]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/slab.c
xps: Transmit Packet Steering
[net-next-2.6.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
1da177e4 118
1da177e4
LT
119#include <asm/cacheflush.h>
120#include <asm/tlbflush.h>
121#include <asm/page.h>
122
123/*
50953fe9 124 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
125 * 0 for faster, smaller code (especially in the critical paths).
126 *
127 * STATS - 1 to collect stats for /proc/slabinfo.
128 * 0 for faster, smaller code (especially in the critical paths).
129 *
130 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
131 */
132
133#ifdef CONFIG_DEBUG_SLAB
134#define DEBUG 1
135#define STATS 1
136#define FORCED_DEBUG 1
137#else
138#define DEBUG 0
139#define STATS 0
140#define FORCED_DEBUG 0
141#endif
142
1da177e4
LT
143/* Shouldn't this be in a header file somewhere? */
144#define BYTES_PER_WORD sizeof(void *)
87a927c7 145#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 146
1da177e4
LT
147#ifndef ARCH_KMALLOC_FLAGS
148#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
149#endif
150
151/* Legal flag mask for kmem_cache_create(). */
152#if DEBUG
50953fe9 153# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 154 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 155 SLAB_CACHE_DMA | \
5af60839 156 SLAB_STORE_USER | \
1da177e4 157 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 158 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 159 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4 160#else
ac2b898c 161# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 162 SLAB_CACHE_DMA | \
1da177e4 163 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 164 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 165 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4
LT
166#endif
167
168/*
169 * kmem_bufctl_t:
170 *
171 * Bufctl's are used for linking objs within a slab
172 * linked offsets.
173 *
174 * This implementation relies on "struct page" for locating the cache &
175 * slab an object belongs to.
176 * This allows the bufctl structure to be small (one int), but limits
177 * the number of objects a slab (not a cache) can contain when off-slab
178 * bufctls are used. The limit is the size of the largest general cache
179 * that does not use off-slab slabs.
180 * For 32bit archs with 4 kB pages, is this 56.
181 * This is not serious, as it is only for large objects, when it is unwise
182 * to have too many per slab.
183 * Note: This limit can be raised by introducing a general cache whose size
184 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
185 */
186
fa5b08d5 187typedef unsigned int kmem_bufctl_t;
1da177e4
LT
188#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
189#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
190#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
191#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 192
1da177e4
LT
193/*
194 * struct slab
195 *
196 * Manages the objs in a slab. Placed either at the beginning of mem allocated
197 * for a slab, or allocated from an general cache.
198 * Slabs are chained into three list: fully used, partial, fully free slabs.
199 */
200struct slab {
b28a02de
PE
201 struct list_head list;
202 unsigned long colouroff;
203 void *s_mem; /* including colour offset */
204 unsigned int inuse; /* num of objs active in slab */
205 kmem_bufctl_t free;
206 unsigned short nodeid;
1da177e4
LT
207};
208
209/*
210 * struct slab_rcu
211 *
212 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
213 * arrange for kmem_freepages to be called via RCU. This is useful if
214 * we need to approach a kernel structure obliquely, from its address
215 * obtained without the usual locking. We can lock the structure to
216 * stabilize it and check it's still at the given address, only if we
217 * can be sure that the memory has not been meanwhile reused for some
218 * other kind of object (which our subsystem's lock might corrupt).
219 *
220 * rcu_read_lock before reading the address, then rcu_read_unlock after
221 * taking the spinlock within the structure expected at that address.
222 *
223 * We assume struct slab_rcu can overlay struct slab when destroying.
224 */
225struct slab_rcu {
b28a02de 226 struct rcu_head head;
343e0d7a 227 struct kmem_cache *cachep;
b28a02de 228 void *addr;
1da177e4
LT
229};
230
231/*
232 * struct array_cache
233 *
1da177e4
LT
234 * Purpose:
235 * - LIFO ordering, to hand out cache-warm objects from _alloc
236 * - reduce the number of linked list operations
237 * - reduce spinlock operations
238 *
239 * The limit is stored in the per-cpu structure to reduce the data cache
240 * footprint.
241 *
242 */
243struct array_cache {
244 unsigned int avail;
245 unsigned int limit;
246 unsigned int batchcount;
247 unsigned int touched;
e498be7d 248 spinlock_t lock;
bda5b655 249 void *entry[]; /*
a737b3e2
AM
250 * Must have this definition in here for the proper
251 * alignment of array_cache. Also simplifies accessing
252 * the entries.
a737b3e2 253 */
1da177e4
LT
254};
255
a737b3e2
AM
256/*
257 * bootstrap: The caches do not work without cpuarrays anymore, but the
258 * cpuarrays are allocated from the generic caches...
1da177e4
LT
259 */
260#define BOOT_CPUCACHE_ENTRIES 1
261struct arraycache_init {
262 struct array_cache cache;
b28a02de 263 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
264};
265
266/*
e498be7d 267 * The slab lists for all objects.
1da177e4
LT
268 */
269struct kmem_list3 {
b28a02de
PE
270 struct list_head slabs_partial; /* partial list first, better asm code */
271 struct list_head slabs_full;
272 struct list_head slabs_free;
273 unsigned long free_objects;
b28a02de 274 unsigned int free_limit;
2e1217cf 275 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
276 spinlock_t list_lock;
277 struct array_cache *shared; /* shared per node */
278 struct array_cache **alien; /* on other nodes */
35386e3b
CL
279 unsigned long next_reap; /* updated without locking */
280 int free_touched; /* updated without locking */
1da177e4
LT
281};
282
e498be7d
CL
283/*
284 * Need this for bootstrapping a per node allocator.
285 */
556a169d 286#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
e498be7d
CL
287struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
288#define CACHE_CACHE 0
556a169d
PE
289#define SIZE_AC MAX_NUMNODES
290#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 291
ed11d9eb
CL
292static int drain_freelist(struct kmem_cache *cache,
293 struct kmem_list3 *l3, int tofree);
294static void free_block(struct kmem_cache *cachep, void **objpp, int len,
295 int node);
83b519e8 296static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 297static void cache_reap(struct work_struct *unused);
ed11d9eb 298
e498be7d 299/*
a737b3e2
AM
300 * This function must be completely optimized away if a constant is passed to
301 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 302 */
7243cc05 303static __always_inline int index_of(const size_t size)
e498be7d 304{
5ec8a847
SR
305 extern void __bad_size(void);
306
e498be7d
CL
307 if (__builtin_constant_p(size)) {
308 int i = 0;
309
310#define CACHE(x) \
311 if (size <=x) \
312 return i; \
313 else \
314 i++;
1c61fc40 315#include <linux/kmalloc_sizes.h>
e498be7d 316#undef CACHE
5ec8a847 317 __bad_size();
7243cc05 318 } else
5ec8a847 319 __bad_size();
e498be7d
CL
320 return 0;
321}
322
e0a42726
IM
323static int slab_early_init = 1;
324
e498be7d
CL
325#define INDEX_AC index_of(sizeof(struct arraycache_init))
326#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 327
5295a74c 328static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
329{
330 INIT_LIST_HEAD(&parent->slabs_full);
331 INIT_LIST_HEAD(&parent->slabs_partial);
332 INIT_LIST_HEAD(&parent->slabs_free);
333 parent->shared = NULL;
334 parent->alien = NULL;
2e1217cf 335 parent->colour_next = 0;
e498be7d
CL
336 spin_lock_init(&parent->list_lock);
337 parent->free_objects = 0;
338 parent->free_touched = 0;
339}
340
a737b3e2
AM
341#define MAKE_LIST(cachep, listp, slab, nodeid) \
342 do { \
343 INIT_LIST_HEAD(listp); \
344 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
345 } while (0)
346
a737b3e2
AM
347#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
348 do { \
e498be7d
CL
349 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
350 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
351 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
352 } while (0)
1da177e4 353
1da177e4
LT
354#define CFLGS_OFF_SLAB (0x80000000UL)
355#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
356
357#define BATCHREFILL_LIMIT 16
a737b3e2
AM
358/*
359 * Optimization question: fewer reaps means less probability for unnessary
360 * cpucache drain/refill cycles.
1da177e4 361 *
dc6f3f27 362 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
363 * which could lock up otherwise freeable slabs.
364 */
365#define REAPTIMEOUT_CPUC (2*HZ)
366#define REAPTIMEOUT_LIST3 (4*HZ)
367
368#if STATS
369#define STATS_INC_ACTIVE(x) ((x)->num_active++)
370#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
371#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
372#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 373#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
374#define STATS_SET_HIGH(x) \
375 do { \
376 if ((x)->num_active > (x)->high_mark) \
377 (x)->high_mark = (x)->num_active; \
378 } while (0)
1da177e4
LT
379#define STATS_INC_ERR(x) ((x)->errors++)
380#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 381#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 382#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
383#define STATS_SET_FREEABLE(x, i) \
384 do { \
385 if ((x)->max_freeable < i) \
386 (x)->max_freeable = i; \
387 } while (0)
1da177e4
LT
388#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
389#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
390#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
391#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
392#else
393#define STATS_INC_ACTIVE(x) do { } while (0)
394#define STATS_DEC_ACTIVE(x) do { } while (0)
395#define STATS_INC_ALLOCED(x) do { } while (0)
396#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 397#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
398#define STATS_SET_HIGH(x) do { } while (0)
399#define STATS_INC_ERR(x) do { } while (0)
400#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 401#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 402#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 403#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
404#define STATS_INC_ALLOCHIT(x) do { } while (0)
405#define STATS_INC_ALLOCMISS(x) do { } while (0)
406#define STATS_INC_FREEHIT(x) do { } while (0)
407#define STATS_INC_FREEMISS(x) do { } while (0)
408#endif
409
410#if DEBUG
1da177e4 411
a737b3e2
AM
412/*
413 * memory layout of objects:
1da177e4 414 * 0 : objp
3dafccf2 415 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
416 * the end of an object is aligned with the end of the real
417 * allocation. Catches writes behind the end of the allocation.
3dafccf2 418 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 419 * redzone word.
3dafccf2
MS
420 * cachep->obj_offset: The real object.
421 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
422 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
423 * [BYTES_PER_WORD long]
1da177e4 424 */
343e0d7a 425static int obj_offset(struct kmem_cache *cachep)
1da177e4 426{
3dafccf2 427 return cachep->obj_offset;
1da177e4
LT
428}
429
343e0d7a 430static int obj_size(struct kmem_cache *cachep)
1da177e4 431{
3dafccf2 432 return cachep->obj_size;
1da177e4
LT
433}
434
b46b8f19 435static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
436{
437 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
438 return (unsigned long long*) (objp + obj_offset(cachep) -
439 sizeof(unsigned long long));
1da177e4
LT
440}
441
b46b8f19 442static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
443{
444 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
445 if (cachep->flags & SLAB_STORE_USER)
b46b8f19
DW
446 return (unsigned long long *)(objp + cachep->buffer_size -
447 sizeof(unsigned long long) -
87a927c7 448 REDZONE_ALIGN);
b46b8f19
DW
449 return (unsigned long long *) (objp + cachep->buffer_size -
450 sizeof(unsigned long long));
1da177e4
LT
451}
452
343e0d7a 453static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
454{
455 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 456 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
457}
458
459#else
460
3dafccf2
MS
461#define obj_offset(x) 0
462#define obj_size(cachep) (cachep->buffer_size)
b46b8f19
DW
463#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
464#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
465#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
466
467#endif
468
0f24f128 469#ifdef CONFIG_TRACING
36555751
EGM
470size_t slab_buffer_size(struct kmem_cache *cachep)
471{
472 return cachep->buffer_size;
473}
474EXPORT_SYMBOL(slab_buffer_size);
475#endif
476
1da177e4
LT
477/*
478 * Do not go above this order unless 0 objects fit into the slab.
479 */
480#define BREAK_GFP_ORDER_HI 1
481#define BREAK_GFP_ORDER_LO 0
482static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
483
a737b3e2
AM
484/*
485 * Functions for storing/retrieving the cachep and or slab from the page
486 * allocator. These are used to find the slab an obj belongs to. With kfree(),
487 * these are used to find the cache which an obj belongs to.
1da177e4 488 */
065d41cb
PE
489static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
490{
491 page->lru.next = (struct list_head *)cache;
492}
493
494static inline struct kmem_cache *page_get_cache(struct page *page)
495{
d85f3385 496 page = compound_head(page);
ddc2e812 497 BUG_ON(!PageSlab(page));
065d41cb
PE
498 return (struct kmem_cache *)page->lru.next;
499}
500
501static inline void page_set_slab(struct page *page, struct slab *slab)
502{
503 page->lru.prev = (struct list_head *)slab;
504}
505
506static inline struct slab *page_get_slab(struct page *page)
507{
ddc2e812 508 BUG_ON(!PageSlab(page));
065d41cb
PE
509 return (struct slab *)page->lru.prev;
510}
1da177e4 511
6ed5eb22
PE
512static inline struct kmem_cache *virt_to_cache(const void *obj)
513{
b49af68f 514 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
515 return page_get_cache(page);
516}
517
518static inline struct slab *virt_to_slab(const void *obj)
519{
b49af68f 520 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
521 return page_get_slab(page);
522}
523
8fea4e96
PE
524static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
525 unsigned int idx)
526{
527 return slab->s_mem + cache->buffer_size * idx;
528}
529
6a2d7a95
ED
530/*
531 * We want to avoid an expensive divide : (offset / cache->buffer_size)
532 * Using the fact that buffer_size is a constant for a particular cache,
533 * we can replace (offset / cache->buffer_size) by
534 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
535 */
536static inline unsigned int obj_to_index(const struct kmem_cache *cache,
537 const struct slab *slab, void *obj)
8fea4e96 538{
6a2d7a95
ED
539 u32 offset = (obj - slab->s_mem);
540 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
541}
542
a737b3e2
AM
543/*
544 * These are the default caches for kmalloc. Custom caches can have other sizes.
545 */
1da177e4
LT
546struct cache_sizes malloc_sizes[] = {
547#define CACHE(x) { .cs_size = (x) },
548#include <linux/kmalloc_sizes.h>
549 CACHE(ULONG_MAX)
550#undef CACHE
551};
552EXPORT_SYMBOL(malloc_sizes);
553
554/* Must match cache_sizes above. Out of line to keep cache footprint low. */
555struct cache_names {
556 char *name;
557 char *name_dma;
558};
559
560static struct cache_names __initdata cache_names[] = {
561#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
562#include <linux/kmalloc_sizes.h>
b28a02de 563 {NULL,}
1da177e4
LT
564#undef CACHE
565};
566
567static struct arraycache_init initarray_cache __initdata =
b28a02de 568 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 569static struct arraycache_init initarray_generic =
b28a02de 570 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
571
572/* internal cache of cache description objs */
343e0d7a 573static struct kmem_cache cache_cache = {
b28a02de
PE
574 .batchcount = 1,
575 .limit = BOOT_CPUCACHE_ENTRIES,
576 .shared = 1,
343e0d7a 577 .buffer_size = sizeof(struct kmem_cache),
b28a02de 578 .name = "kmem_cache",
1da177e4
LT
579};
580
056c6241
RT
581#define BAD_ALIEN_MAGIC 0x01020304ul
582
ce79ddc8
PE
583/*
584 * chicken and egg problem: delay the per-cpu array allocation
585 * until the general caches are up.
586 */
587static enum {
588 NONE,
589 PARTIAL_AC,
590 PARTIAL_L3,
591 EARLY,
592 FULL
593} g_cpucache_up;
594
595/*
596 * used by boot code to determine if it can use slab based allocator
597 */
598int slab_is_available(void)
599{
600 return g_cpucache_up >= EARLY;
601}
602
f1aaee53
AV
603#ifdef CONFIG_LOCKDEP
604
605/*
606 * Slab sometimes uses the kmalloc slabs to store the slab headers
607 * for other slabs "off slab".
608 * The locking for this is tricky in that it nests within the locks
609 * of all other slabs in a few places; to deal with this special
610 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
611 *
612 * We set lock class for alien array caches which are up during init.
613 * The lock annotation will be lost if all cpus of a node goes down and
614 * then comes back up during hotplug
f1aaee53 615 */
056c6241
RT
616static struct lock_class_key on_slab_l3_key;
617static struct lock_class_key on_slab_alc_key;
618
ce79ddc8 619static void init_node_lock_keys(int q)
f1aaee53 620{
056c6241
RT
621 struct cache_sizes *s = malloc_sizes;
622
ce79ddc8
PE
623 if (g_cpucache_up != FULL)
624 return;
625
626 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
627 struct array_cache **alc;
628 struct kmem_list3 *l3;
629 int r;
630
631 l3 = s->cs_cachep->nodelists[q];
632 if (!l3 || OFF_SLAB(s->cs_cachep))
00afa758 633 continue;
ce79ddc8
PE
634 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
635 alc = l3->alien;
636 /*
637 * FIXME: This check for BAD_ALIEN_MAGIC
638 * should go away when common slab code is taught to
639 * work even without alien caches.
640 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
641 * for alloc_alien_cache,
642 */
643 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
00afa758 644 continue;
ce79ddc8
PE
645 for_each_node(r) {
646 if (alc[r])
647 lockdep_set_class(&alc[r]->lock,
648 &on_slab_alc_key);
056c6241 649 }
f1aaee53
AV
650 }
651}
ce79ddc8
PE
652
653static inline void init_lock_keys(void)
654{
655 int node;
656
657 for_each_node(node)
658 init_node_lock_keys(node);
659}
f1aaee53 660#else
ce79ddc8
PE
661static void init_node_lock_keys(int q)
662{
663}
664
056c6241 665static inline void init_lock_keys(void)
f1aaee53
AV
666{
667}
668#endif
669
8f5be20b 670/*
95402b38 671 * Guard access to the cache-chain.
8f5be20b 672 */
fc0abb14 673static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
674static struct list_head cache_chain;
675
1871e52c 676static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 677
343e0d7a 678static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
679{
680 return cachep->array[smp_processor_id()];
681}
682
a737b3e2
AM
683static inline struct kmem_cache *__find_general_cachep(size_t size,
684 gfp_t gfpflags)
1da177e4
LT
685{
686 struct cache_sizes *csizep = malloc_sizes;
687
688#if DEBUG
689 /* This happens if someone tries to call
b28a02de
PE
690 * kmem_cache_create(), or __kmalloc(), before
691 * the generic caches are initialized.
692 */
c7e43c78 693 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 694#endif
6cb8f913
CL
695 if (!size)
696 return ZERO_SIZE_PTR;
697
1da177e4
LT
698 while (size > csizep->cs_size)
699 csizep++;
700
701 /*
0abf40c1 702 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
703 * has cs_{dma,}cachep==NULL. Thus no special case
704 * for large kmalloc calls required.
