]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched, timers: cleanup avenrun users
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
7e066fb8
MD
121DEFINE_TRACE(sched_wait_task);
122DEFINE_TRACE(sched_wakeup);
123DEFINE_TRACE(sched_wakeup_new);
124DEFINE_TRACE(sched_switch);
125DEFINE_TRACE(sched_migrate_task);
126
5517d86b 127#ifdef CONFIG_SMP
fd2ab30b
SN
128
129static void double_rq_lock(struct rq *rq1, struct rq *rq2);
130
5517d86b
ED
131/*
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
134 */
135static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
136{
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
138}
139
140/*
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
143 */
144static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
145{
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
148}
149#endif
150
e05606d3
IM
151static inline int rt_policy(int policy)
152{
3f33a7ce 153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
154 return 1;
155 return 0;
156}
157
158static inline int task_has_rt_policy(struct task_struct *p)
159{
160 return rt_policy(p->policy);
161}
162
1da177e4 163/*
6aa645ea 164 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 165 */
6aa645ea
IM
166struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
169};
170
d0b27fa7 171struct rt_bandwidth {
ea736ed5
IM
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
d0b27fa7
PZ
177};
178
179static struct rt_bandwidth def_rt_bandwidth;
180
181static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
182
183static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
184{
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
190
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
194
195 if (!overrun)
196 break;
197
198 idle = do_sched_rt_period_timer(rt_b, overrun);
199 }
200
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
202}
203
204static
205void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
206{
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
209
ac086bc2
PZ
210 spin_lock_init(&rt_b->rt_runtime_lock);
211
d0b27fa7
PZ
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
215}
216
c8bfff6d
KH
217static inline int rt_bandwidth_enabled(void)
218{
219 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
220}
221
222static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
223{
224 ktime_t now;
225
cac64d00 226 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
227 return;
228
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
231
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
7f1e2ca9
PZ
234 unsigned long delta;
235 ktime_t soft, hard;
236
d0b27fa7
PZ
237 if (hrtimer_active(&rt_b->rt_period_timer))
238 break;
239
240 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
241 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
7f1e2ca9
PZ
242
243 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
244 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
245 delta = ktime_to_ns(ktime_sub(hard, soft));
246 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
247 HRTIMER_MODE_ABS, 0);
d0b27fa7
PZ
248 }
249 spin_unlock(&rt_b->rt_runtime_lock);
250}
251
252#ifdef CONFIG_RT_GROUP_SCHED
253static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
254{
255 hrtimer_cancel(&rt_b->rt_period_timer);
256}
257#endif
258
712555ee
HC
259/*
260 * sched_domains_mutex serializes calls to arch_init_sched_domains,
261 * detach_destroy_domains and partition_sched_domains.
262 */
263static DEFINE_MUTEX(sched_domains_mutex);
264
052f1dc7 265#ifdef CONFIG_GROUP_SCHED
29f59db3 266
68318b8e
SV
267#include <linux/cgroup.h>
268
29f59db3
SV
269struct cfs_rq;
270
6f505b16
PZ
271static LIST_HEAD(task_groups);
272
29f59db3 273/* task group related information */
4cf86d77 274struct task_group {
052f1dc7 275#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
276 struct cgroup_subsys_state css;
277#endif
052f1dc7 278
6c415b92
AB
279#ifdef CONFIG_USER_SCHED
280 uid_t uid;
281#endif
282
052f1dc7 283#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
284 /* schedulable entities of this group on each cpu */
285 struct sched_entity **se;
286 /* runqueue "owned" by this group on each cpu */
287 struct cfs_rq **cfs_rq;
288 unsigned long shares;
052f1dc7
PZ
289#endif
290
291#ifdef CONFIG_RT_GROUP_SCHED
292 struct sched_rt_entity **rt_se;
293 struct rt_rq **rt_rq;
294
d0b27fa7 295 struct rt_bandwidth rt_bandwidth;
052f1dc7 296#endif
6b2d7700 297
ae8393e5 298 struct rcu_head rcu;
6f505b16 299 struct list_head list;
f473aa5e
PZ
300
301 struct task_group *parent;
302 struct list_head siblings;
303 struct list_head children;
29f59db3
SV
304};
305
354d60c2 306#ifdef CONFIG_USER_SCHED
eff766a6 307
6c415b92
AB
308/* Helper function to pass uid information to create_sched_user() */
309void set_tg_uid(struct user_struct *user)
310{
311 user->tg->uid = user->uid;
312}
313
eff766a6
PZ
314/*
315 * Root task group.
316 * Every UID task group (including init_task_group aka UID-0) will
317 * be a child to this group.
318 */
319struct task_group root_task_group;
320
052f1dc7 321#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
322/* Default task group's sched entity on each cpu */
323static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
324/* Default task group's cfs_rq on each cpu */
325static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 326#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
327
328#ifdef CONFIG_RT_GROUP_SCHED
329static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
330static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 331#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 332#else /* !CONFIG_USER_SCHED */
eff766a6 333#define root_task_group init_task_group
9a7e0b18 334#endif /* CONFIG_USER_SCHED */
6f505b16 335
8ed36996 336/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
337 * a task group's cpu shares.
338 */
8ed36996 339static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 340
57310a98
PZ
341#ifdef CONFIG_SMP
342static int root_task_group_empty(void)
343{
344 return list_empty(&root_task_group.children);
345}
346#endif
347
052f1dc7 348#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
349#ifdef CONFIG_USER_SCHED
350# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 351#else /* !CONFIG_USER_SCHED */
052f1dc7 352# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 353#endif /* CONFIG_USER_SCHED */
052f1dc7 354
cb4ad1ff 355/*
2e084786
LJ
356 * A weight of 0 or 1 can cause arithmetics problems.
357 * A weight of a cfs_rq is the sum of weights of which entities
358 * are queued on this cfs_rq, so a weight of a entity should not be
359 * too large, so as the shares value of a task group.
cb4ad1ff
MX
360 * (The default weight is 1024 - so there's no practical
361 * limitation from this.)
362 */
18d95a28 363#define MIN_SHARES 2
2e084786 364#define MAX_SHARES (1UL << 18)
18d95a28 365
052f1dc7
PZ
366static int init_task_group_load = INIT_TASK_GROUP_LOAD;
367#endif
368
29f59db3 369/* Default task group.
3a252015 370 * Every task in system belong to this group at bootup.
29f59db3 371 */
434d53b0 372struct task_group init_task_group;
29f59db3
SV
373
374/* return group to which a task belongs */
4cf86d77 375static inline struct task_group *task_group(struct task_struct *p)
29f59db3 376{
4cf86d77 377 struct task_group *tg;
9b5b7751 378
052f1dc7 379#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
380 rcu_read_lock();
381 tg = __task_cred(p)->user->tg;
382 rcu_read_unlock();
052f1dc7 383#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
384 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
385 struct task_group, css);
24e377a8 386#else
41a2d6cf 387 tg = &init_task_group;
24e377a8 388#endif
9b5b7751 389 return tg;
29f59db3
SV
390}
391
392/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 393static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 394{
052f1dc7 395#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
396 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
397 p->se.parent = task_group(p)->se[cpu];
052f1dc7 398#endif
6f505b16 399
052f1dc7 400#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
401 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
402 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 403#endif
29f59db3
SV
404}
405
406#else
407
57310a98
PZ
408#ifdef CONFIG_SMP
409static int root_task_group_empty(void)
410{
411 return 1;
412}
413#endif
414
6f505b16 415static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
416static inline struct task_group *task_group(struct task_struct *p)
417{
418 return NULL;
419}
29f59db3 420
052f1dc7 421#endif /* CONFIG_GROUP_SCHED */
29f59db3 422
6aa645ea
IM
423/* CFS-related fields in a runqueue */
424struct cfs_rq {
425 struct load_weight load;
426 unsigned long nr_running;
427
6aa645ea 428 u64 exec_clock;
e9acbff6 429 u64 min_vruntime;
6aa645ea
IM
430
431 struct rb_root tasks_timeline;
432 struct rb_node *rb_leftmost;
4a55bd5e
PZ
433
434 struct list_head tasks;
435 struct list_head *balance_iterator;
436
437 /*
438 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
439 * It is set to NULL otherwise (i.e when none are currently running).
440 */
4793241b 441 struct sched_entity *curr, *next, *last;
ddc97297 442
5ac5c4d6 443 unsigned int nr_spread_over;
ddc97297 444
62160e3f 445#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
446 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
447
41a2d6cf
IM
448 /*
449 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
450 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
451 * (like users, containers etc.)
452 *
453 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
454 * list is used during load balance.
455 */
41a2d6cf
IM
456 struct list_head leaf_cfs_rq_list;
457 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
458
459#ifdef CONFIG_SMP
c09595f6 460 /*
c8cba857 461 * the part of load.weight contributed by tasks
c09595f6 462 */
c8cba857 463 unsigned long task_weight;
c09595f6 464
c8cba857
PZ
465 /*
466 * h_load = weight * f(tg)
467 *
468 * Where f(tg) is the recursive weight fraction assigned to
469 * this group.
470 */
471 unsigned long h_load;
c09595f6 472
c8cba857
PZ
473 /*
474 * this cpu's part of tg->shares
475 */
476 unsigned long shares;
f1d239f7
PZ
477
478 /*
479 * load.weight at the time we set shares
480 */
481 unsigned long rq_weight;
c09595f6 482#endif
6aa645ea
IM
483#endif
484};
1da177e4 485
6aa645ea
IM
486/* Real-Time classes' related field in a runqueue: */
487struct rt_rq {
488 struct rt_prio_array active;
63489e45 489 unsigned long rt_nr_running;
052f1dc7 490#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
491 struct {
492 int curr; /* highest queued rt task prio */
398a153b 493#ifdef CONFIG_SMP
e864c499 494 int next; /* next highest */
398a153b 495#endif
e864c499 496 } highest_prio;
6f505b16 497#endif
fa85ae24 498#ifdef CONFIG_SMP
73fe6aae 499 unsigned long rt_nr_migratory;
a22d7fc1 500 int overloaded;
917b627d 501 struct plist_head pushable_tasks;
fa85ae24 502#endif
6f505b16 503 int rt_throttled;
fa85ae24 504 u64 rt_time;
ac086bc2 505 u64 rt_runtime;
ea736ed5 506 /* Nests inside the rq lock: */
ac086bc2 507 spinlock_t rt_runtime_lock;
6f505b16 508
052f1dc7 509#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
510 unsigned long rt_nr_boosted;
511
6f505b16
PZ
512 struct rq *rq;
513 struct list_head leaf_rt_rq_list;
514 struct task_group *tg;
515 struct sched_rt_entity *rt_se;
516#endif
6aa645ea
IM
517};
518
57d885fe
GH
519#ifdef CONFIG_SMP
520
521/*
522 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
523 * variables. Each exclusive cpuset essentially defines an island domain by
524 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
525 * exclusive cpuset is created, we also create and attach a new root-domain
526 * object.
527 *
57d885fe
GH
528 */
529struct root_domain {
530 atomic_t refcount;
c6c4927b
RR
531 cpumask_var_t span;
532 cpumask_var_t online;
637f5085 533
0eab9146 534 /*
637f5085
GH
535 * The "RT overload" flag: it gets set if a CPU has more than
536 * one runnable RT task.
537 */
c6c4927b 538 cpumask_var_t rto_mask;
0eab9146 539 atomic_t rto_count;
6e0534f2
GH
540#ifdef CONFIG_SMP
541 struct cpupri cpupri;
542#endif
7a09b1a2
VS
543#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
544 /*
545 * Preferred wake up cpu nominated by sched_mc balance that will be
546 * used when most cpus are idle in the system indicating overall very
547 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
548 */
549 unsigned int sched_mc_preferred_wakeup_cpu;
550#endif
57d885fe
GH
551};
552
dc938520
GH
553/*
554 * By default the system creates a single root-domain with all cpus as
555 * members (mimicking the global state we have today).
556 */
57d885fe
GH
557static struct root_domain def_root_domain;
558
559#endif
560
1da177e4
LT
561/*
562 * This is the main, per-CPU runqueue data structure.
563 *
564 * Locking rule: those places that want to lock multiple runqueues
565 * (such as the load balancing or the thread migration code), lock
566 * acquire operations must be ordered by ascending &runqueue.
567 */
70b97a7f 568struct rq {
d8016491
IM
569 /* runqueue lock: */
570 spinlock_t lock;
1da177e4
LT
571
572 /*
573 * nr_running and cpu_load should be in the same cacheline because
574 * remote CPUs use both these fields when doing load calculation.
575 */
576 unsigned long nr_running;
6aa645ea
IM
577 #define CPU_LOAD_IDX_MAX 5
578 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 579#ifdef CONFIG_NO_HZ
15934a37 580 unsigned long last_tick_seen;
46cb4b7c
SS
581 unsigned char in_nohz_recently;
582#endif
d8016491
IM
583 /* capture load from *all* tasks on this cpu: */
584 struct load_weight load;
6aa645ea
IM
585 unsigned long nr_load_updates;
586 u64 nr_switches;
587
588 struct cfs_rq cfs;
6f505b16 589 struct rt_rq rt;
6f505b16 590
6aa645ea 591#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
592 /* list of leaf cfs_rq on this cpu: */
593 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
594#endif
595#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 596 struct list_head leaf_rt_rq_list;
1da177e4 597#endif
1da177e4
LT
598
599 /*
600 * This is part of a global counter where only the total sum
601 * over all CPUs matters. A task can increase this counter on
602 * one CPU and if it got migrated afterwards it may decrease
603 * it on another CPU. Always updated under the runqueue lock:
604 */
605 unsigned long nr_uninterruptible;
606
36c8b586 607 struct task_struct *curr, *idle;
c9819f45 608 unsigned long next_balance;
1da177e4 609 struct mm_struct *prev_mm;
6aa645ea 610
3e51f33f 611 u64 clock;
6aa645ea 612
1da177e4
LT
613 atomic_t nr_iowait;
614
615#ifdef CONFIG_SMP
0eab9146 616 struct root_domain *rd;
1da177e4
LT
617 struct sched_domain *sd;
618
a0a522ce 619 unsigned char idle_at_tick;
1da177e4
LT
620 /* For active balancing */
621 int active_balance;
622 int push_cpu;
d8016491
IM
623 /* cpu of this runqueue: */
624 int cpu;
1f11eb6a 625 int online;
1da177e4 626
a8a51d5e 627 unsigned long avg_load_per_task;
1da177e4 628
36c8b586 629 struct task_struct *migration_thread;
1da177e4
LT
630 struct list_head migration_queue;
631#endif
632
dce48a84
TG
633 /* calc_load related fields */
634 unsigned long calc_load_update;
635 long calc_load_active;
636
8f4d37ec 637#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
638#ifdef CONFIG_SMP
639 int hrtick_csd_pending;
640 struct call_single_data hrtick_csd;
641#endif
8f4d37ec
PZ
642 struct hrtimer hrtick_timer;
643#endif
644
1da177e4
LT
645#ifdef CONFIG_SCHEDSTATS
646 /* latency stats */
647 struct sched_info rq_sched_info;
9c2c4802
KC
648 unsigned long long rq_cpu_time;
649 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
650
651 /* sys_sched_yield() stats */
480b9434 652 unsigned int yld_count;
1da177e4
LT
653
654 /* schedule() stats */
480b9434
KC
655 unsigned int sched_switch;
656 unsigned int sched_count;
657 unsigned int sched_goidle;
1da177e4
LT
658
659 /* try_to_wake_up() stats */
480b9434
KC
660 unsigned int ttwu_count;
661 unsigned int ttwu_local;
b8efb561
IM
662
663 /* BKL stats */
480b9434 664 unsigned int bkl_count;
1da177e4
LT
665#endif
666};
667
f34e3b61 668static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 669
15afe09b 670static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 671{
15afe09b 672 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
673}
674
0a2966b4
CL
675static inline int cpu_of(struct rq *rq)
676{
677#ifdef CONFIG_SMP
678 return rq->cpu;
679#else
680 return 0;
681#endif
682}
683
674311d5
NP
684/*
685 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 686 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
687 *
688 * The domain tree of any CPU may only be accessed from within
689 * preempt-disabled sections.
690 */
48f24c4d
IM
691#define for_each_domain(cpu, __sd) \
692 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
693
694#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
695#define this_rq() (&__get_cpu_var(runqueues))
696#define task_rq(p) cpu_rq(task_cpu(p))
697#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
698
3e51f33f
PZ
699static inline void update_rq_clock(struct rq *rq)
700{
701 rq->clock = sched_clock_cpu(cpu_of(rq));
702}
703
bf5c91ba
IM
704/*
705 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
706 */
707#ifdef CONFIG_SCHED_DEBUG
708# define const_debug __read_mostly
709#else
710# define const_debug static const
711#endif
712
017730c1
IM
713/**
714 * runqueue_is_locked
715 *
716 * Returns true if the current cpu runqueue is locked.
717 * This interface allows printk to be called with the runqueue lock
718 * held and know whether or not it is OK to wake up the klogd.
719 */
720int runqueue_is_locked(void)
721{
722 int cpu = get_cpu();
723 struct rq *rq = cpu_rq(cpu);
724 int ret;
725
726 ret = spin_is_locked(&rq->lock);
727 put_cpu();
728 return ret;
729}
730
bf5c91ba
IM
731/*
732 * Debugging: various feature bits
733 */
f00b45c1
PZ
734
735#define SCHED_FEAT(name, enabled) \
736 __SCHED_FEAT_##name ,
737
bf5c91ba 738enum {
f00b45c1 739#include "sched_features.h"
bf5c91ba
IM
740};
741
f00b45c1
PZ
742#undef SCHED_FEAT
743
744#define SCHED_FEAT(name, enabled) \
745 (1UL << __SCHED_FEAT_##name) * enabled |
746
bf5c91ba 747const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
748#include "sched_features.h"
749 0;
750
751#undef SCHED_FEAT
752
753#ifdef CONFIG_SCHED_DEBUG
754#define SCHED_FEAT(name, enabled) \
755 #name ,
756
983ed7a6 757static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
758#include "sched_features.h"
759 NULL
760};
761
762#undef SCHED_FEAT
763
34f3a814 764static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 765{
f00b45c1
PZ
766 int i;
767
768 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
769 if (!(sysctl_sched_features & (1UL << i)))
770 seq_puts(m, "NO_");
771 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 772 }
34f3a814 773 seq_puts(m, "\n");
f00b45c1 774
34f3a814 775 return 0;
f00b45c1
PZ
776}
777
778static ssize_t
779sched_feat_write(struct file *filp, const char __user *ubuf,
780 size_t cnt, loff_t *ppos)
781{
782 char buf[64];
783 char *cmp = buf;
784 int neg = 0;
785 int i;
786
787 if (cnt > 63)
788 cnt = 63;
789
790 if (copy_from_user(&buf, ubuf, cnt))
791 return -EFAULT;
792
793 buf[cnt] = 0;
794
c24b7c52 795 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
796 neg = 1;
797 cmp += 3;
798 }
799
800 for (i = 0; sched_feat_names[i]; i++) {
801 int len = strlen(sched_feat_names[i]);
802
803 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
804 if (neg)
805 sysctl_sched_features &= ~(1UL << i);
806 else
807 sysctl_sched_features |= (1UL << i);
808 break;
809 }
810 }
811
812 if (!sched_feat_names[i])
813 return -EINVAL;
814
815 filp->f_pos += cnt;
816
817 return cnt;
818}
819
34f3a814
LZ
820static int sched_feat_open(struct inode *inode, struct file *filp)
821{
822 return single_open(filp, sched_feat_show, NULL);
823}
824
f00b45c1 825static struct file_operations sched_feat_fops = {
34f3a814
LZ
826 .open = sched_feat_open,
827 .write = sched_feat_write,
828 .read = seq_read,
829 .llseek = seq_lseek,
830 .release = single_release,
f00b45c1
PZ
831};
832
833static __init int sched_init_debug(void)
834{
f00b45c1
PZ
835 debugfs_create_file("sched_features", 0644, NULL, NULL,
836 &sched_feat_fops);
837
838 return 0;
839}
840late_initcall(sched_init_debug);
841
842#endif
843
844#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 845
b82d9fdd
PZ
846/*
847 * Number of tasks to iterate in a single balance run.
848 * Limited because this is done with IRQs disabled.
849 */
850const_debug unsigned int sysctl_sched_nr_migrate = 32;
851
2398f2c6
PZ
852/*
853 * ratelimit for updating the group shares.
55cd5340 854 * default: 0.25ms
2398f2c6 855 */
55cd5340 856unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 857
ffda12a1
PZ
858/*
859 * Inject some fuzzyness into changing the per-cpu group shares
860 * this avoids remote rq-locks at the expense of fairness.
861 * default: 4
862 */
863unsigned int sysctl_sched_shares_thresh = 4;
864
fa85ae24 865/*
9f0c1e56 866 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
867 * default: 1s
868 */
9f0c1e56 869unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 870
6892b75e
IM
871static __read_mostly int scheduler_running;
872
9f0c1e56
PZ
873/*
874 * part of the period that we allow rt tasks to run in us.
875 * default: 0.95s
876 */
877int sysctl_sched_rt_runtime = 950000;
fa85ae24 878
d0b27fa7
PZ
879static inline u64 global_rt_period(void)
880{
881 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
882}
883
884static inline u64 global_rt_runtime(void)
885{
e26873bb 886 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
887 return RUNTIME_INF;
888
889 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
890}
fa85ae24 891
1da177e4 892#ifndef prepare_arch_switch
4866cde0
NP
893# define prepare_arch_switch(next) do { } while (0)
894#endif
895#ifndef finish_arch_switch
896# define finish_arch_switch(prev) do { } while (0)
897#endif
898
051a1d1a
DA
899static inline int task_current(struct rq *rq, struct task_struct *p)
900{
901 return rq->curr == p;
902}
903
4866cde0 904#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 905static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 906{
051a1d1a 907 return task_current(rq, p);
4866cde0
NP
908}
909
70b97a7f 910static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
911{
912}
913
70b97a7f 914static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 915{
da04c035
IM
916#ifdef CONFIG_DEBUG_SPINLOCK
917 /* this is a valid case when another task releases the spinlock */
918 rq->lock.owner = current;
919#endif
8a25d5de
IM
920 /*
921 * If we are tracking spinlock dependencies then we have to
922 * fix up the runqueue lock - which gets 'carried over' from
923 * prev into current:
924 */
925 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
926
4866cde0
NP
927 spin_unlock_irq(&rq->lock);
928}
929
930#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 931static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
932{
933#ifdef CONFIG_SMP
934 return p->oncpu;
935#else
051a1d1a 936 return task_current(rq, p);
4866cde0
NP
937#endif
938}
939
70b97a7f 940static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
941{
942#ifdef CONFIG_SMP
943 /*
944 * We can optimise this out completely for !SMP, because the
945 * SMP rebalancing from interrupt is the only thing that cares
946 * here.
947 */
948 next->oncpu = 1;
949#endif
950#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
951 spin_unlock_irq(&rq->lock);
952#else
953 spin_unlock(&rq->lock);
954#endif
955}
956
70b97a7f 957static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
958{
959#ifdef CONFIG_SMP
960 /*
961 * After ->oncpu is cleared, the task can be moved to a different CPU.
962 * We must ensure this doesn't happen until the switch is completely
963 * finished.
964 */
965 smp_wmb();
966 prev->oncpu = 0;
967#endif
968#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
969 local_irq_enable();
1da177e4 970#endif
4866cde0
NP
971}
972#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 973
b29739f9
IM
974/*
975 * __task_rq_lock - lock the runqueue a given task resides on.
976 * Must be called interrupts disabled.
977 */
70b97a7f 978static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
979 __acquires(rq->lock)
980{
3a5c359a
AK
981 for (;;) {
982 struct rq *rq = task_rq(p);
983 spin_lock(&rq->lock);
984 if (likely(rq == task_rq(p)))
985 return rq;
b29739f9 986 spin_unlock(&rq->lock);
b29739f9 987 }
b29739f9
IM
988}
989
1da177e4
LT
990/*
991 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 992 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
993 * explicitly disabling preemption.
994 */
70b97a7f 995static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
996 __acquires(rq->lock)
997{
70b97a7f 998 struct rq *rq;
1da177e4 999
3a5c359a
AK
1000 for (;;) {
1001 local_irq_save(*flags);
1002 rq = task_rq(p);
1003 spin_lock(&rq->lock);
1004 if (likely(rq == task_rq(p)))
1005 return rq;
1da177e4 1006 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 1007 }
1da177e4
LT
1008}
1009
ad474cac
ON
1010void task_rq_unlock_wait(struct task_struct *p)
1011{
1012 struct rq *rq = task_rq(p);
1013
1014 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1015 spin_unlock_wait(&rq->lock);
1016}
1017
a9957449 1018static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1019 __releases(rq->lock)
1020{
1021 spin_unlock(&rq->lock);
1022}
1023
70b97a7f 1024static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1025 __releases(rq->lock)
1026{
1027 spin_unlock_irqrestore(&rq->lock, *flags);
1028}
1029
1da177e4 1030/*
cc2a73b5 1031 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1032 */
a9957449 1033static struct rq *this_rq_lock(void)
1da177e4
LT
1034 __acquires(rq->lock)
1035{
70b97a7f 1036 struct rq *rq;
1da177e4
LT
1037
1038 local_irq_disable();
1039 rq = this_rq();
1040 spin_lock(&rq->lock);
1041
1042 return rq;
1043}
1044
8f4d37ec
PZ
1045#ifdef CONFIG_SCHED_HRTICK
1046/*
1047 * Use HR-timers to deliver accurate preemption points.
1048 *
1049 * Its all a bit involved since we cannot program an hrt while holding the
1050 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1051 * reschedule event.
1052 *
1053 * When we get rescheduled we reprogram the hrtick_timer outside of the
1054 * rq->lock.
1055 */
8f4d37ec
PZ
1056
1057/*
1058 * Use hrtick when:
1059 * - enabled by features
1060 * - hrtimer is actually high res
1061 */
1062static inline int hrtick_enabled(struct rq *rq)
1063{
1064 if (!sched_feat(HRTICK))
1065 return 0;
ba42059f 1066 if (!cpu_active(cpu_of(rq)))
b328ca18 1067 return 0;
8f4d37ec
PZ
1068 return hrtimer_is_hres_active(&rq->hrtick_timer);
1069}
1070
8f4d37ec
PZ
1071static void hrtick_clear(struct rq *rq)
1072{
1073 if (hrtimer_active(&rq->hrtick_timer))
1074 hrtimer_cancel(&rq->hrtick_timer);
1075}
1076
8f4d37ec
PZ
1077/*
1078 * High-resolution timer tick.
1079 * Runs from hardirq context with interrupts disabled.
1080 */
1081static enum hrtimer_restart hrtick(struct hrtimer *timer)
1082{
1083 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1084
1085 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1086
1087 spin_lock(&rq->lock);
3e51f33f 1088 update_rq_clock(rq);
8f4d37ec
PZ
1089 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1090 spin_unlock(&rq->lock);
1091
1092 return HRTIMER_NORESTART;
1093}
1094
95e904c7 1095#ifdef CONFIG_SMP
31656519
PZ
1096/*
1097 * called from hardirq (IPI) context
1098 */
1099static void __hrtick_start(void *arg)
b328ca18 1100{
31656519 1101 struct rq *rq = arg;
b328ca18 1102
31656519
PZ
1103 spin_lock(&rq->lock);
1104 hrtimer_restart(&rq->hrtick_timer);
1105 rq->hrtick_csd_pending = 0;
1106 spin_unlock(&rq->lock);
b328ca18
PZ
1107}
1108
31656519
PZ
1109/*
1110 * Called to set the hrtick timer state.
1111 *
1112 * called with rq->lock held and irqs disabled
1113 */
1114static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1115{
31656519
PZ
1116 struct hrtimer *timer = &rq->hrtick_timer;
1117 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1118
cc584b21 1119 hrtimer_set_expires(timer, time);
31656519
PZ
1120
1121 if (rq == this_rq()) {
1122 hrtimer_restart(timer);
1123 } else if (!rq->hrtick_csd_pending) {
6e275637 1124 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
1125 rq->hrtick_csd_pending = 1;
1126 }
b328ca18
PZ
1127}
1128
1129static int
1130hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1131{
1132 int cpu = (int)(long)hcpu;
1133
1134 switch (action) {
1135 case CPU_UP_CANCELED:
1136 case CPU_UP_CANCELED_FROZEN:
1137 case CPU_DOWN_PREPARE:
1138 case CPU_DOWN_PREPARE_FROZEN:
1139 case CPU_DEAD:
1140 case CPU_DEAD_FROZEN:
31656519 1141 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1142 return NOTIFY_OK;
1143 }
1144
1145 return NOTIFY_DONE;
1146}
1147
fa748203 1148static __init void init_hrtick(void)
b328ca18
PZ
1149{
1150 hotcpu_notifier(hotplug_hrtick, 0);
1151}
31656519
PZ
1152#else
1153/*
1154 * Called to set the hrtick timer state.
1155 *
1156 * called with rq->lock held and irqs disabled
1157 */
1158static void hrtick_start(struct rq *rq, u64 delay)
1159{
7f1e2ca9
PZ
1160 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1161 HRTIMER_MODE_REL, 0);
31656519 1162}
b328ca18 1163
006c75f1 1164static inline void init_hrtick(void)
8f4d37ec 1165{
8f4d37ec 1166}
31656519 1167#endif /* CONFIG_SMP */
8f4d37ec 1168
31656519 1169static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1170{
31656519
PZ
1171#ifdef CONFIG_SMP
1172 rq->hrtick_csd_pending = 0;
8f4d37ec 1173
31656519
PZ
1174 rq->hrtick_csd.flags = 0;
1175 rq->hrtick_csd.func = __hrtick_start;
1176 rq->hrtick_csd.info = rq;
1177#endif
8f4d37ec 1178
31656519
PZ
1179 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1180 rq->hrtick_timer.function = hrtick;
8f4d37ec 1181}
006c75f1 1182#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1183static inline void hrtick_clear(struct rq *rq)
1184{
1185}
1186
8f4d37ec
PZ
1187static inline void init_rq_hrtick(struct rq *rq)
1188{
1189}
1190
b328ca18
PZ
1191static inline void init_hrtick(void)
1192{
1193}
006c75f1 1194#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1195
c24d20db
IM
1196/*
1197 * resched_task - mark a task 'to be rescheduled now'.
1198 *
1199 * On UP this means the setting of the need_resched flag, on SMP it
1200 * might also involve a cross-CPU call to trigger the scheduler on
1201 * the target CPU.
1202 */
1203#ifdef CONFIG_SMP
1204
1205#ifndef tsk_is_polling
1206#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1207#endif
1208
31656519 1209static void resched_task(struct task_struct *p)
c24d20db
IM
1210{
1211 int cpu;
1212
1213 assert_spin_locked(&task_rq(p)->lock);
1214
5ed0cec0 1215 if (test_tsk_need_resched(p))
c24d20db
IM
1216 return;
1217
5ed0cec0 1218 set_tsk_need_resched(p);
c24d20db
IM
1219
1220 cpu = task_cpu(p);
1221 if (cpu == smp_processor_id())
1222 return;
1223
1224 /* NEED_RESCHED must be visible before we test polling */
1225 smp_mb();
1226 if (!tsk_is_polling(p))
1227 smp_send_reschedule(cpu);
1228}
1229
1230static void resched_cpu(int cpu)
1231{
1232 struct rq *rq = cpu_rq(cpu);
1233 unsigned long flags;
1234
1235 if (!spin_trylock_irqsave(&rq->lock, flags))
1236 return;
1237 resched_task(cpu_curr(cpu));
1238 spin_unlock_irqrestore(&rq->lock, flags);
1239}
06d8308c
TG
1240
1241#ifdef CONFIG_NO_HZ
1242/*
1243 * When add_timer_on() enqueues a timer into the timer wheel of an
1244 * idle CPU then this timer might expire before the next timer event
1245 * which is scheduled to wake up that CPU. In case of a completely
1246 * idle system the next event might even be infinite time into the
1247 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1248 * leaves the inner idle loop so the newly added timer is taken into
1249 * account when the CPU goes back to idle and evaluates the timer
1250 * wheel for the next timer event.
1251 */
1252void wake_up_idle_cpu(int cpu)
1253{
1254 struct rq *rq = cpu_rq(cpu);
1255
1256 if (cpu == smp_processor_id())
1257 return;
1258
1259 /*
1260 * This is safe, as this function is called with the timer
1261 * wheel base lock of (cpu) held. When the CPU is on the way
1262 * to idle and has not yet set rq->curr to idle then it will
1263 * be serialized on the timer wheel base lock and take the new
1264 * timer into account automatically.
1265 */
1266 if (rq->curr != rq->idle)
1267 return;
1268
1269 /*
1270 * We can set TIF_RESCHED on the idle task of the other CPU
1271 * lockless. The worst case is that the other CPU runs the
1272 * idle task through an additional NOOP schedule()
1273 */
5ed0cec0 1274 set_tsk_need_resched(rq->idle);
06d8308c
TG
1275
1276 /* NEED_RESCHED must be visible before we test polling */
1277 smp_mb();
1278 if (!tsk_is_polling(rq->idle))
1279 smp_send_reschedule(cpu);
1280}
6d6bc0ad 1281#endif /* CONFIG_NO_HZ */
06d8308c 1282
6d6bc0ad 1283#else /* !CONFIG_SMP */
31656519 1284static void resched_task(struct task_struct *p)
c24d20db
IM
1285{
1286 assert_spin_locked(&task_rq(p)->lock);
31656519 1287 set_tsk_need_resched(p);
c24d20db 1288}
6d6bc0ad 1289#endif /* CONFIG_SMP */
c24d20db 1290
45bf76df
IM
1291#if BITS_PER_LONG == 32
1292# define WMULT_CONST (~0UL)
1293#else
1294# define WMULT_CONST (1UL << 32)
1295#endif
1296
1297#define WMULT_SHIFT 32
1298
194081eb
IM
1299/*
1300 * Shift right and round:
1301 */
cf2ab469 1302#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1303
a7be37ac
PZ
1304/*
1305 * delta *= weight / lw
1306 */
cb1c4fc9 1307static unsigned long
45bf76df
IM
1308calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1309 struct load_weight *lw)
1310{
1311 u64 tmp;
1312
7a232e03
LJ
1313 if (!lw->inv_weight) {
1314 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1315 lw->inv_weight = 1;
1316 else
1317 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1318 / (lw->weight+1);
1319 }
45bf76df
IM
1320
1321 tmp = (u64)delta_exec * weight;
1322 /*
1323 * Check whether we'd overflow the 64-bit multiplication:
1324 */
194081eb 1325 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1326 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1327 WMULT_SHIFT/2);
1328 else
cf2ab469 1329 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1330
ecf691da 1331 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1332}
1333
1091985b 1334static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1335{
1336 lw->weight += inc;
e89996ae 1337 lw->inv_weight = 0;
45bf76df
IM
1338}
1339
1091985b 1340static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1341{
1342 lw->weight -= dec;
e89996ae 1343 lw->inv_weight = 0;
45bf76df
IM
1344}
1345
2dd73a4f
PW
1346/*
1347 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1348 * of tasks with abnormal "nice" values across CPUs the contribution that
1349 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1350 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1351 * scaled version of the new time slice allocation that they receive on time
1352 * slice expiry etc.
1353 */
1354
cce7ade8
PZ
1355#define WEIGHT_IDLEPRIO 3
1356#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1357
1358/*
1359 * Nice levels are multiplicative, with a gentle 10% change for every
1360 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1361 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1362 * that remained on nice 0.
1363 *
1364 * The "10% effect" is relative and cumulative: from _any_ nice level,
1365 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1366 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1367 * If a task goes up by ~10% and another task goes down by ~10% then
1368 * the relative distance between them is ~25%.)
dd41f596
IM
1369 */
1370static const int prio_to_weight[40] = {
254753dc
IM
1371 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1372 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1373 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1374 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1375 /* 0 */ 1024, 820, 655, 526, 423,
1376 /* 5 */ 335, 272, 215, 172, 137,
1377 /* 10 */ 110, 87, 70, 56, 45,
1378 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1379};
1380
5714d2de
IM
1381/*
1382 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1383 *
1384 * In cases where the weight does not change often, we can use the
1385 * precalculated inverse to speed up arithmetics by turning divisions
1386 * into multiplications:
1387 */
dd41f596 1388static const u32 prio_to_wmult[40] = {
254753dc
IM
1389 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1390 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1391 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1392 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1393 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1394 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1395 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1396 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1397};
2dd73a4f 1398
dd41f596
IM
1399static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1400
1401/*
1402 * runqueue iterator, to support SMP load-balancing between different
1403 * scheduling classes, without having to expose their internal data
1404 * structures to the load-balancing proper:
1405 */
1406struct rq_iterator {
1407 void *arg;
1408 struct task_struct *(*start)(void *);
1409 struct task_struct *(*next)(void *);
1410};
1411
e1d1484f
PW
1412#ifdef CONFIG_SMP
1413static unsigned long
1414balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1415 unsigned long max_load_move, struct sched_domain *sd,
1416 enum cpu_idle_type idle, int *all_pinned,
1417 int *this_best_prio, struct rq_iterator *iterator);
1418
1419static int
1420iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1421 struct sched_domain *sd, enum cpu_idle_type idle,
1422 struct rq_iterator *iterator);
e1d1484f 1423#endif
dd41f596 1424
ef12fefa
BR
1425/* Time spent by the tasks of the cpu accounting group executing in ... */
1426enum cpuacct_stat_index {
1427 CPUACCT_STAT_USER, /* ... user mode */
1428 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1429
1430 CPUACCT_STAT_NSTATS,
1431};
1432
d842de87
SV
1433#ifdef CONFIG_CGROUP_CPUACCT
1434static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
ef12fefa
BR
1435static void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val);
d842de87
SV
1437#else
1438static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
ef12fefa
BR
1439static inline void cpuacct_update_stats(struct task_struct *tsk,
1440 enum cpuacct_stat_index idx, cputime_t val) {}
d842de87
SV
1441#endif
1442
18d95a28
PZ
1443static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1444{
1445 update_load_add(&rq->load, load);
1446}
1447
1448static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1449{
1450 update_load_sub(&rq->load, load);
1451}
1452
7940ca36 1453#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1454typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1455
1456/*
1457 * Iterate the full tree, calling @down when first entering a node and @up when
1458 * leaving it for the final time.
1459 */
eb755805 1460static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1461{
1462 struct task_group *parent, *child;
eb755805 1463 int ret;
c09595f6
PZ
1464
1465 rcu_read_lock();
1466 parent = &root_task_group;
1467down:
eb755805
PZ
1468 ret = (*down)(parent, data);
1469 if (ret)
1470 goto out_unlock;
c09595f6
PZ
1471 list_for_each_entry_rcu(child, &parent->children, siblings) {
1472 parent = child;
1473 goto down;
1474
1475up:
1476 continue;
1477 }
eb755805
PZ
1478 ret = (*up)(parent, data);
1479 if (ret)
1480 goto out_unlock;
c09595f6
PZ
1481
1482 child = parent;
1483 parent = parent->parent;
1484 if (parent)
1485 goto up;
eb755805 1486out_unlock:
c09595f6 1487 rcu_read_unlock();
eb755805
PZ
1488
1489 return ret;
c09595f6
PZ
1490}
1491
eb755805
PZ
1492static int tg_nop(struct task_group *tg, void *data)
1493{
1494 return 0;
c09595f6 1495}
eb755805
PZ
1496#endif
1497
1498#ifdef CONFIG_SMP
1499static unsigned long source_load(int cpu, int type);
1500static unsigned long target_load(int cpu, int type);
1501static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1502
1503static unsigned long cpu_avg_load_per_task(int cpu)
1504{
1505 struct rq *rq = cpu_rq(cpu);
af6d596f 1506 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1507
4cd42620
SR
1508 if (nr_running)
1509 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1510 else
1511 rq->avg_load_per_task = 0;
eb755805
PZ
1512
1513 return rq->avg_load_per_task;
1514}
1515
1516#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1517
c09595f6
PZ
1518static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1519
1520/*
1521 * Calculate and set the cpu's group shares.
1522 */
1523static void
ffda12a1
PZ
1524update_group_shares_cpu(struct task_group *tg, int cpu,
1525 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1526{
c09595f6
PZ
1527 unsigned long shares;
1528 unsigned long rq_weight;
1529
c8cba857 1530 if (!tg->se[cpu])
c09595f6
PZ
1531 return;
1532
ec4e0e2f 1533 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1534
c09595f6
PZ
1535 /*
1536 * \Sum shares * rq_weight
1537 * shares = -----------------------
1538 * \Sum rq_weight
1539 *
1540 */
ec4e0e2f 1541 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1542 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1543
ffda12a1
PZ
1544 if (abs(shares - tg->se[cpu]->load.weight) >
1545 sysctl_sched_shares_thresh) {
1546 struct rq *rq = cpu_rq(cpu);
1547 unsigned long flags;
c09595f6 1548
ffda12a1 1549 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1550 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1551
ffda12a1
PZ
1552 __set_se_shares(tg->se[cpu], shares);
1553 spin_unlock_irqrestore(&rq->lock, flags);
1554 }
18d95a28 1555}
c09595f6
PZ
1556
1557/*
c8cba857
PZ
1558 * Re-compute the task group their per cpu shares over the given domain.
