]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
driver core: Suppress sysfs warnings for device_rename().
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
6cd8a4bb 73#include <linux/ftrace.h>
1da177e4 74
5517d86b 75#include <asm/tlb.h>
838225b4 76#include <asm/irq_regs.h>
1da177e4 77
6e0534f2
GH
78#include "sched_cpupri.h"
79
1da177e4
LT
80/*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89/*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98/*
d7876a08 99 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 100 */
d6322faf 101#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 102
6aa645ea
IM
103#define NICE_0_LOAD SCHED_LOAD_SCALE
104#define NICE_0_SHIFT SCHED_LOAD_SHIFT
105
1da177e4
LT
106/*
107 * These are the 'tuning knobs' of the scheduler:
108 *
a4ec24b4 109 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
110 * Timeslices get refilled after they expire.
111 */
1da177e4 112#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 113
d0b27fa7
PZ
114/*
115 * single value that denotes runtime == period, ie unlimited time.
116 */
117#define RUNTIME_INF ((u64)~0ULL)
118
5517d86b
ED
119#ifdef CONFIG_SMP
120/*
121 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
122 * Since cpu_power is a 'constant', we can use a reciprocal divide.
123 */
124static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
125{
126 return reciprocal_divide(load, sg->reciprocal_cpu_power);
127}
128
129/*
130 * Each time a sched group cpu_power is changed,
131 * we must compute its reciprocal value
132 */
133static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
134{
135 sg->__cpu_power += val;
136 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
137}
138#endif
139
e05606d3
IM
140static inline int rt_policy(int policy)
141{
3f33a7ce 142 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
143 return 1;
144 return 0;
145}
146
147static inline int task_has_rt_policy(struct task_struct *p)
148{
149 return rt_policy(p->policy);
150}
151
1da177e4 152/*
6aa645ea 153 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 154 */
6aa645ea
IM
155struct rt_prio_array {
156 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
157 struct list_head queue[MAX_RT_PRIO];
158};
159
d0b27fa7 160struct rt_bandwidth {
ea736ed5
IM
161 /* nests inside the rq lock: */
162 spinlock_t rt_runtime_lock;
163 ktime_t rt_period;
164 u64 rt_runtime;
165 struct hrtimer rt_period_timer;
d0b27fa7
PZ
166};
167
168static struct rt_bandwidth def_rt_bandwidth;
169
170static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
171
172static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
173{
174 struct rt_bandwidth *rt_b =
175 container_of(timer, struct rt_bandwidth, rt_period_timer);
176 ktime_t now;
177 int overrun;
178 int idle = 0;
179
180 for (;;) {
181 now = hrtimer_cb_get_time(timer);
182 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
183
184 if (!overrun)
185 break;
186
187 idle = do_sched_rt_period_timer(rt_b, overrun);
188 }
189
190 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
191}
192
193static
194void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
195{
196 rt_b->rt_period = ns_to_ktime(period);
197 rt_b->rt_runtime = runtime;
198
ac086bc2
PZ
199 spin_lock_init(&rt_b->rt_runtime_lock);
200
d0b27fa7
PZ
201 hrtimer_init(&rt_b->rt_period_timer,
202 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
203 rt_b->rt_period_timer.function = sched_rt_period_timer;
204 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
205}
206
207static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
208{
209 ktime_t now;
210
211 if (rt_b->rt_runtime == RUNTIME_INF)
212 return;
213
214 if (hrtimer_active(&rt_b->rt_period_timer))
215 return;
216
217 spin_lock(&rt_b->rt_runtime_lock);
218 for (;;) {
219 if (hrtimer_active(&rt_b->rt_period_timer))
220 break;
221
222 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
223 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
224 hrtimer_start(&rt_b->rt_period_timer,
225 rt_b->rt_period_timer.expires,
226 HRTIMER_MODE_ABS);
227 }
228 spin_unlock(&rt_b->rt_runtime_lock);
229}
230
231#ifdef CONFIG_RT_GROUP_SCHED
232static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
233{
234 hrtimer_cancel(&rt_b->rt_period_timer);
235}
236#endif
237
712555ee
HC
238/*
239 * sched_domains_mutex serializes calls to arch_init_sched_domains,
240 * detach_destroy_domains and partition_sched_domains.
241 */
242static DEFINE_MUTEX(sched_domains_mutex);
243
052f1dc7 244#ifdef CONFIG_GROUP_SCHED
29f59db3 245
68318b8e
SV
246#include <linux/cgroup.h>
247
29f59db3
SV
248struct cfs_rq;
249
6f505b16
PZ
250static LIST_HEAD(task_groups);
251
29f59db3 252/* task group related information */
4cf86d77 253struct task_group {
052f1dc7 254#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
255 struct cgroup_subsys_state css;
256#endif
052f1dc7
PZ
257
258#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
259 /* schedulable entities of this group on each cpu */
260 struct sched_entity **se;
261 /* runqueue "owned" by this group on each cpu */
262 struct cfs_rq **cfs_rq;
263 unsigned long shares;
052f1dc7
PZ
264#endif
265
266#ifdef CONFIG_RT_GROUP_SCHED
267 struct sched_rt_entity **rt_se;
268 struct rt_rq **rt_rq;
269
d0b27fa7 270 struct rt_bandwidth rt_bandwidth;
052f1dc7 271#endif
6b2d7700 272
ae8393e5 273 struct rcu_head rcu;
6f505b16 274 struct list_head list;
f473aa5e
PZ
275
276 struct task_group *parent;
277 struct list_head siblings;
278 struct list_head children;
29f59db3
SV
279};
280
354d60c2 281#ifdef CONFIG_USER_SCHED
eff766a6
PZ
282
283/*
284 * Root task group.
285 * Every UID task group (including init_task_group aka UID-0) will
286 * be a child to this group.
287 */
288struct task_group root_task_group;
289
052f1dc7 290#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
291/* Default task group's sched entity on each cpu */
292static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
293/* Default task group's cfs_rq on each cpu */
294static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 295#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
296
297#ifdef CONFIG_RT_GROUP_SCHED
298static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
299static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad
DG
300#endif /* CONFIG_RT_GROUP_SCHED */
301#else /* !CONFIG_FAIR_GROUP_SCHED */
eff766a6 302#define root_task_group init_task_group
6d6bc0ad 303#endif /* CONFIG_FAIR_GROUP_SCHED */
6f505b16 304
8ed36996 305/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
306 * a task group's cpu shares.
307 */
8ed36996 308static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 309
052f1dc7 310#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
311#ifdef CONFIG_USER_SCHED
312# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 313#else /* !CONFIG_USER_SCHED */
052f1dc7 314# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 315#endif /* CONFIG_USER_SCHED */
052f1dc7 316
cb4ad1ff 317/*
2e084786
LJ
318 * A weight of 0 or 1 can cause arithmetics problems.
319 * A weight of a cfs_rq is the sum of weights of which entities
320 * are queued on this cfs_rq, so a weight of a entity should not be
321 * too large, so as the shares value of a task group.
cb4ad1ff
MX
322 * (The default weight is 1024 - so there's no practical
323 * limitation from this.)
324 */
18d95a28 325#define MIN_SHARES 2
2e084786 326#define MAX_SHARES (1UL << 18)
18d95a28 327
052f1dc7
PZ
328static int init_task_group_load = INIT_TASK_GROUP_LOAD;
329#endif
330
29f59db3 331/* Default task group.
3a252015 332 * Every task in system belong to this group at bootup.
29f59db3 333 */
434d53b0 334struct task_group init_task_group;
29f59db3
SV
335
336/* return group to which a task belongs */
4cf86d77 337static inline struct task_group *task_group(struct task_struct *p)
29f59db3 338{
4cf86d77 339 struct task_group *tg;
9b5b7751 340
052f1dc7 341#ifdef CONFIG_USER_SCHED
24e377a8 342 tg = p->user->tg;
052f1dc7 343#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
344 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
345 struct task_group, css);
24e377a8 346#else
41a2d6cf 347 tg = &init_task_group;
24e377a8 348#endif
9b5b7751 349 return tg;
29f59db3
SV
350}
351
352/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 353static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 354{
052f1dc7 355#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
356 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
357 p->se.parent = task_group(p)->se[cpu];
052f1dc7 358#endif
6f505b16 359
052f1dc7 360#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
361 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
362 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 363#endif
29f59db3
SV
364}
365
366#else
367
6f505b16 368static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
369static inline struct task_group *task_group(struct task_struct *p)
370{
371 return NULL;
372}
29f59db3 373
052f1dc7 374#endif /* CONFIG_GROUP_SCHED */
29f59db3 375
6aa645ea
IM
376/* CFS-related fields in a runqueue */
377struct cfs_rq {
378 struct load_weight load;
379 unsigned long nr_running;
380
6aa645ea 381 u64 exec_clock;
e9acbff6 382 u64 min_vruntime;
103638d9 383 u64 pair_start;
6aa645ea
IM
384
385 struct rb_root tasks_timeline;
386 struct rb_node *rb_leftmost;
4a55bd5e
PZ
387
388 struct list_head tasks;
389 struct list_head *balance_iterator;
390
391 /*
392 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
393 * It is set to NULL otherwise (i.e when none are currently running).
394 */
aa2ac252 395 struct sched_entity *curr, *next;
ddc97297
PZ
396
397 unsigned long nr_spread_over;
398
62160e3f 399#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
400 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
401
41a2d6cf
IM
402 /*
403 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
404 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
405 * (like users, containers etc.)
406 *
407 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
408 * list is used during load balance.
409 */
41a2d6cf
IM
410 struct list_head leaf_cfs_rq_list;
411 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
412
413#ifdef CONFIG_SMP
c09595f6 414 /*
c8cba857 415 * the part of load.weight contributed by tasks
c09595f6 416 */
c8cba857 417 unsigned long task_weight;
c09595f6 418
c8cba857
PZ
419 /*
420 * h_load = weight * f(tg)
421 *
422 * Where f(tg) is the recursive weight fraction assigned to
423 * this group.
424 */
425 unsigned long h_load;
c09595f6 426
c8cba857
PZ
427 /*
428 * this cpu's part of tg->shares
429 */
430 unsigned long shares;
f1d239f7
PZ
431
432 /*
433 * load.weight at the time we set shares
434 */
435 unsigned long rq_weight;
c09595f6 436#endif
6aa645ea
IM
437#endif
438};
1da177e4 439
6aa645ea
IM
440/* Real-Time classes' related field in a runqueue: */
441struct rt_rq {
442 struct rt_prio_array active;
63489e45 443 unsigned long rt_nr_running;
052f1dc7 444#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
445 int highest_prio; /* highest queued rt task prio */
446#endif
fa85ae24 447#ifdef CONFIG_SMP
73fe6aae 448 unsigned long rt_nr_migratory;
a22d7fc1 449 int overloaded;
fa85ae24 450#endif
6f505b16 451 int rt_throttled;
fa85ae24 452 u64 rt_time;
ac086bc2 453 u64 rt_runtime;
ea736ed5 454 /* Nests inside the rq lock: */
ac086bc2 455 spinlock_t rt_runtime_lock;
6f505b16 456
052f1dc7 457#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
458 unsigned long rt_nr_boosted;
459
6f505b16
PZ
460 struct rq *rq;
461 struct list_head leaf_rt_rq_list;
462 struct task_group *tg;
463 struct sched_rt_entity *rt_se;
464#endif
6aa645ea
IM
465};
466
57d885fe
GH
467#ifdef CONFIG_SMP
468
469/*
470 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
471 * variables. Each exclusive cpuset essentially defines an island domain by
472 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
473 * exclusive cpuset is created, we also create and attach a new root-domain
474 * object.
475 *
57d885fe
GH
476 */
477struct root_domain {
478 atomic_t refcount;
479 cpumask_t span;
480 cpumask_t online;
637f5085 481
0eab9146 482 /*
637f5085
GH
483 * The "RT overload" flag: it gets set if a CPU has more than
484 * one runnable RT task.
485 */
486 cpumask_t rto_mask;
0eab9146 487 atomic_t rto_count;
6e0534f2
GH
488#ifdef CONFIG_SMP
489 struct cpupri cpupri;
490#endif
57d885fe
GH
491};
492
dc938520
GH
493/*
494 * By default the system creates a single root-domain with all cpus as
495 * members (mimicking the global state we have today).
496 */
57d885fe
GH
497static struct root_domain def_root_domain;
498
499#endif
500
1da177e4
LT
501/*
502 * This is the main, per-CPU runqueue data structure.
503 *
504 * Locking rule: those places that want to lock multiple runqueues
505 * (such as the load balancing or the thread migration code), lock
506 * acquire operations must be ordered by ascending &runqueue.
507 */
70b97a7f 508struct rq {
d8016491
IM
509 /* runqueue lock: */
510 spinlock_t lock;
1da177e4
LT
511
512 /*
513 * nr_running and cpu_load should be in the same cacheline because
514 * remote CPUs use both these fields when doing load calculation.
515 */
516 unsigned long nr_running;
6aa645ea
IM
517 #define CPU_LOAD_IDX_MAX 5
518 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 519 unsigned char idle_at_tick;
46cb4b7c 520#ifdef CONFIG_NO_HZ
15934a37 521 unsigned long last_tick_seen;
46cb4b7c
SS
522 unsigned char in_nohz_recently;
523#endif
d8016491
IM
524 /* capture load from *all* tasks on this cpu: */
525 struct load_weight load;
6aa645ea
IM
526 unsigned long nr_load_updates;
527 u64 nr_switches;
528
529 struct cfs_rq cfs;
6f505b16 530 struct rt_rq rt;
6f505b16 531
6aa645ea 532#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
533 /* list of leaf cfs_rq on this cpu: */
534 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
535#endif
536#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 537 struct list_head leaf_rt_rq_list;
1da177e4 538#endif
1da177e4
LT
539
540 /*
541 * This is part of a global counter where only the total sum
542 * over all CPUs matters. A task can increase this counter on
543 * one CPU and if it got migrated afterwards it may decrease
544 * it on another CPU. Always updated under the runqueue lock:
545 */
546 unsigned long nr_uninterruptible;
547
36c8b586 548 struct task_struct *curr, *idle;
c9819f45 549 unsigned long next_balance;
1da177e4 550 struct mm_struct *prev_mm;
6aa645ea 551
3e51f33f 552 u64 clock;
6aa645ea 553
1da177e4
LT
554 atomic_t nr_iowait;
555
556#ifdef CONFIG_SMP
0eab9146 557 struct root_domain *rd;
1da177e4
LT
558 struct sched_domain *sd;
559
560 /* For active balancing */
561 int active_balance;
562 int push_cpu;
d8016491
IM
563 /* cpu of this runqueue: */
564 int cpu;
1f11eb6a 565 int online;
1da177e4 566
a8a51d5e 567 unsigned long avg_load_per_task;
1da177e4 568
36c8b586 569 struct task_struct *migration_thread;
1da177e4
LT
570 struct list_head migration_queue;
571#endif
572
8f4d37ec
PZ
573#ifdef CONFIG_SCHED_HRTICK
574 unsigned long hrtick_flags;
575 ktime_t hrtick_expire;
576 struct hrtimer hrtick_timer;
577#endif
578
1da177e4
LT
579#ifdef CONFIG_SCHEDSTATS
580 /* latency stats */
581 struct sched_info rq_sched_info;
582
583 /* sys_sched_yield() stats */
480b9434
KC
584 unsigned int yld_exp_empty;
585 unsigned int yld_act_empty;
586 unsigned int yld_both_empty;
587 unsigned int yld_count;
1da177e4
LT
588
589 /* schedule() stats */
480b9434
KC
590 unsigned int sched_switch;
591 unsigned int sched_count;
592 unsigned int sched_goidle;
1da177e4
LT
593
594 /* try_to_wake_up() stats */
480b9434
KC
595 unsigned int ttwu_count;
596 unsigned int ttwu_local;
b8efb561
IM
597
598 /* BKL stats */
480b9434 599 unsigned int bkl_count;
1da177e4 600#endif
fcb99371 601 struct lock_class_key rq_lock_key;
1da177e4
LT
602};
603
f34e3b61 604static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 605
dd41f596
IM
606static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
607{
608 rq->curr->sched_class->check_preempt_curr(rq, p);
609}
610
0a2966b4
CL
611static inline int cpu_of(struct rq *rq)
612{
613#ifdef CONFIG_SMP
614 return rq->cpu;
615#else
616 return 0;
617#endif
618}
619
674311d5
NP
620/*
621 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 622 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
623 *
624 * The domain tree of any CPU may only be accessed from within
625 * preempt-disabled sections.
626 */
48f24c4d
IM
627#define for_each_domain(cpu, __sd) \
628 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
629
630#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
631#define this_rq() (&__get_cpu_var(runqueues))
632#define task_rq(p) cpu_rq(task_cpu(p))
633#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
634
3e51f33f
PZ
635static inline void update_rq_clock(struct rq *rq)
636{
637 rq->clock = sched_clock_cpu(cpu_of(rq));
638}
639
bf5c91ba
IM
640/*
641 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
642 */
643#ifdef CONFIG_SCHED_DEBUG
644# define const_debug __read_mostly
645#else
646# define const_debug static const
647#endif
648
017730c1
IM
649/**
650 * runqueue_is_locked
651 *
652 * Returns true if the current cpu runqueue is locked.
653 * This interface allows printk to be called with the runqueue lock
654 * held and know whether or not it is OK to wake up the klogd.
655 */
656int runqueue_is_locked(void)
657{
658 int cpu = get_cpu();
659 struct rq *rq = cpu_rq(cpu);
660 int ret;
661
662 ret = spin_is_locked(&rq->lock);
663 put_cpu();
664 return ret;
665}
666
bf5c91ba
IM
667/*
668 * Debugging: various feature bits
669 */
f00b45c1
PZ
670
671#define SCHED_FEAT(name, enabled) \
672 __SCHED_FEAT_##name ,
673
bf5c91ba 674enum {
f00b45c1 675#include "sched_features.h"
bf5c91ba
IM
676};
677
f00b45c1
PZ
678#undef SCHED_FEAT
679
680#define SCHED_FEAT(name, enabled) \
681 (1UL << __SCHED_FEAT_##name) * enabled |
682
bf5c91ba 683const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
684#include "sched_features.h"
685 0;
686
687#undef SCHED_FEAT
688
689#ifdef CONFIG_SCHED_DEBUG
690#define SCHED_FEAT(name, enabled) \
691 #name ,
692
983ed7a6 693static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
694#include "sched_features.h"
695 NULL
696};
697
698#undef SCHED_FEAT
699
983ed7a6 700static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
701{
702 filp->private_data = inode->i_private;
703 return 0;
704}
705
706static ssize_t
707sched_feat_read(struct file *filp, char __user *ubuf,
708 size_t cnt, loff_t *ppos)
709{
710 char *buf;
711 int r = 0;
712 int len = 0;
713 int i;
714
715 for (i = 0; sched_feat_names[i]; i++) {
716 len += strlen(sched_feat_names[i]);
717 len += 4;
718 }
719
720 buf = kmalloc(len + 2, GFP_KERNEL);
721 if (!buf)
722 return -ENOMEM;
723
724 for (i = 0; sched_feat_names[i]; i++) {
725 if (sysctl_sched_features & (1UL << i))
726 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
727 else
c24b7c52 728 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
729 }
730
731 r += sprintf(buf + r, "\n");
732 WARN_ON(r >= len + 2);
733
734 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
735
736 kfree(buf);
737
738 return r;
739}
740
741static ssize_t
742sched_feat_write(struct file *filp, const char __user *ubuf,
743 size_t cnt, loff_t *ppos)
744{
745 char buf[64];
746 char *cmp = buf;
747 int neg = 0;
748 int i;
749
750 if (cnt > 63)
751 cnt = 63;
752
753 if (copy_from_user(&buf, ubuf, cnt))
754 return -EFAULT;
755
756 buf[cnt] = 0;
757
c24b7c52 758 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
759 neg = 1;
760 cmp += 3;
761 }
762
763 for (i = 0; sched_feat_names[i]; i++) {
764 int len = strlen(sched_feat_names[i]);
765
766 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
767 if (neg)
768 sysctl_sched_features &= ~(1UL << i);
769 else
770 sysctl_sched_features |= (1UL << i);
771 break;
772 }
773 }
774
775 if (!sched_feat_names[i])
776 return -EINVAL;
777
778 filp->f_pos += cnt;
779
780 return cnt;
781}
782
783static struct file_operations sched_feat_fops = {
784 .open = sched_feat_open,
785 .read = sched_feat_read,
786 .write = sched_feat_write,
787};
788
789static __init int sched_init_debug(void)
790{
f00b45c1
PZ
791 debugfs_create_file("sched_features", 0644, NULL, NULL,
792 &sched_feat_fops);
793
794 return 0;
795}
796late_initcall(sched_init_debug);
797
798#endif
799
800#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 801
b82d9fdd
PZ
802/*
803 * Number of tasks to iterate in a single balance run.
804 * Limited because this is done with IRQs disabled.
805 */
806const_debug unsigned int sysctl_sched_nr_migrate = 32;
807
2398f2c6
PZ
808/*
809 * ratelimit for updating the group shares.
810 * default: 0.5ms
811 */
812const_debug unsigned int sysctl_sched_shares_ratelimit = 500000;
813
fa85ae24 814/*
9f0c1e56 815 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
816 * default: 1s
817 */
9f0c1e56 818unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 819
6892b75e
IM
820static __read_mostly int scheduler_running;
821
9f0c1e56
PZ
822/*
823 * part of the period that we allow rt tasks to run in us.
824 * default: 0.95s
825 */
826int sysctl_sched_rt_runtime = 950000;
fa85ae24 827
d0b27fa7
PZ
828static inline u64 global_rt_period(void)
829{
830 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
831}
832
833static inline u64 global_rt_runtime(void)
834{
835 if (sysctl_sched_rt_period < 0)
836 return RUNTIME_INF;
837
838 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
839}
fa85ae24 840
1da177e4 841#ifndef prepare_arch_switch
4866cde0
NP
842# define prepare_arch_switch(next) do { } while (0)
843#endif
844#ifndef finish_arch_switch
845# define finish_arch_switch(prev) do { } while (0)
846#endif
847
051a1d1a
DA
848static inline int task_current(struct rq *rq, struct task_struct *p)
849{
850 return rq->curr == p;
851}
852
4866cde0 853#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 854static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 855{
051a1d1a 856 return task_current(rq, p);
4866cde0
NP
857}
858
70b97a7f 859static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
860{
861}
862
70b97a7f 863static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 864{
da04c035
IM
865#ifdef CONFIG_DEBUG_SPINLOCK
866 /* this is a valid case when another task releases the spinlock */
867 rq->lock.owner = current;
868#endif
8a25d5de
IM
869 /*
870 * If we are tracking spinlock dependencies then we have to
871 * fix up the runqueue lock - which gets 'carried over' from
872 * prev into current:
873 */
874 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
875
4866cde0
NP
876 spin_unlock_irq(&rq->lock);
877}
878
879#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 880static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
881{
882#ifdef CONFIG_SMP
883 return p->oncpu;
884#else
051a1d1a 885 return task_current(rq, p);
4866cde0
NP
886#endif
887}
888
70b97a7f 889static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
890{
891#ifdef CONFIG_SMP
892 /*
893 * We can optimise this out completely for !SMP, because the
894 * SMP rebalancing from interrupt is the only thing that cares
895 * here.
896 */
897 next->oncpu = 1;
898#endif
899#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
900 spin_unlock_irq(&rq->lock);
901#else
902 spin_unlock(&rq->lock);
903#endif
904}
905
70b97a7f 906static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
907{
908#ifdef CONFIG_SMP
909 /*
910 * After ->oncpu is cleared, the task can be moved to a different CPU.
911 * We must ensure this doesn't happen until the switch is completely
912 * finished.
913 */
914 smp_wmb();
915 prev->oncpu = 0;
916#endif
917#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
918 local_irq_enable();
1da177e4 919#endif
4866cde0
NP
920}
921#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 922
b29739f9
IM
923/*
924 * __task_rq_lock - lock the runqueue a given task resides on.
925 * Must be called interrupts disabled.
926 */
70b97a7f 927static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
928 __acquires(rq->lock)
929{
3a5c359a
AK
930 for (;;) {
931 struct rq *rq = task_rq(p);
932 spin_lock(&rq->lock);
933 if (likely(rq == task_rq(p)))
934 return rq;
b29739f9 935 spin_unlock(&rq->lock);
b29739f9 936 }
b29739f9
IM
937}
938
1da177e4
LT
939/*
940 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 941 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
942 * explicitly disabling preemption.
943 */
70b97a7f 944static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
945 __acquires(rq->lock)
946{
70b97a7f 947 struct rq *rq;
1da177e4 948
3a5c359a
AK
949 for (;;) {
950 local_irq_save(*flags);
951 rq = task_rq(p);
952 spin_lock(&rq->lock);
953 if (likely(rq == task_rq(p)))
954 return rq;
1da177e4 955 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 956 }
1da177e4
LT
957}
958
a9957449 959static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
960 __releases(rq->lock)
961{
962 spin_unlock(&rq->lock);
963}
964
70b97a7f 965static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
966 __releases(rq->lock)
967{
968 spin_unlock_irqrestore(&rq->lock, *flags);
969}
970
1da177e4 971/*
cc2a73b5 972 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 973 */
a9957449 974static struct rq *this_rq_lock(void)
1da177e4
LT
975 __acquires(rq->lock)
976{
70b97a7f 977 struct rq *rq;
1da177e4
LT
978
979 local_irq_disable();
980 rq = this_rq();
981 spin_lock(&rq->lock);
982
983 return rq;
984}
985
8f4d37ec
PZ
986static void __resched_task(struct task_struct *p, int tif_bit);
987
988static inline void resched_task(struct task_struct *p)
989{
990 __resched_task(p, TIF_NEED_RESCHED);
991}
992
993#ifdef CONFIG_SCHED_HRTICK
994/*
995 * Use HR-timers to deliver accurate preemption points.
996 *
997 * Its all a bit involved since we cannot program an hrt while holding the
998 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
999 * reschedule event.
1000 *
1001 * When we get rescheduled we reprogram the hrtick_timer outside of the
1002 * rq->lock.
1003 */
1004static inline void resched_hrt(struct task_struct *p)
1005{
1006 __resched_task(p, TIF_HRTICK_RESCHED);
1007}
1008
1009static inline void resched_rq(struct rq *rq)
1010{
1011 unsigned long flags;
1012
1013 spin_lock_irqsave(&rq->lock, flags);
1014 resched_task(rq->curr);
1015 spin_unlock_irqrestore(&rq->lock, flags);
1016}
1017
1018enum {
1019 HRTICK_SET, /* re-programm hrtick_timer */
1020 HRTICK_RESET, /* not a new slice */
b328ca18 1021 HRTICK_BLOCK, /* stop hrtick operations */
8f4d37ec
PZ
1022};
1023
1024/*
1025 * Use hrtick when:
1026 * - enabled by features
1027 * - hrtimer is actually high res
1028 */
1029static inline int hrtick_enabled(struct rq *rq)
1030{
1031 if (!sched_feat(HRTICK))
1032 return 0;
b328ca18
PZ
1033 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
1034 return 0;
8f4d37ec
PZ
1035 return hrtimer_is_hres_active(&rq->hrtick_timer);
1036}
1037
1038/*
1039 * Called to set the hrtick timer state.
1040 *
1041 * called with rq->lock held and irqs disabled
1042 */
1043static void hrtick_start(struct rq *rq, u64 delay, int reset)
1044{
1045 assert_spin_locked(&rq->lock);
1046
1047 /*
1048 * preempt at: now + delay
1049 */
1050 rq->hrtick_expire =
1051 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1052 /*
1053 * indicate we need to program the timer
1054 */
1055 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1056 if (reset)
1057 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1058
1059 /*
1060 * New slices are called from the schedule path and don't need a
1061 * forced reschedule.
1062 */
1063 if (reset)
1064 resched_hrt(rq->curr);
1065}
1066
1067static void hrtick_clear(struct rq *rq)
1068{
1069 if (hrtimer_active(&rq->hrtick_timer))
1070 hrtimer_cancel(&rq->hrtick_timer);
1071}
1072
1073/*
1074 * Update the timer from the possible pending state.
1075 */
1076static void hrtick_set(struct rq *rq)
1077{
1078 ktime_t time;
1079 int set, reset;
1080 unsigned long flags;
1081
1082 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1083
1084 spin_lock_irqsave(&rq->lock, flags);
1085 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1086 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1087 time = rq->hrtick_expire;
1088 clear_thread_flag(TIF_HRTICK_RESCHED);
1089 spin_unlock_irqrestore(&rq->lock, flags);
1090
1091 if (set) {
1092 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1093 if (reset && !hrtimer_active(&rq->hrtick_timer))
1094 resched_rq(rq);
1095 } else
1096 hrtick_clear(rq);
1097}
1098
1099/*
1100 * High-resolution timer tick.
1101 * Runs from hardirq context with interrupts disabled.
1102 */
1103static enum hrtimer_restart hrtick(struct hrtimer *timer)
1104{
1105 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1106
1107 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1108
1109 spin_lock(&rq->lock);
3e51f33f 1110 update_rq_clock(rq);
8f4d37ec
PZ
1111 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1112 spin_unlock(&rq->lock);
1113
1114 return HRTIMER_NORESTART;
1115}
1116
95e904c7 1117#ifdef CONFIG_SMP
b328ca18
PZ
1118static void hotplug_hrtick_disable(int cpu)
1119{
1120 struct rq *rq = cpu_rq(cpu);
1121 unsigned long flags;
1122
1123 spin_lock_irqsave(&rq->lock, flags);
1124 rq->hrtick_flags = 0;
1125 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1126 spin_unlock_irqrestore(&rq->lock, flags);
1127
1128 hrtick_clear(rq);
1129}
1130
1131static void hotplug_hrtick_enable(int cpu)
1132{
1133 struct rq *rq = cpu_rq(cpu);
1134 unsigned long flags;
1135
1136 spin_lock_irqsave(&rq->lock, flags);
1137 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1138 spin_unlock_irqrestore(&rq->lock, flags);
1139}
1140
1141static int
1142hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1143{
1144 int cpu = (int)(long)hcpu;
1145
1146 switch (action) {
1147 case CPU_UP_CANCELED:
1148 case CPU_UP_CANCELED_FROZEN:
1149 case CPU_DOWN_PREPARE:
1150 case CPU_DOWN_PREPARE_FROZEN:
1151 case CPU_DEAD:
1152 case CPU_DEAD_FROZEN:
1153 hotplug_hrtick_disable(cpu);
1154 return NOTIFY_OK;
1155
1156 case CPU_UP_PREPARE:
1157 case CPU_UP_PREPARE_FROZEN:
1158 case CPU_DOWN_FAILED:
1159 case CPU_DOWN_FAILED_FROZEN:
1160 case CPU_ONLINE:
1161 case CPU_ONLINE_FROZEN:
1162 hotplug_hrtick_enable(cpu);
1163 return NOTIFY_OK;
1164 }
1165
1166 return NOTIFY_DONE;
1167}
1168
1169static void init_hrtick(void)
1170{
1171 hotcpu_notifier(hotplug_hrtick, 0);
1172}
95e904c7 1173#endif /* CONFIG_SMP */
b328ca18
PZ
1174
1175static void init_rq_hrtick(struct rq *rq)
8f4d37ec
PZ
1176{
1177 rq->hrtick_flags = 0;
1178 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1179 rq->hrtick_timer.function = hrtick;
1180 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1181}
1182
1183void hrtick_resched(void)
1184{
1185 struct rq *rq;
1186 unsigned long flags;
1187
1188 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1189 return;
1190
1191 local_irq_save(flags);
1192 rq = cpu_rq(smp_processor_id());
1193 hrtick_set(rq);
1194 local_irq_restore(flags);
1195}
1196#else
1197static inline void hrtick_clear(struct rq *rq)
1198{
1199}
1200
1201static inline void hrtick_set(struct rq *rq)
1202{
1203}
1204
1205static inline void init_rq_hrtick(struct rq *rq)
1206{
1207}
1208
1209void hrtick_resched(void)
1210{
1211}
b328ca18
PZ
1212
1213static inline void init_hrtick(void)
1214{
1215}
8f4d37ec
PZ
1216#endif
1217
c24d20db
IM
1218/*
1219 * resched_task - mark a task 'to be rescheduled now'.
1220 *
1221 * On UP this means the setting of the need_resched flag, on SMP it
1222 * might also involve a cross-CPU call to trigger the scheduler on
1223 * the target CPU.
1224 */
1225#ifdef CONFIG_SMP
1226
1227#ifndef tsk_is_polling
1228#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1229#endif
1230
8f4d37ec 1231static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1232{
1233 int cpu;
1234
1235 assert_spin_locked(&task_rq(p)->lock);
1236
8f4d37ec 1237 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1238 return;
1239
8f4d37ec 1240 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1241
1242 cpu = task_cpu(p);
1243 if (cpu == smp_processor_id())
1244 return;
1245
1246 /* NEED_RESCHED must be visible before we test polling */
1247 smp_mb();
1248 if (!tsk_is_polling(p))
1249 smp_send_reschedule(cpu);
1250}
1251
1252static void resched_cpu(int cpu)
1253{
1254 struct rq *rq = cpu_rq(cpu);
1255 unsigned long flags;
1256
1257 if (!spin_trylock_irqsave(&rq->lock, flags))
1258 return;
1259 resched_task(cpu_curr(cpu));
1260 spin_unlock_irqrestore(&rq->lock, flags);
1261}
06d8308c
TG
1262
1263#ifdef CONFIG_NO_HZ
1264/*
1265 * When add_timer_on() enqueues a timer into the timer wheel of an
1266 * idle CPU then this timer might expire before the next timer event
1267 * which is scheduled to wake up that CPU. In case of a completely
1268 * idle system the next event might even be infinite time into the
1269 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1270 * leaves the inner idle loop so the newly added timer is taken into
1271 * account when the CPU goes back to idle and evaluates the timer
1272 * wheel for the next timer event.
1273 */
1274void wake_up_idle_cpu(int cpu)
1275{
1276 struct rq *rq = cpu_rq(cpu);
1277
1278 if (cpu == smp_processor_id())
1279 return;
1280
1281 /*
1282 * This is safe, as this function is called with the timer
1283 * wheel base lock of (cpu) held. When the CPU is on the way
1284 * to idle and has not yet set rq->curr to idle then it will
1285 * be serialized on the timer wheel base lock and take the new
1286 * timer into account automatically.
1287 */
1288 if (rq->curr != rq->idle)
1289 return;
1290
1291 /*
1292 * We can set TIF_RESCHED on the idle task of the other CPU
1293 * lockless. The worst case is that the other CPU runs the
1294 * idle task through an additional NOOP schedule()
1295 */
1296 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1297
1298 /* NEED_RESCHED must be visible before we test polling */
1299 smp_mb();
1300 if (!tsk_is_polling(rq->idle))
1301 smp_send_reschedule(cpu);
1302}
6d6bc0ad 1303#endif /* CONFIG_NO_HZ */
06d8308c 1304
6d6bc0ad 1305#else /* !CONFIG_SMP */
8f4d37ec 1306static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1307{
1308 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1309 set_tsk_thread_flag(p, tif_bit);
c24d20db 1310}
6d6bc0ad 1311#endif /* CONFIG_SMP */
c24d20db 1312
45bf76df
IM
1313#if BITS_PER_LONG == 32
1314# define WMULT_CONST (~0UL)
1315#else
1316# define WMULT_CONST (1UL << 32)
1317#endif
1318
1319#define WMULT_SHIFT 32
1320
194081eb
IM
1321/*
1322 * Shift right and round:
1323 */
cf2ab469 1324#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1325
a7be37ac
PZ
1326/*
1327 * delta *= weight / lw
1328 */
cb1c4fc9 1329static unsigned long
45bf76df
IM
1330calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1331 struct load_weight *lw)
1332{
1333 u64 tmp;
1334
7a232e03
LJ
1335 if (!lw->inv_weight) {
1336 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1337 lw->inv_weight = 1;
1338 else
1339 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1340 / (lw->weight+1);
1341 }
45bf76df
IM
1342
1343 tmp = (u64)delta_exec * weight;
1344 /*
1345 * Check whether we'd overflow the 64-bit multiplication:
1346 */
194081eb 1347 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1348 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1349 WMULT_SHIFT/2);
1350 else
cf2ab469 1351 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1352
ecf691da 1353 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1354}
1355
1091985b 1356static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1357{
1358 lw->weight += inc;
e89996ae 1359 lw->inv_weight = 0;
45bf76df
IM
1360}
1361
1091985b 1362static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1363{
1364 lw->weight -= dec;
e89996ae 1365 lw->inv_weight = 0;
45bf76df
IM
1366}
1367
2dd73a4f
PW
1368/*
1369 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1370 * of tasks with abnormal "nice" values across CPUs the contribution that
1371 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1372 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1373 * scaled version of the new time slice allocation that they receive on time
1374 * slice expiry etc.