705 */
4b51d669 706#ifdef CONFIG_ZONE_DMA
1da177e4
LT
707 if (unlikely(gfpflags & GFP_DMA))
708 return csizep->cs_dmacachep;
4b51d669 709#endif
1da177e4
LT
710 return csizep->cs_cachep;
711}
712
b221385b 713static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
714{
715 return __find_general_cachep(size, gfpflags);
716}
97e2bde4 717
fbaccacf 718static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 719{
fbaccacf
SR
720 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
721}
1da177e4 722
a737b3e2
AM
723/*
724 * Calculate the number of objects and left-over bytes for a given buffer size.
725 */
fbaccacf
SR
726static void cache_estimate(unsigned long gfporder, size_t buffer_size,
727 size_t align, int flags, size_t *left_over,
728 unsigned int *num)
729{
730 int nr_objs;
731 size_t mgmt_size;
732 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 733
fbaccacf
SR
734 /*
735 * The slab management structure can be either off the slab or
736 * on it. For the latter case, the memory allocated for a
737 * slab is used for:
738 *
739 * - The struct slab
740 * - One kmem_bufctl_t for each object
741 * - Padding to respect alignment of @align
742 * - @buffer_size bytes for each object
743 *
744 * If the slab management structure is off the slab, then the
745 * alignment will already be calculated into the size. Because
746 * the slabs are all pages aligned, the objects will be at the
747 * correct alignment when allocated.
748 */
749 if (flags & CFLGS_OFF_SLAB) {
750 mgmt_size = 0;
751 nr_objs = slab_size / buffer_size;
752
753 if (nr_objs > SLAB_LIMIT)
754 nr_objs = SLAB_LIMIT;
755 } else {
756 /*
757 * Ignore padding for the initial guess. The padding
758 * is at most @align-1 bytes, and @buffer_size is at
759 * least @align. In the worst case, this result will
760 * be one greater than the number of objects that fit
761 * into the memory allocation when taking the padding
762 * into account.
763 */
764 nr_objs = (slab_size - sizeof(struct slab)) /
765 (buffer_size + sizeof(kmem_bufctl_t));
766
767 /*
768 * This calculated number will be either the right
769 * amount, or one greater than what we want.
770 */
771 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
772 > slab_size)
773 nr_objs--;
774
775 if (nr_objs > SLAB_LIMIT)
776 nr_objs = SLAB_LIMIT;
777
778 mgmt_size = slab_mgmt_size(nr_objs, align);
779 }
780 *num = nr_objs;
781 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
782}
783
d40cee24 784#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 785
a737b3e2
AM
786static void __slab_error(const char *function, struct kmem_cache *cachep,
787 char *msg)
1da177e4
LT
788{
789 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 790 function, cachep->name, msg);
1da177e4
LT
791 dump_stack();
792}
793
3395ee05
PM
794/*
795 * By default on NUMA we use alien caches to stage the freeing of
796 * objects allocated from other nodes. This causes massive memory
797 * inefficiencies when using fake NUMA setup to split memory into a
798 * large number of small nodes, so it can be disabled on the command
799 * line
800 */
801
802static int use_alien_caches __read_mostly = 1;
803static int __init noaliencache_setup(char *s)
804{
805 use_alien_caches = 0;
806 return 1;
807}
808__setup("noaliencache", noaliencache_setup);
809
8fce4d8e
CL
810#ifdef CONFIG_NUMA
811/*
812 * Special reaping functions for NUMA systems called from cache_reap().
813 * These take care of doing round robin flushing of alien caches (containing
814 * objects freed on different nodes from which they were allocated) and the
815 * flushing of remote pcps by calling drain_node_pages.
816 */
1871e52c 817static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
818
819static void init_reap_node(int cpu)
820{
821 int node;
822
7d6e6d09 823 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 824 if (node == MAX_NUMNODES)
442295c9 825 node = first_node(node_online_map);
8fce4d8e 826
1871e52c 827 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
828}
829
830static void next_reap_node(void)
831{
1871e52c 832 int node = __get_cpu_var(slab_reap_node);
8fce4d8e 833
8fce4d8e
CL
834 node = next_node(node, node_online_map);
835 if (unlikely(node >= MAX_NUMNODES))
836 node = first_node(node_online_map);
1871e52c 837 __get_cpu_var(slab_reap_node) = node;
8fce4d8e
CL
838}
839
840#else
841#define init_reap_node(cpu) do { } while (0)
842#define next_reap_node(void) do { } while (0)
843#endif
844
1da177e4
LT
845/*
846 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
847 * via the workqueue/eventd.
848 * Add the CPU number into the expiration time to minimize the possibility of
849 * the CPUs getting into lockstep and contending for the global cache chain
850 * lock.
851 */
897e679b 852static void __cpuinit start_cpu_timer(int cpu)
1da177e4 853{
1871e52c 854 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
855
856 /*
857 * When this gets called from do_initcalls via cpucache_init(),
858 * init_workqueues() has already run, so keventd will be setup
859 * at that time.
860 */
52bad64d 861 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 862 init_reap_node(cpu);
78b43536 863 INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
2b284214
AV
864 schedule_delayed_work_on(cpu, reap_work,
865 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
866 }
867}
868
e498be7d 869static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 870 int batchcount, gfp_t gfp)
1da177e4 871{
b28a02de 872 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
873 struct array_cache *nc = NULL;
874
83b519e8 875 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
876 /*
877 * The array_cache structures contain pointers to free object.
878 * However, when such objects are allocated or transfered to another
879 * cache the pointers are not cleared and they could be counted as
880 * valid references during a kmemleak scan. Therefore, kmemleak must
881 * not scan such objects.
882 */
883 kmemleak_no_scan(nc);
1da177e4
LT
884 if (nc) {
885 nc->avail = 0;
886 nc->limit = entries;
887 nc->batchcount = batchcount;
888 nc->touched = 0;
e498be7d 889 spin_lock_init(&nc->lock);
1da177e4
LT
890 }
891 return nc;
892}
893
3ded175a
CL
894/*
895 * Transfer objects in one arraycache to another.
896 * Locking must be handled by the caller.
897 *
898 * Return the number of entries transferred.
899 */
900static int transfer_objects(struct array_cache *to,
901 struct array_cache *from, unsigned int max)
902{
903 /* Figure out how many entries to transfer */
732eacc0 904 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
905
906 if (!nr)
907 return 0;
908
909 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
910 sizeof(void *) *nr);
911
912 from->avail -= nr;
913 to->avail += nr;
3ded175a
CL
914 return nr;
915}
916
765c4507
CL
917#ifndef CONFIG_NUMA
918
919#define drain_alien_cache(cachep, alien) do { } while (0)
920#define reap_alien(cachep, l3) do { } while (0)
921
83b519e8 922static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
923{
924 return (struct array_cache **)BAD_ALIEN_MAGIC;
925}
926
927static inline void free_alien_cache(struct array_cache **ac_ptr)
928{
929}
930
931static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
932{
933 return 0;
934}
935
936static inline void *alternate_node_alloc(struct kmem_cache *cachep,
937 gfp_t flags)
938{
939 return NULL;
940}
941
8b98c169 942static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
943 gfp_t flags, int nodeid)
944{
945 return NULL;
946}
947
948#else /* CONFIG_NUMA */
949
8b98c169 950static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 951static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 952
83b519e8 953static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
954{
955 struct array_cache **ac_ptr;
8ef82866 956 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
957 int i;
958
959 if (limit > 1)
960 limit = 12;
f3186a9c 961 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
962 if (ac_ptr) {
963 for_each_node(i) {
f3186a9c 964 if (i == node || !node_online(i))
e498be7d 965 continue;
83b519e8 966 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 967 if (!ac_ptr[i]) {
cc550def 968 for (i--; i >= 0; i--)
e498be7d
CL
969 kfree(ac_ptr[i]);
970 kfree(ac_ptr);
971 return NULL;
972 }
973 }
974 }
975 return ac_ptr;
976}
977
5295a74c 978static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
979{
980 int i;
981
982 if (!ac_ptr)
983 return;
e498be7d 984 for_each_node(i)
b28a02de 985 kfree(ac_ptr[i]);
e498be7d
CL
986 kfree(ac_ptr);
987}
988
343e0d7a 989static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 990 struct array_cache *ac, int node)
e498be7d
CL
991{
992 struct kmem_list3 *rl3 = cachep->nodelists[node];
993
994 if (ac->avail) {
995 spin_lock(&rl3->list_lock);
e00946fe
CL
996 /*
997 * Stuff objects into the remote nodes shared array first.
998 * That way we could avoid the overhead of putting the objects
999 * into the free lists and getting them back later.
1000 */
693f7d36
JS
1001 if (rl3->shared)
1002 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1003
ff69416e 1004 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1005 ac->avail = 0;
1006 spin_unlock(&rl3->list_lock);
1007 }
1008}
1009
8fce4d8e
CL
1010/*
1011 * Called from cache_reap() to regularly drain alien caches round robin.
1012 */
1013static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1014{
1871e52c 1015 int node = __get_cpu_var(slab_reap_node);
8fce4d8e
CL
1016
1017 if (l3->alien) {
1018 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1019
1020 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1021 __drain_alien_cache(cachep, ac, node);
1022 spin_unlock_irq(&ac->lock);
1023 }
1024 }
1025}
1026
a737b3e2
AM
1027static void drain_alien_cache(struct kmem_cache *cachep,
1028 struct array_cache **alien)
e498be7d 1029{
b28a02de 1030 int i = 0;
e498be7d
CL
1031 struct array_cache *ac;
1032 unsigned long flags;
1033
1034 for_each_online_node(i) {
4484ebf1 1035 ac = alien[i];
e498be7d
CL
1036 if (ac) {
1037 spin_lock_irqsave(&ac->lock, flags);
1038 __drain_alien_cache(cachep, ac, i);
1039 spin_unlock_irqrestore(&ac->lock, flags);
1040 }
1041 }
1042}
729bd0b7 1043
873623df 1044static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1045{
1046 struct slab *slabp = virt_to_slab(objp);
1047 int nodeid = slabp->nodeid;
1048 struct kmem_list3 *l3;
1049 struct array_cache *alien = NULL;
1ca4cb24
PE
1050 int node;
1051
7d6e6d09 1052 node = numa_mem_id();
729bd0b7
PE
1053
1054 /*
1055 * Make sure we are not freeing a object from another node to the array
1056 * cache on this cpu.
1057 */
62918a03 1058 if (likely(slabp->nodeid == node))
729bd0b7
PE
1059 return 0;
1060
1ca4cb24 1061 l3 = cachep->nodelists[node];
729bd0b7
PE
1062 STATS_INC_NODEFREES(cachep);
1063 if (l3->alien && l3->alien[nodeid]) {
1064 alien = l3->alien[nodeid];
873623df 1065 spin_lock(&alien->lock);
729bd0b7
PE
1066 if (unlikely(alien->avail == alien->limit)) {
1067 STATS_INC_ACOVERFLOW(cachep);
1068 __drain_alien_cache(cachep, alien, nodeid);
1069 }
1070 alien->entry[alien->avail++] = objp;
1071 spin_unlock(&alien->lock);
1072 } else {
1073 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1074 free_block(cachep, &objp, 1, nodeid);
1075 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1076 }
1077 return 1;
1078}
e498be7d
CL
1079#endif
1080
8f9f8d9e
DR
1081/*
1082 * Allocates and initializes nodelists for a node on each slab cache, used for
1083 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1084 * will be allocated off-node since memory is not yet online for the new node.
1085 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1086 * already in use.
1087 *
1088 * Must hold cache_chain_mutex.
1089 */
1090static int init_cache_nodelists_node(int node)
1091{
1092 struct kmem_cache *cachep;
1093 struct kmem_list3 *l3;
1094 const int memsize = sizeof(struct kmem_list3);
1095
1096 list_for_each_entry(cachep, &cache_chain, next) {
1097 /*
1098 * Set up the size64 kmemlist for cpu before we can
1099 * begin anything. Make sure some other cpu on this
1100 * node has not already allocated this
1101 */
1102 if (!cachep->nodelists[node]) {
1103 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1104 if (!l3)
1105 return -ENOMEM;
1106 kmem_list3_init(l3);
1107 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1108 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1109
1110 /*
1111 * The l3s don't come and go as CPUs come and
1112 * go. cache_chain_mutex is sufficient
1113 * protection here.
1114 */
1115 cachep->nodelists[node] = l3;
1116 }
1117
1118 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1119 cachep->nodelists[node]->free_limit =
1120 (1 + nr_cpus_node(node)) *
1121 cachep->batchcount + cachep->num;
1122 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1123 }
1124 return 0;
1125}
1126
fbf1e473
AM
1127static void __cpuinit cpuup_canceled(long cpu)
1128{
1129 struct kmem_cache *cachep;
1130 struct kmem_list3 *l3 = NULL;
7d6e6d09 1131 int node = cpu_to_mem(cpu);
a70f7302 1132 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473
AM
1133
1134 list_for_each_entry(cachep, &cache_chain, next) {
1135 struct array_cache *nc;
1136 struct array_cache *shared;
1137 struct array_cache **alien;
fbf1e473 1138
fbf1e473
AM
1139 /* cpu is dead; no one can alloc from it. */
1140 nc = cachep->array[cpu];
1141 cachep->array[cpu] = NULL;
1142 l3 = cachep->nodelists[node];
1143
1144 if (!l3)
1145 goto free_array_cache;
1146
1147 spin_lock_irq(&l3->list_lock);
1148
1149 /* Free limit for this kmem_list3 */
1150 l3->free_limit -= cachep->batchcount;
1151 if (nc)
1152 free_block(cachep, nc->entry, nc->avail, node);
1153
58463c1f 1154 if (!cpumask_empty(mask)) {
fbf1e473
AM
1155 spin_unlock_irq(&l3->list_lock);
1156 goto free_array_cache;
1157 }
1158
1159 shared = l3->shared;
1160 if (shared) {
1161 free_block(cachep, shared->entry,
1162 shared->avail, node);
1163 l3->shared = NULL;
1164 }
1165
1166 alien = l3->alien;
1167 l3->alien = NULL;
1168
1169 spin_unlock_irq(&l3->list_lock);
1170
1171 kfree(shared);
1172 if (alien) {
1173 drain_alien_cache(cachep, alien);
1174 free_alien_cache(alien);
1175 }
1176free_array_cache:
1177 kfree(nc);
1178 }
1179 /*
1180 * In the previous loop, all the objects were freed to
1181 * the respective cache's slabs, now we can go ahead and
1182 * shrink each nodelist to its limit.
1183 */
1184 list_for_each_entry(cachep, &cache_chain, next) {
1185 l3 = cachep->nodelists[node];
1186 if (!l3)
1187 continue;
1188 drain_freelist(cachep, l3, l3->free_objects);
1189 }
1190}
1191
1192static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1193{
343e0d7a 1194 struct kmem_cache *cachep;
e498be7d 1195 struct kmem_list3 *l3 = NULL;
7d6e6d09 1196 int node = cpu_to_mem(cpu);
8f9f8d9e 1197 int err;
1da177e4 1198
fbf1e473
AM
1199 /*
1200 * We need to do this right in the beginning since
1201 * alloc_arraycache's are going to use this list.
1202 * kmalloc_node allows us to add the slab to the right
1203 * kmem_list3 and not this cpu's kmem_list3
1204 */
8f9f8d9e
DR
1205 err = init_cache_nodelists_node(node);
1206 if (err < 0)
1207 goto bad;
fbf1e473
AM
1208
1209 /*
1210 * Now we can go ahead with allocating the shared arrays and
1211 * array caches
1212 */
1213 list_for_each_entry(cachep, &cache_chain, next) {
1214 struct array_cache *nc;
1215 struct array_cache *shared = NULL;
1216 struct array_cache **alien = NULL;
1217
1218 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1219 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1220 if (!nc)
1221 goto bad;
1222 if (cachep->shared) {
1223 shared = alloc_arraycache(node,
1224 cachep->shared * cachep->batchcount,
83b519e8 1225 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1226 if (!shared) {
1227 kfree(nc);
1da177e4 1228 goto bad;
12d00f6a 1229 }
fbf1e473
AM
1230 }
1231 if (use_alien_caches) {
83b519e8 1232 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1233 if (!alien) {
1234 kfree(shared);
1235 kfree(nc);
fbf1e473 1236 goto bad;
12d00f6a 1237 }
fbf1e473
AM
1238 }
1239 cachep->array[cpu] = nc;
1240 l3 = cachep->nodelists[node];
1241 BUG_ON(!l3);
1242
1243 spin_lock_irq(&l3->list_lock);
1244 if (!l3->shared) {
1245 /*
1246 * We are serialised from CPU_DEAD or
1247 * CPU_UP_CANCELLED by the cpucontrol lock
1248 */
1249 l3->shared = shared;
1250 shared = NULL;
1251 }
4484ebf1 1252#ifdef CONFIG_NUMA
fbf1e473
AM
1253 if (!l3->alien) {
1254 l3->alien = alien;
1255 alien = NULL;
1da177e4 1256 }
fbf1e473
AM
1257#endif
1258 spin_unlock_irq(&l3->list_lock);
1259 kfree(shared);
1260 free_alien_cache(alien);
1261 }
ce79ddc8
PE
1262 init_node_lock_keys(node);
1263
fbf1e473
AM
1264 return 0;
1265bad:
12d00f6a 1266 cpuup_canceled(cpu);
fbf1e473
AM
1267 return -ENOMEM;
1268}
1269
1270static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1271 unsigned long action, void *hcpu)
1272{
1273 long cpu = (long)hcpu;
1274 int err = 0;
1275
1276 switch (action) {
fbf1e473
AM
1277 case CPU_UP_PREPARE:
1278 case CPU_UP_PREPARE_FROZEN:
95402b38 1279 mutex_lock(&cache_chain_mutex);
fbf1e473 1280 err = cpuup_prepare(cpu);
95402b38 1281 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1282 break;
1283 case CPU_ONLINE:
8bb78442 1284 case CPU_ONLINE_FROZEN:
1da177e4
LT
1285 start_cpu_timer(cpu);
1286 break;
1287#ifdef CONFIG_HOTPLUG_CPU
5830c590 1288 case CPU_DOWN_PREPARE:
8bb78442 1289 case CPU_DOWN_PREPARE_FROZEN:
5830c590
CL
1290 /*
1291 * Shutdown cache reaper. Note that the cache_chain_mutex is
1292 * held so that if cache_reap() is invoked it cannot do
1293 * anything expensive but will only modify reap_work
1294 * and reschedule the timer.