1559 * This needs to be done in a bottom-up fashion because the rq weight of a
1560 * parent group depends on the shares of its child groups.
c09595f6 1561 */
eb755805 1562static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1563{
ec4e0e2f 1564 unsigned long weight, rq_weight = 0;
c8cba857 1565 unsigned long shares = 0;
eb755805 1566 struct sched_domain *sd = data;
c8cba857 1567 int i;
c09595f6 1568
758b2cdc 1569 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1570 /*
1571 * If there are currently no tasks on the cpu pretend there
1572 * is one of average load so that when a new task gets to
1573 * run here it will not get delayed by group starvation.
1574 */
1575 weight = tg->cfs_rq[i]->load.weight;
1576 if (!weight)
1577 weight = NICE_0_LOAD;
1578
1579 tg->cfs_rq[i]->rq_weight = weight;
1580 rq_weight += weight;
c8cba857 1581 shares += tg->cfs_rq[i]->shares;
c09595f6 1582 }
c09595f6 1583
c8cba857
PZ
1584 if ((!shares && rq_weight) || shares > tg->shares)
1585 shares = tg->shares;
1586
1587 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1588 shares = tg->shares;
c09595f6 1589
758b2cdc 1590 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1591 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1592
1593 return 0;
c09595f6
PZ
1594}
1595
1596/*
c8cba857
PZ
1597 * Compute the cpu's hierarchical load factor for each task group.
1598 * This needs to be done in a top-down fashion because the load of a child
1599 * group is a fraction of its parents load.
c09595f6 1600 */
eb755805 1601static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1602{
c8cba857 1603 unsigned long load;
eb755805 1604 long cpu = (long)data;
c09595f6 1605
c8cba857
PZ
1606 if (!tg->parent) {
1607 load = cpu_rq(cpu)->load.weight;
1608 } else {
1609 load = tg->parent->cfs_rq[cpu]->h_load;
1610 load *= tg->cfs_rq[cpu]->shares;
1611 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1612 }
c09595f6 1613
c8cba857 1614 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1615
eb755805 1616 return 0;
c09595f6
PZ
1617}
1618
c8cba857 1619static void update_shares(struct sched_domain *sd)
4d8d595d 1620{
2398f2c6
PZ
1621 u64 now = cpu_clock(raw_smp_processor_id());
1622 s64 elapsed = now - sd->last_update;
1623
1624 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1625 sd->last_update = now;
eb755805 1626 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1627 }
4d8d595d
PZ
1628}
1629
3e5459b4
PZ
1630static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1631{
1632 spin_unlock(&rq->lock);
1633 update_shares(sd);
1634 spin_lock(&rq->lock);
1635}
1636
eb755805 1637static void update_h_load(long cpu)
c09595f6 1638{
eb755805 1639 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1640}
1641
c09595f6
PZ
1642#else
1643
c8cba857 1644static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1645{
1646}
1647
3e5459b4
PZ
1648static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1649{
1650}
1651
18d95a28
PZ
1652#endif
1653
8f45e2b5
GH
1654#ifdef CONFIG_PREEMPT
1655
70574a99 1656/*
8f45e2b5
GH
1657 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1658 * way at the expense of forcing extra atomic operations in all
1659 * invocations. This assures that the double_lock is acquired using the
1660 * same underlying policy as the spinlock_t on this architecture, which
1661 * reduces latency compared to the unfair variant below. However, it
1662 * also adds more overhead and therefore may reduce throughput.
70574a99 1663 */
8f45e2b5
GH
1664static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1665 __releases(this_rq->lock)
1666 __acquires(busiest->lock)
1667 __acquires(this_rq->lock)
1668{
1669 spin_unlock(&this_rq->lock);
1670 double_rq_lock(this_rq, busiest);
1671
1672 return 1;
1673}
1674
1675#else
1676/*
1677 * Unfair double_lock_balance: Optimizes throughput at the expense of
1678 * latency by eliminating extra atomic operations when the locks are
1679 * already in proper order on entry. This favors lower cpu-ids and will
1680 * grant the double lock to lower cpus over higher ids under contention,
1681 * regardless of entry order into the function.
1682 */
1683static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1684 __releases(this_rq->lock)
1685 __acquires(busiest->lock)
1686 __acquires(this_rq->lock)
1687{
1688 int ret = 0;
1689
70574a99
AD
1690 if (unlikely(!spin_trylock(&busiest->lock))) {
1691 if (busiest < this_rq) {
1692 spin_unlock(&this_rq->lock);
1693 spin_lock(&busiest->lock);
1694 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1695 ret = 1;
1696 } else
1697 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1698 }
1699 return ret;
1700}
1701
8f45e2b5
GH
1702#endif /* CONFIG_PREEMPT */
1703
1704/*
1705 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1706 */
1707static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1708{
1709 if (unlikely(!irqs_disabled())) {
1710 /* printk() doesn't work good under rq->lock */
1711 spin_unlock(&this_rq->lock);
1712 BUG_ON(1);
1713 }
1714
1715 return _double_lock_balance(this_rq, busiest);
1716}
1717
70574a99
AD
1718static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1719 __releases(busiest->lock)
1720{
1721 spin_unlock(&busiest->lock);
1722 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1723}
18d95a28
PZ
1724#endif
1725
30432094 1726#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1727static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1728{
30432094 1729#ifdef CONFIG_SMP
34e83e85
IM
1730 cfs_rq->shares = shares;
1731#endif
1732}
30432094 1733#endif
e7693a36 1734
dce48a84
TG
1735static void calc_load_account_active(struct rq *this_rq);
1736
dd41f596 1737#include "sched_stats.h"
dd41f596 1738#include "sched_idletask.c"
5522d5d5
IM
1739#include "sched_fair.c"
1740#include "sched_rt.c"
dd41f596
IM
1741#ifdef CONFIG_SCHED_DEBUG
1742# include "sched_debug.c"
1743#endif
1744
1745#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1746#define for_each_class(class) \
1747 for (class = sched_class_highest; class; class = class->next)
dd41f596 1748
c09595f6 1749static void inc_nr_running(struct rq *rq)
9c217245
IM
1750{
1751 rq->nr_running++;
9c217245
IM
1752}
1753
c09595f6 1754static void dec_nr_running(struct rq *rq)
9c217245
IM
1755{
1756 rq->nr_running--;
9c217245
IM
1757}
1758
45bf76df
IM
1759static void set_load_weight(struct task_struct *p)
1760{
1761 if (task_has_rt_policy(p)) {
dd41f596
IM
1762 p->se.load.weight = prio_to_weight[0] * 2;
1763 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1764 return;
1765 }
45bf76df 1766
dd41f596
IM
1767 /*
1768 * SCHED_IDLE tasks get minimal weight:
1769 */
1770 if (p->policy == SCHED_IDLE) {
1771 p->se.load.weight = WEIGHT_IDLEPRIO;
1772 p->se.load.inv_weight = WMULT_IDLEPRIO;
1773 return;
1774 }
71f8bd46 1775
dd41f596
IM
1776 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1777 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1778}
1779
2087a1ad
GH
1780static void update_avg(u64 *avg, u64 sample)
1781{
1782 s64 diff = sample - *avg;
1783 *avg += diff >> 3;
1784}
1785
8159f87e 1786static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1787{
831451ac
PZ
1788 if (wakeup)
1789 p->se.start_runtime = p->se.sum_exec_runtime;
1790
dd41f596 1791 sched_info_queued(p);
fd390f6a 1792 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1793 p->se.on_rq = 1;
71f8bd46
IM
1794}
1795
69be72c1 1796static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1797{
831451ac
PZ
1798 if (sleep) {
1799 if (p->se.last_wakeup) {
1800 update_avg(&p->se.avg_overlap,
1801 p->se.sum_exec_runtime - p->se.last_wakeup);
1802 p->se.last_wakeup = 0;
1803 } else {
1804 update_avg(&p->se.avg_wakeup,
1805 sysctl_sched_wakeup_granularity);
1806 }
2087a1ad
GH
1807 }
1808
46ac22ba 1809 sched_info_dequeued(p);
f02231e5 1810 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1811 p->se.on_rq = 0;
71f8bd46
IM
1812}
1813
14531189 1814/*
dd41f596 1815 * __normal_prio - return the priority that is based on the static prio
14531189 1816 */
14531189
IM
1817static inline int __normal_prio(struct task_struct *p)
1818{
dd41f596 1819 return p->static_prio;
14531189
IM
1820}
1821
b29739f9
IM
1822/*
1823 * Calculate the expected normal priority: i.e. priority
1824 * without taking RT-inheritance into account. Might be
1825 * boosted by interactivity modifiers. Changes upon fork,
1826 * setprio syscalls, and whenever the interactivity
1827 * estimator recalculates.
1828 */
36c8b586 1829static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1830{
1831 int prio;
1832
e05606d3 1833 if (task_has_rt_policy(p))
b29739f9
IM
1834 prio = MAX_RT_PRIO-1 - p->rt_priority;
1835 else
1836 prio = __normal_prio(p);
1837 return prio;
1838}
1839
1840/*
1841 * Calculate the current priority, i.e. the priority
1842 * taken into account by the scheduler. This value might
1843 * be boosted by RT tasks, or might be boosted by
1844 * interactivity modifiers. Will be RT if the task got
1845 * RT-boosted. If not then it returns p->normal_prio.
1846 */
36c8b586 1847static int effective_prio(struct task_struct *p)
b29739f9
IM
1848{
1849 p->normal_prio = normal_prio(p);
1850 /*
1851 * If we are RT tasks or we were boosted to RT priority,
1852 * keep the priority unchanged. Otherwise, update priority
1853 * to the normal priority:
1854 */
1855 if (!rt_prio(p->prio))
1856 return p->normal_prio;
1857 return p->prio;
1858}
1859
1da177e4 1860/*
dd41f596 1861 * activate_task - move a task to the runqueue.
1da177e4 1862 */
dd41f596 1863static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1864{
d9514f6c 1865 if (task_contributes_to_load(p))
dd41f596 1866 rq->nr_uninterruptible--;
1da177e4 1867
8159f87e 1868 enqueue_task(rq, p, wakeup);
c09595f6 1869 inc_nr_running(rq);
1da177e4
LT
1870}
1871
1da177e4
LT
1872/*
1873 * deactivate_task - remove a task from the runqueue.
1874 */
2e1cb74a 1875static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1876{
d9514f6c 1877 if (task_contributes_to_load(p))
dd41f596
IM
1878 rq->nr_uninterruptible++;
1879
69be72c1 1880 dequeue_task(rq, p, sleep);
c09595f6 1881 dec_nr_running(rq);
1da177e4
LT
1882}
1883
1da177e4
LT
1884/**
1885 * task_curr - is this task currently executing on a CPU?
1886 * @p: the task in question.
1887 */
36c8b586 1888inline int task_curr(const struct task_struct *p)
1da177e4
LT
1889{
1890 return cpu_curr(task_cpu(p)) == p;
1891}
1892
dd41f596
IM
1893static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1894{
6f505b16 1895 set_task_rq(p, cpu);
dd41f596 1896#ifdef CONFIG_SMP
ce96b5ac
DA
1897 /*
1898 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1899 * successfuly executed on another CPU. We must ensure that updates of
1900 * per-task data have been completed by this moment.
1901 */
1902 smp_wmb();
dd41f596 1903 task_thread_info(p)->cpu = cpu;
dd41f596 1904#endif
2dd73a4f
PW
1905}
1906
cb469845
SR
1907static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1908 const struct sched_class *prev_class,
1909 int oldprio, int running)
1910{
1911 if (prev_class != p->sched_class) {
1912 if (prev_class->switched_from)
1913 prev_class->switched_from(rq, p, running);
1914 p->sched_class->switched_to(rq, p, running);
1915 } else
1916 p->sched_class->prio_changed(rq, p, oldprio, running);
1917}
1918
1da177e4 1919#ifdef CONFIG_SMP
c65cc870 1920
e958b360
TG
1921/* Used instead of source_load when we know the type == 0 */
1922static unsigned long weighted_cpuload(const int cpu)
1923{
1924 return cpu_rq(cpu)->load.weight;
1925}
1926
cc367732
IM
1927/*
1928 * Is this task likely cache-hot:
1929 */
e7693a36 1930static int
cc367732
IM
1931task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1932{
1933 s64 delta;
1934
f540a608
IM
1935 /*
1936 * Buddy candidates are cache hot:
1937 */
4793241b
PZ
1938 if (sched_feat(CACHE_HOT_BUDDY) &&
1939 (&p->se == cfs_rq_of(&p->se)->next ||
1940 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1941 return 1;
1942
cc367732
IM
1943 if (p->sched_class != &fair_sched_class)
1944 return 0;
1945
6bc1665b
IM
1946 if (sysctl_sched_migration_cost == -1)
1947 return 1;
1948 if (sysctl_sched_migration_cost == 0)
1949 return 0;
1950
cc367732
IM
1951 delta = now - p->se.exec_start;
1952
1953 return delta < (s64)sysctl_sched_migration_cost;
1954}
1955
1956
dd41f596 1957void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1958{
dd41f596
IM
1959 int old_cpu = task_cpu(p);
1960 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1961 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1962 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1963 u64 clock_offset;
dd41f596
IM
1964
1965 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1966
cbc34ed1
PZ
1967 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1968
6cfb0d5d
IM
1969#ifdef CONFIG_SCHEDSTATS
1970 if (p->se.wait_start)
1971 p->se.wait_start -= clock_offset;
dd41f596
IM
1972 if (p->se.sleep_start)
1973 p->se.sleep_start -= clock_offset;
1974 if (p->se.block_start)
1975 p->se.block_start -= clock_offset;
cc367732
IM
1976 if (old_cpu != new_cpu) {
1977 schedstat_inc(p, se.nr_migrations);
1978 if (task_hot(p, old_rq->clock, NULL))
1979 schedstat_inc(p, se.nr_forced2_migrations);
1980 }
6cfb0d5d 1981#endif
2830cf8c
SV
1982 p->se.vruntime -= old_cfsrq->min_vruntime -
1983 new_cfsrq->min_vruntime;
dd41f596
IM
1984
1985 __set_task_cpu(p, new_cpu);
c65cc870
IM
1986}
1987
70b97a7f 1988struct migration_req {
1da177e4 1989 struct list_head list;
1da177e4 1990
36c8b586 1991 struct task_struct *task;
1da177e4
LT
1992 int dest_cpu;
1993
1da177e4 1994 struct completion done;
70b97a7f 1995};
1da177e4
LT
1996
1997/*
1998 * The task's runqueue lock must be held.
1999 * Returns true if you have to wait for migration thread.
2000 */
36c8b586 2001static int
70b97a7f 2002migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 2003{
70b97a7f 2004 struct rq *rq = task_rq(p);
1da177e4
LT
2005
2006 /*
2007 * If the task is not on a runqueue (and not running), then
2008 * it is sufficient to simply update the task's cpu field.
2009 */
dd41f596 2010 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
2011 set_task_cpu(p, dest_cpu);
2012 return 0;
2013 }
2014
2015 init_completion(&req->done);
1da177e4
LT
2016 req->task = p;
2017 req->dest_cpu = dest_cpu;
2018 list_add(&req->list, &rq->migration_queue);
48f24c4d 2019
1da177e4
LT
2020 return 1;
2021}
2022
2023/*
2024 * wait_task_inactive - wait for a thread to unschedule.
2025 *
85ba2d86
RM
2026 * If @match_state is nonzero, it's the @p->state value just checked and
2027 * not expected to change. If it changes, i.e. @p might have woken up,
2028 * then return zero. When we succeed in waiting for @p to be off its CPU,
2029 * we return a positive number (its total switch count). If a second call
2030 * a short while later returns the same number, the caller can be sure that
2031 * @p has remained unscheduled the whole time.
2032 *
1da177e4
LT
2033 * The caller must ensure that the task *will* unschedule sometime soon,
2034 * else this function might spin for a *long* time. This function can't
2035 * be called with interrupts off, or it may introduce deadlock with
2036 * smp_call_function() if an IPI is sent by the same process we are
2037 * waiting to become inactive.
2038 */
85ba2d86 2039unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2040{
2041 unsigned long flags;
dd41f596 2042 int running, on_rq;
85ba2d86 2043 unsigned long ncsw;
70b97a7f 2044 struct rq *rq;
1da177e4 2045
3a5c359a
AK
2046 for (;;) {
2047 /*
2048 * We do the initial early heuristics without holding
2049 * any task-queue locks at all. We'll only try to get
2050 * the runqueue lock when things look like they will
2051 * work out!
2052 */
2053 rq = task_rq(p);
fa490cfd 2054
3a5c359a
AK
2055 /*
2056 * If the task is actively running on another CPU
2057 * still, just relax and busy-wait without holding
2058 * any locks.
2059 *
2060 * NOTE! Since we don't hold any locks, it's not
2061 * even sure that "rq" stays as the right runqueue!
2062 * But we don't care, since "task_running()" will
2063 * return false if the runqueue has changed and p
2064 * is actually now running somewhere else!
2065 */
85ba2d86
RM
2066 while (task_running(rq, p)) {
2067 if (match_state && unlikely(p->state != match_state))
2068 return 0;
3a5c359a 2069 cpu_relax();
85ba2d86 2070 }
fa490cfd 2071
3a5c359a
AK
2072 /*
2073 * Ok, time to look more closely! We need the rq
2074 * lock now, to be *sure*. If we're wrong, we'll
2075 * just go back and repeat.
2076 */
2077 rq = task_rq_lock(p, &flags);
0a16b607 2078 trace_sched_wait_task(rq, p);
3a5c359a
AK
2079 running = task_running(rq, p);
2080 on_rq = p->se.on_rq;
85ba2d86 2081 ncsw = 0;
f31e11d8 2082 if (!match_state || p->state == match_state)
93dcf55f 2083 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2084 task_rq_unlock(rq, &flags);
fa490cfd 2085
85ba2d86
RM
2086 /*
2087 * If it changed from the expected state, bail out now.
2088 */
2089 if (unlikely(!ncsw))
2090 break;
2091
3a5c359a
AK
2092 /*
2093 * Was it really running after all now that we
2094 * checked with the proper locks actually held?
2095 *
2096 * Oops. Go back and try again..
2097 */
2098 if (unlikely(running)) {
2099 cpu_relax();
2100 continue;
2101 }
fa490cfd 2102
3a5c359a
AK
2103 /*
2104 * It's not enough that it's not actively running,
2105 * it must be off the runqueue _entirely_, and not
2106 * preempted!
2107 *
80dd99b3 2108 * So if it was still runnable (but just not actively
3a5c359a
AK
2109 * running right now), it's preempted, and we should
2110 * yield - it could be a while.
2111 */
2112 if (unlikely(on_rq)) {
2113 schedule_timeout_uninterruptible(1);
2114 continue;
2115 }
fa490cfd 2116
3a5c359a
AK
2117 /*
2118 * Ahh, all good. It wasn't running, and it wasn't
2119 * runnable, which means that it will never become
2120 * running in the future either. We're all done!
2121 */
2122 break;
2123 }
85ba2d86
RM
2124
2125 return ncsw;
1da177e4
LT
2126}
2127
2128/***
2129 * kick_process - kick a running thread to enter/exit the kernel
2130 * @p: the to-be-kicked thread
2131 *
2132 * Cause a process which is running on another CPU to enter
2133 * kernel-mode, without any delay. (to get signals handled.)
2134 *
2135 * NOTE: this function doesnt have to take the runqueue lock,
2136 * because all it wants to ensure is that the remote task enters
2137 * the kernel. If the IPI races and the task has been migrated
2138 * to another CPU then no harm is done and the purpose has been
2139 * achieved as well.
2140 */
36c8b586 2141void kick_process(struct task_struct *p)
1da177e4
LT
2142{
2143 int cpu;
2144
2145 preempt_disable();
2146 cpu = task_cpu(p);
2147 if ((cpu != smp_processor_id()) && task_curr(p))
2148 smp_send_reschedule(cpu);
2149 preempt_enable();
2150}
2151
2152/*
2dd73a4f
PW
2153 * Return a low guess at the load of a migration-source cpu weighted
2154 * according to the scheduling class and "nice" value.
1da177e4
LT
2155 *
2156 * We want to under-estimate the load of migration sources, to
2157 * balance conservatively.
2158 */
a9957449 2159static unsigned long source_load(int cpu, int type)
1da177e4 2160{
70b97a7f 2161 struct rq *rq = cpu_rq(cpu);
dd41f596 2162 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2163
93b75217 2164 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2165 return total;
b910472d 2166
dd41f596 2167 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2168}
2169
2170/*
2dd73a4f
PW
2171 * Return a high guess at the load of a migration-target cpu weighted
2172 * according to the scheduling class and "nice" value.
1da177e4 2173 */
a9957449 2174static unsigned long target_load(int cpu, int type)
1da177e4 2175{
70b97a7f 2176 struct rq *rq = cpu_rq(cpu);
dd41f596 2177 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2178
93b75217 2179 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2180 return total;
3b0bd9bc 2181
dd41f596 2182 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2183}
2184
147cbb4b
NP
2185/*
2186 * find_idlest_group finds and returns the least busy CPU group within the
2187 * domain.
2188 */
2189static struct sched_group *
2190find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2191{
2192 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2193 unsigned long min_load = ULONG_MAX, this_load = 0;
2194 int load_idx = sd->forkexec_idx;
2195 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2196
2197 do {
2198 unsigned long load, avg_load;
2199 int local_group;
2200 int i;
2201
da5a5522 2202 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2203 if (!cpumask_intersects(sched_group_cpus(group),
2204 &p->cpus_allowed))
3a5c359a 2205 continue;
da5a5522 2206
758b2cdc
RR
2207 local_group = cpumask_test_cpu(this_cpu,
2208 sched_group_cpus(group));
147cbb4b
NP
2209
2210 /* Tally up the load of all CPUs in the group */
2211 avg_load = 0;
2212
758b2cdc 2213 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2214 /* Bias balancing toward cpus of our domain */
2215 if (local_group)
2216 load = source_load(i, load_idx);
2217 else
2218 load = target_load(i, load_idx);
2219
2220 avg_load += load;
2221 }
2222
2223 /* Adjust by relative CPU power of the group */
5517d86b
ED
2224 avg_load = sg_div_cpu_power(group,
2225 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2226
2227 if (local_group) {
2228 this_load = avg_load;
2229 this = group;
2230 } else if (avg_load < min_load) {
2231 min_load = avg_load;
2232 idlest = group;
2233 }
3a5c359a 2234 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2235
2236 if (!idlest || 100*this_load < imbalance*min_load)
2237 return NULL;
2238 return idlest;
2239}
2240
2241/*
0feaece9 2242 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2243 */
95cdf3b7 2244static int
758b2cdc 2245find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2246{
2247 unsigned long load, min_load = ULONG_MAX;
2248 int idlest = -1;
2249 int i;
2250
da5a5522 2251 /* Traverse only the allowed CPUs */
758b2cdc 2252 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2253 load = weighted_cpuload(i);
147cbb4b
NP
2254
2255 if (load < min_load || (load == min_load && i == this_cpu)) {
2256 min_load = load;
2257 idlest = i;
2258 }
2259 }
2260
2261 return idlest;
2262}
2263
476d139c
NP
2264/*
2265 * sched_balance_self: balance the current task (running on cpu) in domains
2266 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2267 * SD_BALANCE_EXEC.
2268 *
2269 * Balance, ie. select the least loaded group.
2270 *
2271 * Returns the target CPU number, or the same CPU if no balancing is needed.
2272 *
2273 * preempt must be disabled.
2274 */
2275static int sched_balance_self(int cpu, int flag)
2276{
2277 struct task_struct *t = current;
2278 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2279
c96d145e 2280 for_each_domain(cpu, tmp) {
9761eea8
IM
2281 /*
2282 * If power savings logic is enabled for a domain, stop there.
2283 */
5c45bf27
SS
2284 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2285 break;
476d139c
NP
2286 if (tmp->flags & flag)
2287 sd = tmp;
c96d145e 2288 }
476d139c 2289
039a1c41
PZ
2290 if (sd)
2291 update_shares(sd);
2292
476d139c 2293 while (sd) {
476d139c 2294 struct sched_group *group;
1a848870
SS
2295 int new_cpu, weight;
2296
2297 if (!(sd->flags & flag)) {
2298 sd = sd->child;
2299 continue;
2300 }
476d139c 2301
476d139c 2302 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2303 if (!group) {
2304 sd = sd->child;
2305 continue;
2306 }
476d139c 2307
758b2cdc 2308 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2309 if (new_cpu == -1 || new_cpu == cpu) {
2310 /* Now try balancing at a lower domain level of cpu */
2311 sd = sd->child;
2312 continue;
2313 }
476d139c 2314
1a848870 2315 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2316 cpu = new_cpu;
758b2cdc 2317 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2318 sd = NULL;
476d139c 2319 for_each_domain(cpu, tmp) {
758b2cdc 2320 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2321 break;
2322 if (tmp->flags & flag)
2323 sd = tmp;
2324 }
2325 /* while loop will break here if sd == NULL */
2326 }
2327
2328 return cpu;
2329}
2330
2331#endif /* CONFIG_SMP */
1da177e4 2332
1da177e4
LT
2333/***
2334 * try_to_wake_up - wake up a thread
2335 * @p: the to-be-woken-up thread
2336 * @state: the mask of task states that can be woken
2337 * @sync: do a synchronous wakeup?
2338 *
2339 * Put it on the run-queue if it's not already there. The "current"
2340 * thread is always on the run-queue (except when the actual
2341 * re-schedule is in progress), and as such you're allowed to do
2342 * the simpler "current->state = TASK_RUNNING" to mark yourself
2343 * runnable without the overhead of this.
2344 *
2345 * returns failure only if the task is already active.
2346 */
36c8b586 2347static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2348{
cc367732 2349 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2350 unsigned long flags;
2351 long old_state;
70b97a7f 2352 struct rq *rq;
1da177e4 2353
b85d0667
IM
2354 if (!sched_feat(SYNC_WAKEUPS))
2355 sync = 0;
2356
2398f2c6 2357#ifdef CONFIG_SMP
57310a98 2358 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2398f2c6
PZ
2359 struct sched_domain *sd;
2360
2361 this_cpu = raw_smp_processor_id();
2362 cpu = task_cpu(p);
2363
2364 for_each_domain(this_cpu, sd) {
758b2cdc 2365 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2366 update_shares(sd);
2367 break;
2368 }
2369 }
2370 }
2371#endif
2372
04e2f174 2373 smp_wmb();
1da177e4 2374 rq = task_rq_lock(p, &flags);
03e89e45 2375 update_rq_clock(rq);
1da177e4
LT
2376 old_state = p->state;
2377 if (!(old_state & state))
2378 goto out;
2379
dd41f596 2380 if (p->se.on_rq)
1da177e4
LT
2381 goto out_running;
2382
2383 cpu = task_cpu(p);
cc367732 2384 orig_cpu = cpu;
1da177e4
LT
2385 this_cpu = smp_processor_id();
2386
2387#ifdef CONFIG_SMP
2388 if (unlikely(task_running(rq, p)))
2389 goto out_activate;
2390
5d2f5a61
DA
2391 cpu = p->sched_class->select_task_rq(p, sync);
2392 if (cpu != orig_cpu) {
2393 set_task_cpu(p, cpu);
1da177e4
LT
2394 task_rq_unlock(rq, &flags);
2395 /* might preempt at this point */
2396 rq = task_rq_lock(p, &flags);
2397 old_state = p->state;
2398 if (!(old_state & state))
2399 goto out;
dd41f596 2400 if (p->se.on_rq)
1da177e4
LT
2401 goto out_running;
2402
2403 this_cpu = smp_processor_id();
2404 cpu = task_cpu(p);
2405 }
2406
e7693a36
GH
2407#ifdef CONFIG_SCHEDSTATS
2408 schedstat_inc(rq, ttwu_count);
2409 if (cpu == this_cpu)
2410 schedstat_inc(rq, ttwu_local);
2411 else {
2412 struct sched_domain *sd;
2413 for_each_domain(this_cpu, sd) {
758b2cdc 2414 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2415 schedstat_inc(sd, ttwu_wake_remote);
2416 break;
2417 }
2418 }
2419 }
6d6bc0ad 2420#endif /* CONFIG_SCHEDSTATS */
e7693a36 2421
1da177e4
LT
2422out_activate:
2423#endif /* CONFIG_SMP */
cc367732
IM
2424 schedstat_inc(p, se.nr_wakeups);
2425 if (sync)
2426 schedstat_inc(p, se.nr_wakeups_sync);
2427 if (orig_cpu != cpu)
2428 schedstat_inc(p, se.nr_wakeups_migrate);
2429 if (cpu == this_cpu)
2430 schedstat_inc(p, se.nr_wakeups_local);
2431 else
2432 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2433 activate_task(rq, p, 1);
1da177e4
LT
2434 success = 1;
2435
831451ac
PZ
2436 /*
2437 * Only attribute actual wakeups done by this task.
2438 */
2439 if (!in_interrupt()) {
2440 struct sched_entity *se = &current->se;
2441 u64 sample = se->sum_exec_runtime;
2442
2443 if (se->last_wakeup)
2444 sample -= se->last_wakeup;
2445 else
2446 sample -= se->start_runtime;
2447 update_avg(&se->avg_wakeup, sample);
2448
2449 se->last_wakeup = se->sum_exec_runtime;
2450 }
2451
1da177e4 2452out_running:
468a15bb 2453 trace_sched_wakeup(rq, p, success);
15afe09b 2454 check_preempt_curr(rq, p, sync);
4ae7d5ce 2455
1da177e4 2456 p->state = TASK_RUNNING;
9a897c5a
SR
2457#ifdef CONFIG_SMP
2458 if (p->sched_class->task_wake_up)
2459 p->sched_class->task_wake_up(rq, p);
2460#endif
1da177e4
LT
2461out:
2462 task_rq_unlock(rq, &flags);
2463
2464 return success;
2465}
2466
7ad5b3a5 2467int wake_up_process(struct task_struct *p)
1da177e4 2468{
d9514f6c 2469 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2470}
1da177e4
LT
2471EXPORT_SYMBOL(wake_up_process);
2472
7ad5b3a5 2473int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2474{
2475 return try_to_wake_up(p, state, 0);
2476}
2477
1da177e4
LT
2478/*
2479 * Perform scheduler related setup for a newly forked process p.
2480 * p is forked by current.
dd41f596
IM
2481 *
2482 * __sched_fork() is basic setup used by init_idle() too:
2483 */
2484static void __sched_fork(struct task_struct *p)
2485{
dd41f596
IM
2486 p->se.exec_start = 0;
2487 p->se.sum_exec_runtime = 0;
f6cf891c 2488 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2489 p->se.last_wakeup = 0;
2490 p->se.avg_overlap = 0;
831451ac
PZ
2491 p->se.start_runtime = 0;
2492 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2493
2494#ifdef CONFIG_SCHEDSTATS
2495 p->se.wait_start = 0;
dd41f596
IM
2496 p->se.sum_sleep_runtime = 0;
2497 p->se.sleep_start = 0;
dd41f596
IM
2498 p->se.block_start = 0;
2499 p->se.sleep_max = 0;
2500 p->se.block_max = 0;
2501 p->se.exec_max = 0;
eba1ed4b 2502 p->se.slice_max = 0;
dd41f596 2503 p->se.wait_max = 0;
6cfb0d5d 2504#endif
476d139c 2505
fa717060 2506 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2507 p->se.on_rq = 0;
4a55bd5e 2508 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2509
e107be36
AK
2510#ifdef CONFIG_PREEMPT_NOTIFIERS
2511 INIT_HLIST_HEAD(&p->preempt_notifiers);
2512#endif
2513
1da177e4
LT
2514 /*
2515 * We mark the process as running here, but have not actually
2516 * inserted it onto the runqueue yet. This guarantees that
2517 * nobody will actually run it, and a signal or other external
2518 * event cannot wake it up and insert it on the runqueue either.
2519 */
2520 p->state = TASK_RUNNING;
dd41f596
IM
2521}
2522
2523/*
2524 * fork()/clone()-time setup:
2525 */
2526void sched_fork(struct task_struct *p, int clone_flags)
2527{
2528 int cpu = get_cpu();
2529
2530 __sched_fork(p);
2531
2532#ifdef CONFIG_SMP
2533 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2534#endif
02e4bac2 2535 set_task_cpu(p, cpu);
b29739f9
IM
2536
2537 /*
2538 * Make sure we do not leak PI boosting priority to the child:
2539 */
2540 p->prio = current->normal_prio;
2ddbf952
HS
2541 if (!rt_prio(p->prio))
2542 p->sched_class = &fair_sched_class;
b29739f9 2543
52f17b6c 2544#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2545 if (likely(sched_info_on()))
52f17b6c 2546 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2547#endif
d6077cb8 2548#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2549 p->oncpu = 0;
2550#endif
1da177e4 2551#ifdef CONFIG_PREEMPT
4866cde0 2552 /* Want to start with kernel preemption disabled. */
a1261f54 2553 task_thread_info(p)->preempt_count = 1;
1da177e4 2554#endif
917b627d
GH
2555 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2556
476d139c 2557 put_cpu();
1da177e4
LT
2558}
2559
2560/*
2561 * wake_up_new_task - wake up a newly created task for the first time.
2562 *
2563 * This function will do some initial scheduler statistics housekeeping
2564 * that must be done for every newly created context, then puts the task
2565 * on the runqueue and wakes it.
2566 */
7ad5b3a5 2567void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2568{
2569 unsigned long flags;
dd41f596 2570 struct rq *rq;
1da177e4
LT
2571
2572 rq = task_rq_lock(p, &flags);
147cbb4b 2573 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2574 update_rq_clock(rq);
1da177e4
LT
2575
2576 p->prio = effective_prio(p);
2577
b9dca1e0 2578 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2579 activate_task(rq, p, 0);
1da177e4 2580 } else {
1da177e4 2581 /*
dd41f596
IM
2582 * Let the scheduling class do new task startup
2583 * management (if any):
1da177e4 2584 */
ee0827d8 2585 p->sched_class->task_new(rq, p);
c09595f6 2586 inc_nr_running(rq);
1da177e4 2587 }
c71dd42d 2588 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2589 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2590#ifdef CONFIG_SMP
2591 if (p->sched_class->task_wake_up)
2592 p->sched_class->task_wake_up(rq, p);
2593#endif
dd41f596 2594 task_rq_unlock(rq, &flags);
1da177e4
LT
2595}
2596
e107be36
AK
2597#ifdef CONFIG_PREEMPT_NOTIFIERS
2598
2599/**
80dd99b3 2600 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2601 * @notifier: notifier struct to register
e107be36
AK
2602 */
2603void preempt_notifier_register(struct preempt_notifier *notifier)
2604{
2605 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2606}
2607EXPORT_SYMBOL_GPL(preempt_notifier_register);
2608
2609/**
2610 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2611 * @notifier: notifier struct to unregister
e107be36
AK
2612 *
2613 * This is safe to call from within a preemption notifier.
2614 */
2615void preempt_notifier_unregister(struct preempt_notifier *notifier)
2616{
2617 hlist_del(&notifier->link);
2618}
2619EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2620
2621static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2622{
2623 struct preempt_notifier *notifier;
2624 struct hlist_node *node;
2625
2626 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2627 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2628}
2629
2630static void
2631fire_sched_out_preempt_notifiers(struct task_struct *curr,
2632 struct task_struct *next)
2633{
2634 struct preempt_notifier *notifier;
2635 struct hlist_node *node;
2636
2637 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2638 notifier->ops->sched_out(notifier, next);
2639}
2640
6d6bc0ad 2641#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2642
2643static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2644{
2645}
2646
2647static void
2648fire_sched_out_preempt_notifiers(struct task_struct *curr,
2649 struct task_struct *next)
2650{
2651}
2652
6d6bc0ad 2653#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2654
4866cde0
NP
2655/**
2656 * prepare_task_switch - prepare to switch tasks
2657 * @rq: the runqueue preparing to switch
421cee29 2658 * @prev: the current task that is being switched out
4866cde0
NP
2659 * @next: the task we are going to switch to.
2660 *
2661 * This is called with the rq lock held and interrupts off. It must
2662 * be paired with a subsequent finish_task_switch after the context
2663 * switch.
2664 *
2665 * prepare_task_switch sets up locking and calls architecture specific
2666 * hooks.
2667 */
e107be36
AK
2668static inline void
2669prepare_task_switch(struct rq *rq, struct task_struct *prev,
2670 struct task_struct *next)
4866cde0 2671{
e107be36 2672 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2673 prepare_lock_switch(rq, next);
2674 prepare_arch_switch(next);
2675}
2676
1da177e4
LT
2677/**
2678 * finish_task_switch - clean up after a task-switch
344babaa 2679 * @rq: runqueue associated with task-switch
1da177e4
LT
2680 * @prev: the thread we just switched away from.
2681 *
4866cde0
NP
2682 * finish_task_switch must be called after the context switch, paired
2683 * with a prepare_task_switch call before the context switch.
2684 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2685 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2686 *
2687 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2688 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2689 * with the lock held can cause deadlocks; see schedule() for
2690 * details.)
2691 */
a9957449 2692static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2693 __releases(rq->lock)
2694{
1da177e4 2695 struct mm_struct *mm = rq->prev_mm;
55a101f8 2696 long prev_state;
967fc046
GH
2697#ifdef CONFIG_SMP
2698 int post_schedule = 0;
2699
2700 if (current->sched_class->needs_post_schedule)
2701 post_schedule = current->sched_class->needs_post_schedule(rq);
2702#endif
1da177e4
LT
2703
2704 rq->prev_mm = NULL;
2705
2706 /*
2707 * A task struct has one reference for the use as "current".
c394cc9f 2708 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2709 * schedule one last time. The schedule call will never return, and
2710 * the scheduled task must drop that reference.
c394cc9f 2711 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2712 * still held, otherwise prev could be scheduled on another cpu, die
2713 * there before we look at prev->state, and then the reference would
2714 * be dropped twice.
2715 * Manfred Spraul <manfred@colorfullife.com>
2716 */
55a101f8 2717 prev_state = prev->state;
4866cde0
NP
2718 finish_arch_switch(prev);
2719 finish_lock_switch(rq, prev);
9a897c5a 2720#ifdef CONFIG_SMP
967fc046 2721 if (post_schedule)
9a897c5a
SR
2722 current->sched_class->post_schedule(rq);
2723#endif
e8fa1362 2724
e107be36 2725 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2726 if (mm)
2727 mmdrop(mm);
c394cc9f 2728 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2729 /*
2730 * Remove function-return probe instances associated with this
2731 * task and put them back on the free list.
9761eea8 2732 */
c6fd91f0 2733 kprobe_flush_task(prev);
1da177e4 2734 put_task_struct(prev);
c6fd91f0 2735 }
1da177e4
LT
2736}
2737
2738/**
2739 * schedule_tail - first thing a freshly forked thread must call.
2740 * @prev: the thread we just switched away from.
2741 */
36c8b586 2742asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2743 __releases(rq->lock)
2744{
70b97a7f
IM
2745 struct rq *rq = this_rq();
2746
4866cde0
NP
2747 finish_task_switch(rq, prev);
2748#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2749 /* In this case, finish_task_switch does not reenable preemption */
2750 preempt_enable();
2751#endif
1da177e4 2752 if (current->set_child_tid)
b488893a 2753 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2754}
2755
2756/*
2757 * context_switch - switch to the new MM and the new
2758 * thread's register state.
2759 */
dd41f596 2760static inline void
70b97a7f 2761context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2762 struct task_struct *next)
1da177e4 2763{
dd41f596 2764 struct mm_struct *mm, *oldmm;
1da177e4 2765
e107be36 2766 prepare_task_switch(rq, prev, next);
0a16b607 2767 trace_sched_switch(rq, prev, next);
dd41f596
IM
2768 mm = next->mm;
2769 oldmm = prev->active_mm;
9226d125
ZA
2770 /*
2771 * For paravirt, this is coupled with an exit in switch_to to
2772 * combine the page table reload and the switch backend into
2773 * one hypercall.
2774 */
2775 arch_enter_lazy_cpu_mode();
2776
dd41f596 2777 if (unlikely(!mm)) {
1da177e4
LT
2778 next->active_mm = oldmm;
2779 atomic_inc(&oldmm->mm_count);
2780 enter_lazy_tlb(oldmm, next);
2781 } else
2782 switch_mm(oldmm, mm, next);
2783
dd41f596 2784 if (unlikely(!prev->mm)) {
1da177e4 2785 prev->active_mm = NULL;
1da177e4
LT
2786 rq->prev_mm = oldmm;
2787 }
3a5f5e48
IM
2788 /*
2789 * Since the runqueue lock will be released by the next
2790 * task (which is an invalid locking op but in the case
2791 * of the scheduler it's an obvious special-case), so we
2792 * do an early lockdep release here:
2793 */
2794#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2795 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2796#endif
1da177e4
LT
2797
2798 /* Here we just switch the register state and the stack. */
2799 switch_to(prev, next, prev);
2800
dd41f596
IM
2801 barrier();
2802 /*
2803 * this_rq must be evaluated again because prev may have moved
2804 * CPUs since it called schedule(), thus the 'rq' on its stack
2805 * frame will be invalid.