1375 */
1376
dd41f596
IM
1377#define WEIGHT_IDLEPRIO 2
1378#define WMULT_IDLEPRIO (1 << 31)
1379
1380/*
1381 * Nice levels are multiplicative, with a gentle 10% change for every
1382 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1383 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1384 * that remained on nice 0.
1385 *
1386 * The "10% effect" is relative and cumulative: from _any_ nice level,
1387 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1388 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1389 * If a task goes up by ~10% and another task goes down by ~10% then
1390 * the relative distance between them is ~25%.)
dd41f596
IM
1391 */
1392static const int prio_to_weight[40] = {
254753dc
IM
1393 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1394 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1395 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1396 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1397 /* 0 */ 1024, 820, 655, 526, 423,
1398 /* 5 */ 335, 272, 215, 172, 137,
1399 /* 10 */ 110, 87, 70, 56, 45,
1400 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1401};
1402
5714d2de
IM
1403/*
1404 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1405 *
1406 * In cases where the weight does not change often, we can use the
1407 * precalculated inverse to speed up arithmetics by turning divisions
1408 * into multiplications:
1409 */
dd41f596 1410static const u32 prio_to_wmult[40] = {
254753dc
IM
1411 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1412 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1413 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1414 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1415 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1416 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1417 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1418 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1419};
2dd73a4f 1420
dd41f596
IM
1421static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1422
1423/*
1424 * runqueue iterator, to support SMP load-balancing between different
1425 * scheduling classes, without having to expose their internal data
1426 * structures to the load-balancing proper:
1427 */
1428struct rq_iterator {
1429 void *arg;
1430 struct task_struct *(*start)(void *);
1431 struct task_struct *(*next)(void *);
1432};
1433
e1d1484f
PW
1434#ifdef CONFIG_SMP
1435static unsigned long
1436balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1437 unsigned long max_load_move, struct sched_domain *sd,
1438 enum cpu_idle_type idle, int *all_pinned,
1439 int *this_best_prio, struct rq_iterator *iterator);
1440
1441static int
1442iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1443 struct sched_domain *sd, enum cpu_idle_type idle,
1444 struct rq_iterator *iterator);
e1d1484f 1445#endif
dd41f596 1446
d842de87
SV
1447#ifdef CONFIG_CGROUP_CPUACCT
1448static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1449#else
1450static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1451#endif
1452
18d95a28
PZ
1453static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1454{
1455 update_load_add(&rq->load, load);
1456}
1457
1458static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1459{
1460 update_load_sub(&rq->load, load);
1461}
1462
e7693a36
GH
1463#ifdef CONFIG_SMP
1464static unsigned long source_load(int cpu, int type);
1465static unsigned long target_load(int cpu, int type);
e7693a36 1466static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
c09595f6 1467
a8a51d5e
PZ
1468static unsigned long cpu_avg_load_per_task(int cpu)
1469{
1470 struct rq *rq = cpu_rq(cpu);
1471
1472 if (rq->nr_running)
1473 rq->avg_load_per_task = rq->load.weight / rq->nr_running;
1474
1475 return rq->avg_load_per_task;
1476}
18d95a28
PZ
1477
1478#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1479
c8cba857 1480typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
c09595f6
PZ
1481
1482/*
1483 * Iterate the full tree, calling @down when first entering a node and @up when
1484 * leaving it for the final time.
1485 */
c8cba857
PZ
1486static void
1487walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
c09595f6
PZ
1488{
1489 struct task_group *parent, *child;
1490
1491 rcu_read_lock();
1492 parent = &root_task_group;
1493down:
b6a86c74 1494 (*down)(parent, cpu, sd);
c09595f6
PZ
1495 list_for_each_entry_rcu(child, &parent->children, siblings) {
1496 parent = child;
1497 goto down;
1498
1499up:
1500 continue;
1501 }
b6a86c74 1502 (*up)(parent, cpu, sd);
c09595f6
PZ
1503
1504 child = parent;
1505 parent = parent->parent;
1506 if (parent)
1507 goto up;
1508 rcu_read_unlock();
1509}
1510
c09595f6
PZ
1511static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1512
1513/*
1514 * Calculate and set the cpu's group shares.
1515 */
1516static void
b6a86c74 1517__update_group_shares_cpu(struct task_group *tg, int cpu,
c8cba857 1518 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1519{
c09595f6
PZ
1520 int boost = 0;
1521 unsigned long shares;
1522 unsigned long rq_weight;
1523
c8cba857 1524 if (!tg->se[cpu])
c09595f6
PZ
1525 return;
1526
c8cba857 1527 rq_weight = tg->cfs_rq[cpu]->load.weight;
c09595f6
PZ
1528
1529 /*
1530 * If there are currently no tasks on the cpu pretend there is one of
1531 * average load so that when a new task gets to run here it will not
1532 * get delayed by group starvation.
1533 */
1534 if (!rq_weight) {
1535 boost = 1;
1536 rq_weight = NICE_0_LOAD;
1537 }
1538
c8cba857
PZ
1539 if (unlikely(rq_weight > sd_rq_weight))
1540 rq_weight = sd_rq_weight;
1541
c09595f6
PZ
1542 /*
1543 * \Sum shares * rq_weight
1544 * shares = -----------------------
1545 * \Sum rq_weight
1546 *
1547 */
c8cba857 1548 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
c09595f6
PZ
1549
1550 /*
1551 * record the actual number of shares, not the boosted amount.
1552 */
c8cba857 1553 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
f1d239f7 1554 tg->cfs_rq[cpu]->rq_weight = rq_weight;
c09595f6
PZ
1555
1556 if (shares < MIN_SHARES)
1557 shares = MIN_SHARES;
1558 else if (shares > MAX_SHARES)
1559 shares = MAX_SHARES;
1560
c8cba857 1561 __set_se_shares(tg->se[cpu], shares);
18d95a28 1562}
c09595f6
PZ
1563
1564/*
c8cba857
PZ
1565 * Re-compute the task group their per cpu shares over the given domain.
1566 * This needs to be done in a bottom-up fashion because the rq weight of a
1567 * parent group depends on the shares of its child groups.
c09595f6
PZ
1568 */
1569static void
c8cba857 1570tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1571{
c8cba857
PZ
1572 unsigned long rq_weight = 0;
1573 unsigned long shares = 0;
1574 int i;
c09595f6 1575
c8cba857
PZ
1576 for_each_cpu_mask(i, sd->span) {
1577 rq_weight += tg->cfs_rq[i]->load.weight;
1578 shares += tg->cfs_rq[i]->shares;
c09595f6 1579 }
c09595f6 1580
c8cba857
PZ
1581 if ((!shares && rq_weight) || shares > tg->shares)
1582 shares = tg->shares;
1583
1584 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1585 shares = tg->shares;
c09595f6 1586
cd80917e
PZ
1587 if (!rq_weight)
1588 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1589
c09595f6
PZ
1590 for_each_cpu_mask(i, sd->span) {
1591 struct rq *rq = cpu_rq(i);
1592 unsigned long flags;
1593
1594 spin_lock_irqsave(&rq->lock, flags);
c8cba857 1595 __update_group_shares_cpu(tg, i, shares, rq_weight);
c09595f6
PZ
1596 spin_unlock_irqrestore(&rq->lock, flags);
1597 }
c09595f6
PZ
1598}
1599
1600/*
c8cba857
PZ
1601 * Compute the cpu's hierarchical load factor for each task group.
1602 * This needs to be done in a top-down fashion because the load of a child
1603 * group is a fraction of its parents load.
c09595f6 1604 */
b6a86c74 1605static void
c8cba857 1606tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1607{
c8cba857 1608 unsigned long load;
c09595f6 1609
c8cba857
PZ
1610 if (!tg->parent) {
1611 load = cpu_rq(cpu)->load.weight;
1612 } else {
1613 load = tg->parent->cfs_rq[cpu]->h_load;
1614 load *= tg->cfs_rq[cpu]->shares;
1615 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1616 }
c09595f6 1617
c8cba857 1618 tg->cfs_rq[cpu]->h_load = load;
c09595f6
PZ
1619}
1620
c8cba857
PZ
1621static void
1622tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1623{
c09595f6
PZ
1624}
1625
c8cba857 1626static void update_shares(struct sched_domain *sd)
4d8d595d 1627{
2398f2c6
PZ
1628 u64 now = cpu_clock(raw_smp_processor_id());
1629 s64 elapsed = now - sd->last_update;
1630
1631 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1632 sd->last_update = now;
1633 walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
1634 }
4d8d595d
PZ
1635}
1636
3e5459b4
PZ
1637static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1638{
1639 spin_unlock(&rq->lock);
1640 update_shares(sd);
1641 spin_lock(&rq->lock);
1642}
1643
c8cba857 1644static void update_h_load(int cpu)
c09595f6 1645{
c8cba857 1646 walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
c09595f6
PZ
1647}
1648
c09595f6
PZ
1649#else
1650
c8cba857 1651static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1652{
1653}
1654
3e5459b4
PZ
1655static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1656{
1657}
1658
18d95a28
PZ
1659#endif
1660
18d95a28
PZ
1661#endif
1662
30432094 1663#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1664static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1665{
30432094 1666#ifdef CONFIG_SMP
34e83e85
IM
1667 cfs_rq->shares = shares;
1668#endif
1669}
30432094 1670#endif
e7693a36 1671
dd41f596 1672#include "sched_stats.h"
dd41f596 1673#include "sched_idletask.c"
5522d5d5
IM
1674#include "sched_fair.c"
1675#include "sched_rt.c"
dd41f596
IM
1676#ifdef CONFIG_SCHED_DEBUG
1677# include "sched_debug.c"
1678#endif
1679
1680#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1681#define for_each_class(class) \
1682 for (class = sched_class_highest; class; class = class->next)
dd41f596 1683
c09595f6 1684static void inc_nr_running(struct rq *rq)
9c217245
IM
1685{
1686 rq->nr_running++;
9c217245
IM
1687}
1688
c09595f6 1689static void dec_nr_running(struct rq *rq)
9c217245
IM
1690{
1691 rq->nr_running--;
9c217245
IM
1692}
1693
45bf76df
IM
1694static void set_load_weight(struct task_struct *p)
1695{
1696 if (task_has_rt_policy(p)) {
dd41f596
IM
1697 p->se.load.weight = prio_to_weight[0] * 2;
1698 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1699 return;
1700 }
45bf76df 1701
dd41f596
IM
1702 /*
1703 * SCHED_IDLE tasks get minimal weight:
1704 */
1705 if (p->policy == SCHED_IDLE) {
1706 p->se.load.weight = WEIGHT_IDLEPRIO;
1707 p->se.load.inv_weight = WMULT_IDLEPRIO;
1708 return;
1709 }
71f8bd46 1710
dd41f596
IM
1711 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1712 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1713}
1714
2087a1ad
GH
1715static void update_avg(u64 *avg, u64 sample)
1716{
1717 s64 diff = sample - *avg;
1718 *avg += diff >> 3;
1719}
1720
8159f87e 1721static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1722{
dd41f596 1723 sched_info_queued(p);
fd390f6a 1724 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1725 p->se.on_rq = 1;
71f8bd46
IM
1726}
1727
69be72c1 1728static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1729{
2087a1ad
GH
1730 if (sleep && p->se.last_wakeup) {
1731 update_avg(&p->se.avg_overlap,
1732 p->se.sum_exec_runtime - p->se.last_wakeup);
1733 p->se.last_wakeup = 0;
1734 }
1735
46ac22ba 1736 sched_info_dequeued(p);
f02231e5 1737 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1738 p->se.on_rq = 0;
71f8bd46
IM
1739}
1740
14531189 1741/*
dd41f596 1742 * __normal_prio - return the priority that is based on the static prio
14531189 1743 */
14531189
IM
1744static inline int __normal_prio(struct task_struct *p)
1745{
dd41f596 1746 return p->static_prio;
14531189
IM
1747}
1748
b29739f9
IM
1749/*
1750 * Calculate the expected normal priority: i.e. priority
1751 * without taking RT-inheritance into account. Might be
1752 * boosted by interactivity modifiers. Changes upon fork,
1753 * setprio syscalls, and whenever the interactivity
1754 * estimator recalculates.
1755 */
36c8b586 1756static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1757{
1758 int prio;
1759
e05606d3 1760 if (task_has_rt_policy(p))
b29739f9
IM
1761 prio = MAX_RT_PRIO-1 - p->rt_priority;
1762 else
1763 prio = __normal_prio(p);
1764 return prio;
1765}
1766
1767/*
1768 * Calculate the current priority, i.e. the priority
1769 * taken into account by the scheduler. This value might
1770 * be boosted by RT tasks, or might be boosted by
1771 * interactivity modifiers. Will be RT if the task got
1772 * RT-boosted. If not then it returns p->normal_prio.
1773 */
36c8b586 1774static int effective_prio(struct task_struct *p)
b29739f9
IM
1775{
1776 p->normal_prio = normal_prio(p);
1777 /*
1778 * If we are RT tasks or we were boosted to RT priority,
1779 * keep the priority unchanged. Otherwise, update priority
1780 * to the normal priority:
1781 */
1782 if (!rt_prio(p->prio))
1783 return p->normal_prio;
1784 return p->prio;
1785}
1786
1da177e4 1787/*
dd41f596 1788 * activate_task - move a task to the runqueue.
1da177e4 1789 */
dd41f596 1790static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1791{
d9514f6c 1792 if (task_contributes_to_load(p))
dd41f596 1793 rq->nr_uninterruptible--;
1da177e4 1794
8159f87e 1795 enqueue_task(rq, p, wakeup);
c09595f6 1796 inc_nr_running(rq);
1da177e4
LT
1797}
1798
1da177e4
LT
1799/*
1800 * deactivate_task - remove a task from the runqueue.
1801 */
2e1cb74a 1802static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1803{
d9514f6c 1804 if (task_contributes_to_load(p))
dd41f596
IM
1805 rq->nr_uninterruptible++;
1806
69be72c1 1807 dequeue_task(rq, p, sleep);
c09595f6 1808 dec_nr_running(rq);
1da177e4
LT
1809}
1810
1da177e4
LT
1811/**
1812 * task_curr - is this task currently executing on a CPU?
1813 * @p: the task in question.
1814 */
36c8b586 1815inline int task_curr(const struct task_struct *p)
1da177e4
LT
1816{
1817 return cpu_curr(task_cpu(p)) == p;
1818}
1819
dd41f596
IM
1820static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1821{
6f505b16 1822 set_task_rq(p, cpu);
dd41f596 1823#ifdef CONFIG_SMP
ce96b5ac
DA
1824 /*
1825 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1826 * successfuly executed on another CPU. We must ensure that updates of
1827 * per-task data have been completed by this moment.
1828 */
1829 smp_wmb();
dd41f596 1830 task_thread_info(p)->cpu = cpu;
dd41f596 1831#endif
2dd73a4f
PW
1832}
1833
cb469845
SR
1834static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1835 const struct sched_class *prev_class,
1836 int oldprio, int running)
1837{
1838 if (prev_class != p->sched_class) {
1839 if (prev_class->switched_from)
1840 prev_class->switched_from(rq, p, running);
1841 p->sched_class->switched_to(rq, p, running);
1842 } else
1843 p->sched_class->prio_changed(rq, p, oldprio, running);
1844}
1845
1da177e4 1846#ifdef CONFIG_SMP
c65cc870 1847
e958b360
TG
1848/* Used instead of source_load when we know the type == 0 */
1849static unsigned long weighted_cpuload(const int cpu)
1850{
1851 return cpu_rq(cpu)->load.weight;
1852}
1853
cc367732
IM
1854/*
1855 * Is this task likely cache-hot:
1856 */
e7693a36 1857static int
cc367732
IM
1858task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1859{
1860 s64 delta;
1861
f540a608
IM
1862 /*
1863 * Buddy candidates are cache hot:
1864 */
d25ce4cd 1865 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
1866 return 1;
1867
cc367732
IM
1868 if (p->sched_class != &fair_sched_class)
1869 return 0;
1870
6bc1665b
IM
1871 if (sysctl_sched_migration_cost == -1)
1872 return 1;
1873 if (sysctl_sched_migration_cost == 0)
1874 return 0;
1875
cc367732
IM
1876 delta = now - p->se.exec_start;
1877
1878 return delta < (s64)sysctl_sched_migration_cost;
1879}
1880
1881
dd41f596 1882void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1883{
dd41f596
IM
1884 int old_cpu = task_cpu(p);
1885 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1886 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1887 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1888 u64 clock_offset;
dd41f596
IM
1889
1890 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1891
1892#ifdef CONFIG_SCHEDSTATS
1893 if (p->se.wait_start)
1894 p->se.wait_start -= clock_offset;
dd41f596
IM
1895 if (p->se.sleep_start)
1896 p->se.sleep_start -= clock_offset;
1897 if (p->se.block_start)
1898 p->se.block_start -= clock_offset;
cc367732
IM
1899 if (old_cpu != new_cpu) {
1900 schedstat_inc(p, se.nr_migrations);
1901 if (task_hot(p, old_rq->clock, NULL))
1902 schedstat_inc(p, se.nr_forced2_migrations);
1903 }
6cfb0d5d 1904#endif
2830cf8c
SV
1905 p->se.vruntime -= old_cfsrq->min_vruntime -
1906 new_cfsrq->min_vruntime;
dd41f596
IM
1907
1908 __set_task_cpu(p, new_cpu);
c65cc870
IM
1909}
1910
70b97a7f 1911struct migration_req {
1da177e4 1912 struct list_head list;
1da177e4 1913
36c8b586 1914 struct task_struct *task;
1da177e4
LT
1915 int dest_cpu;
1916
1da177e4 1917 struct completion done;
70b97a7f 1918};
1da177e4
LT
1919
1920/*
1921 * The task's runqueue lock must be held.
1922 * Returns true if you have to wait for migration thread.
1923 */
36c8b586 1924static int
70b97a7f 1925migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1926{
70b97a7f 1927 struct rq *rq = task_rq(p);
1da177e4
LT
1928
1929 /*
1930 * If the task is not on a runqueue (and not running), then
1931 * it is sufficient to simply update the task's cpu field.
1932 */
dd41f596 1933 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1934 set_task_cpu(p, dest_cpu);
1935 return 0;
1936 }
1937
1938 init_completion(&req->done);
1da177e4
LT
1939 req->task = p;
1940 req->dest_cpu = dest_cpu;
1941 list_add(&req->list, &rq->migration_queue);
48f24c4d 1942
1da177e4
LT
1943 return 1;
1944}
1945
1946/*
1947 * wait_task_inactive - wait for a thread to unschedule.
1948 *
1949 * The caller must ensure that the task *will* unschedule sometime soon,
1950 * else this function might spin for a *long* time. This function can't
1951 * be called with interrupts off, or it may introduce deadlock with
1952 * smp_call_function() if an IPI is sent by the same process we are
1953 * waiting to become inactive.
1954 */
36c8b586 1955void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1956{
1957 unsigned long flags;
dd41f596 1958 int running, on_rq;
70b97a7f 1959 struct rq *rq;
1da177e4 1960
3a5c359a
AK
1961 for (;;) {
1962 /*
1963 * We do the initial early heuristics without holding
1964 * any task-queue locks at all. We'll only try to get
1965 * the runqueue lock when things look like they will
1966 * work out!
1967 */
1968 rq = task_rq(p);
fa490cfd 1969
3a5c359a
AK
1970 /*
1971 * If the task is actively running on another CPU
1972 * still, just relax and busy-wait without holding
1973 * any locks.
1974 *
1975 * NOTE! Since we don't hold any locks, it's not
1976 * even sure that "rq" stays as the right runqueue!
1977 * But we don't care, since "task_running()" will
1978 * return false if the runqueue has changed and p
1979 * is actually now running somewhere else!
1980 */
1981 while (task_running(rq, p))
1982 cpu_relax();
fa490cfd 1983
3a5c359a
AK
1984 /*
1985 * Ok, time to look more closely! We need the rq
1986 * lock now, to be *sure*. If we're wrong, we'll
1987 * just go back and repeat.
1988 */
1989 rq = task_rq_lock(p, &flags);
1990 running = task_running(rq, p);
1991 on_rq = p->se.on_rq;
1992 task_rq_unlock(rq, &flags);
fa490cfd 1993
3a5c359a
AK
1994 /*
1995 * Was it really running after all now that we
1996 * checked with the proper locks actually held?
1997 *
1998 * Oops. Go back and try again..
1999 */
2000 if (unlikely(running)) {
2001 cpu_relax();
2002 continue;
2003 }
fa490cfd 2004
3a5c359a
AK
2005 /*
2006 * It's not enough that it's not actively running,
2007 * it must be off the runqueue _entirely_, and not
2008 * preempted!
2009 *
2010 * So if it wa still runnable (but just not actively
2011 * running right now), it's preempted, and we should
2012 * yield - it could be a while.
2013 */
2014 if (unlikely(on_rq)) {
2015 schedule_timeout_uninterruptible(1);
2016 continue;
2017 }
fa490cfd 2018
3a5c359a
AK
2019 /*
2020 * Ahh, all good. It wasn't running, and it wasn't
2021 * runnable, which means that it will never become
2022 * running in the future either. We're all done!
2023 */
2024 break;
2025 }
1da177e4
LT
2026}
2027
2028/***
2029 * kick_process - kick a running thread to enter/exit the kernel
2030 * @p: the to-be-kicked thread
2031 *
2032 * Cause a process which is running on another CPU to enter
2033 * kernel-mode, without any delay. (to get signals handled.)
2034 *
2035 * NOTE: this function doesnt have to take the runqueue lock,
2036 * because all it wants to ensure is that the remote task enters
2037 * the kernel. If the IPI races and the task has been migrated
2038 * to another CPU then no harm is done and the purpose has been
2039 * achieved as well.
2040 */
36c8b586 2041void kick_process(struct task_struct *p)
1da177e4
LT
2042{
2043 int cpu;
2044
2045 preempt_disable();
2046 cpu = task_cpu(p);
2047 if ((cpu != smp_processor_id()) && task_curr(p))
2048 smp_send_reschedule(cpu);
2049 preempt_enable();
2050}
2051
2052/*
2dd73a4f
PW
2053 * Return a low guess at the load of a migration-source cpu weighted
2054 * according to the scheduling class and "nice" value.
1da177e4
LT
2055 *
2056 * We want to under-estimate the load of migration sources, to
2057 * balance conservatively.
2058 */
a9957449 2059static unsigned long source_load(int cpu, int type)
1da177e4 2060{
70b97a7f 2061 struct rq *rq = cpu_rq(cpu);
dd41f596 2062 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2063
93b75217 2064 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2065 return total;
b910472d 2066
dd41f596 2067 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2068}
2069
2070/*
2dd73a4f
PW
2071 * Return a high guess at the load of a migration-target cpu weighted
2072 * according to the scheduling class and "nice" value.
1da177e4 2073 */
a9957449 2074static unsigned long target_load(int cpu, int type)
1da177e4 2075{
70b97a7f 2076 struct rq *rq = cpu_rq(cpu);
dd41f596 2077 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2078
93b75217 2079 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2080 return total;
3b0bd9bc 2081
dd41f596 2082 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2083}
2084
147cbb4b
NP
2085/*
2086 * find_idlest_group finds and returns the least busy CPU group within the
2087 * domain.
2088 */
2089static struct sched_group *
2090find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2091{
2092 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2093 unsigned long min_load = ULONG_MAX, this_load = 0;
2094 int load_idx = sd->forkexec_idx;
2095 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2096
2097 do {
2098 unsigned long load, avg_load;
2099 int local_group;
2100 int i;
2101
da5a5522
BD
2102 /* Skip over this group if it has no CPUs allowed */
2103 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 2104 continue;
da5a5522 2105
147cbb4b 2106 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
2107
2108 /* Tally up the load of all CPUs in the group */
2109 avg_load = 0;
2110
2111 for_each_cpu_mask(i, group->cpumask) {
2112 /* Bias balancing toward cpus of our domain */
2113 if (local_group)
2114 load = source_load(i, load_idx);
2115 else
2116 load = target_load(i, load_idx);
2117
2118 avg_load += load;
2119 }
2120
2121 /* Adjust by relative CPU power of the group */
5517d86b
ED
2122 avg_load = sg_div_cpu_power(group,
2123 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2124
2125 if (local_group) {
2126 this_load = avg_load;
2127 this = group;
2128 } else if (avg_load < min_load) {
2129 min_load = avg_load;
2130 idlest = group;
2131 }
3a5c359a 2132 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2133
2134 if (!idlest || 100*this_load < imbalance*min_load)
2135 return NULL;
2136 return idlest;
2137}
2138
2139/*
0feaece9 2140 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2141 */
95cdf3b7 2142static int
7c16ec58
MT
2143find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2144 cpumask_t *tmp)
147cbb4b
NP
2145{
2146 unsigned long load, min_load = ULONG_MAX;
2147 int idlest = -1;
2148 int i;
2149
da5a5522 2150 /* Traverse only the allowed CPUs */
7c16ec58 2151 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 2152
7c16ec58 2153 for_each_cpu_mask(i, *tmp) {
2dd73a4f 2154 load = weighted_cpuload(i);
147cbb4b
NP
2155
2156 if (load < min_load || (load == min_load && i == this_cpu)) {
2157 min_load = load;
2158 idlest = i;
2159 }
2160 }
2161
2162 return idlest;
2163}
2164
476d139c
NP
2165/*
2166 * sched_balance_self: balance the current task (running on cpu) in domains
2167 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2168 * SD_BALANCE_EXEC.
2169 *
2170 * Balance, ie. select the least loaded group.
2171 *
2172 * Returns the target CPU number, or the same CPU if no balancing is needed.
2173 *
2174 * preempt must be disabled.
2175 */
2176static int sched_balance_self(int cpu, int flag)
2177{
2178 struct task_struct *t = current;
2179 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2180
c96d145e 2181 for_each_domain(cpu, tmp) {
9761eea8
IM
2182 /*
2183 * If power savings logic is enabled for a domain, stop there.
2184 */
5c45bf27
SS
2185 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2186 break;
476d139c
NP
2187 if (tmp->flags & flag)
2188 sd = tmp;
c96d145e 2189 }
476d139c 2190
039a1c41
PZ
2191 if (sd)
2192 update_shares(sd);
2193
476d139c 2194 while (sd) {
7c16ec58 2195 cpumask_t span, tmpmask;
476d139c 2196 struct sched_group *group;
1a848870
SS
2197 int new_cpu, weight;
2198
2199 if (!(sd->flags & flag)) {
2200 sd = sd->child;
2201 continue;
2202 }
476d139c
NP
2203
2204 span = sd->span;
2205 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2206 if (!group) {
2207 sd = sd->child;
2208 continue;
2209 }
476d139c 2210
7c16ec58 2211 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2212 if (new_cpu == -1 || new_cpu == cpu) {
2213 /* Now try balancing at a lower domain level of cpu */
2214 sd = sd->child;
2215 continue;
2216 }
476d139c 2217
1a848870 2218 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2219 cpu = new_cpu;
476d139c
NP
2220 sd = NULL;
2221 weight = cpus_weight(span);
2222 for_each_domain(cpu, tmp) {
2223 if (weight <= cpus_weight(tmp->span))
2224 break;
2225 if (tmp->flags & flag)
2226 sd = tmp;
2227 }
2228 /* while loop will break here if sd == NULL */
2229 }
2230
2231 return cpu;
2232}
2233
2234#endif /* CONFIG_SMP */
1da177e4 2235
1da177e4
LT
2236/***
2237 * try_to_wake_up - wake up a thread
2238 * @p: the to-be-woken-up thread
2239 * @state: the mask of task states that can be woken
2240 * @sync: do a synchronous wakeup?
2241 *
2242 * Put it on the run-queue if it's not already there. The "current"
2243 * thread is always on the run-queue (except when the actual
2244 * re-schedule is in progress), and as such you're allowed to do
2245 * the simpler "current->state = TASK_RUNNING" to mark yourself
2246 * runnable without the overhead of this.
2247 *
2248 * returns failure only if the task is already active.
2249 */
36c8b586 2250static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2251{
cc367732 2252 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2253 unsigned long flags;
2254 long old_state;
70b97a7f 2255 struct rq *rq;
1da177e4 2256
b85d0667
IM
2257 if (!sched_feat(SYNC_WAKEUPS))
2258 sync = 0;
2259
2398f2c6
PZ
2260#ifdef CONFIG_SMP
2261 if (sched_feat(LB_WAKEUP_UPDATE)) {
2262 struct sched_domain *sd;
2263
2264 this_cpu = raw_smp_processor_id();
2265 cpu = task_cpu(p);
2266
2267 for_each_domain(this_cpu, sd) {
2268 if (cpu_isset(cpu, sd->span)) {
2269 update_shares(sd);
2270 break;
2271 }
2272 }
2273 }
2274#endif
2275
04e2f174 2276 smp_wmb();
1da177e4
LT
2277 rq = task_rq_lock(p, &flags);
2278 old_state = p->state;
2279 if (!(old_state & state))
2280 goto out;
2281
dd41f596 2282 if (p->se.on_rq)
1da177e4
LT
2283 goto out_running;
2284
2285 cpu = task_cpu(p);
cc367732 2286 orig_cpu = cpu;
1da177e4
LT
2287 this_cpu = smp_processor_id();
2288
2289#ifdef CONFIG_SMP
2290 if (unlikely(task_running(rq, p)))
2291 goto out_activate;
2292
5d2f5a61
DA
2293 cpu = p->sched_class->select_task_rq(p, sync);
2294 if (cpu != orig_cpu) {
2295 set_task_cpu(p, cpu);
1da177e4
LT
2296 task_rq_unlock(rq, &flags);
2297 /* might preempt at this point */
2298 rq = task_rq_lock(p, &flags);
2299 old_state = p->state;
2300 if (!(old_state & state))
2301 goto out;
dd41f596 2302 if (p->se.on_rq)
1da177e4
LT
2303 goto out_running;
2304
2305 this_cpu = smp_processor_id();
2306 cpu = task_cpu(p);
2307 }
2308
e7693a36
GH
2309#ifdef CONFIG_SCHEDSTATS
2310 schedstat_inc(rq, ttwu_count);
2311 if (cpu == this_cpu)
2312 schedstat_inc(rq, ttwu_local);
2313 else {
2314 struct sched_domain *sd;
2315 for_each_domain(this_cpu, sd) {
2316 if (cpu_isset(cpu, sd->span)) {
2317 schedstat_inc(sd, ttwu_wake_remote);
2318 break;
2319 }
2320 }
2321 }
6d6bc0ad 2322#endif /* CONFIG_SCHEDSTATS */
e7693a36 2323
1da177e4
LT
2324out_activate:
2325#endif /* CONFIG_SMP */
cc367732
IM
2326 schedstat_inc(p, se.nr_wakeups);
2327 if (sync)
2328 schedstat_inc(p, se.nr_wakeups_sync);
2329 if (orig_cpu != cpu)
2330 schedstat_inc(p, se.nr_wakeups_migrate);
2331 if (cpu == this_cpu)
2332 schedstat_inc(p, se.nr_wakeups_local);
2333 else
2334 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2335 update_rq_clock(rq);
dd41f596 2336 activate_task(rq, p, 1);
1da177e4
LT
2337 success = 1;
2338
2339out_running:
5b82a1b0
MD
2340 trace_mark(kernel_sched_wakeup,
2341 "pid %d state %ld ## rq %p task %p rq->curr %p",
2342 p->pid, p->state, rq, p, rq->curr);
4ae7d5ce
IM
2343 check_preempt_curr(rq, p);
2344
1da177e4 2345 p->state = TASK_RUNNING;
9a897c5a
SR
2346#ifdef CONFIG_SMP
2347 if (p->sched_class->task_wake_up)
2348 p->sched_class->task_wake_up(rq, p);
2349#endif
1da177e4 2350out:
2087a1ad
GH
2351 current->se.last_wakeup = current->se.sum_exec_runtime;
2352
1da177e4
LT
2353 task_rq_unlock(rq, &flags);
2354
2355 return success;
2356}
2357
7ad5b3a5 2358int wake_up_process(struct task_struct *p)
1da177e4 2359{
d9514f6c 2360 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2361}
1da177e4
LT
2362EXPORT_SYMBOL(wake_up_process);
2363
7ad5b3a5 2364int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2365{
2366 return try_to_wake_up(p, state, 0);
2367}
2368
1da177e4
LT
2369/*
2370 * Perform scheduler related setup for a newly forked process p.
2371 * p is forked by current.
dd41f596
IM
2372 *
2373 * __sched_fork() is basic setup used by init_idle() too:
2374 */
2375static void __sched_fork(struct task_struct *p)
2376{
dd41f596
IM
2377 p->se.exec_start = 0;
2378 p->se.sum_exec_runtime = 0;
f6cf891c 2379 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2380 p->se.last_wakeup = 0;
2381 p->se.avg_overlap = 0;
6cfb0d5d
IM
2382
2383#ifdef CONFIG_SCHEDSTATS
2384 p->se.wait_start = 0;
dd41f596
IM
2385 p->se.sum_sleep_runtime = 0;
2386 p->se.sleep_start = 0;
dd41f596
IM
2387 p->se.block_start = 0;
2388 p->se.sleep_max = 0;
2389 p->se.block_max = 0;
2390 p->se.exec_max = 0;
eba1ed4b 2391 p->se.slice_max = 0;
dd41f596 2392 p->se.wait_max = 0;
6cfb0d5d 2393#endif
476d139c 2394
fa717060 2395 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2396 p->se.on_rq = 0;
4a55bd5e 2397 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2398
e107be36
AK
2399#ifdef CONFIG_PREEMPT_NOTIFIERS
2400 INIT_HLIST_HEAD(&p->preempt_notifiers);
2401#endif
2402
1da177e4
LT
2403 /*
2404 * We mark the process as running here, but have not actually
2405 * inserted it onto the runqueue yet. This guarantees that
2406 * nobody will actually run it, and a signal or other external
2407 * event cannot wake it up and insert it on the runqueue either.
2408 */
2409 p->state = TASK_RUNNING;
dd41f596
IM
2410}
2411
2412/*
2413 * fork()/clone()-time setup:
2414 */
2415void sched_fork(struct task_struct *p, int clone_flags)
2416{
2417 int cpu = get_cpu();
2418
2419 __sched_fork(p);
2420
2421#ifdef CONFIG_SMP
2422 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2423#endif
02e4bac2 2424 set_task_cpu(p, cpu);
b29739f9
IM
2425
2426 /*
2427 * Make sure we do not leak PI boosting priority to the child:
2428 */
2429 p->prio = current->normal_prio;
2ddbf952
HS
2430 if (!rt_prio(p->prio))
2431 p->sched_class = &fair_sched_class;
b29739f9 2432
52f17b6c 2433#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2434 if (likely(sched_info_on()))
52f17b6c 2435 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2436#endif
d6077cb8 2437#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2438 p->oncpu = 0;
2439#endif
1da177e4 2440#ifdef CONFIG_PREEMPT
4866cde0 2441 /* Want to start with kernel preemption disabled. */
a1261f54 2442 task_thread_info(p)->preempt_count = 1;
1da177e4 2443#endif
476d139c 2444 put_cpu();
1da177e4
LT
2445}
2446
2447/*
2448 * wake_up_new_task - wake up a newly created task for the first time.
