]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
lockdep: fix deadlock in lockdep_trace_alloc
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
7e066fb8
MD
121DEFINE_TRACE(sched_wait_task);
122DEFINE_TRACE(sched_wakeup);
123DEFINE_TRACE(sched_wakeup_new);
124DEFINE_TRACE(sched_switch);
125DEFINE_TRACE(sched_migrate_task);
126
5517d86b 127#ifdef CONFIG_SMP
fd2ab30b
SN
128
129static void double_rq_lock(struct rq *rq1, struct rq *rq2);
130
5517d86b
ED
131/*
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
134 */
135static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
136{
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
138}
139
140/*
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
143 */
144static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
145{
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
148}
149#endif
150
e05606d3
IM
151static inline int rt_policy(int policy)
152{
3f33a7ce 153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
154 return 1;
155 return 0;
156}
157
158static inline int task_has_rt_policy(struct task_struct *p)
159{
160 return rt_policy(p->policy);
161}
162
1da177e4 163/*
6aa645ea 164 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 165 */
6aa645ea
IM
166struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
169};
170
d0b27fa7 171struct rt_bandwidth {
ea736ed5
IM
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
d0b27fa7
PZ
177};
178
179static struct rt_bandwidth def_rt_bandwidth;
180
181static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
182
183static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
184{
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
190
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
194
195 if (!overrun)
196 break;
197
198 idle = do_sched_rt_period_timer(rt_b, overrun);
199 }
200
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
202}
203
204static
205void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
206{
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
209
ac086bc2
PZ
210 spin_lock_init(&rt_b->rt_runtime_lock);
211
d0b27fa7
PZ
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
215}
216
c8bfff6d
KH
217static inline int rt_bandwidth_enabled(void)
218{
219 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
220}
221
222static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
223{
224 ktime_t now;
225
0b148fa0 226 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
227 return;
228
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
231
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
234 if (hrtimer_active(&rt_b->rt_period_timer))
235 break;
236
237 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
238 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
cc584b21
AV
239 hrtimer_start_expires(&rt_b->rt_period_timer,
240 HRTIMER_MODE_ABS);
d0b27fa7
PZ
241 }
242 spin_unlock(&rt_b->rt_runtime_lock);
243}
244
245#ifdef CONFIG_RT_GROUP_SCHED
246static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
247{
248 hrtimer_cancel(&rt_b->rt_period_timer);
249}
250#endif
251
712555ee
HC
252/*
253 * sched_domains_mutex serializes calls to arch_init_sched_domains,
254 * detach_destroy_domains and partition_sched_domains.
255 */
256static DEFINE_MUTEX(sched_domains_mutex);
257
052f1dc7 258#ifdef CONFIG_GROUP_SCHED
29f59db3 259
68318b8e
SV
260#include <linux/cgroup.h>
261
29f59db3
SV
262struct cfs_rq;
263
6f505b16
PZ
264static LIST_HEAD(task_groups);
265
29f59db3 266/* task group related information */
4cf86d77 267struct task_group {
052f1dc7 268#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
269 struct cgroup_subsys_state css;
270#endif
052f1dc7 271
6c415b92
AB
272#ifdef CONFIG_USER_SCHED
273 uid_t uid;
274#endif
275
052f1dc7 276#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity **se;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq **cfs_rq;
281 unsigned long shares;
052f1dc7
PZ
282#endif
283
284#ifdef CONFIG_RT_GROUP_SCHED
285 struct sched_rt_entity **rt_se;
286 struct rt_rq **rt_rq;
287
d0b27fa7 288 struct rt_bandwidth rt_bandwidth;
052f1dc7 289#endif
6b2d7700 290
ae8393e5 291 struct rcu_head rcu;
6f505b16 292 struct list_head list;
f473aa5e
PZ
293
294 struct task_group *parent;
295 struct list_head siblings;
296 struct list_head children;
29f59db3
SV
297};
298
354d60c2 299#ifdef CONFIG_USER_SCHED
eff766a6 300
6c415b92
AB
301/* Helper function to pass uid information to create_sched_user() */
302void set_tg_uid(struct user_struct *user)
303{
304 user->tg->uid = user->uid;
305}
306
eff766a6
PZ
307/*
308 * Root task group.
309 * Every UID task group (including init_task_group aka UID-0) will
310 * be a child to this group.
311 */
312struct task_group root_task_group;
313
052f1dc7 314#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
315/* Default task group's sched entity on each cpu */
316static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
317/* Default task group's cfs_rq on each cpu */
318static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 319#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
320
321#ifdef CONFIG_RT_GROUP_SCHED
322static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
323static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 324#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 325#else /* !CONFIG_USER_SCHED */
eff766a6 326#define root_task_group init_task_group
9a7e0b18 327#endif /* CONFIG_USER_SCHED */
6f505b16 328
8ed36996 329/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
330 * a task group's cpu shares.
331 */
8ed36996 332static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 333
052f1dc7 334#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
335#ifdef CONFIG_USER_SCHED
336# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 337#else /* !CONFIG_USER_SCHED */
052f1dc7 338# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 339#endif /* CONFIG_USER_SCHED */
052f1dc7 340
cb4ad1ff 341/*
2e084786
LJ
342 * A weight of 0 or 1 can cause arithmetics problems.
343 * A weight of a cfs_rq is the sum of weights of which entities
344 * are queued on this cfs_rq, so a weight of a entity should not be
345 * too large, so as the shares value of a task group.
cb4ad1ff
MX
346 * (The default weight is 1024 - so there's no practical
347 * limitation from this.)
348 */
18d95a28 349#define MIN_SHARES 2
2e084786 350#define MAX_SHARES (1UL << 18)
18d95a28 351
052f1dc7
PZ
352static int init_task_group_load = INIT_TASK_GROUP_LOAD;
353#endif
354
29f59db3 355/* Default task group.
3a252015 356 * Every task in system belong to this group at bootup.
29f59db3 357 */
434d53b0 358struct task_group init_task_group;
29f59db3
SV
359
360/* return group to which a task belongs */
4cf86d77 361static inline struct task_group *task_group(struct task_struct *p)
29f59db3 362{
4cf86d77 363 struct task_group *tg;
9b5b7751 364
052f1dc7 365#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
366 rcu_read_lock();
367 tg = __task_cred(p)->user->tg;
368 rcu_read_unlock();
052f1dc7 369#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
370 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
371 struct task_group, css);
24e377a8 372#else
41a2d6cf 373 tg = &init_task_group;
24e377a8 374#endif
9b5b7751 375 return tg;
29f59db3
SV
376}
377
378/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 379static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 380{
052f1dc7 381#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
382 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
383 p->se.parent = task_group(p)->se[cpu];
052f1dc7 384#endif
6f505b16 385
052f1dc7 386#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
387 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
388 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 389#endif
29f59db3
SV
390}
391
392#else
393
6f505b16 394static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
395static inline struct task_group *task_group(struct task_struct *p)
396{
397 return NULL;
398}
29f59db3 399
052f1dc7 400#endif /* CONFIG_GROUP_SCHED */
29f59db3 401
6aa645ea
IM
402/* CFS-related fields in a runqueue */
403struct cfs_rq {
404 struct load_weight load;
405 unsigned long nr_running;
406
6aa645ea 407 u64 exec_clock;
e9acbff6 408 u64 min_vruntime;
6aa645ea
IM
409
410 struct rb_root tasks_timeline;
411 struct rb_node *rb_leftmost;
4a55bd5e
PZ
412
413 struct list_head tasks;
414 struct list_head *balance_iterator;
415
416 /*
417 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
418 * It is set to NULL otherwise (i.e when none are currently running).
419 */
4793241b 420 struct sched_entity *curr, *next, *last;
ddc97297 421
5ac5c4d6 422 unsigned int nr_spread_over;
ddc97297 423
62160e3f 424#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
425 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
426
41a2d6cf
IM
427 /*
428 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
429 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
430 * (like users, containers etc.)
431 *
432 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
433 * list is used during load balance.
434 */
41a2d6cf
IM
435 struct list_head leaf_cfs_rq_list;
436 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
437
438#ifdef CONFIG_SMP
c09595f6 439 /*
c8cba857 440 * the part of load.weight contributed by tasks
c09595f6 441 */
c8cba857 442 unsigned long task_weight;
c09595f6 443
c8cba857
PZ
444 /*
445 * h_load = weight * f(tg)
446 *
447 * Where f(tg) is the recursive weight fraction assigned to
448 * this group.
449 */
450 unsigned long h_load;
c09595f6 451
c8cba857
PZ
452 /*
453 * this cpu's part of tg->shares
454 */
455 unsigned long shares;
f1d239f7
PZ
456
457 /*
458 * load.weight at the time we set shares
459 */
460 unsigned long rq_weight;
c09595f6 461#endif
6aa645ea
IM
462#endif
463};
1da177e4 464
6aa645ea
IM
465/* Real-Time classes' related field in a runqueue: */
466struct rt_rq {
467 struct rt_prio_array active;
63489e45 468 unsigned long rt_nr_running;
052f1dc7 469#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
470 int highest_prio; /* highest queued rt task prio */
471#endif
fa85ae24 472#ifdef CONFIG_SMP
73fe6aae 473 unsigned long rt_nr_migratory;
a22d7fc1 474 int overloaded;
fa85ae24 475#endif
6f505b16 476 int rt_throttled;
fa85ae24 477 u64 rt_time;
ac086bc2 478 u64 rt_runtime;
ea736ed5 479 /* Nests inside the rq lock: */
ac086bc2 480 spinlock_t rt_runtime_lock;
6f505b16 481
052f1dc7 482#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
483 unsigned long rt_nr_boosted;
484
6f505b16
PZ
485 struct rq *rq;
486 struct list_head leaf_rt_rq_list;
487 struct task_group *tg;
488 struct sched_rt_entity *rt_se;
489#endif
6aa645ea
IM
490};
491
57d885fe
GH
492#ifdef CONFIG_SMP
493
494/*
495 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
496 * variables. Each exclusive cpuset essentially defines an island domain by
497 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
498 * exclusive cpuset is created, we also create and attach a new root-domain
499 * object.
500 *
57d885fe
GH
501 */
502struct root_domain {
503 atomic_t refcount;
c6c4927b
RR
504 cpumask_var_t span;
505 cpumask_var_t online;
637f5085 506
0eab9146 507 /*
637f5085
GH
508 * The "RT overload" flag: it gets set if a CPU has more than
509 * one runnable RT task.
510 */
c6c4927b 511 cpumask_var_t rto_mask;
0eab9146 512 atomic_t rto_count;
6e0534f2
GH
513#ifdef CONFIG_SMP
514 struct cpupri cpupri;
515#endif
7a09b1a2
VS
516#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
517 /*
518 * Preferred wake up cpu nominated by sched_mc balance that will be
519 * used when most cpus are idle in the system indicating overall very
520 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
521 */
522 unsigned int sched_mc_preferred_wakeup_cpu;
523#endif
57d885fe
GH
524};
525
dc938520
GH
526/*
527 * By default the system creates a single root-domain with all cpus as
528 * members (mimicking the global state we have today).
529 */
57d885fe
GH
530static struct root_domain def_root_domain;
531
532#endif
533
1da177e4
LT
534/*
535 * This is the main, per-CPU runqueue data structure.
536 *
537 * Locking rule: those places that want to lock multiple runqueues
538 * (such as the load balancing or the thread migration code), lock
539 * acquire operations must be ordered by ascending &runqueue.
540 */
70b97a7f 541struct rq {
d8016491
IM
542 /* runqueue lock: */
543 spinlock_t lock;
1da177e4
LT
544
545 /*
546 * nr_running and cpu_load should be in the same cacheline because
547 * remote CPUs use both these fields when doing load calculation.
548 */
549 unsigned long nr_running;
6aa645ea
IM
550 #define CPU_LOAD_IDX_MAX 5
551 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 552 unsigned char idle_at_tick;
46cb4b7c 553#ifdef CONFIG_NO_HZ
15934a37 554 unsigned long last_tick_seen;
46cb4b7c
SS
555 unsigned char in_nohz_recently;
556#endif
d8016491
IM
557 /* capture load from *all* tasks on this cpu: */
558 struct load_weight load;
6aa645ea
IM
559 unsigned long nr_load_updates;
560 u64 nr_switches;
561
562 struct cfs_rq cfs;
6f505b16 563 struct rt_rq rt;
6f505b16 564
6aa645ea 565#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
566 /* list of leaf cfs_rq on this cpu: */
567 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
568#endif
569#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 570 struct list_head leaf_rt_rq_list;
1da177e4 571#endif
1da177e4
LT
572
573 /*
574 * This is part of a global counter where only the total sum
575 * over all CPUs matters. A task can increase this counter on
576 * one CPU and if it got migrated afterwards it may decrease
577 * it on another CPU. Always updated under the runqueue lock:
578 */
579 unsigned long nr_uninterruptible;
580
36c8b586 581 struct task_struct *curr, *idle;
c9819f45 582 unsigned long next_balance;
1da177e4 583 struct mm_struct *prev_mm;
6aa645ea 584
3e51f33f 585 u64 clock;
6aa645ea 586
1da177e4
LT
587 atomic_t nr_iowait;
588
589#ifdef CONFIG_SMP
0eab9146 590 struct root_domain *rd;
1da177e4
LT
591 struct sched_domain *sd;
592
593 /* For active balancing */
594 int active_balance;
595 int push_cpu;
d8016491
IM
596 /* cpu of this runqueue: */
597 int cpu;
1f11eb6a 598 int online;
1da177e4 599
a8a51d5e 600 unsigned long avg_load_per_task;
1da177e4 601
36c8b586 602 struct task_struct *migration_thread;
1da177e4
LT
603 struct list_head migration_queue;
604#endif
605
8f4d37ec 606#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
607#ifdef CONFIG_SMP
608 int hrtick_csd_pending;
609 struct call_single_data hrtick_csd;
610#endif
8f4d37ec
PZ
611 struct hrtimer hrtick_timer;
612#endif
613
1da177e4
LT
614#ifdef CONFIG_SCHEDSTATS
615 /* latency stats */
616 struct sched_info rq_sched_info;
9c2c4802
KC
617 unsigned long long rq_cpu_time;
618 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
619
620 /* sys_sched_yield() stats */
480b9434
KC
621 unsigned int yld_exp_empty;
622 unsigned int yld_act_empty;
623 unsigned int yld_both_empty;
624 unsigned int yld_count;
1da177e4
LT
625
626 /* schedule() stats */
480b9434
KC
627 unsigned int sched_switch;
628 unsigned int sched_count;
629 unsigned int sched_goidle;
1da177e4
LT
630
631 /* try_to_wake_up() stats */
480b9434
KC
632 unsigned int ttwu_count;
633 unsigned int ttwu_local;
b8efb561
IM
634
635 /* BKL stats */
480b9434 636 unsigned int bkl_count;
1da177e4
LT
637#endif
638};
639
f34e3b61 640static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 641
15afe09b 642static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 643{
15afe09b 644 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
645}
646
0a2966b4
CL
647static inline int cpu_of(struct rq *rq)
648{
649#ifdef CONFIG_SMP
650 return rq->cpu;
651#else
652 return 0;
653#endif
654}
655
674311d5
NP
656/*
657 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 658 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
659 *
660 * The domain tree of any CPU may only be accessed from within
661 * preempt-disabled sections.
662 */
48f24c4d
IM
663#define for_each_domain(cpu, __sd) \
664 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
665
666#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
667#define this_rq() (&__get_cpu_var(runqueues))
668#define task_rq(p) cpu_rq(task_cpu(p))
669#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
670
3e51f33f
PZ
671static inline void update_rq_clock(struct rq *rq)
672{
673 rq->clock = sched_clock_cpu(cpu_of(rq));
674}
675
bf5c91ba
IM
676/*
677 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
678 */
679#ifdef CONFIG_SCHED_DEBUG
680# define const_debug __read_mostly
681#else
682# define const_debug static const
683#endif
684
017730c1
IM
685/**
686 * runqueue_is_locked
687 *
688 * Returns true if the current cpu runqueue is locked.
689 * This interface allows printk to be called with the runqueue lock
690 * held and know whether or not it is OK to wake up the klogd.
691 */
692int runqueue_is_locked(void)
693{
694 int cpu = get_cpu();
695 struct rq *rq = cpu_rq(cpu);
696 int ret;
697
698 ret = spin_is_locked(&rq->lock);
699 put_cpu();
700 return ret;
701}
702
bf5c91ba
IM
703/*
704 * Debugging: various feature bits
705 */
f00b45c1
PZ
706
707#define SCHED_FEAT(name, enabled) \
708 __SCHED_FEAT_##name ,
709
bf5c91ba 710enum {
f00b45c1 711#include "sched_features.h"
bf5c91ba
IM
712};
713
f00b45c1
PZ
714#undef SCHED_FEAT
715
716#define SCHED_FEAT(name, enabled) \
717 (1UL << __SCHED_FEAT_##name) * enabled |
718
bf5c91ba 719const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
720#include "sched_features.h"
721 0;
722
723#undef SCHED_FEAT
724
725#ifdef CONFIG_SCHED_DEBUG
726#define SCHED_FEAT(name, enabled) \
727 #name ,
728
983ed7a6 729static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
730#include "sched_features.h"
731 NULL
732};
733
734#undef SCHED_FEAT
735
34f3a814 736static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 737{
f00b45c1
PZ
738 int i;
739
740 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
741 if (!(sysctl_sched_features & (1UL << i)))
742 seq_puts(m, "NO_");
743 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 744 }
34f3a814 745 seq_puts(m, "\n");
f00b45c1 746
34f3a814 747 return 0;
f00b45c1
PZ
748}
749
750static ssize_t
751sched_feat_write(struct file *filp, const char __user *ubuf,
752 size_t cnt, loff_t *ppos)
753{
754 char buf[64];
755 char *cmp = buf;
756 int neg = 0;
757 int i;
758
759 if (cnt > 63)
760 cnt = 63;
761
762 if (copy_from_user(&buf, ubuf, cnt))
763 return -EFAULT;
764
765 buf[cnt] = 0;
766
c24b7c52 767 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
768 neg = 1;
769 cmp += 3;
770 }
771
772 for (i = 0; sched_feat_names[i]; i++) {
773 int len = strlen(sched_feat_names[i]);
774
775 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
776 if (neg)
777 sysctl_sched_features &= ~(1UL << i);
778 else
779 sysctl_sched_features |= (1UL << i);
780 break;
781 }
782 }
783
784 if (!sched_feat_names[i])
785 return -EINVAL;
786
787 filp->f_pos += cnt;
788
789 return cnt;
790}
791
34f3a814
LZ
792static int sched_feat_open(struct inode *inode, struct file *filp)
793{
794 return single_open(filp, sched_feat_show, NULL);
795}
796
f00b45c1 797static struct file_operations sched_feat_fops = {
34f3a814
LZ
798 .open = sched_feat_open,
799 .write = sched_feat_write,
800 .read = seq_read,
801 .llseek = seq_lseek,
802 .release = single_release,
f00b45c1
PZ
803};
804
805static __init int sched_init_debug(void)
806{
f00b45c1
PZ
807 debugfs_create_file("sched_features", 0644, NULL, NULL,
808 &sched_feat_fops);
809
810 return 0;
811}
812late_initcall(sched_init_debug);
813
814#endif
815
816#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 817
b82d9fdd
PZ
818/*
819 * Number of tasks to iterate in a single balance run.
820 * Limited because this is done with IRQs disabled.
821 */
822const_debug unsigned int sysctl_sched_nr_migrate = 32;
823
2398f2c6
PZ
824/*
825 * ratelimit for updating the group shares.
55cd5340 826 * default: 0.25ms
2398f2c6 827 */
55cd5340 828unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 829
ffda12a1
PZ
830/*
831 * Inject some fuzzyness into changing the per-cpu group shares
832 * this avoids remote rq-locks at the expense of fairness.
833 * default: 4
834 */
835unsigned int sysctl_sched_shares_thresh = 4;
836
fa85ae24 837/*
9f0c1e56 838 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
839 * default: 1s
840 */
9f0c1e56 841unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 842
6892b75e
IM
843static __read_mostly int scheduler_running;
844
9f0c1e56
PZ
845/*
846 * part of the period that we allow rt tasks to run in us.
847 * default: 0.95s
848 */
849int sysctl_sched_rt_runtime = 950000;
fa85ae24 850
d0b27fa7
PZ
851static inline u64 global_rt_period(void)
852{
853 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
854}
855
856static inline u64 global_rt_runtime(void)
857{
e26873bb 858 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
859 return RUNTIME_INF;
860
861 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
862}
fa85ae24 863
1da177e4 864#ifndef prepare_arch_switch
4866cde0
NP
865# define prepare_arch_switch(next) do { } while (0)
866#endif
867#ifndef finish_arch_switch
868# define finish_arch_switch(prev) do { } while (0)
869#endif
870
051a1d1a
DA
871static inline int task_current(struct rq *rq, struct task_struct *p)
872{
873 return rq->curr == p;
874}
875
4866cde0 876#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 877static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 878{
051a1d1a 879 return task_current(rq, p);
4866cde0
NP
880}
881
70b97a7f 882static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
883{
884}
885
70b97a7f 886static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 887{
da04c035
IM
888#ifdef CONFIG_DEBUG_SPINLOCK
889 /* this is a valid case when another task releases the spinlock */
890 rq->lock.owner = current;
891#endif
8a25d5de
IM
892 /*
893 * If we are tracking spinlock dependencies then we have to
894 * fix up the runqueue lock - which gets 'carried over' from
895 * prev into current:
896 */
897 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
898
4866cde0
NP
899 spin_unlock_irq(&rq->lock);
900}
901
902#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 903static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
904{
905#ifdef CONFIG_SMP
906 return p->oncpu;
907#else
051a1d1a 908 return task_current(rq, p);
4866cde0
NP
909#endif
910}
911
70b97a7f 912static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
913{
914#ifdef CONFIG_SMP
915 /*
916 * We can optimise this out completely for !SMP, because the
917 * SMP rebalancing from interrupt is the only thing that cares
918 * here.
919 */
920 next->oncpu = 1;
921#endif
922#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
923 spin_unlock_irq(&rq->lock);
924#else
925 spin_unlock(&rq->lock);
926#endif
927}
928
70b97a7f 929static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
930{
931#ifdef CONFIG_SMP
932 /*
933 * After ->oncpu is cleared, the task can be moved to a different CPU.
934 * We must ensure this doesn't happen until the switch is completely
935 * finished.
936 */
937 smp_wmb();
938 prev->oncpu = 0;
939#endif
940#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
941 local_irq_enable();
1da177e4 942#endif
4866cde0
NP
943}
944#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 945
b29739f9
IM
946/*
947 * __task_rq_lock - lock the runqueue a given task resides on.
948 * Must be called interrupts disabled.
949 */
70b97a7f 950static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
951 __acquires(rq->lock)
952{
3a5c359a
AK
953 for (;;) {
954 struct rq *rq = task_rq(p);
955 spin_lock(&rq->lock);
956 if (likely(rq == task_rq(p)))
957 return rq;
b29739f9 958 spin_unlock(&rq->lock);
b29739f9 959 }
b29739f9
IM
960}
961
1da177e4
LT
962/*
963 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 964 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
965 * explicitly disabling preemption.
966 */
70b97a7f 967static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
968 __acquires(rq->lock)
969{
70b97a7f 970 struct rq *rq;
1da177e4 971
3a5c359a
AK
972 for (;;) {
973 local_irq_save(*flags);
974 rq = task_rq(p);
975 spin_lock(&rq->lock);
976 if (likely(rq == task_rq(p)))
977 return rq;
1da177e4 978 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 979 }
1da177e4
LT
980}
981
ad474cac
ON
982void task_rq_unlock_wait(struct task_struct *p)
983{
984 struct rq *rq = task_rq(p);
985
986 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
987 spin_unlock_wait(&rq->lock);
988}
989
a9957449 990static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
991 __releases(rq->lock)
992{
993 spin_unlock(&rq->lock);
994}
995
70b97a7f 996static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
997 __releases(rq->lock)
998{
999 spin_unlock_irqrestore(&rq->lock, *flags);
1000}
1001
1da177e4 1002/*
cc2a73b5 1003 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1004 */
a9957449 1005static struct rq *this_rq_lock(void)
1da177e4
LT
1006 __acquires(rq->lock)
1007{
70b97a7f 1008 struct rq *rq;
1da177e4
LT
1009
1010 local_irq_disable();
1011 rq = this_rq();
1012 spin_lock(&rq->lock);
1013
1014 return rq;
1015}
1016
8f4d37ec
PZ
1017#ifdef CONFIG_SCHED_HRTICK
1018/*
1019 * Use HR-timers to deliver accurate preemption points.
1020 *
1021 * Its all a bit involved since we cannot program an hrt while holding the
1022 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1023 * reschedule event.
1024 *
1025 * When we get rescheduled we reprogram the hrtick_timer outside of the
1026 * rq->lock.
1027 */
8f4d37ec
PZ
1028
1029/*
1030 * Use hrtick when:
1031 * - enabled by features
1032 * - hrtimer is actually high res
1033 */
1034static inline int hrtick_enabled(struct rq *rq)
1035{
1036 if (!sched_feat(HRTICK))
1037 return 0;
ba42059f 1038 if (!cpu_active(cpu_of(rq)))
b328ca18 1039 return 0;
8f4d37ec
PZ
1040 return hrtimer_is_hres_active(&rq->hrtick_timer);
1041}
1042
8f4d37ec
PZ
1043static void hrtick_clear(struct rq *rq)
1044{
1045 if (hrtimer_active(&rq->hrtick_timer))
1046 hrtimer_cancel(&rq->hrtick_timer);
1047}
1048
8f4d37ec
PZ
1049/*
1050 * High-resolution timer tick.
1051 * Runs from hardirq context with interrupts disabled.
1052 */
1053static enum hrtimer_restart hrtick(struct hrtimer *timer)
1054{
1055 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1056
1057 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1058
1059 spin_lock(&rq->lock);
3e51f33f 1060 update_rq_clock(rq);
8f4d37ec
PZ
1061 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1062 spin_unlock(&rq->lock);
1063
1064 return HRTIMER_NORESTART;
1065}
1066
95e904c7 1067#ifdef CONFIG_SMP
31656519
PZ
1068/*
1069 * called from hardirq (IPI) context
1070 */
1071static void __hrtick_start(void *arg)
b328ca18 1072{
31656519 1073 struct rq *rq = arg;
b328ca18 1074
31656519
PZ
1075 spin_lock(&rq->lock);
1076 hrtimer_restart(&rq->hrtick_timer);
1077 rq->hrtick_csd_pending = 0;
1078 spin_unlock(&rq->lock);
b328ca18
PZ
1079}
1080
31656519
PZ
1081/*
1082 * Called to set the hrtick timer state.
1083 *
1084 * called with rq->lock held and irqs disabled
1085 */
1086static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1087{
31656519
PZ
1088 struct hrtimer *timer = &rq->hrtick_timer;
1089 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1090
cc584b21 1091 hrtimer_set_expires(timer, time);
31656519
PZ
1092
1093 if (rq == this_rq()) {
1094 hrtimer_restart(timer);
1095 } else if (!rq->hrtick_csd_pending) {
1096 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1097 rq->hrtick_csd_pending = 1;
1098 }
b328ca18
PZ
1099}
1100
1101static int
1102hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1103{
1104 int cpu = (int)(long)hcpu;
1105
1106 switch (action) {
1107 case CPU_UP_CANCELED:
1108 case CPU_UP_CANCELED_FROZEN:
1109 case CPU_DOWN_PREPARE:
1110 case CPU_DOWN_PREPARE_FROZEN:
1111 case CPU_DEAD:
1112 case CPU_DEAD_FROZEN:
31656519 1113 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1114 return NOTIFY_OK;
1115 }
1116
1117 return NOTIFY_DONE;
1118}
1119
fa748203 1120static __init void init_hrtick(void)
b328ca18
PZ
1121{
1122 hotcpu_notifier(hotplug_hrtick, 0);
1123}
31656519
PZ
1124#else
1125/*
1126 * Called to set the hrtick timer state.
1127 *
1128 * called with rq->lock held and irqs disabled
1129 */
1130static void hrtick_start(struct rq *rq, u64 delay)
1131{
1132 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1133}
b328ca18 1134
006c75f1 1135static inline void init_hrtick(void)
8f4d37ec 1136{
8f4d37ec 1137}
31656519 1138#endif /* CONFIG_SMP */
8f4d37ec 1139
31656519 1140static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1141{
31656519
PZ
1142#ifdef CONFIG_SMP
1143 rq->hrtick_csd_pending = 0;
8f4d37ec 1144
31656519
PZ
1145 rq->hrtick_csd.flags = 0;
1146 rq->hrtick_csd.func = __hrtick_start;
1147 rq->hrtick_csd.info = rq;
1148#endif
8f4d37ec 1149
31656519
PZ
1150 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1151 rq->hrtick_timer.function = hrtick;
8f4d37ec 1152}
006c75f1 1153#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1154static inline void hrtick_clear(struct rq *rq)
1155{
1156}
1157
8f4d37ec
PZ
1158static inline void init_rq_hrtick(struct rq *rq)
1159{
1160}
1161
b328ca18
PZ
1162static inline void init_hrtick(void)
1163{
1164}
006c75f1 1165#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1166
c24d20db
IM
1167/*
1168 * resched_task - mark a task 'to be rescheduled now'.
1169 *
1170 * On UP this means the setting of the need_resched flag, on SMP it
1171 * might also involve a cross-CPU call to trigger the scheduler on
1172 * the target CPU.
1173 */
1174#ifdef CONFIG_SMP
1175
1176#ifndef tsk_is_polling
1177#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1178#endif
1179
31656519 1180static void resched_task(struct task_struct *p)
c24d20db
IM
1181{
1182 int cpu;
1183
1184 assert_spin_locked(&task_rq(p)->lock);
1185
31656519 1186 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
c24d20db
IM
1187 return;
1188
31656519 1189 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
c24d20db
IM
1190
1191 cpu = task_cpu(p);
1192 if (cpu == smp_processor_id())
1193 return;
1194
1195 /* NEED_RESCHED must be visible before we test polling */
1196 smp_mb();
1197 if (!tsk_is_polling(p))
1198 smp_send_reschedule(cpu);
1199}
1200
1201static void resched_cpu(int cpu)
1202{
1203 struct rq *rq = cpu_rq(cpu);
1204 unsigned long flags;
1205
1206 if (!spin_trylock_irqsave(&rq->lock, flags))
1207 return;
1208 resched_task(cpu_curr(cpu));
1209 spin_unlock_irqrestore(&rq->lock, flags);
1210}
06d8308c
TG
1211
1212#ifdef CONFIG_NO_HZ
1213/*
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1222 */
1223void wake_up_idle_cpu(int cpu)
1224{
1225 struct rq *rq = cpu_rq(cpu);
1226
1227 if (cpu == smp_processor_id())
1228 return;
1229
1230 /*
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1236 */
1237 if (rq->curr != rq->idle)
1238 return;
1239
1240 /*
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1244 */
1245 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1246
1247 /* NEED_RESCHED must be visible before we test polling */
1248 smp_mb();
1249 if (!tsk_is_polling(rq->idle))
1250 smp_send_reschedule(cpu);
1251}
6d6bc0ad 1252#endif /* CONFIG_NO_HZ */
06d8308c 1253
6d6bc0ad 1254#else /* !CONFIG_SMP */
31656519 1255static void resched_task(struct task_struct *p)
c24d20db
IM
1256{
1257 assert_spin_locked(&task_rq(p)->lock);
31656519 1258 set_tsk_need_resched(p);
c24d20db 1259}
6d6bc0ad 1260#endif /* CONFIG_SMP */
c24d20db 1261
45bf76df
IM
1262#if BITS_PER_LONG == 32
1263# define WMULT_CONST (~0UL)
1264#else
1265# define WMULT_CONST (1UL << 32)
1266#endif
1267
1268#define WMULT_SHIFT 32
1269
194081eb
IM
1270/*
1271 * Shift right and round:
1272 */
cf2ab469 1273#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1274
a7be37ac
PZ
1275/*
1276 * delta *= weight / lw
1277 */
cb1c4fc9 1278static unsigned long
45bf76df
IM
1279calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1280 struct load_weight *lw)
1281{
1282 u64 tmp;
1283
7a232e03
LJ
1284 if (!lw->inv_weight) {
1285 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1286 lw->inv_weight = 1;
1287 else
1288 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1289 / (lw->weight+1);
1290 }
45bf76df
IM
1291
1292 tmp = (u64)delta_exec * weight;
1293 /*
1294 * Check whether we'd overflow the 64-bit multiplication:
1295 */
194081eb 1296 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1297 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1298 WMULT_SHIFT/2);
1299 else
cf2ab469 1300 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1301
ecf691da 1302 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1303}
1304
1091985b 1305static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1306{
1307 lw->weight += inc;
e89996ae 1308 lw->inv_weight = 0;
45bf76df
IM
1309}
1310
1091985b 1311static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1312{
1313 lw->weight -= dec;
e89996ae 1314 lw->inv_weight = 0;
45bf76df
IM
1315}
1316
2dd73a4f
PW
1317/*
1318 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1319 * of tasks with abnormal "nice" values across CPUs the contribution that
1320 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1321 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1322 * scaled version of the new time slice allocation that they receive on time
1323 * slice expiry etc.
1324 */
1325
cce7ade8
PZ
1326#define WEIGHT_IDLEPRIO 3
1327#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1328
1329/*
1330 * Nice levels are multiplicative, with a gentle 10% change for every
1331 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1332 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1333 * that remained on nice 0.
1334 *
1335 * The "10% effect" is relative and cumulative: from _any_ nice level,
1336 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1337 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1338 * If a task goes up by ~10% and another task goes down by ~10% then
1339 * the relative distance between them is ~25%.)
dd41f596
IM
1340 */
1341static const int prio_to_weight[40] = {
254753dc
IM
1342 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1343 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1344 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1345 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1346 /* 0 */ 1024, 820, 655, 526, 423,
1347 /* 5 */ 335, 272, 215, 172, 137,
1348 /* 10 */ 110, 87, 70, 56, 45,
1349 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1350};
1351
5714d2de
IM
1352/*
1353 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1354 *
1355 * In cases where the weight does not change often, we can use the
1356 * precalculated inverse to speed up arithmetics by turning divisions
1357 * into multiplications:
1358 */
dd41f596 1359static const u32 prio_to_wmult[40] = {
254753dc
IM
1360 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1361 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1362 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1363 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1364 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1365 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1366 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1367 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1368};
2dd73a4f 1369
dd41f596
IM
1370static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1371
1372/*
1373 * runqueue iterator, to support SMP load-balancing between different
1374 * scheduling classes, without having to expose their internal data
1375 * structures to the load-balancing proper:
1376 */
1377struct rq_iterator {
1378 void *arg;
1379 struct task_struct *(*start)(void *);
1380 struct task_struct *(*next)(void *);
1381};
1382
e1d1484f
PW
1383#ifdef CONFIG_SMP
1384static unsigned long
1385balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1386 unsigned long max_load_move, struct sched_domain *sd,
1387 enum cpu_idle_type idle, int *all_pinned,
1388 int *this_best_prio, struct rq_iterator *iterator);
1389
1390static int
1391iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1392 struct sched_domain *sd, enum cpu_idle_type idle,
1393 struct rq_iterator *iterator);
e1d1484f 1394#endif
dd41f596 1395
d842de87
SV
1396#ifdef CONFIG_CGROUP_CPUACCT
1397static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1398#else
1399static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1400#endif
1401
18d95a28
PZ
1402static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1403{
1404 update_load_add(&rq->load, load);
1405}
1406
1407static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1408{
1409 update_load_sub(&rq->load, load);
1410}
1411
7940ca36 1412#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1413typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1414
1415/*
1416 * Iterate the full tree, calling @down when first entering a node and @up when
1417 * leaving it for the final time.
1418 */
eb755805 1419static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1420{
1421 struct task_group *parent, *child;
eb755805 1422 int ret;
c09595f6
PZ
1423
1424 rcu_read_lock();
1425 parent = &root_task_group;
1426down:
eb755805
PZ
1427 ret = (*down)(parent, data);
1428 if (ret)
1429 goto out_unlock;
c09595f6
PZ
1430 list_for_each_entry_rcu(child, &parent->children, siblings) {
1431 parent = child;
1432 goto down;
1433
1434up:
1435 continue;
1436 }
eb755805
PZ
1437 ret = (*up)(parent, data);
1438 if (ret)
1439 goto out_unlock;
c09595f6
PZ
1440
1441 child = parent;
1442 parent = parent->parent;
1443 if (parent)
1444 goto up;
eb755805 1445out_unlock:
c09595f6 1446 rcu_read_unlock();
eb755805
PZ
1447
1448 return ret;
c09595f6
PZ
1449}
1450
eb755805
PZ
1451static int tg_nop(struct task_group *tg, void *data)
1452{
1453 return 0;
c09595f6 1454}
eb755805
PZ
1455#endif
1456
1457#ifdef CONFIG_SMP
1458static unsigned long source_load(int cpu, int type);
1459static unsigned long target_load(int cpu, int type);
1460static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1461
1462static unsigned long cpu_avg_load_per_task(int cpu)
1463{
1464 struct rq *rq = cpu_rq(cpu);
af6d596f 1465 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1466
4cd42620
SR
1467 if (nr_running)
1468 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1469 else
1470 rq->avg_load_per_task = 0;
eb755805
PZ
1471
1472 return rq->avg_load_per_task;
1473}
1474
1475#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1476
c09595f6
PZ
1477static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1478
1479/*
1480 * Calculate and set the cpu's group shares.
