]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/slab.c
kmemtrace: small cleanups
[net-next-2.6.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
f09eac90 105#include <trace/kmemtrace.h>
1da177e4 106#include <linux/rcupdate.h>
543537bd 107#include <linux/string.h>
138ae663 108#include <linux/uaccess.h>
e498be7d 109#include <linux/nodemask.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
1da177e4 116
1da177e4
LT
117#include <asm/cacheflush.h>
118#include <asm/tlbflush.h>
119#include <asm/page.h>
120
121/*
50953fe9 122 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
123 * 0 for faster, smaller code (especially in the critical paths).
124 *
125 * STATS - 1 to collect stats for /proc/slabinfo.
126 * 0 for faster, smaller code (especially in the critical paths).
127 *
128 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
129 */
130
131#ifdef CONFIG_DEBUG_SLAB
132#define DEBUG 1
133#define STATS 1
134#define FORCED_DEBUG 1
135#else
136#define DEBUG 0
137#define STATS 0
138#define FORCED_DEBUG 0
139#endif
140
1da177e4
LT
141/* Shouldn't this be in a header file somewhere? */
142#define BYTES_PER_WORD sizeof(void *)
87a927c7 143#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 144
1da177e4
LT
145#ifndef ARCH_KMALLOC_MINALIGN
146/*
147 * Enforce a minimum alignment for the kmalloc caches.
148 * Usually, the kmalloc caches are cache_line_size() aligned, except when
149 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
150 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
b46b8f19
DW
151 * alignment larger than the alignment of a 64-bit integer.
152 * ARCH_KMALLOC_MINALIGN allows that.
153 * Note that increasing this value may disable some debug features.
1da177e4 154 */
b46b8f19 155#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
1da177e4
LT
156#endif
157
158#ifndef ARCH_SLAB_MINALIGN
159/*
160 * Enforce a minimum alignment for all caches.
161 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
162 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
163 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
164 * some debug features.
165 */
166#define ARCH_SLAB_MINALIGN 0
167#endif
168
169#ifndef ARCH_KMALLOC_FLAGS
170#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
171#endif
172
173/* Legal flag mask for kmem_cache_create(). */
174#if DEBUG
50953fe9 175# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 176 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 177 SLAB_CACHE_DMA | \
5af60839 178 SLAB_STORE_USER | \
1da177e4 179 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a
TG
180 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
181 SLAB_DEBUG_OBJECTS)
1da177e4 182#else
ac2b898c 183# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 184 SLAB_CACHE_DMA | \
1da177e4 185 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a
TG
186 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
187 SLAB_DEBUG_OBJECTS)
1da177e4
LT
188#endif
189
190/*
191 * kmem_bufctl_t:
192 *
193 * Bufctl's are used for linking objs within a slab
194 * linked offsets.
195 *
196 * This implementation relies on "struct page" for locating the cache &
197 * slab an object belongs to.
198 * This allows the bufctl structure to be small (one int), but limits
199 * the number of objects a slab (not a cache) can contain when off-slab
200 * bufctls are used. The limit is the size of the largest general cache
201 * that does not use off-slab slabs.
202 * For 32bit archs with 4 kB pages, is this 56.
203 * This is not serious, as it is only for large objects, when it is unwise
204 * to have too many per slab.
205 * Note: This limit can be raised by introducing a general cache whose size
206 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
207 */
208
fa5b08d5 209typedef unsigned int kmem_bufctl_t;
1da177e4
LT
210#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
211#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
212#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
213#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 214
1da177e4
LT
215/*
216 * struct slab
217 *
218 * Manages the objs in a slab. Placed either at the beginning of mem allocated
219 * for a slab, or allocated from an general cache.
220 * Slabs are chained into three list: fully used, partial, fully free slabs.
221 */
222struct slab {
b28a02de
PE
223 struct list_head list;
224 unsigned long colouroff;
225 void *s_mem; /* including colour offset */
226 unsigned int inuse; /* num of objs active in slab */
227 kmem_bufctl_t free;
228 unsigned short nodeid;
1da177e4
LT
229};
230
231/*
232 * struct slab_rcu
233 *
234 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
235 * arrange for kmem_freepages to be called via RCU. This is useful if
236 * we need to approach a kernel structure obliquely, from its address
237 * obtained without the usual locking. We can lock the structure to
238 * stabilize it and check it's still at the given address, only if we
239 * can be sure that the memory has not been meanwhile reused for some
240 * other kind of object (which our subsystem's lock might corrupt).
241 *
242 * rcu_read_lock before reading the address, then rcu_read_unlock after
243 * taking the spinlock within the structure expected at that address.
244 *
245 * We assume struct slab_rcu can overlay struct slab when destroying.
246 */
247struct slab_rcu {
b28a02de 248 struct rcu_head head;
343e0d7a 249 struct kmem_cache *cachep;
b28a02de 250 void *addr;
1da177e4
LT
251};
252
253/*
254 * struct array_cache
255 *
1da177e4
LT
256 * Purpose:
257 * - LIFO ordering, to hand out cache-warm objects from _alloc
258 * - reduce the number of linked list operations
259 * - reduce spinlock operations
260 *
261 * The limit is stored in the per-cpu structure to reduce the data cache
262 * footprint.
263 *
264 */
265struct array_cache {
266 unsigned int avail;
267 unsigned int limit;
268 unsigned int batchcount;
269 unsigned int touched;
e498be7d 270 spinlock_t lock;
bda5b655 271 void *entry[]; /*
a737b3e2
AM
272 * Must have this definition in here for the proper
273 * alignment of array_cache. Also simplifies accessing
274 * the entries.
a737b3e2 275 */
1da177e4
LT
276};
277
a737b3e2
AM
278/*
279 * bootstrap: The caches do not work without cpuarrays anymore, but the
280 * cpuarrays are allocated from the generic caches...
1da177e4
LT
281 */
282#define BOOT_CPUCACHE_ENTRIES 1
283struct arraycache_init {
284 struct array_cache cache;
b28a02de 285 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
286};
287
288/*
e498be7d 289 * The slab lists for all objects.
1da177e4
LT
290 */
291struct kmem_list3 {
b28a02de
PE
292 struct list_head slabs_partial; /* partial list first, better asm code */
293 struct list_head slabs_full;
294 struct list_head slabs_free;
295 unsigned long free_objects;
b28a02de 296 unsigned int free_limit;
2e1217cf 297 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
298 spinlock_t list_lock;
299 struct array_cache *shared; /* shared per node */
300 struct array_cache **alien; /* on other nodes */
35386e3b
CL
301 unsigned long next_reap; /* updated without locking */
302 int free_touched; /* updated without locking */
1da177e4
LT
303};
304
e498be7d
CL
305/*
306 * Need this for bootstrapping a per node allocator.
307 */
556a169d 308#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
e498be7d
CL
309struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
310#define CACHE_CACHE 0
556a169d
PE
311#define SIZE_AC MAX_NUMNODES
312#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 313
ed11d9eb
CL
314static int drain_freelist(struct kmem_cache *cache,
315 struct kmem_list3 *l3, int tofree);
316static void free_block(struct kmem_cache *cachep, void **objpp, int len,
317 int node);
2ed3a4ef 318static int enable_cpucache(struct kmem_cache *cachep);
65f27f38 319static void cache_reap(struct work_struct *unused);
ed11d9eb 320
e498be7d 321/*
a737b3e2
AM
322 * This function must be completely optimized away if a constant is passed to
323 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 324 */
7243cc05 325static __always_inline int index_of(const size_t size)
e498be7d 326{
5ec8a847
SR
327 extern void __bad_size(void);
328
e498be7d
CL
329 if (__builtin_constant_p(size)) {
330 int i = 0;
331
332#define CACHE(x) \
333 if (size <=x) \
334 return i; \
335 else \
336 i++;
1c61fc40 337#include <linux/kmalloc_sizes.h>
e498be7d 338#undef CACHE
5ec8a847 339 __bad_size();
7243cc05 340 } else
5ec8a847 341 __bad_size();
e498be7d
CL
342 return 0;
343}
344
e0a42726
IM
345static int slab_early_init = 1;
346
e498be7d
CL
347#define INDEX_AC index_of(sizeof(struct arraycache_init))
348#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 349
5295a74c 350static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
351{
352 INIT_LIST_HEAD(&parent->slabs_full);
353 INIT_LIST_HEAD(&parent->slabs_partial);
354 INIT_LIST_HEAD(&parent->slabs_free);
355 parent->shared = NULL;
356 parent->alien = NULL;
2e1217cf 357 parent->colour_next = 0;
e498be7d
CL
358 spin_lock_init(&parent->list_lock);
359 parent->free_objects = 0;
360 parent->free_touched = 0;
361}
362
a737b3e2
AM
363#define MAKE_LIST(cachep, listp, slab, nodeid) \
364 do { \
365 INIT_LIST_HEAD(listp); \
366 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
367 } while (0)
368
a737b3e2
AM
369#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
370 do { \
e498be7d
CL
371 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
373 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
374 } while (0)
1da177e4
LT
375
376/*
343e0d7a 377 * struct kmem_cache
1da177e4
LT
378 *
379 * manages a cache.
380 */
b28a02de 381
2109a2d1 382struct kmem_cache {
1da177e4 383/* 1) per-cpu data, touched during every alloc/free */
b28a02de 384 struct array_cache *array[NR_CPUS];
b5d8ca7c 385/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
386 unsigned int batchcount;
387 unsigned int limit;
388 unsigned int shared;
b5d8ca7c 389
3dafccf2 390 unsigned int buffer_size;
6a2d7a95 391 u32 reciprocal_buffer_size;
b5d8ca7c 392/* 3) touched by every alloc & free from the backend */
b5d8ca7c 393
a737b3e2
AM
394 unsigned int flags; /* constant flags */
395 unsigned int num; /* # of objs per slab */
1da177e4 396
b5d8ca7c 397/* 4) cache_grow/shrink */
1da177e4 398 /* order of pgs per slab (2^n) */
b28a02de 399 unsigned int gfporder;
1da177e4
LT
400
401 /* force GFP flags, e.g. GFP_DMA */
b28a02de 402 gfp_t gfpflags;
1da177e4 403
a737b3e2 404 size_t colour; /* cache colouring range */
b28a02de 405 unsigned int colour_off; /* colour offset */
343e0d7a 406 struct kmem_cache *slabp_cache;
b28a02de 407 unsigned int slab_size;
a737b3e2 408 unsigned int dflags; /* dynamic flags */
1da177e4
LT
409
410 /* constructor func */
51cc5068 411 void (*ctor)(void *obj);
1da177e4 412
b5d8ca7c 413/* 5) cache creation/removal */
b28a02de
PE
414 const char *name;
415 struct list_head next;
1da177e4 416
b5d8ca7c 417/* 6) statistics */
1da177e4 418#if STATS
b28a02de
PE
419 unsigned long num_active;
420 unsigned long num_allocations;
421 unsigned long high_mark;
422 unsigned long grown;
423 unsigned long reaped;
424 unsigned long errors;
425 unsigned long max_freeable;
426 unsigned long node_allocs;
427 unsigned long node_frees;
fb7faf33 428 unsigned long node_overflow;
b28a02de
PE
429 atomic_t allochit;
430 atomic_t allocmiss;
431 atomic_t freehit;
432 atomic_t freemiss;
1da177e4
LT
433#endif
434#if DEBUG
3dafccf2
MS
435 /*
436 * If debugging is enabled, then the allocator can add additional
437 * fields and/or padding to every object. buffer_size contains the total
438 * object size including these internal fields, the following two
439 * variables contain the offset to the user object and its size.
440 */
441 int obj_offset;
442 int obj_size;
1da177e4 443#endif
8da3430d
ED
444 /*
445 * We put nodelists[] at the end of kmem_cache, because we want to size
446 * this array to nr_node_ids slots instead of MAX_NUMNODES
447 * (see kmem_cache_init())
448 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
449 * is statically defined, so we reserve the max number of nodes.
450 */
451 struct kmem_list3 *nodelists[MAX_NUMNODES];
452 /*
453 * Do not add fields after nodelists[]
454 */
1da177e4
LT
455};
456
457#define CFLGS_OFF_SLAB (0x80000000UL)
458#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
459
460#define BATCHREFILL_LIMIT 16
a737b3e2
AM
461/*
462 * Optimization question: fewer reaps means less probability for unnessary
463 * cpucache drain/refill cycles.
1da177e4 464 *
dc6f3f27 465 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
466 * which could lock up otherwise freeable slabs.
467 */
468#define REAPTIMEOUT_CPUC (2*HZ)
469#define REAPTIMEOUT_LIST3 (4*HZ)
470
471#if STATS
472#define STATS_INC_ACTIVE(x) ((x)->num_active++)
473#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
474#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
475#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 476#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
477#define STATS_SET_HIGH(x) \
478 do { \
479 if ((x)->num_active > (x)->high_mark) \
480 (x)->high_mark = (x)->num_active; \
481 } while (0)
1da177e4
LT
482#define STATS_INC_ERR(x) ((x)->errors++)
483#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 484#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 485#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
486#define STATS_SET_FREEABLE(x, i) \
487 do { \
488 if ((x)->max_freeable < i) \
489 (x)->max_freeable = i; \
490 } while (0)
1da177e4
LT
491#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
492#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
493#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
494#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
495#else
496#define STATS_INC_ACTIVE(x) do { } while (0)
497#define STATS_DEC_ACTIVE(x) do { } while (0)
498#define STATS_INC_ALLOCED(x) do { } while (0)
499#define STATS_INC_GROWN(x) do { } while (0)
ed11d9eb 500#define STATS_ADD_REAPED(x,y) do { } while (0)
1da177e4
LT
501#define STATS_SET_HIGH(x) do { } while (0)
502#define STATS_INC_ERR(x) do { } while (0)
503#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 504#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 505#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 506#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
507#define STATS_INC_ALLOCHIT(x) do { } while (0)
508#define STATS_INC_ALLOCMISS(x) do { } while (0)
509#define STATS_INC_FREEHIT(x) do { } while (0)
510#define STATS_INC_FREEMISS(x) do { } while (0)
511#endif
512
513#if DEBUG
1da177e4 514
a737b3e2
AM
515/*
516 * memory layout of objects:
1da177e4 517 * 0 : objp
3dafccf2 518 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
519 * the end of an object is aligned with the end of the real
520 * allocation. Catches writes behind the end of the allocation.
3dafccf2 521 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 522 * redzone word.
3dafccf2
MS
523 * cachep->obj_offset: The real object.
524 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
525 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
526 * [BYTES_PER_WORD long]
1da177e4 527 */
343e0d7a 528static int obj_offset(struct kmem_cache *cachep)
1da177e4 529{
3dafccf2 530 return cachep->obj_offset;
1da177e4
LT
531}
532
343e0d7a 533static int obj_size(struct kmem_cache *cachep)
1da177e4 534{
3dafccf2 535 return cachep->obj_size;
1da177e4
LT
536}
537
b46b8f19 538static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
539{
540 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
541 return (unsigned long long*) (objp + obj_offset(cachep) -
542 sizeof(unsigned long long));
1da177e4
LT
543}
544
b46b8f19 545static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
546{
547 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
548 if (cachep->flags & SLAB_STORE_USER)
b46b8f19
DW
549 return (unsigned long long *)(objp + cachep->buffer_size -
550 sizeof(unsigned long long) -
87a927c7 551 REDZONE_ALIGN);
b46b8f19
DW
552 return (unsigned long long *) (objp + cachep->buffer_size -
553 sizeof(unsigned long long));
1da177e4
LT
554}
555
343e0d7a 556static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
557{
558 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 559 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
560}
561
562#else
563
3dafccf2
MS
564#define obj_offset(x) 0
565#define obj_size(cachep) (cachep->buffer_size)
b46b8f19
DW
566#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
567#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
568#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
569
570#endif
571
36555751
EGM
572#ifdef CONFIG_KMEMTRACE
573size_t slab_buffer_size(struct kmem_cache *cachep)
574{
575 return cachep->buffer_size;
576}
577EXPORT_SYMBOL(slab_buffer_size);
578#endif
579
1da177e4
LT
580/*
581 * Do not go above this order unless 0 objects fit into the slab.
582 */
583#define BREAK_GFP_ORDER_HI 1
584#define BREAK_GFP_ORDER_LO 0
585static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
586
a737b3e2
AM
587/*
588 * Functions for storing/retrieving the cachep and or slab from the page
589 * allocator. These are used to find the slab an obj belongs to. With kfree(),
590 * these are used to find the cache which an obj belongs to.
1da177e4 591 */
065d41cb
PE
592static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
593{
594 page->lru.next = (struct list_head *)cache;
595}
596
597static inline struct kmem_cache *page_get_cache(struct page *page)
598{
d85f3385 599 page = compound_head(page);
ddc2e812 600 BUG_ON(!PageSlab(page));
065d41cb
PE
601 return (struct kmem_cache *)page->lru.next;
602}
603
604static inline void page_set_slab(struct page *page, struct slab *slab)
605{
606 page->lru.prev = (struct list_head *)slab;
607}
608
609static inline struct slab *page_get_slab(struct page *page)
610{
ddc2e812 611 BUG_ON(!PageSlab(page));
065d41cb
PE
612 return (struct slab *)page->lru.prev;
613}
1da177e4 614
6ed5eb22
PE
615static inline struct kmem_cache *virt_to_cache(const void *obj)
616{
b49af68f 617 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
618 return page_get_cache(page);
619}
620
621static inline struct slab *virt_to_slab(const void *obj)
622{
b49af68f 623 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
624 return page_get_slab(page);
625}
626
8fea4e96
PE
627static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
628 unsigned int idx)
629{
630 return slab->s_mem + cache->buffer_size * idx;
631}
632
6a2d7a95
ED
633/*
634 * We want to avoid an expensive divide : (offset / cache->buffer_size)
635 * Using the fact that buffer_size is a constant for a particular cache,
636 * we can replace (offset / cache->buffer_size) by
637 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
638 */
639static inline unsigned int obj_to_index(const struct kmem_cache *cache,
640 const struct slab *slab, void *obj)
8fea4e96 641{
6a2d7a95
ED
642 u32 offset = (obj - slab->s_mem);
643 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
644}
645
a737b3e2
AM
646/*
647 * These are the default caches for kmalloc. Custom caches can have other sizes.