1295 */
1871e52c 1296 cancel_rearming_delayed_work(&per_cpu(slab_reap_work, cpu));
5830c590 1297 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1298 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1299 break;
1300 case CPU_DOWN_FAILED:
8bb78442 1301 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1302 start_cpu_timer(cpu);
1303 break;
1da177e4 1304 case CPU_DEAD:
8bb78442 1305 case CPU_DEAD_FROZEN:
4484ebf1
RT
1306 /*
1307 * Even if all the cpus of a node are down, we don't free the
1308 * kmem_list3 of any cache. This to avoid a race between
1309 * cpu_down, and a kmalloc allocation from another cpu for
1310 * memory from the node of the cpu going down. The list3
1311 * structure is usually allocated from kmem_cache_create() and
1312 * gets destroyed at kmem_cache_destroy().
1313 */
183ff22b 1314 /* fall through */
8f5be20b 1315#endif
1da177e4 1316 case CPU_UP_CANCELED:
8bb78442 1317 case CPU_UP_CANCELED_FROZEN:
95402b38 1318 mutex_lock(&cache_chain_mutex);
fbf1e473 1319 cpuup_canceled(cpu);
fc0abb14 1320 mutex_unlock(&cache_chain_mutex);
1da177e4 1321 break;
1da177e4 1322 }
eac40680 1323 return notifier_from_errno(err);
1da177e4
LT
1324}
1325
74b85f37
CS
1326static struct notifier_block __cpuinitdata cpucache_notifier = {
1327 &cpuup_callback, NULL, 0
1328};
1da177e4 1329
8f9f8d9e
DR
1330#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1331/*
1332 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1333 * Returns -EBUSY if all objects cannot be drained so that the node is not
1334 * removed.
1335 *
1336 * Must hold cache_chain_mutex.
1337 */
1338static int __meminit drain_cache_nodelists_node(int node)
1339{
1340 struct kmem_cache *cachep;
1341 int ret = 0;
1342
1343 list_for_each_entry(cachep, &cache_chain, next) {
1344 struct kmem_list3 *l3;
1345
1346 l3 = cachep->nodelists[node];
1347 if (!l3)
1348 continue;
1349
1350 drain_freelist(cachep, l3, l3->free_objects);
1351
1352 if (!list_empty(&l3->slabs_full) ||
1353 !list_empty(&l3->slabs_partial)) {
1354 ret = -EBUSY;
1355 break;
1356 }
1357 }
1358 return ret;
1359}
1360
1361static int __meminit slab_memory_callback(struct notifier_block *self,
1362 unsigned long action, void *arg)
1363{
1364 struct memory_notify *mnb = arg;
1365 int ret = 0;
1366 int nid;
1367
1368 nid = mnb->status_change_nid;
1369 if (nid < 0)
1370 goto out;
1371
1372 switch (action) {
1373 case MEM_GOING_ONLINE:
1374 mutex_lock(&cache_chain_mutex);
1375 ret = init_cache_nodelists_node(nid);
1376 mutex_unlock(&cache_chain_mutex);
1377 break;
1378 case MEM_GOING_OFFLINE:
1379 mutex_lock(&cache_chain_mutex);
1380 ret = drain_cache_nodelists_node(nid);
1381 mutex_unlock(&cache_chain_mutex);
1382 break;
1383 case MEM_ONLINE:
1384 case MEM_OFFLINE:
1385 case MEM_CANCEL_ONLINE:
1386 case MEM_CANCEL_OFFLINE:
1387 break;
1388 }
1389out:
1390 return ret ? notifier_from_errno(ret) : NOTIFY_OK;
1391}
1392#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1393
e498be7d
CL
1394/*
1395 * swap the static kmem_list3 with kmalloced memory
1396 */
8f9f8d9e
DR
1397static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1398 int nodeid)
e498be7d
CL
1399{
1400 struct kmem_list3 *ptr;
1401
83b519e8 1402 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
e498be7d
CL
1403 BUG_ON(!ptr);
1404
e498be7d 1405 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1406 /*
1407 * Do not assume that spinlocks can be initialized via memcpy:
1408 */
1409 spin_lock_init(&ptr->list_lock);
1410
e498be7d
CL
1411 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1412 cachep->nodelists[nodeid] = ptr;
e498be7d
CL
1413}
1414
556a169d
PE
1415/*
1416 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1417 * size of kmem_list3.
1418 */
1419static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1420{
1421 int node;
1422
1423 for_each_online_node(node) {
1424 cachep->nodelists[node] = &initkmem_list3[index + node];
1425 cachep->nodelists[node]->next_reap = jiffies +
1426 REAPTIMEOUT_LIST3 +
1427 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1428 }
1429}
1430
a737b3e2
AM
1431/*
1432 * Initialisation. Called after the page allocator have been initialised and
1433 * before smp_init().
1da177e4
LT
1434 */
1435void __init kmem_cache_init(void)
1436{
1437 size_t left_over;
1438 struct cache_sizes *sizes;
1439 struct cache_names *names;
e498be7d 1440 int i;
07ed76b2 1441 int order;
1ca4cb24 1442 int node;
e498be7d 1443
b6e68bc1 1444 if (num_possible_nodes() == 1)
62918a03
SS
1445 use_alien_caches = 0;
1446
e498be7d
CL
1447 for (i = 0; i < NUM_INIT_LISTS; i++) {
1448 kmem_list3_init(&initkmem_list3[i]);
1449 if (i < MAX_NUMNODES)
1450 cache_cache.nodelists[i] = NULL;
1451 }
556a169d 1452 set_up_list3s(&cache_cache, CACHE_CACHE);
1da177e4
LT
1453
1454 /*
1455 * Fragmentation resistance on low memory - only use bigger
1456 * page orders on machines with more than 32MB of memory.
1457 */
4481374c 1458 if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
1da177e4
LT
1459 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1460
1da177e4
LT
1461 /* Bootstrap is tricky, because several objects are allocated
1462 * from caches that do not exist yet:
a737b3e2
AM
1463 * 1) initialize the cache_cache cache: it contains the struct
1464 * kmem_cache structures of all caches, except cache_cache itself:
1465 * cache_cache is statically allocated.
e498be7d
CL
1466 * Initially an __init data area is used for the head array and the
1467 * kmem_list3 structures, it's replaced with a kmalloc allocated
1468 * array at the end of the bootstrap.
1da177e4 1469 * 2) Create the first kmalloc cache.
343e0d7a 1470 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1471 * An __init data area is used for the head array.
1472 * 3) Create the remaining kmalloc caches, with minimally sized
1473 * head arrays.
1da177e4
LT
1474 * 4) Replace the __init data head arrays for cache_cache and the first
1475 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1476 * 5) Replace the __init data for kmem_list3 for cache_cache and
1477 * the other cache's with kmalloc allocated memory.
1478 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1479 */
1480
7d6e6d09 1481 node = numa_mem_id();
1ca4cb24 1482
1da177e4 1483 /* 1) create the cache_cache */
1da177e4
LT
1484 INIT_LIST_HEAD(&cache_chain);
1485 list_add(&cache_cache.next, &cache_chain);
1486 cache_cache.colour_off = cache_line_size();
1487 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
ec1f5eee 1488 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1da177e4 1489
8da3430d
ED
1490 /*
1491 * struct kmem_cache size depends on nr_node_ids, which
1492 * can be less than MAX_NUMNODES.
1493 */
1494 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1495 nr_node_ids * sizeof(struct kmem_list3 *);
1496#if DEBUG
1497 cache_cache.obj_size = cache_cache.buffer_size;
1498#endif
a737b3e2
AM
1499 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1500 cache_line_size());
6a2d7a95
ED
1501 cache_cache.reciprocal_buffer_size =
1502 reciprocal_value(cache_cache.buffer_size);
1da177e4 1503
07ed76b2
JS
1504 for (order = 0; order < MAX_ORDER; order++) {
1505 cache_estimate(order, cache_cache.buffer_size,
1506 cache_line_size(), 0, &left_over, &cache_cache.num);
1507 if (cache_cache.num)
1508 break;
1509 }
40094fa6 1510 BUG_ON(!cache_cache.num);
07ed76b2 1511 cache_cache.gfporder = order;
b28a02de 1512 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1513 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1514 sizeof(struct slab), cache_line_size());
1da177e4
LT
1515
1516 /* 2+3) create the kmalloc caches */
1517 sizes = malloc_sizes;
1518 names = cache_names;
1519
a737b3e2
AM
1520 /*
1521 * Initialize the caches that provide memory for the array cache and the
1522 * kmem_list3 structures first. Without this, further allocations will
1523 * bug.
e498be7d
CL
1524 */
1525
1526 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1527 sizes[INDEX_AC].cs_size,
1528 ARCH_KMALLOC_MINALIGN,
1529 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1530 NULL);
e498be7d 1531
a737b3e2 1532 if (INDEX_AC != INDEX_L3) {
e498be7d 1533 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1534 kmem_cache_create(names[INDEX_L3].name,
1535 sizes[INDEX_L3].cs_size,
1536 ARCH_KMALLOC_MINALIGN,
1537 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1538 NULL);
a737b3e2 1539 }
e498be7d 1540
e0a42726
IM
1541 slab_early_init = 0;
1542
1da177e4 1543 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1544 /*
1545 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1546 * This should be particularly beneficial on SMP boxes, as it
1547 * eliminates "false sharing".
1548 * Note for systems short on memory removing the alignment will
e498be7d
CL
1549 * allow tighter packing of the smaller caches.
1550 */
a737b3e2 1551 if (!sizes->cs_cachep) {
e498be7d 1552 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1553 sizes->cs_size,
1554 ARCH_KMALLOC_MINALIGN,
1555 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1556 NULL);
a737b3e2 1557 }
4b51d669
CL
1558#ifdef CONFIG_ZONE_DMA
1559 sizes->cs_dmacachep = kmem_cache_create(
1560 names->name_dma,
a737b3e2
AM
1561 sizes->cs_size,
1562 ARCH_KMALLOC_MINALIGN,
1563 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1564 SLAB_PANIC,
20c2df83 1565 NULL);
4b51d669 1566#endif
1da177e4
LT
1567 sizes++;
1568 names++;
1569 }
1570 /* 4) Replace the bootstrap head arrays */
1571 {
2b2d5493 1572 struct array_cache *ptr;
e498be7d 1573
83b519e8 1574 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1575
9a2dba4b
PE
1576 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1577 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1578 sizeof(struct arraycache_init));
2b2d5493
IM
1579 /*
1580 * Do not assume that spinlocks can be initialized via memcpy:
1581 */
1582 spin_lock_init(&ptr->lock);
1583
1da177e4 1584 cache_cache.array[smp_processor_id()] = ptr;
e498be7d 1585
83b519e8 1586 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1587
9a2dba4b 1588 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1589 != &initarray_generic.cache);
9a2dba4b 1590 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1591 sizeof(struct arraycache_init));
2b2d5493
IM
1592 /*
1593 * Do not assume that spinlocks can be initialized via memcpy:
1594 */
1595 spin_lock_init(&ptr->lock);
1596
e498be7d 1597 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1598 ptr;
1da177e4 1599 }
e498be7d
CL
1600 /* 5) Replace the bootstrap kmem_list3's */
1601 {
1ca4cb24
PE
1602 int nid;
1603
9c09a95c 1604 for_each_online_node(nid) {
ec1f5eee 1605 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
556a169d 1606
e498be7d 1607 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1608 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1609
1610 if (INDEX_AC != INDEX_L3) {
1611 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1612 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1613 }
1614 }
1615 }
1da177e4 1616
8429db5c 1617 g_cpucache_up = EARLY;
8429db5c
PE
1618}
1619
1620void __init kmem_cache_init_late(void)
1621{
1622 struct kmem_cache *cachep;
1623
8429db5c
PE
1624 /* 6) resize the head arrays to their final sizes */
1625 mutex_lock(&cache_chain_mutex);
1626 list_for_each_entry(cachep, &cache_chain, next)
1627 if (enable_cpucache(cachep, GFP_NOWAIT))
1628 BUG();
1629 mutex_unlock(&cache_chain_mutex);
056c6241 1630
1da177e4
LT
1631 /* Done! */
1632 g_cpucache_up = FULL;
1633
ec5a36f9
PE
1634 /* Annotate slab for lockdep -- annotate the malloc caches */
1635 init_lock_keys();
1636
a737b3e2
AM
1637 /*
1638 * Register a cpu startup notifier callback that initializes
1639 * cpu_cache_get for all new cpus
1da177e4
LT
1640 */
1641 register_cpu_notifier(&cpucache_notifier);
1da177e4 1642
8f9f8d9e
DR
1643#ifdef CONFIG_NUMA
1644 /*
1645 * Register a memory hotplug callback that initializes and frees
1646 * nodelists.
1647 */
1648 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1649#endif
1650
a737b3e2
AM
1651 /*
1652 * The reap timers are started later, with a module init call: That part
1653 * of the kernel is not yet operational.
1da177e4
LT
1654 */
1655}
1656
1657static int __init cpucache_init(void)
1658{
1659 int cpu;
1660
a737b3e2
AM
1661 /*
1662 * Register the timers that return unneeded pages to the page allocator
1da177e4 1663 */
e498be7d 1664 for_each_online_cpu(cpu)
a737b3e2 1665 start_cpu_timer(cpu);
1da177e4
LT
1666 return 0;
1667}
1da177e4
LT
1668__initcall(cpucache_init);
1669
1670/*
1671 * Interface to system's page allocator. No need to hold the cache-lock.
1672 *
1673 * If we requested dmaable memory, we will get it. Even if we
1674 * did not request dmaable memory, we might get it, but that
1675 * would be relatively rare and ignorable.
1676 */
343e0d7a 1677static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1678{
1679 struct page *page;
e1b6aa6f 1680 int nr_pages;
1da177e4
LT
1681 int i;
1682
d6fef9da 1683#ifndef CONFIG_MMU
e1b6aa6f
CH
1684 /*
1685 * Nommu uses slab's for process anonymous memory allocations, and thus
1686 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1687 */
e1b6aa6f 1688 flags |= __GFP_COMP;
d6fef9da 1689#endif
765c4507 1690
3c517a61 1691 flags |= cachep->gfpflags;
e12ba74d
MG
1692 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1693 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1694
517d0869 1695 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1da177e4
LT
1696 if (!page)
1697 return NULL;
1da177e4 1698
e1b6aa6f 1699 nr_pages = (1 << cachep->gfporder);
1da177e4 1700 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1701 add_zone_page_state(page_zone(page),
1702 NR_SLAB_RECLAIMABLE, nr_pages);
1703 else
1704 add_zone_page_state(page_zone(page),
1705 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1706 for (i = 0; i < nr_pages; i++)
1707 __SetPageSlab(page + i);
c175eea4 1708
b1eeab67
VN
1709 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1710 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1711
1712 if (cachep->ctor)
1713 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1714 else
1715 kmemcheck_mark_unallocated_pages(page, nr_pages);
1716 }
c175eea4 1717
e1b6aa6f 1718 return page_address(page);
1da177e4
LT
1719}
1720
1721/*
1722 * Interface to system's page release.
