]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/slab.c
slob: handle SLAB_PANIC flag
[net-next-2.6.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
1da177e4
LT
98#include <linux/seq_file.h>
99#include <linux/notifier.h>
100#include <linux/kallsyms.h>
101#include <linux/cpu.h>
102#include <linux/sysctl.h>
103#include <linux/module.h>
104#include <linux/rcupdate.h>
543537bd 105#include <linux/string.h>
138ae663 106#include <linux/uaccess.h>
e498be7d 107#include <linux/nodemask.h>
dc85da15 108#include <linux/mempolicy.h>
fc0abb14 109#include <linux/mutex.h>
8a8b6502 110#include <linux/fault-inject.h>
e7eebaf6 111#include <linux/rtmutex.h>
6a2d7a95 112#include <linux/reciprocal_div.h>
1da177e4 113
1da177e4
LT
114#include <asm/cacheflush.h>
115#include <asm/tlbflush.h>
116#include <asm/page.h>
117
118/*
119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
120 * SLAB_RED_ZONE & SLAB_POISON.
121 * 0 for faster, smaller code (especially in the critical paths).
122 *
123 * STATS - 1 to collect stats for /proc/slabinfo.
124 * 0 for faster, smaller code (especially in the critical paths).
125 *
126 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
127 */
128
129#ifdef CONFIG_DEBUG_SLAB
130#define DEBUG 1
131#define STATS 1
132#define FORCED_DEBUG 1
133#else
134#define DEBUG 0
135#define STATS 0
136#define FORCED_DEBUG 0
137#endif
138
1da177e4
LT
139/* Shouldn't this be in a header file somewhere? */
140#define BYTES_PER_WORD sizeof(void *)
141
142#ifndef cache_line_size
143#define cache_line_size() L1_CACHE_BYTES
144#endif
145
146#ifndef ARCH_KMALLOC_MINALIGN
147/*
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
152 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
153 * Note that this flag disables some debug features.
154 */
155#define ARCH_KMALLOC_MINALIGN 0
156#endif
157
158#ifndef ARCH_SLAB_MINALIGN
159/*
160 * Enforce a minimum alignment for all caches.
161 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
162 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
163 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
164 * some debug features.
165 */
166#define ARCH_SLAB_MINALIGN 0
167#endif
168
169#ifndef ARCH_KMALLOC_FLAGS
170#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
171#endif
172
173/* Legal flag mask for kmem_cache_create(). */
174#if DEBUG
175# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
176 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 177 SLAB_CACHE_DMA | \
1da177e4
LT
178 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
179 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 180 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4 181#else
ac2b898c 182# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
1da177e4
LT
183 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
184 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 185 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4
LT
186#endif
187
188/*
189 * kmem_bufctl_t:
190 *
191 * Bufctl's are used for linking objs within a slab
192 * linked offsets.
193 *
194 * This implementation relies on "struct page" for locating the cache &
195 * slab an object belongs to.
196 * This allows the bufctl structure to be small (one int), but limits
197 * the number of objects a slab (not a cache) can contain when off-slab
198 * bufctls are used. The limit is the size of the largest general cache
199 * that does not use off-slab slabs.
200 * For 32bit archs with 4 kB pages, is this 56.
201 * This is not serious, as it is only for large objects, when it is unwise
202 * to have too many per slab.
203 * Note: This limit can be raised by introducing a general cache whose size
204 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
205 */
206
fa5b08d5 207typedef unsigned int kmem_bufctl_t;
1da177e4
LT
208#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
209#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
210#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
211#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 212
1da177e4
LT
213/*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220struct slab {
b28a02de
PE
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
1da177e4
LT
227};
228
229/*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245struct slab_rcu {
b28a02de 246 struct rcu_head head;
343e0d7a 247 struct kmem_cache *cachep;
b28a02de 248 void *addr;
1da177e4
LT
249};
250
251/*
252 * struct array_cache
253 *
1da177e4
LT
254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
e498be7d 268 spinlock_t lock;
a737b3e2
AM
269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
274 */
1da177e4
LT
275};
276
a737b3e2
AM
277/*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
1da177e4
LT
280 */
281#define BOOT_CPUCACHE_ENTRIES 1
282struct arraycache_init {
283 struct array_cache cache;
b28a02de 284 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
285};
286
287/*
e498be7d 288 * The slab lists for all objects.
1da177e4
LT
289 */
290struct kmem_list3 {
b28a02de
PE
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
b28a02de 295 unsigned int free_limit;
2e1217cf 296 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
35386e3b
CL
300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
1da177e4
LT
302};
303
e498be7d
CL
304/*
305 * Need this for bootstrapping a per node allocator.
306 */
307#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309#define CACHE_CACHE 0
310#define SIZE_AC 1
311#define SIZE_L3 (1 + MAX_NUMNODES)
312
ed11d9eb
CL
313static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
2ed3a4ef 317static int enable_cpucache(struct kmem_cache *cachep);
65f27f38 318static void cache_reap(struct work_struct *unused);
ed11d9eb 319
e498be7d 320/*
a737b3e2
AM
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 323 */
7243cc05 324static __always_inline int index_of(const size_t size)
e498be7d 325{
5ec8a847
SR
326 extern void __bad_size(void);
327
e498be7d
CL
328 if (__builtin_constant_p(size)) {
329 int i = 0;
330
331#define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
336#include "linux/kmalloc_sizes.h"
337#undef CACHE
5ec8a847 338 __bad_size();
7243cc05 339 } else
5ec8a847 340 __bad_size();
e498be7d
CL
341 return 0;
342}
343
e0a42726
IM
344static int slab_early_init = 1;
345
e498be7d
CL
346#define INDEX_AC index_of(sizeof(struct arraycache_init))
347#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 348
5295a74c 349static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
350{
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
2e1217cf 356 parent->colour_next = 0;
e498be7d
CL
357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
360}
361
a737b3e2
AM
362#define MAKE_LIST(cachep, listp, slab, nodeid) \
363 do { \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
366 } while (0)
367
a737b3e2
AM
368#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 do { \
e498be7d
CL
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 } while (0)
1da177e4
LT
374
375/*
343e0d7a 376 * struct kmem_cache
1da177e4
LT
377 *
378 * manages a cache.
379 */
b28a02de 380
2109a2d1 381struct kmem_cache {
1da177e4 382/* 1) per-cpu data, touched during every alloc/free */
b28a02de 383 struct array_cache *array[NR_CPUS];
b5d8ca7c 384/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
385 unsigned int batchcount;
386 unsigned int limit;
387 unsigned int shared;
b5d8ca7c 388
3dafccf2 389 unsigned int buffer_size;
6a2d7a95 390 u32 reciprocal_buffer_size;
b5d8ca7c 391/* 3) touched by every alloc & free from the backend */
b5d8ca7c 392
a737b3e2
AM
393 unsigned int flags; /* constant flags */
394 unsigned int num; /* # of objs per slab */
1da177e4 395
b5d8ca7c 396/* 4) cache_grow/shrink */
1da177e4 397 /* order of pgs per slab (2^n) */
b28a02de 398 unsigned int gfporder;
1da177e4
LT
399
400 /* force GFP flags, e.g. GFP_DMA */
b28a02de 401 gfp_t gfpflags;
1da177e4 402
a737b3e2 403 size_t colour; /* cache colouring range */
b28a02de 404 unsigned int colour_off; /* colour offset */
343e0d7a 405 struct kmem_cache *slabp_cache;
b28a02de 406 unsigned int slab_size;
a737b3e2 407 unsigned int dflags; /* dynamic flags */
1da177e4
LT
408
409 /* constructor func */
343e0d7a 410 void (*ctor) (void *, struct kmem_cache *, unsigned long);
1da177e4
LT
411
412 /* de-constructor func */
343e0d7a 413 void (*dtor) (void *, struct kmem_cache *, unsigned long);
1da177e4 414
b5d8ca7c 415/* 5) cache creation/removal */
b28a02de
PE
416 const char *name;
417 struct list_head next;
1da177e4 418
b5d8ca7c 419/* 6) statistics */
1da177e4 420#if STATS
b28a02de
PE
421 unsigned long num_active;
422 unsigned long num_allocations;
423 unsigned long high_mark;
424 unsigned long grown;
425 unsigned long reaped;
426 unsigned long errors;
427 unsigned long max_freeable;
428 unsigned long node_allocs;
429 unsigned long node_frees;
fb7faf33 430 unsigned long node_overflow;
b28a02de
PE
431 atomic_t allochit;
432 atomic_t allocmiss;
433 atomic_t freehit;
434 atomic_t freemiss;
1da177e4
LT
435#endif
436#if DEBUG
3dafccf2
MS
437 /*
438 * If debugging is enabled, then the allocator can add additional
439 * fields and/or padding to every object. buffer_size contains the total
440 * object size including these internal fields, the following two
441 * variables contain the offset to the user object and its size.
442 */
443 int obj_offset;
444 int obj_size;
1da177e4 445#endif
8da3430d
ED
446 /*
447 * We put nodelists[] at the end of kmem_cache, because we want to size
448 * this array to nr_node_ids slots instead of MAX_NUMNODES
449 * (see kmem_cache_init())
450 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
451 * is statically defined, so we reserve the max number of nodes.
452 */
453 struct kmem_list3 *nodelists[MAX_NUMNODES];
454 /*
455 * Do not add fields after nodelists[]
456 */
1da177e4
LT
457};
458
459#define CFLGS_OFF_SLAB (0x80000000UL)
460#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
461
462#define BATCHREFILL_LIMIT 16
a737b3e2
AM
463/*
464 * Optimization question: fewer reaps means less probability for unnessary
465 * cpucache drain/refill cycles.
1da177e4 466 *
dc6f3f27 467 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
468 * which could lock up otherwise freeable slabs.
469 */
470#define REAPTIMEOUT_CPUC (2*HZ)
471#define REAPTIMEOUT_LIST3 (4*HZ)
472
473#if STATS
474#define STATS_INC_ACTIVE(x) ((x)->num_active++)
475#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
476#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
477#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 478#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
479#define STATS_SET_HIGH(x) \
480 do { \
481 if ((x)->num_active > (x)->high_mark) \
482 (x)->high_mark = (x)->num_active; \
483 } while (0)
1da177e4
LT
484#define STATS_INC_ERR(x) ((x)->errors++)
485#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 486#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 487#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
488#define STATS_SET_FREEABLE(x, i) \
489 do { \
490 if ((x)->max_freeable < i) \
491 (x)->max_freeable = i; \
492 } while (0)
1da177e4
LT
493#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
494#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
495#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
496#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
497#else
498#define STATS_INC_ACTIVE(x) do { } while (0)
499#define STATS_DEC_ACTIVE(x) do { } while (0)
500#define STATS_INC_ALLOCED(x) do { } while (0)
501#define STATS_INC_GROWN(x) do { } while (0)
ed11d9eb 502#define STATS_ADD_REAPED(x,y) do { } while (0)
1da177e4
LT
503#define STATS_SET_HIGH(x) do { } while (0)
504#define STATS_INC_ERR(x) do { } while (0)
505#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 506#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 507#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 508#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
509#define STATS_INC_ALLOCHIT(x) do { } while (0)
510#define STATS_INC_ALLOCMISS(x) do { } while (0)
511#define STATS_INC_FREEHIT(x) do { } while (0)
512#define STATS_INC_FREEMISS(x) do { } while (0)
513#endif
514
515#if DEBUG
1da177e4 516
a737b3e2
AM
517/*
518 * memory layout of objects:
1da177e4 519 * 0 : objp
3dafccf2 520 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
521 * the end of an object is aligned with the end of the real
522 * allocation. Catches writes behind the end of the allocation.
3dafccf2 523 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 524 * redzone word.
3dafccf2
MS
525 * cachep->obj_offset: The real object.
526 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
527 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
528 * [BYTES_PER_WORD long]
1da177e4 529 */
343e0d7a 530static int obj_offset(struct kmem_cache *cachep)
1da177e4 531{
3dafccf2 532 return cachep->obj_offset;
1da177e4
LT
533}
534
343e0d7a 535static int obj_size(struct kmem_cache *cachep)
1da177e4 536{
3dafccf2 537 return cachep->obj_size;
1da177e4
LT
538}
539
343e0d7a 540static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
541{
542 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
3dafccf2 543 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
1da177e4
LT
544}
545
343e0d7a 546static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
547{
548 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
549 if (cachep->flags & SLAB_STORE_USER)
3dafccf2 550 return (unsigned long *)(objp + cachep->buffer_size -
b28a02de 551 2 * BYTES_PER_WORD);
3dafccf2 552 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
553}
554
343e0d7a 555static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
556{
557 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 558 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
559}
560
561#else
562
3dafccf2
MS
563#define obj_offset(x) 0
564#define obj_size(cachep) (cachep->buffer_size)
1da177e4
LT
565#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
566#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
567#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
568
569#endif
570
571/*
a737b3e2
AM
572 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
573 * order.
1da177e4
LT
574 */
575#if defined(CONFIG_LARGE_ALLOCS)
576#define MAX_OBJ_ORDER 13 /* up to 32Mb */
577#define MAX_GFP_ORDER 13 /* up to 32Mb */
578#elif defined(CONFIG_MMU)
579#define MAX_OBJ_ORDER 5 /* 32 pages */
580#define MAX_GFP_ORDER 5 /* 32 pages */
581#else
582#define MAX_OBJ_ORDER 8 /* up to 1Mb */
583#define MAX_GFP_ORDER 8 /* up to 1Mb */
584#endif
585
586/*
587 * Do not go above this order unless 0 objects fit into the slab.
588 */
589#define BREAK_GFP_ORDER_HI 1
590#define BREAK_GFP_ORDER_LO 0
591static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
592
a737b3e2
AM
593/*
594 * Functions for storing/retrieving the cachep and or slab from the page
595 * allocator. These are used to find the slab an obj belongs to. With kfree(),
596 * these are used to find the cache which an obj belongs to.
1da177e4 597 */
065d41cb
PE
598static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
599{
600 page->lru.next = (struct list_head *)cache;
601}
602
603static inline struct kmem_cache *page_get_cache(struct page *page)
604{
d85f3385 605 page = compound_head(page);
ddc2e812 606 BUG_ON(!PageSlab(page));
065d41cb
PE
607 return (struct kmem_cache *)page->lru.next;
608}
609
610static inline void page_set_slab(struct page *page, struct slab *slab)
611{
612 page->lru.prev = (struct list_head *)slab;
613}
614
615static inline struct slab *page_get_slab(struct page *page)
616{
ddc2e812 617 BUG_ON(!PageSlab(page));
065d41cb
PE
618 return (struct slab *)page->lru.prev;
619}
1da177e4 620
6ed5eb22
PE
621static inline struct kmem_cache *virt_to_cache(const void *obj)
622{
b49af68f 623 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
624 return page_get_cache(page);
625}
626
627static inline struct slab *virt_to_slab(const void *obj)
628{
b49af68f 629 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
630 return page_get_slab(page);
631}
632
8fea4e96
PE
633static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
634 unsigned int idx)
635{
636 return slab->s_mem + cache->buffer_size * idx;
637}
638
6a2d7a95
ED
639/*
640 * We want to avoid an expensive divide : (offset / cache->buffer_size)
641 * Using the fact that buffer_size is a constant for a particular cache,
642 * we can replace (offset / cache->buffer_size) by
643 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
644 */
645static inline unsigned int obj_to_index(const struct kmem_cache *cache,
646 const struct slab *slab, void *obj)
8fea4e96 647{
6a2d7a95
ED
648 u32 offset = (obj - slab->s_mem);
649 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
650}
651
a737b3e2
AM
652/*
653 * These are the default caches for kmalloc. Custom caches can have other sizes.
654 */
1da177e4
LT
655struct cache_sizes malloc_sizes[] = {
656#define CACHE(x) { .cs_size = (x) },
657#include <linux/kmalloc_sizes.h>
658 CACHE(ULONG_MAX)
659#undef CACHE
660};
661EXPORT_SYMBOL(malloc_sizes);
662
663/* Must match cache_sizes above. Out of line to keep cache footprint low. */
664struct cache_names {
665 char *name;
666 char *name_dma;
667};
668
669static struct cache_names __initdata cache_names[] = {
670#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
671#include <linux/kmalloc_sizes.h>
b28a02de 672 {NULL,}
1da177e4
LT
673#undef CACHE
674};
675
676static struct arraycache_init initarray_cache __initdata =
b28a02de 677 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 678static struct arraycache_init initarray_generic =
b28a02de 679 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
680
681/* internal cache of cache description objs */
343e0d7a 682static struct kmem_cache cache_cache = {
b28a02de
PE
683 .batchcount = 1,
684 .limit = BOOT_CPUCACHE_ENTRIES,
685 .shared = 1,
343e0d7a 686 .buffer_size = sizeof(struct kmem_cache),
b28a02de 687 .name = "kmem_cache",
1da177e4
LT
688};
689
056c6241
RT
690#define BAD_ALIEN_MAGIC 0x01020304ul
691
f1aaee53
AV
692#ifdef CONFIG_LOCKDEP
693
694/*
695 * Slab sometimes uses the kmalloc slabs to store the slab headers
696 * for other slabs "off slab".
697 * The locking for this is tricky in that it nests within the locks
698 * of all other slabs in a few places; to deal with this special
699 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
700 *
701 * We set lock class for alien array caches which are up during init.
702 * The lock annotation will be lost if all cpus of a node goes down and
703 * then comes back up during hotplug
f1aaee53 704 */
056c6241
RT
705static struct lock_class_key on_slab_l3_key;
706static struct lock_class_key on_slab_alc_key;
707
708static inline void init_lock_keys(void)
f1aaee53 709
f1aaee53
AV
710{
711 int q;
056c6241
RT
712 struct cache_sizes *s = malloc_sizes;
713
714 while (s->cs_size != ULONG_MAX) {
715 for_each_node(q) {
716 struct array_cache **alc;
717 int r;
718 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
719 if (!l3 || OFF_SLAB(s->cs_cachep))
720 continue;
721 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
722 alc = l3->alien;
723 /*
724 * FIXME: This check for BAD_ALIEN_MAGIC
725 * should go away when common slab code is taught to
726 * work even without alien caches.