648 */
1da177e4
LT
649struct cache_sizes malloc_sizes[] = {
650#define CACHE(x) { .cs_size = (x) },
651#include <linux/kmalloc_sizes.h>
652 CACHE(ULONG_MAX)
653#undef CACHE
654};
655EXPORT_SYMBOL(malloc_sizes);
656
657/* Must match cache_sizes above. Out of line to keep cache footprint low. */
658struct cache_names {
659 char *name;
660 char *name_dma;
661};
662
663static struct cache_names __initdata cache_names[] = {
664#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
665#include <linux/kmalloc_sizes.h>
b28a02de 666 {NULL,}
1da177e4
LT
667#undef CACHE
668};
669
670static struct arraycache_init initarray_cache __initdata =
b28a02de 671 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 672static struct arraycache_init initarray_generic =
b28a02de 673 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
674
675/* internal cache of cache description objs */
343e0d7a 676static struct kmem_cache cache_cache = {
b28a02de
PE
677 .batchcount = 1,
678 .limit = BOOT_CPUCACHE_ENTRIES,
679 .shared = 1,
343e0d7a 680 .buffer_size = sizeof(struct kmem_cache),
b28a02de 681 .name = "kmem_cache",
1da177e4
LT
682};
683
056c6241
RT
684#define BAD_ALIEN_MAGIC 0x01020304ul
685
f1aaee53
AV
686#ifdef CONFIG_LOCKDEP
687
688/*
689 * Slab sometimes uses the kmalloc slabs to store the slab headers
690 * for other slabs "off slab".
691 * The locking for this is tricky in that it nests within the locks
692 * of all other slabs in a few places; to deal with this special
693 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
694 *
695 * We set lock class for alien array caches which are up during init.
696 * The lock annotation will be lost if all cpus of a node goes down and
697 * then comes back up during hotplug
f1aaee53 698 */
056c6241
RT
699static struct lock_class_key on_slab_l3_key;
700static struct lock_class_key on_slab_alc_key;
701
702static inline void init_lock_keys(void)
f1aaee53 703
f1aaee53
AV
704{
705 int q;
056c6241
RT
706 struct cache_sizes *s = malloc_sizes;
707
708 while (s->cs_size != ULONG_MAX) {
709 for_each_node(q) {
710 struct array_cache **alc;
711 int r;
712 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
713 if (!l3 || OFF_SLAB(s->cs_cachep))
714 continue;
715 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
716 alc = l3->alien;
717 /*
718 * FIXME: This check for BAD_ALIEN_MAGIC
719 * should go away when common slab code is taught to
720 * work even without alien caches.
721 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
722 * for alloc_alien_cache,
723 */
724 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
725 continue;
726 for_each_node(r) {
727 if (alc[r])
728 lockdep_set_class(&alc[r]->lock,
729 &on_slab_alc_key);
730 }
731 }
732 s++;
f1aaee53
AV
733 }
734}
f1aaee53 735#else
056c6241 736static inline void init_lock_keys(void)
f1aaee53
AV
737{
738}
739#endif
740
8f5be20b 741/*
95402b38 742 * Guard access to the cache-chain.
8f5be20b 743 */
fc0abb14 744static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
745static struct list_head cache_chain;
746
1da177e4
LT
747/*
748 * chicken and egg problem: delay the per-cpu array allocation
749 * until the general caches are up.
750 */
751static enum {
752 NONE,
e498be7d
CL
753 PARTIAL_AC,
754 PARTIAL_L3,
1da177e4
LT
755 FULL
756} g_cpucache_up;
757
39d24e64
MK
758/*
759 * used by boot code to determine if it can use slab based allocator
760 */
761int slab_is_available(void)
762{
763 return g_cpucache_up == FULL;
764}
765
52bad64d 766static DEFINE_PER_CPU(struct delayed_work, reap_work);
1da177e4 767
343e0d7a 768static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
769{
770 return cachep->array[smp_processor_id()];
771}
772
a737b3e2
AM
773static inline struct kmem_cache *__find_general_cachep(size_t size,
774 gfp_t gfpflags)
1da177e4
LT
775{
776 struct cache_sizes *csizep = malloc_sizes;
777
778#if DEBUG
779 /* This happens if someone tries to call
b28a02de
PE
780 * kmem_cache_create(), or __kmalloc(), before
781 * the generic caches are initialized.
782 */
c7e43c78 783 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 784#endif
6cb8f913
CL
785 if (!size)
786 return ZERO_SIZE_PTR;
787
1da177e4
LT
788 while (size > csizep->cs_size)
789 csizep++;
790
791 /*
0abf40c1 792 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
793 * has cs_{dma,}cachep==NULL. Thus no special case
794 * for large kmalloc calls required.
795 */
4b51d669 796#ifdef CONFIG_ZONE_DMA
1da177e4
LT
797 if (unlikely(gfpflags & GFP_DMA))
798 return csizep->cs_dmacachep;
4b51d669 799#endif
1da177e4
LT
800 return csizep->cs_cachep;
801}
802
b221385b 803static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
804{
805 return __find_general_cachep(size, gfpflags);
806}
97e2bde4 807
fbaccacf 808static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 809{
fbaccacf
SR
810 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
811}
1da177e4 812
a737b3e2
AM
813/*
814 * Calculate the number of objects and left-over bytes for a given buffer size.
815 */
fbaccacf
SR
816static void cache_estimate(unsigned long gfporder, size_t buffer_size,
817 size_t align, int flags, size_t *left_over,
818 unsigned int *num)
819{
820 int nr_objs;
821 size_t mgmt_size;
822 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 823
fbaccacf
SR
824 /*
825 * The slab management structure can be either off the slab or
826 * on it. For the latter case, the memory allocated for a
827 * slab is used for:
828 *
829 * - The struct slab
830 * - One kmem_bufctl_t for each object
831 * - Padding to respect alignment of @align
832 * - @buffer_size bytes for each object
833 *
834 * If the slab management structure is off the slab, then the
835 * alignment will already be calculated into the size. Because
836 * the slabs are all pages aligned, the objects will be at the
837 * correct alignment when allocated.
838 */
839 if (flags & CFLGS_OFF_SLAB) {
840 mgmt_size = 0;
841 nr_objs = slab_size / buffer_size;
842
843 if (nr_objs > SLAB_LIMIT)
844 nr_objs = SLAB_LIMIT;
845 } else {
846 /*
847 * Ignore padding for the initial guess. The padding
848 * is at most @align-1 bytes, and @buffer_size is at
849 * least @align. In the worst case, this result will
850 * be one greater than the number of objects that fit
851 * into the memory allocation when taking the padding
852 * into account.
853 */
854 nr_objs = (slab_size - sizeof(struct slab)) /
855 (buffer_size + sizeof(kmem_bufctl_t));
856
857 /*
858 * This calculated number will be either the right
859 * amount, or one greater than what we want.
860 */
861 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
862 > slab_size)
863 nr_objs--;
864
865 if (nr_objs > SLAB_LIMIT)
866 nr_objs = SLAB_LIMIT;
867
868 mgmt_size = slab_mgmt_size(nr_objs, align);
869 }
870 *num = nr_objs;
871 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
872}
873
d40cee24 874#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 875
a737b3e2
AM
876static void __slab_error(const char *function, struct kmem_cache *cachep,
877 char *msg)
1da177e4
LT
878{
879 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 880 function, cachep->name, msg);
1da177e4
LT
881 dump_stack();
882}
883
3395ee05
PM
884/*
885 * By default on NUMA we use alien caches to stage the freeing of
886 * objects allocated from other nodes. This causes massive memory
887 * inefficiencies when using fake NUMA setup to split memory into a
888 * large number of small nodes, so it can be disabled on the command
889 * line
890 */
891
892static int use_alien_caches __read_mostly = 1;
1807a1aa 893static int numa_platform __read_mostly = 1;
3395ee05
PM
894static int __init noaliencache_setup(char *s)
895{
896 use_alien_caches = 0;
897 return 1;
898}
899__setup("noaliencache", noaliencache_setup);
900
8fce4d8e
CL
901#ifdef CONFIG_NUMA
902/*
903 * Special reaping functions for NUMA systems called from cache_reap().
904 * These take care of doing round robin flushing of alien caches (containing
905 * objects freed on different nodes from which they were allocated) and the
906 * flushing of remote pcps by calling drain_node_pages.
907 */
908static DEFINE_PER_CPU(unsigned long, reap_node);
909
910static void init_reap_node(int cpu)
911{
912 int node;
913
914 node = next_node(cpu_to_node(cpu), node_online_map);
915 if (node == MAX_NUMNODES)
442295c9 916 node = first_node(node_online_map);
8fce4d8e 917
7f6b8876 918 per_cpu(reap_node, cpu) = node;
8fce4d8e
CL
919}
920
921static void next_reap_node(void)
922{
923 int node = __get_cpu_var(reap_node);
924
8fce4d8e
CL
925 node = next_node(node, node_online_map);
926 if (unlikely(node >= MAX_NUMNODES))
927 node = first_node(node_online_map);
928 __get_cpu_var(reap_node) = node;
929}
930
931#else
932#define init_reap_node(cpu) do { } while (0)
933#define next_reap_node(void) do { } while (0)
934#endif
935
1da177e4
LT
936/*
937 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
938 * via the workqueue/eventd.
939 * Add the CPU number into the expiration time to minimize the possibility of
940 * the CPUs getting into lockstep and contending for the global cache chain
941 * lock.
942 */
897e679b 943static void __cpuinit start_cpu_timer(int cpu)
1da177e4 944{
52bad64d 945 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
1da177e4
LT
946
947 /*
948 * When this gets called from do_initcalls via cpucache_init(),
949 * init_workqueues() has already run, so keventd will be setup
950 * at that time.
951 */
52bad64d 952 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 953 init_reap_node(cpu);
65f27f38 954 INIT_DELAYED_WORK(reap_work, cache_reap);
2b284214
AV
955 schedule_delayed_work_on(cpu, reap_work,
956 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
957 }
958}
959
e498be7d 960static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 961 int batchcount)
1da177e4 962{
b28a02de 963 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
964 struct array_cache *nc = NULL;
965
e498be7d 966 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
967 if (nc) {
968 nc->avail = 0;
969 nc->limit = entries;
970 nc->batchcount = batchcount;
971 nc->touched = 0;
e498be7d 972 spin_lock_init(&nc->lock);
1da177e4
LT
973 }
974 return nc;
975}
976
3ded175a
CL
977/*
978 * Transfer objects in one arraycache to another.
979 * Locking must be handled by the caller.
980 *
981 * Return the number of entries transferred.
982 */
983static int transfer_objects(struct array_cache *to,
984 struct array_cache *from, unsigned int max)
985{
986 /* Figure out how many entries to transfer */
987 int nr = min(min(from->avail, max), to->limit - to->avail);
988
989 if (!nr)
990 return 0;
991
992 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
993 sizeof(void *) *nr);
994
995 from->avail -= nr;
996 to->avail += nr;
997 to->touched = 1;
998 return nr;
999}
1000
765c4507
CL
1001#ifndef CONFIG_NUMA
1002
1003#define drain_alien_cache(cachep, alien) do { } while (0)
1004#define reap_alien(cachep, l3) do { } while (0)
1005
1006static inline struct array_cache **alloc_alien_cache(int node, int limit)
1007{
1008 return (struct array_cache **)BAD_ALIEN_MAGIC;
1009}
1010
1011static inline void free_alien_cache(struct array_cache **ac_ptr)
1012{
1013}
1014
1015static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1016{
1017 return 0;
1018}
1019
1020static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1021 gfp_t flags)
1022{
1023 return NULL;
1024}
1025
8b98c169 1026static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1027 gfp_t flags, int nodeid)
1028{
1029 return NULL;
1030}
1031
1032#else /* CONFIG_NUMA */
1033
8b98c169 1034static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1035static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1036
5295a74c 1037static struct array_cache **alloc_alien_cache(int node, int limit)
e498be7d
CL
1038{
1039 struct array_cache **ac_ptr;
8ef82866 1040 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1041 int i;
1042
1043 if (limit > 1)
1044 limit = 12;
1045 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1046 if (ac_ptr) {
1047 for_each_node(i) {
1048 if (i == node || !node_online(i)) {
1049 ac_ptr[i] = NULL;
1050 continue;
1051 }
1052 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1053 if (!ac_ptr[i]) {
cc550def 1054 for (i--; i >= 0; i--)
e498be7d
CL
1055 kfree(ac_ptr[i]);
1056 kfree(ac_ptr);
1057 return NULL;
1058 }
1059 }
1060 }
1061 return ac_ptr;
1062}
1063
5295a74c 1064static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1065{
1066 int i;
1067
1068 if (!ac_ptr)
1069 return;
e498be7d 1070 for_each_node(i)
b28a02de 1071 kfree(ac_ptr[i]);
e498be7d
CL
1072 kfree(ac_ptr);
1073}
1074
343e0d7a 1075static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1076 struct array_cache *ac, int node)
e498be7d
CL
1077{
1078 struct kmem_list3 *rl3 = cachep->nodelists[node];
1079
1080 if (ac->avail) {
1081 spin_lock(&rl3->list_lock);
e00946fe
CL
1082 /*
1083 * Stuff objects into the remote nodes shared array first.
1084 * That way we could avoid the overhead of putting the objects
1085 * into the free lists and getting them back later.
1086 */
693f7d36
JS
1087 if (rl3->shared)
1088 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1089
ff69416e 1090 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1091 ac->avail = 0;
1092 spin_unlock(&rl3->list_lock);
1093 }
1094}
1095
8fce4d8e
CL
1096/*
1097 * Called from cache_reap() to regularly drain alien caches round robin.
1098 */
1099static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1100{
1101 int node = __get_cpu_var(reap_node);
1102
1103 if (l3->alien) {
1104 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1105
1106 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1107 __drain_alien_cache(cachep, ac, node);
1108 spin_unlock_irq(&ac->lock);
1109 }
1110 }
1111}
1112
a737b3e2
AM
1113static void drain_alien_cache(struct kmem_cache *cachep,
1114 struct array_cache **alien)
e498be7d 1115{
b28a02de 1116 int i = 0;
e498be7d
CL
1117 struct array_cache *ac;
1118 unsigned long flags;
1119
1120 for_each_online_node(i) {
4484ebf1 1121 ac = alien[i];
e498be7d
CL
1122 if (ac) {
1123 spin_lock_irqsave(&ac->lock, flags);
1124 __drain_alien_cache(cachep, ac, i);
1125 spin_unlock_irqrestore(&ac->lock, flags);
1126 }
1127 }
1128}
729bd0b7 1129
873623df 1130static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1131{
1132 struct slab *slabp = virt_to_slab(objp);
1133 int nodeid = slabp->nodeid;
1134 struct kmem_list3 *l3;
1135 struct array_cache *alien = NULL;
1ca4cb24
PE
1136 int node;
1137
1138 node = numa_node_id();
729bd0b7
PE
1139
1140 /*
1141 * Make sure we are not freeing a object from another node to the array
1142 * cache on this cpu.
1143 */
62918a03 1144 if (likely(slabp->nodeid == node))
729bd0b7
PE
1145 return 0;
1146
1ca4cb24 1147 l3 = cachep->nodelists[node];
729bd0b7
PE
1148 STATS_INC_NODEFREES(cachep);
1149 if (l3->alien && l3->alien[nodeid]) {
1150 alien = l3->alien[nodeid];
873623df 1151 spin_lock(&alien->lock);
729bd0b7
PE
1152 if (unlikely(alien->avail == alien->limit)) {
1153 STATS_INC_ACOVERFLOW(cachep);
1154 __drain_alien_cache(cachep, alien, nodeid);
1155 }
1156 alien->entry[alien->avail++] = objp;
1157 spin_unlock(&alien->lock);
1158 } else {
1159 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1160 free_block(cachep, &objp, 1, nodeid);
1161 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1162 }
1163 return 1;
1164}
e498be7d
CL
1165#endif
1166
fbf1e473
AM
1167static void __cpuinit cpuup_canceled(long cpu)
1168{
1169 struct kmem_cache *cachep;
1170 struct kmem_list3 *l3 = NULL;
1171 int node = cpu_to_node(cpu);
c5f59f08 1172 node_to_cpumask_ptr(mask, node);
fbf1e473
AM
1173
1174 list_for_each_entry(cachep, &cache_chain, next) {
1175 struct array_cache *nc;
1176 struct array_cache *shared;
1177 struct array_cache **alien;
fbf1e473 1178
fbf1e473
AM
1179 /* cpu is dead; no one can alloc from it. */
1180 nc = cachep->array[cpu];
1181 cachep->array[cpu] = NULL;
1182 l3 = cachep->nodelists[node];
1183
1184 if (!l3)
1185 goto free_array_cache;
1186
1187 spin_lock_irq(&l3->list_lock);
1188
1189 /* Free limit for this kmem_list3 */
1190 l3->free_limit -= cachep->batchcount;
1191 if (nc)
1192 free_block(cachep, nc->entry, nc->avail, node);
1193
c5f59f08 1194 if (!cpus_empty(*mask)) {
fbf1e473
AM
1195 spin_unlock_irq(&l3->list_lock);
1196 goto free_array_cache;
1197 }
1198
1199 shared = l3->shared;
1200 if (shared) {
1201 free_block(cachep, shared->entry,
1202 shared->avail, node);
1203 l3->shared = NULL;
1204 }
1205
1206 alien = l3->alien;
1207 l3->alien = NULL;
1208
1209 spin_unlock_irq(&l3->list_lock);
1210
1211 kfree(shared);
1212 if (alien) {
1213 drain_alien_cache(cachep, alien);
1214 free_alien_cache(alien);
1215 }
1216free_array_cache:
1217 kfree(nc);
1218 }
1219 /*
1220 * In the previous loop, all the objects were freed to
1221 * the respective cache's slabs, now we can go ahead and
1222 * shrink each nodelist to its limit.