1723 */
343e0d7a 1724static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1725{
b28a02de 1726 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1727 struct page *page = virt_to_page(addr);
1728 const unsigned long nr_freed = i;
1729
b1eeab67 1730 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1731
972d1a7b
CL
1732 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1733 sub_zone_page_state(page_zone(page),
1734 NR_SLAB_RECLAIMABLE, nr_freed);
1735 else
1736 sub_zone_page_state(page_zone(page),
1737 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1738 while (i--) {
f205b2fe
NP
1739 BUG_ON(!PageSlab(page));
1740 __ClearPageSlab(page);
1da177e4
LT
1741 page++;
1742 }
1da177e4
LT
1743 if (current->reclaim_state)
1744 current->reclaim_state->reclaimed_slab += nr_freed;
1745 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1746}
1747
1748static void kmem_rcu_free(struct rcu_head *head)
1749{
b28a02de 1750 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1751 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1752
1753 kmem_freepages(cachep, slab_rcu->addr);
1754 if (OFF_SLAB(cachep))
1755 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1756}
1757
1758#if DEBUG
1759
1760#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1761static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1762 unsigned long caller)
1da177e4 1763{
3dafccf2 1764 int size = obj_size(cachep);
1da177e4 1765
3dafccf2 1766 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1767
b28a02de 1768 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1769 return;
1770
b28a02de
PE
1771 *addr++ = 0x12345678;
1772 *addr++ = caller;
1773 *addr++ = smp_processor_id();
1774 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1775 {
1776 unsigned long *sptr = &caller;
1777 unsigned long svalue;
1778
1779 while (!kstack_end(sptr)) {
1780 svalue = *sptr++;
1781 if (kernel_text_address(svalue)) {
b28a02de 1782 *addr++ = svalue;
1da177e4
LT
1783 size -= sizeof(unsigned long);
1784 if (size <= sizeof(unsigned long))
1785 break;
1786 }
1787 }
1788
1789 }
b28a02de 1790 *addr++ = 0x87654321;
1da177e4
LT
1791}
1792#endif
1793
343e0d7a 1794static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1795{
3dafccf2
MS
1796 int size = obj_size(cachep);
1797 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1798
1799 memset(addr, val, size);
b28a02de 1800 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1801}
1802
1803static void dump_line(char *data, int offset, int limit)
1804{
1805 int i;
aa83aa40
DJ
1806 unsigned char error = 0;
1807 int bad_count = 0;
1808
1da177e4 1809 printk(KERN_ERR "%03x:", offset);
aa83aa40
DJ
1810 for (i = 0; i < limit; i++) {
1811 if (data[offset + i] != POISON_FREE) {
1812 error = data[offset + i];
1813 bad_count++;
1814 }
b28a02de 1815 printk(" %02x", (unsigned char)data[offset + i]);
aa83aa40 1816 }
1da177e4 1817 printk("\n");
aa83aa40
DJ
1818
1819 if (bad_count == 1) {
1820 error ^= POISON_FREE;
1821 if (!(error & (error - 1))) {
1822 printk(KERN_ERR "Single bit error detected. Probably "
1823 "bad RAM.\n");
1824#ifdef CONFIG_X86
1825 printk(KERN_ERR "Run memtest86+ or a similar memory "
1826 "test tool.\n");
1827#else
1828 printk(KERN_ERR "Run a memory test tool.\n");
1829#endif
1830 }
1831 }
1da177e4
LT
1832}
1833#endif
1834
1835#if DEBUG
1836
343e0d7a 1837static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1838{
1839 int i, size;
1840 char *realobj;
1841
1842 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1843 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1844 *dbg_redzone1(cachep, objp),
1845 *dbg_redzone2(cachep, objp));
1da177e4
LT
1846 }
1847
1848 if (cachep->flags & SLAB_STORE_USER) {
1849 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1850 *dbg_userword(cachep, objp));
1da177e4 1851 print_symbol("(%s)",
a737b3e2 1852 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1853 printk("\n");
1854 }
3dafccf2
MS
1855 realobj = (char *)objp + obj_offset(cachep);
1856 size = obj_size(cachep);
b28a02de 1857 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1858 int limit;
1859 limit = 16;
b28a02de
PE
1860 if (i + limit > size)
1861 limit = size - i;
1da177e4
LT
1862 dump_line(realobj, i, limit);
1863 }
1864}
1865
343e0d7a 1866static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1867{
1868 char *realobj;
1869 int size, i;
1870 int lines = 0;
1871
3dafccf2
MS
1872 realobj = (char *)objp + obj_offset(cachep);
1873 size = obj_size(cachep);
1da177e4 1874
b28a02de 1875 for (i = 0; i < size; i++) {
1da177e4 1876 char exp = POISON_FREE;
b28a02de 1877 if (i == size - 1)
1da177e4
LT
1878 exp = POISON_END;
1879 if (realobj[i] != exp) {
1880 int limit;
1881 /* Mismatch ! */
1882 /* Print header */
1883 if (lines == 0) {
b28a02de 1884 printk(KERN_ERR
e94a40c5
DH
1885 "Slab corruption: %s start=%p, len=%d\n",
1886 cachep->name, realobj, size);
1da177e4
LT
1887 print_objinfo(cachep, objp, 0);
1888 }
1889 /* Hexdump the affected line */
b28a02de 1890 i = (i / 16) * 16;
1da177e4 1891 limit = 16;
b28a02de
PE
1892 if (i + limit > size)
1893 limit = size - i;
1da177e4
LT
1894 dump_line(realobj, i, limit);
1895 i += 16;
1896 lines++;
1897 /* Limit to 5 lines */
1898 if (lines > 5)
1899 break;
1900 }
1901 }
1902 if (lines != 0) {
1903 /* Print some data about the neighboring objects, if they
1904 * exist:
1905 */
6ed5eb22 1906 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1907 unsigned int objnr;
1da177e4 1908
8fea4e96 1909 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1910 if (objnr) {
8fea4e96 1911 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1912 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1913 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1914 realobj, size);
1da177e4
LT
1915 print_objinfo(cachep, objp, 2);
1916 }
b28a02de 1917 if (objnr + 1 < cachep->num) {
8fea4e96 1918 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1919 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1920 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1921 realobj, size);
1da177e4
LT
1922 print_objinfo(cachep, objp, 2);
1923 }
1924 }
1925}
1926#endif
1927
12dd36fa 1928#if DEBUG
e79aec29 1929static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1930{
1da177e4
LT
1931 int i;
1932 for (i = 0; i < cachep->num; i++) {
8fea4e96 1933 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1934
1935 if (cachep->flags & SLAB_POISON) {
1936#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1937 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1938 OFF_SLAB(cachep))
b28a02de 1939 kernel_map_pages(virt_to_page(objp),
a737b3e2 1940 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1941 else
1942 check_poison_obj(cachep, objp);
1943#else
1944 check_poison_obj(cachep, objp);
1945#endif
1946 }
1947 if (cachep->flags & SLAB_RED_ZONE) {
1948 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1949 slab_error(cachep, "start of a freed object "
b28a02de 1950 "was overwritten");
1da177e4
LT
1951 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1952 slab_error(cachep, "end of a freed object "
b28a02de 1953 "was overwritten");
1da177e4 1954 }
1da177e4 1955 }
12dd36fa 1956}
1da177e4 1957#else
e79aec29 1958static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1959{
12dd36fa 1960}
1da177e4
LT
1961#endif
1962
911851e6
RD
1963/**
1964 * slab_destroy - destroy and release all objects in a slab
1965 * @cachep: cache pointer being destroyed
1966 * @slabp: slab pointer being destroyed
1967 *
12dd36fa 1968 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1969 * Before calling the slab must have been unlinked from the cache. The
1970 * cache-lock is not held/needed.
12dd36fa 1971 */
343e0d7a 1972static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1973{
1974 void *addr = slabp->s_mem - slabp->colouroff;
1975
e79aec29 1976 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
1977 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1978 struct slab_rcu *slab_rcu;
1979
b28a02de 1980 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1981 slab_rcu->cachep = cachep;
1982 slab_rcu->addr = addr;
1983 call_rcu(&slab_rcu->head, kmem_rcu_free);
1984 } else {
1985 kmem_freepages(cachep, addr);
873623df
IM
1986 if (OFF_SLAB(cachep))
1987 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1988 }
1989}
1990
117f6eb1
CL
1991static void __kmem_cache_destroy(struct kmem_cache *cachep)
1992{
1993 int i;
1994 struct kmem_list3 *l3;
1995
1996 for_each_online_cpu(i)
1997 kfree(cachep->array[i]);
1998
1999 /* NUMA: free the list3 structures */
2000 for_each_online_node(i) {
2001 l3 = cachep->nodelists[i];
2002 if (l3) {
2003 kfree(l3->shared);
2004 free_alien_cache(l3->alien);
2005 kfree(l3);
2006 }
2007 }
2008 kmem_cache_free(&cache_cache, cachep);
2009}
2010
2011
4d268eba 2012/**
a70773dd
RD
2013 * calculate_slab_order - calculate size (page order) of slabs
2014 * @cachep: pointer to the cache that is being created
2015 * @size: size of objects to be created in this cache.
2016 * @align: required alignment for the objects.
2017 * @flags: slab allocation flags
2018 *
2019 * Also calculates the number of objects per slab.
4d268eba
PE
2020 *
2021 * This could be made much more intelligent. For now, try to avoid using
2022 * high order pages for slabs. When the gfp() functions are more friendly
2023 * towards high-order requests, this should be changed.
2024 */
a737b3e2 2025static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2026 size_t size, size_t align, unsigned long flags)
4d268eba 2027{
b1ab41c4 2028 unsigned long offslab_limit;
4d268eba 2029 size_t left_over = 0;
9888e6fa 2030 int gfporder;
4d268eba 2031
0aa817f0 2032 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2033 unsigned int num;
2034 size_t remainder;
2035
9888e6fa 2036 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2037 if (!num)
2038 continue;
9888e6fa 2039
b1ab41c4
IM
2040 if (flags & CFLGS_OFF_SLAB) {
2041 /*
2042 * Max number of objs-per-slab for caches which
2043 * use off-slab slabs. Needed to avoid a possible
2044 * looping condition in cache_grow().
2045 */
2046 offslab_limit = size - sizeof(struct slab);
2047 offslab_limit /= sizeof(kmem_bufctl_t);
2048
2049 if (num > offslab_limit)
2050 break;
2051 }
4d268eba 2052
9888e6fa 2053 /* Found something acceptable - save it away */
4d268eba 2054 cachep->num = num;
9888e6fa 2055 cachep->gfporder = gfporder;
4d268eba
PE
2056 left_over = remainder;
2057
f78bb8ad
LT
2058 /*
2059 * A VFS-reclaimable slab tends to have most allocations
2060 * as GFP_NOFS and we really don't want to have to be allocating
2061 * higher-order pages when we are unable to shrink dcache.
2062 */
2063 if (flags & SLAB_RECLAIM_ACCOUNT)
2064 break;
2065
4d268eba
PE
2066 /*
2067 * Large number of objects is good, but very large slabs are
2068 * currently bad for the gfp()s.
2069 */
9888e6fa 2070 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
2071 break;
2072
9888e6fa
LT
2073 /*
2074 * Acceptable internal fragmentation?
2075 */
a737b3e2 2076 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2077 break;
2078 }
2079 return left_over;
2080}
2081
83b519e8 2082static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2083{
2ed3a4ef 2084 if (g_cpucache_up == FULL)
83b519e8 2085 return enable_cpucache(cachep, gfp);
2ed3a4ef 2086
f30cf7d1
PE
2087 if (g_cpucache_up == NONE) {
2088 /*
2089 * Note: the first kmem_cache_create must create the cache
2090 * that's used by kmalloc(24), otherwise the creation of
2091 * further caches will BUG().
2092 */
2093 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2094
2095 /*
2096 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2097 * the first cache, then we need to set up all its list3s,
2098 * otherwise the creation of further caches will BUG().
2099 */
2100 set_up_list3s(cachep, SIZE_AC);
2101 if (INDEX_AC == INDEX_L3)
2102 g_cpucache_up = PARTIAL_L3;
2103 else
2104 g_cpucache_up = PARTIAL_AC;
2105 } else {
2106 cachep->array[smp_processor_id()] =
83b519e8 2107 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1
PE
2108
2109 if (g_cpucache_up == PARTIAL_AC) {
2110 set_up_list3s(cachep, SIZE_L3);
2111 g_cpucache_up = PARTIAL_L3;
2112 } else {
2113 int node;
556a169d 2114 for_each_online_node(node) {
f30cf7d1
PE
2115 cachep->nodelists[node] =
2116 kmalloc_node(sizeof(struct kmem_list3),
eb91f1d0 2117 gfp, node);
f30cf7d1
PE
2118 BUG_ON(!cachep->nodelists[node]);
2119 kmem_list3_init(cachep->nodelists[node]);
2120 }
2121 }
2122 }
7d6e6d09 2123 cachep->nodelists[numa_mem_id()]->next_reap =
f30cf7d1
PE
2124 jiffies + REAPTIMEOUT_LIST3 +
2125 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2126
2127 cpu_cache_get(cachep)->avail = 0;
2128 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2129 cpu_cache_get(cachep)->batchcount = 1;
2130 cpu_cache_get(cachep)->touched = 0;
2131 cachep->batchcount = 1;
2132 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2133 return 0;
f30cf7d1
PE
2134}
2135
1da177e4
LT
2136/**
2137 * kmem_cache_create - Create a cache.
2138 * @name: A string which is used in /proc/slabinfo to identify this cache.
2139 * @size: The size of objects to be created in this cache.
2140 * @align: The required alignment for the objects.
2141 * @flags: SLAB flags
2142 * @ctor: A constructor for the objects.
1da177e4
LT
2143 *
2144 * Returns a ptr to the cache on success, NULL on failure.
2145 * Cannot be called within a int, but can be interrupted.
20c2df83 2146 * The @ctor is run when new pages are allocated by the cache.
1da177e4
LT
2147 *
2148 * @name must be valid until the cache is destroyed. This implies that
a737b3e2 2149 * the module calling this has to destroy the cache before getting unloaded.
249da166
CM
2150 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
2151 * therefore applications must manage it themselves.
a737b3e2 2152 *
1da177e4
LT
2153 * The flags are
2154 *
2155 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2156 * to catch references to uninitialised memory.
2157 *
2158 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2159 * for buffer overruns.
2160 *
1da177e4
LT
2161 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2162 * cacheline. This can be beneficial if you're counting cycles as closely
2163 * as davem.
2164 */
343e0d7a 2165struct kmem_cache *
1da177e4 2166kmem_cache_create (const char *name, size_t size, size_t align,
51cc5068 2167 unsigned long flags, void (*ctor)(void *))
1da177e4
LT
2168{
2169 size_t left_over, slab_size, ralign;
7a7c381d 2170 struct kmem_cache *cachep = NULL, *pc;
83b519e8 2171 gfp_t gfp;
1da177e4
LT
2172
2173 /*
2174 * Sanity checks... these are all serious usage bugs.
2175 */
a737b3e2 2176 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
20c2df83 2177 size > KMALLOC_MAX_SIZE) {
d40cee24 2178 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
a737b3e2 2179 name);
b28a02de
PE
2180 BUG();
2181 }
1da177e4 2182
f0188f47 2183 /*
8f5be20b 2184 * We use cache_chain_mutex to ensure a consistent view of
174596a0 2185 * cpu_online_mask as well. Please see cpuup_callback
f0188f47 2186 */
83b519e8
PE
2187 if (slab_is_available()) {
2188 get_online_cpus();
2189 mutex_lock(&cache_chain_mutex);
2190 }
4f12bb4f 2191
7a7c381d 2192 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2193 char tmp;
2194 int res;
2195
2196 /*
2197 * This happens when the module gets unloaded and doesn't
2198 * destroy its slab cache and no-one else reuses the vmalloc
2199 * area of the module. Print a warning.
2200 */
138ae663 2201 res = probe_kernel_address(pc->name, tmp);
4f12bb4f 2202 if (res) {
b4169525 2203 printk(KERN_ERR
2204 "SLAB: cache with size %d has lost its name\n",
3dafccf2 2205 pc->buffer_size);
4f12bb4f
AM
2206 continue;
2207 }
2208
b28a02de 2209 if (!strcmp(pc->name, name)) {
b4169525 2210 printk(KERN_ERR
2211 "kmem_cache_create: duplicate cache %s\n", name);
4f12bb4f
AM
2212 dump_stack();
2213 goto oops;
2214 }
2215 }
2216
1da177e4
LT
2217#if DEBUG
2218 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1da177e4
LT
2219#if FORCED_DEBUG
2220 /*
2221 * Enable redzoning and last user accounting, except for caches with
2222 * large objects, if the increased size would increase the object size
2223 * above the next power of two: caches with object sizes just above a
2224 * power of two have a significant amount of internal fragmentation.
2225 */
87a927c7
DW
2226 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2227 2 * sizeof(unsigned long long)))
b28a02de 2228 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2229 if (!(flags & SLAB_DESTROY_BY_RCU))
2230 flags |= SLAB_POISON;
2231#endif
2232 if (flags & SLAB_DESTROY_BY_RCU)
2233 BUG_ON(flags & SLAB_POISON);
2234#endif
1da177e4 2235 /*
a737b3e2
AM
2236 * Always checks flags, a caller might be expecting debug support which
2237 * isn't available.
1da177e4 2238 */
40094fa6 2239 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2240
a737b3e2
AM
2241 /*
2242 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2243 * unaligned accesses for some archs when redzoning is used, and makes
2244 * sure any on-slab bufctl's are also correctly aligned.
2245 */
b28a02de
PE
2246 if (size & (BYTES_PER_WORD - 1)) {
2247 size += (BYTES_PER_WORD - 1);
2248 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2249 }
2250
a737b3e2
AM
2251 /* calculate the final buffer alignment: */
2252
1da177e4
LT
2253 /* 1) arch recommendation: can be overridden for debug */
2254 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2255 /*
2256 * Default alignment: as specified by the arch code. Except if
2257 * an object is really small, then squeeze multiple objects into
2258 * one cacheline.
1da177e4
LT
2259 */
2260 ralign = cache_line_size();
b28a02de 2261 while (size <= ralign / 2)
1da177e4
LT
2262 ralign /= 2;
2263 } else {
2264 ralign = BYTES_PER_WORD;
2265 }
ca5f9703
PE
2266
2267 /*
87a927c7
DW
2268 * Redzoning and user store require word alignment or possibly larger.
2269 * Note this will be overridden by architecture or caller mandated
2270 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2271 */
87a927c7
DW
2272 if (flags & SLAB_STORE_USER)
2273 ralign = BYTES_PER_WORD;
2274
2275 if (flags & SLAB_RED_ZONE) {
2276 ralign = REDZONE_ALIGN;
2277 /* If redzoning, ensure that the second redzone is suitably
2278 * aligned, by adjusting the object size accordingly. */
2279 size += REDZONE_ALIGN - 1;
2280 size &= ~(REDZONE_ALIGN - 1);
2281 }
ca5f9703 2282
a44b56d3 2283 /* 2) arch mandated alignment */
1da177e4
LT
2284 if (ralign < ARCH_SLAB_MINALIGN) {
2285 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2286 }
a44b56d3 2287 /* 3) caller mandated alignment */
1da177e4
LT
2288 if (ralign < align) {
2289 ralign = align;
1da177e4 2290 }
5c5e3b33
SL
2291 /* disable debug if not aligning with REDZONE_ALIGN */
2292 if (ralign & (__alignof__(unsigned long long) - 1))
a44b56d3 2293 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2294 /*
ca5f9703 2295 * 4) Store it.
1da177e4
LT
2296 */
2297 align = ralign;
2298
83b519e8
PE
2299 if (slab_is_available())
2300 gfp = GFP_KERNEL;
2301 else
2302 gfp = GFP_NOWAIT;
2303
1da177e4 2304 /* Get cache's description obj. */
83b519e8 2305 cachep = kmem_cache_zalloc(&cache_cache, gfp);
1da177e4 2306 if (!cachep)
4f12bb4f 2307 goto oops;
1da177e4
LT
2308
2309#if DEBUG
3dafccf2 2310 cachep->obj_size = size;
1da177e4 2311
ca5f9703
PE
2312 /*
2313 * Both debugging options require word-alignment which is calculated
2314 * into align above.
2315 */
1da177e4 2316 if (flags & SLAB_RED_ZONE) {
1da177e4 2317 /* add space for red zone words */
5c5e3b33
SL
2318 cachep->obj_offset += align;
2319 size += align + sizeof(unsigned long long);
1da177e4
LT
2320 }
2321 if (flags & SLAB_STORE_USER) {
ca5f9703 2322 /* user store requires one word storage behind the end of
87a927c7
DW
2323 * the real object. But if the second red zone needs to be
2324 * aligned to 64 bits, we must allow that much space.
1da177e4 2325 */
87a927c7
DW
2326 if (flags & SLAB_RED_ZONE)
2327 size += REDZONE_ALIGN;
2328 else
2329 size += BYTES_PER_WORD;
1da177e4
LT
2330 }
2331#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2332 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
1ab335d8
CO
2333 && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
2334 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
1da177e4
LT
2335 size = PAGE_SIZE;
2336 }
2337#endif
2338#endif
2339
e0a42726
IM
2340 /*
2341 * Determine if the slab management is 'on' or 'off' slab.
2342 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2343 * it too early on. Always use on-slab management when
2344 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2345 */
e7cb55b9
CM
2346 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2347 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2348 /*
2349 * Size is large, assume best to place the slab management obj
2350 * off-slab (should allow better packing of objs).