727 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
728 * for alloc_alien_cache,
729 */
730 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
731 continue;
732 for_each_node(r) {
733 if (alc[r])
734 lockdep_set_class(&alc[r]->lock,
735 &on_slab_alc_key);
736 }
737 }
738 s++;
f1aaee53
AV
739 }
740}
f1aaee53 741#else
056c6241 742static inline void init_lock_keys(void)
f1aaee53
AV
743{
744}
745#endif
746
8f5be20b
RT
747/*
748 * 1. Guard access to the cache-chain.
749 * 2. Protect sanity of cpu_online_map against cpu hotplug events
750 */
fc0abb14 751static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
752static struct list_head cache_chain;
753
1da177e4
LT
754/*
755 * chicken and egg problem: delay the per-cpu array allocation
756 * until the general caches are up.
757 */
758static enum {
759 NONE,
e498be7d
CL
760 PARTIAL_AC,
761 PARTIAL_L3,
1da177e4
LT
762 FULL
763} g_cpucache_up;
764
39d24e64
MK
765/*
766 * used by boot code to determine if it can use slab based allocator
767 */
768int slab_is_available(void)
769{
770 return g_cpucache_up == FULL;
771}
772
52bad64d 773static DEFINE_PER_CPU(struct delayed_work, reap_work);
1da177e4 774
343e0d7a 775static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
776{
777 return cachep->array[smp_processor_id()];
778}
779
a737b3e2
AM
780static inline struct kmem_cache *__find_general_cachep(size_t size,
781 gfp_t gfpflags)
1da177e4
LT
782{
783 struct cache_sizes *csizep = malloc_sizes;
784
785#if DEBUG
786 /* This happens if someone tries to call
b28a02de
PE
787 * kmem_cache_create(), or __kmalloc(), before
788 * the generic caches are initialized.
789 */
c7e43c78 790 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4
LT
791#endif
792 while (size > csizep->cs_size)
793 csizep++;
794
795 /*
0abf40c1 796 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
797 * has cs_{dma,}cachep==NULL. Thus no special case
798 * for large kmalloc calls required.
799 */
4b51d669 800#ifdef CONFIG_ZONE_DMA
1da177e4
LT
801 if (unlikely(gfpflags & GFP_DMA))
802 return csizep->cs_dmacachep;
4b51d669 803#endif
1da177e4
LT
804 return csizep->cs_cachep;
805}
806
b221385b 807static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
808{
809 return __find_general_cachep(size, gfpflags);
810}
97e2bde4 811
fbaccacf 812static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 813{
fbaccacf
SR
814 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
815}
1da177e4 816
a737b3e2
AM
817/*
818 * Calculate the number of objects and left-over bytes for a given buffer size.
819 */
fbaccacf
SR
820static void cache_estimate(unsigned long gfporder, size_t buffer_size,
821 size_t align, int flags, size_t *left_over,
822 unsigned int *num)
823{
824 int nr_objs;
825 size_t mgmt_size;
826 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 827
fbaccacf
SR
828 /*
829 * The slab management structure can be either off the slab or
830 * on it. For the latter case, the memory allocated for a
831 * slab is used for:
832 *
833 * - The struct slab
834 * - One kmem_bufctl_t for each object
835 * - Padding to respect alignment of @align
836 * - @buffer_size bytes for each object
837 *
838 * If the slab management structure is off the slab, then the
839 * alignment will already be calculated into the size. Because
840 * the slabs are all pages aligned, the objects will be at the
841 * correct alignment when allocated.
842 */
843 if (flags & CFLGS_OFF_SLAB) {
844 mgmt_size = 0;
845 nr_objs = slab_size / buffer_size;
846
847 if (nr_objs > SLAB_LIMIT)
848 nr_objs = SLAB_LIMIT;
849 } else {
850 /*
851 * Ignore padding for the initial guess. The padding
852 * is at most @align-1 bytes, and @buffer_size is at
853 * least @align. In the worst case, this result will
854 * be one greater than the number of objects that fit
855 * into the memory allocation when taking the padding
856 * into account.
857 */
858 nr_objs = (slab_size - sizeof(struct slab)) /
859 (buffer_size + sizeof(kmem_bufctl_t));
860
861 /*
862 * This calculated number will be either the right
863 * amount, or one greater than what we want.
864 */
865 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
866 > slab_size)
867 nr_objs--;
868
869 if (nr_objs > SLAB_LIMIT)
870 nr_objs = SLAB_LIMIT;
871
872 mgmt_size = slab_mgmt_size(nr_objs, align);
873 }
874 *num = nr_objs;
875 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
876}
877
878#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
879
a737b3e2
AM
880static void __slab_error(const char *function, struct kmem_cache *cachep,
881 char *msg)
1da177e4
LT
882{
883 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 884 function, cachep->name, msg);
1da177e4
LT
885 dump_stack();
886}
887
3395ee05
PM
888/*
889 * By default on NUMA we use alien caches to stage the freeing of
890 * objects allocated from other nodes. This causes massive memory
891 * inefficiencies when using fake NUMA setup to split memory into a
892 * large number of small nodes, so it can be disabled on the command
893 * line
894 */
895
896static int use_alien_caches __read_mostly = 1;
897static int __init noaliencache_setup(char *s)
898{
899 use_alien_caches = 0;
900 return 1;
901}
902__setup("noaliencache", noaliencache_setup);
903
8fce4d8e
CL
904#ifdef CONFIG_NUMA
905/*
906 * Special reaping functions for NUMA systems called from cache_reap().
907 * These take care of doing round robin flushing of alien caches (containing
908 * objects freed on different nodes from which they were allocated) and the
909 * flushing of remote pcps by calling drain_node_pages.
910 */
911static DEFINE_PER_CPU(unsigned long, reap_node);
912
913static void init_reap_node(int cpu)
914{
915 int node;
916
917 node = next_node(cpu_to_node(cpu), node_online_map);
918 if (node == MAX_NUMNODES)
442295c9 919 node = first_node(node_online_map);
8fce4d8e 920
7f6b8876 921 per_cpu(reap_node, cpu) = node;
8fce4d8e
CL
922}
923
924static void next_reap_node(void)
925{
926 int node = __get_cpu_var(reap_node);
927
928 /*
929 * Also drain per cpu pages on remote zones
930 */
931 if (node != numa_node_id())
932 drain_node_pages(node);
933
934 node = next_node(node, node_online_map);
935 if (unlikely(node >= MAX_NUMNODES))
936 node = first_node(node_online_map);
937 __get_cpu_var(reap_node) = node;
938}
939
940#else
941#define init_reap_node(cpu) do { } while (0)
942#define next_reap_node(void) do { } while (0)
943#endif
944
1da177e4
LT
945/*
946 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
947 * via the workqueue/eventd.
948 * Add the CPU number into the expiration time to minimize the possibility of
949 * the CPUs getting into lockstep and contending for the global cache chain
950 * lock.
951 */
952static void __devinit start_cpu_timer(int cpu)
953{
52bad64d 954 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
1da177e4
LT
955
956 /*
957 * When this gets called from do_initcalls via cpucache_init(),
958 * init_workqueues() has already run, so keventd will be setup
959 * at that time.
960 */
52bad64d 961 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 962 init_reap_node(cpu);
65f27f38 963 INIT_DELAYED_WORK(reap_work, cache_reap);
2b284214
AV
964 schedule_delayed_work_on(cpu, reap_work,
965 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
966 }
967}
968
e498be7d 969static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 970 int batchcount)
1da177e4 971{
b28a02de 972 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
973 struct array_cache *nc = NULL;
974
e498be7d 975 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
976 if (nc) {
977 nc->avail = 0;
978 nc->limit = entries;
979 nc->batchcount = batchcount;
980 nc->touched = 0;
e498be7d 981 spin_lock_init(&nc->lock);
1da177e4
LT
982 }
983 return nc;
984}
985
3ded175a
CL
986/*
987 * Transfer objects in one arraycache to another.
988 * Locking must be handled by the caller.
989 *
990 * Return the number of entries transferred.
991 */
992static int transfer_objects(struct array_cache *to,
993 struct array_cache *from, unsigned int max)
994{
995 /* Figure out how many entries to transfer */
996 int nr = min(min(from->avail, max), to->limit - to->avail);
997
998 if (!nr)
999 return 0;
1000
1001 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1002 sizeof(void *) *nr);
1003
1004 from->avail -= nr;
1005 to->avail += nr;
1006 to->touched = 1;
1007 return nr;
1008}
1009
765c4507
CL
1010#ifndef CONFIG_NUMA
1011
1012#define drain_alien_cache(cachep, alien) do { } while (0)
1013#define reap_alien(cachep, l3) do { } while (0)
1014
1015static inline struct array_cache **alloc_alien_cache(int node, int limit)
1016{
1017 return (struct array_cache **)BAD_ALIEN_MAGIC;
1018}
1019
1020static inline void free_alien_cache(struct array_cache **ac_ptr)
1021{
1022}
1023
1024static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1025{
1026 return 0;
1027}
1028
1029static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1030 gfp_t flags)
1031{
1032 return NULL;
1033}
1034
8b98c169 1035static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1036 gfp_t flags, int nodeid)
1037{
1038 return NULL;
1039}
1040
1041#else /* CONFIG_NUMA */
1042
8b98c169 1043static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1044static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1045
5295a74c 1046static struct array_cache **alloc_alien_cache(int node, int limit)
e498be7d
CL
1047{
1048 struct array_cache **ac_ptr;
8ef82866 1049 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1050 int i;
1051
1052 if (limit > 1)
1053 limit = 12;
1054 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1055 if (ac_ptr) {
1056 for_each_node(i) {
1057 if (i == node || !node_online(i)) {
1058 ac_ptr[i] = NULL;
1059 continue;
1060 }
1061 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1062 if (!ac_ptr[i]) {
b28a02de 1063 for (i--; i <= 0; i--)
e498be7d
CL
1064 kfree(ac_ptr[i]);
1065 kfree(ac_ptr);
1066 return NULL;
1067 }
1068 }
1069 }
1070 return ac_ptr;
1071}
1072
5295a74c 1073static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1074{
1075 int i;
1076
1077 if (!ac_ptr)
1078 return;
e498be7d 1079 for_each_node(i)
b28a02de 1080 kfree(ac_ptr[i]);
e498be7d
CL
1081 kfree(ac_ptr);
1082}
1083
343e0d7a 1084static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1085 struct array_cache *ac, int node)
e498be7d
CL
1086{
1087 struct kmem_list3 *rl3 = cachep->nodelists[node];
1088
1089 if (ac->avail) {
1090 spin_lock(&rl3->list_lock);
e00946fe
CL
1091 /*
1092 * Stuff objects into the remote nodes shared array first.
1093 * That way we could avoid the overhead of putting the objects
1094 * into the free lists and getting them back later.
1095 */
693f7d36
JS
1096 if (rl3->shared)
1097 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1098
ff69416e 1099 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1100 ac->avail = 0;
1101 spin_unlock(&rl3->list_lock);
1102 }
1103}
1104
8fce4d8e
CL
1105/*
1106 * Called from cache_reap() to regularly drain alien caches round robin.
1107 */
1108static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1109{
1110 int node = __get_cpu_var(reap_node);
1111
1112 if (l3->alien) {
1113 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1114
1115 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1116 __drain_alien_cache(cachep, ac, node);
1117 spin_unlock_irq(&ac->lock);
1118 }
1119 }
1120}
1121
a737b3e2
AM
1122static void drain_alien_cache(struct kmem_cache *cachep,
1123 struct array_cache **alien)
e498be7d 1124{
b28a02de 1125 int i = 0;
e498be7d
CL
1126 struct array_cache *ac;
1127 unsigned long flags;
1128
1129 for_each_online_node(i) {
4484ebf1 1130 ac = alien[i];
e498be7d
CL
1131 if (ac) {
1132 spin_lock_irqsave(&ac->lock, flags);
1133 __drain_alien_cache(cachep, ac, i);
1134 spin_unlock_irqrestore(&ac->lock, flags);
1135 }
1136 }
1137}
729bd0b7 1138
873623df 1139static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1140{
1141 struct slab *slabp = virt_to_slab(objp);
1142 int nodeid = slabp->nodeid;
1143 struct kmem_list3 *l3;
1144 struct array_cache *alien = NULL;
1ca4cb24
PE
1145 int node;
1146
1147 node = numa_node_id();
729bd0b7
PE
1148
1149 /*
1150 * Make sure we are not freeing a object from another node to the array
1151 * cache on this cpu.
1152 */
62918a03 1153 if (likely(slabp->nodeid == node))
729bd0b7
PE
1154 return 0;
1155
1ca4cb24 1156 l3 = cachep->nodelists[node];
729bd0b7
PE
1157 STATS_INC_NODEFREES(cachep);
1158 if (l3->alien && l3->alien[nodeid]) {
1159 alien = l3->alien[nodeid];
873623df 1160 spin_lock(&alien->lock);
729bd0b7
PE
1161 if (unlikely(alien->avail == alien->limit)) {
1162 STATS_INC_ACOVERFLOW(cachep);
1163 __drain_alien_cache(cachep, alien, nodeid);
1164 }
1165 alien->entry[alien->avail++] = objp;
1166 spin_unlock(&alien->lock);
1167 } else {
1168 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1169 free_block(cachep, &objp, 1, nodeid);
1170 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1171 }
1172 return 1;
1173}
e498be7d
CL
1174#endif
1175
8c78f307 1176static int __cpuinit cpuup_callback(struct notifier_block *nfb,
b28a02de 1177 unsigned long action, void *hcpu)
1da177e4
LT
1178{
1179 long cpu = (long)hcpu;
343e0d7a 1180 struct kmem_cache *cachep;
e498be7d
CL
1181 struct kmem_list3 *l3 = NULL;
1182 int node = cpu_to_node(cpu);
1183 int memsize = sizeof(struct kmem_list3);
1da177e4
LT
1184
1185 switch (action) {
1186 case CPU_UP_PREPARE:
fc0abb14 1187 mutex_lock(&cache_chain_mutex);
a737b3e2
AM
1188 /*
1189 * We need to do this right in the beginning since
e498be7d
CL
1190 * alloc_arraycache's are going to use this list.
1191 * kmalloc_node allows us to add the slab to the right
1192 * kmem_list3 and not this cpu's kmem_list3
1193 */
1194
1da177e4 1195 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2
AM
1196 /*
1197 * Set up the size64 kmemlist for cpu before we can
e498be7d
CL
1198 * begin anything. Make sure some other cpu on this
1199 * node has not already allocated this
1200 */
1201 if (!cachep->nodelists[node]) {
a737b3e2
AM
1202 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1203 if (!l3)
e498be7d
CL
1204 goto bad;
1205 kmem_list3_init(l3);
1206 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 1207 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1208
4484ebf1
RT
1209 /*
1210 * The l3s don't come and go as CPUs come and
1211 * go. cache_chain_mutex is sufficient
1212 * protection here.
1213 */
e498be7d
CL
1214 cachep->nodelists[node] = l3;
1215 }
1da177e4 1216
e498be7d
CL
1217 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1218 cachep->nodelists[node]->free_limit =
a737b3e2
AM
1219 (1 + nr_cpus_node(node)) *
1220 cachep->batchcount + cachep->num;
e498be7d
CL
1221 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1222 }
1223
a737b3e2
AM
1224 /*
1225 * Now we can go ahead with allocating the shared arrays and
1226 * array caches
1227 */
e498be7d 1228 list_for_each_entry(cachep, &cache_chain, next) {
cd105df4 1229 struct array_cache *nc;
63109846 1230 struct array_cache *shared = NULL;
3395ee05 1231 struct array_cache **alien = NULL;
cd105df4 1232
e498be7d 1233 nc = alloc_arraycache(node, cachep->limit,
4484ebf1 1234 cachep->batchcount);
1da177e4
LT
1235 if (!nc)
1236 goto bad;
63109846
ED
1237 if (cachep->shared) {
1238 shared = alloc_arraycache(node,
4484ebf1
RT
1239 cachep->shared * cachep->batchcount,
1240 0xbaadf00d);
63109846
ED
1241 if (!shared)
1242 goto bad;
1243 }
3395ee05
PM
1244 if (use_alien_caches) {
1245 alien = alloc_alien_cache(node, cachep->limit);
1246 if (!alien)
1247 goto bad;
1248 }
1da177e4 1249 cachep->array[cpu] = nc;
e498be7d
CL
1250 l3 = cachep->nodelists[node];
1251 BUG_ON(!l3);
e498be7d 1252
4484ebf1
RT
1253 spin_lock_irq(&l3->list_lock);
1254 if (!l3->shared) {
1255 /*
1256 * We are serialised from CPU_DEAD or
1257 * CPU_UP_CANCELLED by the cpucontrol lock
1258 */
1259 l3->shared = shared;
1260 shared = NULL;
e498be7d 1261 }
4484ebf1
RT
1262#ifdef CONFIG_NUMA
1263 if (!l3->alien) {
1264 l3->alien = alien;
1265 alien = NULL;
1266 }
1267#endif
1268 spin_unlock_irq(&l3->list_lock);
4484ebf1
RT
1269 kfree(shared);
1270 free_alien_cache(alien);
1da177e4 1271 }
1da177e4
LT
1272 break;
1273 case CPU_ONLINE:
8f5be20b 1274 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1275 start_cpu_timer(cpu);
1276 break;
1277#ifdef CONFIG_HOTPLUG_CPU
8f5be20b
RT
1278 case CPU_DOWN_PREPARE:
1279 mutex_lock(&cache_chain_mutex);
1280 break;
1281 case CPU_DOWN_FAILED:
1282 mutex_unlock(&cache_chain_mutex);
1283 break;
1da177e4 1284 case CPU_DEAD:
4484ebf1
RT
1285 /*
1286 * Even if all the cpus of a node are down, we don't free the
1287 * kmem_list3 of any cache. This to avoid a race between
1288 * cpu_down, and a kmalloc allocation from another cpu for
1289 * memory from the node of the cpu going down. The list3
1290 * structure is usually allocated from kmem_cache_create() and
1291 * gets destroyed at kmem_cache_destroy().