1223 */
1224 list_for_each_entry(cachep, &cache_chain, next) {
1225 l3 = cachep->nodelists[node];
1226 if (!l3)
1227 continue;
1228 drain_freelist(cachep, l3, l3->free_objects);
1229 }
1230}
1231
1232static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1233{
343e0d7a 1234 struct kmem_cache *cachep;
e498be7d
CL
1235 struct kmem_list3 *l3 = NULL;
1236 int node = cpu_to_node(cpu);
ea02e3dd 1237 const int memsize = sizeof(struct kmem_list3);
1da177e4 1238
fbf1e473
AM
1239 /*
1240 * We need to do this right in the beginning since
1241 * alloc_arraycache's are going to use this list.
1242 * kmalloc_node allows us to add the slab to the right
1243 * kmem_list3 and not this cpu's kmem_list3
1244 */
1245
1246 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2 1247 /*
fbf1e473
AM
1248 * Set up the size64 kmemlist for cpu before we can
1249 * begin anything. Make sure some other cpu on this
1250 * node has not already allocated this
e498be7d 1251 */
fbf1e473
AM
1252 if (!cachep->nodelists[node]) {
1253 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1254 if (!l3)
1255 goto bad;
1256 kmem_list3_init(l3);
1257 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1258 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1259
a737b3e2 1260 /*
fbf1e473
AM
1261 * The l3s don't come and go as CPUs come and
1262 * go. cache_chain_mutex is sufficient
1263 * protection here.
e498be7d 1264 */
fbf1e473 1265 cachep->nodelists[node] = l3;
e498be7d
CL
1266 }
1267
fbf1e473
AM
1268 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1269 cachep->nodelists[node]->free_limit =
1270 (1 + nr_cpus_node(node)) *
1271 cachep->batchcount + cachep->num;
1272 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1273 }
1274
1275 /*
1276 * Now we can go ahead with allocating the shared arrays and
1277 * array caches
1278 */
1279 list_for_each_entry(cachep, &cache_chain, next) {
1280 struct array_cache *nc;
1281 struct array_cache *shared = NULL;
1282 struct array_cache **alien = NULL;
1283
1284 nc = alloc_arraycache(node, cachep->limit,
1285 cachep->batchcount);
1286 if (!nc)
1287 goto bad;
1288 if (cachep->shared) {
1289 shared = alloc_arraycache(node,
1290 cachep->shared * cachep->batchcount,
1291 0xbaadf00d);
12d00f6a
AM
1292 if (!shared) {
1293 kfree(nc);
1da177e4 1294 goto bad;
12d00f6a 1295 }
fbf1e473
AM
1296 }
1297 if (use_alien_caches) {
1298 alien = alloc_alien_cache(node, cachep->limit);
12d00f6a
AM
1299 if (!alien) {
1300 kfree(shared);
1301 kfree(nc);
fbf1e473 1302 goto bad;
12d00f6a 1303 }
fbf1e473
AM
1304 }
1305 cachep->array[cpu] = nc;
1306 l3 = cachep->nodelists[node];
1307 BUG_ON(!l3);
1308
1309 spin_lock_irq(&l3->list_lock);
1310 if (!l3->shared) {
1311 /*
1312 * We are serialised from CPU_DEAD or
1313 * CPU_UP_CANCELLED by the cpucontrol lock
1314 */
1315 l3->shared = shared;
1316 shared = NULL;
1317 }
4484ebf1 1318#ifdef CONFIG_NUMA
fbf1e473
AM
1319 if (!l3->alien) {
1320 l3->alien = alien;
1321 alien = NULL;
1da177e4 1322 }
fbf1e473
AM
1323#endif
1324 spin_unlock_irq(&l3->list_lock);
1325 kfree(shared);
1326 free_alien_cache(alien);
1327 }
1328 return 0;
1329bad:
12d00f6a 1330 cpuup_canceled(cpu);
fbf1e473
AM
1331 return -ENOMEM;
1332}
1333
1334static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1335 unsigned long action, void *hcpu)
1336{
1337 long cpu = (long)hcpu;
1338 int err = 0;
1339
1340 switch (action) {
fbf1e473
AM
1341 case CPU_UP_PREPARE:
1342 case CPU_UP_PREPARE_FROZEN:
95402b38 1343 mutex_lock(&cache_chain_mutex);
fbf1e473 1344 err = cpuup_prepare(cpu);
95402b38 1345 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1346 break;
1347 case CPU_ONLINE:
8bb78442 1348 case CPU_ONLINE_FROZEN:
1da177e4
LT
1349 start_cpu_timer(cpu);
1350 break;
1351#ifdef CONFIG_HOTPLUG_CPU
5830c590 1352 case CPU_DOWN_PREPARE:
8bb78442 1353 case CPU_DOWN_PREPARE_FROZEN:
5830c590
CL
1354 /*
1355 * Shutdown cache reaper. Note that the cache_chain_mutex is
1356 * held so that if cache_reap() is invoked it cannot do
1357 * anything expensive but will only modify reap_work
1358 * and reschedule the timer.
1359 */
1360 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1361 /* Now the cache_reaper is guaranteed to be not running. */
1362 per_cpu(reap_work, cpu).work.func = NULL;
1363 break;
1364 case CPU_DOWN_FAILED:
8bb78442 1365 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1366 start_cpu_timer(cpu);
1367 break;
1da177e4 1368 case CPU_DEAD:
8bb78442 1369 case CPU_DEAD_FROZEN:
4484ebf1
RT
1370 /*
1371 * Even if all the cpus of a node are down, we don't free the
1372 * kmem_list3 of any cache. This to avoid a race between
1373 * cpu_down, and a kmalloc allocation from another cpu for
1374 * memory from the node of the cpu going down. The list3
1375 * structure is usually allocated from kmem_cache_create() and
1376 * gets destroyed at kmem_cache_destroy().
1377 */
183ff22b 1378 /* fall through */
8f5be20b 1379#endif
1da177e4 1380 case CPU_UP_CANCELED:
8bb78442 1381 case CPU_UP_CANCELED_FROZEN:
95402b38 1382 mutex_lock(&cache_chain_mutex);
fbf1e473 1383 cpuup_canceled(cpu);
fc0abb14 1384 mutex_unlock(&cache_chain_mutex);
1da177e4 1385 break;
1da177e4 1386 }
fbf1e473 1387 return err ? NOTIFY_BAD : NOTIFY_OK;
1da177e4
LT
1388}
1389
74b85f37
CS
1390static struct notifier_block __cpuinitdata cpucache_notifier = {
1391 &cpuup_callback, NULL, 0
1392};
1da177e4 1393
e498be7d
CL
1394/*
1395 * swap the static kmem_list3 with kmalloced memory
1396 */
a737b3e2
AM
1397static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1398 int nodeid)
e498be7d
CL
1399{
1400 struct kmem_list3 *ptr;
1401
e498be7d
CL
1402 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1403 BUG_ON(!ptr);
1404
1405 local_irq_disable();
1406 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1407 /*
1408 * Do not assume that spinlocks can be initialized via memcpy:
1409 */
1410 spin_lock_init(&ptr->list_lock);
1411
e498be7d
CL
1412 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1413 cachep->nodelists[nodeid] = ptr;
1414 local_irq_enable();
1415}
1416
556a169d
PE
1417/*
1418 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1419 * size of kmem_list3.
1420 */
1421static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1422{
1423 int node;
1424
1425 for_each_online_node(node) {
1426 cachep->nodelists[node] = &initkmem_list3[index + node];
1427 cachep->nodelists[node]->next_reap = jiffies +
1428 REAPTIMEOUT_LIST3 +
1429 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1430 }
1431}
1432
a737b3e2
AM
1433/*
1434 * Initialisation. Called after the page allocator have been initialised and
1435 * before smp_init().
1da177e4
LT
1436 */
1437void __init kmem_cache_init(void)
1438{
1439 size_t left_over;
1440 struct cache_sizes *sizes;
1441 struct cache_names *names;
e498be7d 1442 int i;
07ed76b2 1443 int order;
1ca4cb24 1444 int node;
e498be7d 1445
1807a1aa 1446 if (num_possible_nodes() == 1) {
62918a03 1447 use_alien_caches = 0;
1807a1aa
SS
1448 numa_platform = 0;
1449 }
62918a03 1450
e498be7d
CL
1451 for (i = 0; i < NUM_INIT_LISTS; i++) {
1452 kmem_list3_init(&initkmem_list3[i]);
1453 if (i < MAX_NUMNODES)
1454 cache_cache.nodelists[i] = NULL;
1455 }
556a169d 1456 set_up_list3s(&cache_cache, CACHE_CACHE);
1da177e4
LT
1457
1458 /*
1459 * Fragmentation resistance on low memory - only use bigger
1460 * page orders on machines with more than 32MB of memory.
1461 */
1462 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1463 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1464
1da177e4
LT
1465 /* Bootstrap is tricky, because several objects are allocated
1466 * from caches that do not exist yet:
a737b3e2
AM
1467 * 1) initialize the cache_cache cache: it contains the struct
1468 * kmem_cache structures of all caches, except cache_cache itself:
1469 * cache_cache is statically allocated.
e498be7d
CL
1470 * Initially an __init data area is used for the head array and the
1471 * kmem_list3 structures, it's replaced with a kmalloc allocated
1472 * array at the end of the bootstrap.
1da177e4 1473 * 2) Create the first kmalloc cache.
343e0d7a 1474 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1475 * An __init data area is used for the head array.
1476 * 3) Create the remaining kmalloc caches, with minimally sized
1477 * head arrays.
1da177e4
LT
1478 * 4) Replace the __init data head arrays for cache_cache and the first
1479 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1480 * 5) Replace the __init data for kmem_list3 for cache_cache and
1481 * the other cache's with kmalloc allocated memory.
1482 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1483 */
1484
1ca4cb24
PE
1485 node = numa_node_id();
1486
1da177e4 1487 /* 1) create the cache_cache */
1da177e4
LT
1488 INIT_LIST_HEAD(&cache_chain);
1489 list_add(&cache_cache.next, &cache_chain);
1490 cache_cache.colour_off = cache_line_size();
1491 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
ec1f5eee 1492 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1da177e4 1493
8da3430d
ED
1494 /*
1495 * struct kmem_cache size depends on nr_node_ids, which
1496 * can be less than MAX_NUMNODES.
1497 */
1498 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1499 nr_node_ids * sizeof(struct kmem_list3 *);
1500#if DEBUG
1501 cache_cache.obj_size = cache_cache.buffer_size;
1502#endif
a737b3e2
AM
1503 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1504 cache_line_size());
6a2d7a95
ED
1505 cache_cache.reciprocal_buffer_size =
1506 reciprocal_value(cache_cache.buffer_size);
1da177e4 1507
07ed76b2
JS
1508 for (order = 0; order < MAX_ORDER; order++) {
1509 cache_estimate(order, cache_cache.buffer_size,
1510 cache_line_size(), 0, &left_over, &cache_cache.num);
1511 if (cache_cache.num)
1512 break;
1513 }
40094fa6 1514 BUG_ON(!cache_cache.num);
07ed76b2 1515 cache_cache.gfporder = order;
b28a02de 1516 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1517 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1518 sizeof(struct slab), cache_line_size());
1da177e4
LT
1519
1520 /* 2+3) create the kmalloc caches */
1521 sizes = malloc_sizes;
1522 names = cache_names;
1523
a737b3e2
AM
1524 /*
1525 * Initialize the caches that provide memory for the array cache and the
1526 * kmem_list3 structures first. Without this, further allocations will
1527 * bug.
e498be7d
CL
1528 */
1529
1530 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1531 sizes[INDEX_AC].cs_size,
1532 ARCH_KMALLOC_MINALIGN,
1533 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1534 NULL);
e498be7d 1535
a737b3e2 1536 if (INDEX_AC != INDEX_L3) {
e498be7d 1537 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1538 kmem_cache_create(names[INDEX_L3].name,
1539 sizes[INDEX_L3].cs_size,
1540 ARCH_KMALLOC_MINALIGN,
1541 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1542 NULL);
a737b3e2 1543 }
e498be7d 1544
e0a42726
IM
1545 slab_early_init = 0;
1546
1da177e4 1547 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1548 /*
1549 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1550 * This should be particularly beneficial on SMP boxes, as it
1551 * eliminates "false sharing".
1552 * Note for systems short on memory removing the alignment will
e498be7d
CL
1553 * allow tighter packing of the smaller caches.
1554 */
a737b3e2 1555 if (!sizes->cs_cachep) {
e498be7d 1556 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1557 sizes->cs_size,
1558 ARCH_KMALLOC_MINALIGN,
1559 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1560 NULL);
a737b3e2 1561 }
4b51d669
CL
1562#ifdef CONFIG_ZONE_DMA
1563 sizes->cs_dmacachep = kmem_cache_create(
1564 names->name_dma,
a737b3e2
AM
1565 sizes->cs_size,
1566 ARCH_KMALLOC_MINALIGN,
1567 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1568 SLAB_PANIC,
20c2df83 1569 NULL);
4b51d669 1570#endif
1da177e4
LT
1571 sizes++;
1572 names++;
1573 }
1574 /* 4) Replace the bootstrap head arrays */
1575 {
2b2d5493 1576 struct array_cache *ptr;
e498be7d 1577
1da177e4 1578 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1579
1da177e4 1580 local_irq_disable();
9a2dba4b
PE
1581 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1582 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1583 sizeof(struct arraycache_init));
2b2d5493
IM
1584 /*
1585 * Do not assume that spinlocks can be initialized via memcpy:
1586 */
1587 spin_lock_init(&ptr->lock);
1588
1da177e4
LT
1589 cache_cache.array[smp_processor_id()] = ptr;
1590 local_irq_enable();
e498be7d 1591
1da177e4 1592 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1593
1da177e4 1594 local_irq_disable();
9a2dba4b 1595 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1596 != &initarray_generic.cache);
9a2dba4b 1597 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1598 sizeof(struct arraycache_init));
2b2d5493
IM
1599 /*
1600 * Do not assume that spinlocks can be initialized via memcpy:
1601 */
1602 spin_lock_init(&ptr->lock);
1603
e498be7d 1604 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1605 ptr;
1da177e4
LT
1606 local_irq_enable();
1607 }
e498be7d
CL
1608 /* 5) Replace the bootstrap kmem_list3's */
1609 {
1ca4cb24
PE
1610 int nid;
1611
9c09a95c 1612 for_each_online_node(nid) {
ec1f5eee 1613 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
556a169d 1614
e498be7d 1615 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1616 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1617
1618 if (INDEX_AC != INDEX_L3) {
1619 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1620 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1621 }
1622 }
1623 }
1da177e4 1624
e498be7d 1625 /* 6) resize the head arrays to their final sizes */
1da177e4 1626 {
343e0d7a 1627 struct kmem_cache *cachep;
fc0abb14 1628 mutex_lock(&cache_chain_mutex);
1da177e4 1629 list_for_each_entry(cachep, &cache_chain, next)
2ed3a4ef
CL
1630 if (enable_cpucache(cachep))
1631 BUG();
fc0abb14 1632 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1633 }
1634
056c6241
RT
1635 /* Annotate slab for lockdep -- annotate the malloc caches */
1636 init_lock_keys();
1637
1638
1da177e4
LT
1639 /* Done! */
1640 g_cpucache_up = FULL;
1641
a737b3e2
AM
1642 /*
1643 * Register a cpu startup notifier callback that initializes
1644 * cpu_cache_get for all new cpus
1da177e4
LT
1645 */
1646 register_cpu_notifier(&cpucache_notifier);
1da177e4 1647
a737b3e2
AM
1648 /*
1649 * The reap timers are started later, with a module init call: That part
1650 * of the kernel is not yet operational.
1da177e4
LT
1651 */
1652}
1653
1654static int __init cpucache_init(void)
1655{
1656 int cpu;
1657
a737b3e2
AM
1658 /*
1659 * Register the timers that return unneeded pages to the page allocator
1da177e4 1660 */
e498be7d 1661 for_each_online_cpu(cpu)
a737b3e2 1662 start_cpu_timer(cpu);
1da177e4
LT
1663 return 0;
1664}
1da177e4
LT
1665__initcall(cpucache_init);
1666
1667/*
1668 * Interface to system's page allocator. No need to hold the cache-lock.
1669 *
1670 * If we requested dmaable memory, we will get it. Even if we
1671 * did not request dmaable memory, we might get it, but that
1672 * would be relatively rare and ignorable.