1481 */
1482static void
ffda12a1
PZ
1483update_group_shares_cpu(struct task_group *tg, int cpu,
1484 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1485{
c09595f6
PZ
1486 unsigned long shares;
1487 unsigned long rq_weight;
1488
c8cba857 1489 if (!tg->se[cpu])
c09595f6
PZ
1490 return;
1491
ec4e0e2f 1492 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1493
c09595f6
PZ
1494 /*
1495 * \Sum shares * rq_weight
1496 * shares = -----------------------
1497 * \Sum rq_weight
1498 *
1499 */
ec4e0e2f 1500 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1501 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1502
ffda12a1
PZ
1503 if (abs(shares - tg->se[cpu]->load.weight) >
1504 sysctl_sched_shares_thresh) {
1505 struct rq *rq = cpu_rq(cpu);
1506 unsigned long flags;
c09595f6 1507
ffda12a1 1508 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1509 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1510
ffda12a1
PZ
1511 __set_se_shares(tg->se[cpu], shares);
1512 spin_unlock_irqrestore(&rq->lock, flags);
1513 }
18d95a28 1514}
c09595f6
PZ
1515
1516/*
c8cba857
PZ
1517 * Re-compute the task group their per cpu shares over the given domain.
1518 * This needs to be done in a bottom-up fashion because the rq weight of a
1519 * parent group depends on the shares of its child groups.
c09595f6 1520 */
eb755805 1521static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1522{
ec4e0e2f 1523 unsigned long weight, rq_weight = 0;
c8cba857 1524 unsigned long shares = 0;
eb755805 1525 struct sched_domain *sd = data;
c8cba857 1526 int i;
c09595f6 1527
758b2cdc 1528 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1529 /*
1530 * If there are currently no tasks on the cpu pretend there
1531 * is one of average load so that when a new task gets to
1532 * run here it will not get delayed by group starvation.
1533 */
1534 weight = tg->cfs_rq[i]->load.weight;
1535 if (!weight)
1536 weight = NICE_0_LOAD;
1537
1538 tg->cfs_rq[i]->rq_weight = weight;
1539 rq_weight += weight;
c8cba857 1540 shares += tg->cfs_rq[i]->shares;
c09595f6 1541 }
c09595f6 1542
c8cba857
PZ
1543 if ((!shares && rq_weight) || shares > tg->shares)
1544 shares = tg->shares;
1545
1546 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1547 shares = tg->shares;
c09595f6 1548
758b2cdc 1549 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1550 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1551
1552 return 0;
c09595f6
PZ
1553}
1554
1555/*
c8cba857
PZ
1556 * Compute the cpu's hierarchical load factor for each task group.
1557 * This needs to be done in a top-down fashion because the load of a child
1558 * group is a fraction of its parents load.
c09595f6 1559 */
eb755805 1560static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1561{
c8cba857 1562 unsigned long load;
eb755805 1563 long cpu = (long)data;
c09595f6 1564
c8cba857
PZ
1565 if (!tg->parent) {
1566 load = cpu_rq(cpu)->load.weight;
1567 } else {
1568 load = tg->parent->cfs_rq[cpu]->h_load;
1569 load *= tg->cfs_rq[cpu]->shares;
1570 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1571 }
c09595f6 1572
c8cba857 1573 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1574
eb755805 1575 return 0;
c09595f6
PZ
1576}
1577
c8cba857 1578static void update_shares(struct sched_domain *sd)
4d8d595d 1579{
2398f2c6
PZ
1580 u64 now = cpu_clock(raw_smp_processor_id());
1581 s64 elapsed = now - sd->last_update;
1582
1583 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1584 sd->last_update = now;
eb755805 1585 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1586 }
4d8d595d
PZ
1587}
1588
3e5459b4
PZ
1589static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1590{
1591 spin_unlock(&rq->lock);
1592 update_shares(sd);
1593 spin_lock(&rq->lock);
1594}
1595
eb755805 1596static void update_h_load(long cpu)
c09595f6 1597{
eb755805 1598 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1599}
1600
c09595f6
PZ
1601#else
1602
c8cba857 1603static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1604{
1605}
1606
3e5459b4
PZ
1607static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1608{
1609}
1610
18d95a28
PZ
1611#endif
1612
70574a99
AD
1613/*
1614 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1615 */
1616static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1617 __releases(this_rq->lock)
1618 __acquires(busiest->lock)
1619 __acquires(this_rq->lock)
1620{
1621 int ret = 0;
1622
1623 if (unlikely(!irqs_disabled())) {
1624 /* printk() doesn't work good under rq->lock */
1625 spin_unlock(&this_rq->lock);
1626 BUG_ON(1);
1627 }
1628 if (unlikely(!spin_trylock(&busiest->lock))) {
1629 if (busiest < this_rq) {
1630 spin_unlock(&this_rq->lock);
1631 spin_lock(&busiest->lock);
1632 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1633 ret = 1;
1634 } else
1635 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1636 }
1637 return ret;
1638}
1639
1640static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1641 __releases(busiest->lock)
1642{
1643 spin_unlock(&busiest->lock);
1644 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1645}
18d95a28
PZ
1646#endif
1647
30432094 1648#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1649static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1650{
30432094 1651#ifdef CONFIG_SMP
34e83e85
IM
1652 cfs_rq->shares = shares;
1653#endif
1654}
30432094 1655#endif
e7693a36 1656
dd41f596 1657#include "sched_stats.h"
dd41f596 1658#include "sched_idletask.c"
5522d5d5
IM
1659#include "sched_fair.c"
1660#include "sched_rt.c"
dd41f596
IM
1661#ifdef CONFIG_SCHED_DEBUG
1662# include "sched_debug.c"
1663#endif
1664
1665#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1666#define for_each_class(class) \
1667 for (class = sched_class_highest; class; class = class->next)
dd41f596 1668
c09595f6 1669static void inc_nr_running(struct rq *rq)
9c217245
IM
1670{
1671 rq->nr_running++;
9c217245
IM
1672}
1673
c09595f6 1674static void dec_nr_running(struct rq *rq)
9c217245
IM
1675{
1676 rq->nr_running--;
9c217245
IM
1677}
1678
45bf76df
IM
1679static void set_load_weight(struct task_struct *p)
1680{
1681 if (task_has_rt_policy(p)) {
dd41f596
IM
1682 p->se.load.weight = prio_to_weight[0] * 2;
1683 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1684 return;
1685 }
45bf76df 1686
dd41f596
IM
1687 /*
1688 * SCHED_IDLE tasks get minimal weight:
1689 */
1690 if (p->policy == SCHED_IDLE) {
1691 p->se.load.weight = WEIGHT_IDLEPRIO;
1692 p->se.load.inv_weight = WMULT_IDLEPRIO;
1693 return;
1694 }
71f8bd46 1695
dd41f596
IM
1696 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1697 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1698}
1699
2087a1ad
GH
1700static void update_avg(u64 *avg, u64 sample)
1701{
1702 s64 diff = sample - *avg;
1703 *avg += diff >> 3;
1704}
1705
8159f87e 1706static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1707{
dd41f596 1708 sched_info_queued(p);
fd390f6a 1709 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1710 p->se.on_rq = 1;
71f8bd46
IM
1711}
1712
69be72c1 1713static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1714{
2087a1ad
GH
1715 if (sleep && p->se.last_wakeup) {
1716 update_avg(&p->se.avg_overlap,
1717 p->se.sum_exec_runtime - p->se.last_wakeup);
1718 p->se.last_wakeup = 0;
1719 }
1720
46ac22ba 1721 sched_info_dequeued(p);
f02231e5 1722 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1723 p->se.on_rq = 0;
71f8bd46
IM
1724}
1725
14531189 1726/*
dd41f596 1727 * __normal_prio - return the priority that is based on the static prio
14531189 1728 */
14531189
IM
1729static inline int __normal_prio(struct task_struct *p)
1730{
dd41f596 1731 return p->static_prio;
14531189
IM
1732}
1733
b29739f9
IM
1734/*
1735 * Calculate the expected normal priority: i.e. priority
1736 * without taking RT-inheritance into account. Might be
1737 * boosted by interactivity modifiers. Changes upon fork,
1738 * setprio syscalls, and whenever the interactivity
1739 * estimator recalculates.
1740 */
36c8b586 1741static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1742{
1743 int prio;
1744
e05606d3 1745 if (task_has_rt_policy(p))
b29739f9
IM
1746 prio = MAX_RT_PRIO-1 - p->rt_priority;
1747 else
1748 prio = __normal_prio(p);
1749 return prio;
1750}
1751
1752/*
1753 * Calculate the current priority, i.e. the priority
1754 * taken into account by the scheduler. This value might
1755 * be boosted by RT tasks, or might be boosted by
1756 * interactivity modifiers. Will be RT if the task got
1757 * RT-boosted. If not then it returns p->normal_prio.
1758 */
36c8b586 1759static int effective_prio(struct task_struct *p)
b29739f9
IM
1760{
1761 p->normal_prio = normal_prio(p);
1762 /*
1763 * If we are RT tasks or we were boosted to RT priority,
1764 * keep the priority unchanged. Otherwise, update priority
1765 * to the normal priority:
1766 */
1767 if (!rt_prio(p->prio))
1768 return p->normal_prio;
1769 return p->prio;
1770}
1771
1da177e4 1772/*
dd41f596 1773 * activate_task - move a task to the runqueue.
1da177e4 1774 */
dd41f596 1775static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1776{
d9514f6c 1777 if (task_contributes_to_load(p))
dd41f596 1778 rq->nr_uninterruptible--;
1da177e4 1779
8159f87e 1780 enqueue_task(rq, p, wakeup);
c09595f6 1781 inc_nr_running(rq);
1da177e4
LT
1782}
1783
1da177e4
LT
1784/*
1785 * deactivate_task - remove a task from the runqueue.
1786 */
2e1cb74a 1787static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1788{
d9514f6c 1789 if (task_contributes_to_load(p))
dd41f596
IM
1790 rq->nr_uninterruptible++;
1791
69be72c1 1792 dequeue_task(rq, p, sleep);
c09595f6 1793 dec_nr_running(rq);
1da177e4
LT
1794}
1795
1da177e4
LT
1796/**
1797 * task_curr - is this task currently executing on a CPU?
1798 * @p: the task in question.
1799 */
36c8b586 1800inline int task_curr(const struct task_struct *p)
1da177e4
LT
1801{
1802 return cpu_curr(task_cpu(p)) == p;
1803}
1804
dd41f596
IM
1805static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1806{
6f505b16 1807 set_task_rq(p, cpu);
dd41f596 1808#ifdef CONFIG_SMP
ce96b5ac
DA
1809 /*
1810 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1811 * successfuly executed on another CPU. We must ensure that updates of
1812 * per-task data have been completed by this moment.
1813 */
1814 smp_wmb();
dd41f596 1815 task_thread_info(p)->cpu = cpu;
dd41f596 1816#endif
2dd73a4f
PW
1817}
1818
cb469845
SR
1819static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1820 const struct sched_class *prev_class,
1821 int oldprio, int running)
1822{
1823 if (prev_class != p->sched_class) {
1824 if (prev_class->switched_from)
1825 prev_class->switched_from(rq, p, running);
1826 p->sched_class->switched_to(rq, p, running);
1827 } else
1828 p->sched_class->prio_changed(rq, p, oldprio, running);
1829}
1830
1da177e4 1831#ifdef CONFIG_SMP
c65cc870 1832
e958b360
TG
1833/* Used instead of source_load when we know the type == 0 */
1834static unsigned long weighted_cpuload(const int cpu)
1835{
1836 return cpu_rq(cpu)->load.weight;
1837}
1838
cc367732
IM
1839/*
1840 * Is this task likely cache-hot:
1841 */
e7693a36 1842static int
cc367732
IM
1843task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1844{
1845 s64 delta;
1846
f540a608
IM
1847 /*
1848 * Buddy candidates are cache hot:
1849 */
4793241b
PZ
1850 if (sched_feat(CACHE_HOT_BUDDY) &&
1851 (&p->se == cfs_rq_of(&p->se)->next ||
1852 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1853 return 1;
1854
cc367732
IM
1855 if (p->sched_class != &fair_sched_class)
1856 return 0;
1857
6bc1665b
IM
1858 if (sysctl_sched_migration_cost == -1)
1859 return 1;
1860 if (sysctl_sched_migration_cost == 0)
1861 return 0;
1862
cc367732
IM
1863 delta = now - p->se.exec_start;
1864
1865 return delta < (s64)sysctl_sched_migration_cost;
1866}
1867
1868
dd41f596 1869void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1870{
dd41f596
IM
1871 int old_cpu = task_cpu(p);
1872 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1873 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1874 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1875 u64 clock_offset;
dd41f596
IM
1876
1877 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1878
cbc34ed1
PZ
1879 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1880
6cfb0d5d
IM
1881#ifdef CONFIG_SCHEDSTATS
1882 if (p->se.wait_start)
1883 p->se.wait_start -= clock_offset;
dd41f596
IM
1884 if (p->se.sleep_start)
1885 p->se.sleep_start -= clock_offset;
1886 if (p->se.block_start)
1887 p->se.block_start -= clock_offset;
cc367732
IM
1888 if (old_cpu != new_cpu) {
1889 schedstat_inc(p, se.nr_migrations);
1890 if (task_hot(p, old_rq->clock, NULL))
1891 schedstat_inc(p, se.nr_forced2_migrations);
1892 }
6cfb0d5d 1893#endif
2830cf8c
SV
1894 p->se.vruntime -= old_cfsrq->min_vruntime -
1895 new_cfsrq->min_vruntime;
dd41f596
IM
1896
1897 __set_task_cpu(p, new_cpu);
c65cc870
IM
1898}
1899
70b97a7f 1900struct migration_req {
1da177e4 1901 struct list_head list;
1da177e4 1902
36c8b586 1903 struct task_struct *task;
1da177e4
LT
1904 int dest_cpu;
1905
1da177e4 1906 struct completion done;
70b97a7f 1907};
1da177e4
LT
1908
1909/*
1910 * The task's runqueue lock must be held.
1911 * Returns true if you have to wait for migration thread.
1912 */
36c8b586 1913static int
70b97a7f 1914migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1915{
70b97a7f 1916 struct rq *rq = task_rq(p);
1da177e4
LT
1917
1918 /*
1919 * If the task is not on a runqueue (and not running), then
1920 * it is sufficient to simply update the task's cpu field.
1921 */
dd41f596 1922 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1923 set_task_cpu(p, dest_cpu);
1924 return 0;
1925 }
1926
1927 init_completion(&req->done);
1da177e4
LT
1928 req->task = p;
1929 req->dest_cpu = dest_cpu;
1930 list_add(&req->list, &rq->migration_queue);
48f24c4d 1931
1da177e4
LT
1932 return 1;
1933}
1934
1935/*
1936 * wait_task_inactive - wait for a thread to unschedule.
1937 *
85ba2d86
RM
1938 * If @match_state is nonzero, it's the @p->state value just checked and
1939 * not expected to change. If it changes, i.e. @p might have woken up,
1940 * then return zero. When we succeed in waiting for @p to be off its CPU,
1941 * we return a positive number (its total switch count). If a second call
1942 * a short while later returns the same number, the caller can be sure that
1943 * @p has remained unscheduled the whole time.
1944 *
1da177e4
LT
1945 * The caller must ensure that the task *will* unschedule sometime soon,
1946 * else this function might spin for a *long* time. This function can't
1947 * be called with interrupts off, or it may introduce deadlock with
1948 * smp_call_function() if an IPI is sent by the same process we are
1949 * waiting to become inactive.
1950 */
85ba2d86 1951unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1952{
1953 unsigned long flags;
dd41f596 1954 int running, on_rq;
85ba2d86 1955 unsigned long ncsw;
70b97a7f 1956 struct rq *rq;
1da177e4 1957
3a5c359a
AK
1958 for (;;) {
1959 /*
1960 * We do the initial early heuristics without holding
1961 * any task-queue locks at all. We'll only try to get
1962 * the runqueue lock when things look like they will
1963 * work out!
1964 */
1965 rq = task_rq(p);
fa490cfd 1966
3a5c359a
AK
1967 /*
1968 * If the task is actively running on another CPU
1969 * still, just relax and busy-wait without holding
1970 * any locks.
1971 *
1972 * NOTE! Since we don't hold any locks, it's not
1973 * even sure that "rq" stays as the right runqueue!
1974 * But we don't care, since "task_running()" will
1975 * return false if the runqueue has changed and p
1976 * is actually now running somewhere else!
1977 */
85ba2d86
RM
1978 while (task_running(rq, p)) {
1979 if (match_state && unlikely(p->state != match_state))
1980 return 0;
3a5c359a 1981 cpu_relax();
85ba2d86 1982 }
fa490cfd 1983
3a5c359a
AK
1984 /*
1985 * Ok, time to look more closely! We need the rq
1986 * lock now, to be *sure*. If we're wrong, we'll
1987 * just go back and repeat.
1988 */
1989 rq = task_rq_lock(p, &flags);
0a16b607 1990 trace_sched_wait_task(rq, p);
3a5c359a
AK
1991 running = task_running(rq, p);
1992 on_rq = p->se.on_rq;
85ba2d86 1993 ncsw = 0;
f31e11d8 1994 if (!match_state || p->state == match_state)
93dcf55f 1995 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 1996 task_rq_unlock(rq, &flags);
fa490cfd 1997
85ba2d86
RM
1998 /*
1999 * If it changed from the expected state, bail out now.
2000 */
2001 if (unlikely(!ncsw))
2002 break;
2003
3a5c359a
AK
2004 /*
2005 * Was it really running after all now that we
2006 * checked with the proper locks actually held?
2007 *
2008 * Oops. Go back and try again..
2009 */
2010 if (unlikely(running)) {
2011 cpu_relax();
2012 continue;
2013 }
fa490cfd 2014
3a5c359a
AK
2015 /*
2016 * It's not enough that it's not actively running,
2017 * it must be off the runqueue _entirely_, and not
2018 * preempted!
2019 *
2020 * So if it wa still runnable (but just not actively
2021 * running right now), it's preempted, and we should
2022 * yield - it could be a while.
2023 */
2024 if (unlikely(on_rq)) {
2025 schedule_timeout_uninterruptible(1);
2026 continue;
2027 }
fa490cfd 2028
3a5c359a
AK
2029 /*
2030 * Ahh, all good. It wasn't running, and it wasn't
2031 * runnable, which means that it will never become
2032 * running in the future either. We're all done!
2033 */
2034 break;
2035 }
85ba2d86
RM
2036
2037 return ncsw;
1da177e4
LT
2038}
2039
2040/***
2041 * kick_process - kick a running thread to enter/exit the kernel
2042 * @p: the to-be-kicked thread
2043 *
2044 * Cause a process which is running on another CPU to enter
2045 * kernel-mode, without any delay. (to get signals handled.)
2046 *
2047 * NOTE: this function doesnt have to take the runqueue lock,
2048 * because all it wants to ensure is that the remote task enters
2049 * the kernel. If the IPI races and the task has been migrated
2050 * to another CPU then no harm is done and the purpose has been
2051 * achieved as well.
2052 */
36c8b586 2053void kick_process(struct task_struct *p)
1da177e4
LT
2054{
2055 int cpu;
2056
2057 preempt_disable();
2058 cpu = task_cpu(p);
2059 if ((cpu != smp_processor_id()) && task_curr(p))
2060 smp_send_reschedule(cpu);
2061 preempt_enable();
2062}
2063
2064/*
2dd73a4f
PW
2065 * Return a low guess at the load of a migration-source cpu weighted
2066 * according to the scheduling class and "nice" value.
1da177e4
LT
2067 *
2068 * We want to under-estimate the load of migration sources, to
2069 * balance conservatively.
2070 */
a9957449 2071static unsigned long source_load(int cpu, int type)
1da177e4 2072{
70b97a7f 2073 struct rq *rq = cpu_rq(cpu);
dd41f596 2074 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2075
93b75217 2076 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2077 return total;
b910472d 2078
dd41f596 2079 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2080}
2081
2082/*
2dd73a4f
PW
2083 * Return a high guess at the load of a migration-target cpu weighted
2084 * according to the scheduling class and "nice" value.
1da177e4 2085 */
a9957449 2086static unsigned long target_load(int cpu, int type)
1da177e4 2087{
70b97a7f 2088 struct rq *rq = cpu_rq(cpu);
dd41f596 2089 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2090
93b75217 2091 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2092 return total;
3b0bd9bc 2093
dd41f596 2094 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2095}
2096
147cbb4b
NP
2097/*
2098 * find_idlest_group finds and returns the least busy CPU group within the
2099 * domain.
2100 */
2101static struct sched_group *
2102find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2103{
2104 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2105 unsigned long min_load = ULONG_MAX, this_load = 0;
2106 int load_idx = sd->forkexec_idx;
2107 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2108
2109 do {
2110 unsigned long load, avg_load;
2111 int local_group;
2112 int i;
2113
da5a5522 2114 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2115 if (!cpumask_intersects(sched_group_cpus(group),
2116 &p->cpus_allowed))
3a5c359a 2117 continue;
da5a5522 2118
758b2cdc
RR
2119 local_group = cpumask_test_cpu(this_cpu,
2120 sched_group_cpus(group));
147cbb4b
NP
2121
2122 /* Tally up the load of all CPUs in the group */
2123 avg_load = 0;
2124
758b2cdc 2125 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2126 /* Bias balancing toward cpus of our domain */
2127 if (local_group)
2128 load = source_load(i, load_idx);
2129 else
2130 load = target_load(i, load_idx);
2131
2132 avg_load += load;
2133 }
2134
2135 /* Adjust by relative CPU power of the group */
5517d86b
ED
2136 avg_load = sg_div_cpu_power(group,
2137 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2138
2139 if (local_group) {
2140 this_load = avg_load;
2141 this = group;
2142 } else if (avg_load < min_load) {
2143 min_load = avg_load;
2144 idlest = group;
2145 }
3a5c359a 2146 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2147
2148 if (!idlest || 100*this_load < imbalance*min_load)
2149 return NULL;
2150 return idlest;
2151}
2152
2153/*
0feaece9 2154 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2155 */
95cdf3b7 2156static int
758b2cdc 2157find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2158{
2159 unsigned long load, min_load = ULONG_MAX;
2160 int idlest = -1;
2161 int i;
2162
da5a5522 2163 /* Traverse only the allowed CPUs */
758b2cdc 2164 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2165 load = weighted_cpuload(i);
147cbb4b
NP
2166
2167 if (load < min_load || (load == min_load && i == this_cpu)) {
2168 min_load = load;
2169 idlest = i;
2170 }
2171 }
2172
2173 return idlest;
2174}
2175
476d139c
NP
2176/*
2177 * sched_balance_self: balance the current task (running on cpu) in domains
2178 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2179 * SD_BALANCE_EXEC.
2180 *
2181 * Balance, ie. select the least loaded group.
2182 *
2183 * Returns the target CPU number, or the same CPU if no balancing is needed.
2184 *
2185 * preempt must be disabled.
2186 */
2187static int sched_balance_self(int cpu, int flag)
2188{
2189 struct task_struct *t = current;
2190 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2191
c96d145e 2192 for_each_domain(cpu, tmp) {
9761eea8
IM
2193 /*
2194 * If power savings logic is enabled for a domain, stop there.
2195 */
5c45bf27
SS
2196 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2197 break;
476d139c
NP
2198 if (tmp->flags & flag)
2199 sd = tmp;
c96d145e 2200 }
476d139c 2201
039a1c41
PZ
2202 if (sd)
2203 update_shares(sd);
2204
476d139c 2205 while (sd) {
476d139c 2206 struct sched_group *group;
1a848870
SS
2207 int new_cpu, weight;
2208
2209 if (!(sd->flags & flag)) {
2210 sd = sd->child;
2211 continue;
2212 }
476d139c 2213
476d139c 2214 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2215 if (!group) {
2216 sd = sd->child;
2217 continue;
2218 }
476d139c 2219
758b2cdc 2220 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2221 if (new_cpu == -1 || new_cpu == cpu) {
2222 /* Now try balancing at a lower domain level of cpu */
2223 sd = sd->child;
2224 continue;
2225 }
476d139c 2226
1a848870 2227 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2228 cpu = new_cpu;
758b2cdc 2229 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2230 sd = NULL;
476d139c 2231 for_each_domain(cpu, tmp) {
758b2cdc 2232 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2233 break;
2234 if (tmp->flags & flag)
2235 sd = tmp;
2236 }
2237 /* while loop will break here if sd == NULL */
2238 }
2239
2240 return cpu;
2241}
2242
2243#endif /* CONFIG_SMP */
1da177e4 2244
1da177e4
LT
2245/***
2246 * try_to_wake_up - wake up a thread
2247 * @p: the to-be-woken-up thread
2248 * @state: the mask of task states that can be woken
2249 * @sync: do a synchronous wakeup?
2250 *
2251 * Put it on the run-queue if it's not already there. The "current"
2252 * thread is always on the run-queue (except when the actual
2253 * re-schedule is in progress), and as such you're allowed to do
2254 * the simpler "current->state = TASK_RUNNING" to mark yourself
2255 * runnable without the overhead of this.
2256 *
2257 * returns failure only if the task is already active.
2258 */
36c8b586 2259static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2260{
cc367732 2261 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2262 unsigned long flags;
2263 long old_state;
70b97a7f 2264 struct rq *rq;
1da177e4 2265
b85d0667
IM
2266 if (!sched_feat(SYNC_WAKEUPS))
2267 sync = 0;
2268
1596e297
PZ
2269 if (!sync) {
2270 if (current->se.avg_overlap < sysctl_sched_migration_cost &&
2271 p->se.avg_overlap < sysctl_sched_migration_cost)
2272 sync = 1;
2273 } else {
2274 if (current->se.avg_overlap >= sysctl_sched_migration_cost ||
2275 p->se.avg_overlap >= sysctl_sched_migration_cost)
2276 sync = 0;
2277 }
d942fb6c 2278
2398f2c6
PZ
2279#ifdef CONFIG_SMP
2280 if (sched_feat(LB_WAKEUP_UPDATE)) {
2281 struct sched_domain *sd;
2282
2283 this_cpu = raw_smp_processor_id();
2284 cpu = task_cpu(p);
2285
2286 for_each_domain(this_cpu, sd) {
758b2cdc 2287 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2288 update_shares(sd);
2289 break;
2290 }
2291 }
2292 }
2293#endif
2294
04e2f174 2295 smp_wmb();
1da177e4 2296 rq = task_rq_lock(p, &flags);
03e89e45 2297 update_rq_clock(rq);
1da177e4
LT
2298 old_state = p->state;
2299 if (!(old_state & state))
2300 goto out;
2301
dd41f596 2302 if (p->se.on_rq)
1da177e4
LT
2303 goto out_running;
2304
2305 cpu = task_cpu(p);
cc367732 2306 orig_cpu = cpu;
1da177e4
LT
2307 this_cpu = smp_processor_id();
2308
2309#ifdef CONFIG_SMP
2310 if (unlikely(task_running(rq, p)))
2311 goto out_activate;
2312
5d2f5a61
DA
2313 cpu = p->sched_class->select_task_rq(p, sync);
2314 if (cpu != orig_cpu) {
2315 set_task_cpu(p, cpu);
1da177e4
LT
2316 task_rq_unlock(rq, &flags);
2317 /* might preempt at this point */
2318 rq = task_rq_lock(p, &flags);
2319 old_state = p->state;
2320 if (!(old_state & state))
2321 goto out;
dd41f596 2322 if (p->se.on_rq)
1da177e4
LT
2323 goto out_running;
2324
2325 this_cpu = smp_processor_id();
2326 cpu = task_cpu(p);
2327 }
2328
e7693a36
GH
2329#ifdef CONFIG_SCHEDSTATS
2330 schedstat_inc(rq, ttwu_count);
2331 if (cpu == this_cpu)
2332 schedstat_inc(rq, ttwu_local);
2333 else {
2334 struct sched_domain *sd;
2335 for_each_domain(this_cpu, sd) {
758b2cdc 2336 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2337 schedstat_inc(sd, ttwu_wake_remote);
2338 break;
2339 }
2340 }
2341 }
6d6bc0ad 2342#endif /* CONFIG_SCHEDSTATS */
e7693a36 2343
1da177e4
LT
2344out_activate:
2345#endif /* CONFIG_SMP */
cc367732
IM
2346 schedstat_inc(p, se.nr_wakeups);
2347 if (sync)
2348 schedstat_inc(p, se.nr_wakeups_sync);
2349 if (orig_cpu != cpu)
2350 schedstat_inc(p, se.nr_wakeups_migrate);
2351 if (cpu == this_cpu)
2352 schedstat_inc(p, se.nr_wakeups_local);
2353 else
2354 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2355 activate_task(rq, p, 1);
1da177e4
LT
2356 success = 1;
2357
2358out_running:
468a15bb 2359 trace_sched_wakeup(rq, p, success);
15afe09b 2360 check_preempt_curr(rq, p, sync);
4ae7d5ce 2361
1da177e4 2362 p->state = TASK_RUNNING;
9a897c5a
SR
2363#ifdef CONFIG_SMP
2364 if (p->sched_class->task_wake_up)
2365 p->sched_class->task_wake_up(rq, p);
2366#endif
1da177e4 2367out:
2087a1ad
GH
2368 current->se.last_wakeup = current->se.sum_exec_runtime;
2369
1da177e4
LT
2370 task_rq_unlock(rq, &flags);
2371
2372 return success;
2373}
2374
7ad5b3a5 2375int wake_up_process(struct task_struct *p)
1da177e4 2376{
d9514f6c 2377 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2378}
1da177e4
LT
2379EXPORT_SYMBOL(wake_up_process);
2380
7ad5b3a5 2381int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2382{
2383 return try_to_wake_up(p, state, 0);
2384}
2385
1da177e4
LT
2386/*
2387 * Perform scheduler related setup for a newly forked process p.
2388 * p is forked by current.
dd41f596
IM
2389 *
2390 * __sched_fork() is basic setup used by init_idle() too:
2391 */
2392static void __sched_fork(struct task_struct *p)
2393{
dd41f596
IM
2394 p->se.exec_start = 0;
2395 p->se.sum_exec_runtime = 0;
f6cf891c 2396 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2397 p->se.last_wakeup = 0;
2398 p->se.avg_overlap = 0;
6cfb0d5d
IM
2399
2400#ifdef CONFIG_SCHEDSTATS
2401 p->se.wait_start = 0;
dd41f596
IM
2402 p->se.sum_sleep_runtime = 0;
2403 p->se.sleep_start = 0;
dd41f596
IM
2404 p->se.block_start = 0;
2405 p->se.sleep_max = 0;
2406 p->se.block_max = 0;
2407 p->se.exec_max = 0;
eba1ed4b 2408 p->se.slice_max = 0;
dd41f596 2409 p->se.wait_max = 0;
6cfb0d5d 2410#endif
476d139c 2411
fa717060 2412 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2413 p->se.on_rq = 0;
4a55bd5e 2414 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2415
e107be36
AK
2416#ifdef CONFIG_PREEMPT_NOTIFIERS
2417 INIT_HLIST_HEAD(&p->preempt_notifiers);
2418#endif
2419
1da177e4
LT
2420 /*
2421 * We mark the process as running here, but have not actually
2422 * inserted it onto the runqueue yet. This guarantees that
2423 * nobody will actually run it, and a signal or other external
2424 * event cannot wake it up and insert it on the runqueue either.
2425 */
2426 p->state = TASK_RUNNING;
dd41f596
IM
2427}
2428
2429/*
2430 * fork()/clone()-time setup:
2431 */
2432void sched_fork(struct task_struct *p, int clone_flags)
2433{
2434 int cpu = get_cpu();
2435
2436 __sched_fork(p);
2437
2438#ifdef CONFIG_SMP
2439 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2440#endif
02e4bac2 2441 set_task_cpu(p, cpu);
b29739f9
IM
2442
2443 /*
2444 * Make sure we do not leak PI boosting priority to the child:
2445 */
2446 p->prio = current->normal_prio;
2ddbf952
HS
2447 if (!rt_prio(p->prio))
2448 p->sched_class = &fair_sched_class;
b29739f9 2449
52f17b6c 2450#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2451 if (likely(sched_info_on()))
52f17b6c 2452 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2453#endif
d6077cb8 2454#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2455 p->oncpu = 0;
2456#endif
1da177e4 2457#ifdef CONFIG_PREEMPT
4866cde0 2458 /* Want to start with kernel preemption disabled. */
a1261f54 2459 task_thread_info(p)->preempt_count = 1;
1da177e4 2460#endif
476d139c 2461 put_cpu();
1da177e4
LT
2462}
2463
2464/*
2465 * wake_up_new_task - wake up a newly created task for the first time.
2466 *
2467 * This function will do some initial scheduler statistics housekeeping
2468 * that must be done for every newly created context, then puts the task
2469 * on the runqueue and wakes it.
2470 */
7ad5b3a5 2471void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2472{
2473 unsigned long flags;
dd41f596 2474 struct rq *rq;
1da177e4
LT
2475
2476 rq = task_rq_lock(p, &flags);
147cbb4b 2477 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2478 update_rq_clock(rq);
1da177e4
LT
2479
2480 p->prio = effective_prio(p);
2481
b9dca1e0 2482 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2483 activate_task(rq, p, 0);
1da177e4 2484 } else {
1da177e4 2485 /*
dd41f596
IM
2486 * Let the scheduling class do new task startup
2487 * management (if any):
1da177e4 2488 */
ee0827d8 2489 p->sched_class->task_new(rq, p);
c09595f6 2490 inc_nr_running(rq);
1da177e4 2491 }
c71dd42d 2492 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2493 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2494#ifdef CONFIG_SMP
2495 if (p->sched_class->task_wake_up)
2496 p->sched_class->task_wake_up(rq, p);
2497#endif
dd41f596 2498 task_rq_unlock(rq, &flags);
1da177e4
LT
2499}
2500
e107be36
AK
2501#ifdef CONFIG_PREEMPT_NOTIFIERS
2502
2503/**
421cee29
RD
2504 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2505 * @notifier: notifier struct to register
e107be36
AK
2506 */
2507void preempt_notifier_register(struct preempt_notifier *notifier)
2508{
2509 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2510}
2511EXPORT_SYMBOL_GPL(preempt_notifier_register);
2512
2513/**
2514 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2515 * @notifier: notifier struct to unregister
e107be36
AK
2516 *
2517 * This is safe to call from within a preemption notifier.
2518 */
2519void preempt_notifier_unregister(struct preempt_notifier *notifier)
2520{
2521 hlist_del(&notifier->link);
2522}
2523EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2524
2525static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2526{
2527 struct preempt_notifier *notifier;
2528 struct hlist_node *node;
2529
2530 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2531 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2532}
2533
2534static void
2535fire_sched_out_preempt_notifiers(struct task_struct *curr,
2536 struct task_struct *next)
2537{
2538 struct preempt_notifier *notifier;
2539 struct hlist_node *node;
2540
2541 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2542 notifier->ops->sched_out(notifier, next);
2543}
2544
6d6bc0ad 2545#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2546
2547static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2548{
2549}
2550
2551static void
2552fire_sched_out_preempt_notifiers(struct task_struct *curr,
2553 struct task_struct *next)
2554{
2555}
2556
6d6bc0ad 2557#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2558
4866cde0
NP
2559/**
2560 * prepare_task_switch - prepare to switch tasks
2561 * @rq: the runqueue preparing to switch
421cee29 2562 * @prev: the current task that is being switched out
4866cde0
NP
2563 * @next: the task we are going to switch to.
2564 *
2565 * This is called with the rq lock held and interrupts off. It must
2566 * be paired with a subsequent finish_task_switch after the context
2567 * switch.
2568 *
2569 * prepare_task_switch sets up locking and calls architecture specific
2570 * hooks.
2571 */
e107be36
AK
2572static inline void
2573prepare_task_switch(struct rq *rq, struct task_struct *prev,
2574 struct task_struct *next)
4866cde0 2575{
e107be36 2576 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2577 prepare_lock_switch(rq, next);
2578 prepare_arch_switch(next);
2579}
2580
1da177e4
LT
2581/**
2582 * finish_task_switch - clean up after a task-switch
344babaa 2583 * @rq: runqueue associated with task-switch
1da177e4
LT
2584 * @prev: the thread we just switched away from.
2585 *
4866cde0
NP
2586 * finish_task_switch must be called after the context switch, paired
2587 * with a prepare_task_switch call before the context switch.
2588 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2589 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2590 *
2591 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2592 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2593 * with the lock held can cause deadlocks; see schedule() for
2594 * details.)
2595 */
a9957449 2596static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2597 __releases(rq->lock)
2598{
1da177e4 2599 struct mm_struct *mm = rq->prev_mm;
55a101f8 2600 long prev_state;
1da177e4
LT
2601
2602 rq->prev_mm = NULL;
2603
2604 /*
2605 * A task struct has one reference for the use as "current".
c394cc9f 2606 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2607 * schedule one last time. The schedule call will never return, and
2608 * the scheduled task must drop that reference.
c394cc9f 2609 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2610 * still held, otherwise prev could be scheduled on another cpu, die
2611 * there before we look at prev->state, and then the reference would
2612 * be dropped twice.
