190 lp.sched_priority = p->rt_priority;
5191 read_unlock(&tasklist_lock);
5192
5193 /*
5194 * This one might sleep, we cannot do it with a spinlock held ...
5195 */
5196 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5197
1da177e4
LT
5198 return retval;
5199
5200out_unlock:
5201 read_unlock(&tasklist_lock);
5202 return retval;
5203}
5204
b53e921b 5205long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5206{
1da177e4 5207 cpumask_t cpus_allowed;
b53e921b 5208 cpumask_t new_mask = *in_mask;
36c8b586
IM
5209 struct task_struct *p;
5210 int retval;
1da177e4 5211
95402b38 5212 get_online_cpus();
1da177e4
LT
5213 read_lock(&tasklist_lock);
5214
5215 p = find_process_by_pid(pid);
5216 if (!p) {
5217 read_unlock(&tasklist_lock);
95402b38 5218 put_online_cpus();
1da177e4
LT
5219 return -ESRCH;
5220 }
5221
5222 /*
5223 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5224 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5225 * usage count and then drop tasklist_lock.
5226 */
5227 get_task_struct(p);
5228 read_unlock(&tasklist_lock);
5229
5230 retval = -EPERM;
5231 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5232 !capable(CAP_SYS_NICE))
5233 goto out_unlock;
5234
e7834f8f
DQ
5235 retval = security_task_setscheduler(p, 0, NULL);
5236 if (retval)
5237 goto out_unlock;
5238
f9a86fcb 5239 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5240 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5241 again:
7c16ec58 5242 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5243
8707d8b8 5244 if (!retval) {
f9a86fcb 5245 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5246 if (!cpus_subset(new_mask, cpus_allowed)) {
5247 /*
5248 * We must have raced with a concurrent cpuset
5249 * update. Just reset the cpus_allowed to the
5250 * cpuset's cpus_allowed
5251 */
5252 new_mask = cpus_allowed;
5253 goto again;
5254 }
5255 }
1da177e4
LT
5256out_unlock:
5257 put_task_struct(p);
95402b38 5258 put_online_cpus();
1da177e4
LT
5259 return retval;
5260}
5261
5262static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5263 cpumask_t *new_mask)
5264{
5265 if (len < sizeof(cpumask_t)) {
5266 memset(new_mask, 0, sizeof(cpumask_t));
5267 } else if (len > sizeof(cpumask_t)) {
5268 len = sizeof(cpumask_t);
5269 }
5270 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5271}
5272
5273/**
5274 * sys_sched_setaffinity - set the cpu affinity of a process
5275 * @pid: pid of the process
5276 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5277 * @user_mask_ptr: user-space pointer to the new cpu mask
5278 */
5279asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5280 unsigned long __user *user_mask_ptr)
5281{
5282 cpumask_t new_mask;
5283 int retval;
5284
5285 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5286 if (retval)
5287 return retval;
5288
b53e921b 5289 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5290}
5291
1da177e4
LT
5292long sched_getaffinity(pid_t pid, cpumask_t *mask)
5293{
36c8b586 5294 struct task_struct *p;
1da177e4 5295 int retval;
1da177e4 5296
95402b38 5297 get_online_cpus();
1da177e4
LT
5298 read_lock(&tasklist_lock);
5299
5300 retval = -ESRCH;
5301 p = find_process_by_pid(pid);
5302 if (!p)
5303 goto out_unlock;
5304
e7834f8f
DQ
5305 retval = security_task_getscheduler(p);
5306 if (retval)
5307 goto out_unlock;
5308
2f7016d9 5309 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5310
5311out_unlock:
5312 read_unlock(&tasklist_lock);
95402b38 5313 put_online_cpus();
1da177e4 5314
9531b62f 5315 return retval;
1da177e4
LT
5316}
5317
5318/**
5319 * sys_sched_getaffinity - get the cpu affinity of a process
5320 * @pid: pid of the process
5321 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5322 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5323 */
5324asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5325 unsigned long __user *user_mask_ptr)
5326{
5327 int ret;
5328 cpumask_t mask;
5329
5330 if (len < sizeof(cpumask_t))
5331 return -EINVAL;
5332
5333 ret = sched_getaffinity(pid, &mask);
5334 if (ret < 0)
5335 return ret;
5336
5337 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5338 return -EFAULT;
5339
5340 return sizeof(cpumask_t);
5341}
5342
5343/**
5344 * sys_sched_yield - yield the current processor to other threads.
5345 *
dd41f596
IM
5346 * This function yields the current CPU to other tasks. If there are no
5347 * other threads running on this CPU then this function will return.
1da177e4
LT
5348 */
5349asmlinkage long sys_sched_yield(void)
5350{
70b97a7f 5351 struct rq *rq = this_rq_lock();
1da177e4 5352
2d72376b 5353 schedstat_inc(rq, yld_count);
4530d7ab 5354 current->sched_class->yield_task(rq);
1da177e4
LT
5355
5356 /*
5357 * Since we are going to call schedule() anyway, there's
5358 * no need to preempt or enable interrupts:
5359 */
5360 __release(rq->lock);
8a25d5de 5361 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5362 _raw_spin_unlock(&rq->lock);
5363 preempt_enable_no_resched();
5364
5365 schedule();
5366
5367 return 0;
5368}
5369
e7b38404 5370static void __cond_resched(void)
1da177e4 5371{
8e0a43d8
IM
5372#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5373 __might_sleep(__FILE__, __LINE__);
5374#endif
5bbcfd90
IM
5375 /*
5376 * The BKS might be reacquired before we have dropped
5377 * PREEMPT_ACTIVE, which could trigger a second
5378 * cond_resched() call.
5379 */
1da177e4
LT
5380 do {
5381 add_preempt_count(PREEMPT_ACTIVE);
5382 schedule();
5383 sub_preempt_count(PREEMPT_ACTIVE);
5384 } while (need_resched());
5385}
5386
02b67cc3 5387int __sched _cond_resched(void)
1da177e4 5388{
9414232f
IM
5389 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5390 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5391 __cond_resched();
5392 return 1;
5393 }
5394 return 0;
5395}
02b67cc3 5396EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5397
5398/*
5399 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5400 * call schedule, and on return reacquire the lock.
5401 *
41a2d6cf 5402 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5403 * operations here to prevent schedule() from being called twice (once via
5404 * spin_unlock(), once by hand).
5405 */
95cdf3b7 5406int cond_resched_lock(spinlock_t *lock)
1da177e4 5407{
95c354fe 5408 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5409 int ret = 0;
5410
95c354fe 5411 if (spin_needbreak(lock) || resched) {
1da177e4 5412 spin_unlock(lock);
95c354fe
NP
5413 if (resched && need_resched())
5414 __cond_resched();
5415 else
5416 cpu_relax();
6df3cecb 5417 ret = 1;
1da177e4 5418 spin_lock(lock);
1da177e4 5419 }
6df3cecb 5420 return ret;
1da177e4 5421}
1da177e4
LT
5422EXPORT_SYMBOL(cond_resched_lock);
5423
5424int __sched cond_resched_softirq(void)
5425{
5426 BUG_ON(!in_softirq());
5427
9414232f 5428 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5429 local_bh_enable();
1da177e4
LT
5430 __cond_resched();
5431 local_bh_disable();
5432 return 1;
5433 }
5434 return 0;
5435}
1da177e4
LT
5436EXPORT_SYMBOL(cond_resched_softirq);
5437
1da177e4
LT
5438/**
5439 * yield - yield the current processor to other threads.
5440 *
72fd4a35 5441 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5442 * thread runnable and calls sys_sched_yield().
5443 */
5444void __sched yield(void)
5445{
5446 set_current_state(TASK_RUNNING);
5447 sys_sched_yield();
5448}
1da177e4
LT
5449EXPORT_SYMBOL(yield);
5450
5451/*
41a2d6cf 5452 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5453 * that process accounting knows that this is a task in IO wait state.
5454 *
5455 * But don't do that if it is a deliberate, throttling IO wait (this task
5456 * has set its backing_dev_info: the queue against which it should throttle)
5457 */
5458void __sched io_schedule(void)
5459{
70b97a7f 5460 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5461
0ff92245 5462 delayacct_blkio_start();
1da177e4
LT
5463 atomic_inc(&rq->nr_iowait);
5464 schedule();
5465 atomic_dec(&rq->nr_iowait);
0ff92245 5466 delayacct_blkio_end();
1da177e4 5467}
1da177e4
LT
5468EXPORT_SYMBOL(io_schedule);
5469
5470long __sched io_schedule_timeout(long timeout)
5471{
70b97a7f 5472 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5473 long ret;
5474
0ff92245 5475 delayacct_blkio_start();
1da177e4
LT
5476 atomic_inc(&rq->nr_iowait);
5477 ret = schedule_timeout(timeout);
5478 atomic_dec(&rq->nr_iowait);
0ff92245 5479 delayacct_blkio_end();
1da177e4
LT
5480 return ret;
5481}
5482
5483/**
5484 * sys_sched_get_priority_max - return maximum RT priority.
5485 * @policy: scheduling class.
5486 *
5487 * this syscall returns the maximum rt_priority that can be used
5488 * by a given scheduling class.
5489 */
5490asmlinkage long sys_sched_get_priority_max(int policy)
5491{
5492 int ret = -EINVAL;
5493
5494 switch (policy) {
5495 case SCHED_FIFO:
5496 case SCHED_RR:
5497 ret = MAX_USER_RT_PRIO-1;
5498 break;
5499 case SCHED_NORMAL:
b0a9499c 5500 case SCHED_BATCH:
dd41f596 5501 case SCHED_IDLE:
1da177e4
LT
5502 ret = 0;
5503 break;
5504 }
5505 return ret;
5506}
5507
5508/**
5509 * sys_sched_get_priority_min - return minimum RT priority.
5510 * @policy: scheduling class.
5511 *
5512 * this syscall returns the minimum rt_priority that can be used
5513 * by a given scheduling class.
5514 */
5515asmlinkage long sys_sched_get_priority_min(int policy)
5516{
5517 int ret = -EINVAL;
5518
5519 switch (policy) {
5520 case SCHED_FIFO:
5521 case SCHED_RR:
5522 ret = 1;
5523 break;
5524 case SCHED_NORMAL:
b0a9499c 5525 case SCHED_BATCH:
dd41f596 5526 case SCHED_IDLE:
1da177e4
LT
5527 ret = 0;
5528 }
5529 return ret;
5530}
5531
5532/**
5533 * sys_sched_rr_get_interval - return the default timeslice of a process.
5534 * @pid: pid of the process.
5535 * @interval: userspace pointer to the timeslice value.
5536 *
5537 * this syscall writes the default timeslice value of a given process
5538 * into the user-space timespec buffer. A value of '0' means infinity.
5539 */
5540asmlinkage
5541long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5542{
36c8b586 5543 struct task_struct *p;
a4ec24b4 5544 unsigned int time_slice;
3a5c359a 5545 int retval;
1da177e4 5546 struct timespec t;
1da177e4
LT
5547
5548 if (pid < 0)
3a5c359a 5549 return -EINVAL;
1da177e4
LT
5550
5551 retval = -ESRCH;
5552 read_lock(&tasklist_lock);
5553 p = find_process_by_pid(pid);
5554 if (!p)
5555 goto out_unlock;
5556
5557 retval = security_task_getscheduler(p);
5558 if (retval)
5559 goto out_unlock;
5560
77034937
IM
5561 /*
5562 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5563 * tasks that are on an otherwise idle runqueue:
5564 */
5565 time_slice = 0;
5566 if (p->policy == SCHED_RR) {
a4ec24b4 5567 time_slice = DEF_TIMESLICE;
1868f958 5568 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5569 struct sched_entity *se = &p->se;
5570 unsigned long flags;
5571 struct rq *rq;
5572
5573 rq = task_rq_lock(p, &flags);
77034937
IM
5574 if (rq->cfs.load.weight)
5575 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5576 task_rq_unlock(rq, &flags);
5577 }
1da177e4 5578 read_unlock(&tasklist_lock);
a4ec24b4 5579 jiffies_to_timespec(time_slice, &t);
1da177e4 5580 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5581 return retval;
3a5c359a 5582
1da177e4
LT
5583out_unlock:
5584 read_unlock(&tasklist_lock);
5585 return retval;
5586}
5587
7c731e0a 5588static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5589
82a1fcb9 5590void sched_show_task(struct task_struct *p)
1da177e4 5591{
1da177e4 5592 unsigned long free = 0;
36c8b586 5593 unsigned state;
1da177e4 5594
1da177e4 5595 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5596 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5597 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5598#if BITS_PER_LONG == 32
1da177e4 5599 if (state == TASK_RUNNING)
cc4ea795 5600 printk(KERN_CONT " running ");
1da177e4 5601 else
cc4ea795 5602 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5603#else
5604 if (state == TASK_RUNNING)
cc4ea795 5605 printk(KERN_CONT " running task ");
1da177e4 5606 else
cc4ea795 5607 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5608#endif
5609#ifdef CONFIG_DEBUG_STACK_USAGE
5610 {
10ebffde 5611 unsigned long *n = end_of_stack(p);
1da177e4
LT
5612 while (!*n)
5613 n++;
10ebffde 5614 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5615 }
5616#endif
ba25f9dc 5617 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5618 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5619
5fb5e6de 5620 show_stack(p, NULL);
1da177e4
LT
5621}
5622
e59e2ae2 5623void show_state_filter(unsigned long state_filter)
1da177e4 5624{
36c8b586 5625 struct task_struct *g, *p;
1da177e4 5626
4bd77321
IM
5627#if BITS_PER_LONG == 32
5628 printk(KERN_INFO
5629 " task PC stack pid father\n");
1da177e4 5630#else
4bd77321
IM
5631 printk(KERN_INFO
5632 " task PC stack pid father\n");
1da177e4
LT
5633#endif
5634 read_lock(&tasklist_lock);
5635 do_each_thread(g, p) {
5636 /*
5637 * reset the NMI-timeout, listing all files on a slow
5638 * console might take alot of time:
5639 */
5640 touch_nmi_watchdog();
39bc89fd 5641 if (!state_filter || (p->state & state_filter))
82a1fcb9 5642 sched_show_task(p);
1da177e4
LT
5643 } while_each_thread(g, p);
5644
04c9167f
JF
5645 touch_all_softlockup_watchdogs();
5646
dd41f596
IM
5647#ifdef CONFIG_SCHED_DEBUG
5648 sysrq_sched_debug_show();
5649#endif
1da177e4 5650 read_unlock(&tasklist_lock);
e59e2ae2
IM
5651 /*
5652 * Only show locks if all tasks are dumped:
5653 */
5654 if (state_filter == -1)
5655 debug_show_all_locks();
1da177e4
LT
5656}
5657
1df21055
IM
5658void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5659{
dd41f596 5660 idle->sched_class = &idle_sched_class;
1df21055
IM
5661}
5662
f340c0d1
IM
5663/**
5664 * init_idle - set up an idle thread for a given CPU
5665 * @idle: task in question
5666 * @cpu: cpu the idle task belongs to
5667 *
5668 * NOTE: this function does not set the idle thread's NEED_RESCHED
5669 * flag, to make booting more robust.
5670 */
5c1e1767 5671void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5672{
70b97a7f 5673 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5674 unsigned long flags;
5675
dd41f596
IM
5676 __sched_fork(idle);
5677 idle->se.exec_start = sched_clock();
5678
b29739f9 5679 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5680 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5681 __set_task_cpu(idle, cpu);
1da177e4
LT
5682
5683 spin_lock_irqsave(&rq->lock, flags);
5684 rq->curr = rq->idle = idle;
4866cde0
NP
5685#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5686 idle->oncpu = 1;
5687#endif
1da177e4
LT
5688 spin_unlock_irqrestore(&rq->lock, flags);
5689
5690 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5691#if defined(CONFIG_PREEMPT)
5692 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5693#else
a1261f54 5694 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5695#endif
dd41f596
IM
5696 /*
5697 * The idle tasks have their own, simple scheduling class:
5698 */
5699 idle->sched_class = &idle_sched_class;
1da177e4
LT
5700}
5701
5702/*
5703 * In a system that switches off the HZ timer nohz_cpu_mask
5704 * indicates which cpus entered this state. This is used
5705 * in the rcu update to wait only for active cpus. For system
5706 * which do not switch off the HZ timer nohz_cpu_mask should
5707 * always be CPU_MASK_NONE.
