]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/slab.c
fs: deprecate memclear_highpage_flush
[net-next-2.6.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
1da177e4
LT
98#include <linux/seq_file.h>
99#include <linux/notifier.h>
100#include <linux/kallsyms.h>
101#include <linux/cpu.h>
102#include <linux/sysctl.h>
103#include <linux/module.h>
104#include <linux/rcupdate.h>
543537bd 105#include <linux/string.h>
138ae663 106#include <linux/uaccess.h>
e498be7d 107#include <linux/nodemask.h>
dc85da15 108#include <linux/mempolicy.h>
fc0abb14 109#include <linux/mutex.h>
8a8b6502 110#include <linux/fault-inject.h>
e7eebaf6 111#include <linux/rtmutex.h>
6a2d7a95 112#include <linux/reciprocal_div.h>
1da177e4 113
1da177e4
LT
114#include <asm/cacheflush.h>
115#include <asm/tlbflush.h>
116#include <asm/page.h>
117
118/*
50953fe9 119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128#ifdef CONFIG_DEBUG_SLAB
129#define DEBUG 1
130#define STATS 1
131#define FORCED_DEBUG 1
132#else
133#define DEBUG 0
134#define STATS 0
135#define FORCED_DEBUG 0
136#endif
137
1da177e4
LT
138/* Shouldn't this be in a header file somewhere? */
139#define BYTES_PER_WORD sizeof(void *)
140
141#ifndef cache_line_size
142#define cache_line_size() L1_CACHE_BYTES
143#endif
144
145#ifndef ARCH_KMALLOC_MINALIGN
146/*
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
b46b8f19
DW
151 * alignment larger than the alignment of a 64-bit integer.
152 * ARCH_KMALLOC_MINALIGN allows that.
153 * Note that increasing this value may disable some debug features.
1da177e4 154 */
b46b8f19 155#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
1da177e4
LT
156#endif
157
158#ifndef ARCH_SLAB_MINALIGN
159/*
160 * Enforce a minimum alignment for all caches.
161 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
162 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
163 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
164 * some debug features.
165 */
166#define ARCH_SLAB_MINALIGN 0
167#endif
168
169#ifndef ARCH_KMALLOC_FLAGS
170#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
171#endif
172
173/* Legal flag mask for kmem_cache_create(). */
174#if DEBUG
50953fe9 175# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 176 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 177 SLAB_CACHE_DMA | \
5af60839 178 SLAB_STORE_USER | \
1da177e4 179 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 180 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4 181#else
ac2b898c 182# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 183 SLAB_CACHE_DMA | \
1da177e4 184 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 185 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4
LT
186#endif
187
188/*
189 * kmem_bufctl_t:
190 *
191 * Bufctl's are used for linking objs within a slab
192 * linked offsets.
193 *
194 * This implementation relies on "struct page" for locating the cache &
195 * slab an object belongs to.
196 * This allows the bufctl structure to be small (one int), but limits
197 * the number of objects a slab (not a cache) can contain when off-slab
198 * bufctls are used. The limit is the size of the largest general cache
199 * that does not use off-slab slabs.
200 * For 32bit archs with 4 kB pages, is this 56.
201 * This is not serious, as it is only for large objects, when it is unwise
202 * to have too many per slab.
203 * Note: This limit can be raised by introducing a general cache whose size
204 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
205 */
206
fa5b08d5 207typedef unsigned int kmem_bufctl_t;
1da177e4
LT
208#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
209#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
210#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
211#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 212
1da177e4
LT
213/*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220struct slab {
b28a02de
PE
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
1da177e4
LT
227};
228
229/*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245struct slab_rcu {
b28a02de 246 struct rcu_head head;
343e0d7a 247 struct kmem_cache *cachep;
b28a02de 248 void *addr;
1da177e4
LT
249};
250
251/*
252 * struct array_cache
253 *
1da177e4
LT
254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
e498be7d 268 spinlock_t lock;
a737b3e2
AM
269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
274 */
1da177e4
LT
275};
276
a737b3e2
AM
277/*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
1da177e4
LT
280 */
281#define BOOT_CPUCACHE_ENTRIES 1
282struct arraycache_init {
283 struct array_cache cache;
b28a02de 284 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
285};
286
287/*
e498be7d 288 * The slab lists for all objects.
1da177e4
LT
289 */
290struct kmem_list3 {
b28a02de
PE
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
b28a02de 295 unsigned int free_limit;
2e1217cf 296 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
35386e3b
CL
300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
1da177e4
LT
302};
303
e498be7d
CL
304/*
305 * Need this for bootstrapping a per node allocator.
306 */
307#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309#define CACHE_CACHE 0
310#define SIZE_AC 1
311#define SIZE_L3 (1 + MAX_NUMNODES)
312
ed11d9eb
CL
313static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
2ed3a4ef 317static int enable_cpucache(struct kmem_cache *cachep);
65f27f38 318static void cache_reap(struct work_struct *unused);
ed11d9eb 319
e498be7d 320/*
a737b3e2
AM
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 323 */
7243cc05 324static __always_inline int index_of(const size_t size)
e498be7d 325{
5ec8a847
SR
326 extern void __bad_size(void);
327
e498be7d
CL
328 if (__builtin_constant_p(size)) {
329 int i = 0;
330
331#define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
336#include "linux/kmalloc_sizes.h"
337#undef CACHE
5ec8a847 338 __bad_size();
7243cc05 339 } else
5ec8a847 340 __bad_size();
e498be7d
CL
341 return 0;
342}
343
e0a42726
IM
344static int slab_early_init = 1;
345
e498be7d
CL
346#define INDEX_AC index_of(sizeof(struct arraycache_init))
347#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 348
5295a74c 349static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
350{
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
2e1217cf 356 parent->colour_next = 0;
e498be7d
CL
357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
360}
361
a737b3e2
AM
362#define MAKE_LIST(cachep, listp, slab, nodeid) \
363 do { \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
366 } while (0)
367
a737b3e2
AM
368#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 do { \
e498be7d
CL
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 } while (0)
1da177e4
LT
374
375/*
343e0d7a 376 * struct kmem_cache
1da177e4
LT
377 *
378 * manages a cache.
379 */
b28a02de 380
2109a2d1 381struct kmem_cache {
1da177e4 382/* 1) per-cpu data, touched during every alloc/free */
b28a02de 383 struct array_cache *array[NR_CPUS];
b5d8ca7c 384/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
385 unsigned int batchcount;
386 unsigned int limit;
387 unsigned int shared;
b5d8ca7c 388
3dafccf2 389 unsigned int buffer_size;
6a2d7a95 390 u32 reciprocal_buffer_size;
b5d8ca7c 391/* 3) touched by every alloc & free from the backend */
b5d8ca7c 392
a737b3e2
AM
393 unsigned int flags; /* constant flags */
394 unsigned int num; /* # of objs per slab */
1da177e4 395
b5d8ca7c 396/* 4) cache_grow/shrink */
1da177e4 397 /* order of pgs per slab (2^n) */
b28a02de 398 unsigned int gfporder;
1da177e4
LT
399
400 /* force GFP flags, e.g. GFP_DMA */
b28a02de 401 gfp_t gfpflags;
1da177e4 402
a737b3e2 403 size_t colour; /* cache colouring range */
b28a02de 404 unsigned int colour_off; /* colour offset */
343e0d7a 405 struct kmem_cache *slabp_cache;
b28a02de 406 unsigned int slab_size;
a737b3e2 407 unsigned int dflags; /* dynamic flags */
1da177e4
LT
408
409 /* constructor func */
343e0d7a 410 void (*ctor) (void *, struct kmem_cache *, unsigned long);
1da177e4
LT
411
412 /* de-constructor func */
343e0d7a 413 void (*dtor) (void *, struct kmem_cache *, unsigned long);
1da177e4 414
b5d8ca7c 415/* 5) cache creation/removal */
b28a02de
PE
416 const char *name;
417 struct list_head next;
1da177e4 418
b5d8ca7c 419/* 6) statistics */
1da177e4 420#if STATS
b28a02de
PE
421 unsigned long num_active;
422 unsigned long num_allocations;
423 unsigned long high_mark;
424 unsigned long grown;
425 unsigned long reaped;
426 unsigned long errors;
427 unsigned long max_freeable;
428 unsigned long node_allocs;
429 unsigned long node_frees;
fb7faf33 430 unsigned long node_overflow;
b28a02de
PE
431 atomic_t allochit;
432 atomic_t allocmiss;
433 atomic_t freehit;
434 atomic_t freemiss;
1da177e4
LT
435#endif
436#if DEBUG
3dafccf2
MS
437 /*
438 * If debugging is enabled, then the allocator can add additional
439 * fields and/or padding to every object. buffer_size contains the total
440 * object size including these internal fields, the following two
441 * variables contain the offset to the user object and its size.
442 */
443 int obj_offset;
444 int obj_size;
1da177e4 445#endif
8da3430d
ED
446 /*
447 * We put nodelists[] at the end of kmem_cache, because we want to size
448 * this array to nr_node_ids slots instead of MAX_NUMNODES
449 * (see kmem_cache_init())
450 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
451 * is statically defined, so we reserve the max number of nodes.
452 */
453 struct kmem_list3 *nodelists[MAX_NUMNODES];
454 /*
455 * Do not add fields after nodelists[]
456 */
1da177e4
LT
457};
458
459#define CFLGS_OFF_SLAB (0x80000000UL)
460#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
461
462#define BATCHREFILL_LIMIT 16
a737b3e2
AM
463/*
464 * Optimization question: fewer reaps means less probability for unnessary
465 * cpucache drain/refill cycles.
1da177e4 466 *
dc6f3f27 467 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
468 * which could lock up otherwise freeable slabs.
469 */
470#define REAPTIMEOUT_CPUC (2*HZ)
471#define REAPTIMEOUT_LIST3 (4*HZ)
472
473#if STATS
474#define STATS_INC_ACTIVE(x) ((x)->num_active++)
475#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
476#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
477#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 478#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
479#define STATS_SET_HIGH(x) \
480 do { \
481 if ((x)->num_active > (x)->high_mark) \
482 (x)->high_mark = (x)->num_active; \
483 } while (0)
1da177e4
LT
484#define STATS_INC_ERR(x) ((x)->errors++)
485#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 486#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 487#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
488#define STATS_SET_FREEABLE(x, i) \
489 do { \
490 if ((x)->max_freeable < i) \
491 (x)->max_freeable = i; \
492 } while (0)
1da177e4
LT
493#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
494#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
495#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
496#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
497#else
498#define STATS_INC_ACTIVE(x) do { } while (0)
499#define STATS_DEC_ACTIVE(x) do { } while (0)
500#define STATS_INC_ALLOCED(x) do { } while (0)
501#define STATS_INC_GROWN(x) do { } while (0)
ed11d9eb 502#define STATS_ADD_REAPED(x,y) do { } while (0)
1da177e4
LT
503#define STATS_SET_HIGH(x) do { } while (0)
504#define STATS_INC_ERR(x) do { } while (0)
505#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 506#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 507#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 508#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
509#define STATS_INC_ALLOCHIT(x) do { } while (0)
510#define STATS_INC_ALLOCMISS(x) do { } while (0)
511#define STATS_INC_FREEHIT(x) do { } while (0)
512#define STATS_INC_FREEMISS(x) do { } while (0)
513#endif
514
515#if DEBUG
1da177e4 516
a737b3e2
AM
517/*
518 * memory layout of objects:
1da177e4 519 * 0 : objp
3dafccf2 520 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
521 * the end of an object is aligned with the end of the real
522 * allocation. Catches writes behind the end of the allocation.
3dafccf2 523 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 524 * redzone word.
3dafccf2
MS
525 * cachep->obj_offset: The real object.
526 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
527 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
528 * [BYTES_PER_WORD long]
1da177e4 529 */
343e0d7a 530static int obj_offset(struct kmem_cache *cachep)
1da177e4 531{
3dafccf2 532 return cachep->obj_offset;
1da177e4
LT
533}
534
343e0d7a 535static int obj_size(struct kmem_cache *cachep)
1da177e4 536{
3dafccf2 537 return cachep->obj_size;
1da177e4
LT
538}
539
b46b8f19 540static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
541{
542 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
543 return (unsigned long long*) (objp + obj_offset(cachep) -
544 sizeof(unsigned long long));
1da177e4
LT
545}
546
b46b8f19 547static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
548{
549 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
550 if (cachep->flags & SLAB_STORE_USER)
b46b8f19
DW
551 return (unsigned long long *)(objp + cachep->buffer_size -
552 sizeof(unsigned long long) -
553 BYTES_PER_WORD);
554 return (unsigned long long *) (objp + cachep->buffer_size -
555 sizeof(unsigned long long));
1da177e4
LT
556}
557
343e0d7a 558static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
559{
560 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 561 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
562}
563
564#else
565
3dafccf2
MS
566#define obj_offset(x) 0
567#define obj_size(cachep) (cachep->buffer_size)
b46b8f19
DW
568#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
569#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
570#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
571
572#endif
573
574/*
a737b3e2
AM
575 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
576 * order.
1da177e4
LT
577 */
578#if defined(CONFIG_LARGE_ALLOCS)
579#define MAX_OBJ_ORDER 13 /* up to 32Mb */
580#define MAX_GFP_ORDER 13 /* up to 32Mb */
581#elif defined(CONFIG_MMU)
582#define MAX_OBJ_ORDER 5 /* 32 pages */
583#define MAX_GFP_ORDER 5 /* 32 pages */
584#else
585#define MAX_OBJ_ORDER 8 /* up to 1Mb */
586#define MAX_GFP_ORDER 8 /* up to 1Mb */
587#endif
588
589/*
590 * Do not go above this order unless 0 objects fit into the slab.
591 */
592#define BREAK_GFP_ORDER_HI 1
593#define BREAK_GFP_ORDER_LO 0
594static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
595
a737b3e2
AM
596/*
597 * Functions for storing/retrieving the cachep and or slab from the page
598 * allocator. These are used to find the slab an obj belongs to. With kfree(),
599 * these are used to find the cache which an obj belongs to.
1da177e4 600 */
065d41cb
PE
601static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
602{
603 page->lru.next = (struct list_head *)cache;
604}
605
606static inline struct kmem_cache *page_get_cache(struct page *page)
607{
d85f3385 608 page = compound_head(page);
ddc2e812 609 BUG_ON(!PageSlab(page));
065d41cb
PE
610 return (struct kmem_cache *)page->lru.next;
611}
612
613static inline void page_set_slab(struct page *page, struct slab *slab)
614{
615 page->lru.prev = (struct list_head *)slab;
616}
617
618static inline struct slab *page_get_slab(struct page *page)
619{
ddc2e812 620 BUG_ON(!PageSlab(page));
065d41cb
PE
621 return (struct slab *)page->lru.prev;
622}
1da177e4 623
6ed5eb22
PE
624static inline struct kmem_cache *virt_to_cache(const void *obj)
625{
b49af68f 626 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
627 return page_get_cache(page);
628}
629
630static inline struct slab *virt_to_slab(const void *obj)
631{
b49af68f 632 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
633 return page_get_slab(page);
634}
635
8fea4e96
PE
636static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
637 unsigned int idx)
638{
639 return slab->s_mem + cache->buffer_size * idx;
640}
641
6a2d7a95
ED
642/*
643 * We want to avoid an expensive divide : (offset / cache->buffer_size)
644 * Using the fact that buffer_size is a constant for a particular cache,
645 * we can replace (offset / cache->buffer_size) by
646 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
647 */
648static inline unsigned int obj_to_index(const struct kmem_cache *cache,
649 const struct slab *slab, void *obj)
8fea4e96 650{
6a2d7a95
ED
651 u32 offset = (obj - slab->s_mem);
652 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
653}
654
a737b3e2
AM
655/*
656 * These are the default caches for kmalloc. Custom caches can have other sizes.
657 */
1da177e4
LT
658struct cache_sizes malloc_sizes[] = {
659#define CACHE(x) { .cs_size = (x) },
660#include <linux/kmalloc_sizes.h>
661 CACHE(ULONG_MAX)
662#undef CACHE
663};
664EXPORT_SYMBOL(malloc_sizes);
665
666/* Must match cache_sizes above. Out of line to keep cache footprint low. */
667struct cache_names {
668 char *name;
669 char *name_dma;
670};
671
672static struct cache_names __initdata cache_names[] = {
673#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
674#include <linux/kmalloc_sizes.h>
b28a02de 675 {NULL,}
1da177e4
LT
676#undef CACHE
677};
678
679static struct arraycache_init initarray_cache __initdata =
b28a02de 680 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 681static struct arraycache_init initarray_generic =
b28a02de 682 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
683
684/* internal cache of cache description objs */
343e0d7a 685static struct kmem_cache cache_cache = {
b28a02de
PE
686 .batchcount = 1,
687 .limit = BOOT_CPUCACHE_ENTRIES,
688 .shared = 1,
343e0d7a 689 .buffer_size = sizeof(struct kmem_cache),
b28a02de 690 .name = "kmem_cache",
1da177e4
LT
691};
692
056c6241
RT
693#define BAD_ALIEN_MAGIC 0x01020304ul
694
f1aaee53
AV
695#ifdef CONFIG_LOCKDEP
696
697/*
698 * Slab sometimes uses the kmalloc slabs to store the slab headers
699 * for other slabs "off slab".
700 * The locking for this is tricky in that it nests within the locks
701 * of all other slabs in a few places; to deal with this special
702 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
703 *
704 * We set lock class for alien array caches which are up during init.
705 * The lock annotation will be lost if all cpus of a node goes down and
706 * then comes back up during hotplug
f1aaee53 707 */
056c6241
RT
708static struct lock_class_key on_slab_l3_key;
709static struct lock_class_key on_slab_alc_key;
710
711static inline void init_lock_keys(void)
f1aaee53 712
f1aaee53
AV
713{
714 int q;
056c6241
RT
715 struct cache_sizes *s = malloc_sizes;
716
717 while (s->cs_size != ULONG_MAX) {
718 for_each_node(q) {
719 struct array_cache **alc;
720 int r;
721 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
722 if (!l3 || OFF_SLAB(s->cs_cachep))
723 continue;
724 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
725 alc = l3->alien;
726 /*
727 * FIXME: This check for BAD_ALIEN_MAGIC
728 * should go away when common slab code is taught to
729 * work even without alien caches.