2806 */
2807 finish_task_switch(this_rq(), prev);
1da177e4
LT
2808}
2809
2810/*
2811 * nr_running, nr_uninterruptible and nr_context_switches:
2812 *
2813 * externally visible scheduler statistics: current number of runnable
2814 * threads, current number of uninterruptible-sleeping threads, total
2815 * number of context switches performed since bootup.
2816 */
2817unsigned long nr_running(void)
2818{
2819 unsigned long i, sum = 0;
2820
2821 for_each_online_cpu(i)
2822 sum += cpu_rq(i)->nr_running;
2823
2824 return sum;
2825}
2826
2827unsigned long nr_uninterruptible(void)
2828{
2829 unsigned long i, sum = 0;
2830
0a945022 2831 for_each_possible_cpu(i)
1da177e4
LT
2832 sum += cpu_rq(i)->nr_uninterruptible;
2833
2834 /*
2835 * Since we read the counters lockless, it might be slightly
2836 * inaccurate. Do not allow it to go below zero though:
2837 */
2838 if (unlikely((long)sum < 0))
2839 sum = 0;
2840
2841 return sum;
2842}
2843
2844unsigned long long nr_context_switches(void)
2845{
cc94abfc
SR
2846 int i;
2847 unsigned long long sum = 0;
1da177e4 2848
0a945022 2849 for_each_possible_cpu(i)
1da177e4
LT
2850 sum += cpu_rq(i)->nr_switches;
2851
2852 return sum;
2853}
2854
2855unsigned long nr_iowait(void)
2856{
2857 unsigned long i, sum = 0;
2858
0a945022 2859 for_each_possible_cpu(i)
1da177e4
LT
2860 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2861
2862 return sum;
2863}
2864
dce48a84
TG
2865/* Variables and functions for calc_load */
2866static atomic_long_t calc_load_tasks;
2867static unsigned long calc_load_update;
2868unsigned long avenrun[3];
2869EXPORT_SYMBOL(avenrun);
2870
2d02494f
TG
2871/**
2872 * get_avenrun - get the load average array
2873 * @loads: pointer to dest load array
2874 * @offset: offset to add
2875 * @shift: shift count to shift the result left
2876 *
2877 * These values are estimates at best, so no need for locking.
2878 */
2879void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2880{
2881 loads[0] = (avenrun[0] + offset) << shift;
2882 loads[1] = (avenrun[1] + offset) << shift;
2883 loads[2] = (avenrun[2] + offset) << shift;
2884}
2885
dce48a84
TG
2886static unsigned long
2887calc_load(unsigned long load, unsigned long exp, unsigned long active)
db1b1fef 2888{
dce48a84
TG
2889 load *= exp;
2890 load += active * (FIXED_1 - exp);
2891 return load >> FSHIFT;
2892}
db1b1fef 2893
dce48a84
TG
2894/*
2895 * calc_load - update the avenrun load estimates 10 ticks after the
2896 * CPUs have updated calc_load_tasks.
2897 */
2898void calc_global_load(void)
2899{
2900 unsigned long upd = calc_load_update + 10;
2901 long active;
2902
2903 if (time_before(jiffies, upd))
2904 return;
db1b1fef 2905
dce48a84
TG
2906 active = atomic_long_read(&calc_load_tasks);
2907 active = active > 0 ? active * FIXED_1 : 0;
db1b1fef 2908
dce48a84
TG
2909 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2910 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2911 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2912
2913 calc_load_update += LOAD_FREQ;
2914}
2915
2916/*
2917 * Either called from update_cpu_load() or from a cpu going idle
2918 */
2919static void calc_load_account_active(struct rq *this_rq)
2920{
2921 long nr_active, delta;
2922
2923 nr_active = this_rq->nr_running;
2924 nr_active += (long) this_rq->nr_uninterruptible;
2925
2926 if (nr_active != this_rq->calc_load_active) {
2927 delta = nr_active - this_rq->calc_load_active;
2928 this_rq->calc_load_active = nr_active;
2929 atomic_long_add(delta, &calc_load_tasks);
2930 }
db1b1fef
JS
2931}
2932
48f24c4d 2933/*
dd41f596
IM
2934 * Update rq->cpu_load[] statistics. This function is usually called every
2935 * scheduler tick (TICK_NSEC).
48f24c4d 2936 */
dd41f596 2937static void update_cpu_load(struct rq *this_rq)
48f24c4d 2938{
495eca49 2939 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2940 int i, scale;
2941
2942 this_rq->nr_load_updates++;
dd41f596
IM
2943
2944 /* Update our load: */
2945 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2946 unsigned long old_load, new_load;
2947
2948 /* scale is effectively 1 << i now, and >> i divides by scale */
2949
2950 old_load = this_rq->cpu_load[i];
2951 new_load = this_load;
a25707f3
IM
2952 /*
2953 * Round up the averaging division if load is increasing. This
2954 * prevents us from getting stuck on 9 if the load is 10, for
2955 * example.
2956 */
2957 if (new_load > old_load)
2958 new_load += scale-1;
dd41f596
IM
2959 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2960 }
dce48a84
TG
2961
2962 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
2963 this_rq->calc_load_update += LOAD_FREQ;
2964 calc_load_account_active(this_rq);
2965 }
48f24c4d
IM
2966}
2967
dd41f596
IM
2968#ifdef CONFIG_SMP
2969
1da177e4
LT
2970/*
2971 * double_rq_lock - safely lock two runqueues
2972 *
2973 * Note this does not disable interrupts like task_rq_lock,
2974 * you need to do so manually before calling.
2975 */
70b97a7f 2976static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2977 __acquires(rq1->lock)
2978 __acquires(rq2->lock)
2979{
054b9108 2980 BUG_ON(!irqs_disabled());
1da177e4
LT
2981 if (rq1 == rq2) {
2982 spin_lock(&rq1->lock);
2983 __acquire(rq2->lock); /* Fake it out ;) */
2984 } else {
c96d145e 2985 if (rq1 < rq2) {
1da177e4 2986 spin_lock(&rq1->lock);
5e710e37 2987 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2988 } else {
2989 spin_lock(&rq2->lock);
5e710e37 2990 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2991 }
2992 }
6e82a3be
IM
2993 update_rq_clock(rq1);
2994 update_rq_clock(rq2);
1da177e4
LT
2995}
2996
2997/*
2998 * double_rq_unlock - safely unlock two runqueues
2999 *
3000 * Note this does not restore interrupts like task_rq_unlock,
3001 * you need to do so manually after calling.
3002 */
70b97a7f 3003static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
3004 __releases(rq1->lock)
3005 __releases(rq2->lock)
3006{
3007 spin_unlock(&rq1->lock);
3008 if (rq1 != rq2)
3009 spin_unlock(&rq2->lock);
3010 else
3011 __release(rq2->lock);
3012}
3013
1da177e4
LT
3014/*
3015 * If dest_cpu is allowed for this process, migrate the task to it.
3016 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 3017 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
3018 * the cpu_allowed mask is restored.
3019 */
36c8b586 3020static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 3021{
70b97a7f 3022 struct migration_req req;
1da177e4 3023 unsigned long flags;
70b97a7f 3024 struct rq *rq;
1da177e4
LT
3025
3026 rq = task_rq_lock(p, &flags);
96f874e2 3027 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 3028 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
3029 goto out;
3030
3031 /* force the process onto the specified CPU */
3032 if (migrate_task(p, dest_cpu, &req)) {
3033 /* Need to wait for migration thread (might exit: take ref). */
3034 struct task_struct *mt = rq->migration_thread;
36c8b586 3035
1da177e4
LT
3036 get_task_struct(mt);
3037 task_rq_unlock(rq, &flags);
3038 wake_up_process(mt);
3039 put_task_struct(mt);
3040 wait_for_completion(&req.done);
36c8b586 3041
1da177e4
LT
3042 return;
3043 }
3044out:
3045 task_rq_unlock(rq, &flags);
3046}
3047
3048/*
476d139c
NP
3049 * sched_exec - execve() is a valuable balancing opportunity, because at
3050 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
3051 */
3052void sched_exec(void)
3053{
1da177e4 3054 int new_cpu, this_cpu = get_cpu();
476d139c 3055 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 3056 put_cpu();
476d139c
NP
3057 if (new_cpu != this_cpu)
3058 sched_migrate_task(current, new_cpu);
1da177e4
LT
3059}
3060
3061/*
3062 * pull_task - move a task from a remote runqueue to the local runqueue.
3063 * Both runqueues must be locked.
3064 */
dd41f596
IM
3065static void pull_task(struct rq *src_rq, struct task_struct *p,
3066 struct rq *this_rq, int this_cpu)
1da177e4 3067{
2e1cb74a 3068 deactivate_task(src_rq, p, 0);
1da177e4 3069 set_task_cpu(p, this_cpu);
dd41f596 3070 activate_task(this_rq, p, 0);
1da177e4
LT
3071 /*
3072 * Note that idle threads have a prio of MAX_PRIO, for this test
3073 * to be always true for them.
3074 */
15afe09b 3075 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
3076}
3077
3078/*
3079 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3080 */
858119e1 3081static
70b97a7f 3082int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3083 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3084 int *all_pinned)
1da177e4 3085{
708dc512 3086 int tsk_cache_hot = 0;
1da177e4
LT
3087 /*
3088 * We do not migrate tasks that are:
3089 * 1) running (obviously), or
3090 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3091 * 3) are cache-hot on their current CPU.
3092 */
96f874e2 3093 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3094 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3095 return 0;
cc367732 3096 }
81026794
NP
3097 *all_pinned = 0;
3098
cc367732
IM
3099 if (task_running(rq, p)) {
3100 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3101 return 0;
cc367732 3102 }
1da177e4 3103
da84d961
IM
3104 /*
3105 * Aggressive migration if:
3106 * 1) task is cache cold, or
3107 * 2) too many balance attempts have failed.
3108 */
3109
708dc512
LH
3110 tsk_cache_hot = task_hot(p, rq->clock, sd);
3111 if (!tsk_cache_hot ||
3112 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3113#ifdef CONFIG_SCHEDSTATS
708dc512 3114 if (tsk_cache_hot) {
da84d961 3115 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3116 schedstat_inc(p, se.nr_forced_migrations);
3117 }
da84d961
IM
3118#endif
3119 return 1;
3120 }
3121
708dc512 3122 if (tsk_cache_hot) {
cc367732 3123 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3124 return 0;
cc367732 3125 }
1da177e4
LT
3126 return 1;
3127}
3128
e1d1484f
PW
3129static unsigned long
3130balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3131 unsigned long max_load_move, struct sched_domain *sd,
3132 enum cpu_idle_type idle, int *all_pinned,
3133 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3134{
051c6764 3135 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3136 struct task_struct *p;
3137 long rem_load_move = max_load_move;
1da177e4 3138
e1d1484f 3139 if (max_load_move == 0)
1da177e4
LT
3140 goto out;
3141
81026794
NP
3142 pinned = 1;
3143
1da177e4 3144 /*
dd41f596 3145 * Start the load-balancing iterator:
1da177e4 3146 */
dd41f596
IM
3147 p = iterator->start(iterator->arg);
3148next:
b82d9fdd 3149 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3150 goto out;
051c6764
PZ
3151
3152 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3153 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3154 p = iterator->next(iterator->arg);
3155 goto next;
1da177e4
LT
3156 }
3157
dd41f596 3158 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3159 pulled++;
dd41f596 3160 rem_load_move -= p->se.load.weight;
1da177e4 3161
7e96fa58
GH
3162#ifdef CONFIG_PREEMPT
3163 /*
3164 * NEWIDLE balancing is a source of latency, so preemptible kernels
3165 * will stop after the first task is pulled to minimize the critical
3166 * section.
3167 */
3168 if (idle == CPU_NEWLY_IDLE)
3169 goto out;
3170#endif
3171
2dd73a4f 3172 /*
b82d9fdd 3173 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3174 */
e1d1484f 3175 if (rem_load_move > 0) {
a4ac01c3
PW
3176 if (p->prio < *this_best_prio)
3177 *this_best_prio = p->prio;
dd41f596
IM
3178 p = iterator->next(iterator->arg);
3179 goto next;
1da177e4
LT
3180 }
3181out:
3182 /*
e1d1484f 3183 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3184 * so we can safely collect pull_task() stats here rather than
3185 * inside pull_task().
3186 */
3187 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3188
3189 if (all_pinned)
3190 *all_pinned = pinned;
e1d1484f
PW
3191
3192 return max_load_move - rem_load_move;
1da177e4
LT
3193}
3194
dd41f596 3195/*
43010659
PW
3196 * move_tasks tries to move up to max_load_move weighted load from busiest to
3197 * this_rq, as part of a balancing operation within domain "sd".
3198 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3199 *
3200 * Called with both runqueues locked.
3201 */
3202static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3203 unsigned long max_load_move,
dd41f596
IM
3204 struct sched_domain *sd, enum cpu_idle_type idle,
3205 int *all_pinned)
3206{
5522d5d5 3207 const struct sched_class *class = sched_class_highest;
43010659 3208 unsigned long total_load_moved = 0;
a4ac01c3 3209 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3210
3211 do {
43010659
PW
3212 total_load_moved +=
3213 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3214 max_load_move - total_load_moved,
a4ac01c3 3215 sd, idle, all_pinned, &this_best_prio);
dd41f596 3216 class = class->next;
c4acb2c0 3217
7e96fa58
GH
3218#ifdef CONFIG_PREEMPT
3219 /*
3220 * NEWIDLE balancing is a source of latency, so preemptible
3221 * kernels will stop after the first task is pulled to minimize
3222 * the critical section.
3223 */
c4acb2c0
GH
3224 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3225 break;
7e96fa58 3226#endif
43010659 3227 } while (class && max_load_move > total_load_moved);
dd41f596 3228
43010659
PW
3229 return total_load_moved > 0;
3230}
3231
e1d1484f
PW
3232static int
3233iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3234 struct sched_domain *sd, enum cpu_idle_type idle,
3235 struct rq_iterator *iterator)
3236{
3237 struct task_struct *p = iterator->start(iterator->arg);
3238 int pinned = 0;
3239
3240 while (p) {
3241 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3242 pull_task(busiest, p, this_rq, this_cpu);
3243 /*
3244 * Right now, this is only the second place pull_task()
3245 * is called, so we can safely collect pull_task()
3246 * stats here rather than inside pull_task().
3247 */
3248 schedstat_inc(sd, lb_gained[idle]);
3249
3250 return 1;
3251 }
3252 p = iterator->next(iterator->arg);
3253 }
3254
3255 return 0;
3256}
3257
43010659
PW
3258/*
3259 * move_one_task tries to move exactly one task from busiest to this_rq, as
3260 * part of active balancing operations within "domain".
3261 * Returns 1 if successful and 0 otherwise.
3262 *
3263 * Called with both runqueues locked.
3264 */
3265static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3266 struct sched_domain *sd, enum cpu_idle_type idle)
3267{
5522d5d5 3268 const struct sched_class *class;
43010659
PW
3269
3270 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3271 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3272 return 1;
3273
3274 return 0;
dd41f596 3275}
67bb6c03 3276/********** Helpers for find_busiest_group ************************/
1da177e4 3277/*
222d656d
GS
3278 * sd_lb_stats - Structure to store the statistics of a sched_domain
3279 * during load balancing.
1da177e4 3280 */
222d656d
GS
3281struct sd_lb_stats {
3282 struct sched_group *busiest; /* Busiest group in this sd */
3283 struct sched_group *this; /* Local group in this sd */
3284 unsigned long total_load; /* Total load of all groups in sd */
3285 unsigned long total_pwr; /* Total power of all groups in sd */
3286 unsigned long avg_load; /* Average load across all groups in sd */
3287
3288 /** Statistics of this group */
3289 unsigned long this_load;
3290 unsigned long this_load_per_task;
3291 unsigned long this_nr_running;
3292
3293 /* Statistics of the busiest group */
3294 unsigned long max_load;
3295 unsigned long busiest_load_per_task;
3296 unsigned long busiest_nr_running;
3297
3298 int group_imb; /* Is there imbalance in this sd */
5c45bf27 3299#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
222d656d
GS
3300 int power_savings_balance; /* Is powersave balance needed for this sd */
3301 struct sched_group *group_min; /* Least loaded group in sd */
3302 struct sched_group *group_leader; /* Group which relieves group_min */
3303 unsigned long min_load_per_task; /* load_per_task in group_min */
3304 unsigned long leader_nr_running; /* Nr running of group_leader */
3305 unsigned long min_nr_running; /* Nr running of group_min */
5c45bf27 3306#endif
222d656d 3307};
1da177e4 3308
d5ac537e 3309/*
381be78f
GS
3310 * sg_lb_stats - stats of a sched_group required for load_balancing
3311 */
3312struct sg_lb_stats {
3313 unsigned long avg_load; /*Avg load across the CPUs of the group */
3314 unsigned long group_load; /* Total load over the CPUs of the group */
3315 unsigned long sum_nr_running; /* Nr tasks running in the group */
3316 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3317 unsigned long group_capacity;
3318 int group_imb; /* Is there an imbalance in the group ? */
3319};
408ed066 3320
67bb6c03
GS
3321/**
3322 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3323 * @group: The group whose first cpu is to be returned.
3324 */
3325static inline unsigned int group_first_cpu(struct sched_group *group)
3326{
3327 return cpumask_first(sched_group_cpus(group));
3328}
3329
3330/**
3331 * get_sd_load_idx - Obtain the load index for a given sched domain.
3332 * @sd: The sched_domain whose load_idx is to be obtained.
3333 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3334 */
3335static inline int get_sd_load_idx(struct sched_domain *sd,
3336 enum cpu_idle_type idle)
3337{
3338 int load_idx;
3339
3340 switch (idle) {
3341 case CPU_NOT_IDLE:
7897986b 3342 load_idx = sd->busy_idx;
67bb6c03
GS
3343 break;
3344
3345 case CPU_NEWLY_IDLE:
7897986b 3346 load_idx = sd->newidle_idx;
67bb6c03
GS
3347 break;
3348 default:
7897986b 3349 load_idx = sd->idle_idx;
67bb6c03
GS
3350 break;
3351 }
1da177e4 3352
67bb6c03
GS
3353 return load_idx;
3354}
1da177e4 3355
1da177e4 3356
c071df18
GS
3357#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3358/**
3359 * init_sd_power_savings_stats - Initialize power savings statistics for
3360 * the given sched_domain, during load balancing.
3361 *
3362 * @sd: Sched domain whose power-savings statistics are to be initialized.
3363 * @sds: Variable containing the statistics for sd.
3364 * @idle: Idle status of the CPU at which we're performing load-balancing.
3365 */
3366static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3367 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3368{
3369 /*
3370 * Busy processors will not participate in power savings
3371 * balance.
3372 */
3373 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3374 sds->power_savings_balance = 0;
3375 else {
3376 sds->power_savings_balance = 1;
3377 sds->min_nr_running = ULONG_MAX;
3378 sds->leader_nr_running = 0;
3379 }
3380}
783609c6 3381
c071df18
GS
3382/**
3383 * update_sd_power_savings_stats - Update the power saving stats for a
3384 * sched_domain while performing load balancing.
3385 *
3386 * @group: sched_group belonging to the sched_domain under consideration.
3387 * @sds: Variable containing the statistics of the sched_domain
3388 * @local_group: Does group contain the CPU for which we're performing
3389 * load balancing ?
3390 * @sgs: Variable containing the statistics of the group.
3391 */
3392static inline void update_sd_power_savings_stats(struct sched_group *group,
3393 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3394{
408ed066 3395
c071df18
GS
3396 if (!sds->power_savings_balance)
3397 return;
1da177e4 3398
c071df18
GS
3399 /*
3400 * If the local group is idle or completely loaded
3401 * no need to do power savings balance at this domain
3402 */
3403 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3404 !sds->this_nr_running))
3405 sds->power_savings_balance = 0;
2dd73a4f 3406
c071df18
GS
3407 /*
3408 * If a group is already running at full capacity or idle,
3409 * don't include that group in power savings calculations
3410 */
3411 if (!sds->power_savings_balance ||
3412 sgs->sum_nr_running >= sgs->group_capacity ||
3413 !sgs->sum_nr_running)
3414 return;
5969fe06 3415
c071df18
GS
3416 /*
3417 * Calculate the group which has the least non-idle load.
3418 * This is the group from where we need to pick up the load
3419 * for saving power
3420 */
3421 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3422 (sgs->sum_nr_running == sds->min_nr_running &&
3423 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3424 sds->group_min = group;
3425 sds->min_nr_running = sgs->sum_nr_running;
3426 sds->min_load_per_task = sgs->sum_weighted_load /
3427 sgs->sum_nr_running;
3428 }
783609c6 3429
c071df18
GS
3430 /*
3431 * Calculate the group which is almost near its
3432 * capacity but still has some space to pick up some load
3433 * from other group and save more power
3434 */
3435 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3436 return;
1da177e4 3437
c071df18
GS
3438 if (sgs->sum_nr_running > sds->leader_nr_running ||
3439 (sgs->sum_nr_running == sds->leader_nr_running &&
3440 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3441 sds->group_leader = group;
3442 sds->leader_nr_running = sgs->sum_nr_running;
3443 }
3444}
408ed066 3445
c071df18 3446/**
d5ac537e 3447 * check_power_save_busiest_group - see if there is potential for some power-savings balance
c071df18
GS
3448 * @sds: Variable containing the statistics of the sched_domain
3449 * under consideration.
3450 * @this_cpu: Cpu at which we're currently performing load-balancing.
3451 * @imbalance: Variable to store the imbalance.
3452 *
d5ac537e
RD
3453 * Description:
3454 * Check if we have potential to perform some power-savings balance.
3455 * If yes, set the busiest group to be the least loaded group in the
3456 * sched_domain, so that it's CPUs can be put to idle.
3457 *
c071df18
GS
3458 * Returns 1 if there is potential to perform power-savings balance.
3459 * Else returns 0.
3460 */
3461static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3462 int this_cpu, unsigned long *imbalance)
3463{
3464 if (!sds->power_savings_balance)
3465 return 0;
1da177e4 3466
c071df18
GS
3467 if (sds->this != sds->group_leader ||
3468 sds->group_leader == sds->group_min)
3469 return 0;
783609c6 3470
c071df18
GS
3471 *imbalance = sds->min_load_per_task;
3472 sds->busiest = sds->group_min;
1da177e4 3473
c071df18
GS
3474 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3475 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3476 group_first_cpu(sds->group_leader);
3477 }
3478
3479 return 1;
1da177e4 3480
c071df18
GS
3481}
3482#else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3483static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3484 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3485{
3486 return;
3487}
408ed066 3488
c071df18
GS
3489static inline void update_sd_power_savings_stats(struct sched_group *group,
3490 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3491{
3492 return;
3493}
3494
3495static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3496 int this_cpu, unsigned long *imbalance)
3497{
3498 return 0;
3499}
3500#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3501
3502
1f8c553d
GS
3503/**
3504 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3505 * @group: sched_group whose statistics are to be updated.
3506 * @this_cpu: Cpu for which load balance is currently performed.
3507 * @idle: Idle status of this_cpu
3508 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3509 * @sd_idle: Idle status of the sched_domain containing group.
3510 * @local_group: Does group contain this_cpu.
3511 * @cpus: Set of cpus considered for load balancing.
3512 * @balance: Should we balance.
3513 * @sgs: variable to hold the statistics for this group.
3514 */
3515static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3516 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3517 int local_group, const struct cpumask *cpus,
3518 int *balance, struct sg_lb_stats *sgs)
3519{
3520 unsigned long load, max_cpu_load, min_cpu_load;
3521 int i;
3522 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3523 unsigned long sum_avg_load_per_task;
3524 unsigned long avg_load_per_task;
3525
3526 if (local_group)
3527 balance_cpu = group_first_cpu(group);
3528
3529 /* Tally up the load of all CPUs in the group */
3530 sum_avg_load_per_task = avg_load_per_task = 0;
3531 max_cpu_load = 0;
3532 min_cpu_load = ~0UL;
408ed066 3533
1f8c553d
GS
3534 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3535 struct rq *rq = cpu_rq(i);
908a7c1b 3536
1f8c553d
GS
3537 if (*sd_idle && rq->nr_running)
3538 *sd_idle = 0;
5c45bf27 3539
1f8c553d 3540 /* Bias balancing toward cpus of our domain */
1da177e4 3541 if (local_group) {
1f8c553d
GS
3542 if (idle_cpu(i) && !first_idle_cpu) {
3543 first_idle_cpu = 1;
3544 balance_cpu = i;
3545 }
3546
3547 load = target_load(i, load_idx);
3548 } else {
3549 load = source_load(i, load_idx);
3550 if (load > max_cpu_load)
3551 max_cpu_load = load;
3552 if (min_cpu_load > load)
3553 min_cpu_load = load;
1da177e4 3554 }
5c45bf27 3555
1f8c553d
GS
3556 sgs->group_load += load;
3557 sgs->sum_nr_running += rq->nr_running;
3558 sgs->sum_weighted_load += weighted_cpuload(i);
5c45bf27 3559
1f8c553d
GS
3560 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3561 }
5c45bf27 3562
1f8c553d
GS
3563 /*
3564 * First idle cpu or the first cpu(busiest) in this sched group
3565 * is eligible for doing load balancing at this and above
3566 * domains. In the newly idle case, we will allow all the cpu's
3567 * to do the newly idle load balance.
3568 */
3569 if (idle != CPU_NEWLY_IDLE && local_group &&
3570 balance_cpu != this_cpu && balance) {
3571 *balance = 0;
3572 return;
3573 }
5c45bf27 3574
1f8c553d
GS
3575 /* Adjust by relative CPU power of the group */
3576 sgs->avg_load = sg_div_cpu_power(group,
3577 sgs->group_load * SCHED_LOAD_SCALE);
5c45bf27 3578
1f8c553d
GS
3579
3580 /*
3581 * Consider the group unbalanced when the imbalance is larger
3582 * than the average weight of two tasks.
3583 *
3584 * APZ: with cgroup the avg task weight can vary wildly and
3585 * might not be a suitable number - should we keep a
3586 * normalized nr_running number somewhere that negates
3587 * the hierarchy?
3588 */
3589 avg_load_per_task = sg_div_cpu_power(group,
3590 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3591
3592 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3593 sgs->group_imb = 1;
3594
3595 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3596
3597}
dd41f596 3598
37abe198
GS
3599/**
3600 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3601 * @sd: sched_domain whose statistics are to be updated.
3602 * @this_cpu: Cpu for which load balance is currently performed.
3603 * @idle: Idle status of this_cpu
3604 * @sd_idle: Idle status of the sched_domain containing group.
3605 * @cpus: Set of cpus considered for load balancing.
3606 * @balance: Should we balance.
3607 * @sds: variable to hold the statistics for this sched_domain.
1da177e4 3608 */
37abe198
GS
3609static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3610 enum cpu_idle_type idle, int *sd_idle,
3611 const struct cpumask *cpus, int *balance,
3612 struct sd_lb_stats *sds)
1da177e4 3613{
222d656d 3614 struct sched_group *group = sd->groups;
37abe198 3615 struct sg_lb_stats sgs;
222d656d
GS
3616 int load_idx;
3617
c071df18 3618 init_sd_power_savings_stats(sd, sds, idle);
67bb6c03 3619 load_idx = get_sd_load_idx(sd, idle);
1da177e4
LT
3620
3621 do {
1da177e4 3622 int local_group;
1da177e4 3623
758b2cdc
RR
3624 local_group = cpumask_test_cpu(this_cpu,
3625 sched_group_cpus(group));
381be78f 3626 memset(&sgs, 0, sizeof(sgs));
1f8c553d
GS
3627 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3628 local_group, cpus, balance, &sgs);
1da177e4 3629
37abe198
GS
3630 if (local_group && balance && !(*balance))
3631 return;
783609c6 3632
37abe198
GS
3633 sds->total_load += sgs.group_load;
3634 sds->total_pwr += group->__cpu_power;
1da177e4 3635
1da177e4 3636 if (local_group) {
37abe198
GS
3637 sds->this_load = sgs.avg_load;
3638 sds->this = group;
3639 sds->this_nr_running = sgs.sum_nr_running;
3640 sds->this_load_per_task = sgs.sum_weighted_load;
3641 } else if (sgs.avg_load > sds->max_load &&
381be78f
GS
3642 (sgs.sum_nr_running > sgs.group_capacity ||
3643 sgs.group_imb)) {
37abe198
GS
3644 sds->max_load = sgs.avg_load;
3645 sds->busiest = group;
3646 sds->busiest_nr_running = sgs.sum_nr_running;
3647 sds->busiest_load_per_task = sgs.sum_weighted_load;
3648 sds->group_imb = sgs.group_imb;
48f24c4d 3649 }
5c45bf27 3650
c071df18 3651 update_sd_power_savings_stats(group, sds, local_group, &sgs);
1da177e4
LT
3652 group = group->next;
3653 } while (group != sd->groups);
3654
37abe198 3655}
1da177e4 3656
2e6f44ae
GS
3657/**
3658 * fix_small_imbalance - Calculate the minor imbalance that exists
dbc523a3
GS
3659 * amongst the groups of a sched_domain, during
3660 * load balancing.
2e6f44ae
GS
3661 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3662 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3663 * @imbalance: Variable to store the imbalance.
3664 */
3665static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3666 int this_cpu, unsigned long *imbalance)
3667{
3668 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3669 unsigned int imbn = 2;
3670
3671 if (sds->this_nr_running) {
3672 sds->this_load_per_task /= sds->this_nr_running;
3673 if (sds->busiest_load_per_task >
3674 sds->this_load_per_task)
3675 imbn = 1;
3676 } else
3677 sds->this_load_per_task =
3678 cpu_avg_load_per_task(this_cpu);
1da177e4 3679
2e6f44ae
GS
3680 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3681 sds->busiest_load_per_task * imbn) {
3682 *imbalance = sds->busiest_load_per_task;
3683 return;
3684 }
908a7c1b 3685
1da177e4 3686 /*
2e6f44ae
GS
3687 * OK, we don't have enough imbalance to justify moving tasks,
3688 * however we may be able to increase total CPU power used by
3689 * moving them.
1da177e4 3690 */
2dd73a4f 3691
2e6f44ae
GS
3692 pwr_now += sds->busiest->__cpu_power *
3693 min(sds->busiest_load_per_task, sds->max_load);
3694 pwr_now += sds->this->__cpu_power *
3695 min(sds->this_load_per_task, sds->this_load);
3696 pwr_now /= SCHED_LOAD_SCALE;
3697
3698 /* Amount of load we'd subtract */
3699 tmp = sg_div_cpu_power(sds->busiest,
3700 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3701 if (sds->max_load > tmp)
3702 pwr_move += sds->busiest->__cpu_power *
3703 min(sds->busiest_load_per_task, sds->max_load - tmp);
3704
3705 /* Amount of load we'd add */
3706 if (sds->max_load * sds->busiest->__cpu_power <
3707 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3708 tmp = sg_div_cpu_power(sds->this,
3709 sds->max_load * sds->busiest->__cpu_power);
3710 else
3711 tmp = sg_div_cpu_power(sds->this,
3712 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3713 pwr_move += sds->this->__cpu_power *
3714 min(sds->this_load_per_task, sds->this_load + tmp);
3715 pwr_move /= SCHED_LOAD_SCALE;
3716
3717 /* Move if we gain throughput */
3718 if (pwr_move > pwr_now)
3719 *imbalance = sds->busiest_load_per_task;
3720}
dbc523a3
GS
3721
3722/**
3723 * calculate_imbalance - Calculate the amount of imbalance present within the
3724 * groups of a given sched_domain during load balance.
3725 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3726 * @this_cpu: Cpu for which currently load balance is being performed.
3727 * @imbalance: The variable to store the imbalance.
3728 */
3729static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3730 unsigned long *imbalance)
3731{
3732 unsigned long max_pull;
2dd73a4f
PW
3733 /*
3734 * In the presence of smp nice balancing, certain scenarios can have
3735 * max load less than avg load(as we skip the groups at or below
3736 * its cpu_power, while calculating max_load..)
3737 */
dbc523a3 3738 if (sds->max_load < sds->avg_load) {
2dd73a4f 3739 *imbalance = 0;
dbc523a3 3740 return fix_small_imbalance(sds, this_cpu, imbalance);
2dd73a4f 3741 }
0c117f1b
SS
3742
3743 /* Don't want to pull so many tasks that a group would go idle */
dbc523a3
GS
3744 max_pull = min(sds->max_load - sds->avg_load,
3745 sds->max_load - sds->busiest_load_per_task);
0c117f1b 3746
1da177e4 3747 /* How much load to actually move to equalise the imbalance */
dbc523a3
GS
3748 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3749 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
1da177e4
LT
3750 / SCHED_LOAD_SCALE;
3751
2dd73a4f
PW
3752 /*
3753 * if *imbalance is less than the average load per runnable task
3754 * there is no gaurantee that any tasks will be moved so we'll have
3755 * a think about bumping its value to force at least one task to be
3756 * moved
3757 */
dbc523a3
GS
3758 if (*imbalance < sds->busiest_load_per_task)
3759 return fix_small_imbalance(sds, this_cpu, imbalance);
1da177e4 3760
dbc523a3 3761}
37abe198 3762/******* find_busiest_group() helpers end here *********************/
1da177e4 3763
b7bb4c9b
GS
3764/**
3765 * find_busiest_group - Returns the busiest group within the sched_domain
3766 * if there is an imbalance. If there isn't an imbalance, and
3767 * the user has opted for power-savings, it returns a group whose
3768 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3769 * such a group exists.
3770 *
3771 * Also calculates the amount of weighted load which should be moved
3772 * to restore balance.
3773 *
3774 * @sd: The sched_domain whose busiest group is to be returned.
3775 * @this_cpu: The cpu for which load balancing is currently being performed.
3776 * @imbalance: Variable which stores amount of weighted load which should
3777 * be moved to restore balance/put a group to idle.
3778 * @idle: The idle status of this_cpu.
3779 * @sd_idle: The idleness of sd
3780 * @cpus: The set of CPUs under consideration for load-balancing.
3781 * @balance: Pointer to a variable indicating if this_cpu
3782 * is the appropriate cpu to perform load balancing at this_level.
3783 *
3784 * Returns: - the busiest group if imbalance exists.
3785 * - If no imbalance and user has opted for power-savings balance,
3786 * return the least loaded group whose CPUs can be
3787 * put to idle by rebalancing its tasks onto our group.
37abe198
GS
3788 */
3789static struct sched_group *
3790find_busiest_group(struct sched_domain *sd, int this_cpu,
3791 unsigned long *imbalance, enum cpu_idle_type idle,
3792 int *sd_idle, const struct cpumask *cpus, int *balance)
3793{
3794 struct sd_lb_stats sds;
1da177e4 3795
37abe198 3796 memset(&sds, 0, sizeof(sds));
1da177e4 3797
37abe198
GS
3798 /*
3799 * Compute the various statistics relavent for load balancing at
3800 * this level.
3801 */
3802 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3803 balance, &sds);
3804
b7bb4c9b
GS
3805 /* Cases where imbalance does not exist from POV of this_cpu */
3806 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3807 * at this level.
3808 * 2) There is no busy sibling group to pull from.
3809 * 3) This group is the busiest group.
3810 * 4) This group is more busy than the avg busieness at this
3811 * sched_domain.
3812 * 5) The imbalance is within the specified limit.
3813 * 6) Any rebalance would lead to ping-pong
3814 */
37abe198
GS
3815 if (balance && !(*balance))
3816 goto ret;
1da177e4 3817
b7bb4c9b
GS
3818 if (!sds.busiest || sds.busiest_nr_running == 0)
3819 goto out_balanced;
1da177e4 3820
b7bb4c9b 3821 if (sds.this_load >= sds.max_load)
1da177e4 3822 goto out_balanced;
1da177e4 3823
222d656d 3824 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
1da177e4 3825
b7bb4c9b
GS
3826 if (sds.this_load >= sds.avg_load)
3827 goto out_balanced;
3828
3829 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
1da177e4
LT
3830 goto out_balanced;
3831
222d656d
GS
3832 sds.busiest_load_per_task /= sds.busiest_nr_running;
3833 if (sds.group_imb)
3834 sds.busiest_load_per_task =
3835 min(sds.busiest_load_per_task, sds.avg_load);
908a7c1b 3836
1da177e4
LT
3837 /*
3838 * We're trying to get all the cpus to the average_load, so we don't
3839 * want to push ourselves above the average load, nor do we wish to
3840 * reduce the max loaded cpu below the average load, as either of these
3841 * actions would just result in more rebalancing later, and ping-pong
3842 * tasks around. Thus we look for the minimum possible imbalance.
3843 * Negative imbalances (*we* are more loaded than anyone else) will
3844 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3845 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3846 * appear as very large values with unsigned longs.
3847 */
222d656d 3848 if (sds.max_load <= sds.busiest_load_per_task)
2dd73a4f
PW
3849 goto out_balanced;
3850
dbc523a3
GS
3851 /* Looks like there is an imbalance. Compute it */
3852 calculate_imbalance(&sds, this_cpu, imbalance);
222d656d 3853 return sds.busiest;
1da177e4
LT
3854
3855out_balanced:
c071df18
GS
3856 /*
3857 * There is no obvious imbalance. But check if we can do some balancing
3858 * to save power.
3859 */
3860 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3861 return sds.busiest;
783609c6 3862ret:
1da177e4
LT
3863 *imbalance = 0;
3864 return NULL;
3865}
3866
3867/*
3868 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3869 */
70b97a7f 3870static struct rq *
d15bcfdb 3871find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3872 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3873{
70b97a7f 3874 struct rq *busiest = NULL, *rq;
2dd73a4f 3875 unsigned long max_load = 0;
1da177e4
LT
3876 int i;
3877
758b2cdc 3878 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3879 unsigned long wl;
0a2966b4 3880
96f874e2 3881 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3882 continue;
3883
48f24c4d 3884 rq = cpu_rq(i);
dd41f596 3885 wl = weighted_cpuload(i);
2dd73a4f 3886
dd41f596 3887 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3888 continue;
1da177e4 3889
dd41f596
IM
3890 if (wl > max_load) {
3891 max_load = wl;
48f24c4d 3892 busiest = rq;
1da177e4
LT
3893 }
3894 }
3895
3896 return busiest;
3897}
3898
77391d71
NP
3899/*
3900 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3901 * so long as it is large enough.
3902 */
3903#define MAX_PINNED_INTERVAL 512
3904
df7c8e84
RR
3905/* Working cpumask for load_balance and load_balance_newidle. */
3906static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3907
1da177e4
LT
3908/*
3909 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3910 * tasks if there is an imbalance.
1da177e4 3911 */
70b97a7f 3912static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3913 struct sched_domain *sd, enum cpu_idle_type idle,
df7c8e84 3914 int *balance)
1da177e4 3915{
43010659 3916 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3917 struct sched_group *group;
1da177e4 3918 unsigned long imbalance;
70b97a7f 3919 struct rq *busiest;
fe2eea3f 3920 unsigned long flags;
df7c8e84 3921 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
5969fe06 3922
96f874e2 3923 cpumask_setall(cpus);
7c16ec58 3924
89c4710e
SS
3925 /*
3926 * When power savings policy is enabled for the parent domain, idle
3927 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3928 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3929 * portraying it as CPU_NOT_IDLE.
89c4710e 3930 */
d15bcfdb 3931 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3932 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3933 sd_idle = 1;
1da177e4 3934
2d72376b 3935 schedstat_inc(sd, lb_count[idle]);
1da177e4 3936
0a2966b4 3937redo:
c8cba857 3938 update_shares(sd);
0a2966b4 3939 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3940 cpus, balance);
783609c6 3941
06066714 3942 if (*balance == 0)
783609c6 3943 goto out_balanced;
783609c6 3944
1da177e4
LT
3945 if (!group) {
3946 schedstat_inc(sd, lb_nobusyg[idle]);
3947 goto out_balanced;
3948 }
3949
7c16ec58 3950 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3951 if (!busiest) {
3952 schedstat_inc(sd, lb_nobusyq[idle]);
3953 goto out_balanced;
3954 }
3955
db935dbd 3956 BUG_ON(busiest == this_rq);
1da177e4
LT
3957
3958 schedstat_add(sd, lb_imbalance[idle], imbalance);
3959
43010659 3960 ld_moved = 0;
1da177e4
LT
3961 if (busiest->nr_running > 1) {
3962 /*
3963 * Attempt to move tasks. If find_busiest_group has found
3964 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3965 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3966 * correctly treated as an imbalance.
3967 */
fe2eea3f 3968 local_irq_save(flags);
e17224bf 3969 double_rq_lock(this_rq, busiest);
43010659 3970 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3971 imbalance, sd, idle, &all_pinned);
e17224bf 3972 double_rq_unlock(this_rq, busiest);
fe2eea3f 3973 local_irq_restore(flags);
81026794 3974
46cb4b7c
SS
3975 /*
3976 * some other cpu did the load balance for us.