1292 */
1da177e4 1293 /* fall thru */
8f5be20b 1294#endif
1da177e4 1295 case CPU_UP_CANCELED:
1da177e4
LT
1296 list_for_each_entry(cachep, &cache_chain, next) {
1297 struct array_cache *nc;
4484ebf1
RT
1298 struct array_cache *shared;
1299 struct array_cache **alien;
e498be7d 1300 cpumask_t mask;
1da177e4 1301
e498be7d 1302 mask = node_to_cpumask(node);
1da177e4
LT
1303 /* cpu is dead; no one can alloc from it. */
1304 nc = cachep->array[cpu];
1305 cachep->array[cpu] = NULL;
e498be7d
CL
1306 l3 = cachep->nodelists[node];
1307
1308 if (!l3)
4484ebf1 1309 goto free_array_cache;
e498be7d 1310
ca3b9b91 1311 spin_lock_irq(&l3->list_lock);
e498be7d
CL
1312
1313 /* Free limit for this kmem_list3 */
1314 l3->free_limit -= cachep->batchcount;
1315 if (nc)
ff69416e 1316 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
1317
1318 if (!cpus_empty(mask)) {
ca3b9b91 1319 spin_unlock_irq(&l3->list_lock);
4484ebf1 1320 goto free_array_cache;
b28a02de 1321 }
e498be7d 1322
4484ebf1
RT
1323 shared = l3->shared;
1324 if (shared) {
63109846
ED
1325 free_block(cachep, shared->entry,
1326 shared->avail, node);
e498be7d
CL
1327 l3->shared = NULL;
1328 }
e498be7d 1329
4484ebf1
RT
1330 alien = l3->alien;
1331 l3->alien = NULL;
1332
1333 spin_unlock_irq(&l3->list_lock);
1334
1335 kfree(shared);
1336 if (alien) {
1337 drain_alien_cache(cachep, alien);
1338 free_alien_cache(alien);
e498be7d 1339 }
4484ebf1 1340free_array_cache:
1da177e4
LT
1341 kfree(nc);
1342 }
4484ebf1
RT
1343 /*
1344 * In the previous loop, all the objects were freed to
1345 * the respective cache's slabs, now we can go ahead and
1346 * shrink each nodelist to its limit.
1347 */
1348 list_for_each_entry(cachep, &cache_chain, next) {
1349 l3 = cachep->nodelists[node];
1350 if (!l3)
1351 continue;
ed11d9eb 1352 drain_freelist(cachep, l3, l3->free_objects);
4484ebf1 1353 }
fc0abb14 1354 mutex_unlock(&cache_chain_mutex);
1da177e4 1355 break;
1da177e4
LT
1356 }
1357 return NOTIFY_OK;
a737b3e2 1358bad:
1da177e4
LT
1359 return NOTIFY_BAD;
1360}
1361
74b85f37
CS
1362static struct notifier_block __cpuinitdata cpucache_notifier = {
1363 &cpuup_callback, NULL, 0
1364};
1da177e4 1365
e498be7d
CL
1366/*
1367 * swap the static kmem_list3 with kmalloced memory
1368 */
a737b3e2
AM
1369static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1370 int nodeid)
e498be7d
CL
1371{
1372 struct kmem_list3 *ptr;
1373
e498be7d
CL
1374 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1375 BUG_ON(!ptr);
1376
1377 local_irq_disable();
1378 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1379 /*
1380 * Do not assume that spinlocks can be initialized via memcpy:
1381 */
1382 spin_lock_init(&ptr->list_lock);
1383
e498be7d
CL
1384 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1385 cachep->nodelists[nodeid] = ptr;
1386 local_irq_enable();
1387}
1388
a737b3e2
AM
1389/*
1390 * Initialisation. Called after the page allocator have been initialised and
1391 * before smp_init().
1da177e4
LT
1392 */
1393void __init kmem_cache_init(void)
1394{
1395 size_t left_over;
1396 struct cache_sizes *sizes;
1397 struct cache_names *names;
e498be7d 1398 int i;
07ed76b2 1399 int order;
1ca4cb24 1400 int node;
e498be7d 1401
62918a03
SS
1402 if (num_possible_nodes() == 1)
1403 use_alien_caches = 0;
1404
e498be7d
CL
1405 for (i = 0; i < NUM_INIT_LISTS; i++) {
1406 kmem_list3_init(&initkmem_list3[i]);
1407 if (i < MAX_NUMNODES)
1408 cache_cache.nodelists[i] = NULL;
1409 }
1da177e4
LT
1410
1411 /*
1412 * Fragmentation resistance on low memory - only use bigger
1413 * page orders on machines with more than 32MB of memory.
1414 */
1415 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1416 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1417
1da177e4
LT
1418 /* Bootstrap is tricky, because several objects are allocated
1419 * from caches that do not exist yet:
a737b3e2
AM
1420 * 1) initialize the cache_cache cache: it contains the struct
1421 * kmem_cache structures of all caches, except cache_cache itself:
1422 * cache_cache is statically allocated.
e498be7d
CL
1423 * Initially an __init data area is used for the head array and the
1424 * kmem_list3 structures, it's replaced with a kmalloc allocated
1425 * array at the end of the bootstrap.
1da177e4 1426 * 2) Create the first kmalloc cache.
343e0d7a 1427 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1428 * An __init data area is used for the head array.
1429 * 3) Create the remaining kmalloc caches, with minimally sized
1430 * head arrays.
1da177e4
LT
1431 * 4) Replace the __init data head arrays for cache_cache and the first
1432 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1433 * 5) Replace the __init data for kmem_list3 for cache_cache and
1434 * the other cache's with kmalloc allocated memory.
1435 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1436 */
1437
1ca4cb24
PE
1438 node = numa_node_id();
1439
1da177e4 1440 /* 1) create the cache_cache */
1da177e4
LT
1441 INIT_LIST_HEAD(&cache_chain);
1442 list_add(&cache_cache.next, &cache_chain);
1443 cache_cache.colour_off = cache_line_size();
1444 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1ca4cb24 1445 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1da177e4 1446
8da3430d
ED
1447 /*
1448 * struct kmem_cache size depends on nr_node_ids, which
1449 * can be less than MAX_NUMNODES.
1450 */
1451 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1452 nr_node_ids * sizeof(struct kmem_list3 *);
1453#if DEBUG
1454 cache_cache.obj_size = cache_cache.buffer_size;
1455#endif
a737b3e2
AM
1456 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1457 cache_line_size());
6a2d7a95
ED
1458 cache_cache.reciprocal_buffer_size =
1459 reciprocal_value(cache_cache.buffer_size);
1da177e4 1460
07ed76b2
JS
1461 for (order = 0; order < MAX_ORDER; order++) {
1462 cache_estimate(order, cache_cache.buffer_size,
1463 cache_line_size(), 0, &left_over, &cache_cache.num);
1464 if (cache_cache.num)
1465 break;
1466 }
40094fa6 1467 BUG_ON(!cache_cache.num);
07ed76b2 1468 cache_cache.gfporder = order;
b28a02de 1469 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1470 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1471 sizeof(struct slab), cache_line_size());
1da177e4
LT
1472
1473 /* 2+3) create the kmalloc caches */
1474 sizes = malloc_sizes;
1475 names = cache_names;
1476
a737b3e2
AM
1477 /*
1478 * Initialize the caches that provide memory for the array cache and the
1479 * kmem_list3 structures first. Without this, further allocations will
1480 * bug.
e498be7d
CL
1481 */
1482
1483 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1484 sizes[INDEX_AC].cs_size,
1485 ARCH_KMALLOC_MINALIGN,
1486 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1487 NULL, NULL);
e498be7d 1488
a737b3e2 1489 if (INDEX_AC != INDEX_L3) {
e498be7d 1490 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1491 kmem_cache_create(names[INDEX_L3].name,
1492 sizes[INDEX_L3].cs_size,
1493 ARCH_KMALLOC_MINALIGN,
1494 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1495 NULL, NULL);
1496 }
e498be7d 1497
e0a42726
IM
1498 slab_early_init = 0;
1499
1da177e4 1500 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1501 /*
1502 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1503 * This should be particularly beneficial on SMP boxes, as it
1504 * eliminates "false sharing".
1505 * Note for systems short on memory removing the alignment will
e498be7d
CL
1506 * allow tighter packing of the smaller caches.
1507 */
a737b3e2 1508 if (!sizes->cs_cachep) {
e498be7d 1509 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1510 sizes->cs_size,
1511 ARCH_KMALLOC_MINALIGN,
1512 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1513 NULL, NULL);
1514 }
4b51d669
CL
1515#ifdef CONFIG_ZONE_DMA
1516 sizes->cs_dmacachep = kmem_cache_create(
1517 names->name_dma,
a737b3e2
AM
1518 sizes->cs_size,
1519 ARCH_KMALLOC_MINALIGN,
1520 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1521 SLAB_PANIC,
1522 NULL, NULL);
4b51d669 1523#endif
1da177e4
LT
1524 sizes++;
1525 names++;
1526 }
1527 /* 4) Replace the bootstrap head arrays */
1528 {
2b2d5493 1529 struct array_cache *ptr;
e498be7d 1530
1da177e4 1531 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1532
1da177e4 1533 local_irq_disable();
9a2dba4b
PE
1534 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1535 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1536 sizeof(struct arraycache_init));
2b2d5493
IM
1537 /*
1538 * Do not assume that spinlocks can be initialized via memcpy:
1539 */
1540 spin_lock_init(&ptr->lock);
1541
1da177e4
LT
1542 cache_cache.array[smp_processor_id()] = ptr;
1543 local_irq_enable();
e498be7d 1544
1da177e4 1545 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1546
1da177e4 1547 local_irq_disable();
9a2dba4b 1548 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1549 != &initarray_generic.cache);
9a2dba4b 1550 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1551 sizeof(struct arraycache_init));
2b2d5493
IM
1552 /*
1553 * Do not assume that spinlocks can be initialized via memcpy:
1554 */
1555 spin_lock_init(&ptr->lock);
1556
e498be7d 1557 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1558 ptr;
1da177e4
LT
1559 local_irq_enable();
1560 }
e498be7d
CL
1561 /* 5) Replace the bootstrap kmem_list3's */
1562 {
1ca4cb24
PE
1563 int nid;
1564
e498be7d 1565 /* Replace the static kmem_list3 structures for the boot cpu */
1ca4cb24 1566 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
e498be7d 1567
1ca4cb24 1568 for_each_online_node(nid) {
e498be7d 1569 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1570 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1571
1572 if (INDEX_AC != INDEX_L3) {
1573 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1574 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1575 }
1576 }
1577 }
1da177e4 1578
e498be7d 1579 /* 6) resize the head arrays to their final sizes */
1da177e4 1580 {
343e0d7a 1581 struct kmem_cache *cachep;
fc0abb14 1582 mutex_lock(&cache_chain_mutex);
1da177e4 1583 list_for_each_entry(cachep, &cache_chain, next)
2ed3a4ef
CL
1584 if (enable_cpucache(cachep))
1585 BUG();
fc0abb14 1586 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1587 }
1588
056c6241
RT
1589 /* Annotate slab for lockdep -- annotate the malloc caches */
1590 init_lock_keys();
1591
1592
1da177e4
LT
1593 /* Done! */
1594 g_cpucache_up = FULL;
1595
a737b3e2
AM
1596 /*
1597 * Register a cpu startup notifier callback that initializes
1598 * cpu_cache_get for all new cpus
1da177e4
LT
1599 */
1600 register_cpu_notifier(&cpucache_notifier);
1da177e4 1601
a737b3e2
AM
1602 /*
1603 * The reap timers are started later, with a module init call: That part
1604 * of the kernel is not yet operational.
1da177e4
LT
1605 */
1606}
1607
1608static int __init cpucache_init(void)
1609{
1610 int cpu;
1611
a737b3e2
AM
1612 /*
1613 * Register the timers that return unneeded pages to the page allocator
1da177e4 1614 */
e498be7d 1615 for_each_online_cpu(cpu)
a737b3e2 1616 start_cpu_timer(cpu);
1da177e4
LT
1617 return 0;
1618}
1da177e4
LT
1619__initcall(cpucache_init);
1620
1621/*
1622 * Interface to system's page allocator. No need to hold the cache-lock.
1623 *
1624 * If we requested dmaable memory, we will get it. Even if we
1625 * did not request dmaable memory, we might get it, but that
1626 * would be relatively rare and ignorable.
1627 */
343e0d7a 1628static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1629{
1630 struct page *page;
e1b6aa6f 1631 int nr_pages;
1da177e4
LT
1632 int i;
1633
d6fef9da 1634#ifndef CONFIG_MMU
e1b6aa6f
CH
1635 /*
1636 * Nommu uses slab's for process anonymous memory allocations, and thus
1637 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1638 */
e1b6aa6f 1639 flags |= __GFP_COMP;
d6fef9da 1640#endif
765c4507 1641
3c517a61 1642 flags |= cachep->gfpflags;
e1b6aa6f
CH
1643
1644 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1645 if (!page)
1646 return NULL;
1da177e4 1647
e1b6aa6f 1648 nr_pages = (1 << cachep->gfporder);
1da177e4 1649 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1650 add_zone_page_state(page_zone(page),
1651 NR_SLAB_RECLAIMABLE, nr_pages);
1652 else
1653 add_zone_page_state(page_zone(page),
1654 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1655 for (i = 0; i < nr_pages; i++)
1656 __SetPageSlab(page + i);
1657 return page_address(page);
1da177e4
LT
1658}
1659
1660/*
1661 * Interface to system's page release.
1662 */
343e0d7a 1663static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1664{
b28a02de 1665 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1666 struct page *page = virt_to_page(addr);
1667 const unsigned long nr_freed = i;
1668
972d1a7b
CL
1669 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1670 sub_zone_page_state(page_zone(page),
1671 NR_SLAB_RECLAIMABLE, nr_freed);
1672 else
1673 sub_zone_page_state(page_zone(page),
1674 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1675 while (i--) {
f205b2fe
NP
1676 BUG_ON(!PageSlab(page));
1677 __ClearPageSlab(page);
1da177e4
LT
1678 page++;
1679 }
1da177e4
LT
1680 if (current->reclaim_state)
1681 current->reclaim_state->reclaimed_slab += nr_freed;
1682 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1683}
1684
1685static void kmem_rcu_free(struct rcu_head *head)
1686{
b28a02de 1687 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1688 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1689
1690 kmem_freepages(cachep, slab_rcu->addr);
1691 if (OFF_SLAB(cachep))
1692 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1693}
1694
1695#if DEBUG
1696
1697#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1698static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1699 unsigned long caller)
1da177e4 1700{
3dafccf2 1701 int size = obj_size(cachep);
1da177e4 1702
3dafccf2 1703 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1704
b28a02de 1705 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1706 return;
1707
b28a02de
PE
1708 *addr++ = 0x12345678;
1709 *addr++ = caller;
1710 *addr++ = smp_processor_id();
1711 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1712 {
1713 unsigned long *sptr = &caller;
1714 unsigned long svalue;
1715
1716 while (!kstack_end(sptr)) {
1717 svalue = *sptr++;
1718 if (kernel_text_address(svalue)) {
b28a02de 1719 *addr++ = svalue;
1da177e4
LT
1720 size -= sizeof(unsigned long);
1721 if (size <= sizeof(unsigned long))
1722 break;
1723 }
1724 }
1725
1726 }
b28a02de 1727 *addr++ = 0x87654321;
1da177e4
LT
1728}
1729#endif
1730
343e0d7a 1731static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1732{
3dafccf2
MS
1733 int size = obj_size(cachep);
1734 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1735
1736 memset(addr, val, size);
b28a02de 1737 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1738}
1739
1740static void dump_line(char *data, int offset, int limit)
1741{
1742 int i;
aa83aa40
DJ
1743 unsigned char error = 0;
1744 int bad_count = 0;
1745
1da177e4 1746 printk(KERN_ERR "%03x:", offset);
aa83aa40
DJ
1747 for (i = 0; i < limit; i++) {
1748 if (data[offset + i] != POISON_FREE) {
1749 error = data[offset + i];
1750 bad_count++;
1751 }
b28a02de 1752 printk(" %02x", (unsigned char)data[offset + i]);
aa83aa40 1753 }
1da177e4 1754 printk("\n");
aa83aa40
DJ
1755
1756 if (bad_count == 1) {
1757 error ^= POISON_FREE;
1758 if (!(error & (error - 1))) {
1759 printk(KERN_ERR "Single bit error detected. Probably "
1760 "bad RAM.\n");
1761#ifdef CONFIG_X86
1762 printk(KERN_ERR "Run memtest86+ or a similar memory "
1763 "test tool.\n");
1764#else
1765 printk(KERN_ERR "Run a memory test tool.\n");
1766#endif
1767 }
1768 }
1da177e4
LT
1769}
1770#endif
1771
1772#if DEBUG
1773
343e0d7a 1774static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1775{
1776 int i, size;
1777 char *realobj;
1778
1779 if (cachep->flags & SLAB_RED_ZONE) {
1780 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
a737b3e2
AM
1781 *dbg_redzone1(cachep, objp),
1782 *dbg_redzone2(cachep, objp));
1da177e4
LT
1783 }
1784
1785 if (cachep->flags & SLAB_STORE_USER) {
1786 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1787 *dbg_userword(cachep, objp));
1da177e4 1788 print_symbol("(%s)",
a737b3e2 1789 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1790 printk("\n");
1791 }
3dafccf2
MS
1792 realobj = (char *)objp + obj_offset(cachep);
1793 size = obj_size(cachep);
b28a02de 1794 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1795 int limit;
1796 limit = 16;
b28a02de
PE
1797 if (i + limit > size)
1798 limit = size - i;
1da177e4
LT
1799 dump_line(realobj, i, limit);
1800 }
1801}
1802
343e0d7a 1803static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1804{
1805 char *realobj;
1806 int size, i;
1807 int lines = 0;
1808
3dafccf2
MS
1809 realobj = (char *)objp + obj_offset(cachep);
1810 size = obj_size(cachep);
1da177e4 1811
b28a02de 1812 for (i = 0; i < size; i++) {
1da177e4 1813 char exp = POISON_FREE;
b28a02de 1814 if (i == size - 1)
1da177e4
LT
1815 exp = POISON_END;
1816 if (realobj[i] != exp) {
1817 int limit;
1818 /* Mismatch ! */
1819 /* Print header */
1820 if (lines == 0) {
b28a02de 1821 printk(KERN_ERR
e94a40c5
DH
1822 "Slab corruption: %s start=%p, len=%d\n",
1823 cachep->name, realobj, size);
1da177e4
LT
1824 print_objinfo(cachep, objp, 0);
1825 }
1826 /* Hexdump the affected line */
b28a02de 1827 i = (i / 16) * 16;
1da177e4 1828 limit = 16;
b28a02de
PE
1829 if (i + limit > size)
1830 limit = size - i;
1da177e4
LT
1831 dump_line(realobj, i, limit);
1832 i += 16;
1833 lines++;
1834 /* Limit to 5 lines */
1835 if (lines > 5)
1836 break;
1837 }
1838 }
1839 if (lines != 0) {
1840 /* Print some data about the neighboring objects, if they
1841 * exist:
1842 */
6ed5eb22 1843 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1844 unsigned int objnr;
1da177e4 1845
8fea4e96 1846 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1847 if (objnr) {
8fea4e96 1848 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1849 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1850 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1851 realobj, size);
1da177e4
LT
1852 print_objinfo(cachep, objp, 2);
1853 }
b28a02de 1854 if (objnr + 1 < cachep->num) {
8fea4e96 1855 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1856 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1857 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1858 realobj, size);
1da177e4
LT
1859 print_objinfo(cachep, objp, 2);
1860 }
1861 }
1862}
1863#endif
1864
12dd36fa
MD
1865#if DEBUG
1866/**
911851e6
RD
1867 * slab_destroy_objs - destroy a slab and its objects
1868 * @cachep: cache pointer being destroyed
1869 * @slabp: slab pointer being destroyed
1870 *
1871 * Call the registered destructor for each object in a slab that is being
1872 * destroyed.