2449 *
2450 * This function will do some initial scheduler statistics housekeeping
2451 * that must be done for every newly created context, then puts the task
2452 * on the runqueue and wakes it.
2453 */
7ad5b3a5 2454void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2455{
2456 unsigned long flags;
dd41f596 2457 struct rq *rq;
1da177e4
LT
2458
2459 rq = task_rq_lock(p, &flags);
147cbb4b 2460 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2461 update_rq_clock(rq);
1da177e4
LT
2462
2463 p->prio = effective_prio(p);
2464
b9dca1e0 2465 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2466 activate_task(rq, p, 0);
1da177e4 2467 } else {
1da177e4 2468 /*
dd41f596
IM
2469 * Let the scheduling class do new task startup
2470 * management (if any):
1da177e4 2471 */
ee0827d8 2472 p->sched_class->task_new(rq, p);
c09595f6 2473 inc_nr_running(rq);
1da177e4 2474 }
5b82a1b0
MD
2475 trace_mark(kernel_sched_wakeup_new,
2476 "pid %d state %ld ## rq %p task %p rq->curr %p",
2477 p->pid, p->state, rq, p, rq->curr);
dd41f596 2478 check_preempt_curr(rq, p);
9a897c5a
SR
2479#ifdef CONFIG_SMP
2480 if (p->sched_class->task_wake_up)
2481 p->sched_class->task_wake_up(rq, p);
2482#endif
dd41f596 2483 task_rq_unlock(rq, &flags);
1da177e4
LT
2484}
2485
e107be36
AK
2486#ifdef CONFIG_PREEMPT_NOTIFIERS
2487
2488/**
421cee29
RD
2489 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2490 * @notifier: notifier struct to register
e107be36
AK
2491 */
2492void preempt_notifier_register(struct preempt_notifier *notifier)
2493{
2494 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2495}
2496EXPORT_SYMBOL_GPL(preempt_notifier_register);
2497
2498/**
2499 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2500 * @notifier: notifier struct to unregister
e107be36
AK
2501 *
2502 * This is safe to call from within a preemption notifier.
2503 */
2504void preempt_notifier_unregister(struct preempt_notifier *notifier)
2505{
2506 hlist_del(&notifier->link);
2507}
2508EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2509
2510static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2511{
2512 struct preempt_notifier *notifier;
2513 struct hlist_node *node;
2514
2515 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2516 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2517}
2518
2519static void
2520fire_sched_out_preempt_notifiers(struct task_struct *curr,
2521 struct task_struct *next)
2522{
2523 struct preempt_notifier *notifier;
2524 struct hlist_node *node;
2525
2526 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2527 notifier->ops->sched_out(notifier, next);
2528}
2529
6d6bc0ad 2530#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2531
2532static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2533{
2534}
2535
2536static void
2537fire_sched_out_preempt_notifiers(struct task_struct *curr,
2538 struct task_struct *next)
2539{
2540}
2541
6d6bc0ad 2542#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2543
4866cde0
NP
2544/**
2545 * prepare_task_switch - prepare to switch tasks
2546 * @rq: the runqueue preparing to switch
421cee29 2547 * @prev: the current task that is being switched out
4866cde0
NP
2548 * @next: the task we are going to switch to.
2549 *
2550 * This is called with the rq lock held and interrupts off. It must
2551 * be paired with a subsequent finish_task_switch after the context
2552 * switch.
2553 *
2554 * prepare_task_switch sets up locking and calls architecture specific
2555 * hooks.
2556 */
e107be36
AK
2557static inline void
2558prepare_task_switch(struct rq *rq, struct task_struct *prev,
2559 struct task_struct *next)
4866cde0 2560{
e107be36 2561 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2562 prepare_lock_switch(rq, next);
2563 prepare_arch_switch(next);
2564}
2565
1da177e4
LT
2566/**
2567 * finish_task_switch - clean up after a task-switch
344babaa 2568 * @rq: runqueue associated with task-switch
1da177e4
LT
2569 * @prev: the thread we just switched away from.
2570 *
4866cde0
NP
2571 * finish_task_switch must be called after the context switch, paired
2572 * with a prepare_task_switch call before the context switch.
2573 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2574 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2575 *
2576 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2577 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2578 * with the lock held can cause deadlocks; see schedule() for
2579 * details.)
2580 */
a9957449 2581static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2582 __releases(rq->lock)
2583{
1da177e4 2584 struct mm_struct *mm = rq->prev_mm;
55a101f8 2585 long prev_state;
1da177e4
LT
2586
2587 rq->prev_mm = NULL;
2588
2589 /*
2590 * A task struct has one reference for the use as "current".
c394cc9f 2591 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2592 * schedule one last time. The schedule call will never return, and
2593 * the scheduled task must drop that reference.
c394cc9f 2594 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2595 * still held, otherwise prev could be scheduled on another cpu, die
2596 * there before we look at prev->state, and then the reference would
2597 * be dropped twice.
2598 * Manfred Spraul <manfred@colorfullife.com>
2599 */
55a101f8 2600 prev_state = prev->state;
4866cde0
NP
2601 finish_arch_switch(prev);
2602 finish_lock_switch(rq, prev);
9a897c5a
SR
2603#ifdef CONFIG_SMP
2604 if (current->sched_class->post_schedule)
2605 current->sched_class->post_schedule(rq);
2606#endif
e8fa1362 2607
e107be36 2608 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2609 if (mm)
2610 mmdrop(mm);
c394cc9f 2611 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2612 /*
2613 * Remove function-return probe instances associated with this
2614 * task and put them back on the free list.
9761eea8 2615 */
c6fd91f0 2616 kprobe_flush_task(prev);
1da177e4 2617 put_task_struct(prev);
c6fd91f0 2618 }
1da177e4
LT
2619}
2620
2621/**
2622 * schedule_tail - first thing a freshly forked thread must call.
2623 * @prev: the thread we just switched away from.
2624 */
36c8b586 2625asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2626 __releases(rq->lock)
2627{
70b97a7f
IM
2628 struct rq *rq = this_rq();
2629
4866cde0
NP
2630 finish_task_switch(rq, prev);
2631#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2632 /* In this case, finish_task_switch does not reenable preemption */
2633 preempt_enable();
2634#endif
1da177e4 2635 if (current->set_child_tid)
b488893a 2636 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2637}
2638
2639/*
2640 * context_switch - switch to the new MM and the new
2641 * thread's register state.
2642 */
dd41f596 2643static inline void
70b97a7f 2644context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2645 struct task_struct *next)
1da177e4 2646{
dd41f596 2647 struct mm_struct *mm, *oldmm;
1da177e4 2648
e107be36 2649 prepare_task_switch(rq, prev, next);
5b82a1b0
MD
2650 trace_mark(kernel_sched_schedule,
2651 "prev_pid %d next_pid %d prev_state %ld "
2652 "## rq %p prev %p next %p",
2653 prev->pid, next->pid, prev->state,
2654 rq, prev, next);
dd41f596
IM
2655 mm = next->mm;
2656 oldmm = prev->active_mm;
9226d125
ZA
2657 /*
2658 * For paravirt, this is coupled with an exit in switch_to to
2659 * combine the page table reload and the switch backend into
2660 * one hypercall.
2661 */
2662 arch_enter_lazy_cpu_mode();
2663
dd41f596 2664 if (unlikely(!mm)) {
1da177e4
LT
2665 next->active_mm = oldmm;
2666 atomic_inc(&oldmm->mm_count);
2667 enter_lazy_tlb(oldmm, next);
2668 } else
2669 switch_mm(oldmm, mm, next);
2670
dd41f596 2671 if (unlikely(!prev->mm)) {
1da177e4 2672 prev->active_mm = NULL;
1da177e4
LT
2673 rq->prev_mm = oldmm;
2674 }
3a5f5e48
IM
2675 /*
2676 * Since the runqueue lock will be released by the next
2677 * task (which is an invalid locking op but in the case
2678 * of the scheduler it's an obvious special-case), so we
2679 * do an early lockdep release here:
2680 */
2681#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2682 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2683#endif
1da177e4
LT
2684
2685 /* Here we just switch the register state and the stack. */
2686 switch_to(prev, next, prev);
2687
dd41f596
IM
2688 barrier();
2689 /*
2690 * this_rq must be evaluated again because prev may have moved
2691 * CPUs since it called schedule(), thus the 'rq' on its stack
2692 * frame will be invalid.
2693 */
2694 finish_task_switch(this_rq(), prev);
1da177e4
LT
2695}
2696
2697/*
2698 * nr_running, nr_uninterruptible and nr_context_switches:
2699 *
2700 * externally visible scheduler statistics: current number of runnable
2701 * threads, current number of uninterruptible-sleeping threads, total
2702 * number of context switches performed since bootup.
2703 */
2704unsigned long nr_running(void)
2705{
2706 unsigned long i, sum = 0;
2707
2708 for_each_online_cpu(i)
2709 sum += cpu_rq(i)->nr_running;
2710
2711 return sum;
2712}
2713
2714unsigned long nr_uninterruptible(void)
2715{
2716 unsigned long i, sum = 0;
2717
0a945022 2718 for_each_possible_cpu(i)
1da177e4
LT
2719 sum += cpu_rq(i)->nr_uninterruptible;
2720
2721 /*
2722 * Since we read the counters lockless, it might be slightly
2723 * inaccurate. Do not allow it to go below zero though:
2724 */
2725 if (unlikely((long)sum < 0))
2726 sum = 0;
2727
2728 return sum;
2729}
2730
2731unsigned long long nr_context_switches(void)
2732{
cc94abfc
SR
2733 int i;
2734 unsigned long long sum = 0;
1da177e4 2735
0a945022 2736 for_each_possible_cpu(i)
1da177e4
LT
2737 sum += cpu_rq(i)->nr_switches;
2738
2739 return sum;
2740}
2741
2742unsigned long nr_iowait(void)
2743{
2744 unsigned long i, sum = 0;
2745
0a945022 2746 for_each_possible_cpu(i)
1da177e4
LT
2747 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2748
2749 return sum;
2750}
2751
db1b1fef
JS
2752unsigned long nr_active(void)
2753{
2754 unsigned long i, running = 0, uninterruptible = 0;
2755
2756 for_each_online_cpu(i) {
2757 running += cpu_rq(i)->nr_running;
2758 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2759 }
2760
2761 if (unlikely((long)uninterruptible < 0))
2762 uninterruptible = 0;
2763
2764 return running + uninterruptible;
2765}
2766
48f24c4d 2767/*
dd41f596
IM
2768 * Update rq->cpu_load[] statistics. This function is usually called every
2769 * scheduler tick (TICK_NSEC).
48f24c4d 2770 */
dd41f596 2771static void update_cpu_load(struct rq *this_rq)
48f24c4d 2772{
495eca49 2773 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2774 int i, scale;
2775
2776 this_rq->nr_load_updates++;
dd41f596
IM
2777
2778 /* Update our load: */
2779 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2780 unsigned long old_load, new_load;
2781
2782 /* scale is effectively 1 << i now, and >> i divides by scale */
2783
2784 old_load = this_rq->cpu_load[i];
2785 new_load = this_load;
a25707f3
IM
2786 /*
2787 * Round up the averaging division if load is increasing. This
2788 * prevents us from getting stuck on 9 if the load is 10, for
2789 * example.
2790 */
2791 if (new_load > old_load)
2792 new_load += scale-1;
dd41f596
IM
2793 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2794 }
48f24c4d
IM
2795}
2796
dd41f596
IM
2797#ifdef CONFIG_SMP
2798
1da177e4
LT
2799/*
2800 * double_rq_lock - safely lock two runqueues
2801 *
2802 * Note this does not disable interrupts like task_rq_lock,
2803 * you need to do so manually before calling.
2804 */
70b97a7f 2805static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2806 __acquires(rq1->lock)
2807 __acquires(rq2->lock)
2808{
054b9108 2809 BUG_ON(!irqs_disabled());
1da177e4
LT
2810 if (rq1 == rq2) {
2811 spin_lock(&rq1->lock);
2812 __acquire(rq2->lock); /* Fake it out ;) */
2813 } else {
c96d145e 2814 if (rq1 < rq2) {
1da177e4
LT
2815 spin_lock(&rq1->lock);
2816 spin_lock(&rq2->lock);
2817 } else {
2818 spin_lock(&rq2->lock);
2819 spin_lock(&rq1->lock);
2820 }
2821 }
6e82a3be
IM
2822 update_rq_clock(rq1);
2823 update_rq_clock(rq2);
1da177e4
LT
2824}
2825
2826/*
2827 * double_rq_unlock - safely unlock two runqueues
2828 *
2829 * Note this does not restore interrupts like task_rq_unlock,
2830 * you need to do so manually after calling.
2831 */
70b97a7f 2832static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2833 __releases(rq1->lock)
2834 __releases(rq2->lock)
2835{
2836 spin_unlock(&rq1->lock);
2837 if (rq1 != rq2)
2838 spin_unlock(&rq2->lock);
2839 else
2840 __release(rq2->lock);
2841}
2842
2843/*
2844 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2845 */
e8fa1362 2846static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2847 __releases(this_rq->lock)
2848 __acquires(busiest->lock)
2849 __acquires(this_rq->lock)
2850{
e8fa1362
SR
2851 int ret = 0;
2852
054b9108
KK
2853 if (unlikely(!irqs_disabled())) {
2854 /* printk() doesn't work good under rq->lock */
2855 spin_unlock(&this_rq->lock);
2856 BUG_ON(1);
2857 }
1da177e4 2858 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2859 if (busiest < this_rq) {
1da177e4
LT
2860 spin_unlock(&this_rq->lock);
2861 spin_lock(&busiest->lock);
2862 spin_lock(&this_rq->lock);
e8fa1362 2863 ret = 1;
1da177e4
LT
2864 } else
2865 spin_lock(&busiest->lock);
2866 }
e8fa1362 2867 return ret;
1da177e4
LT
2868}
2869
1da177e4
LT
2870/*
2871 * If dest_cpu is allowed for this process, migrate the task to it.
2872 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2873 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2874 * the cpu_allowed mask is restored.
2875 */
36c8b586 2876static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2877{
70b97a7f 2878 struct migration_req req;
1da177e4 2879 unsigned long flags;
70b97a7f 2880 struct rq *rq;
1da177e4
LT
2881
2882 rq = task_rq_lock(p, &flags);
2883 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2884 || unlikely(cpu_is_offline(dest_cpu)))
2885 goto out;
2886
2887 /* force the process onto the specified CPU */
2888 if (migrate_task(p, dest_cpu, &req)) {
2889 /* Need to wait for migration thread (might exit: take ref). */
2890 struct task_struct *mt = rq->migration_thread;
36c8b586 2891
1da177e4
LT
2892 get_task_struct(mt);
2893 task_rq_unlock(rq, &flags);
2894 wake_up_process(mt);
2895 put_task_struct(mt);
2896 wait_for_completion(&req.done);
36c8b586 2897
1da177e4
LT
2898 return;
2899 }
2900out:
2901 task_rq_unlock(rq, &flags);
2902}
2903
2904/*
476d139c
NP
2905 * sched_exec - execve() is a valuable balancing opportunity, because at
2906 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2907 */
2908void sched_exec(void)
2909{
1da177e4 2910 int new_cpu, this_cpu = get_cpu();
476d139c 2911 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2912 put_cpu();
476d139c
NP
2913 if (new_cpu != this_cpu)
2914 sched_migrate_task(current, new_cpu);
1da177e4
LT
2915}
2916
2917/*
2918 * pull_task - move a task from a remote runqueue to the local runqueue.
2919 * Both runqueues must be locked.
2920 */
dd41f596
IM
2921static void pull_task(struct rq *src_rq, struct task_struct *p,
2922 struct rq *this_rq, int this_cpu)
1da177e4 2923{
2e1cb74a 2924 deactivate_task(src_rq, p, 0);
1da177e4 2925 set_task_cpu(p, this_cpu);
dd41f596 2926 activate_task(this_rq, p, 0);
1da177e4
LT
2927 /*
2928 * Note that idle threads have a prio of MAX_PRIO, for this test
2929 * to be always true for them.
2930 */
dd41f596 2931 check_preempt_curr(this_rq, p);
1da177e4
LT
2932}
2933
2934/*
2935 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2936 */
858119e1 2937static
70b97a7f 2938int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2939 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2940 int *all_pinned)
1da177e4
LT
2941{
2942 /*
2943 * We do not migrate tasks that are:
2944 * 1) running (obviously), or
2945 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2946 * 3) are cache-hot on their current CPU.
2947 */
cc367732
IM
2948 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2949 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2950 return 0;
cc367732 2951 }
81026794
NP
2952 *all_pinned = 0;
2953
cc367732
IM
2954 if (task_running(rq, p)) {
2955 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2956 return 0;
cc367732 2957 }
1da177e4 2958
da84d961
IM
2959 /*
2960 * Aggressive migration if:
2961 * 1) task is cache cold, or
2962 * 2) too many balance attempts have failed.
2963 */
2964
6bc1665b
IM
2965 if (!task_hot(p, rq->clock, sd) ||
2966 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2967#ifdef CONFIG_SCHEDSTATS
cc367732 2968 if (task_hot(p, rq->clock, sd)) {
da84d961 2969 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2970 schedstat_inc(p, se.nr_forced_migrations);
2971 }
da84d961
IM
2972#endif
2973 return 1;
2974 }
2975
cc367732
IM
2976 if (task_hot(p, rq->clock, sd)) {
2977 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2978 return 0;
cc367732 2979 }
1da177e4
LT
2980 return 1;
2981}
2982
e1d1484f
PW
2983static unsigned long
2984balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2985 unsigned long max_load_move, struct sched_domain *sd,
2986 enum cpu_idle_type idle, int *all_pinned,
2987 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2988{
051c6764 2989 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
2990 struct task_struct *p;
2991 long rem_load_move = max_load_move;
1da177e4 2992
e1d1484f 2993 if (max_load_move == 0)
1da177e4
LT
2994 goto out;
2995
81026794
NP
2996 pinned = 1;
2997
1da177e4 2998 /*
dd41f596 2999 * Start the load-balancing iterator:
1da177e4 3000 */
dd41f596
IM
3001 p = iterator->start(iterator->arg);
3002next:
b82d9fdd 3003 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3004 goto out;
051c6764
PZ
3005
3006 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3007 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3008 p = iterator->next(iterator->arg);
3009 goto next;
1da177e4
LT
3010 }
3011
dd41f596 3012 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3013 pulled++;
dd41f596 3014 rem_load_move -= p->se.load.weight;
1da177e4 3015
2dd73a4f 3016 /*
b82d9fdd 3017 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3018 */
e1d1484f 3019 if (rem_load_move > 0) {
a4ac01c3
PW
3020 if (p->prio < *this_best_prio)
3021 *this_best_prio = p->prio;
dd41f596
IM
3022 p = iterator->next(iterator->arg);
3023 goto next;
1da177e4
LT
3024 }
3025out:
3026 /*
e1d1484f 3027 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3028 * so we can safely collect pull_task() stats here rather than
3029 * inside pull_task().
3030 */
3031 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3032
3033 if (all_pinned)
3034 *all_pinned = pinned;
e1d1484f
PW
3035
3036 return max_load_move - rem_load_move;
1da177e4
LT
3037}
3038
dd41f596 3039/*
43010659
PW
3040 * move_tasks tries to move up to max_load_move weighted load from busiest to
3041 * this_rq, as part of a balancing operation within domain "sd".
3042 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3043 *
3044 * Called with both runqueues locked.
3045 */
3046static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3047 unsigned long max_load_move,
dd41f596
IM
3048 struct sched_domain *sd, enum cpu_idle_type idle,
3049 int *all_pinned)
3050{
5522d5d5 3051 const struct sched_class *class = sched_class_highest;
43010659 3052 unsigned long total_load_moved = 0;
a4ac01c3 3053 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3054
3055 do {
43010659
PW
3056 total_load_moved +=
3057 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3058 max_load_move - total_load_moved,
a4ac01c3 3059 sd, idle, all_pinned, &this_best_prio);
dd41f596 3060 class = class->next;
c4acb2c0
GH
3061
3062 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3063 break;
3064
43010659 3065 } while (class && max_load_move > total_load_moved);
dd41f596 3066
43010659
PW
3067 return total_load_moved > 0;
3068}
3069
e1d1484f
PW
3070static int
3071iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3072 struct sched_domain *sd, enum cpu_idle_type idle,
3073 struct rq_iterator *iterator)
3074{
3075 struct task_struct *p = iterator->start(iterator->arg);
3076 int pinned = 0;
3077
3078 while (p) {
3079 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3080 pull_task(busiest, p, this_rq, this_cpu);
3081 /*
3082 * Right now, this is only the second place pull_task()
3083 * is called, so we can safely collect pull_task()
3084 * stats here rather than inside pull_task().
3085 */
3086 schedstat_inc(sd, lb_gained[idle]);
3087
3088 return 1;
3089 }
3090 p = iterator->next(iterator->arg);
3091 }
3092
3093 return 0;
3094}
3095
43010659
PW
3096/*
3097 * move_one_task tries to move exactly one task from busiest to this_rq, as
3098 * part of active balancing operations within "domain".
3099 * Returns 1 if successful and 0 otherwise.
3100 *
3101 * Called with both runqueues locked.
3102 */
3103static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3104 struct sched_domain *sd, enum cpu_idle_type idle)
3105{
5522d5d5 3106 const struct sched_class *class;
43010659
PW
3107
3108 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3109 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3110 return 1;
3111
3112 return 0;
dd41f596
IM
3113}
3114
1da177e4
LT
3115/*
3116 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3117 * domain. It calculates and returns the amount of weighted load which
3118 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3119 */
3120static struct sched_group *
3121find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3122 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 3123 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
3124{
3125 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3126 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3127 unsigned long max_pull;
2dd73a4f
PW
3128 unsigned long busiest_load_per_task, busiest_nr_running;
3129 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3130 int load_idx, group_imb = 0;
5c45bf27
SS
3131#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3132 int power_savings_balance = 1;
3133 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3134 unsigned long min_nr_running = ULONG_MAX;
3135 struct sched_group *group_min = NULL, *group_leader = NULL;
3136#endif
1da177e4
LT
3137
3138 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3139 busiest_load_per_task = busiest_nr_running = 0;
3140 this_load_per_task = this_nr_running = 0;
408ed066 3141
d15bcfdb 3142 if (idle == CPU_NOT_IDLE)
7897986b 3143 load_idx = sd->busy_idx;
d15bcfdb 3144 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3145 load_idx = sd->newidle_idx;
3146 else
3147 load_idx = sd->idle_idx;
1da177e4
LT
3148
3149 do {
908a7c1b 3150 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3151 int local_group;
3152 int i;
908a7c1b 3153 int __group_imb = 0;
783609c6 3154 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3155 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3156 unsigned long sum_avg_load_per_task;
3157 unsigned long avg_load_per_task;
1da177e4
LT
3158
3159 local_group = cpu_isset(this_cpu, group->cpumask);
3160
783609c6
SS
3161 if (local_group)
3162 balance_cpu = first_cpu(group->cpumask);
3163
1da177e4 3164 /* Tally up the load of all CPUs in the group */
2dd73a4f 3165 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3166 sum_avg_load_per_task = avg_load_per_task = 0;
3167
908a7c1b
KC
3168 max_cpu_load = 0;
3169 min_cpu_load = ~0UL;
1da177e4
LT
3170
3171 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
3172 struct rq *rq;
3173
3174 if (!cpu_isset(i, *cpus))
3175 continue;
3176
3177 rq = cpu_rq(i);
2dd73a4f 3178
9439aab8 3179 if (*sd_idle && rq->nr_running)
5969fe06
NP
3180 *sd_idle = 0;
3181
1da177e4 3182 /* Bias balancing toward cpus of our domain */
783609c6
SS
3183 if (local_group) {
3184 if (idle_cpu(i) && !first_idle_cpu) {
3185 first_idle_cpu = 1;
3186 balance_cpu = i;
3187 }
3188
a2000572 3189 load = target_load(i, load_idx);
908a7c1b 3190 } else {
a2000572 3191 load = source_load(i, load_idx);
908a7c1b
KC
3192 if (load > max_cpu_load)
3193 max_cpu_load = load;
3194 if (min_cpu_load > load)
3195 min_cpu_load = load;
3196 }
1da177e4
LT
3197
3198 avg_load += load;
2dd73a4f 3199 sum_nr_running += rq->nr_running;
dd41f596 3200 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3201
3202 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3203 }
3204
783609c6
SS
3205 /*
3206 * First idle cpu or the first cpu(busiest) in this sched group
3207 * is eligible for doing load balancing at this and above
9439aab8
SS
3208 * domains. In the newly idle case, we will allow all the cpu's
3209 * to do the newly idle load balance.
783609c6 3210 */
9439aab8
SS
3211 if (idle != CPU_NEWLY_IDLE && local_group &&
3212 balance_cpu != this_cpu && balance) {
783609c6
SS
3213 *balance = 0;
3214 goto ret;
3215 }
3216
1da177e4 3217 total_load += avg_load;
5517d86b 3218 total_pwr += group->__cpu_power;
1da177e4
LT
3219
3220 /* Adjust by relative CPU power of the group */
5517d86b
ED
3221 avg_load = sg_div_cpu_power(group,
3222 avg_load * SCHED_LOAD_SCALE);
1da177e4 3223
408ed066
PZ
3224
3225 /*
3226 * Consider the group unbalanced when the imbalance is larger
3227 * than the average weight of two tasks.
3228 *
3229 * APZ: with cgroup the avg task weight can vary wildly and
3230 * might not be a suitable number - should we keep a
3231 * normalized nr_running number somewhere that negates
3232 * the hierarchy?
3233 */
3234 avg_load_per_task = sg_div_cpu_power(group,
3235 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3236
3237 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3238 __group_imb = 1;
3239
5517d86b 3240 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3241
1da177e4
LT
3242 if (local_group) {
3243 this_load = avg_load;
3244 this = group;
2dd73a4f
PW
3245 this_nr_running = sum_nr_running;
3246 this_load_per_task = sum_weighted_load;
3247 } else if (avg_load > max_load &&
908a7c1b 3248 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3249 max_load = avg_load;
3250 busiest = group;
2dd73a4f
PW
3251 busiest_nr_running = sum_nr_running;
3252 busiest_load_per_task = sum_weighted_load;
908a7c1b 3253 group_imb = __group_imb;
1da177e4 3254 }
5c45bf27
SS
3255
3256#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3257 /*
3258 * Busy processors will not participate in power savings
3259 * balance.
3260 */
dd41f596
IM
3261 if (idle == CPU_NOT_IDLE ||
3262 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3263 goto group_next;
5c45bf27
SS
3264
3265 /*
3266 * If the local group is idle or completely loaded
3267 * no need to do power savings balance at this domain
3268 */
3269 if (local_group && (this_nr_running >= group_capacity ||
3270 !this_nr_running))
3271 power_savings_balance = 0;
3272
dd41f596 3273 /*
5c45bf27
SS
3274 * If a group is already running at full capacity or idle,
3275 * don't include that group in power savings calculations
dd41f596
IM
3276 */
3277 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3278 || !sum_nr_running)
dd41f596 3279 goto group_next;
5c45bf27 3280
dd41f596 3281 /*
5c45bf27 3282 * Calculate the group which has the least non-idle load.
dd41f596
IM
3283 * This is the group from where we need to pick up the load
3284 * for saving power
3285 */
3286 if ((sum_nr_running < min_nr_running) ||
3287 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3288 first_cpu(group->cpumask) <
3289 first_cpu(group_min->cpumask))) {
dd41f596
IM
3290 group_min = group;
3291 min_nr_running = sum_nr_running;
5c45bf27
SS
3292 min_load_per_task = sum_weighted_load /
3293 sum_nr_running;
dd41f596 3294 }
5c45bf27 3295
dd41f596 3296 /*
5c45bf27 3297 * Calculate the group which is almost near its
dd41f596
IM
3298 * capacity but still has some space to pick up some load
3299 * from other group and save more power
3300 */
3301 if (sum_nr_running <= group_capacity - 1) {
3302 if (sum_nr_running > leader_nr_running ||
3303 (sum_nr_running == leader_nr_running &&
3304 first_cpu(group->cpumask) >
3305 first_cpu(group_leader->cpumask))) {
3306 group_leader = group;
3307 leader_nr_running = sum_nr_running;
3308 }
48f24c4d 3309 }
5c45bf27
SS
3310group_next:
3311#endif
1da177e4
LT
3312 group = group->next;
3313 } while (group != sd->groups);
3314
2dd73a4f 3315 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3316 goto out_balanced;
3317
3318 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3319
3320 if (this_load >= avg_load ||
3321 100*max_load <= sd->imbalance_pct*this_load)
3322 goto out_balanced;
3323
2dd73a4f 3324 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3325 if (group_imb)
3326 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3327
1da177e4
LT
3328 /*
3329 * We're trying to get all the cpus to the average_load, so we don't
3330 * want to push ourselves above the average load, nor do we wish to
3331 * reduce the max loaded cpu below the average load, as either of these
3332 * actions would just result in more rebalancing later, and ping-pong
3333 * tasks around. Thus we look for the minimum possible imbalance.
3334 * Negative imbalances (*we* are more loaded than anyone else) will
3335 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3336 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3337 * appear as very large values with unsigned longs.
3338 */
2dd73a4f
PW
3339 if (max_load <= busiest_load_per_task)
3340 goto out_balanced;
3341
3342 /*
3343 * In the presence of smp nice balancing, certain scenarios can have
3344 * max load less than avg load(as we skip the groups at or below
3345 * its cpu_power, while calculating max_load..)
3346 */
3347 if (max_load < avg_load) {
3348 *imbalance = 0;
3349 goto small_imbalance;
3350 }
0c117f1b
SS
3351
3352 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3353 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3354
1da177e4 3355 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3356 *imbalance = min(max_pull * busiest->__cpu_power,
3357 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3358 / SCHED_LOAD_SCALE;
3359
2dd73a4f
PW
3360 /*
3361 * if *imbalance is less than the average load per runnable task
3362 * there is no gaurantee that any tasks will be moved so we'll have
3363 * a think about bumping its value to force at least one task to be
3364 * moved
3365 */
7fd0d2dd 3366 if (*imbalance < busiest_load_per_task) {
48f24c4d 3367 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3368 unsigned int imbn;
3369
3370small_imbalance:
3371 pwr_move = pwr_now = 0;
3372 imbn = 2;
3373 if (this_nr_running) {
3374 this_load_per_task /= this_nr_running;
3375 if (busiest_load_per_task > this_load_per_task)
3376 imbn = 1;
3377 } else
408ed066 3378 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3379
408ed066 3380 if (max_load - this_load + 2*busiest_load_per_task >=
dd41f596 3381 busiest_load_per_task * imbn) {
2dd73a4f 3382 *imbalance = busiest_load_per_task;
1da177e4
LT
3383 return busiest;
3384 }
3385
3386 /*
3387 * OK, we don't have enough imbalance to justify moving tasks,
3388 * however we may be able to increase total CPU power used by
3389 * moving them.
3390 */
3391
5517d86b
ED
3392 pwr_now += busiest->__cpu_power *
3393 min(busiest_load_per_task, max_load);
3394 pwr_now += this->__cpu_power *
3395 min(this_load_per_task, this_load);
1da177e4
LT
3396 pwr_now /= SCHED_LOAD_SCALE;
3397
3398 /* Amount of load we'd subtract */
5517d86b
ED
3399 tmp = sg_div_cpu_power(busiest,
3400 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3401 if (max_load > tmp)
5517d86b 3402 pwr_move += busiest->__cpu_power *
2dd73a4f 3403 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3404
3405 /* Amount of load we'd add */
5517d86b 3406 if (max_load * busiest->__cpu_power <
33859f7f 3407 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3408 tmp = sg_div_cpu_power(this,
3409 max_load * busiest->__cpu_power);
1da177e4 3410 else
5517d86b
ED
3411 tmp = sg_div_cpu_power(this,
3412 busiest_load_per_task * SCHED_LOAD_SCALE);
3413 pwr_move += this->__cpu_power *
3414 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3415 pwr_move /= SCHED_LOAD_SCALE;
3416
3417 /* Move if we gain throughput */
7fd0d2dd
SS
3418 if (pwr_move > pwr_now)
3419 *imbalance = busiest_load_per_task;
1da177e4
LT
3420 }
3421
1da177e4
LT
3422 return busiest;
3423
3424out_balanced:
5c45bf27 3425#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3426 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3427 goto ret;
1da177e4 3428
5c45bf27
SS
3429 if (this == group_leader && group_leader != group_min) {
3430 *imbalance = min_load_per_task;
3431 return group_min;
3432 }
5c45bf27 3433#endif
783609c6 3434ret:
1da177e4
LT
3435 *imbalance = 0;
3436 return NULL;
3437}
3438
3439/*
3440 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3441 */
70b97a7f 3442static struct rq *
d15bcfdb 3443find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3444 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3445{
70b97a7f 3446 struct rq *busiest = NULL, *rq;
2dd73a4f 3447 unsigned long max_load = 0;
1da177e4
LT
3448 int i;
3449
3450 for_each_cpu_mask(i, group->cpumask) {
dd41f596 3451 unsigned long wl;
0a2966b4
CL
3452
3453 if (!cpu_isset(i, *cpus))
3454 continue;
3455
48f24c4d 3456 rq = cpu_rq(i);
dd41f596 3457 wl = weighted_cpuload(i);
2dd73a4f 3458
dd41f596 3459 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3460 continue;
1da177e4 3461
dd41f596
IM
3462 if (wl > max_load) {
3463 max_load = wl;
48f24c4d 3464 busiest = rq;
1da177e4
LT
3465 }
3466 }
3467
3468 return busiest;
3469}
3470
77391d71
NP
3471/*
3472 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3473 * so long as it is large enough.
3474 */
3475#define MAX_PINNED_INTERVAL 512
3476
1da177e4
LT
3477/*
3478 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3479 * tasks if there is an imbalance.
1da177e4 3480 */
70b97a7f 3481static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3482 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3483 int *balance, cpumask_t *cpus)
1da177e4 3484{
43010659 3485 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3486 struct sched_group *group;
1da177e4 3487 unsigned long imbalance;
70b97a7f 3488 struct rq *busiest;
fe2eea3f 3489 unsigned long flags;
5969fe06 3490
7c16ec58
MT
3491 cpus_setall(*cpus);
3492
89c4710e
SS
3493 /*
3494 * When power savings policy is enabled for the parent domain, idle
3495 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3496 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3497 * portraying it as CPU_NOT_IDLE.
89c4710e 3498 */
d15bcfdb 3499 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3500 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3501 sd_idle = 1;
1da177e4 3502
2d72376b 3503 schedstat_inc(sd, lb_count[idle]);
1da177e4 3504
0a2966b4 3505redo:
c8cba857 3506 update_shares(sd);
0a2966b4 3507 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3508 cpus, balance);
783609c6 3509
06066714 3510 if (*balance == 0)
783609c6 3511 goto out_balanced;
783609c6 3512
1da177e4
LT
3513 if (!group) {
3514 schedstat_inc(sd, lb_nobusyg[idle]);
3515 goto out_balanced;
3516 }
3517
7c16ec58 3518 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3519 if (!busiest) {
3520 schedstat_inc(sd, lb_nobusyq[idle]);
3521 goto out_balanced;
3522 }
3523
db935dbd 3524 BUG_ON(busiest == this_rq);
1da177e4
LT
3525
3526 schedstat_add(sd, lb_imbalance[idle], imbalance);
3527
43010659 3528 ld_moved = 0;
1da177e4
LT
3529 if (busiest->nr_running > 1) {
3530 /*
3531 * Attempt to move tasks. If find_busiest_group has found
3532 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3533 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3534 * correctly treated as an imbalance.
3535 */
fe2eea3f 3536 local_irq_save(flags);
e17224bf 3537 double_rq_lock(this_rq, busiest);
43010659 3538 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3539 imbalance, sd, idle, &all_pinned);
e17224bf 3540 double_rq_unlock(this_rq, busiest);
fe2eea3f 3541 local_irq_restore(flags);
81026794 3542
46cb4b7c
SS
3543 /*
3544 * some other cpu did the load balance for us.