3977 */
43010659 3978 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3979 resched_cpu(this_cpu);
3980
81026794 3981 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3982 if (unlikely(all_pinned)) {
96f874e2
RR
3983 cpumask_clear_cpu(cpu_of(busiest), cpus);
3984 if (!cpumask_empty(cpus))
0a2966b4 3985 goto redo;
81026794 3986 goto out_balanced;
0a2966b4 3987 }
1da177e4 3988 }
81026794 3989
43010659 3990 if (!ld_moved) {
1da177e4
LT
3991 schedstat_inc(sd, lb_failed[idle]);
3992 sd->nr_balance_failed++;
3993
3994 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3995
fe2eea3f 3996 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3997
3998 /* don't kick the migration_thread, if the curr
3999 * task on busiest cpu can't be moved to this_cpu
4000 */
96f874e2
RR
4001 if (!cpumask_test_cpu(this_cpu,
4002 &busiest->curr->cpus_allowed)) {
fe2eea3f 4003 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
4004 all_pinned = 1;
4005 goto out_one_pinned;
4006 }
4007
1da177e4
LT
4008 if (!busiest->active_balance) {
4009 busiest->active_balance = 1;
4010 busiest->push_cpu = this_cpu;
81026794 4011 active_balance = 1;
1da177e4 4012 }
fe2eea3f 4013 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 4014 if (active_balance)
1da177e4
LT
4015 wake_up_process(busiest->migration_thread);
4016
4017 /*
4018 * We've kicked active balancing, reset the failure
4019 * counter.
4020 */
39507451 4021 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 4022 }
81026794 4023 } else
1da177e4
LT
4024 sd->nr_balance_failed = 0;
4025
81026794 4026 if (likely(!active_balance)) {
1da177e4
LT
4027 /* We were unbalanced, so reset the balancing interval */
4028 sd->balance_interval = sd->min_interval;
81026794
NP
4029 } else {
4030 /*
4031 * If we've begun active balancing, start to back off. This
4032 * case may not be covered by the all_pinned logic if there
4033 * is only 1 task on the busy runqueue (because we don't call
4034 * move_tasks).
4035 */
4036 if (sd->balance_interval < sd->max_interval)
4037 sd->balance_interval *= 2;
1da177e4
LT
4038 }
4039
43010659 4040 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4041 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4042 ld_moved = -1;
4043
4044 goto out;
1da177e4
LT
4045
4046out_balanced:
1da177e4
LT
4047 schedstat_inc(sd, lb_balanced[idle]);
4048
16cfb1c0 4049 sd->nr_balance_failed = 0;
fa3b6ddc
SS
4050
4051out_one_pinned:
1da177e4 4052 /* tune up the balancing interval */
77391d71
NP
4053 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4054 (sd->balance_interval < sd->max_interval))
1da177e4
LT
4055 sd->balance_interval *= 2;
4056
48f24c4d 4057 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4058 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
4059 ld_moved = -1;
4060 else
4061 ld_moved = 0;
4062out:
c8cba857
PZ
4063 if (ld_moved)
4064 update_shares(sd);
c09595f6 4065 return ld_moved;
1da177e4
LT
4066}
4067
4068/*
4069 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4070 * tasks if there is an imbalance.
4071 *
d15bcfdb 4072 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
4073 * this_rq is locked.
4074 */
48f24c4d 4075static int
df7c8e84 4076load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
4077{
4078 struct sched_group *group;
70b97a7f 4079 struct rq *busiest = NULL;
1da177e4 4080 unsigned long imbalance;
43010659 4081 int ld_moved = 0;
5969fe06 4082 int sd_idle = 0;
969bb4e4 4083 int all_pinned = 0;
df7c8e84 4084 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
7c16ec58 4085
96f874e2 4086 cpumask_setall(cpus);
5969fe06 4087
89c4710e
SS
4088 /*
4089 * When power savings policy is enabled for the parent domain, idle
4090 * sibling can pick up load irrespective of busy siblings. In this case,
4091 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 4092 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
4093 */
4094 if (sd->flags & SD_SHARE_CPUPOWER &&
4095 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4096 sd_idle = 1;
1da177e4 4097
2d72376b 4098 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 4099redo:
3e5459b4 4100 update_shares_locked(this_rq, sd);
d15bcfdb 4101 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 4102 &sd_idle, cpus, NULL);
1da177e4 4103 if (!group) {
d15bcfdb 4104 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 4105 goto out_balanced;
1da177e4
LT
4106 }
4107
7c16ec58 4108 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 4109 if (!busiest) {
d15bcfdb 4110 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 4111 goto out_balanced;
1da177e4
LT
4112 }
4113
db935dbd
NP
4114 BUG_ON(busiest == this_rq);
4115
d15bcfdb 4116 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 4117
43010659 4118 ld_moved = 0;
d6d5cfaf
NP
4119 if (busiest->nr_running > 1) {
4120 /* Attempt to move tasks */
4121 double_lock_balance(this_rq, busiest);
6e82a3be
IM
4122 /* this_rq->clock is already updated */
4123 update_rq_clock(busiest);
43010659 4124 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
4125 imbalance, sd, CPU_NEWLY_IDLE,
4126 &all_pinned);
1b12bbc7 4127 double_unlock_balance(this_rq, busiest);
0a2966b4 4128
969bb4e4 4129 if (unlikely(all_pinned)) {
96f874e2
RR
4130 cpumask_clear_cpu(cpu_of(busiest), cpus);
4131 if (!cpumask_empty(cpus))
0a2966b4
CL
4132 goto redo;
4133 }
d6d5cfaf
NP
4134 }
4135
43010659 4136 if (!ld_moved) {
36dffab6 4137 int active_balance = 0;
ad273b32 4138
d15bcfdb 4139 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
4140 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4141 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4142 return -1;
ad273b32
VS
4143
4144 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4145 return -1;
4146
4147 if (sd->nr_balance_failed++ < 2)
4148 return -1;
4149
4150 /*
4151 * The only task running in a non-idle cpu can be moved to this
4152 * cpu in an attempt to completely freeup the other CPU
4153 * package. The same method used to move task in load_balance()
4154 * have been extended for load_balance_newidle() to speedup
4155 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4156 *
4157 * The package power saving logic comes from
4158 * find_busiest_group(). If there are no imbalance, then
4159 * f_b_g() will return NULL. However when sched_mc={1,2} then
4160 * f_b_g() will select a group from which a running task may be
4161 * pulled to this cpu in order to make the other package idle.
4162 * If there is no opportunity to make a package idle and if
4163 * there are no imbalance, then f_b_g() will return NULL and no
4164 * action will be taken in load_balance_newidle().
4165 *
4166 * Under normal task pull operation due to imbalance, there
4167 * will be more than one task in the source run queue and
4168 * move_tasks() will succeed. ld_moved will be true and this
4169 * active balance code will not be triggered.
4170 */
4171
4172 /* Lock busiest in correct order while this_rq is held */
4173 double_lock_balance(this_rq, busiest);
4174
4175 /*
4176 * don't kick the migration_thread, if the curr
4177 * task on busiest cpu can't be moved to this_cpu
4178 */
6ca09dfc 4179 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
4180 double_unlock_balance(this_rq, busiest);
4181 all_pinned = 1;
4182 return ld_moved;
4183 }
4184
4185 if (!busiest->active_balance) {
4186 busiest->active_balance = 1;
4187 busiest->push_cpu = this_cpu;
4188 active_balance = 1;
4189 }
4190
4191 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
4192 /*
4193 * Should not call ttwu while holding a rq->lock
4194 */
4195 spin_unlock(&this_rq->lock);
ad273b32
VS
4196 if (active_balance)
4197 wake_up_process(busiest->migration_thread);
da8d5089 4198 spin_lock(&this_rq->lock);
ad273b32 4199
5969fe06 4200 } else
16cfb1c0 4201 sd->nr_balance_failed = 0;
1da177e4 4202
3e5459b4 4203 update_shares_locked(this_rq, sd);
43010659 4204 return ld_moved;
16cfb1c0
NP
4205
4206out_balanced:
d15bcfdb 4207 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 4208 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 4209 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 4210 return -1;
16cfb1c0 4211 sd->nr_balance_failed = 0;
48f24c4d 4212
16cfb1c0 4213 return 0;
1da177e4
LT
4214}
4215
4216/*
4217 * idle_balance is called by schedule() if this_cpu is about to become
4218 * idle. Attempts to pull tasks from other CPUs.
4219 */
70b97a7f 4220static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
4221{
4222 struct sched_domain *sd;
efbe027e 4223 int pulled_task = 0;
dd41f596 4224 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
4225
4226 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
4227 unsigned long interval;
4228
4229 if (!(sd->flags & SD_LOAD_BALANCE))
4230 continue;
4231
4232 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 4233 /* If we've pulled tasks over stop searching: */
7c16ec58 4234 pulled_task = load_balance_newidle(this_cpu, this_rq,
df7c8e84 4235 sd);
92c4ca5c
CL
4236
4237 interval = msecs_to_jiffies(sd->balance_interval);
4238 if (time_after(next_balance, sd->last_balance + interval))
4239 next_balance = sd->last_balance + interval;
4240 if (pulled_task)
4241 break;
1da177e4 4242 }
dd41f596 4243 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
4244 /*
4245 * We are going idle. next_balance may be set based on
4246 * a busy processor. So reset next_balance.
4247 */
4248 this_rq->next_balance = next_balance;
dd41f596 4249 }
1da177e4
LT
4250}
4251
4252/*
4253 * active_load_balance is run by migration threads. It pushes running tasks
4254 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4255 * running on each physical CPU where possible, and avoids physical /
4256 * logical imbalances.
4257 *
4258 * Called with busiest_rq locked.
4259 */
70b97a7f 4260static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 4261{
39507451 4262 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
4263 struct sched_domain *sd;
4264 struct rq *target_rq;
39507451 4265
48f24c4d 4266 /* Is there any task to move? */
39507451 4267 if (busiest_rq->nr_running <= 1)
39507451
NP
4268 return;
4269
4270 target_rq = cpu_rq(target_cpu);
1da177e4
LT
4271
4272 /*
39507451 4273 * This condition is "impossible", if it occurs
41a2d6cf 4274 * we need to fix it. Originally reported by
39507451 4275 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 4276 */
39507451 4277 BUG_ON(busiest_rq == target_rq);
1da177e4 4278
39507451
NP
4279 /* move a task from busiest_rq to target_rq */
4280 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
4281 update_rq_clock(busiest_rq);
4282 update_rq_clock(target_rq);
39507451
NP
4283
4284 /* Search for an sd spanning us and the target CPU. */
c96d145e 4285 for_each_domain(target_cpu, sd) {
39507451 4286 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 4287 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 4288 break;
c96d145e 4289 }
39507451 4290
48f24c4d 4291 if (likely(sd)) {
2d72376b 4292 schedstat_inc(sd, alb_count);
39507451 4293
43010659
PW
4294 if (move_one_task(target_rq, target_cpu, busiest_rq,
4295 sd, CPU_IDLE))
48f24c4d
IM
4296 schedstat_inc(sd, alb_pushed);
4297 else
4298 schedstat_inc(sd, alb_failed);
4299 }
1b12bbc7 4300 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
4301}
4302
46cb4b7c
SS
4303#ifdef CONFIG_NO_HZ
4304static struct {
4305 atomic_t load_balancer;
7d1e6a9b 4306 cpumask_var_t cpu_mask;
f711f609 4307 cpumask_var_t ilb_grp_nohz_mask;
46cb4b7c
SS
4308} nohz ____cacheline_aligned = {
4309 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
4310};
4311
f711f609
GS
4312#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4313/**
4314 * lowest_flag_domain - Return lowest sched_domain containing flag.
4315 * @cpu: The cpu whose lowest level of sched domain is to
4316 * be returned.
4317 * @flag: The flag to check for the lowest sched_domain
4318 * for the given cpu.
4319 *
4320 * Returns the lowest sched_domain of a cpu which contains the given flag.
4321 */
4322static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4323{
4324 struct sched_domain *sd;
4325
4326 for_each_domain(cpu, sd)
4327 if (sd && (sd->flags & flag))
4328 break;
4329
4330 return sd;
4331}
4332
4333/**
4334 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4335 * @cpu: The cpu whose domains we're iterating over.
4336 * @sd: variable holding the value of the power_savings_sd
4337 * for cpu.
4338 * @flag: The flag to filter the sched_domains to be iterated.
4339 *
4340 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4341 * set, starting from the lowest sched_domain to the highest.
4342 */
4343#define for_each_flag_domain(cpu, sd, flag) \
4344 for (sd = lowest_flag_domain(cpu, flag); \
4345 (sd && (sd->flags & flag)); sd = sd->parent)
4346
4347/**
4348 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4349 * @ilb_group: group to be checked for semi-idleness
4350 *
4351 * Returns: 1 if the group is semi-idle. 0 otherwise.
4352 *
4353 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4354 * and atleast one non-idle CPU. This helper function checks if the given
4355 * sched_group is semi-idle or not.
4356 */
4357static inline int is_semi_idle_group(struct sched_group *ilb_group)
4358{
4359 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4360 sched_group_cpus(ilb_group));
4361
4362 /*
4363 * A sched_group is semi-idle when it has atleast one busy cpu
4364 * and atleast one idle cpu.
4365 */
4366 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4367 return 0;
4368
4369 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4370 return 0;
4371
4372 return 1;
4373}
4374/**
4375 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4376 * @cpu: The cpu which is nominating a new idle_load_balancer.
4377 *
4378 * Returns: Returns the id of the idle load balancer if it exists,
4379 * Else, returns >= nr_cpu_ids.
4380 *
4381 * This algorithm picks the idle load balancer such that it belongs to a
4382 * semi-idle powersavings sched_domain. The idea is to try and avoid
4383 * completely idle packages/cores just for the purpose of idle load balancing
4384 * when there are other idle cpu's which are better suited for that job.
4385 */
4386static int find_new_ilb(int cpu)
4387{
4388 struct sched_domain *sd;
4389 struct sched_group *ilb_group;
4390
4391 /*
4392 * Have idle load balancer selection from semi-idle packages only
4393 * when power-aware load balancing is enabled
4394 */
4395 if (!(sched_smt_power_savings || sched_mc_power_savings))
4396 goto out_done;
4397
4398 /*
4399 * Optimize for the case when we have no idle CPUs or only one
4400 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4401 */
4402 if (cpumask_weight(nohz.cpu_mask) < 2)
4403 goto out_done;
4404
4405 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4406 ilb_group = sd->groups;
4407
4408 do {
4409 if (is_semi_idle_group(ilb_group))
4410 return cpumask_first(nohz.ilb_grp_nohz_mask);
4411
4412 ilb_group = ilb_group->next;
4413
4414 } while (ilb_group != sd->groups);
4415 }
4416
4417out_done:
4418 return cpumask_first(nohz.cpu_mask);
4419}
4420#else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4421static inline int find_new_ilb(int call_cpu)
4422{
6e29ec57 4423 return cpumask_first(nohz.cpu_mask);
f711f609
GS
4424}
4425#endif
4426
7835b98b 4427/*
46cb4b7c
SS
4428 * This routine will try to nominate the ilb (idle load balancing)
4429 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4430 * load balancing on behalf of all those cpus. If all the cpus in the system
4431 * go into this tickless mode, then there will be no ilb owner (as there is
4432 * no need for one) and all the cpus will sleep till the next wakeup event
4433 * arrives...
4434 *
4435 * For the ilb owner, tick is not stopped. And this tick will be used
4436 * for idle load balancing. ilb owner will still be part of
4437 * nohz.cpu_mask..
7835b98b 4438 *
46cb4b7c
SS
4439 * While stopping the tick, this cpu will become the ilb owner if there
4440 * is no other owner. And will be the owner till that cpu becomes busy
4441 * or if all cpus in the system stop their ticks at which point
4442 * there is no need for ilb owner.
4443 *
4444 * When the ilb owner becomes busy, it nominates another owner, during the
4445 * next busy scheduler_tick()
4446 */
4447int select_nohz_load_balancer(int stop_tick)
4448{
4449 int cpu = smp_processor_id();
4450
4451 if (stop_tick) {
46cb4b7c
SS
4452 cpu_rq(cpu)->in_nohz_recently = 1;
4453
483b4ee6
SS
4454 if (!cpu_active(cpu)) {
4455 if (atomic_read(&nohz.load_balancer) != cpu)
4456 return 0;
4457
4458 /*
4459 * If we are going offline and still the leader,
4460 * give up!
4461 */
46cb4b7c
SS
4462 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4463 BUG();
483b4ee6 4464
46cb4b7c
SS
4465 return 0;
4466 }
4467
483b4ee6
SS
4468 cpumask_set_cpu(cpu, nohz.cpu_mask);
4469
46cb4b7c 4470 /* time for ilb owner also to sleep */
7d1e6a9b 4471 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4472 if (atomic_read(&nohz.load_balancer) == cpu)
4473 atomic_set(&nohz.load_balancer, -1);
4474 return 0;
4475 }
4476
4477 if (atomic_read(&nohz.load_balancer) == -1) {
4478 /* make me the ilb owner */
4479 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4480 return 1;
e790fb0b
GS
4481 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4482 int new_ilb;
4483
4484 if (!(sched_smt_power_savings ||
4485 sched_mc_power_savings))
4486 return 1;
4487 /*
4488 * Check to see if there is a more power-efficient
4489 * ilb.
4490 */
4491 new_ilb = find_new_ilb(cpu);
4492 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4493 atomic_set(&nohz.load_balancer, -1);
4494 resched_cpu(new_ilb);
4495 return 0;
4496 }
46cb4b7c 4497 return 1;
e790fb0b 4498 }
46cb4b7c 4499 } else {
7d1e6a9b 4500 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4501 return 0;
4502
7d1e6a9b 4503 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4504
4505 if (atomic_read(&nohz.load_balancer) == cpu)
4506 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4507 BUG();
4508 }
4509 return 0;
4510}
4511#endif
4512
4513static DEFINE_SPINLOCK(balancing);
4514
4515/*
7835b98b
CL
4516 * It checks each scheduling domain to see if it is due to be balanced,
4517 * and initiates a balancing operation if so.
4518 *
4519 * Balancing parameters are set up in arch_init_sched_domains.
4520 */
a9957449 4521static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4522{
46cb4b7c
SS
4523 int balance = 1;
4524 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4525 unsigned long interval;
4526 struct sched_domain *sd;
46cb4b7c 4527 /* Earliest time when we have to do rebalance again */
c9819f45 4528 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4529 int update_next_balance = 0;
d07355f5 4530 int need_serialize;
1da177e4 4531
46cb4b7c 4532 for_each_domain(cpu, sd) {
1da177e4
LT
4533 if (!(sd->flags & SD_LOAD_BALANCE))
4534 continue;
4535
4536 interval = sd->balance_interval;
d15bcfdb 4537 if (idle != CPU_IDLE)
1da177e4
LT
4538 interval *= sd->busy_factor;
4539
4540 /* scale ms to jiffies */
4541 interval = msecs_to_jiffies(interval);
4542 if (unlikely(!interval))
4543 interval = 1;
dd41f596
IM
4544 if (interval > HZ*NR_CPUS/10)
4545 interval = HZ*NR_CPUS/10;
4546
d07355f5 4547 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4548
d07355f5 4549 if (need_serialize) {
08c183f3
CL
4550 if (!spin_trylock(&balancing))
4551 goto out;
4552 }
4553
c9819f45 4554 if (time_after_eq(jiffies, sd->last_balance + interval)) {
df7c8e84 4555 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
4556 /*
4557 * We've pulled tasks over so either we're no
5969fe06
NP
4558 * longer idle, or one of our SMT siblings is
4559 * not idle.
4560 */
d15bcfdb 4561 idle = CPU_NOT_IDLE;
1da177e4 4562 }
1bd77f2d 4563 sd->last_balance = jiffies;
1da177e4 4564 }
d07355f5 4565 if (need_serialize)
08c183f3
CL
4566 spin_unlock(&balancing);
4567out:
f549da84 4568 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4569 next_balance = sd->last_balance + interval;
f549da84
SS
4570 update_next_balance = 1;
4571 }
783609c6
SS
4572
4573 /*
4574 * Stop the load balance at this level. There is another
4575 * CPU in our sched group which is doing load balancing more
4576 * actively.
4577 */
4578 if (!balance)
4579 break;
1da177e4 4580 }
f549da84
SS
4581
4582 /*
4583 * next_balance will be updated only when there is a need.
4584 * When the cpu is attached to null domain for ex, it will not be
4585 * updated.
4586 */
4587 if (likely(update_next_balance))
4588 rq->next_balance = next_balance;
46cb4b7c
SS
4589}
4590
4591/*
4592 * run_rebalance_domains is triggered when needed from the scheduler tick.
4593 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4594 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4595 */
4596static void run_rebalance_domains(struct softirq_action *h)
4597{
dd41f596
IM
4598 int this_cpu = smp_processor_id();
4599 struct rq *this_rq = cpu_rq(this_cpu);
4600 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4601 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4602
dd41f596 4603 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4604
4605#ifdef CONFIG_NO_HZ
4606 /*
4607 * If this cpu is the owner for idle load balancing, then do the
4608 * balancing on behalf of the other idle cpus whose ticks are
4609 * stopped.
4610 */
dd41f596
IM
4611 if (this_rq->idle_at_tick &&
4612 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4613 struct rq *rq;
4614 int balance_cpu;
4615
7d1e6a9b
RR
4616 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4617 if (balance_cpu == this_cpu)
4618 continue;
4619
46cb4b7c
SS
4620 /*
4621 * If this cpu gets work to do, stop the load balancing
4622 * work being done for other cpus. Next load
4623 * balancing owner will pick it up.
4624 */
4625 if (need_resched())
4626 break;
4627
de0cf899 4628 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4629
4630 rq = cpu_rq(balance_cpu);
dd41f596
IM
4631 if (time_after(this_rq->next_balance, rq->next_balance))
4632 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4633 }
4634 }
4635#endif
4636}
4637
8a0be9ef
FW
4638static inline int on_null_domain(int cpu)
4639{
4640 return !rcu_dereference(cpu_rq(cpu)->sd);
4641}
4642
46cb4b7c
SS
4643/*
4644 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4645 *
4646 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4647 * idle load balancing owner or decide to stop the periodic load balancing,
4648 * if the whole system is idle.
4649 */
dd41f596 4650static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4651{
46cb4b7c
SS
4652#ifdef CONFIG_NO_HZ
4653 /*
4654 * If we were in the nohz mode recently and busy at the current
4655 * scheduler tick, then check if we need to nominate new idle
4656 * load balancer.
4657 */
4658 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4659 rq->in_nohz_recently = 0;
4660
4661 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4662 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4663 atomic_set(&nohz.load_balancer, -1);
4664 }
4665
4666 if (atomic_read(&nohz.load_balancer) == -1) {
f711f609 4667 int ilb = find_new_ilb(cpu);
46cb4b7c 4668
434d53b0 4669 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4670 resched_cpu(ilb);
4671 }
4672 }
4673
4674 /*
4675 * If this cpu is idle and doing idle load balancing for all the
4676 * cpus with ticks stopped, is it time for that to stop?
4677 */
4678 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4679 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4680 resched_cpu(cpu);
4681 return;
4682 }
4683
4684 /*
4685 * If this cpu is idle and the idle load balancing is done by
4686 * someone else, then no need raise the SCHED_SOFTIRQ
4687 */
4688 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4689 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4690 return;
4691#endif
8a0be9ef
FW
4692 /* Don't need to rebalance while attached to NULL domain */
4693 if (time_after_eq(jiffies, rq->next_balance) &&
4694 likely(!on_null_domain(cpu)))
46cb4b7c 4695 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4696}
dd41f596
IM
4697
4698#else /* CONFIG_SMP */
4699
1da177e4
LT
4700/*
4701 * on UP we do not need to balance between CPUs:
4702 */
70b97a7f 4703static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4704{
4705}
dd41f596 4706
1da177e4
LT
4707#endif
4708
1da177e4
LT
4709DEFINE_PER_CPU(struct kernel_stat, kstat);
4710
4711EXPORT_PER_CPU_SYMBOL(kstat);
4712
4713/*
c5f8d995 4714 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 4715 * @p in case that task is currently running.
c5f8d995
HS
4716 *
4717 * Called with task_rq_lock() held on @rq.
1da177e4 4718 */
c5f8d995
HS
4719static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4720{
4721 u64 ns = 0;
4722
4723 if (task_current(rq, p)) {
4724 update_rq_clock(rq);
4725 ns = rq->clock - p->se.exec_start;
4726 if ((s64)ns < 0)
4727 ns = 0;
4728 }
4729
4730 return ns;
4731}
4732
bb34d92f 4733unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4734{
1da177e4 4735 unsigned long flags;
41b86e9c 4736 struct rq *rq;
bb34d92f 4737 u64 ns = 0;
48f24c4d 4738
41b86e9c 4739 rq = task_rq_lock(p, &flags);
c5f8d995
HS
4740 ns = do_task_delta_exec(p, rq);
4741 task_rq_unlock(rq, &flags);
1508487e 4742
c5f8d995
HS
4743 return ns;
4744}
f06febc9 4745
c5f8d995
HS
4746/*
4747 * Return accounted runtime for the task.
4748 * In case the task is currently running, return the runtime plus current's
4749 * pending runtime that have not been accounted yet.
4750 */
4751unsigned long long task_sched_runtime(struct task_struct *p)
4752{
4753 unsigned long flags;
4754 struct rq *rq;
4755 u64 ns = 0;
4756
4757 rq = task_rq_lock(p, &flags);
4758 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4759 task_rq_unlock(rq, &flags);
4760
4761 return ns;
4762}
48f24c4d 4763
c5f8d995
HS
4764/*
4765 * Return sum_exec_runtime for the thread group.
4766 * In case the task is currently running, return the sum plus current's
4767 * pending runtime that have not been accounted yet.
4768 *
4769 * Note that the thread group might have other running tasks as well,
4770 * so the return value not includes other pending runtime that other
4771 * running tasks might have.
4772 */
4773unsigned long long thread_group_sched_runtime(struct task_struct *p)
4774{
4775 struct task_cputime totals;
4776 unsigned long flags;
4777 struct rq *rq;
4778 u64 ns;
4779
4780 rq = task_rq_lock(p, &flags);
4781 thread_group_cputime(p, &totals);
4782 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
41b86e9c 4783 task_rq_unlock(rq, &flags);
48f24c4d 4784
1da177e4
LT
4785 return ns;
4786}
4787
1da177e4
LT
4788/*
4789 * Account user cpu time to a process.
4790 * @p: the process that the cpu time gets accounted to
1da177e4 4791 * @cputime: the cpu time spent in user space since the last update
457533a7 4792 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4793 */
457533a7
MS
4794void account_user_time(struct task_struct *p, cputime_t cputime,
4795 cputime_t cputime_scaled)
1da177e4
LT
4796{
4797 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4798 cputime64_t tmp;
4799
457533a7 4800 /* Add user time to process. */
1da177e4 4801 p->utime = cputime_add(p->utime, cputime);
457533a7 4802 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4803 account_group_user_time(p, cputime);
1da177e4
LT
4804
4805 /* Add user time to cpustat. */
4806 tmp = cputime_to_cputime64(cputime);
4807 if (TASK_NICE(p) > 0)
4808 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4809 else
4810 cpustat->user = cputime64_add(cpustat->user, tmp);
ef12fefa
BR
4811
4812 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
49b5cf34
JL
4813 /* Account for user time used */
4814 acct_update_integrals(p);
1da177e4
LT
4815}
4816
94886b84
LV
4817/*
4818 * Account guest cpu time to a process.
4819 * @p: the process that the cpu time gets accounted to
4820 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4821 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4822 */
457533a7
MS
4823static void account_guest_time(struct task_struct *p, cputime_t cputime,
4824 cputime_t cputime_scaled)
94886b84
LV
4825{
4826 cputime64_t tmp;
4827 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4828
4829 tmp = cputime_to_cputime64(cputime);
4830
457533a7 4831 /* Add guest time to process. */
94886b84 4832 p->utime = cputime_add(p->utime, cputime);
457533a7 4833 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4834 account_group_user_time(p, cputime);
94886b84
LV
4835 p->gtime = cputime_add(p->gtime, cputime);
4836
457533a7 4837 /* Add guest time to cpustat. */
94886b84
LV
4838 cpustat->user = cputime64_add(cpustat->user, tmp);
4839 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4840}
4841
1da177e4
LT
4842/*
4843 * Account system cpu time to a process.
4844 * @p: the process that the cpu time gets accounted to
4845 * @hardirq_offset: the offset to subtract from hardirq_count()
4846 * @cputime: the cpu time spent in kernel space since the last update
457533a7 4847 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
4848 */
4849void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 4850 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
4851{
4852 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
4853 cputime64_t tmp;
4854
983ed7a6 4855 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 4856 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
4857 return;
4858 }
94886b84 4859
457533a7 4860 /* Add system time to process. */
1da177e4 4861 p->stime = cputime_add(p->stime, cputime);
457533a7 4862 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 4863 account_group_system_time(p, cputime);
1da177e4
LT
4864
4865 /* Add system time to cpustat. */
4866 tmp = cputime_to_cputime64(cputime);
4867 if (hardirq_count() - hardirq_offset)
4868 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4869 else if (softirq_count())
4870 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 4871 else
79741dd3
MS
4872 cpustat->system = cputime64_add(cpustat->system, tmp);
4873
ef12fefa
BR
4874 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
4875
1da177e4
LT
4876 /* Account for system time used */
4877 acct_update_integrals(p);
1da177e4
LT
4878}
4879
c66f08be 4880/*
1da177e4 4881 * Account for involuntary wait time.
1da177e4 4882 * @steal: the cpu time spent in involuntary wait
c66f08be 4883 */
79741dd3 4884void account_steal_time(cputime_t cputime)
c66f08be 4885{
79741dd3
MS
4886 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4887 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4888
4889 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
4890}
4891
1da177e4 4892/*
79741dd3
MS
4893 * Account for idle time.
4894 * @cputime: the cpu time spent in idle wait
1da177e4 4895 */
79741dd3 4896void account_idle_time(cputime_t cputime)
1da177e4
LT
4897{
4898 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 4899 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 4900 struct rq *rq = this_rq();
1da177e4 4901
79741dd3
MS
4902 if (atomic_read(&rq->nr_iowait) > 0)
4903 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4904 else
4905 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
4906}
4907
79741dd3
MS
4908#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4909
4910/*
4911 * Account a single tick of cpu time.
4912 * @p: the process that the cpu time gets accounted to
4913 * @user_tick: indicates if the tick is a user or a system tick
4914 */
4915void account_process_tick(struct task_struct *p, int user_tick)
4916{
4917 cputime_t one_jiffy = jiffies_to_cputime(1);
4918 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4919 struct rq *rq = this_rq();
4920
4921 if (user_tick)
4922 account_user_time(p, one_jiffy, one_jiffy_scaled);
f5f293a4 4923 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
79741dd3
MS
4924 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4925 one_jiffy_scaled);
4926 else
4927 account_idle_time(one_jiffy);
4928}
4929
4930/*
4931 * Account multiple ticks of steal time.
4932 * @p: the process from which the cpu time has been stolen
4933 * @ticks: number of stolen ticks
4934 */
4935void account_steal_ticks(unsigned long ticks)
4936{
4937 account_steal_time(jiffies_to_cputime(ticks));
4938}
4939
4940/*
4941 * Account multiple ticks of idle time.
4942 * @ticks: number of stolen ticks
4943 */
4944void account_idle_ticks(unsigned long ticks)
4945{
4946 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4947}
4948
79741dd3
MS
4949#endif
4950
49048622
BS
4951/*
4952 * Use precise platform statistics if available:
4953 */
4954#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4955cputime_t task_utime(struct task_struct *p)
4956{
4957 return p->utime;
4958}
4959
4960cputime_t task_stime(struct task_struct *p)
4961{
4962 return p->stime;
4963}
4964#else
4965cputime_t task_utime(struct task_struct *p)
4966{
4967 clock_t utime = cputime_to_clock_t(p->utime),
4968 total = utime + cputime_to_clock_t(p->stime);
4969 u64 temp;
4970
4971 /*
4972 * Use CFS's precise accounting:
4973 */
4974 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4975
4976 if (total) {
4977 temp *= utime;
4978 do_div(temp, total);
4979 }
4980 utime = (clock_t)temp;
4981
4982 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4983 return p->prev_utime;
4984}
4985
4986cputime_t task_stime(struct task_struct *p)
4987{
4988 clock_t stime;
4989
4990 /*
4991 * Use CFS's precise accounting. (we subtract utime from
4992 * the total, to make sure the total observed by userspace
4993 * grows monotonically - apps rely on that):
4994 */
4995 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4996 cputime_to_clock_t(task_utime(p));
4997
4998 if (stime >= 0)
4999 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5000
5001 return p->prev_stime;
5002}
5003#endif
5004
5005inline cputime_t task_gtime(struct task_struct *p)
5006{
5007 return p->gtime;
5008}
5009
7835b98b
CL
5010/*
5011 * This function gets called by the timer code, with HZ frequency.
5012 * We call it with interrupts disabled.
5013 *
5014 * It also gets called by the fork code, when changing the parent's
5015 * timeslices.
5016 */
5017void scheduler_tick(void)
5018{
7835b98b
CL
5019 int cpu = smp_processor_id();
5020 struct rq *rq = cpu_rq(cpu);
dd41f596 5021 struct task_struct *curr = rq->curr;
3e51f33f
PZ
5022
5023 sched_clock_tick();
dd41f596
IM
5024
5025 spin_lock(&rq->lock);
3e51f33f 5026 update_rq_clock(rq);
f1a438d8 5027 update_cpu_load(rq);
fa85ae24 5028 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 5029 spin_unlock(&rq->lock);
7835b98b 5030
e418e1c2 5031#ifdef CONFIG_SMP
dd41f596
IM
5032 rq->idle_at_tick = idle_cpu(cpu);
5033 trigger_load_balance(rq, cpu);
e418e1c2 5034#endif
1da177e4
LT
5035}
5036
132380a0 5037notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
5038{
5039 if (in_lock_functions(addr)) {
5040 addr = CALLER_ADDR2;
5041 if (in_lock_functions(addr))
5042 addr = CALLER_ADDR3;
5043 }
5044 return addr;
5045}
1da177e4 5046
7e49fcce
SR
5047#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5048 defined(CONFIG_PREEMPT_TRACER))
5049
43627582 5050void __kprobes add_preempt_count(int val)
1da177e4 5051{
6cd8a4bb 5052#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5053 /*
5054 * Underflow?
5055 */
9a11b49a
IM
5056 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5057 return;
6cd8a4bb 5058#endif
1da177e4 5059 preempt_count() += val;
6cd8a4bb 5060#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5061 /*
5062 * Spinlock count overflowing soon?
5063 */
33859f7f
MOS
5064 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5065 PREEMPT_MASK - 10);
6cd8a4bb
SR
5066#endif
5067 if (preempt_count() == val)
5068 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5069}
5070EXPORT_SYMBOL(add_preempt_count);
5071
43627582 5072void __kprobes sub_preempt_count(int val)
1da177e4 5073{
6cd8a4bb 5074#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
5075 /*
5076 * Underflow?
5077 */
01e3eb82 5078 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 5079 return;
1da177e4
LT
5080 /*
5081 * Is the spinlock portion underflowing?
5082 */
9a11b49a
IM
5083 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5084 !(preempt_count() & PREEMPT_MASK)))
5085 return;
6cd8a4bb 5086#endif
9a11b49a 5087
6cd8a4bb
SR
5088 if (preempt_count() == val)
5089 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
5090 preempt_count() -= val;
5091}
5092EXPORT_SYMBOL(sub_preempt_count);
5093
5094#endif
5095
5096/*
dd41f596 5097 * Print scheduling while atomic bug:
1da177e4 5098 */
dd41f596 5099static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 5100{
838225b4
SS
5101 struct pt_regs *regs = get_irq_regs();
5102
5103 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5104 prev->comm, prev->pid, preempt_count());
5105
dd41f596 5106 debug_show_held_locks(prev);
e21f5b15 5107 print_modules();
dd41f596
IM
5108 if (irqs_disabled())
5109 print_irqtrace_events(prev);
838225b4
SS
5110
5111 if (regs)
5112 show_regs(regs);
5113 else
5114 dump_stack();
dd41f596 5115}
1da177e4 5116
dd41f596
IM
5117/*
5118 * Various schedule()-time debugging checks and statistics:
5119 */
5120static inline void schedule_debug(struct task_struct *prev)
5121{
1da177e4 5122 /*
41a2d6cf 5123 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
5124 * schedule() atomically, we ignore that path for now.
5125 * Otherwise, whine if we are scheduling when we should not be.
5126 */
3f33a7ce 5127 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
5128 __schedule_bug(prev);
5129
1da177e4
LT
5130 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5131
2d72376b 5132 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
5133#ifdef CONFIG_SCHEDSTATS
5134 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
5135 schedstat_inc(this_rq(), bkl_count);
5136 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
5137 }
5138#endif
dd41f596
IM
5139}
5140
df1c99d4
MG
5141static void put_prev_task(struct rq *rq, struct task_struct *prev)
5142{
5143 if (prev->state == TASK_RUNNING) {
5144 u64 runtime = prev->se.sum_exec_runtime;
5145
5146 runtime -= prev->se.prev_sum_exec_runtime;
5147 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5148
5149 /*
5150 * In order to avoid avg_overlap growing stale when we are
5151 * indeed overlapping and hence not getting put to sleep, grow
5152 * the avg_overlap on preemption.
5153 *
5154 * We use the average preemption runtime because that
5155 * correlates to the amount of cache footprint a task can
5156 * build up.
5157 */
5158 update_avg(&prev->se.avg_overlap, runtime);
5159 }
5160 prev->sched_class->put_prev_task(rq, prev);
5161}
5162
dd41f596
IM
5163/*
5164 * Pick up the highest-prio task:
5165 */
5166static inline struct task_struct *
b67802ea 5167pick_next_task(struct rq *rq)
dd41f596 5168{
5522d5d5 5169 const struct sched_class *class;
dd41f596 5170 struct task_struct *p;
1da177e4
LT
5171
5172 /*
dd41f596
IM
5173 * Optimization: we know that if all tasks are in
5174 * the fair class we can call that function directly:
1da177e4 5175 */
dd41f596 5176 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 5177 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
5178 if (likely(p))
5179 return p;
1da177e4
LT
5180 }
5181
dd41f596
IM
5182 class = sched_class_highest;
5183 for ( ; ; ) {
fb8d4724 5184 p = class->pick_next_task(rq);
dd41f596
IM
5185 if (p)
5186 return p;
5187 /*
5188 * Will never be NULL as the idle class always
5189 * returns a non-NULL p:
5190 */
5191 class = class->next;
5192 }
5193}
1da177e4 5194
dd41f596
IM
5195/*
5196 * schedule() is the main scheduler function.
5197 */
ff743345 5198asmlinkage void __sched schedule(void)
dd41f596
IM
5199{
5200 struct task_struct *prev, *next;
67ca7bde 5201 unsigned long *switch_count;
dd41f596 5202 struct rq *rq;
31656519 5203 int cpu;
dd41f596 5204
ff743345
PZ
5205need_resched:
5206 preempt_disable();
dd41f596
IM
5207 cpu = smp_processor_id();
5208 rq = cpu_rq(cpu);
5209 rcu_qsctr_inc(cpu);
5210 prev = rq->curr;
5211 switch_count = &prev->nivcsw;
5212
5213 release_kernel_lock(prev);
5214need_resched_nonpreemptible:
5215
5216 schedule_debug(prev);
1da177e4 5217
31656519 5218 if (sched_feat(HRTICK))
f333fdc9 5219 hrtick_clear(rq);
8f4d37ec 5220
8cd162ce 5221 spin_lock_irq(&rq->lock);
3e51f33f 5222 update_rq_clock(rq);
1e819950 5223 clear_tsk_need_resched(prev);
1da177e4 5224
1da177e4 5225 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 5226 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 5227 prev->state = TASK_RUNNING;
16882c1e 5228 else
2e1cb74a 5229 deactivate_task(rq, prev, 1);
dd41f596 5230 switch_count = &prev->nvcsw;
1da177e4
LT
5231 }
5232
9a897c5a
SR
5233#ifdef CONFIG_SMP
5234 if (prev->sched_class->pre_schedule)
5235 prev->sched_class->pre_schedule(rq, prev);
5236#endif
f65eda4f 5237
dd41f596 5238 if (unlikely(!rq->nr_running))
1da177e4 5239 idle_balance(cpu, rq);
1da177e4 5240
df1c99d4 5241 put_prev_task(rq, prev);
b67802ea 5242 next = pick_next_task(rq);
1da177e4 5243
1da177e4 5244 if (likely(prev != next)) {
673a90a1
DS
5245 sched_info_switch(prev, next);
5246
1da177e4
LT
5247 rq->nr_switches++;
5248 rq->curr = next;
5249 ++*switch_count;
5250
dd41f596 5251 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
5252 /*
5253 * the context switch might have flipped the stack from under
5254 * us, hence refresh the local variables.
5255 */
5256 cpu = smp_processor_id();
5257 rq = cpu_rq(cpu);
1da177e4
LT
5258 } else
5259 spin_unlock_irq(&rq->lock);
5260
8f4d37ec 5261 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 5262 goto need_resched_nonpreemptible;
8f4d37ec 5263
1da177e4 5264 preempt_enable_no_resched();
ff743345 5265 if (need_resched())
1da177e4
LT
5266 goto need_resched;
5267}
1da177e4
LT
5268EXPORT_SYMBOL(schedule);
5269
0d66bf6d
PZ
5270#ifdef CONFIG_SMP
5271/*
5272 * Look out! "owner" is an entirely speculative pointer
5273 * access and not reliable.