5708 */
5709cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5710
19978ca6
IM
5711/*
5712 * Increase the granularity value when there are more CPUs,
5713 * because with more CPUs the 'effective latency' as visible
5714 * to users decreases. But the relationship is not linear,
5715 * so pick a second-best guess by going with the log2 of the
5716 * number of CPUs.
5717 *
5718 * This idea comes from the SD scheduler of Con Kolivas:
5719 */
5720static inline void sched_init_granularity(void)
5721{
5722 unsigned int factor = 1 + ilog2(num_online_cpus());
5723 const unsigned long limit = 200000000;
5724
5725 sysctl_sched_min_granularity *= factor;
5726 if (sysctl_sched_min_granularity > limit)
5727 sysctl_sched_min_granularity = limit;
5728
5729 sysctl_sched_latency *= factor;
5730 if (sysctl_sched_latency > limit)
5731 sysctl_sched_latency = limit;
5732
5733 sysctl_sched_wakeup_granularity *= factor;
19978ca6
IM
5734}
5735
1da177e4
LT
5736#ifdef CONFIG_SMP
5737/*
5738 * This is how migration works:
5739 *
70b97a7f 5740 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5741 * runqueue and wake up that CPU's migration thread.
5742 * 2) we down() the locked semaphore => thread blocks.
5743 * 3) migration thread wakes up (implicitly it forces the migrated
5744 * thread off the CPU)
5745 * 4) it gets the migration request and checks whether the migrated
5746 * task is still in the wrong runqueue.
5747 * 5) if it's in the wrong runqueue then the migration thread removes
5748 * it and puts it into the right queue.
5749 * 6) migration thread up()s the semaphore.
5750 * 7) we wake up and the migration is done.
5751 */
5752
5753/*
5754 * Change a given task's CPU affinity. Migrate the thread to a
5755 * proper CPU and schedule it away if the CPU it's executing on
5756 * is removed from the allowed bitmask.
5757 *
5758 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5759 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5760 * call is not atomic; no spinlocks may be held.
5761 */
cd8ba7cd 5762int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5763{
70b97a7f 5764 struct migration_req req;
1da177e4 5765 unsigned long flags;
70b97a7f 5766 struct rq *rq;
48f24c4d 5767 int ret = 0;
1da177e4
LT
5768
5769 rq = task_rq_lock(p, &flags);
cd8ba7cd 5770 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5771 ret = -EINVAL;
5772 goto out;
5773 }
5774
9985b0ba
DR
5775 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5776 !cpus_equal(p->cpus_allowed, *new_mask))) {
5777 ret = -EINVAL;
5778 goto out;
5779 }
5780
73fe6aae 5781 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5782 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5783 else {
cd8ba7cd
MT
5784 p->cpus_allowed = *new_mask;
5785 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5786 }
5787
1da177e4 5788 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5789 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5790 goto out;
5791
cd8ba7cd 5792 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5793 /* Need help from migration thread: drop lock and wait. */
5794 task_rq_unlock(rq, &flags);
5795 wake_up_process(rq->migration_thread);
5796 wait_for_completion(&req.done);
5797 tlb_migrate_finish(p->mm);
5798 return 0;
5799 }
5800out:
5801 task_rq_unlock(rq, &flags);
48f24c4d 5802
1da177e4
LT
5803 return ret;
5804}
cd8ba7cd 5805EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5806
5807/*
41a2d6cf 5808 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5809 * this because either it can't run here any more (set_cpus_allowed()
5810 * away from this CPU, or CPU going down), or because we're
5811 * attempting to rebalance this task on exec (sched_exec).
5812 *
5813 * So we race with normal scheduler movements, but that's OK, as long
5814 * as the task is no longer on this CPU.
efc30814
KK
5815 *
5816 * Returns non-zero if task was successfully migrated.
1da177e4 5817 */
efc30814 5818static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5819{
70b97a7f 5820 struct rq *rq_dest, *rq_src;
dd41f596 5821 int ret = 0, on_rq;
1da177e4 5822
e761b772 5823 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5824 return ret;
1da177e4
LT
5825
5826 rq_src = cpu_rq(src_cpu);
5827 rq_dest = cpu_rq(dest_cpu);
5828
5829 double_rq_lock(rq_src, rq_dest);
5830 /* Already moved. */
5831 if (task_cpu(p) != src_cpu)
b1e38734 5832 goto done;
1da177e4
LT
5833 /* Affinity changed (again). */
5834 if (!cpu_isset(dest_cpu, p->cpus_allowed))
b1e38734 5835 goto fail;
1da177e4 5836
dd41f596 5837 on_rq = p->se.on_rq;
6e82a3be 5838 if (on_rq)
2e1cb74a 5839 deactivate_task(rq_src, p, 0);
6e82a3be 5840
1da177e4 5841 set_task_cpu(p, dest_cpu);
dd41f596
IM
5842 if (on_rq) {
5843 activate_task(rq_dest, p, 0);
5844 check_preempt_curr(rq_dest, p);
1da177e4 5845 }
b1e38734 5846done:
efc30814 5847 ret = 1;
b1e38734 5848fail:
1da177e4 5849 double_rq_unlock(rq_src, rq_dest);
efc30814 5850 return ret;
1da177e4
LT
5851}
5852
5853/*
5854 * migration_thread - this is a highprio system thread that performs
5855 * thread migration by bumping thread off CPU then 'pushing' onto
5856 * another runqueue.
5857 */
95cdf3b7 5858static int migration_thread(void *data)
1da177e4 5859{
1da177e4 5860 int cpu = (long)data;
70b97a7f 5861 struct rq *rq;
1da177e4
LT
5862
5863 rq = cpu_rq(cpu);
5864 BUG_ON(rq->migration_thread != current);
5865
5866 set_current_state(TASK_INTERRUPTIBLE);
5867 while (!kthread_should_stop()) {
70b97a7f 5868 struct migration_req *req;
1da177e4 5869 struct list_head *head;
1da177e4 5870
1da177e4
LT
5871 spin_lock_irq(&rq->lock);
5872
5873 if (cpu_is_offline(cpu)) {
5874 spin_unlock_irq(&rq->lock);
5875 goto wait_to_die;
5876 }
5877
5878 if (rq->active_balance) {
5879 active_load_balance(rq, cpu);
5880 rq->active_balance = 0;
5881 }
5882
5883 head = &rq->migration_queue;
5884
5885 if (list_empty(head)) {
5886 spin_unlock_irq(&rq->lock);
5887 schedule();
5888 set_current_state(TASK_INTERRUPTIBLE);
5889 continue;
5890 }
70b97a7f 5891 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5892 list_del_init(head->next);
5893
674311d5
NP
5894 spin_unlock(&rq->lock);
5895 __migrate_task(req->task, cpu, req->dest_cpu);
5896 local_irq_enable();
1da177e4
LT
5897
5898 complete(&req->done);
5899 }
5900 __set_current_state(TASK_RUNNING);
5901 return 0;
5902
5903wait_to_die:
5904 /* Wait for kthread_stop */
5905 set_current_state(TASK_INTERRUPTIBLE);
5906 while (!kthread_should_stop()) {
5907 schedule();
5908 set_current_state(TASK_INTERRUPTIBLE);
5909 }
5910 __set_current_state(TASK_RUNNING);
5911 return 0;
5912}
5913
5914#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5915
5916static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5917{
5918 int ret;
5919
5920 local_irq_disable();
5921 ret = __migrate_task(p, src_cpu, dest_cpu);
5922 local_irq_enable();
5923 return ret;
5924}
5925
054b9108 5926/*
3a4fa0a2 5927 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5928 * NOTE: interrupts should be disabled by the caller
5929 */
48f24c4d 5930static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5931{
efc30814 5932 unsigned long flags;
1da177e4 5933 cpumask_t mask;
70b97a7f
IM
5934 struct rq *rq;
5935 int dest_cpu;
1da177e4 5936
3a5c359a
AK
5937 do {
5938 /* On same node? */
5939 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5940 cpus_and(mask, mask, p->cpus_allowed);
5941 dest_cpu = any_online_cpu(mask);
5942
5943 /* On any allowed CPU? */
434d53b0 5944 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
5945 dest_cpu = any_online_cpu(p->cpus_allowed);
5946
5947 /* No more Mr. Nice Guy. */
434d53b0 5948 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
5949 cpumask_t cpus_allowed;
5950
5951 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
5952 /*
5953 * Try to stay on the same cpuset, where the
5954 * current cpuset may be a subset of all cpus.
5955 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5956 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5957 * called within calls to cpuset_lock/cpuset_unlock.
5958 */
3a5c359a 5959 rq = task_rq_lock(p, &flags);
470fd646 5960 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5961 dest_cpu = any_online_cpu(p->cpus_allowed);
5962 task_rq_unlock(rq, &flags);
1da177e4 5963
3a5c359a
AK
5964 /*
5965 * Don't tell them about moving exiting tasks or
5966 * kernel threads (both mm NULL), since they never
5967 * leave kernel.
5968 */
41a2d6cf 5969 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5970 printk(KERN_INFO "process %d (%s) no "
5971 "longer affine to cpu%d\n",
41a2d6cf
IM
5972 task_pid_nr(p), p->comm, dead_cpu);
5973 }
3a5c359a 5974 }
f7b4cddc 5975 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5976}
5977
5978/*
5979 * While a dead CPU has no uninterruptible tasks queued at this point,
5980 * it might still have a nonzero ->nr_uninterruptible counter, because
5981 * for performance reasons the counter is not stricly tracking tasks to
5982 * their home CPUs. So we just add the counter to another CPU's counter,
5983 * to keep the global sum constant after CPU-down:
5984 */
70b97a7f 5985static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5986{
7c16ec58 5987 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
5988 unsigned long flags;
5989
5990 local_irq_save(flags);
5991 double_rq_lock(rq_src, rq_dest);
5992 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5993 rq_src->nr_uninterruptible = 0;
5994 double_rq_unlock(rq_src, rq_dest);
5995 local_irq_restore(flags);
5996}
5997
5998/* Run through task list and migrate tasks from the dead cpu. */
5999static void migrate_live_tasks(int src_cpu)
6000{
48f24c4d 6001 struct task_struct *p, *t;
1da177e4 6002
f7b4cddc 6003 read_lock(&tasklist_lock);
1da177e4 6004
48f24c4d
IM
6005 do_each_thread(t, p) {
6006 if (p == current)
1da177e4
LT
6007 continue;
6008
48f24c4d
IM
6009 if (task_cpu(p) == src_cpu)
6010 move_task_off_dead_cpu(src_cpu, p);
6011 } while_each_thread(t, p);
1da177e4 6012
f7b4cddc 6013 read_unlock(&tasklist_lock);
1da177e4
LT
6014}
6015
dd41f596
IM
6016/*
6017 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6018 * It does so by boosting its priority to highest possible.
6019 * Used by CPU offline code.
1da177e4
LT
6020 */
6021void sched_idle_next(void)
6022{
48f24c4d 6023 int this_cpu = smp_processor_id();
70b97a7f 6024 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6025 struct task_struct *p = rq->idle;
6026 unsigned long flags;
6027
6028 /* cpu has to be offline */
48f24c4d 6029 BUG_ON(cpu_online(this_cpu));
1da177e4 6030
48f24c4d
IM
6031 /*
6032 * Strictly not necessary since rest of the CPUs are stopped by now
6033 * and interrupts disabled on the current cpu.
1da177e4
LT
6034 */
6035 spin_lock_irqsave(&rq->lock, flags);
6036
dd41f596 6037 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6038
94bc9a7b
DA
6039 update_rq_clock(rq);
6040 activate_task(rq, p, 0);
1da177e4
LT
6041
6042 spin_unlock_irqrestore(&rq->lock, flags);
6043}
6044
48f24c4d
IM
6045/*
6046 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6047 * offline.
6048 */
6049void idle_task_exit(void)
6050{
6051 struct mm_struct *mm = current->active_mm;
6052
6053 BUG_ON(cpu_online(smp_processor_id()));
6054
6055 if (mm != &init_mm)
6056 switch_mm(mm, &init_mm, current);
6057 mmdrop(mm);
6058}
6059
054b9108 6060/* called under rq->lock with disabled interrupts */
36c8b586 6061static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6062{
70b97a7f 6063 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6064
6065 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6066 BUG_ON(!p->exit_state);
1da177e4
LT
6067
6068 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6069 BUG_ON(p->state == TASK_DEAD);
1da177e4 6070
48f24c4d 6071 get_task_struct(p);
1da177e4
LT
6072
6073 /*
6074 * Drop lock around migration; if someone else moves it,
41a2d6cf 6075 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6076 * fine.
6077 */
f7b4cddc 6078 spin_unlock_irq(&rq->lock);
48f24c4d 6079 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6080 spin_lock_irq(&rq->lock);
1da177e4 6081
48f24c4d 6082 put_task_struct(p);
1da177e4
LT
6083}
6084
6085/* release_task() removes task from tasklist, so we won't find dead tasks. */
6086static void migrate_dead_tasks(unsigned int dead_cpu)
6087{
70b97a7f 6088 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6089 struct task_struct *next;
48f24c4d 6090
dd41f596
IM
6091 for ( ; ; ) {
6092 if (!rq->nr_running)
6093 break;
a8e504d2 6094 update_rq_clock(rq);
ff95f3df 6095 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6096 if (!next)
6097 break;
79c53799 6098 next->sched_class->put_prev_task(rq, next);
dd41f596 6099 migrate_dead(dead_cpu, next);
e692ab53 6100
1da177e4
LT
6101 }
6102}
6103#endif /* CONFIG_HOTPLUG_CPU */
6104
e692ab53
NP
6105#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6106
6107static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6108 {
6109 .procname = "sched_domain",
c57baf1e 6110 .mode = 0555,
e0361851 6111 },
38605cae 6112 {0, },
e692ab53
NP
6113};
6114
6115static struct ctl_table sd_ctl_root[] = {
e0361851 6116 {
c57baf1e 6117 .ctl_name = CTL_KERN,
e0361851 6118 .procname = "kernel",
c57baf1e 6119 .mode = 0555,
e0361851
AD
6120 .child = sd_ctl_dir,
6121 },
38605cae 6122 {0, },
e692ab53
NP
6123};
6124
6125static struct ctl_table *sd_alloc_ctl_entry(int n)
6126{
6127 struct ctl_table *entry =
5cf9f062 6128 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6129
e692ab53
NP
6130 return entry;
6131}
6132
6382bc90
MM
6133static void sd_free_ctl_entry(struct ctl_table **tablep)
6134{
cd790076 6135 struct ctl_table *entry;
6382bc90 6136
cd790076
MM
6137 /*
6138 * In the intermediate directories, both the child directory and
6139 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6140 * will always be set. In the lowest directory the names are
cd790076
MM
6141 * static strings and all have proc handlers.