1da177e4 1873 */
343e0d7a 1874static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1875{
1da177e4
LT
1876 int i;
1877 for (i = 0; i < cachep->num; i++) {
8fea4e96 1878 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1879
1880 if (cachep->flags & SLAB_POISON) {
1881#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1882 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1883 OFF_SLAB(cachep))
b28a02de 1884 kernel_map_pages(virt_to_page(objp),
a737b3e2 1885 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1886 else
1887 check_poison_obj(cachep, objp);
1888#else
1889 check_poison_obj(cachep, objp);
1890#endif
1891 }
1892 if (cachep->flags & SLAB_RED_ZONE) {
1893 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1894 slab_error(cachep, "start of a freed object "
b28a02de 1895 "was overwritten");
1da177e4
LT
1896 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1897 slab_error(cachep, "end of a freed object "
b28a02de 1898 "was overwritten");
1da177e4
LT
1899 }
1900 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
3dafccf2 1901 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1da177e4 1902 }
12dd36fa 1903}
1da177e4 1904#else
343e0d7a 1905static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1906{
1da177e4
LT
1907 if (cachep->dtor) {
1908 int i;
1909 for (i = 0; i < cachep->num; i++) {
8fea4e96 1910 void *objp = index_to_obj(cachep, slabp, i);
b28a02de 1911 (cachep->dtor) (objp, cachep, 0);
1da177e4
LT
1912 }
1913 }
12dd36fa 1914}
1da177e4
LT
1915#endif
1916
911851e6
RD
1917/**
1918 * slab_destroy - destroy and release all objects in a slab
1919 * @cachep: cache pointer being destroyed
1920 * @slabp: slab pointer being destroyed
1921 *
12dd36fa 1922 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1923 * Before calling the slab must have been unlinked from the cache. The
1924 * cache-lock is not held/needed.
12dd36fa 1925 */
343e0d7a 1926static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1927{
1928 void *addr = slabp->s_mem - slabp->colouroff;
1929
1930 slab_destroy_objs(cachep, slabp);
1da177e4
LT
1931 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1932 struct slab_rcu *slab_rcu;
1933
b28a02de 1934 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1935 slab_rcu->cachep = cachep;
1936 slab_rcu->addr = addr;
1937 call_rcu(&slab_rcu->head, kmem_rcu_free);
1938 } else {
1939 kmem_freepages(cachep, addr);
873623df
IM
1940 if (OFF_SLAB(cachep))
1941 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1942 }
1943}
1944
a737b3e2
AM
1945/*
1946 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1947 * size of kmem_list3.
1948 */
a3a02be7 1949static void __init set_up_list3s(struct kmem_cache *cachep, int index)
e498be7d
CL
1950{
1951 int node;
1952
1953 for_each_online_node(node) {
b28a02de 1954 cachep->nodelists[node] = &initkmem_list3[index + node];
e498be7d 1955 cachep->nodelists[node]->next_reap = jiffies +
b28a02de
PE
1956 REAPTIMEOUT_LIST3 +
1957 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
1958 }
1959}
1960
117f6eb1
CL
1961static void __kmem_cache_destroy(struct kmem_cache *cachep)
1962{
1963 int i;
1964 struct kmem_list3 *l3;
1965
1966 for_each_online_cpu(i)
1967 kfree(cachep->array[i]);
1968
1969 /* NUMA: free the list3 structures */
1970 for_each_online_node(i) {
1971 l3 = cachep->nodelists[i];
1972 if (l3) {
1973 kfree(l3->shared);
1974 free_alien_cache(l3->alien);
1975 kfree(l3);
1976 }
1977 }
1978 kmem_cache_free(&cache_cache, cachep);
1979}
1980
1981
4d268eba 1982/**
a70773dd
RD
1983 * calculate_slab_order - calculate size (page order) of slabs
1984 * @cachep: pointer to the cache that is being created
1985 * @size: size of objects to be created in this cache.
1986 * @align: required alignment for the objects.
1987 * @flags: slab allocation flags
1988 *
1989 * Also calculates the number of objects per slab.
4d268eba
PE
1990 *
1991 * This could be made much more intelligent. For now, try to avoid using
1992 * high order pages for slabs. When the gfp() functions are more friendly
1993 * towards high-order requests, this should be changed.
1994 */
a737b3e2 1995static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1996 size_t size, size_t align, unsigned long flags)
4d268eba 1997{
b1ab41c4 1998 unsigned long offslab_limit;
4d268eba 1999 size_t left_over = 0;
9888e6fa 2000 int gfporder;
4d268eba 2001
a737b3e2 2002 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
4d268eba
PE
2003 unsigned int num;
2004 size_t remainder;
2005
9888e6fa 2006 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2007 if (!num)
2008 continue;
9888e6fa 2009
b1ab41c4
IM
2010 if (flags & CFLGS_OFF_SLAB) {
2011 /*
2012 * Max number of objs-per-slab for caches which
2013 * use off-slab slabs. Needed to avoid a possible
2014 * looping condition in cache_grow().
2015 */
2016 offslab_limit = size - sizeof(struct slab);
2017 offslab_limit /= sizeof(kmem_bufctl_t);
2018
2019 if (num > offslab_limit)
2020 break;
2021 }
4d268eba 2022
9888e6fa 2023 /* Found something acceptable - save it away */
4d268eba 2024 cachep->num = num;
9888e6fa 2025 cachep->gfporder = gfporder;
4d268eba
PE
2026 left_over = remainder;
2027
f78bb8ad
LT
2028 /*
2029 * A VFS-reclaimable slab tends to have most allocations
2030 * as GFP_NOFS and we really don't want to have to be allocating
2031 * higher-order pages when we are unable to shrink dcache.
2032 */
2033 if (flags & SLAB_RECLAIM_ACCOUNT)
2034 break;
2035
4d268eba
PE
2036 /*
2037 * Large number of objects is good, but very large slabs are
2038 * currently bad for the gfp()s.
2039 */
9888e6fa 2040 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
2041 break;
2042
9888e6fa
LT
2043 /*
2044 * Acceptable internal fragmentation?
2045 */
a737b3e2 2046 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2047 break;
2048 }
2049 return left_over;
2050}
2051
2ed3a4ef 2052static int setup_cpu_cache(struct kmem_cache *cachep)
f30cf7d1 2053{
2ed3a4ef
CL
2054 if (g_cpucache_up == FULL)
2055 return enable_cpucache(cachep);
2056
f30cf7d1
PE
2057 if (g_cpucache_up == NONE) {
2058 /*
2059 * Note: the first kmem_cache_create must create the cache
2060 * that's used by kmalloc(24), otherwise the creation of
2061 * further caches will BUG().
2062 */
2063 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2064
2065 /*
2066 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2067 * the first cache, then we need to set up all its list3s,
2068 * otherwise the creation of further caches will BUG().
2069 */
2070 set_up_list3s(cachep, SIZE_AC);
2071 if (INDEX_AC == INDEX_L3)
2072 g_cpucache_up = PARTIAL_L3;
2073 else
2074 g_cpucache_up = PARTIAL_AC;
2075 } else {
2076 cachep->array[smp_processor_id()] =
2077 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2078
2079 if (g_cpucache_up == PARTIAL_AC) {
2080 set_up_list3s(cachep, SIZE_L3);
2081 g_cpucache_up = PARTIAL_L3;
2082 } else {
2083 int node;
2084 for_each_online_node(node) {
2085 cachep->nodelists[node] =
2086 kmalloc_node(sizeof(struct kmem_list3),
2087 GFP_KERNEL, node);
2088 BUG_ON(!cachep->nodelists[node]);
2089 kmem_list3_init(cachep->nodelists[node]);
2090 }
2091 }
2092 }
2093 cachep->nodelists[numa_node_id()]->next_reap =
2094 jiffies + REAPTIMEOUT_LIST3 +
2095 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2096
2097 cpu_cache_get(cachep)->avail = 0;
2098 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2099 cpu_cache_get(cachep)->batchcount = 1;
2100 cpu_cache_get(cachep)->touched = 0;
2101 cachep->batchcount = 1;
2102 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2103 return 0;
f30cf7d1
PE
2104}
2105
1da177e4
LT
2106/**
2107 * kmem_cache_create - Create a cache.
2108 * @name: A string which is used in /proc/slabinfo to identify this cache.
2109 * @size: The size of objects to be created in this cache.
2110 * @align: The required alignment for the objects.
2111 * @flags: SLAB flags
2112 * @ctor: A constructor for the objects.
2113 * @dtor: A destructor for the objects.
2114 *
2115 * Returns a ptr to the cache on success, NULL on failure.
2116 * Cannot be called within a int, but can be interrupted.
2117 * The @ctor is run when new pages are allocated by the cache
2118 * and the @dtor is run before the pages are handed back.
2119 *
2120 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
2121 * the module calling this has to destroy the cache before getting unloaded.
2122 *
1da177e4
LT
2123 * The flags are
2124 *
2125 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2126 * to catch references to uninitialised memory.
2127 *
2128 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2129 * for buffer overruns.
2130 *
1da177e4
LT
2131 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2132 * cacheline. This can be beneficial if you're counting cycles as closely
2133 * as davem.
2134 */
343e0d7a 2135struct kmem_cache *
1da177e4 2136kmem_cache_create (const char *name, size_t size, size_t align,
a737b3e2
AM
2137 unsigned long flags,
2138 void (*ctor)(void*, struct kmem_cache *, unsigned long),
343e0d7a 2139 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1da177e4
LT
2140{
2141 size_t left_over, slab_size, ralign;
7a7c381d 2142 struct kmem_cache *cachep = NULL, *pc;
1da177e4
LT
2143
2144 /*
2145 * Sanity checks... these are all serious usage bugs.
2146 */
a737b3e2 2147 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
b28a02de 2148 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
a737b3e2
AM
2149 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2150 name);
b28a02de
PE
2151 BUG();
2152 }
1da177e4 2153
f0188f47 2154 /*
8f5be20b
RT
2155 * We use cache_chain_mutex to ensure a consistent view of
2156 * cpu_online_map as well. Please see cpuup_callback
f0188f47 2157 */
fc0abb14 2158 mutex_lock(&cache_chain_mutex);
4f12bb4f 2159
7a7c381d 2160 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2161 char tmp;
2162 int res;
2163
2164 /*
2165 * This happens when the module gets unloaded and doesn't
2166 * destroy its slab cache and no-one else reuses the vmalloc
2167 * area of the module. Print a warning.
2168 */
138ae663 2169 res = probe_kernel_address(pc->name, tmp);
4f12bb4f
AM
2170 if (res) {
2171 printk("SLAB: cache with size %d has lost its name\n",
3dafccf2 2172 pc->buffer_size);
4f12bb4f
AM
2173 continue;
2174 }
2175
b28a02de 2176 if (!strcmp(pc->name, name)) {
4f12bb4f
AM
2177 printk("kmem_cache_create: duplicate cache %s\n", name);
2178 dump_stack();
2179 goto oops;
2180 }
2181 }
2182
1da177e4
LT
2183#if DEBUG
2184 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2185 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2186 /* No constructor, but inital state check requested */
2187 printk(KERN_ERR "%s: No con, but init state check "
b28a02de 2188 "requested - %s\n", __FUNCTION__, name);
1da177e4
LT
2189 flags &= ~SLAB_DEBUG_INITIAL;
2190 }
1da177e4
LT
2191#if FORCED_DEBUG
2192 /*
2193 * Enable redzoning and last user accounting, except for caches with
2194 * large objects, if the increased size would increase the object size
2195 * above the next power of two: caches with object sizes just above a
2196 * power of two have a significant amount of internal fragmentation.
2197 */
a737b3e2 2198 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
b28a02de 2199 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2200 if (!(flags & SLAB_DESTROY_BY_RCU))
2201 flags |= SLAB_POISON;
2202#endif
2203 if (flags & SLAB_DESTROY_BY_RCU)
2204 BUG_ON(flags & SLAB_POISON);
2205#endif
2206 if (flags & SLAB_DESTROY_BY_RCU)
2207 BUG_ON(dtor);
2208
2209 /*
a737b3e2
AM
2210 * Always checks flags, a caller might be expecting debug support which
2211 * isn't available.
1da177e4 2212 */
40094fa6 2213 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2214
a737b3e2
AM
2215 /*
2216 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2217 * unaligned accesses for some archs when redzoning is used, and makes
2218 * sure any on-slab bufctl's are also correctly aligned.
2219 */
b28a02de
PE
2220 if (size & (BYTES_PER_WORD - 1)) {
2221 size += (BYTES_PER_WORD - 1);
2222 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2223 }
2224
a737b3e2
AM
2225 /* calculate the final buffer alignment: */
2226
1da177e4
LT
2227 /* 1) arch recommendation: can be overridden for debug */
2228 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2229 /*
2230 * Default alignment: as specified by the arch code. Except if
2231 * an object is really small, then squeeze multiple objects into
2232 * one cacheline.
1da177e4
LT
2233 */
2234 ralign = cache_line_size();
b28a02de 2235 while (size <= ralign / 2)
1da177e4
LT
2236 ralign /= 2;
2237 } else {
2238 ralign = BYTES_PER_WORD;
2239 }
ca5f9703
PE
2240
2241 /*
2242 * Redzoning and user store require word alignment. Note this will be
2243 * overridden by architecture or caller mandated alignment if either
2244 * is greater than BYTES_PER_WORD.
2245 */
2246 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2247 ralign = BYTES_PER_WORD;
2248
a44b56d3 2249 /* 2) arch mandated alignment */
1da177e4
LT
2250 if (ralign < ARCH_SLAB_MINALIGN) {
2251 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2252 }
a44b56d3 2253 /* 3) caller mandated alignment */
1da177e4
LT
2254 if (ralign < align) {
2255 ralign = align;
1da177e4 2256 }
a44b56d3
KH
2257 /* disable debug if necessary */
2258 if (ralign > BYTES_PER_WORD)
2259 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2260 /*
ca5f9703 2261 * 4) Store it.
1da177e4
LT
2262 */
2263 align = ralign;
2264
2265 /* Get cache's description obj. */
e94b1766 2266 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
1da177e4 2267 if (!cachep)
4f12bb4f 2268 goto oops;
1da177e4
LT
2269
2270#if DEBUG
3dafccf2 2271 cachep->obj_size = size;
1da177e4 2272
ca5f9703
PE
2273 /*
2274 * Both debugging options require word-alignment which is calculated
2275 * into align above.
2276 */
1da177e4 2277 if (flags & SLAB_RED_ZONE) {
1da177e4 2278 /* add space for red zone words */
3dafccf2 2279 cachep->obj_offset += BYTES_PER_WORD;
b28a02de 2280 size += 2 * BYTES_PER_WORD;
1da177e4
LT
2281 }
2282 if (flags & SLAB_STORE_USER) {
ca5f9703
PE
2283 /* user store requires one word storage behind the end of
2284 * the real object.
1da177e4 2285 */
1da177e4
LT
2286 size += BYTES_PER_WORD;
2287 }
2288#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2289 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2290 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2291 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2292 size = PAGE_SIZE;
2293 }
2294#endif
2295#endif
2296
e0a42726
IM
2297 /*
2298 * Determine if the slab management is 'on' or 'off' slab.
2299 * (bootstrapping cannot cope with offslab caches so don't do
2300 * it too early on.)
2301 */
2302 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
1da177e4
LT
2303 /*
2304 * Size is large, assume best to place the slab management obj
2305 * off-slab (should allow better packing of objs).
2306 */
2307 flags |= CFLGS_OFF_SLAB;
2308
2309 size = ALIGN(size, align);
2310
f78bb8ad 2311 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2312
2313 if (!cachep->num) {
2314 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2315 kmem_cache_free(&cache_cache, cachep);
2316 cachep = NULL;
4f12bb4f 2317 goto oops;
1da177e4 2318 }
b28a02de
PE
2319 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2320 + sizeof(struct slab), align);
1da177e4
LT
2321
2322 /*
2323 * If the slab has been placed off-slab, and we have enough space then
2324 * move it on-slab. This is at the expense of any extra colouring.
2325 */
2326 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2327 flags &= ~CFLGS_OFF_SLAB;
2328 left_over -= slab_size;
2329 }
2330
2331 if (flags & CFLGS_OFF_SLAB) {
2332 /* really off slab. No need for manual alignment */
b28a02de
PE
2333 slab_size =
2334 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2335 }
2336
2337 cachep->colour_off = cache_line_size();
2338 /* Offset must be a multiple of the alignment. */
2339 if (cachep->colour_off < align)
2340 cachep->colour_off = align;
b28a02de 2341 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2342 cachep->slab_size = slab_size;
2343 cachep->flags = flags;
2344 cachep->gfpflags = 0;
4b51d669 2345 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
1da177e4 2346 cachep->gfpflags |= GFP_DMA;
3dafccf2 2347 cachep->buffer_size = size;
6a2d7a95 2348 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2349
e5ac9c5a 2350 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2351 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2352 /*
2353 * This is a possibility for one of the malloc_sizes caches.
2354 * But since we go off slab only for object size greater than
2355 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2356 * this should not happen at all.