5274 */
5275int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5276{
5277 unsigned int cpu;
5278 struct rq *rq;
5279
5280 if (!sched_feat(OWNER_SPIN))
5281 return 0;
5282
5283#ifdef CONFIG_DEBUG_PAGEALLOC
5284 /*
5285 * Need to access the cpu field knowing that
5286 * DEBUG_PAGEALLOC could have unmapped it if
5287 * the mutex owner just released it and exited.
5288 */
5289 if (probe_kernel_address(&owner->cpu, cpu))
5290 goto out;
5291#else
5292 cpu = owner->cpu;
5293#endif
5294
5295 /*
5296 * Even if the access succeeded (likely case),
5297 * the cpu field may no longer be valid.
5298 */
5299 if (cpu >= nr_cpumask_bits)
5300 goto out;
5301
5302 /*
5303 * We need to validate that we can do a
5304 * get_cpu() and that we have the percpu area.
5305 */
5306 if (!cpu_online(cpu))
5307 goto out;
5308
5309 rq = cpu_rq(cpu);
5310
5311 for (;;) {
5312 /*
5313 * Owner changed, break to re-assess state.
5314 */
5315 if (lock->owner != owner)
5316 break;
5317
5318 /*
5319 * Is that owner really running on that cpu?
5320 */
5321 if (task_thread_info(rq->curr) != owner || need_resched())
5322 return 0;
5323
5324 cpu_relax();
5325 }
5326out:
5327 return 1;
5328}
5329#endif
5330
1da177e4
LT
5331#ifdef CONFIG_PREEMPT
5332/*
2ed6e34f 5333 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 5334 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
5335 * occur there and call schedule directly.
5336 */
5337asmlinkage void __sched preempt_schedule(void)
5338{
5339 struct thread_info *ti = current_thread_info();
6478d880 5340
1da177e4
LT
5341 /*
5342 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 5343 * we do not want to preempt the current task. Just return..
1da177e4 5344 */
beed33a8 5345 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
5346 return;
5347
3a5c359a
AK
5348 do {
5349 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 5350 schedule();
3a5c359a 5351 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5352
3a5c359a
AK
5353 /*
5354 * Check again in case we missed a preemption opportunity
5355 * between schedule and now.
5356 */
5357 barrier();
5ed0cec0 5358 } while (need_resched());
1da177e4 5359}
1da177e4
LT
5360EXPORT_SYMBOL(preempt_schedule);
5361
5362/*
2ed6e34f 5363 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
5364 * off of irq context.
5365 * Note, that this is called and return with irqs disabled. This will
5366 * protect us against recursive calling from irq.
5367 */
5368asmlinkage void __sched preempt_schedule_irq(void)
5369{
5370 struct thread_info *ti = current_thread_info();
6478d880 5371
2ed6e34f 5372 /* Catch callers which need to be fixed */
1da177e4
LT
5373 BUG_ON(ti->preempt_count || !irqs_disabled());
5374
3a5c359a
AK
5375 do {
5376 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
5377 local_irq_enable();
5378 schedule();
5379 local_irq_disable();
3a5c359a 5380 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 5381
3a5c359a
AK
5382 /*
5383 * Check again in case we missed a preemption opportunity
5384 * between schedule and now.
5385 */
5386 barrier();
5ed0cec0 5387 } while (need_resched());
1da177e4
LT
5388}
5389
5390#endif /* CONFIG_PREEMPT */
5391
95cdf3b7
IM
5392int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5393 void *key)
1da177e4 5394{
48f24c4d 5395 return try_to_wake_up(curr->private, mode, sync);
1da177e4 5396}
1da177e4
LT
5397EXPORT_SYMBOL(default_wake_function);
5398
5399/*
41a2d6cf
IM
5400 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5401 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
5402 * number) then we wake all the non-exclusive tasks and one exclusive task.
5403 *
5404 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 5405 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
5406 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5407 */
78ddb08f 5408static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
777c6c5f 5409 int nr_exclusive, int sync, void *key)
1da177e4 5410{
2e45874c 5411 wait_queue_t *curr, *next;
1da177e4 5412
2e45874c 5413 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
5414 unsigned flags = curr->flags;
5415
1da177e4 5416 if (curr->func(curr, mode, sync, key) &&
48f24c4d 5417 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
5418 break;
5419 }
5420}
5421
5422/**
5423 * __wake_up - wake up threads blocked on a waitqueue.
5424 * @q: the waitqueue
5425 * @mode: which threads
5426 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 5427 * @key: is directly passed to the wakeup function
1da177e4 5428 */
7ad5b3a5 5429void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 5430 int nr_exclusive, void *key)
1da177e4
LT
5431{
5432 unsigned long flags;
5433
5434 spin_lock_irqsave(&q->lock, flags);
5435 __wake_up_common(q, mode, nr_exclusive, 0, key);
5436 spin_unlock_irqrestore(&q->lock, flags);
5437}
1da177e4
LT
5438EXPORT_SYMBOL(__wake_up);
5439
5440/*
5441 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5442 */
7ad5b3a5 5443void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
5444{
5445 __wake_up_common(q, mode, 1, 0, NULL);
5446}
5447
4ede816a
DL
5448void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5449{
5450 __wake_up_common(q, mode, 1, 0, key);
5451}
5452
1da177e4 5453/**
4ede816a 5454 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
5455 * @q: the waitqueue
5456 * @mode: which threads
5457 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 5458 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
5459 *
5460 * The sync wakeup differs that the waker knows that it will schedule
5461 * away soon, so while the target thread will be woken up, it will not
5462 * be migrated to another CPU - ie. the two threads are 'synchronized'
5463 * with each other. This can prevent needless bouncing between CPUs.
5464 *
5465 * On UP it can prevent extra preemption.
5466 */
4ede816a
DL
5467void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5468 int nr_exclusive, void *key)
1da177e4
LT
5469{
5470 unsigned long flags;
5471 int sync = 1;
5472
5473 if (unlikely(!q))
5474 return;
5475
5476 if (unlikely(!nr_exclusive))
5477 sync = 0;
5478
5479 spin_lock_irqsave(&q->lock, flags);
4ede816a 5480 __wake_up_common(q, mode, nr_exclusive, sync, key);
1da177e4
LT
5481 spin_unlock_irqrestore(&q->lock, flags);
5482}
4ede816a
DL
5483EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5484
5485/*
5486 * __wake_up_sync - see __wake_up_sync_key()
5487 */
5488void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5489{
5490 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5491}
1da177e4
LT
5492EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5493
65eb3dc6
KD
5494/**
5495 * complete: - signals a single thread waiting on this completion
5496 * @x: holds the state of this particular completion
5497 *
5498 * This will wake up a single thread waiting on this completion. Threads will be
5499 * awakened in the same order in which they were queued.
5500 *
5501 * See also complete_all(), wait_for_completion() and related routines.
5502 */
b15136e9 5503void complete(struct completion *x)
1da177e4
LT
5504{
5505 unsigned long flags;
5506
5507 spin_lock_irqsave(&x->wait.lock, flags);
5508 x->done++;
d9514f6c 5509 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
5510 spin_unlock_irqrestore(&x->wait.lock, flags);
5511}
5512EXPORT_SYMBOL(complete);
5513
65eb3dc6
KD
5514/**
5515 * complete_all: - signals all threads waiting on this completion
5516 * @x: holds the state of this particular completion
5517 *
5518 * This will wake up all threads waiting on this particular completion event.
5519 */
b15136e9 5520void complete_all(struct completion *x)
1da177e4
LT
5521{
5522 unsigned long flags;
5523
5524 spin_lock_irqsave(&x->wait.lock, flags);
5525 x->done += UINT_MAX/2;
d9514f6c 5526 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
5527 spin_unlock_irqrestore(&x->wait.lock, flags);
5528}
5529EXPORT_SYMBOL(complete_all);
5530
8cbbe86d
AK
5531static inline long __sched
5532do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5533{
1da177e4
LT
5534 if (!x->done) {
5535 DECLARE_WAITQUEUE(wait, current);
5536
5537 wait.flags |= WQ_FLAG_EXCLUSIVE;
5538 __add_wait_queue_tail(&x->wait, &wait);
5539 do {
94d3d824 5540 if (signal_pending_state(state, current)) {
ea71a546
ON
5541 timeout = -ERESTARTSYS;
5542 break;
8cbbe86d
AK
5543 }
5544 __set_current_state(state);
1da177e4
LT
5545 spin_unlock_irq(&x->wait.lock);
5546 timeout = schedule_timeout(timeout);
5547 spin_lock_irq(&x->wait.lock);
ea71a546 5548 } while (!x->done && timeout);
1da177e4 5549 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
5550 if (!x->done)
5551 return timeout;
1da177e4
LT
5552 }
5553 x->done--;
ea71a546 5554 return timeout ?: 1;
1da177e4 5555}
1da177e4 5556
8cbbe86d
AK
5557static long __sched
5558wait_for_common(struct completion *x, long timeout, int state)
1da177e4 5559{
1da177e4
LT
5560 might_sleep();
5561
5562 spin_lock_irq(&x->wait.lock);
8cbbe86d 5563 timeout = do_wait_for_common(x, timeout, state);
1da177e4 5564 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
5565 return timeout;
5566}
1da177e4 5567
65eb3dc6
KD
5568/**
5569 * wait_for_completion: - waits for completion of a task
5570 * @x: holds the state of this particular completion
5571 *
5572 * This waits to be signaled for completion of a specific task. It is NOT
5573 * interruptible and there is no timeout.
5574 *
5575 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5576 * and interrupt capability. Also see complete().
5577 */
b15136e9 5578void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
5579{
5580 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 5581}
8cbbe86d 5582EXPORT_SYMBOL(wait_for_completion);
1da177e4 5583
65eb3dc6
KD
5584/**
5585 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5586 * @x: holds the state of this particular completion
5587 * @timeout: timeout value in jiffies
5588 *
5589 * This waits for either a completion of a specific task to be signaled or for a
5590 * specified timeout to expire. The timeout is in jiffies. It is not
5591 * interruptible.
5592 */
b15136e9 5593unsigned long __sched
8cbbe86d 5594wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5595{
8cbbe86d 5596 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5597}
8cbbe86d 5598EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5599
65eb3dc6
KD
5600/**
5601 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5602 * @x: holds the state of this particular completion
5603 *
5604 * This waits for completion of a specific task to be signaled. It is
5605 * interruptible.
5606 */
8cbbe86d 5607int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5608{
51e97990
AK
5609 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5610 if (t == -ERESTARTSYS)
5611 return t;
5612 return 0;
0fec171c 5613}
8cbbe86d 5614EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5615
65eb3dc6
KD
5616/**
5617 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5618 * @x: holds the state of this particular completion
5619 * @timeout: timeout value in jiffies
5620 *
5621 * This waits for either a completion of a specific task to be signaled or for a
5622 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5623 */
b15136e9 5624unsigned long __sched
8cbbe86d
AK
5625wait_for_completion_interruptible_timeout(struct completion *x,
5626 unsigned long timeout)
0fec171c 5627{
8cbbe86d 5628 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5629}
8cbbe86d 5630EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5631
65eb3dc6
KD
5632/**
5633 * wait_for_completion_killable: - waits for completion of a task (killable)
5634 * @x: holds the state of this particular completion
5635 *
5636 * This waits to be signaled for completion of a specific task. It can be
5637 * interrupted by a kill signal.
5638 */
009e577e
MW
5639int __sched wait_for_completion_killable(struct completion *x)
5640{
5641 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5642 if (t == -ERESTARTSYS)
5643 return t;
5644 return 0;
5645}
5646EXPORT_SYMBOL(wait_for_completion_killable);
5647
be4de352
DC
5648/**
5649 * try_wait_for_completion - try to decrement a completion without blocking
5650 * @x: completion structure
5651 *
5652 * Returns: 0 if a decrement cannot be done without blocking
5653 * 1 if a decrement succeeded.
5654 *
5655 * If a completion is being used as a counting completion,
5656 * attempt to decrement the counter without blocking. This
5657 * enables us to avoid waiting if the resource the completion
5658 * is protecting is not available.
5659 */
5660bool try_wait_for_completion(struct completion *x)
5661{
5662 int ret = 1;
5663
5664 spin_lock_irq(&x->wait.lock);
5665 if (!x->done)
5666 ret = 0;
5667 else
5668 x->done--;
5669 spin_unlock_irq(&x->wait.lock);
5670 return ret;
5671}
5672EXPORT_SYMBOL(try_wait_for_completion);
5673
5674/**
5675 * completion_done - Test to see if a completion has any waiters
5676 * @x: completion structure
5677 *
5678 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5679 * 1 if there are no waiters.
5680 *
5681 */
5682bool completion_done(struct completion *x)
5683{
5684 int ret = 1;
5685
5686 spin_lock_irq(&x->wait.lock);
5687 if (!x->done)
5688 ret = 0;
5689 spin_unlock_irq(&x->wait.lock);
5690 return ret;
5691}
5692EXPORT_SYMBOL(completion_done);
5693
8cbbe86d
AK
5694static long __sched
5695sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5696{
0fec171c
IM
5697 unsigned long flags;
5698 wait_queue_t wait;
5699
5700 init_waitqueue_entry(&wait, current);
1da177e4 5701
8cbbe86d 5702 __set_current_state(state);
1da177e4 5703
8cbbe86d
AK
5704 spin_lock_irqsave(&q->lock, flags);
5705 __add_wait_queue(q, &wait);
5706 spin_unlock(&q->lock);
5707 timeout = schedule_timeout(timeout);
5708 spin_lock_irq(&q->lock);
5709 __remove_wait_queue(q, &wait);
5710 spin_unlock_irqrestore(&q->lock, flags);
5711
5712 return timeout;
5713}
5714
5715void __sched interruptible_sleep_on(wait_queue_head_t *q)
5716{
5717 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5718}
1da177e4
LT
5719EXPORT_SYMBOL(interruptible_sleep_on);
5720
0fec171c 5721long __sched
95cdf3b7 5722interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5723{
8cbbe86d 5724 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5725}
1da177e4
LT
5726EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5727
0fec171c 5728void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5729{
8cbbe86d 5730 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5731}
1da177e4
LT
5732EXPORT_SYMBOL(sleep_on);
5733
0fec171c 5734long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5735{
8cbbe86d 5736 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5737}
1da177e4
LT
5738EXPORT_SYMBOL(sleep_on_timeout);
5739
b29739f9
IM
5740#ifdef CONFIG_RT_MUTEXES
5741
5742/*
5743 * rt_mutex_setprio - set the current priority of a task
5744 * @p: task
5745 * @prio: prio value (kernel-internal form)
5746 *
5747 * This function changes the 'effective' priority of a task. It does
5748 * not touch ->normal_prio like __setscheduler().
5749 *
5750 * Used by the rt_mutex code to implement priority inheritance logic.
5751 */
36c8b586 5752void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5753{
5754 unsigned long flags;
83b699ed 5755 int oldprio, on_rq, running;
70b97a7f 5756 struct rq *rq;
cb469845 5757 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5758
5759 BUG_ON(prio < 0 || prio > MAX_PRIO);
5760
5761 rq = task_rq_lock(p, &flags);
a8e504d2 5762 update_rq_clock(rq);
b29739f9 5763
d5f9f942 5764 oldprio = p->prio;
dd41f596 5765 on_rq = p->se.on_rq;
051a1d1a 5766 running = task_current(rq, p);
0e1f3483 5767 if (on_rq)
69be72c1 5768 dequeue_task(rq, p, 0);
0e1f3483
HS
5769 if (running)
5770 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5771
5772 if (rt_prio(prio))
5773 p->sched_class = &rt_sched_class;
5774 else
5775 p->sched_class = &fair_sched_class;
5776
b29739f9
IM
5777 p->prio = prio;
5778
0e1f3483
HS
5779 if (running)
5780 p->sched_class->set_curr_task(rq);
dd41f596 5781 if (on_rq) {
8159f87e 5782 enqueue_task(rq, p, 0);
cb469845
SR
5783
5784 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5785 }
5786 task_rq_unlock(rq, &flags);
5787}
5788
5789#endif
5790
36c8b586 5791void set_user_nice(struct task_struct *p, long nice)
1da177e4 5792{
dd41f596 5793 int old_prio, delta, on_rq;
1da177e4 5794 unsigned long flags;
70b97a7f 5795 struct rq *rq;
1da177e4
LT
5796
5797 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5798 return;
5799 /*
5800 * We have to be careful, if called from sys_setpriority(),
5801 * the task might be in the middle of scheduling on another CPU.
5802 */
5803 rq = task_rq_lock(p, &flags);
a8e504d2 5804 update_rq_clock(rq);
1da177e4
LT
5805 /*
5806 * The RT priorities are set via sched_setscheduler(), but we still
5807 * allow the 'normal' nice value to be set - but as expected
5808 * it wont have any effect on scheduling until the task is
dd41f596 5809 * SCHED_FIFO/SCHED_RR:
1da177e4 5810 */
e05606d3 5811 if (task_has_rt_policy(p)) {
1da177e4
LT
5812 p->static_prio = NICE_TO_PRIO(nice);
5813 goto out_unlock;
5814 }
dd41f596 5815 on_rq = p->se.on_rq;
c09595f6 5816 if (on_rq)
69be72c1 5817 dequeue_task(rq, p, 0);
1da177e4 5818
1da177e4 5819 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5820 set_load_weight(p);
b29739f9
IM
5821 old_prio = p->prio;
5822 p->prio = effective_prio(p);
5823 delta = p->prio - old_prio;
1da177e4 5824
dd41f596 5825 if (on_rq) {
8159f87e 5826 enqueue_task(rq, p, 0);
1da177e4 5827 /*
d5f9f942
AM
5828 * If the task increased its priority or is running and
5829 * lowered its priority, then reschedule its CPU:
1da177e4 5830 */
d5f9f942 5831 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5832 resched_task(rq->curr);
5833 }
5834out_unlock:
5835 task_rq_unlock(rq, &flags);
5836}
1da177e4
LT
5837EXPORT_SYMBOL(set_user_nice);
5838
e43379f1
MM
5839/*
5840 * can_nice - check if a task can reduce its nice value
5841 * @p: task
5842 * @nice: nice value
5843 */
36c8b586 5844int can_nice(const struct task_struct *p, const int nice)
e43379f1 5845{
024f4747
MM
5846 /* convert nice value [19,-20] to rlimit style value [1,40] */
5847 int nice_rlim = 20 - nice;
48f24c4d 5848
e43379f1
MM
5849 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5850 capable(CAP_SYS_NICE));
5851}
5852
1da177e4
LT
5853#ifdef __ARCH_WANT_SYS_NICE
5854
5855/*
5856 * sys_nice - change the priority of the current process.
5857 * @increment: priority increment
5858 *
5859 * sys_setpriority is a more generic, but much slower function that
5860 * does similar things.
5861 */
5add95d4 5862SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5863{
48f24c4d 5864 long nice, retval;
1da177e4
LT
5865
5866 /*
5867 * Setpriority might change our priority at the same moment.
5868 * We don't have to worry. Conceptually one call occurs first
5869 * and we have a single winner.
5870 */
e43379f1
MM
5871 if (increment < -40)
5872 increment = -40;
1da177e4
LT
5873 if (increment > 40)
5874 increment = 40;
5875
2b8f836f 5876 nice = TASK_NICE(current) + increment;
1da177e4
LT
5877 if (nice < -20)
5878 nice = -20;
5879 if (nice > 19)
5880 nice = 19;
5881
e43379f1
MM
5882 if (increment < 0 && !can_nice(current, nice))
5883 return -EPERM;
5884
1da177e4
LT
5885 retval = security_task_setnice(current, nice);
5886 if (retval)
5887 return retval;
5888
5889 set_user_nice(current, nice);
5890 return 0;
5891}
5892
5893#endif
5894
5895/**
5896 * task_prio - return the priority value of a given task.
5897 * @p: the task in question.
5898 *
5899 * This is the priority value as seen by users in /proc.
5900 * RT tasks are offset by -200. Normal tasks are centered
5901 * around 0, value goes from -16 to +15.
5902 */
36c8b586 5903int task_prio(const struct task_struct *p)
1da177e4
LT
5904{
5905 return p->prio - MAX_RT_PRIO;
5906}
5907
5908/**
5909 * task_nice - return the nice value of a given task.
5910 * @p: the task in question.
5911 */
36c8b586 5912int task_nice(const struct task_struct *p)
1da177e4
LT
5913{
5914 return TASK_NICE(p);
5915}
150d8bed 5916EXPORT_SYMBOL(task_nice);
1da177e4
LT
5917
5918/**
5919 * idle_cpu - is a given cpu idle currently?
5920 * @cpu: the processor in question.
5921 */
5922int idle_cpu(int cpu)
5923{
5924 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5925}
5926
1da177e4
LT
5927/**
5928 * idle_task - return the idle task for a given cpu.
5929 * @cpu: the processor in question.
5930 */
36c8b586 5931struct task_struct *idle_task(int cpu)
1da177e4
LT
5932{
5933 return cpu_rq(cpu)->idle;
5934}
5935
5936/**
5937 * find_process_by_pid - find a process with a matching PID value.
5938 * @pid: the pid in question.
5939 */
a9957449 5940static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5941{
228ebcbe 5942 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5943}
5944
5945/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5946static void
5947__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5948{
dd41f596 5949 BUG_ON(p->se.on_rq);
48f24c4d 5950
1da177e4 5951 p->policy = policy;
dd41f596
IM
5952 switch (p->policy) {
5953 case SCHED_NORMAL:
5954 case SCHED_BATCH:
5955 case SCHED_IDLE:
5956 p->sched_class = &fair_sched_class;
5957 break;
5958 case SCHED_FIFO:
5959 case SCHED_RR:
5960 p->sched_class = &rt_sched_class;
5961 break;
5962 }
5963
1da177e4 5964 p->rt_priority = prio;
b29739f9
IM
5965 p->normal_prio = normal_prio(p);
5966 /* we are holding p->pi_lock already */
5967 p->prio = rt_mutex_getprio(p);
2dd73a4f 5968 set_load_weight(p);
1da177e4
LT
5969}
5970
c69e8d9c
DH
5971/*
5972 * check the target process has a UID that matches the current process's
5973 */
5974static bool check_same_owner(struct task_struct *p)
5975{
5976 const struct cred *cred = current_cred(), *pcred;
5977 bool match;
5978
5979 rcu_read_lock();
5980 pcred = __task_cred(p);
5981 match = (cred->euid == pcred->euid ||
5982 cred->euid == pcred->uid);
5983 rcu_read_unlock();
5984 return match;
5985}
5986
961ccddd
RR
5987static int __sched_setscheduler(struct task_struct *p, int policy,
5988 struct sched_param *param, bool user)
1da177e4 5989{
83b699ed 5990 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5991 unsigned long flags;
cb469845 5992 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5993 struct rq *rq;
1da177e4 5994
66e5393a
SR
5995 /* may grab non-irq protected spin_locks */
5996 BUG_ON(in_interrupt());
1da177e4
LT
5997recheck:
5998 /* double check policy once rq lock held */
5999 if (policy < 0)
6000 policy = oldpolicy = p->policy;
6001 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
6002 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6003 policy != SCHED_IDLE)
b0a9499c 6004 return -EINVAL;
1da177e4
LT
6005 /*
6006 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
6007 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6008 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
6009 */
6010 if (param->sched_priority < 0 ||
95cdf3b7 6011 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 6012 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 6013 return -EINVAL;
e05606d3 6014 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
6015 return -EINVAL;
6016
37e4ab3f
OC
6017 /*
6018 * Allow unprivileged RT tasks to decrease priority:
6019 */
961ccddd 6020 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 6021 if (rt_policy(policy)) {
8dc3e909 6022 unsigned long rlim_rtprio;
8dc3e909
ON
6023
6024 if (!lock_task_sighand(p, &flags))
6025 return -ESRCH;
6026 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6027 unlock_task_sighand(p, &flags);
6028
6029 /* can't set/change the rt policy */
6030 if (policy != p->policy && !rlim_rtprio)
6031 return -EPERM;
6032
6033 /* can't increase priority */
6034 if (param->sched_priority > p->rt_priority &&
6035 param->sched_priority > rlim_rtprio)
6036 return -EPERM;
6037 }
dd41f596
IM
6038 /*
6039 * Like positive nice levels, dont allow tasks to
6040 * move out of SCHED_IDLE either:
6041 */
6042 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6043 return -EPERM;
5fe1d75f 6044
37e4ab3f 6045 /* can't change other user's priorities */
c69e8d9c 6046 if (!check_same_owner(p))
37e4ab3f
OC
6047 return -EPERM;
6048 }
1da177e4 6049
725aad24 6050 if (user) {
b68aa230 6051#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
6052 /*
6053 * Do not allow realtime tasks into groups that have no runtime
6054 * assigned.
6055 */
9a7e0b18
PZ
6056 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6057 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 6058 return -EPERM;
b68aa230
PZ
6059#endif
6060
725aad24
JF
6061 retval = security_task_setscheduler(p, policy, param);
6062 if (retval)
6063 return retval;
6064 }
6065
b29739f9
IM
6066 /*
6067 * make sure no PI-waiters arrive (or leave) while we are
6068 * changing the priority of the task:
6069 */
6070 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
6071 /*
6072 * To be able to change p->policy safely, the apropriate
6073 * runqueue lock must be held.
6074 */
b29739f9 6075 rq = __task_rq_lock(p);
1da177e4
LT
6076 /* recheck policy now with rq lock held */
6077 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6078 policy = oldpolicy = -1;
b29739f9
IM
6079 __task_rq_unlock(rq);
6080 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6081 goto recheck;
6082 }
2daa3577 6083 update_rq_clock(rq);
dd41f596 6084 on_rq = p->se.on_rq;
051a1d1a 6085 running = task_current(rq, p);
0e1f3483 6086 if (on_rq)
2e1cb74a 6087 deactivate_task(rq, p, 0);
0e1f3483
HS
6088 if (running)
6089 p->sched_class->put_prev_task(rq, p);
f6b53205 6090
1da177e4 6091 oldprio = p->prio;
dd41f596 6092 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 6093
0e1f3483
HS
6094 if (running)
6095 p->sched_class->set_curr_task(rq);
dd41f596
IM
6096 if (on_rq) {
6097 activate_task(rq, p, 0);
cb469845
SR
6098
6099 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 6100 }
b29739f9
IM
6101 __task_rq_unlock(rq);
6102 spin_unlock_irqrestore(&p->pi_lock, flags);
6103
95e02ca9
TG
6104 rt_mutex_adjust_pi(p);
6105
1da177e4
LT
6106 return 0;
6107}
961ccddd
RR
6108
6109/**
6110 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6111 * @p: the task in question.
6112 * @policy: new policy.
6113 * @param: structure containing the new RT priority.
6114 *
6115 * NOTE that the task may be already dead.
6116 */
6117int sched_setscheduler(struct task_struct *p, int policy,
6118 struct sched_param *param)
6119{
6120 return __sched_setscheduler(p, policy, param, true);
6121}
1da177e4
LT
6122EXPORT_SYMBOL_GPL(sched_setscheduler);
6123
961ccddd
RR
6124/**
6125 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6126 * @p: the task in question.
6127 * @policy: new policy.
6128 * @param: structure containing the new RT priority.
6129 *
6130 * Just like sched_setscheduler, only don't bother checking if the
6131 * current context has permission. For example, this is needed in
6132 * stop_machine(): we create temporary high priority worker threads,
6133 * but our caller might not have that capability.
6134 */
6135int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6136 struct sched_param *param)
6137{
6138 return __sched_setscheduler(p, policy, param, false);
6139}
6140
95cdf3b7
IM
6141static int
6142do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 6143{
1da177e4
LT
6144 struct sched_param lparam;
6145 struct task_struct *p;
36c8b586 6146 int retval;
1da177e4
LT
6147
6148 if (!param || pid < 0)
6149 return -EINVAL;
6150 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6151 return -EFAULT;
5fe1d75f
ON
6152
6153 rcu_read_lock();
6154 retval = -ESRCH;
1da177e4 6155 p = find_process_by_pid(pid);
5fe1d75f
ON
6156 if (p != NULL)
6157 retval = sched_setscheduler(p, policy, &lparam);
6158 rcu_read_unlock();
36c8b586 6159
1da177e4
LT
6160 return retval;
6161}
6162
6163/**
6164 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6165 * @pid: the pid in question.
6166 * @policy: new policy.
6167 * @param: structure containing the new RT priority.
6168 */
5add95d4
HC
6169SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6170 struct sched_param __user *, param)
1da177e4 6171{
c21761f1
JB
6172 /* negative values for policy are not valid */
6173 if (policy < 0)
6174 return -EINVAL;
6175
1da177e4
LT
6176 return do_sched_setscheduler(pid, policy, param);
6177}
6178
6179/**
6180 * sys_sched_setparam - set/change the RT priority of a thread
6181 * @pid: the pid in question.
6182 * @param: structure containing the new RT priority.
6183 */
5add95d4 6184SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6185{
6186 return do_sched_setscheduler(pid, -1, param);
6187}
6188
6189/**
6190 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6191 * @pid: the pid in question.
6192 */
5add95d4 6193SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 6194{
36c8b586 6195 struct task_struct *p;
3a5c359a 6196 int retval;
1da177e4
LT
6197
6198 if (pid < 0)
3a5c359a 6199 return -EINVAL;
1da177e4
LT
6200
6201 retval = -ESRCH;
6202 read_lock(&tasklist_lock);
6203 p = find_process_by_pid(pid);
6204 if (p) {
6205 retval = security_task_getscheduler(p);
6206 if (!retval)
6207 retval = p->policy;
6208 }
6209 read_unlock(&tasklist_lock);
1da177e4
LT
6210 return retval;
6211}
6212
6213/**
6214 * sys_sched_getscheduler - get the RT priority of a thread
6215 * @pid: the pid in question.
6216 * @param: structure containing the RT priority.
6217 */
5add95d4 6218SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
6219{
6220 struct sched_param lp;
36c8b586 6221 struct task_struct *p;
3a5c359a 6222 int retval;
1da177e4
LT
6223
6224 if (!param || pid < 0)
3a5c359a 6225 return -EINVAL;
1da177e4
LT
6226
6227 read_lock(&tasklist_lock);
6228 p = find_process_by_pid(pid);
6229 retval = -ESRCH;
6230 if (!p)
6231 goto out_unlock;
6232
6233 retval = security_task_getscheduler(p);
6234 if (retval)
6235 goto out_unlock;
6236
6237 lp.sched_priority = p->rt_priority;
6238 read_unlock(&tasklist_lock);
6239
6240 /*
6241 * This one might sleep, we cannot do it with a spinlock held ...
6242 */
6243 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6244
1da177e4
LT
6245 return retval;
6246
6247out_unlock:
6248 read_unlock(&tasklist_lock);
6249 return retval;
6250}
6251
96f874e2 6252long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 6253{
5a16f3d3 6254 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
6255 struct task_struct *p;
6256 int retval;
1da177e4 6257
95402b38 6258 get_online_cpus();
1da177e4
LT
6259 read_lock(&tasklist_lock);
6260
6261 p = find_process_by_pid(pid);
6262 if (!p) {
6263 read_unlock(&tasklist_lock);
95402b38 6264 put_online_cpus();
1da177e4
LT
6265 return -ESRCH;
6266 }
6267
6268 /*
6269 * It is not safe to call set_cpus_allowed with the
41a2d6cf 6270 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
6271 * usage count and then drop tasklist_lock.
6272 */
6273 get_task_struct(p);
6274 read_unlock(&tasklist_lock);
6275
5a16f3d3
RR
6276 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6277 retval = -ENOMEM;
6278 goto out_put_task;
6279 }
6280 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6281 retval = -ENOMEM;
6282 goto out_free_cpus_allowed;
6283 }
1da177e4 6284 retval = -EPERM;
c69e8d9c 6285 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
6286 goto out_unlock;
6287
e7834f8f
DQ
6288 retval = security_task_setscheduler(p, 0, NULL);
6289 if (retval)
6290 goto out_unlock;
6291
5a16f3d3
RR
6292 cpuset_cpus_allowed(p, cpus_allowed);
6293 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 6294 again:
5a16f3d3 6295 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 6296
8707d8b8 6297 if (!retval) {
5a16f3d3
RR
6298 cpuset_cpus_allowed(p, cpus_allowed);
6299 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
6300 /*
6301 * We must have raced with a concurrent cpuset
6302 * update. Just reset the cpus_allowed to the
6303 * cpuset's cpus_allowed
6304 */
5a16f3d3 6305 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
6306 goto again;
6307 }
6308 }
1da177e4 6309out_unlock:
5a16f3d3
RR
6310 free_cpumask_var(new_mask);
6311out_free_cpus_allowed:
6312 free_cpumask_var(cpus_allowed);
6313out_put_task:
1da177e4 6314 put_task_struct(p);
95402b38 6315 put_online_cpus();
1da177e4
LT
6316 return retval;
6317}
6318
6319static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 6320 struct cpumask *new_mask)
1da177e4 6321{
96f874e2
RR
6322 if (len < cpumask_size())
6323 cpumask_clear(new_mask);
6324 else if (len > cpumask_size())
6325 len = cpumask_size();
6326
1da177e4
LT
6327 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6328}
6329
6330/**
6331 * sys_sched_setaffinity - set the cpu affinity of a process
6332 * @pid: pid of the process
6333 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6334 * @user_mask_ptr: user-space pointer to the new cpu mask
6335 */
5add95d4
HC
6336SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6337 unsigned long __user *, user_mask_ptr)
1da177e4 6338{
5a16f3d3 6339 cpumask_var_t new_mask;
1da177e4
LT
6340 int retval;
6341
5a16f3d3
RR
6342 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6343 return -ENOMEM;
1da177e4 6344
5a16f3d3
RR
6345 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6346 if (retval == 0)
6347 retval = sched_setaffinity(pid, new_mask);
6348 free_cpumask_var(new_mask);
6349 return retval;
1da177e4
LT
6350}
6351
96f874e2 6352long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 6353{
36c8b586 6354 struct task_struct *p;
1da177e4 6355 int retval;
1da177e4 6356
95402b38 6357 get_online_cpus();
1da177e4
LT
6358 read_lock(&tasklist_lock);
6359
6360 retval = -ESRCH;
6361 p = find_process_by_pid(pid);
6362 if (!p)
6363 goto out_unlock;
6364
e7834f8f
DQ
6365 retval = security_task_getscheduler(p);
6366 if (retval)
6367 goto out_unlock;
6368
96f874e2 6369 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
6370
6371out_unlock:
6372 read_unlock(&tasklist_lock);
95402b38 6373 put_online_cpus();
1da177e4 6374
9531b62f 6375 return retval;
1da177e4
LT
6376}
6377
6378/**
6379 * sys_sched_getaffinity - get the cpu affinity of a process
6380 * @pid: pid of the process
6381 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6382 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6383 */
5add95d4
HC
6384SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6385 unsigned long __user *, user_mask_ptr)
1da177e4
LT
6386{
6387 int ret;
f17c8607 6388 cpumask_var_t mask;
1da177e4 6389
f17c8607 6390 if (len < cpumask_size())
1da177e4
LT
6391 return -EINVAL;
6392
f17c8607
RR
6393 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6394 return -ENOMEM;
1da177e4 6395
f17c8607
RR
6396 ret = sched_getaffinity(pid, mask);
6397 if (ret == 0) {
6398 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6399 ret = -EFAULT;
6400 else
6401 ret = cpumask_size();
6402 }
6403 free_cpumask_var(mask);
1da177e4 6404
f17c8607 6405 return ret;
1da177e4
LT
6406}
6407
6408/**
6409 * sys_sched_yield - yield the current processor to other threads.
6410 *
dd41f596
IM
6411 * This function yields the current CPU to other tasks. If there are no
6412 * other threads running on this CPU then this function will return.
1da177e4 6413 */
5add95d4 6414SYSCALL_DEFINE0(sched_yield)
1da177e4 6415{
70b97a7f 6416 struct rq *rq = this_rq_lock();
1da177e4 6417
2d72376b 6418 schedstat_inc(rq, yld_count);
4530d7ab 6419 current->sched_class->yield_task(rq);
1da177e4
LT
6420
6421 /*
6422 * Since we are going to call schedule() anyway, there's
6423 * no need to preempt or enable interrupts:
6424 */
6425 __release(rq->lock);
8a25d5de 6426 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
6427 _raw_spin_unlock(&rq->lock);
6428 preempt_enable_no_resched();
6429
6430 schedule();
6431
6432 return 0;
6433}
6434
e7b38404 6435static void __cond_resched(void)
1da177e4 6436{
8e0a43d8
IM
6437#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6438 __might_sleep(__FILE__, __LINE__);
6439#endif
5bbcfd90
IM
6440 /*
6441 * The BKS might be reacquired before we have dropped
6442 * PREEMPT_ACTIVE, which could trigger a second
6443 * cond_resched() call.
6444 */
1da177e4
LT
6445 do {
6446 add_preempt_count(PREEMPT_ACTIVE);
6447 schedule();
6448 sub_preempt_count(PREEMPT_ACTIVE);
6449 } while (need_resched());
6450}
6451
02b67cc3 6452int __sched _cond_resched(void)
1da177e4 6453{
9414232f
IM
6454 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6455 system_state == SYSTEM_RUNNING) {
1da177e4
LT
6456 __cond_resched();
6457 return 1;
6458 }
6459 return 0;
6460}
02b67cc3 6461EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
6462
6463/*
6464 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6465 * call schedule, and on return reacquire the lock.
6466 *
41a2d6cf 6467 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
6468 * operations here to prevent schedule() from being called twice (once via
6469 * spin_unlock(), once by hand).
6470 */
95cdf3b7 6471int cond_resched_lock(spinlock_t *lock)
1da177e4 6472{
95c354fe 6473 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
6474 int ret = 0;
6475
95c354fe 6476 if (spin_needbreak(lock) || resched) {
1da177e4 6477 spin_unlock(lock);
95c354fe
NP
6478 if (resched && need_resched())
6479 __cond_resched();
6480 else
6481 cpu_relax();
6df3cecb 6482 ret = 1;
1da177e4 6483 spin_lock(lock);
1da177e4 6484 }
6df3cecb 6485 return ret;
1da177e4 6486}
1da177e4
LT
6487EXPORT_SYMBOL(cond_resched_lock);
6488
6489int __sched cond_resched_softirq(void)
6490{
6491 BUG_ON(!in_softirq());
6492
9414232f 6493 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 6494 local_bh_enable();
1da177e4
LT
6495 __cond_resched();
6496 local_bh_disable();
6497 return 1;
6498 }
6499 return 0;
6500}
1da177e4
LT
6501EXPORT_SYMBOL(cond_resched_softirq);
6502
1da177e4
LT
6503/**
6504 * yield - yield the current processor to other threads.
6505 *
72fd4a35 6506 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
6507 * thread runnable and calls sys_sched_yield().
6508 */
6509void __sched yield(void)
6510{
6511 set_current_state(TASK_RUNNING);
6512 sys_sched_yield();
6513}
1da177e4
LT
6514EXPORT_SYMBOL(yield);
6515
6516/*
41a2d6cf 6517 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
6518 * that process accounting knows that this is a task in IO wait state.
6519 *
6520 * But don't do that if it is a deliberate, throttling IO wait (this task
6521 * has set its backing_dev_info: the queue against which it should throttle)
6522 */
6523void __sched io_schedule(void)
6524{
70b97a7f 6525 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 6526
0ff92245 6527 delayacct_blkio_start();
1da177e4
LT
6528 atomic_inc(&rq->nr_iowait);
6529 schedule();
6530 atomic_dec(&rq->nr_iowait);
0ff92245 6531 delayacct_blkio_end();
1da177e4 6532}
1da177e4
LT
6533EXPORT_SYMBOL(io_schedule);
6534
6535long __sched io_schedule_timeout(long timeout)
6536{
70b97a7f 6537 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
6538 long ret;
6539
0ff92245 6540 delayacct_blkio_start();
1da177e4
LT
6541 atomic_inc(&rq->nr_iowait);
6542 ret = schedule_timeout(timeout);
6543 atomic_dec(&rq->nr_iowait);
0ff92245 6544 delayacct_blkio_end();
1da177e4
LT
6545 return ret;
6546}
6547
6548/**
6549 * sys_sched_get_priority_max - return maximum RT priority.
6550 * @policy: scheduling class.
6551 *
6552 * this syscall returns the maximum rt_priority that can be used
6553 * by a given scheduling class.
6554 */
5add95d4 6555SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
6556{
6557 int ret = -EINVAL;
6558
6559 switch (policy) {
6560 case SCHED_FIFO:
6561 case SCHED_RR:
6562 ret = MAX_USER_RT_PRIO-1;
6563 break;
6564 case SCHED_NORMAL:
b0a9499c 6565 case SCHED_BATCH:
dd41f596 6566 case SCHED_IDLE:
1da177e4
LT
6567 ret = 0;
6568 break;
6569 }
6570 return ret;
6571}
6572
6573/**
6574 * sys_sched_get_priority_min - return minimum RT priority.