2351 */
2352 flags |= CFLGS_OFF_SLAB;
2353
2354 size = ALIGN(size, align);
2355
f78bb8ad 2356 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2357
2358 if (!cachep->num) {
b4169525 2359 printk(KERN_ERR
2360 "kmem_cache_create: couldn't create cache %s.\n", name);
1da177e4
LT
2361 kmem_cache_free(&cache_cache, cachep);
2362 cachep = NULL;
4f12bb4f 2363 goto oops;
1da177e4 2364 }
b28a02de
PE
2365 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2366 + sizeof(struct slab), align);
1da177e4
LT
2367
2368 /*
2369 * If the slab has been placed off-slab, and we have enough space then
2370 * move it on-slab. This is at the expense of any extra colouring.
2371 */
2372 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2373 flags &= ~CFLGS_OFF_SLAB;
2374 left_over -= slab_size;
2375 }
2376
2377 if (flags & CFLGS_OFF_SLAB) {
2378 /* really off slab. No need for manual alignment */
b28a02de
PE
2379 slab_size =
2380 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
67461365
RL
2381
2382#ifdef CONFIG_PAGE_POISONING
2383 /* If we're going to use the generic kernel_map_pages()
2384 * poisoning, then it's going to smash the contents of
2385 * the redzone and userword anyhow, so switch them off.
2386 */
2387 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2388 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2389#endif
1da177e4
LT
2390 }
2391
2392 cachep->colour_off = cache_line_size();
2393 /* Offset must be a multiple of the alignment. */
2394 if (cachep->colour_off < align)
2395 cachep->colour_off = align;
b28a02de 2396 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2397 cachep->slab_size = slab_size;
2398 cachep->flags = flags;
2399 cachep->gfpflags = 0;
4b51d669 2400 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
1da177e4 2401 cachep->gfpflags |= GFP_DMA;
3dafccf2 2402 cachep->buffer_size = size;
6a2d7a95 2403 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2404
e5ac9c5a 2405 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2406 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2407 /*
2408 * This is a possibility for one of the malloc_sizes caches.
2409 * But since we go off slab only for object size greater than
2410 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2411 * this should not happen at all.
2412 * But leave a BUG_ON for some lucky dude.
2413 */
6cb8f913 2414 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2415 }
1da177e4 2416 cachep->ctor = ctor;
1da177e4
LT
2417 cachep->name = name;
2418
83b519e8 2419 if (setup_cpu_cache(cachep, gfp)) {
2ed3a4ef
CL
2420 __kmem_cache_destroy(cachep);
2421 cachep = NULL;
2422 goto oops;
2423 }
1da177e4 2424
1da177e4
LT
2425 /* cache setup completed, link it into the list */
2426 list_add(&cachep->next, &cache_chain);
a737b3e2 2427oops:
1da177e4
LT
2428 if (!cachep && (flags & SLAB_PANIC))
2429 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2430 name);
83b519e8
PE
2431 if (slab_is_available()) {
2432 mutex_unlock(&cache_chain_mutex);
2433 put_online_cpus();
2434 }
1da177e4
LT
2435 return cachep;
2436}
2437EXPORT_SYMBOL(kmem_cache_create);
2438
2439#if DEBUG
2440static void check_irq_off(void)
2441{
2442 BUG_ON(!irqs_disabled());
2443}
2444
2445static void check_irq_on(void)
2446{
2447 BUG_ON(irqs_disabled());
2448}
2449
343e0d7a 2450static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2451{
2452#ifdef CONFIG_SMP
2453 check_irq_off();
7d6e6d09 2454 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
1da177e4
LT
2455#endif
2456}
e498be7d 2457
343e0d7a 2458static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2459{
2460#ifdef CONFIG_SMP
2461 check_irq_off();
2462 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2463#endif
2464}
2465
1da177e4
LT
2466#else
2467#define check_irq_off() do { } while(0)
2468#define check_irq_on() do { } while(0)
2469#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2470#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2471#endif
2472
aab2207c
CL
2473static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2474 struct array_cache *ac,
2475 int force, int node);
2476
1da177e4
LT
2477static void do_drain(void *arg)
2478{
a737b3e2 2479 struct kmem_cache *cachep = arg;
1da177e4 2480 struct array_cache *ac;
7d6e6d09 2481 int node = numa_mem_id();
1da177e4
LT
2482
2483 check_irq_off();
9a2dba4b 2484 ac = cpu_cache_get(cachep);
ff69416e
CL
2485 spin_lock(&cachep->nodelists[node]->list_lock);
2486 free_block(cachep, ac->entry, ac->avail, node);
2487 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2488 ac->avail = 0;
2489}
2490
343e0d7a 2491static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2492{
e498be7d
CL
2493 struct kmem_list3 *l3;
2494 int node;
2495
15c8b6c1 2496 on_each_cpu(do_drain, cachep, 1);
1da177e4 2497 check_irq_on();
b28a02de 2498 for_each_online_node(node) {
e498be7d 2499 l3 = cachep->nodelists[node];
a4523a8b
RD
2500 if (l3 && l3->alien)
2501 drain_alien_cache(cachep, l3->alien);
2502 }
2503
2504 for_each_online_node(node) {
2505 l3 = cachep->nodelists[node];
2506 if (l3)
aab2207c 2507 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2508 }
1da177e4
LT
2509}
2510
ed11d9eb
CL
2511/*
2512 * Remove slabs from the list of free slabs.
2513 * Specify the number of slabs to drain in tofree.
2514 *
2515 * Returns the actual number of slabs released.
2516 */
2517static int drain_freelist(struct kmem_cache *cache,
2518 struct kmem_list3 *l3, int tofree)
1da177e4 2519{
ed11d9eb
CL
2520 struct list_head *p;
2521 int nr_freed;
1da177e4 2522 struct slab *slabp;
1da177e4 2523
ed11d9eb
CL
2524 nr_freed = 0;
2525 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2526
ed11d9eb 2527 spin_lock_irq(&l3->list_lock);
e498be7d 2528 p = l3->slabs_free.prev;
ed11d9eb
CL
2529 if (p == &l3->slabs_free) {
2530 spin_unlock_irq(&l3->list_lock);
2531 goto out;
2532 }
1da177e4 2533
ed11d9eb 2534 slabp = list_entry(p, struct slab, list);
1da177e4 2535#if DEBUG
40094fa6 2536 BUG_ON(slabp->inuse);
1da177e4
LT
2537#endif
2538 list_del(&slabp->list);
ed11d9eb
CL
2539 /*
2540 * Safe to drop the lock. The slab is no longer linked
2541 * to the cache.
2542 */
2543 l3->free_objects -= cache->num;
e498be7d 2544 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2545 slab_destroy(cache, slabp);
2546 nr_freed++;
1da177e4 2547 }
ed11d9eb
CL
2548out:
2549 return nr_freed;
1da177e4
LT
2550}
2551
8f5be20b 2552/* Called with cache_chain_mutex held to protect against cpu hotplug */
343e0d7a 2553static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2554{
2555 int ret = 0, i = 0;
2556 struct kmem_list3 *l3;
2557
2558 drain_cpu_caches(cachep);
2559
2560 check_irq_on();
2561 for_each_online_node(i) {
2562 l3 = cachep->nodelists[i];
ed11d9eb
CL
2563 if (!l3)
2564 continue;
2565
2566 drain_freelist(cachep, l3, l3->free_objects);
2567
2568 ret += !list_empty(&l3->slabs_full) ||
2569 !list_empty(&l3->slabs_partial);
e498be7d
CL
2570 }
2571 return (ret ? 1 : 0);
2572}
2573
1da177e4
LT
2574/**
2575 * kmem_cache_shrink - Shrink a cache.
2576 * @cachep: The cache to shrink.
2577 *
2578 * Releases as many slabs as possible for a cache.
2579 * To help debugging, a zero exit status indicates all slabs were released.
2580 */
343e0d7a 2581int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2582{
8f5be20b 2583 int ret;
40094fa6 2584 BUG_ON(!cachep || in_interrupt());
1da177e4 2585
95402b38 2586 get_online_cpus();
8f5be20b
RT
2587 mutex_lock(&cache_chain_mutex);
2588 ret = __cache_shrink(cachep);
2589 mutex_unlock(&cache_chain_mutex);
95402b38 2590 put_online_cpus();
8f5be20b 2591 return ret;
1da177e4
LT
2592}
2593EXPORT_SYMBOL(kmem_cache_shrink);
2594
2595/**
2596 * kmem_cache_destroy - delete a cache
2597 * @cachep: the cache to destroy
2598 *
72fd4a35 2599 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2600 *
2601 * It is expected this function will be called by a module when it is
2602 * unloaded. This will remove the cache completely, and avoid a duplicate
2603 * cache being allocated each time a module is loaded and unloaded, if the
2604 * module doesn't have persistent in-kernel storage across loads and unloads.
2605 *
2606 * The cache must be empty before calling this function.
2607 *
2608 * The caller must guarantee that noone will allocate memory from the cache
2609 * during the kmem_cache_destroy().
2610 */
133d205a 2611void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2612{
40094fa6 2613 BUG_ON(!cachep || in_interrupt());
1da177e4 2614
1da177e4 2615 /* Find the cache in the chain of caches. */
95402b38 2616 get_online_cpus();
fc0abb14 2617 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2618 /*
2619 * the chain is never empty, cache_cache is never destroyed
2620 */
2621 list_del(&cachep->next);
1da177e4
LT
2622 if (__cache_shrink(cachep)) {
2623 slab_error(cachep, "Can't free all objects");
b28a02de 2624 list_add(&cachep->next, &cache_chain);
fc0abb14 2625 mutex_unlock(&cache_chain_mutex);
95402b38 2626 put_online_cpus();
133d205a 2627 return;
1da177e4
LT
2628 }
2629
2630 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
7ed9f7e5 2631 rcu_barrier();
1da177e4 2632
117f6eb1 2633 __kmem_cache_destroy(cachep);
8f5be20b 2634 mutex_unlock(&cache_chain_mutex);
95402b38 2635 put_online_cpus();
1da177e4
LT
2636}
2637EXPORT_SYMBOL(kmem_cache_destroy);
2638
e5ac9c5a
RT
2639/*
2640 * Get the memory for a slab management obj.
2641 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2642 * always come from malloc_sizes caches. The slab descriptor cannot
2643 * come from the same cache which is getting created because,
2644 * when we are searching for an appropriate cache for these
2645 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2646 * If we are creating a malloc_sizes cache here it would not be visible to
2647 * kmem_find_general_cachep till the initialization is complete.
2648 * Hence we cannot have slabp_cache same as the original cache.
2649 */
343e0d7a 2650static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2651 int colour_off, gfp_t local_flags,
2652 int nodeid)
1da177e4
LT
2653{
2654 struct slab *slabp;
b28a02de 2655
1da177e4
LT
2656 if (OFF_SLAB(cachep)) {
2657 /* Slab management obj is off-slab. */
5b74ada7 2658 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2659 local_flags, nodeid);
d5cff635
CM
2660 /*
2661 * If the first object in the slab is leaked (it's allocated
2662 * but no one has a reference to it), we want to make sure
2663 * kmemleak does not treat the ->s_mem pointer as a reference
2664 * to the object. Otherwise we will not report the leak.
2665 */
c017b4be
CM
2666 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2667 local_flags);
1da177e4
LT
2668 if (!slabp)
2669 return NULL;
2670 } else {
b28a02de 2671 slabp = objp + colour_off;
1da177e4
LT
2672 colour_off += cachep->slab_size;
2673 }
2674 slabp->inuse = 0;
2675 slabp->colouroff = colour_off;
b28a02de 2676 slabp->s_mem = objp + colour_off;
5b74ada7 2677 slabp->nodeid = nodeid;
e51bfd0a 2678 slabp->free = 0;
1da177e4
LT
2679 return slabp;
2680}
2681
2682static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2683{
b28a02de 2684 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2685}
2686
343e0d7a 2687static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2688 struct slab *slabp)
1da177e4
LT
2689{
2690 int i;
2691
2692 for (i = 0; i < cachep->num; i++) {
8fea4e96 2693 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2694#if DEBUG
2695 /* need to poison the objs? */
2696 if (cachep->flags & SLAB_POISON)
2697 poison_obj(cachep, objp, POISON_FREE);
2698 if (cachep->flags & SLAB_STORE_USER)
2699 *dbg_userword(cachep, objp) = NULL;
2700
2701 if (cachep->flags & SLAB_RED_ZONE) {
2702 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2703 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2704 }
2705 /*
a737b3e2
AM
2706 * Constructors are not allowed to allocate memory from the same
2707 * cache which they are a constructor for. Otherwise, deadlock.
2708 * They must also be threaded.
1da177e4
LT
2709 */
2710 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2711 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2712
2713 if (cachep->flags & SLAB_RED_ZONE) {
2714 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2715 slab_error(cachep, "constructor overwrote the"
b28a02de 2716 " end of an object");
1da177e4
LT
2717 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2718 slab_error(cachep, "constructor overwrote the"
b28a02de 2719 " start of an object");
1da177e4 2720 }
a737b3e2
AM
2721 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2722 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2723 kernel_map_pages(virt_to_page(objp),
3dafccf2 2724 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2725#else
2726 if (cachep->ctor)
51cc5068 2727 cachep->ctor(objp);
1da177e4 2728#endif
b28a02de 2729 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2730 }
b28a02de 2731 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2732}
2733
343e0d7a 2734static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2735{
4b51d669
CL
2736 if (CONFIG_ZONE_DMA_FLAG) {
2737 if (flags & GFP_DMA)
2738 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2739 else
2740 BUG_ON(cachep->gfpflags & GFP_DMA);
2741 }
1da177e4
LT
2742}
2743
a737b3e2
AM
2744static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2745 int nodeid)
78d382d7 2746{
8fea4e96 2747 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2748 kmem_bufctl_t next;
2749
2750 slabp->inuse++;
2751 next = slab_bufctl(slabp)[slabp->free];
2752#if DEBUG
2753 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2754 WARN_ON(slabp->nodeid != nodeid);
2755#endif
2756 slabp->free = next;
2757
2758 return objp;
2759}
2760
a737b3e2
AM
2761static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2762 void *objp, int nodeid)
78d382d7 2763{
8fea4e96 2764 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2765
2766#if DEBUG
2767 /* Verify that the slab belongs to the intended node */
2768 WARN_ON(slabp->nodeid != nodeid);
2769
871751e2 2770 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2771 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2772 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2773 BUG();
2774 }
2775#endif
2776 slab_bufctl(slabp)[objnr] = slabp->free;
2777 slabp->free = objnr;
2778 slabp->inuse--;
2779}
2780
4776874f
PE
2781/*
2782 * Map pages beginning at addr to the given cache and slab. This is required
2783 * for the slab allocator to be able to lookup the cache and slab of a
2784 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2785 */
2786static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2787 void *addr)
1da177e4 2788{
4776874f 2789 int nr_pages;
1da177e4
LT
2790 struct page *page;
2791
4776874f 2792 page = virt_to_page(addr);
84097518 2793
4776874f 2794 nr_pages = 1;
84097518 2795 if (likely(!PageCompound(page)))
4776874f
PE
2796 nr_pages <<= cache->gfporder;
2797
1da177e4 2798 do {
4776874f
PE
2799 page_set_cache(page, cache);
2800 page_set_slab(page, slab);
1da177e4 2801 page++;
4776874f 2802 } while (--nr_pages);
1da177e4
LT
2803}
2804
2805/*
2806 * Grow (by 1) the number of slabs within a cache. This is called by
2807 * kmem_cache_alloc() when there are no active objs left in a cache.
2808 */
3c517a61
CL
2809static int cache_grow(struct kmem_cache *cachep,
2810 gfp_t flags, int nodeid, void *objp)
1da177e4 2811{
b28a02de 2812 struct slab *slabp;
b28a02de
PE
2813 size_t offset;
2814 gfp_t local_flags;
e498be7d 2815 struct kmem_list3 *l3;
1da177e4 2816
a737b3e2
AM
2817 /*
2818 * Be lazy and only check for valid flags here, keeping it out of the
2819 * critical path in kmem_cache_alloc().
1da177e4 2820 */
6cb06229
CL
2821 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2822 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2823
2e1217cf 2824 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2825 check_irq_off();
2e1217cf
RT
2826 l3 = cachep->nodelists[nodeid];
2827 spin_lock(&l3->list_lock);
1da177e4
LT
2828
2829 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2830 offset = l3->colour_next;
2831 l3->colour_next++;
2832 if (l3->colour_next >= cachep->colour)
2833 l3->colour_next = 0;
2834 spin_unlock(&l3->list_lock);
1da177e4 2835
2e1217cf 2836 offset *= cachep->colour_off;
1da177e4
LT
2837
2838 if (local_flags & __GFP_WAIT)
2839 local_irq_enable();
2840
2841 /*
2842 * The test for missing atomic flag is performed here, rather than
2843 * the more obvious place, simply to reduce the critical path length
2844 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2845 * will eventually be caught here (where it matters).
2846 */
2847 kmem_flagcheck(cachep, flags);
2848
a737b3e2
AM
2849 /*
2850 * Get mem for the objs. Attempt to allocate a physical page from
2851 * 'nodeid'.
e498be7d 2852 */
3c517a61 2853 if (!objp)
b8c1c5da 2854 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2855 if (!objp)
1da177e4
LT
2856 goto failed;
2857
2858 /* Get slab management. */
3c517a61 2859 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2860 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2861 if (!slabp)
1da177e4
LT
2862 goto opps1;
2863
4776874f 2864 slab_map_pages(cachep, slabp, objp);
1da177e4 2865
a35afb83 2866 cache_init_objs(cachep, slabp);
1da177e4
LT
2867
2868 if (local_flags & __GFP_WAIT)
2869 local_irq_disable();
2870 check_irq_off();
e498be7d 2871 spin_lock(&l3->list_lock);
1da177e4
LT
2872
2873 /* Make slab active. */
e498be7d 2874 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2875 STATS_INC_GROWN(cachep);
e498be7d
CL
2876 l3->free_objects += cachep->num;
2877 spin_unlock(&l3->list_lock);
1da177e4 2878 return 1;
a737b3e2 2879opps1:
1da177e4 2880 kmem_freepages(cachep, objp);
a737b3e2 2881failed:
1da177e4
LT
2882 if (local_flags & __GFP_WAIT)
2883 local_irq_disable();
2884 return 0;
2885}
2886
2887#if DEBUG
2888
2889/*
2890 * Perform extra freeing checks:
2891 * - detect bad pointers.
2892 * - POISON/RED_ZONE checking
1da177e4
LT
2893 */
2894static void kfree_debugcheck(const void *objp)
2895{
1da177e4
LT
2896 if (!virt_addr_valid(objp)) {
2897 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2898 (unsigned long)objp);
2899 BUG();
1da177e4 2900 }
1da177e4
LT
2901}
2902
58ce1fd5
PE
2903static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2904{
b46b8f19 2905 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2906
2907 redzone1 = *dbg_redzone1(cache, obj);
2908 redzone2 = *dbg_redzone2(cache, obj);
2909
2910 /*
2911 * Redzone is ok.