1673 */
343e0d7a 1674static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1675{
1676 struct page *page;
e1b6aa6f 1677 int nr_pages;
1da177e4
LT
1678 int i;
1679
d6fef9da 1680#ifndef CONFIG_MMU
e1b6aa6f
CH
1681 /*
1682 * Nommu uses slab's for process anonymous memory allocations, and thus
1683 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1684 */
e1b6aa6f 1685 flags |= __GFP_COMP;
d6fef9da 1686#endif
765c4507 1687
3c517a61 1688 flags |= cachep->gfpflags;
e12ba74d
MG
1689 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1690 flags |= __GFP_RECLAIMABLE;
e1b6aa6f
CH
1691
1692 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1693 if (!page)
1694 return NULL;
1da177e4 1695
e1b6aa6f 1696 nr_pages = (1 << cachep->gfporder);
1da177e4 1697 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1698 add_zone_page_state(page_zone(page),
1699 NR_SLAB_RECLAIMABLE, nr_pages);
1700 else
1701 add_zone_page_state(page_zone(page),
1702 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1703 for (i = 0; i < nr_pages; i++)
1704 __SetPageSlab(page + i);
1705 return page_address(page);
1da177e4
LT
1706}
1707
1708/*
1709 * Interface to system's page release.
1710 */
343e0d7a 1711static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1712{
b28a02de 1713 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1714 struct page *page = virt_to_page(addr);
1715 const unsigned long nr_freed = i;
1716
972d1a7b
CL
1717 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1718 sub_zone_page_state(page_zone(page),
1719 NR_SLAB_RECLAIMABLE, nr_freed);
1720 else
1721 sub_zone_page_state(page_zone(page),
1722 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1723 while (i--) {
f205b2fe
NP
1724 BUG_ON(!PageSlab(page));
1725 __ClearPageSlab(page);
1da177e4
LT
1726 page++;
1727 }
1da177e4
LT
1728 if (current->reclaim_state)
1729 current->reclaim_state->reclaimed_slab += nr_freed;
1730 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1731}
1732
1733static void kmem_rcu_free(struct rcu_head *head)
1734{
b28a02de 1735 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1736 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1737
1738 kmem_freepages(cachep, slab_rcu->addr);
1739 if (OFF_SLAB(cachep))
1740 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1741}
1742
1743#if DEBUG
1744
1745#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1746static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1747 unsigned long caller)
1da177e4 1748{
3dafccf2 1749 int size = obj_size(cachep);
1da177e4 1750
3dafccf2 1751 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1752
b28a02de 1753 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1754 return;
1755
b28a02de
PE
1756 *addr++ = 0x12345678;
1757 *addr++ = caller;
1758 *addr++ = smp_processor_id();
1759 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1760 {
1761 unsigned long *sptr = &caller;
1762 unsigned long svalue;
1763
1764 while (!kstack_end(sptr)) {
1765 svalue = *sptr++;
1766 if (kernel_text_address(svalue)) {
b28a02de 1767 *addr++ = svalue;
1da177e4
LT
1768 size -= sizeof(unsigned long);
1769 if (size <= sizeof(unsigned long))
1770 break;
1771 }
1772 }
1773
1774 }
b28a02de 1775 *addr++ = 0x87654321;
1da177e4
LT
1776}
1777#endif
1778
343e0d7a 1779static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1780{
3dafccf2
MS
1781 int size = obj_size(cachep);
1782 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1783
1784 memset(addr, val, size);
b28a02de 1785 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1786}
1787
1788static void dump_line(char *data, int offset, int limit)
1789{
1790 int i;
aa83aa40
DJ
1791 unsigned char error = 0;
1792 int bad_count = 0;
1793
1da177e4 1794 printk(KERN_ERR "%03x:", offset);
aa83aa40
DJ
1795 for (i = 0; i < limit; i++) {
1796 if (data[offset + i] != POISON_FREE) {
1797 error = data[offset + i];
1798 bad_count++;
1799 }
b28a02de 1800 printk(" %02x", (unsigned char)data[offset + i]);
aa83aa40 1801 }
1da177e4 1802 printk("\n");
aa83aa40
DJ
1803
1804 if (bad_count == 1) {
1805 error ^= POISON_FREE;
1806 if (!(error & (error - 1))) {
1807 printk(KERN_ERR "Single bit error detected. Probably "
1808 "bad RAM.\n");
1809#ifdef CONFIG_X86
1810 printk(KERN_ERR "Run memtest86+ or a similar memory "
1811 "test tool.\n");
1812#else
1813 printk(KERN_ERR "Run a memory test tool.\n");
1814#endif
1815 }
1816 }
1da177e4
LT
1817}
1818#endif
1819
1820#if DEBUG
1821
343e0d7a 1822static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1823{
1824 int i, size;
1825 char *realobj;
1826
1827 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1828 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1829 *dbg_redzone1(cachep, objp),
1830 *dbg_redzone2(cachep, objp));
1da177e4
LT
1831 }
1832
1833 if (cachep->flags & SLAB_STORE_USER) {
1834 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1835 *dbg_userword(cachep, objp));
1da177e4 1836 print_symbol("(%s)",
a737b3e2 1837 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1838 printk("\n");
1839 }
3dafccf2
MS
1840 realobj = (char *)objp + obj_offset(cachep);
1841 size = obj_size(cachep);
b28a02de 1842 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1843 int limit;
1844 limit = 16;
b28a02de
PE
1845 if (i + limit > size)
1846 limit = size - i;
1da177e4
LT
1847 dump_line(realobj, i, limit);
1848 }
1849}
1850
343e0d7a 1851static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1852{
1853 char *realobj;
1854 int size, i;
1855 int lines = 0;
1856
3dafccf2
MS
1857 realobj = (char *)objp + obj_offset(cachep);
1858 size = obj_size(cachep);
1da177e4 1859
b28a02de 1860 for (i = 0; i < size; i++) {
1da177e4 1861 char exp = POISON_FREE;
b28a02de 1862 if (i == size - 1)
1da177e4
LT
1863 exp = POISON_END;
1864 if (realobj[i] != exp) {
1865 int limit;
1866 /* Mismatch ! */
1867 /* Print header */
1868 if (lines == 0) {
b28a02de 1869 printk(KERN_ERR
e94a40c5
DH
1870 "Slab corruption: %s start=%p, len=%d\n",
1871 cachep->name, realobj, size);
1da177e4
LT
1872 print_objinfo(cachep, objp, 0);
1873 }
1874 /* Hexdump the affected line */
b28a02de 1875 i = (i / 16) * 16;
1da177e4 1876 limit = 16;
b28a02de
PE
1877 if (i + limit > size)
1878 limit = size - i;
1da177e4
LT
1879 dump_line(realobj, i, limit);
1880 i += 16;
1881 lines++;
1882 /* Limit to 5 lines */
1883 if (lines > 5)
1884 break;
1885 }
1886 }
1887 if (lines != 0) {
1888 /* Print some data about the neighboring objects, if they
1889 * exist:
1890 */
6ed5eb22 1891 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1892 unsigned int objnr;
1da177e4 1893
8fea4e96 1894 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1895 if (objnr) {
8fea4e96 1896 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1897 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1898 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1899 realobj, size);
1da177e4
LT
1900 print_objinfo(cachep, objp, 2);
1901 }
b28a02de 1902 if (objnr + 1 < cachep->num) {
8fea4e96 1903 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1904 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1905 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1906 realobj, size);
1da177e4
LT
1907 print_objinfo(cachep, objp, 2);
1908 }
1909 }
1910}
1911#endif
1912
12dd36fa 1913#if DEBUG
e79aec29 1914static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1915{
1da177e4
LT
1916 int i;
1917 for (i = 0; i < cachep->num; i++) {
8fea4e96 1918 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1919
1920 if (cachep->flags & SLAB_POISON) {
1921#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1922 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1923 OFF_SLAB(cachep))
b28a02de 1924 kernel_map_pages(virt_to_page(objp),
a737b3e2 1925 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1926 else
1927 check_poison_obj(cachep, objp);
1928#else
1929 check_poison_obj(cachep, objp);
1930#endif
1931 }
1932 if (cachep->flags & SLAB_RED_ZONE) {
1933 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1934 slab_error(cachep, "start of a freed object "
b28a02de 1935 "was overwritten");
1da177e4
LT
1936 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1937 slab_error(cachep, "end of a freed object "
b28a02de 1938 "was overwritten");
1da177e4 1939 }
1da177e4 1940 }
12dd36fa 1941}
1da177e4 1942#else
e79aec29 1943static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1944{
12dd36fa 1945}
1da177e4
LT
1946#endif
1947
911851e6
RD
1948/**
1949 * slab_destroy - destroy and release all objects in a slab
1950 * @cachep: cache pointer being destroyed
1951 * @slabp: slab pointer being destroyed
1952 *
12dd36fa 1953 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1954 * Before calling the slab must have been unlinked from the cache. The
1955 * cache-lock is not held/needed.
12dd36fa 1956 */
343e0d7a 1957static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1958{
1959 void *addr = slabp->s_mem - slabp->colouroff;
1960
e79aec29 1961 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
1962 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1963 struct slab_rcu *slab_rcu;
1964
b28a02de 1965 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1966 slab_rcu->cachep = cachep;
1967 slab_rcu->addr = addr;
1968 call_rcu(&slab_rcu->head, kmem_rcu_free);
1969 } else {
1970 kmem_freepages(cachep, addr);
873623df
IM
1971 if (OFF_SLAB(cachep))
1972 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1973 }
1974}
1975
117f6eb1
CL
1976static void __kmem_cache_destroy(struct kmem_cache *cachep)
1977{
1978 int i;
1979 struct kmem_list3 *l3;
1980
1981 for_each_online_cpu(i)
1982 kfree(cachep->array[i]);
1983
1984 /* NUMA: free the list3 structures */
1985 for_each_online_node(i) {
1986 l3 = cachep->nodelists[i];
1987 if (l3) {
1988 kfree(l3->shared);
1989 free_alien_cache(l3->alien);
1990 kfree(l3);
1991 }
1992 }
1993 kmem_cache_free(&cache_cache, cachep);
1994}
1995
1996
4d268eba 1997/**
a70773dd
RD
1998 * calculate_slab_order - calculate size (page order) of slabs
1999 * @cachep: pointer to the cache that is being created
2000 * @size: size of objects to be created in this cache.
2001 * @align: required alignment for the objects.
2002 * @flags: slab allocation flags
2003 *
2004 * Also calculates the number of objects per slab.
4d268eba
PE
2005 *
2006 * This could be made much more intelligent. For now, try to avoid using
2007 * high order pages for slabs. When the gfp() functions are more friendly
2008 * towards high-order requests, this should be changed.
2009 */
a737b3e2 2010static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2011 size_t size, size_t align, unsigned long flags)
4d268eba 2012{
b1ab41c4 2013 unsigned long offslab_limit;
4d268eba 2014 size_t left_over = 0;
9888e6fa 2015 int gfporder;
4d268eba 2016
0aa817f0 2017 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2018 unsigned int num;
2019 size_t remainder;
2020
9888e6fa 2021 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2022 if (!num)
2023 continue;
9888e6fa 2024
b1ab41c4
IM
2025 if (flags & CFLGS_OFF_SLAB) {
2026 /*
2027 * Max number of objs-per-slab for caches which
2028 * use off-slab slabs. Needed to avoid a possible
2029 * looping condition in cache_grow().
2030 */
2031 offslab_limit = size - sizeof(struct slab);
2032 offslab_limit /= sizeof(kmem_bufctl_t);
2033
2034 if (num > offslab_limit)
2035 break;
2036 }
4d268eba 2037
9888e6fa 2038 /* Found something acceptable - save it away */
4d268eba 2039 cachep->num = num;
9888e6fa 2040 cachep->gfporder = gfporder;
4d268eba
PE
2041 left_over = remainder;
2042
f78bb8ad
LT
2043 /*
2044 * A VFS-reclaimable slab tends to have most allocations
2045 * as GFP_NOFS and we really don't want to have to be allocating
2046 * higher-order pages when we are unable to shrink dcache.
2047 */
2048 if (flags & SLAB_RECLAIM_ACCOUNT)
2049 break;
2050
4d268eba
PE
2051 /*
2052 * Large number of objects is good, but very large slabs are
2053 * currently bad for the gfp()s.
2054 */
9888e6fa 2055 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
2056 break;
2057
9888e6fa
LT
2058 /*
2059 * Acceptable internal fragmentation?
2060 */
a737b3e2 2061 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2062 break;
2063 }
2064 return left_over;
2065}
2066
38bdc32a 2067static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
f30cf7d1 2068{
2ed3a4ef
CL
2069 if (g_cpucache_up == FULL)
2070 return enable_cpucache(cachep);
2071
f30cf7d1
PE
2072 if (g_cpucache_up == NONE) {
2073 /*
2074 * Note: the first kmem_cache_create must create the cache
2075 * that's used by kmalloc(24), otherwise the creation of
2076 * further caches will BUG().
2077 */
2078 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2079
2080 /*
2081 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2082 * the first cache, then we need to set up all its list3s,
2083 * otherwise the creation of further caches will BUG().
2084 */
2085 set_up_list3s(cachep, SIZE_AC);
2086 if (INDEX_AC == INDEX_L3)
2087 g_cpucache_up = PARTIAL_L3;
2088 else
2089 g_cpucache_up = PARTIAL_AC;
2090 } else {
2091 cachep->array[smp_processor_id()] =
2092 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2093
2094 if (g_cpucache_up == PARTIAL_AC) {
2095 set_up_list3s(cachep, SIZE_L3);
2096 g_cpucache_up = PARTIAL_L3;
2097 } else {
2098 int node;
556a169d 2099 for_each_online_node(node) {
f30cf7d1
PE
2100 cachep->nodelists[node] =
2101 kmalloc_node(sizeof(struct kmem_list3),
2102 GFP_KERNEL, node);
2103 BUG_ON(!cachep->nodelists[node]);
2104 kmem_list3_init(cachep->nodelists[node]);
2105 }
2106 }
2107 }
2108 cachep->nodelists[numa_node_id()]->next_reap =
2109 jiffies + REAPTIMEOUT_LIST3 +
2110 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2111
2112 cpu_cache_get(cachep)->avail = 0;
2113 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2114 cpu_cache_get(cachep)->batchcount = 1;
2115 cpu_cache_get(cachep)->touched = 0;
2116 cachep->batchcount = 1;
2117 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2118 return 0;
f30cf7d1
PE
2119}
2120
1da177e4
LT
2121/**
2122 * kmem_cache_create - Create a cache.
2123 * @name: A string which is used in /proc/slabinfo to identify this cache.
2124 * @size: The size of objects to be created in this cache.
2125 * @align: The required alignment for the objects.
2126 * @flags: SLAB flags
2127 * @ctor: A constructor for the objects.
1da177e4
LT
2128 *
2129 * Returns a ptr to the cache on success, NULL on failure.
2130 * Cannot be called within a int, but can be interrupted.
20c2df83 2131 * The @ctor is run when new pages are allocated by the cache.
1da177e4
LT
2132 *
2133 * @name must be valid until the cache is destroyed. This implies that
a737b3e2 2134 * the module calling this has to destroy the cache before getting unloaded.
249da166
CM
2135 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
2136 * therefore applications must manage it themselves.
a737b3e2 2137 *
1da177e4
LT
2138 * The flags are
2139 *
2140 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2141 * to catch references to uninitialised memory.
2142 *
2143 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2144 * for buffer overruns.
2145 *
1da177e4
LT
2146 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2147 * cacheline. This can be beneficial if you're counting cycles as closely
2148 * as davem.
2149 */
343e0d7a 2150struct kmem_cache *
1da177e4 2151kmem_cache_create (const char *name, size_t size, size_t align,
51cc5068 2152 unsigned long flags, void (*ctor)(void *))
1da177e4
LT
2153{
2154 size_t left_over, slab_size, ralign;
7a7c381d 2155 struct kmem_cache *cachep = NULL, *pc;
1da177e4
LT
2156
2157 /*
2158 * Sanity checks... these are all serious usage bugs.
2159 */
a737b3e2 2160 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
20c2df83 2161 size > KMALLOC_MAX_SIZE) {
d40cee24 2162 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
a737b3e2 2163 name);
b28a02de
PE
2164 BUG();
2165 }
1da177e4 2166
f0188f47 2167 /*
8f5be20b 2168 * We use cache_chain_mutex to ensure a consistent view of
174596a0 2169 * cpu_online_mask as well. Please see cpuup_callback
f0188f47 2170 */
95402b38 2171 get_online_cpus();
fc0abb14 2172 mutex_lock(&cache_chain_mutex);
4f12bb4f 2173
7a7c381d 2174 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2175 char tmp;
2176 int res;
2177
2178 /*
2179 * This happens when the module gets unloaded and doesn't
2180 * destroy its slab cache and no-one else reuses the vmalloc
2181 * area of the module. Print a warning.
2182 */
138ae663 2183 res = probe_kernel_address(pc->name, tmp);
4f12bb4f 2184 if (res) {
b4169525 2185 printk(KERN_ERR
2186 "SLAB: cache with size %d has lost its name\n",
3dafccf2 2187 pc->buffer_size);
4f12bb4f
AM
2188 continue;
2189 }
2190
b28a02de 2191 if (!strcmp(pc->name, name)) {
b4169525 2192 printk(KERN_ERR
2193 "kmem_cache_create: duplicate cache %s\n", name);
4f12bb4f
AM
2194 dump_stack();
2195 goto oops;
2196 }
2197 }
2198
1da177e4
LT
2199#if DEBUG
2200 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1da177e4
LT
2201#if FORCED_DEBUG
2202 /*
2203 * Enable redzoning and last user accounting, except for caches with
2204 * large objects, if the increased size would increase the object size
2205 * above the next power of two: caches with object sizes just above a
2206 * power of two have a significant amount of internal fragmentation.