730 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
731 * for alloc_alien_cache,
732 */
733 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
734 continue;
735 for_each_node(r) {
736 if (alc[r])
737 lockdep_set_class(&alc[r]->lock,
738 &on_slab_alc_key);
739 }
740 }
741 s++;
f1aaee53
AV
742 }
743}
f1aaee53 744#else
056c6241 745static inline void init_lock_keys(void)
f1aaee53
AV
746{
747}
748#endif
749
8f5be20b
RT
750/*
751 * 1. Guard access to the cache-chain.
752 * 2. Protect sanity of cpu_online_map against cpu hotplug events
753 */
fc0abb14 754static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
755static struct list_head cache_chain;
756
1da177e4
LT
757/*
758 * chicken and egg problem: delay the per-cpu array allocation
759 * until the general caches are up.
760 */
761static enum {
762 NONE,
e498be7d
CL
763 PARTIAL_AC,
764 PARTIAL_L3,
1da177e4
LT
765 FULL
766} g_cpucache_up;
767
39d24e64
MK
768/*
769 * used by boot code to determine if it can use slab based allocator
770 */
771int slab_is_available(void)
772{
773 return g_cpucache_up == FULL;
774}
775
52bad64d 776static DEFINE_PER_CPU(struct delayed_work, reap_work);
1da177e4 777
343e0d7a 778static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
779{
780 return cachep->array[smp_processor_id()];
781}
782
a737b3e2
AM
783static inline struct kmem_cache *__find_general_cachep(size_t size,
784 gfp_t gfpflags)
1da177e4
LT
785{
786 struct cache_sizes *csizep = malloc_sizes;
787
788#if DEBUG
789 /* This happens if someone tries to call
b28a02de
PE
790 * kmem_cache_create(), or __kmalloc(), before
791 * the generic caches are initialized.
792 */
c7e43c78 793 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4
LT
794#endif
795 while (size > csizep->cs_size)
796 csizep++;
797
798 /*
0abf40c1 799 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
800 * has cs_{dma,}cachep==NULL. Thus no special case
801 * for large kmalloc calls required.
802 */
4b51d669 803#ifdef CONFIG_ZONE_DMA
1da177e4
LT
804 if (unlikely(gfpflags & GFP_DMA))
805 return csizep->cs_dmacachep;
4b51d669 806#endif
1da177e4
LT
807 return csizep->cs_cachep;
808}
809
b221385b 810static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
811{
812 return __find_general_cachep(size, gfpflags);
813}
97e2bde4 814
fbaccacf 815static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 816{
fbaccacf
SR
817 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
818}
1da177e4 819
a737b3e2
AM
820/*
821 * Calculate the number of objects and left-over bytes for a given buffer size.
822 */
fbaccacf
SR
823static void cache_estimate(unsigned long gfporder, size_t buffer_size,
824 size_t align, int flags, size_t *left_over,
825 unsigned int *num)
826{
827 int nr_objs;
828 size_t mgmt_size;
829 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 830
fbaccacf
SR
831 /*
832 * The slab management structure can be either off the slab or
833 * on it. For the latter case, the memory allocated for a
834 * slab is used for:
835 *
836 * - The struct slab
837 * - One kmem_bufctl_t for each object
838 * - Padding to respect alignment of @align
839 * - @buffer_size bytes for each object
840 *
841 * If the slab management structure is off the slab, then the
842 * alignment will already be calculated into the size. Because
843 * the slabs are all pages aligned, the objects will be at the
844 * correct alignment when allocated.
845 */
846 if (flags & CFLGS_OFF_SLAB) {
847 mgmt_size = 0;
848 nr_objs = slab_size / buffer_size;
849
850 if (nr_objs > SLAB_LIMIT)
851 nr_objs = SLAB_LIMIT;
852 } else {
853 /*
854 * Ignore padding for the initial guess. The padding
855 * is at most @align-1 bytes, and @buffer_size is at
856 * least @align. In the worst case, this result will
857 * be one greater than the number of objects that fit
858 * into the memory allocation when taking the padding
859 * into account.
860 */
861 nr_objs = (slab_size - sizeof(struct slab)) /
862 (buffer_size + sizeof(kmem_bufctl_t));
863
864 /*
865 * This calculated number will be either the right
866 * amount, or one greater than what we want.
867 */
868 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
869 > slab_size)
870 nr_objs--;
871
872 if (nr_objs > SLAB_LIMIT)
873 nr_objs = SLAB_LIMIT;
874
875 mgmt_size = slab_mgmt_size(nr_objs, align);
876 }
877 *num = nr_objs;
878 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
879}
880
881#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
882
a737b3e2
AM
883static void __slab_error(const char *function, struct kmem_cache *cachep,
884 char *msg)
1da177e4
LT
885{
886 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 887 function, cachep->name, msg);
1da177e4
LT
888 dump_stack();
889}
890
3395ee05
PM
891/*
892 * By default on NUMA we use alien caches to stage the freeing of
893 * objects allocated from other nodes. This causes massive memory
894 * inefficiencies when using fake NUMA setup to split memory into a
895 * large number of small nodes, so it can be disabled on the command
896 * line
897 */
898
899static int use_alien_caches __read_mostly = 1;
900static int __init noaliencache_setup(char *s)
901{
902 use_alien_caches = 0;
903 return 1;
904}
905__setup("noaliencache", noaliencache_setup);
906
8fce4d8e
CL
907#ifdef CONFIG_NUMA
908/*
909 * Special reaping functions for NUMA systems called from cache_reap().
910 * These take care of doing round robin flushing of alien caches (containing
911 * objects freed on different nodes from which they were allocated) and the
912 * flushing of remote pcps by calling drain_node_pages.
913 */
914static DEFINE_PER_CPU(unsigned long, reap_node);
915
916static void init_reap_node(int cpu)
917{
918 int node;
919
920 node = next_node(cpu_to_node(cpu), node_online_map);
921 if (node == MAX_NUMNODES)
442295c9 922 node = first_node(node_online_map);
8fce4d8e 923
7f6b8876 924 per_cpu(reap_node, cpu) = node;
8fce4d8e
CL
925}
926
927static void next_reap_node(void)
928{
929 int node = __get_cpu_var(reap_node);
930
931 /*
932 * Also drain per cpu pages on remote zones
933 */
934 if (node != numa_node_id())
935 drain_node_pages(node);
936
937 node = next_node(node, node_online_map);
938 if (unlikely(node >= MAX_NUMNODES))
939 node = first_node(node_online_map);
940 __get_cpu_var(reap_node) = node;
941}
942
943#else
944#define init_reap_node(cpu) do { } while (0)
945#define next_reap_node(void) do { } while (0)
946#endif
947
1da177e4
LT
948/*
949 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
950 * via the workqueue/eventd.
951 * Add the CPU number into the expiration time to minimize the possibility of
952 * the CPUs getting into lockstep and contending for the global cache chain
953 * lock.
954 */
955static void __devinit start_cpu_timer(int cpu)
956{
52bad64d 957 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
1da177e4
LT
958
959 /*
960 * When this gets called from do_initcalls via cpucache_init(),
961 * init_workqueues() has already run, so keventd will be setup
962 * at that time.
963 */
52bad64d 964 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 965 init_reap_node(cpu);
65f27f38 966 INIT_DELAYED_WORK(reap_work, cache_reap);
2b284214
AV
967 schedule_delayed_work_on(cpu, reap_work,
968 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
969 }
970}
971
e498be7d 972static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 973 int batchcount)
1da177e4 974{
b28a02de 975 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
976 struct array_cache *nc = NULL;
977
e498be7d 978 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
979 if (nc) {
980 nc->avail = 0;
981 nc->limit = entries;
982 nc->batchcount = batchcount;
983 nc->touched = 0;
e498be7d 984 spin_lock_init(&nc->lock);
1da177e4
LT
985 }
986 return nc;
987}
988
3ded175a
CL
989/*
990 * Transfer objects in one arraycache to another.
991 * Locking must be handled by the caller.
992 *
993 * Return the number of entries transferred.
994 */
995static int transfer_objects(struct array_cache *to,
996 struct array_cache *from, unsigned int max)
997{
998 /* Figure out how many entries to transfer */
999 int nr = min(min(from->avail, max), to->limit - to->avail);
1000
1001 if (!nr)
1002 return 0;
1003
1004 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1005 sizeof(void *) *nr);
1006
1007 from->avail -= nr;
1008 to->avail += nr;
1009 to->touched = 1;
1010 return nr;
1011}
1012
765c4507
CL
1013#ifndef CONFIG_NUMA
1014
1015#define drain_alien_cache(cachep, alien) do { } while (0)
1016#define reap_alien(cachep, l3) do { } while (0)
1017
1018static inline struct array_cache **alloc_alien_cache(int node, int limit)
1019{
1020 return (struct array_cache **)BAD_ALIEN_MAGIC;
1021}
1022
1023static inline void free_alien_cache(struct array_cache **ac_ptr)
1024{
1025}
1026
1027static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1028{
1029 return 0;
1030}
1031
1032static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1033 gfp_t flags)
1034{
1035 return NULL;
1036}
1037
8b98c169 1038static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1039 gfp_t flags, int nodeid)
1040{
1041 return NULL;
1042}
1043
1044#else /* CONFIG_NUMA */
1045
8b98c169 1046static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1047static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1048
5295a74c 1049static struct array_cache **alloc_alien_cache(int node, int limit)
e498be7d
CL
1050{
1051 struct array_cache **ac_ptr;
8ef82866 1052 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1053 int i;
1054
1055 if (limit > 1)
1056 limit = 12;
1057 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1058 if (ac_ptr) {
1059 for_each_node(i) {
1060 if (i == node || !node_online(i)) {
1061 ac_ptr[i] = NULL;
1062 continue;
1063 }
1064 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1065 if (!ac_ptr[i]) {
b28a02de 1066 for (i--; i <= 0; i--)
e498be7d
CL
1067 kfree(ac_ptr[i]);
1068 kfree(ac_ptr);
1069 return NULL;
1070 }
1071 }
1072 }
1073 return ac_ptr;
1074}
1075
5295a74c 1076static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1077{
1078 int i;
1079
1080 if (!ac_ptr)
1081 return;
e498be7d 1082 for_each_node(i)
b28a02de 1083 kfree(ac_ptr[i]);
e498be7d
CL
1084 kfree(ac_ptr);
1085}
1086
343e0d7a 1087static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1088 struct array_cache *ac, int node)
e498be7d
CL
1089{
1090 struct kmem_list3 *rl3 = cachep->nodelists[node];
1091
1092 if (ac->avail) {
1093 spin_lock(&rl3->list_lock);
e00946fe
CL
1094 /*
1095 * Stuff objects into the remote nodes shared array first.
1096 * That way we could avoid the overhead of putting the objects
1097 * into the free lists and getting them back later.
1098 */
693f7d36
JS
1099 if (rl3->shared)
1100 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1101
ff69416e 1102 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1103 ac->avail = 0;
1104 spin_unlock(&rl3->list_lock);
1105 }
1106}
1107
8fce4d8e
CL
1108/*
1109 * Called from cache_reap() to regularly drain alien caches round robin.
1110 */
1111static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1112{
1113 int node = __get_cpu_var(reap_node);
1114
1115 if (l3->alien) {
1116 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1117
1118 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1119 __drain_alien_cache(cachep, ac, node);
1120 spin_unlock_irq(&ac->lock);
1121 }
1122 }
1123}
1124
a737b3e2
AM
1125static void drain_alien_cache(struct kmem_cache *cachep,
1126 struct array_cache **alien)
e498be7d 1127{
b28a02de 1128 int i = 0;
e498be7d
CL
1129 struct array_cache *ac;
1130 unsigned long flags;
1131
1132 for_each_online_node(i) {
4484ebf1 1133 ac = alien[i];
e498be7d
CL
1134 if (ac) {
1135 spin_lock_irqsave(&ac->lock, flags);
1136 __drain_alien_cache(cachep, ac, i);
1137 spin_unlock_irqrestore(&ac->lock, flags);
1138 }
1139 }
1140}
729bd0b7 1141
873623df 1142static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1143{
1144 struct slab *slabp = virt_to_slab(objp);
1145 int nodeid = slabp->nodeid;
1146 struct kmem_list3 *l3;
1147 struct array_cache *alien = NULL;
1ca4cb24
PE
1148 int node;
1149
1150 node = numa_node_id();
729bd0b7
PE
1151
1152 /*
1153 * Make sure we are not freeing a object from another node to the array
1154 * cache on this cpu.
1155 */
62918a03 1156 if (likely(slabp->nodeid == node))
729bd0b7
PE
1157 return 0;
1158
1ca4cb24 1159 l3 = cachep->nodelists[node];
729bd0b7
PE
1160 STATS_INC_NODEFREES(cachep);
1161 if (l3->alien && l3->alien[nodeid]) {
1162 alien = l3->alien[nodeid];
873623df 1163 spin_lock(&alien->lock);
729bd0b7
PE
1164 if (unlikely(alien->avail == alien->limit)) {
1165 STATS_INC_ACOVERFLOW(cachep);
1166 __drain_alien_cache(cachep, alien, nodeid);
1167 }
1168 alien->entry[alien->avail++] = objp;
1169 spin_unlock(&alien->lock);
1170 } else {
1171 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1172 free_block(cachep, &objp, 1, nodeid);
1173 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1174 }
1175 return 1;
1176}
e498be7d
CL
1177#endif
1178
8c78f307 1179static int __cpuinit cpuup_callback(struct notifier_block *nfb,
b28a02de 1180 unsigned long action, void *hcpu)
1da177e4
LT
1181{
1182 long cpu = (long)hcpu;
343e0d7a 1183 struct kmem_cache *cachep;
e498be7d
CL
1184 struct kmem_list3 *l3 = NULL;
1185 int node = cpu_to_node(cpu);
1186 int memsize = sizeof(struct kmem_list3);
1da177e4
LT
1187
1188 switch (action) {
38c3bd96 1189 case CPU_LOCK_ACQUIRE:
fc0abb14 1190 mutex_lock(&cache_chain_mutex);
38c3bd96
HC
1191 break;
1192 case CPU_UP_PREPARE:
a737b3e2
AM
1193 /*
1194 * We need to do this right in the beginning since
e498be7d
CL
1195 * alloc_arraycache's are going to use this list.
1196 * kmalloc_node allows us to add the slab to the right
1197 * kmem_list3 and not this cpu's kmem_list3
1198 */
1199
1da177e4 1200 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2
AM
1201 /*
1202 * Set up the size64 kmemlist for cpu before we can
e498be7d
CL
1203 * begin anything. Make sure some other cpu on this
1204 * node has not already allocated this
1205 */
1206 if (!cachep->nodelists[node]) {
a737b3e2
AM
1207 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1208 if (!l3)
e498be7d
CL
1209 goto bad;
1210 kmem_list3_init(l3);
1211 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 1212 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1213
4484ebf1
RT
1214 /*
1215 * The l3s don't come and go as CPUs come and
1216 * go. cache_chain_mutex is sufficient
1217 * protection here.
1218 */
e498be7d
CL
1219 cachep->nodelists[node] = l3;
1220 }
1da177e4 1221
e498be7d
CL
1222 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1223 cachep->nodelists[node]->free_limit =
a737b3e2
AM
1224 (1 + nr_cpus_node(node)) *
1225 cachep->batchcount + cachep->num;
e498be7d
CL
1226 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1227 }
1228
a737b3e2
AM
1229 /*
1230 * Now we can go ahead with allocating the shared arrays and
1231 * array caches
1232 */
e498be7d 1233 list_for_each_entry(cachep, &cache_chain, next) {
cd105df4 1234 struct array_cache *nc;
63109846 1235 struct array_cache *shared = NULL;
3395ee05 1236 struct array_cache **alien = NULL;
cd105df4 1237
e498be7d 1238 nc = alloc_arraycache(node, cachep->limit,
4484ebf1 1239 cachep->batchcount);
1da177e4
LT
1240 if (!nc)
1241 goto bad;
63109846
ED
1242 if (cachep->shared) {
1243 shared = alloc_arraycache(node,
4484ebf1
RT
1244 cachep->shared * cachep->batchcount,
1245 0xbaadf00d);
63109846
ED
1246 if (!shared)
1247 goto bad;
1248 }
3395ee05
PM
1249 if (use_alien_caches) {
1250 alien = alloc_alien_cache(node, cachep->limit);
1251 if (!alien)
1252 goto bad;
1253 }
1da177e4 1254 cachep->array[cpu] = nc;
e498be7d
CL
1255 l3 = cachep->nodelists[node];
1256 BUG_ON(!l3);
e498be7d 1257
4484ebf1
RT
1258 spin_lock_irq(&l3->list_lock);
1259 if (!l3->shared) {
1260 /*
1261 * We are serialised from CPU_DEAD or
1262 * CPU_UP_CANCELLED by the cpucontrol lock
1263 */
1264 l3->shared = shared;
1265 shared = NULL;
e498be7d 1266 }
4484ebf1
RT
1267#ifdef CONFIG_NUMA
1268 if (!l3->alien) {
1269 l3->alien = alien;
1270 alien = NULL;
1271 }
1272#endif
1273 spin_unlock_irq(&l3->list_lock);
4484ebf1
RT
1274 kfree(shared);
1275 free_alien_cache(alien);
1da177e4 1276 }
1da177e4
LT
1277 break;
1278 case CPU_ONLINE:
1279 start_cpu_timer(cpu);
1280 break;
1281#ifdef CONFIG_HOTPLUG_CPU
5830c590
CL
1282 case CPU_DOWN_PREPARE:
1283 /*
1284 * Shutdown cache reaper. Note that the cache_chain_mutex is
1285 * held so that if cache_reap() is invoked it cannot do
1286 * anything expensive but will only modify reap_work
1287 * and reschedule the timer.
1288 */
1289 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1290 /* Now the cache_reaper is guaranteed to be not running. */
1291 per_cpu(reap_work, cpu).work.func = NULL;
1292 break;
1293 case CPU_DOWN_FAILED:
1294 start_cpu_timer(cpu);
1295 break;
1da177e4 1296 case CPU_DEAD:
4484ebf1
RT
1297 /*
1298 * Even if all the cpus of a node are down, we don't free the
1299 * kmem_list3 of any cache. This to avoid a race between
1300 * cpu_down, and a kmalloc allocation from another cpu for
1301 * memory from the node of the cpu going down. The list3
1302 * structure is usually allocated from kmem_cache_create() and
1303 * gets destroyed at kmem_cache_destroy().