2357 * But leave a BUG_ON for some lucky dude.
2358 */
2359 BUG_ON(!cachep->slabp_cache);
2360 }
1da177e4
LT
2361 cachep->ctor = ctor;
2362 cachep->dtor = dtor;
2363 cachep->name = name;
2364
2ed3a4ef
CL
2365 if (setup_cpu_cache(cachep)) {
2366 __kmem_cache_destroy(cachep);
2367 cachep = NULL;
2368 goto oops;
2369 }
1da177e4 2370
1da177e4
LT
2371 /* cache setup completed, link it into the list */
2372 list_add(&cachep->next, &cache_chain);
a737b3e2 2373oops:
1da177e4
LT
2374 if (!cachep && (flags & SLAB_PANIC))
2375 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2376 name);
fc0abb14 2377 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2378 return cachep;
2379}
2380EXPORT_SYMBOL(kmem_cache_create);
2381
2382#if DEBUG
2383static void check_irq_off(void)
2384{
2385 BUG_ON(!irqs_disabled());
2386}
2387
2388static void check_irq_on(void)
2389{
2390 BUG_ON(irqs_disabled());
2391}
2392
343e0d7a 2393static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2394{
2395#ifdef CONFIG_SMP
2396 check_irq_off();
e498be7d 2397 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2398#endif
2399}
e498be7d 2400
343e0d7a 2401static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2402{
2403#ifdef CONFIG_SMP
2404 check_irq_off();
2405 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2406#endif
2407}
2408
1da177e4
LT
2409#else
2410#define check_irq_off() do { } while(0)
2411#define check_irq_on() do { } while(0)
2412#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2413#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2414#endif
2415
aab2207c
CL
2416static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2417 struct array_cache *ac,
2418 int force, int node);
2419
1da177e4
LT
2420static void do_drain(void *arg)
2421{
a737b3e2 2422 struct kmem_cache *cachep = arg;
1da177e4 2423 struct array_cache *ac;
ff69416e 2424 int node = numa_node_id();
1da177e4
LT
2425
2426 check_irq_off();
9a2dba4b 2427 ac = cpu_cache_get(cachep);
ff69416e
CL
2428 spin_lock(&cachep->nodelists[node]->list_lock);
2429 free_block(cachep, ac->entry, ac->avail, node);
2430 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2431 ac->avail = 0;
2432}
2433
343e0d7a 2434static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2435{
e498be7d
CL
2436 struct kmem_list3 *l3;
2437 int node;
2438
a07fa394 2439 on_each_cpu(do_drain, cachep, 1, 1);
1da177e4 2440 check_irq_on();
b28a02de 2441 for_each_online_node(node) {
e498be7d 2442 l3 = cachep->nodelists[node];
a4523a8b
RD
2443 if (l3 && l3->alien)
2444 drain_alien_cache(cachep, l3->alien);
2445 }
2446
2447 for_each_online_node(node) {
2448 l3 = cachep->nodelists[node];
2449 if (l3)
aab2207c 2450 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2451 }
1da177e4
LT
2452}
2453
ed11d9eb
CL
2454/*
2455 * Remove slabs from the list of free slabs.
2456 * Specify the number of slabs to drain in tofree.
2457 *
2458 * Returns the actual number of slabs released.
2459 */
2460static int drain_freelist(struct kmem_cache *cache,
2461 struct kmem_list3 *l3, int tofree)
1da177e4 2462{
ed11d9eb
CL
2463 struct list_head *p;
2464 int nr_freed;
1da177e4 2465 struct slab *slabp;
1da177e4 2466
ed11d9eb
CL
2467 nr_freed = 0;
2468 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2469
ed11d9eb 2470 spin_lock_irq(&l3->list_lock);
e498be7d 2471 p = l3->slabs_free.prev;
ed11d9eb
CL
2472 if (p == &l3->slabs_free) {
2473 spin_unlock_irq(&l3->list_lock);
2474 goto out;
2475 }
1da177e4 2476
ed11d9eb 2477 slabp = list_entry(p, struct slab, list);
1da177e4 2478#if DEBUG
40094fa6 2479 BUG_ON(slabp->inuse);
1da177e4
LT
2480#endif
2481 list_del(&slabp->list);
ed11d9eb
CL
2482 /*
2483 * Safe to drop the lock. The slab is no longer linked
2484 * to the cache.
2485 */
2486 l3->free_objects -= cache->num;
e498be7d 2487 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2488 slab_destroy(cache, slabp);
2489 nr_freed++;
1da177e4 2490 }
ed11d9eb
CL
2491out:
2492 return nr_freed;
1da177e4
LT
2493}
2494
8f5be20b 2495/* Called with cache_chain_mutex held to protect against cpu hotplug */
343e0d7a 2496static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2497{
2498 int ret = 0, i = 0;
2499 struct kmem_list3 *l3;
2500
2501 drain_cpu_caches(cachep);
2502
2503 check_irq_on();
2504 for_each_online_node(i) {
2505 l3 = cachep->nodelists[i];
ed11d9eb
CL
2506 if (!l3)
2507 continue;
2508
2509 drain_freelist(cachep, l3, l3->free_objects);
2510
2511 ret += !list_empty(&l3->slabs_full) ||
2512 !list_empty(&l3->slabs_partial);
e498be7d
CL
2513 }
2514 return (ret ? 1 : 0);
2515}
2516
1da177e4
LT
2517/**
2518 * kmem_cache_shrink - Shrink a cache.
2519 * @cachep: The cache to shrink.
2520 *
2521 * Releases as many slabs as possible for a cache.
2522 * To help debugging, a zero exit status indicates all slabs were released.
2523 */
343e0d7a 2524int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2525{
8f5be20b 2526 int ret;
40094fa6 2527 BUG_ON(!cachep || in_interrupt());
1da177e4 2528
8f5be20b
RT
2529 mutex_lock(&cache_chain_mutex);
2530 ret = __cache_shrink(cachep);
2531 mutex_unlock(&cache_chain_mutex);
2532 return ret;
1da177e4
LT
2533}
2534EXPORT_SYMBOL(kmem_cache_shrink);
2535
2536/**
2537 * kmem_cache_destroy - delete a cache
2538 * @cachep: the cache to destroy
2539 *
72fd4a35 2540 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2541 *
2542 * It is expected this function will be called by a module when it is
2543 * unloaded. This will remove the cache completely, and avoid a duplicate
2544 * cache being allocated each time a module is loaded and unloaded, if the
2545 * module doesn't have persistent in-kernel storage across loads and unloads.
2546 *
2547 * The cache must be empty before calling this function.
2548 *
2549 * The caller must guarantee that noone will allocate memory from the cache
2550 * during the kmem_cache_destroy().
2551 */
133d205a 2552void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2553{
40094fa6 2554 BUG_ON(!cachep || in_interrupt());
1da177e4 2555
1da177e4 2556 /* Find the cache in the chain of caches. */
fc0abb14 2557 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2558 /*
2559 * the chain is never empty, cache_cache is never destroyed
2560 */
2561 list_del(&cachep->next);
1da177e4
LT
2562 if (__cache_shrink(cachep)) {
2563 slab_error(cachep, "Can't free all objects");
b28a02de 2564 list_add(&cachep->next, &cache_chain);
fc0abb14 2565 mutex_unlock(&cache_chain_mutex);
133d205a 2566 return;
1da177e4
LT
2567 }
2568
2569 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2570 synchronize_rcu();
1da177e4 2571
117f6eb1 2572 __kmem_cache_destroy(cachep);
8f5be20b 2573 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2574}
2575EXPORT_SYMBOL(kmem_cache_destroy);
2576
e5ac9c5a
RT
2577/*
2578 * Get the memory for a slab management obj.
2579 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2580 * always come from malloc_sizes caches. The slab descriptor cannot
2581 * come from the same cache which is getting created because,
2582 * when we are searching for an appropriate cache for these
2583 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2584 * If we are creating a malloc_sizes cache here it would not be visible to
2585 * kmem_find_general_cachep till the initialization is complete.
2586 * Hence we cannot have slabp_cache same as the original cache.
2587 */
343e0d7a 2588static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2589 int colour_off, gfp_t local_flags,
2590 int nodeid)
1da177e4
LT
2591{
2592 struct slab *slabp;
b28a02de 2593
1da177e4
LT
2594 if (OFF_SLAB(cachep)) {
2595 /* Slab management obj is off-slab. */
5b74ada7 2596 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
3c517a61 2597 local_flags & ~GFP_THISNODE, nodeid);
1da177e4
LT
2598 if (!slabp)
2599 return NULL;
2600 } else {
b28a02de 2601 slabp = objp + colour_off;
1da177e4
LT
2602 colour_off += cachep->slab_size;
2603 }
2604 slabp->inuse = 0;
2605 slabp->colouroff = colour_off;
b28a02de 2606 slabp->s_mem = objp + colour_off;
5b74ada7 2607 slabp->nodeid = nodeid;
1da177e4
LT
2608 return slabp;
2609}
2610
2611static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2612{
b28a02de 2613 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2614}
2615
343e0d7a 2616static void cache_init_objs(struct kmem_cache *cachep,
b28a02de 2617 struct slab *slabp, unsigned long ctor_flags)
1da177e4
LT
2618{
2619 int i;
2620
2621 for (i = 0; i < cachep->num; i++) {
8fea4e96 2622 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2623#if DEBUG
2624 /* need to poison the objs? */
2625 if (cachep->flags & SLAB_POISON)
2626 poison_obj(cachep, objp, POISON_FREE);
2627 if (cachep->flags & SLAB_STORE_USER)
2628 *dbg_userword(cachep, objp) = NULL;
2629
2630 if (cachep->flags & SLAB_RED_ZONE) {
2631 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2632 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2633 }
2634 /*
a737b3e2
AM
2635 * Constructors are not allowed to allocate memory from the same
2636 * cache which they are a constructor for. Otherwise, deadlock.
2637 * They must also be threaded.
1da177e4
LT
2638 */
2639 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
3dafccf2 2640 cachep->ctor(objp + obj_offset(cachep), cachep,
b28a02de 2641 ctor_flags);
1da177e4
LT
2642
2643 if (cachep->flags & SLAB_RED_ZONE) {
2644 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2645 slab_error(cachep, "constructor overwrote the"
b28a02de 2646 " end of an object");
1da177e4
LT
2647 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2648 slab_error(cachep, "constructor overwrote the"
b28a02de 2649 " start of an object");
1da177e4 2650 }
a737b3e2
AM
2651 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2652 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2653 kernel_map_pages(virt_to_page(objp),
3dafccf2 2654 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2655#else
2656 if (cachep->ctor)
2657 cachep->ctor(objp, cachep, ctor_flags);
2658#endif
b28a02de 2659 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2660 }
b28a02de 2661 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2662 slabp->free = 0;
2663}
2664
343e0d7a 2665static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2666{
4b51d669
CL
2667 if (CONFIG_ZONE_DMA_FLAG) {
2668 if (flags & GFP_DMA)
2669 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2670 else
2671 BUG_ON(cachep->gfpflags & GFP_DMA);
2672 }
1da177e4
LT
2673}
2674
a737b3e2
AM
2675static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2676 int nodeid)
78d382d7 2677{
8fea4e96 2678 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2679 kmem_bufctl_t next;
2680
2681 slabp->inuse++;
2682 next = slab_bufctl(slabp)[slabp->free];
2683#if DEBUG
2684 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2685 WARN_ON(slabp->nodeid != nodeid);
2686#endif
2687 slabp->free = next;
2688
2689 return objp;
2690}
2691
a737b3e2
AM
2692static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2693 void *objp, int nodeid)
78d382d7 2694{
8fea4e96 2695 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2696
2697#if DEBUG
2698 /* Verify that the slab belongs to the intended node */
2699 WARN_ON(slabp->nodeid != nodeid);
2700
871751e2 2701 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2702 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2703 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2704 BUG();
2705 }
2706#endif
2707 slab_bufctl(slabp)[objnr] = slabp->free;
2708 slabp->free = objnr;
2709 slabp->inuse--;
2710}
2711
4776874f
PE
2712/*
2713 * Map pages beginning at addr to the given cache and slab. This is required
2714 * for the slab allocator to be able to lookup the cache and slab of a
2715 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2716 */
2717static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2718 void *addr)
1da177e4 2719{
4776874f 2720 int nr_pages;
1da177e4
LT
2721 struct page *page;
2722
4776874f 2723 page = virt_to_page(addr);
84097518 2724
4776874f 2725 nr_pages = 1;
84097518 2726 if (likely(!PageCompound(page)))
4776874f
PE
2727 nr_pages <<= cache->gfporder;
2728
1da177e4 2729 do {
4776874f
PE
2730 page_set_cache(page, cache);
2731 page_set_slab(page, slab);
1da177e4 2732 page++;
4776874f 2733 } while (--nr_pages);
1da177e4
LT
2734}
2735
2736/*
2737 * Grow (by 1) the number of slabs within a cache. This is called by
2738 * kmem_cache_alloc() when there are no active objs left in a cache.
2739 */
3c517a61
CL
2740static int cache_grow(struct kmem_cache *cachep,
2741 gfp_t flags, int nodeid, void *objp)
1da177e4 2742{
b28a02de 2743 struct slab *slabp;
b28a02de
PE
2744 size_t offset;
2745 gfp_t local_flags;
2746 unsigned long ctor_flags;
e498be7d 2747 struct kmem_list3 *l3;
1da177e4 2748
a737b3e2
AM
2749 /*
2750 * Be lazy and only check for valid flags here, keeping it out of the
2751 * critical path in kmem_cache_alloc().
1da177e4 2752 */
441e143e 2753 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK | __GFP_NO_GROW));
6e0eaa4b 2754 if (flags & __GFP_NO_GROW)
1da177e4
LT
2755 return 0;
2756
2757 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
a06d72c1 2758 local_flags = (flags & GFP_LEVEL_MASK);
1da177e4
LT
2759 if (!(local_flags & __GFP_WAIT))
2760 /*
2761 * Not allowed to sleep. Need to tell a constructor about
2762 * this - it might need to know...
2763 */
2764 ctor_flags |= SLAB_CTOR_ATOMIC;
2765
2e1217cf 2766 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2767 check_irq_off();
2e1217cf
RT
2768 l3 = cachep->nodelists[nodeid];
2769 spin_lock(&l3->list_lock);
1da177e4
LT
2770
2771 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2772 offset = l3->colour_next;
2773 l3->colour_next++;
2774 if (l3->colour_next >= cachep->colour)
2775 l3->colour_next = 0;
2776 spin_unlock(&l3->list_lock);
1da177e4 2777
2e1217cf 2778 offset *= cachep->colour_off;
1da177e4
LT
2779
2780 if (local_flags & __GFP_WAIT)
2781 local_irq_enable();
2782
2783 /*
2784 * The test for missing atomic flag is performed here, rather than
2785 * the more obvious place, simply to reduce the critical path length
2786 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2787 * will eventually be caught here (where it matters).
2788 */
2789 kmem_flagcheck(cachep, flags);
2790
a737b3e2
AM
2791 /*
2792 * Get mem for the objs. Attempt to allocate a physical page from
2793 * 'nodeid'.
e498be7d 2794 */
3c517a61
CL
2795 if (!objp)
2796 objp = kmem_getpages(cachep, flags, nodeid);
a737b3e2 2797 if (!objp)
1da177e4
LT
2798 goto failed;
2799
2800 /* Get slab management. */
3c517a61
CL
2801 slabp = alloc_slabmgmt(cachep, objp, offset,
2802 local_flags & ~GFP_THISNODE, nodeid);
a737b3e2 2803 if (!slabp)
1da177e4
LT
2804 goto opps1;
2805
e498be7d 2806 slabp->nodeid = nodeid;
4776874f 2807 slab_map_pages(cachep, slabp, objp);
1da177e4
LT
2808
2809 cache_init_objs(cachep, slabp, ctor_flags);
2810
2811 if (local_flags & __GFP_WAIT)
2812 local_irq_disable();
2813 check_irq_off();
e498be7d 2814 spin_lock(&l3->list_lock);
1da177e4
LT
2815
2816 /* Make slab active. */
e498be7d 2817 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2818 STATS_INC_GROWN(cachep);
e498be7d
CL
2819 l3->free_objects += cachep->num;
2820 spin_unlock(&l3->list_lock);
1da177e4 2821 return 1;
a737b3e2 2822opps1:
1da177e4 2823 kmem_freepages(cachep, objp);
a737b3e2 2824failed:
1da177e4
LT
2825 if (local_flags & __GFP_WAIT)
2826 local_irq_disable();
2827 return 0;
2828}
2829
2830#if DEBUG
2831
2832/*
2833 * Perform extra freeing checks:
2834 * - detect bad pointers.
2835 * - POISON/RED_ZONE checking
2836 * - destructor calls, for caches with POISON+dtor
2837 */
2838static void kfree_debugcheck(const void *objp)
2839{
1da177e4
LT
2840 if (!virt_addr_valid(objp)) {
2841 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2842 (unsigned long)objp);
2843 BUG();
1da177e4 2844 }
1da177e4
LT
2845}
2846
58ce1fd5
PE
2847static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2848{
2849 unsigned long redzone1, redzone2;
2850
2851 redzone1 = *dbg_redzone1(cache, obj);
2852 redzone2 = *dbg_redzone2(cache, obj);
2853
2854 /*
2855 * Redzone is ok.
2856 */
2857 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2858 return;
2859
2860 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2861 slab_error(cache, "double free detected");
2862 else
2863 slab_error(cache, "memory outside object was overwritten");
2864
2865 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2866 obj, redzone1, redzone2);
2867}
2868
343e0d7a 2869static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2870 void *caller)
1da177e4
LT
2871{
2872 struct page *page;
2873 unsigned int objnr;
2874 struct slab *slabp;
2875
3dafccf2 2876 objp -= obj_offset(cachep);
1da177e4 2877 kfree_debugcheck(objp);
b49af68f 2878 page = virt_to_head_page(objp);
1da177e4 2879
065d41cb 2880 slabp = page_get_slab(page);
1da177e4
LT
2881
2882 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2883 verify_redzone_free(cachep, objp);
1da177e4
LT
2884 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2885 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2886 }
2887 if (cachep->flags & SLAB_STORE_USER)
2888 *dbg_userword(cachep, objp) = caller;
2889
8fea4e96 2890 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2891
2892 BUG_ON(objnr >= cachep->num);
8fea4e96 2893 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4
LT
2894
2895 if (cachep->flags & SLAB_DEBUG_INITIAL) {
a737b3e2
AM
2896 /*
2897 * Need to call the slab's constructor so the caller can
2898 * perform a verify of its state (debugging). Called without
2899 * the cache-lock held.