3545 */
43010659 3546 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3547 resched_cpu(this_cpu);
3548
81026794 3549 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3550 if (unlikely(all_pinned)) {
7c16ec58
MT
3551 cpu_clear(cpu_of(busiest), *cpus);
3552 if (!cpus_empty(*cpus))
0a2966b4 3553 goto redo;
81026794 3554 goto out_balanced;
0a2966b4 3555 }
1da177e4 3556 }
81026794 3557
43010659 3558 if (!ld_moved) {
1da177e4
LT
3559 schedstat_inc(sd, lb_failed[idle]);
3560 sd->nr_balance_failed++;
3561
3562 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3563
fe2eea3f 3564 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3565
3566 /* don't kick the migration_thread, if the curr
3567 * task on busiest cpu can't be moved to this_cpu
3568 */
3569 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3570 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3571 all_pinned = 1;
3572 goto out_one_pinned;
3573 }
3574
1da177e4
LT
3575 if (!busiest->active_balance) {
3576 busiest->active_balance = 1;
3577 busiest->push_cpu = this_cpu;
81026794 3578 active_balance = 1;
1da177e4 3579 }
fe2eea3f 3580 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3581 if (active_balance)
1da177e4
LT
3582 wake_up_process(busiest->migration_thread);
3583
3584 /*
3585 * We've kicked active balancing, reset the failure
3586 * counter.
3587 */
39507451 3588 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3589 }
81026794 3590 } else
1da177e4
LT
3591 sd->nr_balance_failed = 0;
3592
81026794 3593 if (likely(!active_balance)) {
1da177e4
LT
3594 /* We were unbalanced, so reset the balancing interval */
3595 sd->balance_interval = sd->min_interval;
81026794
NP
3596 } else {
3597 /*
3598 * If we've begun active balancing, start to back off. This
3599 * case may not be covered by the all_pinned logic if there
3600 * is only 1 task on the busy runqueue (because we don't call
3601 * move_tasks).
3602 */
3603 if (sd->balance_interval < sd->max_interval)
3604 sd->balance_interval *= 2;
1da177e4
LT
3605 }
3606
43010659 3607 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3608 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3609 ld_moved = -1;
3610
3611 goto out;
1da177e4
LT
3612
3613out_balanced:
1da177e4
LT
3614 schedstat_inc(sd, lb_balanced[idle]);
3615
16cfb1c0 3616 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3617
3618out_one_pinned:
1da177e4 3619 /* tune up the balancing interval */
77391d71
NP
3620 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3621 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3622 sd->balance_interval *= 2;
3623
48f24c4d 3624 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3625 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3626 ld_moved = -1;
3627 else
3628 ld_moved = 0;
3629out:
c8cba857
PZ
3630 if (ld_moved)
3631 update_shares(sd);
c09595f6 3632 return ld_moved;
1da177e4
LT
3633}
3634
3635/*
3636 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3637 * tasks if there is an imbalance.
3638 *
d15bcfdb 3639 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3640 * this_rq is locked.
3641 */
48f24c4d 3642static int
7c16ec58
MT
3643load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3644 cpumask_t *cpus)
1da177e4
LT
3645{
3646 struct sched_group *group;
70b97a7f 3647 struct rq *busiest = NULL;
1da177e4 3648 unsigned long imbalance;
43010659 3649 int ld_moved = 0;
5969fe06 3650 int sd_idle = 0;
969bb4e4 3651 int all_pinned = 0;
7c16ec58
MT
3652
3653 cpus_setall(*cpus);
5969fe06 3654
89c4710e
SS
3655 /*
3656 * When power savings policy is enabled for the parent domain, idle
3657 * sibling can pick up load irrespective of busy siblings. In this case,
3658 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3659 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3660 */
3661 if (sd->flags & SD_SHARE_CPUPOWER &&
3662 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3663 sd_idle = 1;
1da177e4 3664
2d72376b 3665 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3666redo:
3e5459b4 3667 update_shares_locked(this_rq, sd);
d15bcfdb 3668 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3669 &sd_idle, cpus, NULL);
1da177e4 3670 if (!group) {
d15bcfdb 3671 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3672 goto out_balanced;
1da177e4
LT
3673 }
3674
7c16ec58 3675 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3676 if (!busiest) {
d15bcfdb 3677 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3678 goto out_balanced;
1da177e4
LT
3679 }
3680
db935dbd
NP
3681 BUG_ON(busiest == this_rq);
3682
d15bcfdb 3683 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3684
43010659 3685 ld_moved = 0;
d6d5cfaf
NP
3686 if (busiest->nr_running > 1) {
3687 /* Attempt to move tasks */
3688 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3689 /* this_rq->clock is already updated */
3690 update_rq_clock(busiest);
43010659 3691 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3692 imbalance, sd, CPU_NEWLY_IDLE,
3693 &all_pinned);
d6d5cfaf 3694 spin_unlock(&busiest->lock);
0a2966b4 3695
969bb4e4 3696 if (unlikely(all_pinned)) {
7c16ec58
MT
3697 cpu_clear(cpu_of(busiest), *cpus);
3698 if (!cpus_empty(*cpus))
0a2966b4
CL
3699 goto redo;
3700 }
d6d5cfaf
NP
3701 }
3702
43010659 3703 if (!ld_moved) {
d15bcfdb 3704 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3705 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3706 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3707 return -1;
3708 } else
16cfb1c0 3709 sd->nr_balance_failed = 0;
1da177e4 3710
3e5459b4 3711 update_shares_locked(this_rq, sd);
43010659 3712 return ld_moved;
16cfb1c0
NP
3713
3714out_balanced:
d15bcfdb 3715 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3716 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3717 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3718 return -1;
16cfb1c0 3719 sd->nr_balance_failed = 0;
48f24c4d 3720
16cfb1c0 3721 return 0;
1da177e4
LT
3722}
3723
3724/*
3725 * idle_balance is called by schedule() if this_cpu is about to become
3726 * idle. Attempts to pull tasks from other CPUs.
3727 */
70b97a7f 3728static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3729{
3730 struct sched_domain *sd;
dd41f596
IM
3731 int pulled_task = -1;
3732 unsigned long next_balance = jiffies + HZ;
7c16ec58 3733 cpumask_t tmpmask;
1da177e4
LT
3734
3735 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3736 unsigned long interval;
3737
3738 if (!(sd->flags & SD_LOAD_BALANCE))
3739 continue;
3740
3741 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3742 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3743 pulled_task = load_balance_newidle(this_cpu, this_rq,
3744 sd, &tmpmask);
92c4ca5c
CL
3745
3746 interval = msecs_to_jiffies(sd->balance_interval);
3747 if (time_after(next_balance, sd->last_balance + interval))
3748 next_balance = sd->last_balance + interval;
3749 if (pulled_task)
3750 break;
1da177e4 3751 }
dd41f596 3752 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3753 /*
3754 * We are going idle. next_balance may be set based on
3755 * a busy processor. So reset next_balance.
3756 */
3757 this_rq->next_balance = next_balance;
dd41f596 3758 }
1da177e4
LT
3759}
3760
3761/*
3762 * active_load_balance is run by migration threads. It pushes running tasks
3763 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3764 * running on each physical CPU where possible, and avoids physical /
3765 * logical imbalances.
3766 *
3767 * Called with busiest_rq locked.
3768 */
70b97a7f 3769static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3770{
39507451 3771 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3772 struct sched_domain *sd;
3773 struct rq *target_rq;
39507451 3774
48f24c4d 3775 /* Is there any task to move? */
39507451 3776 if (busiest_rq->nr_running <= 1)
39507451
NP
3777 return;
3778
3779 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3780
3781 /*
39507451 3782 * This condition is "impossible", if it occurs
41a2d6cf 3783 * we need to fix it. Originally reported by
39507451 3784 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3785 */
39507451 3786 BUG_ON(busiest_rq == target_rq);
1da177e4 3787
39507451
NP
3788 /* move a task from busiest_rq to target_rq */
3789 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3790 update_rq_clock(busiest_rq);
3791 update_rq_clock(target_rq);
39507451
NP
3792
3793 /* Search for an sd spanning us and the target CPU. */
c96d145e 3794 for_each_domain(target_cpu, sd) {
39507451 3795 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3796 cpu_isset(busiest_cpu, sd->span))
39507451 3797 break;
c96d145e 3798 }
39507451 3799
48f24c4d 3800 if (likely(sd)) {
2d72376b 3801 schedstat_inc(sd, alb_count);
39507451 3802
43010659
PW
3803 if (move_one_task(target_rq, target_cpu, busiest_rq,
3804 sd, CPU_IDLE))
48f24c4d
IM
3805 schedstat_inc(sd, alb_pushed);
3806 else
3807 schedstat_inc(sd, alb_failed);
3808 }
39507451 3809 spin_unlock(&target_rq->lock);
1da177e4
LT
3810}
3811
46cb4b7c
SS
3812#ifdef CONFIG_NO_HZ
3813static struct {
3814 atomic_t load_balancer;
41a2d6cf 3815 cpumask_t cpu_mask;
46cb4b7c
SS
3816} nohz ____cacheline_aligned = {
3817 .load_balancer = ATOMIC_INIT(-1),
3818 .cpu_mask = CPU_MASK_NONE,
3819};
3820
7835b98b 3821/*
46cb4b7c
SS
3822 * This routine will try to nominate the ilb (idle load balancing)
3823 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3824 * load balancing on behalf of all those cpus. If all the cpus in the system
3825 * go into this tickless mode, then there will be no ilb owner (as there is
3826 * no need for one) and all the cpus will sleep till the next wakeup event
3827 * arrives...
3828 *
3829 * For the ilb owner, tick is not stopped. And this tick will be used
3830 * for idle load balancing. ilb owner will still be part of
3831 * nohz.cpu_mask..
7835b98b 3832 *
46cb4b7c
SS
3833 * While stopping the tick, this cpu will become the ilb owner if there
3834 * is no other owner. And will be the owner till that cpu becomes busy
3835 * or if all cpus in the system stop their ticks at which point
3836 * there is no need for ilb owner.
3837 *
3838 * When the ilb owner becomes busy, it nominates another owner, during the
3839 * next busy scheduler_tick()
3840 */
3841int select_nohz_load_balancer(int stop_tick)
3842{
3843 int cpu = smp_processor_id();
3844
3845 if (stop_tick) {
3846 cpu_set(cpu, nohz.cpu_mask);
3847 cpu_rq(cpu)->in_nohz_recently = 1;
3848
3849 /*
3850 * If we are going offline and still the leader, give up!
3851 */
3852 if (cpu_is_offline(cpu) &&
3853 atomic_read(&nohz.load_balancer) == cpu) {
3854 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3855 BUG();
3856 return 0;
3857 }
3858
3859 /* time for ilb owner also to sleep */
3860 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3861 if (atomic_read(&nohz.load_balancer) == cpu)
3862 atomic_set(&nohz.load_balancer, -1);
3863 return 0;
3864 }
3865
3866 if (atomic_read(&nohz.load_balancer) == -1) {
3867 /* make me the ilb owner */
3868 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3869 return 1;
3870 } else if (atomic_read(&nohz.load_balancer) == cpu)
3871 return 1;
3872 } else {
3873 if (!cpu_isset(cpu, nohz.cpu_mask))
3874 return 0;
3875
3876 cpu_clear(cpu, nohz.cpu_mask);
3877
3878 if (atomic_read(&nohz.load_balancer) == cpu)
3879 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3880 BUG();
3881 }
3882 return 0;
3883}
3884#endif
3885
3886static DEFINE_SPINLOCK(balancing);
3887
3888/*
7835b98b
CL
3889 * It checks each scheduling domain to see if it is due to be balanced,
3890 * and initiates a balancing operation if so.
3891 *
3892 * Balancing parameters are set up in arch_init_sched_domains.
3893 */
a9957449 3894static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3895{
46cb4b7c
SS
3896 int balance = 1;
3897 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3898 unsigned long interval;
3899 struct sched_domain *sd;
46cb4b7c 3900 /* Earliest time when we have to do rebalance again */
c9819f45 3901 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3902 int update_next_balance = 0;
d07355f5 3903 int need_serialize;
7c16ec58 3904 cpumask_t tmp;
1da177e4 3905
46cb4b7c 3906 for_each_domain(cpu, sd) {
1da177e4
LT
3907 if (!(sd->flags & SD_LOAD_BALANCE))
3908 continue;
3909
3910 interval = sd->balance_interval;
d15bcfdb 3911 if (idle != CPU_IDLE)
1da177e4
LT
3912 interval *= sd->busy_factor;
3913
3914 /* scale ms to jiffies */
3915 interval = msecs_to_jiffies(interval);
3916 if (unlikely(!interval))
3917 interval = 1;
dd41f596
IM
3918 if (interval > HZ*NR_CPUS/10)
3919 interval = HZ*NR_CPUS/10;
3920
d07355f5 3921 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3922
d07355f5 3923 if (need_serialize) {
08c183f3
CL
3924 if (!spin_trylock(&balancing))
3925 goto out;
3926 }
3927
c9819f45 3928 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3929 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3930 /*
3931 * We've pulled tasks over so either we're no
5969fe06
NP
3932 * longer idle, or one of our SMT siblings is
3933 * not idle.
3934 */
d15bcfdb 3935 idle = CPU_NOT_IDLE;
1da177e4 3936 }
1bd77f2d 3937 sd->last_balance = jiffies;
1da177e4 3938 }
d07355f5 3939 if (need_serialize)
08c183f3
CL
3940 spin_unlock(&balancing);
3941out:
f549da84 3942 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3943 next_balance = sd->last_balance + interval;
f549da84
SS
3944 update_next_balance = 1;
3945 }
783609c6
SS
3946
3947 /*
3948 * Stop the load balance at this level. There is another
3949 * CPU in our sched group which is doing load balancing more
3950 * actively.
3951 */
3952 if (!balance)
3953 break;
1da177e4 3954 }
f549da84
SS
3955
3956 /*
3957 * next_balance will be updated only when there is a need.
3958 * When the cpu is attached to null domain for ex, it will not be
3959 * updated.
3960 */
3961 if (likely(update_next_balance))
3962 rq->next_balance = next_balance;
46cb4b7c
SS
3963}
3964
3965/*
3966 * run_rebalance_domains is triggered when needed from the scheduler tick.
3967 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3968 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3969 */
3970static void run_rebalance_domains(struct softirq_action *h)
3971{
dd41f596
IM
3972 int this_cpu = smp_processor_id();
3973 struct rq *this_rq = cpu_rq(this_cpu);
3974 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3975 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3976
dd41f596 3977 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3978
3979#ifdef CONFIG_NO_HZ
3980 /*
3981 * If this cpu is the owner for idle load balancing, then do the
3982 * balancing on behalf of the other idle cpus whose ticks are
3983 * stopped.
3984 */
dd41f596
IM
3985 if (this_rq->idle_at_tick &&
3986 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3987 cpumask_t cpus = nohz.cpu_mask;
3988 struct rq *rq;
3989 int balance_cpu;
3990
dd41f596 3991 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3992 for_each_cpu_mask(balance_cpu, cpus) {
3993 /*
3994 * If this cpu gets work to do, stop the load balancing
3995 * work being done for other cpus. Next load
3996 * balancing owner will pick it up.
3997 */
3998 if (need_resched())
3999 break;
4000
de0cf899 4001 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4002
4003 rq = cpu_rq(balance_cpu);
dd41f596
IM
4004 if (time_after(this_rq->next_balance, rq->next_balance))
4005 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4006 }
4007 }
4008#endif
4009}
4010
4011/*
4012 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4013 *
4014 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4015 * idle load balancing owner or decide to stop the periodic load balancing,
4016 * if the whole system is idle.
4017 */
dd41f596 4018static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4019{
46cb4b7c
SS
4020#ifdef CONFIG_NO_HZ
4021 /*
4022 * If we were in the nohz mode recently and busy at the current
4023 * scheduler tick, then check if we need to nominate new idle
4024 * load balancer.
4025 */
4026 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4027 rq->in_nohz_recently = 0;
4028
4029 if (atomic_read(&nohz.load_balancer) == cpu) {
4030 cpu_clear(cpu, nohz.cpu_mask);
4031 atomic_set(&nohz.load_balancer, -1);
4032 }
4033
4034 if (atomic_read(&nohz.load_balancer) == -1) {
4035 /*
4036 * simple selection for now: Nominate the
4037 * first cpu in the nohz list to be the next
4038 * ilb owner.
4039 *
4040 * TBD: Traverse the sched domains and nominate
4041 * the nearest cpu in the nohz.cpu_mask.
4042 */
4043 int ilb = first_cpu(nohz.cpu_mask);
4044
434d53b0 4045 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4046 resched_cpu(ilb);
4047 }
4048 }
4049
4050 /*
4051 * If this cpu is idle and doing idle load balancing for all the
4052 * cpus with ticks stopped, is it time for that to stop?
4053 */
4054 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4055 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4056 resched_cpu(cpu);
4057 return;
4058 }
4059
4060 /*
4061 * If this cpu is idle and the idle load balancing is done by
4062 * someone else, then no need raise the SCHED_SOFTIRQ
4063 */
4064 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4065 cpu_isset(cpu, nohz.cpu_mask))
4066 return;
4067#endif
4068 if (time_after_eq(jiffies, rq->next_balance))
4069 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4070}
dd41f596
IM
4071
4072#else /* CONFIG_SMP */
4073
1da177e4
LT
4074/*
4075 * on UP we do not need to balance between CPUs:
4076 */
70b97a7f 4077static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4078{
4079}
dd41f596 4080
1da177e4
LT
4081#endif
4082
1da177e4
LT
4083DEFINE_PER_CPU(struct kernel_stat, kstat);
4084
4085EXPORT_PER_CPU_SYMBOL(kstat);
4086
4087/*
41b86e9c
IM
4088 * Return p->sum_exec_runtime plus any more ns on the sched_clock
4089 * that have not yet been banked in case the task is currently running.
1da177e4 4090 */
41b86e9c 4091unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 4092{
1da177e4 4093 unsigned long flags;
41b86e9c
IM
4094 u64 ns, delta_exec;
4095 struct rq *rq;
48f24c4d 4096
41b86e9c
IM
4097 rq = task_rq_lock(p, &flags);
4098 ns = p->se.sum_exec_runtime;
051a1d1a 4099 if (task_current(rq, p)) {
a8e504d2
IM
4100 update_rq_clock(rq);
4101 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
4102 if ((s64)delta_exec > 0)
4103 ns += delta_exec;
4104 }
4105 task_rq_unlock(rq, &flags);
48f24c4d 4106
1da177e4
LT
4107 return ns;
4108}
4109
1da177e4
LT
4110/*
4111 * Account user cpu time to a process.
4112 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4113 * @cputime: the cpu time spent in user space since the last update
4114 */
4115void account_user_time(struct task_struct *p, cputime_t cputime)
4116{
4117 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4118 cputime64_t tmp;
4119
4120 p->utime = cputime_add(p->utime, cputime);
4121
4122 /* Add user time to cpustat. */
4123 tmp = cputime_to_cputime64(cputime);
4124 if (TASK_NICE(p) > 0)
4125 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4126 else
4127 cpustat->user = cputime64_add(cpustat->user, tmp);
4128}
4129
94886b84
LV
4130/*
4131 * Account guest cpu time to a process.
4132 * @p: the process that the cpu time gets accounted to
4133 * @cputime: the cpu time spent in virtual machine since the last update
4134 */
f7402e03 4135static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4136{
4137 cputime64_t tmp;
4138 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4139
4140 tmp = cputime_to_cputime64(cputime);
4141
4142 p->utime = cputime_add(p->utime, cputime);
4143 p->gtime = cputime_add(p->gtime, cputime);
4144
4145 cpustat->user = cputime64_add(cpustat->user, tmp);
4146 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4147}
4148
c66f08be
MN
4149/*
4150 * Account scaled user cpu time to a process.
4151 * @p: the process that the cpu time gets accounted to
4152 * @cputime: the cpu time spent in user space since the last update
4153 */
4154void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4155{
4156 p->utimescaled = cputime_add(p->utimescaled, cputime);
4157}
4158
1da177e4
LT
4159/*
4160 * Account system cpu time to a process.
4161 * @p: the process that the cpu time gets accounted to
4162 * @hardirq_offset: the offset to subtract from hardirq_count()
4163 * @cputime: the cpu time spent in kernel space since the last update
4164 */
4165void account_system_time(struct task_struct *p, int hardirq_offset,
4166 cputime_t cputime)
4167{
4168 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4169 struct rq *rq = this_rq();
1da177e4
LT
4170 cputime64_t tmp;
4171
983ed7a6
HH
4172 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4173 account_guest_time(p, cputime);
4174 return;
4175 }
94886b84 4176
1da177e4
LT
4177 p->stime = cputime_add(p->stime, cputime);
4178
4179 /* Add system time to cpustat. */
4180 tmp = cputime_to_cputime64(cputime);
4181 if (hardirq_count() - hardirq_offset)
4182 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4183 else if (softirq_count())
4184 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4185 else if (p != rq->idle)
1da177e4 4186 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4187 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4188 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4189 else
4190 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4191 /* Account for system time used */
4192 acct_update_integrals(p);
1da177e4
LT
4193}
4194
c66f08be
MN
4195/*
4196 * Account scaled system cpu time to a process.
4197 * @p: the process that the cpu time gets accounted to
4198 * @hardirq_offset: the offset to subtract from hardirq_count()
4199 * @cputime: the cpu time spent in kernel space since the last update
4200 */
4201void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4202{
4203 p->stimescaled = cputime_add(p->stimescaled, cputime);
4204}
4205
1da177e4
LT
4206/*
4207 * Account for involuntary wait time.
4208 * @p: the process from which the cpu time has been stolen
4209 * @steal: the cpu time spent in involuntary wait
4210 */
4211void account_steal_time(struct task_struct *p, cputime_t steal)
4212{
4213 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4214 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4215 struct rq *rq = this_rq();
1da177e4
LT
4216
4217 if (p == rq->idle) {
4218 p->stime = cputime_add(p->stime, steal);
4219 if (atomic_read(&rq->nr_iowait) > 0)
4220 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4221 else
4222 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4223 } else
1da177e4
LT
4224 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4225}
4226
7835b98b
CL
4227/*
4228 * This function gets called by the timer code, with HZ frequency.
4229 * We call it with interrupts disabled.
4230 *
4231 * It also gets called by the fork code, when changing the parent's
4232 * timeslices.
4233 */
4234void scheduler_tick(void)
4235{
7835b98b
CL
4236 int cpu = smp_processor_id();
4237 struct rq *rq = cpu_rq(cpu);
dd41f596 4238 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4239
4240 sched_clock_tick();
dd41f596
IM
4241
4242 spin_lock(&rq->lock);
3e51f33f 4243 update_rq_clock(rq);
f1a438d8 4244 update_cpu_load(rq);
fa85ae24 4245 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4246 spin_unlock(&rq->lock);
7835b98b 4247
e418e1c2 4248#ifdef CONFIG_SMP
dd41f596
IM
4249 rq->idle_at_tick = idle_cpu(cpu);
4250 trigger_load_balance(rq, cpu);
e418e1c2 4251#endif
1da177e4
LT
4252}
4253
6cd8a4bb
SR
4254#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4255 defined(CONFIG_PREEMPT_TRACER))
4256
4257static inline unsigned long get_parent_ip(unsigned long addr)
4258{
4259 if (in_lock_functions(addr)) {
4260 addr = CALLER_ADDR2;
4261 if (in_lock_functions(addr))
4262 addr = CALLER_ADDR3;
4263 }
4264 return addr;
4265}
1da177e4 4266
43627582 4267void __kprobes add_preempt_count(int val)
1da177e4 4268{
6cd8a4bb 4269#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4270 /*
4271 * Underflow?
4272 */
9a11b49a
IM
4273 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4274 return;
6cd8a4bb 4275#endif
1da177e4 4276 preempt_count() += val;
6cd8a4bb 4277#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4278 /*
4279 * Spinlock count overflowing soon?
4280 */
33859f7f
MOS
4281 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4282 PREEMPT_MASK - 10);
6cd8a4bb
SR
4283#endif
4284 if (preempt_count() == val)
4285 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4286}
4287EXPORT_SYMBOL(add_preempt_count);
4288
43627582 4289void __kprobes sub_preempt_count(int val)
1da177e4 4290{
6cd8a4bb 4291#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4292 /*
4293 * Underflow?
4294 */
9a11b49a
IM
4295 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4296 return;
1da177e4
LT
4297 /*
4298 * Is the spinlock portion underflowing?
4299 */
9a11b49a
IM
4300 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4301 !(preempt_count() & PREEMPT_MASK)))
4302 return;
6cd8a4bb 4303#endif
9a11b49a 4304
6cd8a4bb
SR
4305 if (preempt_count() == val)
4306 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4307 preempt_count() -= val;
4308}
4309EXPORT_SYMBOL(sub_preempt_count);
4310
4311#endif
4312
4313/*
dd41f596 4314 * Print scheduling while atomic bug:
1da177e4 4315 */
dd41f596 4316static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4317{
838225b4
SS
4318 struct pt_regs *regs = get_irq_regs();
4319
4320 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4321 prev->comm, prev->pid, preempt_count());
4322
dd41f596 4323 debug_show_held_locks(prev);
e21f5b15 4324 print_modules();
dd41f596
IM
4325 if (irqs_disabled())
4326 print_irqtrace_events(prev);
838225b4
SS
4327
4328 if (regs)
4329 show_regs(regs);
4330 else
4331 dump_stack();
dd41f596 4332}
1da177e4 4333
dd41f596
IM
4334/*
4335 * Various schedule()-time debugging checks and statistics:
4336 */
4337static inline void schedule_debug(struct task_struct *prev)
4338{
1da177e4 4339 /*
41a2d6cf 4340 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4341 * schedule() atomically, we ignore that path for now.
4342 * Otherwise, whine if we are scheduling when we should not be.
4343 */
3f33a7ce 4344 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4345 __schedule_bug(prev);
4346
1da177e4
LT
4347 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4348
2d72376b 4349 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4350#ifdef CONFIG_SCHEDSTATS
4351 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4352 schedstat_inc(this_rq(), bkl_count);
4353 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4354 }
4355#endif
dd41f596
IM
4356}
4357
4358/*
4359 * Pick up the highest-prio task:
4360 */
4361static inline struct task_struct *
ff95f3df 4362pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4363{
5522d5d5 4364 const struct sched_class *class;
dd41f596 4365 struct task_struct *p;
1da177e4
LT
4366
4367 /*
dd41f596
IM
4368 * Optimization: we know that if all tasks are in
4369 * the fair class we can call that function directly:
1da177e4 4370 */
dd41f596 4371 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4372 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4373 if (likely(p))
4374 return p;
1da177e4
LT
4375 }
4376
dd41f596
IM
4377 class = sched_class_highest;
4378 for ( ; ; ) {
fb8d4724 4379 p = class->pick_next_task(rq);
dd41f596
IM
4380 if (p)
4381 return p;
4382 /*
4383 * Will never be NULL as the idle class always
4384 * returns a non-NULL p:
4385 */
4386 class = class->next;
4387 }
4388}
1da177e4 4389
dd41f596
IM
4390/*
4391 * schedule() is the main scheduler function.
4392 */
4393asmlinkage void __sched schedule(void)
4394{
4395 struct task_struct *prev, *next;
67ca7bde 4396 unsigned long *switch_count;
dd41f596 4397 struct rq *rq;
f333fdc9 4398 int cpu, hrtick = sched_feat(HRTICK);
dd41f596
IM
4399
4400need_resched:
4401 preempt_disable();
4402 cpu = smp_processor_id();
4403 rq = cpu_rq(cpu);
4404 rcu_qsctr_inc(cpu);
4405 prev = rq->curr;
4406 switch_count = &prev->nivcsw;
4407
4408 release_kernel_lock(prev);
4409need_resched_nonpreemptible:
4410
4411 schedule_debug(prev);
1da177e4 4412
f333fdc9
MG
4413 if (hrtick)
4414 hrtick_clear(rq);
8f4d37ec 4415
1e819950
IM
4416 /*
4417 * Do the rq-clock update outside the rq lock:
4418 */
4419 local_irq_disable();
3e51f33f 4420 update_rq_clock(rq);
1e819950
IM
4421 spin_lock(&rq->lock);
4422 clear_tsk_need_resched(prev);
1da177e4 4423
1da177e4 4424 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4425 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4426 prev->state = TASK_RUNNING;
16882c1e 4427 else
2e1cb74a 4428 deactivate_task(rq, prev, 1);
dd41f596 4429 switch_count = &prev->nvcsw;
1da177e4
LT
4430 }
4431
9a897c5a
SR
4432#ifdef CONFIG_SMP
4433 if (prev->sched_class->pre_schedule)
4434 prev->sched_class->pre_schedule(rq, prev);
4435#endif
f65eda4f 4436
dd41f596 4437 if (unlikely(!rq->nr_running))
1da177e4 4438 idle_balance(cpu, rq);
1da177e4 4439
31ee529c 4440 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4441 next = pick_next_task(rq, prev);
1da177e4 4442
1da177e4 4443 if (likely(prev != next)) {
673a90a1
DS
4444 sched_info_switch(prev, next);
4445
1da177e4
LT
4446 rq->nr_switches++;
4447 rq->curr = next;
4448 ++*switch_count;
4449
dd41f596 4450 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4451 /*
4452 * the context switch might have flipped the stack from under
4453 * us, hence refresh the local variables.
4454 */
4455 cpu = smp_processor_id();
4456 rq = cpu_rq(cpu);
1da177e4
LT
4457 } else
4458 spin_unlock_irq(&rq->lock);
4459
f333fdc9
MG
4460 if (hrtick)
4461 hrtick_set(rq);
8f4d37ec
PZ
4462
4463 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4464 goto need_resched_nonpreemptible;
8f4d37ec 4465
1da177e4
LT
4466 preempt_enable_no_resched();
4467 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4468 goto need_resched;
4469}
1da177e4
LT
4470EXPORT_SYMBOL(schedule);
4471
4472#ifdef CONFIG_PREEMPT
4473/*
2ed6e34f 4474 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4475 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4476 * occur there and call schedule directly.
4477 */
4478asmlinkage void __sched preempt_schedule(void)
4479{
4480 struct thread_info *ti = current_thread_info();
6478d880 4481
1da177e4
LT
4482 /*
4483 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4484 * we do not want to preempt the current task. Just return..
1da177e4 4485 */
beed33a8 4486 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4487 return;
4488
3a5c359a
AK
4489 do {
4490 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4491 schedule();
3a5c359a 4492 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4493
3a5c359a
AK
4494 /*
4495 * Check again in case we missed a preemption opportunity
4496 * between schedule and now.
4497 */
4498 barrier();
4499 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4500}
1da177e4
LT
4501EXPORT_SYMBOL(preempt_schedule);
4502
4503/*
2ed6e34f 4504 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4505 * off of irq context.
4506 * Note, that this is called and return with irqs disabled. This will
4507 * protect us against recursive calling from irq.
4508 */
4509asmlinkage void __sched preempt_schedule_irq(void)
4510{
4511 struct thread_info *ti = current_thread_info();
6478d880 4512
2ed6e34f 4513 /* Catch callers which need to be fixed */
1da177e4
LT
4514 BUG_ON(ti->preempt_count || !irqs_disabled());
4515
3a5c359a
AK
4516 do {
4517 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4518 local_irq_enable();
4519 schedule();
4520 local_irq_disable();
3a5c359a 4521 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4522
3a5c359a
AK
4523 /*
4524 * Check again in case we missed a preemption opportunity
4525 * between schedule and now.
4526 */
4527 barrier();
4528 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4529}
4530
4531#endif /* CONFIG_PREEMPT */
4532
95cdf3b7
IM
4533int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4534 void *key)
1da177e4 4535{
48f24c4d 4536 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4537}
1da177e4
LT
4538EXPORT_SYMBOL(default_wake_function);
4539
4540/*
41a2d6cf
IM
4541 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4542 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4543 * number) then we wake all the non-exclusive tasks and one exclusive task.
4544 *
4545 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4546 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4547 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4548 */
4549static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4550 int nr_exclusive, int sync, void *key)
4551{
2e45874c 4552 wait_queue_t *curr, *next;
1da177e4 4553
2e45874c 4554 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4555 unsigned flags = curr->flags;
4556
1da177e4 4557 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4558 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4559 break;
4560 }
4561}
4562
4563/**
4564 * __wake_up - wake up threads blocked on a waitqueue.
4565 * @q: the waitqueue
4566 * @mode: which threads
4567 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4568 * @key: is directly passed to the wakeup function
1da177e4 4569 */
7ad5b3a5 4570void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4571 int nr_exclusive, void *key)
1da177e4
LT
4572{
4573 unsigned long flags;
4574
4575 spin_lock_irqsave(&q->lock, flags);
4576 __wake_up_common(q, mode, nr_exclusive, 0, key);
4577 spin_unlock_irqrestore(&q->lock, flags);
4578}
1da177e4
LT
4579EXPORT_SYMBOL(__wake_up);
4580
4581/*
4582 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4583 */
7ad5b3a5 4584void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4585{
4586 __wake_up_common(q, mode, 1, 0, NULL);
4587}
4588
4589/**
67be2dd1 4590 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4591 * @q: the waitqueue
4592 * @mode: which threads
4593 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4594 *
4595 * The sync wakeup differs that the waker knows that it will schedule
4596 * away soon, so while the target thread will be woken up, it will not
4597 * be migrated to another CPU - ie. the two threads are 'synchronized'
4598 * with each other. This can prevent needless bouncing between CPUs.
4599 *
4600 * On UP it can prevent extra preemption.