6142 */
6143 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6144 if (entry->child)
6145 sd_free_ctl_entry(&entry->child);
cd790076
MM
6146 if (entry->proc_handler == NULL)
6147 kfree(entry->procname);
6148 }
6382bc90
MM
6149
6150 kfree(*tablep);
6151 *tablep = NULL;
6152}
6153
e692ab53 6154static void
e0361851 6155set_table_entry(struct ctl_table *entry,
e692ab53
NP
6156 const char *procname, void *data, int maxlen,
6157 mode_t mode, proc_handler *proc_handler)
6158{
e692ab53
NP
6159 entry->procname = procname;
6160 entry->data = data;
6161 entry->maxlen = maxlen;
6162 entry->mode = mode;
6163 entry->proc_handler = proc_handler;
6164}
6165
6166static struct ctl_table *
6167sd_alloc_ctl_domain_table(struct sched_domain *sd)
6168{
ace8b3d6 6169 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 6170
ad1cdc1d
MM
6171 if (table == NULL)
6172 return NULL;
6173
e0361851 6174 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6175 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6176 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6177 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6178 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6179 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6180 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6181 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6182 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6183 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6184 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6185 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6186 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6187 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6188 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6189 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6190 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6191 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6192 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6193 &sd->cache_nice_tries,
6194 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6195 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6196 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 6197 /* &table[11] is terminator */
e692ab53
NP
6198
6199 return table;
6200}
6201
9a4e7159 6202static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6203{
6204 struct ctl_table *entry, *table;
6205 struct sched_domain *sd;
6206 int domain_num = 0, i;
6207 char buf[32];
6208
6209 for_each_domain(cpu, sd)
6210 domain_num++;
6211 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6212 if (table == NULL)
6213 return NULL;
e692ab53
NP
6214
6215 i = 0;
6216 for_each_domain(cpu, sd) {
6217 snprintf(buf, 32, "domain%d", i);
e692ab53 6218 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6219 entry->mode = 0555;
e692ab53
NP
6220 entry->child = sd_alloc_ctl_domain_table(sd);
6221 entry++;
6222 i++;
6223 }
6224 return table;
6225}
6226
6227static struct ctl_table_header *sd_sysctl_header;
6382bc90 6228static void register_sched_domain_sysctl(void)
e692ab53
NP
6229{
6230 int i, cpu_num = num_online_cpus();
6231 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6232 char buf[32];
6233
7378547f
MM
6234 WARN_ON(sd_ctl_dir[0].child);
6235 sd_ctl_dir[0].child = entry;
6236
ad1cdc1d
MM
6237 if (entry == NULL)
6238 return;
6239
97b6ea7b 6240 for_each_online_cpu(i) {
e692ab53 6241 snprintf(buf, 32, "cpu%d", i);
e692ab53 6242 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6243 entry->mode = 0555;
e692ab53 6244 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6245 entry++;
e692ab53 6246 }
7378547f
MM
6247
6248 WARN_ON(sd_sysctl_header);
e692ab53
NP
6249 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6250}
6382bc90 6251
7378547f 6252/* may be called multiple times per register */
6382bc90
MM
6253static void unregister_sched_domain_sysctl(void)
6254{
7378547f
MM
6255 if (sd_sysctl_header)
6256 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6257 sd_sysctl_header = NULL;
7378547f
MM
6258 if (sd_ctl_dir[0].child)
6259 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6260}
e692ab53 6261#else
6382bc90
MM
6262static void register_sched_domain_sysctl(void)
6263{
6264}
6265static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6266{
6267}
6268#endif
6269
1f11eb6a
GH
6270static void set_rq_online(struct rq *rq)
6271{
6272 if (!rq->online) {
6273 const struct sched_class *class;
6274
6275 cpu_set(rq->cpu, rq->rd->online);
6276 rq->online = 1;
6277
6278 for_each_class(class) {
6279 if (class->rq_online)
6280 class->rq_online(rq);
6281 }
6282 }
6283}
6284
6285static void set_rq_offline(struct rq *rq)
6286{
6287 if (rq->online) {
6288 const struct sched_class *class;
6289
6290 for_each_class(class) {
6291 if (class->rq_offline)
6292 class->rq_offline(rq);
6293 }
6294
6295 cpu_clear(rq->cpu, rq->rd->online);
6296 rq->online = 0;
6297 }
6298}
6299
1da177e4
LT
6300/*
6301 * migration_call - callback that gets triggered when a CPU is added.
6302 * Here we can start up the necessary migration thread for the new CPU.
6303 */
48f24c4d
IM
6304static int __cpuinit
6305migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6306{
1da177e4 6307 struct task_struct *p;
48f24c4d 6308 int cpu = (long)hcpu;
1da177e4 6309 unsigned long flags;
70b97a7f 6310 struct rq *rq;
1da177e4
LT
6311
6312 switch (action) {
5be9361c 6313
1da177e4 6314 case CPU_UP_PREPARE:
8bb78442 6315 case CPU_UP_PREPARE_FROZEN:
dd41f596 6316 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6317 if (IS_ERR(p))
6318 return NOTIFY_BAD;
1da177e4
LT
6319 kthread_bind(p, cpu);
6320 /* Must be high prio: stop_machine expects to yield to it. */
6321 rq = task_rq_lock(p, &flags);
dd41f596 6322 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6323 task_rq_unlock(rq, &flags);
6324 cpu_rq(cpu)->migration_thread = p;
6325 break;
48f24c4d 6326
1da177e4 6327 case CPU_ONLINE:
8bb78442 6328 case CPU_ONLINE_FROZEN:
3a4fa0a2 6329 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6330 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6331
6332 /* Update our root-domain */
6333 rq = cpu_rq(cpu);
6334 spin_lock_irqsave(&rq->lock, flags);
6335 if (rq->rd) {
6336 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a
GH
6337
6338 set_rq_online(rq);
1f94ef59
GH
6339 }
6340 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6341 break;
48f24c4d 6342
1da177e4
LT
6343#ifdef CONFIG_HOTPLUG_CPU
6344 case CPU_UP_CANCELED:
8bb78442 6345 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6346 if (!cpu_rq(cpu)->migration_thread)
6347 break;
41a2d6cf 6348 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6349 kthread_bind(cpu_rq(cpu)->migration_thread,
6350 any_online_cpu(cpu_online_map));
1da177e4
LT
6351 kthread_stop(cpu_rq(cpu)->migration_thread);
6352 cpu_rq(cpu)->migration_thread = NULL;
6353 break;
48f24c4d 6354
1da177e4 6355 case CPU_DEAD:
8bb78442 6356 case CPU_DEAD_FROZEN:
470fd646 6357 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6358 migrate_live_tasks(cpu);
6359 rq = cpu_rq(cpu);
6360 kthread_stop(rq->migration_thread);
6361 rq->migration_thread = NULL;
6362 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6363 spin_lock_irq(&rq->lock);
a8e504d2 6364 update_rq_clock(rq);
2e1cb74a 6365 deactivate_task(rq, rq->idle, 0);
1da177e4 6366 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6367 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6368 rq->idle->sched_class = &idle_sched_class;
1da177e4 6369 migrate_dead_tasks(cpu);
d2da272a 6370 spin_unlock_irq(&rq->lock);
470fd646 6371 cpuset_unlock();
1da177e4
LT
6372 migrate_nr_uninterruptible(rq);
6373 BUG_ON(rq->nr_running != 0);
6374
41a2d6cf
IM
6375 /*
6376 * No need to migrate the tasks: it was best-effort if
6377 * they didn't take sched_hotcpu_mutex. Just wake up
6378 * the requestors.
6379 */
1da177e4
LT
6380 spin_lock_irq(&rq->lock);
6381 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6382 struct migration_req *req;
6383
1da177e4 6384 req = list_entry(rq->migration_queue.next,
70b97a7f 6385 struct migration_req, list);
1da177e4
LT
6386 list_del_init(&req->list);
6387 complete(&req->done);
6388 }
6389 spin_unlock_irq(&rq->lock);
6390 break;
57d885fe 6391
08f503b0
GH
6392 case CPU_DYING:
6393 case CPU_DYING_FROZEN:
57d885fe
GH
6394 /* Update our root-domain */
6395 rq = cpu_rq(cpu);
6396 spin_lock_irqsave(&rq->lock, flags);
6397 if (rq->rd) {
6398 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a 6399 set_rq_offline(rq);
57d885fe
GH
6400 }
6401 spin_unlock_irqrestore(&rq->lock, flags);
6402 break;
1da177e4
LT
6403#endif
6404 }
6405 return NOTIFY_OK;
6406}
6407
6408/* Register at highest priority so that task migration (migrate_all_tasks)
6409 * happens before everything else.
6410 */
26c2143b 6411static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6412 .notifier_call = migration_call,
6413 .priority = 10
6414};
6415
7babe8db 6416static int __init migration_init(void)
1da177e4
LT
6417{
6418 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6419 int err;
48f24c4d
IM
6420
6421 /* Start one for the boot CPU: */
07dccf33
AM
6422 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6423 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6424 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6425 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6426
6427 return err;
1da177e4 6428}
7babe8db 6429early_initcall(migration_init);
1da177e4
LT
6430#endif
6431
6432#ifdef CONFIG_SMP
476f3534 6433
3e9830dc 6434#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6435
099f98c8
GS
6436static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6437{
6438 switch (lvl) {
6439 case SD_LV_NONE:
6440 return "NONE";
6441 case SD_LV_SIBLING:
6442 return "SIBLING";
6443 case SD_LV_MC:
6444 return "MC";
6445 case SD_LV_CPU:
6446 return "CPU";
6447 case SD_LV_NODE:
6448 return "NODE";
6449 case SD_LV_ALLNODES:
6450 return "ALLNODES";
6451 case SD_LV_MAX:
6452 return "MAX";
6453
6454 }
6455 return "MAX";
6456}
6457
7c16ec58
MT
6458static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6459 cpumask_t *groupmask)
1da177e4 6460{
4dcf6aff 6461 struct sched_group *group = sd->groups;
434d53b0 6462 char str[256];
1da177e4 6463
434d53b0 6464 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6465 cpus_clear(*groupmask);
4dcf6aff
IM
6466
6467 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6468
6469 if (!(sd->flags & SD_LOAD_BALANCE)) {
6470 printk("does not load-balance\n");
6471 if (sd->parent)
6472 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6473 " has parent");
6474 return -1;
41c7ce9a
NP
6475 }
6476
099f98c8
GS
6477 printk(KERN_CONT "span %s level %s\n",
6478 str, sd_level_to_string(sd->level));
4dcf6aff
IM
6479
6480 if (!cpu_isset(cpu, sd->span)) {
6481 printk(KERN_ERR "ERROR: domain->span does not contain "
6482 "CPU%d\n", cpu);
6483 }
6484 if (!cpu_isset(cpu, group->cpumask)) {
6485 printk(KERN_ERR "ERROR: domain->groups does not contain"
6486 " CPU%d\n", cpu);
6487 }
1da177e4 6488
4dcf6aff 6489 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6490 do {
4dcf6aff
IM
6491 if (!group) {
6492 printk("\n");
6493 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6494 break;
6495 }
6496
4dcf6aff
IM
6497 if (!group->__cpu_power) {
6498 printk(KERN_CONT "\n");
6499 printk(KERN_ERR "ERROR: domain->cpu_power not "
6500 "set\n");
6501 break;
6502 }
1da177e4 6503
4dcf6aff
IM
6504 if (!cpus_weight(group->cpumask)) {
6505 printk(KERN_CONT "\n");
6506 printk(KERN_ERR "ERROR: empty group\n");
6507 break;
6508 }
1da177e4 6509
7c16ec58 6510 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6511 printk(KERN_CONT "\n");
6512 printk(KERN_ERR "ERROR: repeated CPUs\n");
6513 break;
6514 }
1da177e4 6515
7c16ec58 6516 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6517
434d53b0 6518 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6519 printk(KERN_CONT " %s", str);
1da177e4 6520
4dcf6aff
IM
6521 group = group->next;
6522 } while (group != sd->groups);
6523 printk(KERN_CONT "\n");
1da177e4 6524
7c16ec58 6525 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6526 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6527
7c16ec58 6528 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6529 printk(KERN_ERR "ERROR: parent span is not a superset "
6530 "of domain->span\n");
6531 return 0;
6532}
1da177e4 6533
4dcf6aff
IM
6534static void sched_domain_debug(struct sched_domain *sd, int cpu)
6535{
7c16ec58 6536 cpumask_t *groupmask;
4dcf6aff 6537 int level = 0;
1da177e4 6538
4dcf6aff
IM
6539 if (!sd) {
6540 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6541 return;
6542 }
1da177e4 6543
4dcf6aff
IM
6544 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6545
7c16ec58
MT
6546 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6547 if (!groupmask) {
6548 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6549 return;
6550 }
6551
4dcf6aff 6552 for (;;) {
7c16ec58 6553 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6554 break;
1da177e4
LT
6555 level++;
6556 sd = sd->parent;
33859f7f 6557 if (!sd)
4dcf6aff
IM
6558 break;
6559 }
7c16ec58 6560 kfree(groupmask);
1da177e4 6561}
6d6bc0ad 6562#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6563# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6564#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6565
1a20ff27 6566static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6567{
6568 if (cpus_weight(sd->span) == 1)
6569 return 1;
6570
6571 /* Following flags need at least 2 groups */
6572 if (sd->flags & (SD_LOAD_BALANCE |
6573 SD_BALANCE_NEWIDLE |
6574 SD_BALANCE_FORK |
89c4710e
SS
6575 SD_BALANCE_EXEC |
6576 SD_SHARE_CPUPOWER |
6577 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6578 if (sd->groups != sd->groups->next)
6579 return 0;
6580 }
6581
6582 /* Following flags don't use groups */
6583 if (sd->flags & (SD_WAKE_IDLE |
6584 SD_WAKE_AFFINE |
6585 SD_WAKE_BALANCE))
6586 return 0;
6587
6588 return 1;
6589}
6590
48f24c4d
IM
6591static int
6592sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6593{
6594 unsigned long cflags = sd->flags, pflags = parent->flags;
6595
6596 if (sd_degenerate(parent))
6597 return 1;
6598
6599 if (!cpus_equal(sd->span, parent->span))
6600 return 0;
6601
6602 /* Does parent contain flags not in child? */
6603 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6604 if (cflags & SD_WAKE_AFFINE)
6605 pflags &= ~SD_WAKE_BALANCE;
6606 /* Flags needing groups don't count if only 1 group in parent */
6607 if (parent->groups == parent->groups->next) {
6608 pflags &= ~(SD_LOAD_BALANCE |
6609 SD_BALANCE_NEWIDLE |
6610 SD_BALANCE_FORK |
89c4710e
SS
6611 SD_BALANCE_EXEC |
6612 SD_SHARE_CPUPOWER |
6613 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6614 }
6615 if (~cflags & pflags)
6616 return 0;
6617
6618 return 1;
6619}
6620
57d885fe
GH
6621static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6622{
6623 unsigned long flags;
57d885fe
GH
6624
6625 spin_lock_irqsave(&rq->lock, flags);
6626
6627 if (rq->rd) {
6628 struct root_domain *old_rd = rq->rd;
6629
1f11eb6a
GH
6630 if (cpu_isset(rq->cpu, old_rd->online))
6631 set_rq_offline(rq);
57d885fe 6632
dc938520 6633 cpu_clear(rq->cpu, old_rd->span);
dc938520 6634
57d885fe
GH
6635 if (atomic_dec_and_test(&old_rd->refcount))
6636 kfree(old_rd);
6637 }
6638
6639 atomic_inc(&rd->refcount);
6640 rq->rd = rd;
6641
dc938520 6642 cpu_set(rq->cpu, rd->span);
1f94ef59 6643 if (cpu_isset(rq->cpu, cpu_online_map))
1f11eb6a 6644 set_rq_online(rq);
57d885fe
GH
6645
6646 spin_unlock_irqrestore(&rq->lock, flags);
6647}
6648
dc938520 6649static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6650{
6651 memset(rd, 0, sizeof(*rd));
6652
dc938520
GH
6653 cpus_clear(rd->span);
6654 cpus_clear(rd->online);
6e0534f2
GH
6655
6656 cpupri_init(&rd->cpupri);
57d885fe
GH
6657}
6658
6659static void init_defrootdomain(void)
6660{
dc938520 6661 init_rootdomain(&def_root_domain);
57d885fe
GH
6662 atomic_set(&def_root_domain.refcount, 1);
6663}
6664
dc938520 6665static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6666{
6667 struct root_domain *rd;
6668
6669 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6670 if (!rd)
6671 return NULL;
6672
dc938520 6673 init_rootdomain(rd);
57d885fe
GH
6674
6675 return rd;
6676}
6677
1da177e4 6678/*
0eab9146 6679 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6680 * hold the hotplug lock.