1da177e4 2900 */
3dafccf2 2901 cachep->ctor(objp + obj_offset(cachep),
b28a02de 2902 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
1da177e4
LT
2903 }
2904 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2905 /* we want to cache poison the object,
2906 * call the destruction callback
2907 */
3dafccf2 2908 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
1da177e4 2909 }
871751e2
AV
2910#ifdef CONFIG_DEBUG_SLAB_LEAK
2911 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2912#endif
1da177e4
LT
2913 if (cachep->flags & SLAB_POISON) {
2914#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2915 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2916 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2917 kernel_map_pages(virt_to_page(objp),
3dafccf2 2918 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2919 } else {
2920 poison_obj(cachep, objp, POISON_FREE);
2921 }
2922#else
2923 poison_obj(cachep, objp, POISON_FREE);
2924#endif
2925 }
2926 return objp;
2927}
2928
343e0d7a 2929static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2930{
2931 kmem_bufctl_t i;
2932 int entries = 0;
b28a02de 2933
1da177e4
LT
2934 /* Check slab's freelist to see if this obj is there. */
2935 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2936 entries++;
2937 if (entries > cachep->num || i >= cachep->num)
2938 goto bad;
2939 }
2940 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2941bad:
2942 printk(KERN_ERR "slab: Internal list corruption detected in "
2943 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2944 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2945 for (i = 0;
264132bc 2946 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2947 i++) {
a737b3e2 2948 if (i % 16 == 0)
1da177e4 2949 printk("\n%03x:", i);
b28a02de 2950 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2951 }
2952 printk("\n");
2953 BUG();
2954 }
2955}
2956#else
2957#define kfree_debugcheck(x) do { } while(0)
2958#define cache_free_debugcheck(x,objp,z) (objp)
2959#define check_slabp(x,y) do { } while(0)
2960#endif
2961
343e0d7a 2962static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2963{
2964 int batchcount;
2965 struct kmem_list3 *l3;
2966 struct array_cache *ac;
1ca4cb24
PE
2967 int node;
2968
2969 node = numa_node_id();
1da177e4
LT
2970
2971 check_irq_off();
9a2dba4b 2972 ac = cpu_cache_get(cachep);
a737b3e2 2973retry:
1da177e4
LT
2974 batchcount = ac->batchcount;
2975 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2976 /*
2977 * If there was little recent activity on this cache, then
2978 * perform only a partial refill. Otherwise we could generate
2979 * refill bouncing.
1da177e4
LT
2980 */
2981 batchcount = BATCHREFILL_LIMIT;
2982 }
1ca4cb24 2983 l3 = cachep->nodelists[node];
e498be7d
CL
2984
2985 BUG_ON(ac->avail > 0 || !l3);
2986 spin_lock(&l3->list_lock);
1da177e4 2987
3ded175a
CL
2988 /* See if we can refill from the shared array */
2989 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2990 goto alloc_done;
2991
1da177e4
LT
2992 while (batchcount > 0) {
2993 struct list_head *entry;
2994 struct slab *slabp;
2995 /* Get slab alloc is to come from. */
2996 entry = l3->slabs_partial.next;
2997 if (entry == &l3->slabs_partial) {
2998 l3->free_touched = 1;
2999 entry = l3->slabs_free.next;
3000 if (entry == &l3->slabs_free)
3001 goto must_grow;
3002 }
3003
3004 slabp = list_entry(entry, struct slab, list);
3005 check_slabp(cachep, slabp);
3006 check_spinlock_acquired(cachep);
714b8171
PE
3007
3008 /*
3009 * The slab was either on partial or free list so
3010 * there must be at least one object available for
3011 * allocation.
3012 */
3013 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
3014
1da177e4 3015 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3016 STATS_INC_ALLOCED(cachep);
3017 STATS_INC_ACTIVE(cachep);
3018 STATS_SET_HIGH(cachep);
3019
78d382d7 3020 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
1ca4cb24 3021 node);
1da177e4
LT
3022 }
3023 check_slabp(cachep, slabp);
3024
3025 /* move slabp to correct slabp list: */
3026 list_del(&slabp->list);
3027 if (slabp->free == BUFCTL_END)
3028 list_add(&slabp->list, &l3->slabs_full);
3029 else
3030 list_add(&slabp->list, &l3->slabs_partial);
3031 }
3032
a737b3e2 3033must_grow:
1da177e4 3034 l3->free_objects -= ac->avail;
a737b3e2 3035alloc_done:
e498be7d 3036 spin_unlock(&l3->list_lock);
1da177e4
LT
3037
3038 if (unlikely(!ac->avail)) {
3039 int x;
3c517a61 3040 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3041
a737b3e2 3042 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3043 ac = cpu_cache_get(cachep);
a737b3e2 3044 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
3045 return NULL;
3046
a737b3e2 3047 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3048 goto retry;
3049 }
3050 ac->touched = 1;
e498be7d 3051 return ac->entry[--ac->avail];
1da177e4
LT
3052}
3053
a737b3e2
AM
3054static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3055 gfp_t flags)
1da177e4
LT
3056{
3057 might_sleep_if(flags & __GFP_WAIT);
3058#if DEBUG
3059 kmem_flagcheck(cachep, flags);
3060#endif
3061}
3062
3063#if DEBUG
a737b3e2
AM
3064static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3065 gfp_t flags, void *objp, void *caller)
1da177e4 3066{
b28a02de 3067 if (!objp)
1da177e4 3068 return objp;
b28a02de 3069 if (cachep->flags & SLAB_POISON) {
1da177e4 3070#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 3071 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3072 kernel_map_pages(virt_to_page(objp),
3dafccf2 3073 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
3074 else
3075 check_poison_obj(cachep, objp);
3076#else
3077 check_poison_obj(cachep, objp);
3078#endif
3079 poison_obj(cachep, objp, POISON_INUSE);
3080 }
3081 if (cachep->flags & SLAB_STORE_USER)
3082 *dbg_userword(cachep, objp) = caller;
3083
3084 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3085 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3086 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3087 slab_error(cachep, "double free, or memory outside"
3088 " object was overwritten");
b28a02de 3089 printk(KERN_ERR
a737b3e2
AM
3090 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
3091 objp, *dbg_redzone1(cachep, objp),
3092 *dbg_redzone2(cachep, objp));
1da177e4
LT
3093 }
3094 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3095 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3096 }
871751e2
AV
3097#ifdef CONFIG_DEBUG_SLAB_LEAK
3098 {
3099 struct slab *slabp;
3100 unsigned objnr;
3101
b49af68f 3102 slabp = page_get_slab(virt_to_head_page(objp));
871751e2
AV
3103 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3104 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3105 }
3106#endif
3dafccf2 3107 objp += obj_offset(cachep);
1da177e4 3108 if (cachep->ctor && cachep->flags & SLAB_POISON) {
b28a02de 3109 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
1da177e4
LT
3110
3111 if (!(flags & __GFP_WAIT))
3112 ctor_flags |= SLAB_CTOR_ATOMIC;
3113
3114 cachep->ctor(objp, cachep, ctor_flags);
b28a02de 3115 }
a44b56d3
KH
3116#if ARCH_SLAB_MINALIGN
3117 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3118 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3119 objp, ARCH_SLAB_MINALIGN);
3120 }
3121#endif
1da177e4
LT
3122 return objp;
3123}
3124#else
3125#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3126#endif
3127
8a8b6502
AM
3128#ifdef CONFIG_FAILSLAB
3129
3130static struct failslab_attr {
3131
3132 struct fault_attr attr;
3133
3134 u32 ignore_gfp_wait;
3135#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3136 struct dentry *ignore_gfp_wait_file;
3137#endif
3138
3139} failslab = {
3140 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4 3141 .ignore_gfp_wait = 1,
8a8b6502
AM
3142};
3143
3144static int __init setup_failslab(char *str)
3145{
3146 return setup_fault_attr(&failslab.attr, str);
3147}
3148__setup("failslab=", setup_failslab);
3149
3150static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3151{
3152 if (cachep == &cache_cache)
3153 return 0;
3154 if (flags & __GFP_NOFAIL)
3155 return 0;
3156 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3157 return 0;
3158
3159 return should_fail(&failslab.attr, obj_size(cachep));
3160}
3161
3162#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3163
3164static int __init failslab_debugfs(void)
3165{
3166 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3167 struct dentry *dir;
3168 int err;
3169
3170 err = init_fault_attr_dentries(&failslab.attr, "failslab");
3171 if (err)
3172 return err;
3173 dir = failslab.attr.dentries.dir;
3174
3175 failslab.ignore_gfp_wait_file =
3176 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3177 &failslab.ignore_gfp_wait);
3178
3179 if (!failslab.ignore_gfp_wait_file) {
3180 err = -ENOMEM;
3181 debugfs_remove(failslab.ignore_gfp_wait_file);
3182 cleanup_fault_attr_dentries(&failslab.attr);
3183 }
3184
3185 return err;
3186}
3187
3188late_initcall(failslab_debugfs);
3189
3190#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3191
3192#else /* CONFIG_FAILSLAB */
3193
3194static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3195{
3196 return 0;
3197}
3198
3199#endif /* CONFIG_FAILSLAB */
3200
343e0d7a 3201static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3202{
b28a02de 3203 void *objp;
1da177e4
LT
3204 struct array_cache *ac;
3205
5c382300 3206 check_irq_off();
8a8b6502
AM
3207
3208 if (should_failslab(cachep, flags))
3209 return NULL;
3210
9a2dba4b 3211 ac = cpu_cache_get(cachep);
1da177e4
LT
3212 if (likely(ac->avail)) {
3213 STATS_INC_ALLOCHIT(cachep);
3214 ac->touched = 1;
e498be7d 3215 objp = ac->entry[--ac->avail];
1da177e4
LT
3216 } else {
3217 STATS_INC_ALLOCMISS(cachep);
3218 objp = cache_alloc_refill(cachep, flags);
3219 }
5c382300
AK
3220 return objp;
3221}
3222
e498be7d 3223#ifdef CONFIG_NUMA
c61afb18 3224/*
b2455396 3225 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3226 *
3227 * If we are in_interrupt, then process context, including cpusets and
3228 * mempolicy, may not apply and should not be used for allocation policy.
3229 */
3230static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3231{
3232 int nid_alloc, nid_here;
3233
765c4507 3234 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18
PJ
3235 return NULL;
3236 nid_alloc = nid_here = numa_node_id();
3237 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3238 nid_alloc = cpuset_mem_spread_node();
3239 else if (current->mempolicy)
3240 nid_alloc = slab_node(current->mempolicy);
3241 if (nid_alloc != nid_here)
8b98c169 3242 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3243 return NULL;
3244}
3245
765c4507
CL
3246/*
3247 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3248 * certain node and fall back is permitted. First we scan all the
3249 * available nodelists for available objects. If that fails then we
3250 * perform an allocation without specifying a node. This allows the page
3251 * allocator to do its reclaim / fallback magic. We then insert the
3252 * slab into the proper nodelist and then allocate from it.
765c4507 3253 */
8c8cc2c1 3254static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3255{
8c8cc2c1
PE
3256 struct zonelist *zonelist;
3257 gfp_t local_flags;
765c4507
CL
3258 struct zone **z;
3259 void *obj = NULL;
3c517a61 3260 int nid;
8c8cc2c1
PE
3261
3262 if (flags & __GFP_THISNODE)
3263 return NULL;
3264
3265 zonelist = &NODE_DATA(slab_node(current->mempolicy))
3266 ->node_zonelists[gfp_zone(flags)];
3267 local_flags = (flags & GFP_LEVEL_MASK);
765c4507 3268
3c517a61
CL
3269retry:
3270 /*
3271 * Look through allowed nodes for objects available
3272 * from existing per node queues.
3273 */
aedb0eb1 3274 for (z = zonelist->zones; *z && !obj; z++) {
3c517a61 3275 nid = zone_to_nid(*z);
aedb0eb1 3276
02a0e53d 3277 if (cpuset_zone_allowed_hardwall(*z, flags) &&
3c517a61
CL
3278 cache->nodelists[nid] &&
3279 cache->nodelists[nid]->free_objects)
3280 obj = ____cache_alloc_node(cache,
3281 flags | GFP_THISNODE, nid);
3282 }
3283
b6a60451 3284 if (!obj && !(flags & __GFP_NO_GROW)) {
3c517a61
CL
3285 /*
3286 * This allocation will be performed within the constraints
3287 * of the current cpuset / memory policy requirements.
3288 * We may trigger various forms of reclaim on the allowed
3289 * set and go into memory reserves if necessary.
3290 */
dd47ea75
CL
3291 if (local_flags & __GFP_WAIT)
3292 local_irq_enable();
3293 kmem_flagcheck(cache, flags);
3c517a61 3294 obj = kmem_getpages(cache, flags, -1);
dd47ea75
CL
3295 if (local_flags & __GFP_WAIT)
3296 local_irq_disable();
3c517a61
CL
3297 if (obj) {
3298 /*
3299 * Insert into the appropriate per node queues
3300 */
3301 nid = page_to_nid(virt_to_page(obj));
3302 if (cache_grow(cache, flags, nid, obj)) {
3303 obj = ____cache_alloc_node(cache,
3304 flags | GFP_THISNODE, nid);
3305 if (!obj)
3306 /*
3307 * Another processor may allocate the
3308 * objects in the slab since we are
3309 * not holding any locks.
3310 */
3311 goto retry;
3312 } else {
b6a60451 3313 /* cache_grow already freed obj */
3c517a61
CL
3314 obj = NULL;
3315 }
3316 }
aedb0eb1 3317 }
765c4507
CL
3318 return obj;
3319}
3320
e498be7d
CL
3321/*
3322 * A interface to enable slab creation on nodeid
1da177e4 3323 */
8b98c169 3324static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3325 int nodeid)
e498be7d
CL
3326{
3327 struct list_head *entry;
b28a02de
PE
3328 struct slab *slabp;
3329 struct kmem_list3 *l3;
3330 void *obj;
b28a02de
PE
3331 int x;
3332
3333 l3 = cachep->nodelists[nodeid];
3334 BUG_ON(!l3);
3335
a737b3e2 3336retry:
ca3b9b91 3337 check_irq_off();
b28a02de
PE
3338 spin_lock(&l3->list_lock);
3339 entry = l3->slabs_partial.next;
3340 if (entry == &l3->slabs_partial) {
3341 l3->free_touched = 1;
3342 entry = l3->slabs_free.next;
3343 if (entry == &l3->slabs_free)
3344 goto must_grow;
3345 }
3346
3347 slabp = list_entry(entry, struct slab, list);
3348 check_spinlock_acquired_node(cachep, nodeid);
3349 check_slabp(cachep, slabp);
3350
3351 STATS_INC_NODEALLOCS(cachep);
3352 STATS_INC_ACTIVE(cachep);
3353 STATS_SET_HIGH(cachep);
3354
3355 BUG_ON(slabp->inuse == cachep->num);
3356
78d382d7 3357 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3358 check_slabp(cachep, slabp);
3359 l3->free_objects--;
3360 /* move slabp to correct slabp list: */
3361 list_del(&slabp->list);
3362
a737b3e2 3363 if (slabp->free == BUFCTL_END)
b28a02de 3364 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3365 else
b28a02de 3366 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3367
b28a02de
PE
3368 spin_unlock(&l3->list_lock);
3369 goto done;
e498be7d 3370
a737b3e2 3371must_grow:
b28a02de 3372 spin_unlock(&l3->list_lock);
3c517a61 3373 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3374 if (x)
3375 goto retry;
1da177e4 3376
8c8cc2c1 3377 return fallback_alloc(cachep, flags);
e498be7d 3378
a737b3e2 3379done:
b28a02de 3380 return obj;
e498be7d 3381}
8c8cc2c1
PE
3382
3383/**
3384 * kmem_cache_alloc_node - Allocate an object on the specified node
3385 * @cachep: The cache to allocate from.
3386 * @flags: See kmalloc().
3387 * @nodeid: node number of the target node.
3388 * @caller: return address of caller, used for debug information
3389 *
3390 * Identical to kmem_cache_alloc but it will allocate memory on the given
3391 * node, which can improve the performance for cpu bound structures.
3392 *
3393 * Fallback to other node is possible if __GFP_THISNODE is not set.
3394 */
3395static __always_inline void *
3396__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3397 void *caller)
3398{
3399 unsigned long save_flags;
3400 void *ptr;
3401
3402 cache_alloc_debugcheck_before(cachep, flags);
3403 local_irq_save(save_flags);
3404
3405 if (unlikely(nodeid == -1))
3406 nodeid = numa_node_id();
3407
3408 if (unlikely(!cachep->nodelists[nodeid])) {
3409 /* Node not bootstrapped yet */
3410 ptr = fallback_alloc(cachep, flags);
3411 goto out;
3412 }
3413
3414 if (nodeid == numa_node_id()) {
3415 /*
3416 * Use the locally cached objects if possible.
3417 * However ____cache_alloc does not allow fallback
3418 * to other nodes. It may fail while we still have
3419 * objects on other nodes available.
3420 */
3421 ptr = ____cache_alloc(cachep, flags);
3422 if (ptr)
3423 goto out;
3424 }
3425 /* ___cache_alloc_node can fall back to other nodes */
3426 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3427 out:
3428 local_irq_restore(save_flags);
3429 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3430
3431 return ptr;
3432}
3433
3434static __always_inline void *
3435__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3436{
3437 void *objp;
3438
3439 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3440 objp = alternate_node_alloc(cache, flags);
3441 if (objp)
3442 goto out;
3443 }
3444 objp = ____cache_alloc(cache, flags);
3445
3446 /*
3447 * We may just have run out of memory on the local node.