4601 */
7ad5b3a5 4602void
95cdf3b7 4603__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4604{
4605 unsigned long flags;
4606 int sync = 1;
4607
4608 if (unlikely(!q))
4609 return;
4610
4611 if (unlikely(!nr_exclusive))
4612 sync = 0;
4613
4614 spin_lock_irqsave(&q->lock, flags);
4615 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4616 spin_unlock_irqrestore(&q->lock, flags);
4617}
4618EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4619
b15136e9 4620void complete(struct completion *x)
1da177e4
LT
4621{
4622 unsigned long flags;
4623
4624 spin_lock_irqsave(&x->wait.lock, flags);
4625 x->done++;
d9514f6c 4626 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4627 spin_unlock_irqrestore(&x->wait.lock, flags);
4628}
4629EXPORT_SYMBOL(complete);
4630
b15136e9 4631void complete_all(struct completion *x)
1da177e4
LT
4632{
4633 unsigned long flags;
4634
4635 spin_lock_irqsave(&x->wait.lock, flags);
4636 x->done += UINT_MAX/2;
d9514f6c 4637 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4638 spin_unlock_irqrestore(&x->wait.lock, flags);
4639}
4640EXPORT_SYMBOL(complete_all);
4641
8cbbe86d
AK
4642static inline long __sched
4643do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4644{
1da177e4
LT
4645 if (!x->done) {
4646 DECLARE_WAITQUEUE(wait, current);
4647
4648 wait.flags |= WQ_FLAG_EXCLUSIVE;
4649 __add_wait_queue_tail(&x->wait, &wait);
4650 do {
009e577e
MW
4651 if ((state == TASK_INTERRUPTIBLE &&
4652 signal_pending(current)) ||
4653 (state == TASK_KILLABLE &&
4654 fatal_signal_pending(current))) {
ea71a546
ON
4655 timeout = -ERESTARTSYS;
4656 break;
8cbbe86d
AK
4657 }
4658 __set_current_state(state);
1da177e4
LT
4659 spin_unlock_irq(&x->wait.lock);
4660 timeout = schedule_timeout(timeout);
4661 spin_lock_irq(&x->wait.lock);
ea71a546 4662 } while (!x->done && timeout);
1da177e4 4663 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4664 if (!x->done)
4665 return timeout;
1da177e4
LT
4666 }
4667 x->done--;
ea71a546 4668 return timeout ?: 1;
1da177e4 4669}
1da177e4 4670
8cbbe86d
AK
4671static long __sched
4672wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4673{
1da177e4
LT
4674 might_sleep();
4675
4676 spin_lock_irq(&x->wait.lock);
8cbbe86d 4677 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4678 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4679 return timeout;
4680}
1da177e4 4681
b15136e9 4682void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4683{
4684 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4685}
8cbbe86d 4686EXPORT_SYMBOL(wait_for_completion);
1da177e4 4687
b15136e9 4688unsigned long __sched
8cbbe86d 4689wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4690{
8cbbe86d 4691 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4692}
8cbbe86d 4693EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4694
8cbbe86d 4695int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4696{
51e97990
AK
4697 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4698 if (t == -ERESTARTSYS)
4699 return t;
4700 return 0;
0fec171c 4701}
8cbbe86d 4702EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4703
b15136e9 4704unsigned long __sched
8cbbe86d
AK
4705wait_for_completion_interruptible_timeout(struct completion *x,
4706 unsigned long timeout)
0fec171c 4707{
8cbbe86d 4708 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4709}
8cbbe86d 4710EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4711
009e577e
MW
4712int __sched wait_for_completion_killable(struct completion *x)
4713{
4714 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4715 if (t == -ERESTARTSYS)
4716 return t;
4717 return 0;
4718}
4719EXPORT_SYMBOL(wait_for_completion_killable);
4720
8cbbe86d
AK
4721static long __sched
4722sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4723{
0fec171c
IM
4724 unsigned long flags;
4725 wait_queue_t wait;
4726
4727 init_waitqueue_entry(&wait, current);
1da177e4 4728
8cbbe86d 4729 __set_current_state(state);
1da177e4 4730
8cbbe86d
AK
4731 spin_lock_irqsave(&q->lock, flags);
4732 __add_wait_queue(q, &wait);
4733 spin_unlock(&q->lock);
4734 timeout = schedule_timeout(timeout);
4735 spin_lock_irq(&q->lock);
4736 __remove_wait_queue(q, &wait);
4737 spin_unlock_irqrestore(&q->lock, flags);
4738
4739 return timeout;
4740}
4741
4742void __sched interruptible_sleep_on(wait_queue_head_t *q)
4743{
4744 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4745}
1da177e4
LT
4746EXPORT_SYMBOL(interruptible_sleep_on);
4747
0fec171c 4748long __sched
95cdf3b7 4749interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4750{
8cbbe86d 4751 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4752}
1da177e4
LT
4753EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4754
0fec171c 4755void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4756{
8cbbe86d 4757 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4758}
1da177e4
LT
4759EXPORT_SYMBOL(sleep_on);
4760
0fec171c 4761long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4762{
8cbbe86d 4763 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4764}
1da177e4
LT
4765EXPORT_SYMBOL(sleep_on_timeout);
4766
b29739f9
IM
4767#ifdef CONFIG_RT_MUTEXES
4768
4769/*
4770 * rt_mutex_setprio - set the current priority of a task
4771 * @p: task
4772 * @prio: prio value (kernel-internal form)
4773 *
4774 * This function changes the 'effective' priority of a task. It does
4775 * not touch ->normal_prio like __setscheduler().
4776 *
4777 * Used by the rt_mutex code to implement priority inheritance logic.
4778 */
36c8b586 4779void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4780{
4781 unsigned long flags;
83b699ed 4782 int oldprio, on_rq, running;
70b97a7f 4783 struct rq *rq;
cb469845 4784 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4785
4786 BUG_ON(prio < 0 || prio > MAX_PRIO);
4787
4788 rq = task_rq_lock(p, &flags);
a8e504d2 4789 update_rq_clock(rq);
b29739f9 4790
d5f9f942 4791 oldprio = p->prio;
dd41f596 4792 on_rq = p->se.on_rq;
051a1d1a 4793 running = task_current(rq, p);
0e1f3483 4794 if (on_rq)
69be72c1 4795 dequeue_task(rq, p, 0);
0e1f3483
HS
4796 if (running)
4797 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4798
4799 if (rt_prio(prio))
4800 p->sched_class = &rt_sched_class;
4801 else
4802 p->sched_class = &fair_sched_class;
4803
b29739f9
IM
4804 p->prio = prio;
4805
0e1f3483
HS
4806 if (running)
4807 p->sched_class->set_curr_task(rq);
dd41f596 4808 if (on_rq) {
8159f87e 4809 enqueue_task(rq, p, 0);
cb469845
SR
4810
4811 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4812 }
4813 task_rq_unlock(rq, &flags);
4814}
4815
4816#endif
4817
36c8b586 4818void set_user_nice(struct task_struct *p, long nice)
1da177e4 4819{
dd41f596 4820 int old_prio, delta, on_rq;
1da177e4 4821 unsigned long flags;
70b97a7f 4822 struct rq *rq;
1da177e4
LT
4823
4824 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4825 return;
4826 /*
4827 * We have to be careful, if called from sys_setpriority(),
4828 * the task might be in the middle of scheduling on another CPU.
4829 */
4830 rq = task_rq_lock(p, &flags);
a8e504d2 4831 update_rq_clock(rq);
1da177e4
LT
4832 /*
4833 * The RT priorities are set via sched_setscheduler(), but we still
4834 * allow the 'normal' nice value to be set - but as expected
4835 * it wont have any effect on scheduling until the task is
dd41f596 4836 * SCHED_FIFO/SCHED_RR:
1da177e4 4837 */
e05606d3 4838 if (task_has_rt_policy(p)) {
1da177e4
LT
4839 p->static_prio = NICE_TO_PRIO(nice);
4840 goto out_unlock;
4841 }
dd41f596 4842 on_rq = p->se.on_rq;
c09595f6 4843 if (on_rq)
69be72c1 4844 dequeue_task(rq, p, 0);
1da177e4 4845
1da177e4 4846 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4847 set_load_weight(p);
b29739f9
IM
4848 old_prio = p->prio;
4849 p->prio = effective_prio(p);
4850 delta = p->prio - old_prio;
1da177e4 4851
dd41f596 4852 if (on_rq) {
8159f87e 4853 enqueue_task(rq, p, 0);
1da177e4 4854 /*
d5f9f942
AM
4855 * If the task increased its priority or is running and
4856 * lowered its priority, then reschedule its CPU:
1da177e4 4857 */
d5f9f942 4858 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4859 resched_task(rq->curr);
4860 }
4861out_unlock:
4862 task_rq_unlock(rq, &flags);
4863}
1da177e4
LT
4864EXPORT_SYMBOL(set_user_nice);
4865
e43379f1
MM
4866/*
4867 * can_nice - check if a task can reduce its nice value
4868 * @p: task
4869 * @nice: nice value
4870 */
36c8b586 4871int can_nice(const struct task_struct *p, const int nice)
e43379f1 4872{
024f4747
MM
4873 /* convert nice value [19,-20] to rlimit style value [1,40] */
4874 int nice_rlim = 20 - nice;
48f24c4d 4875
e43379f1
MM
4876 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4877 capable(CAP_SYS_NICE));
4878}
4879
1da177e4
LT
4880#ifdef __ARCH_WANT_SYS_NICE
4881
4882/*
4883 * sys_nice - change the priority of the current process.
4884 * @increment: priority increment
4885 *
4886 * sys_setpriority is a more generic, but much slower function that
4887 * does similar things.
4888 */
4889asmlinkage long sys_nice(int increment)
4890{
48f24c4d 4891 long nice, retval;
1da177e4
LT
4892
4893 /*
4894 * Setpriority might change our priority at the same moment.
4895 * We don't have to worry. Conceptually one call occurs first
4896 * and we have a single winner.
4897 */
e43379f1
MM
4898 if (increment < -40)
4899 increment = -40;
1da177e4
LT
4900 if (increment > 40)
4901 increment = 40;
4902
4903 nice = PRIO_TO_NICE(current->static_prio) + increment;
4904 if (nice < -20)
4905 nice = -20;
4906 if (nice > 19)
4907 nice = 19;
4908
e43379f1
MM
4909 if (increment < 0 && !can_nice(current, nice))
4910 return -EPERM;
4911
1da177e4
LT
4912 retval = security_task_setnice(current, nice);
4913 if (retval)
4914 return retval;
4915
4916 set_user_nice(current, nice);
4917 return 0;
4918}
4919
4920#endif
4921
4922/**
4923 * task_prio - return the priority value of a given task.
4924 * @p: the task in question.
4925 *
4926 * This is the priority value as seen by users in /proc.
4927 * RT tasks are offset by -200. Normal tasks are centered
4928 * around 0, value goes from -16 to +15.
4929 */
36c8b586 4930int task_prio(const struct task_struct *p)
1da177e4
LT
4931{
4932 return p->prio - MAX_RT_PRIO;
4933}
4934
4935/**
4936 * task_nice - return the nice value of a given task.
4937 * @p: the task in question.
4938 */
36c8b586 4939int task_nice(const struct task_struct *p)
1da177e4
LT
4940{
4941 return TASK_NICE(p);
4942}
150d8bed 4943EXPORT_SYMBOL(task_nice);
1da177e4
LT
4944
4945/**
4946 * idle_cpu - is a given cpu idle currently?
4947 * @cpu: the processor in question.
4948 */
4949int idle_cpu(int cpu)
4950{
4951 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4952}
4953
1da177e4
LT
4954/**
4955 * idle_task - return the idle task for a given cpu.
4956 * @cpu: the processor in question.
4957 */
36c8b586 4958struct task_struct *idle_task(int cpu)
1da177e4
LT
4959{
4960 return cpu_rq(cpu)->idle;
4961}
4962
4963/**
4964 * find_process_by_pid - find a process with a matching PID value.
4965 * @pid: the pid in question.
4966 */
a9957449 4967static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4968{
228ebcbe 4969 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4970}
4971
4972/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4973static void
4974__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4975{
dd41f596 4976 BUG_ON(p->se.on_rq);
48f24c4d 4977
1da177e4 4978 p->policy = policy;
dd41f596
IM
4979 switch (p->policy) {
4980 case SCHED_NORMAL:
4981 case SCHED_BATCH:
4982 case SCHED_IDLE:
4983 p->sched_class = &fair_sched_class;
4984 break;
4985 case SCHED_FIFO:
4986 case SCHED_RR:
4987 p->sched_class = &rt_sched_class;
4988 break;
4989 }
4990
1da177e4 4991 p->rt_priority = prio;
b29739f9
IM
4992 p->normal_prio = normal_prio(p);
4993 /* we are holding p->pi_lock already */
4994 p->prio = rt_mutex_getprio(p);
2dd73a4f 4995 set_load_weight(p);
1da177e4
LT
4996}
4997
961ccddd
RR
4998static int __sched_setscheduler(struct task_struct *p, int policy,
4999 struct sched_param *param, bool user)
1da177e4 5000{
83b699ed 5001 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5002 unsigned long flags;
cb469845 5003 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5004 struct rq *rq;
1da177e4 5005
66e5393a
SR
5006 /* may grab non-irq protected spin_locks */
5007 BUG_ON(in_interrupt());
1da177e4
LT
5008recheck:
5009 /* double check policy once rq lock held */
5010 if (policy < 0)
5011 policy = oldpolicy = p->policy;
5012 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5013 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5014 policy != SCHED_IDLE)
b0a9499c 5015 return -EINVAL;
1da177e4
LT
5016 /*
5017 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5018 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5019 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5020 */
5021 if (param->sched_priority < 0 ||
95cdf3b7 5022 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5023 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5024 return -EINVAL;
e05606d3 5025 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5026 return -EINVAL;
5027
37e4ab3f
OC
5028 /*
5029 * Allow unprivileged RT tasks to decrease priority:
5030 */
961ccddd 5031 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5032 if (rt_policy(policy)) {
8dc3e909 5033 unsigned long rlim_rtprio;
8dc3e909
ON
5034
5035 if (!lock_task_sighand(p, &flags))
5036 return -ESRCH;
5037 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5038 unlock_task_sighand(p, &flags);
5039
5040 /* can't set/change the rt policy */
5041 if (policy != p->policy && !rlim_rtprio)
5042 return -EPERM;
5043
5044 /* can't increase priority */
5045 if (param->sched_priority > p->rt_priority &&
5046 param->sched_priority > rlim_rtprio)
5047 return -EPERM;
5048 }
dd41f596
IM
5049 /*
5050 * Like positive nice levels, dont allow tasks to
5051 * move out of SCHED_IDLE either:
5052 */
5053 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5054 return -EPERM;
5fe1d75f 5055
37e4ab3f
OC
5056 /* can't change other user's priorities */
5057 if ((current->euid != p->euid) &&
5058 (current->euid != p->uid))
5059 return -EPERM;
5060 }
1da177e4 5061
b68aa230
PZ
5062#ifdef CONFIG_RT_GROUP_SCHED
5063 /*
5064 * Do not allow realtime tasks into groups that have no runtime
5065 * assigned.
5066 */
961ccddd
RR
5067 if (user
5068 && rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
5069 return -EPERM;
5070#endif
5071
1da177e4
LT
5072 retval = security_task_setscheduler(p, policy, param);
5073 if (retval)
5074 return retval;
b29739f9
IM
5075 /*
5076 * make sure no PI-waiters arrive (or leave) while we are
5077 * changing the priority of the task:
5078 */
5079 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5080 /*
5081 * To be able to change p->policy safely, the apropriate
5082 * runqueue lock must be held.
5083 */
b29739f9 5084 rq = __task_rq_lock(p);
1da177e4
LT
5085 /* recheck policy now with rq lock held */
5086 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5087 policy = oldpolicy = -1;
b29739f9
IM
5088 __task_rq_unlock(rq);
5089 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5090 goto recheck;
5091 }
2daa3577 5092 update_rq_clock(rq);
dd41f596 5093 on_rq = p->se.on_rq;
051a1d1a 5094 running = task_current(rq, p);
0e1f3483 5095 if (on_rq)
2e1cb74a 5096 deactivate_task(rq, p, 0);
0e1f3483
HS
5097 if (running)
5098 p->sched_class->put_prev_task(rq, p);
f6b53205 5099
1da177e4 5100 oldprio = p->prio;
dd41f596 5101 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5102
0e1f3483
HS
5103 if (running)
5104 p->sched_class->set_curr_task(rq);
dd41f596
IM
5105 if (on_rq) {
5106 activate_task(rq, p, 0);
cb469845
SR
5107
5108 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5109 }
b29739f9
IM
5110 __task_rq_unlock(rq);
5111 spin_unlock_irqrestore(&p->pi_lock, flags);
5112
95e02ca9
TG
5113 rt_mutex_adjust_pi(p);
5114
1da177e4
LT
5115 return 0;
5116}
961ccddd
RR
5117
5118/**
5119 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5120 * @p: the task in question.
5121 * @policy: new policy.
5122 * @param: structure containing the new RT priority.
5123 *
5124 * NOTE that the task may be already dead.
5125 */
5126int sched_setscheduler(struct task_struct *p, int policy,
5127 struct sched_param *param)
5128{
5129 return __sched_setscheduler(p, policy, param, true);
5130}
1da177e4
LT
5131EXPORT_SYMBOL_GPL(sched_setscheduler);
5132
961ccddd
RR
5133/**
5134 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5135 * @p: the task in question.
5136 * @policy: new policy.
5137 * @param: structure containing the new RT priority.
5138 *
5139 * Just like sched_setscheduler, only don't bother checking if the
5140 * current context has permission. For example, this is needed in
5141 * stop_machine(): we create temporary high priority worker threads,
5142 * but our caller might not have that capability.
5143 */
5144int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5145 struct sched_param *param)
5146{
5147 return __sched_setscheduler(p, policy, param, false);
5148}
5149
95cdf3b7
IM
5150static int
5151do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5152{
1da177e4
LT
5153 struct sched_param lparam;
5154 struct task_struct *p;
36c8b586 5155 int retval;
1da177e4
LT
5156
5157 if (!param || pid < 0)
5158 return -EINVAL;
5159 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5160 return -EFAULT;
5fe1d75f
ON
5161
5162 rcu_read_lock();
5163 retval = -ESRCH;
1da177e4 5164 p = find_process_by_pid(pid);
5fe1d75f
ON
5165 if (p != NULL)
5166 retval = sched_setscheduler(p, policy, &lparam);
5167 rcu_read_unlock();
36c8b586 5168
1da177e4
LT
5169 return retval;
5170}
5171
5172/**
5173 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5174 * @pid: the pid in question.
5175 * @policy: new policy.
5176 * @param: structure containing the new RT priority.
5177 */
41a2d6cf
IM
5178asmlinkage long
5179sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5180{
c21761f1
JB
5181 /* negative values for policy are not valid */
5182 if (policy < 0)
5183 return -EINVAL;
5184
1da177e4
LT
5185 return do_sched_setscheduler(pid, policy, param);
5186}
5187
5188/**
5189 * sys_sched_setparam - set/change the RT priority of a thread
5190 * @pid: the pid in question.
5191 * @param: structure containing the new RT priority.
5192 */
5193asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5194{
5195 return do_sched_setscheduler(pid, -1, param);
5196}
5197
5198/**
5199 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5200 * @pid: the pid in question.
5201 */
5202asmlinkage long sys_sched_getscheduler(pid_t pid)
5203{
36c8b586 5204 struct task_struct *p;
3a5c359a 5205 int retval;
1da177e4
LT
5206
5207 if (pid < 0)
3a5c359a 5208 return -EINVAL;
1da177e4
LT
5209
5210 retval = -ESRCH;
5211 read_lock(&tasklist_lock);
5212 p = find_process_by_pid(pid);
5213 if (p) {
5214 retval = security_task_getscheduler(p);
5215 if (!retval)
5216 retval = p->policy;
5217 }
5218 read_unlock(&tasklist_lock);
1da177e4
LT
5219 return retval;
5220}
5221
5222/**
5223 * sys_sched_getscheduler - get the RT priority of a thread
5224 * @pid: the pid in question.
5225 * @param: structure containing the RT priority.
5226 */
5227asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5228{
5229 struct sched_param lp;
36c8b586 5230 struct task_struct *p;
3a5c359a 5231 int retval;
1da177e4
LT
5232
5233 if (!param || pid < 0)
3a5c359a 5234 return -EINVAL;
1da177e4
LT
5235
5236 read_lock(&tasklist_lock);
5237 p = find_process_by_pid(pid);
5238 retval = -ESRCH;
5239 if (!p)
5240 goto out_unlock;
5241
5242 retval = security_task_getscheduler(p);
5243 if (retval)
5244 goto out_unlock;
5245
5246 lp.sched_priority = p->rt_priority;
5247 read_unlock(&tasklist_lock);
5248
5249 /*
5250 * This one might sleep, we cannot do it with a spinlock held ...
5251 */
5252 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5253
1da177e4
LT
5254 return retval;
5255
5256out_unlock:
5257 read_unlock(&tasklist_lock);
5258 return retval;
5259}
5260
b53e921b 5261long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5262{
1da177e4 5263 cpumask_t cpus_allowed;
b53e921b 5264 cpumask_t new_mask = *in_mask;
36c8b586
IM
5265 struct task_struct *p;
5266 int retval;
1da177e4 5267
95402b38 5268 get_online_cpus();
1da177e4
LT
5269 read_lock(&tasklist_lock);
5270
5271 p = find_process_by_pid(pid);
5272 if (!p) {
5273 read_unlock(&tasklist_lock);
95402b38 5274 put_online_cpus();
1da177e4
LT
5275 return -ESRCH;
5276 }
5277
5278 /*
5279 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5280 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5281 * usage count and then drop tasklist_lock.
5282 */
5283 get_task_struct(p);
5284 read_unlock(&tasklist_lock);
5285
5286 retval = -EPERM;
5287 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5288 !capable(CAP_SYS_NICE))
5289 goto out_unlock;
5290
e7834f8f
DQ
5291 retval = security_task_setscheduler(p, 0, NULL);
5292 if (retval)
5293 goto out_unlock;
5294
f9a86fcb 5295 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5296 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5297 again:
7c16ec58 5298 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5299
8707d8b8 5300 if (!retval) {
f9a86fcb 5301 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5302 if (!cpus_subset(new_mask, cpus_allowed)) {
5303 /*
5304 * We must have raced with a concurrent cpuset
5305 * update. Just reset the cpus_allowed to the
5306 * cpuset's cpus_allowed
5307 */
5308 new_mask = cpus_allowed;
5309 goto again;
5310 }
5311 }
1da177e4
LT
5312out_unlock:
5313 put_task_struct(p);
95402b38 5314 put_online_cpus();
1da177e4
LT
5315 return retval;
5316}
5317
5318static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5319 cpumask_t *new_mask)
5320{
5321 if (len < sizeof(cpumask_t)) {
5322 memset(new_mask, 0, sizeof(cpumask_t));
5323 } else if (len > sizeof(cpumask_t)) {
5324 len = sizeof(cpumask_t);
5325 }
5326 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5327}
5328
5329/**
5330 * sys_sched_setaffinity - set the cpu affinity of a process
5331 * @pid: pid of the process
5332 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5333 * @user_mask_ptr: user-space pointer to the new cpu mask
5334 */
5335asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5336 unsigned long __user *user_mask_ptr)
5337{
5338 cpumask_t new_mask;
5339 int retval;
5340
5341 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5342 if (retval)
5343 return retval;
5344
b53e921b 5345 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5346}
5347
1da177e4
LT
5348long sched_getaffinity(pid_t pid, cpumask_t *mask)
5349{
36c8b586 5350 struct task_struct *p;
1da177e4 5351 int retval;
1da177e4 5352
95402b38 5353 get_online_cpus();
1da177e4
LT
5354 read_lock(&tasklist_lock);
5355
5356 retval = -ESRCH;
5357 p = find_process_by_pid(pid);
5358 if (!p)
5359 goto out_unlock;
5360
e7834f8f
DQ
5361 retval = security_task_getscheduler(p);
5362 if (retval)
5363 goto out_unlock;
5364
2f7016d9 5365 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5366
5367out_unlock:
5368 read_unlock(&tasklist_lock);
95402b38 5369 put_online_cpus();
1da177e4 5370
9531b62f 5371 return retval;
1da177e4
LT
5372}
5373
5374/**
5375 * sys_sched_getaffinity - get the cpu affinity of a process
5376 * @pid: pid of the process
5377 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5378 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5379 */
5380asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5381 unsigned long __user *user_mask_ptr)
5382{
5383 int ret;
5384 cpumask_t mask;
5385
5386 if (len < sizeof(cpumask_t))
5387 return -EINVAL;
5388
5389 ret = sched_getaffinity(pid, &mask);
5390 if (ret < 0)
5391 return ret;
5392
5393 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5394 return -EFAULT;
5395
5396 return sizeof(cpumask_t);
5397}
5398
5399/**
5400 * sys_sched_yield - yield the current processor to other threads.
5401 *
dd41f596
IM
5402 * This function yields the current CPU to other tasks. If there are no
5403 * other threads running on this CPU then this function will return.
1da177e4
LT
5404 */
5405asmlinkage long sys_sched_yield(void)
5406{
70b97a7f 5407 struct rq *rq = this_rq_lock();
1da177e4 5408
2d72376b 5409 schedstat_inc(rq, yld_count);
4530d7ab 5410 current->sched_class->yield_task(rq);
1da177e4
LT
5411
5412 /*
5413 * Since we are going to call schedule() anyway, there's
5414 * no need to preempt or enable interrupts:
5415 */
5416 __release(rq->lock);
8a25d5de 5417 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5418 _raw_spin_unlock(&rq->lock);
5419 preempt_enable_no_resched();
5420
5421 schedule();
5422
5423 return 0;
5424}
5425
e7b38404 5426static void __cond_resched(void)
1da177e4 5427{
8e0a43d8
IM
5428#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5429 __might_sleep(__FILE__, __LINE__);
5430#endif
5bbcfd90
IM
5431 /*
5432 * The BKS might be reacquired before we have dropped
5433 * PREEMPT_ACTIVE, which could trigger a second
5434 * cond_resched() call.
5435 */
1da177e4
LT
5436 do {
5437 add_preempt_count(PREEMPT_ACTIVE);
5438 schedule();
5439 sub_preempt_count(PREEMPT_ACTIVE);
5440 } while (need_resched());
5441}
5442
02b67cc3 5443int __sched _cond_resched(void)
1da177e4 5444{
9414232f
IM
5445 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5446 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5447 __cond_resched();
5448 return 1;
5449 }
5450 return 0;
5451}
02b67cc3 5452EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5453
5454/*
5455 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5456 * call schedule, and on return reacquire the lock.
5457 *
41a2d6cf 5458 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5459 * operations here to prevent schedule() from being called twice (once via
5460 * spin_unlock(), once by hand).
5461 */
95cdf3b7 5462int cond_resched_lock(spinlock_t *lock)
1da177e4 5463{
95c354fe 5464 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5465 int ret = 0;
5466
95c354fe 5467 if (spin_needbreak(lock) || resched) {
1da177e4 5468 spin_unlock(lock);
95c354fe
NP
5469 if (resched && need_resched())
5470 __cond_resched();
5471 else
5472 cpu_relax();
6df3cecb 5473 ret = 1;
1da177e4 5474 spin_lock(lock);
1da177e4 5475 }
6df3cecb 5476 return ret;
1da177e4 5477}
1da177e4
LT
5478EXPORT_SYMBOL(cond_resched_lock);
5479
5480int __sched cond_resched_softirq(void)
5481{
5482 BUG_ON(!in_softirq());
5483
9414232f 5484 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5485 local_bh_enable();
1da177e4
LT
5486 __cond_resched();
5487 local_bh_disable();
5488 return 1;
5489 }
5490 return 0;
5491}
1da177e4
LT
5492EXPORT_SYMBOL(cond_resched_softirq);
5493
1da177e4
LT
5494/**
5495 * yield - yield the current processor to other threads.
5496 *
72fd4a35 5497 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5498 * thread runnable and calls sys_sched_yield().
5499 */
5500void __sched yield(void)
5501{
5502 set_current_state(TASK_RUNNING);
5503 sys_sched_yield();
5504}
1da177e4
LT
5505EXPORT_SYMBOL(yield);
5506
5507/*
41a2d6cf 5508 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5509 * that process accounting knows that this is a task in IO wait state.
5510 *
5511 * But don't do that if it is a deliberate, throttling IO wait (this task
5512 * has set its backing_dev_info: the queue against which it should throttle)
5513 */
5514void __sched io_schedule(void)
5515{
70b97a7f 5516 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5517
0ff92245 5518 delayacct_blkio_start();
1da177e4
LT
5519 atomic_inc(&rq->nr_iowait);
5520 schedule();
5521 atomic_dec(&rq->nr_iowait);
0ff92245 5522 delayacct_blkio_end();
1da177e4 5523}
1da177e4
LT
5524EXPORT_SYMBOL(io_schedule);
5525
5526long __sched io_schedule_timeout(long timeout)
5527{
70b97a7f 5528 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5529 long ret;
5530
0ff92245 5531 delayacct_blkio_start();
1da177e4
LT
5532 atomic_inc(&rq->nr_iowait);
5533 ret = schedule_timeout(timeout);
5534 atomic_dec(&rq->nr_iowait);
0ff92245 5535 delayacct_blkio_end();
1da177e4
LT
5536 return ret;
5537}
5538
5539/**
5540 * sys_sched_get_priority_max - return maximum RT priority.
5541 * @policy: scheduling class.
5542 *
5543 * this syscall returns the maximum rt_priority that can be used
5544 * by a given scheduling class.
5545 */
5546asmlinkage long sys_sched_get_priority_max(int policy)
5547{
5548 int ret = -EINVAL;
5549
5550 switch (policy) {
5551 case SCHED_FIFO:
5552 case SCHED_RR:
5553 ret = MAX_USER_RT_PRIO-1;
5554 break;
5555 case SCHED_NORMAL:
b0a9499c 5556 case SCHED_BATCH:
dd41f596 5557 case SCHED_IDLE:
1da177e4
LT
5558 ret = 0;
5559 break;
5560 }
5561 return ret;
5562}
5563
5564/**
5565 * sys_sched_get_priority_min - return minimum RT priority.
5566 * @policy: scheduling class.
5567 *
5568 * this syscall returns the minimum rt_priority that can be used
5569 * by a given scheduling class.
5570 */
5571asmlinkage long sys_sched_get_priority_min(int policy)
5572{
5573 int ret = -EINVAL;
5574
5575 switch (policy) {
5576 case SCHED_FIFO:
5577 case SCHED_RR:
5578 ret = 1;
5579 break;
5580 case SCHED_NORMAL:
b0a9499c 5581 case SCHED_BATCH:
dd41f596 5582 case SCHED_IDLE:
1da177e4
LT
5583 ret = 0;
5584 }
5585 return ret;
5586}
5587
5588/**
5589 * sys_sched_rr_get_interval - return the default timeslice of a process.
5590 * @pid: pid of the process.
5591 * @interval: userspace pointer to the timeslice value.
5592 *
5593 * this syscall writes the default timeslice value of a given process
5594 * into the user-space timespec buffer. A value of '0' means infinity.
5595 */
5596asmlinkage
5597long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5598{
36c8b586 5599 struct task_struct *p;
a4ec24b4 5600 unsigned int time_slice;
3a5c359a 5601 int retval;
1da177e4 5602 struct timespec t;
1da177e4
LT
5603
5604 if (pid < 0)
3a5c359a 5605 return -EINVAL;
1da177e4
LT
5606
5607 retval = -ESRCH;
5608 read_lock(&tasklist_lock);
5609 p = find_process_by_pid(pid);
5610 if (!p)
5611 goto out_unlock;
5612
5613 retval = security_task_getscheduler(p);
5614 if (retval)
5615 goto out_unlock;
5616
77034937
IM
5617 /*
5618 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5619 * tasks that are on an otherwise idle runqueue:
5620 */
5621 time_slice = 0;
5622 if (p->policy == SCHED_RR) {
a4ec24b4 5623 time_slice = DEF_TIMESLICE;
1868f958 5624 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5625 struct sched_entity *se = &p->se;
5626 unsigned long flags;
5627 struct rq *rq;
5628
5629 rq = task_rq_lock(p, &flags);
77034937
IM
5630 if (rq->cfs.load.weight)
5631 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5632 task_rq_unlock(rq, &flags);
5633 }
1da177e4 5634 read_unlock(&tasklist_lock);
a4ec24b4 5635 jiffies_to_timespec(time_slice, &t);
1da177e4 5636 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5637 return retval;
3a5c359a 5638
1da177e4
LT
5639out_unlock:
5640 read_unlock(&tasklist_lock);
5641 return retval;
5642}
5643
7c731e0a 5644static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5645
82a1fcb9 5646void sched_show_task(struct task_struct *p)
1da177e4 5647{
1da177e4 5648 unsigned long free = 0;
36c8b586 5649 unsigned state;
1da177e4 5650
1da177e4 5651 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5652 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5653 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5654#if BITS_PER_LONG == 32
1da177e4 5655 if (state == TASK_RUNNING)
cc4ea795 5656 printk(KERN_CONT " running ");
1da177e4 5657 else
cc4ea795 5658 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5659#else
5660 if (state == TASK_RUNNING)
cc4ea795 5661 printk(KERN_CONT " running task ");
1da177e4 5662 else
cc4ea795 5663 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5664#endif
5665#ifdef CONFIG_DEBUG_STACK_USAGE
5666 {
10ebffde 5667 unsigned long *n = end_of_stack(p);
1da177e4
LT
5668 while (!*n)
5669 n++;
10ebffde 5670 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5671 }
5672#endif
ba25f9dc 5673 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5674 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5675
5fb5e6de 5676 show_stack(p, NULL);
1da177e4
LT
5677}
5678
e59e2ae2 5679void show_state_filter(unsigned long state_filter)
1da177e4 5680{
36c8b586 5681 struct task_struct *g, *p;
1da177e4 5682
4bd77321
IM
5683#if BITS_PER_LONG == 32
5684 printk(KERN_INFO
5685 " task PC stack pid father\n");
1da177e4 5686#else
4bd77321
IM
5687 printk(KERN_INFO
5688 " task PC stack pid father\n");
1da177e4
LT
5689#endif
5690 read_lock(&tasklist_lock);
5691 do_each_thread(g, p) {
5692 /*
5693 * reset the NMI-timeout, listing all files on a slow
5694 * console might take alot of time:
5695 */
5696 touch_nmi_watchdog();
39bc89fd 5697 if (!state_filter || (p->state & state_filter))
82a1fcb9 5698 sched_show_task(p);
1da177e4
LT
5699 } while_each_thread(g, p);
5700
04c9167f
JF
5701 touch_all_softlockup_watchdogs();
5702
dd41f596
IM
5703#ifdef CONFIG_SCHED_DEBUG
5704 sysrq_sched_debug_show();
5705#endif
1da177e4 5706 read_unlock(&tasklist_lock);
e59e2ae2
IM
5707 /*
5708 * Only show locks if all tasks are dumped:
5709 */
5710 if (state_filter == -1)
5711 debug_show_all_locks();
1da177e4
LT
5712}
5713
1df21055
IM
5714void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5715{
dd41f596 5716 idle->sched_class = &idle_sched_class;
1df21055
IM
5717}
5718
f340c0d1
IM
5719/**
5720 * init_idle - set up an idle thread for a given CPU
5721 * @idle: task in question
5722 * @cpu: cpu the idle task belongs to
5723 *
5724 * NOTE: this function does not set the idle thread's NEED_RESCHED
5725 * flag, to make booting more robust.
5726 */
5c1e1767 5727void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5728{
70b97a7f 5729 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5730 unsigned long flags;
5731
dd41f596
IM
5732 __sched_fork(idle);
5733 idle->se.exec_start = sched_clock();
5734
b29739f9 5735 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5736 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5737 __set_task_cpu(idle, cpu);
1da177e4
LT
5738
5739 spin_lock_irqsave(&rq->lock, flags);
5740 rq->curr = rq->idle = idle;
4866cde0
NP
5741#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5742 idle->oncpu = 1;
5743#endif
1da177e4
LT
5744 spin_unlock_irqrestore(&rq->lock, flags);
5745
5746 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5747#if defined(CONFIG_PREEMPT)
5748 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5749#else
a1261f54 5750 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5751#endif
dd41f596
IM
5752 /*
5753 * The idle tasks have their own, simple scheduling class:
5754 */
5755 idle->sched_class = &idle_sched_class;
1da177e4
LT
5756}
5757
5758/*
5759 * In a system that switches off the HZ timer nohz_cpu_mask
5760 * indicates which cpus entered this state. This is used
5761 * in the rcu update to wait only for active cpus. For system
5762 * which do not switch off the HZ timer nohz_cpu_mask should
5763 * always be CPU_MASK_NONE.
5764 */
5765cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5766
19978ca6
IM
5767/*
5768 * Increase the granularity value when there are more CPUs,
5769 * because with more CPUs the 'effective latency' as visible
5770 * to users decreases. But the relationship is not linear,
5771 * so pick a second-best guess by going with the log2 of the
5772 * number of CPUs.
5773 *
5774 * This idea comes from the SD scheduler of Con Kolivas:
5775 */
5776static inline void sched_init_granularity(void)
5777{
5778 unsigned int factor = 1 + ilog2(num_online_cpus());
5779 const unsigned long limit = 200000000;
5780
5781 sysctl_sched_min_granularity *= factor;
5782 if (sysctl_sched_min_granularity > limit)
5783 sysctl_sched_min_granularity = limit;
5784
5785 sysctl_sched_latency *= factor;
5786 if (sysctl_sched_latency > limit)
5787 sysctl_sched_latency = limit;
5788
5789 sysctl_sched_wakeup_granularity *= factor;
19978ca6
IM
5790}
5791
1da177e4
LT
5792#ifdef CONFIG_SMP
5793/*
5794 * This is how migration works:
5795 *
70b97a7f 5796 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5797 * runqueue and wake up that CPU's migration thread.
5798 * 2) we down() the locked semaphore => thread blocks.
5799 * 3) migration thread wakes up (implicitly it forces the migrated
5800 * thread off the CPU)
5801 * 4) it gets the migration request and checks whether the migrated
5802 * task is still in the wrong runqueue.