6575 * @policy: scheduling class.
6576 *
6577 * this syscall returns the minimum rt_priority that can be used
6578 * by a given scheduling class.
6579 */
5add95d4 6580SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
6581{
6582 int ret = -EINVAL;
6583
6584 switch (policy) {
6585 case SCHED_FIFO:
6586 case SCHED_RR:
6587 ret = 1;
6588 break;
6589 case SCHED_NORMAL:
b0a9499c 6590 case SCHED_BATCH:
dd41f596 6591 case SCHED_IDLE:
1da177e4
LT
6592 ret = 0;
6593 }
6594 return ret;
6595}
6596
6597/**
6598 * sys_sched_rr_get_interval - return the default timeslice of a process.
6599 * @pid: pid of the process.
6600 * @interval: userspace pointer to the timeslice value.
6601 *
6602 * this syscall writes the default timeslice value of a given process
6603 * into the user-space timespec buffer. A value of '0' means infinity.
6604 */
17da2bd9 6605SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6606 struct timespec __user *, interval)
1da177e4 6607{
36c8b586 6608 struct task_struct *p;
a4ec24b4 6609 unsigned int time_slice;
3a5c359a 6610 int retval;
1da177e4 6611 struct timespec t;
1da177e4
LT
6612
6613 if (pid < 0)
3a5c359a 6614 return -EINVAL;
1da177e4
LT
6615
6616 retval = -ESRCH;
6617 read_lock(&tasklist_lock);
6618 p = find_process_by_pid(pid);
6619 if (!p)
6620 goto out_unlock;
6621
6622 retval = security_task_getscheduler(p);
6623 if (retval)
6624 goto out_unlock;
6625
77034937
IM
6626 /*
6627 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6628 * tasks that are on an otherwise idle runqueue:
6629 */
6630 time_slice = 0;
6631 if (p->policy == SCHED_RR) {
a4ec24b4 6632 time_slice = DEF_TIMESLICE;
1868f958 6633 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6634 struct sched_entity *se = &p->se;
6635 unsigned long flags;
6636 struct rq *rq;
6637
6638 rq = task_rq_lock(p, &flags);
77034937
IM
6639 if (rq->cfs.load.weight)
6640 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6641 task_rq_unlock(rq, &flags);
6642 }
1da177e4 6643 read_unlock(&tasklist_lock);
a4ec24b4 6644 jiffies_to_timespec(time_slice, &t);
1da177e4 6645 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6646 return retval;
3a5c359a 6647
1da177e4
LT
6648out_unlock:
6649 read_unlock(&tasklist_lock);
6650 return retval;
6651}
6652
7c731e0a 6653static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6654
82a1fcb9 6655void sched_show_task(struct task_struct *p)
1da177e4 6656{
1da177e4 6657 unsigned long free = 0;
36c8b586 6658 unsigned state;
1da177e4 6659
1da177e4 6660 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6661 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6662 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6663#if BITS_PER_LONG == 32
1da177e4 6664 if (state == TASK_RUNNING)
cc4ea795 6665 printk(KERN_CONT " running ");
1da177e4 6666 else
cc4ea795 6667 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6668#else
6669 if (state == TASK_RUNNING)
cc4ea795 6670 printk(KERN_CONT " running task ");
1da177e4 6671 else
cc4ea795 6672 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6673#endif
6674#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 6675 free = stack_not_used(p);
1da177e4 6676#endif
aa47b7e0
DR
6677 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6678 task_pid_nr(p), task_pid_nr(p->real_parent),
6679 (unsigned long)task_thread_info(p)->flags);
1da177e4 6680
5fb5e6de 6681 show_stack(p, NULL);
1da177e4
LT
6682}
6683
e59e2ae2 6684void show_state_filter(unsigned long state_filter)
1da177e4 6685{
36c8b586 6686 struct task_struct *g, *p;
1da177e4 6687
4bd77321
IM
6688#if BITS_PER_LONG == 32
6689 printk(KERN_INFO
6690 " task PC stack pid father\n");
1da177e4 6691#else
4bd77321
IM
6692 printk(KERN_INFO
6693 " task PC stack pid father\n");
1da177e4
LT
6694#endif
6695 read_lock(&tasklist_lock);
6696 do_each_thread(g, p) {
6697 /*
6698 * reset the NMI-timeout, listing all files on a slow
6699 * console might take alot of time:
6700 */
6701 touch_nmi_watchdog();
39bc89fd 6702 if (!state_filter || (p->state & state_filter))
82a1fcb9 6703 sched_show_task(p);
1da177e4
LT
6704 } while_each_thread(g, p);
6705
04c9167f
JF
6706 touch_all_softlockup_watchdogs();
6707
dd41f596
IM
6708#ifdef CONFIG_SCHED_DEBUG
6709 sysrq_sched_debug_show();
6710#endif
1da177e4 6711 read_unlock(&tasklist_lock);
e59e2ae2
IM
6712 /*
6713 * Only show locks if all tasks are dumped:
6714 */
6715 if (state_filter == -1)
6716 debug_show_all_locks();
1da177e4
LT
6717}
6718
1df21055
IM
6719void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6720{
dd41f596 6721 idle->sched_class = &idle_sched_class;
1df21055
IM
6722}
6723
f340c0d1
IM
6724/**
6725 * init_idle - set up an idle thread for a given CPU
6726 * @idle: task in question
6727 * @cpu: cpu the idle task belongs to
6728 *
6729 * NOTE: this function does not set the idle thread's NEED_RESCHED
6730 * flag, to make booting more robust.
6731 */
5c1e1767 6732void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6733{
70b97a7f 6734 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6735 unsigned long flags;
6736
5cbd54ef
IM
6737 spin_lock_irqsave(&rq->lock, flags);
6738
dd41f596
IM
6739 __sched_fork(idle);
6740 idle->se.exec_start = sched_clock();
6741
b29739f9 6742 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6743 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6744 __set_task_cpu(idle, cpu);
1da177e4 6745
1da177e4 6746 rq->curr = rq->idle = idle;
4866cde0
NP
6747#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6748 idle->oncpu = 1;
6749#endif
1da177e4
LT
6750 spin_unlock_irqrestore(&rq->lock, flags);
6751
6752 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6753#if defined(CONFIG_PREEMPT)
6754 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6755#else
a1261f54 6756 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6757#endif
dd41f596
IM
6758 /*
6759 * The idle tasks have their own, simple scheduling class:
6760 */
6761 idle->sched_class = &idle_sched_class;
fb52607a 6762 ftrace_graph_init_task(idle);
1da177e4
LT
6763}
6764
6765/*
6766 * In a system that switches off the HZ timer nohz_cpu_mask
6767 * indicates which cpus entered this state. This is used
6768 * in the rcu update to wait only for active cpus. For system
6769 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6770 * always be CPU_BITS_NONE.
1da177e4 6771 */
6a7b3dc3 6772cpumask_var_t nohz_cpu_mask;
1da177e4 6773
19978ca6
IM
6774/*
6775 * Increase the granularity value when there are more CPUs,
6776 * because with more CPUs the 'effective latency' as visible
6777 * to users decreases. But the relationship is not linear,
6778 * so pick a second-best guess by going with the log2 of the
6779 * number of CPUs.
6780 *
6781 * This idea comes from the SD scheduler of Con Kolivas:
6782 */
6783static inline void sched_init_granularity(void)
6784{
6785 unsigned int factor = 1 + ilog2(num_online_cpus());
6786 const unsigned long limit = 200000000;
6787
6788 sysctl_sched_min_granularity *= factor;
6789 if (sysctl_sched_min_granularity > limit)
6790 sysctl_sched_min_granularity = limit;
6791
6792 sysctl_sched_latency *= factor;
6793 if (sysctl_sched_latency > limit)
6794 sysctl_sched_latency = limit;
6795
6796 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6797
6798 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6799}
6800
1da177e4
LT
6801#ifdef CONFIG_SMP
6802/*
6803 * This is how migration works:
6804 *
70b97a7f 6805 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6806 * runqueue and wake up that CPU's migration thread.
6807 * 2) we down() the locked semaphore => thread blocks.
6808 * 3) migration thread wakes up (implicitly it forces the migrated
6809 * thread off the CPU)
6810 * 4) it gets the migration request and checks whether the migrated
6811 * task is still in the wrong runqueue.
6812 * 5) if it's in the wrong runqueue then the migration thread removes
6813 * it and puts it into the right queue.
6814 * 6) migration thread up()s the semaphore.
6815 * 7) we wake up and the migration is done.
6816 */
6817
6818/*
6819 * Change a given task's CPU affinity. Migrate the thread to a
6820 * proper CPU and schedule it away if the CPU it's executing on
6821 * is removed from the allowed bitmask.
6822 *
6823 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6824 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6825 * call is not atomic; no spinlocks may be held.
6826 */
96f874e2 6827int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6828{
70b97a7f 6829 struct migration_req req;
1da177e4 6830 unsigned long flags;
70b97a7f 6831 struct rq *rq;
48f24c4d 6832 int ret = 0;
1da177e4
LT
6833
6834 rq = task_rq_lock(p, &flags);
96f874e2 6835 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
6836 ret = -EINVAL;
6837 goto out;
6838 }
6839
9985b0ba 6840 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 6841 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
6842 ret = -EINVAL;
6843 goto out;
6844 }
6845
73fe6aae 6846 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6847 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6848 else {
96f874e2
RR
6849 cpumask_copy(&p->cpus_allowed, new_mask);
6850 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6851 }
6852
1da177e4 6853 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6854 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6855 goto out;
6856
1e5ce4f4 6857 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
6858 /* Need help from migration thread: drop lock and wait. */
6859 task_rq_unlock(rq, &flags);
6860 wake_up_process(rq->migration_thread);
6861 wait_for_completion(&req.done);
6862 tlb_migrate_finish(p->mm);
6863 return 0;
6864 }
6865out:
6866 task_rq_unlock(rq, &flags);
48f24c4d 6867
1da177e4
LT
6868 return ret;
6869}
cd8ba7cd 6870EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6871
6872/*
41a2d6cf 6873 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6874 * this because either it can't run here any more (set_cpus_allowed()
6875 * away from this CPU, or CPU going down), or because we're
6876 * attempting to rebalance this task on exec (sched_exec).
6877 *
6878 * So we race with normal scheduler movements, but that's OK, as long
6879 * as the task is no longer on this CPU.
efc30814
KK
6880 *
6881 * Returns non-zero if task was successfully migrated.
1da177e4 6882 */
efc30814 6883static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6884{
70b97a7f 6885 struct rq *rq_dest, *rq_src;
dd41f596 6886 int ret = 0, on_rq;
1da177e4 6887
e761b772 6888 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6889 return ret;
1da177e4
LT
6890
6891 rq_src = cpu_rq(src_cpu);
6892 rq_dest = cpu_rq(dest_cpu);
6893
6894 double_rq_lock(rq_src, rq_dest);
6895 /* Already moved. */
6896 if (task_cpu(p) != src_cpu)
b1e38734 6897 goto done;
1da177e4 6898 /* Affinity changed (again). */
96f874e2 6899 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6900 goto fail;
1da177e4 6901
dd41f596 6902 on_rq = p->se.on_rq;
6e82a3be 6903 if (on_rq)
2e1cb74a 6904 deactivate_task(rq_src, p, 0);
6e82a3be 6905
1da177e4 6906 set_task_cpu(p, dest_cpu);
dd41f596
IM
6907 if (on_rq) {
6908 activate_task(rq_dest, p, 0);
15afe09b 6909 check_preempt_curr(rq_dest, p, 0);
1da177e4 6910 }
b1e38734 6911done:
efc30814 6912 ret = 1;
b1e38734 6913fail:
1da177e4 6914 double_rq_unlock(rq_src, rq_dest);
efc30814 6915 return ret;
1da177e4
LT
6916}
6917
6918/*
6919 * migration_thread - this is a highprio system thread that performs
6920 * thread migration by bumping thread off CPU then 'pushing' onto
6921 * another runqueue.
6922 */
95cdf3b7 6923static int migration_thread(void *data)
1da177e4 6924{
1da177e4 6925 int cpu = (long)data;
70b97a7f 6926 struct rq *rq;
1da177e4
LT
6927
6928 rq = cpu_rq(cpu);
6929 BUG_ON(rq->migration_thread != current);
6930
6931 set_current_state(TASK_INTERRUPTIBLE);
6932 while (!kthread_should_stop()) {
70b97a7f 6933 struct migration_req *req;
1da177e4 6934 struct list_head *head;
1da177e4 6935
1da177e4
LT
6936 spin_lock_irq(&rq->lock);
6937
6938 if (cpu_is_offline(cpu)) {
6939 spin_unlock_irq(&rq->lock);
6940 goto wait_to_die;
6941 }
6942
6943 if (rq->active_balance) {
6944 active_load_balance(rq, cpu);
6945 rq->active_balance = 0;
6946 }
6947
6948 head = &rq->migration_queue;
6949
6950 if (list_empty(head)) {
6951 spin_unlock_irq(&rq->lock);
6952 schedule();
6953 set_current_state(TASK_INTERRUPTIBLE);
6954 continue;
6955 }
70b97a7f 6956 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6957 list_del_init(head->next);
6958
674311d5
NP
6959 spin_unlock(&rq->lock);
6960 __migrate_task(req->task, cpu, req->dest_cpu);
6961 local_irq_enable();
1da177e4
LT
6962
6963 complete(&req->done);
6964 }
6965 __set_current_state(TASK_RUNNING);
6966 return 0;
6967
6968wait_to_die:
6969 /* Wait for kthread_stop */
6970 set_current_state(TASK_INTERRUPTIBLE);
6971 while (!kthread_should_stop()) {
6972 schedule();
6973 set_current_state(TASK_INTERRUPTIBLE);
6974 }
6975 __set_current_state(TASK_RUNNING);
6976 return 0;
6977}
6978
6979#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6980
6981static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6982{
6983 int ret;
6984
6985 local_irq_disable();
6986 ret = __migrate_task(p, src_cpu, dest_cpu);
6987 local_irq_enable();
6988 return ret;
6989}
6990
054b9108 6991/*
3a4fa0a2 6992 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 6993 */
48f24c4d 6994static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6995{
70b97a7f 6996 int dest_cpu;
6ca09dfc 6997 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
6998
6999again:
7000 /* Look for allowed, online CPU in same node. */
7001 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7002 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7003 goto move;
7004
7005 /* Any allowed, online CPU? */
7006 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7007 if (dest_cpu < nr_cpu_ids)
7008 goto move;
7009
7010 /* No more Mr. Nice Guy. */
7011 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
7012 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7013 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 7014
e76bd8d9
RR
7015 /*
7016 * Don't tell them about moving exiting tasks or
7017 * kernel threads (both mm NULL), since they never
7018 * leave kernel.
7019 */
7020 if (p->mm && printk_ratelimit()) {
7021 printk(KERN_INFO "process %d (%s) no "
7022 "longer affine to cpu%d\n",
7023 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 7024 }
e76bd8d9
RR
7025 }
7026
7027move:
7028 /* It can have affinity changed while we were choosing. */
7029 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7030 goto again;
1da177e4
LT
7031}
7032
7033/*
7034 * While a dead CPU has no uninterruptible tasks queued at this point,
7035 * it might still have a nonzero ->nr_uninterruptible counter, because
7036 * for performance reasons the counter is not stricly tracking tasks to
7037 * their home CPUs. So we just add the counter to another CPU's counter,
7038 * to keep the global sum constant after CPU-down:
7039 */
70b97a7f 7040static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 7041{
1e5ce4f4 7042 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
7043 unsigned long flags;
7044
7045 local_irq_save(flags);
7046 double_rq_lock(rq_src, rq_dest);
7047 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7048 rq_src->nr_uninterruptible = 0;
7049 double_rq_unlock(rq_src, rq_dest);
7050 local_irq_restore(flags);
7051}
7052
7053/* Run through task list and migrate tasks from the dead cpu. */
7054static void migrate_live_tasks(int src_cpu)
7055{
48f24c4d 7056 struct task_struct *p, *t;
1da177e4 7057
f7b4cddc 7058 read_lock(&tasklist_lock);
1da177e4 7059
48f24c4d
IM
7060 do_each_thread(t, p) {
7061 if (p == current)
1da177e4
LT
7062 continue;
7063
48f24c4d
IM
7064 if (task_cpu(p) == src_cpu)
7065 move_task_off_dead_cpu(src_cpu, p);
7066 } while_each_thread(t, p);
1da177e4 7067
f7b4cddc 7068 read_unlock(&tasklist_lock);
1da177e4
LT
7069}
7070
dd41f596
IM
7071/*
7072 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
7073 * It does so by boosting its priority to highest possible.
7074 * Used by CPU offline code.
1da177e4
LT
7075 */
7076void sched_idle_next(void)
7077{
48f24c4d 7078 int this_cpu = smp_processor_id();
70b97a7f 7079 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
7080 struct task_struct *p = rq->idle;
7081 unsigned long flags;
7082
7083 /* cpu has to be offline */
48f24c4d 7084 BUG_ON(cpu_online(this_cpu));
1da177e4 7085
48f24c4d
IM
7086 /*
7087 * Strictly not necessary since rest of the CPUs are stopped by now
7088 * and interrupts disabled on the current cpu.
1da177e4
LT
7089 */
7090 spin_lock_irqsave(&rq->lock, flags);
7091
dd41f596 7092 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 7093
94bc9a7b
DA
7094 update_rq_clock(rq);
7095 activate_task(rq, p, 0);
1da177e4
LT
7096
7097 spin_unlock_irqrestore(&rq->lock, flags);
7098}
7099
48f24c4d
IM
7100/*
7101 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
7102 * offline.
7103 */
7104void idle_task_exit(void)
7105{
7106 struct mm_struct *mm = current->active_mm;
7107
7108 BUG_ON(cpu_online(smp_processor_id()));
7109
7110 if (mm != &init_mm)
7111 switch_mm(mm, &init_mm, current);
7112 mmdrop(mm);
7113}
7114
054b9108 7115/* called under rq->lock with disabled interrupts */
36c8b586 7116static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 7117{
70b97a7f 7118 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
7119
7120 /* Must be exiting, otherwise would be on tasklist. */
270f722d 7121 BUG_ON(!p->exit_state);
1da177e4
LT
7122
7123 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 7124 BUG_ON(p->state == TASK_DEAD);
1da177e4 7125
48f24c4d 7126 get_task_struct(p);
1da177e4
LT
7127
7128 /*
7129 * Drop lock around migration; if someone else moves it,
41a2d6cf 7130 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
7131 * fine.
7132 */
f7b4cddc 7133 spin_unlock_irq(&rq->lock);
48f24c4d 7134 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 7135 spin_lock_irq(&rq->lock);
1da177e4 7136
48f24c4d 7137 put_task_struct(p);
1da177e4
LT
7138}
7139
7140/* release_task() removes task from tasklist, so we won't find dead tasks. */
7141static void migrate_dead_tasks(unsigned int dead_cpu)
7142{
70b97a7f 7143 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 7144 struct task_struct *next;
48f24c4d 7145
dd41f596
IM
7146 for ( ; ; ) {
7147 if (!rq->nr_running)
7148 break;
a8e504d2 7149 update_rq_clock(rq);
b67802ea 7150 next = pick_next_task(rq);
dd41f596
IM
7151 if (!next)
7152 break;
79c53799 7153 next->sched_class->put_prev_task(rq, next);
dd41f596 7154 migrate_dead(dead_cpu, next);
e692ab53 7155
1da177e4
LT
7156 }
7157}
dce48a84
TG
7158
7159/*
7160 * remove the tasks which were accounted by rq from calc_load_tasks.
7161 */
7162static void calc_global_load_remove(struct rq *rq)
7163{
7164 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7165}
1da177e4
LT
7166#endif /* CONFIG_HOTPLUG_CPU */
7167
e692ab53
NP
7168#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7169
7170static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
7171 {
7172 .procname = "sched_domain",
c57baf1e 7173 .mode = 0555,
e0361851 7174 },
38605cae 7175 {0, },
e692ab53
NP
7176};
7177
7178static struct ctl_table sd_ctl_root[] = {
e0361851 7179 {
c57baf1e 7180 .ctl_name = CTL_KERN,
e0361851 7181 .procname = "kernel",
c57baf1e 7182 .mode = 0555,
e0361851
AD
7183 .child = sd_ctl_dir,
7184 },
38605cae 7185 {0, },
e692ab53
NP
7186};
7187
7188static struct ctl_table *sd_alloc_ctl_entry(int n)
7189{
7190 struct ctl_table *entry =
5cf9f062 7191 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 7192
e692ab53
NP
7193 return entry;
7194}
7195
6382bc90
MM
7196static void sd_free_ctl_entry(struct ctl_table **tablep)
7197{
cd790076 7198 struct ctl_table *entry;
6382bc90 7199
cd790076
MM
7200 /*
7201 * In the intermediate directories, both the child directory and
7202 * procname are dynamically allocated and could fail but the mode
41a2d6cf 7203 * will always be set. In the lowest directory the names are
cd790076
MM
7204 * static strings and all have proc handlers.
7205 */
7206 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
7207 if (entry->child)
7208 sd_free_ctl_entry(&entry->child);
cd790076
MM
7209 if (entry->proc_handler == NULL)
7210 kfree(entry->procname);
7211 }
6382bc90
MM
7212
7213 kfree(*tablep);
7214 *tablep = NULL;
7215}
7216
e692ab53 7217static void
e0361851 7218set_table_entry(struct ctl_table *entry,
e692ab53
NP
7219 const char *procname, void *data, int maxlen,
7220 mode_t mode, proc_handler *proc_handler)
7221{
e692ab53
NP
7222 entry->procname = procname;
7223 entry->data = data;
7224 entry->maxlen = maxlen;
7225 entry->mode = mode;
7226 entry->proc_handler = proc_handler;
7227}
7228
7229static struct ctl_table *
7230sd_alloc_ctl_domain_table(struct sched_domain *sd)
7231{
a5d8c348 7232 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 7233
ad1cdc1d
MM
7234 if (table == NULL)
7235 return NULL;
7236
e0361851 7237 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 7238 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7239 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 7240 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 7241 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 7242 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7243 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 7244 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7245 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 7246 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7247 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 7248 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7249 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 7250 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7251 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 7252 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 7253 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 7254 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7255 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
7256 &sd->cache_nice_tries,
7257 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 7258 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 7259 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
7260 set_table_entry(&table[11], "name", sd->name,
7261 CORENAME_MAX_SIZE, 0444, proc_dostring);
7262 /* &table[12] is terminator */
e692ab53
NP
7263
7264 return table;
7265}
7266
9a4e7159 7267static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
7268{
7269 struct ctl_table *entry, *table;
7270 struct sched_domain *sd;
7271 int domain_num = 0, i;
7272 char buf[32];
7273
7274 for_each_domain(cpu, sd)
7275 domain_num++;
7276 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
7277 if (table == NULL)
7278 return NULL;
e692ab53
NP
7279
7280 i = 0;
7281 for_each_domain(cpu, sd) {
7282 snprintf(buf, 32, "domain%d", i);
e692ab53 7283 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7284 entry->mode = 0555;
e692ab53
NP
7285 entry->child = sd_alloc_ctl_domain_table(sd);
7286 entry++;
7287 i++;
7288 }
7289 return table;
7290}
7291
7292static struct ctl_table_header *sd_sysctl_header;
6382bc90 7293static void register_sched_domain_sysctl(void)
e692ab53
NP
7294{
7295 int i, cpu_num = num_online_cpus();
7296 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7297 char buf[32];
7298
7378547f
MM
7299 WARN_ON(sd_ctl_dir[0].child);
7300 sd_ctl_dir[0].child = entry;
7301
ad1cdc1d
MM
7302 if (entry == NULL)
7303 return;
7304
97b6ea7b 7305 for_each_online_cpu(i) {
e692ab53 7306 snprintf(buf, 32, "cpu%d", i);
e692ab53 7307 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 7308 entry->mode = 0555;
e692ab53 7309 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 7310 entry++;
e692ab53 7311 }
7378547f
MM
7312
7313 WARN_ON(sd_sysctl_header);
e692ab53
NP
7314 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7315}
6382bc90 7316
7378547f 7317/* may be called multiple times per register */
6382bc90
MM
7318static void unregister_sched_domain_sysctl(void)
7319{
7378547f
MM
7320 if (sd_sysctl_header)
7321 unregister_sysctl_table(sd_sysctl_header);
6382bc90 7322 sd_sysctl_header = NULL;
7378547f
MM
7323 if (sd_ctl_dir[0].child)
7324 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 7325}
e692ab53 7326#else
6382bc90
MM
7327static void register_sched_domain_sysctl(void)
7328{
7329}
7330static void unregister_sched_domain_sysctl(void)
e692ab53
NP
7331{
7332}
7333#endif
7334
1f11eb6a
GH
7335static void set_rq_online(struct rq *rq)
7336{
7337 if (!rq->online) {
7338 const struct sched_class *class;
7339
c6c4927b 7340 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7341 rq->online = 1;
7342
7343 for_each_class(class) {
7344 if (class->rq_online)
7345 class->rq_online(rq);
7346 }
7347 }
7348}
7349
7350static void set_rq_offline(struct rq *rq)
7351{
7352 if (rq->online) {
7353 const struct sched_class *class;
7354
7355 for_each_class(class) {
7356 if (class->rq_offline)
7357 class->rq_offline(rq);
7358 }
7359
c6c4927b 7360 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
7361 rq->online = 0;
7362 }
7363}
7364
1da177e4
LT
7365/*
7366 * migration_call - callback that gets triggered when a CPU is added.
7367 * Here we can start up the necessary migration thread for the new CPU.
7368 */
48f24c4d
IM
7369static int __cpuinit
7370migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 7371{
1da177e4 7372 struct task_struct *p;
48f24c4d 7373 int cpu = (long)hcpu;
1da177e4 7374 unsigned long flags;
70b97a7f 7375 struct rq *rq;
1da177e4
LT
7376
7377 switch (action) {
5be9361c 7378
1da177e4 7379 case CPU_UP_PREPARE:
8bb78442 7380 case CPU_UP_PREPARE_FROZEN:
dd41f596 7381 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
7382 if (IS_ERR(p))
7383 return NOTIFY_BAD;
1da177e4
LT
7384 kthread_bind(p, cpu);
7385 /* Must be high prio: stop_machine expects to yield to it. */
7386 rq = task_rq_lock(p, &flags);
dd41f596 7387 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
7388 task_rq_unlock(rq, &flags);
7389 cpu_rq(cpu)->migration_thread = p;
7390 break;
48f24c4d 7391
1da177e4 7392 case CPU_ONLINE:
8bb78442 7393 case CPU_ONLINE_FROZEN:
3a4fa0a2 7394 /* Strictly unnecessary, as first user will wake it. */
1da177e4 7395 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
7396
7397 /* Update our root-domain */
7398 rq = cpu_rq(cpu);
7399 spin_lock_irqsave(&rq->lock, flags);
dce48a84
TG
7400 rq->calc_load_update = calc_load_update;
7401 rq->calc_load_active = 0;
1f94ef59 7402 if (rq->rd) {
c6c4927b 7403 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
7404
7405 set_rq_online(rq);
1f94ef59
GH
7406 }
7407 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 7408 break;
48f24c4d 7409
1da177e4
LT
7410#ifdef CONFIG_HOTPLUG_CPU
7411 case CPU_UP_CANCELED:
8bb78442 7412 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
7413 if (!cpu_rq(cpu)->migration_thread)
7414 break;
41a2d6cf 7415 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 7416 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 7417 cpumask_any(cpu_online_mask));
1da177e4
LT
7418 kthread_stop(cpu_rq(cpu)->migration_thread);
7419 cpu_rq(cpu)->migration_thread = NULL;
7420 break;
48f24c4d 7421
1da177e4 7422 case CPU_DEAD:
8bb78442 7423 case CPU_DEAD_FROZEN:
470fd646 7424 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
7425 migrate_live_tasks(cpu);
7426 rq = cpu_rq(cpu);
7427 kthread_stop(rq->migration_thread);
7428 rq->migration_thread = NULL;
7429 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 7430 spin_lock_irq(&rq->lock);
a8e504d2 7431 update_rq_clock(rq);
2e1cb74a 7432 deactivate_task(rq, rq->idle, 0);
1da177e4 7433 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
7434 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7435 rq->idle->sched_class = &idle_sched_class;
1da177e4 7436 migrate_dead_tasks(cpu);
d2da272a 7437 spin_unlock_irq(&rq->lock);
470fd646 7438 cpuset_unlock();
1da177e4
LT
7439 migrate_nr_uninterruptible(rq);
7440 BUG_ON(rq->nr_running != 0);
dce48a84 7441 calc_global_load_remove(rq);
41a2d6cf
IM
7442 /*
7443 * No need to migrate the tasks: it was best-effort if
7444 * they didn't take sched_hotcpu_mutex. Just wake up
7445 * the requestors.
7446 */
1da177e4
LT
7447 spin_lock_irq(&rq->lock);
7448 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
7449 struct migration_req *req;
7450
1da177e4 7451 req = list_entry(rq->migration_queue.next,
70b97a7f 7452 struct migration_req, list);
1da177e4 7453 list_del_init(&req->list);
9a2bd244 7454 spin_unlock_irq(&rq->lock);
1da177e4 7455 complete(&req->done);
9a2bd244 7456 spin_lock_irq(&rq->lock);
1da177e4
LT
7457 }
7458 spin_unlock_irq(&rq->lock);
7459 break;
57d885fe 7460
08f503b0
GH
7461 case CPU_DYING:
7462 case CPU_DYING_FROZEN:
57d885fe
GH
7463 /* Update our root-domain */
7464 rq = cpu_rq(cpu);
7465 spin_lock_irqsave(&rq->lock, flags);
7466 if (rq->rd) {
c6c4927b 7467 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 7468 set_rq_offline(rq);
57d885fe
GH
7469 }
7470 spin_unlock_irqrestore(&rq->lock, flags);
7471 break;
1da177e4
LT
7472#endif
7473 }
7474 return NOTIFY_OK;
7475}
7476
7477/* Register at highest priority so that task migration (migrate_all_tasks)
7478 * happens before everything else.
7479 */
26c2143b 7480static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
7481 .notifier_call = migration_call,
7482 .priority = 10
7483};
7484
7babe8db 7485static int __init migration_init(void)
1da177e4
LT
7486{
7487 void *cpu = (void *)(long)smp_processor_id();
07dccf33 7488 int err;
48f24c4d
IM
7489
7490 /* Start one for the boot CPU: */
07dccf33
AM
7491 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7492 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
7493 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7494 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
7495
7496 return err;
1da177e4 7497}
7babe8db 7498early_initcall(migration_init);
1da177e4
LT
7499#endif
7500
7501#ifdef CONFIG_SMP
476f3534 7502
3e9830dc 7503#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 7504
7c16ec58 7505static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 7506 struct cpumask *groupmask)
1da177e4 7507{
4dcf6aff 7508 struct sched_group *group = sd->groups;
434d53b0 7509 char str[256];
1da177e4 7510
968ea6d8 7511 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 7512 cpumask_clear(groupmask);
4dcf6aff
IM
7513
7514 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7515
7516 if (!(sd->flags & SD_LOAD_BALANCE)) {
7517 printk("does not load-balance\n");
7518 if (sd->parent)
7519 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7520 " has parent");
7521 return -1;
41c7ce9a
NP
7522 }
7523
eefd796a 7524 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 7525
758b2cdc 7526 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
7527 printk(KERN_ERR "ERROR: domain->span does not contain "
7528 "CPU%d\n", cpu);
7529 }
758b2cdc 7530 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
7531 printk(KERN_ERR "ERROR: domain->groups does not contain"
7532 " CPU%d\n", cpu);
7533 }
1da177e4 7534
4dcf6aff 7535 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 7536 do {
4dcf6aff
IM
7537 if (!group) {
7538 printk("\n");
7539 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
7540 break;
7541 }
7542
4dcf6aff
IM
7543 if (!group->__cpu_power) {
7544 printk(KERN_CONT "\n");
7545 printk(KERN_ERR "ERROR: domain->cpu_power not "
7546 "set\n");
7547 break;
7548 }
1da177e4 7549
758b2cdc 7550 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
7551 printk(KERN_CONT "\n");
7552 printk(KERN_ERR "ERROR: empty group\n");
7553 break;
7554 }
1da177e4 7555
758b2cdc 7556 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
7557 printk(KERN_CONT "\n");
7558 printk(KERN_ERR "ERROR: repeated CPUs\n");
7559 break;
7560 }
1da177e4 7561
758b2cdc 7562 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 7563
968ea6d8 7564 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf
GS
7565
7566 printk(KERN_CONT " %s", str);
7567 if (group->__cpu_power != SCHED_LOAD_SCALE) {
7568 printk(KERN_CONT " (__cpu_power = %d)",
7569 group->__cpu_power);
7570 }
1da177e4 7571
4dcf6aff
IM
7572 group = group->next;
7573 } while (group != sd->groups);
7574 printk(KERN_CONT "\n");
1da177e4 7575
758b2cdc 7576 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 7577 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 7578
758b2cdc
RR
7579 if (sd->parent &&
7580 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
7581 printk(KERN_ERR "ERROR: parent span is not a superset "
7582 "of domain->span\n");
7583 return 0;
7584}
1da177e4 7585
4dcf6aff
IM
7586static void sched_domain_debug(struct sched_domain *sd, int cpu)
7587{
d5dd3db1 7588 cpumask_var_t groupmask;
4dcf6aff 7589 int level = 0;
1da177e4 7590
4dcf6aff
IM
7591 if (!sd) {
7592 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7593 return;
7594 }
1da177e4 7595
4dcf6aff
IM
7596 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7597
d5dd3db1 7598 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
7599 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7600 return;
7601 }
7602
4dcf6aff 7603 for (;;) {
7c16ec58 7604 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7605 break;
1da177e4
LT
7606 level++;
7607 sd = sd->parent;
33859f7f 7608 if (!sd)
4dcf6aff
IM
7609 break;
7610 }
d5dd3db1 7611 free_cpumask_var(groupmask);
1da177e4 7612}
6d6bc0ad 7613#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7614# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7615#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7616
1a20ff27 7617static int sd_degenerate(struct sched_domain *sd)
245af2c7 7618{
758b2cdc 7619 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7620 return 1;
7621
7622 /* Following flags need at least 2 groups */
7623 if (sd->flags & (SD_LOAD_BALANCE |
7624 SD_BALANCE_NEWIDLE |
7625 SD_BALANCE_FORK |
89c4710e
SS
7626 SD_BALANCE_EXEC |
7627 SD_SHARE_CPUPOWER |
7628 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7629 if (sd->groups != sd->groups->next)
7630 return 0;
7631 }
7632
7633 /* Following flags don't use groups */
7634 if (sd->flags & (SD_WAKE_IDLE |
7635 SD_WAKE_AFFINE |
7636 SD_WAKE_BALANCE))
7637 return 0;
7638
7639 return 1;
7640}
7641
48f24c4d
IM
7642static int
7643sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7644{
7645 unsigned long cflags = sd->flags, pflags = parent->flags;
7646
7647 if (sd_degenerate(parent))
7648 return 1;
7649
758b2cdc 7650 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7651 return 0;
7652
7653 /* Does parent contain flags not in child? */
7654 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7655 if (cflags & SD_WAKE_AFFINE)
7656 pflags &= ~SD_WAKE_BALANCE;
7657 /* Flags needing groups don't count if only 1 group in parent */
7658 if (parent->groups == parent->groups->next) {
7659 pflags &= ~(SD_LOAD_BALANCE |
7660 SD_BALANCE_NEWIDLE |
7661 SD_BALANCE_FORK |
89c4710e
SS
7662 SD_BALANCE_EXEC |
7663 SD_SHARE_CPUPOWER |
7664 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7665 if (nr_node_ids == 1)
7666 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7667 }
7668 if (~cflags & pflags)
7669 return 0;
7670
7671 return 1;
7672}
7673
c6c4927b
RR
7674static void free_rootdomain(struct root_domain *rd)
7675{
68e74568
RR
7676 cpupri_cleanup(&rd->cpupri);
7677
c6c4927b
RR
7678 free_cpumask_var(rd->rto_mask);
7679 free_cpumask_var(rd->online);
7680 free_cpumask_var(rd->span);
7681 kfree(rd);
7682}
7683
57d885fe
GH
7684static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7685{
a0490fa3 7686 struct root_domain *old_rd = NULL;
57d885fe 7687 unsigned long flags;
57d885fe
GH
7688
7689 spin_lock_irqsave(&rq->lock, flags);
7690
7691 if (rq->rd) {
a0490fa3 7692 old_rd = rq->rd;
57d885fe 7693
c6c4927b 7694 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7695 set_rq_offline(rq);
57d885fe 7696
c6c4927b 7697 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7698
a0490fa3
IM
7699 /*
7700 * If we dont want to free the old_rt yet then
7701 * set old_rd to NULL to skip the freeing later
7702 * in this function:
7703 */
7704 if (!atomic_dec_and_test(&old_rd->refcount))
7705 old_rd = NULL;
57d885fe
GH
7706 }
7707
7708 atomic_inc(&rd->refcount);
7709 rq->rd = rd;
7710
c6c4927b
RR
7711 cpumask_set_cpu(rq->cpu, rd->span);
7712 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 7713 set_rq_online(rq);
57d885fe
GH
7714
7715 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7716
7717 if (old_rd)
7718 free_rootdomain(old_rd);
57d885fe
GH
7719}
7720
db2f59c8 7721static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe
GH
7722{
7723 memset(rd, 0, sizeof(*rd));
7724
c6c4927b
RR
7725 if (bootmem) {
7726 alloc_bootmem_cpumask_var(&def_root_domain.span);
7727 alloc_bootmem_cpumask_var(&def_root_domain.online);
7728 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
68e74568 7729 cpupri_init(&rd->cpupri, true);
c6c4927b
RR
7730 return 0;
7731 }
7732
7733 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 7734 goto out;
c6c4927b
RR
7735 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7736 goto free_span;
7737 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7738 goto free_online;
6e0534f2 7739
68e74568
RR
7740 if (cpupri_init(&rd->cpupri, false) != 0)
7741 goto free_rto_mask;
c6c4927b 7742 return 0;
6e0534f2 7743
68e74568
RR
7744free_rto_mask:
7745 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7746free_online:
7747 free_cpumask_var(rd->online);
7748free_span:
7749 free_cpumask_var(rd->span);
0c910d28 7750out:
c6c4927b 7751 return -ENOMEM;
57d885fe
GH
7752}
7753
7754static void init_defrootdomain(void)
7755{
c6c4927b
RR
7756 init_rootdomain(&def_root_domain, true);
7757
57d885fe
GH
7758 atomic_set(&def_root_domain.refcount, 1);
7759}
7760
dc938520 7761static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7762{
7763 struct root_domain *rd;
7764
7765 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7766 if (!rd)
7767 return NULL;
7768
c6c4927b
RR
7769 if (init_rootdomain(rd, false) != 0) {
7770 kfree(rd);
7771 return NULL;
7772 }
57d885fe
GH
7773
7774 return rd;
7775}
7776
1da177e4 7777/*
0eab9146 7778 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7779 * hold the hotplug lock.
7780 */
0eab9146
IM
7781static void
7782cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7783{
70b97a7f 7784 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7785 struct sched_domain *tmp;
7786
7787 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7788 for (tmp = sd; tmp; ) {
245af2c7
SS
7789 struct sched_domain *parent = tmp->parent;
7790 if (!parent)
7791 break;
f29c9b1c 7792
1a848870 7793 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7794 tmp->parent = parent->parent;
1a848870
SS
7795 if (parent->parent)
7796 parent->parent->child = tmp;
f29c9b1c
LZ
7797 } else
7798 tmp = tmp->parent;
245af2c7
SS
7799 }
7800
1a848870 7801 if (sd && sd_degenerate(sd)) {
245af2c7 7802 sd = sd->parent;
1a848870
SS
7803 if (sd)
7804 sd->child = NULL;
7805 }
1da177e4
LT
7806
7807 sched_domain_debug(sd, cpu);
7808
57d885fe 7809 rq_attach_root(rq, rd);
674311d5 7810 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7811}
7812
7813/* cpus with isolated domains */
dcc30a35 7814static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7815
7816/* Setup the mask of cpus configured for isolated domains */
7817static int __init isolated_cpu_setup(char *str)
7818{
968ea6d8 7819 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7820 return 1;
7821}
7822
8927f494 7823__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7824
7825/*
6711cab4
SS
7826 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7827 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7828 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7829 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7830 *
7831 * init_sched_build_groups will build a circular linked list of the groups
7832 * covered by the given span, and will set each group's ->cpumask correctly,
7833 * and ->cpu_power to 0.