6681 */
0eab9146
IM
6682static void
6683cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6684{
70b97a7f 6685 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6686 struct sched_domain *tmp;
6687
6688 /* Remove the sched domains which do not contribute to scheduling. */
6689 for (tmp = sd; tmp; tmp = tmp->parent) {
6690 struct sched_domain *parent = tmp->parent;
6691 if (!parent)
6692 break;
1a848870 6693 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6694 tmp->parent = parent->parent;
1a848870
SS
6695 if (parent->parent)
6696 parent->parent->child = tmp;
6697 }
245af2c7
SS
6698 }
6699
1a848870 6700 if (sd && sd_degenerate(sd)) {
245af2c7 6701 sd = sd->parent;
1a848870
SS
6702 if (sd)
6703 sd->child = NULL;
6704 }
1da177e4
LT
6705
6706 sched_domain_debug(sd, cpu);
6707
57d885fe 6708 rq_attach_root(rq, rd);
674311d5 6709 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6710}
6711
6712/* cpus with isolated domains */
67af63a6 6713static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6714
6715/* Setup the mask of cpus configured for isolated domains */
6716static int __init isolated_cpu_setup(char *str)
6717{
13b40c1e
MT
6718 static int __initdata ints[NR_CPUS];
6719 int i;
1da177e4
LT
6720
6721 str = get_options(str, ARRAY_SIZE(ints), ints);
6722 cpus_clear(cpu_isolated_map);
6723 for (i = 1; i <= ints[0]; i++)
6724 if (ints[i] < NR_CPUS)
6725 cpu_set(ints[i], cpu_isolated_map);
6726 return 1;
6727}
6728
8927f494 6729__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6730
6731/*
6711cab4
SS
6732 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6733 * to a function which identifies what group(along with sched group) a CPU
6734 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6735 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6736 *
6737 * init_sched_build_groups will build a circular linked list of the groups
6738 * covered by the given span, and will set each group's ->cpumask correctly,
6739 * and ->cpu_power to 0.
6740 */
a616058b 6741static void
7c16ec58 6742init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6743 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6744 struct sched_group **sg,
6745 cpumask_t *tmpmask),
6746 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6747{
6748 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6749 int i;
6750
7c16ec58
MT
6751 cpus_clear(*covered);
6752
363ab6f1 6753 for_each_cpu_mask_nr(i, *span) {
6711cab4 6754 struct sched_group *sg;
7c16ec58 6755 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6756 int j;
6757
7c16ec58 6758 if (cpu_isset(i, *covered))
1da177e4
LT
6759 continue;
6760
7c16ec58 6761 cpus_clear(sg->cpumask);
5517d86b 6762 sg->__cpu_power = 0;
1da177e4 6763
363ab6f1 6764 for_each_cpu_mask_nr(j, *span) {
7c16ec58 6765 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6766 continue;
6767
7c16ec58 6768 cpu_set(j, *covered);
1da177e4
LT
6769 cpu_set(j, sg->cpumask);
6770 }
6771 if (!first)
6772 first = sg;
6773 if (last)
6774 last->next = sg;
6775 last = sg;
6776 }
6777 last->next = first;
6778}
6779
9c1cfda2 6780#define SD_NODES_PER_DOMAIN 16
1da177e4 6781
9c1cfda2 6782#ifdef CONFIG_NUMA
198e2f18 6783
9c1cfda2
JH
6784/**
6785 * find_next_best_node - find the next node to include in a sched_domain
6786 * @node: node whose sched_domain we're building
6787 * @used_nodes: nodes already in the sched_domain
6788 *
41a2d6cf 6789 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6790 * finds the closest node not already in the @used_nodes map.
6791 *
6792 * Should use nodemask_t.
6793 */
c5f59f08 6794static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6795{
6796 int i, n, val, min_val, best_node = 0;
6797
6798 min_val = INT_MAX;
6799
076ac2af 6800 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6801 /* Start at @node */
076ac2af 6802 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6803
6804 if (!nr_cpus_node(n))
6805 continue;
6806
6807 /* Skip already used nodes */
c5f59f08 6808 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6809 continue;
6810
6811 /* Simple min distance search */
6812 val = node_distance(node, n);
6813
6814 if (val < min_val) {
6815 min_val = val;
6816 best_node = n;
6817 }
6818 }
6819
c5f59f08 6820 node_set(best_node, *used_nodes);
9c1cfda2
JH
6821 return best_node;
6822}
6823
6824/**
6825 * sched_domain_node_span - get a cpumask for a node's sched_domain
6826 * @node: node whose cpumask we're constructing
73486722 6827 * @span: resulting cpumask
9c1cfda2 6828 *
41a2d6cf 6829 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6830 * should be one that prevents unnecessary balancing, but also spreads tasks
6831 * out optimally.
6832 */
4bdbaad3 6833static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 6834{
c5f59f08 6835 nodemask_t used_nodes;
c5f59f08 6836 node_to_cpumask_ptr(nodemask, node);
48f24c4d 6837 int i;
9c1cfda2 6838
4bdbaad3 6839 cpus_clear(*span);
c5f59f08 6840 nodes_clear(used_nodes);
9c1cfda2 6841
4bdbaad3 6842 cpus_or(*span, *span, *nodemask);
c5f59f08 6843 node_set(node, used_nodes);
9c1cfda2
JH
6844
6845 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6846 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6847
c5f59f08 6848 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 6849 cpus_or(*span, *span, *nodemask);
9c1cfda2 6850 }
9c1cfda2 6851}
6d6bc0ad 6852#endif /* CONFIG_NUMA */
9c1cfda2 6853
5c45bf27 6854int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6855
9c1cfda2 6856/*
48f24c4d 6857 * SMT sched-domains:
9c1cfda2 6858 */
1da177e4
LT
6859#ifdef CONFIG_SCHED_SMT
6860static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6861static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6862
41a2d6cf 6863static int
7c16ec58
MT
6864cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6865 cpumask_t *unused)
1da177e4 6866{
6711cab4
SS
6867 if (sg)
6868 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6869 return cpu;
6870}
6d6bc0ad 6871#endif /* CONFIG_SCHED_SMT */
1da177e4 6872
48f24c4d
IM
6873/*
6874 * multi-core sched-domains:
6875 */
1e9f28fa
SS
6876#ifdef CONFIG_SCHED_MC
6877static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6878static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6d6bc0ad 6879#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6880
6881#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6882static int
7c16ec58
MT
6883cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6884 cpumask_t *mask)
1e9f28fa 6885{
6711cab4 6886 int group;
7c16ec58
MT
6887
6888 *mask = per_cpu(cpu_sibling_map, cpu);
6889 cpus_and(*mask, *mask, *cpu_map);
6890 group = first_cpu(*mask);
6711cab4
SS
6891 if (sg)
6892 *sg = &per_cpu(sched_group_core, group);
6893 return group;
1e9f28fa
SS
6894}
6895#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6896static int
7c16ec58
MT
6897cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6898 cpumask_t *unused)
1e9f28fa 6899{
6711cab4
SS
6900 if (sg)
6901 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6902 return cpu;
6903}
6904#endif
6905
1da177e4 6906static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6907static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6908
41a2d6cf 6909static int
7c16ec58
MT
6910cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6911 cpumask_t *mask)
1da177e4 6912{
6711cab4 6913 int group;
48f24c4d 6914#ifdef CONFIG_SCHED_MC
7c16ec58
MT
6915 *mask = cpu_coregroup_map(cpu);
6916 cpus_and(*mask, *mask, *cpu_map);
6917 group = first_cpu(*mask);
1e9f28fa 6918#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
6919 *mask = per_cpu(cpu_sibling_map, cpu);
6920 cpus_and(*mask, *mask, *cpu_map);
6921 group = first_cpu(*mask);
1da177e4 6922#else
6711cab4 6923 group = cpu;
1da177e4 6924#endif
6711cab4
SS
6925 if (sg)
6926 *sg = &per_cpu(sched_group_phys, group);
6927 return group;
1da177e4
LT
6928}
6929
6930#ifdef CONFIG_NUMA
1da177e4 6931/*
9c1cfda2
JH
6932 * The init_sched_build_groups can't handle what we want to do with node
6933 * groups, so roll our own. Now each node has its own list of groups which
6934 * gets dynamically allocated.
1da177e4 6935 */
9c1cfda2 6936static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 6937static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6938
9c1cfda2 6939static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6940static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6941
6711cab4 6942static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 6943 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 6944{
6711cab4
SS
6945 int group;
6946
7c16ec58
MT
6947 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6948 cpus_and(*nodemask, *nodemask, *cpu_map);
6949 group = first_cpu(*nodemask);
6711cab4
SS
6950
6951 if (sg)
6952 *sg = &per_cpu(sched_group_allnodes, group);
6953 return group;
1da177e4 6954}
6711cab4 6955
08069033
SS
6956static void init_numa_sched_groups_power(struct sched_group *group_head)
6957{
6958 struct sched_group *sg = group_head;
6959 int j;
6960
6961 if (!sg)
6962 return;
3a5c359a 6963 do {
363ab6f1 6964 for_each_cpu_mask_nr(j, sg->cpumask) {
3a5c359a 6965 struct sched_domain *sd;
08069033 6966
3a5c359a
AK
6967 sd = &per_cpu(phys_domains, j);
6968 if (j != first_cpu(sd->groups->cpumask)) {
6969 /*
6970 * Only add "power" once for each
6971 * physical package.
6972 */
6973 continue;
6974 }
08069033 6975
3a5c359a
AK
6976 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6977 }
6978 sg = sg->next;
6979 } while (sg != group_head);
08069033 6980}
6d6bc0ad 6981#endif /* CONFIG_NUMA */
1da177e4 6982
a616058b 6983#ifdef CONFIG_NUMA
51888ca2 6984/* Free memory allocated for various sched_group structures */
7c16ec58 6985static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 6986{
a616058b 6987 int cpu, i;
51888ca2 6988
363ab6f1 6989 for_each_cpu_mask_nr(cpu, *cpu_map) {
51888ca2
SV
6990 struct sched_group **sched_group_nodes
6991 = sched_group_nodes_bycpu[cpu];
6992
51888ca2
SV
6993 if (!sched_group_nodes)
6994 continue;
6995
076ac2af 6996 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
6997 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6998
7c16ec58
MT
6999 *nodemask = node_to_cpumask(i);
7000 cpus_and(*nodemask, *nodemask, *cpu_map);
7001 if (cpus_empty(*nodemask))
51888ca2
SV
7002 continue;
7003
7004 if (sg == NULL)
7005 continue;
7006 sg = sg->next;
7007next_sg:
7008 oldsg = sg;
7009 sg = sg->next;
7010 kfree(oldsg);
7011 if (oldsg != sched_group_nodes[i])
7012 goto next_sg;
7013 }
7014 kfree(sched_group_nodes);
7015 sched_group_nodes_bycpu[cpu] = NULL;
7016 }
51888ca2 7017}
6d6bc0ad 7018#else /* !CONFIG_NUMA */
7c16ec58 7019static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
7020{
7021}
6d6bc0ad 7022#endif /* CONFIG_NUMA */
51888ca2 7023
89c4710e
SS
7024/*
7025 * Initialize sched groups cpu_power.
7026 *
7027 * cpu_power indicates the capacity of sched group, which is used while
7028 * distributing the load between different sched groups in a sched domain.
7029 * Typically cpu_power for all the groups in a sched domain will be same unless
7030 * there are asymmetries in the topology. If there are asymmetries, group
7031 * having more cpu_power will pickup more load compared to the group having
7032 * less cpu_power.
7033 *
7034 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7035 * the maximum number of tasks a group can handle in the presence of other idle
7036 * or lightly loaded groups in the same sched domain.
7037 */
7038static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7039{
7040 struct sched_domain *child;
7041 struct sched_group *group;
7042
7043 WARN_ON(!sd || !sd->groups);
7044
7045 if (cpu != first_cpu(sd->groups->cpumask))
7046 return;
7047
7048 child = sd->child;
7049
5517d86b
ED
7050 sd->groups->__cpu_power = 0;
7051
89c4710e
SS
7052 /*
7053 * For perf policy, if the groups in child domain share resources
7054 * (for example cores sharing some portions of the cache hierarchy
7055 * or SMT), then set this domain groups cpu_power such that each group
7056 * can handle only one task, when there are other idle groups in the
7057 * same sched domain.
7058 */
7059 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7060 (child->flags &
7061 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7062 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7063 return;
7064 }
7065
89c4710e
SS
7066 /*
7067 * add cpu_power of each child group to this groups cpu_power
7068 */
7069 group = child->groups;
7070 do {
5517d86b 7071 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7072 group = group->next;
7073 } while (group != child->groups);
7074}
7075
7c16ec58
MT
7076/*
7077 * Initializers for schedule domains
7078 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7079 */
7080
7081#define SD_INIT(sd, type) sd_init_##type(sd)
7082#define SD_INIT_FUNC(type) \
7083static noinline void sd_init_##type(struct sched_domain *sd) \
7084{ \
7085 memset(sd, 0, sizeof(*sd)); \
7086 *sd = SD_##type##_INIT; \
1d3504fc 7087 sd->level = SD_LV_##type; \
7c16ec58
MT
7088}
7089
7090SD_INIT_FUNC(CPU)
7091#ifdef CONFIG_NUMA
7092 SD_INIT_FUNC(ALLNODES)
7093 SD_INIT_FUNC(NODE)
7094#endif
7095#ifdef CONFIG_SCHED_SMT
7096 SD_INIT_FUNC(SIBLING)
7097#endif
7098#ifdef CONFIG_SCHED_MC
7099 SD_INIT_FUNC(MC)
7100#endif
7101
7102/*
7103 * To minimize stack usage kmalloc room for cpumasks and share the
7104 * space as the usage in build_sched_domains() dictates. Used only
7105 * if the amount of space is significant.