2207 */
87a927c7
DW
2208 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2209 2 * sizeof(unsigned long long)))
b28a02de 2210 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2211 if (!(flags & SLAB_DESTROY_BY_RCU))
2212 flags |= SLAB_POISON;
2213#endif
2214 if (flags & SLAB_DESTROY_BY_RCU)
2215 BUG_ON(flags & SLAB_POISON);
2216#endif
1da177e4 2217 /*
a737b3e2
AM
2218 * Always checks flags, a caller might be expecting debug support which
2219 * isn't available.
1da177e4 2220 */
40094fa6 2221 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2222
a737b3e2
AM
2223 /*
2224 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2225 * unaligned accesses for some archs when redzoning is used, and makes
2226 * sure any on-slab bufctl's are also correctly aligned.
2227 */
b28a02de
PE
2228 if (size & (BYTES_PER_WORD - 1)) {
2229 size += (BYTES_PER_WORD - 1);
2230 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2231 }
2232
a737b3e2
AM
2233 /* calculate the final buffer alignment: */
2234
1da177e4
LT
2235 /* 1) arch recommendation: can be overridden for debug */
2236 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2237 /*
2238 * Default alignment: as specified by the arch code. Except if
2239 * an object is really small, then squeeze multiple objects into
2240 * one cacheline.
1da177e4
LT
2241 */
2242 ralign = cache_line_size();
b28a02de 2243 while (size <= ralign / 2)
1da177e4
LT
2244 ralign /= 2;
2245 } else {
2246 ralign = BYTES_PER_WORD;
2247 }
ca5f9703
PE
2248
2249 /*
87a927c7
DW
2250 * Redzoning and user store require word alignment or possibly larger.
2251 * Note this will be overridden by architecture or caller mandated
2252 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2253 */
87a927c7
DW
2254 if (flags & SLAB_STORE_USER)
2255 ralign = BYTES_PER_WORD;
2256
2257 if (flags & SLAB_RED_ZONE) {
2258 ralign = REDZONE_ALIGN;
2259 /* If redzoning, ensure that the second redzone is suitably
2260 * aligned, by adjusting the object size accordingly. */
2261 size += REDZONE_ALIGN - 1;
2262 size &= ~(REDZONE_ALIGN - 1);
2263 }
ca5f9703 2264
a44b56d3 2265 /* 2) arch mandated alignment */
1da177e4
LT
2266 if (ralign < ARCH_SLAB_MINALIGN) {
2267 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2268 }
a44b56d3 2269 /* 3) caller mandated alignment */
1da177e4
LT
2270 if (ralign < align) {
2271 ralign = align;
1da177e4 2272 }
a44b56d3 2273 /* disable debug if necessary */
b46b8f19 2274 if (ralign > __alignof__(unsigned long long))
a44b56d3 2275 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2276 /*
ca5f9703 2277 * 4) Store it.
1da177e4
LT
2278 */
2279 align = ralign;
2280
2281 /* Get cache's description obj. */
e94b1766 2282 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
1da177e4 2283 if (!cachep)
4f12bb4f 2284 goto oops;
1da177e4
LT
2285
2286#if DEBUG
3dafccf2 2287 cachep->obj_size = size;
1da177e4 2288
ca5f9703
PE
2289 /*
2290 * Both debugging options require word-alignment which is calculated
2291 * into align above.
2292 */
1da177e4 2293 if (flags & SLAB_RED_ZONE) {
1da177e4 2294 /* add space for red zone words */
b46b8f19
DW
2295 cachep->obj_offset += sizeof(unsigned long long);
2296 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2297 }
2298 if (flags & SLAB_STORE_USER) {
ca5f9703 2299 /* user store requires one word storage behind the end of
87a927c7
DW
2300 * the real object. But if the second red zone needs to be
2301 * aligned to 64 bits, we must allow that much space.
1da177e4 2302 */
87a927c7
DW
2303 if (flags & SLAB_RED_ZONE)
2304 size += REDZONE_ALIGN;
2305 else
2306 size += BYTES_PER_WORD;
1da177e4
LT
2307 }
2308#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2309 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2310 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2311 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2312 size = PAGE_SIZE;
2313 }
2314#endif
2315#endif
2316
e0a42726
IM
2317 /*
2318 * Determine if the slab management is 'on' or 'off' slab.
2319 * (bootstrapping cannot cope with offslab caches so don't do
2320 * it too early on.)
2321 */
2322 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
1da177e4
LT
2323 /*
2324 * Size is large, assume best to place the slab management obj
2325 * off-slab (should allow better packing of objs).
2326 */
2327 flags |= CFLGS_OFF_SLAB;
2328
2329 size = ALIGN(size, align);
2330
f78bb8ad 2331 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2332
2333 if (!cachep->num) {
b4169525 2334 printk(KERN_ERR
2335 "kmem_cache_create: couldn't create cache %s.\n", name);
1da177e4
LT
2336 kmem_cache_free(&cache_cache, cachep);
2337 cachep = NULL;
4f12bb4f 2338 goto oops;
1da177e4 2339 }
b28a02de
PE
2340 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2341 + sizeof(struct slab), align);
1da177e4
LT
2342
2343 /*
2344 * If the slab has been placed off-slab, and we have enough space then
2345 * move it on-slab. This is at the expense of any extra colouring.
2346 */
2347 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2348 flags &= ~CFLGS_OFF_SLAB;
2349 left_over -= slab_size;
2350 }
2351
2352 if (flags & CFLGS_OFF_SLAB) {
2353 /* really off slab. No need for manual alignment */
b28a02de
PE
2354 slab_size =
2355 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2356 }
2357
2358 cachep->colour_off = cache_line_size();
2359 /* Offset must be a multiple of the alignment. */
2360 if (cachep->colour_off < align)
2361 cachep->colour_off = align;
b28a02de 2362 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2363 cachep->slab_size = slab_size;
2364 cachep->flags = flags;
2365 cachep->gfpflags = 0;
4b51d669 2366 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
1da177e4 2367 cachep->gfpflags |= GFP_DMA;
3dafccf2 2368 cachep->buffer_size = size;
6a2d7a95 2369 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2370
e5ac9c5a 2371 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2372 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2373 /*
2374 * This is a possibility for one of the malloc_sizes caches.
2375 * But since we go off slab only for object size greater than
2376 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2377 * this should not happen at all.
2378 * But leave a BUG_ON for some lucky dude.
2379 */
6cb8f913 2380 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2381 }
1da177e4 2382 cachep->ctor = ctor;
1da177e4
LT
2383 cachep->name = name;
2384
2ed3a4ef
CL
2385 if (setup_cpu_cache(cachep)) {
2386 __kmem_cache_destroy(cachep);
2387 cachep = NULL;
2388 goto oops;
2389 }
1da177e4 2390
1da177e4
LT
2391 /* cache setup completed, link it into the list */
2392 list_add(&cachep->next, &cache_chain);
a737b3e2 2393oops:
1da177e4
LT
2394 if (!cachep && (flags & SLAB_PANIC))
2395 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2396 name);
fc0abb14 2397 mutex_unlock(&cache_chain_mutex);
95402b38 2398 put_online_cpus();
1da177e4
LT
2399 return cachep;
2400}
2401EXPORT_SYMBOL(kmem_cache_create);
2402
2403#if DEBUG
2404static void check_irq_off(void)
2405{
2406 BUG_ON(!irqs_disabled());
2407}
2408
2409static void check_irq_on(void)
2410{
2411 BUG_ON(irqs_disabled());
2412}
2413
343e0d7a 2414static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2415{
2416#ifdef CONFIG_SMP
2417 check_irq_off();
e498be7d 2418 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2419#endif
2420}
e498be7d 2421
343e0d7a 2422static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2423{
2424#ifdef CONFIG_SMP
2425 check_irq_off();
2426 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2427#endif
2428}
2429
1da177e4
LT
2430#else
2431#define check_irq_off() do { } while(0)
2432#define check_irq_on() do { } while(0)
2433#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2434#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2435#endif
2436
aab2207c
CL
2437static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2438 struct array_cache *ac,
2439 int force, int node);
2440
1da177e4
LT
2441static void do_drain(void *arg)
2442{
a737b3e2 2443 struct kmem_cache *cachep = arg;
1da177e4 2444 struct array_cache *ac;
ff69416e 2445 int node = numa_node_id();
1da177e4
LT
2446
2447 check_irq_off();
9a2dba4b 2448 ac = cpu_cache_get(cachep);
ff69416e
CL
2449 spin_lock(&cachep->nodelists[node]->list_lock);
2450 free_block(cachep, ac->entry, ac->avail, node);
2451 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2452 ac->avail = 0;
2453}
2454
343e0d7a 2455static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2456{
e498be7d
CL
2457 struct kmem_list3 *l3;
2458 int node;
2459
15c8b6c1 2460 on_each_cpu(do_drain, cachep, 1);
1da177e4 2461 check_irq_on();
b28a02de 2462 for_each_online_node(node) {
e498be7d 2463 l3 = cachep->nodelists[node];
a4523a8b
RD
2464 if (l3 && l3->alien)
2465 drain_alien_cache(cachep, l3->alien);
2466 }
2467
2468 for_each_online_node(node) {
2469 l3 = cachep->nodelists[node];
2470 if (l3)
aab2207c 2471 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2472 }
1da177e4
LT
2473}
2474
ed11d9eb
CL
2475/*
2476 * Remove slabs from the list of free slabs.
2477 * Specify the number of slabs to drain in tofree.
2478 *
2479 * Returns the actual number of slabs released.
2480 */
2481static int drain_freelist(struct kmem_cache *cache,
2482 struct kmem_list3 *l3, int tofree)
1da177e4 2483{
ed11d9eb
CL
2484 struct list_head *p;
2485 int nr_freed;
1da177e4 2486 struct slab *slabp;
1da177e4 2487
ed11d9eb
CL
2488 nr_freed = 0;
2489 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2490
ed11d9eb 2491 spin_lock_irq(&l3->list_lock);
e498be7d 2492 p = l3->slabs_free.prev;
ed11d9eb
CL
2493 if (p == &l3->slabs_free) {
2494 spin_unlock_irq(&l3->list_lock);
2495 goto out;
2496 }
1da177e4 2497
ed11d9eb 2498 slabp = list_entry(p, struct slab, list);
1da177e4 2499#if DEBUG
40094fa6 2500 BUG_ON(slabp->inuse);
1da177e4
LT
2501#endif
2502 list_del(&slabp->list);
ed11d9eb
CL
2503 /*
2504 * Safe to drop the lock. The slab is no longer linked
2505 * to the cache.
2506 */
2507 l3->free_objects -= cache->num;
e498be7d 2508 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2509 slab_destroy(cache, slabp);
2510 nr_freed++;
1da177e4 2511 }
ed11d9eb
CL
2512out:
2513 return nr_freed;
1da177e4
LT
2514}
2515
8f5be20b 2516/* Called with cache_chain_mutex held to protect against cpu hotplug */
343e0d7a 2517static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2518{
2519 int ret = 0, i = 0;
2520 struct kmem_list3 *l3;
2521
2522 drain_cpu_caches(cachep);
2523
2524 check_irq_on();
2525 for_each_online_node(i) {
2526 l3 = cachep->nodelists[i];
ed11d9eb
CL
2527 if (!l3)
2528 continue;
2529
2530 drain_freelist(cachep, l3, l3->free_objects);
2531
2532 ret += !list_empty(&l3->slabs_full) ||
2533 !list_empty(&l3->slabs_partial);
e498be7d
CL
2534 }
2535 return (ret ? 1 : 0);
2536}
2537
1da177e4
LT
2538/**
2539 * kmem_cache_shrink - Shrink a cache.
2540 * @cachep: The cache to shrink.
2541 *
2542 * Releases as many slabs as possible for a cache.
2543 * To help debugging, a zero exit status indicates all slabs were released.
2544 */
343e0d7a 2545int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2546{
8f5be20b 2547 int ret;
40094fa6 2548 BUG_ON(!cachep || in_interrupt());
1da177e4 2549
95402b38 2550 get_online_cpus();
8f5be20b
RT
2551 mutex_lock(&cache_chain_mutex);
2552 ret = __cache_shrink(cachep);
2553 mutex_unlock(&cache_chain_mutex);
95402b38 2554 put_online_cpus();
8f5be20b 2555 return ret;
1da177e4
LT
2556}
2557EXPORT_SYMBOL(kmem_cache_shrink);
2558
2559/**
2560 * kmem_cache_destroy - delete a cache
2561 * @cachep: the cache to destroy
2562 *
72fd4a35 2563 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2564 *
2565 * It is expected this function will be called by a module when it is
2566 * unloaded. This will remove the cache completely, and avoid a duplicate
2567 * cache being allocated each time a module is loaded and unloaded, if the
2568 * module doesn't have persistent in-kernel storage across loads and unloads.
2569 *
2570 * The cache must be empty before calling this function.
2571 *
2572 * The caller must guarantee that noone will allocate memory from the cache
2573 * during the kmem_cache_destroy().
2574 */
133d205a 2575void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2576{
40094fa6 2577 BUG_ON(!cachep || in_interrupt());
1da177e4 2578
1da177e4 2579 /* Find the cache in the chain of caches. */
95402b38 2580 get_online_cpus();
fc0abb14 2581 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2582 /*
2583 * the chain is never empty, cache_cache is never destroyed
2584 */
2585 list_del(&cachep->next);
1da177e4
LT
2586 if (__cache_shrink(cachep)) {
2587 slab_error(cachep, "Can't free all objects");
b28a02de 2588 list_add(&cachep->next, &cache_chain);
fc0abb14 2589 mutex_unlock(&cache_chain_mutex);
95402b38 2590 put_online_cpus();
133d205a 2591 return;
1da177e4
LT
2592 }
2593
2594 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2595 synchronize_rcu();
1da177e4 2596
117f6eb1 2597 __kmem_cache_destroy(cachep);
8f5be20b 2598 mutex_unlock(&cache_chain_mutex);
95402b38 2599 put_online_cpus();
1da177e4
LT
2600}
2601EXPORT_SYMBOL(kmem_cache_destroy);
2602
e5ac9c5a
RT
2603/*
2604 * Get the memory for a slab management obj.
2605 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2606 * always come from malloc_sizes caches. The slab descriptor cannot
2607 * come from the same cache which is getting created because,
2608 * when we are searching for an appropriate cache for these
2609 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2610 * If we are creating a malloc_sizes cache here it would not be visible to
2611 * kmem_find_general_cachep till the initialization is complete.
2612 * Hence we cannot have slabp_cache same as the original cache.
2613 */
343e0d7a 2614static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2615 int colour_off, gfp_t local_flags,
2616 int nodeid)
1da177e4
LT
2617{
2618 struct slab *slabp;
b28a02de 2619
1da177e4
LT
2620 if (OFF_SLAB(cachep)) {
2621 /* Slab management obj is off-slab. */
5b74ada7 2622 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2623 local_flags, nodeid);
1da177e4
LT
2624 if (!slabp)
2625 return NULL;
2626 } else {
b28a02de 2627 slabp = objp + colour_off;
1da177e4
LT
2628 colour_off += cachep->slab_size;
2629 }
2630 slabp->inuse = 0;
2631 slabp->colouroff = colour_off;
b28a02de 2632 slabp->s_mem = objp + colour_off;
5b74ada7 2633 slabp->nodeid = nodeid;
e51bfd0a 2634 slabp->free = 0;
1da177e4
LT
2635 return slabp;
2636}
2637
2638static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2639{
b28a02de 2640 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2641}
2642
343e0d7a 2643static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2644 struct slab *slabp)
1da177e4
LT
2645{
2646 int i;
2647
2648 for (i = 0; i < cachep->num; i++) {
8fea4e96 2649 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2650#if DEBUG
2651 /* need to poison the objs? */
2652 if (cachep->flags & SLAB_POISON)
2653 poison_obj(cachep, objp, POISON_FREE);
2654 if (cachep->flags & SLAB_STORE_USER)
2655 *dbg_userword(cachep, objp) = NULL;
2656
2657 if (cachep->flags & SLAB_RED_ZONE) {
2658 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2659 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2660 }
2661 /*
a737b3e2
AM
2662 * Constructors are not allowed to allocate memory from the same
2663 * cache which they are a constructor for. Otherwise, deadlock.
2664 * They must also be threaded.