5803 * 5) if it's in the wrong runqueue then the migration thread removes
5804 * it and puts it into the right queue.
5805 * 6) migration thread up()s the semaphore.
5806 * 7) we wake up and the migration is done.
5807 */
5808
5809/*
5810 * Change a given task's CPU affinity. Migrate the thread to a
5811 * proper CPU and schedule it away if the CPU it's executing on
5812 * is removed from the allowed bitmask.
5813 *
5814 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5815 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5816 * call is not atomic; no spinlocks may be held.
5817 */
cd8ba7cd 5818int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5819{
70b97a7f 5820 struct migration_req req;
1da177e4 5821 unsigned long flags;
70b97a7f 5822 struct rq *rq;
48f24c4d 5823 int ret = 0;
1da177e4
LT
5824
5825 rq = task_rq_lock(p, &flags);
cd8ba7cd 5826 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5827 ret = -EINVAL;
5828 goto out;
5829 }
5830
9985b0ba
DR
5831 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5832 !cpus_equal(p->cpus_allowed, *new_mask))) {
5833 ret = -EINVAL;
5834 goto out;
5835 }
5836
73fe6aae 5837 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5838 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5839 else {
cd8ba7cd
MT
5840 p->cpus_allowed = *new_mask;
5841 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5842 }
5843
1da177e4 5844 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5845 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5846 goto out;
5847
cd8ba7cd 5848 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5849 /* Need help from migration thread: drop lock and wait. */
5850 task_rq_unlock(rq, &flags);
5851 wake_up_process(rq->migration_thread);
5852 wait_for_completion(&req.done);
5853 tlb_migrate_finish(p->mm);
5854 return 0;
5855 }
5856out:
5857 task_rq_unlock(rq, &flags);
48f24c4d 5858
1da177e4
LT
5859 return ret;
5860}
cd8ba7cd 5861EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5862
5863/*
41a2d6cf 5864 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5865 * this because either it can't run here any more (set_cpus_allowed()
5866 * away from this CPU, or CPU going down), or because we're
5867 * attempting to rebalance this task on exec (sched_exec).
5868 *
5869 * So we race with normal scheduler movements, but that's OK, as long
5870 * as the task is no longer on this CPU.
efc30814
KK
5871 *
5872 * Returns non-zero if task was successfully migrated.
1da177e4 5873 */
efc30814 5874static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5875{
70b97a7f 5876 struct rq *rq_dest, *rq_src;
dd41f596 5877 int ret = 0, on_rq;
1da177e4
LT
5878
5879 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5880 return ret;
1da177e4
LT
5881
5882 rq_src = cpu_rq(src_cpu);
5883 rq_dest = cpu_rq(dest_cpu);
5884
5885 double_rq_lock(rq_src, rq_dest);
5886 /* Already moved. */
5887 if (task_cpu(p) != src_cpu)
b1e38734 5888 goto done;
1da177e4
LT
5889 /* Affinity changed (again). */
5890 if (!cpu_isset(dest_cpu, p->cpus_allowed))
b1e38734 5891 goto fail;
1da177e4 5892
dd41f596 5893 on_rq = p->se.on_rq;
6e82a3be 5894 if (on_rq)
2e1cb74a 5895 deactivate_task(rq_src, p, 0);
6e82a3be 5896
1da177e4 5897 set_task_cpu(p, dest_cpu);
dd41f596
IM
5898 if (on_rq) {
5899 activate_task(rq_dest, p, 0);
5900 check_preempt_curr(rq_dest, p);
1da177e4 5901 }
b1e38734 5902done:
efc30814 5903 ret = 1;
b1e38734 5904fail:
1da177e4 5905 double_rq_unlock(rq_src, rq_dest);
efc30814 5906 return ret;
1da177e4
LT
5907}
5908
5909/*
5910 * migration_thread - this is a highprio system thread that performs
5911 * thread migration by bumping thread off CPU then 'pushing' onto
5912 * another runqueue.
5913 */
95cdf3b7 5914static int migration_thread(void *data)
1da177e4 5915{
1da177e4 5916 int cpu = (long)data;
70b97a7f 5917 struct rq *rq;
1da177e4
LT
5918
5919 rq = cpu_rq(cpu);
5920 BUG_ON(rq->migration_thread != current);
5921
5922 set_current_state(TASK_INTERRUPTIBLE);
5923 while (!kthread_should_stop()) {
70b97a7f 5924 struct migration_req *req;
1da177e4 5925 struct list_head *head;
1da177e4 5926
1da177e4
LT
5927 spin_lock_irq(&rq->lock);
5928
5929 if (cpu_is_offline(cpu)) {
5930 spin_unlock_irq(&rq->lock);
5931 goto wait_to_die;
5932 }
5933
5934 if (rq->active_balance) {
5935 active_load_balance(rq, cpu);
5936 rq->active_balance = 0;
5937 }
5938
5939 head = &rq->migration_queue;
5940
5941 if (list_empty(head)) {
5942 spin_unlock_irq(&rq->lock);
5943 schedule();
5944 set_current_state(TASK_INTERRUPTIBLE);
5945 continue;
5946 }
70b97a7f 5947 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5948 list_del_init(head->next);
5949
674311d5
NP
5950 spin_unlock(&rq->lock);
5951 __migrate_task(req->task, cpu, req->dest_cpu);
5952 local_irq_enable();
1da177e4
LT
5953
5954 complete(&req->done);
5955 }
5956 __set_current_state(TASK_RUNNING);
5957 return 0;
5958
5959wait_to_die:
5960 /* Wait for kthread_stop */
5961 set_current_state(TASK_INTERRUPTIBLE);
5962 while (!kthread_should_stop()) {
5963 schedule();
5964 set_current_state(TASK_INTERRUPTIBLE);
5965 }
5966 __set_current_state(TASK_RUNNING);
5967 return 0;
5968}
5969
5970#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5971
5972static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5973{
5974 int ret;
5975
5976 local_irq_disable();
5977 ret = __migrate_task(p, src_cpu, dest_cpu);
5978 local_irq_enable();
5979 return ret;
5980}
5981
054b9108 5982/*
3a4fa0a2 5983 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5984 * NOTE: interrupts should be disabled by the caller
5985 */
48f24c4d 5986static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5987{
efc30814 5988 unsigned long flags;
1da177e4 5989 cpumask_t mask;
70b97a7f
IM
5990 struct rq *rq;
5991 int dest_cpu;
1da177e4 5992
3a5c359a
AK
5993 do {
5994 /* On same node? */
5995 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5996 cpus_and(mask, mask, p->cpus_allowed);
5997 dest_cpu = any_online_cpu(mask);
5998
5999 /* On any allowed CPU? */
434d53b0 6000 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
6001 dest_cpu = any_online_cpu(p->cpus_allowed);
6002
6003 /* No more Mr. Nice Guy. */
434d53b0 6004 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
6005 cpumask_t cpus_allowed;
6006
6007 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
6008 /*
6009 * Try to stay on the same cpuset, where the
6010 * current cpuset may be a subset of all cpus.
6011 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 6012 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
6013 * called within calls to cpuset_lock/cpuset_unlock.
6014 */
3a5c359a 6015 rq = task_rq_lock(p, &flags);
470fd646 6016 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
6017 dest_cpu = any_online_cpu(p->cpus_allowed);
6018 task_rq_unlock(rq, &flags);
1da177e4 6019
3a5c359a
AK
6020 /*
6021 * Don't tell them about moving exiting tasks or
6022 * kernel threads (both mm NULL), since they never
6023 * leave kernel.
6024 */
41a2d6cf 6025 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
6026 printk(KERN_INFO "process %d (%s) no "
6027 "longer affine to cpu%d\n",
41a2d6cf
IM
6028 task_pid_nr(p), p->comm, dead_cpu);
6029 }
3a5c359a 6030 }
f7b4cddc 6031 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
6032}
6033
6034/*
6035 * While a dead CPU has no uninterruptible tasks queued at this point,
6036 * it might still have a nonzero ->nr_uninterruptible counter, because
6037 * for performance reasons the counter is not stricly tracking tasks to
6038 * their home CPUs. So we just add the counter to another CPU's counter,
6039 * to keep the global sum constant after CPU-down:
6040 */
70b97a7f 6041static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6042{
7c16ec58 6043 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
6044 unsigned long flags;
6045
6046 local_irq_save(flags);
6047 double_rq_lock(rq_src, rq_dest);
6048 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6049 rq_src->nr_uninterruptible = 0;
6050 double_rq_unlock(rq_src, rq_dest);
6051 local_irq_restore(flags);
6052}
6053
6054/* Run through task list and migrate tasks from the dead cpu. */
6055static void migrate_live_tasks(int src_cpu)
6056{
48f24c4d 6057 struct task_struct *p, *t;
1da177e4 6058
f7b4cddc 6059 read_lock(&tasklist_lock);
1da177e4 6060
48f24c4d
IM
6061 do_each_thread(t, p) {
6062 if (p == current)
1da177e4
LT
6063 continue;
6064
48f24c4d
IM
6065 if (task_cpu(p) == src_cpu)
6066 move_task_off_dead_cpu(src_cpu, p);
6067 } while_each_thread(t, p);
1da177e4 6068
f7b4cddc 6069 read_unlock(&tasklist_lock);
1da177e4
LT
6070}
6071
dd41f596
IM
6072/*
6073 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6074 * It does so by boosting its priority to highest possible.
6075 * Used by CPU offline code.
1da177e4
LT
6076 */
6077void sched_idle_next(void)
6078{
48f24c4d 6079 int this_cpu = smp_processor_id();
70b97a7f 6080 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6081 struct task_struct *p = rq->idle;
6082 unsigned long flags;
6083
6084 /* cpu has to be offline */
48f24c4d 6085 BUG_ON(cpu_online(this_cpu));
1da177e4 6086
48f24c4d
IM
6087 /*
6088 * Strictly not necessary since rest of the CPUs are stopped by now
6089 * and interrupts disabled on the current cpu.
1da177e4
LT
6090 */
6091 spin_lock_irqsave(&rq->lock, flags);
6092
dd41f596 6093 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6094
94bc9a7b
DA
6095 update_rq_clock(rq);
6096 activate_task(rq, p, 0);
1da177e4
LT
6097
6098 spin_unlock_irqrestore(&rq->lock, flags);
6099}
6100
48f24c4d
IM
6101/*
6102 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6103 * offline.
6104 */
6105void idle_task_exit(void)
6106{
6107 struct mm_struct *mm = current->active_mm;
6108
6109 BUG_ON(cpu_online(smp_processor_id()));
6110
6111 if (mm != &init_mm)
6112 switch_mm(mm, &init_mm, current);
6113 mmdrop(mm);
6114}
6115
054b9108 6116/* called under rq->lock with disabled interrupts */
36c8b586 6117static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6118{
70b97a7f 6119 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6120
6121 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6122 BUG_ON(!p->exit_state);
1da177e4
LT
6123
6124 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6125 BUG_ON(p->state == TASK_DEAD);
1da177e4 6126
48f24c4d 6127 get_task_struct(p);
1da177e4
LT
6128
6129 /*
6130 * Drop lock around migration; if someone else moves it,
41a2d6cf 6131 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6132 * fine.
6133 */
f7b4cddc 6134 spin_unlock_irq(&rq->lock);
48f24c4d 6135 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6136 spin_lock_irq(&rq->lock);
1da177e4 6137
48f24c4d 6138 put_task_struct(p);
1da177e4
LT
6139}
6140
6141/* release_task() removes task from tasklist, so we won't find dead tasks. */
6142static void migrate_dead_tasks(unsigned int dead_cpu)
6143{
70b97a7f 6144 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6145 struct task_struct *next;
48f24c4d 6146
dd41f596
IM
6147 for ( ; ; ) {
6148 if (!rq->nr_running)
6149 break;
a8e504d2 6150 update_rq_clock(rq);
ff95f3df 6151 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6152 if (!next)
6153 break;
79c53799 6154 next->sched_class->put_prev_task(rq, next);
dd41f596 6155 migrate_dead(dead_cpu, next);
e692ab53 6156
1da177e4
LT
6157 }
6158}
6159#endif /* CONFIG_HOTPLUG_CPU */
6160
e692ab53
NP
6161#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6162
6163static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6164 {
6165 .procname = "sched_domain",
c57baf1e 6166 .mode = 0555,
e0361851 6167 },
38605cae 6168 {0, },
e692ab53
NP
6169};
6170
6171static struct ctl_table sd_ctl_root[] = {
e0361851 6172 {
c57baf1e 6173 .ctl_name = CTL_KERN,
e0361851 6174 .procname = "kernel",
c57baf1e 6175 .mode = 0555,
e0361851
AD
6176 .child = sd_ctl_dir,
6177 },
38605cae 6178 {0, },
e692ab53
NP
6179};
6180
6181static struct ctl_table *sd_alloc_ctl_entry(int n)
6182{
6183 struct ctl_table *entry =
5cf9f062 6184 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6185
e692ab53
NP
6186 return entry;
6187}
6188
6382bc90
MM
6189static void sd_free_ctl_entry(struct ctl_table **tablep)
6190{
cd790076 6191 struct ctl_table *entry;
6382bc90 6192
cd790076
MM
6193 /*
6194 * In the intermediate directories, both the child directory and
6195 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6196 * will always be set. In the lowest directory the names are
cd790076
MM
6197 * static strings and all have proc handlers.
6198 */
6199 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6200 if (entry->child)
6201 sd_free_ctl_entry(&entry->child);
cd790076
MM
6202 if (entry->proc_handler == NULL)
6203 kfree(entry->procname);
6204 }
6382bc90
MM
6205
6206 kfree(*tablep);
6207 *tablep = NULL;
6208}
6209
e692ab53 6210static void
e0361851 6211set_table_entry(struct ctl_table *entry,
e692ab53
NP
6212 const char *procname, void *data, int maxlen,
6213 mode_t mode, proc_handler *proc_handler)
6214{
e692ab53
NP
6215 entry->procname = procname;
6216 entry->data = data;
6217 entry->maxlen = maxlen;
6218 entry->mode = mode;
6219 entry->proc_handler = proc_handler;
6220}
6221
6222static struct ctl_table *
6223sd_alloc_ctl_domain_table(struct sched_domain *sd)
6224{
ace8b3d6 6225 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 6226
ad1cdc1d
MM
6227 if (table == NULL)
6228 return NULL;
6229
e0361851 6230 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6231 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6232 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6233 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6234 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6235 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6236 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6237 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6238 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6239 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6240 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6241 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6242 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6243 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6244 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6245 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6246 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6247 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6248 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6249 &sd->cache_nice_tries,
6250 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6251 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6252 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 6253 /* &table[11] is terminator */
e692ab53
NP
6254
6255 return table;
6256}
6257
9a4e7159 6258static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6259{
6260 struct ctl_table *entry, *table;
6261 struct sched_domain *sd;
6262 int domain_num = 0, i;
6263 char buf[32];
6264
6265 for_each_domain(cpu, sd)
6266 domain_num++;
6267 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6268 if (table == NULL)
6269 return NULL;
e692ab53
NP
6270
6271 i = 0;
6272 for_each_domain(cpu, sd) {
6273 snprintf(buf, 32, "domain%d", i);
e692ab53 6274 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6275 entry->mode = 0555;
e692ab53
NP
6276 entry->child = sd_alloc_ctl_domain_table(sd);
6277 entry++;
6278 i++;
6279 }
6280 return table;
6281}
6282
6283static struct ctl_table_header *sd_sysctl_header;
6382bc90 6284static void register_sched_domain_sysctl(void)
e692ab53
NP
6285{
6286 int i, cpu_num = num_online_cpus();
6287 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6288 char buf[32];
6289
7378547f
MM
6290 WARN_ON(sd_ctl_dir[0].child);
6291 sd_ctl_dir[0].child = entry;
6292
ad1cdc1d
MM
6293 if (entry == NULL)
6294 return;
6295
97b6ea7b 6296 for_each_online_cpu(i) {
e692ab53 6297 snprintf(buf, 32, "cpu%d", i);
e692ab53 6298 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6299 entry->mode = 0555;
e692ab53 6300 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6301 entry++;
e692ab53 6302 }
7378547f
MM
6303
6304 WARN_ON(sd_sysctl_header);
e692ab53
NP
6305 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6306}
6382bc90 6307
7378547f 6308/* may be called multiple times per register */
6382bc90
MM
6309static void unregister_sched_domain_sysctl(void)
6310{
7378547f
MM
6311 if (sd_sysctl_header)
6312 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6313 sd_sysctl_header = NULL;
7378547f
MM
6314 if (sd_ctl_dir[0].child)
6315 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6316}
e692ab53 6317#else
6382bc90
MM
6318static void register_sched_domain_sysctl(void)
6319{
6320}
6321static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6322{
6323}
6324#endif
6325
1f11eb6a
GH
6326static void set_rq_online(struct rq *rq)
6327{
6328 if (!rq->online) {
6329 const struct sched_class *class;
6330
6331 cpu_set(rq->cpu, rq->rd->online);
6332 rq->online = 1;
6333
6334 for_each_class(class) {
6335 if (class->rq_online)
6336 class->rq_online(rq);
6337 }
6338 }
6339}
6340
6341static void set_rq_offline(struct rq *rq)
6342{
6343 if (rq->online) {
6344 const struct sched_class *class;
6345
6346 for_each_class(class) {
6347 if (class->rq_offline)
6348 class->rq_offline(rq);
6349 }
6350
6351 cpu_clear(rq->cpu, rq->rd->online);
6352 rq->online = 0;
6353 }
6354}
6355
1da177e4
LT
6356/*
6357 * migration_call - callback that gets triggered when a CPU is added.
6358 * Here we can start up the necessary migration thread for the new CPU.
6359 */
48f24c4d
IM
6360static int __cpuinit
6361migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6362{
1da177e4 6363 struct task_struct *p;
48f24c4d 6364 int cpu = (long)hcpu;
1da177e4 6365 unsigned long flags;
70b97a7f 6366 struct rq *rq;
1da177e4
LT
6367
6368 switch (action) {
5be9361c 6369
1da177e4 6370 case CPU_UP_PREPARE:
8bb78442 6371 case CPU_UP_PREPARE_FROZEN:
dd41f596 6372 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6373 if (IS_ERR(p))
6374 return NOTIFY_BAD;
1da177e4
LT
6375 kthread_bind(p, cpu);
6376 /* Must be high prio: stop_machine expects to yield to it. */
6377 rq = task_rq_lock(p, &flags);
dd41f596 6378 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6379 task_rq_unlock(rq, &flags);
6380 cpu_rq(cpu)->migration_thread = p;
6381 break;
48f24c4d 6382
1da177e4 6383 case CPU_ONLINE:
8bb78442 6384 case CPU_ONLINE_FROZEN:
3a4fa0a2 6385 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6386 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6387
6388 /* Update our root-domain */
6389 rq = cpu_rq(cpu);
6390 spin_lock_irqsave(&rq->lock, flags);
6391 if (rq->rd) {
6392 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a
GH
6393
6394 set_rq_online(rq);
1f94ef59
GH
6395 }
6396 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6397 break;
48f24c4d 6398
1da177e4
LT
6399#ifdef CONFIG_HOTPLUG_CPU
6400 case CPU_UP_CANCELED:
8bb78442 6401 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6402 if (!cpu_rq(cpu)->migration_thread)
6403 break;
41a2d6cf 6404 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6405 kthread_bind(cpu_rq(cpu)->migration_thread,
6406 any_online_cpu(cpu_online_map));
1da177e4
LT
6407 kthread_stop(cpu_rq(cpu)->migration_thread);
6408 cpu_rq(cpu)->migration_thread = NULL;
6409 break;
48f24c4d 6410
1da177e4 6411 case CPU_DEAD:
8bb78442 6412 case CPU_DEAD_FROZEN:
470fd646 6413 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6414 migrate_live_tasks(cpu);
6415 rq = cpu_rq(cpu);
6416 kthread_stop(rq->migration_thread);
6417 rq->migration_thread = NULL;
6418 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6419 spin_lock_irq(&rq->lock);
a8e504d2 6420 update_rq_clock(rq);
2e1cb74a 6421 deactivate_task(rq, rq->idle, 0);
1da177e4 6422 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6423 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6424 rq->idle->sched_class = &idle_sched_class;
1da177e4 6425 migrate_dead_tasks(cpu);
d2da272a 6426 spin_unlock_irq(&rq->lock);
470fd646 6427 cpuset_unlock();
1da177e4
LT
6428 migrate_nr_uninterruptible(rq);
6429 BUG_ON(rq->nr_running != 0);
6430
41a2d6cf
IM
6431 /*
6432 * No need to migrate the tasks: it was best-effort if
6433 * they didn't take sched_hotcpu_mutex. Just wake up
6434 * the requestors.
6435 */
1da177e4
LT
6436 spin_lock_irq(&rq->lock);
6437 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6438 struct migration_req *req;
6439
1da177e4 6440 req = list_entry(rq->migration_queue.next,
70b97a7f 6441 struct migration_req, list);
1da177e4
LT
6442 list_del_init(&req->list);
6443 complete(&req->done);
6444 }
6445 spin_unlock_irq(&rq->lock);
6446 break;
57d885fe 6447
08f503b0
GH
6448 case CPU_DYING:
6449 case CPU_DYING_FROZEN:
57d885fe
GH
6450 /* Update our root-domain */
6451 rq = cpu_rq(cpu);
6452 spin_lock_irqsave(&rq->lock, flags);
6453 if (rq->rd) {
6454 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a 6455 set_rq_offline(rq);
57d885fe
GH
6456 }
6457 spin_unlock_irqrestore(&rq->lock, flags);
6458 break;
1da177e4
LT
6459#endif
6460 }
6461 return NOTIFY_OK;
6462}
6463
6464/* Register at highest priority so that task migration (migrate_all_tasks)
6465 * happens before everything else.
6466 */
26c2143b 6467static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6468 .notifier_call = migration_call,
6469 .priority = 10
6470};
6471
e6fe6649 6472void __init migration_init(void)
1da177e4
LT
6473{
6474 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6475 int err;
48f24c4d
IM
6476
6477 /* Start one for the boot CPU: */
07dccf33
AM
6478 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6479 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6480 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6481 register_cpu_notifier(&migration_notifier);
1da177e4
LT
6482}
6483#endif
6484
6485#ifdef CONFIG_SMP
476f3534 6486
3e9830dc 6487#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6488
099f98c8
GS
6489static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6490{
6491 switch (lvl) {
6492 case SD_LV_NONE:
6493 return "NONE";
6494 case SD_LV_SIBLING:
6495 return "SIBLING";
6496 case SD_LV_MC:
6497 return "MC";
6498 case SD_LV_CPU:
6499 return "CPU";
6500 case SD_LV_NODE:
6501 return "NODE";
6502 case SD_LV_ALLNODES:
6503 return "ALLNODES";
6504 case SD_LV_MAX:
6505 return "MAX";
6506
6507 }
6508 return "MAX";
6509}
6510
7c16ec58
MT
6511static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6512 cpumask_t *groupmask)
1da177e4 6513{
4dcf6aff 6514 struct sched_group *group = sd->groups;
434d53b0 6515 char str[256];
1da177e4 6516
434d53b0 6517 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6518 cpus_clear(*groupmask);
4dcf6aff
IM
6519
6520 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6521
6522 if (!(sd->flags & SD_LOAD_BALANCE)) {
6523 printk("does not load-balance\n");
6524 if (sd->parent)
6525 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6526 " has parent");
6527 return -1;
41c7ce9a
NP
6528 }
6529
099f98c8
GS
6530 printk(KERN_CONT "span %s level %s\n",
6531 str, sd_level_to_string(sd->level));
4dcf6aff
IM
6532
6533 if (!cpu_isset(cpu, sd->span)) {
6534 printk(KERN_ERR "ERROR: domain->span does not contain "
6535 "CPU%d\n", cpu);
6536 }
6537 if (!cpu_isset(cpu, group->cpumask)) {
6538 printk(KERN_ERR "ERROR: domain->groups does not contain"
6539 " CPU%d\n", cpu);
6540 }
1da177e4 6541
4dcf6aff 6542 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6543 do {
4dcf6aff
IM
6544 if (!group) {
6545 printk("\n");
6546 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6547 break;
6548 }
6549
4dcf6aff
IM
6550 if (!group->__cpu_power) {
6551 printk(KERN_CONT "\n");
6552 printk(KERN_ERR "ERROR: domain->cpu_power not "
6553 "set\n");
6554 break;
6555 }
1da177e4 6556
4dcf6aff
IM
6557 if (!cpus_weight(group->cpumask)) {
6558 printk(KERN_CONT "\n");
6559 printk(KERN_ERR "ERROR: empty group\n");
6560 break;
6561 }
1da177e4 6562
7c16ec58 6563 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6564 printk(KERN_CONT "\n");
6565 printk(KERN_ERR "ERROR: repeated CPUs\n");
6566 break;
6567 }
1da177e4 6568
7c16ec58 6569 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6570
434d53b0 6571 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6572 printk(KERN_CONT " %s", str);
1da177e4 6573
4dcf6aff
IM
6574 group = group->next;
6575 } while (group != sd->groups);
6576 printk(KERN_CONT "\n");
1da177e4 6577
7c16ec58 6578 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6579 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6580
7c16ec58 6581 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6582 printk(KERN_ERR "ERROR: parent span is not a superset "
6583 "of domain->span\n");
6584 return 0;
6585}
1da177e4 6586
4dcf6aff
IM
6587static void sched_domain_debug(struct sched_domain *sd, int cpu)
6588{
7c16ec58 6589 cpumask_t *groupmask;
4dcf6aff 6590 int level = 0;
1da177e4 6591
4dcf6aff
IM
6592 if (!sd) {
6593 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6594 return;
6595 }
1da177e4 6596
4dcf6aff
IM
6597 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6598
7c16ec58
MT
6599 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6600 if (!groupmask) {
6601 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6602 return;
6603 }
6604
4dcf6aff 6605 for (;;) {
7c16ec58 6606 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6607 break;
1da177e4
LT
6608 level++;
6609 sd = sd->parent;
33859f7f 6610 if (!sd)
4dcf6aff
IM
6611 break;
6612 }
7c16ec58 6613 kfree(groupmask);
1da177e4 6614}
6d6bc0ad 6615#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6616# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6617#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6618
1a20ff27 6619static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6620{
6621 if (cpus_weight(sd->span) == 1)
6622 return 1;
6623
6624 /* Following flags need at least 2 groups */
6625 if (sd->flags & (SD_LOAD_BALANCE |
6626 SD_BALANCE_NEWIDLE |
6627 SD_BALANCE_FORK |
89c4710e
SS
6628 SD_BALANCE_EXEC |
6629 SD_SHARE_CPUPOWER |
6630 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6631 if (sd->groups != sd->groups->next)
6632 return 0;
6633 }
6634
6635 /* Following flags don't use groups */
6636 if (sd->flags & (SD_WAKE_IDLE |
6637 SD_WAKE_AFFINE |
6638 SD_WAKE_BALANCE))
6639 return 0;
6640
6641 return 1;
6642}
6643
48f24c4d
IM
6644static int
6645sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6646{
6647 unsigned long cflags = sd->flags, pflags = parent->flags;
6648
6649 if (sd_degenerate(parent))
6650 return 1;
6651
6652 if (!cpus_equal(sd->span, parent->span))
6653 return 0;
6654
6655 /* Does parent contain flags not in child? */
6656 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6657 if (cflags & SD_WAKE_AFFINE)
6658 pflags &= ~SD_WAKE_BALANCE;
6659 /* Flags needing groups don't count if only 1 group in parent */
6660 if (parent->groups == parent->groups->next) {
6661 pflags &= ~(SD_LOAD_BALANCE |
6662 SD_BALANCE_NEWIDLE |
6663 SD_BALANCE_FORK |
89c4710e
SS
6664 SD_BALANCE_EXEC |
6665 SD_SHARE_CPUPOWER |
6666 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6667 }
6668 if (~cflags & pflags)
6669 return 0;
6670
6671 return 1;
6672}
6673
57d885fe
GH
6674static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6675{
6676 unsigned long flags;
57d885fe
GH
6677
6678 spin_lock_irqsave(&rq->lock, flags);
6679
6680 if (rq->rd) {
6681 struct root_domain *old_rd = rq->rd;
6682
1f11eb6a
GH
6683 if (cpu_isset(rq->cpu, old_rd->online))
6684 set_rq_offline(rq);
57d885fe 6685
dc938520 6686 cpu_clear(rq->cpu, old_rd->span);
dc938520 6687
57d885fe
GH
6688 if (atomic_dec_and_test(&old_rd->refcount))
6689 kfree(old_rd);
6690 }
6691
6692 atomic_inc(&rd->refcount);
6693 rq->rd = rd;
6694
dc938520 6695 cpu_set(rq->cpu, rd->span);
1f94ef59 6696 if (cpu_isset(rq->cpu, cpu_online_map))
1f11eb6a 6697 set_rq_online(rq);
57d885fe
GH
6698
6699 spin_unlock_irqrestore(&rq->lock, flags);
6700}
6701
dc938520 6702static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6703{
6704 memset(rd, 0, sizeof(*rd));
6705
dc938520
GH
6706 cpus_clear(rd->span);
6707 cpus_clear(rd->online);
6e0534f2
GH
6708
6709 cpupri_init(&rd->cpupri);
57d885fe
GH
6710}
6711
6712static void init_defrootdomain(void)
6713{
dc938520 6714 init_rootdomain(&def_root_domain);
57d885fe
GH
6715 atomic_set(&def_root_domain.refcount, 1);
6716}
6717
dc938520 6718static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6719{
6720 struct root_domain *rd;
6721
6722 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6723 if (!rd)
6724 return NULL;
6725
dc938520 6726 init_rootdomain(rd);
57d885fe
GH
6727
6728 return rd;
6729}
6730
1da177e4 6731/*
0eab9146 6732 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6733 * hold the hotplug lock.
6734 */
0eab9146
IM
6735static void
6736cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6737{
70b97a7f 6738 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6739 struct sched_domain *tmp;
6740
6741 /* Remove the sched domains which do not contribute to scheduling. */
6742 for (tmp = sd; tmp; tmp = tmp->parent) {
6743 struct sched_domain *parent = tmp->parent;
6744 if (!parent)
6745 break;
1a848870 6746 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6747 tmp->parent = parent->parent;
1a848870
SS
6748 if (parent->parent)
6749 parent->parent->child = tmp;
6750 }
245af2c7
SS
6751 }
6752
1a848870 6753 if (sd && sd_degenerate(sd)) {
245af2c7 6754 sd = sd->parent;
1a848870
SS
6755 if (sd)
6756 sd->child = NULL;
6757 }
1da177e4
LT
6758
6759 sched_domain_debug(sd, cpu);
6760
57d885fe 6761 rq_attach_root(rq, rd);
674311d5 6762 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6763}
6764
6765/* cpus with isolated domains */
67af63a6 6766static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6767
6768/* Setup the mask of cpus configured for isolated domains */
6769static int __init isolated_cpu_setup(char *str)
6770{
6771 int ints[NR_CPUS], i;
6772
6773 str = get_options(str, ARRAY_SIZE(ints), ints);
6774 cpus_clear(cpu_isolated_map);
6775 for (i = 1; i <= ints[0]; i++)
6776 if (ints[i] < NR_CPUS)
6777 cpu_set(ints[i], cpu_isolated_map);
6778 return 1;
6779}
6780
8927f494 6781__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6782
6783/*
6711cab4
SS
6784 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6785 * to a function which identifies what group(along with sched group) a CPU
6786 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6787 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6788 *
6789 * init_sched_build_groups will build a circular linked list of the groups
6790 * covered by the given span, and will set each group's ->cpumask correctly,
6791 * and ->cpu_power to 0.
6792 */
a616058b 6793static void
7c16ec58 6794init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6795 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6796 struct sched_group **sg,
6797 cpumask_t *tmpmask),
6798 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6799{
6800 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6801 int i;
6802
7c16ec58
MT
6803 cpus_clear(*covered);
6804
6805 for_each_cpu_mask(i, *span) {
6711cab4 6806 struct sched_group *sg;
7c16ec58 6807 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6808 int j;
6809
7c16ec58 6810 if (cpu_isset(i, *covered))
1da177e4
LT
6811 continue;
6812
7c16ec58 6813 cpus_clear(sg->cpumask);
5517d86b 6814 sg->__cpu_power = 0;
1da177e4 6815
7c16ec58
MT
6816 for_each_cpu_mask(j, *span) {
6817 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6818 continue;
6819
7c16ec58 6820 cpu_set(j, *covered);
1da177e4
LT
6821 cpu_set(j, sg->cpumask);
6822 }
6823 if (!first)
6824 first = sg;
6825 if (last)
6826 last->next = sg;
6827 last = sg;
6828 }
6829 last->next = first;
6830}
6831
9c1cfda2 6832#define SD_NODES_PER_DOMAIN 16
1da177e4 6833
9c1cfda2 6834#ifdef CONFIG_NUMA
198e2f18 6835
9c1cfda2
JH
6836/**
6837 * find_next_best_node - find the next node to include in a sched_domain
6838 * @node: node whose sched_domain we're building
6839 * @used_nodes: nodes already in the sched_domain
6840 *
41a2d6cf 6841 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6842 * finds the closest node not already in the @used_nodes map.
6843 *
6844 * Should use nodemask_t.
6845 */
c5f59f08 6846static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6847{
6848 int i, n, val, min_val, best_node = 0;
6849
6850 min_val = INT_MAX;
6851
076ac2af 6852 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 6853 /* Start at @node */
076ac2af 6854 n = (node + i) % nr_node_ids;
9c1cfda2
JH
6855
6856 if (!nr_cpus_node(n))
6857 continue;
6858
6859 /* Skip already used nodes */
c5f59f08 6860 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6861 continue;
6862
6863 /* Simple min distance search */
6864 val = node_distance(node, n);
6865
6866 if (val < min_val) {
6867 min_val = val;
6868 best_node = n;
6869 }
6870 }
6871
c5f59f08 6872 node_set(best_node, *used_nodes);
9c1cfda2
JH
6873 return best_node;
6874}
6875
6876/**
6877 * sched_domain_node_span - get a cpumask for a node's sched_domain
6878 * @node: node whose cpumask we're constructing
73486722 6879 * @span: resulting cpumask
9c1cfda2 6880 *
41a2d6cf 6881 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6882 * should be one that prevents unnecessary balancing, but also spreads tasks
6883 * out optimally.