7106 */
7107struct allmasks {
7108 cpumask_t tmpmask; /* make this one first */
7109 union {
7110 cpumask_t nodemask;
7111 cpumask_t this_sibling_map;
7112 cpumask_t this_core_map;
7113 };
7114 cpumask_t send_covered;
7115
7116#ifdef CONFIG_NUMA
7117 cpumask_t domainspan;
7118 cpumask_t covered;
7119 cpumask_t notcovered;
7120#endif
7121};
7122
7123#if NR_CPUS > 128
7124#define SCHED_CPUMASK_ALLOC 1
7125#define SCHED_CPUMASK_FREE(v) kfree(v)
7126#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7127#else
7128#define SCHED_CPUMASK_ALLOC 0
7129#define SCHED_CPUMASK_FREE(v)
7130#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7131#endif
7132
7133#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7134 ((unsigned long)(a) + offsetof(struct allmasks, v))
7135
1d3504fc
HS
7136static int default_relax_domain_level = -1;
7137
7138static int __init setup_relax_domain_level(char *str)
7139{
30e0e178
LZ
7140 unsigned long val;
7141
7142 val = simple_strtoul(str, NULL, 0);
7143 if (val < SD_LV_MAX)
7144 default_relax_domain_level = val;
7145
1d3504fc
HS
7146 return 1;
7147}
7148__setup("relax_domain_level=", setup_relax_domain_level);
7149
7150static void set_domain_attribute(struct sched_domain *sd,
7151 struct sched_domain_attr *attr)
7152{
7153 int request;
7154
7155 if (!attr || attr->relax_domain_level < 0) {
7156 if (default_relax_domain_level < 0)
7157 return;
7158 else
7159 request = default_relax_domain_level;
7160 } else
7161 request = attr->relax_domain_level;
7162 if (request < sd->level) {
7163 /* turn off idle balance on this domain */
7164 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7165 } else {
7166 /* turn on idle balance on this domain */
7167 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7168 }
7169}
7170
1da177e4 7171/*
1a20ff27
DG
7172 * Build sched domains for a given set of cpus and attach the sched domains
7173 * to the individual cpus
1da177e4 7174 */
1d3504fc
HS
7175static int __build_sched_domains(const cpumask_t *cpu_map,
7176 struct sched_domain_attr *attr)
1da177e4
LT
7177{
7178 int i;
57d885fe 7179 struct root_domain *rd;
7c16ec58
MT
7180 SCHED_CPUMASK_DECLARE(allmasks);
7181 cpumask_t *tmpmask;
d1b55138
JH
7182#ifdef CONFIG_NUMA
7183 struct sched_group **sched_group_nodes = NULL;
6711cab4 7184 int sd_allnodes = 0;
d1b55138
JH
7185
7186 /*
7187 * Allocate the per-node list of sched groups
7188 */
076ac2af 7189 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7190 GFP_KERNEL);
d1b55138
JH
7191 if (!sched_group_nodes) {
7192 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 7193 return -ENOMEM;
d1b55138 7194 }
d1b55138 7195#endif
1da177e4 7196
dc938520 7197 rd = alloc_rootdomain();
57d885fe
GH
7198 if (!rd) {
7199 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
7200#ifdef CONFIG_NUMA
7201 kfree(sched_group_nodes);
7202#endif
57d885fe
GH
7203 return -ENOMEM;
7204 }
7205
7c16ec58
MT
7206#if SCHED_CPUMASK_ALLOC
7207 /* get space for all scratch cpumask variables */
7208 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7209 if (!allmasks) {
7210 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7211 kfree(rd);
7212#ifdef CONFIG_NUMA
7213 kfree(sched_group_nodes);
7214#endif
7215 return -ENOMEM;
7216 }
7217#endif
7218 tmpmask = (cpumask_t *)allmasks;
7219
7220
7221#ifdef CONFIG_NUMA
7222 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7223#endif
7224
1da177e4 7225 /*
1a20ff27 7226 * Set up domains for cpus specified by the cpu_map.
1da177e4 7227 */
363ab6f1 7228 for_each_cpu_mask_nr(i, *cpu_map) {
1da177e4 7229 struct sched_domain *sd = NULL, *p;
7c16ec58 7230 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7231
7c16ec58
MT
7232 *nodemask = node_to_cpumask(cpu_to_node(i));
7233 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7234
7235#ifdef CONFIG_NUMA
dd41f596 7236 if (cpus_weight(*cpu_map) >
7c16ec58 7237 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7238 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7239 SD_INIT(sd, ALLNODES);
1d3504fc 7240 set_domain_attribute(sd, attr);
9c1cfda2 7241 sd->span = *cpu_map;
7c16ec58 7242 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7243 p = sd;
6711cab4 7244 sd_allnodes = 1;
9c1cfda2
JH
7245 } else
7246 p = NULL;
7247
1da177e4 7248 sd = &per_cpu(node_domains, i);
7c16ec58 7249 SD_INIT(sd, NODE);
1d3504fc 7250 set_domain_attribute(sd, attr);
4bdbaad3 7251 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 7252 sd->parent = p;
1a848870
SS
7253 if (p)
7254 p->child = sd;
9c1cfda2 7255 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7256#endif
7257
7258 p = sd;
7259 sd = &per_cpu(phys_domains, i);
7c16ec58 7260 SD_INIT(sd, CPU);
1d3504fc 7261 set_domain_attribute(sd, attr);
7c16ec58 7262 sd->span = *nodemask;
1da177e4 7263 sd->parent = p;
1a848870
SS
7264 if (p)
7265 p->child = sd;
7c16ec58 7266 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7267
1e9f28fa
SS
7268#ifdef CONFIG_SCHED_MC
7269 p = sd;
7270 sd = &per_cpu(core_domains, i);
7c16ec58 7271 SD_INIT(sd, MC);
1d3504fc 7272 set_domain_attribute(sd, attr);
1e9f28fa
SS
7273 sd->span = cpu_coregroup_map(i);
7274 cpus_and(sd->span, sd->span, *cpu_map);
7275 sd->parent = p;
1a848870 7276 p->child = sd;
7c16ec58 7277 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7278#endif
7279
1da177e4
LT
7280#ifdef CONFIG_SCHED_SMT
7281 p = sd;
7282 sd = &per_cpu(cpu_domains, i);
7c16ec58 7283 SD_INIT(sd, SIBLING);
1d3504fc 7284 set_domain_attribute(sd, attr);
d5a7430d 7285 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7286 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7287 sd->parent = p;
1a848870 7288 p->child = sd;
7c16ec58 7289 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7290#endif
7291 }
7292
7293#ifdef CONFIG_SCHED_SMT
7294 /* Set up CPU (sibling) groups */
363ab6f1 7295 for_each_cpu_mask_nr(i, *cpu_map) {
7c16ec58
MT
7296 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7297 SCHED_CPUMASK_VAR(send_covered, allmasks);
7298
7299 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7300 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7301 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7302 continue;
7303
dd41f596 7304 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7305 &cpu_to_cpu_group,
7306 send_covered, tmpmask);
1da177e4
LT
7307 }
7308#endif
7309
1e9f28fa
SS
7310#ifdef CONFIG_SCHED_MC
7311 /* Set up multi-core groups */
363ab6f1 7312 for_each_cpu_mask_nr(i, *cpu_map) {
7c16ec58
MT
7313 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7314 SCHED_CPUMASK_VAR(send_covered, allmasks);
7315
7316 *this_core_map = cpu_coregroup_map(i);
7317 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7318 if (i != first_cpu(*this_core_map))
1e9f28fa 7319 continue;
7c16ec58 7320
dd41f596 7321 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7322 &cpu_to_core_group,
7323 send_covered, tmpmask);
1e9f28fa
SS
7324 }
7325#endif
7326
1da177e4 7327 /* Set up physical groups */
076ac2af 7328 for (i = 0; i < nr_node_ids; i++) {
7c16ec58
MT
7329 SCHED_CPUMASK_VAR(nodemask, allmasks);
7330 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7331
7c16ec58
MT
7332 *nodemask = node_to_cpumask(i);
7333 cpus_and(*nodemask, *nodemask, *cpu_map);
7334 if (cpus_empty(*nodemask))
1da177e4
LT
7335 continue;
7336
7c16ec58
MT
7337 init_sched_build_groups(nodemask, cpu_map,
7338 &cpu_to_phys_group,
7339 send_covered, tmpmask);
1da177e4
LT
7340 }
7341
7342#ifdef CONFIG_NUMA
7343 /* Set up node groups */
7c16ec58
MT
7344 if (sd_allnodes) {
7345 SCHED_CPUMASK_VAR(send_covered, allmasks);
7346
7347 init_sched_build_groups(cpu_map, cpu_map,
7348 &cpu_to_allnodes_group,
7349 send_covered, tmpmask);
7350 }
9c1cfda2 7351
076ac2af 7352 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7353 /* Set up node groups */
7354 struct sched_group *sg, *prev;
7c16ec58
MT
7355 SCHED_CPUMASK_VAR(nodemask, allmasks);
7356 SCHED_CPUMASK_VAR(domainspan, allmasks);
7357 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7358 int j;
7359
7c16ec58
MT
7360 *nodemask = node_to_cpumask(i);
7361 cpus_clear(*covered);
7362
7363 cpus_and(*nodemask, *nodemask, *cpu_map);
7364 if (cpus_empty(*nodemask)) {
d1b55138 7365 sched_group_nodes[i] = NULL;
9c1cfda2 7366 continue;
d1b55138 7367 }
9c1cfda2 7368
4bdbaad3 7369 sched_domain_node_span(i, domainspan);
7c16ec58 7370 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7371
15f0b676 7372 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7373 if (!sg) {
7374 printk(KERN_WARNING "Can not alloc domain group for "
7375 "node %d\n", i);
7376 goto error;
7377 }
9c1cfda2 7378 sched_group_nodes[i] = sg;
363ab6f1 7379 for_each_cpu_mask_nr(j, *nodemask) {
9c1cfda2 7380 struct sched_domain *sd;
9761eea8 7381
9c1cfda2
JH
7382 sd = &per_cpu(node_domains, j);
7383 sd->groups = sg;
9c1cfda2 7384 }
5517d86b 7385 sg->__cpu_power = 0;
7c16ec58 7386 sg->cpumask = *nodemask;
51888ca2 7387 sg->next = sg;
7c16ec58 7388 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7389 prev = sg;
7390
076ac2af 7391 for (j = 0; j < nr_node_ids; j++) {
7c16ec58 7392 SCHED_CPUMASK_VAR(notcovered, allmasks);
076ac2af 7393 int n = (i + j) % nr_node_ids;
c5f59f08 7394 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7395
7c16ec58
MT
7396 cpus_complement(*notcovered, *covered);
7397 cpus_and(*tmpmask, *notcovered, *cpu_map);
7398 cpus_and(*tmpmask, *tmpmask, *domainspan);
7399 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7400 break;
7401
7c16ec58
MT
7402 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7403 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7404 continue;
7405
15f0b676
SV
7406 sg = kmalloc_node(sizeof(struct sched_group),
7407 GFP_KERNEL, i);
9c1cfda2
JH
7408 if (!sg) {
7409 printk(KERN_WARNING
7410 "Can not alloc domain group for node %d\n", j);
51888ca2 7411 goto error;
9c1cfda2 7412 }
5517d86b 7413 sg->__cpu_power = 0;
7c16ec58 7414 sg->cpumask = *tmpmask;
51888ca2 7415 sg->next = prev->next;
7c16ec58 7416 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7417 prev->next = sg;
7418 prev = sg;
7419 }
9c1cfda2 7420 }
1da177e4
LT
7421#endif
7422
7423 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7424#ifdef CONFIG_SCHED_SMT
363ab6f1 7425 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7426 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7427
89c4710e 7428 init_sched_groups_power(i, sd);
5c45bf27 7429 }
1da177e4 7430#endif
1e9f28fa 7431#ifdef CONFIG_SCHED_MC
363ab6f1 7432 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7433 struct sched_domain *sd = &per_cpu(core_domains, i);
7434
89c4710e 7435 init_sched_groups_power(i, sd);
5c45bf27
SS
7436 }
7437#endif
1e9f28fa 7438
363ab6f1 7439 for_each_cpu_mask_nr(i, *cpu_map) {
dd41f596
IM
7440 struct sched_domain *sd = &per_cpu(phys_domains, i);
7441
89c4710e 7442 init_sched_groups_power(i, sd);
1da177e4
LT
7443 }
7444
9c1cfda2 7445#ifdef CONFIG_NUMA
076ac2af 7446 for (i = 0; i < nr_node_ids; i++)
08069033 7447 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7448
6711cab4
SS
7449 if (sd_allnodes) {
7450 struct sched_group *sg;
f712c0c7 7451
7c16ec58
MT
7452 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7453 tmpmask);
f712c0c7
SS
7454 init_numa_sched_groups_power(sg);
7455 }
9c1cfda2
JH
7456#endif
7457
1da177e4 7458 /* Attach the domains */
363ab6f1 7459 for_each_cpu_mask_nr(i, *cpu_map) {
1da177e4
LT
7460 struct sched_domain *sd;
7461#ifdef CONFIG_SCHED_SMT
7462 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7463#elif defined(CONFIG_SCHED_MC)
7464 sd = &per_cpu(core_domains, i);
1da177e4
LT
7465#else
7466 sd = &per_cpu(phys_domains, i);
7467#endif
57d885fe 7468 cpu_attach_domain(sd, rd, i);
1da177e4 7469 }
51888ca2 7470
7c16ec58 7471 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7472 return 0;
7473
a616058b 7474#ifdef CONFIG_NUMA
51888ca2 7475error:
7c16ec58
MT
7476 free_sched_groups(cpu_map, tmpmask);
7477 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7478 return -ENOMEM;
a616058b 7479#endif
1da177e4 7480}
029190c5 7481
1d3504fc
HS
7482static int build_sched_domains(const cpumask_t *cpu_map)
7483{
7484 return __build_sched_domains(cpu_map, NULL);
7485}
7486
029190c5
PJ
7487static cpumask_t *doms_cur; /* current sched domains */
7488static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7489static struct sched_domain_attr *dattr_cur;
7490 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7491
7492/*
7493 * Special case: If a kmalloc of a doms_cur partition (array of
7494 * cpumask_t) fails, then fallback to a single sched domain,
7495 * as determined by the single cpumask_t fallback_doms.
7496 */
7497static cpumask_t fallback_doms;
7498
22e52b07
HC
7499void __attribute__((weak)) arch_update_cpu_topology(void)
7500{
7501}
7502
1a20ff27 7503/*
41a2d6cf 7504 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7505 * For now this just excludes isolated cpus, but could be used to
7506 * exclude other special cases in the future.
1a20ff27 7507 */
51888ca2 7508static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7509{
7378547f
MM
7510 int err;
7511
22e52b07 7512 arch_update_cpu_topology();
029190c5
PJ
7513 ndoms_cur = 1;
7514 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7515 if (!doms_cur)
7516 doms_cur = &fallback_doms;
7517 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7518 dattr_cur = NULL;
7378547f 7519 err = build_sched_domains(doms_cur);
6382bc90 7520 register_sched_domain_sysctl();
7378547f
MM
7521
7522 return err;
1a20ff27
DG
7523}
7524
7c16ec58
MT
7525static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7526 cpumask_t *tmpmask)
1da177e4 7527{
7c16ec58 7528 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7529}
1da177e4 7530
1a20ff27
DG
7531/*
7532 * Detach sched domains from a group of cpus specified in cpu_map
7533 * These cpus will now be attached to the NULL domain
7534 */
858119e1 7535static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7536{
7c16ec58 7537 cpumask_t tmpmask;
1a20ff27
DG
7538 int i;
7539
6382bc90
MM
7540 unregister_sched_domain_sysctl();
7541
363ab6f1 7542 for_each_cpu_mask_nr(i, *cpu_map)
57d885fe 7543 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7544 synchronize_sched();
7c16ec58 7545 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7546}
7547
1d3504fc
HS
7548/* handle null as "default" */
7549static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7550 struct sched_domain_attr *new, int idx_new)
7551{
7552 struct sched_domain_attr tmp;
7553
7554 /* fast path */
7555 if (!new && !cur)
7556 return 1;
7557
7558 tmp = SD_ATTR_INIT;
7559 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7560 new ? (new + idx_new) : &tmp,
7561 sizeof(struct sched_domain_attr));
7562}
7563
029190c5
PJ
7564/*
7565 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7566 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7567 * doms_new[] to the current sched domain partitioning, doms_cur[].
7568 * It destroys each deleted domain and builds each new domain.
7569 *
7570 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7571 * The masks don't intersect (don't overlap.) We should setup one
7572 * sched domain for each mask. CPUs not in any of the cpumasks will
7573 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7574 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7575 * it as it is.