1da177e4
LT
2665 */
2666 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2667 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2668
2669 if (cachep->flags & SLAB_RED_ZONE) {
2670 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2671 slab_error(cachep, "constructor overwrote the"
b28a02de 2672 " end of an object");
1da177e4
LT
2673 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2674 slab_error(cachep, "constructor overwrote the"
b28a02de 2675 " start of an object");
1da177e4 2676 }
a737b3e2
AM
2677 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2678 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2679 kernel_map_pages(virt_to_page(objp),
3dafccf2 2680 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2681#else
2682 if (cachep->ctor)
51cc5068 2683 cachep->ctor(objp);
1da177e4 2684#endif
b28a02de 2685 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2686 }
b28a02de 2687 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2688}
2689
343e0d7a 2690static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2691{
4b51d669
CL
2692 if (CONFIG_ZONE_DMA_FLAG) {
2693 if (flags & GFP_DMA)
2694 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2695 else
2696 BUG_ON(cachep->gfpflags & GFP_DMA);
2697 }
1da177e4
LT
2698}
2699
a737b3e2
AM
2700static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2701 int nodeid)
78d382d7 2702{
8fea4e96 2703 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2704 kmem_bufctl_t next;
2705
2706 slabp->inuse++;
2707 next = slab_bufctl(slabp)[slabp->free];
2708#if DEBUG
2709 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2710 WARN_ON(slabp->nodeid != nodeid);
2711#endif
2712 slabp->free = next;
2713
2714 return objp;
2715}
2716
a737b3e2
AM
2717static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2718 void *objp, int nodeid)
78d382d7 2719{
8fea4e96 2720 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2721
2722#if DEBUG
2723 /* Verify that the slab belongs to the intended node */
2724 WARN_ON(slabp->nodeid != nodeid);
2725
871751e2 2726 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2727 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2728 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2729 BUG();
2730 }
2731#endif
2732 slab_bufctl(slabp)[objnr] = slabp->free;
2733 slabp->free = objnr;
2734 slabp->inuse--;
2735}
2736
4776874f
PE
2737/*
2738 * Map pages beginning at addr to the given cache and slab. This is required
2739 * for the slab allocator to be able to lookup the cache and slab of a
2740 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2741 */
2742static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2743 void *addr)
1da177e4 2744{
4776874f 2745 int nr_pages;
1da177e4
LT
2746 struct page *page;
2747
4776874f 2748 page = virt_to_page(addr);
84097518 2749
4776874f 2750 nr_pages = 1;
84097518 2751 if (likely(!PageCompound(page)))
4776874f
PE
2752 nr_pages <<= cache->gfporder;
2753
1da177e4 2754 do {
4776874f
PE
2755 page_set_cache(page, cache);
2756 page_set_slab(page, slab);
1da177e4 2757 page++;
4776874f 2758 } while (--nr_pages);
1da177e4
LT
2759}
2760
2761/*
2762 * Grow (by 1) the number of slabs within a cache. This is called by
2763 * kmem_cache_alloc() when there are no active objs left in a cache.
2764 */
3c517a61
CL
2765static int cache_grow(struct kmem_cache *cachep,
2766 gfp_t flags, int nodeid, void *objp)
1da177e4 2767{
b28a02de 2768 struct slab *slabp;
b28a02de
PE
2769 size_t offset;
2770 gfp_t local_flags;
e498be7d 2771 struct kmem_list3 *l3;
1da177e4 2772
a737b3e2
AM
2773 /*
2774 * Be lazy and only check for valid flags here, keeping it out of the
2775 * critical path in kmem_cache_alloc().
1da177e4 2776 */
6cb06229
CL
2777 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2778 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2779
2e1217cf 2780 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2781 check_irq_off();
2e1217cf
RT
2782 l3 = cachep->nodelists[nodeid];
2783 spin_lock(&l3->list_lock);
1da177e4
LT
2784
2785 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2786 offset = l3->colour_next;
2787 l3->colour_next++;
2788 if (l3->colour_next >= cachep->colour)
2789 l3->colour_next = 0;
2790 spin_unlock(&l3->list_lock);
1da177e4 2791
2e1217cf 2792 offset *= cachep->colour_off;
1da177e4
LT
2793
2794 if (local_flags & __GFP_WAIT)
2795 local_irq_enable();
2796
2797 /*
2798 * The test for missing atomic flag is performed here, rather than
2799 * the more obvious place, simply to reduce the critical path length
2800 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2801 * will eventually be caught here (where it matters).
2802 */
2803 kmem_flagcheck(cachep, flags);
2804
a737b3e2
AM
2805 /*
2806 * Get mem for the objs. Attempt to allocate a physical page from
2807 * 'nodeid'.
e498be7d 2808 */
3c517a61 2809 if (!objp)
b8c1c5da 2810 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2811 if (!objp)
1da177e4
LT
2812 goto failed;
2813
2814 /* Get slab management. */
3c517a61 2815 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2816 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2817 if (!slabp)
1da177e4
LT
2818 goto opps1;
2819
4776874f 2820 slab_map_pages(cachep, slabp, objp);
1da177e4 2821
a35afb83 2822 cache_init_objs(cachep, slabp);
1da177e4
LT
2823
2824 if (local_flags & __GFP_WAIT)
2825 local_irq_disable();
2826 check_irq_off();
e498be7d 2827 spin_lock(&l3->list_lock);
1da177e4
LT
2828
2829 /* Make slab active. */
e498be7d 2830 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2831 STATS_INC_GROWN(cachep);
e498be7d
CL
2832 l3->free_objects += cachep->num;
2833 spin_unlock(&l3->list_lock);
1da177e4 2834 return 1;
a737b3e2 2835opps1:
1da177e4 2836 kmem_freepages(cachep, objp);
a737b3e2 2837failed:
1da177e4
LT
2838 if (local_flags & __GFP_WAIT)
2839 local_irq_disable();
2840 return 0;
2841}
2842
2843#if DEBUG
2844
2845/*
2846 * Perform extra freeing checks:
2847 * - detect bad pointers.
2848 * - POISON/RED_ZONE checking
1da177e4
LT
2849 */
2850static void kfree_debugcheck(const void *objp)
2851{
1da177e4
LT
2852 if (!virt_addr_valid(objp)) {
2853 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2854 (unsigned long)objp);
2855 BUG();
1da177e4 2856 }
1da177e4
LT
2857}
2858
58ce1fd5
PE
2859static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2860{
b46b8f19 2861 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2862
2863 redzone1 = *dbg_redzone1(cache, obj);
2864 redzone2 = *dbg_redzone2(cache, obj);
2865
2866 /*
2867 * Redzone is ok.
2868 */
2869 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2870 return;
2871
2872 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2873 slab_error(cache, "double free detected");
2874 else
2875 slab_error(cache, "memory outside object was overwritten");
2876
b46b8f19 2877 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2878 obj, redzone1, redzone2);
2879}
2880
343e0d7a 2881static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2882 void *caller)
1da177e4
LT
2883{
2884 struct page *page;
2885 unsigned int objnr;
2886 struct slab *slabp;
2887
80cbd911
MW
2888 BUG_ON(virt_to_cache(objp) != cachep);
2889
3dafccf2 2890 objp -= obj_offset(cachep);
1da177e4 2891 kfree_debugcheck(objp);
b49af68f 2892 page = virt_to_head_page(objp);
1da177e4 2893
065d41cb 2894 slabp = page_get_slab(page);
1da177e4
LT
2895
2896 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2897 verify_redzone_free(cachep, objp);
1da177e4
LT
2898 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2899 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2900 }
2901 if (cachep->flags & SLAB_STORE_USER)
2902 *dbg_userword(cachep, objp) = caller;
2903
8fea4e96 2904 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2905
2906 BUG_ON(objnr >= cachep->num);
8fea4e96 2907 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 2908
871751e2
AV
2909#ifdef CONFIG_DEBUG_SLAB_LEAK
2910 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2911#endif
1da177e4
LT
2912 if (cachep->flags & SLAB_POISON) {
2913#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2914 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2915 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2916 kernel_map_pages(virt_to_page(objp),
3dafccf2 2917 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2918 } else {
2919 poison_obj(cachep, objp, POISON_FREE);
2920 }
2921#else
2922 poison_obj(cachep, objp, POISON_FREE);
2923#endif
2924 }
2925 return objp;
2926}
2927
343e0d7a 2928static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2929{
2930 kmem_bufctl_t i;
2931 int entries = 0;
b28a02de 2932
1da177e4
LT
2933 /* Check slab's freelist to see if this obj is there. */
2934 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2935 entries++;
2936 if (entries > cachep->num || i >= cachep->num)
2937 goto bad;
2938 }
2939 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2940bad:
2941 printk(KERN_ERR "slab: Internal list corruption detected in "
2942 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2943 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2944 for (i = 0;
264132bc 2945 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2946 i++) {
a737b3e2 2947 if (i % 16 == 0)
1da177e4 2948 printk("\n%03x:", i);
b28a02de 2949 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2950 }
2951 printk("\n");
2952 BUG();
2953 }
2954}
2955#else
2956#define kfree_debugcheck(x) do { } while(0)
2957#define cache_free_debugcheck(x,objp,z) (objp)
2958#define check_slabp(x,y) do { } while(0)
2959#endif
2960
343e0d7a 2961static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2962{
2963 int batchcount;
2964 struct kmem_list3 *l3;
2965 struct array_cache *ac;
1ca4cb24
PE
2966 int node;
2967
6d2144d3 2968retry:
1da177e4 2969 check_irq_off();
6d2144d3 2970 node = numa_node_id();
9a2dba4b 2971 ac = cpu_cache_get(cachep);
1da177e4
LT
2972 batchcount = ac->batchcount;
2973 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2974 /*
2975 * If there was little recent activity on this cache, then
2976 * perform only a partial refill. Otherwise we could generate
2977 * refill bouncing.
1da177e4
LT
2978 */
2979 batchcount = BATCHREFILL_LIMIT;
2980 }
1ca4cb24 2981 l3 = cachep->nodelists[node];
e498be7d
CL
2982
2983 BUG_ON(ac->avail > 0 || !l3);
2984 spin_lock(&l3->list_lock);
1da177e4 2985
3ded175a
CL
2986 /* See if we can refill from the shared array */
2987 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2988 goto alloc_done;
2989
1da177e4
LT
2990 while (batchcount > 0) {
2991 struct list_head *entry;
2992 struct slab *slabp;
2993 /* Get slab alloc is to come from. */
2994 entry = l3->slabs_partial.next;
2995 if (entry == &l3->slabs_partial) {
2996 l3->free_touched = 1;
2997 entry = l3->slabs_free.next;
2998 if (entry == &l3->slabs_free)
2999 goto must_grow;
3000 }
3001
3002 slabp = list_entry(entry, struct slab, list);
3003 check_slabp(cachep, slabp);
3004 check_spinlock_acquired(cachep);
714b8171
PE
3005
3006 /*
3007 * The slab was either on partial or free list so
3008 * there must be at least one object available for
3009 * allocation.
3010 */
249b9f33 3011 BUG_ON(slabp->inuse >= cachep->num);
714b8171 3012
1da177e4 3013 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3014 STATS_INC_ALLOCED(cachep);
3015 STATS_INC_ACTIVE(cachep);
3016 STATS_SET_HIGH(cachep);
3017
78d382d7 3018 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
1ca4cb24 3019 node);
1da177e4
LT
3020 }
3021 check_slabp(cachep, slabp);
3022
3023 /* move slabp to correct slabp list: */
3024 list_del(&slabp->list);
3025 if (slabp->free == BUFCTL_END)
3026 list_add(&slabp->list, &l3->slabs_full);
3027 else
3028 list_add(&slabp->list, &l3->slabs_partial);
3029 }
3030
a737b3e2 3031must_grow:
1da177e4 3032 l3->free_objects -= ac->avail;
a737b3e2 3033alloc_done:
e498be7d 3034 spin_unlock(&l3->list_lock);
1da177e4
LT
3035
3036 if (unlikely(!ac->avail)) {
3037 int x;
3c517a61 3038 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3039
a737b3e2 3040 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3041 ac = cpu_cache_get(cachep);
a737b3e2 3042 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
3043 return NULL;
3044
a737b3e2 3045 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3046 goto retry;
3047 }
3048 ac->touched = 1;
e498be7d 3049 return ac->entry[--ac->avail];
1da177e4
LT
3050}
3051
a737b3e2
AM
3052static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3053 gfp_t flags)
1da177e4
LT
3054{
3055 might_sleep_if(flags & __GFP_WAIT);
3056#if DEBUG
3057 kmem_flagcheck(cachep, flags);
3058#endif
3059}
3060
3061#if DEBUG
a737b3e2
AM
3062static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3063 gfp_t flags, void *objp, void *caller)
1da177e4 3064{
b28a02de 3065 if (!objp)
1da177e4 3066 return objp;
b28a02de 3067 if (cachep->flags & SLAB_POISON) {
1da177e4 3068#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 3069 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3070 kernel_map_pages(virt_to_page(objp),
3dafccf2 3071 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
3072 else
3073 check_poison_obj(cachep, objp);
3074#else
3075 check_poison_obj(cachep, objp);
3076#endif
3077 poison_obj(cachep, objp, POISON_INUSE);
3078 }
3079 if (cachep->flags & SLAB_STORE_USER)
3080 *dbg_userword(cachep, objp) = caller;
3081
3082 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3083 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3084 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3085 slab_error(cachep, "double free, or memory outside"
3086 " object was overwritten");
b28a02de 3087 printk(KERN_ERR
b46b8f19 3088 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3089 objp, *dbg_redzone1(cachep, objp),
3090 *dbg_redzone2(cachep, objp));
1da177e4
LT
3091 }
3092 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3093 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3094 }
871751e2
AV
3095#ifdef CONFIG_DEBUG_SLAB_LEAK
3096 {
3097 struct slab *slabp;
3098 unsigned objnr;
3099
b49af68f 3100 slabp = page_get_slab(virt_to_head_page(objp));
871751e2
AV
3101 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3102 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3103 }
3104#endif
3dafccf2 3105 objp += obj_offset(cachep);
4f104934 3106 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3107 cachep->ctor(objp);
a44b56d3
KH
3108#if ARCH_SLAB_MINALIGN
3109 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3110 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3111 objp, ARCH_SLAB_MINALIGN);
3112 }
3113#endif
1da177e4
LT
3114 return objp;
3115}
3116#else
3117#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3118#endif
3119
773ff60e 3120static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502
AM
3121{
3122 if (cachep == &cache_cache)
773ff60e 3123 return false;
8a8b6502 3124
773ff60e 3125 return should_failslab(obj_size(cachep), flags);
8a8b6502
AM
3126}
3127
343e0d7a 3128static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3129{
b28a02de 3130 void *objp;
1da177e4
LT
3131 struct array_cache *ac;
3132
5c382300 3133 check_irq_off();
8a8b6502 3134
9a2dba4b 3135 ac = cpu_cache_get(cachep);
1da177e4
LT
3136 if (likely(ac->avail)) {
3137 STATS_INC_ALLOCHIT(cachep);
3138 ac->touched = 1;
e498be7d 3139 objp = ac->entry[--ac->avail];
1da177e4
LT
3140 } else {
3141 STATS_INC_ALLOCMISS(cachep);
3142 objp = cache_alloc_refill(cachep, flags);
3143 }
5c382300
AK
3144 return objp;
3145}
3146
e498be7d 3147#ifdef CONFIG_NUMA
c61afb18 3148/*
b2455396 3149 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3150 *
3151 * If we are in_interrupt, then process context, including cpusets and
3152 * mempolicy, may not apply and should not be used for allocation policy.
3153 */
3154static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3155{
3156 int nid_alloc, nid_here;
3157
765c4507 3158 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18
PJ
3159 return NULL;
3160 nid_alloc = nid_here = numa_node_id();
3161 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3162 nid_alloc = cpuset_mem_spread_node();
3163 else if (current->mempolicy)
3164 nid_alloc = slab_node(current->mempolicy);
3165 if (nid_alloc != nid_here)
8b98c169 3166 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3167 return NULL;
3168}
3169
765c4507
CL
3170/*
3171 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3172 * certain node and fall back is permitted. First we scan all the
3173 * available nodelists for available objects. If that fails then we
3174 * perform an allocation without specifying a node. This allows the page
3175 * allocator to do its reclaim / fallback magic. We then insert the
3176 * slab into the proper nodelist and then allocate from it.
765c4507 3177 */
8c8cc2c1 3178static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3179{
8c8cc2c1
PE
3180 struct zonelist *zonelist;
3181 gfp_t local_flags;
dd1a239f 3182 struct zoneref *z;
54a6eb5c
MG
3183 struct zone *zone;
3184 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3185 void *obj = NULL;
3c517a61 3186 int nid;
8c8cc2c1
PE
3187
3188 if (flags & __GFP_THISNODE)
3189 return NULL;
3190
0e88460d 3191 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
6cb06229 3192 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3193
3c517a61
CL
3194retry:
3195 /*
3196 * Look through allowed nodes for objects available
3197 * from existing per node queues.
3198 */
54a6eb5c
MG
3199 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3200 nid = zone_to_nid(zone);
aedb0eb1 3201
54a6eb5c 3202 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3c517a61 3203 cache->nodelists[nid] &&
481c5346 3204 cache->nodelists[nid]->free_objects) {
3c517a61
CL
3205 obj = ____cache_alloc_node(cache,
3206 flags | GFP_THISNODE, nid);
481c5346
CL
3207 if (obj)
3208 break;
3209 }
3c517a61
CL
3210 }
3211
cfce6604 3212 if (!obj) {
3c517a61
CL
3213 /*
3214 * This allocation will be performed within the constraints
3215 * of the current cpuset / memory policy requirements.
3216 * We may trigger various forms of reclaim on the allowed
3217 * set and go into memory reserves if necessary.
3218 */
dd47ea75
CL
3219 if (local_flags & __GFP_WAIT)
3220 local_irq_enable();
3221 kmem_flagcheck(cache, flags);
9ac33b2b 3222 obj = kmem_getpages(cache, local_flags, -1);
dd47ea75
CL
3223 if (local_flags & __GFP_WAIT)
3224 local_irq_disable();
3c517a61
CL
3225 if (obj) {
3226 /*
3227 * Insert into the appropriate per node queues
3228 */
3229 nid = page_to_nid(virt_to_page(obj));
3230 if (cache_grow(cache, flags, nid, obj)) {
3231 obj = ____cache_alloc_node(cache,
3232 flags | GFP_THISNODE, nid);
3233 if (!obj)
3234 /*
3235 * Another processor may allocate the
3236 * objects in the slab since we are
3237 * not holding any locks.