2613 * Manfred Spraul <manfred@colorfullife.com>
2614 */
55a101f8 2615 prev_state = prev->state;
4866cde0
NP
2616 finish_arch_switch(prev);
2617 finish_lock_switch(rq, prev);
9a897c5a
SR
2618#ifdef CONFIG_SMP
2619 if (current->sched_class->post_schedule)
2620 current->sched_class->post_schedule(rq);
2621#endif
e8fa1362 2622
e107be36 2623 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2624 if (mm)
2625 mmdrop(mm);
c394cc9f 2626 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2627 /*
2628 * Remove function-return probe instances associated with this
2629 * task and put them back on the free list.
9761eea8 2630 */
c6fd91f0 2631 kprobe_flush_task(prev);
1da177e4 2632 put_task_struct(prev);
c6fd91f0 2633 }
1da177e4
LT
2634}
2635
2636/**
2637 * schedule_tail - first thing a freshly forked thread must call.
2638 * @prev: the thread we just switched away from.
2639 */
36c8b586 2640asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2641 __releases(rq->lock)
2642{
70b97a7f
IM
2643 struct rq *rq = this_rq();
2644
4866cde0
NP
2645 finish_task_switch(rq, prev);
2646#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2647 /* In this case, finish_task_switch does not reenable preemption */
2648 preempt_enable();
2649#endif
1da177e4 2650 if (current->set_child_tid)
b488893a 2651 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2652}
2653
2654/*
2655 * context_switch - switch to the new MM and the new
2656 * thread's register state.
2657 */
dd41f596 2658static inline void
70b97a7f 2659context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2660 struct task_struct *next)
1da177e4 2661{
dd41f596 2662 struct mm_struct *mm, *oldmm;
1da177e4 2663
e107be36 2664 prepare_task_switch(rq, prev, next);
0a16b607 2665 trace_sched_switch(rq, prev, next);
dd41f596
IM
2666 mm = next->mm;
2667 oldmm = prev->active_mm;
9226d125
ZA
2668 /*
2669 * For paravirt, this is coupled with an exit in switch_to to
2670 * combine the page table reload and the switch backend into
2671 * one hypercall.
2672 */
2673 arch_enter_lazy_cpu_mode();
2674
dd41f596 2675 if (unlikely(!mm)) {
1da177e4
LT
2676 next->active_mm = oldmm;
2677 atomic_inc(&oldmm->mm_count);
2678 enter_lazy_tlb(oldmm, next);
2679 } else
2680 switch_mm(oldmm, mm, next);
2681
dd41f596 2682 if (unlikely(!prev->mm)) {
1da177e4 2683 prev->active_mm = NULL;
1da177e4
LT
2684 rq->prev_mm = oldmm;
2685 }
3a5f5e48
IM
2686 /*
2687 * Since the runqueue lock will be released by the next
2688 * task (which is an invalid locking op but in the case
2689 * of the scheduler it's an obvious special-case), so we
2690 * do an early lockdep release here:
2691 */
2692#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2693 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2694#endif
1da177e4
LT
2695
2696 /* Here we just switch the register state and the stack. */
2697 switch_to(prev, next, prev);
2698
dd41f596
IM
2699 barrier();
2700 /*
2701 * this_rq must be evaluated again because prev may have moved
2702 * CPUs since it called schedule(), thus the 'rq' on its stack
2703 * frame will be invalid.
2704 */
2705 finish_task_switch(this_rq(), prev);
1da177e4
LT
2706}
2707
2708/*
2709 * nr_running, nr_uninterruptible and nr_context_switches:
2710 *
2711 * externally visible scheduler statistics: current number of runnable
2712 * threads, current number of uninterruptible-sleeping threads, total
2713 * number of context switches performed since bootup.
2714 */
2715unsigned long nr_running(void)
2716{
2717 unsigned long i, sum = 0;
2718
2719 for_each_online_cpu(i)
2720 sum += cpu_rq(i)->nr_running;
2721
2722 return sum;
2723}
2724
2725unsigned long nr_uninterruptible(void)
2726{
2727 unsigned long i, sum = 0;
2728
0a945022 2729 for_each_possible_cpu(i)
1da177e4
LT
2730 sum += cpu_rq(i)->nr_uninterruptible;
2731
2732 /*
2733 * Since we read the counters lockless, it might be slightly
2734 * inaccurate. Do not allow it to go below zero though:
2735 */
2736 if (unlikely((long)sum < 0))
2737 sum = 0;
2738
2739 return sum;
2740}
2741
2742unsigned long long nr_context_switches(void)
2743{
cc94abfc
SR
2744 int i;
2745 unsigned long long sum = 0;
1da177e4 2746
0a945022 2747 for_each_possible_cpu(i)
1da177e4
LT
2748 sum += cpu_rq(i)->nr_switches;
2749
2750 return sum;
2751}
2752
2753unsigned long nr_iowait(void)
2754{
2755 unsigned long i, sum = 0;
2756
0a945022 2757 for_each_possible_cpu(i)
1da177e4
LT
2758 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2759
2760 return sum;
2761}
2762
db1b1fef
JS
2763unsigned long nr_active(void)
2764{
2765 unsigned long i, running = 0, uninterruptible = 0;
2766
2767 for_each_online_cpu(i) {
2768 running += cpu_rq(i)->nr_running;
2769 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2770 }
2771
2772 if (unlikely((long)uninterruptible < 0))
2773 uninterruptible = 0;
2774
2775 return running + uninterruptible;
2776}
2777
48f24c4d 2778/*
dd41f596
IM
2779 * Update rq->cpu_load[] statistics. This function is usually called every
2780 * scheduler tick (TICK_NSEC).
48f24c4d 2781 */
dd41f596 2782static void update_cpu_load(struct rq *this_rq)
48f24c4d 2783{
495eca49 2784 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2785 int i, scale;
2786
2787 this_rq->nr_load_updates++;
dd41f596
IM
2788
2789 /* Update our load: */
2790 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2791 unsigned long old_load, new_load;
2792
2793 /* scale is effectively 1 << i now, and >> i divides by scale */
2794
2795 old_load = this_rq->cpu_load[i];
2796 new_load = this_load;
a25707f3
IM
2797 /*
2798 * Round up the averaging division if load is increasing. This
2799 * prevents us from getting stuck on 9 if the load is 10, for
2800 * example.
2801 */
2802 if (new_load > old_load)
2803 new_load += scale-1;
dd41f596
IM
2804 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2805 }
48f24c4d
IM
2806}
2807
dd41f596
IM
2808#ifdef CONFIG_SMP
2809
1da177e4
LT
2810/*
2811 * double_rq_lock - safely lock two runqueues
2812 *
2813 * Note this does not disable interrupts like task_rq_lock,
2814 * you need to do so manually before calling.
2815 */
70b97a7f 2816static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2817 __acquires(rq1->lock)
2818 __acquires(rq2->lock)
2819{
054b9108 2820 BUG_ON(!irqs_disabled());
1da177e4
LT
2821 if (rq1 == rq2) {
2822 spin_lock(&rq1->lock);
2823 __acquire(rq2->lock); /* Fake it out ;) */
2824 } else {
c96d145e 2825 if (rq1 < rq2) {
1da177e4 2826 spin_lock(&rq1->lock);
5e710e37 2827 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2828 } else {
2829 spin_lock(&rq2->lock);
5e710e37 2830 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2831 }
2832 }
6e82a3be
IM
2833 update_rq_clock(rq1);
2834 update_rq_clock(rq2);
1da177e4
LT
2835}
2836
2837/*
2838 * double_rq_unlock - safely unlock two runqueues
2839 *
2840 * Note this does not restore interrupts like task_rq_unlock,
2841 * you need to do so manually after calling.
2842 */
70b97a7f 2843static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2844 __releases(rq1->lock)
2845 __releases(rq2->lock)
2846{
2847 spin_unlock(&rq1->lock);
2848 if (rq1 != rq2)
2849 spin_unlock(&rq2->lock);
2850 else
2851 __release(rq2->lock);
2852}
2853
1da177e4
LT
2854/*
2855 * If dest_cpu is allowed for this process, migrate the task to it.
2856 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2857 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2858 * the cpu_allowed mask is restored.
2859 */
36c8b586 2860static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2861{
70b97a7f 2862 struct migration_req req;
1da177e4 2863 unsigned long flags;
70b97a7f 2864 struct rq *rq;
1da177e4
LT
2865
2866 rq = task_rq_lock(p, &flags);
96f874e2 2867 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 2868 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2869 goto out;
2870
2871 /* force the process onto the specified CPU */
2872 if (migrate_task(p, dest_cpu, &req)) {
2873 /* Need to wait for migration thread (might exit: take ref). */
2874 struct task_struct *mt = rq->migration_thread;
36c8b586 2875
1da177e4
LT
2876 get_task_struct(mt);
2877 task_rq_unlock(rq, &flags);
2878 wake_up_process(mt);
2879 put_task_struct(mt);
2880 wait_for_completion(&req.done);
36c8b586 2881
1da177e4
LT
2882 return;
2883 }
2884out:
2885 task_rq_unlock(rq, &flags);
2886}
2887
2888/*
476d139c
NP
2889 * sched_exec - execve() is a valuable balancing opportunity, because at
2890 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2891 */
2892void sched_exec(void)
2893{
1da177e4 2894 int new_cpu, this_cpu = get_cpu();
476d139c 2895 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2896 put_cpu();
476d139c
NP
2897 if (new_cpu != this_cpu)
2898 sched_migrate_task(current, new_cpu);
1da177e4
LT
2899}
2900
2901/*
2902 * pull_task - move a task from a remote runqueue to the local runqueue.
2903 * Both runqueues must be locked.
2904 */
dd41f596
IM
2905static void pull_task(struct rq *src_rq, struct task_struct *p,
2906 struct rq *this_rq, int this_cpu)
1da177e4 2907{
2e1cb74a 2908 deactivate_task(src_rq, p, 0);
1da177e4 2909 set_task_cpu(p, this_cpu);
dd41f596 2910 activate_task(this_rq, p, 0);
1da177e4
LT
2911 /*
2912 * Note that idle threads have a prio of MAX_PRIO, for this test
2913 * to be always true for them.
2914 */
15afe09b 2915 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2916}
2917
2918/*
2919 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2920 */
858119e1 2921static
70b97a7f 2922int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2923 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2924 int *all_pinned)
1da177e4
LT
2925{
2926 /*
2927 * We do not migrate tasks that are:
2928 * 1) running (obviously), or
2929 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2930 * 3) are cache-hot on their current CPU.
2931 */
96f874e2 2932 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 2933 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2934 return 0;
cc367732 2935 }
81026794
NP
2936 *all_pinned = 0;
2937
cc367732
IM
2938 if (task_running(rq, p)) {
2939 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2940 return 0;
cc367732 2941 }
1da177e4 2942
da84d961
IM
2943 /*
2944 * Aggressive migration if:
2945 * 1) task is cache cold, or
2946 * 2) too many balance attempts have failed.
2947 */
2948
6bc1665b
IM
2949 if (!task_hot(p, rq->clock, sd) ||
2950 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2951#ifdef CONFIG_SCHEDSTATS
cc367732 2952 if (task_hot(p, rq->clock, sd)) {
da84d961 2953 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2954 schedstat_inc(p, se.nr_forced_migrations);
2955 }
da84d961
IM
2956#endif
2957 return 1;
2958 }
2959
cc367732
IM
2960 if (task_hot(p, rq->clock, sd)) {
2961 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2962 return 0;
cc367732 2963 }
1da177e4
LT
2964 return 1;
2965}
2966
e1d1484f
PW
2967static unsigned long
2968balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2969 unsigned long max_load_move, struct sched_domain *sd,
2970 enum cpu_idle_type idle, int *all_pinned,
2971 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2972{
051c6764 2973 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
2974 struct task_struct *p;
2975 long rem_load_move = max_load_move;
1da177e4 2976
e1d1484f 2977 if (max_load_move == 0)
1da177e4
LT
2978 goto out;
2979
81026794
NP
2980 pinned = 1;
2981
1da177e4 2982 /*
dd41f596 2983 * Start the load-balancing iterator:
1da177e4 2984 */
dd41f596
IM
2985 p = iterator->start(iterator->arg);
2986next:
b82d9fdd 2987 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2988 goto out;
051c6764
PZ
2989
2990 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 2991 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2992 p = iterator->next(iterator->arg);
2993 goto next;
1da177e4
LT
2994 }
2995
dd41f596 2996 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2997 pulled++;
dd41f596 2998 rem_load_move -= p->se.load.weight;
1da177e4 2999
2dd73a4f 3000 /*
b82d9fdd 3001 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3002 */
e1d1484f 3003 if (rem_load_move > 0) {
a4ac01c3
PW
3004 if (p->prio < *this_best_prio)
3005 *this_best_prio = p->prio;
dd41f596
IM
3006 p = iterator->next(iterator->arg);
3007 goto next;
1da177e4
LT
3008 }
3009out:
3010 /*
e1d1484f 3011 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3012 * so we can safely collect pull_task() stats here rather than
3013 * inside pull_task().
3014 */
3015 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3016
3017 if (all_pinned)
3018 *all_pinned = pinned;
e1d1484f
PW
3019
3020 return max_load_move - rem_load_move;
1da177e4
LT
3021}
3022
dd41f596 3023/*
43010659
PW
3024 * move_tasks tries to move up to max_load_move weighted load from busiest to
3025 * this_rq, as part of a balancing operation within domain "sd".
3026 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3027 *
3028 * Called with both runqueues locked.
3029 */
3030static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3031 unsigned long max_load_move,
dd41f596
IM
3032 struct sched_domain *sd, enum cpu_idle_type idle,
3033 int *all_pinned)
3034{
5522d5d5 3035 const struct sched_class *class = sched_class_highest;
43010659 3036 unsigned long total_load_moved = 0;
a4ac01c3 3037 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3038
3039 do {
43010659
PW
3040 total_load_moved +=
3041 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3042 max_load_move - total_load_moved,
a4ac01c3 3043 sd, idle, all_pinned, &this_best_prio);
dd41f596 3044 class = class->next;
c4acb2c0
GH
3045
3046 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3047 break;
3048
43010659 3049 } while (class && max_load_move > total_load_moved);
dd41f596 3050
43010659
PW
3051 return total_load_moved > 0;
3052}
3053
e1d1484f
PW
3054static int
3055iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3056 struct sched_domain *sd, enum cpu_idle_type idle,
3057 struct rq_iterator *iterator)
3058{
3059 struct task_struct *p = iterator->start(iterator->arg);
3060 int pinned = 0;
3061
3062 while (p) {
3063 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3064 pull_task(busiest, p, this_rq, this_cpu);
3065 /*
3066 * Right now, this is only the second place pull_task()
3067 * is called, so we can safely collect pull_task()
3068 * stats here rather than inside pull_task().
3069 */
3070 schedstat_inc(sd, lb_gained[idle]);
3071
3072 return 1;
3073 }
3074 p = iterator->next(iterator->arg);
3075 }
3076
3077 return 0;
3078}
3079
43010659
PW
3080/*
3081 * move_one_task tries to move exactly one task from busiest to this_rq, as
3082 * part of active balancing operations within "domain".
3083 * Returns 1 if successful and 0 otherwise.
3084 *
3085 * Called with both runqueues locked.
3086 */
3087static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3088 struct sched_domain *sd, enum cpu_idle_type idle)
3089{
5522d5d5 3090 const struct sched_class *class;
43010659
PW
3091
3092 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3093 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3094 return 1;
3095
3096 return 0;
dd41f596
IM
3097}
3098
1da177e4
LT
3099/*
3100 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3101 * domain. It calculates and returns the amount of weighted load which
3102 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3103 */
3104static struct sched_group *
3105find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3106 unsigned long *imbalance, enum cpu_idle_type idle,
96f874e2 3107 int *sd_idle, const struct cpumask *cpus, int *balance)
1da177e4
LT
3108{
3109 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3110 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3111 unsigned long max_pull;
2dd73a4f
PW
3112 unsigned long busiest_load_per_task, busiest_nr_running;
3113 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3114 int load_idx, group_imb = 0;
5c45bf27
SS
3115#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3116 int power_savings_balance = 1;
3117 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3118 unsigned long min_nr_running = ULONG_MAX;
3119 struct sched_group *group_min = NULL, *group_leader = NULL;
3120#endif
1da177e4
LT
3121
3122 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3123 busiest_load_per_task = busiest_nr_running = 0;
3124 this_load_per_task = this_nr_running = 0;
408ed066 3125
d15bcfdb 3126 if (idle == CPU_NOT_IDLE)
7897986b 3127 load_idx = sd->busy_idx;
d15bcfdb 3128 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3129 load_idx = sd->newidle_idx;
3130 else
3131 load_idx = sd->idle_idx;
1da177e4
LT
3132
3133 do {
908a7c1b 3134 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3135 int local_group;
3136 int i;
908a7c1b 3137 int __group_imb = 0;
783609c6 3138 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3139 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3140 unsigned long sum_avg_load_per_task;
3141 unsigned long avg_load_per_task;
1da177e4 3142
758b2cdc
RR
3143 local_group = cpumask_test_cpu(this_cpu,
3144 sched_group_cpus(group));
1da177e4 3145
783609c6 3146 if (local_group)
758b2cdc 3147 balance_cpu = cpumask_first(sched_group_cpus(group));
783609c6 3148
1da177e4 3149 /* Tally up the load of all CPUs in the group */
2dd73a4f 3150 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3151 sum_avg_load_per_task = avg_load_per_task = 0;
3152
908a7c1b
KC
3153 max_cpu_load = 0;
3154 min_cpu_load = ~0UL;
1da177e4 3155
758b2cdc
RR
3156 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3157 struct rq *rq = cpu_rq(i);
2dd73a4f 3158
9439aab8 3159 if (*sd_idle && rq->nr_running)
5969fe06
NP
3160 *sd_idle = 0;
3161
1da177e4 3162 /* Bias balancing toward cpus of our domain */
783609c6
SS
3163 if (local_group) {
3164 if (idle_cpu(i) && !first_idle_cpu) {
3165 first_idle_cpu = 1;
3166 balance_cpu = i;
3167 }
3168
a2000572 3169 load = target_load(i, load_idx);
908a7c1b 3170 } else {
a2000572 3171 load = source_load(i, load_idx);
908a7c1b
KC
3172 if (load > max_cpu_load)
3173 max_cpu_load = load;
3174 if (min_cpu_load > load)
3175 min_cpu_load = load;
3176 }
1da177e4
LT
3177
3178 avg_load += load;
2dd73a4f 3179 sum_nr_running += rq->nr_running;
dd41f596 3180 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3181
3182 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3183 }
3184
783609c6
SS
3185 /*
3186 * First idle cpu or the first cpu(busiest) in this sched group
3187 * is eligible for doing load balancing at this and above
9439aab8
SS
3188 * domains. In the newly idle case, we will allow all the cpu's
3189 * to do the newly idle load balance.
783609c6 3190 */
9439aab8
SS
3191 if (idle != CPU_NEWLY_IDLE && local_group &&
3192 balance_cpu != this_cpu && balance) {
783609c6
SS
3193 *balance = 0;
3194 goto ret;
3195 }
3196
1da177e4 3197 total_load += avg_load;
5517d86b 3198 total_pwr += group->__cpu_power;
1da177e4
LT
3199
3200 /* Adjust by relative CPU power of the group */
5517d86b
ED
3201 avg_load = sg_div_cpu_power(group,
3202 avg_load * SCHED_LOAD_SCALE);
1da177e4 3203
408ed066
PZ
3204
3205 /*
3206 * Consider the group unbalanced when the imbalance is larger
3207 * than the average weight of two tasks.
3208 *
3209 * APZ: with cgroup the avg task weight can vary wildly and
3210 * might not be a suitable number - should we keep a
3211 * normalized nr_running number somewhere that negates
3212 * the hierarchy?
3213 */
3214 avg_load_per_task = sg_div_cpu_power(group,
3215 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3216
3217 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3218 __group_imb = 1;
3219
5517d86b 3220 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3221
1da177e4
LT
3222 if (local_group) {
3223 this_load = avg_load;
3224 this = group;
2dd73a4f
PW
3225 this_nr_running = sum_nr_running;
3226 this_load_per_task = sum_weighted_load;
3227 } else if (avg_load > max_load &&
908a7c1b 3228 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3229 max_load = avg_load;
3230 busiest = group;
2dd73a4f
PW
3231 busiest_nr_running = sum_nr_running;
3232 busiest_load_per_task = sum_weighted_load;
908a7c1b 3233 group_imb = __group_imb;
1da177e4 3234 }
5c45bf27
SS
3235
3236#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3237 /*
3238 * Busy processors will not participate in power savings
3239 * balance.
3240 */
dd41f596
IM
3241 if (idle == CPU_NOT_IDLE ||
3242 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3243 goto group_next;
5c45bf27
SS
3244
3245 /*
3246 * If the local group is idle or completely loaded
3247 * no need to do power savings balance at this domain
3248 */
3249 if (local_group && (this_nr_running >= group_capacity ||
3250 !this_nr_running))
3251 power_savings_balance = 0;
3252
dd41f596 3253 /*
5c45bf27
SS
3254 * If a group is already running at full capacity or idle,
3255 * don't include that group in power savings calculations
dd41f596
IM
3256 */
3257 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3258 || !sum_nr_running)
dd41f596 3259 goto group_next;
5c45bf27 3260
dd41f596 3261 /*
5c45bf27 3262 * Calculate the group which has the least non-idle load.
dd41f596
IM
3263 * This is the group from where we need to pick up the load
3264 * for saving power
3265 */
3266 if ((sum_nr_running < min_nr_running) ||
3267 (sum_nr_running == min_nr_running &&
d5679bd1 3268 cpumask_first(sched_group_cpus(group)) >
758b2cdc 3269 cpumask_first(sched_group_cpus(group_min)))) {
dd41f596
IM
3270 group_min = group;
3271 min_nr_running = sum_nr_running;
5c45bf27
SS
3272 min_load_per_task = sum_weighted_load /
3273 sum_nr_running;
dd41f596 3274 }
5c45bf27 3275
dd41f596 3276 /*
5c45bf27 3277 * Calculate the group which is almost near its
dd41f596
IM
3278 * capacity but still has some space to pick up some load
3279 * from other group and save more power
3280 */
3281 if (sum_nr_running <= group_capacity - 1) {
3282 if (sum_nr_running > leader_nr_running ||
3283 (sum_nr_running == leader_nr_running &&
d5679bd1 3284 cpumask_first(sched_group_cpus(group)) <
758b2cdc 3285 cpumask_first(sched_group_cpus(group_leader)))) {
dd41f596
IM
3286 group_leader = group;
3287 leader_nr_running = sum_nr_running;
3288 }
48f24c4d 3289 }
5c45bf27
SS
3290group_next:
3291#endif
1da177e4
LT
3292 group = group->next;
3293 } while (group != sd->groups);
3294
2dd73a4f 3295 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3296 goto out_balanced;
3297
3298 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3299
3300 if (this_load >= avg_load ||
3301 100*max_load <= sd->imbalance_pct*this_load)
3302 goto out_balanced;
3303
2dd73a4f 3304 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3305 if (group_imb)
3306 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3307
1da177e4
LT
3308 /*
3309 * We're trying to get all the cpus to the average_load, so we don't
3310 * want to push ourselves above the average load, nor do we wish to
3311 * reduce the max loaded cpu below the average load, as either of these
3312 * actions would just result in more rebalancing later, and ping-pong
3313 * tasks around. Thus we look for the minimum possible imbalance.
3314 * Negative imbalances (*we* are more loaded than anyone else) will
3315 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3316 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3317 * appear as very large values with unsigned longs.
3318 */
2dd73a4f
PW
3319 if (max_load <= busiest_load_per_task)
3320 goto out_balanced;
3321
3322 /*
3323 * In the presence of smp nice balancing, certain scenarios can have
3324 * max load less than avg load(as we skip the groups at or below
3325 * its cpu_power, while calculating max_load..)
3326 */
3327 if (max_load < avg_load) {
3328 *imbalance = 0;
3329 goto small_imbalance;
3330 }
0c117f1b
SS
3331
3332 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3333 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3334
1da177e4 3335 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3336 *imbalance = min(max_pull * busiest->__cpu_power,
3337 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3338 / SCHED_LOAD_SCALE;
3339
2dd73a4f
PW
3340 /*
3341 * if *imbalance is less than the average load per runnable task
3342 * there is no gaurantee that any tasks will be moved so we'll have
3343 * a think about bumping its value to force at least one task to be
3344 * moved
3345 */
7fd0d2dd 3346 if (*imbalance < busiest_load_per_task) {
48f24c4d 3347 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3348 unsigned int imbn;
3349
3350small_imbalance:
3351 pwr_move = pwr_now = 0;
3352 imbn = 2;
3353 if (this_nr_running) {
3354 this_load_per_task /= this_nr_running;
3355 if (busiest_load_per_task > this_load_per_task)
3356 imbn = 1;
3357 } else
408ed066 3358 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3359
01c8c57d 3360 if (max_load - this_load + busiest_load_per_task >=
dd41f596 3361 busiest_load_per_task * imbn) {
2dd73a4f 3362 *imbalance = busiest_load_per_task;
1da177e4
LT
3363 return busiest;
3364 }
3365
3366 /*
3367 * OK, we don't have enough imbalance to justify moving tasks,
3368 * however we may be able to increase total CPU power used by
3369 * moving them.
3370 */
3371
5517d86b
ED
3372 pwr_now += busiest->__cpu_power *
3373 min(busiest_load_per_task, max_load);
3374 pwr_now += this->__cpu_power *
3375 min(this_load_per_task, this_load);
1da177e4
LT
3376 pwr_now /= SCHED_LOAD_SCALE;
3377
3378 /* Amount of load we'd subtract */
5517d86b
ED
3379 tmp = sg_div_cpu_power(busiest,
3380 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3381 if (max_load > tmp)
5517d86b 3382 pwr_move += busiest->__cpu_power *
2dd73a4f 3383 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3384
3385 /* Amount of load we'd add */
5517d86b 3386 if (max_load * busiest->__cpu_power <
33859f7f 3387 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3388 tmp = sg_div_cpu_power(this,
3389 max_load * busiest->__cpu_power);
1da177e4 3390 else
5517d86b
ED
3391 tmp = sg_div_cpu_power(this,
3392 busiest_load_per_task * SCHED_LOAD_SCALE);
3393 pwr_move += this->__cpu_power *
3394 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3395 pwr_move /= SCHED_LOAD_SCALE;
3396
3397 /* Move if we gain throughput */
7fd0d2dd
SS
3398 if (pwr_move > pwr_now)
3399 *imbalance = busiest_load_per_task;
1da177e4
LT
3400 }
3401
1da177e4
LT
3402 return busiest;
3403
3404out_balanced:
5c45bf27 3405#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3406 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3407 goto ret;
1da177e4 3408
5c45bf27
SS
3409 if (this == group_leader && group_leader != group_min) {
3410 *imbalance = min_load_per_task;
7a09b1a2
VS
3411 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3412 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
9924da43 3413 cpumask_first(sched_group_cpus(group_leader));
7a09b1a2 3414 }
5c45bf27
SS
3415 return group_min;
3416 }
5c45bf27 3417#endif
783609c6 3418ret:
1da177e4
LT
3419 *imbalance = 0;
3420 return NULL;
3421}
3422
3423/*
3424 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3425 */
70b97a7f 3426static struct rq *
d15bcfdb 3427find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3428 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3429{
70b97a7f 3430 struct rq *busiest = NULL, *rq;
2dd73a4f 3431 unsigned long max_load = 0;
1da177e4
LT
3432 int i;
3433
758b2cdc 3434 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3435 unsigned long wl;
0a2966b4 3436
96f874e2 3437 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3438 continue;
3439
48f24c4d 3440 rq = cpu_rq(i);
dd41f596 3441 wl = weighted_cpuload(i);
2dd73a4f 3442
dd41f596 3443 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3444 continue;
1da177e4 3445
dd41f596
IM
3446 if (wl > max_load) {
3447 max_load = wl;
48f24c4d 3448 busiest = rq;
1da177e4
LT
3449 }
3450 }
3451
3452 return busiest;
3453}
3454
77391d71
NP
3455/*
3456 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3457 * so long as it is large enough.
3458 */
3459#define MAX_PINNED_INTERVAL 512
3460
1da177e4
LT
3461/*
3462 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3463 * tasks if there is an imbalance.
1da177e4 3464 */
70b97a7f 3465static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3466 struct sched_domain *sd, enum cpu_idle_type idle,
96f874e2 3467 int *balance, struct cpumask *cpus)
1da177e4 3468{
43010659 3469 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3470 struct sched_group *group;
1da177e4 3471 unsigned long imbalance;
70b97a7f 3472 struct rq *busiest;
fe2eea3f 3473 unsigned long flags;
5969fe06 3474
96f874e2 3475 cpumask_setall(cpus);
7c16ec58 3476
89c4710e
SS
3477 /*
3478 * When power savings policy is enabled for the parent domain, idle
3479 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3480 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3481 * portraying it as CPU_NOT_IDLE.
89c4710e 3482 */
d15bcfdb 3483 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3484 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3485 sd_idle = 1;
1da177e4 3486
2d72376b 3487 schedstat_inc(sd, lb_count[idle]);
1da177e4 3488
0a2966b4 3489redo:
c8cba857 3490 update_shares(sd);
0a2966b4 3491 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3492 cpus, balance);
783609c6 3493
06066714 3494 if (*balance == 0)
783609c6 3495 goto out_balanced;
783609c6 3496
1da177e4
LT
3497 if (!group) {
3498 schedstat_inc(sd, lb_nobusyg[idle]);
3499 goto out_balanced;
3500 }
3501
7c16ec58 3502 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3503 if (!busiest) {
3504 schedstat_inc(sd, lb_nobusyq[idle]);
3505 goto out_balanced;
3506 }
3507
db935dbd 3508 BUG_ON(busiest == this_rq);
1da177e4
LT
3509
3510 schedstat_add(sd, lb_imbalance[idle], imbalance);
3511
43010659 3512 ld_moved = 0;
1da177e4
LT
3513 if (busiest->nr_running > 1) {
3514 /*
3515 * Attempt to move tasks. If find_busiest_group has found
3516 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3517 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3518 * correctly treated as an imbalance.
3519 */
fe2eea3f 3520 local_irq_save(flags);
e17224bf 3521 double_rq_lock(this_rq, busiest);
43010659 3522 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3523 imbalance, sd, idle, &all_pinned);
e17224bf 3524 double_rq_unlock(this_rq, busiest);
fe2eea3f 3525 local_irq_restore(flags);
81026794 3526
46cb4b7c
SS
3527 /*
3528 * some other cpu did the load balance for us.
3529 */
43010659 3530 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3531 resched_cpu(this_cpu);
3532
81026794 3533 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3534 if (unlikely(all_pinned)) {
96f874e2
RR
3535 cpumask_clear_cpu(cpu_of(busiest), cpus);
3536 if (!cpumask_empty(cpus))
0a2966b4 3537 goto redo;
81026794 3538 goto out_balanced;
0a2966b4 3539 }
1da177e4 3540 }
81026794 3541
43010659 3542 if (!ld_moved) {
1da177e4
LT
3543 schedstat_inc(sd, lb_failed[idle]);
3544 sd->nr_balance_failed++;
3545
3546 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3547
fe2eea3f 3548 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3549
3550 /* don't kick the migration_thread, if the curr
3551 * task on busiest cpu can't be moved to this_cpu
3552 */
96f874e2
RR
3553 if (!cpumask_test_cpu(this_cpu,
3554 &busiest->curr->cpus_allowed)) {
fe2eea3f 3555 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3556 all_pinned = 1;
3557 goto out_one_pinned;
3558 }
3559
1da177e4
LT
3560 if (!busiest->active_balance) {
3561 busiest->active_balance = 1;
3562 busiest->push_cpu = this_cpu;
81026794 3563 active_balance = 1;
1da177e4 3564 }
fe2eea3f 3565 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3566 if (active_balance)
1da177e4
LT
3567 wake_up_process(busiest->migration_thread);
3568
3569 /*
3570 * We've kicked active balancing, reset the failure
3571 * counter.
3572 */
39507451 3573 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3574 }
81026794 3575 } else
1da177e4
LT
3576 sd->nr_balance_failed = 0;
3577
81026794 3578 if (likely(!active_balance)) {
1da177e4
LT
3579 /* We were unbalanced, so reset the balancing interval */
3580 sd->balance_interval = sd->min_interval;
81026794
NP
3581 } else {
3582 /*
3583 * If we've begun active balancing, start to back off. This
3584 * case may not be covered by the all_pinned logic if there
3585 * is only 1 task on the busy runqueue (because we don't call
3586 * move_tasks).
3587 */
3588 if (sd->balance_interval < sd->max_interval)
3589 sd->balance_interval *= 2;
1da177e4
LT
3590 }
3591
43010659 3592 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3593 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3594 ld_moved = -1;
3595
3596 goto out;
1da177e4
LT
3597
3598out_balanced:
1da177e4
LT
3599 schedstat_inc(sd, lb_balanced[idle]);
3600
16cfb1c0 3601 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3602
3603out_one_pinned:
1da177e4 3604 /* tune up the balancing interval */
77391d71
NP
3605 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3606 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3607 sd->balance_interval *= 2;
3608
48f24c4d 3609 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3610 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3611 ld_moved = -1;
3612 else
3613 ld_moved = 0;
3614out:
c8cba857
PZ
3615 if (ld_moved)
3616 update_shares(sd);
c09595f6 3617 return ld_moved;
1da177e4
LT
3618}
3619
3620/*
3621 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3622 * tasks if there is an imbalance.
3623 *
d15bcfdb 3624 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3625 * this_rq is locked.
3626 */
48f24c4d 3627static int
7c16ec58 3628load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
96f874e2 3629 struct cpumask *cpus)
1da177e4
LT
3630{
3631 struct sched_group *group;
70b97a7f 3632 struct rq *busiest = NULL;
1da177e4 3633 unsigned long imbalance;
43010659 3634 int ld_moved = 0;
5969fe06 3635 int sd_idle = 0;
969bb4e4 3636 int all_pinned = 0;
7c16ec58 3637
96f874e2 3638 cpumask_setall(cpus);
5969fe06 3639
89c4710e
SS
3640 /*
3641 * When power savings policy is enabled for the parent domain, idle
3642 * sibling can pick up load irrespective of busy siblings. In this case,
3643 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3644 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3645 */
3646 if (sd->flags & SD_SHARE_CPUPOWER &&
3647 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3648 sd_idle = 1;
1da177e4 3649
2d72376b 3650 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3651redo:
3e5459b4 3652 update_shares_locked(this_rq, sd);
d15bcfdb 3653 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3654 &sd_idle, cpus, NULL);
1da177e4 3655 if (!group) {
d15bcfdb 3656 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3657 goto out_balanced;
1da177e4
LT
3658 }
3659
7c16ec58 3660 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3661 if (!busiest) {
d15bcfdb 3662 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3663 goto out_balanced;
1da177e4
LT
3664 }
3665
db935dbd
NP
3666 BUG_ON(busiest == this_rq);
3667
d15bcfdb 3668 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3669
43010659 3670 ld_moved = 0;
d6d5cfaf
NP
3671 if (busiest->nr_running > 1) {
3672 /* Attempt to move tasks */
3673 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3674 /* this_rq->clock is already updated */
3675 update_rq_clock(busiest);
43010659 3676 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3677 imbalance, sd, CPU_NEWLY_IDLE,
3678 &all_pinned);
1b12bbc7 3679 double_unlock_balance(this_rq, busiest);
0a2966b4 3680
969bb4e4 3681 if (unlikely(all_pinned)) {
96f874e2
RR
3682 cpumask_clear_cpu(cpu_of(busiest), cpus);
3683 if (!cpumask_empty(cpus))
0a2966b4
CL
3684 goto redo;
3685 }
d6d5cfaf
NP
3686 }
3687
43010659 3688 if (!ld_moved) {
36dffab6 3689 int active_balance = 0;
ad273b32 3690
d15bcfdb 3691 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3692 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3693 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3694 return -1;
ad273b32
VS
3695
3696 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3697 return -1;
3698
3699 if (sd->nr_balance_failed++ < 2)
3700 return -1;
3701
3702 /*
3703 * The only task running in a non-idle cpu can be moved to this
3704 * cpu in an attempt to completely freeup the other CPU
3705 * package. The same method used to move task in load_balance()
3706 * have been extended for load_balance_newidle() to speedup
3707 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3708 *
3709 * The package power saving logic comes from
3710 * find_busiest_group(). If there are no imbalance, then
3711 * f_b_g() will return NULL. However when sched_mc={1,2} then
3712 * f_b_g() will select a group from which a running task may be
3713 * pulled to this cpu in order to make the other package idle.
3714 * If there is no opportunity to make a package idle and if
3715 * there are no imbalance, then f_b_g() will return NULL and no
3716 * action will be taken in load_balance_newidle().
3717 *
3718 * Under normal task pull operation due to imbalance, there
3719 * will be more than one task in the source run queue and
3720 * move_tasks() will succeed. ld_moved will be true and this
3721 * active balance code will not be triggered.