7576 *
41a2d6cf
IM
7577 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7578 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7579 * failed the kmalloc call, then it can pass in doms_new == NULL,
7580 * and partition_sched_domains() will fallback to the single partition
e761b772 7581 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5
PJ
7582 *
7583 * Call with hotplug lock held
7584 */
1d3504fc
HS
7585void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7586 struct sched_domain_attr *dattr_new)
029190c5
PJ
7587{
7588 int i, j;
7589
712555ee 7590 mutex_lock(&sched_domains_mutex);
a1835615 7591
7378547f
MM
7592 /* always unregister in case we don't destroy any domains */
7593 unregister_sched_domain_sysctl();
7594
e761b772
MK
7595 if (doms_new == NULL)
7596 ndoms_new = 0;
029190c5
PJ
7597
7598 /* Destroy deleted domains */
7599 for (i = 0; i < ndoms_cur; i++) {
7600 for (j = 0; j < ndoms_new; j++) {
1d3504fc
HS
7601 if (cpus_equal(doms_cur[i], doms_new[j])
7602 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7603 goto match1;
7604 }
7605 /* no match - a current sched domain not in new doms_new[] */
7606 detach_destroy_domains(doms_cur + i);
7607match1:
7608 ;
7609 }
7610
e761b772
MK
7611 if (doms_new == NULL) {
7612 ndoms_cur = 0;
7613 ndoms_new = 1;
7614 doms_new = &fallback_doms;
7615 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7616 dattr_new = NULL;
7617 }
7618
029190c5
PJ
7619 /* Build new domains */
7620 for (i = 0; i < ndoms_new; i++) {
7621 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7622 if (cpus_equal(doms_new[i], doms_cur[j])
7623 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7624 goto match2;
7625 }
7626 /* no match - add a new doms_new */
1d3504fc
HS
7627 __build_sched_domains(doms_new + i,
7628 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7629match2:
7630 ;
7631 }
7632
7633 /* Remember the new sched domains */
7634 if (doms_cur != &fallback_doms)
7635 kfree(doms_cur);
1d3504fc 7636 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7637 doms_cur = doms_new;
1d3504fc 7638 dattr_cur = dattr_new;
029190c5 7639 ndoms_cur = ndoms_new;
7378547f
MM
7640
7641 register_sched_domain_sysctl();
a1835615 7642
712555ee 7643 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7644}
7645
5c45bf27 7646#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7647int arch_reinit_sched_domains(void)
5c45bf27 7648{
95402b38 7649 get_online_cpus();
e761b772 7650 rebuild_sched_domains();
95402b38 7651 put_online_cpus();
e761b772 7652 return 0;
5c45bf27
SS
7653}
7654
7655static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7656{
7657 int ret;
7658
7659 if (buf[0] != '0' && buf[0] != '1')
7660 return -EINVAL;
7661
7662 if (smt)
7663 sched_smt_power_savings = (buf[0] == '1');
7664 else
7665 sched_mc_power_savings = (buf[0] == '1');
7666
7667 ret = arch_reinit_sched_domains();
7668
7669 return ret ? ret : count;
7670}
7671
5c45bf27 7672#ifdef CONFIG_SCHED_MC
4a0b2b4d
AK
7673static ssize_t sched_mc_power_savings_show(struct sys_device *dev,
7674 struct sysdev_attribute *attr, char *page)
5c45bf27
SS
7675{
7676 return sprintf(page, "%u\n", sched_mc_power_savings);
7677}
48f24c4d 7678static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
4a0b2b4d 7679 struct sysdev_attribute *attr,
48f24c4d 7680 const char *buf, size_t count)
5c45bf27
SS
7681{
7682 return sched_power_savings_store(buf, count, 0);
7683}
6707de00
AB
7684static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7685 sched_mc_power_savings_store);
5c45bf27
SS
7686#endif
7687
7688#ifdef CONFIG_SCHED_SMT
4a0b2b4d
AK
7689static ssize_t sched_smt_power_savings_show(struct sys_device *dev,
7690 struct sysdev_attribute *attr, char *page)
5c45bf27
SS
7691{
7692 return sprintf(page, "%u\n", sched_smt_power_savings);
7693}
48f24c4d 7694static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
4a0b2b4d 7695 struct sysdev_attribute *attr,
48f24c4d 7696 const char *buf, size_t count)
5c45bf27
SS
7697{
7698 return sched_power_savings_store(buf, count, 1);
7699}
6707de00
AB
7700static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7701 sched_smt_power_savings_store);
7702#endif
7703
7704int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7705{
7706 int err = 0;
7707
7708#ifdef CONFIG_SCHED_SMT
7709 if (smt_capable())
7710 err = sysfs_create_file(&cls->kset.kobj,
7711 &attr_sched_smt_power_savings.attr);
7712#endif
7713#ifdef CONFIG_SCHED_MC
7714 if (!err && mc_capable())
7715 err = sysfs_create_file(&cls->kset.kobj,
7716 &attr_sched_mc_power_savings.attr);
7717#endif
7718 return err;
7719}
6d6bc0ad 7720#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7721
e761b772 7722#ifndef CONFIG_CPUSETS
1da177e4 7723/*
e761b772
MK
7724 * Add online and remove offline CPUs from the scheduler domains.
7725 * When cpusets are enabled they take over this function.
1da177e4
LT
7726 */
7727static int update_sched_domains(struct notifier_block *nfb,
7728 unsigned long action, void *hcpu)
e761b772
MK
7729{
7730 switch (action) {
7731 case CPU_ONLINE:
7732 case CPU_ONLINE_FROZEN:
7733 case CPU_DEAD:
7734 case CPU_DEAD_FROZEN:
7735 partition_sched_domains(0, NULL, NULL);
7736 return NOTIFY_OK;
7737
7738 default:
7739 return NOTIFY_DONE;
7740 }
7741}
7742#endif
7743
7744static int update_runtime(struct notifier_block *nfb,
7745 unsigned long action, void *hcpu)
1da177e4 7746{
7def2be1
PZ
7747 int cpu = (int)(long)hcpu;
7748
1da177e4 7749 switch (action) {
1da177e4 7750 case CPU_DOWN_PREPARE:
8bb78442 7751 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 7752 disable_runtime(cpu_rq(cpu));
1da177e4
LT
7753 return NOTIFY_OK;
7754
1da177e4 7755 case CPU_DOWN_FAILED:
8bb78442 7756 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7757 case CPU_ONLINE:
8bb78442 7758 case CPU_ONLINE_FROZEN:
7def2be1 7759 enable_runtime(cpu_rq(cpu));
e761b772
MK
7760 return NOTIFY_OK;
7761
1da177e4
LT
7762 default:
7763 return NOTIFY_DONE;
7764 }
1da177e4 7765}
1da177e4
LT
7766
7767void __init sched_init_smp(void)
7768{
5c1e1767
NP
7769 cpumask_t non_isolated_cpus;
7770
434d53b0
MT
7771#if defined(CONFIG_NUMA)
7772 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7773 GFP_KERNEL);
7774 BUG_ON(sched_group_nodes_bycpu == NULL);
7775#endif
95402b38 7776 get_online_cpus();
712555ee 7777 mutex_lock(&sched_domains_mutex);
1a20ff27 7778 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7779 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7780 if (cpus_empty(non_isolated_cpus))
7781 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7782 mutex_unlock(&sched_domains_mutex);
95402b38 7783 put_online_cpus();
e761b772
MK
7784
7785#ifndef CONFIG_CPUSETS
1da177e4
LT
7786 /* XXX: Theoretical race here - CPU may be hotplugged now */
7787 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
7788#endif
7789
7790 /* RT runtime code needs to handle some hotplug events */
7791 hotcpu_notifier(update_runtime, 0);
7792
b328ca18 7793 init_hrtick();
5c1e1767
NP
7794
7795 /* Move init over to a non-isolated CPU */
7c16ec58 7796 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7797 BUG();
19978ca6 7798 sched_init_granularity();
1da177e4
LT
7799}
7800#else
7801void __init sched_init_smp(void)
7802{
19978ca6 7803 sched_init_granularity();
1da177e4
LT
7804}
7805#endif /* CONFIG_SMP */
7806
7807int in_sched_functions(unsigned long addr)
7808{
1da177e4
LT
7809 return in_lock_functions(addr) ||
7810 (addr >= (unsigned long)__sched_text_start
7811 && addr < (unsigned long)__sched_text_end);
7812}
7813
a9957449 7814static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7815{
7816 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7817 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7818#ifdef CONFIG_FAIR_GROUP_SCHED
7819 cfs_rq->rq = rq;
7820#endif
67e9fb2a 7821 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7822}
7823
fa85ae24
PZ
7824static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7825{
7826 struct rt_prio_array *array;
7827 int i;
7828
7829 array = &rt_rq->active;
7830 for (i = 0; i < MAX_RT_PRIO; i++) {
7831 INIT_LIST_HEAD(array->queue + i);
7832 __clear_bit(i, array->bitmap);
7833 }
7834 /* delimiter for bitsearch: */
7835 __set_bit(MAX_RT_PRIO, array->bitmap);
7836
052f1dc7 7837#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7838 rt_rq->highest_prio = MAX_RT_PRIO;
7839#endif
fa85ae24
PZ
7840#ifdef CONFIG_SMP
7841 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7842 rt_rq->overloaded = 0;
7843#endif
7844
7845 rt_rq->rt_time = 0;
7846 rt_rq->rt_throttled = 0;
ac086bc2
PZ
7847 rt_rq->rt_runtime = 0;
7848 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7849
052f1dc7 7850#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7851 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7852 rt_rq->rq = rq;
7853#endif
fa85ae24
PZ
7854}
7855
6f505b16 7856#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7857static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7858 struct sched_entity *se, int cpu, int add,
7859 struct sched_entity *parent)
6f505b16 7860{
ec7dc8ac 7861 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7862 tg->cfs_rq[cpu] = cfs_rq;
7863 init_cfs_rq(cfs_rq, rq);
7864 cfs_rq->tg = tg;
7865 if (add)
7866 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7867
7868 tg->se[cpu] = se;
354d60c2
DG
7869 /* se could be NULL for init_task_group */
7870 if (!se)
7871 return;
7872
ec7dc8ac
DG
7873 if (!parent)
7874 se->cfs_rq = &rq->cfs;
7875 else
7876 se->cfs_rq = parent->my_q;
7877
6f505b16
PZ
7878 se->my_q = cfs_rq;
7879 se->load.weight = tg->shares;
e05510d0 7880 se->load.inv_weight = 0;
ec7dc8ac 7881 se->parent = parent;
6f505b16 7882}
052f1dc7 7883#endif
6f505b16 7884
052f1dc7 7885#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7886static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7887 struct sched_rt_entity *rt_se, int cpu, int add,
7888 struct sched_rt_entity *parent)
6f505b16 7889{
ec7dc8ac
DG
7890 struct rq *rq = cpu_rq(cpu);
7891
6f505b16
PZ
7892 tg->rt_rq[cpu] = rt_rq;
7893 init_rt_rq(rt_rq, rq);
7894 rt_rq->tg = tg;
7895 rt_rq->rt_se = rt_se;
ac086bc2 7896 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7897 if (add)
7898 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7899
7900 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7901 if (!rt_se)
7902 return;
7903
ec7dc8ac
DG
7904 if (!parent)
7905 rt_se->rt_rq = &rq->rt;
7906 else
7907 rt_se->rt_rq = parent->my_q;
7908
6f505b16 7909 rt_se->my_q = rt_rq;
ec7dc8ac 7910 rt_se->parent = parent;
6f505b16
PZ
7911 INIT_LIST_HEAD(&rt_se->run_list);
7912}
7913#endif
7914
1da177e4
LT
7915void __init sched_init(void)
7916{
dd41f596 7917 int i, j;
434d53b0
MT
7918 unsigned long alloc_size = 0, ptr;
7919
7920#ifdef CONFIG_FAIR_GROUP_SCHED
7921 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7922#endif
7923#ifdef CONFIG_RT_GROUP_SCHED
7924 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7925#endif
7926#ifdef CONFIG_USER_SCHED
7927 alloc_size *= 2;
434d53b0
MT
7928#endif
7929 /*
7930 * As sched_init() is called before page_alloc is setup,
7931 * we use alloc_bootmem().
7932 */
7933 if (alloc_size) {
5a9d3225 7934 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
7935
7936#ifdef CONFIG_FAIR_GROUP_SCHED
7937 init_task_group.se = (struct sched_entity **)ptr;
7938 ptr += nr_cpu_ids * sizeof(void **);
7939
7940 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7941 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7942
7943#ifdef CONFIG_USER_SCHED
7944 root_task_group.se = (struct sched_entity **)ptr;
7945 ptr += nr_cpu_ids * sizeof(void **);
7946
7947 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7948 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
7949#endif /* CONFIG_USER_SCHED */
7950#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7951#ifdef CONFIG_RT_GROUP_SCHED
7952 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7953 ptr += nr_cpu_ids * sizeof(void **);
7954
7955 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7956 ptr += nr_cpu_ids * sizeof(void **);
7957
7958#ifdef CONFIG_USER_SCHED
7959 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7960 ptr += nr_cpu_ids * sizeof(void **);
7961
7962 root_task_group.rt_rq = (struct rt_rq **)ptr;
7963 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
7964#endif /* CONFIG_USER_SCHED */
7965#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 7966 }
dd41f596 7967
57d885fe
GH
7968#ifdef CONFIG_SMP
7969 init_defrootdomain();
7970#endif
7971
d0b27fa7
PZ
7972 init_rt_bandwidth(&def_rt_bandwidth,
7973 global_rt_period(), global_rt_runtime());
7974
7975#ifdef CONFIG_RT_GROUP_SCHED
7976 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7977 global_rt_period(), global_rt_runtime());
eff766a6
PZ
7978#ifdef CONFIG_USER_SCHED
7979 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7980 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
7981#endif /* CONFIG_USER_SCHED */
7982#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7983
052f1dc7 7984#ifdef CONFIG_GROUP_SCHED
6f505b16 7985 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7986 INIT_LIST_HEAD(&init_task_group.children);
7987
7988#ifdef CONFIG_USER_SCHED
7989 INIT_LIST_HEAD(&root_task_group.children);
7990 init_task_group.parent = &root_task_group;
7991 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
7992#endif /* CONFIG_USER_SCHED */
7993#endif /* CONFIG_GROUP_SCHED */
6f505b16 7994
0a945022 7995 for_each_possible_cpu(i) {
70b97a7f 7996 struct rq *rq;
1da177e4
LT
7997
7998 rq = cpu_rq(i);
7999 spin_lock_init(&rq->lock);
7897986b 8000 rq->nr_running = 0;
dd41f596 8001 init_cfs_rq(&rq->cfs, rq);
6f505b16 8002 init_rt_rq(&rq->rt, rq);
dd41f596 8003#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8004 init_task_group.shares = init_task_group_load;
6f505b16 8005 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8006#ifdef CONFIG_CGROUP_SCHED
8007 /*
8008 * How much cpu bandwidth does init_task_group get?
8009 *
8010 * In case of task-groups formed thr' the cgroup filesystem, it
8011 * gets 100% of the cpu resources in the system. This overall
8012 * system cpu resource is divided among the tasks of
8013 * init_task_group and its child task-groups in a fair manner,
8014 * based on each entity's (task or task-group's) weight
8015 * (se->load.weight).
8016 *
8017 * In other words, if init_task_group has 10 tasks of weight
8018 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8019 * then A0's share of the cpu resource is:
8020 *
8021 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8022 *
8023 * We achieve this by letting init_task_group's tasks sit
8024 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8025 */
ec7dc8ac 8026 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8027#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8028 root_task_group.shares = NICE_0_LOAD;
8029 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8030 /*
8031 * In case of task-groups formed thr' the user id of tasks,
8032 * init_task_group represents tasks belonging to root user.
8033 * Hence it forms a sibling of all subsequent groups formed.