6884 */
4bdbaad3 6885static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 6886{
c5f59f08 6887 nodemask_t used_nodes;
c5f59f08 6888 node_to_cpumask_ptr(nodemask, node);
48f24c4d 6889 int i;
9c1cfda2 6890
4bdbaad3 6891 cpus_clear(*span);
c5f59f08 6892 nodes_clear(used_nodes);
9c1cfda2 6893
4bdbaad3 6894 cpus_or(*span, *span, *nodemask);
c5f59f08 6895 node_set(node, used_nodes);
9c1cfda2
JH
6896
6897 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6898 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6899
c5f59f08 6900 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 6901 cpus_or(*span, *span, *nodemask);
9c1cfda2 6902 }
9c1cfda2 6903}
6d6bc0ad 6904#endif /* CONFIG_NUMA */
9c1cfda2 6905
5c45bf27 6906int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6907
9c1cfda2 6908/*
48f24c4d 6909 * SMT sched-domains:
9c1cfda2 6910 */
1da177e4
LT
6911#ifdef CONFIG_SCHED_SMT
6912static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6913static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6914
41a2d6cf 6915static int
7c16ec58
MT
6916cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6917 cpumask_t *unused)
1da177e4 6918{
6711cab4
SS
6919 if (sg)
6920 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6921 return cpu;
6922}
6d6bc0ad 6923#endif /* CONFIG_SCHED_SMT */
1da177e4 6924
48f24c4d
IM
6925/*
6926 * multi-core sched-domains:
6927 */
1e9f28fa
SS
6928#ifdef CONFIG_SCHED_MC
6929static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6930static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6d6bc0ad 6931#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6932
6933#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6934static int
7c16ec58
MT
6935cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6936 cpumask_t *mask)
1e9f28fa 6937{
6711cab4 6938 int group;
7c16ec58
MT
6939
6940 *mask = per_cpu(cpu_sibling_map, cpu);
6941 cpus_and(*mask, *mask, *cpu_map);
6942 group = first_cpu(*mask);
6711cab4
SS
6943 if (sg)
6944 *sg = &per_cpu(sched_group_core, group);
6945 return group;
1e9f28fa
SS
6946}
6947#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6948static int
7c16ec58
MT
6949cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6950 cpumask_t *unused)
1e9f28fa 6951{
6711cab4
SS
6952 if (sg)
6953 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6954 return cpu;
6955}
6956#endif
6957
1da177e4 6958static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6959static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6960
41a2d6cf 6961static int
7c16ec58
MT
6962cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6963 cpumask_t *mask)
1da177e4 6964{
6711cab4 6965 int group;
48f24c4d 6966#ifdef CONFIG_SCHED_MC
7c16ec58
MT
6967 *mask = cpu_coregroup_map(cpu);
6968 cpus_and(*mask, *mask, *cpu_map);
6969 group = first_cpu(*mask);
1e9f28fa 6970#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
6971 *mask = per_cpu(cpu_sibling_map, cpu);
6972 cpus_and(*mask, *mask, *cpu_map);
6973 group = first_cpu(*mask);
1da177e4 6974#else
6711cab4 6975 group = cpu;
1da177e4 6976#endif
6711cab4
SS
6977 if (sg)
6978 *sg = &per_cpu(sched_group_phys, group);
6979 return group;
1da177e4
LT
6980}
6981
6982#ifdef CONFIG_NUMA
1da177e4 6983/*
9c1cfda2
JH
6984 * The init_sched_build_groups can't handle what we want to do with node
6985 * groups, so roll our own. Now each node has its own list of groups which
6986 * gets dynamically allocated.
1da177e4 6987 */
9c1cfda2 6988static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 6989static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6990
9c1cfda2 6991static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6992static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6993
6711cab4 6994static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 6995 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 6996{
6711cab4
SS
6997 int group;
6998
7c16ec58
MT
6999 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7000 cpus_and(*nodemask, *nodemask, *cpu_map);
7001 group = first_cpu(*nodemask);
6711cab4
SS
7002
7003 if (sg)
7004 *sg = &per_cpu(sched_group_allnodes, group);
7005 return group;
1da177e4 7006}
6711cab4 7007
08069033
SS
7008static void init_numa_sched_groups_power(struct sched_group *group_head)
7009{
7010 struct sched_group *sg = group_head;
7011 int j;
7012
7013 if (!sg)
7014 return;
3a5c359a
AK
7015 do {
7016 for_each_cpu_mask(j, sg->cpumask) {
7017 struct sched_domain *sd;
08069033 7018
3a5c359a
AK
7019 sd = &per_cpu(phys_domains, j);
7020 if (j != first_cpu(sd->groups->cpumask)) {
7021 /*
7022 * Only add "power" once for each
7023 * physical package.
7024 */
7025 continue;
7026 }
08069033 7027
3a5c359a
AK
7028 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7029 }
7030 sg = sg->next;
7031 } while (sg != group_head);
08069033 7032}
6d6bc0ad 7033#endif /* CONFIG_NUMA */
1da177e4 7034
a616058b 7035#ifdef CONFIG_NUMA
51888ca2 7036/* Free memory allocated for various sched_group structures */
7c16ec58 7037static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 7038{
a616058b 7039 int cpu, i;
51888ca2
SV
7040
7041 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
7042 struct sched_group **sched_group_nodes
7043 = sched_group_nodes_bycpu[cpu];
7044
51888ca2
SV
7045 if (!sched_group_nodes)
7046 continue;
7047
076ac2af 7048 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7049 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7050
7c16ec58
MT
7051 *nodemask = node_to_cpumask(i);
7052 cpus_and(*nodemask, *nodemask, *cpu_map);
7053 if (cpus_empty(*nodemask))
51888ca2
SV
7054 continue;
7055
7056 if (sg == NULL)
7057 continue;
7058 sg = sg->next;
7059next_sg:
7060 oldsg = sg;
7061 sg = sg->next;
7062 kfree(oldsg);
7063 if (oldsg != sched_group_nodes[i])
7064 goto next_sg;
7065 }
7066 kfree(sched_group_nodes);
7067 sched_group_nodes_bycpu[cpu] = NULL;
7068 }
51888ca2 7069}
6d6bc0ad 7070#else /* !CONFIG_NUMA */
7c16ec58 7071static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
7072{
7073}
6d6bc0ad 7074#endif /* CONFIG_NUMA */
51888ca2 7075
89c4710e
SS
7076/*
7077 * Initialize sched groups cpu_power.
7078 *
7079 * cpu_power indicates the capacity of sched group, which is used while
7080 * distributing the load between different sched groups in a sched domain.
7081 * Typically cpu_power for all the groups in a sched domain will be same unless
7082 * there are asymmetries in the topology. If there are asymmetries, group
7083 * having more cpu_power will pickup more load compared to the group having
7084 * less cpu_power.
7085 *
7086 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7087 * the maximum number of tasks a group can handle in the presence of other idle
7088 * or lightly loaded groups in the same sched domain.
7089 */
7090static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7091{
7092 struct sched_domain *child;
7093 struct sched_group *group;
7094
7095 WARN_ON(!sd || !sd->groups);
7096
7097 if (cpu != first_cpu(sd->groups->cpumask))
7098 return;
7099
7100 child = sd->child;
7101
5517d86b
ED
7102 sd->groups->__cpu_power = 0;
7103
89c4710e
SS
7104 /*
7105 * For perf policy, if the groups in child domain share resources
7106 * (for example cores sharing some portions of the cache hierarchy
7107 * or SMT), then set this domain groups cpu_power such that each group
7108 * can handle only one task, when there are other idle groups in the
7109 * same sched domain.
7110 */
7111 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7112 (child->flags &
7113 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7114 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7115 return;
7116 }
7117
89c4710e
SS
7118 /*
7119 * add cpu_power of each child group to this groups cpu_power
7120 */
7121 group = child->groups;
7122 do {
5517d86b 7123 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7124 group = group->next;
7125 } while (group != child->groups);
7126}
7127
7c16ec58
MT
7128/*
7129 * Initializers for schedule domains
7130 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7131 */
7132
7133#define SD_INIT(sd, type) sd_init_##type(sd)
7134#define SD_INIT_FUNC(type) \
7135static noinline void sd_init_##type(struct sched_domain *sd) \
7136{ \
7137 memset(sd, 0, sizeof(*sd)); \
7138 *sd = SD_##type##_INIT; \
1d3504fc 7139 sd->level = SD_LV_##type; \
7c16ec58
MT
7140}
7141
7142SD_INIT_FUNC(CPU)
7143#ifdef CONFIG_NUMA
7144 SD_INIT_FUNC(ALLNODES)
7145 SD_INIT_FUNC(NODE)
7146#endif
7147#ifdef CONFIG_SCHED_SMT
7148 SD_INIT_FUNC(SIBLING)
7149#endif
7150#ifdef CONFIG_SCHED_MC
7151 SD_INIT_FUNC(MC)
7152#endif
7153
7154/*
7155 * To minimize stack usage kmalloc room for cpumasks and share the
7156 * space as the usage in build_sched_domains() dictates. Used only
7157 * if the amount of space is significant.
7158 */
7159struct allmasks {
7160 cpumask_t tmpmask; /* make this one first */
7161 union {
7162 cpumask_t nodemask;
7163 cpumask_t this_sibling_map;
7164 cpumask_t this_core_map;
7165 };
7166 cpumask_t send_covered;
7167
7168#ifdef CONFIG_NUMA
7169 cpumask_t domainspan;
7170 cpumask_t covered;
7171 cpumask_t notcovered;
7172#endif
7173};
7174
7175#if NR_CPUS > 128
7176#define SCHED_CPUMASK_ALLOC 1
7177#define SCHED_CPUMASK_FREE(v) kfree(v)
7178#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7179#else
7180#define SCHED_CPUMASK_ALLOC 0
7181#define SCHED_CPUMASK_FREE(v)
7182#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7183#endif
7184
7185#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7186 ((unsigned long)(a) + offsetof(struct allmasks, v))
7187
1d3504fc
HS
7188static int default_relax_domain_level = -1;
7189
7190static int __init setup_relax_domain_level(char *str)
7191{
30e0e178
LZ
7192 unsigned long val;
7193
7194 val = simple_strtoul(str, NULL, 0);
7195 if (val < SD_LV_MAX)
7196 default_relax_domain_level = val;
7197
1d3504fc
HS
7198 return 1;
7199}
7200__setup("relax_domain_level=", setup_relax_domain_level);
7201
7202static void set_domain_attribute(struct sched_domain *sd,
7203 struct sched_domain_attr *attr)
7204{
7205 int request;
7206
7207 if (!attr || attr->relax_domain_level < 0) {
7208 if (default_relax_domain_level < 0)
7209 return;
7210 else
7211 request = default_relax_domain_level;
7212 } else
7213 request = attr->relax_domain_level;
7214 if (request < sd->level) {
7215 /* turn off idle balance on this domain */
7216 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7217 } else {
7218 /* turn on idle balance on this domain */
7219 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7220 }
7221}
7222
1da177e4 7223/*
1a20ff27
DG
7224 * Build sched domains for a given set of cpus and attach the sched domains
7225 * to the individual cpus
1da177e4 7226 */
1d3504fc
HS
7227static int __build_sched_domains(const cpumask_t *cpu_map,
7228 struct sched_domain_attr *attr)
1da177e4
LT
7229{
7230 int i;
57d885fe 7231 struct root_domain *rd;
7c16ec58
MT
7232 SCHED_CPUMASK_DECLARE(allmasks);
7233 cpumask_t *tmpmask;
d1b55138
JH
7234#ifdef CONFIG_NUMA
7235 struct sched_group **sched_group_nodes = NULL;
6711cab4 7236 int sd_allnodes = 0;
d1b55138
JH
7237
7238 /*
7239 * Allocate the per-node list of sched groups
7240 */
076ac2af 7241 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7242 GFP_KERNEL);
d1b55138
JH
7243 if (!sched_group_nodes) {
7244 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 7245 return -ENOMEM;
d1b55138 7246 }
d1b55138 7247#endif
1da177e4 7248
dc938520 7249 rd = alloc_rootdomain();
57d885fe
GH
7250 if (!rd) {
7251 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
7252#ifdef CONFIG_NUMA
7253 kfree(sched_group_nodes);
7254#endif
57d885fe
GH
7255 return -ENOMEM;
7256 }
7257
7c16ec58
MT
7258#if SCHED_CPUMASK_ALLOC
7259 /* get space for all scratch cpumask variables */
7260 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7261 if (!allmasks) {
7262 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7263 kfree(rd);
7264#ifdef CONFIG_NUMA
7265 kfree(sched_group_nodes);
7266#endif
7267 return -ENOMEM;
7268 }
7269#endif
7270 tmpmask = (cpumask_t *)allmasks;
7271
7272
7273#ifdef CONFIG_NUMA
7274 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7275#endif
7276
1da177e4 7277 /*
1a20ff27 7278 * Set up domains for cpus specified by the cpu_map.
1da177e4 7279 */
1a20ff27 7280 for_each_cpu_mask(i, *cpu_map) {
1da177e4 7281 struct sched_domain *sd = NULL, *p;
7c16ec58 7282 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7283
7c16ec58
MT
7284 *nodemask = node_to_cpumask(cpu_to_node(i));
7285 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7286
7287#ifdef CONFIG_NUMA
dd41f596 7288 if (cpus_weight(*cpu_map) >
7c16ec58 7289 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7290 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7291 SD_INIT(sd, ALLNODES);
1d3504fc 7292 set_domain_attribute(sd, attr);
9c1cfda2 7293 sd->span = *cpu_map;
7c16ec58 7294 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7295 p = sd;
6711cab4 7296 sd_allnodes = 1;
9c1cfda2
JH
7297 } else
7298 p = NULL;
7299
1da177e4 7300 sd = &per_cpu(node_domains, i);
7c16ec58 7301 SD_INIT(sd, NODE);
1d3504fc 7302 set_domain_attribute(sd, attr);
4bdbaad3 7303 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 7304 sd->parent = p;
1a848870
SS
7305 if (p)
7306 p->child = sd;
9c1cfda2 7307 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7308#endif
7309
7310 p = sd;
7311 sd = &per_cpu(phys_domains, i);
7c16ec58 7312 SD_INIT(sd, CPU);
1d3504fc 7313 set_domain_attribute(sd, attr);
7c16ec58 7314 sd->span = *nodemask;
1da177e4 7315 sd->parent = p;
1a848870
SS
7316 if (p)
7317 p->child = sd;
7c16ec58 7318 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7319
1e9f28fa
SS
7320#ifdef CONFIG_SCHED_MC
7321 p = sd;
7322 sd = &per_cpu(core_domains, i);
7c16ec58 7323 SD_INIT(sd, MC);
1d3504fc 7324 set_domain_attribute(sd, attr);
1e9f28fa
SS
7325 sd->span = cpu_coregroup_map(i);
7326 cpus_and(sd->span, sd->span, *cpu_map);
7327 sd->parent = p;
1a848870 7328 p->child = sd;
7c16ec58 7329 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7330#endif
7331
1da177e4
LT
7332#ifdef CONFIG_SCHED_SMT
7333 p = sd;
7334 sd = &per_cpu(cpu_domains, i);
7c16ec58 7335 SD_INIT(sd, SIBLING);
1d3504fc 7336 set_domain_attribute(sd, attr);
d5a7430d 7337 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7338 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7339 sd->parent = p;
1a848870 7340 p->child = sd;
7c16ec58 7341 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7342#endif
7343 }
7344
7345#ifdef CONFIG_SCHED_SMT
7346 /* Set up CPU (sibling) groups */
9c1cfda2 7347 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7348 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7349 SCHED_CPUMASK_VAR(send_covered, allmasks);
7350
7351 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7352 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7353 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7354 continue;
7355
dd41f596 7356 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7357 &cpu_to_cpu_group,
7358 send_covered, tmpmask);
1da177e4
LT
7359 }
7360#endif
7361
1e9f28fa
SS
7362#ifdef CONFIG_SCHED_MC
7363 /* Set up multi-core groups */
7364 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7365 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7366 SCHED_CPUMASK_VAR(send_covered, allmasks);
7367
7368 *this_core_map = cpu_coregroup_map(i);
7369 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7370 if (i != first_cpu(*this_core_map))
1e9f28fa 7371 continue;
7c16ec58 7372
dd41f596 7373 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7374 &cpu_to_core_group,
7375 send_covered, tmpmask);
1e9f28fa
SS
7376 }
7377#endif
7378
1da177e4 7379 /* Set up physical groups */
076ac2af 7380 for (i = 0; i < nr_node_ids; i++) {
7c16ec58
MT
7381 SCHED_CPUMASK_VAR(nodemask, allmasks);
7382 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7383
7c16ec58
MT
7384 *nodemask = node_to_cpumask(i);
7385 cpus_and(*nodemask, *nodemask, *cpu_map);
7386 if (cpus_empty(*nodemask))
1da177e4
LT
7387 continue;
7388
7c16ec58
MT
7389 init_sched_build_groups(nodemask, cpu_map,
7390 &cpu_to_phys_group,
7391 send_covered, tmpmask);
1da177e4
LT
7392 }
7393
7394#ifdef CONFIG_NUMA
7395 /* Set up node groups */
7c16ec58
MT
7396 if (sd_allnodes) {
7397 SCHED_CPUMASK_VAR(send_covered, allmasks);
7398
7399 init_sched_build_groups(cpu_map, cpu_map,
7400 &cpu_to_allnodes_group,
7401 send_covered, tmpmask);
7402 }
9c1cfda2 7403
076ac2af 7404 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7405 /* Set up node groups */
7406 struct sched_group *sg, *prev;
7c16ec58
MT
7407 SCHED_CPUMASK_VAR(nodemask, allmasks);
7408 SCHED_CPUMASK_VAR(domainspan, allmasks);
7409 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7410 int j;
7411
7c16ec58
MT
7412 *nodemask = node_to_cpumask(i);
7413 cpus_clear(*covered);
7414
7415 cpus_and(*nodemask, *nodemask, *cpu_map);
7416 if (cpus_empty(*nodemask)) {
d1b55138 7417 sched_group_nodes[i] = NULL;
9c1cfda2 7418 continue;
d1b55138 7419 }
9c1cfda2 7420
4bdbaad3 7421 sched_domain_node_span(i, domainspan);
7c16ec58 7422 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7423
15f0b676 7424 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7425 if (!sg) {
7426 printk(KERN_WARNING "Can not alloc domain group for "
7427 "node %d\n", i);
7428 goto error;
7429 }
9c1cfda2 7430 sched_group_nodes[i] = sg;
7c16ec58 7431 for_each_cpu_mask(j, *nodemask) {
9c1cfda2 7432 struct sched_domain *sd;
9761eea8 7433
9c1cfda2
JH
7434 sd = &per_cpu(node_domains, j);
7435 sd->groups = sg;
9c1cfda2 7436 }
5517d86b 7437 sg->__cpu_power = 0;
7c16ec58 7438 sg->cpumask = *nodemask;
51888ca2 7439 sg->next = sg;
7c16ec58 7440 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7441 prev = sg;
7442
076ac2af 7443 for (j = 0; j < nr_node_ids; j++) {
7c16ec58 7444 SCHED_CPUMASK_VAR(notcovered, allmasks);
076ac2af 7445 int n = (i + j) % nr_node_ids;
c5f59f08 7446 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7447
7c16ec58
MT
7448 cpus_complement(*notcovered, *covered);
7449 cpus_and(*tmpmask, *notcovered, *cpu_map);
7450 cpus_and(*tmpmask, *tmpmask, *domainspan);
7451 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7452 break;
7453
7c16ec58
MT
7454 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7455 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7456 continue;
7457
15f0b676
SV
7458 sg = kmalloc_node(sizeof(struct sched_group),
7459 GFP_KERNEL, i);
9c1cfda2
JH
7460 if (!sg) {
7461 printk(KERN_WARNING
7462 "Can not alloc domain group for node %d\n", j);
51888ca2 7463 goto error;
9c1cfda2 7464 }
5517d86b 7465 sg->__cpu_power = 0;
7c16ec58 7466 sg->cpumask = *tmpmask;
51888ca2 7467 sg->next = prev->next;
7c16ec58 7468 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7469 prev->next = sg;
7470 prev = sg;
7471 }
9c1cfda2 7472 }
1da177e4
LT
7473#endif
7474
7475 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7476#ifdef CONFIG_SCHED_SMT
1a20ff27 7477 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7478 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7479
89c4710e 7480 init_sched_groups_power(i, sd);
5c45bf27 7481 }
1da177e4 7482#endif
1e9f28fa 7483#ifdef CONFIG_SCHED_MC
5c45bf27 7484 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7485 struct sched_domain *sd = &per_cpu(core_domains, i);
7486
89c4710e 7487 init_sched_groups_power(i, sd);
5c45bf27
SS
7488 }
7489#endif
1e9f28fa 7490
5c45bf27 7491 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7492 struct sched_domain *sd = &per_cpu(phys_domains, i);
7493
89c4710e 7494 init_sched_groups_power(i, sd);
1da177e4
LT
7495 }
7496
9c1cfda2 7497#ifdef CONFIG_NUMA
076ac2af 7498 for (i = 0; i < nr_node_ids; i++)
08069033 7499 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7500
6711cab4
SS
7501 if (sd_allnodes) {
7502 struct sched_group *sg;
f712c0c7 7503
7c16ec58
MT
7504 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7505 tmpmask);
f712c0c7
SS
7506 init_numa_sched_groups_power(sg);
7507 }
9c1cfda2
JH
7508#endif
7509
1da177e4 7510 /* Attach the domains */
1a20ff27 7511 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
7512 struct sched_domain *sd;
7513#ifdef CONFIG_SCHED_SMT
7514 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7515#elif defined(CONFIG_SCHED_MC)
7516 sd = &per_cpu(core_domains, i);
1da177e4
LT
7517#else
7518 sd = &per_cpu(phys_domains, i);
7519#endif
57d885fe 7520 cpu_attach_domain(sd, rd, i);
1da177e4 7521 }
51888ca2 7522
7c16ec58 7523 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7524 return 0;
7525
a616058b 7526#ifdef CONFIG_NUMA
51888ca2 7527error:
7c16ec58
MT
7528 free_sched_groups(cpu_map, tmpmask);
7529 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7530 return -ENOMEM;
a616058b 7531#endif
1da177e4 7532}
029190c5 7533
1d3504fc
HS
7534static int build_sched_domains(const cpumask_t *cpu_map)
7535{
7536 return __build_sched_domains(cpu_map, NULL);
7537}
7538
029190c5
PJ
7539static cpumask_t *doms_cur; /* current sched domains */
7540static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7541static struct sched_domain_attr *dattr_cur;
7542 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7543
7544/*
7545 * Special case: If a kmalloc of a doms_cur partition (array of
7546 * cpumask_t) fails, then fallback to a single sched domain,
7547 * as determined by the single cpumask_t fallback_doms.
7548 */
7549static cpumask_t fallback_doms;
7550
22e52b07
HC
7551void __attribute__((weak)) arch_update_cpu_topology(void)
7552{
7553}
7554
f18f982a
MK
7555/*
7556 * Free current domain masks.
7557 * Called after all cpus are attached to NULL domain.
7558 */
7559static void free_sched_domains(void)
7560{
7561 ndoms_cur = 0;
7562 if (doms_cur != &fallback_doms)
7563 kfree(doms_cur);
7564 doms_cur = &fallback_doms;
7565}
7566
1a20ff27 7567/*
41a2d6cf 7568 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7569 * For now this just excludes isolated cpus, but could be used to
7570 * exclude other special cases in the future.
1a20ff27 7571 */
51888ca2 7572static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7573{
7378547f
MM
7574 int err;
7575
22e52b07 7576 arch_update_cpu_topology();
029190c5
PJ
7577 ndoms_cur = 1;
7578 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7579 if (!doms_cur)
7580 doms_cur = &fallback_doms;
7581 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7582 dattr_cur = NULL;
7378547f 7583 err = build_sched_domains(doms_cur);
6382bc90 7584 register_sched_domain_sysctl();
7378547f
MM
7585
7586 return err;
1a20ff27
DG
7587}
7588
7c16ec58
MT
7589static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7590 cpumask_t *tmpmask)
1da177e4 7591{
7c16ec58 7592 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7593}
1da177e4 7594
1a20ff27
DG
7595/*
7596 * Detach sched domains from a group of cpus specified in cpu_map
7597 * These cpus will now be attached to the NULL domain
7598 */
858119e1 7599static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7600{
7c16ec58 7601 cpumask_t tmpmask;
1a20ff27
DG
7602 int i;
7603
6382bc90
MM
7604 unregister_sched_domain_sysctl();
7605
1a20ff27 7606 for_each_cpu_mask(i, *cpu_map)
57d885fe 7607 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7608 synchronize_sched();
7c16ec58 7609 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7610}
7611
1d3504fc
HS
7612/* handle null as "default" */
7613static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7614 struct sched_domain_attr *new, int idx_new)
7615{
7616 struct sched_domain_attr tmp;
7617
7618 /* fast path */
7619 if (!new && !cur)
7620 return 1;
7621
7622 tmp = SD_ATTR_INIT;
7623 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7624 new ? (new + idx_new) : &tmp,
7625 sizeof(struct sched_domain_attr));
7626}
7627
029190c5
PJ
7628/*
7629 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7630 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7631 * doms_new[] to the current sched domain partitioning, doms_cur[].
7632 * It destroys each deleted domain and builds each new domain.
7633 *
7634 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7635 * The masks don't intersect (don't overlap.) We should setup one
7636 * sched domain for each mask. CPUs not in any of the cpumasks will
7637 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7638 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7639 * it as it is.
7640 *
41a2d6cf
IM
7641 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7642 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7643 * failed the kmalloc call, then it can pass in doms_new == NULL,
7644 * and partition_sched_domains() will fallback to the single partition
7645 * 'fallback_doms'.
7646 *
7647 * Call with hotplug lock held
7648 */
1d3504fc
HS
7649void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7650 struct sched_domain_attr *dattr_new)
029190c5
PJ
7651{
7652 int i, j;
7653
712555ee 7654 mutex_lock(&sched_domains_mutex);
a1835615 7655
7378547f
MM
7656 /* always unregister in case we don't destroy any domains */
7657 unregister_sched_domain_sysctl();
7658
029190c5
PJ
7659 if (doms_new == NULL) {
7660 ndoms_new = 1;
7661 doms_new = &fallback_doms;
7662 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
1d3504fc 7663 dattr_new = NULL;
029190c5
PJ
7664 }
7665
7666 /* Destroy deleted domains */
7667 for (i = 0; i < ndoms_cur; i++) {
7668 for (j = 0; j < ndoms_new; j++) {
1d3504fc
HS
7669 if (cpus_equal(doms_cur[i], doms_new[j])
7670 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7671 goto match1;
7672 }
7673 /* no match - a current sched domain not in new doms_new[] */
7674 detach_destroy_domains(doms_cur + i);
7675match1:
7676 ;
7677 }
7678
7679 /* Build new domains */
7680 for (i = 0; i < ndoms_new; i++) {
7681 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7682 if (cpus_equal(doms_new[i], doms_cur[j])
7683 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7684 goto match2;
7685 }
7686 /* no match - add a new doms_new */
1d3504fc
HS
7687 __build_sched_domains(doms_new + i,
7688 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7689match2:
7690 ;
7691 }
7692
7693 /* Remember the new sched domains */
7694 if (doms_cur != &fallback_doms)
7695 kfree(doms_cur);
1d3504fc 7696 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7697 doms_cur = doms_new;
1d3504fc 7698 dattr_cur = dattr_new;
029190c5 7699 ndoms_cur = ndoms_new;
7378547f
MM
7700
7701 register_sched_domain_sysctl();
a1835615 7702
712555ee 7703 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7704}
7705
5c45bf27 7706#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7707int arch_reinit_sched_domains(void)
5c45bf27
SS
7708{
7709 int err;
7710
95402b38 7711 get_online_cpus();
712555ee 7712 mutex_lock(&sched_domains_mutex);
5c45bf27 7713 detach_destroy_domains(&cpu_online_map);
f18f982a 7714 free_sched_domains();
5c45bf27 7715 err = arch_init_sched_domains(&cpu_online_map);
712555ee 7716 mutex_unlock(&sched_domains_mutex);
95402b38 7717 put_online_cpus();
5c45bf27
SS
7718
7719 return err;
7720}
7721
7722static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7723{
7724 int ret;
7725
7726 if (buf[0] != '0' && buf[0] != '1')
7727 return -EINVAL;
7728
7729 if (smt)
7730 sched_smt_power_savings = (buf[0] == '1');
7731 else
7732 sched_mc_power_savings = (buf[0] == '1');
7733
7734 ret = arch_reinit_sched_domains();
7735
7736 return ret ? ret : count;
7737}
7738
5c45bf27
SS
7739#ifdef CONFIG_SCHED_MC
7740static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7741{
7742 return sprintf(page, "%u\n", sched_mc_power_savings);
7743}
48f24c4d
IM
7744static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7745 const char *buf, size_t count)
5c45bf27
SS
7746{
7747 return sched_power_savings_store(buf, count, 0);
7748}
6707de00
AB
7749static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7750 sched_mc_power_savings_store);
5c45bf27
SS
7751#endif
7752
7753#ifdef CONFIG_SCHED_SMT
7754static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7755{
7756 return sprintf(page, "%u\n", sched_smt_power_savings);
7757}
48f24c4d
IM
7758static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7759 const char *buf, size_t count)
5c45bf27
SS
7760{
7761 return sched_power_savings_store(buf, count, 1);
7762}
6707de00
AB
7763static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7764 sched_smt_power_savings_store);
7765#endif
7766
7767int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7768{
7769 int err = 0;
7770
7771#ifdef CONFIG_SCHED_SMT
7772 if (smt_capable())
7773 err = sysfs_create_file(&cls->kset.kobj,
7774 &attr_sched_smt_power_savings.attr);
7775#endif
7776#ifdef CONFIG_SCHED_MC
7777 if (!err && mc_capable())
7778 err = sysfs_create_file(&cls->kset.kobj,
7779 &attr_sched_mc_power_savings.attr);
7780#endif
7781 return err;
7782}
6d6bc0ad 7783#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7784
1da177e4 7785/*
41a2d6cf 7786 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 7787 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 7788 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
7789 * which will prevent rebalancing while the sched domains are recalculated.
7790 */
7791static int update_sched_domains(struct notifier_block *nfb,
7792 unsigned long action, void *hcpu)
7793{
7def2be1
PZ
7794 int cpu = (int)(long)hcpu;
7795
1da177e4 7796 switch (action) {
1da177e4 7797 case CPU_DOWN_PREPARE:
8bb78442 7798 case CPU_DOWN_PREPARE_FROZEN:
7def2be1
PZ
7799 disable_runtime(cpu_rq(cpu));
7800 /* fall-through */
7801 case CPU_UP_PREPARE:
7802 case CPU_UP_PREPARE_FROZEN:
1a20ff27 7803 detach_destroy_domains(&cpu_online_map);
f18f982a 7804 free_sched_domains();
1da177e4
LT
7805 return NOTIFY_OK;
7806
7def2be1 7807
1da177e4 7808 case CPU_DOWN_FAILED:
8bb78442 7809 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7810 case CPU_ONLINE:
8bb78442 7811 case CPU_ONLINE_FROZEN:
7def2be1
PZ
7812 enable_runtime(cpu_rq(cpu));
7813 /* fall-through */
7814 case CPU_UP_CANCELED:
7815 case CPU_UP_CANCELED_FROZEN:
1da177e4 7816 case CPU_DEAD:
8bb78442 7817 case CPU_DEAD_FROZEN:
1da177e4
LT
7818 /*
7819 * Fall through and re-initialise the domains.
7820 */
7821 break;
7822 default:
7823 return NOTIFY_DONE;
7824 }
7825
f18f982a
MK
7826#ifndef CONFIG_CPUSETS
7827 /*
7828 * Create default domain partitioning if cpusets are disabled.
7829 * Otherwise we let cpusets rebuild the domains based on the
7830 * current setup.
7831 */
7832
1da177e4 7833 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7834 arch_init_sched_domains(&cpu_online_map);
f18f982a 7835#endif
1da177e4
LT
7836
7837 return NOTIFY_OK;
7838}
1da177e4
LT
7839
7840void __init sched_init_smp(void)
7841{
5c1e1767
NP
7842 cpumask_t non_isolated_cpus;
7843
434d53b0
MT
7844#if defined(CONFIG_NUMA)
7845 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7846 GFP_KERNEL);
7847 BUG_ON(sched_group_nodes_bycpu == NULL);
7848#endif
95402b38 7849 get_online_cpus();
712555ee 7850 mutex_lock(&sched_domains_mutex);
1a20ff27 7851 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7852 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7853 if (cpus_empty(non_isolated_cpus))
7854 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7855 mutex_unlock(&sched_domains_mutex);
95402b38 7856 put_online_cpus();
1da177e4
LT
7857 /* XXX: Theoretical race here - CPU may be hotplugged now */
7858 hotcpu_notifier(update_sched_domains, 0);
b328ca18 7859 init_hrtick();
5c1e1767
NP
7860
7861 /* Move init over to a non-isolated CPU */
7c16ec58 7862 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7863 BUG();
19978ca6 7864 sched_init_granularity();
1da177e4
LT
7865}
7866#else
7867void __init sched_init_smp(void)
7868{
19978ca6 7869 sched_init_granularity();
1da177e4
LT
7870}
7871#endif /* CONFIG_SMP */
7872
7873int in_sched_functions(unsigned long addr)
7874{
1da177e4
LT
7875 return in_lock_functions(addr) ||
7876 (addr >= (unsigned long)__sched_text_start
7877 && addr < (unsigned long)__sched_text_end);
7878}
7879
a9957449 7880static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7881{
7882 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7883 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7884#ifdef CONFIG_FAIR_GROUP_SCHED
7885 cfs_rq->rq = rq;
7886#endif
67e9fb2a 7887 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7888}
7889
fa85ae24
PZ
7890static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7891{
7892 struct rt_prio_array *array;
7893 int i;
7894
7895 array = &rt_rq->active;
7896 for (i = 0; i < MAX_RT_PRIO; i++) {
7897 INIT_LIST_HEAD(array->queue + i);
7898 __clear_bit(i, array->bitmap);
7899 }
7900 /* delimiter for bitsearch: */
7901 __set_bit(MAX_RT_PRIO, array->bitmap);
7902
052f1dc7 7903#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7904 rt_rq->highest_prio = MAX_RT_PRIO;
7905#endif
fa85ae24
PZ
7906#ifdef CONFIG_SMP
7907 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7908 rt_rq->overloaded = 0;
7909#endif
7910
7911 rt_rq->rt_time = 0;
7912 rt_rq->rt_throttled = 0;
ac086bc2
PZ
7913 rt_rq->rt_runtime = 0;
7914 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7915
052f1dc7 7916#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7917 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7918 rt_rq->rq = rq;
7919#endif
fa85ae24
PZ
7920}
7921
6f505b16 7922#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7923static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7924 struct sched_entity *se, int cpu, int add,
7925 struct sched_entity *parent)
6f505b16 7926{
ec7dc8ac 7927 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7928 tg->cfs_rq[cpu] = cfs_rq;
7929 init_cfs_rq(cfs_rq, rq);
7930 cfs_rq->tg = tg;
7931 if (add)
7932 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7933
7934 tg->se[cpu] = se;
354d60c2
DG
7935 /* se could be NULL for init_task_group */
7936 if (!se)
7937 return;
7938
ec7dc8ac
DG
7939 if (!parent)
7940 se->cfs_rq = &rq->cfs;
7941 else
7942 se->cfs_rq = parent->my_q;
7943
6f505b16
PZ
7944 se->my_q = cfs_rq;
7945 se->load.weight = tg->shares;
e05510d0 7946 se->load.inv_weight = 0;
ec7dc8ac 7947 se->parent = parent;
6f505b16 7948}
052f1dc7 7949#endif
6f505b16 7950
052f1dc7 7951#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7952static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7953 struct sched_rt_entity *rt_se, int cpu, int add,
7954 struct sched_rt_entity *parent)
6f505b16 7955{
ec7dc8ac
DG
7956 struct rq *rq = cpu_rq(cpu);
7957
6f505b16
PZ
7958 tg->rt_rq[cpu] = rt_rq;
7959 init_rt_rq(rt_rq, rq);
7960 rt_rq->tg = tg;
7961 rt_rq->rt_se = rt_se;
ac086bc2 7962 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7963 if (add)
7964 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7965
7966 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7967 if (!rt_se)
7968 return;
7969
ec7dc8ac
DG
7970 if (!parent)
7971 rt_se->rt_rq = &rq->rt;
7972 else
7973 rt_se->rt_rq = parent->my_q;
7974
6f505b16 7975 rt_se->my_q = rt_rq;
ec7dc8ac 7976 rt_se->parent = parent;
6f505b16
PZ
7977 INIT_LIST_HEAD(&rt_se->run_list);
7978}
7979#endif
7980
1da177e4
LT
7981void __init sched_init(void)
7982{
dd41f596 7983 int i, j;
434d53b0
MT
7984 unsigned long alloc_size = 0, ptr;
7985
7986#ifdef CONFIG_FAIR_GROUP_SCHED
7987 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7988#endif
7989#ifdef CONFIG_RT_GROUP_SCHED
7990 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7991#endif
7992#ifdef CONFIG_USER_SCHED
7993 alloc_size *= 2;
434d53b0
MT
7994#endif
7995 /*
7996 * As sched_init() is called before page_alloc is setup,
7997 * we use alloc_bootmem().