3722 */
3723
3724 /* Lock busiest in correct order while this_rq is held */
3725 double_lock_balance(this_rq, busiest);
3726
3727 /*
3728 * don't kick the migration_thread, if the curr
3729 * task on busiest cpu can't be moved to this_cpu
3730 */
6ca09dfc 3731 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
3732 double_unlock_balance(this_rq, busiest);
3733 all_pinned = 1;
3734 return ld_moved;
3735 }
3736
3737 if (!busiest->active_balance) {
3738 busiest->active_balance = 1;
3739 busiest->push_cpu = this_cpu;
3740 active_balance = 1;
3741 }
3742
3743 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
3744 /*
3745 * Should not call ttwu while holding a rq->lock
3746 */
3747 spin_unlock(&this_rq->lock);
ad273b32
VS
3748 if (active_balance)
3749 wake_up_process(busiest->migration_thread);
da8d5089 3750 spin_lock(&this_rq->lock);
ad273b32 3751
5969fe06 3752 } else
16cfb1c0 3753 sd->nr_balance_failed = 0;
1da177e4 3754
3e5459b4 3755 update_shares_locked(this_rq, sd);
43010659 3756 return ld_moved;
16cfb1c0
NP
3757
3758out_balanced:
d15bcfdb 3759 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3760 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3761 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3762 return -1;
16cfb1c0 3763 sd->nr_balance_failed = 0;
48f24c4d 3764
16cfb1c0 3765 return 0;
1da177e4
LT
3766}
3767
3768/*
3769 * idle_balance is called by schedule() if this_cpu is about to become
3770 * idle. Attempts to pull tasks from other CPUs.
3771 */
70b97a7f 3772static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3773{
3774 struct sched_domain *sd;
efbe027e 3775 int pulled_task = 0;
dd41f596 3776 unsigned long next_balance = jiffies + HZ;
4d2732c6
RR
3777 cpumask_var_t tmpmask;
3778
3779 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3780 return;
1da177e4
LT
3781
3782 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3783 unsigned long interval;
3784
3785 if (!(sd->flags & SD_LOAD_BALANCE))
3786 continue;
3787
3788 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3789 /* If we've pulled tasks over stop searching: */
7c16ec58 3790 pulled_task = load_balance_newidle(this_cpu, this_rq,
4d2732c6 3791 sd, tmpmask);
92c4ca5c
CL
3792
3793 interval = msecs_to_jiffies(sd->balance_interval);
3794 if (time_after(next_balance, sd->last_balance + interval))
3795 next_balance = sd->last_balance + interval;
3796 if (pulled_task)
3797 break;
1da177e4 3798 }
dd41f596 3799 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3800 /*
3801 * We are going idle. next_balance may be set based on
3802 * a busy processor. So reset next_balance.
3803 */
3804 this_rq->next_balance = next_balance;
dd41f596 3805 }
4d2732c6 3806 free_cpumask_var(tmpmask);
1da177e4
LT
3807}
3808
3809/*
3810 * active_load_balance is run by migration threads. It pushes running tasks
3811 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3812 * running on each physical CPU where possible, and avoids physical /
3813 * logical imbalances.
3814 *
3815 * Called with busiest_rq locked.
3816 */
70b97a7f 3817static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3818{
39507451 3819 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3820 struct sched_domain *sd;
3821 struct rq *target_rq;
39507451 3822
48f24c4d 3823 /* Is there any task to move? */
39507451 3824 if (busiest_rq->nr_running <= 1)
39507451
NP
3825 return;
3826
3827 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3828
3829 /*
39507451 3830 * This condition is "impossible", if it occurs
41a2d6cf 3831 * we need to fix it. Originally reported by
39507451 3832 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3833 */
39507451 3834 BUG_ON(busiest_rq == target_rq);
1da177e4 3835
39507451
NP
3836 /* move a task from busiest_rq to target_rq */
3837 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3838 update_rq_clock(busiest_rq);
3839 update_rq_clock(target_rq);
39507451
NP
3840
3841 /* Search for an sd spanning us and the target CPU. */
c96d145e 3842 for_each_domain(target_cpu, sd) {
39507451 3843 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 3844 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 3845 break;
c96d145e 3846 }
39507451 3847
48f24c4d 3848 if (likely(sd)) {
2d72376b 3849 schedstat_inc(sd, alb_count);
39507451 3850
43010659
PW
3851 if (move_one_task(target_rq, target_cpu, busiest_rq,
3852 sd, CPU_IDLE))
48f24c4d
IM
3853 schedstat_inc(sd, alb_pushed);
3854 else
3855 schedstat_inc(sd, alb_failed);
3856 }
1b12bbc7 3857 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
3858}
3859
46cb4b7c
SS
3860#ifdef CONFIG_NO_HZ
3861static struct {
3862 atomic_t load_balancer;
7d1e6a9b 3863 cpumask_var_t cpu_mask;
46cb4b7c
SS
3864} nohz ____cacheline_aligned = {
3865 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
3866};
3867
7835b98b 3868/*
46cb4b7c
SS
3869 * This routine will try to nominate the ilb (idle load balancing)
3870 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3871 * load balancing on behalf of all those cpus. If all the cpus in the system
3872 * go into this tickless mode, then there will be no ilb owner (as there is
3873 * no need for one) and all the cpus will sleep till the next wakeup event
3874 * arrives...
3875 *
3876 * For the ilb owner, tick is not stopped. And this tick will be used
3877 * for idle load balancing. ilb owner will still be part of
3878 * nohz.cpu_mask..
7835b98b 3879 *
46cb4b7c
SS
3880 * While stopping the tick, this cpu will become the ilb owner if there
3881 * is no other owner. And will be the owner till that cpu becomes busy
3882 * or if all cpus in the system stop their ticks at which point
3883 * there is no need for ilb owner.
3884 *
3885 * When the ilb owner becomes busy, it nominates another owner, during the
3886 * next busy scheduler_tick()
3887 */
3888int select_nohz_load_balancer(int stop_tick)
3889{
3890 int cpu = smp_processor_id();
3891
3892 if (stop_tick) {
7d1e6a9b 3893 cpumask_set_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
3894 cpu_rq(cpu)->in_nohz_recently = 1;
3895
3896 /*
3897 * If we are going offline and still the leader, give up!
3898 */
e761b772 3899 if (!cpu_active(cpu) &&
46cb4b7c
SS
3900 atomic_read(&nohz.load_balancer) == cpu) {
3901 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3902 BUG();
3903 return 0;
3904 }
3905
3906 /* time for ilb owner also to sleep */
7d1e6a9b 3907 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
3908 if (atomic_read(&nohz.load_balancer) == cpu)
3909 atomic_set(&nohz.load_balancer, -1);
3910 return 0;
3911 }
3912
3913 if (atomic_read(&nohz.load_balancer) == -1) {
3914 /* make me the ilb owner */
3915 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3916 return 1;
3917 } else if (atomic_read(&nohz.load_balancer) == cpu)
3918 return 1;
3919 } else {
7d1e6a9b 3920 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
3921 return 0;
3922
7d1e6a9b 3923 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
3924
3925 if (atomic_read(&nohz.load_balancer) == cpu)
3926 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3927 BUG();
3928 }
3929 return 0;
3930}
3931#endif
3932
3933static DEFINE_SPINLOCK(balancing);
3934
3935/*
7835b98b
CL
3936 * It checks each scheduling domain to see if it is due to be balanced,
3937 * and initiates a balancing operation if so.
3938 *
3939 * Balancing parameters are set up in arch_init_sched_domains.
3940 */
a9957449 3941static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3942{
46cb4b7c
SS
3943 int balance = 1;
3944 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3945 unsigned long interval;
3946 struct sched_domain *sd;
46cb4b7c 3947 /* Earliest time when we have to do rebalance again */
c9819f45 3948 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3949 int update_next_balance = 0;
d07355f5 3950 int need_serialize;
a0e90245
RR
3951 cpumask_var_t tmp;
3952
3953 /* Fails alloc? Rebalancing probably not a priority right now. */
3954 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
3955 return;
1da177e4 3956
46cb4b7c 3957 for_each_domain(cpu, sd) {
1da177e4
LT
3958 if (!(sd->flags & SD_LOAD_BALANCE))
3959 continue;
3960
3961 interval = sd->balance_interval;
d15bcfdb 3962 if (idle != CPU_IDLE)
1da177e4
LT
3963 interval *= sd->busy_factor;
3964
3965 /* scale ms to jiffies */
3966 interval = msecs_to_jiffies(interval);
3967 if (unlikely(!interval))
3968 interval = 1;
dd41f596
IM
3969 if (interval > HZ*NR_CPUS/10)
3970 interval = HZ*NR_CPUS/10;
3971
d07355f5 3972 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3973
d07355f5 3974 if (need_serialize) {
08c183f3
CL
3975 if (!spin_trylock(&balancing))
3976 goto out;
3977 }
3978
c9819f45 3979 if (time_after_eq(jiffies, sd->last_balance + interval)) {
a0e90245 3980 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
fa3b6ddc
SS
3981 /*
3982 * We've pulled tasks over so either we're no
5969fe06
NP
3983 * longer idle, or one of our SMT siblings is
3984 * not idle.
3985 */
d15bcfdb 3986 idle = CPU_NOT_IDLE;
1da177e4 3987 }
1bd77f2d 3988 sd->last_balance = jiffies;
1da177e4 3989 }
d07355f5 3990 if (need_serialize)
08c183f3
CL
3991 spin_unlock(&balancing);
3992out:
f549da84 3993 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3994 next_balance = sd->last_balance + interval;
f549da84
SS
3995 update_next_balance = 1;
3996 }
783609c6
SS
3997
3998 /*
3999 * Stop the load balance at this level. There is another
4000 * CPU in our sched group which is doing load balancing more
4001 * actively.
4002 */
4003 if (!balance)
4004 break;
1da177e4 4005 }
f549da84
SS
4006
4007 /*
4008 * next_balance will be updated only when there is a need.
4009 * When the cpu is attached to null domain for ex, it will not be
4010 * updated.
4011 */
4012 if (likely(update_next_balance))
4013 rq->next_balance = next_balance;
a0e90245
RR
4014
4015 free_cpumask_var(tmp);
46cb4b7c
SS
4016}
4017
4018/*
4019 * run_rebalance_domains is triggered when needed from the scheduler tick.
4020 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4021 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4022 */
4023static void run_rebalance_domains(struct softirq_action *h)
4024{
dd41f596
IM
4025 int this_cpu = smp_processor_id();
4026 struct rq *this_rq = cpu_rq(this_cpu);
4027 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4028 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4029
dd41f596 4030 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4031
4032#ifdef CONFIG_NO_HZ
4033 /*
4034 * If this cpu is the owner for idle load balancing, then do the
4035 * balancing on behalf of the other idle cpus whose ticks are
4036 * stopped.
4037 */
dd41f596
IM
4038 if (this_rq->idle_at_tick &&
4039 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4040 struct rq *rq;
4041 int balance_cpu;
4042
7d1e6a9b
RR
4043 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4044 if (balance_cpu == this_cpu)
4045 continue;
4046
46cb4b7c
SS
4047 /*
4048 * If this cpu gets work to do, stop the load balancing
4049 * work being done for other cpus. Next load
4050 * balancing owner will pick it up.
4051 */
4052 if (need_resched())
4053 break;
4054
de0cf899 4055 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4056
4057 rq = cpu_rq(balance_cpu);
dd41f596
IM
4058 if (time_after(this_rq->next_balance, rq->next_balance))
4059 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4060 }
4061 }
4062#endif
4063}
4064
4065/*
4066 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4067 *
4068 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4069 * idle load balancing owner or decide to stop the periodic load balancing,
4070 * if the whole system is idle.
4071 */
dd41f596 4072static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4073{
46cb4b7c
SS
4074#ifdef CONFIG_NO_HZ
4075 /*
4076 * If we were in the nohz mode recently and busy at the current
4077 * scheduler tick, then check if we need to nominate new idle
4078 * load balancer.
4079 */
4080 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4081 rq->in_nohz_recently = 0;
4082
4083 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4084 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4085 atomic_set(&nohz.load_balancer, -1);
4086 }
4087
4088 if (atomic_read(&nohz.load_balancer) == -1) {
4089 /*
4090 * simple selection for now: Nominate the
4091 * first cpu in the nohz list to be the next
4092 * ilb owner.
4093 *
4094 * TBD: Traverse the sched domains and nominate
4095 * the nearest cpu in the nohz.cpu_mask.
4096 */
7d1e6a9b 4097 int ilb = cpumask_first(nohz.cpu_mask);
46cb4b7c 4098
434d53b0 4099 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4100 resched_cpu(ilb);
4101 }
4102 }
4103
4104 /*
4105 * If this cpu is idle and doing idle load balancing for all the
4106 * cpus with ticks stopped, is it time for that to stop?
4107 */
4108 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4109 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4110 resched_cpu(cpu);
4111 return;
4112 }
4113
4114 /*
4115 * If this cpu is idle and the idle load balancing is done by
4116 * someone else, then no need raise the SCHED_SOFTIRQ
4117 */
4118 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4119 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4120 return;
4121#endif
4122 if (time_after_eq(jiffies, rq->next_balance))
4123 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4124}
dd41f596
IM
4125
4126#else /* CONFIG_SMP */
4127
1da177e4
LT
4128/*
4129 * on UP we do not need to balance between CPUs:
4130 */
70b97a7f 4131static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4132{
4133}
dd41f596 4134
1da177e4
LT
4135#endif
4136
1da177e4
LT
4137DEFINE_PER_CPU(struct kernel_stat, kstat);
4138
4139EXPORT_PER_CPU_SYMBOL(kstat);
4140
4141/*
f06febc9
FM
4142 * Return any ns on the sched_clock that have not yet been banked in
4143 * @p in case that task is currently running.
1da177e4 4144 */
bb34d92f 4145unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4146{
1da177e4 4147 unsigned long flags;
41b86e9c 4148 struct rq *rq;
bb34d92f 4149 u64 ns = 0;
48f24c4d 4150
41b86e9c 4151 rq = task_rq_lock(p, &flags);
1508487e 4152
051a1d1a 4153 if (task_current(rq, p)) {
f06febc9
FM
4154 u64 delta_exec;
4155
a8e504d2
IM
4156 update_rq_clock(rq);
4157 delta_exec = rq->clock - p->se.exec_start;
41b86e9c 4158 if ((s64)delta_exec > 0)
bb34d92f 4159 ns = delta_exec;
41b86e9c 4160 }
48f24c4d 4161
41b86e9c 4162 task_rq_unlock(rq, &flags);
48f24c4d 4163
1da177e4
LT
4164 return ns;
4165}
4166
1da177e4
LT
4167/*
4168 * Account user cpu time to a process.
4169 * @p: the process that the cpu time gets accounted to
1da177e4 4170 * @cputime: the cpu time spent in user space since the last update
457533a7 4171 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4172 */
457533a7
MS
4173void account_user_time(struct task_struct *p, cputime_t cputime,
4174 cputime_t cputime_scaled)
1da177e4
LT
4175{
4176 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4177 cputime64_t tmp;
4178
457533a7 4179 /* Add user time to process. */
1da177e4 4180 p->utime = cputime_add(p->utime, cputime);
457533a7 4181 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4182 account_group_user_time(p, cputime);
1da177e4
LT
4183
4184 /* Add user time to cpustat. */
4185 tmp = cputime_to_cputime64(cputime);
4186 if (TASK_NICE(p) > 0)
4187 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4188 else
4189 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4190 /* Account for user time used */
4191 acct_update_integrals(p);
1da177e4
LT
4192}
4193
94886b84
LV
4194/*
4195 * Account guest cpu time to a process.
4196 * @p: the process that the cpu time gets accounted to
4197 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4198 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4199 */
457533a7
MS
4200static void account_guest_time(struct task_struct *p, cputime_t cputime,
4201 cputime_t cputime_scaled)
94886b84
LV
4202{
4203 cputime64_t tmp;
4204 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4205
4206 tmp = cputime_to_cputime64(cputime);
4207
457533a7 4208 /* Add guest time to process. */
94886b84 4209 p->utime = cputime_add(p->utime, cputime);
457533a7 4210 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4211 account_group_user_time(p, cputime);
94886b84
LV
4212 p->gtime = cputime_add(p->gtime, cputime);
4213
457533a7 4214 /* Add guest time to cpustat. */
94886b84
LV
4215 cpustat->user = cputime64_add(cpustat->user, tmp);
4216 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4217}
4218
1da177e4
LT
4219/*
4220 * Account system cpu time to a process.
4221 * @p: the process that the cpu time gets accounted to
4222 * @hardirq_offset: the offset to subtract from hardirq_count()
4223 * @cputime: the cpu time spent in kernel space since the last update
457533a7 4224 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
4225 */
4226void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 4227 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
4228{
4229 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
4230 cputime64_t tmp;
4231
983ed7a6 4232 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 4233 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
4234 return;
4235 }
94886b84 4236
457533a7 4237 /* Add system time to process. */
1da177e4 4238 p->stime = cputime_add(p->stime, cputime);
457533a7 4239 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 4240 account_group_system_time(p, cputime);
1da177e4
LT
4241
4242 /* Add system time to cpustat. */
4243 tmp = cputime_to_cputime64(cputime);
4244 if (hardirq_count() - hardirq_offset)
4245 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4246 else if (softirq_count())
4247 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 4248 else
79741dd3
MS
4249 cpustat->system = cputime64_add(cpustat->system, tmp);
4250
1da177e4
LT
4251 /* Account for system time used */
4252 acct_update_integrals(p);
1da177e4
LT
4253}
4254
c66f08be 4255/*
1da177e4 4256 * Account for involuntary wait time.
1da177e4 4257 * @steal: the cpu time spent in involuntary wait
c66f08be 4258 */
79741dd3 4259void account_steal_time(cputime_t cputime)
c66f08be 4260{
79741dd3
MS
4261 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4262 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4263
4264 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
4265}
4266
1da177e4 4267/*
79741dd3
MS
4268 * Account for idle time.
4269 * @cputime: the cpu time spent in idle wait
1da177e4 4270 */
79741dd3 4271void account_idle_time(cputime_t cputime)
1da177e4
LT
4272{
4273 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 4274 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 4275 struct rq *rq = this_rq();
1da177e4 4276
79741dd3
MS
4277 if (atomic_read(&rq->nr_iowait) > 0)
4278 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4279 else
4280 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
4281}
4282
79741dd3
MS
4283#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4284
4285/*
4286 * Account a single tick of cpu time.
4287 * @p: the process that the cpu time gets accounted to
4288 * @user_tick: indicates if the tick is a user or a system tick
4289 */
4290void account_process_tick(struct task_struct *p, int user_tick)
4291{
4292 cputime_t one_jiffy = jiffies_to_cputime(1);
4293 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4294 struct rq *rq = this_rq();
4295
4296 if (user_tick)
4297 account_user_time(p, one_jiffy, one_jiffy_scaled);
4298 else if (p != rq->idle)
4299 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4300 one_jiffy_scaled);
4301 else
4302 account_idle_time(one_jiffy);
4303}
4304
4305/*
4306 * Account multiple ticks of steal time.
4307 * @p: the process from which the cpu time has been stolen
4308 * @ticks: number of stolen ticks
4309 */
4310void account_steal_ticks(unsigned long ticks)
4311{
4312 account_steal_time(jiffies_to_cputime(ticks));
4313}
4314
4315/*
4316 * Account multiple ticks of idle time.
4317 * @ticks: number of stolen ticks
4318 */
4319void account_idle_ticks(unsigned long ticks)
4320{
4321 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4322}
4323
79741dd3
MS
4324#endif
4325
49048622
BS
4326/*
4327 * Use precise platform statistics if available:
4328 */
4329#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4330cputime_t task_utime(struct task_struct *p)
4331{
4332 return p->utime;
4333}
4334
4335cputime_t task_stime(struct task_struct *p)
4336{
4337 return p->stime;
4338}
4339#else
4340cputime_t task_utime(struct task_struct *p)
4341{
4342 clock_t utime = cputime_to_clock_t(p->utime),
4343 total = utime + cputime_to_clock_t(p->stime);
4344 u64 temp;
4345
4346 /*
4347 * Use CFS's precise accounting:
4348 */
4349 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4350
4351 if (total) {
4352 temp *= utime;
4353 do_div(temp, total);
4354 }
4355 utime = (clock_t)temp;
4356
4357 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4358 return p->prev_utime;
4359}
4360
4361cputime_t task_stime(struct task_struct *p)
4362{
4363 clock_t stime;
4364
4365 /*
4366 * Use CFS's precise accounting. (we subtract utime from
4367 * the total, to make sure the total observed by userspace
4368 * grows monotonically - apps rely on that):
4369 */
4370 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4371 cputime_to_clock_t(task_utime(p));
4372
4373 if (stime >= 0)
4374 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4375
4376 return p->prev_stime;
4377}
4378#endif
4379
4380inline cputime_t task_gtime(struct task_struct *p)
4381{
4382 return p->gtime;
4383}
4384
7835b98b
CL
4385/*
4386 * This function gets called by the timer code, with HZ frequency.
4387 * We call it with interrupts disabled.
4388 *
4389 * It also gets called by the fork code, when changing the parent's
4390 * timeslices.
4391 */
4392void scheduler_tick(void)
4393{
7835b98b
CL
4394 int cpu = smp_processor_id();
4395 struct rq *rq = cpu_rq(cpu);
dd41f596 4396 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4397
4398 sched_clock_tick();
dd41f596
IM
4399
4400 spin_lock(&rq->lock);
3e51f33f 4401 update_rq_clock(rq);
f1a438d8 4402 update_cpu_load(rq);
fa85ae24 4403 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4404 spin_unlock(&rq->lock);
7835b98b 4405
e418e1c2 4406#ifdef CONFIG_SMP
dd41f596
IM
4407 rq->idle_at_tick = idle_cpu(cpu);
4408 trigger_load_balance(rq, cpu);
e418e1c2 4409#endif
1da177e4
LT
4410}
4411
6cd8a4bb
SR
4412#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4413 defined(CONFIG_PREEMPT_TRACER))
4414
4415static inline unsigned long get_parent_ip(unsigned long addr)
4416{
4417 if (in_lock_functions(addr)) {
4418 addr = CALLER_ADDR2;
4419 if (in_lock_functions(addr))
4420 addr = CALLER_ADDR3;
4421 }
4422 return addr;
4423}
1da177e4 4424
43627582 4425void __kprobes add_preempt_count(int val)
1da177e4 4426{
6cd8a4bb 4427#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4428 /*
4429 * Underflow?
4430 */
9a11b49a
IM
4431 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4432 return;
6cd8a4bb 4433#endif
1da177e4 4434 preempt_count() += val;
6cd8a4bb 4435#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4436 /*
4437 * Spinlock count overflowing soon?
4438 */
33859f7f
MOS
4439 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4440 PREEMPT_MASK - 10);
6cd8a4bb
SR
4441#endif
4442 if (preempt_count() == val)
4443 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4444}
4445EXPORT_SYMBOL(add_preempt_count);
4446
43627582 4447void __kprobes sub_preempt_count(int val)
1da177e4 4448{
6cd8a4bb 4449#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4450 /*
4451 * Underflow?
4452 */
01e3eb82 4453 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4454 return;
1da177e4
LT
4455 /*
4456 * Is the spinlock portion underflowing?
4457 */
9a11b49a
IM
4458 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4459 !(preempt_count() & PREEMPT_MASK)))
4460 return;
6cd8a4bb 4461#endif
9a11b49a 4462
6cd8a4bb
SR
4463 if (preempt_count() == val)
4464 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4465 preempt_count() -= val;
4466}
4467EXPORT_SYMBOL(sub_preempt_count);
4468
4469#endif
4470
4471/*
dd41f596 4472 * Print scheduling while atomic bug:
1da177e4 4473 */
dd41f596 4474static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4475{
838225b4
SS
4476 struct pt_regs *regs = get_irq_regs();
4477
4478 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4479 prev->comm, prev->pid, preempt_count());
4480
dd41f596 4481 debug_show_held_locks(prev);
e21f5b15 4482 print_modules();
dd41f596
IM
4483 if (irqs_disabled())
4484 print_irqtrace_events(prev);
838225b4
SS
4485
4486 if (regs)
4487 show_regs(regs);
4488 else
4489 dump_stack();
dd41f596 4490}
1da177e4 4491
dd41f596
IM
4492/*
4493 * Various schedule()-time debugging checks and statistics:
4494 */
4495static inline void schedule_debug(struct task_struct *prev)
4496{
1da177e4 4497 /*
41a2d6cf 4498 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4499 * schedule() atomically, we ignore that path for now.
4500 * Otherwise, whine if we are scheduling when we should not be.
4501 */
3f33a7ce 4502 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4503 __schedule_bug(prev);
4504
1da177e4
LT
4505 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4506
2d72376b 4507 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4508#ifdef CONFIG_SCHEDSTATS
4509 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4510 schedstat_inc(this_rq(), bkl_count);
4511 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4512 }
4513#endif
dd41f596
IM
4514}
4515
4516/*
4517 * Pick up the highest-prio task:
4518 */
4519static inline struct task_struct *
ff95f3df 4520pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4521{
5522d5d5 4522 const struct sched_class *class;
dd41f596 4523 struct task_struct *p;
1da177e4
LT
4524
4525 /*
dd41f596
IM
4526 * Optimization: we know that if all tasks are in
4527 * the fair class we can call that function directly:
1da177e4 4528 */
dd41f596 4529 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4530 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4531 if (likely(p))
4532 return p;
1da177e4
LT
4533 }
4534
dd41f596
IM
4535 class = sched_class_highest;
4536 for ( ; ; ) {
fb8d4724 4537 p = class->pick_next_task(rq);
dd41f596
IM
4538 if (p)
4539 return p;
4540 /*
4541 * Will never be NULL as the idle class always
4542 * returns a non-NULL p:
4543 */
4544 class = class->next;
4545 }
4546}
1da177e4 4547
dd41f596
IM
4548/*
4549 * schedule() is the main scheduler function.
4550 */
41719b03 4551asmlinkage void __sched __schedule(void)
dd41f596
IM
4552{
4553 struct task_struct *prev, *next;
67ca7bde 4554 unsigned long *switch_count;
dd41f596 4555 struct rq *rq;
31656519 4556 int cpu;
dd41f596 4557
dd41f596
IM
4558 cpu = smp_processor_id();
4559 rq = cpu_rq(cpu);
4560 rcu_qsctr_inc(cpu);
4561 prev = rq->curr;
4562 switch_count = &prev->nivcsw;
4563
4564 release_kernel_lock(prev);
4565need_resched_nonpreemptible:
4566
4567 schedule_debug(prev);
1da177e4 4568
31656519 4569 if (sched_feat(HRTICK))
f333fdc9 4570 hrtick_clear(rq);
8f4d37ec 4571
8cd162ce 4572 spin_lock_irq(&rq->lock);
3e51f33f 4573 update_rq_clock(rq);
1e819950 4574 clear_tsk_need_resched(prev);
1da177e4 4575
1da177e4 4576 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4577 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4578 prev->state = TASK_RUNNING;
16882c1e 4579 else
2e1cb74a 4580 deactivate_task(rq, prev, 1);
dd41f596 4581 switch_count = &prev->nvcsw;
1da177e4
LT
4582 }
4583
9a897c5a
SR
4584#ifdef CONFIG_SMP
4585 if (prev->sched_class->pre_schedule)
4586 prev->sched_class->pre_schedule(rq, prev);
4587#endif
f65eda4f 4588
dd41f596 4589 if (unlikely(!rq->nr_running))
1da177e4 4590 idle_balance(cpu, rq);
1da177e4 4591
31ee529c 4592 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4593 next = pick_next_task(rq, prev);
1da177e4 4594
1da177e4 4595 if (likely(prev != next)) {
673a90a1
DS
4596 sched_info_switch(prev, next);
4597
1da177e4
LT
4598 rq->nr_switches++;
4599 rq->curr = next;
4600 ++*switch_count;
4601
dd41f596 4602 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4603 /*
4604 * the context switch might have flipped the stack from under
4605 * us, hence refresh the local variables.
4606 */
4607 cpu = smp_processor_id();
4608 rq = cpu_rq(cpu);
1da177e4
LT
4609 } else
4610 spin_unlock_irq(&rq->lock);
4611
8f4d37ec 4612 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4613 goto need_resched_nonpreemptible;
41719b03 4614}
8f4d37ec 4615
41719b03
PZ
4616asmlinkage void __sched schedule(void)
4617{
4618need_resched:
4619 preempt_disable();
4620 __schedule();
1da177e4
LT
4621 preempt_enable_no_resched();
4622 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4623 goto need_resched;
4624}
1da177e4
LT
4625EXPORT_SYMBOL(schedule);
4626
0d66bf6d
PZ
4627#ifdef CONFIG_SMP
4628/*
4629 * Look out! "owner" is an entirely speculative pointer
4630 * access and not reliable.
4631 */
4632int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
4633{
4634 unsigned int cpu;
4635 struct rq *rq;
4636
4637 if (!sched_feat(OWNER_SPIN))
4638 return 0;
4639
4640#ifdef CONFIG_DEBUG_PAGEALLOC
4641 /*
4642 * Need to access the cpu field knowing that
4643 * DEBUG_PAGEALLOC could have unmapped it if
4644 * the mutex owner just released it and exited.
4645 */
4646 if (probe_kernel_address(&owner->cpu, cpu))
4647 goto out;
4648#else
4649 cpu = owner->cpu;
4650#endif
4651
4652 /*
4653 * Even if the access succeeded (likely case),
4654 * the cpu field may no longer be valid.
4655 */
4656 if (cpu >= nr_cpumask_bits)
4657 goto out;
4658
4659 /*
4660 * We need to validate that we can do a
4661 * get_cpu() and that we have the percpu area.
4662 */
4663 if (!cpu_online(cpu))
4664 goto out;
4665
4666 rq = cpu_rq(cpu);
4667
4668 for (;;) {
4669 /*
4670 * Owner changed, break to re-assess state.
4671 */
4672 if (lock->owner != owner)
4673 break;
4674
4675 /*
4676 * Is that owner really running on that cpu?
4677 */
4678 if (task_thread_info(rq->curr) != owner || need_resched())
4679 return 0;
4680
4681 cpu_relax();
4682 }
4683out:
4684 return 1;
4685}
4686#endif
4687
1da177e4
LT
4688#ifdef CONFIG_PREEMPT
4689/*
2ed6e34f 4690 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4691 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4692 * occur there and call schedule directly.
4693 */
4694asmlinkage void __sched preempt_schedule(void)
4695{
4696 struct thread_info *ti = current_thread_info();
6478d880 4697
1da177e4
LT
4698 /*
4699 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4700 * we do not want to preempt the current task. Just return..
1da177e4 4701 */
beed33a8 4702 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4703 return;
4704
3a5c359a
AK
4705 do {
4706 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4707 schedule();
3a5c359a 4708 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4709
3a5c359a
AK
4710 /*
4711 * Check again in case we missed a preemption opportunity
4712 * between schedule and now.
4713 */
4714 barrier();
4715 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4716}
1da177e4
LT
4717EXPORT_SYMBOL(preempt_schedule);
4718
4719/*
2ed6e34f 4720 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4721 * off of irq context.
4722 * Note, that this is called and return with irqs disabled. This will
4723 * protect us against recursive calling from irq.
4724 */
4725asmlinkage void __sched preempt_schedule_irq(void)
4726{
4727 struct thread_info *ti = current_thread_info();
6478d880 4728
2ed6e34f 4729 /* Catch callers which need to be fixed */
1da177e4
LT
4730 BUG_ON(ti->preempt_count || !irqs_disabled());
4731
3a5c359a
AK
4732 do {
4733 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4734 local_irq_enable();
4735 schedule();
4736 local_irq_disable();
3a5c359a 4737 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4738
3a5c359a
AK
4739 /*
4740 * Check again in case we missed a preemption opportunity
4741 * between schedule and now.
4742 */
4743 barrier();
4744 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4745}
4746
4747#endif /* CONFIG_PREEMPT */
4748
95cdf3b7
IM
4749int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4750 void *key)
1da177e4 4751{
48f24c4d 4752 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4753}
1da177e4
LT
4754EXPORT_SYMBOL(default_wake_function);
4755
4756/*
41a2d6cf
IM
4757 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4758 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4759 * number) then we wake all the non-exclusive tasks and one exclusive task.
4760 *
4761 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4762 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4763 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4764 */
777c6c5f
JW
4765void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4766 int nr_exclusive, int sync, void *key)
1da177e4 4767{
2e45874c 4768 wait_queue_t *curr, *next;
1da177e4 4769
2e45874c 4770 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4771 unsigned flags = curr->flags;
4772
1da177e4 4773 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4774 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4775 break;
4776 }
4777}
4778
4779/**
4780 * __wake_up - wake up threads blocked on a waitqueue.
4781 * @q: the waitqueue
4782 * @mode: which threads
4783 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4784 * @key: is directly passed to the wakeup function
1da177e4 4785 */
7ad5b3a5 4786void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4787 int nr_exclusive, void *key)
1da177e4
LT
4788{
4789 unsigned long flags;
4790
4791 spin_lock_irqsave(&q->lock, flags);
4792 __wake_up_common(q, mode, nr_exclusive, 0, key);
4793 spin_unlock_irqrestore(&q->lock, flags);
4794}
1da177e4
LT
4795EXPORT_SYMBOL(__wake_up);
4796
4797/*
4798 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4799 */
7ad5b3a5 4800void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4801{
4802 __wake_up_common(q, mode, 1, 0, NULL);
4803}
4804
4805/**
67be2dd1 4806 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4807 * @q: the waitqueue
4808 * @mode: which threads
4809 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4810 *
4811 * The sync wakeup differs that the waker knows that it will schedule
4812 * away soon, so while the target thread will be woken up, it will not
4813 * be migrated to another CPU - ie. the two threads are 'synchronized'
4814 * with each other. This can prevent needless bouncing between CPUs.
4815 *
4816 * On UP it can prevent extra preemption.
4817 */
7ad5b3a5 4818void
95cdf3b7 4819__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4820{
4821 unsigned long flags;
4822 int sync = 1;
4823
4824 if (unlikely(!q))
4825 return;
4826
4827 if (unlikely(!nr_exclusive))
4828 sync = 0;
4829
4830 spin_lock_irqsave(&q->lock, flags);
4831 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4832 spin_unlock_irqrestore(&q->lock, flags);
4833}
4834EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4835
65eb3dc6
KD
4836/**
4837 * complete: - signals a single thread waiting on this completion
4838 * @x: holds the state of this particular completion
4839 *
4840 * This will wake up a single thread waiting on this completion. Threads will be
4841 * awakened in the same order in which they were queued.
4842 *
4843 * See also complete_all(), wait_for_completion() and related routines.
4844 */
b15136e9 4845void complete(struct completion *x)
1da177e4
LT
4846{
4847 unsigned long flags;
4848
4849 spin_lock_irqsave(&x->wait.lock, flags);
4850 x->done++;
d9514f6c 4851 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4852 spin_unlock_irqrestore(&x->wait.lock, flags);
4853}
4854EXPORT_SYMBOL(complete);
4855
65eb3dc6
KD
4856/**
4857 * complete_all: - signals all threads waiting on this completion
4858 * @x: holds the state of this particular completion
4859 *
4860 * This will wake up all threads waiting on this particular completion event.
4861 */
b15136e9 4862void complete_all(struct completion *x)
1da177e4
LT
4863{
4864 unsigned long flags;
4865
4866 spin_lock_irqsave(&x->wait.lock, flags);
4867 x->done += UINT_MAX/2;
d9514f6c 4868 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4869 spin_unlock_irqrestore(&x->wait.lock, flags);
4870}
4871EXPORT_SYMBOL(complete_all);
4872
8cbbe86d
AK
4873static inline long __sched
4874do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4875{
1da177e4
LT
4876 if (!x->done) {
4877 DECLARE_WAITQUEUE(wait, current);
4878
4879 wait.flags |= WQ_FLAG_EXCLUSIVE;
4880 __add_wait_queue_tail(&x->wait, &wait);
4881 do {
94d3d824 4882 if (signal_pending_state(state, current)) {
ea71a546
ON
4883 timeout = -ERESTARTSYS;
4884 break;
8cbbe86d
AK
4885 }
4886 __set_current_state(state);
1da177e4
LT
4887 spin_unlock_irq(&x->wait.lock);
4888 timeout = schedule_timeout(timeout);
4889 spin_lock_irq(&x->wait.lock);
ea71a546 4890 } while (!x->done && timeout);
1da177e4 4891 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4892 if (!x->done)
4893 return timeout;
1da177e4
LT
4894 }
4895 x->done--;
ea71a546 4896 return timeout ?: 1;
1da177e4 4897}
1da177e4 4898
8cbbe86d
AK
4899static long __sched
4900wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4901{
1da177e4
LT
4902 might_sleep();
4903
4904 spin_lock_irq(&x->wait.lock);
8cbbe86d 4905 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4906 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4907 return timeout;
4908}
1da177e4 4909
65eb3dc6
KD
4910/**
4911 * wait_for_completion: - waits for completion of a task
4912 * @x: holds the state of this particular completion
4913 *
4914 * This waits to be signaled for completion of a specific task. It is NOT
4915 * interruptible and there is no timeout.