1304 */
1da177e4 1305 /* fall thru */
8f5be20b 1306#endif
1da177e4 1307 case CPU_UP_CANCELED:
1da177e4
LT
1308 list_for_each_entry(cachep, &cache_chain, next) {
1309 struct array_cache *nc;
4484ebf1
RT
1310 struct array_cache *shared;
1311 struct array_cache **alien;
e498be7d 1312 cpumask_t mask;
1da177e4 1313
e498be7d 1314 mask = node_to_cpumask(node);
1da177e4
LT
1315 /* cpu is dead; no one can alloc from it. */
1316 nc = cachep->array[cpu];
1317 cachep->array[cpu] = NULL;
e498be7d
CL
1318 l3 = cachep->nodelists[node];
1319
1320 if (!l3)
4484ebf1 1321 goto free_array_cache;
e498be7d 1322
ca3b9b91 1323 spin_lock_irq(&l3->list_lock);
e498be7d
CL
1324
1325 /* Free limit for this kmem_list3 */
1326 l3->free_limit -= cachep->batchcount;
1327 if (nc)
ff69416e 1328 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
1329
1330 if (!cpus_empty(mask)) {
ca3b9b91 1331 spin_unlock_irq(&l3->list_lock);
4484ebf1 1332 goto free_array_cache;
b28a02de 1333 }
e498be7d 1334
4484ebf1
RT
1335 shared = l3->shared;
1336 if (shared) {
63109846
ED
1337 free_block(cachep, shared->entry,
1338 shared->avail, node);
e498be7d
CL
1339 l3->shared = NULL;
1340 }
e498be7d 1341
4484ebf1
RT
1342 alien = l3->alien;
1343 l3->alien = NULL;
1344
1345 spin_unlock_irq(&l3->list_lock);
1346
1347 kfree(shared);
1348 if (alien) {
1349 drain_alien_cache(cachep, alien);
1350 free_alien_cache(alien);
e498be7d 1351 }
4484ebf1 1352free_array_cache:
1da177e4
LT
1353 kfree(nc);
1354 }
4484ebf1
RT
1355 /*
1356 * In the previous loop, all the objects were freed to
1357 * the respective cache's slabs, now we can go ahead and
1358 * shrink each nodelist to its limit.
1359 */
1360 list_for_each_entry(cachep, &cache_chain, next) {
1361 l3 = cachep->nodelists[node];
1362 if (!l3)
1363 continue;
ed11d9eb 1364 drain_freelist(cachep, l3, l3->free_objects);
4484ebf1 1365 }
38c3bd96
HC
1366 break;
1367 case CPU_LOCK_RELEASE:
fc0abb14 1368 mutex_unlock(&cache_chain_mutex);
1da177e4 1369 break;
1da177e4
LT
1370 }
1371 return NOTIFY_OK;
a737b3e2 1372bad:
1da177e4
LT
1373 return NOTIFY_BAD;
1374}
1375
74b85f37
CS
1376static struct notifier_block __cpuinitdata cpucache_notifier = {
1377 &cpuup_callback, NULL, 0
1378};
1da177e4 1379
e498be7d
CL
1380/*
1381 * swap the static kmem_list3 with kmalloced memory
1382 */
a737b3e2
AM
1383static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1384 int nodeid)
e498be7d
CL
1385{
1386 struct kmem_list3 *ptr;
1387
e498be7d
CL
1388 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1389 BUG_ON(!ptr);
1390
1391 local_irq_disable();
1392 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1393 /*
1394 * Do not assume that spinlocks can be initialized via memcpy:
1395 */
1396 spin_lock_init(&ptr->list_lock);
1397
e498be7d
CL
1398 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1399 cachep->nodelists[nodeid] = ptr;
1400 local_irq_enable();
1401}
1402
a737b3e2
AM
1403/*
1404 * Initialisation. Called after the page allocator have been initialised and
1405 * before smp_init().
1da177e4
LT
1406 */
1407void __init kmem_cache_init(void)
1408{
1409 size_t left_over;
1410 struct cache_sizes *sizes;
1411 struct cache_names *names;
e498be7d 1412 int i;
07ed76b2 1413 int order;
1ca4cb24 1414 int node;
e498be7d 1415
62918a03
SS
1416 if (num_possible_nodes() == 1)
1417 use_alien_caches = 0;
1418
e498be7d
CL
1419 for (i = 0; i < NUM_INIT_LISTS; i++) {
1420 kmem_list3_init(&initkmem_list3[i]);
1421 if (i < MAX_NUMNODES)
1422 cache_cache.nodelists[i] = NULL;
1423 }
1da177e4
LT
1424
1425 /*
1426 * Fragmentation resistance on low memory - only use bigger
1427 * page orders on machines with more than 32MB of memory.
1428 */
1429 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1430 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1431
1da177e4
LT
1432 /* Bootstrap is tricky, because several objects are allocated
1433 * from caches that do not exist yet:
a737b3e2
AM
1434 * 1) initialize the cache_cache cache: it contains the struct
1435 * kmem_cache structures of all caches, except cache_cache itself:
1436 * cache_cache is statically allocated.
e498be7d
CL
1437 * Initially an __init data area is used for the head array and the
1438 * kmem_list3 structures, it's replaced with a kmalloc allocated
1439 * array at the end of the bootstrap.
1da177e4 1440 * 2) Create the first kmalloc cache.
343e0d7a 1441 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1442 * An __init data area is used for the head array.
1443 * 3) Create the remaining kmalloc caches, with minimally sized
1444 * head arrays.
1da177e4
LT
1445 * 4) Replace the __init data head arrays for cache_cache and the first
1446 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1447 * 5) Replace the __init data for kmem_list3 for cache_cache and
1448 * the other cache's with kmalloc allocated memory.
1449 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1450 */
1451
1ca4cb24
PE
1452 node = numa_node_id();
1453
1da177e4 1454 /* 1) create the cache_cache */
1da177e4
LT
1455 INIT_LIST_HEAD(&cache_chain);
1456 list_add(&cache_cache.next, &cache_chain);
1457 cache_cache.colour_off = cache_line_size();
1458 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1ca4cb24 1459 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1da177e4 1460
8da3430d
ED
1461 /*
1462 * struct kmem_cache size depends on nr_node_ids, which
1463 * can be less than MAX_NUMNODES.
1464 */
1465 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1466 nr_node_ids * sizeof(struct kmem_list3 *);
1467#if DEBUG
1468 cache_cache.obj_size = cache_cache.buffer_size;
1469#endif
a737b3e2
AM
1470 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1471 cache_line_size());
6a2d7a95
ED
1472 cache_cache.reciprocal_buffer_size =
1473 reciprocal_value(cache_cache.buffer_size);
1da177e4 1474
07ed76b2
JS
1475 for (order = 0; order < MAX_ORDER; order++) {
1476 cache_estimate(order, cache_cache.buffer_size,
1477 cache_line_size(), 0, &left_over, &cache_cache.num);
1478 if (cache_cache.num)
1479 break;
1480 }
40094fa6 1481 BUG_ON(!cache_cache.num);
07ed76b2 1482 cache_cache.gfporder = order;
b28a02de 1483 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1484 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1485 sizeof(struct slab), cache_line_size());
1da177e4
LT
1486
1487 /* 2+3) create the kmalloc caches */
1488 sizes = malloc_sizes;
1489 names = cache_names;
1490
a737b3e2
AM
1491 /*
1492 * Initialize the caches that provide memory for the array cache and the
1493 * kmem_list3 structures first. Without this, further allocations will
1494 * bug.
e498be7d
CL
1495 */
1496
1497 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1498 sizes[INDEX_AC].cs_size,
1499 ARCH_KMALLOC_MINALIGN,
1500 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1501 NULL, NULL);
e498be7d 1502
a737b3e2 1503 if (INDEX_AC != INDEX_L3) {
e498be7d 1504 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1505 kmem_cache_create(names[INDEX_L3].name,
1506 sizes[INDEX_L3].cs_size,
1507 ARCH_KMALLOC_MINALIGN,
1508 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1509 NULL, NULL);
1510 }
e498be7d 1511
e0a42726
IM
1512 slab_early_init = 0;
1513
1da177e4 1514 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1515 /*
1516 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1517 * This should be particularly beneficial on SMP boxes, as it
1518 * eliminates "false sharing".
1519 * Note for systems short on memory removing the alignment will
e498be7d
CL
1520 * allow tighter packing of the smaller caches.
1521 */
a737b3e2 1522 if (!sizes->cs_cachep) {
e498be7d 1523 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1524 sizes->cs_size,
1525 ARCH_KMALLOC_MINALIGN,
1526 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1527 NULL, NULL);
1528 }
4b51d669
CL
1529#ifdef CONFIG_ZONE_DMA
1530 sizes->cs_dmacachep = kmem_cache_create(
1531 names->name_dma,
a737b3e2
AM
1532 sizes->cs_size,
1533 ARCH_KMALLOC_MINALIGN,
1534 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1535 SLAB_PANIC,
1536 NULL, NULL);
4b51d669 1537#endif
1da177e4
LT
1538 sizes++;
1539 names++;
1540 }
1541 /* 4) Replace the bootstrap head arrays */
1542 {
2b2d5493 1543 struct array_cache *ptr;
e498be7d 1544
1da177e4 1545 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1546
1da177e4 1547 local_irq_disable();
9a2dba4b
PE
1548 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1549 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1550 sizeof(struct arraycache_init));
2b2d5493
IM
1551 /*
1552 * Do not assume that spinlocks can be initialized via memcpy:
1553 */
1554 spin_lock_init(&ptr->lock);
1555
1da177e4
LT
1556 cache_cache.array[smp_processor_id()] = ptr;
1557 local_irq_enable();
e498be7d 1558
1da177e4 1559 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1560
1da177e4 1561 local_irq_disable();
9a2dba4b 1562 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1563 != &initarray_generic.cache);
9a2dba4b 1564 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1565 sizeof(struct arraycache_init));
2b2d5493
IM
1566 /*
1567 * Do not assume that spinlocks can be initialized via memcpy:
1568 */
1569 spin_lock_init(&ptr->lock);
1570
e498be7d 1571 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1572 ptr;
1da177e4
LT
1573 local_irq_enable();
1574 }
e498be7d
CL
1575 /* 5) Replace the bootstrap kmem_list3's */
1576 {
1ca4cb24
PE
1577 int nid;
1578
e498be7d 1579 /* Replace the static kmem_list3 structures for the boot cpu */
1ca4cb24 1580 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
e498be7d 1581
1ca4cb24 1582 for_each_online_node(nid) {
e498be7d 1583 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1584 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1585
1586 if (INDEX_AC != INDEX_L3) {
1587 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1588 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1589 }
1590 }
1591 }
1da177e4 1592
e498be7d 1593 /* 6) resize the head arrays to their final sizes */
1da177e4 1594 {
343e0d7a 1595 struct kmem_cache *cachep;
fc0abb14 1596 mutex_lock(&cache_chain_mutex);
1da177e4 1597 list_for_each_entry(cachep, &cache_chain, next)
2ed3a4ef
CL
1598 if (enable_cpucache(cachep))
1599 BUG();
fc0abb14 1600 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1601 }
1602
056c6241
RT
1603 /* Annotate slab for lockdep -- annotate the malloc caches */
1604 init_lock_keys();
1605
1606
1da177e4
LT
1607 /* Done! */
1608 g_cpucache_up = FULL;
1609
a737b3e2
AM
1610 /*
1611 * Register a cpu startup notifier callback that initializes
1612 * cpu_cache_get for all new cpus
1da177e4
LT
1613 */
1614 register_cpu_notifier(&cpucache_notifier);
1da177e4 1615
a737b3e2
AM
1616 /*
1617 * The reap timers are started later, with a module init call: That part
1618 * of the kernel is not yet operational.
1da177e4
LT
1619 */
1620}
1621
1622static int __init cpucache_init(void)
1623{
1624 int cpu;
1625
a737b3e2
AM
1626 /*
1627 * Register the timers that return unneeded pages to the page allocator
1da177e4 1628 */
e498be7d 1629 for_each_online_cpu(cpu)
a737b3e2 1630 start_cpu_timer(cpu);
1da177e4
LT
1631 return 0;
1632}
1da177e4
LT
1633__initcall(cpucache_init);
1634
1635/*
1636 * Interface to system's page allocator. No need to hold the cache-lock.
1637 *
1638 * If we requested dmaable memory, we will get it. Even if we
1639 * did not request dmaable memory, we might get it, but that
1640 * would be relatively rare and ignorable.
1641 */
343e0d7a 1642static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1643{
1644 struct page *page;
e1b6aa6f 1645 int nr_pages;
1da177e4
LT
1646 int i;
1647
d6fef9da 1648#ifndef CONFIG_MMU
e1b6aa6f
CH
1649 /*
1650 * Nommu uses slab's for process anonymous memory allocations, and thus
1651 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1652 */
e1b6aa6f 1653 flags |= __GFP_COMP;
d6fef9da 1654#endif
765c4507 1655
3c517a61 1656 flags |= cachep->gfpflags;
e1b6aa6f
CH
1657
1658 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1659 if (!page)
1660 return NULL;
1da177e4 1661
e1b6aa6f 1662 nr_pages = (1 << cachep->gfporder);
1da177e4 1663 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1664 add_zone_page_state(page_zone(page),
1665 NR_SLAB_RECLAIMABLE, nr_pages);
1666 else
1667 add_zone_page_state(page_zone(page),
1668 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1669 for (i = 0; i < nr_pages; i++)
1670 __SetPageSlab(page + i);
1671 return page_address(page);
1da177e4
LT
1672}
1673
1674/*
1675 * Interface to system's page release.
1676 */
343e0d7a 1677static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1678{
b28a02de 1679 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1680 struct page *page = virt_to_page(addr);
1681 const unsigned long nr_freed = i;
1682
972d1a7b
CL
1683 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1684 sub_zone_page_state(page_zone(page),
1685 NR_SLAB_RECLAIMABLE, nr_freed);
1686 else
1687 sub_zone_page_state(page_zone(page),
1688 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1689 while (i--) {
f205b2fe
NP
1690 BUG_ON(!PageSlab(page));
1691 __ClearPageSlab(page);
1da177e4
LT
1692 page++;
1693 }
1da177e4
LT
1694 if (current->reclaim_state)
1695 current->reclaim_state->reclaimed_slab += nr_freed;
1696 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1697}
1698
1699static void kmem_rcu_free(struct rcu_head *head)
1700{
b28a02de 1701 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1702 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1703
1704 kmem_freepages(cachep, slab_rcu->addr);
1705 if (OFF_SLAB(cachep))
1706 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1707}
1708
1709#if DEBUG
1710
1711#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1712static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1713 unsigned long caller)
1da177e4 1714{
3dafccf2 1715 int size = obj_size(cachep);
1da177e4 1716
3dafccf2 1717 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1718
b28a02de 1719 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1720 return;
1721
b28a02de
PE
1722 *addr++ = 0x12345678;
1723 *addr++ = caller;
1724 *addr++ = smp_processor_id();
1725 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1726 {
1727 unsigned long *sptr = &caller;
1728 unsigned long svalue;
1729
1730 while (!kstack_end(sptr)) {
1731 svalue = *sptr++;
1732 if (kernel_text_address(svalue)) {
b28a02de 1733 *addr++ = svalue;
1da177e4
LT
1734 size -= sizeof(unsigned long);
1735 if (size <= sizeof(unsigned long))
1736 break;
1737 }
1738 }
1739
1740 }
b28a02de 1741 *addr++ = 0x87654321;
1da177e4
LT
1742}
1743#endif
1744
343e0d7a 1745static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1746{
3dafccf2
MS
1747 int size = obj_size(cachep);
1748 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1749
1750 memset(addr, val, size);
b28a02de 1751 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1752}
1753
1754static void dump_line(char *data, int offset, int limit)
1755{
1756 int i;
aa83aa40
DJ
1757 unsigned char error = 0;
1758 int bad_count = 0;
1759
1da177e4 1760 printk(KERN_ERR "%03x:", offset);
aa83aa40
DJ
1761 for (i = 0; i < limit; i++) {
1762 if (data[offset + i] != POISON_FREE) {
1763 error = data[offset + i];
1764 bad_count++;
1765 }
b28a02de 1766 printk(" %02x", (unsigned char)data[offset + i]);
aa83aa40 1767 }
1da177e4 1768 printk("\n");
aa83aa40
DJ
1769
1770 if (bad_count == 1) {
1771 error ^= POISON_FREE;
1772 if (!(error & (error - 1))) {
1773 printk(KERN_ERR "Single bit error detected. Probably "
1774 "bad RAM.\n");
1775#ifdef CONFIG_X86
1776 printk(KERN_ERR "Run memtest86+ or a similar memory "
1777 "test tool.\n");
1778#else
1779 printk(KERN_ERR "Run a memory test tool.\n");
1780#endif
1781 }
1782 }
1da177e4
LT
1783}
1784#endif
1785
1786#if DEBUG
1787
343e0d7a 1788static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1789{
1790 int i, size;
1791 char *realobj;
1792
1793 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1794 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1795 *dbg_redzone1(cachep, objp),
1796 *dbg_redzone2(cachep, objp));
1da177e4
LT
1797 }
1798
1799 if (cachep->flags & SLAB_STORE_USER) {
1800 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1801 *dbg_userword(cachep, objp));
1da177e4 1802 print_symbol("(%s)",
a737b3e2 1803 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1804 printk("\n");
1805 }
3dafccf2
MS
1806 realobj = (char *)objp + obj_offset(cachep);
1807 size = obj_size(cachep);
b28a02de 1808 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1809 int limit;
1810 limit = 16;
b28a02de
PE
1811 if (i + limit > size)
1812 limit = size - i;
1da177e4
LT
1813 dump_line(realobj, i, limit);
1814 }
1815}
1816
343e0d7a 1817static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1818{
1819 char *realobj;
1820 int size, i;
1821 int lines = 0;
1822
3dafccf2
MS
1823 realobj = (char *)objp + obj_offset(cachep);
1824 size = obj_size(cachep);
1da177e4 1825
b28a02de 1826 for (i = 0; i < size; i++) {
1da177e4 1827 char exp = POISON_FREE;
b28a02de 1828 if (i == size - 1)
1da177e4
LT
1829 exp = POISON_END;
1830 if (realobj[i] != exp) {
1831 int limit;
1832 /* Mismatch ! */
1833 /* Print header */
1834 if (lines == 0) {
b28a02de 1835 printk(KERN_ERR
e94a40c5
DH
1836 "Slab corruption: %s start=%p, len=%d\n",
1837 cachep->name, realobj, size);
1da177e4
LT
1838 print_objinfo(cachep, objp, 0);
1839 }
1840 /* Hexdump the affected line */
b28a02de 1841 i = (i / 16) * 16;
1da177e4 1842 limit = 16;
b28a02de
PE
1843 if (i + limit > size)
1844 limit = size - i;
1da177e4
LT
1845 dump_line(realobj, i, limit);
1846 i += 16;
1847 lines++;
1848 /* Limit to 5 lines */
1849 if (lines > 5)
1850 break;
1851 }
1852 }
1853 if (lines != 0) {
1854 /* Print some data about the neighboring objects, if they
1855 * exist:
1856 */
6ed5eb22 1857 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1858 unsigned int objnr;
1da177e4 1859
8fea4e96 1860 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1861 if (objnr) {
8fea4e96 1862 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1863 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1864 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1865 realobj, size);
1da177e4
LT
1866 print_objinfo(cachep, objp, 2);
1867 }
b28a02de 1868 if (objnr + 1 < cachep->num) {
8fea4e96 1869 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1870 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1871 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1872 realobj, size);
1da177e4
LT
1873 print_objinfo(cachep, objp, 2);
1874 }
1875 }
1876}
1877#endif
1878
12dd36fa
MD
1879#if DEBUG
1880/**
911851e6
RD
1881 * slab_destroy_objs - destroy a slab and its objects
1882 * @cachep: cache pointer being destroyed
1883 * @slabp: slab pointer being destroyed
1884 *
1885 * Call the registered destructor for each object in a slab that is being
1886 * destroyed.