3238 */
3239 goto retry;
3240 } else {
b6a60451 3241 /* cache_grow already freed obj */
3c517a61
CL
3242 obj = NULL;
3243 }
3244 }
aedb0eb1 3245 }
765c4507
CL
3246 return obj;
3247}
3248
e498be7d
CL
3249/*
3250 * A interface to enable slab creation on nodeid
1da177e4 3251 */
8b98c169 3252static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3253 int nodeid)
e498be7d
CL
3254{
3255 struct list_head *entry;
b28a02de
PE
3256 struct slab *slabp;
3257 struct kmem_list3 *l3;
3258 void *obj;
b28a02de
PE
3259 int x;
3260
3261 l3 = cachep->nodelists[nodeid];
3262 BUG_ON(!l3);
3263
a737b3e2 3264retry:
ca3b9b91 3265 check_irq_off();
b28a02de
PE
3266 spin_lock(&l3->list_lock);
3267 entry = l3->slabs_partial.next;
3268 if (entry == &l3->slabs_partial) {
3269 l3->free_touched = 1;
3270 entry = l3->slabs_free.next;
3271 if (entry == &l3->slabs_free)
3272 goto must_grow;
3273 }
3274
3275 slabp = list_entry(entry, struct slab, list);
3276 check_spinlock_acquired_node(cachep, nodeid);
3277 check_slabp(cachep, slabp);
3278
3279 STATS_INC_NODEALLOCS(cachep);
3280 STATS_INC_ACTIVE(cachep);
3281 STATS_SET_HIGH(cachep);
3282
3283 BUG_ON(slabp->inuse == cachep->num);
3284
78d382d7 3285 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3286 check_slabp(cachep, slabp);
3287 l3->free_objects--;
3288 /* move slabp to correct slabp list: */
3289 list_del(&slabp->list);
3290
a737b3e2 3291 if (slabp->free == BUFCTL_END)
b28a02de 3292 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3293 else
b28a02de 3294 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3295
b28a02de
PE
3296 spin_unlock(&l3->list_lock);
3297 goto done;
e498be7d 3298
a737b3e2 3299must_grow:
b28a02de 3300 spin_unlock(&l3->list_lock);
3c517a61 3301 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3302 if (x)
3303 goto retry;
1da177e4 3304
8c8cc2c1 3305 return fallback_alloc(cachep, flags);
e498be7d 3306
a737b3e2 3307done:
b28a02de 3308 return obj;
e498be7d 3309}
8c8cc2c1
PE
3310
3311/**
3312 * kmem_cache_alloc_node - Allocate an object on the specified node
3313 * @cachep: The cache to allocate from.
3314 * @flags: See kmalloc().
3315 * @nodeid: node number of the target node.
3316 * @caller: return address of caller, used for debug information
3317 *
3318 * Identical to kmem_cache_alloc but it will allocate memory on the given
3319 * node, which can improve the performance for cpu bound structures.
3320 *
3321 * Fallback to other node is possible if __GFP_THISNODE is not set.
3322 */
3323static __always_inline void *
3324__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3325 void *caller)
3326{
3327 unsigned long save_flags;
3328 void *ptr;
3329
cf40bd16
NP
3330 lockdep_trace_alloc(flags);
3331
773ff60e 3332 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3333 return NULL;
3334
8c8cc2c1
PE
3335 cache_alloc_debugcheck_before(cachep, flags);
3336 local_irq_save(save_flags);
3337
3338 if (unlikely(nodeid == -1))
3339 nodeid = numa_node_id();
3340
3341 if (unlikely(!cachep->nodelists[nodeid])) {
3342 /* Node not bootstrapped yet */
3343 ptr = fallback_alloc(cachep, flags);
3344 goto out;
3345 }
3346
3347 if (nodeid == numa_node_id()) {
3348 /*
3349 * Use the locally cached objects if possible.
3350 * However ____cache_alloc does not allow fallback
3351 * to other nodes. It may fail while we still have
3352 * objects on other nodes available.
3353 */
3354 ptr = ____cache_alloc(cachep, flags);
3355 if (ptr)
3356 goto out;
3357 }
3358 /* ___cache_alloc_node can fall back to other nodes */
3359 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3360 out:
3361 local_irq_restore(save_flags);
3362 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3363
d07dbea4
CL
3364 if (unlikely((flags & __GFP_ZERO) && ptr))
3365 memset(ptr, 0, obj_size(cachep));
3366
8c8cc2c1
PE
3367 return ptr;
3368}
3369
3370static __always_inline void *
3371__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3372{
3373 void *objp;
3374
3375 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3376 objp = alternate_node_alloc(cache, flags);
3377 if (objp)
3378 goto out;
3379 }
3380 objp = ____cache_alloc(cache, flags);
3381
3382 /*
3383 * We may just have run out of memory on the local node.
3384 * ____cache_alloc_node() knows how to locate memory on other nodes
3385 */
3386 if (!objp)
3387 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3388
3389 out:
3390 return objp;
3391}
3392#else
3393
3394static __always_inline void *
3395__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3396{
3397 return ____cache_alloc(cachep, flags);
3398}
3399
3400#endif /* CONFIG_NUMA */
3401
3402static __always_inline void *
3403__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3404{
3405 unsigned long save_flags;
3406 void *objp;
3407
cf40bd16
NP
3408 lockdep_trace_alloc(flags);
3409
773ff60e 3410 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3411 return NULL;
3412
8c8cc2c1
PE
3413 cache_alloc_debugcheck_before(cachep, flags);
3414 local_irq_save(save_flags);
3415 objp = __do_cache_alloc(cachep, flags);
3416 local_irq_restore(save_flags);
3417 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3418 prefetchw(objp);
3419
d07dbea4
CL
3420 if (unlikely((flags & __GFP_ZERO) && objp))
3421 memset(objp, 0, obj_size(cachep));
3422
8c8cc2c1
PE
3423 return objp;
3424}
e498be7d
CL
3425
3426/*
3427 * Caller needs to acquire correct kmem_list's list_lock
3428 */
343e0d7a 3429static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3430 int node)
1da177e4
LT
3431{
3432 int i;
e498be7d 3433 struct kmem_list3 *l3;
1da177e4
LT
3434
3435 for (i = 0; i < nr_objects; i++) {
3436 void *objp = objpp[i];
3437 struct slab *slabp;
1da177e4 3438
6ed5eb22 3439 slabp = virt_to_slab(objp);
ff69416e 3440 l3 = cachep->nodelists[node];
1da177e4 3441 list_del(&slabp->list);
ff69416e 3442 check_spinlock_acquired_node(cachep, node);
1da177e4 3443 check_slabp(cachep, slabp);
78d382d7 3444 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3445 STATS_DEC_ACTIVE(cachep);
e498be7d 3446 l3->free_objects++;
1da177e4
LT
3447 check_slabp(cachep, slabp);
3448
3449 /* fixup slab chains */
3450 if (slabp->inuse == 0) {
e498be7d
CL
3451 if (l3->free_objects > l3->free_limit) {
3452 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3453 /* No need to drop any previously held
3454 * lock here, even if we have a off-slab slab
3455 * descriptor it is guaranteed to come from
3456 * a different cache, refer to comments before
3457 * alloc_slabmgmt.
3458 */
1da177e4
LT
3459 slab_destroy(cachep, slabp);
3460 } else {
e498be7d 3461 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3462 }
3463 } else {
3464 /* Unconditionally move a slab to the end of the
3465 * partial list on free - maximum time for the
3466 * other objects to be freed, too.
3467 */
e498be7d 3468 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3469 }
3470 }
3471}
3472
343e0d7a 3473static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3474{
3475 int batchcount;
e498be7d 3476 struct kmem_list3 *l3;
ff69416e 3477 int node = numa_node_id();
1da177e4
LT
3478
3479 batchcount = ac->batchcount;
3480#if DEBUG
3481 BUG_ON(!batchcount || batchcount > ac->avail);
3482#endif
3483 check_irq_off();
ff69416e 3484 l3 = cachep->nodelists[node];
873623df 3485 spin_lock(&l3->list_lock);
e498be7d
CL
3486 if (l3->shared) {
3487 struct array_cache *shared_array = l3->shared;
b28a02de 3488 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3489 if (max) {
3490 if (batchcount > max)
3491 batchcount = max;
e498be7d 3492 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3493 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3494 shared_array->avail += batchcount;
3495 goto free_done;
3496 }
3497 }
3498
ff69416e 3499 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3500free_done:
1da177e4
LT
3501#if STATS
3502 {
3503 int i = 0;
3504 struct list_head *p;
3505
e498be7d
CL
3506 p = l3->slabs_free.next;
3507 while (p != &(l3->slabs_free)) {
1da177e4
LT
3508 struct slab *slabp;
3509
3510 slabp = list_entry(p, struct slab, list);
3511 BUG_ON(slabp->inuse);
3512
3513 i++;
3514 p = p->next;
3515 }
3516 STATS_SET_FREEABLE(cachep, i);
3517 }
3518#endif
e498be7d 3519 spin_unlock(&l3->list_lock);
1da177e4 3520 ac->avail -= batchcount;
a737b3e2 3521 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3522}
3523
3524/*
a737b3e2
AM
3525 * Release an obj back to its cache. If the obj has a constructed state, it must
3526 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3527 */
873623df 3528static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3529{
9a2dba4b 3530 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3531
3532 check_irq_off();
3533 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3534
1807a1aa
SS
3535 /*
3536 * Skip calling cache_free_alien() when the platform is not numa.
3537 * This will avoid cache misses that happen while accessing slabp (which
3538 * is per page memory reference) to get nodeid. Instead use a global
3539 * variable to skip the call, which is mostly likely to be present in
3540 * the cache.
3541 */
3542 if (numa_platform && cache_free_alien(cachep, objp))
729bd0b7
PE
3543 return;
3544
1da177e4
LT
3545 if (likely(ac->avail < ac->limit)) {
3546 STATS_INC_FREEHIT(cachep);
e498be7d 3547 ac->entry[ac->avail++] = objp;
1da177e4
LT
3548 return;
3549 } else {
3550 STATS_INC_FREEMISS(cachep);
3551 cache_flusharray(cachep, ac);
e498be7d 3552 ac->entry[ac->avail++] = objp;
1da177e4
LT
3553 }
3554}
3555
3556/**
3557 * kmem_cache_alloc - Allocate an object
3558 * @cachep: The cache to allocate from.
3559 * @flags: See kmalloc().
3560 *
3561 * Allocate an object from this cache. The flags are only relevant
3562 * if the cache has no available objects.
3563 */
343e0d7a 3564void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3565{
36555751
EGM
3566 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3567
ca2b84cb
EGM
3568 trace_kmem_cache_alloc(_RET_IP_, ret,
3569 obj_size(cachep), cachep->buffer_size, flags);
36555751
EGM
3570
3571 return ret;
1da177e4
LT
3572}
3573EXPORT_SYMBOL(kmem_cache_alloc);
3574
36555751
EGM
3575#ifdef CONFIG_KMEMTRACE
3576void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
3577{
3578 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3579}
3580EXPORT_SYMBOL(kmem_cache_alloc_notrace);
3581#endif
3582
1da177e4 3583/**
7682486b 3584 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
1da177e4
LT
3585 * @cachep: the cache we're checking against
3586 * @ptr: pointer to validate
3587 *
7682486b 3588 * This verifies that the untrusted pointer looks sane;
1da177e4
LT
3589 * it is _not_ a guarantee that the pointer is actually
3590 * part of the slab cache in question, but it at least
3591 * validates that the pointer can be dereferenced and
3592 * looks half-way sane.
3593 *
3594 * Currently only used for dentry validation.
3595 */
b7f869a2 3596int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
1da177e4 3597{
b28a02de 3598 unsigned long addr = (unsigned long)ptr;
1da177e4 3599 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3600 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3601 unsigned long size = cachep->buffer_size;
1da177e4
LT
3602 struct page *page;
3603
3604 if (unlikely(addr < min_addr))
3605 goto out;
3606 if (unlikely(addr > (unsigned long)high_memory - size))
3607 goto out;
3608 if (unlikely(addr & align_mask))
3609 goto out;
3610 if (unlikely(!kern_addr_valid(addr)))
3611 goto out;
3612 if (unlikely(!kern_addr_valid(addr + size - 1)))
3613 goto out;
3614 page = virt_to_page(ptr);
3615 if (unlikely(!PageSlab(page)))
3616 goto out;
065d41cb 3617 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3618 goto out;
3619 return 1;
a737b3e2 3620out:
1da177e4
LT
3621 return 0;
3622}
3623
3624#ifdef CONFIG_NUMA
8b98c169
CH
3625void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3626{
36555751
EGM
3627 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3628 __builtin_return_address(0));
3629
ca2b84cb
EGM
3630 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3631 obj_size(cachep), cachep->buffer_size,
3632 flags, nodeid);
36555751
EGM
3633
3634 return ret;
8b98c169 3635}
1da177e4
LT
3636EXPORT_SYMBOL(kmem_cache_alloc_node);
3637
36555751
EGM
3638#ifdef CONFIG_KMEMTRACE
3639void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
3640 gfp_t flags,
3641 int nodeid)
3642{
3643 return __cache_alloc_node(cachep, flags, nodeid,
3644 __builtin_return_address(0));
3645}
3646EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
3647#endif
3648
8b98c169
CH
3649static __always_inline void *
3650__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3651{
343e0d7a 3652 struct kmem_cache *cachep;
36555751 3653 void *ret;
97e2bde4
MS
3654
3655 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3656 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3657 return cachep;
36555751
EGM
3658 ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
3659
ca2b84cb
EGM
3660 trace_kmalloc_node((unsigned long) caller, ret,
3661 size, cachep->buffer_size, flags, node);
36555751
EGM
3662
3663 return ret;
97e2bde4 3664}
8b98c169 3665
36555751 3666#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
8b98c169
CH
3667void *__kmalloc_node(size_t size, gfp_t flags, int node)
3668{
3669 return __do_kmalloc_node(size, flags, node,
3670 __builtin_return_address(0));
3671}
dbe5e69d 3672EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3673
3674void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
35995a4d 3675 int node, unsigned long caller)
8b98c169 3676{
35995a4d 3677 return __do_kmalloc_node(size, flags, node, (void *)caller);
8b98c169
CH
3678}
3679EXPORT_SYMBOL(__kmalloc_node_track_caller);
3680#else
3681void *__kmalloc_node(size_t size, gfp_t flags, int node)
3682{
3683 return __do_kmalloc_node(size, flags, node, NULL);
3684}
3685EXPORT_SYMBOL(__kmalloc_node);
3686#endif /* CONFIG_DEBUG_SLAB */
3687#endif /* CONFIG_NUMA */
1da177e4
LT
3688
3689/**
800590f5 3690 * __do_kmalloc - allocate memory
1da177e4 3691 * @size: how many bytes of memory are required.
800590f5 3692 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3693 * @caller: function caller for debug tracking of the caller
1da177e4 3694 */
7fd6b141
PE
3695static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3696 void *caller)
1da177e4 3697{
343e0d7a 3698 struct kmem_cache *cachep;
36555751 3699 void *ret;
1da177e4 3700
97e2bde4
MS
3701 /* If you want to save a few bytes .text space: replace
3702 * __ with kmem_.
3703 * Then kmalloc uses the uninlined functions instead of the inline
3704 * functions.
3705 */
3706 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3707 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3708 return cachep;
36555751
EGM
3709 ret = __cache_alloc(cachep, flags, caller);
3710
ca2b84cb
EGM
3711 trace_kmalloc((unsigned long) caller, ret,
3712 size, cachep->buffer_size, flags);
36555751
EGM
3713
3714 return ret;
7fd6b141
PE
3715}
3716
7fd6b141 3717
36555751 3718#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
7fd6b141
PE
3719void *__kmalloc(size_t size, gfp_t flags)
3720{
871751e2 3721 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3722}
3723EXPORT_SYMBOL(__kmalloc);
3724
35995a4d 3725void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3726{
35995a4d 3727 return __do_kmalloc(size, flags, (void *)caller);
7fd6b141
PE
3728}
3729EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3730
3731#else
3732void *__kmalloc(size_t size, gfp_t flags)
3733{
3734 return __do_kmalloc(size, flags, NULL);
3735}
3736EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3737#endif
3738
1da177e4
LT
3739/**
3740 * kmem_cache_free - Deallocate an object
3741 * @cachep: The cache the allocation was from.
3742 * @objp: The previously allocated object.
3743 *
3744 * Free an object which was previously allocated from this
3745 * cache.
3746 */
343e0d7a 3747void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3748{
3749 unsigned long flags;
3750
3751 local_irq_save(flags);
898552c9 3752 debug_check_no_locks_freed(objp, obj_size(cachep));
3ac7fe5a
TG
3753 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3754 debug_check_no_obj_freed(objp, obj_size(cachep));
873623df 3755 __cache_free(cachep, objp);
1da177e4 3756 local_irq_restore(flags);
36555751 3757
ca2b84cb 3758 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3759}
3760EXPORT_SYMBOL(kmem_cache_free);
3761
1da177e4
LT
3762/**
3763 * kfree - free previously allocated memory
3764 * @objp: pointer returned by kmalloc.
3765 *
80e93eff
PE
3766 * If @objp is NULL, no operation is performed.
3767 *
1da177e4
LT
3768 * Don't free memory not originally allocated by kmalloc()
3769 * or you will run into trouble.