4916 *
4917 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4918 * and interrupt capability. Also see complete().
4919 */
b15136e9 4920void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4921{
4922 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4923}
8cbbe86d 4924EXPORT_SYMBOL(wait_for_completion);
1da177e4 4925
65eb3dc6
KD
4926/**
4927 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4928 * @x: holds the state of this particular completion
4929 * @timeout: timeout value in jiffies
4930 *
4931 * This waits for either a completion of a specific task to be signaled or for a
4932 * specified timeout to expire. The timeout is in jiffies. It is not
4933 * interruptible.
4934 */
b15136e9 4935unsigned long __sched
8cbbe86d 4936wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4937{
8cbbe86d 4938 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4939}
8cbbe86d 4940EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4941
65eb3dc6
KD
4942/**
4943 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4944 * @x: holds the state of this particular completion
4945 *
4946 * This waits for completion of a specific task to be signaled. It is
4947 * interruptible.
4948 */
8cbbe86d 4949int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4950{
51e97990
AK
4951 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4952 if (t == -ERESTARTSYS)
4953 return t;
4954 return 0;
0fec171c 4955}
8cbbe86d 4956EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4957
65eb3dc6
KD
4958/**
4959 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4960 * @x: holds the state of this particular completion
4961 * @timeout: timeout value in jiffies
4962 *
4963 * This waits for either a completion of a specific task to be signaled or for a
4964 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4965 */
b15136e9 4966unsigned long __sched
8cbbe86d
AK
4967wait_for_completion_interruptible_timeout(struct completion *x,
4968 unsigned long timeout)
0fec171c 4969{
8cbbe86d 4970 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4971}
8cbbe86d 4972EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4973
65eb3dc6
KD
4974/**
4975 * wait_for_completion_killable: - waits for completion of a task (killable)
4976 * @x: holds the state of this particular completion
4977 *
4978 * This waits to be signaled for completion of a specific task. It can be
4979 * interrupted by a kill signal.
4980 */
009e577e
MW
4981int __sched wait_for_completion_killable(struct completion *x)
4982{
4983 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4984 if (t == -ERESTARTSYS)
4985 return t;
4986 return 0;
4987}
4988EXPORT_SYMBOL(wait_for_completion_killable);
4989
be4de352
DC
4990/**
4991 * try_wait_for_completion - try to decrement a completion without blocking
4992 * @x: completion structure
4993 *
4994 * Returns: 0 if a decrement cannot be done without blocking
4995 * 1 if a decrement succeeded.
4996 *
4997 * If a completion is being used as a counting completion,
4998 * attempt to decrement the counter without blocking. This
4999 * enables us to avoid waiting if the resource the completion
5000 * is protecting is not available.
5001 */
5002bool try_wait_for_completion(struct completion *x)
5003{
5004 int ret = 1;
5005
5006 spin_lock_irq(&x->wait.lock);
5007 if (!x->done)
5008 ret = 0;
5009 else
5010 x->done--;
5011 spin_unlock_irq(&x->wait.lock);
5012 return ret;
5013}
5014EXPORT_SYMBOL(try_wait_for_completion);
5015
5016/**
5017 * completion_done - Test to see if a completion has any waiters
5018 * @x: completion structure
5019 *
5020 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5021 * 1 if there are no waiters.
5022 *
5023 */
5024bool completion_done(struct completion *x)
5025{
5026 int ret = 1;
5027
5028 spin_lock_irq(&x->wait.lock);
5029 if (!x->done)
5030 ret = 0;
5031 spin_unlock_irq(&x->wait.lock);
5032 return ret;
5033}
5034EXPORT_SYMBOL(completion_done);
5035
8cbbe86d
AK
5036static long __sched
5037sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5038{
0fec171c
IM
5039 unsigned long flags;
5040 wait_queue_t wait;
5041
5042 init_waitqueue_entry(&wait, current);
1da177e4 5043
8cbbe86d 5044 __set_current_state(state);
1da177e4 5045
8cbbe86d
AK
5046 spin_lock_irqsave(&q->lock, flags);
5047 __add_wait_queue(q, &wait);
5048 spin_unlock(&q->lock);
5049 timeout = schedule_timeout(timeout);
5050 spin_lock_irq(&q->lock);
5051 __remove_wait_queue(q, &wait);
5052 spin_unlock_irqrestore(&q->lock, flags);
5053
5054 return timeout;
5055}
5056
5057void __sched interruptible_sleep_on(wait_queue_head_t *q)
5058{
5059 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5060}
1da177e4
LT
5061EXPORT_SYMBOL(interruptible_sleep_on);
5062
0fec171c 5063long __sched
95cdf3b7 5064interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5065{
8cbbe86d 5066 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5067}
1da177e4
LT
5068EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5069
0fec171c 5070void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5071{
8cbbe86d 5072 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5073}
1da177e4
LT
5074EXPORT_SYMBOL(sleep_on);
5075
0fec171c 5076long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5077{
8cbbe86d 5078 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5079}
1da177e4
LT
5080EXPORT_SYMBOL(sleep_on_timeout);
5081
b29739f9
IM
5082#ifdef CONFIG_RT_MUTEXES
5083
5084/*
5085 * rt_mutex_setprio - set the current priority of a task
5086 * @p: task
5087 * @prio: prio value (kernel-internal form)
5088 *
5089 * This function changes the 'effective' priority of a task. It does
5090 * not touch ->normal_prio like __setscheduler().
5091 *
5092 * Used by the rt_mutex code to implement priority inheritance logic.
5093 */
36c8b586 5094void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5095{
5096 unsigned long flags;
83b699ed 5097 int oldprio, on_rq, running;
70b97a7f 5098 struct rq *rq;
cb469845 5099 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5100
5101 BUG_ON(prio < 0 || prio > MAX_PRIO);
5102
5103 rq = task_rq_lock(p, &flags);
a8e504d2 5104 update_rq_clock(rq);
b29739f9 5105
d5f9f942 5106 oldprio = p->prio;
dd41f596 5107 on_rq = p->se.on_rq;
051a1d1a 5108 running = task_current(rq, p);
0e1f3483 5109 if (on_rq)
69be72c1 5110 dequeue_task(rq, p, 0);
0e1f3483
HS
5111 if (running)
5112 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5113
5114 if (rt_prio(prio))
5115 p->sched_class = &rt_sched_class;
5116 else
5117 p->sched_class = &fair_sched_class;
5118
b29739f9
IM
5119 p->prio = prio;
5120
0e1f3483
HS
5121 if (running)
5122 p->sched_class->set_curr_task(rq);
dd41f596 5123 if (on_rq) {
8159f87e 5124 enqueue_task(rq, p, 0);
cb469845
SR
5125
5126 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5127 }
5128 task_rq_unlock(rq, &flags);
5129}
5130
5131#endif
5132
36c8b586 5133void set_user_nice(struct task_struct *p, long nice)
1da177e4 5134{
dd41f596 5135 int old_prio, delta, on_rq;
1da177e4 5136 unsigned long flags;
70b97a7f 5137 struct rq *rq;
1da177e4
LT
5138
5139 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5140 return;
5141 /*
5142 * We have to be careful, if called from sys_setpriority(),
5143 * the task might be in the middle of scheduling on another CPU.
5144 */
5145 rq = task_rq_lock(p, &flags);
a8e504d2 5146 update_rq_clock(rq);
1da177e4
LT
5147 /*
5148 * The RT priorities are set via sched_setscheduler(), but we still
5149 * allow the 'normal' nice value to be set - but as expected
5150 * it wont have any effect on scheduling until the task is
dd41f596 5151 * SCHED_FIFO/SCHED_RR:
1da177e4 5152 */
e05606d3 5153 if (task_has_rt_policy(p)) {
1da177e4
LT
5154 p->static_prio = NICE_TO_PRIO(nice);
5155 goto out_unlock;
5156 }
dd41f596 5157 on_rq = p->se.on_rq;
c09595f6 5158 if (on_rq)
69be72c1 5159 dequeue_task(rq, p, 0);
1da177e4 5160
1da177e4 5161 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5162 set_load_weight(p);
b29739f9
IM
5163 old_prio = p->prio;
5164 p->prio = effective_prio(p);
5165 delta = p->prio - old_prio;
1da177e4 5166
dd41f596 5167 if (on_rq) {
8159f87e 5168 enqueue_task(rq, p, 0);
1da177e4 5169 /*
d5f9f942
AM
5170 * If the task increased its priority or is running and
5171 * lowered its priority, then reschedule its CPU:
1da177e4 5172 */
d5f9f942 5173 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5174 resched_task(rq->curr);
5175 }
5176out_unlock:
5177 task_rq_unlock(rq, &flags);
5178}
1da177e4
LT
5179EXPORT_SYMBOL(set_user_nice);
5180
e43379f1
MM
5181/*
5182 * can_nice - check if a task can reduce its nice value
5183 * @p: task
5184 * @nice: nice value
5185 */
36c8b586 5186int can_nice(const struct task_struct *p, const int nice)
e43379f1 5187{
024f4747
MM
5188 /* convert nice value [19,-20] to rlimit style value [1,40] */
5189 int nice_rlim = 20 - nice;
48f24c4d 5190
e43379f1
MM
5191 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5192 capable(CAP_SYS_NICE));
5193}
5194
1da177e4
LT
5195#ifdef __ARCH_WANT_SYS_NICE
5196
5197/*
5198 * sys_nice - change the priority of the current process.
5199 * @increment: priority increment
5200 *
5201 * sys_setpriority is a more generic, but much slower function that
5202 * does similar things.
5203 */
5add95d4 5204SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5205{
48f24c4d 5206 long nice, retval;
1da177e4
LT
5207
5208 /*
5209 * Setpriority might change our priority at the same moment.
5210 * We don't have to worry. Conceptually one call occurs first
5211 * and we have a single winner.
5212 */
e43379f1
MM
5213 if (increment < -40)
5214 increment = -40;
1da177e4
LT
5215 if (increment > 40)
5216 increment = 40;
5217
5218 nice = PRIO_TO_NICE(current->static_prio) + increment;
5219 if (nice < -20)
5220 nice = -20;
5221 if (nice > 19)
5222 nice = 19;
5223
e43379f1
MM
5224 if (increment < 0 && !can_nice(current, nice))
5225 return -EPERM;
5226
1da177e4
LT
5227 retval = security_task_setnice(current, nice);
5228 if (retval)
5229 return retval;
5230
5231 set_user_nice(current, nice);
5232 return 0;
5233}
5234
5235#endif
5236
5237/**
5238 * task_prio - return the priority value of a given task.
5239 * @p: the task in question.
5240 *
5241 * This is the priority value as seen by users in /proc.
5242 * RT tasks are offset by -200. Normal tasks are centered
5243 * around 0, value goes from -16 to +15.
5244 */
36c8b586 5245int task_prio(const struct task_struct *p)
1da177e4
LT
5246{
5247 return p->prio - MAX_RT_PRIO;
5248}
5249
5250/**
5251 * task_nice - return the nice value of a given task.
5252 * @p: the task in question.
5253 */
36c8b586 5254int task_nice(const struct task_struct *p)
1da177e4
LT
5255{
5256 return TASK_NICE(p);
5257}
150d8bed 5258EXPORT_SYMBOL(task_nice);
1da177e4
LT
5259
5260/**
5261 * idle_cpu - is a given cpu idle currently?
5262 * @cpu: the processor in question.
5263 */
5264int idle_cpu(int cpu)
5265{
5266 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5267}
5268
1da177e4
LT
5269/**
5270 * idle_task - return the idle task for a given cpu.
5271 * @cpu: the processor in question.
5272 */
36c8b586 5273struct task_struct *idle_task(int cpu)
1da177e4
LT
5274{
5275 return cpu_rq(cpu)->idle;
5276}
5277
5278/**
5279 * find_process_by_pid - find a process with a matching PID value.
5280 * @pid: the pid in question.
5281 */
a9957449 5282static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5283{
228ebcbe 5284 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5285}
5286
5287/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5288static void
5289__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5290{
dd41f596 5291 BUG_ON(p->se.on_rq);
48f24c4d 5292
1da177e4 5293 p->policy = policy;
dd41f596
IM
5294 switch (p->policy) {
5295 case SCHED_NORMAL:
5296 case SCHED_BATCH:
5297 case SCHED_IDLE:
5298 p->sched_class = &fair_sched_class;
5299 break;
5300 case SCHED_FIFO:
5301 case SCHED_RR:
5302 p->sched_class = &rt_sched_class;
5303 break;
5304 }
5305
1da177e4 5306 p->rt_priority = prio;
b29739f9
IM
5307 p->normal_prio = normal_prio(p);
5308 /* we are holding p->pi_lock already */
5309 p->prio = rt_mutex_getprio(p);
2dd73a4f 5310 set_load_weight(p);
1da177e4
LT
5311}
5312
c69e8d9c
DH
5313/*
5314 * check the target process has a UID that matches the current process's
5315 */
5316static bool check_same_owner(struct task_struct *p)
5317{
5318 const struct cred *cred = current_cred(), *pcred;
5319 bool match;
5320
5321 rcu_read_lock();
5322 pcred = __task_cred(p);
5323 match = (cred->euid == pcred->euid ||
5324 cred->euid == pcred->uid);
5325 rcu_read_unlock();
5326 return match;
5327}
5328
961ccddd
RR
5329static int __sched_setscheduler(struct task_struct *p, int policy,
5330 struct sched_param *param, bool user)
1da177e4 5331{
83b699ed 5332 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5333 unsigned long flags;
cb469845 5334 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5335 struct rq *rq;
1da177e4 5336
66e5393a
SR
5337 /* may grab non-irq protected spin_locks */
5338 BUG_ON(in_interrupt());
1da177e4
LT
5339recheck:
5340 /* double check policy once rq lock held */
5341 if (policy < 0)
5342 policy = oldpolicy = p->policy;
5343 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5344 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5345 policy != SCHED_IDLE)
b0a9499c 5346 return -EINVAL;
1da177e4
LT
5347 /*
5348 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5349 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5350 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5351 */
5352 if (param->sched_priority < 0 ||
95cdf3b7 5353 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5354 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5355 return -EINVAL;
e05606d3 5356 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5357 return -EINVAL;
5358
37e4ab3f
OC
5359 /*
5360 * Allow unprivileged RT tasks to decrease priority:
5361 */
961ccddd 5362 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5363 if (rt_policy(policy)) {
8dc3e909 5364 unsigned long rlim_rtprio;
8dc3e909
ON
5365
5366 if (!lock_task_sighand(p, &flags))
5367 return -ESRCH;
5368 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5369 unlock_task_sighand(p, &flags);
5370
5371 /* can't set/change the rt policy */
5372 if (policy != p->policy && !rlim_rtprio)
5373 return -EPERM;
5374
5375 /* can't increase priority */
5376 if (param->sched_priority > p->rt_priority &&
5377 param->sched_priority > rlim_rtprio)
5378 return -EPERM;
5379 }
dd41f596
IM
5380 /*
5381 * Like positive nice levels, dont allow tasks to
5382 * move out of SCHED_IDLE either:
5383 */
5384 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5385 return -EPERM;
5fe1d75f 5386
37e4ab3f 5387 /* can't change other user's priorities */
c69e8d9c 5388 if (!check_same_owner(p))
37e4ab3f
OC
5389 return -EPERM;
5390 }
1da177e4 5391
725aad24 5392 if (user) {
b68aa230 5393#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5394 /*
5395 * Do not allow realtime tasks into groups that have no runtime
5396 * assigned.
5397 */
9a7e0b18
PZ
5398 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5399 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5400 return -EPERM;
b68aa230
PZ
5401#endif
5402
725aad24
JF
5403 retval = security_task_setscheduler(p, policy, param);
5404 if (retval)
5405 return retval;
5406 }
5407
b29739f9
IM
5408 /*
5409 * make sure no PI-waiters arrive (or leave) while we are
5410 * changing the priority of the task:
5411 */
5412 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5413 /*
5414 * To be able to change p->policy safely, the apropriate
5415 * runqueue lock must be held.
5416 */
b29739f9 5417 rq = __task_rq_lock(p);
1da177e4
LT
5418 /* recheck policy now with rq lock held */
5419 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5420 policy = oldpolicy = -1;
b29739f9
IM
5421 __task_rq_unlock(rq);
5422 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5423 goto recheck;
5424 }
2daa3577 5425 update_rq_clock(rq);
dd41f596 5426 on_rq = p->se.on_rq;
051a1d1a 5427 running = task_current(rq, p);
0e1f3483 5428 if (on_rq)
2e1cb74a 5429 deactivate_task(rq, p, 0);
0e1f3483
HS
5430 if (running)
5431 p->sched_class->put_prev_task(rq, p);
f6b53205 5432
1da177e4 5433 oldprio = p->prio;
dd41f596 5434 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5435
0e1f3483
HS
5436 if (running)
5437 p->sched_class->set_curr_task(rq);
dd41f596
IM
5438 if (on_rq) {
5439 activate_task(rq, p, 0);
cb469845
SR
5440
5441 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5442 }
b29739f9
IM
5443 __task_rq_unlock(rq);
5444 spin_unlock_irqrestore(&p->pi_lock, flags);
5445
95e02ca9
TG
5446 rt_mutex_adjust_pi(p);
5447
1da177e4
LT
5448 return 0;
5449}
961ccddd
RR
5450
5451/**
5452 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5453 * @p: the task in question.
5454 * @policy: new policy.
5455 * @param: structure containing the new RT priority.
5456 *
5457 * NOTE that the task may be already dead.
5458 */
5459int sched_setscheduler(struct task_struct *p, int policy,
5460 struct sched_param *param)
5461{
5462 return __sched_setscheduler(p, policy, param, true);
5463}
1da177e4
LT
5464EXPORT_SYMBOL_GPL(sched_setscheduler);
5465
961ccddd
RR
5466/**
5467 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5468 * @p: the task in question.
5469 * @policy: new policy.
5470 * @param: structure containing the new RT priority.
5471 *
5472 * Just like sched_setscheduler, only don't bother checking if the
5473 * current context has permission. For example, this is needed in
5474 * stop_machine(): we create temporary high priority worker threads,
5475 * but our caller might not have that capability.
5476 */
5477int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5478 struct sched_param *param)
5479{
5480 return __sched_setscheduler(p, policy, param, false);
5481}
5482
95cdf3b7
IM
5483static int
5484do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5485{
1da177e4
LT
5486 struct sched_param lparam;
5487 struct task_struct *p;
36c8b586 5488 int retval;
1da177e4
LT
5489
5490 if (!param || pid < 0)
5491 return -EINVAL;
5492 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5493 return -EFAULT;
5fe1d75f
ON
5494
5495 rcu_read_lock();
5496 retval = -ESRCH;
1da177e4 5497 p = find_process_by_pid(pid);
5fe1d75f
ON
5498 if (p != NULL)
5499 retval = sched_setscheduler(p, policy, &lparam);
5500 rcu_read_unlock();
36c8b586 5501
1da177e4
LT
5502 return retval;
5503}
5504
5505/**
5506 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5507 * @pid: the pid in question.
5508 * @policy: new policy.
5509 * @param: structure containing the new RT priority.
5510 */
5add95d4
HC
5511SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5512 struct sched_param __user *, param)
1da177e4 5513{
c21761f1
JB
5514 /* negative values for policy are not valid */
5515 if (policy < 0)
5516 return -EINVAL;
5517
1da177e4
LT
5518 return do_sched_setscheduler(pid, policy, param);
5519}
5520
5521/**
5522 * sys_sched_setparam - set/change the RT priority of a thread
5523 * @pid: the pid in question.
5524 * @param: structure containing the new RT priority.
5525 */
5add95d4 5526SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5527{
5528 return do_sched_setscheduler(pid, -1, param);
5529}
5530
5531/**
5532 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5533 * @pid: the pid in question.
5534 */
5add95d4 5535SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5536{
36c8b586 5537 struct task_struct *p;
3a5c359a 5538 int retval;
1da177e4
LT
5539
5540 if (pid < 0)
3a5c359a 5541 return -EINVAL;
1da177e4
LT
5542
5543 retval = -ESRCH;
5544 read_lock(&tasklist_lock);
5545 p = find_process_by_pid(pid);
5546 if (p) {
5547 retval = security_task_getscheduler(p);
5548 if (!retval)
5549 retval = p->policy;
5550 }
5551 read_unlock(&tasklist_lock);
1da177e4
LT
5552 return retval;
5553}
5554
5555/**
5556 * sys_sched_getscheduler - get the RT priority of a thread
5557 * @pid: the pid in question.
5558 * @param: structure containing the RT priority.
5559 */
5add95d4 5560SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5561{
5562 struct sched_param lp;
36c8b586 5563 struct task_struct *p;
3a5c359a 5564 int retval;
1da177e4
LT
5565
5566 if (!param || pid < 0)
3a5c359a 5567 return -EINVAL;
1da177e4
LT
5568
5569 read_lock(&tasklist_lock);
5570 p = find_process_by_pid(pid);
5571 retval = -ESRCH;
5572 if (!p)
5573 goto out_unlock;
5574
5575 retval = security_task_getscheduler(p);
5576 if (retval)
5577 goto out_unlock;
5578
5579 lp.sched_priority = p->rt_priority;
5580 read_unlock(&tasklist_lock);
5581
5582 /*
5583 * This one might sleep, we cannot do it with a spinlock held ...
5584 */
5585 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5586
1da177e4
LT
5587 return retval;
5588
5589out_unlock:
5590 read_unlock(&tasklist_lock);
5591 return retval;
5592}
5593
96f874e2 5594long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5595{
5a16f3d3 5596 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5597 struct task_struct *p;
5598 int retval;
1da177e4 5599
95402b38 5600 get_online_cpus();
1da177e4
LT
5601 read_lock(&tasklist_lock);
5602
5603 p = find_process_by_pid(pid);
5604 if (!p) {
5605 read_unlock(&tasklist_lock);
95402b38 5606 put_online_cpus();
1da177e4
LT
5607 return -ESRCH;
5608 }
5609
5610 /*
5611 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5612 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5613 * usage count and then drop tasklist_lock.
5614 */
5615 get_task_struct(p);
5616 read_unlock(&tasklist_lock);
5617
5a16f3d3
RR
5618 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5619 retval = -ENOMEM;
5620 goto out_put_task;
5621 }
5622 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5623 retval = -ENOMEM;
5624 goto out_free_cpus_allowed;
5625 }
1da177e4 5626 retval = -EPERM;
c69e8d9c 5627 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
5628 goto out_unlock;
5629
e7834f8f
DQ
5630 retval = security_task_setscheduler(p, 0, NULL);
5631 if (retval)
5632 goto out_unlock;
5633
5a16f3d3
RR
5634 cpuset_cpus_allowed(p, cpus_allowed);
5635 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 5636 again:
5a16f3d3 5637 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5638
8707d8b8 5639 if (!retval) {
5a16f3d3
RR
5640 cpuset_cpus_allowed(p, cpus_allowed);
5641 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5642 /*
5643 * We must have raced with a concurrent cpuset
5644 * update. Just reset the cpus_allowed to the
5645 * cpuset's cpus_allowed
5646 */
5a16f3d3 5647 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5648 goto again;
5649 }
5650 }
1da177e4 5651out_unlock:
5a16f3d3
RR
5652 free_cpumask_var(new_mask);
5653out_free_cpus_allowed:
5654 free_cpumask_var(cpus_allowed);
5655out_put_task:
1da177e4 5656 put_task_struct(p);
95402b38 5657 put_online_cpus();
1da177e4
LT
5658 return retval;
5659}
5660
5661static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5662 struct cpumask *new_mask)
1da177e4 5663{
96f874e2
RR
5664 if (len < cpumask_size())
5665 cpumask_clear(new_mask);
5666 else if (len > cpumask_size())
5667 len = cpumask_size();
5668
1da177e4
LT
5669 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5670}
5671
5672/**
5673 * sys_sched_setaffinity - set the cpu affinity of a process
5674 * @pid: pid of the process
5675 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5676 * @user_mask_ptr: user-space pointer to the new cpu mask
5677 */
5add95d4
HC
5678SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5679 unsigned long __user *, user_mask_ptr)
1da177e4 5680{
5a16f3d3 5681 cpumask_var_t new_mask;
1da177e4
LT
5682 int retval;
5683
5a16f3d3
RR
5684 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5685 return -ENOMEM;
1da177e4 5686
5a16f3d3
RR
5687 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5688 if (retval == 0)
5689 retval = sched_setaffinity(pid, new_mask);
5690 free_cpumask_var(new_mask);
5691 return retval;
1da177e4
LT
5692}
5693
96f874e2 5694long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5695{
36c8b586 5696 struct task_struct *p;
1da177e4 5697 int retval;
1da177e4 5698
95402b38 5699 get_online_cpus();
1da177e4
LT
5700 read_lock(&tasklist_lock);
5701
5702 retval = -ESRCH;
5703 p = find_process_by_pid(pid);
5704 if (!p)
5705 goto out_unlock;
5706
e7834f8f
DQ
5707 retval = security_task_getscheduler(p);
5708 if (retval)
5709 goto out_unlock;
5710
96f874e2 5711 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
5712
5713out_unlock:
5714 read_unlock(&tasklist_lock);
95402b38 5715 put_online_cpus();
1da177e4 5716
9531b62f 5717 return retval;
1da177e4
LT
5718}
5719
5720/**
5721 * sys_sched_getaffinity - get the cpu affinity of a process
5722 * @pid: pid of the process
5723 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5724 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5725 */
5add95d4
HC
5726SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5727 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5728{
5729 int ret;
f17c8607 5730 cpumask_var_t mask;
1da177e4 5731
f17c8607 5732 if (len < cpumask_size())
1da177e4
LT
5733 return -EINVAL;
5734
f17c8607
RR
5735 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5736 return -ENOMEM;
1da177e4 5737
f17c8607
RR
5738 ret = sched_getaffinity(pid, mask);
5739 if (ret == 0) {
5740 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5741 ret = -EFAULT;
5742 else
5743 ret = cpumask_size();
5744 }
5745 free_cpumask_var(mask);
1da177e4 5746
f17c8607 5747 return ret;
1da177e4
LT
5748}
5749
5750/**
5751 * sys_sched_yield - yield the current processor to other threads.
5752 *
dd41f596
IM
5753 * This function yields the current CPU to other tasks. If there are no
5754 * other threads running on this CPU then this function will return.
1da177e4 5755 */
5add95d4 5756SYSCALL_DEFINE0(sched_yield)
1da177e4 5757{
70b97a7f 5758 struct rq *rq = this_rq_lock();
1da177e4 5759
2d72376b 5760 schedstat_inc(rq, yld_count);
4530d7ab 5761 current->sched_class->yield_task(rq);
1da177e4
LT
5762
5763 /*
5764 * Since we are going to call schedule() anyway, there's
5765 * no need to preempt or enable interrupts:
5766 */
5767 __release(rq->lock);
8a25d5de 5768 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5769 _raw_spin_unlock(&rq->lock);
5770 preempt_enable_no_resched();
5771
5772 schedule();
5773
5774 return 0;
5775}
5776
e7b38404 5777static void __cond_resched(void)
1da177e4 5778{
8e0a43d8
IM
5779#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5780 __might_sleep(__FILE__, __LINE__);
5781#endif
5bbcfd90
IM
5782 /*
5783 * The BKS might be reacquired before we have dropped
5784 * PREEMPT_ACTIVE, which could trigger a second
5785 * cond_resched() call.
5786 */
1da177e4
LT
5787 do {
5788 add_preempt_count(PREEMPT_ACTIVE);
5789 schedule();
5790 sub_preempt_count(PREEMPT_ACTIVE);
5791 } while (need_resched());
5792}
5793
02b67cc3 5794int __sched _cond_resched(void)
1da177e4 5795{
9414232f
IM
5796 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5797 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5798 __cond_resched();
5799 return 1;
5800 }
5801 return 0;
5802}
02b67cc3 5803EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5804
5805/*
5806 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5807 * call schedule, and on return reacquire the lock.
5808 *
41a2d6cf 5809 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5810 * operations here to prevent schedule() from being called twice (once via
5811 * spin_unlock(), once by hand).
5812 */
95cdf3b7 5813int cond_resched_lock(spinlock_t *lock)
1da177e4 5814{
95c354fe 5815 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5816 int ret = 0;
5817
95c354fe 5818 if (spin_needbreak(lock) || resched) {
1da177e4 5819 spin_unlock(lock);
95c354fe
NP
5820 if (resched && need_resched())
5821 __cond_resched();
5822 else
5823 cpu_relax();
6df3cecb 5824 ret = 1;
1da177e4 5825 spin_lock(lock);
1da177e4 5826 }
6df3cecb 5827 return ret;
1da177e4 5828}
1da177e4
LT
5829EXPORT_SYMBOL(cond_resched_lock);
5830
5831int __sched cond_resched_softirq(void)
5832{
5833 BUG_ON(!in_softirq());
5834
9414232f 5835 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5836 local_bh_enable();
1da177e4
LT
5837 __cond_resched();
5838 local_bh_disable();
5839 return 1;
5840 }
5841 return 0;
5842}
1da177e4
LT
5843EXPORT_SYMBOL(cond_resched_softirq);
5844
1da177e4
LT
5845/**
5846 * yield - yield the current processor to other threads.
5847 *
72fd4a35 5848 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5849 * thread runnable and calls sys_sched_yield().
5850 */
5851void __sched yield(void)
5852{
5853 set_current_state(TASK_RUNNING);
5854 sys_sched_yield();
5855}
1da177e4
LT
5856EXPORT_SYMBOL(yield);
5857
5858/*
41a2d6cf 5859 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5860 * that process accounting knows that this is a task in IO wait state.
5861 *
5862 * But don't do that if it is a deliberate, throttling IO wait (this task
5863 * has set its backing_dev_info: the queue against which it should throttle)
5864 */
5865void __sched io_schedule(void)
5866{
70b97a7f 5867 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5868
0ff92245 5869 delayacct_blkio_start();
1da177e4
LT
5870 atomic_inc(&rq->nr_iowait);
5871 schedule();
5872 atomic_dec(&rq->nr_iowait);
0ff92245 5873 delayacct_blkio_end();
1da177e4 5874}
1da177e4
LT
5875EXPORT_SYMBOL(io_schedule);
5876
5877long __sched io_schedule_timeout(long timeout)
5878{
70b97a7f 5879 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5880 long ret;
5881
0ff92245 5882 delayacct_blkio_start();
1da177e4
LT
5883 atomic_inc(&rq->nr_iowait);
5884 ret = schedule_timeout(timeout);
5885 atomic_dec(&rq->nr_iowait);
0ff92245 5886 delayacct_blkio_end();
1da177e4
LT
5887 return ret;
5888}
5889
5890/**
5891 * sys_sched_get_priority_max - return maximum RT priority.
5892 * @policy: scheduling class.
5893 *
5894 * this syscall returns the maximum rt_priority that can be used
5895 * by a given scheduling class.
5896 */
5add95d4 5897SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5898{
5899 int ret = -EINVAL;
5900
5901 switch (policy) {
5902 case SCHED_FIFO:
5903 case SCHED_RR:
5904 ret = MAX_USER_RT_PRIO-1;
5905 break;
5906 case SCHED_NORMAL:
b0a9499c 5907 case SCHED_BATCH:
dd41f596 5908 case SCHED_IDLE:
1da177e4
LT
5909 ret = 0;
5910 break;
5911 }
5912 return ret;
5913}
5914
5915/**
5916 * sys_sched_get_priority_min - return minimum RT priority.
5917 * @policy: scheduling class.
5918 *
5919 * this syscall returns the minimum rt_priority that can be used
5920 * by a given scheduling class.
5921 */
5add95d4 5922SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5923{
5924 int ret = -EINVAL;
5925
5926 switch (policy) {
5927 case SCHED_FIFO:
5928 case SCHED_RR:
5929 ret = 1;
5930 break;
5931 case SCHED_NORMAL:
b0a9499c 5932 case SCHED_BATCH:
dd41f596 5933 case SCHED_IDLE:
1da177e4
LT
5934 ret = 0;
5935 }
5936 return ret;
5937}
5938
5939/**
5940 * sys_sched_rr_get_interval - return the default timeslice of a process.
5941 * @pid: pid of the process.
5942 * @interval: userspace pointer to the timeslice value.
5943 *
5944 * this syscall writes the default timeslice value of a given process
5945 * into the user-space timespec buffer. A value of '0' means infinity.
5946 */
17da2bd9 5947SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 5948 struct timespec __user *, interval)
1da177e4 5949{
36c8b586 5950 struct task_struct *p;
a4ec24b4 5951 unsigned int time_slice;
3a5c359a 5952 int retval;
1da177e4 5953 struct timespec t;
1da177e4
LT
5954
5955 if (pid < 0)
3a5c359a 5956 return -EINVAL;
1da177e4
LT
5957
5958 retval = -ESRCH;
5959 read_lock(&tasklist_lock);
5960 p = find_process_by_pid(pid);
5961 if (!p)
5962 goto out_unlock;
5963
5964 retval = security_task_getscheduler(p);
5965 if (retval)
5966 goto out_unlock;
5967
77034937
IM
5968 /*
5969 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5970 * tasks that are on an otherwise idle runqueue:
5971 */
5972 time_slice = 0;
5973 if (p->policy == SCHED_RR) {
a4ec24b4 5974 time_slice = DEF_TIMESLICE;
1868f958 5975 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5976 struct sched_entity *se = &p->se;
5977 unsigned long flags;
5978 struct rq *rq;
5979
5980 rq = task_rq_lock(p, &flags);
77034937
IM
5981 if (rq->cfs.load.weight)
5982 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5983 task_rq_unlock(rq, &flags);
5984 }
1da177e4 5985 read_unlock(&tasklist_lock);
a4ec24b4 5986 jiffies_to_timespec(time_slice, &t);
1da177e4 5987 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5988 return retval;
3a5c359a 5989
1da177e4
LT
5990out_unlock:
5991 read_unlock(&tasklist_lock);
5992 return retval;
5993}
5994
7c731e0a 5995static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 5996
82a1fcb9 5997void sched_show_task(struct task_struct *p)
1da177e4 5998{
1da177e4 5999 unsigned long free = 0;
36c8b586 6000 unsigned state;
1da177e4 6001
1da177e4 6002 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6003 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6004 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6005#if BITS_PER_LONG == 32
1da177e4 6006 if (state == TASK_RUNNING)
cc4ea795 6007 printk(KERN_CONT " running ");
1da177e4 6008 else
cc4ea795 6009 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6010#else
6011 if (state == TASK_RUNNING)
cc4ea795 6012 printk(KERN_CONT " running task ");
1da177e4 6013 else
cc4ea795 6014 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6015#endif
6016#ifdef CONFIG_DEBUG_STACK_USAGE
6017 {
10ebffde 6018 unsigned long *n = end_of_stack(p);
1da177e4
LT
6019 while (!*n)
6020 n++;
10ebffde 6021 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
6022 }
6023#endif
ba25f9dc 6024 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 6025 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 6026
5fb5e6de 6027 show_stack(p, NULL);
1da177e4
LT
6028}
6029
e59e2ae2 6030void show_state_filter(unsigned long state_filter)
1da177e4 6031{
36c8b586 6032 struct task_struct *g, *p;
1da177e4 6033
4bd77321
IM
6034#if BITS_PER_LONG == 32
6035 printk(KERN_INFO
6036 " task PC stack pid father\n");
1da177e4 6037#else
4bd77321
IM
6038 printk(KERN_INFO
6039 " task PC stack pid father\n");
1da177e4
LT
6040#endif
6041 read_lock(&tasklist_lock);
6042 do_each_thread(g, p) {
6043 /*
6044 * reset the NMI-timeout, listing all files on a slow
6045 * console might take alot of time:
6046 */
6047 touch_nmi_watchdog();
39bc89fd 6048 if (!state_filter || (p->state & state_filter))
82a1fcb9 6049 sched_show_task(p);
1da177e4
LT
6050 } while_each_thread(g, p);
6051
04c9167f
JF
6052 touch_all_softlockup_watchdogs();
6053
dd41f596
IM
6054#ifdef CONFIG_SCHED_DEBUG
6055 sysrq_sched_debug_show();
6056#endif
1da177e4 6057 read_unlock(&tasklist_lock);
e59e2ae2
IM
6058 /*
6059 * Only show locks if all tasks are dumped:
6060 */
6061 if (state_filter == -1)
6062 debug_show_all_locks();
1da177e4
LT
6063}
6064
1df21055
IM
6065void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6066{
dd41f596 6067 idle->sched_class = &idle_sched_class;
1df21055
IM
6068}
6069
f340c0d1
IM
6070/**
6071 * init_idle - set up an idle thread for a given CPU
6072 * @idle: task in question
6073 * @cpu: cpu the idle task belongs to
6074 *
6075 * NOTE: this function does not set the idle thread's NEED_RESCHED
6076 * flag, to make booting more robust.