1da177e4 1887 */
343e0d7a 1888static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1889{
1da177e4
LT
1890 int i;
1891 for (i = 0; i < cachep->num; i++) {
8fea4e96 1892 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1893
1894 if (cachep->flags & SLAB_POISON) {
1895#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1896 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1897 OFF_SLAB(cachep))
b28a02de 1898 kernel_map_pages(virt_to_page(objp),
a737b3e2 1899 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1900 else
1901 check_poison_obj(cachep, objp);
1902#else
1903 check_poison_obj(cachep, objp);
1904#endif
1905 }
1906 if (cachep->flags & SLAB_RED_ZONE) {
1907 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1908 slab_error(cachep, "start of a freed object "
b28a02de 1909 "was overwritten");
1da177e4
LT
1910 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1911 slab_error(cachep, "end of a freed object "
b28a02de 1912 "was overwritten");
1da177e4
LT
1913 }
1914 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
3dafccf2 1915 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1da177e4 1916 }
12dd36fa 1917}
1da177e4 1918#else
343e0d7a 1919static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1920{
1da177e4
LT
1921 if (cachep->dtor) {
1922 int i;
1923 for (i = 0; i < cachep->num; i++) {
8fea4e96 1924 void *objp = index_to_obj(cachep, slabp, i);
b28a02de 1925 (cachep->dtor) (objp, cachep, 0);
1da177e4
LT
1926 }
1927 }
12dd36fa 1928}
1da177e4
LT
1929#endif
1930
911851e6
RD
1931/**
1932 * slab_destroy - destroy and release all objects in a slab
1933 * @cachep: cache pointer being destroyed
1934 * @slabp: slab pointer being destroyed
1935 *
12dd36fa 1936 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1937 * Before calling the slab must have been unlinked from the cache. The
1938 * cache-lock is not held/needed.
12dd36fa 1939 */
343e0d7a 1940static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1941{
1942 void *addr = slabp->s_mem - slabp->colouroff;
1943
1944 slab_destroy_objs(cachep, slabp);
1da177e4
LT
1945 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1946 struct slab_rcu *slab_rcu;
1947
b28a02de 1948 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1949 slab_rcu->cachep = cachep;
1950 slab_rcu->addr = addr;
1951 call_rcu(&slab_rcu->head, kmem_rcu_free);
1952 } else {
1953 kmem_freepages(cachep, addr);
873623df
IM
1954 if (OFF_SLAB(cachep))
1955 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1956 }
1957}
1958
a737b3e2
AM
1959/*
1960 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1961 * size of kmem_list3.
1962 */
a3a02be7 1963static void __init set_up_list3s(struct kmem_cache *cachep, int index)
e498be7d
CL
1964{
1965 int node;
1966
1967 for_each_online_node(node) {
b28a02de 1968 cachep->nodelists[node] = &initkmem_list3[index + node];
e498be7d 1969 cachep->nodelists[node]->next_reap = jiffies +
b28a02de
PE
1970 REAPTIMEOUT_LIST3 +
1971 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
1972 }
1973}
1974
117f6eb1
CL
1975static void __kmem_cache_destroy(struct kmem_cache *cachep)
1976{
1977 int i;
1978 struct kmem_list3 *l3;
1979
1980 for_each_online_cpu(i)
1981 kfree(cachep->array[i]);
1982
1983 /* NUMA: free the list3 structures */
1984 for_each_online_node(i) {
1985 l3 = cachep->nodelists[i];
1986 if (l3) {
1987 kfree(l3->shared);
1988 free_alien_cache(l3->alien);
1989 kfree(l3);
1990 }
1991 }
1992 kmem_cache_free(&cache_cache, cachep);
1993}
1994
1995
4d268eba 1996/**
a70773dd
RD
1997 * calculate_slab_order - calculate size (page order) of slabs
1998 * @cachep: pointer to the cache that is being created
1999 * @size: size of objects to be created in this cache.
2000 * @align: required alignment for the objects.
2001 * @flags: slab allocation flags
2002 *
2003 * Also calculates the number of objects per slab.
4d268eba
PE
2004 *
2005 * This could be made much more intelligent. For now, try to avoid using
2006 * high order pages for slabs. When the gfp() functions are more friendly
2007 * towards high-order requests, this should be changed.
2008 */
a737b3e2 2009static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2010 size_t size, size_t align, unsigned long flags)
4d268eba 2011{
b1ab41c4 2012 unsigned long offslab_limit;
4d268eba 2013 size_t left_over = 0;
9888e6fa 2014 int gfporder;
4d268eba 2015
a737b3e2 2016 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
4d268eba
PE
2017 unsigned int num;
2018 size_t remainder;
2019
9888e6fa 2020 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2021 if (!num)
2022 continue;
9888e6fa 2023
b1ab41c4
IM
2024 if (flags & CFLGS_OFF_SLAB) {
2025 /*
2026 * Max number of objs-per-slab for caches which
2027 * use off-slab slabs. Needed to avoid a possible
2028 * looping condition in cache_grow().
2029 */
2030 offslab_limit = size - sizeof(struct slab);
2031 offslab_limit /= sizeof(kmem_bufctl_t);
2032
2033 if (num > offslab_limit)
2034 break;
2035 }
4d268eba 2036
9888e6fa 2037 /* Found something acceptable - save it away */
4d268eba 2038 cachep->num = num;
9888e6fa 2039 cachep->gfporder = gfporder;
4d268eba
PE
2040 left_over = remainder;
2041
f78bb8ad
LT
2042 /*
2043 * A VFS-reclaimable slab tends to have most allocations
2044 * as GFP_NOFS and we really don't want to have to be allocating
2045 * higher-order pages when we are unable to shrink dcache.
2046 */
2047 if (flags & SLAB_RECLAIM_ACCOUNT)
2048 break;
2049
4d268eba
PE
2050 /*
2051 * Large number of objects is good, but very large slabs are
2052 * currently bad for the gfp()s.
2053 */
9888e6fa 2054 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
2055 break;
2056
9888e6fa
LT
2057 /*
2058 * Acceptable internal fragmentation?
2059 */
a737b3e2 2060 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2061 break;
2062 }
2063 return left_over;
2064}
2065
2ed3a4ef 2066static int setup_cpu_cache(struct kmem_cache *cachep)
f30cf7d1 2067{
2ed3a4ef
CL
2068 if (g_cpucache_up == FULL)
2069 return enable_cpucache(cachep);
2070
f30cf7d1
PE
2071 if (g_cpucache_up == NONE) {
2072 /*
2073 * Note: the first kmem_cache_create must create the cache
2074 * that's used by kmalloc(24), otherwise the creation of
2075 * further caches will BUG().
2076 */
2077 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2078
2079 /*
2080 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2081 * the first cache, then we need to set up all its list3s,
2082 * otherwise the creation of further caches will BUG().
2083 */
2084 set_up_list3s(cachep, SIZE_AC);
2085 if (INDEX_AC == INDEX_L3)
2086 g_cpucache_up = PARTIAL_L3;
2087 else
2088 g_cpucache_up = PARTIAL_AC;
2089 } else {
2090 cachep->array[smp_processor_id()] =
2091 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2092
2093 if (g_cpucache_up == PARTIAL_AC) {
2094 set_up_list3s(cachep, SIZE_L3);
2095 g_cpucache_up = PARTIAL_L3;
2096 } else {
2097 int node;
2098 for_each_online_node(node) {
2099 cachep->nodelists[node] =
2100 kmalloc_node(sizeof(struct kmem_list3),
2101 GFP_KERNEL, node);
2102 BUG_ON(!cachep->nodelists[node]);
2103 kmem_list3_init(cachep->nodelists[node]);
2104 }
2105 }
2106 }
2107 cachep->nodelists[numa_node_id()]->next_reap =
2108 jiffies + REAPTIMEOUT_LIST3 +
2109 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2110
2111 cpu_cache_get(cachep)->avail = 0;
2112 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2113 cpu_cache_get(cachep)->batchcount = 1;
2114 cpu_cache_get(cachep)->touched = 0;
2115 cachep->batchcount = 1;
2116 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2117 return 0;
f30cf7d1
PE
2118}
2119
1da177e4
LT
2120/**
2121 * kmem_cache_create - Create a cache.
2122 * @name: A string which is used in /proc/slabinfo to identify this cache.
2123 * @size: The size of objects to be created in this cache.
2124 * @align: The required alignment for the objects.
2125 * @flags: SLAB flags
2126 * @ctor: A constructor for the objects.
2127 * @dtor: A destructor for the objects.
2128 *
2129 * Returns a ptr to the cache on success, NULL on failure.
2130 * Cannot be called within a int, but can be interrupted.
2131 * The @ctor is run when new pages are allocated by the cache
2132 * and the @dtor is run before the pages are handed back.
2133 *
2134 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
2135 * the module calling this has to destroy the cache before getting unloaded.
2136 *
1da177e4
LT
2137 * The flags are
2138 *
2139 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2140 * to catch references to uninitialised memory.
2141 *
2142 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2143 * for buffer overruns.
2144 *
1da177e4
LT
2145 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2146 * cacheline. This can be beneficial if you're counting cycles as closely
2147 * as davem.
2148 */
343e0d7a 2149struct kmem_cache *
1da177e4 2150kmem_cache_create (const char *name, size_t size, size_t align,
a737b3e2
AM
2151 unsigned long flags,
2152 void (*ctor)(void*, struct kmem_cache *, unsigned long),
343e0d7a 2153 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1da177e4
LT
2154{
2155 size_t left_over, slab_size, ralign;
7a7c381d 2156 struct kmem_cache *cachep = NULL, *pc;
1da177e4
LT
2157
2158 /*
2159 * Sanity checks... these are all serious usage bugs.
2160 */
a737b3e2 2161 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
b28a02de 2162 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
a737b3e2
AM
2163 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2164 name);
b28a02de
PE
2165 BUG();
2166 }
1da177e4 2167
f0188f47 2168 /*
8f5be20b
RT
2169 * We use cache_chain_mutex to ensure a consistent view of
2170 * cpu_online_map as well. Please see cpuup_callback
f0188f47 2171 */
fc0abb14 2172 mutex_lock(&cache_chain_mutex);
4f12bb4f 2173
7a7c381d 2174 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2175 char tmp;
2176 int res;
2177
2178 /*
2179 * This happens when the module gets unloaded and doesn't
2180 * destroy its slab cache and no-one else reuses the vmalloc
2181 * area of the module. Print a warning.
2182 */
138ae663 2183 res = probe_kernel_address(pc->name, tmp);
4f12bb4f 2184 if (res) {
b4169525 2185 printk(KERN_ERR
2186 "SLAB: cache with size %d has lost its name\n",
3dafccf2 2187 pc->buffer_size);
4f12bb4f
AM
2188 continue;
2189 }
2190
b28a02de 2191 if (!strcmp(pc->name, name)) {
b4169525 2192 printk(KERN_ERR
2193 "kmem_cache_create: duplicate cache %s\n", name);
4f12bb4f
AM
2194 dump_stack();
2195 goto oops;
2196 }
2197 }
2198
1da177e4
LT
2199#if DEBUG
2200 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1da177e4
LT
2201#if FORCED_DEBUG
2202 /*
2203 * Enable redzoning and last user accounting, except for caches with
2204 * large objects, if the increased size would increase the object size
2205 * above the next power of two: caches with object sizes just above a
2206 * power of two have a significant amount of internal fragmentation.
2207 */
a737b3e2 2208 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
b28a02de 2209 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2210 if (!(flags & SLAB_DESTROY_BY_RCU))
2211 flags |= SLAB_POISON;
2212#endif
2213 if (flags & SLAB_DESTROY_BY_RCU)
2214 BUG_ON(flags & SLAB_POISON);
2215#endif
2216 if (flags & SLAB_DESTROY_BY_RCU)
2217 BUG_ON(dtor);
2218
2219 /*
a737b3e2
AM
2220 * Always checks flags, a caller might be expecting debug support which
2221 * isn't available.
1da177e4 2222 */
40094fa6 2223 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2224
a737b3e2
AM
2225 /*
2226 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2227 * unaligned accesses for some archs when redzoning is used, and makes
2228 * sure any on-slab bufctl's are also correctly aligned.
2229 */
b28a02de
PE
2230 if (size & (BYTES_PER_WORD - 1)) {
2231 size += (BYTES_PER_WORD - 1);
2232 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2233 }
2234
a737b3e2
AM
2235 /* calculate the final buffer alignment: */
2236
1da177e4
LT
2237 /* 1) arch recommendation: can be overridden for debug */
2238 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2239 /*
2240 * Default alignment: as specified by the arch code. Except if
2241 * an object is really small, then squeeze multiple objects into
2242 * one cacheline.
1da177e4
LT
2243 */
2244 ralign = cache_line_size();
b28a02de 2245 while (size <= ralign / 2)
1da177e4
LT
2246 ralign /= 2;
2247 } else {
2248 ralign = BYTES_PER_WORD;
2249 }
ca5f9703
PE
2250
2251 /*
2252 * Redzoning and user store require word alignment. Note this will be
2253 * overridden by architecture or caller mandated alignment if either
2254 * is greater than BYTES_PER_WORD.
2255 */
2256 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
b46b8f19 2257 ralign = __alignof__(unsigned long long);
ca5f9703 2258
a44b56d3 2259 /* 2) arch mandated alignment */
1da177e4
LT
2260 if (ralign < ARCH_SLAB_MINALIGN) {
2261 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2262 }
a44b56d3 2263 /* 3) caller mandated alignment */
1da177e4
LT
2264 if (ralign < align) {
2265 ralign = align;
1da177e4 2266 }
a44b56d3 2267 /* disable debug if necessary */
b46b8f19 2268 if (ralign > __alignof__(unsigned long long))
a44b56d3 2269 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2270 /*
ca5f9703 2271 * 4) Store it.
1da177e4
LT
2272 */
2273 align = ralign;
2274
2275 /* Get cache's description obj. */
e94b1766 2276 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
1da177e4 2277 if (!cachep)
4f12bb4f 2278 goto oops;
1da177e4
LT
2279
2280#if DEBUG
3dafccf2 2281 cachep->obj_size = size;
1da177e4 2282
ca5f9703
PE
2283 /*
2284 * Both debugging options require word-alignment which is calculated
2285 * into align above.
2286 */
1da177e4 2287 if (flags & SLAB_RED_ZONE) {
1da177e4 2288 /* add space for red zone words */
b46b8f19
DW
2289 cachep->obj_offset += sizeof(unsigned long long);
2290 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2291 }
2292 if (flags & SLAB_STORE_USER) {
ca5f9703
PE
2293 /* user store requires one word storage behind the end of
2294 * the real object.
1da177e4 2295 */
1da177e4
LT
2296 size += BYTES_PER_WORD;
2297 }
2298#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2299 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2300 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2301 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2302 size = PAGE_SIZE;
2303 }
2304#endif
2305#endif
2306
e0a42726
IM
2307 /*
2308 * Determine if the slab management is 'on' or 'off' slab.
2309 * (bootstrapping cannot cope with offslab caches so don't do
2310 * it too early on.)
2311 */
2312 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
1da177e4
LT
2313 /*
2314 * Size is large, assume best to place the slab management obj
2315 * off-slab (should allow better packing of objs).
2316 */
2317 flags |= CFLGS_OFF_SLAB;
2318
2319 size = ALIGN(size, align);
2320
f78bb8ad 2321 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2322
2323 if (!cachep->num) {
b4169525 2324 printk(KERN_ERR
2325 "kmem_cache_create: couldn't create cache %s.\n", name);
1da177e4
LT
2326 kmem_cache_free(&cache_cache, cachep);
2327 cachep = NULL;
4f12bb4f 2328 goto oops;
1da177e4 2329 }
b28a02de
PE
2330 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2331 + sizeof(struct slab), align);
1da177e4
LT
2332
2333 /*
2334 * If the slab has been placed off-slab, and we have enough space then
2335 * move it on-slab. This is at the expense of any extra colouring.