8034 * In this case, init_task_group gets only a fraction of overall
8035 * system cpu resource, based on the weight assigned to root
8036 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8037 * by letting tasks of init_task_group sit in a separate cfs_rq
8038 * (init_cfs_rq) and having one entity represent this group of
8039 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8040 */
ec7dc8ac 8041 init_tg_cfs_entry(&init_task_group,
6f505b16 8042 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8043 &per_cpu(init_sched_entity, i), i, 1,
8044 root_task_group.se[i]);
6f505b16 8045
052f1dc7 8046#endif
354d60c2
DG
8047#endif /* CONFIG_FAIR_GROUP_SCHED */
8048
8049 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8050#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8051 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8052#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8053 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8054#elif defined CONFIG_USER_SCHED
eff766a6 8055 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8056 init_tg_rt_entry(&init_task_group,
6f505b16 8057 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8058 &per_cpu(init_sched_rt_entity, i), i, 1,
8059 root_task_group.rt_se[i]);
354d60c2 8060#endif
dd41f596 8061#endif
1da177e4 8062
dd41f596
IM
8063 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8064 rq->cpu_load[j] = 0;
1da177e4 8065#ifdef CONFIG_SMP
41c7ce9a 8066 rq->sd = NULL;
57d885fe 8067 rq->rd = NULL;
1da177e4 8068 rq->active_balance = 0;
dd41f596 8069 rq->next_balance = jiffies;
1da177e4 8070 rq->push_cpu = 0;
0a2966b4 8071 rq->cpu = i;
1f11eb6a 8072 rq->online = 0;
1da177e4
LT
8073 rq->migration_thread = NULL;
8074 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8075 rq_attach_root(rq, &def_root_domain);
1da177e4 8076#endif
8f4d37ec 8077 init_rq_hrtick(rq);
1da177e4 8078 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8079 }
8080
2dd73a4f 8081 set_load_weight(&init_task);
b50f60ce 8082
e107be36
AK
8083#ifdef CONFIG_PREEMPT_NOTIFIERS
8084 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8085#endif
8086
c9819f45 8087#ifdef CONFIG_SMP
962cf36c 8088 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8089#endif
8090
b50f60ce
HC
8091#ifdef CONFIG_RT_MUTEXES
8092 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8093#endif
8094
1da177e4
LT
8095 /*
8096 * The boot idle thread does lazy MMU switching as well:
8097 */
8098 atomic_inc(&init_mm.mm_count);
8099 enter_lazy_tlb(&init_mm, current);
8100
8101 /*
8102 * Make us the idle thread. Technically, schedule() should not be
8103 * called from this thread, however somewhere below it might be,
8104 * but because we are the idle thread, we just pick up running again
8105 * when this runqueue becomes "idle".
8106 */
8107 init_idle(current, smp_processor_id());
dd41f596
IM
8108 /*
8109 * During early bootup we pretend to be a normal task:
8110 */
8111 current->sched_class = &fair_sched_class;
6892b75e
IM
8112
8113 scheduler_running = 1;
1da177e4
LT
8114}
8115
8116#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8117void __might_sleep(char *file, int line)
8118{
48f24c4d 8119#ifdef in_atomic
1da177e4
LT
8120 static unsigned long prev_jiffy; /* ratelimiting */
8121
8122 if ((in_atomic() || irqs_disabled()) &&
8123 system_state == SYSTEM_RUNNING && !oops_in_progress) {
8124 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8125 return;
8126 prev_jiffy = jiffies;
91368d73 8127 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
8128 " context at %s:%d\n", file, line);
8129 printk("in_atomic():%d, irqs_disabled():%d\n",
8130 in_atomic(), irqs_disabled());
a4c410f0 8131 debug_show_held_locks(current);
3117df04
IM
8132 if (irqs_disabled())
8133 print_irqtrace_events(current);
1da177e4
LT
8134 dump_stack();
8135 }
8136#endif
8137}
8138EXPORT_SYMBOL(__might_sleep);
8139#endif
8140
8141#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8142static void normalize_task(struct rq *rq, struct task_struct *p)
8143{
8144 int on_rq;
3e51f33f 8145
3a5e4dc1
AK
8146 update_rq_clock(rq);
8147 on_rq = p->se.on_rq;
8148 if (on_rq)
8149 deactivate_task(rq, p, 0);
8150 __setscheduler(rq, p, SCHED_NORMAL, 0);
8151 if (on_rq) {
8152 activate_task(rq, p, 0);
8153 resched_task(rq->curr);
8154 }
8155}
8156
1da177e4
LT
8157void normalize_rt_tasks(void)
8158{
a0f98a1c 8159 struct task_struct *g, *p;
1da177e4 8160 unsigned long flags;
70b97a7f 8161 struct rq *rq;
1da177e4 8162
4cf5d77a 8163 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8164 do_each_thread(g, p) {
178be793
IM
8165 /*
8166 * Only normalize user tasks:
8167 */
8168 if (!p->mm)
8169 continue;
8170
6cfb0d5d 8171 p->se.exec_start = 0;
6cfb0d5d 8172#ifdef CONFIG_SCHEDSTATS
dd41f596 8173 p->se.wait_start = 0;
dd41f596 8174 p->se.sleep_start = 0;
dd41f596 8175 p->se.block_start = 0;
6cfb0d5d 8176#endif
dd41f596
IM
8177
8178 if (!rt_task(p)) {
8179 /*
8180 * Renice negative nice level userspace
8181 * tasks back to 0:
8182 */
8183 if (TASK_NICE(p) < 0 && p->mm)
8184 set_user_nice(p, 0);
1da177e4 8185 continue;
dd41f596 8186 }
1da177e4 8187
4cf5d77a 8188 spin_lock(&p->pi_lock);
b29739f9 8189 rq = __task_rq_lock(p);
1da177e4 8190
178be793 8191 normalize_task(rq, p);
3a5e4dc1 8192
b29739f9 8193 __task_rq_unlock(rq);
4cf5d77a 8194 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8195 } while_each_thread(g, p);
8196
4cf5d77a 8197 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8198}
8199
8200#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8201
8202#ifdef CONFIG_IA64
8203/*
8204 * These functions are only useful for the IA64 MCA handling.
8205 *
8206 * They can only be called when the whole system has been
8207 * stopped - every CPU needs to be quiescent, and no scheduling
8208 * activity can take place. Using them for anything else would
8209 * be a serious bug, and as a result, they aren't even visible
8210 * under any other configuration.
8211 */
8212
8213/**
8214 * curr_task - return the current task for a given cpu.
8215 * @cpu: the processor in question.
8216 *
8217 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8218 */
36c8b586 8219struct task_struct *curr_task(int cpu)
1df5c10a
LT
8220{
8221 return cpu_curr(cpu);
8222}
8223
8224/**
8225 * set_curr_task - set the current task for a given cpu.
8226 * @cpu: the processor in question.
8227 * @p: the task pointer to set.
8228 *
8229 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8230 * are serviced on a separate stack. It allows the architecture to switch the
8231 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8232 * must be called with all CPU's synchronized, and interrupts disabled, the
8233 * and caller must save the original value of the current task (see
8234 * curr_task() above) and restore that value before reenabling interrupts and
8235 * re-starting the system.
8236 *
8237 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8238 */
36c8b586 8239void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8240{
8241 cpu_curr(cpu) = p;
8242}
8243
8244#endif
29f59db3 8245
bccbe08a
PZ
8246#ifdef CONFIG_FAIR_GROUP_SCHED
8247static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8248{
8249 int i;
8250
8251 for_each_possible_cpu(i) {
8252 if (tg->cfs_rq)
8253 kfree(tg->cfs_rq[i]);
8254 if (tg->se)
8255 kfree(tg->se[i]);
6f505b16
PZ
8256 }
8257
8258 kfree(tg->cfs_rq);
8259 kfree(tg->se);
6f505b16
PZ
8260}
8261
ec7dc8ac
DG
8262static
8263int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8264{
29f59db3 8265 struct cfs_rq *cfs_rq;
ec7dc8ac 8266 struct sched_entity *se, *parent_se;
9b5b7751 8267 struct rq *rq;
29f59db3
SV
8268 int i;
8269
434d53b0 8270 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8271 if (!tg->cfs_rq)
8272 goto err;
434d53b0 8273 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8274 if (!tg->se)
8275 goto err;
052f1dc7
PZ
8276
8277 tg->shares = NICE_0_LOAD;
29f59db3
SV
8278
8279 for_each_possible_cpu(i) {
9b5b7751 8280 rq = cpu_rq(i);
29f59db3 8281
6f505b16
PZ
8282 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8283 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8284 if (!cfs_rq)
8285 goto err;
8286
6f505b16
PZ
8287 se = kmalloc_node(sizeof(struct sched_entity),
8288 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8289 if (!se)
8290 goto err;
8291
ec7dc8ac
DG
8292 parent_se = parent ? parent->se[i] : NULL;
8293 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8294 }
8295
8296 return 1;
8297
8298 err:
8299 return 0;
8300}
8301
8302static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8303{
8304 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8305 &cpu_rq(cpu)->leaf_cfs_rq_list);
8306}
8307
8308static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8309{
8310 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8311}
6d6bc0ad 8312#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8313static inline void free_fair_sched_group(struct task_group *tg)
8314{
8315}
8316
ec7dc8ac
DG
8317static inline
8318int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8319{
8320 return 1;
8321}
8322
8323static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8324{
8325}
8326
8327static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8328{
8329}
6d6bc0ad 8330#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8331
8332#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8333static void free_rt_sched_group(struct task_group *tg)
8334{
8335 int i;
8336
d0b27fa7
PZ
8337 destroy_rt_bandwidth(&tg->rt_bandwidth);
8338
bccbe08a
PZ
8339 for_each_possible_cpu(i) {
8340 if (tg->rt_rq)
8341 kfree(tg->rt_rq[i]);
8342 if (tg->rt_se)
8343 kfree(tg->rt_se[i]);
8344 }
8345
8346 kfree(tg->rt_rq);
8347 kfree(tg->rt_se);
8348}
8349
ec7dc8ac
DG
8350static
8351int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8352{
8353 struct rt_rq *rt_rq;
ec7dc8ac 8354 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8355 struct rq *rq;
8356 int i;
8357
434d53b0 8358 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8359 if (!tg->rt_rq)
8360 goto err;
434d53b0 8361 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8362 if (!tg->rt_se)
8363 goto err;
8364
d0b27fa7
PZ
8365 init_rt_bandwidth(&tg->rt_bandwidth,
8366 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8367
8368 for_each_possible_cpu(i) {
8369 rq = cpu_rq(i);
8370
6f505b16
PZ
8371 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8372 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8373 if (!rt_rq)
8374 goto err;
29f59db3 8375
6f505b16
PZ
8376 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8377 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8378 if (!rt_se)
8379 goto err;
29f59db3 8380
ec7dc8ac
DG
8381 parent_se = parent ? parent->rt_se[i] : NULL;
8382 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8383 }
8384
bccbe08a
PZ
8385 return 1;
8386
8387 err:
8388 return 0;
8389}
8390
8391static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8392{
8393 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8394 &cpu_rq(cpu)->leaf_rt_rq_list);
8395}
8396
8397static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8398{
8399 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8400}
6d6bc0ad 8401#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8402static inline void free_rt_sched_group(struct task_group *tg)
8403{
8404}
8405
ec7dc8ac
DG
8406static inline
8407int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8408{
8409 return 1;
8410}
8411
8412static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8413{
8414}
8415
8416static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8417{
8418}
6d6bc0ad 8419#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8420
d0b27fa7 8421#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8422static void free_sched_group(struct task_group *tg)
8423{
8424 free_fair_sched_group(tg);
8425 free_rt_sched_group(tg);
8426 kfree(tg);
8427}
8428
8429/* allocate runqueue etc for a new task group */
ec7dc8ac 8430struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8431{
8432 struct task_group *tg;
8433 unsigned long flags;
8434 int i;
8435
8436 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8437 if (!tg)
8438 return ERR_PTR(-ENOMEM);
8439
ec7dc8ac 8440 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8441 goto err;
8442
ec7dc8ac 8443 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8444 goto err;
8445
8ed36996 8446 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8447 for_each_possible_cpu(i) {
bccbe08a
PZ
8448 register_fair_sched_group(tg, i);
8449 register_rt_sched_group(tg, i);
9b5b7751 8450 }
6f505b16 8451 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8452
8453 WARN_ON(!parent); /* root should already exist */
8454
8455 tg->parent = parent;
8456 list_add_rcu(&tg->siblings, &parent->children);
8457 INIT_LIST_HEAD(&tg->children);
8ed36996 8458 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8459
9b5b7751 8460 return tg;
29f59db3
SV
8461
8462err:
6f505b16 8463 free_sched_group(tg);
29f59db3
SV
8464 return ERR_PTR(-ENOMEM);
8465}
8466
9b5b7751 8467/* rcu callback to free various structures associated with a task group */
6f505b16 8468static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8469{
29f59db3 8470 /* now it should be safe to free those cfs_rqs */
6f505b16 8471 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8472}
8473
9b5b7751 8474/* Destroy runqueue etc associated with a task group */
4cf86d77 8475void sched_destroy_group(struct task_group *tg)
29f59db3 8476{
8ed36996 8477 unsigned long flags;
9b5b7751 8478 int i;
29f59db3 8479
8ed36996 8480 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8481 for_each_possible_cpu(i) {
bccbe08a
PZ
8482 unregister_fair_sched_group(tg, i);
8483 unregister_rt_sched_group(tg, i);
9b5b7751 8484 }
6f505b16 8485 list_del_rcu(&tg->list);
f473aa5e 8486 list_del_rcu(&tg->siblings);
8ed36996 8487 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8488
9b5b7751 8489 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8490 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8491}
8492
9b5b7751 8493/* change task's runqueue when it moves between groups.
3a252015
IM
8494 * The caller of this function should have put the task in its new group
8495 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8496 * reflect its new group.
9b5b7751
SV
8497 */
8498void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8499{
8500 int on_rq, running;
8501 unsigned long flags;
8502 struct rq *rq;
8503
8504 rq = task_rq_lock(tsk, &flags);
8505
29f59db3
SV
8506 update_rq_clock(rq);
8507
051a1d1a 8508 running = task_current(rq, tsk);
29f59db3
SV
8509 on_rq = tsk->se.on_rq;
8510
0e1f3483 8511 if (on_rq)
29f59db3 8512 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8513 if (unlikely(running))
8514 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8515
6f505b16 8516 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8517
810b3817
PZ
8518#ifdef CONFIG_FAIR_GROUP_SCHED
8519 if (tsk->sched_class->moved_group)
8520 tsk->sched_class->moved_group(tsk);
8521#endif
8522
0e1f3483
HS
8523 if (unlikely(running))
8524 tsk->sched_class->set_curr_task(rq);
8525 if (on_rq)
7074badb 8526 enqueue_task(rq, tsk, 0);
29f59db3 8527
29f59db3
SV
8528 task_rq_unlock(rq, &flags);
8529}
6d6bc0ad 8530#endif /* CONFIG_GROUP_SCHED */
29f59db3 8531
052f1dc7 8532#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8533static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8534{
8535 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8536 int on_rq;
8537
29f59db3 8538 on_rq = se->on_rq;
62fb1851 8539 if (on_rq)
29f59db3
SV
8540 dequeue_entity(cfs_rq, se, 0);
8541
8542 se->load.weight = shares;
e05510d0 8543 se->load.inv_weight = 0;
29f59db3 8544
62fb1851 8545 if (on_rq)
29f59db3 8546 enqueue_entity(cfs_rq, se, 0);
c09595f6 8547}
62fb1851 8548
c09595f6
PZ
8549static void set_se_shares(struct sched_entity *se, unsigned long shares)
8550{
8551 struct cfs_rq *cfs_rq = se->cfs_rq;
8552 struct rq *rq = cfs_rq->rq;
8553 unsigned long flags;
8554
8555 spin_lock_irqsave(&rq->lock, flags);
8556 __set_se_shares(se, shares);
8557 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8558}
8559
8ed36996
PZ
8560static DEFINE_MUTEX(shares_mutex);
8561
4cf86d77 8562int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8563{
8564 int i;
8ed36996 8565 unsigned long flags;
c61935fd 8566
ec7dc8ac
DG
8567 /*
8568 * We can't change the weight of the root cgroup.
8569 */
8570 if (!tg->se[0])
8571 return -EINVAL;
8572
18d95a28
PZ
8573 if (shares < MIN_SHARES)
8574 shares = MIN_SHARES;
cb4ad1ff
MX
8575 else if (shares > MAX_SHARES)
8576 shares = MAX_SHARES;
62fb1851 8577
8ed36996 8578 mutex_lock(&shares_mutex);
9b5b7751 8579 if (tg->shares == shares)
5cb350ba 8580 goto done;
29f59db3 8581
8ed36996 8582 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8583 for_each_possible_cpu(i)
8584 unregister_fair_sched_group(tg, i);
f473aa5e 8585 list_del_rcu(&tg->siblings);
8ed36996 8586 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8587
8588 /* wait for any ongoing reference to this group to finish */
8589 synchronize_sched();
8590
8591 /*
8592 * Now we are free to modify the group's share on each cpu
8593 * w/o tripping rebalance_share or load_balance_fair.