3448 * ____cache_alloc_node() knows how to locate memory on other nodes
3449 */
3450 if (!objp)
3451 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3452
3453 out:
3454 return objp;
3455}
3456#else
3457
3458static __always_inline void *
3459__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3460{
3461 return ____cache_alloc(cachep, flags);
3462}
3463
3464#endif /* CONFIG_NUMA */
3465
3466static __always_inline void *
3467__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3468{
3469 unsigned long save_flags;
3470 void *objp;
3471
3472 cache_alloc_debugcheck_before(cachep, flags);
3473 local_irq_save(save_flags);
3474 objp = __do_cache_alloc(cachep, flags);
3475 local_irq_restore(save_flags);
3476 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3477 prefetchw(objp);
3478
3479 return objp;
3480}
e498be7d
CL
3481
3482/*
3483 * Caller needs to acquire correct kmem_list's list_lock
3484 */
343e0d7a 3485static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3486 int node)
1da177e4
LT
3487{
3488 int i;
e498be7d 3489 struct kmem_list3 *l3;
1da177e4
LT
3490
3491 for (i = 0; i < nr_objects; i++) {
3492 void *objp = objpp[i];
3493 struct slab *slabp;
1da177e4 3494
6ed5eb22 3495 slabp = virt_to_slab(objp);
ff69416e 3496 l3 = cachep->nodelists[node];
1da177e4 3497 list_del(&slabp->list);
ff69416e 3498 check_spinlock_acquired_node(cachep, node);
1da177e4 3499 check_slabp(cachep, slabp);
78d382d7 3500 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3501 STATS_DEC_ACTIVE(cachep);
e498be7d 3502 l3->free_objects++;
1da177e4
LT
3503 check_slabp(cachep, slabp);
3504
3505 /* fixup slab chains */
3506 if (slabp->inuse == 0) {
e498be7d
CL
3507 if (l3->free_objects > l3->free_limit) {
3508 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3509 /* No need to drop any previously held
3510 * lock here, even if we have a off-slab slab
3511 * descriptor it is guaranteed to come from
3512 * a different cache, refer to comments before
3513 * alloc_slabmgmt.
3514 */
1da177e4
LT
3515 slab_destroy(cachep, slabp);
3516 } else {
e498be7d 3517 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3518 }
3519 } else {
3520 /* Unconditionally move a slab to the end of the
3521 * partial list on free - maximum time for the
3522 * other objects to be freed, too.
3523 */
e498be7d 3524 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3525 }
3526 }
3527}
3528
343e0d7a 3529static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3530{
3531 int batchcount;
e498be7d 3532 struct kmem_list3 *l3;
ff69416e 3533 int node = numa_node_id();
1da177e4
LT
3534
3535 batchcount = ac->batchcount;
3536#if DEBUG
3537 BUG_ON(!batchcount || batchcount > ac->avail);
3538#endif
3539 check_irq_off();
ff69416e 3540 l3 = cachep->nodelists[node];
873623df 3541 spin_lock(&l3->list_lock);
e498be7d
CL
3542 if (l3->shared) {
3543 struct array_cache *shared_array = l3->shared;
b28a02de 3544 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3545 if (max) {
3546 if (batchcount > max)
3547 batchcount = max;
e498be7d 3548 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3549 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3550 shared_array->avail += batchcount;
3551 goto free_done;
3552 }
3553 }
3554
ff69416e 3555 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3556free_done:
1da177e4
LT
3557#if STATS
3558 {
3559 int i = 0;
3560 struct list_head *p;
3561
e498be7d
CL
3562 p = l3->slabs_free.next;
3563 while (p != &(l3->slabs_free)) {
1da177e4
LT
3564 struct slab *slabp;
3565
3566 slabp = list_entry(p, struct slab, list);
3567 BUG_ON(slabp->inuse);
3568
3569 i++;
3570 p = p->next;
3571 }
3572 STATS_SET_FREEABLE(cachep, i);
3573 }
3574#endif
e498be7d 3575 spin_unlock(&l3->list_lock);
1da177e4 3576 ac->avail -= batchcount;
a737b3e2 3577 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3578}
3579
3580/*
a737b3e2
AM
3581 * Release an obj back to its cache. If the obj has a constructed state, it must
3582 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3583 */
873623df 3584static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3585{
9a2dba4b 3586 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3587
3588 check_irq_off();
3589 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3590
62918a03 3591 if (use_alien_caches && cache_free_alien(cachep, objp))
729bd0b7
PE
3592 return;
3593
1da177e4
LT
3594 if (likely(ac->avail < ac->limit)) {
3595 STATS_INC_FREEHIT(cachep);
e498be7d 3596 ac->entry[ac->avail++] = objp;
1da177e4
LT
3597 return;
3598 } else {
3599 STATS_INC_FREEMISS(cachep);
3600 cache_flusharray(cachep, ac);
e498be7d 3601 ac->entry[ac->avail++] = objp;
1da177e4
LT
3602 }
3603}
3604
3605/**
3606 * kmem_cache_alloc - Allocate an object
3607 * @cachep: The cache to allocate from.
3608 * @flags: See kmalloc().
3609 *
3610 * Allocate an object from this cache. The flags are only relevant
3611 * if the cache has no available objects.
3612 */
343e0d7a 3613void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3614{
7fd6b141 3615 return __cache_alloc(cachep, flags, __builtin_return_address(0));
1da177e4
LT
3616}
3617EXPORT_SYMBOL(kmem_cache_alloc);
3618
a8c0f9a4 3619/**
b8008b2b 3620 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
a8c0f9a4
PE
3621 * @cache: The cache to allocate from.
3622 * @flags: See kmalloc().
3623 *
3624 * Allocate an object from this cache and set the allocated memory to zero.
3625 * The flags are only relevant if the cache has no available objects.
3626 */
3627void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3628{
3629 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3630 if (ret)
3631 memset(ret, 0, obj_size(cache));
3632 return ret;
3633}
3634EXPORT_SYMBOL(kmem_cache_zalloc);
3635
1da177e4
LT
3636/**
3637 * kmem_ptr_validate - check if an untrusted pointer might
3638 * be a slab entry.
3639 * @cachep: the cache we're checking against
3640 * @ptr: pointer to validate
3641 *
3642 * This verifies that the untrusted pointer looks sane:
3643 * it is _not_ a guarantee that the pointer is actually
3644 * part of the slab cache in question, but it at least
3645 * validates that the pointer can be dereferenced and
3646 * looks half-way sane.
3647 *
3648 * Currently only used for dentry validation.
3649 */
b7f869a2 3650int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
1da177e4 3651{
b28a02de 3652 unsigned long addr = (unsigned long)ptr;
1da177e4 3653 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3654 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3655 unsigned long size = cachep->buffer_size;
1da177e4
LT
3656 struct page *page;
3657
3658 if (unlikely(addr < min_addr))
3659 goto out;
3660 if (unlikely(addr > (unsigned long)high_memory - size))
3661 goto out;
3662 if (unlikely(addr & align_mask))
3663 goto out;
3664 if (unlikely(!kern_addr_valid(addr)))
3665 goto out;
3666 if (unlikely(!kern_addr_valid(addr + size - 1)))
3667 goto out;
3668 page = virt_to_page(ptr);
3669 if (unlikely(!PageSlab(page)))
3670 goto out;
065d41cb 3671 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3672 goto out;
3673 return 1;
a737b3e2 3674out:
1da177e4
LT
3675 return 0;
3676}
3677
3678#ifdef CONFIG_NUMA
8b98c169
CH
3679void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3680{
3681 return __cache_alloc_node(cachep, flags, nodeid,
3682 __builtin_return_address(0));
3683}
1da177e4
LT
3684EXPORT_SYMBOL(kmem_cache_alloc_node);
3685
8b98c169
CH
3686static __always_inline void *
3687__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3688{
343e0d7a 3689 struct kmem_cache *cachep;
97e2bde4
MS
3690
3691 cachep = kmem_find_general_cachep(size, flags);
3692 if (unlikely(cachep == NULL))
3693 return NULL;
3694 return kmem_cache_alloc_node(cachep, flags, node);
3695}
8b98c169
CH
3696
3697#ifdef CONFIG_DEBUG_SLAB
3698void *__kmalloc_node(size_t size, gfp_t flags, int node)
3699{
3700 return __do_kmalloc_node(size, flags, node,
3701 __builtin_return_address(0));
3702}
dbe5e69d 3703EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3704
3705void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3706 int node, void *caller)
3707{
3708 return __do_kmalloc_node(size, flags, node, caller);
3709}
3710EXPORT_SYMBOL(__kmalloc_node_track_caller);
3711#else
3712void *__kmalloc_node(size_t size, gfp_t flags, int node)
3713{
3714 return __do_kmalloc_node(size, flags, node, NULL);
3715}
3716EXPORT_SYMBOL(__kmalloc_node);
3717#endif /* CONFIG_DEBUG_SLAB */
3718#endif /* CONFIG_NUMA */
1da177e4
LT
3719
3720/**
800590f5 3721 * __do_kmalloc - allocate memory
1da177e4 3722 * @size: how many bytes of memory are required.
800590f5 3723 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3724 * @caller: function caller for debug tracking of the caller
1da177e4 3725 */
7fd6b141
PE
3726static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3727 void *caller)
1da177e4 3728{
343e0d7a 3729 struct kmem_cache *cachep;
1da177e4 3730
97e2bde4
MS
3731 /* If you want to save a few bytes .text space: replace
3732 * __ with kmem_.
3733 * Then kmalloc uses the uninlined functions instead of the inline
3734 * functions.
3735 */
3736 cachep = __find_general_cachep(size, flags);
dbdb9045
AM
3737 if (unlikely(cachep == NULL))
3738 return NULL;
7fd6b141
PE
3739 return __cache_alloc(cachep, flags, caller);
3740}
3741
7fd6b141 3742
1d2c8eea 3743#ifdef CONFIG_DEBUG_SLAB
7fd6b141
PE
3744void *__kmalloc(size_t size, gfp_t flags)
3745{
871751e2 3746 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3747}
3748EXPORT_SYMBOL(__kmalloc);
3749
7fd6b141
PE
3750void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3751{
3752 return __do_kmalloc(size, flags, caller);
3753}
3754EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3755
3756#else
3757void *__kmalloc(size_t size, gfp_t flags)
3758{
3759 return __do_kmalloc(size, flags, NULL);
3760}
3761EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3762#endif
3763
fd76bab2
PE
3764/**
3765 * krealloc - reallocate memory. The contents will remain unchanged.
3766 *
3767 * @p: object to reallocate memory for.
3768 * @new_size: how many bytes of memory are required.
3769 * @flags: the type of memory to allocate.
3770 *
3771 * The contents of the object pointed to are preserved up to the
3772 * lesser of the new and old sizes. If @p is %NULL, krealloc()
3773 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
3774 * %NULL pointer, the object pointed to is freed.
3775 */
3776void *krealloc(const void *p, size_t new_size, gfp_t flags)
3777{
3778 struct kmem_cache *cache, *new_cache;
3779 void *ret;
3780
3781 if (unlikely(!p))
3782 return kmalloc_track_caller(new_size, flags);
3783
3784 if (unlikely(!new_size)) {
3785 kfree(p);
3786 return NULL;
3787 }
3788
3789 cache = virt_to_cache(p);
3790 new_cache = __find_general_cachep(new_size, flags);
3791
3792 /*
3793 * If new size fits in the current cache, bail out.
3794 */
3795 if (likely(cache == new_cache))
3796 return (void *)p;
3797
3798 /*
3799 * We are on the slow-path here so do not use __cache_alloc
3800 * because it bloats kernel text.
3801 */
3802 ret = kmalloc_track_caller(new_size, flags);
3803 if (ret) {
3804 memcpy(ret, p, min(new_size, ksize(p)));
3805 kfree(p);
3806 }
3807 return ret;
3808}
3809EXPORT_SYMBOL(krealloc);
3810
1da177e4
LT
3811/**
3812 * kmem_cache_free - Deallocate an object
3813 * @cachep: The cache the allocation was from.
3814 * @objp: The previously allocated object.
3815 *
3816 * Free an object which was previously allocated from this
3817 * cache.
3818 */
343e0d7a 3819void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3820{
3821 unsigned long flags;
3822
ddc2e812
PE
3823 BUG_ON(virt_to_cache(objp) != cachep);
3824
1da177e4 3825 local_irq_save(flags);
898552c9 3826 debug_check_no_locks_freed(objp, obj_size(cachep));
873623df 3827 __cache_free(cachep, objp);
1da177e4
LT
3828 local_irq_restore(flags);
3829}
3830EXPORT_SYMBOL(kmem_cache_free);
3831
1da177e4
LT
3832/**
3833 * kfree - free previously allocated memory
3834 * @objp: pointer returned by kmalloc.
3835 *
80e93eff
PE
3836 * If @objp is NULL, no operation is performed.
3837 *
1da177e4
LT
3838 * Don't free memory not originally allocated by kmalloc()
3839 * or you will run into trouble.
3840 */
3841void kfree(const void *objp)
3842{
343e0d7a 3843 struct kmem_cache *c;
1da177e4
LT
3844 unsigned long flags;
3845
3846 if (unlikely(!objp))
3847 return;
3848 local_irq_save(flags);
3849 kfree_debugcheck(objp);
6ed5eb22 3850 c = virt_to_cache(objp);
f9b8404c 3851 debug_check_no_locks_freed(objp, obj_size(c));
873623df 3852 __cache_free(c, (void *)objp);
1da177e4
LT
3853 local_irq_restore(flags);
3854}
3855EXPORT_SYMBOL(kfree);
3856
343e0d7a 3857unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3858{
3dafccf2 3859 return obj_size(cachep);
1da177e4
LT
3860}
3861EXPORT_SYMBOL(kmem_cache_size);
3862
343e0d7a 3863const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3864{
3865 return cachep->name;
3866}
3867EXPORT_SYMBOL_GPL(kmem_cache_name);
3868
e498be7d 3869/*
0718dc2a 3870 * This initializes kmem_list3 or resizes varioius caches for all nodes.
e498be7d 3871 */
343e0d7a 3872static int alloc_kmemlist(struct kmem_cache *cachep)
e498be7d
CL
3873{
3874 int node;
3875 struct kmem_list3 *l3;
cafeb02e 3876 struct array_cache *new_shared;
3395ee05 3877 struct array_cache **new_alien = NULL;
e498be7d
CL
3878
3879 for_each_online_node(node) {
cafeb02e 3880
3395ee05
PM
3881 if (use_alien_caches) {
3882 new_alien = alloc_alien_cache(node, cachep->limit);
3883 if (!new_alien)
3884 goto fail;
3885 }
cafeb02e 3886
63109846
ED
3887 new_shared = NULL;
3888 if (cachep->shared) {
3889 new_shared = alloc_arraycache(node,
0718dc2a 3890 cachep->shared*cachep->batchcount,
a737b3e2 3891 0xbaadf00d);
63109846
ED
3892 if (!new_shared) {
3893 free_alien_cache(new_alien);
3894 goto fail;
3895 }
0718dc2a 3896 }
cafeb02e 3897
a737b3e2
AM
3898 l3 = cachep->nodelists[node];
3899 if (l3) {
cafeb02e
CL
3900 struct array_cache *shared = l3->shared;
3901
e498be7d
CL
3902 spin_lock_irq(&l3->list_lock);
3903
cafeb02e 3904 if (shared)
0718dc2a
CL
3905 free_block(cachep, shared->entry,
3906 shared->avail, node);
e498be7d 3907
cafeb02e
CL
3908 l3->shared = new_shared;
3909 if (!l3->alien) {
e498be7d
CL
3910 l3->alien = new_alien;
3911 new_alien = NULL;
3912 }
b28a02de 3913 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3914 cachep->batchcount + cachep->num;
e498be7d 3915 spin_unlock_irq(&l3->list_lock);
cafeb02e 3916 kfree(shared);
e498be7d
CL
3917 free_alien_cache(new_alien);
3918 continue;
3919 }
a737b3e2 3920 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
0718dc2a
CL
3921 if (!l3) {
3922 free_alien_cache(new_alien);
3923 kfree(new_shared);
e498be7d 3924 goto fail;
0718dc2a 3925 }
e498be7d
CL
3926
3927 kmem_list3_init(l3);
3928 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3929 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3930 l3->shared = new_shared;
e498be7d 3931 l3->alien = new_alien;
b28a02de 3932 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3933 cachep->batchcount + cachep->num;
e498be7d
CL
3934 cachep->nodelists[node] = l3;
3935 }
cafeb02e 3936 return 0;
0718dc2a 3937
a737b3e2 3938fail:
0718dc2a
CL
3939 if (!cachep->next.next) {
3940 /* Cache is not active yet. Roll back what we did */
3941 node--;
3942 while (node >= 0) {
3943 if (cachep->nodelists[node]) {
3944 l3 = cachep->nodelists[node];
3945
3946 kfree(l3->shared);
3947 free_alien_cache(l3->alien);
3948 kfree(l3);
3949 cachep->nodelists[node] = NULL;
3950 }
3951 node--;
3952 }
3953 }
cafeb02e 3954 return -ENOMEM;
e498be7d
CL
3955}
3956
1da177e4 3957struct ccupdate_struct {
343e0d7a 3958 struct kmem_cache *cachep;
1da177e4
LT
3959 struct array_cache *new[NR_CPUS];
3960};
3961
3962static void do_ccupdate_local(void *info)
3963{
a737b3e2 3964 struct ccupdate_struct *new = info;
1da177e4
LT
3965 struct array_cache *old;
3966
3967 check_irq_off();
9a2dba4b 3968 old = cpu_cache_get(new->cachep);
e498be7d 3969
1da177e4
LT
3970 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3971 new->new[smp_processor_id()] = old;
3972}
3973
b5d8ca7c 3974/* Always called with the cache_chain_mutex held */
a737b3e2
AM
3975static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3976 int batchcount, int shared)
1da177e4 3977{
d2e7b7d0 3978 struct ccupdate_struct *new;
2ed3a4ef 3979 int i;
1da177e4 3980
d2e7b7d0
SS
3981 new = kzalloc(sizeof(*new), GFP_KERNEL);
3982 if (!new)
3983 return -ENOMEM;
3984
e498be7d 3985 for_each_online_cpu(i) {
d2e7b7d0 3986 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
a737b3e2 3987 batchcount);
d2e7b7d0 3988 if (!new->new[i]) {
b28a02de 3989 for (i--; i >= 0; i--)
d2e7b7d0
SS
3990 kfree(new->new[i]);
3991 kfree(new);
e498be7d 3992 return -ENOMEM;
1da177e4
LT
3993 }
3994 }
d2e7b7d0 3995 new->cachep = cachep;
1da177e4 3996
d2e7b7d0 3997 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
e498be7d 3998
1da177e4 3999 check_irq_on();
1da177e4
LT
4000 cachep->batchcount = batchcount;
4001 cachep->limit = limit;
e498be7d 4002 cachep->shared = shared;
1da177e4 4003
e498be7d 4004 for_each_online_cpu(i) {
d2e7b7d0 4005 struct array_cache *ccold = new->new[i];
1da177e4
LT
4006 if (!ccold)
4007 continue;
e498be7d 4008 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 4009 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 4010 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
4011 kfree(ccold);
4012 }
d2e7b7d0 4013 kfree(new);
2ed3a4ef 4014 return alloc_kmemlist(cachep);
1da177e4
LT
4015}
4016
b5d8ca7c 4017/* Called with cache_chain_mutex held always */
2ed3a4ef 4018static int enable_cpucache(struct kmem_cache *cachep)
1da177e4
LT
4019{
4020 int err;
4021 int limit, shared;
4022
a737b3e2
AM
4023 /*
4024 * The head array serves three purposes:
1da177e4
LT
4025 * - create a LIFO ordering, i.e. return objects that are cache-warm
4026 * - reduce the number of spinlock operations.
a737b3e2 4027 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4028 * bufctl chains: array operations are cheaper.