2336 */
2337 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2338 flags &= ~CFLGS_OFF_SLAB;
2339 left_over -= slab_size;
2340 }
2341
2342 if (flags & CFLGS_OFF_SLAB) {
2343 /* really off slab. No need for manual alignment */
b28a02de
PE
2344 slab_size =
2345 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2346 }
2347
2348 cachep->colour_off = cache_line_size();
2349 /* Offset must be a multiple of the alignment. */
2350 if (cachep->colour_off < align)
2351 cachep->colour_off = align;
b28a02de 2352 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2353 cachep->slab_size = slab_size;
2354 cachep->flags = flags;
2355 cachep->gfpflags = 0;
4b51d669 2356 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
1da177e4 2357 cachep->gfpflags |= GFP_DMA;
3dafccf2 2358 cachep->buffer_size = size;
6a2d7a95 2359 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2360
e5ac9c5a 2361 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2362 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2363 /*
2364 * This is a possibility for one of the malloc_sizes caches.
2365 * But since we go off slab only for object size greater than
2366 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2367 * this should not happen at all.
2368 * But leave a BUG_ON for some lucky dude.
2369 */
2370 BUG_ON(!cachep->slabp_cache);
2371 }
1da177e4
LT
2372 cachep->ctor = ctor;
2373 cachep->dtor = dtor;
2374 cachep->name = name;
2375
2ed3a4ef
CL
2376 if (setup_cpu_cache(cachep)) {
2377 __kmem_cache_destroy(cachep);
2378 cachep = NULL;
2379 goto oops;
2380 }
1da177e4 2381
1da177e4
LT
2382 /* cache setup completed, link it into the list */
2383 list_add(&cachep->next, &cache_chain);
a737b3e2 2384oops:
1da177e4
LT
2385 if (!cachep && (flags & SLAB_PANIC))
2386 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2387 name);
fc0abb14 2388 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2389 return cachep;
2390}
2391EXPORT_SYMBOL(kmem_cache_create);
2392
2393#if DEBUG
2394static void check_irq_off(void)
2395{
2396 BUG_ON(!irqs_disabled());
2397}
2398
2399static void check_irq_on(void)
2400{
2401 BUG_ON(irqs_disabled());
2402}
2403
343e0d7a 2404static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2405{
2406#ifdef CONFIG_SMP
2407 check_irq_off();
e498be7d 2408 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2409#endif
2410}
e498be7d 2411
343e0d7a 2412static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2413{
2414#ifdef CONFIG_SMP
2415 check_irq_off();
2416 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2417#endif
2418}
2419
1da177e4
LT
2420#else
2421#define check_irq_off() do { } while(0)
2422#define check_irq_on() do { } while(0)
2423#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2424#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2425#endif
2426
aab2207c
CL
2427static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2428 struct array_cache *ac,
2429 int force, int node);
2430
1da177e4
LT
2431static void do_drain(void *arg)
2432{
a737b3e2 2433 struct kmem_cache *cachep = arg;
1da177e4 2434 struct array_cache *ac;
ff69416e 2435 int node = numa_node_id();
1da177e4
LT
2436
2437 check_irq_off();
9a2dba4b 2438 ac = cpu_cache_get(cachep);
ff69416e
CL
2439 spin_lock(&cachep->nodelists[node]->list_lock);
2440 free_block(cachep, ac->entry, ac->avail, node);
2441 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2442 ac->avail = 0;
2443}
2444
343e0d7a 2445static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2446{
e498be7d
CL
2447 struct kmem_list3 *l3;
2448 int node;
2449
a07fa394 2450 on_each_cpu(do_drain, cachep, 1, 1);
1da177e4 2451 check_irq_on();
b28a02de 2452 for_each_online_node(node) {
e498be7d 2453 l3 = cachep->nodelists[node];
a4523a8b
RD
2454 if (l3 && l3->alien)
2455 drain_alien_cache(cachep, l3->alien);
2456 }
2457
2458 for_each_online_node(node) {
2459 l3 = cachep->nodelists[node];
2460 if (l3)
aab2207c 2461 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2462 }
1da177e4
LT
2463}
2464
ed11d9eb
CL
2465/*
2466 * Remove slabs from the list of free slabs.
2467 * Specify the number of slabs to drain in tofree.
2468 *
2469 * Returns the actual number of slabs released.
2470 */
2471static int drain_freelist(struct kmem_cache *cache,
2472 struct kmem_list3 *l3, int tofree)
1da177e4 2473{
ed11d9eb
CL
2474 struct list_head *p;
2475 int nr_freed;
1da177e4 2476 struct slab *slabp;
1da177e4 2477
ed11d9eb
CL
2478 nr_freed = 0;
2479 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2480
ed11d9eb 2481 spin_lock_irq(&l3->list_lock);
e498be7d 2482 p = l3->slabs_free.prev;
ed11d9eb
CL
2483 if (p == &l3->slabs_free) {
2484 spin_unlock_irq(&l3->list_lock);
2485 goto out;
2486 }
1da177e4 2487
ed11d9eb 2488 slabp = list_entry(p, struct slab, list);
1da177e4 2489#if DEBUG
40094fa6 2490 BUG_ON(slabp->inuse);
1da177e4
LT
2491#endif
2492 list_del(&slabp->list);
ed11d9eb
CL
2493 /*
2494 * Safe to drop the lock. The slab is no longer linked
2495 * to the cache.
2496 */
2497 l3->free_objects -= cache->num;
e498be7d 2498 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2499 slab_destroy(cache, slabp);
2500 nr_freed++;
1da177e4 2501 }
ed11d9eb
CL
2502out:
2503 return nr_freed;
1da177e4
LT
2504}
2505
8f5be20b 2506/* Called with cache_chain_mutex held to protect against cpu hotplug */
343e0d7a 2507static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2508{
2509 int ret = 0, i = 0;
2510 struct kmem_list3 *l3;
2511
2512 drain_cpu_caches(cachep);
2513
2514 check_irq_on();
2515 for_each_online_node(i) {
2516 l3 = cachep->nodelists[i];
ed11d9eb
CL
2517 if (!l3)
2518 continue;
2519
2520 drain_freelist(cachep, l3, l3->free_objects);
2521
2522 ret += !list_empty(&l3->slabs_full) ||
2523 !list_empty(&l3->slabs_partial);
e498be7d
CL
2524 }
2525 return (ret ? 1 : 0);
2526}
2527
1da177e4
LT
2528/**
2529 * kmem_cache_shrink - Shrink a cache.
2530 * @cachep: The cache to shrink.
2531 *
2532 * Releases as many slabs as possible for a cache.
2533 * To help debugging, a zero exit status indicates all slabs were released.
2534 */
343e0d7a 2535int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2536{
8f5be20b 2537 int ret;
40094fa6 2538 BUG_ON(!cachep || in_interrupt());
1da177e4 2539
8f5be20b
RT
2540 mutex_lock(&cache_chain_mutex);
2541 ret = __cache_shrink(cachep);
2542 mutex_unlock(&cache_chain_mutex);
2543 return ret;
1da177e4
LT
2544}
2545EXPORT_SYMBOL(kmem_cache_shrink);
2546
2547/**
2548 * kmem_cache_destroy - delete a cache
2549 * @cachep: the cache to destroy
2550 *
72fd4a35 2551 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2552 *
2553 * It is expected this function will be called by a module when it is
2554 * unloaded. This will remove the cache completely, and avoid a duplicate
2555 * cache being allocated each time a module is loaded and unloaded, if the
2556 * module doesn't have persistent in-kernel storage across loads and unloads.
2557 *
2558 * The cache must be empty before calling this function.
2559 *
2560 * The caller must guarantee that noone will allocate memory from the cache
2561 * during the kmem_cache_destroy().
2562 */
133d205a 2563void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2564{
40094fa6 2565 BUG_ON(!cachep || in_interrupt());
1da177e4 2566
1da177e4 2567 /* Find the cache in the chain of caches. */
fc0abb14 2568 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2569 /*
2570 * the chain is never empty, cache_cache is never destroyed
2571 */
2572 list_del(&cachep->next);
1da177e4
LT
2573 if (__cache_shrink(cachep)) {
2574 slab_error(cachep, "Can't free all objects");
b28a02de 2575 list_add(&cachep->next, &cache_chain);
fc0abb14 2576 mutex_unlock(&cache_chain_mutex);
133d205a 2577 return;
1da177e4
LT
2578 }
2579
2580 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2581 synchronize_rcu();
1da177e4 2582
117f6eb1 2583 __kmem_cache_destroy(cachep);
8f5be20b 2584 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2585}
2586EXPORT_SYMBOL(kmem_cache_destroy);
2587
e5ac9c5a
RT
2588/*
2589 * Get the memory for a slab management obj.
2590 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2591 * always come from malloc_sizes caches. The slab descriptor cannot
2592 * come from the same cache which is getting created because,
2593 * when we are searching for an appropriate cache for these
2594 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2595 * If we are creating a malloc_sizes cache here it would not be visible to
2596 * kmem_find_general_cachep till the initialization is complete.
2597 * Hence we cannot have slabp_cache same as the original cache.
2598 */
343e0d7a 2599static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2600 int colour_off, gfp_t local_flags,
2601 int nodeid)
1da177e4
LT
2602{
2603 struct slab *slabp;
b28a02de 2604
1da177e4
LT
2605 if (OFF_SLAB(cachep)) {
2606 /* Slab management obj is off-slab. */
5b74ada7 2607 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
3c517a61 2608 local_flags & ~GFP_THISNODE, nodeid);
1da177e4
LT
2609 if (!slabp)
2610 return NULL;
2611 } else {
b28a02de 2612 slabp = objp + colour_off;
1da177e4
LT
2613 colour_off += cachep->slab_size;
2614 }
2615 slabp->inuse = 0;
2616 slabp->colouroff = colour_off;
b28a02de 2617 slabp->s_mem = objp + colour_off;
5b74ada7 2618 slabp->nodeid = nodeid;
1da177e4
LT
2619 return slabp;
2620}
2621
2622static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2623{
b28a02de 2624 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2625}
2626
343e0d7a 2627static void cache_init_objs(struct kmem_cache *cachep,
b28a02de 2628 struct slab *slabp, unsigned long ctor_flags)
1da177e4
LT
2629{
2630 int i;
2631
2632 for (i = 0; i < cachep->num; i++) {
8fea4e96 2633 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2634#if DEBUG
2635 /* need to poison the objs? */
2636 if (cachep->flags & SLAB_POISON)
2637 poison_obj(cachep, objp, POISON_FREE);
2638 if (cachep->flags & SLAB_STORE_USER)
2639 *dbg_userword(cachep, objp) = NULL;
2640
2641 if (cachep->flags & SLAB_RED_ZONE) {
2642 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2643 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2644 }
2645 /*
a737b3e2
AM
2646 * Constructors are not allowed to allocate memory from the same
2647 * cache which they are a constructor for. Otherwise, deadlock.
2648 * They must also be threaded.
1da177e4
LT
2649 */
2650 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
3dafccf2 2651 cachep->ctor(objp + obj_offset(cachep), cachep,
b28a02de 2652 ctor_flags);
1da177e4
LT
2653
2654 if (cachep->flags & SLAB_RED_ZONE) {
2655 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2656 slab_error(cachep, "constructor overwrote the"
b28a02de 2657 " end of an object");
1da177e4
LT
2658 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2659 slab_error(cachep, "constructor overwrote the"
b28a02de 2660 " start of an object");
1da177e4 2661 }
a737b3e2
AM
2662 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2663 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2664 kernel_map_pages(virt_to_page(objp),
3dafccf2 2665 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2666#else
2667 if (cachep->ctor)
2668 cachep->ctor(objp, cachep, ctor_flags);
2669#endif
b28a02de 2670 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2671 }
b28a02de 2672 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2673 slabp->free = 0;
2674}
2675
343e0d7a 2676static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2677{
4b51d669
CL
2678 if (CONFIG_ZONE_DMA_FLAG) {
2679 if (flags & GFP_DMA)
2680 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2681 else
2682 BUG_ON(cachep->gfpflags & GFP_DMA);
2683 }
1da177e4
LT
2684}
2685
a737b3e2
AM
2686static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2687 int nodeid)
78d382d7 2688{
8fea4e96 2689 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2690 kmem_bufctl_t next;
2691
2692 slabp->inuse++;
2693 next = slab_bufctl(slabp)[slabp->free];
2694#if DEBUG
2695 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2696 WARN_ON(slabp->nodeid != nodeid);
2697#endif
2698 slabp->free = next;
2699
2700 return objp;
2701}
2702
a737b3e2
AM
2703static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2704 void *objp, int nodeid)
78d382d7 2705{
8fea4e96 2706 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2707
2708#if DEBUG
2709 /* Verify that the slab belongs to the intended node */
2710 WARN_ON(slabp->nodeid != nodeid);
2711
871751e2 2712 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2713 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2714 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2715 BUG();
2716 }
2717#endif
2718 slab_bufctl(slabp)[objnr] = slabp->free;
2719 slabp->free = objnr;
2720 slabp->inuse--;
2721}
2722
4776874f
PE
2723/*
2724 * Map pages beginning at addr to the given cache and slab. This is required
2725 * for the slab allocator to be able to lookup the cache and slab of a
2726 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2727 */
2728static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2729 void *addr)
1da177e4 2730{
4776874f 2731 int nr_pages;
1da177e4
LT
2732 struct page *page;
2733
4776874f 2734 page = virt_to_page(addr);
84097518 2735
4776874f 2736 nr_pages = 1;
84097518 2737 if (likely(!PageCompound(page)))
4776874f
PE
2738 nr_pages <<= cache->gfporder;
2739
1da177e4 2740 do {
4776874f
PE
2741 page_set_cache(page, cache);
2742 page_set_slab(page, slab);
1da177e4 2743 page++;
4776874f 2744 } while (--nr_pages);
1da177e4
LT
2745}
2746
2747/*
2748 * Grow (by 1) the number of slabs within a cache. This is called by
2749 * kmem_cache_alloc() when there are no active objs left in a cache.
2750 */
3c517a61
CL
2751static int cache_grow(struct kmem_cache *cachep,
2752 gfp_t flags, int nodeid, void *objp)
1da177e4 2753{
b28a02de 2754 struct slab *slabp;
b28a02de
PE
2755 size_t offset;
2756 gfp_t local_flags;
2757 unsigned long ctor_flags;
e498be7d 2758 struct kmem_list3 *l3;
1da177e4 2759
a737b3e2
AM
2760 /*
2761 * Be lazy and only check for valid flags here, keeping it out of the
2762 * critical path in kmem_cache_alloc().
1da177e4 2763 */
cfce6604 2764 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK));
1da177e4
LT
2765
2766 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
a06d72c1 2767 local_flags = (flags & GFP_LEVEL_MASK);
2e1217cf 2768 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2769 check_irq_off();
2e1217cf
RT
2770 l3 = cachep->nodelists[nodeid];
2771 spin_lock(&l3->list_lock);
1da177e4
LT
2772
2773 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2774 offset = l3->colour_next;
2775 l3->colour_next++;
2776 if (l3->colour_next >= cachep->colour)
2777 l3->colour_next = 0;
2778 spin_unlock(&l3->list_lock);
1da177e4 2779
2e1217cf 2780 offset *= cachep->colour_off;
1da177e4
LT
2781
2782 if (local_flags & __GFP_WAIT)
2783 local_irq_enable();
2784
2785 /*
2786 * The test for missing atomic flag is performed here, rather than
2787 * the more obvious place, simply to reduce the critical path length
2788 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2789 * will eventually be caught here (where it matters).
2790 */
2791 kmem_flagcheck(cachep, flags);
2792
a737b3e2
AM
2793 /*
2794 * Get mem for the objs. Attempt to allocate a physical page from
2795 * 'nodeid'.
e498be7d 2796 */
3c517a61
CL
2797 if (!objp)
2798 objp = kmem_getpages(cachep, flags, nodeid);
a737b3e2 2799 if (!objp)
1da177e4
LT
2800 goto failed;
2801
2802 /* Get slab management. */
3c517a61
CL
2803 slabp = alloc_slabmgmt(cachep, objp, offset,
2804 local_flags & ~GFP_THISNODE, nodeid);
a737b3e2 2805 if (!slabp)
1da177e4
LT
2806 goto opps1;
2807
e498be7d 2808 slabp->nodeid = nodeid;
4776874f 2809 slab_map_pages(cachep, slabp, objp);
1da177e4
LT
2810
2811 cache_init_objs(cachep, slabp, ctor_flags);
2812
2813 if (local_flags & __GFP_WAIT)
2814 local_irq_disable();
2815 check_irq_off();
e498be7d 2816 spin_lock(&l3->list_lock);
1da177e4
LT
2817
2818 /* Make slab active. */
e498be7d 2819 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2820 STATS_INC_GROWN(cachep);
e498be7d
CL
2821 l3->free_objects += cachep->num;
2822 spin_unlock(&l3->list_lock);
1da177e4 2823 return 1;
a737b3e2 2824opps1:
1da177e4 2825 kmem_freepages(cachep, objp);
a737b3e2 2826failed:
1da177e4
LT
2827 if (local_flags & __GFP_WAIT)
2828 local_irq_disable();
2829 return 0;
2830}
2831
2832#if DEBUG
2833
2834/*
2835 * Perform extra freeing checks:
2836 * - detect bad pointers.
2837 * - POISON/RED_ZONE checking
2838 * - destructor calls, for caches with POISON+dtor
2839 */
2840static void kfree_debugcheck(const void *objp)
2841{
1da177e4
LT
2842 if (!virt_addr_valid(objp)) {
2843 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2844 (unsigned long)objp);
2845 BUG();
1da177e4 2846 }
1da177e4
LT
2847}
2848
58ce1fd5
PE
2849static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2850{
b46b8f19 2851 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2852
2853 redzone1 = *dbg_redzone1(cache, obj);
2854 redzone2 = *dbg_redzone2(cache, obj);
2855
2856 /*
2857 * Redzone is ok.