6077 */
5c1e1767 6078void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6079{
70b97a7f 6080 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6081 unsigned long flags;
6082
5cbd54ef
IM
6083 spin_lock_irqsave(&rq->lock, flags);
6084
dd41f596
IM
6085 __sched_fork(idle);
6086 idle->se.exec_start = sched_clock();
6087
b29739f9 6088 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6089 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6090 __set_task_cpu(idle, cpu);
1da177e4 6091
1da177e4 6092 rq->curr = rq->idle = idle;
4866cde0
NP
6093#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6094 idle->oncpu = 1;
6095#endif
1da177e4
LT
6096 spin_unlock_irqrestore(&rq->lock, flags);
6097
6098 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6099#if defined(CONFIG_PREEMPT)
6100 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6101#else
a1261f54 6102 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6103#endif
dd41f596
IM
6104 /*
6105 * The idle tasks have their own, simple scheduling class:
6106 */
6107 idle->sched_class = &idle_sched_class;
fb52607a 6108 ftrace_graph_init_task(idle);
1da177e4
LT
6109}
6110
6111/*
6112 * In a system that switches off the HZ timer nohz_cpu_mask
6113 * indicates which cpus entered this state. This is used
6114 * in the rcu update to wait only for active cpus. For system
6115 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6116 * always be CPU_BITS_NONE.
1da177e4 6117 */
6a7b3dc3 6118cpumask_var_t nohz_cpu_mask;
1da177e4 6119
19978ca6
IM
6120/*
6121 * Increase the granularity value when there are more CPUs,
6122 * because with more CPUs the 'effective latency' as visible
6123 * to users decreases. But the relationship is not linear,
6124 * so pick a second-best guess by going with the log2 of the
6125 * number of CPUs.
6126 *
6127 * This idea comes from the SD scheduler of Con Kolivas:
6128 */
6129static inline void sched_init_granularity(void)
6130{
6131 unsigned int factor = 1 + ilog2(num_online_cpus());
6132 const unsigned long limit = 200000000;
6133
6134 sysctl_sched_min_granularity *= factor;
6135 if (sysctl_sched_min_granularity > limit)
6136 sysctl_sched_min_granularity = limit;
6137
6138 sysctl_sched_latency *= factor;
6139 if (sysctl_sched_latency > limit)
6140 sysctl_sched_latency = limit;
6141
6142 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6143
6144 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6145}
6146
1da177e4
LT
6147#ifdef CONFIG_SMP
6148/*
6149 * This is how migration works:
6150 *
70b97a7f 6151 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6152 * runqueue and wake up that CPU's migration thread.
6153 * 2) we down() the locked semaphore => thread blocks.
6154 * 3) migration thread wakes up (implicitly it forces the migrated
6155 * thread off the CPU)
6156 * 4) it gets the migration request and checks whether the migrated
6157 * task is still in the wrong runqueue.
6158 * 5) if it's in the wrong runqueue then the migration thread removes
6159 * it and puts it into the right queue.
6160 * 6) migration thread up()s the semaphore.
6161 * 7) we wake up and the migration is done.
6162 */
6163
6164/*
6165 * Change a given task's CPU affinity. Migrate the thread to a
6166 * proper CPU and schedule it away if the CPU it's executing on
6167 * is removed from the allowed bitmask.
6168 *
6169 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6170 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6171 * call is not atomic; no spinlocks may be held.
6172 */
96f874e2 6173int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6174{
70b97a7f 6175 struct migration_req req;
1da177e4 6176 unsigned long flags;
70b97a7f 6177 struct rq *rq;
48f24c4d 6178 int ret = 0;
1da177e4
LT
6179
6180 rq = task_rq_lock(p, &flags);
96f874e2 6181 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
6182 ret = -EINVAL;
6183 goto out;
6184 }
6185
9985b0ba 6186 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 6187 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
6188 ret = -EINVAL;
6189 goto out;
6190 }
6191
73fe6aae 6192 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6193 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6194 else {
96f874e2
RR
6195 cpumask_copy(&p->cpus_allowed, new_mask);
6196 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6197 }
6198
1da177e4 6199 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6200 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6201 goto out;
6202
1e5ce4f4 6203 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
6204 /* Need help from migration thread: drop lock and wait. */
6205 task_rq_unlock(rq, &flags);
6206 wake_up_process(rq->migration_thread);
6207 wait_for_completion(&req.done);
6208 tlb_migrate_finish(p->mm);
6209 return 0;
6210 }
6211out:
6212 task_rq_unlock(rq, &flags);
48f24c4d 6213
1da177e4
LT
6214 return ret;
6215}
cd8ba7cd 6216EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6217
6218/*
41a2d6cf 6219 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6220 * this because either it can't run here any more (set_cpus_allowed()
6221 * away from this CPU, or CPU going down), or because we're
6222 * attempting to rebalance this task on exec (sched_exec).
6223 *
6224 * So we race with normal scheduler movements, but that's OK, as long
6225 * as the task is no longer on this CPU.
efc30814
KK
6226 *
6227 * Returns non-zero if task was successfully migrated.
1da177e4 6228 */
efc30814 6229static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6230{
70b97a7f 6231 struct rq *rq_dest, *rq_src;
dd41f596 6232 int ret = 0, on_rq;
1da177e4 6233
e761b772 6234 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6235 return ret;
1da177e4
LT
6236
6237 rq_src = cpu_rq(src_cpu);
6238 rq_dest = cpu_rq(dest_cpu);
6239
6240 double_rq_lock(rq_src, rq_dest);
6241 /* Already moved. */
6242 if (task_cpu(p) != src_cpu)
b1e38734 6243 goto done;
1da177e4 6244 /* Affinity changed (again). */
96f874e2 6245 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6246 goto fail;
1da177e4 6247
dd41f596 6248 on_rq = p->se.on_rq;
6e82a3be 6249 if (on_rq)
2e1cb74a 6250 deactivate_task(rq_src, p, 0);
6e82a3be 6251
1da177e4 6252 set_task_cpu(p, dest_cpu);
dd41f596
IM
6253 if (on_rq) {
6254 activate_task(rq_dest, p, 0);
15afe09b 6255 check_preempt_curr(rq_dest, p, 0);
1da177e4 6256 }
b1e38734 6257done:
efc30814 6258 ret = 1;
b1e38734 6259fail:
1da177e4 6260 double_rq_unlock(rq_src, rq_dest);
efc30814 6261 return ret;
1da177e4
LT
6262}
6263
6264/*
6265 * migration_thread - this is a highprio system thread that performs
6266 * thread migration by bumping thread off CPU then 'pushing' onto
6267 * another runqueue.
6268 */
95cdf3b7 6269static int migration_thread(void *data)
1da177e4 6270{
1da177e4 6271 int cpu = (long)data;
70b97a7f 6272 struct rq *rq;
1da177e4
LT
6273
6274 rq = cpu_rq(cpu);
6275 BUG_ON(rq->migration_thread != current);
6276
6277 set_current_state(TASK_INTERRUPTIBLE);
6278 while (!kthread_should_stop()) {
70b97a7f 6279 struct migration_req *req;
1da177e4 6280 struct list_head *head;
1da177e4 6281
1da177e4
LT
6282 spin_lock_irq(&rq->lock);
6283
6284 if (cpu_is_offline(cpu)) {
6285 spin_unlock_irq(&rq->lock);
6286 goto wait_to_die;
6287 }
6288
6289 if (rq->active_balance) {
6290 active_load_balance(rq, cpu);
6291 rq->active_balance = 0;
6292 }
6293
6294 head = &rq->migration_queue;
6295
6296 if (list_empty(head)) {
6297 spin_unlock_irq(&rq->lock);
6298 schedule();
6299 set_current_state(TASK_INTERRUPTIBLE);
6300 continue;
6301 }
70b97a7f 6302 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6303 list_del_init(head->next);
6304
674311d5
NP
6305 spin_unlock(&rq->lock);
6306 __migrate_task(req->task, cpu, req->dest_cpu);
6307 local_irq_enable();
1da177e4
LT
6308
6309 complete(&req->done);
6310 }
6311 __set_current_state(TASK_RUNNING);
6312 return 0;
6313
6314wait_to_die:
6315 /* Wait for kthread_stop */
6316 set_current_state(TASK_INTERRUPTIBLE);
6317 while (!kthread_should_stop()) {
6318 schedule();
6319 set_current_state(TASK_INTERRUPTIBLE);
6320 }
6321 __set_current_state(TASK_RUNNING);
6322 return 0;
6323}
6324
6325#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6326
6327static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6328{
6329 int ret;
6330
6331 local_irq_disable();
6332 ret = __migrate_task(p, src_cpu, dest_cpu);
6333 local_irq_enable();
6334 return ret;
6335}
6336
054b9108 6337/*
3a4fa0a2 6338 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 6339 */
48f24c4d 6340static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6341{
70b97a7f 6342 int dest_cpu;
6ca09dfc 6343 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
6344
6345again:
6346 /* Look for allowed, online CPU in same node. */
6347 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6348 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6349 goto move;
6350
6351 /* Any allowed, online CPU? */
6352 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6353 if (dest_cpu < nr_cpu_ids)
6354 goto move;
6355
6356 /* No more Mr. Nice Guy. */
6357 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
6358 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6359 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 6360
e76bd8d9
RR
6361 /*
6362 * Don't tell them about moving exiting tasks or
6363 * kernel threads (both mm NULL), since they never
6364 * leave kernel.
6365 */
6366 if (p->mm && printk_ratelimit()) {
6367 printk(KERN_INFO "process %d (%s) no "
6368 "longer affine to cpu%d\n",
6369 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 6370 }
e76bd8d9
RR
6371 }
6372
6373move:
6374 /* It can have affinity changed while we were choosing. */
6375 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6376 goto again;
1da177e4
LT
6377}
6378
6379/*
6380 * While a dead CPU has no uninterruptible tasks queued at this point,
6381 * it might still have a nonzero ->nr_uninterruptible counter, because
6382 * for performance reasons the counter is not stricly tracking tasks to
6383 * their home CPUs. So we just add the counter to another CPU's counter,
6384 * to keep the global sum constant after CPU-down:
6385 */
70b97a7f 6386static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6387{
1e5ce4f4 6388 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
6389 unsigned long flags;
6390
6391 local_irq_save(flags);
6392 double_rq_lock(rq_src, rq_dest);
6393 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6394 rq_src->nr_uninterruptible = 0;
6395 double_rq_unlock(rq_src, rq_dest);
6396 local_irq_restore(flags);
6397}
6398
6399/* Run through task list and migrate tasks from the dead cpu. */
6400static void migrate_live_tasks(int src_cpu)
6401{
48f24c4d 6402 struct task_struct *p, *t;
1da177e4 6403
f7b4cddc 6404 read_lock(&tasklist_lock);
1da177e4 6405
48f24c4d
IM
6406 do_each_thread(t, p) {
6407 if (p == current)
1da177e4
LT
6408 continue;
6409
48f24c4d
IM
6410 if (task_cpu(p) == src_cpu)
6411 move_task_off_dead_cpu(src_cpu, p);
6412 } while_each_thread(t, p);
1da177e4 6413
f7b4cddc 6414 read_unlock(&tasklist_lock);
1da177e4
LT
6415}
6416
dd41f596
IM
6417/*
6418 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6419 * It does so by boosting its priority to highest possible.
6420 * Used by CPU offline code.
1da177e4
LT
6421 */
6422void sched_idle_next(void)
6423{
48f24c4d 6424 int this_cpu = smp_processor_id();
70b97a7f 6425 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6426 struct task_struct *p = rq->idle;
6427 unsigned long flags;
6428
6429 /* cpu has to be offline */
48f24c4d 6430 BUG_ON(cpu_online(this_cpu));
1da177e4 6431
48f24c4d
IM
6432 /*
6433 * Strictly not necessary since rest of the CPUs are stopped by now
6434 * and interrupts disabled on the current cpu.
1da177e4
LT
6435 */
6436 spin_lock_irqsave(&rq->lock, flags);
6437
dd41f596 6438 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6439
94bc9a7b
DA
6440 update_rq_clock(rq);
6441 activate_task(rq, p, 0);
1da177e4
LT
6442
6443 spin_unlock_irqrestore(&rq->lock, flags);
6444}
6445
48f24c4d
IM
6446/*
6447 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6448 * offline.
6449 */
6450void idle_task_exit(void)
6451{
6452 struct mm_struct *mm = current->active_mm;
6453
6454 BUG_ON(cpu_online(smp_processor_id()));
6455
6456 if (mm != &init_mm)
6457 switch_mm(mm, &init_mm, current);
6458 mmdrop(mm);
6459}
6460
054b9108 6461/* called under rq->lock with disabled interrupts */
36c8b586 6462static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6463{
70b97a7f 6464 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6465
6466 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6467 BUG_ON(!p->exit_state);
1da177e4
LT
6468
6469 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6470 BUG_ON(p->state == TASK_DEAD);
1da177e4 6471
48f24c4d 6472 get_task_struct(p);
1da177e4
LT
6473
6474 /*
6475 * Drop lock around migration; if someone else moves it,
41a2d6cf 6476 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6477 * fine.
6478 */
f7b4cddc 6479 spin_unlock_irq(&rq->lock);
48f24c4d 6480 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6481 spin_lock_irq(&rq->lock);
1da177e4 6482
48f24c4d 6483 put_task_struct(p);
1da177e4
LT
6484}
6485
6486/* release_task() removes task from tasklist, so we won't find dead tasks. */
6487static void migrate_dead_tasks(unsigned int dead_cpu)
6488{
70b97a7f 6489 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6490 struct task_struct *next;
48f24c4d 6491
dd41f596
IM
6492 for ( ; ; ) {
6493 if (!rq->nr_running)
6494 break;
a8e504d2 6495 update_rq_clock(rq);
ff95f3df 6496 next = pick_next_task(rq, rq->curr);
dd41f596
IM
6497 if (!next)
6498 break;
79c53799 6499 next->sched_class->put_prev_task(rq, next);
dd41f596 6500 migrate_dead(dead_cpu, next);
e692ab53 6501
1da177e4
LT
6502 }
6503}
6504#endif /* CONFIG_HOTPLUG_CPU */
6505
e692ab53
NP
6506#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6507
6508static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6509 {
6510 .procname = "sched_domain",
c57baf1e 6511 .mode = 0555,
e0361851 6512 },
38605cae 6513 {0, },
e692ab53
NP
6514};
6515
6516static struct ctl_table sd_ctl_root[] = {
e0361851 6517 {
c57baf1e 6518 .ctl_name = CTL_KERN,
e0361851 6519 .procname = "kernel",
c57baf1e 6520 .mode = 0555,
e0361851
AD
6521 .child = sd_ctl_dir,
6522 },
38605cae 6523 {0, },
e692ab53
NP
6524};
6525
6526static struct ctl_table *sd_alloc_ctl_entry(int n)
6527{
6528 struct ctl_table *entry =
5cf9f062 6529 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6530
e692ab53
NP
6531 return entry;
6532}
6533
6382bc90
MM
6534static void sd_free_ctl_entry(struct ctl_table **tablep)
6535{
cd790076 6536 struct ctl_table *entry;
6382bc90 6537
cd790076
MM
6538 /*
6539 * In the intermediate directories, both the child directory and
6540 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6541 * will always be set. In the lowest directory the names are
cd790076
MM
6542 * static strings and all have proc handlers.
6543 */
6544 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6545 if (entry->child)
6546 sd_free_ctl_entry(&entry->child);
cd790076
MM
6547 if (entry->proc_handler == NULL)
6548 kfree(entry->procname);
6549 }
6382bc90
MM
6550
6551 kfree(*tablep);
6552 *tablep = NULL;
6553}
6554
e692ab53 6555static void
e0361851 6556set_table_entry(struct ctl_table *entry,
e692ab53
NP
6557 const char *procname, void *data, int maxlen,
6558 mode_t mode, proc_handler *proc_handler)
6559{
e692ab53
NP
6560 entry->procname = procname;
6561 entry->data = data;
6562 entry->maxlen = maxlen;
6563 entry->mode = mode;
6564 entry->proc_handler = proc_handler;
6565}
6566
6567static struct ctl_table *
6568sd_alloc_ctl_domain_table(struct sched_domain *sd)
6569{
a5d8c348 6570 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6571
ad1cdc1d
MM
6572 if (table == NULL)
6573 return NULL;
6574
e0361851 6575 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6576 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6577 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6578 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6579 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6580 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6581 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6582 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6583 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6584 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6585 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6586 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6587 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6588 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6589 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6590 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6591 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6592 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6593 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6594 &sd->cache_nice_tries,
6595 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6596 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6597 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6598 set_table_entry(&table[11], "name", sd->name,
6599 CORENAME_MAX_SIZE, 0444, proc_dostring);
6600 /* &table[12] is terminator */
e692ab53
NP
6601
6602 return table;
6603}
6604
9a4e7159 6605static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6606{
6607 struct ctl_table *entry, *table;
6608 struct sched_domain *sd;
6609 int domain_num = 0, i;
6610 char buf[32];
6611
6612 for_each_domain(cpu, sd)
6613 domain_num++;
6614 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6615 if (table == NULL)
6616 return NULL;
e692ab53
NP
6617
6618 i = 0;
6619 for_each_domain(cpu, sd) {
6620 snprintf(buf, 32, "domain%d", i);
e692ab53 6621 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6622 entry->mode = 0555;
e692ab53
NP
6623 entry->child = sd_alloc_ctl_domain_table(sd);
6624 entry++;
6625 i++;
6626 }
6627 return table;
6628}
6629
6630static struct ctl_table_header *sd_sysctl_header;
6382bc90 6631static void register_sched_domain_sysctl(void)
e692ab53
NP
6632{
6633 int i, cpu_num = num_online_cpus();
6634 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6635 char buf[32];
6636
7378547f
MM
6637 WARN_ON(sd_ctl_dir[0].child);
6638 sd_ctl_dir[0].child = entry;
6639
ad1cdc1d
MM
6640 if (entry == NULL)
6641 return;
6642
97b6ea7b 6643 for_each_online_cpu(i) {
e692ab53 6644 snprintf(buf, 32, "cpu%d", i);
e692ab53 6645 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6646 entry->mode = 0555;
e692ab53 6647 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6648 entry++;
e692ab53 6649 }
7378547f
MM
6650
6651 WARN_ON(sd_sysctl_header);
e692ab53
NP
6652 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6653}
6382bc90 6654
7378547f 6655/* may be called multiple times per register */
6382bc90
MM
6656static void unregister_sched_domain_sysctl(void)
6657{
7378547f
MM
6658 if (sd_sysctl_header)
6659 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6660 sd_sysctl_header = NULL;
7378547f
MM
6661 if (sd_ctl_dir[0].child)
6662 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6663}
e692ab53 6664#else
6382bc90
MM
6665static void register_sched_domain_sysctl(void)
6666{
6667}
6668static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6669{
6670}
6671#endif
6672
1f11eb6a
GH
6673static void set_rq_online(struct rq *rq)
6674{
6675 if (!rq->online) {
6676 const struct sched_class *class;
6677
c6c4927b 6678 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6679 rq->online = 1;
6680
6681 for_each_class(class) {
6682 if (class->rq_online)
6683 class->rq_online(rq);
6684 }
6685 }
6686}
6687
6688static void set_rq_offline(struct rq *rq)
6689{
6690 if (rq->online) {
6691 const struct sched_class *class;
6692
6693 for_each_class(class) {
6694 if (class->rq_offline)
6695 class->rq_offline(rq);
6696 }
6697
c6c4927b 6698 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6699 rq->online = 0;
6700 }
6701}
6702
1da177e4
LT
6703/*
6704 * migration_call - callback that gets triggered when a CPU is added.
6705 * Here we can start up the necessary migration thread for the new CPU.
6706 */
48f24c4d
IM
6707static int __cpuinit
6708migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6709{
1da177e4 6710 struct task_struct *p;
48f24c4d 6711 int cpu = (long)hcpu;
1da177e4 6712 unsigned long flags;
70b97a7f 6713 struct rq *rq;
1da177e4
LT
6714
6715 switch (action) {
5be9361c 6716
1da177e4 6717 case CPU_UP_PREPARE:
8bb78442 6718 case CPU_UP_PREPARE_FROZEN:
dd41f596 6719 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6720 if (IS_ERR(p))
6721 return NOTIFY_BAD;
1da177e4
LT
6722 kthread_bind(p, cpu);
6723 /* Must be high prio: stop_machine expects to yield to it. */
6724 rq = task_rq_lock(p, &flags);
dd41f596 6725 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6726 task_rq_unlock(rq, &flags);
6727 cpu_rq(cpu)->migration_thread = p;
6728 break;
48f24c4d 6729
1da177e4 6730 case CPU_ONLINE:
8bb78442 6731 case CPU_ONLINE_FROZEN:
3a4fa0a2 6732 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6733 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6734
6735 /* Update our root-domain */
6736 rq = cpu_rq(cpu);
6737 spin_lock_irqsave(&rq->lock, flags);
6738 if (rq->rd) {
c6c4927b 6739 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6740
6741 set_rq_online(rq);
1f94ef59
GH
6742 }
6743 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6744 break;
48f24c4d 6745
1da177e4
LT
6746#ifdef CONFIG_HOTPLUG_CPU
6747 case CPU_UP_CANCELED:
8bb78442 6748 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6749 if (!cpu_rq(cpu)->migration_thread)
6750 break;
41a2d6cf 6751 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 6752 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 6753 cpumask_any(cpu_online_mask));
1da177e4
LT
6754 kthread_stop(cpu_rq(cpu)->migration_thread);
6755 cpu_rq(cpu)->migration_thread = NULL;
6756 break;
48f24c4d 6757
1da177e4 6758 case CPU_DEAD:
8bb78442 6759 case CPU_DEAD_FROZEN:
470fd646 6760 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6761 migrate_live_tasks(cpu);
6762 rq = cpu_rq(cpu);
6763 kthread_stop(rq->migration_thread);
6764 rq->migration_thread = NULL;
6765 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6766 spin_lock_irq(&rq->lock);
a8e504d2 6767 update_rq_clock(rq);
2e1cb74a 6768 deactivate_task(rq, rq->idle, 0);
1da177e4 6769 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6770 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6771 rq->idle->sched_class = &idle_sched_class;
1da177e4 6772 migrate_dead_tasks(cpu);
d2da272a 6773 spin_unlock_irq(&rq->lock);
470fd646 6774 cpuset_unlock();
1da177e4
LT
6775 migrate_nr_uninterruptible(rq);
6776 BUG_ON(rq->nr_running != 0);
6777
41a2d6cf
IM
6778 /*
6779 * No need to migrate the tasks: it was best-effort if
6780 * they didn't take sched_hotcpu_mutex. Just wake up
6781 * the requestors.
6782 */
1da177e4
LT
6783 spin_lock_irq(&rq->lock);
6784 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6785 struct migration_req *req;
6786
1da177e4 6787 req = list_entry(rq->migration_queue.next,
70b97a7f 6788 struct migration_req, list);
1da177e4 6789 list_del_init(&req->list);
9a2bd244 6790 spin_unlock_irq(&rq->lock);
1da177e4 6791 complete(&req->done);
9a2bd244 6792 spin_lock_irq(&rq->lock);
1da177e4
LT
6793 }
6794 spin_unlock_irq(&rq->lock);
6795 break;
57d885fe 6796
08f503b0
GH
6797 case CPU_DYING:
6798 case CPU_DYING_FROZEN:
57d885fe
GH
6799 /* Update our root-domain */
6800 rq = cpu_rq(cpu);
6801 spin_lock_irqsave(&rq->lock, flags);
6802 if (rq->rd) {
c6c4927b 6803 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6804 set_rq_offline(rq);
57d885fe
GH
6805 }
6806 spin_unlock_irqrestore(&rq->lock, flags);
6807 break;
1da177e4
LT
6808#endif
6809 }
6810 return NOTIFY_OK;
6811}
6812
6813/* Register at highest priority so that task migration (migrate_all_tasks)
6814 * happens before everything else.
6815 */
26c2143b 6816static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6817 .notifier_call = migration_call,
6818 .priority = 10
6819};
6820
7babe8db 6821static int __init migration_init(void)
1da177e4
LT
6822{
6823 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6824 int err;
48f24c4d
IM
6825
6826 /* Start one for the boot CPU: */
07dccf33
AM
6827 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6828 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6829 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6830 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6831
6832 return err;
1da177e4 6833}
7babe8db 6834early_initcall(migration_init);
1da177e4
LT
6835#endif
6836
6837#ifdef CONFIG_SMP
476f3534 6838
3e9830dc 6839#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6840
7c16ec58 6841static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6842 struct cpumask *groupmask)
1da177e4 6843{
4dcf6aff 6844 struct sched_group *group = sd->groups;
434d53b0 6845 char str[256];
1da177e4 6846
968ea6d8 6847 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6848 cpumask_clear(groupmask);
4dcf6aff
IM
6849
6850 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6851
6852 if (!(sd->flags & SD_LOAD_BALANCE)) {
6853 printk("does not load-balance\n");
6854 if (sd->parent)
6855 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6856 " has parent");
6857 return -1;
41c7ce9a
NP
6858 }
6859
eefd796a 6860 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6861
758b2cdc 6862 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
6863 printk(KERN_ERR "ERROR: domain->span does not contain "
6864 "CPU%d\n", cpu);
6865 }
758b2cdc 6866 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
6867 printk(KERN_ERR "ERROR: domain->groups does not contain"
6868 " CPU%d\n", cpu);
6869 }
1da177e4 6870
4dcf6aff 6871 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6872 do {
4dcf6aff
IM
6873 if (!group) {
6874 printk("\n");
6875 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6876 break;
6877 }
6878
4dcf6aff
IM
6879 if (!group->__cpu_power) {
6880 printk(KERN_CONT "\n");
6881 printk(KERN_ERR "ERROR: domain->cpu_power not "
6882 "set\n");
6883 break;
6884 }
1da177e4 6885
758b2cdc 6886 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
6887 printk(KERN_CONT "\n");
6888 printk(KERN_ERR "ERROR: empty group\n");
6889 break;
6890 }
1da177e4 6891
758b2cdc 6892 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
6893 printk(KERN_CONT "\n");
6894 printk(KERN_ERR "ERROR: repeated CPUs\n");
6895 break;
6896 }
1da177e4 6897
758b2cdc 6898 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6899
968ea6d8 6900 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4dcf6aff 6901 printk(KERN_CONT " %s", str);
1da177e4 6902
4dcf6aff
IM
6903 group = group->next;
6904 } while (group != sd->groups);
6905 printk(KERN_CONT "\n");
1da177e4 6906
758b2cdc 6907 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 6908 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6909
758b2cdc
RR
6910 if (sd->parent &&
6911 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
6912 printk(KERN_ERR "ERROR: parent span is not a superset "
6913 "of domain->span\n");
6914 return 0;
6915}
1da177e4 6916
4dcf6aff
IM
6917static void sched_domain_debug(struct sched_domain *sd, int cpu)
6918{
d5dd3db1 6919 cpumask_var_t groupmask;
4dcf6aff 6920 int level = 0;
1da177e4 6921
4dcf6aff
IM
6922 if (!sd) {
6923 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6924 return;
6925 }
1da177e4 6926
4dcf6aff
IM
6927 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6928
d5dd3db1 6929 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6930 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6931 return;
6932 }
6933
4dcf6aff 6934 for (;;) {
7c16ec58 6935 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6936 break;
1da177e4
LT
6937 level++;
6938 sd = sd->parent;
33859f7f 6939 if (!sd)
4dcf6aff
IM
6940 break;
6941 }
d5dd3db1 6942 free_cpumask_var(groupmask);
1da177e4 6943}
6d6bc0ad 6944#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6945# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6946#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6947
1a20ff27 6948static int sd_degenerate(struct sched_domain *sd)
245af2c7 6949{
758b2cdc 6950 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
6951 return 1;
6952
6953 /* Following flags need at least 2 groups */
6954 if (sd->flags & (SD_LOAD_BALANCE |
6955 SD_BALANCE_NEWIDLE |
6956 SD_BALANCE_FORK |
89c4710e
SS
6957 SD_BALANCE_EXEC |
6958 SD_SHARE_CPUPOWER |
6959 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6960 if (sd->groups != sd->groups->next)
6961 return 0;
6962 }
6963
6964 /* Following flags don't use groups */
6965 if (sd->flags & (SD_WAKE_IDLE |
6966 SD_WAKE_AFFINE |
6967 SD_WAKE_BALANCE))
6968 return 0;
6969
6970 return 1;
6971}
6972
48f24c4d
IM
6973static int
6974sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6975{
6976 unsigned long cflags = sd->flags, pflags = parent->flags;
6977
6978 if (sd_degenerate(parent))
6979 return 1;
6980
758b2cdc 6981 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
6982 return 0;
6983
6984 /* Does parent contain flags not in child? */
6985 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6986 if (cflags & SD_WAKE_AFFINE)
6987 pflags &= ~SD_WAKE_BALANCE;
6988 /* Flags needing groups don't count if only 1 group in parent */
6989 if (parent->groups == parent->groups->next) {
6990 pflags &= ~(SD_LOAD_BALANCE |
6991 SD_BALANCE_NEWIDLE |
6992 SD_BALANCE_FORK |
89c4710e
SS
6993 SD_BALANCE_EXEC |
6994 SD_SHARE_CPUPOWER |
6995 SD_SHARE_PKG_RESOURCES);
5436499e
KC
6996 if (nr_node_ids == 1)
6997 pflags &= ~SD_SERIALIZE;
245af2c7
SS
6998 }
6999 if (~cflags & pflags)
7000 return 0;
7001
7002 return 1;
7003}
7004
c6c4927b
RR
7005static void free_rootdomain(struct root_domain *rd)
7006{
68e74568
RR
7007 cpupri_cleanup(&rd->cpupri);
7008
c6c4927b
RR
7009 free_cpumask_var(rd->rto_mask);
7010 free_cpumask_var(rd->online);
7011 free_cpumask_var(rd->span);
7012 kfree(rd);
7013}
7014
57d885fe
GH
7015static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7016{
7017 unsigned long flags;
57d885fe
GH
7018
7019 spin_lock_irqsave(&rq->lock, flags);
7020
7021 if (rq->rd) {
7022 struct root_domain *old_rd = rq->rd;
7023
c6c4927b 7024 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7025 set_rq_offline(rq);
57d885fe 7026
c6c4927b 7027 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7028
57d885fe 7029 if (atomic_dec_and_test(&old_rd->refcount))
c6c4927b 7030 free_rootdomain(old_rd);
57d885fe
GH
7031 }
7032
7033 atomic_inc(&rd->refcount);
7034 rq->rd = rd;
7035
c6c4927b
RR
7036 cpumask_set_cpu(rq->cpu, rd->span);
7037 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 7038 set_rq_online(rq);
57d885fe
GH
7039
7040 spin_unlock_irqrestore(&rq->lock, flags);
7041}
7042
db2f59c8 7043static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe
GH
7044{
7045 memset(rd, 0, sizeof(*rd));
7046
c6c4927b
RR
7047 if (bootmem) {
7048 alloc_bootmem_cpumask_var(&def_root_domain.span);
7049 alloc_bootmem_cpumask_var(&def_root_domain.online);
7050 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
68e74568 7051 cpupri_init(&rd->cpupri, true);
c6c4927b
RR
7052 return 0;
7053 }
7054
7055 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 7056 goto out;
c6c4927b
RR
7057 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7058 goto free_span;
7059 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7060 goto free_online;
6e0534f2 7061
68e74568
RR
7062 if (cpupri_init(&rd->cpupri, false) != 0)
7063 goto free_rto_mask;
c6c4927b 7064 return 0;
6e0534f2 7065
68e74568
RR
7066free_rto_mask:
7067 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7068free_online:
7069 free_cpumask_var(rd->online);
7070free_span:
7071 free_cpumask_var(rd->span);
0c910d28 7072out:
c6c4927b 7073 return -ENOMEM;
57d885fe
GH
7074}
7075
7076static void init_defrootdomain(void)
7077{
c6c4927b
RR
7078 init_rootdomain(&def_root_domain, true);
7079
57d885fe
GH
7080 atomic_set(&def_root_domain.refcount, 1);
7081}
7082
dc938520 7083static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7084{
7085 struct root_domain *rd;
7086
7087 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7088 if (!rd)
7089 return NULL;
7090
c6c4927b
RR
7091 if (init_rootdomain(rd, false) != 0) {
7092 kfree(rd);
7093 return NULL;
7094 }
57d885fe
GH
7095
7096 return rd;
7097}
7098
1da177e4 7099/*
0eab9146 7100 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7101 * hold the hotplug lock.
7102 */
0eab9146
IM
7103static void
7104cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7105{
70b97a7f 7106 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7107 struct sched_domain *tmp;
7108
7109 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7110 for (tmp = sd; tmp; ) {
245af2c7
SS
7111 struct sched_domain *parent = tmp->parent;
7112 if (!parent)
7113 break;
f29c9b1c 7114
1a848870 7115 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7116 tmp->parent = parent->parent;
1a848870
SS
7117 if (parent->parent)
7118 parent->parent->child = tmp;
f29c9b1c
LZ
7119 } else
7120 tmp = tmp->parent;
245af2c7
SS
7121 }
7122
1a848870 7123 if (sd && sd_degenerate(sd)) {
245af2c7 7124 sd = sd->parent;
1a848870
SS
7125 if (sd)
7126 sd->child = NULL;
7127 }
1da177e4
LT
7128
7129 sched_domain_debug(sd, cpu);
7130
57d885fe 7131 rq_attach_root(rq, rd);
674311d5 7132 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7133}
7134
7135/* cpus with isolated domains */
dcc30a35 7136static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7137
7138/* Setup the mask of cpus configured for isolated domains */
7139static int __init isolated_cpu_setup(char *str)
7140{
968ea6d8 7141 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7142 return 1;
7143}
7144
8927f494 7145__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7146
7147/*
6711cab4
SS
7148 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7149 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7150 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7151 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7152 *
7153 * init_sched_build_groups will build a circular linked list of the groups
7154 * covered by the given span, and will set each group's ->cpumask correctly,
7155 * and ->cpu_power to 0.
7156 */
a616058b 7157static void
96f874e2
RR
7158init_sched_build_groups(const struct cpumask *span,
7159 const struct cpumask *cpu_map,
7160 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7161 struct sched_group **sg,
96f874e2
RR
7162 struct cpumask *tmpmask),
7163 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
7164{
7165 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
7166 int i;
7167
96f874e2 7168 cpumask_clear(covered);
7c16ec58 7169
abcd083a 7170 for_each_cpu(i, span) {
6711cab4 7171 struct sched_group *sg;
7c16ec58 7172 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
7173 int j;
7174
758b2cdc 7175 if (cpumask_test_cpu(i, covered))
1da177e4
LT
7176 continue;
7177
758b2cdc 7178 cpumask_clear(sched_group_cpus(sg));
5517d86b 7179 sg->__cpu_power = 0;
1da177e4 7180
abcd083a 7181 for_each_cpu(j, span) {
7c16ec58 7182 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7183 continue;
7184
96f874e2 7185 cpumask_set_cpu(j, covered);
758b2cdc 7186 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
7187 }
7188 if (!first)
7189 first = sg;
7190 if (last)
7191 last->next = sg;
7192 last = sg;
7193 }
7194 last->next = first;
7195}
7196
9c1cfda2 7197#define SD_NODES_PER_DOMAIN 16
1da177e4 7198
9c1cfda2 7199#ifdef CONFIG_NUMA
198e2f18 7200
9c1cfda2
JH
7201/**
7202 * find_next_best_node - find the next node to include in a sched_domain
7203 * @node: node whose sched_domain we're building
7204 * @used_nodes: nodes already in the sched_domain
7205 *
41a2d6cf 7206 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7207 * finds the closest node not already in the @used_nodes map.
7208 *
7209 * Should use nodemask_t.
7210 */
c5f59f08 7211static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7212{
7213 int i, n, val, min_val, best_node = 0;
7214
7215 min_val = INT_MAX;
7216
076ac2af 7217 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7218 /* Start at @node */
076ac2af 7219 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7220
7221 if (!nr_cpus_node(n))
7222 continue;
7223
7224 /* Skip already used nodes */
c5f59f08 7225 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7226 continue;
7227
7228 /* Simple min distance search */
7229 val = node_distance(node, n);
7230
7231 if (val < min_val) {
7232 min_val = val;
7233 best_node = n;
7234 }
7235 }
7236
c5f59f08 7237 node_set(best_node, *used_nodes);
9c1cfda2
JH
7238 return best_node;
7239}
7240
7241/**
7242 * sched_domain_node_span - get a cpumask for a node's sched_domain
7243 * @node: node whose cpumask we're constructing
73486722 7244 * @span: resulting cpumask
9c1cfda2 7245 *
41a2d6cf 7246 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7247 * should be one that prevents unnecessary balancing, but also spreads tasks
7248 * out optimally.
7249 */
96f874e2 7250static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7251{
c5f59f08 7252 nodemask_t used_nodes;
48f24c4d 7253 int i;
9c1cfda2 7254
6ca09dfc 7255 cpumask_clear(span);
c5f59f08 7256 nodes_clear(used_nodes);
9c1cfda2 7257
6ca09dfc 7258 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7259 node_set(node, used_nodes);
9c1cfda2
JH
7260
7261 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7262 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7263
6ca09dfc 7264 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7265 }
9c1cfda2 7266}
6d6bc0ad 7267#endif /* CONFIG_NUMA */
9c1cfda2 7268
5c45bf27 7269int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7270
6c99e9ad
RR
7271/*
7272 * The cpus mask in sched_group and sched_domain hangs off the end.
7273 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7274 * for nr_cpu_ids < CONFIG_NR_CPUS.