2912 */
2913 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2914 return;
2915
2916 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2917 slab_error(cache, "double free detected");
2918 else
2919 slab_error(cache, "memory outside object was overwritten");
2920
b46b8f19 2921 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2922 obj, redzone1, redzone2);
2923}
2924
343e0d7a 2925static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2926 void *caller)
1da177e4
LT
2927{
2928 struct page *page;
2929 unsigned int objnr;
2930 struct slab *slabp;
2931
80cbd911
MW
2932 BUG_ON(virt_to_cache(objp) != cachep);
2933
3dafccf2 2934 objp -= obj_offset(cachep);
1da177e4 2935 kfree_debugcheck(objp);
b49af68f 2936 page = virt_to_head_page(objp);
1da177e4 2937
065d41cb 2938 slabp = page_get_slab(page);
1da177e4
LT
2939
2940 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2941 verify_redzone_free(cachep, objp);
1da177e4
LT
2942 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2943 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2944 }
2945 if (cachep->flags & SLAB_STORE_USER)
2946 *dbg_userword(cachep, objp) = caller;
2947
8fea4e96 2948 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2949
2950 BUG_ON(objnr >= cachep->num);
8fea4e96 2951 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 2952
871751e2
AV
2953#ifdef CONFIG_DEBUG_SLAB_LEAK
2954 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2955#endif
1da177e4
LT
2956 if (cachep->flags & SLAB_POISON) {
2957#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2958 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2959 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2960 kernel_map_pages(virt_to_page(objp),
3dafccf2 2961 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2962 } else {
2963 poison_obj(cachep, objp, POISON_FREE);
2964 }
2965#else
2966 poison_obj(cachep, objp, POISON_FREE);
2967#endif
2968 }
2969 return objp;
2970}
2971
343e0d7a 2972static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2973{
2974 kmem_bufctl_t i;
2975 int entries = 0;
b28a02de 2976
1da177e4
LT
2977 /* Check slab's freelist to see if this obj is there. */
2978 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2979 entries++;
2980 if (entries > cachep->num || i >= cachep->num)
2981 goto bad;
2982 }
2983 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2984bad:
2985 printk(KERN_ERR "slab: Internal list corruption detected in "
2986 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2987 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2988 for (i = 0;
264132bc 2989 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2990 i++) {
a737b3e2 2991 if (i % 16 == 0)
1da177e4 2992 printk("\n%03x:", i);
b28a02de 2993 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2994 }
2995 printk("\n");
2996 BUG();
2997 }
2998}
2999#else
3000#define kfree_debugcheck(x) do { } while(0)
3001#define cache_free_debugcheck(x,objp,z) (objp)
3002#define check_slabp(x,y) do { } while(0)
3003#endif
3004
343e0d7a 3005static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
3006{
3007 int batchcount;
3008 struct kmem_list3 *l3;
3009 struct array_cache *ac;
1ca4cb24
PE
3010 int node;
3011
6d2144d3 3012retry:
1da177e4 3013 check_irq_off();
7d6e6d09 3014 node = numa_mem_id();
9a2dba4b 3015 ac = cpu_cache_get(cachep);
1da177e4
LT
3016 batchcount = ac->batchcount;
3017 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
3018 /*
3019 * If there was little recent activity on this cache, then
3020 * perform only a partial refill. Otherwise we could generate
3021 * refill bouncing.
1da177e4
LT
3022 */
3023 batchcount = BATCHREFILL_LIMIT;
3024 }
1ca4cb24 3025 l3 = cachep->nodelists[node];
e498be7d
CL
3026
3027 BUG_ON(ac->avail > 0 || !l3);
3028 spin_lock(&l3->list_lock);
1da177e4 3029
3ded175a 3030 /* See if we can refill from the shared array */
44b57f1c
NP
3031 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3032 l3->shared->touched = 1;
3ded175a 3033 goto alloc_done;
44b57f1c 3034 }
3ded175a 3035
1da177e4
LT
3036 while (batchcount > 0) {
3037 struct list_head *entry;
3038 struct slab *slabp;
3039 /* Get slab alloc is to come from. */
3040 entry = l3->slabs_partial.next;
3041 if (entry == &l3->slabs_partial) {
3042 l3->free_touched = 1;
3043 entry = l3->slabs_free.next;
3044 if (entry == &l3->slabs_free)
3045 goto must_grow;
3046 }
3047
3048 slabp = list_entry(entry, struct slab, list);
3049 check_slabp(cachep, slabp);
3050 check_spinlock_acquired(cachep);
714b8171
PE
3051
3052 /*
3053 * The slab was either on partial or free list so
3054 * there must be at least one object available for
3055 * allocation.
3056 */
249b9f33 3057 BUG_ON(slabp->inuse >= cachep->num);
714b8171 3058
1da177e4 3059 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3060 STATS_INC_ALLOCED(cachep);
3061 STATS_INC_ACTIVE(cachep);
3062 STATS_SET_HIGH(cachep);
3063
78d382d7 3064 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
1ca4cb24 3065 node);
1da177e4
LT
3066 }
3067 check_slabp(cachep, slabp);
3068
3069 /* move slabp to correct slabp list: */
3070 list_del(&slabp->list);
3071 if (slabp->free == BUFCTL_END)
3072 list_add(&slabp->list, &l3->slabs_full);
3073 else
3074 list_add(&slabp->list, &l3->slabs_partial);
3075 }
3076
a737b3e2 3077must_grow:
1da177e4 3078 l3->free_objects -= ac->avail;
a737b3e2 3079alloc_done:
e498be7d 3080 spin_unlock(&l3->list_lock);
1da177e4
LT
3081
3082 if (unlikely(!ac->avail)) {
3083 int x;
3c517a61 3084 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3085
a737b3e2 3086 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3087 ac = cpu_cache_get(cachep);
a737b3e2 3088 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
3089 return NULL;
3090
a737b3e2 3091 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3092 goto retry;
3093 }
3094 ac->touched = 1;
e498be7d 3095 return ac->entry[--ac->avail];
1da177e4
LT
3096}
3097
a737b3e2
AM
3098static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3099 gfp_t flags)
1da177e4
LT
3100{
3101 might_sleep_if(flags & __GFP_WAIT);
3102#if DEBUG
3103 kmem_flagcheck(cachep, flags);
3104#endif
3105}
3106
3107#if DEBUG
a737b3e2
AM
3108static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3109 gfp_t flags, void *objp, void *caller)
1da177e4 3110{
b28a02de 3111 if (!objp)
1da177e4 3112 return objp;
b28a02de 3113 if (cachep->flags & SLAB_POISON) {
1da177e4 3114#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 3115 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3116 kernel_map_pages(virt_to_page(objp),
3dafccf2 3117 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
3118 else
3119 check_poison_obj(cachep, objp);
3120#else
3121 check_poison_obj(cachep, objp);
3122#endif
3123 poison_obj(cachep, objp, POISON_INUSE);
3124 }
3125 if (cachep->flags & SLAB_STORE_USER)
3126 *dbg_userword(cachep, objp) = caller;
3127
3128 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3129 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3130 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3131 slab_error(cachep, "double free, or memory outside"
3132 " object was overwritten");
b28a02de 3133 printk(KERN_ERR
b46b8f19 3134 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3135 objp, *dbg_redzone1(cachep, objp),
3136 *dbg_redzone2(cachep, objp));
1da177e4
LT
3137 }
3138 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3139 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3140 }
871751e2
AV
3141#ifdef CONFIG_DEBUG_SLAB_LEAK
3142 {
3143 struct slab *slabp;
3144 unsigned objnr;
3145
b49af68f 3146 slabp = page_get_slab(virt_to_head_page(objp));
871751e2
AV
3147 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3148 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3149 }
3150#endif
3dafccf2 3151 objp += obj_offset(cachep);
4f104934 3152 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3153 cachep->ctor(objp);
a44b56d3
KH
3154#if ARCH_SLAB_MINALIGN
3155 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3156 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3157 objp, ARCH_SLAB_MINALIGN);
3158 }
3159#endif
1da177e4
LT
3160 return objp;
3161}
3162#else
3163#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3164#endif
3165
773ff60e 3166static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502
AM
3167{
3168 if (cachep == &cache_cache)
773ff60e 3169 return false;
8a8b6502 3170
4c13dd3b 3171 return should_failslab(obj_size(cachep), flags, cachep->flags);
8a8b6502
AM
3172}
3173
343e0d7a 3174static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3175{
b28a02de 3176 void *objp;
1da177e4
LT
3177 struct array_cache *ac;
3178
5c382300 3179 check_irq_off();
8a8b6502 3180
9a2dba4b 3181 ac = cpu_cache_get(cachep);
1da177e4
LT
3182 if (likely(ac->avail)) {
3183 STATS_INC_ALLOCHIT(cachep);
3184 ac->touched = 1;
e498be7d 3185 objp = ac->entry[--ac->avail];
1da177e4
LT
3186 } else {
3187 STATS_INC_ALLOCMISS(cachep);
3188 objp = cache_alloc_refill(cachep, flags);
ddbf2e83
O
3189 /*
3190 * the 'ac' may be updated by cache_alloc_refill(),
3191 * and kmemleak_erase() requires its correct value.
3192 */
3193 ac = cpu_cache_get(cachep);
1da177e4 3194 }
d5cff635
CM
3195 /*
3196 * To avoid a false negative, if an object that is in one of the
3197 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3198 * treat the array pointers as a reference to the object.
3199 */
f3d8b53a
O
3200 if (objp)
3201 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3202 return objp;
3203}
3204
e498be7d 3205#ifdef CONFIG_NUMA
c61afb18 3206/*
b2455396 3207 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3208 *
3209 * If we are in_interrupt, then process context, including cpusets and
3210 * mempolicy, may not apply and should not be used for allocation policy.
3211 */
3212static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3213{
3214 int nid_alloc, nid_here;
3215
765c4507 3216 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3217 return NULL;
7d6e6d09 3218 nid_alloc = nid_here = numa_mem_id();
c0ff7453 3219 get_mems_allowed();
c61afb18 3220 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3221 nid_alloc = cpuset_slab_spread_node();
c61afb18
PJ
3222 else if (current->mempolicy)
3223 nid_alloc = slab_node(current->mempolicy);
c0ff7453 3224 put_mems_allowed();
c61afb18 3225 if (nid_alloc != nid_here)
8b98c169 3226 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3227 return NULL;
3228}
3229
765c4507
CL
3230/*
3231 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3232 * certain node and fall back is permitted. First we scan all the
3233 * available nodelists for available objects. If that fails then we
3234 * perform an allocation without specifying a node. This allows the page
3235 * allocator to do its reclaim / fallback magic. We then insert the
3236 * slab into the proper nodelist and then allocate from it.
765c4507 3237 */
8c8cc2c1 3238static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3239{
8c8cc2c1
PE
3240 struct zonelist *zonelist;
3241 gfp_t local_flags;
dd1a239f 3242 struct zoneref *z;
54a6eb5c
MG
3243 struct zone *zone;
3244 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3245 void *obj = NULL;
3c517a61 3246 int nid;
8c8cc2c1
PE
3247
3248 if (flags & __GFP_THISNODE)
3249 return NULL;
3250
c0ff7453 3251 get_mems_allowed();
0e88460d 3252 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
6cb06229 3253 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3254
3c517a61
CL
3255retry:
3256 /*
3257 * Look through allowed nodes for objects available
3258 * from existing per node queues.
3259 */
54a6eb5c
MG
3260 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3261 nid = zone_to_nid(zone);
aedb0eb1 3262
54a6eb5c 3263 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3c517a61 3264 cache->nodelists[nid] &&
481c5346 3265 cache->nodelists[nid]->free_objects) {
3c517a61
CL
3266 obj = ____cache_alloc_node(cache,
3267 flags | GFP_THISNODE, nid);
481c5346
CL
3268 if (obj)
3269 break;
3270 }
3c517a61
CL
3271 }
3272
cfce6604 3273 if (!obj) {
3c517a61
CL
3274 /*
3275 * This allocation will be performed within the constraints
3276 * of the current cpuset / memory policy requirements.
3277 * We may trigger various forms of reclaim on the allowed
3278 * set and go into memory reserves if necessary.
3279 */
dd47ea75
CL
3280 if (local_flags & __GFP_WAIT)
3281 local_irq_enable();
3282 kmem_flagcheck(cache, flags);
7d6e6d09 3283 obj = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3284 if (local_flags & __GFP_WAIT)
3285 local_irq_disable();
3c517a61
CL
3286 if (obj) {
3287 /*
3288 * Insert into the appropriate per node queues
3289 */
3290 nid = page_to_nid(virt_to_page(obj));
3291 if (cache_grow(cache, flags, nid, obj)) {
3292 obj = ____cache_alloc_node(cache,
3293 flags | GFP_THISNODE, nid);
3294 if (!obj)
3295 /*
3296 * Another processor may allocate the
3297 * objects in the slab since we are
3298 * not holding any locks.
3299 */
3300 goto retry;
3301 } else {
b6a60451 3302 /* cache_grow already freed obj */
3c517a61
CL
3303 obj = NULL;
3304 }
3305 }
aedb0eb1 3306 }
c0ff7453 3307 put_mems_allowed();
765c4507
CL
3308 return obj;
3309}
3310
e498be7d
CL
3311/*
3312 * A interface to enable slab creation on nodeid
1da177e4 3313 */
8b98c169 3314static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3315 int nodeid)
e498be7d
CL
3316{
3317 struct list_head *entry;
b28a02de
PE
3318 struct slab *slabp;
3319 struct kmem_list3 *l3;
3320 void *obj;
b28a02de
PE
3321 int x;
3322
3323 l3 = cachep->nodelists[nodeid];
3324 BUG_ON(!l3);
3325
a737b3e2 3326retry:
ca3b9b91 3327 check_irq_off();
b28a02de
PE
3328 spin_lock(&l3->list_lock);
3329 entry = l3->slabs_partial.next;
3330 if (entry == &l3->slabs_partial) {
3331 l3->free_touched = 1;
3332 entry = l3->slabs_free.next;
3333 if (entry == &l3->slabs_free)
3334 goto must_grow;
3335 }
3336
3337 slabp = list_entry(entry, struct slab, list);
3338 check_spinlock_acquired_node(cachep, nodeid);
3339 check_slabp(cachep, slabp);
3340
3341 STATS_INC_NODEALLOCS(cachep);
3342 STATS_INC_ACTIVE(cachep);
3343 STATS_SET_HIGH(cachep);
3344
3345 BUG_ON(slabp->inuse == cachep->num);
3346
78d382d7 3347 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3348 check_slabp(cachep, slabp);
3349 l3->free_objects--;
3350 /* move slabp to correct slabp list: */
3351 list_del(&slabp->list);
3352
a737b3e2 3353 if (slabp->free == BUFCTL_END)
b28a02de 3354 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3355 else
b28a02de 3356 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3357
b28a02de
PE
3358 spin_unlock(&l3->list_lock);
3359 goto done;
e498be7d 3360
a737b3e2 3361must_grow:
b28a02de 3362 spin_unlock(&l3->list_lock);
3c517a61 3363 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3364 if (x)
3365 goto retry;
1da177e4 3366
8c8cc2c1 3367 return fallback_alloc(cachep, flags);
e498be7d 3368
a737b3e2 3369done:
b28a02de 3370 return obj;
e498be7d 3371}
8c8cc2c1
PE
3372
3373/**
3374 * kmem_cache_alloc_node - Allocate an object on the specified node
3375 * @cachep: The cache to allocate from.
3376 * @flags: See kmalloc().
3377 * @nodeid: node number of the target node.
3378 * @caller: return address of caller, used for debug information
3379 *
3380 * Identical to kmem_cache_alloc but it will allocate memory on the given
3381 * node, which can improve the performance for cpu bound structures.
3382 *
3383 * Fallback to other node is possible if __GFP_THISNODE is not set.
3384 */
3385static __always_inline void *
3386__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3387 void *caller)
3388{
3389 unsigned long save_flags;
3390 void *ptr;
7d6e6d09 3391 int slab_node = numa_mem_id();
8c8cc2c1 3392
dcce284a 3393 flags &= gfp_allowed_mask;
7e85ee0c 3394
cf40bd16
NP
3395 lockdep_trace_alloc(flags);
3396
773ff60e 3397 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3398 return NULL;
3399
8c8cc2c1
PE
3400 cache_alloc_debugcheck_before(cachep, flags);
3401 local_irq_save(save_flags);
3402
8e15b79c 3403 if (nodeid == -1)
7d6e6d09 3404 nodeid = slab_node;
8c8cc2c1
PE
3405
3406 if (unlikely(!cachep->nodelists[nodeid])) {
3407 /* Node not bootstrapped yet */
3408 ptr = fallback_alloc(cachep, flags);
3409 goto out;
3410 }
3411
7d6e6d09 3412 if (nodeid == slab_node) {
8c8cc2c1
PE
3413 /*
3414 * Use the locally cached objects if possible.
3415 * However ____cache_alloc does not allow fallback
3416 * to other nodes. It may fail while we still have
3417 * objects on other nodes available.
3418 */
3419 ptr = ____cache_alloc(cachep, flags);
3420 if (ptr)
3421 goto out;
3422 }
3423 /* ___cache_alloc_node can fall back to other nodes */
3424 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3425 out:
3426 local_irq_restore(save_flags);
3427 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
d5cff635
CM
3428 kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3429 flags);
8c8cc2c1 3430
c175eea4
PE
3431 if (likely(ptr))
3432 kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3433
d07dbea4
CL
3434 if (unlikely((flags & __GFP_ZERO) && ptr))
3435 memset(ptr, 0, obj_size(cachep));
3436
8c8cc2c1
PE
3437 return ptr;
3438}
3439
3440static __always_inline void *
3441__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3442{
3443 void *objp;
3444
3445 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3446 objp = alternate_node_alloc(cache, flags);
3447 if (objp)
3448 goto out;
3449 }
3450 objp = ____cache_alloc(cache, flags);
3451
3452 /*
3453 * We may just have run out of memory on the local node.