4029 * The numbers are guessed, we should auto-tune as described by
4030 * Bonwick.
4031 */
3dafccf2 4032 if (cachep->buffer_size > 131072)
1da177e4 4033 limit = 1;
3dafccf2 4034 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 4035 limit = 8;
3dafccf2 4036 else if (cachep->buffer_size > 1024)
1da177e4 4037 limit = 24;
3dafccf2 4038 else if (cachep->buffer_size > 256)
1da177e4
LT
4039 limit = 54;
4040 else
4041 limit = 120;
4042
a737b3e2
AM
4043 /*
4044 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4045 * allocation behaviour: Most allocs on one cpu, most free operations
4046 * on another cpu. For these cases, an efficient object passing between
4047 * cpus is necessary. This is provided by a shared array. The array
4048 * replaces Bonwick's magazine layer.
4049 * On uniprocessor, it's functionally equivalent (but less efficient)
4050 * to a larger limit. Thus disabled by default.
4051 */
4052 shared = 0;
364fbb29 4053 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4054 shared = 8;
1da177e4
LT
4055
4056#if DEBUG
a737b3e2
AM
4057 /*
4058 * With debugging enabled, large batchcount lead to excessively long
4059 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4060 */
4061 if (limit > 32)
4062 limit = 32;
4063#endif
b28a02de 4064 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
4065 if (err)
4066 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4067 cachep->name, -err);
2ed3a4ef 4068 return err;
1da177e4
LT
4069}
4070
1b55253a
CL
4071/*
4072 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4073 * necessary. Note that the l3 listlock also protects the array_cache
4074 * if drain_array() is used on the shared array.
1b55253a
CL
4075 */
4076void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4077 struct array_cache *ac, int force, int node)
1da177e4
LT
4078{
4079 int tofree;
4080
1b55253a
CL
4081 if (!ac || !ac->avail)
4082 return;
1da177e4
LT
4083 if (ac->touched && !force) {
4084 ac->touched = 0;
b18e7e65 4085 } else {
1b55253a 4086 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4087 if (ac->avail) {
4088 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4089 if (tofree > ac->avail)
4090 tofree = (ac->avail + 1) / 2;
4091 free_block(cachep, ac->entry, tofree, node);
4092 ac->avail -= tofree;
4093 memmove(ac->entry, &(ac->entry[tofree]),
4094 sizeof(void *) * ac->avail);
4095 }
1b55253a 4096 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4097 }
4098}
4099
4100/**
4101 * cache_reap - Reclaim memory from caches.
05fb6bf0 4102 * @w: work descriptor
1da177e4
LT
4103 *
4104 * Called from workqueue/eventd every few seconds.
4105 * Purpose:
4106 * - clear the per-cpu caches for this CPU.
4107 * - return freeable pages to the main free memory pool.
4108 *
a737b3e2
AM
4109 * If we cannot acquire the cache chain mutex then just give up - we'll try
4110 * again on the next iteration.
1da177e4 4111 */
7c5cae36 4112static void cache_reap(struct work_struct *w)
1da177e4 4113{
7a7c381d 4114 struct kmem_cache *searchp;
e498be7d 4115 struct kmem_list3 *l3;
aab2207c 4116 int node = numa_node_id();
7c5cae36
CL
4117 struct delayed_work *work =
4118 container_of(w, struct delayed_work, work);
1da177e4 4119
7c5cae36 4120 if (!mutex_trylock(&cache_chain_mutex))
1da177e4 4121 /* Give up. Setup the next iteration. */
7c5cae36 4122 goto out;
1da177e4 4123
7a7c381d 4124 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
4125 check_irq_on();
4126
35386e3b
CL
4127 /*
4128 * We only take the l3 lock if absolutely necessary and we
4129 * have established with reasonable certainty that
4130 * we can do some work if the lock was obtained.
4131 */
aab2207c 4132 l3 = searchp->nodelists[node];
35386e3b 4133
8fce4d8e 4134 reap_alien(searchp, l3);
1da177e4 4135
aab2207c 4136 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4137
35386e3b
CL
4138 /*
4139 * These are racy checks but it does not matter
4140 * if we skip one check or scan twice.
4141 */
e498be7d 4142 if (time_after(l3->next_reap, jiffies))
35386e3b 4143 goto next;
1da177e4 4144
e498be7d 4145 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4146
aab2207c 4147 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4148
ed11d9eb 4149 if (l3->free_touched)
e498be7d 4150 l3->free_touched = 0;
ed11d9eb
CL
4151 else {
4152 int freed;
1da177e4 4153
ed11d9eb
CL
4154 freed = drain_freelist(searchp, l3, (l3->free_limit +
4155 5 * searchp->num - 1) / (5 * searchp->num));
4156 STATS_ADD_REAPED(searchp, freed);
4157 }
35386e3b 4158next:
1da177e4
LT
4159 cond_resched();
4160 }
4161 check_irq_on();
fc0abb14 4162 mutex_unlock(&cache_chain_mutex);
8fce4d8e 4163 next_reap_node();
2244b95a 4164 refresh_cpu_vm_stats(smp_processor_id());
7c5cae36 4165out:
a737b3e2 4166 /* Set up the next iteration */
7c5cae36 4167 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4168}
4169
4170#ifdef CONFIG_PROC_FS
4171
85289f98 4172static void print_slabinfo_header(struct seq_file *m)
1da177e4 4173{
85289f98
PE
4174 /*
4175 * Output format version, so at least we can change it
4176 * without _too_ many complaints.
4177 */
1da177e4 4178#if STATS
85289f98 4179 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4180#else
85289f98 4181 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4182#endif
85289f98
PE
4183 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4184 "<objperslab> <pagesperslab>");
4185 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4186 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4187#if STATS
85289f98 4188 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4189 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4190 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4191#endif
85289f98
PE
4192 seq_putc(m, '\n');
4193}
4194
4195static void *s_start(struct seq_file *m, loff_t *pos)
4196{
4197 loff_t n = *pos;
4198 struct list_head *p;
4199
fc0abb14 4200 mutex_lock(&cache_chain_mutex);
85289f98
PE
4201 if (!n)
4202 print_slabinfo_header(m);
1da177e4
LT
4203 p = cache_chain.next;
4204 while (n--) {
4205 p = p->next;
4206 if (p == &cache_chain)
4207 return NULL;
4208 }
343e0d7a 4209 return list_entry(p, struct kmem_cache, next);
1da177e4
LT
4210}
4211
4212static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4213{
343e0d7a 4214 struct kmem_cache *cachep = p;
1da177e4 4215 ++*pos;
a737b3e2
AM
4216 return cachep->next.next == &cache_chain ?
4217 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
1da177e4
LT
4218}
4219
4220static void s_stop(struct seq_file *m, void *p)
4221{
fc0abb14 4222 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4223}
4224
4225static int s_show(struct seq_file *m, void *p)
4226{
343e0d7a 4227 struct kmem_cache *cachep = p;
b28a02de
PE
4228 struct slab *slabp;
4229 unsigned long active_objs;
4230 unsigned long num_objs;
4231 unsigned long active_slabs = 0;
4232 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4233 const char *name;
1da177e4 4234 char *error = NULL;
e498be7d
CL
4235 int node;
4236 struct kmem_list3 *l3;
1da177e4 4237
1da177e4
LT
4238 active_objs = 0;
4239 num_slabs = 0;
e498be7d
CL
4240 for_each_online_node(node) {
4241 l3 = cachep->nodelists[node];
4242 if (!l3)
4243 continue;
4244
ca3b9b91
RT
4245 check_irq_on();
4246 spin_lock_irq(&l3->list_lock);
e498be7d 4247
7a7c381d 4248 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4249 if (slabp->inuse != cachep->num && !error)
4250 error = "slabs_full accounting error";
4251 active_objs += cachep->num;
4252 active_slabs++;
4253 }
7a7c381d 4254 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4255 if (slabp->inuse == cachep->num && !error)
4256 error = "slabs_partial inuse accounting error";
4257 if (!slabp->inuse && !error)
4258 error = "slabs_partial/inuse accounting error";
4259 active_objs += slabp->inuse;
4260 active_slabs++;
4261 }
7a7c381d 4262 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4263 if (slabp->inuse && !error)
4264 error = "slabs_free/inuse accounting error";
4265 num_slabs++;
4266 }
4267 free_objects += l3->free_objects;
4484ebf1
RT
4268 if (l3->shared)
4269 shared_avail += l3->shared->avail;
e498be7d 4270
ca3b9b91 4271 spin_unlock_irq(&l3->list_lock);
1da177e4 4272 }
b28a02de
PE
4273 num_slabs += active_slabs;
4274 num_objs = num_slabs * cachep->num;
e498be7d 4275 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4276 error = "free_objects accounting error";
4277
b28a02de 4278 name = cachep->name;
1da177e4
LT
4279 if (error)
4280 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4281
4282 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 4283 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 4284 cachep->num, (1 << cachep->gfporder));
1da177e4 4285 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4286 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4287 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4288 active_slabs, num_slabs, shared_avail);
1da177e4 4289#if STATS
b28a02de 4290 { /* list3 stats */
1da177e4
LT
4291 unsigned long high = cachep->high_mark;
4292 unsigned long allocs = cachep->num_allocations;
4293 unsigned long grown = cachep->grown;
4294 unsigned long reaped = cachep->reaped;
4295 unsigned long errors = cachep->errors;
4296 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4297 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4298 unsigned long node_frees = cachep->node_frees;
fb7faf33 4299 unsigned long overflows = cachep->node_overflow;
1da177e4 4300
e498be7d 4301 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 4302 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 4303 reaped, errors, max_freeable, node_allocs,
fb7faf33 4304 node_frees, overflows);
1da177e4
LT
4305 }
4306 /* cpu stats */
4307 {
4308 unsigned long allochit = atomic_read(&cachep->allochit);
4309 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4310 unsigned long freehit = atomic_read(&cachep->freehit);
4311 unsigned long freemiss = atomic_read(&cachep->freemiss);
4312
4313 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4314 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4315 }
4316#endif
4317 seq_putc(m, '\n');
1da177e4
LT
4318 return 0;
4319}
4320
4321/*
4322 * slabinfo_op - iterator that generates /proc/slabinfo
4323 *
4324 * Output layout:
4325 * cache-name
4326 * num-active-objs
4327 * total-objs
4328 * object size
4329 * num-active-slabs
4330 * total-slabs
4331 * num-pages-per-slab
4332 * + further values on SMP and with statistics enabled
4333 */
4334
15ad7cdc 4335const struct seq_operations slabinfo_op = {
b28a02de
PE
4336 .start = s_start,
4337 .next = s_next,
4338 .stop = s_stop,
4339 .show = s_show,
1da177e4
LT
4340};
4341
4342#define MAX_SLABINFO_WRITE 128
4343/**
4344 * slabinfo_write - Tuning for the slab allocator
4345 * @file: unused
4346 * @buffer: user buffer
4347 * @count: data length
4348 * @ppos: unused
4349 */
b28a02de
PE
4350ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4351 size_t count, loff_t *ppos)
1da177e4 4352{
b28a02de 4353 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4354 int limit, batchcount, shared, res;
7a7c381d 4355 struct kmem_cache *cachep;
b28a02de 4356
1da177e4
LT
4357 if (count > MAX_SLABINFO_WRITE)
4358 return -EINVAL;
4359 if (copy_from_user(&kbuf, buffer, count))
4360 return -EFAULT;
b28a02de 4361 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4362
4363 tmp = strchr(kbuf, ' ');
4364 if (!tmp)
4365 return -EINVAL;
4366 *tmp = '\0';
4367 tmp++;
4368 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4369 return -EINVAL;
4370
4371 /* Find the cache in the chain of caches. */
fc0abb14 4372 mutex_lock(&cache_chain_mutex);
1da177e4 4373 res = -EINVAL;
7a7c381d 4374 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4375 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4376 if (limit < 1 || batchcount < 1 ||
4377 batchcount > limit || shared < 0) {
e498be7d 4378 res = 0;
1da177e4 4379 } else {
e498be7d 4380 res = do_tune_cpucache(cachep, limit,
b28a02de 4381 batchcount, shared);
1da177e4
LT
4382 }
4383 break;
4384 }
4385 }
fc0abb14 4386 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4387 if (res >= 0)
4388 res = count;
4389 return res;
4390}
871751e2
AV
4391
4392#ifdef CONFIG_DEBUG_SLAB_LEAK
4393
4394static void *leaks_start(struct seq_file *m, loff_t *pos)
4395{
4396 loff_t n = *pos;
4397 struct list_head *p;
4398
4399 mutex_lock(&cache_chain_mutex);
4400 p = cache_chain.next;
4401 while (n--) {
4402 p = p->next;
4403 if (p == &cache_chain)
4404 return NULL;
4405 }
4406 return list_entry(p, struct kmem_cache, next);
4407}
4408
4409static inline int add_caller(unsigned long *n, unsigned long v)
4410{
4411 unsigned long *p;
4412 int l;
4413 if (!v)
4414 return 1;
4415 l = n[1];
4416 p = n + 2;
4417 while (l) {
4418 int i = l/2;
4419 unsigned long *q = p + 2 * i;
4420 if (*q == v) {
4421 q[1]++;
4422 return 1;
4423 }
4424 if (*q > v) {
4425 l = i;
4426 } else {
4427 p = q + 2;
4428 l -= i + 1;
4429 }
4430 }
4431 if (++n[1] == n[0])
4432 return 0;
4433 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4434 p[0] = v;
4435 p[1] = 1;
4436 return 1;
4437}
4438
4439static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4440{
4441 void *p;
4442 int i;
4443 if (n[0] == n[1])
4444 return;
4445 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4446 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4447 continue;
4448 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4449 return;
4450 }
4451}
4452
4453static void show_symbol(struct seq_file *m, unsigned long address)
4454{
4455#ifdef CONFIG_KALLSYMS
4456 char *modname;
4457 const char *name;
4458 unsigned long offset, size;
4459 char namebuf[KSYM_NAME_LEN+1];
4460
4461 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4462
4463 if (name) {
4464 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4465 if (modname)
4466 seq_printf(m, " [%s]", modname);
4467 return;
4468 }
4469#endif
4470 seq_printf(m, "%p", (void *)address);
4471}
4472
4473static int leaks_show(struct seq_file *m, void *p)
4474{
4475 struct kmem_cache *cachep = p;
871751e2
AV
4476 struct slab *slabp;
4477 struct kmem_list3 *l3;
4478 const char *name;
4479 unsigned long *n = m->private;
4480 int node;
4481 int i;
4482
4483 if (!(cachep->flags & SLAB_STORE_USER))
4484 return 0;
4485 if (!(cachep->flags & SLAB_RED_ZONE))
4486 return 0;
4487
4488 /* OK, we can do it */
4489
4490 n[1] = 0;
4491
4492 for_each_online_node(node) {
4493 l3 = cachep->nodelists[node];
4494 if (!l3)
4495 continue;
4496
4497 check_irq_on();
4498 spin_lock_irq(&l3->list_lock);
4499
7a7c381d 4500 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4501 handle_slab(n, cachep, slabp);
7a7c381d 4502 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4503 handle_slab(n, cachep, slabp);
871751e2
AV
4504 spin_unlock_irq(&l3->list_lock);
4505 }
4506 name = cachep->name;
4507 if (n[0] == n[1]) {
4508 /* Increase the buffer size */
4509 mutex_unlock(&cache_chain_mutex);
4510 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4511 if (!m->private) {
4512 /* Too bad, we are really out */
4513 m->private = n;
4514 mutex_lock(&cache_chain_mutex);
4515 return -ENOMEM;
4516 }
4517 *(unsigned long *)m->private = n[0] * 2;
4518 kfree(n);
4519 mutex_lock(&cache_chain_mutex);
4520 /* Now make sure this entry will be retried */
4521 m->count = m->size;
4522 return 0;
4523 }
4524 for (i = 0; i < n[1]; i++) {
4525 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4526 show_symbol(m, n[2*i+2]);
4527 seq_putc(m, '\n');
4528 }
d2e7b7d0 4529
871751e2
AV
4530 return 0;
4531}
4532
15ad7cdc 4533const struct seq_operations slabstats_op = {
871751e2
AV
4534 .start = leaks_start,
4535 .next = s_next,
4536 .stop = s_stop,
4537 .show = leaks_show,
4538};
4539#endif
1da177e4
LT
4540#endif
4541
00e145b6
MS
4542/**
4543 * ksize - get the actual amount of memory allocated for a given object
4544 * @objp: Pointer to the object
4545 *
4546 * kmalloc may internally round up allocations and return more memory
4547 * than requested. ksize() can be used to determine the actual amount of
4548 * memory allocated. The caller may use this additional memory, even though
4549 * a smaller amount of memory was initially specified with the kmalloc call.
4550 * The caller must guarantee that objp points to a valid object previously
4551 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4552 * must not be freed during the duration of the call.
4553 */
fd76bab2 4554size_t ksize(const void *objp)
1da177e4 4555{
00e145b6
MS
4556 if (unlikely(objp == NULL))
4557 return 0;
1da177e4 4558
6ed5eb22 4559 return obj_size(virt_to_cache(objp));
1da177e4 4560}