2858 */
2859 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2860 return;
2861
2862 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2863 slab_error(cache, "double free detected");
2864 else
2865 slab_error(cache, "memory outside object was overwritten");
2866
b46b8f19 2867 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2868 obj, redzone1, redzone2);
2869}
2870
343e0d7a 2871static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2872 void *caller)
1da177e4
LT
2873{
2874 struct page *page;
2875 unsigned int objnr;
2876 struct slab *slabp;
2877
3dafccf2 2878 objp -= obj_offset(cachep);
1da177e4 2879 kfree_debugcheck(objp);
b49af68f 2880 page = virt_to_head_page(objp);
1da177e4 2881
065d41cb 2882 slabp = page_get_slab(page);
1da177e4
LT
2883
2884 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2885 verify_redzone_free(cachep, objp);
1da177e4
LT
2886 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2887 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2888 }
2889 if (cachep->flags & SLAB_STORE_USER)
2890 *dbg_userword(cachep, objp) = caller;
2891
8fea4e96 2892 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2893
2894 BUG_ON(objnr >= cachep->num);
8fea4e96 2895 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 2896
1da177e4
LT
2897 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2898 /* we want to cache poison the object,
2899 * call the destruction callback
2900 */
3dafccf2 2901 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
1da177e4 2902 }
871751e2
AV
2903#ifdef CONFIG_DEBUG_SLAB_LEAK
2904 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2905#endif
1da177e4
LT
2906 if (cachep->flags & SLAB_POISON) {
2907#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2908 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2909 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2910 kernel_map_pages(virt_to_page(objp),
3dafccf2 2911 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2912 } else {
2913 poison_obj(cachep, objp, POISON_FREE);
2914 }
2915#else
2916 poison_obj(cachep, objp, POISON_FREE);
2917#endif
2918 }
2919 return objp;
2920}
2921
343e0d7a 2922static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2923{
2924 kmem_bufctl_t i;
2925 int entries = 0;
b28a02de 2926
1da177e4
LT
2927 /* Check slab's freelist to see if this obj is there. */
2928 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2929 entries++;
2930 if (entries > cachep->num || i >= cachep->num)
2931 goto bad;
2932 }
2933 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2934bad:
2935 printk(KERN_ERR "slab: Internal list corruption detected in "
2936 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2937 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2938 for (i = 0;
264132bc 2939 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2940 i++) {
a737b3e2 2941 if (i % 16 == 0)
1da177e4 2942 printk("\n%03x:", i);
b28a02de 2943 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2944 }
2945 printk("\n");
2946 BUG();
2947 }
2948}
2949#else
2950#define kfree_debugcheck(x) do { } while(0)
2951#define cache_free_debugcheck(x,objp,z) (objp)
2952#define check_slabp(x,y) do { } while(0)
2953#endif
2954
343e0d7a 2955static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2956{
2957 int batchcount;
2958 struct kmem_list3 *l3;
2959 struct array_cache *ac;
1ca4cb24
PE
2960 int node;
2961
2962 node = numa_node_id();
1da177e4
LT
2963
2964 check_irq_off();
9a2dba4b 2965 ac = cpu_cache_get(cachep);
a737b3e2 2966retry:
1da177e4
LT
2967 batchcount = ac->batchcount;
2968 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2969 /*
2970 * If there was little recent activity on this cache, then
2971 * perform only a partial refill. Otherwise we could generate
2972 * refill bouncing.
1da177e4
LT
2973 */
2974 batchcount = BATCHREFILL_LIMIT;
2975 }
1ca4cb24 2976 l3 = cachep->nodelists[node];
e498be7d
CL
2977
2978 BUG_ON(ac->avail > 0 || !l3);
2979 spin_lock(&l3->list_lock);
1da177e4 2980
3ded175a
CL
2981 /* See if we can refill from the shared array */
2982 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2983 goto alloc_done;
2984
1da177e4
LT
2985 while (batchcount > 0) {
2986 struct list_head *entry;
2987 struct slab *slabp;
2988 /* Get slab alloc is to come from. */
2989 entry = l3->slabs_partial.next;
2990 if (entry == &l3->slabs_partial) {
2991 l3->free_touched = 1;
2992 entry = l3->slabs_free.next;
2993 if (entry == &l3->slabs_free)
2994 goto must_grow;
2995 }
2996
2997 slabp = list_entry(entry, struct slab, list);
2998 check_slabp(cachep, slabp);
2999 check_spinlock_acquired(cachep);
714b8171
PE
3000
3001 /*
3002 * The slab was either on partial or free list so
3003 * there must be at least one object available for
3004 * allocation.
3005 */
3006 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
3007
1da177e4 3008 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3009 STATS_INC_ALLOCED(cachep);
3010 STATS_INC_ACTIVE(cachep);
3011 STATS_SET_HIGH(cachep);
3012
78d382d7 3013 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
1ca4cb24 3014 node);
1da177e4
LT
3015 }
3016 check_slabp(cachep, slabp);
3017
3018 /* move slabp to correct slabp list: */
3019 list_del(&slabp->list);
3020 if (slabp->free == BUFCTL_END)
3021 list_add(&slabp->list, &l3->slabs_full);
3022 else
3023 list_add(&slabp->list, &l3->slabs_partial);
3024 }
3025
a737b3e2 3026must_grow:
1da177e4 3027 l3->free_objects -= ac->avail;
a737b3e2 3028alloc_done:
e498be7d 3029 spin_unlock(&l3->list_lock);
1da177e4
LT
3030
3031 if (unlikely(!ac->avail)) {
3032 int x;
3c517a61 3033 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3034
a737b3e2 3035 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3036 ac = cpu_cache_get(cachep);
a737b3e2 3037 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
3038 return NULL;
3039
a737b3e2 3040 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3041 goto retry;
3042 }
3043 ac->touched = 1;
e498be7d 3044 return ac->entry[--ac->avail];
1da177e4
LT
3045}
3046
a737b3e2
AM
3047static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3048 gfp_t flags)
1da177e4
LT
3049{
3050 might_sleep_if(flags & __GFP_WAIT);
3051#if DEBUG
3052 kmem_flagcheck(cachep, flags);
3053#endif
3054}
3055
3056#if DEBUG
a737b3e2
AM
3057static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3058 gfp_t flags, void *objp, void *caller)
1da177e4 3059{
b28a02de 3060 if (!objp)
1da177e4 3061 return objp;
b28a02de 3062 if (cachep->flags & SLAB_POISON) {
1da177e4 3063#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 3064 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3065 kernel_map_pages(virt_to_page(objp),
3dafccf2 3066 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
3067 else
3068 check_poison_obj(cachep, objp);
3069#else
3070 check_poison_obj(cachep, objp);
3071#endif
3072 poison_obj(cachep, objp, POISON_INUSE);
3073 }
3074 if (cachep->flags & SLAB_STORE_USER)
3075 *dbg_userword(cachep, objp) = caller;
3076
3077 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3078 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3079 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3080 slab_error(cachep, "double free, or memory outside"
3081 " object was overwritten");
b28a02de 3082 printk(KERN_ERR
b46b8f19 3083 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3084 objp, *dbg_redzone1(cachep, objp),
3085 *dbg_redzone2(cachep, objp));
1da177e4
LT
3086 }
3087 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3088 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3089 }
871751e2
AV
3090#ifdef CONFIG_DEBUG_SLAB_LEAK
3091 {
3092 struct slab *slabp;
3093 unsigned objnr;
3094
b49af68f 3095 slabp = page_get_slab(virt_to_head_page(objp));
871751e2
AV
3096 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3097 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3098 }
3099#endif
3dafccf2 3100 objp += obj_offset(cachep);
4f104934
CL
3101 if (cachep->ctor && cachep->flags & SLAB_POISON)
3102 cachep->ctor(objp, cachep, SLAB_CTOR_CONSTRUCTOR);
a44b56d3
KH
3103#if ARCH_SLAB_MINALIGN
3104 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3105 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3106 objp, ARCH_SLAB_MINALIGN);
3107 }
3108#endif
1da177e4
LT
3109 return objp;
3110}
3111#else
3112#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3113#endif
3114
8a8b6502
AM
3115#ifdef CONFIG_FAILSLAB
3116
3117static struct failslab_attr {
3118
3119 struct fault_attr attr;
3120
3121 u32 ignore_gfp_wait;
3122#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3123 struct dentry *ignore_gfp_wait_file;
3124#endif
3125
3126} failslab = {
3127 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4 3128 .ignore_gfp_wait = 1,
8a8b6502
AM
3129};
3130
3131static int __init setup_failslab(char *str)
3132{
3133 return setup_fault_attr(&failslab.attr, str);
3134}
3135__setup("failslab=", setup_failslab);
3136
3137static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3138{
3139 if (cachep == &cache_cache)
3140 return 0;
3141 if (flags & __GFP_NOFAIL)
3142 return 0;
3143 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3144 return 0;
3145
3146 return should_fail(&failslab.attr, obj_size(cachep));
3147}
3148
3149#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3150
3151static int __init failslab_debugfs(void)
3152{
3153 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3154 struct dentry *dir;
3155 int err;
3156
824ebef1 3157 err = init_fault_attr_dentries(&failslab.attr, "failslab");
8a8b6502
AM
3158 if (err)
3159 return err;
3160 dir = failslab.attr.dentries.dir;
3161
3162 failslab.ignore_gfp_wait_file =
3163 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3164 &failslab.ignore_gfp_wait);
3165
3166 if (!failslab.ignore_gfp_wait_file) {
3167 err = -ENOMEM;
3168 debugfs_remove(failslab.ignore_gfp_wait_file);
3169 cleanup_fault_attr_dentries(&failslab.attr);
3170 }
3171
3172 return err;
3173}
3174
3175late_initcall(failslab_debugfs);
3176
3177#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3178
3179#else /* CONFIG_FAILSLAB */
3180
3181static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3182{
3183 return 0;
3184}
3185
3186#endif /* CONFIG_FAILSLAB */
3187
343e0d7a 3188static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3189{
b28a02de 3190 void *objp;
1da177e4
LT
3191 struct array_cache *ac;
3192
5c382300 3193 check_irq_off();
8a8b6502 3194
9a2dba4b 3195 ac = cpu_cache_get(cachep);
1da177e4
LT
3196 if (likely(ac->avail)) {
3197 STATS_INC_ALLOCHIT(cachep);
3198 ac->touched = 1;
e498be7d 3199 objp = ac->entry[--ac->avail];
1da177e4
LT
3200 } else {
3201 STATS_INC_ALLOCMISS(cachep);
3202 objp = cache_alloc_refill(cachep, flags);
3203 }
5c382300
AK
3204 return objp;
3205}
3206
e498be7d 3207#ifdef CONFIG_NUMA
c61afb18 3208/*
b2455396 3209 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3210 *
3211 * If we are in_interrupt, then process context, including cpusets and
3212 * mempolicy, may not apply and should not be used for allocation policy.
3213 */
3214static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3215{
3216 int nid_alloc, nid_here;
3217
765c4507 3218 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18
PJ
3219 return NULL;
3220 nid_alloc = nid_here = numa_node_id();
3221 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3222 nid_alloc = cpuset_mem_spread_node();
3223 else if (current->mempolicy)
3224 nid_alloc = slab_node(current->mempolicy);
3225 if (nid_alloc != nid_here)
8b98c169 3226 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3227 return NULL;
3228}
3229
765c4507
CL
3230/*
3231 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3232 * certain node and fall back is permitted. First we scan all the
3233 * available nodelists for available objects. If that fails then we
3234 * perform an allocation without specifying a node. This allows the page
3235 * allocator to do its reclaim / fallback magic. We then insert the
3236 * slab into the proper nodelist and then allocate from it.
765c4507 3237 */
8c8cc2c1 3238static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3239{
8c8cc2c1
PE
3240 struct zonelist *zonelist;
3241 gfp_t local_flags;
765c4507
CL
3242 struct zone **z;
3243 void *obj = NULL;
3c517a61 3244 int nid;
8c8cc2c1
PE
3245
3246 if (flags & __GFP_THISNODE)
3247 return NULL;
3248
3249 zonelist = &NODE_DATA(slab_node(current->mempolicy))
3250 ->node_zonelists[gfp_zone(flags)];
3251 local_flags = (flags & GFP_LEVEL_MASK);
765c4507 3252
3c517a61
CL
3253retry:
3254 /*
3255 * Look through allowed nodes for objects available
3256 * from existing per node queues.
3257 */
aedb0eb1 3258 for (z = zonelist->zones; *z && !obj; z++) {
3c517a61 3259 nid = zone_to_nid(*z);
aedb0eb1 3260
02a0e53d 3261 if (cpuset_zone_allowed_hardwall(*z, flags) &&
3c517a61
CL
3262 cache->nodelists[nid] &&
3263 cache->nodelists[nid]->free_objects)
3264 obj = ____cache_alloc_node(cache,
3265 flags | GFP_THISNODE, nid);
3266 }
3267
cfce6604 3268 if (!obj) {
3c517a61
CL
3269 /*
3270 * This allocation will be performed within the constraints
3271 * of the current cpuset / memory policy requirements.
3272 * We may trigger various forms of reclaim on the allowed
3273 * set and go into memory reserves if necessary.
3274 */
dd47ea75
CL
3275 if (local_flags & __GFP_WAIT)
3276 local_irq_enable();
3277 kmem_flagcheck(cache, flags);
3c517a61 3278 obj = kmem_getpages(cache, flags, -1);
dd47ea75
CL
3279 if (local_flags & __GFP_WAIT)
3280 local_irq_disable();
3c517a61
CL
3281 if (obj) {
3282 /*
3283 * Insert into the appropriate per node queues
3284 */
3285 nid = page_to_nid(virt_to_page(obj));
3286 if (cache_grow(cache, flags, nid, obj)) {
3287 obj = ____cache_alloc_node(cache,
3288 flags | GFP_THISNODE, nid);
3289 if (!obj)
3290 /*
3291 * Another processor may allocate the
3292 * objects in the slab since we are
3293 * not holding any locks.
3294 */
3295 goto retry;
3296 } else {
b6a60451 3297 /* cache_grow already freed obj */
3c517a61
CL
3298 obj = NULL;
3299 }
3300 }
aedb0eb1 3301 }
765c4507
CL
3302 return obj;
3303}
3304
e498be7d
CL
3305/*
3306 * A interface to enable slab creation on nodeid
1da177e4 3307 */
8b98c169 3308static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3309 int nodeid)
e498be7d
CL
3310{
3311 struct list_head *entry;
b28a02de
PE
3312 struct slab *slabp;
3313 struct kmem_list3 *l3;
3314 void *obj;
b28a02de
PE
3315 int x;
3316
3317 l3 = cachep->nodelists[nodeid];
3318 BUG_ON(!l3);
3319
a737b3e2 3320retry:
ca3b9b91 3321 check_irq_off();
b28a02de
PE
3322 spin_lock(&l3->list_lock);
3323 entry = l3->slabs_partial.next;
3324 if (entry == &l3->slabs_partial) {
3325 l3->free_touched = 1;
3326 entry = l3->slabs_free.next;
3327 if (entry == &l3->slabs_free)
3328 goto must_grow;
3329 }
3330
3331 slabp = list_entry(entry, struct slab, list);
3332 check_spinlock_acquired_node(cachep, nodeid);
3333 check_slabp(cachep, slabp);
3334
3335 STATS_INC_NODEALLOCS(cachep);
3336 STATS_INC_ACTIVE(cachep);
3337 STATS_SET_HIGH(cachep);
3338
3339 BUG_ON(slabp->inuse == cachep->num);
3340
78d382d7 3341 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3342 check_slabp(cachep, slabp);
3343 l3->free_objects--;
3344 /* move slabp to correct slabp list: */
3345 list_del(&slabp->list);
3346
a737b3e2 3347 if (slabp->free == BUFCTL_END)
b28a02de 3348 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3349 else
b28a02de 3350 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3351
b28a02de
PE
3352 spin_unlock(&l3->list_lock);
3353 goto done;
e498be7d 3354
a737b3e2 3355must_grow:
b28a02de 3356 spin_unlock(&l3->list_lock);
3c517a61 3357 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3358 if (x)
3359 goto retry;
1da177e4 3360
8c8cc2c1 3361 return fallback_alloc(cachep, flags);
e498be7d 3362
a737b3e2 3363done:
b28a02de 3364 return obj;
e498be7d 3365}
8c8cc2c1
PE
3366
3367/**
3368 * kmem_cache_alloc_node - Allocate an object on the specified node
3369 * @cachep: The cache to allocate from.
3370 * @flags: See kmalloc().
3371 * @nodeid: node number of the target node.
3372 * @caller: return address of caller, used for debug information
3373 *
3374 * Identical to kmem_cache_alloc but it will allocate memory on the given
3375 * node, which can improve the performance for cpu bound structures.
3376 *
3377 * Fallback to other node is possible if __GFP_THISNODE is not set.
3378 */
3379static __always_inline void *
3380__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3381 void *caller)
3382{
3383 unsigned long save_flags;
3384 void *ptr;
3385
824ebef1
AM
3386 if (should_failslab(cachep, flags))
3387 return NULL;
3388
8c8cc2c1
PE
3389 cache_alloc_debugcheck_before(cachep, flags);
3390 local_irq_save(save_flags);
3391
3392 if (unlikely(nodeid == -1))
3393 nodeid = numa_node_id();
3394
3395 if (unlikely(!cachep->nodelists[nodeid])) {
3396 /* Node not bootstrapped yet */
3397 ptr = fallback_alloc(cachep, flags);
3398 goto out;
3399 }
3400
3401 if (nodeid == numa_node_id()) {
3402 /*
3403 * Use the locally cached objects if possible.
3404 * However ____cache_alloc does not allow fallback
3405 * to other nodes. It may fail while we still have
3406 * objects on other nodes available.
3407 */
3408 ptr = ____cache_alloc(cachep, flags);
3409 if (ptr)
3410 goto out;
3411 }
3412 /* ___cache_alloc_node can fall back to other nodes */
3413 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3414 out:
3415 local_irq_restore(save_flags);
3416 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3417
3418 return ptr;
3419}
3420
3421static __always_inline void *
3422__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3423{
3424 void *objp;
3425
3426 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3427 objp = alternate_node_alloc(cache, flags);
3428 if (objp)
3429 goto out;
3430 }
3431 objp = ____cache_alloc(cache, flags);
3432
3433 /*
3434 * We may just have run out of memory on the local node.