3454 * ____cache_alloc_node() knows how to locate memory on other nodes
3455 */
7d6e6d09
LS
3456 if (!objp)
3457 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3458
3459 out:
3460 return objp;
3461}
3462#else
3463
3464static __always_inline void *
3465__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3466{
3467 return ____cache_alloc(cachep, flags);
3468}
3469
3470#endif /* CONFIG_NUMA */
3471
3472static __always_inline void *
3473__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3474{
3475 unsigned long save_flags;
3476 void *objp;
3477
dcce284a 3478 flags &= gfp_allowed_mask;
7e85ee0c 3479
cf40bd16
NP
3480 lockdep_trace_alloc(flags);
3481
773ff60e 3482 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3483 return NULL;
3484
8c8cc2c1
PE
3485 cache_alloc_debugcheck_before(cachep, flags);
3486 local_irq_save(save_flags);
3487 objp = __do_cache_alloc(cachep, flags);
3488 local_irq_restore(save_flags);
3489 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
d5cff635
CM
3490 kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3491 flags);
8c8cc2c1
PE
3492 prefetchw(objp);
3493
c175eea4
PE
3494 if (likely(objp))
3495 kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
3496
d07dbea4
CL
3497 if (unlikely((flags & __GFP_ZERO) && objp))
3498 memset(objp, 0, obj_size(cachep));
3499
8c8cc2c1
PE
3500 return objp;
3501}
e498be7d
CL
3502
3503/*
3504 * Caller needs to acquire correct kmem_list's list_lock
3505 */
343e0d7a 3506static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3507 int node)
1da177e4
LT
3508{
3509 int i;
e498be7d 3510 struct kmem_list3 *l3;
1da177e4
LT
3511
3512 for (i = 0; i < nr_objects; i++) {
3513 void *objp = objpp[i];
3514 struct slab *slabp;
1da177e4 3515
6ed5eb22 3516 slabp = virt_to_slab(objp);
ff69416e 3517 l3 = cachep->nodelists[node];
1da177e4 3518 list_del(&slabp->list);
ff69416e 3519 check_spinlock_acquired_node(cachep, node);
1da177e4 3520 check_slabp(cachep, slabp);
78d382d7 3521 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3522 STATS_DEC_ACTIVE(cachep);
e498be7d 3523 l3->free_objects++;
1da177e4
LT
3524 check_slabp(cachep, slabp);
3525
3526 /* fixup slab chains */
3527 if (slabp->inuse == 0) {
e498be7d
CL
3528 if (l3->free_objects > l3->free_limit) {
3529 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3530 /* No need to drop any previously held
3531 * lock here, even if we have a off-slab slab
3532 * descriptor it is guaranteed to come from
3533 * a different cache, refer to comments before
3534 * alloc_slabmgmt.
3535 */
1da177e4
LT
3536 slab_destroy(cachep, slabp);
3537 } else {
e498be7d 3538 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3539 }
3540 } else {
3541 /* Unconditionally move a slab to the end of the
3542 * partial list on free - maximum time for the
3543 * other objects to be freed, too.
3544 */
e498be7d 3545 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3546 }
3547 }
3548}
3549
343e0d7a 3550static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3551{
3552 int batchcount;
e498be7d 3553 struct kmem_list3 *l3;
7d6e6d09 3554 int node = numa_mem_id();
1da177e4
LT
3555
3556 batchcount = ac->batchcount;
3557#if DEBUG
3558 BUG_ON(!batchcount || batchcount > ac->avail);
3559#endif
3560 check_irq_off();
ff69416e 3561 l3 = cachep->nodelists[node];
873623df 3562 spin_lock(&l3->list_lock);
e498be7d
CL
3563 if (l3->shared) {
3564 struct array_cache *shared_array = l3->shared;
b28a02de 3565 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3566 if (max) {
3567 if (batchcount > max)
3568 batchcount = max;
e498be7d 3569 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3570 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3571 shared_array->avail += batchcount;
3572 goto free_done;
3573 }
3574 }
3575
ff69416e 3576 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3577free_done:
1da177e4
LT
3578#if STATS
3579 {
3580 int i = 0;
3581 struct list_head *p;
3582
e498be7d
CL
3583 p = l3->slabs_free.next;
3584 while (p != &(l3->slabs_free)) {
1da177e4
LT
3585 struct slab *slabp;
3586
3587 slabp = list_entry(p, struct slab, list);
3588 BUG_ON(slabp->inuse);
3589
3590 i++;
3591 p = p->next;
3592 }
3593 STATS_SET_FREEABLE(cachep, i);
3594 }
3595#endif
e498be7d 3596 spin_unlock(&l3->list_lock);
1da177e4 3597 ac->avail -= batchcount;
a737b3e2 3598 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3599}
3600
3601/*
a737b3e2
AM
3602 * Release an obj back to its cache. If the obj has a constructed state, it must
3603 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3604 */
873623df 3605static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3606{
9a2dba4b 3607 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3608
3609 check_irq_off();
d5cff635 3610 kmemleak_free_recursive(objp, cachep->flags);
1da177e4
LT
3611 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3612
c175eea4
PE
3613 kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3614
1807a1aa
SS
3615 /*
3616 * Skip calling cache_free_alien() when the platform is not numa.
3617 * This will avoid cache misses that happen while accessing slabp (which
3618 * is per page memory reference) to get nodeid. Instead use a global
3619 * variable to skip the call, which is mostly likely to be present in
3620 * the cache.
3621 */
b6e68bc1 3622 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3623 return;
3624
1da177e4
LT
3625 if (likely(ac->avail < ac->limit)) {
3626 STATS_INC_FREEHIT(cachep);
e498be7d 3627 ac->entry[ac->avail++] = objp;
1da177e4
LT
3628 return;
3629 } else {
3630 STATS_INC_FREEMISS(cachep);
3631 cache_flusharray(cachep, ac);
e498be7d 3632 ac->entry[ac->avail++] = objp;
1da177e4
LT
3633 }
3634}
3635
3636/**
3637 * kmem_cache_alloc - Allocate an object
3638 * @cachep: The cache to allocate from.
3639 * @flags: See kmalloc().
3640 *
3641 * Allocate an object from this cache. The flags are only relevant
3642 * if the cache has no available objects.
3643 */
343e0d7a 3644void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3645{
36555751
EGM
3646 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3647
ca2b84cb
EGM
3648 trace_kmem_cache_alloc(_RET_IP_, ret,
3649 obj_size(cachep), cachep->buffer_size, flags);
36555751
EGM
3650
3651 return ret;
1da177e4
LT
3652}
3653EXPORT_SYMBOL(kmem_cache_alloc);
3654
0f24f128 3655#ifdef CONFIG_TRACING
36555751
EGM
3656void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
3657{
3658 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3659}
3660EXPORT_SYMBOL(kmem_cache_alloc_notrace);
3661#endif
3662
1da177e4 3663/**
7682486b 3664 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
1da177e4
LT
3665 * @cachep: the cache we're checking against
3666 * @ptr: pointer to validate
3667 *
7682486b 3668 * This verifies that the untrusted pointer looks sane;
1da177e4
LT
3669 * it is _not_ a guarantee that the pointer is actually
3670 * part of the slab cache in question, but it at least
3671 * validates that the pointer can be dereferenced and
3672 * looks half-way sane.
3673 *
3674 * Currently only used for dentry validation.
3675 */
b7f869a2 3676int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
1da177e4 3677{
3dafccf2 3678 unsigned long size = cachep->buffer_size;
1da177e4
LT
3679 struct page *page;
3680
fc1c1833 3681 if (unlikely(!kern_ptr_validate(ptr, size)))
1da177e4
LT
3682 goto out;
3683 page = virt_to_page(ptr);
3684 if (unlikely(!PageSlab(page)))
3685 goto out;
065d41cb 3686 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3687 goto out;
3688 return 1;
a737b3e2 3689out:
1da177e4
LT
3690 return 0;
3691}
3692
3693#ifdef CONFIG_NUMA
8b98c169
CH
3694void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3695{
36555751
EGM
3696 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3697 __builtin_return_address(0));
3698
ca2b84cb
EGM
3699 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3700 obj_size(cachep), cachep->buffer_size,
3701 flags, nodeid);
36555751
EGM
3702
3703 return ret;
8b98c169 3704}
1da177e4
LT
3705EXPORT_SYMBOL(kmem_cache_alloc_node);
3706
0f24f128 3707#ifdef CONFIG_TRACING
36555751
EGM
3708void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
3709 gfp_t flags,
3710 int nodeid)
3711{
3712 return __cache_alloc_node(cachep, flags, nodeid,
3713 __builtin_return_address(0));
3714}
3715EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
3716#endif
3717
8b98c169
CH
3718static __always_inline void *
3719__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3720{
343e0d7a 3721 struct kmem_cache *cachep;
36555751 3722 void *ret;
97e2bde4
MS
3723
3724 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3725 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3726 return cachep;
36555751
EGM
3727 ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
3728
ca2b84cb
EGM
3729 trace_kmalloc_node((unsigned long) caller, ret,
3730 size, cachep->buffer_size, flags, node);
36555751
EGM
3731
3732 return ret;
97e2bde4 3733}
8b98c169 3734
0bb38a5c 3735#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3736void *__kmalloc_node(size_t size, gfp_t flags, int node)
3737{
3738 return __do_kmalloc_node(size, flags, node,
3739 __builtin_return_address(0));
3740}
dbe5e69d 3741EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3742
3743void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3744 int node, unsigned long caller)
8b98c169 3745{
ce71e27c 3746 return __do_kmalloc_node(size, flags, node, (void *)caller);
8b98c169
CH
3747}
3748EXPORT_SYMBOL(__kmalloc_node_track_caller);
3749#else
3750void *__kmalloc_node(size_t size, gfp_t flags, int node)
3751{
3752 return __do_kmalloc_node(size, flags, node, NULL);
3753}
3754EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3755#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3756#endif /* CONFIG_NUMA */
1da177e4
LT
3757
3758/**
800590f5 3759 * __do_kmalloc - allocate memory
1da177e4 3760 * @size: how many bytes of memory are required.
800590f5 3761 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3762 * @caller: function caller for debug tracking of the caller
1da177e4 3763 */
7fd6b141
PE
3764static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3765 void *caller)
1da177e4 3766{
343e0d7a 3767 struct kmem_cache *cachep;
36555751 3768 void *ret;
1da177e4 3769
97e2bde4
MS
3770 /* If you want to save a few bytes .text space: replace
3771 * __ with kmem_.
3772 * Then kmalloc uses the uninlined functions instead of the inline
3773 * functions.
3774 */
3775 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3776 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3777 return cachep;
36555751
EGM
3778 ret = __cache_alloc(cachep, flags, caller);
3779
ca2b84cb
EGM
3780 trace_kmalloc((unsigned long) caller, ret,
3781 size, cachep->buffer_size, flags);
36555751
EGM
3782
3783 return ret;
7fd6b141
PE
3784}
3785
7fd6b141 3786
0bb38a5c 3787#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3788void *__kmalloc(size_t size, gfp_t flags)
3789{
871751e2 3790 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3791}
3792EXPORT_SYMBOL(__kmalloc);
3793
ce71e27c 3794void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3795{
ce71e27c 3796 return __do_kmalloc(size, flags, (void *)caller);
7fd6b141
PE
3797}
3798EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3799
3800#else
3801void *__kmalloc(size_t size, gfp_t flags)
3802{
3803 return __do_kmalloc(size, flags, NULL);
3804}
3805EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3806#endif
3807
1da177e4
LT
3808/**
3809 * kmem_cache_free - Deallocate an object
3810 * @cachep: The cache the allocation was from.
3811 * @objp: The previously allocated object.
3812 *
3813 * Free an object which was previously allocated from this
3814 * cache.
3815 */
343e0d7a 3816void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3817{
3818 unsigned long flags;
3819
3820 local_irq_save(flags);
898552c9 3821 debug_check_no_locks_freed(objp, obj_size(cachep));
3ac7fe5a
TG
3822 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3823 debug_check_no_obj_freed(objp, obj_size(cachep));
873623df 3824 __cache_free(cachep, objp);
1da177e4 3825 local_irq_restore(flags);
36555751 3826
ca2b84cb 3827 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3828}
3829EXPORT_SYMBOL(kmem_cache_free);
3830
1da177e4
LT
3831/**
3832 * kfree - free previously allocated memory
3833 * @objp: pointer returned by kmalloc.
3834 *
80e93eff
PE
3835 * If @objp is NULL, no operation is performed.
3836 *
1da177e4
LT
3837 * Don't free memory not originally allocated by kmalloc()
3838 * or you will run into trouble.
3839 */
3840void kfree(const void *objp)
3841{
343e0d7a 3842 struct kmem_cache *c;
1da177e4
LT
3843 unsigned long flags;
3844
2121db74
PE
3845 trace_kfree(_RET_IP_, objp);
3846
6cb8f913 3847 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3848 return;
3849 local_irq_save(flags);
3850 kfree_debugcheck(objp);
6ed5eb22 3851 c = virt_to_cache(objp);
f9b8404c 3852 debug_check_no_locks_freed(objp, obj_size(c));
3ac7fe5a 3853 debug_check_no_obj_freed(objp, obj_size(c));
873623df 3854 __cache_free(c, (void *)objp);
1da177e4
LT
3855 local_irq_restore(flags);
3856}
3857EXPORT_SYMBOL(kfree);
3858
343e0d7a 3859unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3860{
3dafccf2 3861 return obj_size(cachep);
1da177e4
LT
3862}
3863EXPORT_SYMBOL(kmem_cache_size);
3864
343e0d7a 3865const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3866{
3867 return cachep->name;
3868}
3869EXPORT_SYMBOL_GPL(kmem_cache_name);
3870
e498be7d 3871/*
183ff22b 3872 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 3873 */
83b519e8 3874static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3875{
3876 int node;
3877 struct kmem_list3 *l3;
cafeb02e 3878 struct array_cache *new_shared;
3395ee05 3879 struct array_cache **new_alien = NULL;
e498be7d 3880
9c09a95c 3881 for_each_online_node(node) {
cafeb02e 3882
3395ee05 3883 if (use_alien_caches) {
83b519e8 3884 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3885 if (!new_alien)
3886 goto fail;
3887 }
cafeb02e 3888
63109846
ED
3889 new_shared = NULL;
3890 if (cachep->shared) {
3891 new_shared = alloc_arraycache(node,
0718dc2a 3892 cachep->shared*cachep->batchcount,
83b519e8 3893 0xbaadf00d, gfp);
63109846
ED
3894 if (!new_shared) {
3895 free_alien_cache(new_alien);
3896 goto fail;
3897 }
0718dc2a 3898 }
cafeb02e 3899
a737b3e2
AM
3900 l3 = cachep->nodelists[node];
3901 if (l3) {
cafeb02e
CL
3902 struct array_cache *shared = l3->shared;
3903
e498be7d
CL
3904 spin_lock_irq(&l3->list_lock);
3905
cafeb02e 3906 if (shared)
0718dc2a
CL
3907 free_block(cachep, shared->entry,
3908 shared->avail, node);
e498be7d 3909
cafeb02e
CL
3910 l3->shared = new_shared;
3911 if (!l3->alien) {
e498be7d
CL
3912 l3->alien = new_alien;
3913 new_alien = NULL;
3914 }
b28a02de 3915 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3916 cachep->batchcount + cachep->num;
e498be7d 3917 spin_unlock_irq(&l3->list_lock);
cafeb02e 3918 kfree(shared);
e498be7d
CL
3919 free_alien_cache(new_alien);
3920 continue;
3921 }
83b519e8 3922 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
0718dc2a
CL
3923 if (!l3) {
3924 free_alien_cache(new_alien);
3925 kfree(new_shared);
e498be7d 3926 goto fail;
0718dc2a 3927 }
e498be7d
CL
3928
3929 kmem_list3_init(l3);
3930 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3931 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3932 l3->shared = new_shared;
e498be7d 3933 l3->alien = new_alien;
b28a02de 3934 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3935 cachep->batchcount + cachep->num;
e498be7d
CL
3936 cachep->nodelists[node] = l3;
3937 }
cafeb02e 3938 return 0;
0718dc2a 3939
a737b3e2 3940fail:
0718dc2a
CL
3941 if (!cachep->next.next) {
3942 /* Cache is not active yet. Roll back what we did */
3943 node--;
3944 while (node >= 0) {
3945 if (cachep->nodelists[node]) {
3946 l3 = cachep->nodelists[node];
3947
3948 kfree(l3->shared);
3949 free_alien_cache(l3->alien);
3950 kfree(l3);
3951 cachep->nodelists[node] = NULL;
3952 }
3953 node--;
3954 }
3955 }
cafeb02e 3956 return -ENOMEM;
e498be7d
CL
3957}
3958
1da177e4 3959struct ccupdate_struct {
343e0d7a 3960 struct kmem_cache *cachep;
1da177e4
LT
3961 struct array_cache *new[NR_CPUS];
3962};
3963
3964static void do_ccupdate_local(void *info)
3965{
a737b3e2 3966 struct ccupdate_struct *new = info;
1da177e4
LT
3967 struct array_cache *old;
3968
3969 check_irq_off();
9a2dba4b 3970 old = cpu_cache_get(new->cachep);
e498be7d 3971
1da177e4
LT
3972 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3973 new->new[smp_processor_id()] = old;
3974}
3975
b5d8ca7c 3976/* Always called with the cache_chain_mutex held */
a737b3e2 3977static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3978 int batchcount, int shared, gfp_t gfp)
1da177e4 3979{
d2e7b7d0 3980 struct ccupdate_struct *new;
2ed3a4ef 3981 int i;
1da177e4 3982
83b519e8 3983 new = kzalloc(sizeof(*new), gfp);
d2e7b7d0
SS
3984 if (!new)
3985 return -ENOMEM;
3986
e498be7d 3987 for_each_online_cpu(i) {
7d6e6d09 3988 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 3989 batchcount, gfp);
d2e7b7d0 3990 if (!new->new[i]) {
b28a02de 3991 for (i--; i >= 0; i--)
d2e7b7d0
SS
3992 kfree(new->new[i]);
3993 kfree(new);
e498be7d 3994 return -ENOMEM;
1da177e4
LT
3995 }
3996 }
d2e7b7d0 3997 new->cachep = cachep;
1da177e4 3998
15c8b6c1 3999 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 4000
1da177e4 4001 check_irq_on();
1da177e4
LT
4002 cachep->batchcount = batchcount;
4003 cachep->limit = limit;
e498be7d 4004 cachep->shared = shared;
1da177e4 4005
e498be7d 4006 for_each_online_cpu(i) {
d2e7b7d0 4007 struct array_cache *ccold = new->new[i];
1da177e4
LT
4008 if (!ccold)
4009 continue;
7d6e6d09
LS
4010 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4011 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4012 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
1da177e4
LT
4013 kfree(ccold);
4014 }
d2e7b7d0 4015 kfree(new);
83b519e8 4016 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
4017}
4018
b5d8ca7c 4019/* Called with cache_chain_mutex held always */
83b519e8 4020static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
4021{
4022 int err;
4023 int limit, shared;
4024
a737b3e2
AM
4025 /*
4026 * The head array serves three purposes:
1da177e4
LT
4027 * - create a LIFO ordering, i.e. return objects that are cache-warm
4028 * - reduce the number of spinlock operations.
a737b3e2 4029 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4030 * bufctl chains: array operations are cheaper.