7275 */
7276struct static_sched_group {
7277 struct sched_group sg;
7278 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7279};
7280
7281struct static_sched_domain {
7282 struct sched_domain sd;
7283 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7284};
7285
9c1cfda2 7286/*
48f24c4d 7287 * SMT sched-domains:
9c1cfda2 7288 */
1da177e4 7289#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
7290static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7291static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 7292
41a2d6cf 7293static int
96f874e2
RR
7294cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7295 struct sched_group **sg, struct cpumask *unused)
1da177e4 7296{
6711cab4 7297 if (sg)
6c99e9ad 7298 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
7299 return cpu;
7300}
6d6bc0ad 7301#endif /* CONFIG_SCHED_SMT */
1da177e4 7302
48f24c4d
IM
7303/*
7304 * multi-core sched-domains:
7305 */
1e9f28fa 7306#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
7307static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7308static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 7309#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7310
7311#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7312static int
96f874e2
RR
7313cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7314 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 7315{
6711cab4 7316 int group;
7c16ec58 7317
96f874e2
RR
7318 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7319 group = cpumask_first(mask);
6711cab4 7320 if (sg)
6c99e9ad 7321 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 7322 return group;
1e9f28fa
SS
7323}
7324#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7325static int
96f874e2
RR
7326cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7327 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 7328{
6711cab4 7329 if (sg)
6c99e9ad 7330 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
7331 return cpu;
7332}
7333#endif
7334
6c99e9ad
RR
7335static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7336static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 7337
41a2d6cf 7338static int
96f874e2
RR
7339cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7340 struct sched_group **sg, struct cpumask *mask)
1da177e4 7341{
6711cab4 7342 int group;
48f24c4d 7343#ifdef CONFIG_SCHED_MC
6ca09dfc 7344 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 7345 group = cpumask_first(mask);
1e9f28fa 7346#elif defined(CONFIG_SCHED_SMT)
96f874e2
RR
7347 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7348 group = cpumask_first(mask);
1da177e4 7349#else
6711cab4 7350 group = cpu;
1da177e4 7351#endif
6711cab4 7352 if (sg)
6c99e9ad 7353 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 7354 return group;
1da177e4
LT
7355}
7356
7357#ifdef CONFIG_NUMA
1da177e4 7358/*
9c1cfda2
JH
7359 * The init_sched_build_groups can't handle what we want to do with node
7360 * groups, so roll our own. Now each node has its own list of groups which
7361 * gets dynamically allocated.
1da177e4 7362 */
62ea9ceb 7363static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 7364static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7365
62ea9ceb 7366static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 7367static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 7368
96f874e2
RR
7369static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7370 struct sched_group **sg,
7371 struct cpumask *nodemask)
9c1cfda2 7372{
6711cab4
SS
7373 int group;
7374
6ca09dfc 7375 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 7376 group = cpumask_first(nodemask);
6711cab4
SS
7377
7378 if (sg)
6c99e9ad 7379 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7380 return group;
1da177e4 7381}
6711cab4 7382
08069033
SS
7383static void init_numa_sched_groups_power(struct sched_group *group_head)
7384{
7385 struct sched_group *sg = group_head;
7386 int j;
7387
7388 if (!sg)
7389 return;
3a5c359a 7390 do {
758b2cdc 7391 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7392 struct sched_domain *sd;
08069033 7393
6c99e9ad 7394 sd = &per_cpu(phys_domains, j).sd;
758b2cdc 7395 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
3a5c359a
AK
7396 /*
7397 * Only add "power" once for each
7398 * physical package.
7399 */
7400 continue;
7401 }
08069033 7402
3a5c359a
AK
7403 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7404 }
7405 sg = sg->next;
7406 } while (sg != group_head);
08069033 7407}
6d6bc0ad 7408#endif /* CONFIG_NUMA */
1da177e4 7409
a616058b 7410#ifdef CONFIG_NUMA
51888ca2 7411/* Free memory allocated for various sched_group structures */
96f874e2
RR
7412static void free_sched_groups(const struct cpumask *cpu_map,
7413 struct cpumask *nodemask)
51888ca2 7414{
a616058b 7415 int cpu, i;
51888ca2 7416
abcd083a 7417 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7418 struct sched_group **sched_group_nodes
7419 = sched_group_nodes_bycpu[cpu];
7420
51888ca2
SV
7421 if (!sched_group_nodes)
7422 continue;
7423
076ac2af 7424 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7425 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7426
6ca09dfc 7427 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7428 if (cpumask_empty(nodemask))
51888ca2
SV
7429 continue;
7430
7431 if (sg == NULL)
7432 continue;
7433 sg = sg->next;
7434next_sg:
7435 oldsg = sg;
7436 sg = sg->next;
7437 kfree(oldsg);
7438 if (oldsg != sched_group_nodes[i])
7439 goto next_sg;
7440 }
7441 kfree(sched_group_nodes);
7442 sched_group_nodes_bycpu[cpu] = NULL;
7443 }
51888ca2 7444}
6d6bc0ad 7445#else /* !CONFIG_NUMA */
96f874e2
RR
7446static void free_sched_groups(const struct cpumask *cpu_map,
7447 struct cpumask *nodemask)
a616058b
SS
7448{
7449}
6d6bc0ad 7450#endif /* CONFIG_NUMA */
51888ca2 7451
89c4710e
SS
7452/*
7453 * Initialize sched groups cpu_power.
7454 *
7455 * cpu_power indicates the capacity of sched group, which is used while
7456 * distributing the load between different sched groups in a sched domain.
7457 * Typically cpu_power for all the groups in a sched domain will be same unless
7458 * there are asymmetries in the topology. If there are asymmetries, group
7459 * having more cpu_power will pickup more load compared to the group having
7460 * less cpu_power.
7461 *
7462 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7463 * the maximum number of tasks a group can handle in the presence of other idle
7464 * or lightly loaded groups in the same sched domain.
7465 */
7466static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7467{
7468 struct sched_domain *child;
7469 struct sched_group *group;
7470
7471 WARN_ON(!sd || !sd->groups);
7472
758b2cdc 7473 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
89c4710e
SS
7474 return;
7475
7476 child = sd->child;
7477
5517d86b
ED
7478 sd->groups->__cpu_power = 0;
7479
89c4710e
SS
7480 /*
7481 * For perf policy, if the groups in child domain share resources
7482 * (for example cores sharing some portions of the cache hierarchy
7483 * or SMT), then set this domain groups cpu_power such that each group
7484 * can handle only one task, when there are other idle groups in the
7485 * same sched domain.
7486 */
7487 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7488 (child->flags &
7489 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7490 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7491 return;
7492 }
7493
89c4710e
SS
7494 /*
7495 * add cpu_power of each child group to this groups cpu_power
7496 */
7497 group = child->groups;
7498 do {
5517d86b 7499 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7500 group = group->next;
7501 } while (group != child->groups);
7502}
7503
7c16ec58
MT
7504/*
7505 * Initializers for schedule domains
7506 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7507 */
7508
a5d8c348
IM
7509#ifdef CONFIG_SCHED_DEBUG
7510# define SD_INIT_NAME(sd, type) sd->name = #type
7511#else
7512# define SD_INIT_NAME(sd, type) do { } while (0)
7513#endif
7514
7c16ec58 7515#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7516
7c16ec58
MT
7517#define SD_INIT_FUNC(type) \
7518static noinline void sd_init_##type(struct sched_domain *sd) \
7519{ \
7520 memset(sd, 0, sizeof(*sd)); \
7521 *sd = SD_##type##_INIT; \
1d3504fc 7522 sd->level = SD_LV_##type; \
a5d8c348 7523 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7524}
7525
7526SD_INIT_FUNC(CPU)
7527#ifdef CONFIG_NUMA
7528 SD_INIT_FUNC(ALLNODES)
7529 SD_INIT_FUNC(NODE)
7530#endif
7531#ifdef CONFIG_SCHED_SMT
7532 SD_INIT_FUNC(SIBLING)
7533#endif
7534#ifdef CONFIG_SCHED_MC
7535 SD_INIT_FUNC(MC)
7536#endif
7537
1d3504fc
HS
7538static int default_relax_domain_level = -1;
7539
7540static int __init setup_relax_domain_level(char *str)
7541{
30e0e178
LZ
7542 unsigned long val;
7543
7544 val = simple_strtoul(str, NULL, 0);
7545 if (val < SD_LV_MAX)
7546 default_relax_domain_level = val;
7547
1d3504fc
HS
7548 return 1;
7549}
7550__setup("relax_domain_level=", setup_relax_domain_level);
7551
7552static void set_domain_attribute(struct sched_domain *sd,
7553 struct sched_domain_attr *attr)
7554{
7555 int request;
7556
7557 if (!attr || attr->relax_domain_level < 0) {
7558 if (default_relax_domain_level < 0)
7559 return;
7560 else
7561 request = default_relax_domain_level;
7562 } else
7563 request = attr->relax_domain_level;
7564 if (request < sd->level) {
7565 /* turn off idle balance on this domain */
7566 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7567 } else {
7568 /* turn on idle balance on this domain */
7569 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7570 }
7571}
7572
1da177e4 7573/*
1a20ff27
DG
7574 * Build sched domains for a given set of cpus and attach the sched domains
7575 * to the individual cpus
1da177e4 7576 */
96f874e2 7577static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 7578 struct sched_domain_attr *attr)
1da177e4 7579{
3404c8d9 7580 int i, err = -ENOMEM;
57d885fe 7581 struct root_domain *rd;
3404c8d9
RR
7582 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7583 tmpmask;
d1b55138 7584#ifdef CONFIG_NUMA
3404c8d9 7585 cpumask_var_t domainspan, covered, notcovered;
d1b55138 7586 struct sched_group **sched_group_nodes = NULL;
6711cab4 7587 int sd_allnodes = 0;
d1b55138 7588
3404c8d9
RR
7589 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7590 goto out;
7591 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7592 goto free_domainspan;
7593 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7594 goto free_covered;
7595#endif
7596
7597 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7598 goto free_notcovered;
7599 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7600 goto free_nodemask;
7601 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7602 goto free_this_sibling_map;
7603 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7604 goto free_this_core_map;
7605 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7606 goto free_send_covered;
7607
7608#ifdef CONFIG_NUMA
d1b55138
JH
7609 /*
7610 * Allocate the per-node list of sched groups
7611 */
076ac2af 7612 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7613 GFP_KERNEL);
d1b55138
JH
7614 if (!sched_group_nodes) {
7615 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 7616 goto free_tmpmask;
d1b55138 7617 }
d1b55138 7618#endif
1da177e4 7619
dc938520 7620 rd = alloc_rootdomain();
57d885fe
GH
7621 if (!rd) {
7622 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 7623 goto free_sched_groups;
57d885fe
GH
7624 }
7625
7c16ec58 7626#ifdef CONFIG_NUMA
96f874e2 7627 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
7628#endif
7629
1da177e4 7630 /*
1a20ff27 7631 * Set up domains for cpus specified by the cpu_map.
1da177e4 7632 */
abcd083a 7633 for_each_cpu(i, cpu_map) {
1da177e4 7634 struct sched_domain *sd = NULL, *p;
1da177e4 7635
6ca09dfc 7636 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
7637
7638#ifdef CONFIG_NUMA
96f874e2
RR
7639 if (cpumask_weight(cpu_map) >
7640 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 7641 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 7642 SD_INIT(sd, ALLNODES);
1d3504fc 7643 set_domain_attribute(sd, attr);
758b2cdc 7644 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 7645 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7646 p = sd;
6711cab4 7647 sd_allnodes = 1;
9c1cfda2
JH
7648 } else
7649 p = NULL;
7650
62ea9ceb 7651 sd = &per_cpu(node_domains, i).sd;
7c16ec58 7652 SD_INIT(sd, NODE);
1d3504fc 7653 set_domain_attribute(sd, attr);
758b2cdc 7654 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 7655 sd->parent = p;
1a848870
SS
7656 if (p)
7657 p->child = sd;
758b2cdc
RR
7658 cpumask_and(sched_domain_span(sd),
7659 sched_domain_span(sd), cpu_map);
1da177e4
LT
7660#endif
7661
7662 p = sd;
6c99e9ad 7663 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 7664 SD_INIT(sd, CPU);
1d3504fc 7665 set_domain_attribute(sd, attr);
758b2cdc 7666 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 7667 sd->parent = p;
1a848870
SS
7668 if (p)
7669 p->child = sd;
7c16ec58 7670 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7671
1e9f28fa
SS
7672#ifdef CONFIG_SCHED_MC
7673 p = sd;
6c99e9ad 7674 sd = &per_cpu(core_domains, i).sd;
7c16ec58 7675 SD_INIT(sd, MC);
1d3504fc 7676 set_domain_attribute(sd, attr);
6ca09dfc
MT
7677 cpumask_and(sched_domain_span(sd), cpu_map,
7678 cpu_coregroup_mask(i));
1e9f28fa 7679 sd->parent = p;
1a848870 7680 p->child = sd;
7c16ec58 7681 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7682#endif
7683
1da177e4
LT
7684#ifdef CONFIG_SCHED_SMT
7685 p = sd;
6c99e9ad 7686 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 7687 SD_INIT(sd, SIBLING);
1d3504fc 7688 set_domain_attribute(sd, attr);
758b2cdc
RR
7689 cpumask_and(sched_domain_span(sd),
7690 &per_cpu(cpu_sibling_map, i), cpu_map);
1da177e4 7691 sd->parent = p;
1a848870 7692 p->child = sd;
7c16ec58 7693 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7694#endif
7695 }
7696
7697#ifdef CONFIG_SCHED_SMT
7698 /* Set up CPU (sibling) groups */
abcd083a 7699 for_each_cpu(i, cpu_map) {
96f874e2
RR
7700 cpumask_and(this_sibling_map,
7701 &per_cpu(cpu_sibling_map, i), cpu_map);
7702 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
7703 continue;
7704
dd41f596 7705 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7706 &cpu_to_cpu_group,
7707 send_covered, tmpmask);
1da177e4
LT
7708 }
7709#endif
7710
1e9f28fa
SS
7711#ifdef CONFIG_SCHED_MC
7712 /* Set up multi-core groups */
abcd083a 7713 for_each_cpu(i, cpu_map) {
6ca09dfc 7714 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 7715 if (i != cpumask_first(this_core_map))
1e9f28fa 7716 continue;
7c16ec58 7717
dd41f596 7718 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7719 &cpu_to_core_group,
7720 send_covered, tmpmask);
1e9f28fa
SS
7721 }
7722#endif
7723
1da177e4 7724 /* Set up physical groups */
076ac2af 7725 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 7726 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7727 if (cpumask_empty(nodemask))
1da177e4
LT
7728 continue;
7729
7c16ec58
MT
7730 init_sched_build_groups(nodemask, cpu_map,
7731 &cpu_to_phys_group,
7732 send_covered, tmpmask);
1da177e4
LT
7733 }
7734
7735#ifdef CONFIG_NUMA
7736 /* Set up node groups */
7c16ec58 7737 if (sd_allnodes) {
7c16ec58
MT
7738 init_sched_build_groups(cpu_map, cpu_map,
7739 &cpu_to_allnodes_group,
7740 send_covered, tmpmask);
7741 }
9c1cfda2 7742
076ac2af 7743 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7744 /* Set up node groups */
7745 struct sched_group *sg, *prev;
9c1cfda2
JH
7746 int j;
7747
96f874e2 7748 cpumask_clear(covered);
6ca09dfc 7749 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7750 if (cpumask_empty(nodemask)) {
d1b55138 7751 sched_group_nodes[i] = NULL;
9c1cfda2 7752 continue;
d1b55138 7753 }
9c1cfda2 7754
4bdbaad3 7755 sched_domain_node_span(i, domainspan);
96f874e2 7756 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 7757
6c99e9ad
RR
7758 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7759 GFP_KERNEL, i);
51888ca2
SV
7760 if (!sg) {
7761 printk(KERN_WARNING "Can not alloc domain group for "
7762 "node %d\n", i);
7763 goto error;
7764 }
9c1cfda2 7765 sched_group_nodes[i] = sg;
abcd083a 7766 for_each_cpu(j, nodemask) {
9c1cfda2 7767 struct sched_domain *sd;
9761eea8 7768
62ea9ceb 7769 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 7770 sd->groups = sg;
9c1cfda2 7771 }
5517d86b 7772 sg->__cpu_power = 0;
758b2cdc 7773 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 7774 sg->next = sg;
96f874e2 7775 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
7776 prev = sg;
7777
076ac2af 7778 for (j = 0; j < nr_node_ids; j++) {
076ac2af 7779 int n = (i + j) % nr_node_ids;
9c1cfda2 7780
96f874e2
RR
7781 cpumask_complement(notcovered, covered);
7782 cpumask_and(tmpmask, notcovered, cpu_map);
7783 cpumask_and(tmpmask, tmpmask, domainspan);
7784 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7785 break;
7786
6ca09dfc 7787 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 7788 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7789 continue;
7790
6c99e9ad
RR
7791 sg = kmalloc_node(sizeof(struct sched_group) +
7792 cpumask_size(),
15f0b676 7793 GFP_KERNEL, i);
9c1cfda2
JH
7794 if (!sg) {
7795 printk(KERN_WARNING
7796 "Can not alloc domain group for node %d\n", j);
51888ca2 7797 goto error;
9c1cfda2 7798 }
5517d86b 7799 sg->__cpu_power = 0;
758b2cdc 7800 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 7801 sg->next = prev->next;
96f874e2 7802 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
7803 prev->next = sg;
7804 prev = sg;
7805 }
9c1cfda2 7806 }
1da177e4
LT
7807#endif
7808
7809 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7810#ifdef CONFIG_SCHED_SMT
abcd083a 7811 for_each_cpu(i, cpu_map) {
6c99e9ad 7812 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 7813
89c4710e 7814 init_sched_groups_power(i, sd);
5c45bf27 7815 }
1da177e4 7816#endif
1e9f28fa 7817#ifdef CONFIG_SCHED_MC
abcd083a 7818 for_each_cpu(i, cpu_map) {
6c99e9ad 7819 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 7820
89c4710e 7821 init_sched_groups_power(i, sd);
5c45bf27
SS
7822 }
7823#endif
1e9f28fa 7824
abcd083a 7825 for_each_cpu(i, cpu_map) {
6c99e9ad 7826 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 7827
89c4710e 7828 init_sched_groups_power(i, sd);
1da177e4
LT
7829 }
7830
9c1cfda2 7831#ifdef CONFIG_NUMA
076ac2af 7832 for (i = 0; i < nr_node_ids; i++)
08069033 7833 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7834
6711cab4
SS
7835 if (sd_allnodes) {
7836 struct sched_group *sg;
f712c0c7 7837
96f874e2 7838 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 7839 tmpmask);
f712c0c7
SS
7840 init_numa_sched_groups_power(sg);
7841 }
9c1cfda2
JH
7842#endif
7843
1da177e4 7844 /* Attach the domains */
abcd083a 7845 for_each_cpu(i, cpu_map) {
1da177e4
LT
7846 struct sched_domain *sd;
7847#ifdef CONFIG_SCHED_SMT
6c99e9ad 7848 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7849#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7850 sd = &per_cpu(core_domains, i).sd;
1da177e4 7851#else
6c99e9ad 7852 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7853#endif
57d885fe 7854 cpu_attach_domain(sd, rd, i);
1da177e4 7855 }
51888ca2 7856
3404c8d9
RR
7857 err = 0;
7858
7859free_tmpmask:
7860 free_cpumask_var(tmpmask);
7861free_send_covered:
7862 free_cpumask_var(send_covered);
7863free_this_core_map:
7864 free_cpumask_var(this_core_map);
7865free_this_sibling_map:
7866 free_cpumask_var(this_sibling_map);
7867free_nodemask:
7868 free_cpumask_var(nodemask);
7869free_notcovered:
7870#ifdef CONFIG_NUMA
7871 free_cpumask_var(notcovered);
7872free_covered:
7873 free_cpumask_var(covered);
7874free_domainspan:
7875 free_cpumask_var(domainspan);
7876out:
7877#endif
7878 return err;
7879
7880free_sched_groups:
7881#ifdef CONFIG_NUMA
7882 kfree(sched_group_nodes);
7883#endif
7884 goto free_tmpmask;
51888ca2 7885
a616058b 7886#ifdef CONFIG_NUMA
51888ca2 7887error:
7c16ec58 7888 free_sched_groups(cpu_map, tmpmask);
c6c4927b 7889 free_rootdomain(rd);
3404c8d9 7890 goto free_tmpmask;
a616058b 7891#endif
1da177e4 7892}
029190c5 7893
96f874e2 7894static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7895{
7896 return __build_sched_domains(cpu_map, NULL);
7897}
7898
96f874e2 7899static struct cpumask *doms_cur; /* current sched domains */
029190c5 7900static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7901static struct sched_domain_attr *dattr_cur;
7902 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7903
7904/*
7905 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7906 * cpumask) fails, then fallback to a single sched domain,
7907 * as determined by the single cpumask fallback_doms.
029190c5 7908 */
4212823f 7909static cpumask_var_t fallback_doms;
029190c5 7910
ee79d1bd
HC
7911/*
7912 * arch_update_cpu_topology lets virtualized architectures update the
7913 * cpu core maps. It is supposed to return 1 if the topology changed
7914 * or 0 if it stayed the same.
7915 */
7916int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7917{
ee79d1bd 7918 return 0;
22e52b07
HC
7919}
7920
1a20ff27 7921/*
41a2d6cf 7922 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7923 * For now this just excludes isolated cpus, but could be used to
7924 * exclude other special cases in the future.
1a20ff27 7925 */
96f874e2 7926static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 7927{
7378547f
MM
7928 int err;
7929
22e52b07 7930 arch_update_cpu_topology();
029190c5 7931 ndoms_cur = 1;
96f874e2 7932 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 7933 if (!doms_cur)
4212823f 7934 doms_cur = fallback_doms;
dcc30a35 7935 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 7936 dattr_cur = NULL;
7378547f 7937 err = build_sched_domains(doms_cur);
6382bc90 7938 register_sched_domain_sysctl();
7378547f
MM
7939
7940 return err;
1a20ff27
DG
7941}
7942
96f874e2
RR
7943static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7944 struct cpumask *tmpmask)
1da177e4 7945{
7c16ec58 7946 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7947}
1da177e4 7948
1a20ff27
DG
7949/*
7950 * Detach sched domains from a group of cpus specified in cpu_map
7951 * These cpus will now be attached to the NULL domain
7952 */
96f874e2 7953static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 7954{
96f874e2
RR
7955 /* Save because hotplug lock held. */
7956 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
7957 int i;
7958
abcd083a 7959 for_each_cpu(i, cpu_map)
57d885fe 7960 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7961 synchronize_sched();
96f874e2 7962 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
7963}
7964
1d3504fc
HS
7965/* handle null as "default" */
7966static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7967 struct sched_domain_attr *new, int idx_new)
7968{
7969 struct sched_domain_attr tmp;
7970
7971 /* fast path */
7972 if (!new && !cur)
7973 return 1;
7974
7975 tmp = SD_ATTR_INIT;
7976 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7977 new ? (new + idx_new) : &tmp,
7978 sizeof(struct sched_domain_attr));
7979}
7980
029190c5
PJ
7981/*
7982 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7983 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7984 * doms_new[] to the current sched domain partitioning, doms_cur[].
7985 * It destroys each deleted domain and builds each new domain.
7986 *
96f874e2 7987 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
7988 * The masks don't intersect (don't overlap.) We should setup one
7989 * sched domain for each mask. CPUs not in any of the cpumasks will
7990 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7991 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7992 * it as it is.
7993 *
41a2d6cf
IM
7994 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7995 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
7996 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7997 * ndoms_new == 1, and partition_sched_domains() will fallback to
7998 * the single partition 'fallback_doms', it also forces the domains
7999 * to be rebuilt.
029190c5 8000 *
96f874e2 8001 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8002 * ndoms_new == 0 is a special case for destroying existing domains,
8003 * and it will not create the default domain.
dfb512ec 8004 *
029190c5
PJ
8005 * Call with hotplug lock held
8006 */
96f874e2
RR
8007/* FIXME: Change to struct cpumask *doms_new[] */
8008void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8009 struct sched_domain_attr *dattr_new)
029190c5 8010{
dfb512ec 8011 int i, j, n;
d65bd5ec 8012 int new_topology;
029190c5 8013
712555ee 8014 mutex_lock(&sched_domains_mutex);
a1835615 8015
7378547f
MM
8016 /* always unregister in case we don't destroy any domains */
8017 unregister_sched_domain_sysctl();
8018
d65bd5ec
HC
8019 /* Let architecture update cpu core mappings. */
8020 new_topology = arch_update_cpu_topology();
8021
dfb512ec 8022 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8023
8024 /* Destroy deleted domains */
8025 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8026 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8027 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8028 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8029 goto match1;
8030 }
8031 /* no match - a current sched domain not in new doms_new[] */
8032 detach_destroy_domains(doms_cur + i);
8033match1:
8034 ;
8035 }
8036
e761b772
MK
8037 if (doms_new == NULL) {
8038 ndoms_cur = 0;
4212823f 8039 doms_new = fallback_doms;
dcc30a35 8040 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8041 WARN_ON_ONCE(dattr_new);
e761b772
MK
8042 }
8043
029190c5
PJ
8044 /* Build new domains */
8045 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8046 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8047 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8048 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8049 goto match2;
8050 }
8051 /* no match - add a new doms_new */
1d3504fc
HS
8052 __build_sched_domains(doms_new + i,
8053 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8054match2:
8055 ;
8056 }
8057
8058 /* Remember the new sched domains */
4212823f 8059 if (doms_cur != fallback_doms)
029190c5 8060 kfree(doms_cur);
1d3504fc 8061 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8062 doms_cur = doms_new;
1d3504fc 8063 dattr_cur = dattr_new;
029190c5 8064 ndoms_cur = ndoms_new;
7378547f
MM
8065
8066 register_sched_domain_sysctl();
a1835615 8067
712555ee 8068 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8069}
8070
5c45bf27 8071#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 8072static void arch_reinit_sched_domains(void)
5c45bf27 8073{
95402b38 8074 get_online_cpus();
dfb512ec
MK
8075
8076 /* Destroy domains first to force the rebuild */
8077 partition_sched_domains(0, NULL, NULL);
8078
e761b772 8079 rebuild_sched_domains();
95402b38 8080 put_online_cpus();
5c45bf27
SS
8081}
8082
8083static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8084{
afb8a9b7 8085 unsigned int level = 0;
5c45bf27 8086
afb8a9b7
GS
8087 if (sscanf(buf, "%u", &level) != 1)
8088 return -EINVAL;
8089
8090 /*
8091 * level is always be positive so don't check for
8092 * level < POWERSAVINGS_BALANCE_NONE which is 0
8093 * What happens on 0 or 1 byte write,
8094 * need to check for count as well?
8095 */
8096
8097 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8098 return -EINVAL;
8099
8100 if (smt)
afb8a9b7 8101 sched_smt_power_savings = level;
5c45bf27 8102 else
afb8a9b7 8103 sched_mc_power_savings = level;
5c45bf27 8104
c70f22d2 8105 arch_reinit_sched_domains();
5c45bf27 8106
c70f22d2 8107 return count;
5c45bf27
SS
8108}
8109
5c45bf27 8110#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8111static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8112 char *page)
5c45bf27
SS
8113{
8114 return sprintf(page, "%u\n", sched_mc_power_savings);
8115}
f718cd4a 8116static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8117 const char *buf, size_t count)
5c45bf27
SS
8118{
8119 return sched_power_savings_store(buf, count, 0);
8120}
f718cd4a
AK
8121static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8122 sched_mc_power_savings_show,
8123 sched_mc_power_savings_store);
5c45bf27
SS
8124#endif
8125
8126#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8127static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8128 char *page)
5c45bf27
SS
8129{
8130 return sprintf(page, "%u\n", sched_smt_power_savings);
8131}
f718cd4a 8132static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8133 const char *buf, size_t count)
5c45bf27
SS
8134{
8135 return sched_power_savings_store(buf, count, 1);
8136}
f718cd4a
AK
8137static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8138 sched_smt_power_savings_show,
6707de00
AB
8139 sched_smt_power_savings_store);
8140#endif
8141
39aac648 8142int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
8143{
8144 int err = 0;
8145
8146#ifdef CONFIG_SCHED_SMT
8147 if (smt_capable())
8148 err = sysfs_create_file(&cls->kset.kobj,
8149 &attr_sched_smt_power_savings.attr);
8150#endif
8151#ifdef CONFIG_SCHED_MC
8152 if (!err && mc_capable())
8153 err = sysfs_create_file(&cls->kset.kobj,
8154 &attr_sched_mc_power_savings.attr);
8155#endif
8156 return err;
8157}
6d6bc0ad 8158#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8159
e761b772 8160#ifndef CONFIG_CPUSETS
1da177e4 8161/*
e761b772
MK
8162 * Add online and remove offline CPUs from the scheduler domains.
8163 * When cpusets are enabled they take over this function.
1da177e4
LT
8164 */
8165static int update_sched_domains(struct notifier_block *nfb,
8166 unsigned long action, void *hcpu)
e761b772
MK
8167{
8168 switch (action) {
8169 case CPU_ONLINE:
8170 case CPU_ONLINE_FROZEN:
8171 case CPU_DEAD:
8172 case CPU_DEAD_FROZEN:
dfb512ec 8173 partition_sched_domains(1, NULL, NULL);
e761b772
MK
8174 return NOTIFY_OK;
8175
8176 default:
8177 return NOTIFY_DONE;
8178 }
8179}
8180#endif
8181
8182static int update_runtime(struct notifier_block *nfb,
8183 unsigned long action, void *hcpu)
1da177e4 8184{
7def2be1
PZ
8185 int cpu = (int)(long)hcpu;
8186
1da177e4 8187 switch (action) {
1da177e4 8188 case CPU_DOWN_PREPARE:
8bb78442 8189 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8190 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8191 return NOTIFY_OK;
8192
1da177e4 8193 case CPU_DOWN_FAILED:
8bb78442 8194 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8195 case CPU_ONLINE:
8bb78442 8196 case CPU_ONLINE_FROZEN:
7def2be1 8197 enable_runtime(cpu_rq(cpu));
e761b772
MK
8198 return NOTIFY_OK;
8199
1da177e4
LT
8200 default:
8201 return NOTIFY_DONE;
8202 }
1da177e4 8203}
1da177e4
LT
8204
8205void __init sched_init_smp(void)
8206{
dcc30a35
RR
8207 cpumask_var_t non_isolated_cpus;
8208
8209 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 8210
434d53b0
MT
8211#if defined(CONFIG_NUMA)
8212 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8213 GFP_KERNEL);
8214 BUG_ON(sched_group_nodes_bycpu == NULL);
8215#endif
95402b38 8216 get_online_cpus();
712555ee 8217 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
8218 arch_init_sched_domains(cpu_online_mask);
8219 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8220 if (cpumask_empty(non_isolated_cpus))
8221 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8222 mutex_unlock(&sched_domains_mutex);
95402b38 8223 put_online_cpus();
e761b772
MK
8224
8225#ifndef CONFIG_CPUSETS
1da177e4
LT
8226 /* XXX: Theoretical race here - CPU may be hotplugged now */
8227 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8228#endif
8229
8230 /* RT runtime code needs to handle some hotplug events */
8231 hotcpu_notifier(update_runtime, 0);
8232
b328ca18 8233 init_hrtick();
5c1e1767
NP
8234
8235 /* Move init over to a non-isolated CPU */
dcc30a35 8236 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8237 BUG();
19978ca6 8238 sched_init_granularity();
dcc30a35 8239 free_cpumask_var(non_isolated_cpus);
4212823f
RR
8240
8241 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 8242 init_sched_rt_class();
1da177e4
LT
8243}
8244#else
8245void __init sched_init_smp(void)
8246{
19978ca6 8247 sched_init_granularity();
1da177e4
LT
8248}
8249#endif /* CONFIG_SMP */
8250
8251int in_sched_functions(unsigned long addr)
8252{
1da177e4
LT
8253 return in_lock_functions(addr) ||
8254 (addr >= (unsigned long)__sched_text_start
8255 && addr < (unsigned long)__sched_text_end);
8256}
8257
a9957449 8258static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8259{
8260 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8261 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8262#ifdef CONFIG_FAIR_GROUP_SCHED
8263 cfs_rq->rq = rq;
8264#endif
67e9fb2a 8265 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8266}
8267
fa85ae24
PZ
8268static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8269{
8270 struct rt_prio_array *array;
8271 int i;
8272
8273 array = &rt_rq->active;
8274 for (i = 0; i < MAX_RT_PRIO; i++) {
8275 INIT_LIST_HEAD(array->queue + i);
8276 __clear_bit(i, array->bitmap);
8277 }
8278 /* delimiter for bitsearch: */
8279 __set_bit(MAX_RT_PRIO, array->bitmap);
8280
052f1dc7 8281#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
8282 rt_rq->highest_prio = MAX_RT_PRIO;
8283#endif
fa85ae24
PZ
8284#ifdef CONFIG_SMP
8285 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
8286 rt_rq->overloaded = 0;
8287#endif
8288
8289 rt_rq->rt_time = 0;
8290 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8291 rt_rq->rt_runtime = 0;
8292 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8293
052f1dc7 8294#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8295 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8296 rt_rq->rq = rq;
8297#endif
fa85ae24
PZ
8298}
8299
6f505b16 8300#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8301static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8302 struct sched_entity *se, int cpu, int add,
8303 struct sched_entity *parent)
6f505b16 8304{
ec7dc8ac 8305 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8306 tg->cfs_rq[cpu] = cfs_rq;
8307 init_cfs_rq(cfs_rq, rq);
8308 cfs_rq->tg = tg;
8309 if (add)
8310 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8311
8312 tg->se[cpu] = se;
354d60c2
DG
8313 /* se could be NULL for init_task_group */
8314 if (!se)
8315 return;
8316
ec7dc8ac
DG
8317 if (!parent)
8318 se->cfs_rq = &rq->cfs;
8319 else
8320 se->cfs_rq = parent->my_q;
8321
6f505b16
PZ
8322 se->my_q = cfs_rq;
8323 se->load.weight = tg->shares;
e05510d0 8324 se->load.inv_weight = 0;
ec7dc8ac 8325 se->parent = parent;
6f505b16 8326}
052f1dc7 8327#endif
6f505b16 8328
052f1dc7 8329#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8330static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8331 struct sched_rt_entity *rt_se, int cpu, int add,
8332 struct sched_rt_entity *parent)
6f505b16 8333{
ec7dc8ac
DG
8334 struct rq *rq = cpu_rq(cpu);
8335
6f505b16
PZ
8336 tg->rt_rq[cpu] = rt_rq;
8337 init_rt_rq(rt_rq, rq);
8338 rt_rq->tg = tg;
8339 rt_rq->rt_se = rt_se;
ac086bc2 8340 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8341 if (add)
8342 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8343
8344 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8345 if (!rt_se)
8346 return;
8347
ec7dc8ac
DG
8348 if (!parent)
8349 rt_se->rt_rq = &rq->rt;
8350 else
8351 rt_se->rt_rq = parent->my_q;
8352
6f505b16 8353 rt_se->my_q = rt_rq;
ec7dc8ac 8354 rt_se->parent = parent;
6f505b16
PZ
8355 INIT_LIST_HEAD(&rt_se->run_list);
8356}
8357#endif
8358
1da177e4
LT
8359void __init sched_init(void)
8360{
dd41f596 8361 int i, j;
434d53b0
MT
8362 unsigned long alloc_size = 0, ptr;
8363
8364#ifdef CONFIG_FAIR_GROUP_SCHED
8365 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8366#endif
8367#ifdef CONFIG_RT_GROUP_SCHED
8368 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8369#endif
8370#ifdef CONFIG_USER_SCHED
8371 alloc_size *= 2;
434d53b0
MT
8372#endif
8373 /*
8374 * As sched_init() is called before page_alloc is setup,
8375 * we use alloc_bootmem().
8376 */
8377 if (alloc_size) {
5a9d3225 8378 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8379
8380#ifdef CONFIG_FAIR_GROUP_SCHED
8381 init_task_group.se = (struct sched_entity **)ptr;
8382 ptr += nr_cpu_ids * sizeof(void **);
8383
8384 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8385 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8386
8387#ifdef CONFIG_USER_SCHED
8388 root_task_group.se = (struct sched_entity **)ptr;
8389 ptr += nr_cpu_ids * sizeof(void **);
8390
8391 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8392 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8393#endif /* CONFIG_USER_SCHED */
8394#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8395#ifdef CONFIG_RT_GROUP_SCHED
8396 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8397 ptr += nr_cpu_ids * sizeof(void **);
8398
8399 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8400 ptr += nr_cpu_ids * sizeof(void **);
8401
8402#ifdef CONFIG_USER_SCHED
8403 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8404 ptr += nr_cpu_ids * sizeof(void **);
8405
8406 root_task_group.rt_rq = (struct rt_rq **)ptr;
8407 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8408#endif /* CONFIG_USER_SCHED */
8409#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8410 }
dd41f596 8411
57d885fe
GH
8412#ifdef CONFIG_SMP
8413 init_defrootdomain();
8414#endif
8415
d0b27fa7
PZ
8416 init_rt_bandwidth(&def_rt_bandwidth,
8417 global_rt_period(), global_rt_runtime());
8418
8419#ifdef CONFIG_RT_GROUP_SCHED
8420 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8421 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8422#ifdef CONFIG_USER_SCHED
8423 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8424 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8425#endif /* CONFIG_USER_SCHED */
8426#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8427
052f1dc7 8428#ifdef CONFIG_GROUP_SCHED
6f505b16 8429 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8430 INIT_LIST_HEAD(&init_task_group.children);
8431
8432#ifdef CONFIG_USER_SCHED
8433 INIT_LIST_HEAD(&root_task_group.children);
8434 init_task_group.parent = &root_task_group;
8435 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8436#endif /* CONFIG_USER_SCHED */
8437#endif /* CONFIG_GROUP_SCHED */
6f505b16 8438
0a945022 8439 for_each_possible_cpu(i) {
70b97a7f 8440 struct rq *rq;
1da177e4
LT
8441
8442 rq = cpu_rq(i);
8443 spin_lock_init(&rq->lock);
7897986b 8444 rq->nr_running = 0;
dd41f596 8445 init_cfs_rq(&rq->cfs, rq);
6f505b16 8446 init_rt_rq(&rq->rt, rq);
dd41f596 8447#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8448 init_task_group.shares = init_task_group_load;
6f505b16 8449 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8450#ifdef CONFIG_CGROUP_SCHED
8451 /*
8452 * How much cpu bandwidth does init_task_group get?