7834 */
a616058b 7835static void
96f874e2
RR
7836init_sched_build_groups(const struct cpumask *span,
7837 const struct cpumask *cpu_map,
7838 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7839 struct sched_group **sg,
96f874e2
RR
7840 struct cpumask *tmpmask),
7841 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
7842{
7843 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
7844 int i;
7845
96f874e2 7846 cpumask_clear(covered);
7c16ec58 7847
abcd083a 7848 for_each_cpu(i, span) {
6711cab4 7849 struct sched_group *sg;
7c16ec58 7850 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
7851 int j;
7852
758b2cdc 7853 if (cpumask_test_cpu(i, covered))
1da177e4
LT
7854 continue;
7855
758b2cdc 7856 cpumask_clear(sched_group_cpus(sg));
5517d86b 7857 sg->__cpu_power = 0;
1da177e4 7858
abcd083a 7859 for_each_cpu(j, span) {
7c16ec58 7860 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7861 continue;
7862
96f874e2 7863 cpumask_set_cpu(j, covered);
758b2cdc 7864 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
7865 }
7866 if (!first)
7867 first = sg;
7868 if (last)
7869 last->next = sg;
7870 last = sg;
7871 }
7872 last->next = first;
7873}
7874
9c1cfda2 7875#define SD_NODES_PER_DOMAIN 16
1da177e4 7876
9c1cfda2 7877#ifdef CONFIG_NUMA
198e2f18 7878
9c1cfda2
JH
7879/**
7880 * find_next_best_node - find the next node to include in a sched_domain
7881 * @node: node whose sched_domain we're building
7882 * @used_nodes: nodes already in the sched_domain
7883 *
41a2d6cf 7884 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7885 * finds the closest node not already in the @used_nodes map.
7886 *
7887 * Should use nodemask_t.
7888 */
c5f59f08 7889static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7890{
7891 int i, n, val, min_val, best_node = 0;
7892
7893 min_val = INT_MAX;
7894
076ac2af 7895 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7896 /* Start at @node */
076ac2af 7897 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7898
7899 if (!nr_cpus_node(n))
7900 continue;
7901
7902 /* Skip already used nodes */
c5f59f08 7903 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7904 continue;
7905
7906 /* Simple min distance search */
7907 val = node_distance(node, n);
7908
7909 if (val < min_val) {
7910 min_val = val;
7911 best_node = n;
7912 }
7913 }
7914
c5f59f08 7915 node_set(best_node, *used_nodes);
9c1cfda2
JH
7916 return best_node;
7917}
7918
7919/**
7920 * sched_domain_node_span - get a cpumask for a node's sched_domain
7921 * @node: node whose cpumask we're constructing
73486722 7922 * @span: resulting cpumask
9c1cfda2 7923 *
41a2d6cf 7924 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7925 * should be one that prevents unnecessary balancing, but also spreads tasks
7926 * out optimally.
7927 */
96f874e2 7928static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7929{
c5f59f08 7930 nodemask_t used_nodes;
48f24c4d 7931 int i;
9c1cfda2 7932
6ca09dfc 7933 cpumask_clear(span);
c5f59f08 7934 nodes_clear(used_nodes);
9c1cfda2 7935
6ca09dfc 7936 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7937 node_set(node, used_nodes);
9c1cfda2
JH
7938
7939 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7940 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7941
6ca09dfc 7942 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7943 }
9c1cfda2 7944}
6d6bc0ad 7945#endif /* CONFIG_NUMA */
9c1cfda2 7946
5c45bf27 7947int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7948
6c99e9ad
RR
7949/*
7950 * The cpus mask in sched_group and sched_domain hangs off the end.
7951 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7952 * for nr_cpu_ids < CONFIG_NR_CPUS.
7953 */
7954struct static_sched_group {
7955 struct sched_group sg;
7956 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7957};
7958
7959struct static_sched_domain {
7960 struct sched_domain sd;
7961 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7962};
7963
9c1cfda2 7964/*
48f24c4d 7965 * SMT sched-domains:
9c1cfda2 7966 */
1da177e4 7967#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
7968static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7969static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 7970
41a2d6cf 7971static int
96f874e2
RR
7972cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7973 struct sched_group **sg, struct cpumask *unused)
1da177e4 7974{
6711cab4 7975 if (sg)
6c99e9ad 7976 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
7977 return cpu;
7978}
6d6bc0ad 7979#endif /* CONFIG_SCHED_SMT */
1da177e4 7980
48f24c4d
IM
7981/*
7982 * multi-core sched-domains:
7983 */
1e9f28fa 7984#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
7985static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7986static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 7987#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7988
7989#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7990static int
96f874e2
RR
7991cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7992 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 7993{
6711cab4 7994 int group;
7c16ec58 7995
c69fc56d 7996 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 7997 group = cpumask_first(mask);
6711cab4 7998 if (sg)
6c99e9ad 7999 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 8000 return group;
1e9f28fa
SS
8001}
8002#elif defined(CONFIG_SCHED_MC)
41a2d6cf 8003static int
96f874e2
RR
8004cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8005 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 8006{
6711cab4 8007 if (sg)
6c99e9ad 8008 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
8009 return cpu;
8010}
8011#endif
8012
6c99e9ad
RR
8013static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8014static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 8015
41a2d6cf 8016static int
96f874e2
RR
8017cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8018 struct sched_group **sg, struct cpumask *mask)
1da177e4 8019{
6711cab4 8020 int group;
48f24c4d 8021#ifdef CONFIG_SCHED_MC
6ca09dfc 8022 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 8023 group = cpumask_first(mask);
1e9f28fa 8024#elif defined(CONFIG_SCHED_SMT)
c69fc56d 8025 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
96f874e2 8026 group = cpumask_first(mask);
1da177e4 8027#else
6711cab4 8028 group = cpu;
1da177e4 8029#endif
6711cab4 8030 if (sg)
6c99e9ad 8031 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 8032 return group;
1da177e4
LT
8033}
8034
8035#ifdef CONFIG_NUMA
1da177e4 8036/*
9c1cfda2
JH
8037 * The init_sched_build_groups can't handle what we want to do with node
8038 * groups, so roll our own. Now each node has its own list of groups which
8039 * gets dynamically allocated.
1da177e4 8040 */
62ea9ceb 8041static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 8042static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 8043
62ea9ceb 8044static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 8045static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 8046
96f874e2
RR
8047static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8048 struct sched_group **sg,
8049 struct cpumask *nodemask)
9c1cfda2 8050{
6711cab4
SS
8051 int group;
8052
6ca09dfc 8053 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 8054 group = cpumask_first(nodemask);
6711cab4
SS
8055
8056 if (sg)
6c99e9ad 8057 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 8058 return group;
1da177e4 8059}
6711cab4 8060
08069033
SS
8061static void init_numa_sched_groups_power(struct sched_group *group_head)
8062{
8063 struct sched_group *sg = group_head;
8064 int j;
8065
8066 if (!sg)
8067 return;
3a5c359a 8068 do {
758b2cdc 8069 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 8070 struct sched_domain *sd;
08069033 8071
6c99e9ad 8072 sd = &per_cpu(phys_domains, j).sd;
13318a71 8073 if (j != group_first_cpu(sd->groups)) {
3a5c359a
AK
8074 /*
8075 * Only add "power" once for each
8076 * physical package.
8077 */
8078 continue;
8079 }
08069033 8080
3a5c359a
AK
8081 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
8082 }
8083 sg = sg->next;
8084 } while (sg != group_head);
08069033 8085}
6d6bc0ad 8086#endif /* CONFIG_NUMA */
1da177e4 8087
a616058b 8088#ifdef CONFIG_NUMA
51888ca2 8089/* Free memory allocated for various sched_group structures */
96f874e2
RR
8090static void free_sched_groups(const struct cpumask *cpu_map,
8091 struct cpumask *nodemask)
51888ca2 8092{
a616058b 8093 int cpu, i;
51888ca2 8094
abcd083a 8095 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
8096 struct sched_group **sched_group_nodes
8097 = sched_group_nodes_bycpu[cpu];
8098
51888ca2
SV
8099 if (!sched_group_nodes)
8100 continue;
8101
076ac2af 8102 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
8103 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8104
6ca09dfc 8105 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8106 if (cpumask_empty(nodemask))
51888ca2
SV
8107 continue;
8108
8109 if (sg == NULL)
8110 continue;
8111 sg = sg->next;
8112next_sg:
8113 oldsg = sg;
8114 sg = sg->next;
8115 kfree(oldsg);
8116 if (oldsg != sched_group_nodes[i])
8117 goto next_sg;
8118 }
8119 kfree(sched_group_nodes);
8120 sched_group_nodes_bycpu[cpu] = NULL;
8121 }
51888ca2 8122}
6d6bc0ad 8123#else /* !CONFIG_NUMA */
96f874e2
RR
8124static void free_sched_groups(const struct cpumask *cpu_map,
8125 struct cpumask *nodemask)
a616058b
SS
8126{
8127}
6d6bc0ad 8128#endif /* CONFIG_NUMA */
51888ca2 8129
89c4710e
SS
8130/*
8131 * Initialize sched groups cpu_power.
8132 *
8133 * cpu_power indicates the capacity of sched group, which is used while
8134 * distributing the load between different sched groups in a sched domain.
8135 * Typically cpu_power for all the groups in a sched domain will be same unless
8136 * there are asymmetries in the topology. If there are asymmetries, group
8137 * having more cpu_power will pickup more load compared to the group having
8138 * less cpu_power.
8139 *
8140 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
8141 * the maximum number of tasks a group can handle in the presence of other idle
8142 * or lightly loaded groups in the same sched domain.
8143 */
8144static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8145{
8146 struct sched_domain *child;
8147 struct sched_group *group;
8148
8149 WARN_ON(!sd || !sd->groups);
8150
13318a71 8151 if (cpu != group_first_cpu(sd->groups))
89c4710e
SS
8152 return;
8153
8154 child = sd->child;
8155
5517d86b
ED
8156 sd->groups->__cpu_power = 0;
8157
89c4710e
SS
8158 /*
8159 * For perf policy, if the groups in child domain share resources
8160 * (for example cores sharing some portions of the cache hierarchy
8161 * or SMT), then set this domain groups cpu_power such that each group
8162 * can handle only one task, when there are other idle groups in the
8163 * same sched domain.
8164 */
8165 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
8166 (child->flags &
8167 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 8168 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
8169 return;
8170 }
8171
89c4710e
SS
8172 /*
8173 * add cpu_power of each child group to this groups cpu_power
8174 */
8175 group = child->groups;
8176 do {
5517d86b 8177 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
8178 group = group->next;
8179 } while (group != child->groups);
8180}
8181
7c16ec58
MT
8182/*
8183 * Initializers for schedule domains
8184 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8185 */
8186
a5d8c348
IM
8187#ifdef CONFIG_SCHED_DEBUG
8188# define SD_INIT_NAME(sd, type) sd->name = #type
8189#else
8190# define SD_INIT_NAME(sd, type) do { } while (0)
8191#endif
8192
7c16ec58 8193#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 8194
7c16ec58
MT
8195#define SD_INIT_FUNC(type) \
8196static noinline void sd_init_##type(struct sched_domain *sd) \
8197{ \
8198 memset(sd, 0, sizeof(*sd)); \
8199 *sd = SD_##type##_INIT; \
1d3504fc 8200 sd->level = SD_LV_##type; \
a5d8c348 8201 SD_INIT_NAME(sd, type); \
7c16ec58
MT
8202}
8203
8204SD_INIT_FUNC(CPU)
8205#ifdef CONFIG_NUMA
8206 SD_INIT_FUNC(ALLNODES)
8207 SD_INIT_FUNC(NODE)
8208#endif
8209#ifdef CONFIG_SCHED_SMT
8210 SD_INIT_FUNC(SIBLING)
8211#endif
8212#ifdef CONFIG_SCHED_MC
8213 SD_INIT_FUNC(MC)
8214#endif
8215
1d3504fc
HS
8216static int default_relax_domain_level = -1;
8217
8218static int __init setup_relax_domain_level(char *str)
8219{
30e0e178
LZ
8220 unsigned long val;
8221
8222 val = simple_strtoul(str, NULL, 0);
8223 if (val < SD_LV_MAX)
8224 default_relax_domain_level = val;
8225
1d3504fc
HS
8226 return 1;
8227}
8228__setup("relax_domain_level=", setup_relax_domain_level);
8229
8230static void set_domain_attribute(struct sched_domain *sd,
8231 struct sched_domain_attr *attr)
8232{
8233 int request;
8234
8235 if (!attr || attr->relax_domain_level < 0) {
8236 if (default_relax_domain_level < 0)
8237 return;
8238 else
8239 request = default_relax_domain_level;
8240 } else
8241 request = attr->relax_domain_level;
8242 if (request < sd->level) {
8243 /* turn off idle balance on this domain */
8244 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8245 } else {
8246 /* turn on idle balance on this domain */
8247 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8248 }
8249}
8250
1da177e4 8251/*
1a20ff27
DG
8252 * Build sched domains for a given set of cpus and attach the sched domains
8253 * to the individual cpus
1da177e4 8254 */
96f874e2 8255static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 8256 struct sched_domain_attr *attr)
1da177e4 8257{
3404c8d9 8258 int i, err = -ENOMEM;
57d885fe 8259 struct root_domain *rd;
3404c8d9
RR
8260 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8261 tmpmask;
d1b55138 8262#ifdef CONFIG_NUMA
3404c8d9 8263 cpumask_var_t domainspan, covered, notcovered;
d1b55138 8264 struct sched_group **sched_group_nodes = NULL;
6711cab4 8265 int sd_allnodes = 0;
d1b55138 8266
3404c8d9
RR
8267 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8268 goto out;
8269 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8270 goto free_domainspan;
8271 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8272 goto free_covered;
8273#endif
8274
8275 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8276 goto free_notcovered;
8277 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8278 goto free_nodemask;
8279 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8280 goto free_this_sibling_map;
8281 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8282 goto free_this_core_map;
8283 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8284 goto free_send_covered;
8285
8286#ifdef CONFIG_NUMA
d1b55138
JH
8287 /*
8288 * Allocate the per-node list of sched groups
8289 */
076ac2af 8290 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 8291 GFP_KERNEL);
d1b55138
JH
8292 if (!sched_group_nodes) {
8293 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 8294 goto free_tmpmask;
d1b55138 8295 }
d1b55138 8296#endif
1da177e4 8297
dc938520 8298 rd = alloc_rootdomain();
57d885fe
GH
8299 if (!rd) {
8300 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 8301 goto free_sched_groups;
57d885fe
GH
8302 }
8303
7c16ec58 8304#ifdef CONFIG_NUMA
96f874e2 8305 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
8306#endif
8307
1da177e4 8308 /*
1a20ff27 8309 * Set up domains for cpus specified by the cpu_map.
1da177e4 8310 */
abcd083a 8311 for_each_cpu(i, cpu_map) {
1da177e4 8312 struct sched_domain *sd = NULL, *p;
1da177e4 8313
6ca09dfc 8314 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
8315
8316#ifdef CONFIG_NUMA
96f874e2
RR
8317 if (cpumask_weight(cpu_map) >
8318 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 8319 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 8320 SD_INIT(sd, ALLNODES);
1d3504fc 8321 set_domain_attribute(sd, attr);
758b2cdc 8322 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 8323 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 8324 p = sd;
6711cab4 8325 sd_allnodes = 1;
9c1cfda2
JH
8326 } else
8327 p = NULL;
8328
62ea9ceb 8329 sd = &per_cpu(node_domains, i).sd;
7c16ec58 8330 SD_INIT(sd, NODE);
1d3504fc 8331 set_domain_attribute(sd, attr);
758b2cdc 8332 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 8333 sd->parent = p;
1a848870
SS
8334 if (p)
8335 p->child = sd;
758b2cdc
RR
8336 cpumask_and(sched_domain_span(sd),
8337 sched_domain_span(sd), cpu_map);
1da177e4
LT
8338#endif
8339
8340 p = sd;
6c99e9ad 8341 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 8342 SD_INIT(sd, CPU);
1d3504fc 8343 set_domain_attribute(sd, attr);
758b2cdc 8344 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 8345 sd->parent = p;
1a848870
SS
8346 if (p)
8347 p->child = sd;
7c16ec58 8348 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 8349
1e9f28fa
SS
8350#ifdef CONFIG_SCHED_MC
8351 p = sd;
6c99e9ad 8352 sd = &per_cpu(core_domains, i).sd;
7c16ec58 8353 SD_INIT(sd, MC);
1d3504fc 8354 set_domain_attribute(sd, attr);
6ca09dfc
MT
8355 cpumask_and(sched_domain_span(sd), cpu_map,
8356 cpu_coregroup_mask(i));
1e9f28fa 8357 sd->parent = p;
1a848870 8358 p->child = sd;
7c16ec58 8359 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
8360#endif
8361
1da177e4
LT
8362#ifdef CONFIG_SCHED_SMT
8363 p = sd;
6c99e9ad 8364 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 8365 SD_INIT(sd, SIBLING);
1d3504fc 8366 set_domain_attribute(sd, attr);
758b2cdc 8367 cpumask_and(sched_domain_span(sd),
c69fc56d 8368 topology_thread_cpumask(i), cpu_map);
1da177e4 8369 sd->parent = p;
1a848870 8370 p->child = sd;
7c16ec58 8371 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
8372#endif
8373 }
8374
8375#ifdef CONFIG_SCHED_SMT
8376 /* Set up CPU (sibling) groups */
abcd083a 8377 for_each_cpu(i, cpu_map) {
96f874e2 8378 cpumask_and(this_sibling_map,
c69fc56d 8379 topology_thread_cpumask(i), cpu_map);
96f874e2 8380 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
8381 continue;
8382
dd41f596 8383 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
8384 &cpu_to_cpu_group,
8385 send_covered, tmpmask);
1da177e4
LT
8386 }
8387#endif
8388
1e9f28fa
SS
8389#ifdef CONFIG_SCHED_MC
8390 /* Set up multi-core groups */
abcd083a 8391 for_each_cpu(i, cpu_map) {
6ca09dfc 8392 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 8393 if (i != cpumask_first(this_core_map))
1e9f28fa 8394 continue;
7c16ec58 8395
dd41f596 8396 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
8397 &cpu_to_core_group,
8398 send_covered, tmpmask);
1e9f28fa
SS
8399 }
8400#endif
8401
1da177e4 8402 /* Set up physical groups */
076ac2af 8403 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 8404 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8405 if (cpumask_empty(nodemask))
1da177e4
LT
8406 continue;
8407
7c16ec58
MT
8408 init_sched_build_groups(nodemask, cpu_map,
8409 &cpu_to_phys_group,
8410 send_covered, tmpmask);
1da177e4
LT
8411 }
8412
8413#ifdef CONFIG_NUMA
8414 /* Set up node groups */
7c16ec58 8415 if (sd_allnodes) {
7c16ec58
MT
8416 init_sched_build_groups(cpu_map, cpu_map,
8417 &cpu_to_allnodes_group,
8418 send_covered, tmpmask);
8419 }
9c1cfda2 8420
076ac2af 8421 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
8422 /* Set up node groups */
8423 struct sched_group *sg, *prev;
9c1cfda2
JH
8424 int j;
8425
96f874e2 8426 cpumask_clear(covered);
6ca09dfc 8427 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 8428 if (cpumask_empty(nodemask)) {
d1b55138 8429 sched_group_nodes[i] = NULL;
9c1cfda2 8430 continue;
d1b55138 8431 }
9c1cfda2 8432
4bdbaad3 8433 sched_domain_node_span(i, domainspan);
96f874e2 8434 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 8435
6c99e9ad
RR
8436 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8437 GFP_KERNEL, i);
51888ca2
SV
8438 if (!sg) {
8439 printk(KERN_WARNING "Can not alloc domain group for "
8440 "node %d\n", i);
8441 goto error;
8442 }
9c1cfda2 8443 sched_group_nodes[i] = sg;
abcd083a 8444 for_each_cpu(j, nodemask) {
9c1cfda2 8445 struct sched_domain *sd;
9761eea8 8446
62ea9ceb 8447 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 8448 sd->groups = sg;
9c1cfda2 8449 }
5517d86b 8450 sg->__cpu_power = 0;
758b2cdc 8451 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 8452 sg->next = sg;
96f874e2 8453 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
8454 prev = sg;
8455
076ac2af 8456 for (j = 0; j < nr_node_ids; j++) {
076ac2af 8457 int n = (i + j) % nr_node_ids;
9c1cfda2 8458
96f874e2
RR
8459 cpumask_complement(notcovered, covered);
8460 cpumask_and(tmpmask, notcovered, cpu_map);
8461 cpumask_and(tmpmask, tmpmask, domainspan);
8462 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8463 break;
8464
6ca09dfc 8465 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 8466 if (cpumask_empty(tmpmask))
9c1cfda2
JH
8467 continue;
8468
6c99e9ad
RR
8469 sg = kmalloc_node(sizeof(struct sched_group) +
8470 cpumask_size(),
15f0b676 8471 GFP_KERNEL, i);
9c1cfda2
JH
8472 if (!sg) {
8473 printk(KERN_WARNING
8474 "Can not alloc domain group for node %d\n", j);
51888ca2 8475 goto error;
9c1cfda2 8476 }
5517d86b 8477 sg->__cpu_power = 0;
758b2cdc 8478 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 8479 sg->next = prev->next;
96f874e2 8480 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
8481 prev->next = sg;
8482 prev = sg;
8483 }
9c1cfda2 8484 }
1da177e4
LT
8485#endif
8486
8487 /* Calculate CPU power for physical packages and nodes */
5c45bf27 8488#ifdef CONFIG_SCHED_SMT
abcd083a 8489 for_each_cpu(i, cpu_map) {
6c99e9ad 8490 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 8491
89c4710e 8492 init_sched_groups_power(i, sd);
5c45bf27 8493 }
1da177e4 8494#endif
1e9f28fa 8495#ifdef CONFIG_SCHED_MC
abcd083a 8496 for_each_cpu(i, cpu_map) {
6c99e9ad 8497 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 8498
89c4710e 8499 init_sched_groups_power(i, sd);
5c45bf27
SS
8500 }
8501#endif
1e9f28fa 8502
abcd083a 8503 for_each_cpu(i, cpu_map) {
6c99e9ad 8504 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 8505
89c4710e 8506 init_sched_groups_power(i, sd);
1da177e4
LT
8507 }
8508
9c1cfda2 8509#ifdef CONFIG_NUMA
076ac2af 8510 for (i = 0; i < nr_node_ids; i++)
08069033 8511 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 8512
6711cab4
SS
8513 if (sd_allnodes) {
8514 struct sched_group *sg;
f712c0c7 8515
96f874e2 8516 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 8517 tmpmask);
f712c0c7
SS
8518 init_numa_sched_groups_power(sg);
8519 }
9c1cfda2
JH
8520#endif
8521
1da177e4 8522 /* Attach the domains */
abcd083a 8523 for_each_cpu(i, cpu_map) {
1da177e4
LT
8524 struct sched_domain *sd;
8525#ifdef CONFIG_SCHED_SMT
6c99e9ad 8526 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 8527#elif defined(CONFIG_SCHED_MC)
6c99e9ad 8528 sd = &per_cpu(core_domains, i).sd;
1da177e4 8529#else
6c99e9ad 8530 sd = &per_cpu(phys_domains, i).sd;
1da177e4 8531#endif
57d885fe 8532 cpu_attach_domain(sd, rd, i);
1da177e4 8533 }
51888ca2 8534
3404c8d9
RR
8535 err = 0;
8536
8537free_tmpmask:
8538 free_cpumask_var(tmpmask);
8539free_send_covered:
8540 free_cpumask_var(send_covered);
8541free_this_core_map:
8542 free_cpumask_var(this_core_map);
8543free_this_sibling_map:
8544 free_cpumask_var(this_sibling_map);
8545free_nodemask:
8546 free_cpumask_var(nodemask);
8547free_notcovered:
8548#ifdef CONFIG_NUMA
8549 free_cpumask_var(notcovered);
8550free_covered:
8551 free_cpumask_var(covered);
8552free_domainspan:
8553 free_cpumask_var(domainspan);
8554out:
8555#endif
8556 return err;
8557
8558free_sched_groups:
8559#ifdef CONFIG_NUMA
8560 kfree(sched_group_nodes);
8561#endif
8562 goto free_tmpmask;
51888ca2 8563
a616058b 8564#ifdef CONFIG_NUMA
51888ca2 8565error:
7c16ec58 8566 free_sched_groups(cpu_map, tmpmask);
c6c4927b 8567 free_rootdomain(rd);
3404c8d9 8568 goto free_tmpmask;
a616058b 8569#endif
1da177e4 8570}
029190c5 8571
96f874e2 8572static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
8573{
8574 return __build_sched_domains(cpu_map, NULL);
8575}
8576
96f874e2 8577static struct cpumask *doms_cur; /* current sched domains */
029190c5 8578static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
8579static struct sched_domain_attr *dattr_cur;
8580 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
8581
8582/*
8583 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
8584 * cpumask) fails, then fallback to a single sched domain,
8585 * as determined by the single cpumask fallback_doms.
029190c5 8586 */
4212823f 8587static cpumask_var_t fallback_doms;
029190c5 8588
ee79d1bd
HC
8589/*
8590 * arch_update_cpu_topology lets virtualized architectures update the
8591 * cpu core maps. It is supposed to return 1 if the topology changed
8592 * or 0 if it stayed the same.
8593 */
8594int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 8595{
ee79d1bd 8596 return 0;
22e52b07
HC
8597}
8598
1a20ff27 8599/*
41a2d6cf 8600 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
8601 * For now this just excludes isolated cpus, but could be used to
8602 * exclude other special cases in the future.
1a20ff27 8603 */
96f874e2 8604static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8605{
7378547f
MM
8606 int err;
8607
22e52b07 8608 arch_update_cpu_topology();
029190c5 8609 ndoms_cur = 1;
96f874e2 8610 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8611 if (!doms_cur)
4212823f 8612 doms_cur = fallback_doms;
dcc30a35 8613 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8614 dattr_cur = NULL;
7378547f 8615 err = build_sched_domains(doms_cur);
6382bc90 8616 register_sched_domain_sysctl();
7378547f
MM
8617
8618 return err;
1a20ff27
DG
8619}
8620
96f874e2
RR
8621static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8622 struct cpumask *tmpmask)
1da177e4 8623{
7c16ec58 8624 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8625}
1da177e4 8626
1a20ff27
DG
8627/*
8628 * Detach sched domains from a group of cpus specified in cpu_map
8629 * These cpus will now be attached to the NULL domain
8630 */
96f874e2 8631static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8632{
96f874e2
RR
8633 /* Save because hotplug lock held. */
8634 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8635 int i;
8636
abcd083a 8637 for_each_cpu(i, cpu_map)
57d885fe 8638 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8639 synchronize_sched();
96f874e2 8640 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8641}
8642
1d3504fc
HS
8643/* handle null as "default" */
8644static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8645 struct sched_domain_attr *new, int idx_new)
8646{
8647 struct sched_domain_attr tmp;
8648
8649 /* fast path */
8650 if (!new && !cur)
8651 return 1;
8652
8653 tmp = SD_ATTR_INIT;
8654 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8655 new ? (new + idx_new) : &tmp,
8656 sizeof(struct sched_domain_attr));
8657}
8658
029190c5
PJ
8659/*
8660 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8661 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8662 * doms_new[] to the current sched domain partitioning, doms_cur[].
8663 * It destroys each deleted domain and builds each new domain.
8664 *
96f874e2 8665 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8666 * The masks don't intersect (don't overlap.) We should setup one
8667 * sched domain for each mask. CPUs not in any of the cpumasks will
8668 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8669 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8670 * it as it is.
8671 *
41a2d6cf
IM
8672 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8673 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8674 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8675 * ndoms_new == 1, and partition_sched_domains() will fallback to
8676 * the single partition 'fallback_doms', it also forces the domains
8677 * to be rebuilt.
029190c5 8678 *
96f874e2 8679 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8680 * ndoms_new == 0 is a special case for destroying existing domains,
8681 * and it will not create the default domain.
dfb512ec 8682 *
029190c5
PJ
8683 * Call with hotplug lock held
8684 */
96f874e2
RR
8685/* FIXME: Change to struct cpumask *doms_new[] */
8686void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8687 struct sched_domain_attr *dattr_new)
029190c5 8688{
dfb512ec 8689 int i, j, n;
d65bd5ec 8690 int new_topology;
029190c5 8691
712555ee 8692 mutex_lock(&sched_domains_mutex);
a1835615 8693
7378547f
MM
8694 /* always unregister in case we don't destroy any domains */
8695 unregister_sched_domain_sysctl();
8696
d65bd5ec
HC
8697 /* Let architecture update cpu core mappings. */
8698 new_topology = arch_update_cpu_topology();
8699
dfb512ec 8700 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8701
8702 /* Destroy deleted domains */
8703 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8704 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8705 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8706 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8707 goto match1;
8708 }
8709 /* no match - a current sched domain not in new doms_new[] */
8710 detach_destroy_domains(doms_cur + i);
8711match1:
8712 ;
8713 }
8714
e761b772
MK
8715 if (doms_new == NULL) {
8716 ndoms_cur = 0;
4212823f 8717 doms_new = fallback_doms;
dcc30a35 8718 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8719 WARN_ON_ONCE(dattr_new);
e761b772
MK
8720 }
8721
029190c5
PJ
8722 /* Build new domains */
8723 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8724 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8725 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8726 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8727 goto match2;
8728 }
8729 /* no match - add a new doms_new */
1d3504fc
HS
8730 __build_sched_domains(doms_new + i,
8731 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8732match2:
8733 ;
8734 }
8735
8736 /* Remember the new sched domains */
4212823f 8737 if (doms_cur != fallback_doms)
029190c5 8738 kfree(doms_cur);
1d3504fc 8739 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8740 doms_cur = doms_new;
1d3504fc 8741 dattr_cur = dattr_new;
029190c5 8742 ndoms_cur = ndoms_new;
7378547f
MM
8743
8744 register_sched_domain_sysctl();
a1835615 8745
712555ee 8746 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8747}
8748
5c45bf27 8749#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 8750static void arch_reinit_sched_domains(void)
5c45bf27 8751{
95402b38 8752 get_online_cpus();
dfb512ec
MK
8753
8754 /* Destroy domains first to force the rebuild */
8755 partition_sched_domains(0, NULL, NULL);
8756
e761b772 8757 rebuild_sched_domains();
95402b38 8758 put_online_cpus();
5c45bf27
SS
8759}
8760
8761static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8762{
afb8a9b7 8763 unsigned int level = 0;
5c45bf27 8764
afb8a9b7
GS
8765 if (sscanf(buf, "%u", &level) != 1)
8766 return -EINVAL;
8767
8768 /*
8769 * level is always be positive so don't check for
8770 * level < POWERSAVINGS_BALANCE_NONE which is 0
8771 * What happens on 0 or 1 byte write,
8772 * need to check for count as well?
8773 */
8774
8775 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8776 return -EINVAL;
8777
8778 if (smt)
afb8a9b7 8779 sched_smt_power_savings = level;
5c45bf27 8780 else
afb8a9b7 8781 sched_mc_power_savings = level;
5c45bf27 8782
c70f22d2 8783 arch_reinit_sched_domains();
5c45bf27 8784
c70f22d2 8785 return count;
5c45bf27
SS
8786}
8787
5c45bf27 8788#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8789static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8790 char *page)
5c45bf27
SS
8791{
8792 return sprintf(page, "%u\n", sched_mc_power_savings);
8793}
f718cd4a 8794static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8795 const char *buf, size_t count)
5c45bf27
SS
8796{
8797 return sched_power_savings_store(buf, count, 0);
8798}
f718cd4a
AK
8799static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8800 sched_mc_power_savings_show,
8801 sched_mc_power_savings_store);
5c45bf27
SS
8802#endif
8803
8804#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8805static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8806 char *page)
5c45bf27
SS
8807{
8808 return sprintf(page, "%u\n", sched_smt_power_savings);
8809}
f718cd4a 8810static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8811 const char *buf, size_t count)
5c45bf27
SS
8812{
8813 return sched_power_savings_store(buf, count, 1);
8814}
f718cd4a
AK
8815static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8816 sched_smt_power_savings_show,
6707de00
AB
8817 sched_smt_power_savings_store);
8818#endif
8819
39aac648 8820int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
8821{
8822 int err = 0;
8823
8824#ifdef CONFIG_SCHED_SMT
8825 if (smt_capable())
8826 err = sysfs_create_file(&cls->kset.kobj,
8827 &attr_sched_smt_power_savings.attr);
8828#endif
8829#ifdef CONFIG_SCHED_MC
8830 if (!err && mc_capable())
8831 err = sysfs_create_file(&cls->kset.kobj,
8832 &attr_sched_mc_power_savings.attr);
8833#endif
8834 return err;
8835}
6d6bc0ad 8836#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8837
e761b772 8838#ifndef CONFIG_CPUSETS
1da177e4 8839/*
e761b772
MK
8840 * Add online and remove offline CPUs from the scheduler domains.
8841 * When cpusets are enabled they take over this function.
1da177e4
LT
8842 */
8843static int update_sched_domains(struct notifier_block *nfb,
8844 unsigned long action, void *hcpu)
e761b772
MK
8845{
8846 switch (action) {
8847 case CPU_ONLINE:
8848 case CPU_ONLINE_FROZEN:
8849 case CPU_DEAD:
8850 case CPU_DEAD_FROZEN:
dfb512ec 8851 partition_sched_domains(1, NULL, NULL);
e761b772
MK
8852 return NOTIFY_OK;
8853
8854 default:
8855 return NOTIFY_DONE;
8856 }
8857}
8858#endif
8859
8860static int update_runtime(struct notifier_block *nfb,
8861 unsigned long action, void *hcpu)
1da177e4 8862{
7def2be1
PZ
8863 int cpu = (int)(long)hcpu;
8864
1da177e4 8865 switch (action) {
1da177e4 8866 case CPU_DOWN_PREPARE:
8bb78442 8867 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8868 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8869 return NOTIFY_OK;
8870
1da177e4 8871 case CPU_DOWN_FAILED:
8bb78442 8872 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8873 case CPU_ONLINE:
8bb78442 8874 case CPU_ONLINE_FROZEN:
7def2be1 8875 enable_runtime(cpu_rq(cpu));
e761b772
MK
8876 return NOTIFY_OK;
8877
1da177e4
LT
8878 default:
8879 return NOTIFY_DONE;
8880 }
1da177e4 8881}
1da177e4
LT
8882
8883void __init sched_init_smp(void)
8884{
dcc30a35
RR
8885 cpumask_var_t non_isolated_cpus;
8886
8887 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 8888
434d53b0
MT
8889#if defined(CONFIG_NUMA)
8890 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8891 GFP_KERNEL);
8892 BUG_ON(sched_group_nodes_bycpu == NULL);
8893#endif
95402b38 8894 get_online_cpus();
712555ee 8895 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
8896 arch_init_sched_domains(cpu_online_mask);
8897 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8898 if (cpumask_empty(non_isolated_cpus))
8899 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8900 mutex_unlock(&sched_domains_mutex);
95402b38 8901 put_online_cpus();
e761b772
MK
8902
8903#ifndef CONFIG_CPUSETS
1da177e4
LT
8904 /* XXX: Theoretical race here - CPU may be hotplugged now */
8905 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8906#endif
8907
8908 /* RT runtime code needs to handle some hotplug events */
8909 hotcpu_notifier(update_runtime, 0);
8910
b328ca18 8911 init_hrtick();
5c1e1767
NP
8912
8913 /* Move init over to a non-isolated CPU */
dcc30a35 8914 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8915 BUG();
19978ca6 8916 sched_init_granularity();
dcc30a35 8917 free_cpumask_var(non_isolated_cpus);
4212823f
RR
8918
8919 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 8920 init_sched_rt_class();
1da177e4
LT
8921}
8922#else
8923void __init sched_init_smp(void)
8924{
19978ca6 8925 sched_init_granularity();
1da177e4
LT
8926}
8927#endif /* CONFIG_SMP */
8928
8929int in_sched_functions(unsigned long addr)
8930{
1da177e4
LT
8931 return in_lock_functions(addr) ||
8932 (addr >= (unsigned long)__sched_text_start
8933 && addr < (unsigned long)__sched_text_end);
8934}
8935
a9957449 8936static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8937{
8938 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8939 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8940#ifdef CONFIG_FAIR_GROUP_SCHED
8941 cfs_rq->rq = rq;
8942#endif
67e9fb2a 8943 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8944}
8945
fa85ae24
PZ
8946static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8947{
8948 struct rt_prio_array *array;
8949 int i;
8950
8951 array = &rt_rq->active;
8952 for (i = 0; i < MAX_RT_PRIO; i++) {
8953 INIT_LIST_HEAD(array->queue + i);
8954 __clear_bit(i, array->bitmap);
8955 }
8956 /* delimiter for bitsearch: */
8957 __set_bit(MAX_RT_PRIO, array->bitmap);
8958
052f1dc7 8959#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 8960 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 8961#ifdef CONFIG_SMP
e864c499 8962 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 8963#endif
48d5e258 8964#endif
fa85ae24
PZ
8965#ifdef CONFIG_SMP
8966 rt_rq->rt_nr_migratory = 0;
fa85ae24 8967 rt_rq->overloaded = 0;
917b627d 8968 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
fa85ae24
PZ
8969#endif
8970
8971 rt_rq->rt_time = 0;
8972 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8973 rt_rq->rt_runtime = 0;
8974 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8975
052f1dc7 8976#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8977 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8978 rt_rq->rq = rq;
8979#endif
fa85ae24
PZ
8980}
8981
6f505b16 8982#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8983static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8984 struct sched_entity *se, int cpu, int add,
8985 struct sched_entity *parent)
6f505b16 8986{
ec7dc8ac 8987 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8988 tg->cfs_rq[cpu] = cfs_rq;
8989 init_cfs_rq(cfs_rq, rq);
8990 cfs_rq->tg = tg;
8991 if (add)
8992 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8993
8994 tg->se[cpu] = se;
354d60c2
DG
8995 /* se could be NULL for init_task_group */
8996 if (!se)
8997 return;
8998
ec7dc8ac
DG
8999 if (!parent)
9000 se->cfs_rq = &rq->cfs;
9001 else
9002 se->cfs_rq = parent->my_q;
9003
6f505b16
PZ
9004 se->my_q = cfs_rq;
9005 se->load.weight = tg->shares;
e05510d0 9006 se->load.inv_weight = 0;
ec7dc8ac 9007 se->parent = parent;
6f505b16 9008}
052f1dc7 9009#endif
6f505b16 9010
052f1dc7 9011#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
9012static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9013 struct sched_rt_entity *rt_se, int cpu, int add,
9014 struct sched_rt_entity *parent)
6f505b16 9015{
ec7dc8ac
DG
9016 struct rq *rq = cpu_rq(cpu);
9017
6f505b16
PZ
9018 tg->rt_rq[cpu] = rt_rq;
9019 init_rt_rq(rt_rq, rq);
9020 rt_rq->tg = tg;
9021 rt_rq->rt_se = rt_se;
ac086bc2 9022 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
9023 if (add)
9024 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9025
9026 tg->rt_se[cpu] = rt_se;
354d60c2
DG
9027 if (!rt_se)
9028 return;
9029
ec7dc8ac
DG
9030 if (!parent)
9031 rt_se->rt_rq = &rq->rt;
9032 else
9033 rt_se->rt_rq = parent->my_q;
9034
6f505b16 9035 rt_se->my_q = rt_rq;
ec7dc8ac 9036 rt_se->parent = parent;
6f505b16
PZ
9037 INIT_LIST_HEAD(&rt_se->run_list);
9038}
9039#endif
9040
1da177e4
LT
9041void __init sched_init(void)
9042{
dd41f596 9043 int i, j;
434d53b0
MT
9044 unsigned long alloc_size = 0, ptr;
9045
9046#ifdef CONFIG_FAIR_GROUP_SCHED
9047 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9048#endif
9049#ifdef CONFIG_RT_GROUP_SCHED
9050 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9051#endif
9052#ifdef CONFIG_USER_SCHED
9053 alloc_size *= 2;
df7c8e84
RR
9054#endif
9055#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 9056 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0
MT
9057#endif
9058 /*
9059 * As sched_init() is called before page_alloc is setup,
9060 * we use alloc_bootmem().