7998 */
7999 if (alloc_size) {
5a9d3225 8000 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8001
8002#ifdef CONFIG_FAIR_GROUP_SCHED
8003 init_task_group.se = (struct sched_entity **)ptr;
8004 ptr += nr_cpu_ids * sizeof(void **);
8005
8006 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8007 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8008
8009#ifdef CONFIG_USER_SCHED
8010 root_task_group.se = (struct sched_entity **)ptr;
8011 ptr += nr_cpu_ids * sizeof(void **);
8012
8013 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8014 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8015#endif /* CONFIG_USER_SCHED */
8016#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8017#ifdef CONFIG_RT_GROUP_SCHED
8018 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8019 ptr += nr_cpu_ids * sizeof(void **);
8020
8021 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8022 ptr += nr_cpu_ids * sizeof(void **);
8023
8024#ifdef CONFIG_USER_SCHED
8025 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8026 ptr += nr_cpu_ids * sizeof(void **);
8027
8028 root_task_group.rt_rq = (struct rt_rq **)ptr;
8029 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8030#endif /* CONFIG_USER_SCHED */
8031#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8032 }
dd41f596 8033
57d885fe
GH
8034#ifdef CONFIG_SMP
8035 init_defrootdomain();
8036#endif
8037
d0b27fa7
PZ
8038 init_rt_bandwidth(&def_rt_bandwidth,
8039 global_rt_period(), global_rt_runtime());
8040
8041#ifdef CONFIG_RT_GROUP_SCHED
8042 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8043 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8044#ifdef CONFIG_USER_SCHED
8045 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8046 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8047#endif /* CONFIG_USER_SCHED */
8048#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8049
052f1dc7 8050#ifdef CONFIG_GROUP_SCHED
6f505b16 8051 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8052 INIT_LIST_HEAD(&init_task_group.children);
8053
8054#ifdef CONFIG_USER_SCHED
8055 INIT_LIST_HEAD(&root_task_group.children);
8056 init_task_group.parent = &root_task_group;
8057 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8058#endif /* CONFIG_USER_SCHED */
8059#endif /* CONFIG_GROUP_SCHED */
6f505b16 8060
0a945022 8061 for_each_possible_cpu(i) {
70b97a7f 8062 struct rq *rq;
1da177e4
LT
8063
8064 rq = cpu_rq(i);
8065 spin_lock_init(&rq->lock);
fcb99371 8066 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 8067 rq->nr_running = 0;
dd41f596 8068 init_cfs_rq(&rq->cfs, rq);
6f505b16 8069 init_rt_rq(&rq->rt, rq);
dd41f596 8070#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8071 init_task_group.shares = init_task_group_load;
6f505b16 8072 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8073#ifdef CONFIG_CGROUP_SCHED
8074 /*
8075 * How much cpu bandwidth does init_task_group get?
8076 *
8077 * In case of task-groups formed thr' the cgroup filesystem, it
8078 * gets 100% of the cpu resources in the system. This overall
8079 * system cpu resource is divided among the tasks of
8080 * init_task_group and its child task-groups in a fair manner,
8081 * based on each entity's (task or task-group's) weight
8082 * (se->load.weight).
8083 *
8084 * In other words, if init_task_group has 10 tasks of weight
8085 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8086 * then A0's share of the cpu resource is:
8087 *
8088 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8089 *
8090 * We achieve this by letting init_task_group's tasks sit
8091 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8092 */
ec7dc8ac 8093 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8094#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8095 root_task_group.shares = NICE_0_LOAD;
8096 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8097 /*
8098 * In case of task-groups formed thr' the user id of tasks,
8099 * init_task_group represents tasks belonging to root user.
8100 * Hence it forms a sibling of all subsequent groups formed.
8101 * In this case, init_task_group gets only a fraction of overall
8102 * system cpu resource, based on the weight assigned to root
8103 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8104 * by letting tasks of init_task_group sit in a separate cfs_rq
8105 * (init_cfs_rq) and having one entity represent this group of
8106 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8107 */
ec7dc8ac 8108 init_tg_cfs_entry(&init_task_group,
6f505b16 8109 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8110 &per_cpu(init_sched_entity, i), i, 1,
8111 root_task_group.se[i]);
6f505b16 8112
052f1dc7 8113#endif
354d60c2
DG
8114#endif /* CONFIG_FAIR_GROUP_SCHED */
8115
8116 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8117#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8118 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8119#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8120 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8121#elif defined CONFIG_USER_SCHED
eff766a6 8122 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8123 init_tg_rt_entry(&init_task_group,
6f505b16 8124 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8125 &per_cpu(init_sched_rt_entity, i), i, 1,
8126 root_task_group.rt_se[i]);
354d60c2 8127#endif
dd41f596 8128#endif
1da177e4 8129
dd41f596
IM
8130 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8131 rq->cpu_load[j] = 0;
1da177e4 8132#ifdef CONFIG_SMP
41c7ce9a 8133 rq->sd = NULL;
57d885fe 8134 rq->rd = NULL;
1da177e4 8135 rq->active_balance = 0;
dd41f596 8136 rq->next_balance = jiffies;
1da177e4 8137 rq->push_cpu = 0;
0a2966b4 8138 rq->cpu = i;
1f11eb6a 8139 rq->online = 0;
1da177e4
LT
8140 rq->migration_thread = NULL;
8141 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8142 rq_attach_root(rq, &def_root_domain);
1da177e4 8143#endif
8f4d37ec 8144 init_rq_hrtick(rq);
1da177e4 8145 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8146 }
8147
2dd73a4f 8148 set_load_weight(&init_task);
b50f60ce 8149
e107be36
AK
8150#ifdef CONFIG_PREEMPT_NOTIFIERS
8151 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8152#endif
8153
c9819f45 8154#ifdef CONFIG_SMP
962cf36c 8155 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8156#endif
8157
b50f60ce
HC
8158#ifdef CONFIG_RT_MUTEXES
8159 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8160#endif
8161
1da177e4
LT
8162 /*
8163 * The boot idle thread does lazy MMU switching as well:
8164 */
8165 atomic_inc(&init_mm.mm_count);
8166 enter_lazy_tlb(&init_mm, current);
8167
8168 /*
8169 * Make us the idle thread. Technically, schedule() should not be
8170 * called from this thread, however somewhere below it might be,
8171 * but because we are the idle thread, we just pick up running again
8172 * when this runqueue becomes "idle".
8173 */
8174 init_idle(current, smp_processor_id());
dd41f596
IM
8175 /*
8176 * During early bootup we pretend to be a normal task:
8177 */
8178 current->sched_class = &fair_sched_class;
6892b75e
IM
8179
8180 scheduler_running = 1;
1da177e4
LT
8181}
8182
8183#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8184void __might_sleep(char *file, int line)
8185{
48f24c4d 8186#ifdef in_atomic
1da177e4
LT
8187 static unsigned long prev_jiffy; /* ratelimiting */
8188
8189 if ((in_atomic() || irqs_disabled()) &&
8190 system_state == SYSTEM_RUNNING && !oops_in_progress) {
8191 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8192 return;
8193 prev_jiffy = jiffies;
91368d73 8194 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
8195 " context at %s:%d\n", file, line);
8196 printk("in_atomic():%d, irqs_disabled():%d\n",
8197 in_atomic(), irqs_disabled());
a4c410f0 8198 debug_show_held_locks(current);
3117df04
IM
8199 if (irqs_disabled())
8200 print_irqtrace_events(current);
1da177e4
LT
8201 dump_stack();
8202 }
8203#endif
8204}
8205EXPORT_SYMBOL(__might_sleep);
8206#endif
8207
8208#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8209static void normalize_task(struct rq *rq, struct task_struct *p)
8210{
8211 int on_rq;
3e51f33f 8212
3a5e4dc1
AK
8213 update_rq_clock(rq);
8214 on_rq = p->se.on_rq;
8215 if (on_rq)
8216 deactivate_task(rq, p, 0);
8217 __setscheduler(rq, p, SCHED_NORMAL, 0);
8218 if (on_rq) {
8219 activate_task(rq, p, 0);
8220 resched_task(rq->curr);
8221 }
8222}
8223
1da177e4
LT
8224void normalize_rt_tasks(void)
8225{
a0f98a1c 8226 struct task_struct *g, *p;
1da177e4 8227 unsigned long flags;
70b97a7f 8228 struct rq *rq;
1da177e4 8229
4cf5d77a 8230 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8231 do_each_thread(g, p) {
178be793
IM
8232 /*
8233 * Only normalize user tasks:
8234 */
8235 if (!p->mm)
8236 continue;
8237
6cfb0d5d 8238 p->se.exec_start = 0;
6cfb0d5d 8239#ifdef CONFIG_SCHEDSTATS
dd41f596 8240 p->se.wait_start = 0;
dd41f596 8241 p->se.sleep_start = 0;
dd41f596 8242 p->se.block_start = 0;
6cfb0d5d 8243#endif
dd41f596
IM
8244
8245 if (!rt_task(p)) {
8246 /*
8247 * Renice negative nice level userspace
8248 * tasks back to 0:
8249 */
8250 if (TASK_NICE(p) < 0 && p->mm)
8251 set_user_nice(p, 0);
1da177e4 8252 continue;
dd41f596 8253 }
1da177e4 8254
4cf5d77a 8255 spin_lock(&p->pi_lock);
b29739f9 8256 rq = __task_rq_lock(p);
1da177e4 8257
178be793 8258 normalize_task(rq, p);
3a5e4dc1 8259
b29739f9 8260 __task_rq_unlock(rq);
4cf5d77a 8261 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8262 } while_each_thread(g, p);
8263
4cf5d77a 8264 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8265}
8266
8267#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8268
8269#ifdef CONFIG_IA64
8270/*
8271 * These functions are only useful for the IA64 MCA handling.
8272 *
8273 * They can only be called when the whole system has been
8274 * stopped - every CPU needs to be quiescent, and no scheduling
8275 * activity can take place. Using them for anything else would
8276 * be a serious bug, and as a result, they aren't even visible
8277 * under any other configuration.
8278 */
8279
8280/**
8281 * curr_task - return the current task for a given cpu.
8282 * @cpu: the processor in question.
8283 *
8284 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8285 */
36c8b586 8286struct task_struct *curr_task(int cpu)
1df5c10a
LT
8287{
8288 return cpu_curr(cpu);
8289}
8290
8291/**
8292 * set_curr_task - set the current task for a given cpu.
8293 * @cpu: the processor in question.
8294 * @p: the task pointer to set.
8295 *
8296 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8297 * are serviced on a separate stack. It allows the architecture to switch the
8298 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8299 * must be called with all CPU's synchronized, and interrupts disabled, the
8300 * and caller must save the original value of the current task (see
8301 * curr_task() above) and restore that value before reenabling interrupts and
8302 * re-starting the system.
8303 *
8304 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8305 */
36c8b586 8306void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8307{
8308 cpu_curr(cpu) = p;
8309}
8310
8311#endif
29f59db3 8312
bccbe08a
PZ
8313#ifdef CONFIG_FAIR_GROUP_SCHED
8314static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8315{
8316 int i;
8317
8318 for_each_possible_cpu(i) {
8319 if (tg->cfs_rq)
8320 kfree(tg->cfs_rq[i]);
8321 if (tg->se)
8322 kfree(tg->se[i]);
6f505b16
PZ
8323 }
8324
8325 kfree(tg->cfs_rq);
8326 kfree(tg->se);
6f505b16
PZ
8327}
8328
ec7dc8ac
DG
8329static
8330int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8331{
29f59db3 8332 struct cfs_rq *cfs_rq;
ec7dc8ac 8333 struct sched_entity *se, *parent_se;
9b5b7751 8334 struct rq *rq;
29f59db3
SV
8335 int i;
8336
434d53b0 8337 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8338 if (!tg->cfs_rq)
8339 goto err;
434d53b0 8340 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8341 if (!tg->se)
8342 goto err;
052f1dc7
PZ
8343
8344 tg->shares = NICE_0_LOAD;
29f59db3
SV
8345
8346 for_each_possible_cpu(i) {
9b5b7751 8347 rq = cpu_rq(i);
29f59db3 8348
6f505b16
PZ
8349 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8350 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8351 if (!cfs_rq)
8352 goto err;
8353
6f505b16
PZ
8354 se = kmalloc_node(sizeof(struct sched_entity),
8355 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8356 if (!se)
8357 goto err;
8358
ec7dc8ac
DG
8359 parent_se = parent ? parent->se[i] : NULL;
8360 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8361 }
8362
8363 return 1;
8364
8365 err:
8366 return 0;
8367}
8368
8369static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8370{
8371 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8372 &cpu_rq(cpu)->leaf_cfs_rq_list);
8373}
8374
8375static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8376{
8377 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8378}
6d6bc0ad 8379#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8380static inline void free_fair_sched_group(struct task_group *tg)
8381{
8382}
8383
ec7dc8ac
DG
8384static inline
8385int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8386{
8387 return 1;
8388}
8389
8390static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8391{
8392}
8393
8394static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8395{
8396}
6d6bc0ad 8397#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8398
8399#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8400static void free_rt_sched_group(struct task_group *tg)
8401{
8402 int i;
8403
d0b27fa7
PZ
8404 destroy_rt_bandwidth(&tg->rt_bandwidth);
8405
bccbe08a
PZ
8406 for_each_possible_cpu(i) {
8407 if (tg->rt_rq)
8408 kfree(tg->rt_rq[i]);
8409 if (tg->rt_se)
8410 kfree(tg->rt_se[i]);
8411 }
8412
8413 kfree(tg->rt_rq);
8414 kfree(tg->rt_se);
8415}
8416
ec7dc8ac
DG
8417static
8418int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8419{
8420 struct rt_rq *rt_rq;
ec7dc8ac 8421 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8422 struct rq *rq;
8423 int i;
8424
434d53b0 8425 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8426 if (!tg->rt_rq)
8427 goto err;
434d53b0 8428 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8429 if (!tg->rt_se)
8430 goto err;
8431
d0b27fa7
PZ
8432 init_rt_bandwidth(&tg->rt_bandwidth,
8433 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8434
8435 for_each_possible_cpu(i) {
8436 rq = cpu_rq(i);
8437
6f505b16
PZ
8438 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8439 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8440 if (!rt_rq)
8441 goto err;
29f59db3 8442
6f505b16
PZ
8443 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8444 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8445 if (!rt_se)
8446 goto err;
29f59db3 8447
ec7dc8ac
DG
8448 parent_se = parent ? parent->rt_se[i] : NULL;
8449 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8450 }
8451
bccbe08a
PZ
8452 return 1;
8453
8454 err:
8455 return 0;
8456}
8457
8458static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8459{
8460 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8461 &cpu_rq(cpu)->leaf_rt_rq_list);
8462}
8463
8464static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8465{
8466 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8467}
6d6bc0ad 8468#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8469static inline void free_rt_sched_group(struct task_group *tg)
8470{
8471}
8472
ec7dc8ac
DG
8473static inline
8474int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8475{
8476 return 1;
8477}
8478
8479static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8480{
8481}
8482
8483static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8484{
8485}
6d6bc0ad 8486#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8487
d0b27fa7 8488#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8489static void free_sched_group(struct task_group *tg)
8490{
8491 free_fair_sched_group(tg);
8492 free_rt_sched_group(tg);
8493 kfree(tg);
8494}
8495
8496/* allocate runqueue etc for a new task group */
ec7dc8ac 8497struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8498{
8499 struct task_group *tg;
8500 unsigned long flags;
8501 int i;
8502
8503 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8504 if (!tg)
8505 return ERR_PTR(-ENOMEM);
8506
ec7dc8ac 8507 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8508 goto err;
8509
ec7dc8ac 8510 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8511 goto err;
8512
8ed36996 8513 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8514 for_each_possible_cpu(i) {
bccbe08a
PZ
8515 register_fair_sched_group(tg, i);
8516 register_rt_sched_group(tg, i);
9b5b7751 8517 }
6f505b16 8518 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8519
8520 WARN_ON(!parent); /* root should already exist */
8521
8522 tg->parent = parent;
8523 list_add_rcu(&tg->siblings, &parent->children);
8524 INIT_LIST_HEAD(&tg->children);
8ed36996 8525 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8526
9b5b7751 8527 return tg;
29f59db3
SV
8528
8529err:
6f505b16 8530 free_sched_group(tg);
29f59db3
SV
8531 return ERR_PTR(-ENOMEM);
8532}
8533
9b5b7751 8534/* rcu callback to free various structures associated with a task group */
6f505b16 8535static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8536{
29f59db3 8537 /* now it should be safe to free those cfs_rqs */
6f505b16 8538 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8539}
8540
9b5b7751 8541/* Destroy runqueue etc associated with a task group */
4cf86d77 8542void sched_destroy_group(struct task_group *tg)
29f59db3 8543{
8ed36996 8544 unsigned long flags;
9b5b7751 8545 int i;
29f59db3 8546
8ed36996 8547 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8548 for_each_possible_cpu(i) {
bccbe08a
PZ
8549 unregister_fair_sched_group(tg, i);
8550 unregister_rt_sched_group(tg, i);
9b5b7751 8551 }
6f505b16 8552 list_del_rcu(&tg->list);
f473aa5e 8553 list_del_rcu(&tg->siblings);
8ed36996 8554 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8555
9b5b7751 8556 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8557 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8558}
8559
9b5b7751 8560/* change task's runqueue when it moves between groups.
3a252015
IM
8561 * The caller of this function should have put the task in its new group
8562 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8563 * reflect its new group.
9b5b7751
SV
8564 */
8565void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8566{
8567 int on_rq, running;
8568 unsigned long flags;
8569 struct rq *rq;
8570
8571 rq = task_rq_lock(tsk, &flags);
8572
29f59db3
SV
8573 update_rq_clock(rq);
8574
051a1d1a 8575 running = task_current(rq, tsk);
29f59db3
SV
8576 on_rq = tsk->se.on_rq;
8577
0e1f3483 8578 if (on_rq)
29f59db3 8579 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8580 if (unlikely(running))
8581 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8582
6f505b16 8583 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8584
810b3817
PZ
8585#ifdef CONFIG_FAIR_GROUP_SCHED
8586 if (tsk->sched_class->moved_group)
8587 tsk->sched_class->moved_group(tsk);
8588#endif
8589
0e1f3483
HS
8590 if (unlikely(running))
8591 tsk->sched_class->set_curr_task(rq);
8592 if (on_rq)
7074badb 8593 enqueue_task(rq, tsk, 0);
29f59db3 8594
29f59db3
SV
8595 task_rq_unlock(rq, &flags);
8596}
6d6bc0ad 8597#endif /* CONFIG_GROUP_SCHED */
29f59db3 8598
052f1dc7 8599#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8600static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8601{
8602 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8603 int on_rq;
8604
29f59db3 8605 on_rq = se->on_rq;
62fb1851 8606 if (on_rq)
29f59db3
SV
8607 dequeue_entity(cfs_rq, se, 0);
8608
8609 se->load.weight = shares;
e05510d0 8610 se->load.inv_weight = 0;
29f59db3 8611
62fb1851 8612 if (on_rq)
29f59db3 8613 enqueue_entity(cfs_rq, se, 0);
c09595f6 8614}
62fb1851 8615
c09595f6
PZ
8616static void set_se_shares(struct sched_entity *se, unsigned long shares)
8617{
8618 struct cfs_rq *cfs_rq = se->cfs_rq;
8619 struct rq *rq = cfs_rq->rq;
8620 unsigned long flags;
8621
8622 spin_lock_irqsave(&rq->lock, flags);
8623 __set_se_shares(se, shares);
8624 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8625}
8626
8ed36996
PZ
8627static DEFINE_MUTEX(shares_mutex);
8628
4cf86d77 8629int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8630{
8631 int i;
8ed36996 8632 unsigned long flags;
c61935fd 8633
ec7dc8ac
DG
8634 /*
8635 * We can't change the weight of the root cgroup.
8636 */
8637 if (!tg->se[0])
8638 return -EINVAL;
8639
18d95a28
PZ
8640 if (shares < MIN_SHARES)
8641 shares = MIN_SHARES;
cb4ad1ff
MX
8642 else if (shares > MAX_SHARES)
8643 shares = MAX_SHARES;
62fb1851 8644
8ed36996 8645 mutex_lock(&shares_mutex);
9b5b7751 8646 if (tg->shares == shares)
5cb350ba 8647 goto done;
29f59db3 8648
8ed36996 8649 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8650 for_each_possible_cpu(i)
8651 unregister_fair_sched_group(tg, i);
f473aa5e 8652 list_del_rcu(&tg->siblings);
8ed36996 8653 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8654
8655 /* wait for any ongoing reference to this group to finish */
8656 synchronize_sched();
8657
8658 /*
8659 * Now we are free to modify the group's share on each cpu
8660 * w/o tripping rebalance_share or load_balance_fair.
8661 */
9b5b7751 8662 tg->shares = shares;
c09595f6
PZ
8663 for_each_possible_cpu(i) {
8664 /*
8665 * force a rebalance
8666 */
8667 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8668 set_se_shares(tg->se[i], shares);
c09595f6 8669 }
29f59db3 8670
6b2d7700
SV
8671 /*
8672 * Enable load balance activity on this group, by inserting it back on
8673 * each cpu's rq->leaf_cfs_rq_list.
8674 */
8ed36996 8675 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8676 for_each_possible_cpu(i)
8677 register_fair_sched_group(tg, i);
f473aa5e 8678 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8679 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8680done:
8ed36996 8681 mutex_unlock(&shares_mutex);
9b5b7751 8682 return 0;
29f59db3
SV
8683}
8684
5cb350ba
DG
8685unsigned long sched_group_shares(struct task_group *tg)
8686{
8687 return tg->shares;
8688}
052f1dc7 8689#endif
5cb350ba 8690
052f1dc7 8691#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8692/*
9f0c1e56 8693 * Ensure that the real time constraints are schedulable.
6f505b16 8694 */
9f0c1e56
PZ
8695static DEFINE_MUTEX(rt_constraints_mutex);
8696
8697static unsigned long to_ratio(u64 period, u64 runtime)
8698{
8699 if (runtime == RUNTIME_INF)
8700 return 1ULL << 16;
8701
6f6d6a1a 8702 return div64_u64(runtime << 16, period);
9f0c1e56
PZ
8703}
8704
b40b2e8e
PZ
8705#ifdef CONFIG_CGROUP_SCHED
8706static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8707{
10b612f4 8708 struct task_group *tgi, *parent = tg->parent;
b40b2e8e
PZ
8709 unsigned long total = 0;
8710
8711 if (!parent) {
8712 if (global_rt_period() < period)
8713 return 0;
8714
8715 return to_ratio(period, runtime) <
8716 to_ratio(global_rt_period(), global_rt_runtime());
8717 }
8718
8719 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8720 return 0;
8721
8722 rcu_read_lock();
8723 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8724 if (tgi == tg)
8725 continue;
8726
8727 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8728 tgi->rt_bandwidth.rt_runtime);
8729 }
8730 rcu_read_unlock();
8731
10b612f4 8732 return total + to_ratio(period, runtime) <=
b40b2e8e
PZ
8733 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8734 parent->rt_bandwidth.rt_runtime);
8735}
8736#elif defined CONFIG_USER_SCHED
9f0c1e56 8737static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
8738{
8739 struct task_group *tgi;
8740 unsigned long total = 0;
9f0c1e56 8741 unsigned long global_ratio =
d0b27fa7 8742 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
8743
8744 rcu_read_lock();
9f0c1e56
PZ
8745 list_for_each_entry_rcu(tgi, &task_groups, list) {
8746 if (tgi == tg)
8747 continue;
6f505b16 8748
d0b27fa7
PZ
8749 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8750 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
8751 }
8752 rcu_read_unlock();
6f505b16 8753
9f0c1e56 8754 return total + to_ratio(period, runtime) < global_ratio;
6f505b16 8755}
b40b2e8e 8756#endif
6f505b16 8757
521f1a24
DG
8758/* Must be called with tasklist_lock held */
8759static inline int tg_has_rt_tasks(struct task_group *tg)
8760{
8761 struct task_struct *g, *p;
8762 do_each_thread(g, p) {
8763 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8764 return 1;
8765 } while_each_thread(g, p);
8766 return 0;
8767}
8768
d0b27fa7
PZ
8769static int tg_set_bandwidth(struct task_group *tg,
8770 u64 rt_period, u64 rt_runtime)
6f505b16 8771{
ac086bc2 8772 int i, err = 0;
9f0c1e56 8773
9f0c1e56 8774 mutex_lock(&rt_constraints_mutex);
521f1a24 8775 read_lock(&tasklist_lock);
ac086bc2 8776 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8777 err = -EBUSY;
8778 goto unlock;
8779 }
9f0c1e56
PZ
8780 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8781 err = -EINVAL;
8782 goto unlock;
8783 }
ac086bc2
PZ
8784
8785 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8786 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8787 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8788
8789 for_each_possible_cpu(i) {
8790 struct rt_rq *rt_rq = tg->rt_rq[i];
8791
8792 spin_lock(&rt_rq->rt_runtime_lock);
8793 rt_rq->rt_runtime = rt_runtime;
8794 spin_unlock(&rt_rq->rt_runtime_lock);
8795 }
8796 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8797 unlock:
521f1a24 8798 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8799 mutex_unlock(&rt_constraints_mutex);
8800
8801 return err;
6f505b16
PZ
8802}
8803
d0b27fa7
PZ
8804int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8805{
8806 u64 rt_runtime, rt_period;
8807
8808 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8809 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8810 if (rt_runtime_us < 0)
8811 rt_runtime = RUNTIME_INF;
8812
8813 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8814}
8815
9f0c1e56
PZ
8816long sched_group_rt_runtime(struct task_group *tg)
8817{
8818 u64 rt_runtime_us;
8819
d0b27fa7 8820 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8821 return -1;
8822
d0b27fa7 8823 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8824 do_div(rt_runtime_us, NSEC_PER_USEC);
8825 return rt_runtime_us;
8826}
d0b27fa7
PZ
8827
8828int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8829{
8830 u64 rt_runtime, rt_period;
8831
8832 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8833 rt_runtime = tg->rt_bandwidth.rt_runtime;
8834
619b0488
R
8835 if (rt_period == 0)
8836 return -EINVAL;
8837
d0b27fa7
PZ
8838 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8839}
8840
8841long sched_group_rt_period(struct task_group *tg)
8842{
8843 u64 rt_period_us;
8844
8845 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8846 do_div(rt_period_us, NSEC_PER_USEC);
8847 return rt_period_us;
8848}
8849
8850static int sched_rt_global_constraints(void)
8851{
10b612f4
PZ
8852 struct task_group *tg = &root_task_group;
8853 u64 rt_runtime, rt_period;
d0b27fa7
PZ
8854 int ret = 0;
8855
10b612f4
PZ
8856 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8857 rt_runtime = tg->rt_bandwidth.rt_runtime;
8858
d0b27fa7 8859 mutex_lock(&rt_constraints_mutex);
10b612f4 8860 if (!__rt_schedulable(tg, rt_period, rt_runtime))
d0b27fa7
PZ
8861 ret = -EINVAL;
8862 mutex_unlock(&rt_constraints_mutex);
8863
8864 return ret;
8865}
6d6bc0ad 8866#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8867static int sched_rt_global_constraints(void)
8868{
ac086bc2
PZ
8869 unsigned long flags;
8870 int i;
8871
8872 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8873 for_each_possible_cpu(i) {
8874 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8875
8876 spin_lock(&rt_rq->rt_runtime_lock);
8877 rt_rq->rt_runtime = global_rt_runtime();
8878 spin_unlock(&rt_rq->rt_runtime_lock);
8879 }
8880 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8881
d0b27fa7
PZ
8882 return 0;
8883}
6d6bc0ad 8884#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8885
8886int sched_rt_handler(struct ctl_table *table, int write,
8887 struct file *filp, void __user *buffer, size_t *lenp,
8888 loff_t *ppos)
8889{
8890 int ret;
8891 int old_period, old_runtime;
8892 static DEFINE_MUTEX(mutex);
8893
8894 mutex_lock(&mutex);
8895 old_period = sysctl_sched_rt_period;
8896 old_runtime = sysctl_sched_rt_runtime;
8897
8898 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8899
8900 if (!ret && write) {
8901 ret = sched_rt_global_constraints();
8902 if (ret) {
8903 sysctl_sched_rt_period = old_period;
8904 sysctl_sched_rt_runtime = old_runtime;
8905 } else {
8906 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8907 def_rt_bandwidth.rt_period =
8908 ns_to_ktime(global_rt_period());
8909 }
8910 }
8911 mutex_unlock(&mutex);
8912
8913 return ret;
8914}
68318b8e 8915
052f1dc7 8916#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8917
8918/* return corresponding task_group object of a cgroup */
2b01dfe3 8919static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8920{
2b01dfe3
PM
8921 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8922 struct task_group, css);
68318b8e
SV
8923}
8924
8925static struct cgroup_subsys_state *
2b01dfe3 8926cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8927{
ec7dc8ac 8928 struct task_group *tg, *parent;
68318b8e 8929
2b01dfe3 8930 if (!cgrp->parent) {
68318b8e 8931 /* This is early initialization for the top cgroup */
2b01dfe3 8932 init_task_group.css.cgroup = cgrp;
68318b8e
SV
8933 return &init_task_group.css;
8934 }
8935
ec7dc8ac
DG
8936 parent = cgroup_tg(cgrp->parent);
8937 tg = sched_create_group(parent);
68318b8e
SV
8938 if (IS_ERR(tg))
8939 return ERR_PTR(-ENOMEM);
8940
8941 /* Bind the cgroup to task_group object we just created */
2b01dfe3 8942 tg->css.cgroup = cgrp;
68318b8e
SV
8943
8944 return &tg->css;
8945}
8946
41a2d6cf
IM
8947static void
8948cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8949{
2b01dfe3 8950 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8951
8952 sched_destroy_group(tg);
8953}
8954
41a2d6cf
IM
8955static int
8956cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8957 struct task_struct *tsk)
68318b8e 8958{
b68aa230
PZ
8959#ifdef CONFIG_RT_GROUP_SCHED
8960 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 8961 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
8962 return -EINVAL;
8963#else
68318b8e
SV
8964 /* We don't support RT-tasks being in separate groups */
8965 if (tsk->sched_class != &fair_sched_class)
8966 return -EINVAL;
b68aa230 8967#endif
68318b8e
SV
8968
8969 return 0;
8970}
8971
8972static void
2b01dfe3 8973cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
8974 struct cgroup *old_cont, struct task_struct *tsk)
8975{
8976 sched_move_task(tsk);
8977}
8978
052f1dc7 8979#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8980static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8981 u64 shareval)
68318b8e 8982{
2b01dfe3 8983 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8984}
8985
f4c753b7 8986static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8987{
2b01dfe3 8988 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8989
8990 return (u64) tg->shares;
8991}
6d6bc0ad 8992#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8993
052f1dc7 8994#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8995static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8996 s64 val)
6f505b16 8997{
06ecb27c 8998 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8999}
9000
06ecb27c 9001static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9002{
06ecb27c 9003 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9004}
d0b27fa7
PZ
9005
9006static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9007 u64 rt_period_us)
9008{
9009 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9010}
9011
9012static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9013{
9014 return sched_group_rt_period(cgroup_tg(cgrp));
9015}
6d6bc0ad 9016#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9017
fe5c7cc2 9018static struct cftype cpu_files[] = {
052f1dc7 9019#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9020 {
9021 .name = "shares",
f4c753b7
PM
9022 .read_u64 = cpu_shares_read_u64,
9023 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9024 },
052f1dc7
PZ
9025#endif
9026#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9027 {
9f0c1e56 9028 .name = "rt_runtime_us",
06ecb27c
PM
9029 .read_s64 = cpu_rt_runtime_read,
9030 .write_s64 = cpu_rt_runtime_write,
6f505b16 9031 },
d0b27fa7
PZ
9032 {
9033 .name = "rt_period_us",
f4c753b7
PM
9034 .read_u64 = cpu_rt_period_read_uint,
9035 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9036 },
052f1dc7 9037#endif
68318b8e
SV
9038};
9039
9040static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9041{
fe5c7cc2 9042 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9043}
9044
9045struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9046 .name = "cpu",
9047 .create = cpu_cgroup_create,
9048 .destroy = cpu_cgroup_destroy,
9049 .can_attach = cpu_cgroup_can_attach,
9050 .attach = cpu_cgroup_attach,
9051 .populate = cpu_cgroup_populate,
9052 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9053 .early_init = 1,
9054};
9055
052f1dc7 9056#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9057
9058#ifdef CONFIG_CGROUP_CPUACCT
9059
9060/*
9061 * CPU accounting code for task groups.
9062 *
9063 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9064 * (balbir@in.ibm.com).
9065 */
9066
9067/* track cpu usage of a group of tasks */
9068struct cpuacct {
9069 struct cgroup_subsys_state css;
9070 /* cpuusage holds pointer to a u64-type object on every cpu */
9071 u64 *cpuusage;
9072};
9073
9074struct cgroup_subsys cpuacct_subsys;
9075
9076/* return cpu accounting group corresponding to this container */
32cd756a 9077static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9078{
32cd756a 9079 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9080 struct cpuacct, css);
9081}
9082
9083/* return cpu accounting group to which this task belongs */
9084static inline struct cpuacct *task_ca(struct task_struct *tsk)
9085{
9086 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9087 struct cpuacct, css);
9088}
9089
9090/* create a new cpu accounting group */
9091static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9092 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9093{
9094 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9095
9096 if (!ca)
9097 return ERR_PTR(-ENOMEM);
9098
9099 ca->cpuusage = alloc_percpu(u64);
9100 if (!ca->cpuusage) {
9101 kfree(ca);
9102 return ERR_PTR(-ENOMEM);
9103 }
9104
9105 return &ca->css;
9106}
9107
9108/* destroy an existing cpu accounting group */
41a2d6cf 9109static void
32cd756a 9110cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9111{
32cd756a 9112 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9113
9114 free_percpu(ca->cpuusage);
9115 kfree(ca);
9116}
9117
9118/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9119static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9120{
32cd756a 9121 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9122 u64 totalcpuusage = 0;
9123 int i;
9124
9125 for_each_possible_cpu(i) {
9126 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9127
9128 /*
9129 * Take rq->lock to make 64-bit addition safe on 32-bit
9130 * platforms.
9131 */
9132 spin_lock_irq(&cpu_rq(i)->lock);
9133 totalcpuusage += *cpuusage;
9134 spin_unlock_irq(&cpu_rq(i)->lock);
9135 }
9136
9137 return totalcpuusage;
9138}
9139
0297b803
DG
9140static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9141 u64 reset)
9142{
9143 struct cpuacct *ca = cgroup_ca(cgrp);
9144 int err = 0;
9145 int i;
9146
9147 if (reset) {
9148 err = -EINVAL;
9149 goto out;
9150 }
9151
9152 for_each_possible_cpu(i) {
9153 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9154
9155 spin_lock_irq(&cpu_rq(i)->lock);
9156 *cpuusage = 0;
9157 spin_unlock_irq(&cpu_rq(i)->lock);
9158 }
9159out:
9160 return err;
9161}
9162
d842de87
SV
9163static struct cftype files[] = {
9164 {
9165 .name = "usage",
f4c753b7
PM
9166 .read_u64 = cpuusage_read,
9167 .write_u64 = cpuusage_write,
d842de87
SV
9168 },
9169};
9170
32cd756a 9171static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9172{
32cd756a 9173 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9174}
9175
9176/*
9177 * charge this task's execution time to its accounting group.
9178 *
9179 * called with rq->lock held.
9180 */
9181static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9182{
9183 struct cpuacct *ca;
9184
9185 if (!cpuacct_subsys.active)
9186 return;
9187
9188 ca = task_ca(tsk);
9189 if (ca) {
9190 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9191
9192 *cpuusage += cputime;
9193 }
9194}
9195
9196struct cgroup_subsys cpuacct_subsys = {
9197 .name = "cpuacct",
9198 .create = cpuacct_create,
9199 .destroy = cpuacct_destroy,
9200 .populate = cpuacct_populate,
9201 .subsys_id = cpuacct_subsys_id,
9202};
9203#endif /* CONFIG_CGROUP_CPUACCT */