8453 *
8454 * In case of task-groups formed thr' the cgroup filesystem, it
8455 * gets 100% of the cpu resources in the system. This overall
8456 * system cpu resource is divided among the tasks of
8457 * init_task_group and its child task-groups in a fair manner,
8458 * based on each entity's (task or task-group's) weight
8459 * (se->load.weight).
8460 *
8461 * In other words, if init_task_group has 10 tasks of weight
8462 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8463 * then A0's share of the cpu resource is:
8464 *
8465 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8466 *
8467 * We achieve this by letting init_task_group's tasks sit
8468 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8469 */
ec7dc8ac 8470 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8471#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8472 root_task_group.shares = NICE_0_LOAD;
8473 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8474 /*
8475 * In case of task-groups formed thr' the user id of tasks,
8476 * init_task_group represents tasks belonging to root user.
8477 * Hence it forms a sibling of all subsequent groups formed.
8478 * In this case, init_task_group gets only a fraction of overall
8479 * system cpu resource, based on the weight assigned to root
8480 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8481 * by letting tasks of init_task_group sit in a separate cfs_rq
8482 * (init_cfs_rq) and having one entity represent this group of
8483 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8484 */
ec7dc8ac 8485 init_tg_cfs_entry(&init_task_group,
6f505b16 8486 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8487 &per_cpu(init_sched_entity, i), i, 1,
8488 root_task_group.se[i]);
6f505b16 8489
052f1dc7 8490#endif
354d60c2
DG
8491#endif /* CONFIG_FAIR_GROUP_SCHED */
8492
8493 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8494#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8495 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8496#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8497 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8498#elif defined CONFIG_USER_SCHED
eff766a6 8499 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8500 init_tg_rt_entry(&init_task_group,
6f505b16 8501 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8502 &per_cpu(init_sched_rt_entity, i), i, 1,
8503 root_task_group.rt_se[i]);
354d60c2 8504#endif
dd41f596 8505#endif
1da177e4 8506
dd41f596
IM
8507 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8508 rq->cpu_load[j] = 0;
1da177e4 8509#ifdef CONFIG_SMP
41c7ce9a 8510 rq->sd = NULL;
57d885fe 8511 rq->rd = NULL;
1da177e4 8512 rq->active_balance = 0;
dd41f596 8513 rq->next_balance = jiffies;
1da177e4 8514 rq->push_cpu = 0;
0a2966b4 8515 rq->cpu = i;
1f11eb6a 8516 rq->online = 0;
1da177e4
LT
8517 rq->migration_thread = NULL;
8518 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8519 rq_attach_root(rq, &def_root_domain);
1da177e4 8520#endif
8f4d37ec 8521 init_rq_hrtick(rq);
1da177e4 8522 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8523 }
8524
2dd73a4f 8525 set_load_weight(&init_task);
b50f60ce 8526
e107be36
AK
8527#ifdef CONFIG_PREEMPT_NOTIFIERS
8528 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8529#endif
8530
c9819f45 8531#ifdef CONFIG_SMP
962cf36c 8532 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8533#endif
8534
b50f60ce
HC
8535#ifdef CONFIG_RT_MUTEXES
8536 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8537#endif
8538
1da177e4
LT
8539 /*
8540 * The boot idle thread does lazy MMU switching as well:
8541 */
8542 atomic_inc(&init_mm.mm_count);
8543 enter_lazy_tlb(&init_mm, current);
8544
8545 /*
8546 * Make us the idle thread. Technically, schedule() should not be
8547 * called from this thread, however somewhere below it might be,
8548 * but because we are the idle thread, we just pick up running again
8549 * when this runqueue becomes "idle".
8550 */
8551 init_idle(current, smp_processor_id());
dd41f596
IM
8552 /*
8553 * During early bootup we pretend to be a normal task:
8554 */
8555 current->sched_class = &fair_sched_class;
6892b75e 8556
6a7b3dc3
RR
8557 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8558 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
bf4d83f6 8559#ifdef CONFIG_SMP
7d1e6a9b
RR
8560#ifdef CONFIG_NO_HZ
8561 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8562#endif
dcc30a35 8563 alloc_bootmem_cpumask_var(&cpu_isolated_map);
bf4d83f6 8564#endif /* SMP */
6a7b3dc3 8565
6892b75e 8566 scheduler_running = 1;
1da177e4
LT
8567}
8568
8569#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8570void __might_sleep(char *file, int line)
8571{
48f24c4d 8572#ifdef in_atomic
1da177e4
LT
8573 static unsigned long prev_jiffy; /* ratelimiting */
8574
aef745fc
IM
8575 if ((!in_atomic() && !irqs_disabled()) ||
8576 system_state != SYSTEM_RUNNING || oops_in_progress)
8577 return;
8578 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8579 return;
8580 prev_jiffy = jiffies;
8581
8582 printk(KERN_ERR
8583 "BUG: sleeping function called from invalid context at %s:%d\n",
8584 file, line);
8585 printk(KERN_ERR
8586 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8587 in_atomic(), irqs_disabled(),
8588 current->pid, current->comm);
8589
8590 debug_show_held_locks(current);
8591 if (irqs_disabled())
8592 print_irqtrace_events(current);
8593 dump_stack();
1da177e4
LT
8594#endif
8595}
8596EXPORT_SYMBOL(__might_sleep);
8597#endif
8598
8599#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8600static void normalize_task(struct rq *rq, struct task_struct *p)
8601{
8602 int on_rq;
3e51f33f 8603
3a5e4dc1
AK
8604 update_rq_clock(rq);
8605 on_rq = p->se.on_rq;
8606 if (on_rq)
8607 deactivate_task(rq, p, 0);
8608 __setscheduler(rq, p, SCHED_NORMAL, 0);
8609 if (on_rq) {
8610 activate_task(rq, p, 0);
8611 resched_task(rq->curr);
8612 }
8613}
8614
1da177e4
LT
8615void normalize_rt_tasks(void)
8616{
a0f98a1c 8617 struct task_struct *g, *p;
1da177e4 8618 unsigned long flags;
70b97a7f 8619 struct rq *rq;
1da177e4 8620
4cf5d77a 8621 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8622 do_each_thread(g, p) {
178be793
IM
8623 /*
8624 * Only normalize user tasks:
8625 */
8626 if (!p->mm)
8627 continue;
8628
6cfb0d5d 8629 p->se.exec_start = 0;
6cfb0d5d 8630#ifdef CONFIG_SCHEDSTATS
dd41f596 8631 p->se.wait_start = 0;
dd41f596 8632 p->se.sleep_start = 0;
dd41f596 8633 p->se.block_start = 0;
6cfb0d5d 8634#endif
dd41f596
IM
8635
8636 if (!rt_task(p)) {
8637 /*
8638 * Renice negative nice level userspace
8639 * tasks back to 0:
8640 */
8641 if (TASK_NICE(p) < 0 && p->mm)
8642 set_user_nice(p, 0);
1da177e4 8643 continue;
dd41f596 8644 }
1da177e4 8645
4cf5d77a 8646 spin_lock(&p->pi_lock);
b29739f9 8647 rq = __task_rq_lock(p);
1da177e4 8648
178be793 8649 normalize_task(rq, p);
3a5e4dc1 8650
b29739f9 8651 __task_rq_unlock(rq);
4cf5d77a 8652 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8653 } while_each_thread(g, p);
8654
4cf5d77a 8655 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8656}
8657
8658#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8659
8660#ifdef CONFIG_IA64
8661/*
8662 * These functions are only useful for the IA64 MCA handling.
8663 *
8664 * They can only be called when the whole system has been
8665 * stopped - every CPU needs to be quiescent, and no scheduling
8666 * activity can take place. Using them for anything else would
8667 * be a serious bug, and as a result, they aren't even visible
8668 * under any other configuration.
8669 */
8670
8671/**
8672 * curr_task - return the current task for a given cpu.
8673 * @cpu: the processor in question.
8674 *
8675 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8676 */
36c8b586 8677struct task_struct *curr_task(int cpu)
1df5c10a
LT
8678{
8679 return cpu_curr(cpu);
8680}
8681
8682/**
8683 * set_curr_task - set the current task for a given cpu.
8684 * @cpu: the processor in question.
8685 * @p: the task pointer to set.
8686 *
8687 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8688 * are serviced on a separate stack. It allows the architecture to switch the
8689 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8690 * must be called with all CPU's synchronized, and interrupts disabled, the
8691 * and caller must save the original value of the current task (see
8692 * curr_task() above) and restore that value before reenabling interrupts and
8693 * re-starting the system.
8694 *
8695 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8696 */
36c8b586 8697void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8698{
8699 cpu_curr(cpu) = p;
8700}
8701
8702#endif
29f59db3 8703
bccbe08a
PZ
8704#ifdef CONFIG_FAIR_GROUP_SCHED
8705static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8706{
8707 int i;
8708
8709 for_each_possible_cpu(i) {
8710 if (tg->cfs_rq)
8711 kfree(tg->cfs_rq[i]);
8712 if (tg->se)
8713 kfree(tg->se[i]);
6f505b16
PZ
8714 }
8715
8716 kfree(tg->cfs_rq);
8717 kfree(tg->se);
6f505b16
PZ
8718}
8719
ec7dc8ac
DG
8720static
8721int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8722{
29f59db3 8723 struct cfs_rq *cfs_rq;
eab17229 8724 struct sched_entity *se;
9b5b7751 8725 struct rq *rq;
29f59db3
SV
8726 int i;
8727
434d53b0 8728 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8729 if (!tg->cfs_rq)
8730 goto err;
434d53b0 8731 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8732 if (!tg->se)
8733 goto err;
052f1dc7
PZ
8734
8735 tg->shares = NICE_0_LOAD;
29f59db3
SV
8736
8737 for_each_possible_cpu(i) {
9b5b7751 8738 rq = cpu_rq(i);
29f59db3 8739
eab17229
LZ
8740 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8741 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8742 if (!cfs_rq)
8743 goto err;
8744
eab17229
LZ
8745 se = kzalloc_node(sizeof(struct sched_entity),
8746 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8747 if (!se)
8748 goto err;
8749
eab17229 8750 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8751 }
8752
8753 return 1;
8754
8755 err:
8756 return 0;
8757}
8758
8759static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8760{
8761 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8762 &cpu_rq(cpu)->leaf_cfs_rq_list);
8763}
8764
8765static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8766{
8767 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8768}
6d6bc0ad 8769#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8770static inline void free_fair_sched_group(struct task_group *tg)
8771{
8772}
8773
ec7dc8ac
DG
8774static inline
8775int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8776{
8777 return 1;
8778}
8779
8780static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8781{
8782}
8783
8784static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8785{
8786}
6d6bc0ad 8787#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8788
8789#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8790static void free_rt_sched_group(struct task_group *tg)
8791{
8792 int i;
8793
d0b27fa7
PZ
8794 destroy_rt_bandwidth(&tg->rt_bandwidth);
8795
bccbe08a
PZ
8796 for_each_possible_cpu(i) {
8797 if (tg->rt_rq)
8798 kfree(tg->rt_rq[i]);
8799 if (tg->rt_se)
8800 kfree(tg->rt_se[i]);
8801 }
8802
8803 kfree(tg->rt_rq);
8804 kfree(tg->rt_se);
8805}
8806
ec7dc8ac
DG
8807static
8808int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8809{
8810 struct rt_rq *rt_rq;
eab17229 8811 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8812 struct rq *rq;
8813 int i;
8814
434d53b0 8815 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8816 if (!tg->rt_rq)
8817 goto err;
434d53b0 8818 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8819 if (!tg->rt_se)
8820 goto err;
8821
d0b27fa7
PZ
8822 init_rt_bandwidth(&tg->rt_bandwidth,
8823 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8824
8825 for_each_possible_cpu(i) {
8826 rq = cpu_rq(i);
8827
eab17229
LZ
8828 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8829 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8830 if (!rt_rq)
8831 goto err;
29f59db3 8832
eab17229
LZ
8833 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8834 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8835 if (!rt_se)
8836 goto err;
29f59db3 8837
eab17229 8838 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8839 }
8840
bccbe08a
PZ
8841 return 1;
8842
8843 err:
8844 return 0;
8845}
8846
8847static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8848{
8849 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8850 &cpu_rq(cpu)->leaf_rt_rq_list);
8851}
8852
8853static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8854{
8855 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8856}
6d6bc0ad 8857#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8858static inline void free_rt_sched_group(struct task_group *tg)
8859{
8860}
8861
ec7dc8ac
DG
8862static inline
8863int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8864{
8865 return 1;
8866}
8867
8868static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8869{
8870}
8871
8872static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8873{
8874}
6d6bc0ad 8875#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8876
d0b27fa7 8877#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8878static void free_sched_group(struct task_group *tg)
8879{
8880 free_fair_sched_group(tg);
8881 free_rt_sched_group(tg);
8882 kfree(tg);
8883}
8884
8885/* allocate runqueue etc for a new task group */
ec7dc8ac 8886struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8887{
8888 struct task_group *tg;
8889 unsigned long flags;
8890 int i;
8891
8892 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8893 if (!tg)
8894 return ERR_PTR(-ENOMEM);
8895
ec7dc8ac 8896 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8897 goto err;
8898
ec7dc8ac 8899 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8900 goto err;
8901
8ed36996 8902 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8903 for_each_possible_cpu(i) {
bccbe08a
PZ
8904 register_fair_sched_group(tg, i);
8905 register_rt_sched_group(tg, i);
9b5b7751 8906 }
6f505b16 8907 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8908
8909 WARN_ON(!parent); /* root should already exist */
8910
8911 tg->parent = parent;
f473aa5e 8912 INIT_LIST_HEAD(&tg->children);
09f2724a 8913 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8914 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8915
9b5b7751 8916 return tg;
29f59db3
SV
8917
8918err:
6f505b16 8919 free_sched_group(tg);
29f59db3
SV
8920 return ERR_PTR(-ENOMEM);
8921}
8922
9b5b7751 8923/* rcu callback to free various structures associated with a task group */
6f505b16 8924static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8925{
29f59db3 8926 /* now it should be safe to free those cfs_rqs */
6f505b16 8927 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8928}
8929
9b5b7751 8930/* Destroy runqueue etc associated with a task group */
4cf86d77 8931void sched_destroy_group(struct task_group *tg)
29f59db3 8932{
8ed36996 8933 unsigned long flags;
9b5b7751 8934 int i;
29f59db3 8935
8ed36996 8936 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8937 for_each_possible_cpu(i) {
bccbe08a
PZ
8938 unregister_fair_sched_group(tg, i);
8939 unregister_rt_sched_group(tg, i);
9b5b7751 8940 }
6f505b16 8941 list_del_rcu(&tg->list);
f473aa5e 8942 list_del_rcu(&tg->siblings);
8ed36996 8943 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8944
9b5b7751 8945 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8946 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8947}
8948
9b5b7751 8949/* change task's runqueue when it moves between groups.
3a252015
IM
8950 * The caller of this function should have put the task in its new group
8951 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8952 * reflect its new group.
9b5b7751
SV
8953 */
8954void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8955{
8956 int on_rq, running;
8957 unsigned long flags;
8958 struct rq *rq;
8959
8960 rq = task_rq_lock(tsk, &flags);
8961
29f59db3
SV
8962 update_rq_clock(rq);
8963
051a1d1a 8964 running = task_current(rq, tsk);
29f59db3
SV
8965 on_rq = tsk->se.on_rq;
8966
0e1f3483 8967 if (on_rq)
29f59db3 8968 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8969 if (unlikely(running))
8970 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8971
6f505b16 8972 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8973
810b3817
PZ
8974#ifdef CONFIG_FAIR_GROUP_SCHED
8975 if (tsk->sched_class->moved_group)
8976 tsk->sched_class->moved_group(tsk);
8977#endif
8978
0e1f3483
HS
8979 if (unlikely(running))
8980 tsk->sched_class->set_curr_task(rq);
8981 if (on_rq)
7074badb 8982 enqueue_task(rq, tsk, 0);
29f59db3 8983
29f59db3
SV
8984 task_rq_unlock(rq, &flags);
8985}
6d6bc0ad 8986#endif /* CONFIG_GROUP_SCHED */
29f59db3 8987
052f1dc7 8988#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8989static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8990{
8991 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8992 int on_rq;
8993
29f59db3 8994 on_rq = se->on_rq;
62fb1851 8995 if (on_rq)
29f59db3
SV
8996 dequeue_entity(cfs_rq, se, 0);
8997
8998 se->load.weight = shares;
e05510d0 8999 se->load.inv_weight = 0;
29f59db3 9000
62fb1851 9001 if (on_rq)
29f59db3 9002 enqueue_entity(cfs_rq, se, 0);
c09595f6 9003}
62fb1851 9004
c09595f6
PZ
9005static void set_se_shares(struct sched_entity *se, unsigned long shares)
9006{
9007 struct cfs_rq *cfs_rq = se->cfs_rq;
9008 struct rq *rq = cfs_rq->rq;
9009 unsigned long flags;
9010
9011 spin_lock_irqsave(&rq->lock, flags);
9012 __set_se_shares(se, shares);
9013 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9014}
9015
8ed36996
PZ
9016static DEFINE_MUTEX(shares_mutex);
9017
4cf86d77 9018int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9019{
9020 int i;
8ed36996 9021 unsigned long flags;
c61935fd 9022
ec7dc8ac
DG
9023 /*
9024 * We can't change the weight of the root cgroup.
9025 */
9026 if (!tg->se[0])
9027 return -EINVAL;
9028
18d95a28
PZ
9029 if (shares < MIN_SHARES)
9030 shares = MIN_SHARES;
cb4ad1ff
MX
9031 else if (shares > MAX_SHARES)
9032 shares = MAX_SHARES;
62fb1851 9033
8ed36996 9034 mutex_lock(&shares_mutex);
9b5b7751 9035 if (tg->shares == shares)
5cb350ba 9036 goto done;
29f59db3 9037
8ed36996 9038 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9039 for_each_possible_cpu(i)
9040 unregister_fair_sched_group(tg, i);
f473aa5e 9041 list_del_rcu(&tg->siblings);
8ed36996 9042 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
9043
9044 /* wait for any ongoing reference to this group to finish */
9045 synchronize_sched();
9046
9047 /*
9048 * Now we are free to modify the group's share on each cpu
9049 * w/o tripping rebalance_share or load_balance_fair.
9050 */
9b5b7751 9051 tg->shares = shares;
c09595f6
PZ
9052 for_each_possible_cpu(i) {
9053 /*
9054 * force a rebalance
9055 */
9056 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 9057 set_se_shares(tg->se[i], shares);
c09595f6 9058 }
29f59db3 9059
6b2d7700
SV
9060 /*
9061 * Enable load balance activity on this group, by inserting it back on
9062 * each cpu's rq->leaf_cfs_rq_list.
9063 */
8ed36996 9064 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9065 for_each_possible_cpu(i)
9066 register_fair_sched_group(tg, i);
f473aa5e 9067 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9068 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9069done:
8ed36996 9070 mutex_unlock(&shares_mutex);
9b5b7751 9071 return 0;
29f59db3
SV
9072}
9073
5cb350ba
DG
9074unsigned long sched_group_shares(struct task_group *tg)
9075{
9076 return tg->shares;
9077}
052f1dc7 9078#endif
5cb350ba 9079
052f1dc7 9080#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9081/*
9f0c1e56 9082 * Ensure that the real time constraints are schedulable.
6f505b16 9083 */
9f0c1e56
PZ
9084static DEFINE_MUTEX(rt_constraints_mutex);
9085
9086static unsigned long to_ratio(u64 period, u64 runtime)
9087{
9088 if (runtime == RUNTIME_INF)
9a7e0b18 9089 return 1ULL << 20;
9f0c1e56 9090
9a7e0b18 9091 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9092}
9093
9a7e0b18
PZ
9094/* Must be called with tasklist_lock held */
9095static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9096{
9a7e0b18 9097 struct task_struct *g, *p;
b40b2e8e 9098
9a7e0b18
PZ
9099 do_each_thread(g, p) {
9100 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9101 return 1;
9102 } while_each_thread(g, p);
b40b2e8e 9103
9a7e0b18
PZ
9104 return 0;
9105}
b40b2e8e 9106
9a7e0b18
PZ
9107struct rt_schedulable_data {
9108 struct task_group *tg;
9109 u64 rt_period;
9110 u64 rt_runtime;
9111};
b40b2e8e 9112
9a7e0b18
PZ
9113static int tg_schedulable(struct task_group *tg, void *data)
9114{
9115 struct rt_schedulable_data *d = data;
9116 struct task_group *child;
9117 unsigned long total, sum = 0;
9118 u64 period, runtime;
b40b2e8e 9119
9a7e0b18
PZ
9120 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9121 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9122
9a7e0b18
PZ
9123 if (tg == d->tg) {
9124 period = d->rt_period;
9125 runtime = d->rt_runtime;
b40b2e8e 9126 }
b40b2e8e 9127
98a4826b
PZ
9128#ifdef CONFIG_USER_SCHED
9129 if (tg == &root_task_group) {
9130 period = global_rt_period();
9131 runtime = global_rt_runtime();
9132 }
9133#endif
9134
4653f803
PZ
9135 /*
9136 * Cannot have more runtime than the period.
9137 */
9138 if (runtime > period && runtime != RUNTIME_INF)
9139 return -EINVAL;
6f505b16 9140
4653f803
PZ
9141 /*
9142 * Ensure we don't starve existing RT tasks.
9143 */
9a7e0b18
PZ
9144 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9145 return -EBUSY;
6f505b16 9146
9a7e0b18 9147 total = to_ratio(period, runtime);
6f505b16 9148
4653f803
PZ
9149 /*
9150 * Nobody can have more than the global setting allows.
9151 */
9152 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9153 return -EINVAL;
6f505b16 9154
4653f803
PZ
9155 /*
9156 * The sum of our children's runtime should not exceed our own.
9157 */
9a7e0b18
PZ
9158 list_for_each_entry_rcu(child, &tg->children, siblings) {
9159 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9160 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 9161
9a7e0b18
PZ
9162 if (child == d->tg) {
9163 period = d->rt_period;
9164 runtime = d->rt_runtime;
9165 }
6f505b16 9166
9a7e0b18 9167 sum += to_ratio(period, runtime);
9f0c1e56 9168 }
6f505b16 9169
9a7e0b18
PZ
9170 if (sum > total)
9171 return -EINVAL;
9172
9173 return 0;
6f505b16
PZ
9174}
9175
9a7e0b18 9176static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 9177{
9a7e0b18
PZ
9178 struct rt_schedulable_data data = {
9179 .tg = tg,
9180 .rt_period = period,
9181 .rt_runtime = runtime,
9182 };
9183
9184 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
9185}
9186
d0b27fa7
PZ
9187static int tg_set_bandwidth(struct task_group *tg,
9188 u64 rt_period, u64 rt_runtime)
6f505b16 9189{
ac086bc2 9190 int i, err = 0;
9f0c1e56 9191
9f0c1e56 9192 mutex_lock(&rt_constraints_mutex);
521f1a24 9193 read_lock(&tasklist_lock);
9a7e0b18
PZ
9194 err = __rt_schedulable(tg, rt_period, rt_runtime);
9195 if (err)
9f0c1e56 9196 goto unlock;
ac086bc2
PZ
9197
9198 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
9199 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9200 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
9201
9202 for_each_possible_cpu(i) {
9203 struct rt_rq *rt_rq = tg->rt_rq[i];
9204
9205 spin_lock(&rt_rq->rt_runtime_lock);
9206 rt_rq->rt_runtime = rt_runtime;
9207 spin_unlock(&rt_rq->rt_runtime_lock);
9208 }
9209 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 9210 unlock:
521f1a24 9211 read_unlock(&tasklist_lock);
9f0c1e56
PZ
9212 mutex_unlock(&rt_constraints_mutex);
9213
9214 return err;
6f505b16
PZ
9215}
9216
d0b27fa7
PZ
9217int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9218{
9219 u64 rt_runtime, rt_period;
9220
9221 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9222 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9223 if (rt_runtime_us < 0)
9224 rt_runtime = RUNTIME_INF;
9225
9226 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9227}
9228
9f0c1e56
PZ
9229long sched_group_rt_runtime(struct task_group *tg)
9230{
9231 u64 rt_runtime_us;
9232
d0b27fa7 9233 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
9234 return -1;
9235
d0b27fa7 9236 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9237 do_div(rt_runtime_us, NSEC_PER_USEC);
9238 return rt_runtime_us;
9239}
d0b27fa7
PZ
9240
9241int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9242{
9243 u64 rt_runtime, rt_period;
9244
9245 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9246 rt_runtime = tg->rt_bandwidth.rt_runtime;
9247
619b0488
R
9248 if (rt_period == 0)
9249 return -EINVAL;
9250
d0b27fa7
PZ
9251 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9252}
9253
9254long sched_group_rt_period(struct task_group *tg)
9255{
9256 u64 rt_period_us;
9257
9258 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9259 do_div(rt_period_us, NSEC_PER_USEC);
9260 return rt_period_us;
9261}
9262
9263static int sched_rt_global_constraints(void)
9264{
4653f803 9265 u64 runtime, period;
d0b27fa7
PZ
9266 int ret = 0;
9267
ec5d4989
HS
9268 if (sysctl_sched_rt_period <= 0)
9269 return -EINVAL;
9270
4653f803
PZ
9271 runtime = global_rt_runtime();
9272 period = global_rt_period();
9273
9274 /*
9275 * Sanity check on the sysctl variables.
9276 */
9277 if (runtime > period && runtime != RUNTIME_INF)
9278 return -EINVAL;
10b612f4 9279
d0b27fa7 9280 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9281 read_lock(&tasklist_lock);
4653f803 9282 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9283 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9284 mutex_unlock(&rt_constraints_mutex);
9285
9286 return ret;
9287}
6d6bc0ad 9288#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9289static int sched_rt_global_constraints(void)
9290{
ac086bc2
PZ
9291 unsigned long flags;
9292 int i;
9293
ec5d4989
HS
9294 if (sysctl_sched_rt_period <= 0)
9295 return -EINVAL;
9296
ac086bc2
PZ
9297 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9298 for_each_possible_cpu(i) {
9299 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9300
9301 spin_lock(&rt_rq->rt_runtime_lock);
9302 rt_rq->rt_runtime = global_rt_runtime();
9303 spin_unlock(&rt_rq->rt_runtime_lock);
9304 }
9305 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9306
d0b27fa7
PZ
9307 return 0;
9308}
6d6bc0ad 9309#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9310
9311int sched_rt_handler(struct ctl_table *table, int write,
9312 struct file *filp, void __user *buffer, size_t *lenp,
9313 loff_t *ppos)
9314{
9315 int ret;
9316 int old_period, old_runtime;
9317 static DEFINE_MUTEX(mutex);
9318
9319 mutex_lock(&mutex);
9320 old_period = sysctl_sched_rt_period;
9321 old_runtime = sysctl_sched_rt_runtime;
9322
9323 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9324
9325 if (!ret && write) {
9326 ret = sched_rt_global_constraints();
9327 if (ret) {
9328 sysctl_sched_rt_period = old_period;
9329 sysctl_sched_rt_runtime = old_runtime;
9330 } else {
9331 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9332 def_rt_bandwidth.rt_period =
9333 ns_to_ktime(global_rt_period());
9334 }
9335 }
9336 mutex_unlock(&mutex);
9337
9338 return ret;
9339}
68318b8e 9340
052f1dc7 9341#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9342
9343/* return corresponding task_group object of a cgroup */
2b01dfe3 9344static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9345{
2b01dfe3
PM
9346 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9347 struct task_group, css);
68318b8e
SV
9348}
9349
9350static struct cgroup_subsys_state *
2b01dfe3 9351cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9352{
ec7dc8ac 9353 struct task_group *tg, *parent;
68318b8e 9354
2b01dfe3 9355 if (!cgrp->parent) {
68318b8e 9356 /* This is early initialization for the top cgroup */
68318b8e
SV
9357 return &init_task_group.css;
9358 }
9359
ec7dc8ac
DG
9360 parent = cgroup_tg(cgrp->parent);
9361 tg = sched_create_group(parent);
68318b8e
SV
9362 if (IS_ERR(tg))
9363 return ERR_PTR(-ENOMEM);
9364
68318b8e
SV
9365 return &tg->css;
9366}
9367
41a2d6cf
IM
9368static void
9369cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9370{
2b01dfe3 9371 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9372
9373 sched_destroy_group(tg);
9374}
9375
41a2d6cf
IM
9376static int
9377cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9378 struct task_struct *tsk)
68318b8e 9379{
b68aa230
PZ
9380#ifdef CONFIG_RT_GROUP_SCHED
9381 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 9382 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
9383 return -EINVAL;
9384#else
68318b8e
SV
9385 /* We don't support RT-tasks being in separate groups */
9386 if (tsk->sched_class != &fair_sched_class)
9387 return -EINVAL;
b68aa230 9388#endif
68318b8e
SV
9389
9390 return 0;
9391}
9392
9393static void
2b01dfe3 9394cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9395 struct cgroup *old_cont, struct task_struct *tsk)
9396{
9397 sched_move_task(tsk);
9398}
9399
052f1dc7 9400#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9401static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9402 u64 shareval)
68318b8e 9403{
2b01dfe3 9404 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9405}
9406
f4c753b7 9407static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9408{
2b01dfe3 9409 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9410
9411 return (u64) tg->shares;
9412}
6d6bc0ad 9413#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9414
052f1dc7 9415#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9416static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9417 s64 val)
6f505b16 9418{
06ecb27c 9419 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9420}
9421
06ecb27c 9422static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9423{
06ecb27c 9424 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9425}
d0b27fa7
PZ
9426
9427static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9428 u64 rt_period_us)
9429{
9430 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9431}
9432
9433static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9434{
9435 return sched_group_rt_period(cgroup_tg(cgrp));
9436}
6d6bc0ad 9437#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9438
fe5c7cc2 9439static struct cftype cpu_files[] = {
052f1dc7 9440#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9441 {
9442 .name = "shares",
f4c753b7
PM
9443 .read_u64 = cpu_shares_read_u64,
9444 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9445 },
052f1dc7
PZ
9446#endif
9447#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9448 {
9f0c1e56 9449 .name = "rt_runtime_us",
06ecb27c
PM
9450 .read_s64 = cpu_rt_runtime_read,
9451 .write_s64 = cpu_rt_runtime_write,
6f505b16 9452 },
d0b27fa7
PZ
9453 {
9454 .name = "rt_period_us",
f4c753b7
PM
9455 .read_u64 = cpu_rt_period_read_uint,
9456 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9457 },
052f1dc7 9458#endif
68318b8e
SV
9459};
9460
9461static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9462{
fe5c7cc2 9463 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9464}
9465
9466struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9467 .name = "cpu",
9468 .create = cpu_cgroup_create,
9469 .destroy = cpu_cgroup_destroy,
9470 .can_attach = cpu_cgroup_can_attach,
9471 .attach = cpu_cgroup_attach,
9472 .populate = cpu_cgroup_populate,
9473 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9474 .early_init = 1,
9475};
9476
052f1dc7 9477#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9478
9479#ifdef CONFIG_CGROUP_CPUACCT
9480
9481/*
9482 * CPU accounting code for task groups.
9483 *
9484 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9485 * (balbir@in.ibm.com).
9486 */
9487
934352f2 9488/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9489struct cpuacct {
9490 struct cgroup_subsys_state css;
9491 /* cpuusage holds pointer to a u64-type object on every cpu */
9492 u64 *cpuusage;
934352f2 9493 struct cpuacct *parent;
d842de87
SV
9494};
9495
9496struct cgroup_subsys cpuacct_subsys;
9497
9498/* return cpu accounting group corresponding to this container */
32cd756a 9499static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9500{
32cd756a 9501 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9502 struct cpuacct, css);
9503}
9504
9505/* return cpu accounting group to which this task belongs */
9506static inline struct cpuacct *task_ca(struct task_struct *tsk)
9507{
9508 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9509 struct cpuacct, css);
9510}
9511
9512/* create a new cpu accounting group */
9513static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9514 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9515{
9516 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9517
9518 if (!ca)
9519 return ERR_PTR(-ENOMEM);
9520
9521 ca->cpuusage = alloc_percpu(u64);
9522 if (!ca->cpuusage) {
9523 kfree(ca);
9524 return ERR_PTR(-ENOMEM);
9525 }
9526
934352f2
BR
9527 if (cgrp->parent)
9528 ca->parent = cgroup_ca(cgrp->parent);
9529
d842de87
SV
9530 return &ca->css;
9531}
9532
9533/* destroy an existing cpu accounting group */
41a2d6cf 9534static void
32cd756a 9535cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9536{
32cd756a 9537 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9538
9539 free_percpu(ca->cpuusage);
9540 kfree(ca);
9541}
9542
720f5498
KC
9543static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9544{
9545 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9546 u64 data;
9547
9548#ifndef CONFIG_64BIT
9549 /*
9550 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9551 */
9552 spin_lock_irq(&cpu_rq(cpu)->lock);
9553 data = *cpuusage;
9554 spin_unlock_irq(&cpu_rq(cpu)->lock);
9555#else
9556 data = *cpuusage;
9557#endif
9558
9559 return data;
9560}
9561
9562static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9563{
9564 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9565
9566#ifndef CONFIG_64BIT
9567 /*
9568 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9569 */
9570 spin_lock_irq(&cpu_rq(cpu)->lock);
9571 *cpuusage = val;
9572 spin_unlock_irq(&cpu_rq(cpu)->lock);
9573#else
9574 *cpuusage = val;
9575#endif
9576}
9577
d842de87 9578/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9579static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9580{
32cd756a 9581 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9582 u64 totalcpuusage = 0;
9583 int i;
9584
720f5498
KC
9585 for_each_present_cpu(i)
9586 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9587
9588 return totalcpuusage;
9589}
9590
0297b803
DG
9591static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9592 u64 reset)
9593{
9594 struct cpuacct *ca = cgroup_ca(cgrp);
9595 int err = 0;
9596 int i;
9597
9598 if (reset) {
9599 err = -EINVAL;
9600 goto out;
9601 }
9602
720f5498
KC
9603 for_each_present_cpu(i)
9604 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9605
0297b803
DG
9606out:
9607 return err;
9608}
9609
e9515c3c
KC
9610static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9611 struct seq_file *m)
9612{
9613 struct cpuacct *ca = cgroup_ca(cgroup);
9614 u64 percpu;
9615 int i;
9616
9617 for_each_present_cpu(i) {
9618 percpu = cpuacct_cpuusage_read(ca, i);
9619 seq_printf(m, "%llu ", (unsigned long long) percpu);
9620 }
9621 seq_printf(m, "\n");
9622 return 0;
9623}
9624
d842de87
SV
9625static struct cftype files[] = {
9626 {
9627 .name = "usage",
f4c753b7
PM
9628 .read_u64 = cpuusage_read,
9629 .write_u64 = cpuusage_write,
d842de87 9630 },
e9515c3c
KC
9631 {
9632 .name = "usage_percpu",
9633 .read_seq_string = cpuacct_percpu_seq_read,
9634 },
9635
d842de87
SV
9636};
9637
32cd756a 9638static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9639{
32cd756a 9640 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9641}
9642
9643/*
9644 * charge this task's execution time to its accounting group.
9645 *
9646 * called with rq->lock held.
9647 */
9648static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9649{
9650 struct cpuacct *ca;
934352f2 9651 int cpu;
d842de87
SV
9652
9653 if (!cpuacct_subsys.active)
9654 return;
9655
934352f2 9656 cpu = task_cpu(tsk);
d842de87 9657 ca = task_ca(tsk);
d842de87 9658
934352f2
BR
9659 for (; ca; ca = ca->parent) {
9660 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9661 *cpuusage += cputime;
9662 }
9663}
9664
9665struct cgroup_subsys cpuacct_subsys = {
9666 .name = "cpuacct",
9667 .create = cpuacct_create,
9668 .destroy = cpuacct_destroy,
9669 .populate = cpuacct_populate,
9670 .subsys_id = cpuacct_subsys_id,
9671};
9672#endif /* CONFIG_CGROUP_CPUACCT */