9061 */
9062 if (alloc_size) {
5a9d3225 9063 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
9064
9065#ifdef CONFIG_FAIR_GROUP_SCHED
9066 init_task_group.se = (struct sched_entity **)ptr;
9067 ptr += nr_cpu_ids * sizeof(void **);
9068
9069 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9070 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
9071
9072#ifdef CONFIG_USER_SCHED
9073 root_task_group.se = (struct sched_entity **)ptr;
9074 ptr += nr_cpu_ids * sizeof(void **);
9075
9076 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9077 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9078#endif /* CONFIG_USER_SCHED */
9079#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
9080#ifdef CONFIG_RT_GROUP_SCHED
9081 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9082 ptr += nr_cpu_ids * sizeof(void **);
9083
9084 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
9085 ptr += nr_cpu_ids * sizeof(void **);
9086
9087#ifdef CONFIG_USER_SCHED
9088 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9089 ptr += nr_cpu_ids * sizeof(void **);
9090
9091 root_task_group.rt_rq = (struct rt_rq **)ptr;
9092 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
9093#endif /* CONFIG_USER_SCHED */
9094#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
9095#ifdef CONFIG_CPUMASK_OFFSTACK
9096 for_each_possible_cpu(i) {
9097 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9098 ptr += cpumask_size();
9099 }
9100#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 9101 }
dd41f596 9102
57d885fe
GH
9103#ifdef CONFIG_SMP
9104 init_defrootdomain();
9105#endif
9106
d0b27fa7
PZ
9107 init_rt_bandwidth(&def_rt_bandwidth,
9108 global_rt_period(), global_rt_runtime());
9109
9110#ifdef CONFIG_RT_GROUP_SCHED
9111 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9112 global_rt_period(), global_rt_runtime());
eff766a6
PZ
9113#ifdef CONFIG_USER_SCHED
9114 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9115 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
9116#endif /* CONFIG_USER_SCHED */
9117#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 9118
052f1dc7 9119#ifdef CONFIG_GROUP_SCHED
6f505b16 9120 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
9121 INIT_LIST_HEAD(&init_task_group.children);
9122
9123#ifdef CONFIG_USER_SCHED
9124 INIT_LIST_HEAD(&root_task_group.children);
9125 init_task_group.parent = &root_task_group;
9126 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
9127#endif /* CONFIG_USER_SCHED */
9128#endif /* CONFIG_GROUP_SCHED */
6f505b16 9129
0a945022 9130 for_each_possible_cpu(i) {
70b97a7f 9131 struct rq *rq;
1da177e4
LT
9132
9133 rq = cpu_rq(i);
9134 spin_lock_init(&rq->lock);
7897986b 9135 rq->nr_running = 0;
dce48a84
TG
9136 rq->calc_load_active = 0;
9137 rq->calc_load_update = jiffies + LOAD_FREQ;
dd41f596 9138 init_cfs_rq(&rq->cfs, rq);
6f505b16 9139 init_rt_rq(&rq->rt, rq);
dd41f596 9140#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 9141 init_task_group.shares = init_task_group_load;
6f505b16 9142 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
9143#ifdef CONFIG_CGROUP_SCHED
9144 /*
9145 * How much cpu bandwidth does init_task_group get?
9146 *
9147 * In case of task-groups formed thr' the cgroup filesystem, it
9148 * gets 100% of the cpu resources in the system. This overall
9149 * system cpu resource is divided among the tasks of
9150 * init_task_group and its child task-groups in a fair manner,
9151 * based on each entity's (task or task-group's) weight
9152 * (se->load.weight).
9153 *
9154 * In other words, if init_task_group has 10 tasks of weight
9155 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9156 * then A0's share of the cpu resource is:
9157 *
9158 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9159 *
9160 * We achieve this by letting init_task_group's tasks sit
9161 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9162 */
ec7dc8ac 9163 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 9164#elif defined CONFIG_USER_SCHED
eff766a6
PZ
9165 root_task_group.shares = NICE_0_LOAD;
9166 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
9167 /*
9168 * In case of task-groups formed thr' the user id of tasks,
9169 * init_task_group represents tasks belonging to root user.
9170 * Hence it forms a sibling of all subsequent groups formed.
9171 * In this case, init_task_group gets only a fraction of overall
9172 * system cpu resource, based on the weight assigned to root
9173 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9174 * by letting tasks of init_task_group sit in a separate cfs_rq
9175 * (init_cfs_rq) and having one entity represent this group of
9176 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9177 */
ec7dc8ac 9178 init_tg_cfs_entry(&init_task_group,
6f505b16 9179 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
9180 &per_cpu(init_sched_entity, i), i, 1,
9181 root_task_group.se[i]);
6f505b16 9182
052f1dc7 9183#endif
354d60c2
DG
9184#endif /* CONFIG_FAIR_GROUP_SCHED */
9185
9186 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 9187#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9188 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 9189#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 9190 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 9191#elif defined CONFIG_USER_SCHED
eff766a6 9192 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 9193 init_tg_rt_entry(&init_task_group,
6f505b16 9194 &per_cpu(init_rt_rq, i),
eff766a6
PZ
9195 &per_cpu(init_sched_rt_entity, i), i, 1,
9196 root_task_group.rt_se[i]);
354d60c2 9197#endif
dd41f596 9198#endif
1da177e4 9199
dd41f596
IM
9200 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9201 rq->cpu_load[j] = 0;
1da177e4 9202#ifdef CONFIG_SMP
41c7ce9a 9203 rq->sd = NULL;
57d885fe 9204 rq->rd = NULL;
1da177e4 9205 rq->active_balance = 0;
dd41f596 9206 rq->next_balance = jiffies;
1da177e4 9207 rq->push_cpu = 0;
0a2966b4 9208 rq->cpu = i;
1f11eb6a 9209 rq->online = 0;
1da177e4
LT
9210 rq->migration_thread = NULL;
9211 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 9212 rq_attach_root(rq, &def_root_domain);
1da177e4 9213#endif
8f4d37ec 9214 init_rq_hrtick(rq);
1da177e4 9215 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
9216 }
9217
2dd73a4f 9218 set_load_weight(&init_task);
b50f60ce 9219
e107be36
AK
9220#ifdef CONFIG_PREEMPT_NOTIFIERS
9221 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9222#endif
9223
c9819f45 9224#ifdef CONFIG_SMP
962cf36c 9225 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
9226#endif
9227
b50f60ce
HC
9228#ifdef CONFIG_RT_MUTEXES
9229 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9230#endif
9231
1da177e4
LT
9232 /*
9233 * The boot idle thread does lazy MMU switching as well:
9234 */
9235 atomic_inc(&init_mm.mm_count);
9236 enter_lazy_tlb(&init_mm, current);
9237
9238 /*
9239 * Make us the idle thread. Technically, schedule() should not be
9240 * called from this thread, however somewhere below it might be,
9241 * but because we are the idle thread, we just pick up running again
9242 * when this runqueue becomes "idle".
9243 */
9244 init_idle(current, smp_processor_id());
dce48a84
TG
9245
9246 calc_load_update = jiffies + LOAD_FREQ;
9247
dd41f596
IM
9248 /*
9249 * During early bootup we pretend to be a normal task:
9250 */
9251 current->sched_class = &fair_sched_class;
6892b75e 9252
6a7b3dc3
RR
9253 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9254 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
bf4d83f6 9255#ifdef CONFIG_SMP
7d1e6a9b
RR
9256#ifdef CONFIG_NO_HZ
9257 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
f711f609 9258 alloc_bootmem_cpumask_var(&nohz.ilb_grp_nohz_mask);
7d1e6a9b 9259#endif
dcc30a35 9260 alloc_bootmem_cpumask_var(&cpu_isolated_map);
bf4d83f6 9261#endif /* SMP */
6a7b3dc3 9262
6892b75e 9263 scheduler_running = 1;
1da177e4
LT
9264}
9265
9266#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9267void __might_sleep(char *file, int line)
9268{
48f24c4d 9269#ifdef in_atomic
1da177e4
LT
9270 static unsigned long prev_jiffy; /* ratelimiting */
9271
aef745fc
IM
9272 if ((!in_atomic() && !irqs_disabled()) ||
9273 system_state != SYSTEM_RUNNING || oops_in_progress)
9274 return;
9275 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9276 return;
9277 prev_jiffy = jiffies;
9278
9279 printk(KERN_ERR
9280 "BUG: sleeping function called from invalid context at %s:%d\n",
9281 file, line);
9282 printk(KERN_ERR
9283 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9284 in_atomic(), irqs_disabled(),
9285 current->pid, current->comm);
9286
9287 debug_show_held_locks(current);
9288 if (irqs_disabled())
9289 print_irqtrace_events(current);
9290 dump_stack();
1da177e4
LT
9291#endif
9292}
9293EXPORT_SYMBOL(__might_sleep);
9294#endif
9295
9296#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
9297static void normalize_task(struct rq *rq, struct task_struct *p)
9298{
9299 int on_rq;
3e51f33f 9300
3a5e4dc1
AK
9301 update_rq_clock(rq);
9302 on_rq = p->se.on_rq;
9303 if (on_rq)
9304 deactivate_task(rq, p, 0);
9305 __setscheduler(rq, p, SCHED_NORMAL, 0);
9306 if (on_rq) {
9307 activate_task(rq, p, 0);
9308 resched_task(rq->curr);
9309 }
9310}
9311
1da177e4
LT
9312void normalize_rt_tasks(void)
9313{
a0f98a1c 9314 struct task_struct *g, *p;
1da177e4 9315 unsigned long flags;
70b97a7f 9316 struct rq *rq;
1da177e4 9317
4cf5d77a 9318 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 9319 do_each_thread(g, p) {
178be793
IM
9320 /*
9321 * Only normalize user tasks:
9322 */
9323 if (!p->mm)
9324 continue;
9325
6cfb0d5d 9326 p->se.exec_start = 0;
6cfb0d5d 9327#ifdef CONFIG_SCHEDSTATS
dd41f596 9328 p->se.wait_start = 0;
dd41f596 9329 p->se.sleep_start = 0;
dd41f596 9330 p->se.block_start = 0;
6cfb0d5d 9331#endif
dd41f596
IM
9332
9333 if (!rt_task(p)) {
9334 /*
9335 * Renice negative nice level userspace
9336 * tasks back to 0:
9337 */
9338 if (TASK_NICE(p) < 0 && p->mm)
9339 set_user_nice(p, 0);
1da177e4 9340 continue;
dd41f596 9341 }
1da177e4 9342
4cf5d77a 9343 spin_lock(&p->pi_lock);
b29739f9 9344 rq = __task_rq_lock(p);
1da177e4 9345
178be793 9346 normalize_task(rq, p);
3a5e4dc1 9347
b29739f9 9348 __task_rq_unlock(rq);
4cf5d77a 9349 spin_unlock(&p->pi_lock);
a0f98a1c
IM
9350 } while_each_thread(g, p);
9351
4cf5d77a 9352 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
9353}
9354
9355#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
9356
9357#ifdef CONFIG_IA64
9358/*
9359 * These functions are only useful for the IA64 MCA handling.
9360 *
9361 * They can only be called when the whole system has been
9362 * stopped - every CPU needs to be quiescent, and no scheduling
9363 * activity can take place. Using them for anything else would
9364 * be a serious bug, and as a result, they aren't even visible
9365 * under any other configuration.
9366 */
9367
9368/**
9369 * curr_task - return the current task for a given cpu.
9370 * @cpu: the processor in question.
9371 *
9372 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9373 */
36c8b586 9374struct task_struct *curr_task(int cpu)
1df5c10a
LT
9375{
9376 return cpu_curr(cpu);
9377}
9378
9379/**
9380 * set_curr_task - set the current task for a given cpu.
9381 * @cpu: the processor in question.
9382 * @p: the task pointer to set.
9383 *
9384 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
9385 * are serviced on a separate stack. It allows the architecture to switch the
9386 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
9387 * must be called with all CPU's synchronized, and interrupts disabled, the
9388 * and caller must save the original value of the current task (see
9389 * curr_task() above) and restore that value before reenabling interrupts and
9390 * re-starting the system.
9391 *
9392 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9393 */
36c8b586 9394void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
9395{
9396 cpu_curr(cpu) = p;
9397}
9398
9399#endif
29f59db3 9400
bccbe08a
PZ
9401#ifdef CONFIG_FAIR_GROUP_SCHED
9402static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
9403{
9404 int i;
9405
9406 for_each_possible_cpu(i) {
9407 if (tg->cfs_rq)
9408 kfree(tg->cfs_rq[i]);
9409 if (tg->se)
9410 kfree(tg->se[i]);
6f505b16
PZ
9411 }
9412
9413 kfree(tg->cfs_rq);
9414 kfree(tg->se);
6f505b16
PZ
9415}
9416
ec7dc8ac
DG
9417static
9418int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 9419{
29f59db3 9420 struct cfs_rq *cfs_rq;
eab17229 9421 struct sched_entity *se;
9b5b7751 9422 struct rq *rq;
29f59db3
SV
9423 int i;
9424
434d53b0 9425 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9426 if (!tg->cfs_rq)
9427 goto err;
434d53b0 9428 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
9429 if (!tg->se)
9430 goto err;
052f1dc7
PZ
9431
9432 tg->shares = NICE_0_LOAD;
29f59db3
SV
9433
9434 for_each_possible_cpu(i) {
9b5b7751 9435 rq = cpu_rq(i);
29f59db3 9436
eab17229
LZ
9437 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9438 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9439 if (!cfs_rq)
9440 goto err;
9441
eab17229
LZ
9442 se = kzalloc_node(sizeof(struct sched_entity),
9443 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
9444 if (!se)
9445 goto err;
9446
eab17229 9447 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
9448 }
9449
9450 return 1;
9451
9452 err:
9453 return 0;
9454}
9455
9456static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9457{
9458 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9459 &cpu_rq(cpu)->leaf_cfs_rq_list);
9460}
9461
9462static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9463{
9464 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9465}
6d6bc0ad 9466#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
9467static inline void free_fair_sched_group(struct task_group *tg)
9468{
9469}
9470
ec7dc8ac
DG
9471static inline
9472int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9473{
9474 return 1;
9475}
9476
9477static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9478{
9479}
9480
9481static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9482{
9483}
6d6bc0ad 9484#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
9485
9486#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
9487static void free_rt_sched_group(struct task_group *tg)
9488{
9489 int i;
9490
d0b27fa7
PZ
9491 destroy_rt_bandwidth(&tg->rt_bandwidth);
9492
bccbe08a
PZ
9493 for_each_possible_cpu(i) {
9494 if (tg->rt_rq)
9495 kfree(tg->rt_rq[i]);
9496 if (tg->rt_se)
9497 kfree(tg->rt_se[i]);
9498 }
9499
9500 kfree(tg->rt_rq);
9501 kfree(tg->rt_se);
9502}
9503
ec7dc8ac
DG
9504static
9505int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9506{
9507 struct rt_rq *rt_rq;
eab17229 9508 struct sched_rt_entity *rt_se;
bccbe08a
PZ
9509 struct rq *rq;
9510 int i;
9511
434d53b0 9512 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9513 if (!tg->rt_rq)
9514 goto err;
434d53b0 9515 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
9516 if (!tg->rt_se)
9517 goto err;
9518
d0b27fa7
PZ
9519 init_rt_bandwidth(&tg->rt_bandwidth,
9520 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
9521
9522 for_each_possible_cpu(i) {
9523 rq = cpu_rq(i);
9524
eab17229
LZ
9525 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9526 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9527 if (!rt_rq)
9528 goto err;
29f59db3 9529
eab17229
LZ
9530 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9531 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
9532 if (!rt_se)
9533 goto err;
29f59db3 9534
eab17229 9535 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
9536 }
9537
bccbe08a
PZ
9538 return 1;
9539
9540 err:
9541 return 0;
9542}
9543
9544static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9545{
9546 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9547 &cpu_rq(cpu)->leaf_rt_rq_list);
9548}
9549
9550static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9551{
9552 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9553}
6d6bc0ad 9554#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
9555static inline void free_rt_sched_group(struct task_group *tg)
9556{
9557}
9558
ec7dc8ac
DG
9559static inline
9560int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
9561{
9562 return 1;
9563}
9564
9565static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9566{
9567}
9568
9569static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9570{
9571}
6d6bc0ad 9572#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 9573
d0b27fa7 9574#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
9575static void free_sched_group(struct task_group *tg)
9576{
9577 free_fair_sched_group(tg);
9578 free_rt_sched_group(tg);
9579 kfree(tg);
9580}
9581
9582/* allocate runqueue etc for a new task group */
ec7dc8ac 9583struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
9584{
9585 struct task_group *tg;
9586 unsigned long flags;
9587 int i;
9588
9589 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9590 if (!tg)
9591 return ERR_PTR(-ENOMEM);
9592
ec7dc8ac 9593 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
9594 goto err;
9595
ec7dc8ac 9596 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
9597 goto err;
9598
8ed36996 9599 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9600 for_each_possible_cpu(i) {
bccbe08a
PZ
9601 register_fair_sched_group(tg, i);
9602 register_rt_sched_group(tg, i);
9b5b7751 9603 }
6f505b16 9604 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
9605
9606 WARN_ON(!parent); /* root should already exist */
9607
9608 tg->parent = parent;
f473aa5e 9609 INIT_LIST_HEAD(&tg->children);
09f2724a 9610 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 9611 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 9612
9b5b7751 9613 return tg;
29f59db3
SV
9614
9615err:
6f505b16 9616 free_sched_group(tg);
29f59db3
SV
9617 return ERR_PTR(-ENOMEM);
9618}
9619
9b5b7751 9620/* rcu callback to free various structures associated with a task group */
6f505b16 9621static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9622{
29f59db3 9623 /* now it should be safe to free those cfs_rqs */
6f505b16 9624 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9625}
9626
9b5b7751 9627/* Destroy runqueue etc associated with a task group */
4cf86d77 9628void sched_destroy_group(struct task_group *tg)
29f59db3 9629{
8ed36996 9630 unsigned long flags;
9b5b7751 9631 int i;
29f59db3 9632
8ed36996 9633 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9634 for_each_possible_cpu(i) {
bccbe08a
PZ
9635 unregister_fair_sched_group(tg, i);
9636 unregister_rt_sched_group(tg, i);
9b5b7751 9637 }
6f505b16 9638 list_del_rcu(&tg->list);
f473aa5e 9639 list_del_rcu(&tg->siblings);
8ed36996 9640 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9641
9b5b7751 9642 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9643 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9644}
9645
9b5b7751 9646/* change task's runqueue when it moves between groups.
3a252015
IM
9647 * The caller of this function should have put the task in its new group
9648 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9649 * reflect its new group.
9b5b7751
SV
9650 */
9651void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9652{
9653 int on_rq, running;
9654 unsigned long flags;
9655 struct rq *rq;
9656
9657 rq = task_rq_lock(tsk, &flags);
9658
29f59db3
SV
9659 update_rq_clock(rq);
9660
051a1d1a 9661 running = task_current(rq, tsk);
29f59db3
SV
9662 on_rq = tsk->se.on_rq;
9663
0e1f3483 9664 if (on_rq)
29f59db3 9665 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9666 if (unlikely(running))
9667 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9668
6f505b16 9669 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9670
810b3817
PZ
9671#ifdef CONFIG_FAIR_GROUP_SCHED
9672 if (tsk->sched_class->moved_group)
9673 tsk->sched_class->moved_group(tsk);
9674#endif
9675
0e1f3483
HS
9676 if (unlikely(running))
9677 tsk->sched_class->set_curr_task(rq);
9678 if (on_rq)
7074badb 9679 enqueue_task(rq, tsk, 0);
29f59db3 9680
29f59db3
SV
9681 task_rq_unlock(rq, &flags);
9682}
6d6bc0ad 9683#endif /* CONFIG_GROUP_SCHED */
29f59db3 9684
052f1dc7 9685#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9686static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9687{
9688 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9689 int on_rq;
9690
29f59db3 9691 on_rq = se->on_rq;
62fb1851 9692 if (on_rq)
29f59db3
SV
9693 dequeue_entity(cfs_rq, se, 0);
9694
9695 se->load.weight = shares;
e05510d0 9696 se->load.inv_weight = 0;
29f59db3 9697
62fb1851 9698 if (on_rq)
29f59db3 9699 enqueue_entity(cfs_rq, se, 0);
c09595f6 9700}
62fb1851 9701
c09595f6
PZ
9702static void set_se_shares(struct sched_entity *se, unsigned long shares)
9703{
9704 struct cfs_rq *cfs_rq = se->cfs_rq;
9705 struct rq *rq = cfs_rq->rq;
9706 unsigned long flags;
9707
9708 spin_lock_irqsave(&rq->lock, flags);
9709 __set_se_shares(se, shares);
9710 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9711}
9712
8ed36996
PZ
9713static DEFINE_MUTEX(shares_mutex);
9714
4cf86d77 9715int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9716{
9717 int i;
8ed36996 9718 unsigned long flags;
c61935fd 9719
ec7dc8ac
DG
9720 /*
9721 * We can't change the weight of the root cgroup.
9722 */
9723 if (!tg->se[0])
9724 return -EINVAL;
9725
18d95a28
PZ
9726 if (shares < MIN_SHARES)
9727 shares = MIN_SHARES;
cb4ad1ff
MX
9728 else if (shares > MAX_SHARES)
9729 shares = MAX_SHARES;
62fb1851 9730
8ed36996 9731 mutex_lock(&shares_mutex);
9b5b7751 9732 if (tg->shares == shares)
5cb350ba 9733 goto done;
29f59db3 9734
8ed36996 9735 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9736 for_each_possible_cpu(i)
9737 unregister_fair_sched_group(tg, i);
f473aa5e 9738 list_del_rcu(&tg->siblings);
8ed36996 9739 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
9740
9741 /* wait for any ongoing reference to this group to finish */
9742 synchronize_sched();
9743
9744 /*
9745 * Now we are free to modify the group's share on each cpu
9746 * w/o tripping rebalance_share or load_balance_fair.
9747 */
9b5b7751 9748 tg->shares = shares;
c09595f6
PZ
9749 for_each_possible_cpu(i) {
9750 /*
9751 * force a rebalance
9752 */
9753 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 9754 set_se_shares(tg->se[i], shares);
c09595f6 9755 }
29f59db3 9756
6b2d7700
SV
9757 /*
9758 * Enable load balance activity on this group, by inserting it back on
9759 * each cpu's rq->leaf_cfs_rq_list.
9760 */
8ed36996 9761 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9762 for_each_possible_cpu(i)
9763 register_fair_sched_group(tg, i);
f473aa5e 9764 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9765 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9766done:
8ed36996 9767 mutex_unlock(&shares_mutex);
9b5b7751 9768 return 0;
29f59db3
SV
9769}
9770
5cb350ba
DG
9771unsigned long sched_group_shares(struct task_group *tg)
9772{
9773 return tg->shares;
9774}
052f1dc7 9775#endif
5cb350ba 9776
052f1dc7 9777#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9778/*
9f0c1e56 9779 * Ensure that the real time constraints are schedulable.
6f505b16 9780 */
9f0c1e56
PZ
9781static DEFINE_MUTEX(rt_constraints_mutex);
9782
9783static unsigned long to_ratio(u64 period, u64 runtime)
9784{
9785 if (runtime == RUNTIME_INF)
9a7e0b18 9786 return 1ULL << 20;
9f0c1e56 9787
9a7e0b18 9788 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9789}
9790
9a7e0b18
PZ
9791/* Must be called with tasklist_lock held */
9792static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9793{
9a7e0b18 9794 struct task_struct *g, *p;
b40b2e8e 9795
9a7e0b18
PZ
9796 do_each_thread(g, p) {
9797 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9798 return 1;
9799 } while_each_thread(g, p);
b40b2e8e 9800
9a7e0b18
PZ
9801 return 0;
9802}
b40b2e8e 9803
9a7e0b18
PZ
9804struct rt_schedulable_data {
9805 struct task_group *tg;
9806 u64 rt_period;
9807 u64 rt_runtime;
9808};
b40b2e8e 9809
9a7e0b18
PZ
9810static int tg_schedulable(struct task_group *tg, void *data)
9811{
9812 struct rt_schedulable_data *d = data;
9813 struct task_group *child;
9814 unsigned long total, sum = 0;
9815 u64 period, runtime;
b40b2e8e 9816
9a7e0b18
PZ
9817 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9818 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9819
9a7e0b18
PZ
9820 if (tg == d->tg) {
9821 period = d->rt_period;
9822 runtime = d->rt_runtime;
b40b2e8e 9823 }
b40b2e8e 9824
98a4826b
PZ
9825#ifdef CONFIG_USER_SCHED
9826 if (tg == &root_task_group) {
9827 period = global_rt_period();
9828 runtime = global_rt_runtime();
9829 }
9830#endif
9831
4653f803
PZ
9832 /*
9833 * Cannot have more runtime than the period.
9834 */
9835 if (runtime > period && runtime != RUNTIME_INF)
9836 return -EINVAL;
6f505b16 9837
4653f803
PZ
9838 /*
9839 * Ensure we don't starve existing RT tasks.
9840 */
9a7e0b18
PZ
9841 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9842 return -EBUSY;
6f505b16 9843
9a7e0b18 9844 total = to_ratio(period, runtime);
6f505b16 9845
4653f803
PZ
9846 /*
9847 * Nobody can have more than the global setting allows.
9848 */
9849 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9850 return -EINVAL;
6f505b16 9851
4653f803
PZ
9852 /*
9853 * The sum of our children's runtime should not exceed our own.
9854 */
9a7e0b18
PZ
9855 list_for_each_entry_rcu(child, &tg->children, siblings) {
9856 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9857 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 9858
9a7e0b18
PZ
9859 if (child == d->tg) {
9860 period = d->rt_period;
9861 runtime = d->rt_runtime;
9862 }
6f505b16 9863
9a7e0b18 9864 sum += to_ratio(period, runtime);
9f0c1e56 9865 }
6f505b16 9866
9a7e0b18
PZ
9867 if (sum > total)
9868 return -EINVAL;
9869
9870 return 0;
6f505b16
PZ
9871}
9872
9a7e0b18 9873static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 9874{
9a7e0b18
PZ
9875 struct rt_schedulable_data data = {
9876 .tg = tg,
9877 .rt_period = period,
9878 .rt_runtime = runtime,
9879 };
9880
9881 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
9882}
9883
d0b27fa7
PZ
9884static int tg_set_bandwidth(struct task_group *tg,
9885 u64 rt_period, u64 rt_runtime)
6f505b16 9886{
ac086bc2 9887 int i, err = 0;
9f0c1e56 9888
9f0c1e56 9889 mutex_lock(&rt_constraints_mutex);
521f1a24 9890 read_lock(&tasklist_lock);
9a7e0b18
PZ
9891 err = __rt_schedulable(tg, rt_period, rt_runtime);
9892 if (err)
9f0c1e56 9893 goto unlock;
ac086bc2
PZ
9894
9895 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
9896 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9897 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
9898
9899 for_each_possible_cpu(i) {
9900 struct rt_rq *rt_rq = tg->rt_rq[i];
9901
9902 spin_lock(&rt_rq->rt_runtime_lock);
9903 rt_rq->rt_runtime = rt_runtime;
9904 spin_unlock(&rt_rq->rt_runtime_lock);
9905 }
9906 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 9907 unlock:
521f1a24 9908 read_unlock(&tasklist_lock);
9f0c1e56
PZ
9909 mutex_unlock(&rt_constraints_mutex);
9910
9911 return err;
6f505b16
PZ
9912}
9913
d0b27fa7
PZ
9914int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9915{
9916 u64 rt_runtime, rt_period;
9917
9918 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9919 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9920 if (rt_runtime_us < 0)
9921 rt_runtime = RUNTIME_INF;
9922
9923 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9924}
9925
9f0c1e56
PZ
9926long sched_group_rt_runtime(struct task_group *tg)
9927{
9928 u64 rt_runtime_us;
9929
d0b27fa7 9930 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
9931 return -1;
9932
d0b27fa7 9933 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9934 do_div(rt_runtime_us, NSEC_PER_USEC);
9935 return rt_runtime_us;
9936}
d0b27fa7
PZ
9937
9938int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9939{
9940 u64 rt_runtime, rt_period;
9941
9942 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9943 rt_runtime = tg->rt_bandwidth.rt_runtime;
9944
619b0488
R
9945 if (rt_period == 0)
9946 return -EINVAL;
9947
d0b27fa7
PZ
9948 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9949}
9950
9951long sched_group_rt_period(struct task_group *tg)
9952{
9953 u64 rt_period_us;
9954
9955 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9956 do_div(rt_period_us, NSEC_PER_USEC);
9957 return rt_period_us;
9958}
9959
9960static int sched_rt_global_constraints(void)
9961{
4653f803 9962 u64 runtime, period;
d0b27fa7
PZ
9963 int ret = 0;
9964
ec5d4989
HS
9965 if (sysctl_sched_rt_period <= 0)
9966 return -EINVAL;
9967
4653f803
PZ
9968 runtime = global_rt_runtime();
9969 period = global_rt_period();
9970
9971 /*
9972 * Sanity check on the sysctl variables.
9973 */
9974 if (runtime > period && runtime != RUNTIME_INF)
9975 return -EINVAL;
10b612f4 9976
d0b27fa7 9977 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9978 read_lock(&tasklist_lock);
4653f803 9979 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9980 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9981 mutex_unlock(&rt_constraints_mutex);
9982
9983 return ret;
9984}
54e99124
DG
9985
9986int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9987{
9988 /* Don't accept realtime tasks when there is no way for them to run */
9989 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9990 return 0;
9991
9992 return 1;
9993}
9994
6d6bc0ad 9995#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9996static int sched_rt_global_constraints(void)
9997{
ac086bc2
PZ
9998 unsigned long flags;
9999 int i;
10000
ec5d4989
HS
10001 if (sysctl_sched_rt_period <= 0)
10002 return -EINVAL;
10003
60aa605d
PZ
10004 /*
10005 * There's always some RT tasks in the root group
10006 * -- migration, kstopmachine etc..
10007 */
10008 if (sysctl_sched_rt_runtime == 0)
10009 return -EBUSY;
10010
ac086bc2
PZ
10011 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10012 for_each_possible_cpu(i) {
10013 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10014
10015 spin_lock(&rt_rq->rt_runtime_lock);
10016 rt_rq->rt_runtime = global_rt_runtime();
10017 spin_unlock(&rt_rq->rt_runtime_lock);
10018 }
10019 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10020
d0b27fa7
PZ
10021 return 0;
10022}
6d6bc0ad 10023#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
10024
10025int sched_rt_handler(struct ctl_table *table, int write,
10026 struct file *filp, void __user *buffer, size_t *lenp,
10027 loff_t *ppos)
10028{
10029 int ret;
10030 int old_period, old_runtime;
10031 static DEFINE_MUTEX(mutex);
10032
10033 mutex_lock(&mutex);
10034 old_period = sysctl_sched_rt_period;
10035 old_runtime = sysctl_sched_rt_runtime;
10036
10037 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10038
10039 if (!ret && write) {
10040 ret = sched_rt_global_constraints();
10041 if (ret) {
10042 sysctl_sched_rt_period = old_period;
10043 sysctl_sched_rt_runtime = old_runtime;
10044 } else {
10045 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10046 def_rt_bandwidth.rt_period =
10047 ns_to_ktime(global_rt_period());
10048 }
10049 }
10050 mutex_unlock(&mutex);
10051
10052 return ret;
10053}
68318b8e 10054
052f1dc7 10055#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
10056
10057/* return corresponding task_group object of a cgroup */
2b01dfe3 10058static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 10059{
2b01dfe3
PM
10060 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10061 struct task_group, css);
68318b8e
SV
10062}
10063
10064static struct cgroup_subsys_state *
2b01dfe3 10065cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10066{
ec7dc8ac 10067 struct task_group *tg, *parent;
68318b8e 10068
2b01dfe3 10069 if (!cgrp->parent) {
68318b8e 10070 /* This is early initialization for the top cgroup */
68318b8e
SV
10071 return &init_task_group.css;
10072 }
10073
ec7dc8ac
DG
10074 parent = cgroup_tg(cgrp->parent);
10075 tg = sched_create_group(parent);
68318b8e
SV
10076 if (IS_ERR(tg))
10077 return ERR_PTR(-ENOMEM);
10078
68318b8e
SV
10079 return &tg->css;
10080}
10081
41a2d6cf
IM
10082static void
10083cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 10084{
2b01dfe3 10085 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10086
10087 sched_destroy_group(tg);
10088}
10089
41a2d6cf
IM
10090static int
10091cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10092 struct task_struct *tsk)
68318b8e 10093{
b68aa230 10094#ifdef CONFIG_RT_GROUP_SCHED
54e99124 10095 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
10096 return -EINVAL;
10097#else
68318b8e
SV
10098 /* We don't support RT-tasks being in separate groups */
10099 if (tsk->sched_class != &fair_sched_class)
10100 return -EINVAL;
b68aa230 10101#endif
68318b8e
SV
10102
10103 return 0;
10104}
10105
10106static void
2b01dfe3 10107cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
10108 struct cgroup *old_cont, struct task_struct *tsk)
10109{
10110 sched_move_task(tsk);
10111}
10112
052f1dc7 10113#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 10114static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 10115 u64 shareval)
68318b8e 10116{
2b01dfe3 10117 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
10118}
10119
f4c753b7 10120static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 10121{
2b01dfe3 10122 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
10123
10124 return (u64) tg->shares;
10125}
6d6bc0ad 10126#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 10127
052f1dc7 10128#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 10129static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 10130 s64 val)
6f505b16 10131{
06ecb27c 10132 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
10133}
10134
06ecb27c 10135static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 10136{
06ecb27c 10137 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 10138}
d0b27fa7
PZ
10139
10140static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10141 u64 rt_period_us)
10142{
10143 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10144}
10145
10146static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10147{
10148 return sched_group_rt_period(cgroup_tg(cgrp));
10149}
6d6bc0ad 10150#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 10151
fe5c7cc2 10152static struct cftype cpu_files[] = {
052f1dc7 10153#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
10154 {
10155 .name = "shares",
f4c753b7
PM
10156 .read_u64 = cpu_shares_read_u64,
10157 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 10158 },
052f1dc7
PZ
10159#endif
10160#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 10161 {
9f0c1e56 10162 .name = "rt_runtime_us",
06ecb27c
PM
10163 .read_s64 = cpu_rt_runtime_read,
10164 .write_s64 = cpu_rt_runtime_write,
6f505b16 10165 },
d0b27fa7
PZ
10166 {
10167 .name = "rt_period_us",
f4c753b7
PM
10168 .read_u64 = cpu_rt_period_read_uint,
10169 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 10170 },
052f1dc7 10171#endif
68318b8e
SV
10172};
10173
10174static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10175{
fe5c7cc2 10176 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
10177}
10178
10179struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
10180 .name = "cpu",
10181 .create = cpu_cgroup_create,
10182 .destroy = cpu_cgroup_destroy,
10183 .can_attach = cpu_cgroup_can_attach,
10184 .attach = cpu_cgroup_attach,
10185 .populate = cpu_cgroup_populate,
10186 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
10187 .early_init = 1,
10188};
10189
052f1dc7 10190#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
10191
10192#ifdef CONFIG_CGROUP_CPUACCT
10193
10194/*
10195 * CPU accounting code for task groups.
10196 *
10197 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10198 * (balbir@in.ibm.com).
10199 */
10200
934352f2 10201/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
10202struct cpuacct {
10203 struct cgroup_subsys_state css;
10204 /* cpuusage holds pointer to a u64-type object on every cpu */
10205 u64 *cpuusage;
ef12fefa 10206 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
934352f2 10207 struct cpuacct *parent;
d842de87
SV
10208};
10209
10210struct cgroup_subsys cpuacct_subsys;
10211
10212/* return cpu accounting group corresponding to this container */
32cd756a 10213static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 10214{
32cd756a 10215 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
10216 struct cpuacct, css);
10217}
10218
10219/* return cpu accounting group to which this task belongs */
10220static inline struct cpuacct *task_ca(struct task_struct *tsk)
10221{
10222 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10223 struct cpuacct, css);
10224}
10225
10226/* create a new cpu accounting group */
10227static struct cgroup_subsys_state *cpuacct_create(
32cd756a 10228 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
10229{
10230 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
ef12fefa 10231 int i;
d842de87
SV
10232
10233 if (!ca)
ef12fefa 10234 goto out;
d842de87
SV
10235
10236 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
10237 if (!ca->cpuusage)
10238 goto out_free_ca;
10239
10240 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10241 if (percpu_counter_init(&ca->cpustat[i], 0))
10242 goto out_free_counters;
d842de87 10243
934352f2
BR
10244 if (cgrp->parent)
10245 ca->parent = cgroup_ca(cgrp->parent);
10246
d842de87 10247 return &ca->css;
ef12fefa
BR
10248
10249out_free_counters:
10250 while (--i >= 0)
10251 percpu_counter_destroy(&ca->cpustat[i]);
10252 free_percpu(ca->cpuusage);
10253out_free_ca:
10254 kfree(ca);
10255out:
10256 return ERR_PTR(-ENOMEM);
d842de87
SV
10257}
10258
10259/* destroy an existing cpu accounting group */
41a2d6cf 10260static void
32cd756a 10261cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10262{
32cd756a 10263 struct cpuacct *ca = cgroup_ca(cgrp);
ef12fefa 10264 int i;
d842de87 10265
ef12fefa
BR
10266 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10267 percpu_counter_destroy(&ca->cpustat[i]);
d842de87
SV
10268 free_percpu(ca->cpuusage);
10269 kfree(ca);
10270}
10271
720f5498
KC
10272static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10273{
b36128c8 10274 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10275 u64 data;
10276
10277#ifndef CONFIG_64BIT
10278 /*
10279 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10280 */
10281 spin_lock_irq(&cpu_rq(cpu)->lock);
10282 data = *cpuusage;
10283 spin_unlock_irq(&cpu_rq(cpu)->lock);
10284#else
10285 data = *cpuusage;
10286#endif
10287
10288 return data;
10289}
10290
10291static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10292{
b36128c8 10293 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
10294
10295#ifndef CONFIG_64BIT
10296 /*
10297 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10298 */
10299 spin_lock_irq(&cpu_rq(cpu)->lock);
10300 *cpuusage = val;
10301 spin_unlock_irq(&cpu_rq(cpu)->lock);
10302#else
10303 *cpuusage = val;
10304#endif
10305}
10306
d842de87 10307/* return total cpu usage (in nanoseconds) of a group */
32cd756a 10308static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 10309{
32cd756a 10310 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
10311 u64 totalcpuusage = 0;
10312 int i;
10313
720f5498
KC
10314 for_each_present_cpu(i)
10315 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
10316
10317 return totalcpuusage;
10318}
10319
0297b803
DG
10320static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10321 u64 reset)
10322{
10323 struct cpuacct *ca = cgroup_ca(cgrp);
10324 int err = 0;
10325 int i;
10326
10327 if (reset) {
10328 err = -EINVAL;
10329 goto out;
10330 }
10331
720f5498
KC
10332 for_each_present_cpu(i)
10333 cpuacct_cpuusage_write(ca, i, 0);
0297b803 10334
0297b803
DG
10335out:
10336 return err;
10337}
10338
e9515c3c
KC
10339static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10340 struct seq_file *m)
10341{
10342 struct cpuacct *ca = cgroup_ca(cgroup);
10343 u64 percpu;
10344 int i;
10345
10346 for_each_present_cpu(i) {
10347 percpu = cpuacct_cpuusage_read(ca, i);
10348 seq_printf(m, "%llu ", (unsigned long long) percpu);
10349 }
10350 seq_printf(m, "\n");
10351 return 0;
10352}
10353
ef12fefa
BR
10354static const char *cpuacct_stat_desc[] = {
10355 [CPUACCT_STAT_USER] = "user",
10356 [CPUACCT_STAT_SYSTEM] = "system",
10357};
10358
10359static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10360 struct cgroup_map_cb *cb)
10361{
10362 struct cpuacct *ca = cgroup_ca(cgrp);
10363 int i;
10364
10365 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10366 s64 val = percpu_counter_read(&ca->cpustat[i]);
10367 val = cputime64_to_clock_t(val);
10368 cb->fill(cb, cpuacct_stat_desc[i], val);
10369 }
10370 return 0;
10371}
10372
d842de87
SV
10373static struct cftype files[] = {
10374 {
10375 .name = "usage",
f4c753b7
PM
10376 .read_u64 = cpuusage_read,
10377 .write_u64 = cpuusage_write,
d842de87 10378 },
e9515c3c
KC
10379 {
10380 .name = "usage_percpu",
10381 .read_seq_string = cpuacct_percpu_seq_read,
10382 },
ef12fefa
BR
10383 {
10384 .name = "stat",
10385 .read_map = cpuacct_stats_show,
10386 },
d842de87
SV
10387};
10388
32cd756a 10389static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 10390{
32cd756a 10391 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
10392}
10393
10394/*
10395 * charge this task's execution time to its accounting group.
10396 *
10397 * called with rq->lock held.
10398 */
10399static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10400{
10401 struct cpuacct *ca;
934352f2 10402 int cpu;
d842de87 10403
c40c6f85 10404 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
10405 return;
10406
934352f2 10407 cpu = task_cpu(tsk);
a18b83b7
BR
10408
10409 rcu_read_lock();
10410
d842de87 10411 ca = task_ca(tsk);
d842de87 10412
934352f2 10413 for (; ca; ca = ca->parent) {
b36128c8 10414 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
10415 *cpuusage += cputime;
10416 }
a18b83b7
BR
10417
10418 rcu_read_unlock();
d842de87
SV
10419}
10420
ef12fefa
BR
10421/*
10422 * Charge the system/user time to the task's accounting group.
10423 */
10424static void cpuacct_update_stats(struct task_struct *tsk,
10425 enum cpuacct_stat_index idx, cputime_t val)
10426{
10427 struct cpuacct *ca;
10428
10429 if (unlikely(!cpuacct_subsys.active))
10430 return;
10431
10432 rcu_read_lock();
10433 ca = task_ca(tsk);
10434
10435 do {
10436 percpu_counter_add(&ca->cpustat[idx], val);
10437 ca = ca->parent;
10438 } while (ca);
10439 rcu_read_unlock();
10440}
10441
d842de87
SV
10442struct cgroup_subsys cpuacct_subsys = {
10443 .name = "cpuacct",
10444 .create = cpuacct_create,
10445 .destroy = cpuacct_destroy,
10446 .populate = cpuacct_populate,
10447 .subsys_id = cpuacct_subsys_id,
10448};
10449#endif /* CONFIG_CGROUP_CPUACCT */