3435 * ____cache_alloc_node() knows how to locate memory on other nodes
3436 */
3437 if (!objp)
3438 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3439
3440 out:
3441 return objp;
3442}
3443#else
3444
3445static __always_inline void *
3446__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3447{
3448 return ____cache_alloc(cachep, flags);
3449}
3450
3451#endif /* CONFIG_NUMA */
3452
3453static __always_inline void *
3454__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3455{
3456 unsigned long save_flags;
3457 void *objp;
3458
824ebef1
AM
3459 if (should_failslab(cachep, flags))
3460 return NULL;
3461
8c8cc2c1
PE
3462 cache_alloc_debugcheck_before(cachep, flags);
3463 local_irq_save(save_flags);
3464 objp = __do_cache_alloc(cachep, flags);
3465 local_irq_restore(save_flags);
3466 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3467 prefetchw(objp);
3468
3469 return objp;
3470}
e498be7d
CL
3471
3472/*
3473 * Caller needs to acquire correct kmem_list's list_lock
3474 */
343e0d7a 3475static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3476 int node)
1da177e4
LT
3477{
3478 int i;
e498be7d 3479 struct kmem_list3 *l3;
1da177e4
LT
3480
3481 for (i = 0; i < nr_objects; i++) {
3482 void *objp = objpp[i];
3483 struct slab *slabp;
1da177e4 3484
6ed5eb22 3485 slabp = virt_to_slab(objp);
ff69416e 3486 l3 = cachep->nodelists[node];
1da177e4 3487 list_del(&slabp->list);
ff69416e 3488 check_spinlock_acquired_node(cachep, node);
1da177e4 3489 check_slabp(cachep, slabp);
78d382d7 3490 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3491 STATS_DEC_ACTIVE(cachep);
e498be7d 3492 l3->free_objects++;
1da177e4
LT
3493 check_slabp(cachep, slabp);
3494
3495 /* fixup slab chains */
3496 if (slabp->inuse == 0) {
e498be7d
CL
3497 if (l3->free_objects > l3->free_limit) {
3498 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3499 /* No need to drop any previously held
3500 * lock here, even if we have a off-slab slab
3501 * descriptor it is guaranteed to come from
3502 * a different cache, refer to comments before
3503 * alloc_slabmgmt.
3504 */
1da177e4
LT
3505 slab_destroy(cachep, slabp);
3506 } else {
e498be7d 3507 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3508 }
3509 } else {
3510 /* Unconditionally move a slab to the end of the
3511 * partial list on free - maximum time for the
3512 * other objects to be freed, too.
3513 */
e498be7d 3514 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3515 }
3516 }
3517}
3518
343e0d7a 3519static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3520{
3521 int batchcount;
e498be7d 3522 struct kmem_list3 *l3;
ff69416e 3523 int node = numa_node_id();
1da177e4
LT
3524
3525 batchcount = ac->batchcount;
3526#if DEBUG
3527 BUG_ON(!batchcount || batchcount > ac->avail);
3528#endif
3529 check_irq_off();
ff69416e 3530 l3 = cachep->nodelists[node];
873623df 3531 spin_lock(&l3->list_lock);
e498be7d
CL
3532 if (l3->shared) {
3533 struct array_cache *shared_array = l3->shared;
b28a02de 3534 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3535 if (max) {
3536 if (batchcount > max)
3537 batchcount = max;
e498be7d 3538 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3539 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3540 shared_array->avail += batchcount;
3541 goto free_done;
3542 }
3543 }
3544
ff69416e 3545 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3546free_done:
1da177e4
LT
3547#if STATS
3548 {
3549 int i = 0;
3550 struct list_head *p;
3551
e498be7d
CL
3552 p = l3->slabs_free.next;
3553 while (p != &(l3->slabs_free)) {
1da177e4
LT
3554 struct slab *slabp;
3555
3556 slabp = list_entry(p, struct slab, list);
3557 BUG_ON(slabp->inuse);
3558
3559 i++;
3560 p = p->next;
3561 }
3562 STATS_SET_FREEABLE(cachep, i);
3563 }
3564#endif
e498be7d 3565 spin_unlock(&l3->list_lock);
1da177e4 3566 ac->avail -= batchcount;
a737b3e2 3567 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3568}
3569
3570/*
a737b3e2
AM
3571 * Release an obj back to its cache. If the obj has a constructed state, it must
3572 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3573 */
873623df 3574static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3575{
9a2dba4b 3576 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3577
3578 check_irq_off();
3579 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3580
62918a03 3581 if (use_alien_caches && cache_free_alien(cachep, objp))
729bd0b7
PE
3582 return;
3583
1da177e4
LT
3584 if (likely(ac->avail < ac->limit)) {
3585 STATS_INC_FREEHIT(cachep);
e498be7d 3586 ac->entry[ac->avail++] = objp;
1da177e4
LT
3587 return;
3588 } else {
3589 STATS_INC_FREEMISS(cachep);
3590 cache_flusharray(cachep, ac);
e498be7d 3591 ac->entry[ac->avail++] = objp;
1da177e4
LT
3592 }
3593}
3594
3595/**
3596 * kmem_cache_alloc - Allocate an object
3597 * @cachep: The cache to allocate from.
3598 * @flags: See kmalloc().
3599 *
3600 * Allocate an object from this cache. The flags are only relevant
3601 * if the cache has no available objects.
3602 */
343e0d7a 3603void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3604{
7fd6b141 3605 return __cache_alloc(cachep, flags, __builtin_return_address(0));
1da177e4
LT
3606}
3607EXPORT_SYMBOL(kmem_cache_alloc);
3608
a8c0f9a4 3609/**
b8008b2b 3610 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
a8c0f9a4
PE
3611 * @cache: The cache to allocate from.
3612 * @flags: See kmalloc().
3613 *
3614 * Allocate an object from this cache and set the allocated memory to zero.
3615 * The flags are only relevant if the cache has no available objects.
3616 */
3617void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3618{
3619 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3620 if (ret)
3621 memset(ret, 0, obj_size(cache));
3622 return ret;
3623}
3624EXPORT_SYMBOL(kmem_cache_zalloc);
3625
1da177e4
LT
3626/**
3627 * kmem_ptr_validate - check if an untrusted pointer might
3628 * be a slab entry.
3629 * @cachep: the cache we're checking against
3630 * @ptr: pointer to validate
3631 *
3632 * This verifies that the untrusted pointer looks sane:
3633 * it is _not_ a guarantee that the pointer is actually
3634 * part of the slab cache in question, but it at least
3635 * validates that the pointer can be dereferenced and
3636 * looks half-way sane.
3637 *
3638 * Currently only used for dentry validation.
3639 */
b7f869a2 3640int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
1da177e4 3641{
b28a02de 3642 unsigned long addr = (unsigned long)ptr;
1da177e4 3643 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3644 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3645 unsigned long size = cachep->buffer_size;
1da177e4
LT
3646 struct page *page;
3647
3648 if (unlikely(addr < min_addr))
3649 goto out;
3650 if (unlikely(addr > (unsigned long)high_memory - size))
3651 goto out;
3652 if (unlikely(addr & align_mask))
3653 goto out;
3654 if (unlikely(!kern_addr_valid(addr)))
3655 goto out;
3656 if (unlikely(!kern_addr_valid(addr + size - 1)))
3657 goto out;
3658 page = virt_to_page(ptr);
3659 if (unlikely(!PageSlab(page)))
3660 goto out;
065d41cb 3661 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3662 goto out;
3663 return 1;
a737b3e2 3664out:
1da177e4
LT
3665 return 0;
3666}
3667
3668#ifdef CONFIG_NUMA
8b98c169
CH
3669void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3670{
3671 return __cache_alloc_node(cachep, flags, nodeid,
3672 __builtin_return_address(0));
3673}
1da177e4
LT
3674EXPORT_SYMBOL(kmem_cache_alloc_node);
3675
8b98c169
CH
3676static __always_inline void *
3677__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3678{
343e0d7a 3679 struct kmem_cache *cachep;
97e2bde4
MS
3680
3681 cachep = kmem_find_general_cachep(size, flags);
3682 if (unlikely(cachep == NULL))
3683 return NULL;
3684 return kmem_cache_alloc_node(cachep, flags, node);
3685}
8b98c169
CH
3686
3687#ifdef CONFIG_DEBUG_SLAB
3688void *__kmalloc_node(size_t size, gfp_t flags, int node)
3689{
3690 return __do_kmalloc_node(size, flags, node,
3691 __builtin_return_address(0));
3692}
dbe5e69d 3693EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3694
3695void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3696 int node, void *caller)
3697{
3698 return __do_kmalloc_node(size, flags, node, caller);
3699}
3700EXPORT_SYMBOL(__kmalloc_node_track_caller);
3701#else
3702void *__kmalloc_node(size_t size, gfp_t flags, int node)
3703{
3704 return __do_kmalloc_node(size, flags, node, NULL);
3705}
3706EXPORT_SYMBOL(__kmalloc_node);
3707#endif /* CONFIG_DEBUG_SLAB */
3708#endif /* CONFIG_NUMA */
1da177e4
LT
3709
3710/**
800590f5 3711 * __do_kmalloc - allocate memory
1da177e4 3712 * @size: how many bytes of memory are required.
800590f5 3713 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3714 * @caller: function caller for debug tracking of the caller
1da177e4 3715 */
7fd6b141
PE
3716static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3717 void *caller)
1da177e4 3718{
343e0d7a 3719 struct kmem_cache *cachep;
1da177e4 3720
97e2bde4
MS
3721 /* If you want to save a few bytes .text space: replace
3722 * __ with kmem_.
3723 * Then kmalloc uses the uninlined functions instead of the inline
3724 * functions.
3725 */
3726 cachep = __find_general_cachep(size, flags);
dbdb9045
AM
3727 if (unlikely(cachep == NULL))
3728 return NULL;
7fd6b141
PE
3729 return __cache_alloc(cachep, flags, caller);
3730}
3731
7fd6b141 3732
1d2c8eea 3733#ifdef CONFIG_DEBUG_SLAB
7fd6b141
PE
3734void *__kmalloc(size_t size, gfp_t flags)
3735{
871751e2 3736 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3737}
3738EXPORT_SYMBOL(__kmalloc);
3739
7fd6b141
PE
3740void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3741{
3742 return __do_kmalloc(size, flags, caller);
3743}
3744EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3745
3746#else
3747void *__kmalloc(size_t size, gfp_t flags)
3748{
3749 return __do_kmalloc(size, flags, NULL);
3750}
3751EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3752#endif
3753
fd76bab2
PE
3754/**
3755 * krealloc - reallocate memory. The contents will remain unchanged.
fd76bab2
PE
3756 * @p: object to reallocate memory for.
3757 * @new_size: how many bytes of memory are required.
3758 * @flags: the type of memory to allocate.
3759 *
3760 * The contents of the object pointed to are preserved up to the
3761 * lesser of the new and old sizes. If @p is %NULL, krealloc()
3762 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
3763 * %NULL pointer, the object pointed to is freed.
3764 */
3765void *krealloc(const void *p, size_t new_size, gfp_t flags)
3766{
3767 struct kmem_cache *cache, *new_cache;
3768 void *ret;
3769
3770 if (unlikely(!p))
3771 return kmalloc_track_caller(new_size, flags);
3772
3773 if (unlikely(!new_size)) {
3774 kfree(p);
3775 return NULL;
3776 }
3777
3778 cache = virt_to_cache(p);
3779 new_cache = __find_general_cachep(new_size, flags);
3780
3781 /*
3782 * If new size fits in the current cache, bail out.
3783 */
3784 if (likely(cache == new_cache))
3785 return (void *)p;
3786
3787 /*
3788 * We are on the slow-path here so do not use __cache_alloc
3789 * because it bloats kernel text.
3790 */
3791 ret = kmalloc_track_caller(new_size, flags);
3792 if (ret) {
3793 memcpy(ret, p, min(new_size, ksize(p)));
3794 kfree(p);
3795 }
3796 return ret;
3797}
3798EXPORT_SYMBOL(krealloc);
3799
1da177e4
LT
3800/**
3801 * kmem_cache_free - Deallocate an object
3802 * @cachep: The cache the allocation was from.
3803 * @objp: The previously allocated object.
3804 *
3805 * Free an object which was previously allocated from this
3806 * cache.
3807 */
343e0d7a 3808void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3809{
3810 unsigned long flags;
3811
ddc2e812
PE
3812 BUG_ON(virt_to_cache(objp) != cachep);
3813
1da177e4 3814 local_irq_save(flags);
898552c9 3815 debug_check_no_locks_freed(objp, obj_size(cachep));
873623df 3816 __cache_free(cachep, objp);
1da177e4
LT
3817 local_irq_restore(flags);
3818}
3819EXPORT_SYMBOL(kmem_cache_free);
3820
1da177e4
LT
3821/**
3822 * kfree - free previously allocated memory
3823 * @objp: pointer returned by kmalloc.
3824 *
80e93eff
PE
3825 * If @objp is NULL, no operation is performed.
3826 *
1da177e4
LT
3827 * Don't free memory not originally allocated by kmalloc()
3828 * or you will run into trouble.
3829 */
3830void kfree(const void *objp)
3831{
343e0d7a 3832 struct kmem_cache *c;
1da177e4
LT
3833 unsigned long flags;
3834
3835 if (unlikely(!objp))
3836 return;
3837 local_irq_save(flags);
3838 kfree_debugcheck(objp);
6ed5eb22 3839 c = virt_to_cache(objp);
f9b8404c 3840 debug_check_no_locks_freed(objp, obj_size(c));
873623df 3841 __cache_free(c, (void *)objp);
1da177e4
LT
3842 local_irq_restore(flags);
3843}
3844EXPORT_SYMBOL(kfree);
3845
343e0d7a 3846unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3847{
3dafccf2 3848 return obj_size(cachep);
1da177e4
LT
3849}
3850EXPORT_SYMBOL(kmem_cache_size);
3851
343e0d7a 3852const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3853{
3854 return cachep->name;
3855}
3856EXPORT_SYMBOL_GPL(kmem_cache_name);
3857
e498be7d 3858/*
0718dc2a 3859 * This initializes kmem_list3 or resizes varioius caches for all nodes.
e498be7d 3860 */
343e0d7a 3861static int alloc_kmemlist(struct kmem_cache *cachep)
e498be7d
CL
3862{
3863 int node;
3864 struct kmem_list3 *l3;
cafeb02e 3865 struct array_cache *new_shared;
3395ee05 3866 struct array_cache **new_alien = NULL;
e498be7d
CL
3867
3868 for_each_online_node(node) {
cafeb02e 3869
3395ee05
PM
3870 if (use_alien_caches) {
3871 new_alien = alloc_alien_cache(node, cachep->limit);
3872 if (!new_alien)
3873 goto fail;
3874 }
cafeb02e 3875
63109846
ED
3876 new_shared = NULL;
3877 if (cachep->shared) {
3878 new_shared = alloc_arraycache(node,
0718dc2a 3879 cachep->shared*cachep->batchcount,
a737b3e2 3880 0xbaadf00d);
63109846
ED
3881 if (!new_shared) {
3882 free_alien_cache(new_alien);
3883 goto fail;
3884 }
0718dc2a 3885 }
cafeb02e 3886
a737b3e2
AM
3887 l3 = cachep->nodelists[node];
3888 if (l3) {
cafeb02e
CL
3889 struct array_cache *shared = l3->shared;
3890
e498be7d
CL
3891 spin_lock_irq(&l3->list_lock);
3892
cafeb02e 3893 if (shared)
0718dc2a
CL
3894 free_block(cachep, shared->entry,
3895 shared->avail, node);
e498be7d 3896
cafeb02e
CL
3897 l3->shared = new_shared;
3898 if (!l3->alien) {
e498be7d
CL
3899 l3->alien = new_alien;
3900 new_alien = NULL;
3901 }
b28a02de 3902 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3903 cachep->batchcount + cachep->num;
e498be7d 3904 spin_unlock_irq(&l3->list_lock);
cafeb02e 3905 kfree(shared);
e498be7d
CL
3906 free_alien_cache(new_alien);
3907 continue;
3908 }
a737b3e2 3909 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
0718dc2a
CL
3910 if (!l3) {
3911 free_alien_cache(new_alien);
3912 kfree(new_shared);
e498be7d 3913 goto fail;
0718dc2a 3914 }
e498be7d
CL
3915
3916 kmem_list3_init(l3);
3917 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3918 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3919 l3->shared = new_shared;
e498be7d 3920 l3->alien = new_alien;
b28a02de 3921 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3922 cachep->batchcount + cachep->num;
e498be7d
CL
3923 cachep->nodelists[node] = l3;
3924 }
cafeb02e 3925 return 0;
0718dc2a 3926
a737b3e2 3927fail:
0718dc2a
CL
3928 if (!cachep->next.next) {
3929 /* Cache is not active yet. Roll back what we did */
3930 node--;
3931 while (node >= 0) {
3932 if (cachep->nodelists[node]) {
3933 l3 = cachep->nodelists[node];
3934
3935 kfree(l3->shared);
3936 free_alien_cache(l3->alien);
3937 kfree(l3);
3938 cachep->nodelists[node] = NULL;
3939 }
3940 node--;
3941 }
3942 }
cafeb02e 3943 return -ENOMEM;
e498be7d
CL
3944}
3945
1da177e4 3946struct ccupdate_struct {
343e0d7a 3947 struct kmem_cache *cachep;
1da177e4
LT
3948 struct array_cache *new[NR_CPUS];
3949};
3950
3951static void do_ccupdate_local(void *info)
3952{
a737b3e2 3953 struct ccupdate_struct *new = info;
1da177e4
LT
3954 struct array_cache *old;
3955
3956 check_irq_off();
9a2dba4b 3957 old = cpu_cache_get(new->cachep);
e498be7d 3958
1da177e4
LT
3959 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3960 new->new[smp_processor_id()] = old;
3961}
3962
b5d8ca7c 3963/* Always called with the cache_chain_mutex held */
a737b3e2
AM
3964static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3965 int batchcount, int shared)
1da177e4 3966{
d2e7b7d0 3967 struct ccupdate_struct *new;
2ed3a4ef 3968 int i;
1da177e4 3969
d2e7b7d0
SS
3970 new = kzalloc(sizeof(*new), GFP_KERNEL);
3971 if (!new)
3972 return -ENOMEM;
3973
e498be7d 3974 for_each_online_cpu(i) {
d2e7b7d0 3975 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
a737b3e2 3976 batchcount);
d2e7b7d0 3977 if (!new->new[i]) {
b28a02de 3978 for (i--; i >= 0; i--)
d2e7b7d0
SS
3979 kfree(new->new[i]);
3980 kfree(new);
e498be7d 3981 return -ENOMEM;
1da177e4
LT
3982 }
3983 }
d2e7b7d0 3984 new->cachep = cachep;
1da177e4 3985
d2e7b7d0 3986 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
e498be7d 3987
1da177e4 3988 check_irq_on();
1da177e4
LT
3989 cachep->batchcount = batchcount;
3990 cachep->limit = limit;
e498be7d 3991 cachep->shared = shared;
1da177e4 3992
e498be7d 3993 for_each_online_cpu(i) {
d2e7b7d0 3994 struct array_cache *ccold = new->new[i];
1da177e4
LT
3995 if (!ccold)
3996 continue;
e498be7d 3997 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3998 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3999 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
4000 kfree(ccold);
4001 }
d2e7b7d0 4002 kfree(new);
2ed3a4ef 4003 return alloc_kmemlist(cachep);
1da177e4
LT
4004}
4005
b5d8ca7c 4006/* Called with cache_chain_mutex held always */
2ed3a4ef 4007static int enable_cpucache(struct kmem_cache *cachep)
1da177e4
LT
4008{
4009 int err;
4010 int limit, shared;
4011
a737b3e2
AM
4012 /*
4013 * The head array serves three purposes:
1da177e4
LT
4014 * - create a LIFO ordering, i.e. return objects that are cache-warm
4015 * - reduce the number of spinlock operations.
a737b3e2 4016 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4017 * bufctl chains: array operations are cheaper.