4031 * The numbers are guessed, we should auto-tune as described by
4032 * Bonwick.
4033 */
3dafccf2 4034 if (cachep->buffer_size > 131072)
1da177e4 4035 limit = 1;
3dafccf2 4036 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 4037 limit = 8;
3dafccf2 4038 else if (cachep->buffer_size > 1024)
1da177e4 4039 limit = 24;
3dafccf2 4040 else if (cachep->buffer_size > 256)
1da177e4
LT
4041 limit = 54;
4042 else
4043 limit = 120;
4044
a737b3e2
AM
4045 /*
4046 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4047 * allocation behaviour: Most allocs on one cpu, most free operations
4048 * on another cpu. For these cases, an efficient object passing between
4049 * cpus is necessary. This is provided by a shared array. The array
4050 * replaces Bonwick's magazine layer.
4051 * On uniprocessor, it's functionally equivalent (but less efficient)
4052 * to a larger limit. Thus disabled by default.
4053 */
4054 shared = 0;
364fbb29 4055 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4056 shared = 8;
1da177e4
LT
4057
4058#if DEBUG
a737b3e2
AM
4059 /*
4060 * With debugging enabled, large batchcount lead to excessively long
4061 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4062 */
4063 if (limit > 32)
4064 limit = 32;
4065#endif
83b519e8 4066 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
1da177e4
LT
4067 if (err)
4068 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4069 cachep->name, -err);
2ed3a4ef 4070 return err;
1da177e4
LT
4071}
4072
1b55253a
CL
4073/*
4074 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4075 * necessary. Note that the l3 listlock also protects the array_cache
4076 * if drain_array() is used on the shared array.
1b55253a
CL
4077 */
4078void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4079 struct array_cache *ac, int force, int node)
1da177e4
LT
4080{
4081 int tofree;
4082
1b55253a
CL
4083 if (!ac || !ac->avail)
4084 return;
1da177e4
LT
4085 if (ac->touched && !force) {
4086 ac->touched = 0;
b18e7e65 4087 } else {
1b55253a 4088 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4089 if (ac->avail) {
4090 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4091 if (tofree > ac->avail)
4092 tofree = (ac->avail + 1) / 2;
4093 free_block(cachep, ac->entry, tofree, node);
4094 ac->avail -= tofree;
4095 memmove(ac->entry, &(ac->entry[tofree]),
4096 sizeof(void *) * ac->avail);
4097 }
1b55253a 4098 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4099 }
4100}
4101
4102/**
4103 * cache_reap - Reclaim memory from caches.
05fb6bf0 4104 * @w: work descriptor
1da177e4
LT
4105 *
4106 * Called from workqueue/eventd every few seconds.
4107 * Purpose:
4108 * - clear the per-cpu caches for this CPU.
4109 * - return freeable pages to the main free memory pool.
4110 *
a737b3e2
AM
4111 * If we cannot acquire the cache chain mutex then just give up - we'll try
4112 * again on the next iteration.
1da177e4 4113 */
7c5cae36 4114static void cache_reap(struct work_struct *w)
1da177e4 4115{
7a7c381d 4116 struct kmem_cache *searchp;
e498be7d 4117 struct kmem_list3 *l3;
7d6e6d09 4118 int node = numa_mem_id();
bf6aede7 4119 struct delayed_work *work = to_delayed_work(w);
1da177e4 4120
7c5cae36 4121 if (!mutex_trylock(&cache_chain_mutex))
1da177e4 4122 /* Give up. Setup the next iteration. */
7c5cae36 4123 goto out;
1da177e4 4124
7a7c381d 4125 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
4126 check_irq_on();
4127
35386e3b
CL
4128 /*
4129 * We only take the l3 lock if absolutely necessary and we
4130 * have established with reasonable certainty that
4131 * we can do some work if the lock was obtained.
4132 */
aab2207c 4133 l3 = searchp->nodelists[node];
35386e3b 4134
8fce4d8e 4135 reap_alien(searchp, l3);
1da177e4 4136
aab2207c 4137 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4138
35386e3b
CL
4139 /*
4140 * These are racy checks but it does not matter
4141 * if we skip one check or scan twice.
4142 */
e498be7d 4143 if (time_after(l3->next_reap, jiffies))
35386e3b 4144 goto next;
1da177e4 4145
e498be7d 4146 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4147
aab2207c 4148 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4149
ed11d9eb 4150 if (l3->free_touched)
e498be7d 4151 l3->free_touched = 0;
ed11d9eb
CL
4152 else {
4153 int freed;
1da177e4 4154
ed11d9eb
CL
4155 freed = drain_freelist(searchp, l3, (l3->free_limit +
4156 5 * searchp->num - 1) / (5 * searchp->num));
4157 STATS_ADD_REAPED(searchp, freed);
4158 }
35386e3b 4159next:
1da177e4
LT
4160 cond_resched();
4161 }
4162 check_irq_on();
fc0abb14 4163 mutex_unlock(&cache_chain_mutex);
8fce4d8e 4164 next_reap_node();
7c5cae36 4165out:
a737b3e2 4166 /* Set up the next iteration */
7c5cae36 4167 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4168}
4169
158a9624 4170#ifdef CONFIG_SLABINFO
1da177e4 4171
85289f98 4172static void print_slabinfo_header(struct seq_file *m)
1da177e4 4173{
85289f98
PE
4174 /*
4175 * Output format version, so at least we can change it
4176 * without _too_ many complaints.
4177 */
1da177e4 4178#if STATS
85289f98 4179 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4180#else
85289f98 4181 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4182#endif
85289f98
PE
4183 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4184 "<objperslab> <pagesperslab>");
4185 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4186 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4187#if STATS
85289f98 4188 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4189 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4190 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4191#endif
85289f98
PE
4192 seq_putc(m, '\n');
4193}
4194
4195static void *s_start(struct seq_file *m, loff_t *pos)
4196{
4197 loff_t n = *pos;
85289f98 4198
fc0abb14 4199 mutex_lock(&cache_chain_mutex);
85289f98
PE
4200 if (!n)
4201 print_slabinfo_header(m);
b92151ba
PE
4202
4203 return seq_list_start(&cache_chain, *pos);
1da177e4
LT
4204}
4205
4206static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4207{
b92151ba 4208 return seq_list_next(p, &cache_chain, pos);
1da177e4
LT
4209}
4210
4211static void s_stop(struct seq_file *m, void *p)
4212{
fc0abb14 4213 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4214}
4215
4216static int s_show(struct seq_file *m, void *p)
4217{
b92151ba 4218 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
b28a02de
PE
4219 struct slab *slabp;
4220 unsigned long active_objs;
4221 unsigned long num_objs;
4222 unsigned long active_slabs = 0;
4223 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4224 const char *name;
1da177e4 4225 char *error = NULL;
e498be7d
CL
4226 int node;
4227 struct kmem_list3 *l3;
1da177e4 4228
1da177e4
LT
4229 active_objs = 0;
4230 num_slabs = 0;
e498be7d
CL
4231 for_each_online_node(node) {
4232 l3 = cachep->nodelists[node];
4233 if (!l3)
4234 continue;
4235
ca3b9b91
RT
4236 check_irq_on();
4237 spin_lock_irq(&l3->list_lock);
e498be7d 4238
7a7c381d 4239 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4240 if (slabp->inuse != cachep->num && !error)
4241 error = "slabs_full accounting error";
4242 active_objs += cachep->num;
4243 active_slabs++;
4244 }
7a7c381d 4245 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4246 if (slabp->inuse == cachep->num && !error)
4247 error = "slabs_partial inuse accounting error";
4248 if (!slabp->inuse && !error)
4249 error = "slabs_partial/inuse accounting error";
4250 active_objs += slabp->inuse;
4251 active_slabs++;
4252 }
7a7c381d 4253 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4254 if (slabp->inuse && !error)
4255 error = "slabs_free/inuse accounting error";
4256 num_slabs++;
4257 }
4258 free_objects += l3->free_objects;
4484ebf1
RT
4259 if (l3->shared)
4260 shared_avail += l3->shared->avail;
e498be7d 4261
ca3b9b91 4262 spin_unlock_irq(&l3->list_lock);
1da177e4 4263 }
b28a02de
PE
4264 num_slabs += active_slabs;
4265 num_objs = num_slabs * cachep->num;
e498be7d 4266 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4267 error = "free_objects accounting error";
4268
b28a02de 4269 name = cachep->name;
1da177e4
LT
4270 if (error)
4271 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4272
4273 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 4274 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 4275 cachep->num, (1 << cachep->gfporder));
1da177e4 4276 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4277 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4278 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4279 active_slabs, num_slabs, shared_avail);
1da177e4 4280#if STATS
b28a02de 4281 { /* list3 stats */
1da177e4
LT
4282 unsigned long high = cachep->high_mark;
4283 unsigned long allocs = cachep->num_allocations;
4284 unsigned long grown = cachep->grown;
4285 unsigned long reaped = cachep->reaped;
4286 unsigned long errors = cachep->errors;
4287 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4288 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4289 unsigned long node_frees = cachep->node_frees;
fb7faf33 4290 unsigned long overflows = cachep->node_overflow;
1da177e4 4291
e92dd4fd
JP
4292 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4293 "%4lu %4lu %4lu %4lu %4lu",
4294 allocs, high, grown,
4295 reaped, errors, max_freeable, node_allocs,
4296 node_frees, overflows);
1da177e4
LT
4297 }
4298 /* cpu stats */
4299 {
4300 unsigned long allochit = atomic_read(&cachep->allochit);
4301 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4302 unsigned long freehit = atomic_read(&cachep->freehit);
4303 unsigned long freemiss = atomic_read(&cachep->freemiss);
4304
4305 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4306 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4307 }
4308#endif
4309 seq_putc(m, '\n');
1da177e4
LT
4310 return 0;
4311}
4312
4313/*
4314 * slabinfo_op - iterator that generates /proc/slabinfo
4315 *
4316 * Output layout:
4317 * cache-name
4318 * num-active-objs
4319 * total-objs
4320 * object size
4321 * num-active-slabs
4322 * total-slabs
4323 * num-pages-per-slab
4324 * + further values on SMP and with statistics enabled
4325 */
4326
7b3c3a50 4327static const struct seq_operations slabinfo_op = {
b28a02de
PE
4328 .start = s_start,
4329 .next = s_next,
4330 .stop = s_stop,
4331 .show = s_show,
1da177e4
LT
4332};
4333
4334#define MAX_SLABINFO_WRITE 128
4335/**
4336 * slabinfo_write - Tuning for the slab allocator
4337 * @file: unused
4338 * @buffer: user buffer
4339 * @count: data length
4340 * @ppos: unused
4341 */
b28a02de
PE
4342ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4343 size_t count, loff_t *ppos)
1da177e4 4344{
b28a02de 4345 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4346 int limit, batchcount, shared, res;
7a7c381d 4347 struct kmem_cache *cachep;
b28a02de 4348
1da177e4
LT
4349 if (count > MAX_SLABINFO_WRITE)
4350 return -EINVAL;
4351 if (copy_from_user(&kbuf, buffer, count))
4352 return -EFAULT;
b28a02de 4353 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4354
4355 tmp = strchr(kbuf, ' ');
4356 if (!tmp)
4357 return -EINVAL;
4358 *tmp = '\0';
4359 tmp++;
4360 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4361 return -EINVAL;
4362
4363 /* Find the cache in the chain of caches. */
fc0abb14 4364 mutex_lock(&cache_chain_mutex);
1da177e4 4365 res = -EINVAL;
7a7c381d 4366 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4367 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4368 if (limit < 1 || batchcount < 1 ||
4369 batchcount > limit || shared < 0) {
e498be7d 4370 res = 0;
1da177e4 4371 } else {
e498be7d 4372 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4373 batchcount, shared,
4374 GFP_KERNEL);
1da177e4
LT
4375 }
4376 break;
4377 }
4378 }
fc0abb14 4379 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4380 if (res >= 0)
4381 res = count;
4382 return res;
4383}
871751e2 4384
7b3c3a50
AD
4385static int slabinfo_open(struct inode *inode, struct file *file)
4386{
4387 return seq_open(file, &slabinfo_op);
4388}
4389
4390static const struct file_operations proc_slabinfo_operations = {
4391 .open = slabinfo_open,
4392 .read = seq_read,
4393 .write = slabinfo_write,
4394 .llseek = seq_lseek,
4395 .release = seq_release,
4396};
4397
871751e2
AV
4398#ifdef CONFIG_DEBUG_SLAB_LEAK
4399
4400static void *leaks_start(struct seq_file *m, loff_t *pos)
4401{
871751e2 4402 mutex_lock(&cache_chain_mutex);
b92151ba 4403 return seq_list_start(&cache_chain, *pos);
871751e2
AV
4404}
4405
4406static inline int add_caller(unsigned long *n, unsigned long v)
4407{
4408 unsigned long *p;
4409 int l;
4410 if (!v)
4411 return 1;
4412 l = n[1];
4413 p = n + 2;
4414 while (l) {
4415 int i = l/2;
4416 unsigned long *q = p + 2 * i;
4417 if (*q == v) {
4418 q[1]++;
4419 return 1;
4420 }
4421 if (*q > v) {
4422 l = i;
4423 } else {
4424 p = q + 2;
4425 l -= i + 1;
4426 }
4427 }
4428 if (++n[1] == n[0])
4429 return 0;
4430 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4431 p[0] = v;
4432 p[1] = 1;
4433 return 1;
4434}
4435
4436static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4437{
4438 void *p;
4439 int i;
4440 if (n[0] == n[1])
4441 return;
4442 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4443 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4444 continue;
4445 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4446 return;
4447 }
4448}
4449
4450static void show_symbol(struct seq_file *m, unsigned long address)
4451{
4452#ifdef CONFIG_KALLSYMS
871751e2 4453 unsigned long offset, size;
9281acea 4454 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4455
a5c43dae 4456 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4457 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4458 if (modname[0])
871751e2
AV
4459 seq_printf(m, " [%s]", modname);
4460 return;
4461 }
4462#endif
4463 seq_printf(m, "%p", (void *)address);
4464}
4465
4466static int leaks_show(struct seq_file *m, void *p)
4467{
b92151ba 4468 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
871751e2
AV
4469 struct slab *slabp;
4470 struct kmem_list3 *l3;
4471 const char *name;
4472 unsigned long *n = m->private;
4473 int node;
4474 int i;
4475
4476 if (!(cachep->flags & SLAB_STORE_USER))
4477 return 0;
4478 if (!(cachep->flags & SLAB_RED_ZONE))
4479 return 0;
4480
4481 /* OK, we can do it */
4482
4483 n[1] = 0;
4484
4485 for_each_online_node(node) {
4486 l3 = cachep->nodelists[node];
4487 if (!l3)
4488 continue;
4489
4490 check_irq_on();
4491 spin_lock_irq(&l3->list_lock);
4492
7a7c381d 4493 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4494 handle_slab(n, cachep, slabp);
7a7c381d 4495 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4496 handle_slab(n, cachep, slabp);
871751e2
AV
4497 spin_unlock_irq(&l3->list_lock);
4498 }
4499 name = cachep->name;
4500 if (n[0] == n[1]) {
4501 /* Increase the buffer size */
4502 mutex_unlock(&cache_chain_mutex);
4503 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4504 if (!m->private) {
4505 /* Too bad, we are really out */
4506 m->private = n;
4507 mutex_lock(&cache_chain_mutex);
4508 return -ENOMEM;
4509 }
4510 *(unsigned long *)m->private = n[0] * 2;
4511 kfree(n);
4512 mutex_lock(&cache_chain_mutex);
4513 /* Now make sure this entry will be retried */
4514 m->count = m->size;
4515 return 0;
4516 }
4517 for (i = 0; i < n[1]; i++) {
4518 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4519 show_symbol(m, n[2*i+2]);
4520 seq_putc(m, '\n');
4521 }
d2e7b7d0 4522
871751e2
AV
4523 return 0;
4524}
4525
a0ec95a8 4526static const struct seq_operations slabstats_op = {
871751e2
AV
4527 .start = leaks_start,
4528 .next = s_next,
4529 .stop = s_stop,
4530 .show = leaks_show,
4531};
a0ec95a8
AD
4532
4533static int slabstats_open(struct inode *inode, struct file *file)
4534{
4535 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4536 int ret = -ENOMEM;
4537 if (n) {
4538 ret = seq_open(file, &slabstats_op);
4539 if (!ret) {
4540 struct seq_file *m = file->private_data;
4541 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4542 m->private = n;
4543 n = NULL;
4544 }
4545 kfree(n);
4546 }
4547 return ret;
4548}
4549
4550static const struct file_operations proc_slabstats_operations = {
4551 .open = slabstats_open,
4552 .read = seq_read,
4553 .llseek = seq_lseek,
4554 .release = seq_release_private,
4555};
4556#endif
4557
4558static int __init slab_proc_init(void)
4559{
7b3c3a50 4560 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
a0ec95a8
AD
4561#ifdef CONFIG_DEBUG_SLAB_LEAK
4562 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4563#endif
a0ec95a8
AD
4564 return 0;
4565}
4566module_init(slab_proc_init);
1da177e4
LT
4567#endif
4568
00e145b6
MS
4569/**
4570 * ksize - get the actual amount of memory allocated for a given object
4571 * @objp: Pointer to the object
4572 *
4573 * kmalloc may internally round up allocations and return more memory
4574 * than requested. ksize() can be used to determine the actual amount of
4575 * memory allocated. The caller may use this additional memory, even though
4576 * a smaller amount of memory was initially specified with the kmalloc call.
4577 * The caller must guarantee that objp points to a valid object previously
4578 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4579 * must not be freed during the duration of the call.
4580 */
fd76bab2 4581size_t ksize(const void *objp)
1da177e4 4582{
ef8b4520
CL
4583 BUG_ON(!objp);
4584 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4585 return 0;
1da177e4 4586
6ed5eb22 4587 return obj_size(virt_to_cache(objp));
1da177e4 4588}
b1aabecd 4589EXPORT_SYMBOL(ksize);