8594 */
9b5b7751 8595 tg->shares = shares;
c09595f6
PZ
8596 for_each_possible_cpu(i) {
8597 /*
8598 * force a rebalance
8599 */
8600 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8601 set_se_shares(tg->se[i], shares);
c09595f6 8602 }
29f59db3 8603
6b2d7700
SV
8604 /*
8605 * Enable load balance activity on this group, by inserting it back on
8606 * each cpu's rq->leaf_cfs_rq_list.
8607 */
8ed36996 8608 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8609 for_each_possible_cpu(i)
8610 register_fair_sched_group(tg, i);
f473aa5e 8611 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8612 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8613done:
8ed36996 8614 mutex_unlock(&shares_mutex);
9b5b7751 8615 return 0;
29f59db3
SV
8616}
8617
5cb350ba
DG
8618unsigned long sched_group_shares(struct task_group *tg)
8619{
8620 return tg->shares;
8621}
052f1dc7 8622#endif
5cb350ba 8623
052f1dc7 8624#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8625/*
9f0c1e56 8626 * Ensure that the real time constraints are schedulable.
6f505b16 8627 */
9f0c1e56
PZ
8628static DEFINE_MUTEX(rt_constraints_mutex);
8629
8630static unsigned long to_ratio(u64 period, u64 runtime)
8631{
8632 if (runtime == RUNTIME_INF)
8633 return 1ULL << 16;
8634
6f6d6a1a 8635 return div64_u64(runtime << 16, period);
9f0c1e56
PZ
8636}
8637
b40b2e8e
PZ
8638#ifdef CONFIG_CGROUP_SCHED
8639static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8640{
10b612f4 8641 struct task_group *tgi, *parent = tg->parent;
b40b2e8e
PZ
8642 unsigned long total = 0;
8643
8644 if (!parent) {
8645 if (global_rt_period() < period)
8646 return 0;
8647
8648 return to_ratio(period, runtime) <
8649 to_ratio(global_rt_period(), global_rt_runtime());
8650 }
8651
8652 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8653 return 0;
8654
8655 rcu_read_lock();
8656 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8657 if (tgi == tg)
8658 continue;
8659
8660 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8661 tgi->rt_bandwidth.rt_runtime);
8662 }
8663 rcu_read_unlock();
8664
10b612f4 8665 return total + to_ratio(period, runtime) <=
b40b2e8e
PZ
8666 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8667 parent->rt_bandwidth.rt_runtime);
8668}
8669#elif defined CONFIG_USER_SCHED
9f0c1e56 8670static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
8671{
8672 struct task_group *tgi;
8673 unsigned long total = 0;
9f0c1e56 8674 unsigned long global_ratio =
d0b27fa7 8675 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
8676
8677 rcu_read_lock();
9f0c1e56
PZ
8678 list_for_each_entry_rcu(tgi, &task_groups, list) {
8679 if (tgi == tg)
8680 continue;
6f505b16 8681
d0b27fa7
PZ
8682 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8683 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
8684 }
8685 rcu_read_unlock();
6f505b16 8686
9f0c1e56 8687 return total + to_ratio(period, runtime) < global_ratio;
6f505b16 8688}
b40b2e8e 8689#endif
6f505b16 8690
521f1a24
DG
8691/* Must be called with tasklist_lock held */
8692static inline int tg_has_rt_tasks(struct task_group *tg)
8693{
8694 struct task_struct *g, *p;
8695 do_each_thread(g, p) {
8696 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8697 return 1;
8698 } while_each_thread(g, p);
8699 return 0;
8700}
8701
d0b27fa7
PZ
8702static int tg_set_bandwidth(struct task_group *tg,
8703 u64 rt_period, u64 rt_runtime)
6f505b16 8704{
ac086bc2 8705 int i, err = 0;
9f0c1e56 8706
9f0c1e56 8707 mutex_lock(&rt_constraints_mutex);
521f1a24 8708 read_lock(&tasklist_lock);
ac086bc2 8709 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8710 err = -EBUSY;
8711 goto unlock;
8712 }
9f0c1e56
PZ
8713 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8714 err = -EINVAL;
8715 goto unlock;
8716 }
ac086bc2
PZ
8717
8718 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8719 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8720 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8721
8722 for_each_possible_cpu(i) {
8723 struct rt_rq *rt_rq = tg->rt_rq[i];
8724
8725 spin_lock(&rt_rq->rt_runtime_lock);
8726 rt_rq->rt_runtime = rt_runtime;
8727 spin_unlock(&rt_rq->rt_runtime_lock);
8728 }
8729 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8730 unlock:
521f1a24 8731 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8732 mutex_unlock(&rt_constraints_mutex);
8733
8734 return err;
6f505b16
PZ
8735}
8736
d0b27fa7
PZ
8737int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8738{
8739 u64 rt_runtime, rt_period;
8740
8741 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8742 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8743 if (rt_runtime_us < 0)
8744 rt_runtime = RUNTIME_INF;
8745
8746 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8747}
8748
9f0c1e56
PZ
8749long sched_group_rt_runtime(struct task_group *tg)
8750{
8751 u64 rt_runtime_us;
8752
d0b27fa7 8753 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8754 return -1;
8755
d0b27fa7 8756 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8757 do_div(rt_runtime_us, NSEC_PER_USEC);
8758 return rt_runtime_us;
8759}
d0b27fa7
PZ
8760
8761int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8762{
8763 u64 rt_runtime, rt_period;
8764
8765 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8766 rt_runtime = tg->rt_bandwidth.rt_runtime;
8767
619b0488
R
8768 if (rt_period == 0)
8769 return -EINVAL;
8770
d0b27fa7
PZ
8771 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8772}
8773
8774long sched_group_rt_period(struct task_group *tg)
8775{
8776 u64 rt_period_us;
8777
8778 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8779 do_div(rt_period_us, NSEC_PER_USEC);
8780 return rt_period_us;
8781}
8782
8783static int sched_rt_global_constraints(void)
8784{
10b612f4
PZ
8785 struct task_group *tg = &root_task_group;
8786 u64 rt_runtime, rt_period;
d0b27fa7
PZ
8787 int ret = 0;
8788
10b612f4
PZ
8789 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8790 rt_runtime = tg->rt_bandwidth.rt_runtime;
8791
d0b27fa7 8792 mutex_lock(&rt_constraints_mutex);
10b612f4 8793 if (!__rt_schedulable(tg, rt_period, rt_runtime))
d0b27fa7
PZ
8794 ret = -EINVAL;
8795 mutex_unlock(&rt_constraints_mutex);
8796
8797 return ret;
8798}
6d6bc0ad 8799#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8800static int sched_rt_global_constraints(void)
8801{
ac086bc2
PZ
8802 unsigned long flags;
8803 int i;
8804
8805 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8806 for_each_possible_cpu(i) {
8807 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8808
8809 spin_lock(&rt_rq->rt_runtime_lock);
8810 rt_rq->rt_runtime = global_rt_runtime();
8811 spin_unlock(&rt_rq->rt_runtime_lock);
8812 }
8813 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8814
d0b27fa7
PZ
8815 return 0;
8816}
6d6bc0ad 8817#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8818
8819int sched_rt_handler(struct ctl_table *table, int write,
8820 struct file *filp, void __user *buffer, size_t *lenp,
8821 loff_t *ppos)
8822{
8823 int ret;
8824 int old_period, old_runtime;
8825 static DEFINE_MUTEX(mutex);
8826
8827 mutex_lock(&mutex);
8828 old_period = sysctl_sched_rt_period;
8829 old_runtime = sysctl_sched_rt_runtime;
8830
8831 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8832
8833 if (!ret && write) {
8834 ret = sched_rt_global_constraints();
8835 if (ret) {
8836 sysctl_sched_rt_period = old_period;
8837 sysctl_sched_rt_runtime = old_runtime;
8838 } else {
8839 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8840 def_rt_bandwidth.rt_period =
8841 ns_to_ktime(global_rt_period());
8842 }
8843 }
8844 mutex_unlock(&mutex);
8845
8846 return ret;
8847}
68318b8e 8848
052f1dc7 8849#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8850
8851/* return corresponding task_group object of a cgroup */
2b01dfe3 8852static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8853{
2b01dfe3
PM
8854 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8855 struct task_group, css);
68318b8e
SV
8856}
8857
8858static struct cgroup_subsys_state *
2b01dfe3 8859cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8860{
ec7dc8ac 8861 struct task_group *tg, *parent;
68318b8e 8862
2b01dfe3 8863 if (!cgrp->parent) {
68318b8e 8864 /* This is early initialization for the top cgroup */
2b01dfe3 8865 init_task_group.css.cgroup = cgrp;
68318b8e
SV
8866 return &init_task_group.css;
8867 }
8868
ec7dc8ac
DG
8869 parent = cgroup_tg(cgrp->parent);
8870 tg = sched_create_group(parent);
68318b8e
SV
8871 if (IS_ERR(tg))
8872 return ERR_PTR(-ENOMEM);
8873
8874 /* Bind the cgroup to task_group object we just created */
2b01dfe3 8875 tg->css.cgroup = cgrp;
68318b8e
SV
8876
8877 return &tg->css;
8878}
8879
41a2d6cf
IM
8880static void
8881cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8882{
2b01dfe3 8883 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8884
8885 sched_destroy_group(tg);
8886}
8887
41a2d6cf
IM
8888static int
8889cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8890 struct task_struct *tsk)
68318b8e 8891{
b68aa230
PZ
8892#ifdef CONFIG_RT_GROUP_SCHED
8893 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 8894 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
8895 return -EINVAL;
8896#else
68318b8e
SV
8897 /* We don't support RT-tasks being in separate groups */
8898 if (tsk->sched_class != &fair_sched_class)
8899 return -EINVAL;
b68aa230 8900#endif
68318b8e
SV
8901
8902 return 0;
8903}
8904
8905static void
2b01dfe3 8906cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
8907 struct cgroup *old_cont, struct task_struct *tsk)
8908{
8909 sched_move_task(tsk);
8910}
8911
052f1dc7 8912#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8913static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8914 u64 shareval)
68318b8e 8915{
2b01dfe3 8916 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8917}
8918
f4c753b7 8919static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8920{
2b01dfe3 8921 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8922
8923 return (u64) tg->shares;
8924}
6d6bc0ad 8925#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8926
052f1dc7 8927#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8928static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8929 s64 val)
6f505b16 8930{
06ecb27c 8931 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8932}
8933
06ecb27c 8934static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8935{
06ecb27c 8936 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8937}
d0b27fa7
PZ
8938
8939static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8940 u64 rt_period_us)
8941{
8942 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8943}
8944
8945static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8946{
8947 return sched_group_rt_period(cgroup_tg(cgrp));
8948}
6d6bc0ad 8949#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8950
fe5c7cc2 8951static struct cftype cpu_files[] = {
052f1dc7 8952#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8953 {
8954 .name = "shares",
f4c753b7
PM
8955 .read_u64 = cpu_shares_read_u64,
8956 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8957 },
052f1dc7
PZ
8958#endif
8959#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8960 {
9f0c1e56 8961 .name = "rt_runtime_us",
06ecb27c
PM
8962 .read_s64 = cpu_rt_runtime_read,
8963 .write_s64 = cpu_rt_runtime_write,
6f505b16 8964 },
d0b27fa7
PZ
8965 {
8966 .name = "rt_period_us",
f4c753b7
PM
8967 .read_u64 = cpu_rt_period_read_uint,
8968 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8969 },
052f1dc7 8970#endif
68318b8e
SV
8971};
8972
8973static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8974{
fe5c7cc2 8975 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8976}
8977
8978struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8979 .name = "cpu",
8980 .create = cpu_cgroup_create,
8981 .destroy = cpu_cgroup_destroy,
8982 .can_attach = cpu_cgroup_can_attach,
8983 .attach = cpu_cgroup_attach,
8984 .populate = cpu_cgroup_populate,
8985 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8986 .early_init = 1,
8987};
8988
052f1dc7 8989#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8990
8991#ifdef CONFIG_CGROUP_CPUACCT
8992
8993/*
8994 * CPU accounting code for task groups.
8995 *
8996 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8997 * (balbir@in.ibm.com).
8998 */
8999
9000/* track cpu usage of a group of tasks */
9001struct cpuacct {
9002 struct cgroup_subsys_state css;
9003 /* cpuusage holds pointer to a u64-type object on every cpu */
9004 u64 *cpuusage;
9005};
9006
9007struct cgroup_subsys cpuacct_subsys;
9008
9009/* return cpu accounting group corresponding to this container */
32cd756a 9010static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9011{
32cd756a 9012 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9013 struct cpuacct, css);
9014}
9015
9016/* return cpu accounting group to which this task belongs */
9017static inline struct cpuacct *task_ca(struct task_struct *tsk)
9018{
9019 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9020 struct cpuacct, css);
9021}
9022
9023/* create a new cpu accounting group */
9024static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9025 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9026{
9027 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9028
9029 if (!ca)
9030 return ERR_PTR(-ENOMEM);
9031
9032 ca->cpuusage = alloc_percpu(u64);
9033 if (!ca->cpuusage) {
9034 kfree(ca);
9035 return ERR_PTR(-ENOMEM);
9036 }
9037
9038 return &ca->css;
9039}
9040
9041/* destroy an existing cpu accounting group */
41a2d6cf 9042static void
32cd756a 9043cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9044{
32cd756a 9045 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9046
9047 free_percpu(ca->cpuusage);
9048 kfree(ca);
9049}
9050
9051/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9052static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9053{
32cd756a 9054 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9055 u64 totalcpuusage = 0;
9056 int i;
9057
9058 for_each_possible_cpu(i) {
9059 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9060
9061 /*
9062 * Take rq->lock to make 64-bit addition safe on 32-bit
9063 * platforms.
9064 */
9065 spin_lock_irq(&cpu_rq(i)->lock);
9066 totalcpuusage += *cpuusage;
9067 spin_unlock_irq(&cpu_rq(i)->lock);
9068 }
9069
9070 return totalcpuusage;
9071}
9072
0297b803
DG
9073static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9074 u64 reset)
9075{
9076 struct cpuacct *ca = cgroup_ca(cgrp);
9077 int err = 0;
9078 int i;
9079
9080 if (reset) {
9081 err = -EINVAL;
9082 goto out;
9083 }
9084
9085 for_each_possible_cpu(i) {
9086 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9087
9088 spin_lock_irq(&cpu_rq(i)->lock);
9089 *cpuusage = 0;
9090 spin_unlock_irq(&cpu_rq(i)->lock);
9091 }
9092out:
9093 return err;
9094}
9095
d842de87
SV
9096static struct cftype files[] = {
9097 {
9098 .name = "usage",
f4c753b7
PM
9099 .read_u64 = cpuusage_read,
9100 .write_u64 = cpuusage_write,
d842de87
SV
9101 },
9102};
9103
32cd756a 9104static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9105{
32cd756a 9106 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9107}
9108
9109/*
9110 * charge this task's execution time to its accounting group.
9111 *
9112 * called with rq->lock held.
9113 */
9114static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9115{
9116 struct cpuacct *ca;
9117
9118 if (!cpuacct_subsys.active)
9119 return;
9120
9121 ca = task_ca(tsk);
9122 if (ca) {
9123 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9124
9125 *cpuusage += cputime;
9126 }
9127}
9128
9129struct cgroup_subsys cpuacct_subsys = {
9130 .name = "cpuacct",
9131 .create = cpuacct_create,
9132 .destroy = cpuacct_destroy,
9133 .populate = cpuacct_populate,
9134 .subsys_id = cpuacct_subsys_id,
9135};
9136#endif /* CONFIG_CGROUP_CPUACCT */