4018 * The numbers are guessed, we should auto-tune as described by
4019 * Bonwick.
4020 */
3dafccf2 4021 if (cachep->buffer_size > 131072)
1da177e4 4022 limit = 1;
3dafccf2 4023 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 4024 limit = 8;
3dafccf2 4025 else if (cachep->buffer_size > 1024)
1da177e4 4026 limit = 24;
3dafccf2 4027 else if (cachep->buffer_size > 256)
1da177e4
LT
4028 limit = 54;
4029 else
4030 limit = 120;
4031
a737b3e2
AM
4032 /*
4033 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4034 * allocation behaviour: Most allocs on one cpu, most free operations
4035 * on another cpu. For these cases, an efficient object passing between
4036 * cpus is necessary. This is provided by a shared array. The array
4037 * replaces Bonwick's magazine layer.
4038 * On uniprocessor, it's functionally equivalent (but less efficient)
4039 * to a larger limit. Thus disabled by default.
4040 */
4041 shared = 0;
364fbb29 4042 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4043 shared = 8;
1da177e4
LT
4044
4045#if DEBUG
a737b3e2
AM
4046 /*
4047 * With debugging enabled, large batchcount lead to excessively long
4048 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4049 */
4050 if (limit > 32)
4051 limit = 32;
4052#endif
b28a02de 4053 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
4054 if (err)
4055 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4056 cachep->name, -err);
2ed3a4ef 4057 return err;
1da177e4
LT
4058}
4059
1b55253a
CL
4060/*
4061 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4062 * necessary. Note that the l3 listlock also protects the array_cache
4063 * if drain_array() is used on the shared array.
1b55253a
CL
4064 */
4065void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4066 struct array_cache *ac, int force, int node)
1da177e4
LT
4067{
4068 int tofree;
4069
1b55253a
CL
4070 if (!ac || !ac->avail)
4071 return;
1da177e4
LT
4072 if (ac->touched && !force) {
4073 ac->touched = 0;
b18e7e65 4074 } else {
1b55253a 4075 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4076 if (ac->avail) {
4077 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4078 if (tofree > ac->avail)
4079 tofree = (ac->avail + 1) / 2;
4080 free_block(cachep, ac->entry, tofree, node);
4081 ac->avail -= tofree;
4082 memmove(ac->entry, &(ac->entry[tofree]),
4083 sizeof(void *) * ac->avail);
4084 }
1b55253a 4085 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4086 }
4087}
4088
4089/**
4090 * cache_reap - Reclaim memory from caches.
05fb6bf0 4091 * @w: work descriptor
1da177e4
LT
4092 *
4093 * Called from workqueue/eventd every few seconds.
4094 * Purpose:
4095 * - clear the per-cpu caches for this CPU.
4096 * - return freeable pages to the main free memory pool.
4097 *
a737b3e2
AM
4098 * If we cannot acquire the cache chain mutex then just give up - we'll try
4099 * again on the next iteration.
1da177e4 4100 */
7c5cae36 4101static void cache_reap(struct work_struct *w)
1da177e4 4102{
7a7c381d 4103 struct kmem_cache *searchp;
e498be7d 4104 struct kmem_list3 *l3;
aab2207c 4105 int node = numa_node_id();
7c5cae36
CL
4106 struct delayed_work *work =
4107 container_of(w, struct delayed_work, work);
1da177e4 4108
7c5cae36 4109 if (!mutex_trylock(&cache_chain_mutex))
1da177e4 4110 /* Give up. Setup the next iteration. */
7c5cae36 4111 goto out;
1da177e4 4112
7a7c381d 4113 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
4114 check_irq_on();
4115
35386e3b
CL
4116 /*
4117 * We only take the l3 lock if absolutely necessary and we
4118 * have established with reasonable certainty that
4119 * we can do some work if the lock was obtained.
4120 */
aab2207c 4121 l3 = searchp->nodelists[node];
35386e3b 4122
8fce4d8e 4123 reap_alien(searchp, l3);
1da177e4 4124
aab2207c 4125 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4126
35386e3b
CL
4127 /*
4128 * These are racy checks but it does not matter
4129 * if we skip one check or scan twice.
4130 */
e498be7d 4131 if (time_after(l3->next_reap, jiffies))
35386e3b 4132 goto next;
1da177e4 4133
e498be7d 4134 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4135
aab2207c 4136 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4137
ed11d9eb 4138 if (l3->free_touched)
e498be7d 4139 l3->free_touched = 0;
ed11d9eb
CL
4140 else {
4141 int freed;
1da177e4 4142
ed11d9eb
CL
4143 freed = drain_freelist(searchp, l3, (l3->free_limit +
4144 5 * searchp->num - 1) / (5 * searchp->num));
4145 STATS_ADD_REAPED(searchp, freed);
4146 }
35386e3b 4147next:
1da177e4
LT
4148 cond_resched();
4149 }
4150 check_irq_on();
fc0abb14 4151 mutex_unlock(&cache_chain_mutex);
8fce4d8e 4152 next_reap_node();
2244b95a 4153 refresh_cpu_vm_stats(smp_processor_id());
7c5cae36 4154out:
a737b3e2 4155 /* Set up the next iteration */
7c5cae36 4156 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4157}
4158
4159#ifdef CONFIG_PROC_FS
4160
85289f98 4161static void print_slabinfo_header(struct seq_file *m)
1da177e4 4162{
85289f98
PE
4163 /*
4164 * Output format version, so at least we can change it
4165 * without _too_ many complaints.
4166 */
1da177e4 4167#if STATS
85289f98 4168 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4169#else
85289f98 4170 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4171#endif
85289f98
PE
4172 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4173 "<objperslab> <pagesperslab>");
4174 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4175 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4176#if STATS
85289f98 4177 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4178 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4179 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4180#endif
85289f98
PE
4181 seq_putc(m, '\n');
4182}
4183
4184static void *s_start(struct seq_file *m, loff_t *pos)
4185{
4186 loff_t n = *pos;
4187 struct list_head *p;
4188
fc0abb14 4189 mutex_lock(&cache_chain_mutex);
85289f98
PE
4190 if (!n)
4191 print_slabinfo_header(m);
1da177e4
LT
4192 p = cache_chain.next;
4193 while (n--) {
4194 p = p->next;
4195 if (p == &cache_chain)
4196 return NULL;
4197 }
343e0d7a 4198 return list_entry(p, struct kmem_cache, next);
1da177e4
LT
4199}
4200
4201static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4202{
343e0d7a 4203 struct kmem_cache *cachep = p;
1da177e4 4204 ++*pos;
a737b3e2
AM
4205 return cachep->next.next == &cache_chain ?
4206 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
1da177e4
LT
4207}
4208
4209static void s_stop(struct seq_file *m, void *p)
4210{
fc0abb14 4211 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4212}
4213
4214static int s_show(struct seq_file *m, void *p)
4215{
343e0d7a 4216 struct kmem_cache *cachep = p;
b28a02de
PE
4217 struct slab *slabp;
4218 unsigned long active_objs;
4219 unsigned long num_objs;
4220 unsigned long active_slabs = 0;
4221 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4222 const char *name;
1da177e4 4223 char *error = NULL;
e498be7d
CL
4224 int node;
4225 struct kmem_list3 *l3;
1da177e4 4226
1da177e4
LT
4227 active_objs = 0;
4228 num_slabs = 0;
e498be7d
CL
4229 for_each_online_node(node) {
4230 l3 = cachep->nodelists[node];
4231 if (!l3)
4232 continue;
4233
ca3b9b91
RT
4234 check_irq_on();
4235 spin_lock_irq(&l3->list_lock);
e498be7d 4236
7a7c381d 4237 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4238 if (slabp->inuse != cachep->num && !error)
4239 error = "slabs_full accounting error";
4240 active_objs += cachep->num;
4241 active_slabs++;
4242 }
7a7c381d 4243 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4244 if (slabp->inuse == cachep->num && !error)
4245 error = "slabs_partial inuse accounting error";
4246 if (!slabp->inuse && !error)
4247 error = "slabs_partial/inuse accounting error";
4248 active_objs += slabp->inuse;
4249 active_slabs++;
4250 }
7a7c381d 4251 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4252 if (slabp->inuse && !error)
4253 error = "slabs_free/inuse accounting error";
4254 num_slabs++;
4255 }
4256 free_objects += l3->free_objects;
4484ebf1
RT
4257 if (l3->shared)
4258 shared_avail += l3->shared->avail;
e498be7d 4259
ca3b9b91 4260 spin_unlock_irq(&l3->list_lock);
1da177e4 4261 }
b28a02de
PE
4262 num_slabs += active_slabs;
4263 num_objs = num_slabs * cachep->num;
e498be7d 4264 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4265 error = "free_objects accounting error";
4266
b28a02de 4267 name = cachep->name;
1da177e4
LT
4268 if (error)
4269 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4270
4271 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 4272 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 4273 cachep->num, (1 << cachep->gfporder));
1da177e4 4274 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4275 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4276 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4277 active_slabs, num_slabs, shared_avail);
1da177e4 4278#if STATS
b28a02de 4279 { /* list3 stats */
1da177e4
LT
4280 unsigned long high = cachep->high_mark;
4281 unsigned long allocs = cachep->num_allocations;
4282 unsigned long grown = cachep->grown;
4283 unsigned long reaped = cachep->reaped;
4284 unsigned long errors = cachep->errors;
4285 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4286 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4287 unsigned long node_frees = cachep->node_frees;
fb7faf33 4288 unsigned long overflows = cachep->node_overflow;
1da177e4 4289
e498be7d 4290 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 4291 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 4292 reaped, errors, max_freeable, node_allocs,
fb7faf33 4293 node_frees, overflows);
1da177e4
LT
4294 }
4295 /* cpu stats */
4296 {
4297 unsigned long allochit = atomic_read(&cachep->allochit);
4298 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4299 unsigned long freehit = atomic_read(&cachep->freehit);
4300 unsigned long freemiss = atomic_read(&cachep->freemiss);
4301
4302 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4303 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4304 }
4305#endif
4306 seq_putc(m, '\n');
1da177e4
LT
4307 return 0;
4308}
4309
4310/*
4311 * slabinfo_op - iterator that generates /proc/slabinfo
4312 *
4313 * Output layout:
4314 * cache-name
4315 * num-active-objs
4316 * total-objs
4317 * object size
4318 * num-active-slabs
4319 * total-slabs
4320 * num-pages-per-slab
4321 * + further values on SMP and with statistics enabled
4322 */
4323
15ad7cdc 4324const struct seq_operations slabinfo_op = {
b28a02de
PE
4325 .start = s_start,
4326 .next = s_next,
4327 .stop = s_stop,
4328 .show = s_show,
1da177e4
LT
4329};
4330
4331#define MAX_SLABINFO_WRITE 128
4332/**
4333 * slabinfo_write - Tuning for the slab allocator
4334 * @file: unused
4335 * @buffer: user buffer
4336 * @count: data length
4337 * @ppos: unused
4338 */
b28a02de
PE
4339ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4340 size_t count, loff_t *ppos)
1da177e4 4341{
b28a02de 4342 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4343 int limit, batchcount, shared, res;
7a7c381d 4344 struct kmem_cache *cachep;
b28a02de 4345
1da177e4
LT
4346 if (count > MAX_SLABINFO_WRITE)
4347 return -EINVAL;
4348 if (copy_from_user(&kbuf, buffer, count))
4349 return -EFAULT;
b28a02de 4350 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4351
4352 tmp = strchr(kbuf, ' ');
4353 if (!tmp)
4354 return -EINVAL;
4355 *tmp = '\0';
4356 tmp++;
4357 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4358 return -EINVAL;
4359
4360 /* Find the cache in the chain of caches. */
fc0abb14 4361 mutex_lock(&cache_chain_mutex);
1da177e4 4362 res = -EINVAL;
7a7c381d 4363 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4364 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4365 if (limit < 1 || batchcount < 1 ||
4366 batchcount > limit || shared < 0) {
e498be7d 4367 res = 0;
1da177e4 4368 } else {
e498be7d 4369 res = do_tune_cpucache(cachep, limit,
b28a02de 4370 batchcount, shared);
1da177e4
LT
4371 }
4372 break;
4373 }
4374 }
fc0abb14 4375 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4376 if (res >= 0)
4377 res = count;
4378 return res;
4379}
871751e2
AV
4380
4381#ifdef CONFIG_DEBUG_SLAB_LEAK
4382
4383static void *leaks_start(struct seq_file *m, loff_t *pos)
4384{
4385 loff_t n = *pos;
4386 struct list_head *p;
4387
4388 mutex_lock(&cache_chain_mutex);
4389 p = cache_chain.next;
4390 while (n--) {
4391 p = p->next;
4392 if (p == &cache_chain)
4393 return NULL;
4394 }
4395 return list_entry(p, struct kmem_cache, next);
4396}
4397
4398static inline int add_caller(unsigned long *n, unsigned long v)
4399{
4400 unsigned long *p;
4401 int l;
4402 if (!v)
4403 return 1;
4404 l = n[1];
4405 p = n + 2;
4406 while (l) {
4407 int i = l/2;
4408 unsigned long *q = p + 2 * i;
4409 if (*q == v) {
4410 q[1]++;
4411 return 1;
4412 }
4413 if (*q > v) {
4414 l = i;
4415 } else {
4416 p = q + 2;
4417 l -= i + 1;
4418 }
4419 }
4420 if (++n[1] == n[0])
4421 return 0;
4422 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4423 p[0] = v;
4424 p[1] = 1;
4425 return 1;
4426}
4427
4428static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4429{
4430 void *p;
4431 int i;
4432 if (n[0] == n[1])
4433 return;
4434 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4435 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4436 continue;
4437 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4438 return;
4439 }
4440}
4441
4442static void show_symbol(struct seq_file *m, unsigned long address)
4443{
4444#ifdef CONFIG_KALLSYMS
871751e2 4445 unsigned long offset, size;
a5c43dae 4446 char modname[MODULE_NAME_LEN + 1], name[KSYM_NAME_LEN + 1];
871751e2 4447
a5c43dae 4448 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4449 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4450 if (modname[0])
871751e2
AV
4451 seq_printf(m, " [%s]", modname);
4452 return;
4453 }
4454#endif
4455 seq_printf(m, "%p", (void *)address);
4456}
4457
4458static int leaks_show(struct seq_file *m, void *p)
4459{
4460 struct kmem_cache *cachep = p;
871751e2
AV
4461 struct slab *slabp;
4462 struct kmem_list3 *l3;
4463 const char *name;
4464 unsigned long *n = m->private;
4465 int node;
4466 int i;
4467
4468 if (!(cachep->flags & SLAB_STORE_USER))
4469 return 0;
4470 if (!(cachep->flags & SLAB_RED_ZONE))
4471 return 0;
4472
4473 /* OK, we can do it */
4474
4475 n[1] = 0;
4476
4477 for_each_online_node(node) {
4478 l3 = cachep->nodelists[node];
4479 if (!l3)
4480 continue;
4481
4482 check_irq_on();
4483 spin_lock_irq(&l3->list_lock);
4484
7a7c381d 4485 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4486 handle_slab(n, cachep, slabp);
7a7c381d 4487 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4488 handle_slab(n, cachep, slabp);
871751e2
AV
4489 spin_unlock_irq(&l3->list_lock);
4490 }
4491 name = cachep->name;
4492 if (n[0] == n[1]) {
4493 /* Increase the buffer size */
4494 mutex_unlock(&cache_chain_mutex);
4495 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4496 if (!m->private) {
4497 /* Too bad, we are really out */
4498 m->private = n;
4499 mutex_lock(&cache_chain_mutex);
4500 return -ENOMEM;
4501 }
4502 *(unsigned long *)m->private = n[0] * 2;
4503 kfree(n);
4504 mutex_lock(&cache_chain_mutex);
4505 /* Now make sure this entry will be retried */
4506 m->count = m->size;
4507 return 0;
4508 }
4509 for (i = 0; i < n[1]; i++) {
4510 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4511 show_symbol(m, n[2*i+2]);
4512 seq_putc(m, '\n');
4513 }
d2e7b7d0 4514
871751e2
AV
4515 return 0;
4516}
4517
15ad7cdc 4518const struct seq_operations slabstats_op = {
871751e2
AV
4519 .start = leaks_start,
4520 .next = s_next,
4521 .stop = s_stop,
4522 .show = leaks_show,
4523};
4524#endif
1da177e4
LT
4525#endif
4526
00e145b6
MS
4527/**
4528 * ksize - get the actual amount of memory allocated for a given object
4529 * @objp: Pointer to the object
4530 *
4531 * kmalloc may internally round up allocations and return more memory
4532 * than requested. ksize() can be used to determine the actual amount of
4533 * memory allocated. The caller may use this additional memory, even though
4534 * a smaller amount of memory was initially specified with the kmalloc call.
4535 * The caller must guarantee that objp points to a valid object previously
4536 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4537 * must not be freed during the duration of the call.
4538 */
fd76bab2 4539size_t ksize(const void *objp)
1da177e4 4540{
00e145b6
MS
4541 if (unlikely(objp == NULL))
4542 return 0;
1da177e4 4543
6ed5eb22 4544 return obj_size(virt_to_cache(objp));
1da177e4 4545}