3770 */
3771void kfree(const void *objp)
3772{
343e0d7a 3773 struct kmem_cache *c;
1da177e4
LT
3774 unsigned long flags;
3775
6cb8f913 3776 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3777 return;
3778 local_irq_save(flags);
3779 kfree_debugcheck(objp);
6ed5eb22 3780 c = virt_to_cache(objp);
f9b8404c 3781 debug_check_no_locks_freed(objp, obj_size(c));
3ac7fe5a 3782 debug_check_no_obj_freed(objp, obj_size(c));
873623df 3783 __cache_free(c, (void *)objp);
1da177e4 3784 local_irq_restore(flags);
36555751 3785
ca2b84cb 3786 trace_kfree(_RET_IP_, objp);
1da177e4
LT
3787}
3788EXPORT_SYMBOL(kfree);
3789
343e0d7a 3790unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3791{
3dafccf2 3792 return obj_size(cachep);
1da177e4
LT
3793}
3794EXPORT_SYMBOL(kmem_cache_size);
3795
343e0d7a 3796const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3797{
3798 return cachep->name;
3799}
3800EXPORT_SYMBOL_GPL(kmem_cache_name);
3801
e498be7d 3802/*
183ff22b 3803 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 3804 */
343e0d7a 3805static int alloc_kmemlist(struct kmem_cache *cachep)
e498be7d
CL
3806{
3807 int node;
3808 struct kmem_list3 *l3;
cafeb02e 3809 struct array_cache *new_shared;
3395ee05 3810 struct array_cache **new_alien = NULL;
e498be7d 3811
9c09a95c 3812 for_each_online_node(node) {
cafeb02e 3813
3395ee05
PM
3814 if (use_alien_caches) {
3815 new_alien = alloc_alien_cache(node, cachep->limit);
3816 if (!new_alien)
3817 goto fail;
3818 }
cafeb02e 3819
63109846
ED
3820 new_shared = NULL;
3821 if (cachep->shared) {
3822 new_shared = alloc_arraycache(node,
0718dc2a 3823 cachep->shared*cachep->batchcount,
a737b3e2 3824 0xbaadf00d);
63109846
ED
3825 if (!new_shared) {
3826 free_alien_cache(new_alien);
3827 goto fail;
3828 }
0718dc2a 3829 }
cafeb02e 3830
a737b3e2
AM
3831 l3 = cachep->nodelists[node];
3832 if (l3) {
cafeb02e
CL
3833 struct array_cache *shared = l3->shared;
3834
e498be7d
CL
3835 spin_lock_irq(&l3->list_lock);
3836
cafeb02e 3837 if (shared)
0718dc2a
CL
3838 free_block(cachep, shared->entry,
3839 shared->avail, node);
e498be7d 3840
cafeb02e
CL
3841 l3->shared = new_shared;
3842 if (!l3->alien) {
e498be7d
CL
3843 l3->alien = new_alien;
3844 new_alien = NULL;
3845 }
b28a02de 3846 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3847 cachep->batchcount + cachep->num;
e498be7d 3848 spin_unlock_irq(&l3->list_lock);
cafeb02e 3849 kfree(shared);
e498be7d
CL
3850 free_alien_cache(new_alien);
3851 continue;
3852 }
a737b3e2 3853 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
0718dc2a
CL
3854 if (!l3) {
3855 free_alien_cache(new_alien);
3856 kfree(new_shared);
e498be7d 3857 goto fail;
0718dc2a 3858 }
e498be7d
CL
3859
3860 kmem_list3_init(l3);
3861 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3862 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3863 l3->shared = new_shared;
e498be7d 3864 l3->alien = new_alien;
b28a02de 3865 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3866 cachep->batchcount + cachep->num;
e498be7d
CL
3867 cachep->nodelists[node] = l3;
3868 }
cafeb02e 3869 return 0;
0718dc2a 3870
a737b3e2 3871fail:
0718dc2a
CL
3872 if (!cachep->next.next) {
3873 /* Cache is not active yet. Roll back what we did */
3874 node--;
3875 while (node >= 0) {
3876 if (cachep->nodelists[node]) {
3877 l3 = cachep->nodelists[node];
3878
3879 kfree(l3->shared);
3880 free_alien_cache(l3->alien);
3881 kfree(l3);
3882 cachep->nodelists[node] = NULL;
3883 }
3884 node--;
3885 }
3886 }
cafeb02e 3887 return -ENOMEM;
e498be7d
CL
3888}
3889
1da177e4 3890struct ccupdate_struct {
343e0d7a 3891 struct kmem_cache *cachep;
1da177e4
LT
3892 struct array_cache *new[NR_CPUS];
3893};
3894
3895static void do_ccupdate_local(void *info)
3896{
a737b3e2 3897 struct ccupdate_struct *new = info;
1da177e4
LT
3898 struct array_cache *old;
3899
3900 check_irq_off();
9a2dba4b 3901 old = cpu_cache_get(new->cachep);
e498be7d 3902
1da177e4
LT
3903 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3904 new->new[smp_processor_id()] = old;
3905}
3906
b5d8ca7c 3907/* Always called with the cache_chain_mutex held */
a737b3e2
AM
3908static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3909 int batchcount, int shared)
1da177e4 3910{
d2e7b7d0 3911 struct ccupdate_struct *new;
2ed3a4ef 3912 int i;
1da177e4 3913
d2e7b7d0
SS
3914 new = kzalloc(sizeof(*new), GFP_KERNEL);
3915 if (!new)
3916 return -ENOMEM;
3917
e498be7d 3918 for_each_online_cpu(i) {
d2e7b7d0 3919 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
a737b3e2 3920 batchcount);
d2e7b7d0 3921 if (!new->new[i]) {
b28a02de 3922 for (i--; i >= 0; i--)
d2e7b7d0
SS
3923 kfree(new->new[i]);
3924 kfree(new);
e498be7d 3925 return -ENOMEM;
1da177e4
LT
3926 }
3927 }
d2e7b7d0 3928 new->cachep = cachep;
1da177e4 3929
15c8b6c1 3930 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 3931
1da177e4 3932 check_irq_on();
1da177e4
LT
3933 cachep->batchcount = batchcount;
3934 cachep->limit = limit;
e498be7d 3935 cachep->shared = shared;
1da177e4 3936
e498be7d 3937 for_each_online_cpu(i) {
d2e7b7d0 3938 struct array_cache *ccold = new->new[i];
1da177e4
LT
3939 if (!ccold)
3940 continue;
e498be7d 3941 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3942 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3943 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3944 kfree(ccold);
3945 }
d2e7b7d0 3946 kfree(new);
2ed3a4ef 3947 return alloc_kmemlist(cachep);
1da177e4
LT
3948}
3949
b5d8ca7c 3950/* Called with cache_chain_mutex held always */
2ed3a4ef 3951static int enable_cpucache(struct kmem_cache *cachep)
1da177e4
LT
3952{
3953 int err;
3954 int limit, shared;
3955
a737b3e2
AM
3956 /*
3957 * The head array serves three purposes:
1da177e4
LT
3958 * - create a LIFO ordering, i.e. return objects that are cache-warm
3959 * - reduce the number of spinlock operations.
a737b3e2 3960 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3961 * bufctl chains: array operations are cheaper.
3962 * The numbers are guessed, we should auto-tune as described by
3963 * Bonwick.
3964 */
3dafccf2 3965 if (cachep->buffer_size > 131072)
1da177e4 3966 limit = 1;
3dafccf2 3967 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 3968 limit = 8;
3dafccf2 3969 else if (cachep->buffer_size > 1024)
1da177e4 3970 limit = 24;
3dafccf2 3971 else if (cachep->buffer_size > 256)
1da177e4
LT
3972 limit = 54;
3973 else
3974 limit = 120;
3975
a737b3e2
AM
3976 /*
3977 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3978 * allocation behaviour: Most allocs on one cpu, most free operations
3979 * on another cpu. For these cases, an efficient object passing between
3980 * cpus is necessary. This is provided by a shared array. The array
3981 * replaces Bonwick's magazine layer.
3982 * On uniprocessor, it's functionally equivalent (but less efficient)
3983 * to a larger limit. Thus disabled by default.
3984 */
3985 shared = 0;
364fbb29 3986 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3987 shared = 8;
1da177e4
LT
3988
3989#if DEBUG
a737b3e2
AM
3990 /*
3991 * With debugging enabled, large batchcount lead to excessively long
3992 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3993 */
3994 if (limit > 32)
3995 limit = 32;
3996#endif
b28a02de 3997 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
3998 if (err)
3999 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4000 cachep->name, -err);
2ed3a4ef 4001 return err;
1da177e4
LT
4002}
4003
1b55253a
CL
4004/*
4005 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4006 * necessary. Note that the l3 listlock also protects the array_cache
4007 * if drain_array() is used on the shared array.
1b55253a
CL
4008 */
4009void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4010 struct array_cache *ac, int force, int node)
1da177e4
LT
4011{
4012 int tofree;
4013
1b55253a
CL
4014 if (!ac || !ac->avail)
4015 return;
1da177e4
LT
4016 if (ac->touched && !force) {
4017 ac->touched = 0;
b18e7e65 4018 } else {
1b55253a 4019 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4020 if (ac->avail) {
4021 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4022 if (tofree > ac->avail)
4023 tofree = (ac->avail + 1) / 2;
4024 free_block(cachep, ac->entry, tofree, node);
4025 ac->avail -= tofree;
4026 memmove(ac->entry, &(ac->entry[tofree]),
4027 sizeof(void *) * ac->avail);
4028 }
1b55253a 4029 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4030 }
4031}
4032
4033/**
4034 * cache_reap - Reclaim memory from caches.
05fb6bf0 4035 * @w: work descriptor
1da177e4
LT
4036 *
4037 * Called from workqueue/eventd every few seconds.
4038 * Purpose:
4039 * - clear the per-cpu caches for this CPU.
4040 * - return freeable pages to the main free memory pool.
4041 *
a737b3e2
AM
4042 * If we cannot acquire the cache chain mutex then just give up - we'll try
4043 * again on the next iteration.
1da177e4 4044 */
7c5cae36 4045static void cache_reap(struct work_struct *w)
1da177e4 4046{
7a7c381d 4047 struct kmem_cache *searchp;
e498be7d 4048 struct kmem_list3 *l3;
aab2207c 4049 int node = numa_node_id();
7c5cae36
CL
4050 struct delayed_work *work =
4051 container_of(w, struct delayed_work, work);
1da177e4 4052
7c5cae36 4053 if (!mutex_trylock(&cache_chain_mutex))
1da177e4 4054 /* Give up. Setup the next iteration. */
7c5cae36 4055 goto out;
1da177e4 4056
7a7c381d 4057 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
4058 check_irq_on();
4059
35386e3b
CL
4060 /*
4061 * We only take the l3 lock if absolutely necessary and we
4062 * have established with reasonable certainty that
4063 * we can do some work if the lock was obtained.
4064 */
aab2207c 4065 l3 = searchp->nodelists[node];
35386e3b 4066
8fce4d8e 4067 reap_alien(searchp, l3);
1da177e4 4068
aab2207c 4069 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4070
35386e3b
CL
4071 /*
4072 * These are racy checks but it does not matter
4073 * if we skip one check or scan twice.
4074 */
e498be7d 4075 if (time_after(l3->next_reap, jiffies))
35386e3b 4076 goto next;
1da177e4 4077
e498be7d 4078 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4079
aab2207c 4080 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4081
ed11d9eb 4082 if (l3->free_touched)
e498be7d 4083 l3->free_touched = 0;
ed11d9eb
CL
4084 else {
4085 int freed;
1da177e4 4086
ed11d9eb
CL
4087 freed = drain_freelist(searchp, l3, (l3->free_limit +
4088 5 * searchp->num - 1) / (5 * searchp->num));
4089 STATS_ADD_REAPED(searchp, freed);
4090 }
35386e3b 4091next:
1da177e4
LT
4092 cond_resched();
4093 }
4094 check_irq_on();
fc0abb14 4095 mutex_unlock(&cache_chain_mutex);
8fce4d8e 4096 next_reap_node();
7c5cae36 4097out:
a737b3e2 4098 /* Set up the next iteration */
7c5cae36 4099 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4100}
4101
158a9624 4102#ifdef CONFIG_SLABINFO
1da177e4 4103
85289f98 4104static void print_slabinfo_header(struct seq_file *m)
1da177e4 4105{
85289f98
PE
4106 /*
4107 * Output format version, so at least we can change it
4108 * without _too_ many complaints.
4109 */
1da177e4 4110#if STATS
85289f98 4111 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4112#else
85289f98 4113 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4114#endif
85289f98
PE
4115 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4116 "<objperslab> <pagesperslab>");
4117 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4118 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4119#if STATS
85289f98 4120 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4121 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4122 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4123#endif
85289f98
PE
4124 seq_putc(m, '\n');
4125}
4126
4127static void *s_start(struct seq_file *m, loff_t *pos)
4128{
4129 loff_t n = *pos;
85289f98 4130
fc0abb14 4131 mutex_lock(&cache_chain_mutex);
85289f98
PE
4132 if (!n)
4133 print_slabinfo_header(m);
b92151ba
PE
4134
4135 return seq_list_start(&cache_chain, *pos);
1da177e4
LT
4136}
4137
4138static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4139{
b92151ba 4140 return seq_list_next(p, &cache_chain, pos);
1da177e4
LT
4141}
4142
4143static void s_stop(struct seq_file *m, void *p)
4144{
fc0abb14 4145 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4146}
4147
4148static int s_show(struct seq_file *m, void *p)
4149{
b92151ba 4150 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
b28a02de
PE
4151 struct slab *slabp;
4152 unsigned long active_objs;
4153 unsigned long num_objs;
4154 unsigned long active_slabs = 0;
4155 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4156 const char *name;
1da177e4 4157 char *error = NULL;
e498be7d
CL
4158 int node;
4159 struct kmem_list3 *l3;
1da177e4 4160
1da177e4
LT
4161 active_objs = 0;
4162 num_slabs = 0;
e498be7d
CL
4163 for_each_online_node(node) {
4164 l3 = cachep->nodelists[node];
4165 if (!l3)
4166 continue;
4167
ca3b9b91
RT
4168 check_irq_on();
4169 spin_lock_irq(&l3->list_lock);
e498be7d 4170
7a7c381d 4171 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4172 if (slabp->inuse != cachep->num && !error)
4173 error = "slabs_full accounting error";
4174 active_objs += cachep->num;
4175 active_slabs++;
4176 }
7a7c381d 4177 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4178 if (slabp->inuse == cachep->num && !error)
4179 error = "slabs_partial inuse accounting error";
4180 if (!slabp->inuse && !error)
4181 error = "slabs_partial/inuse accounting error";
4182 active_objs += slabp->inuse;
4183 active_slabs++;
4184 }
7a7c381d 4185 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4186 if (slabp->inuse && !error)
4187 error = "slabs_free/inuse accounting error";
4188 num_slabs++;
4189 }
4190 free_objects += l3->free_objects;
4484ebf1
RT
4191 if (l3->shared)
4192 shared_avail += l3->shared->avail;
e498be7d 4193
ca3b9b91 4194 spin_unlock_irq(&l3->list_lock);
1da177e4 4195 }
b28a02de
PE
4196 num_slabs += active_slabs;
4197 num_objs = num_slabs * cachep->num;
e498be7d 4198 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4199 error = "free_objects accounting error";
4200
b28a02de 4201 name = cachep->name;
1da177e4
LT
4202 if (error)
4203 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4204
4205 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 4206 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 4207 cachep->num, (1 << cachep->gfporder));
1da177e4 4208 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4209 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4210 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4211 active_slabs, num_slabs, shared_avail);
1da177e4 4212#if STATS
b28a02de 4213 { /* list3 stats */
1da177e4
LT
4214 unsigned long high = cachep->high_mark;
4215 unsigned long allocs = cachep->num_allocations;
4216 unsigned long grown = cachep->grown;
4217 unsigned long reaped = cachep->reaped;
4218 unsigned long errors = cachep->errors;
4219 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4220 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4221 unsigned long node_frees = cachep->node_frees;
fb7faf33 4222 unsigned long overflows = cachep->node_overflow;
1da177e4 4223
e498be7d 4224 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 4225 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 4226 reaped, errors, max_freeable, node_allocs,
fb7faf33 4227 node_frees, overflows);
1da177e4
LT
4228 }
4229 /* cpu stats */
4230 {
4231 unsigned long allochit = atomic_read(&cachep->allochit);
4232 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4233 unsigned long freehit = atomic_read(&cachep->freehit);
4234 unsigned long freemiss = atomic_read(&cachep->freemiss);
4235
4236 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4237 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4238 }
4239#endif
4240 seq_putc(m, '\n');
1da177e4
LT
4241 return 0;
4242}
4243
4244/*
4245 * slabinfo_op - iterator that generates /proc/slabinfo
4246 *
4247 * Output layout:
4248 * cache-name
4249 * num-active-objs
4250 * total-objs
4251 * object size
4252 * num-active-slabs
4253 * total-slabs
4254 * num-pages-per-slab
4255 * + further values on SMP and with statistics enabled
4256 */
4257
7b3c3a50 4258static const struct seq_operations slabinfo_op = {
b28a02de
PE
4259 .start = s_start,
4260 .next = s_next,
4261 .stop = s_stop,
4262 .show = s_show,
1da177e4
LT
4263};
4264
4265#define MAX_SLABINFO_WRITE 128
4266/**
4267 * slabinfo_write - Tuning for the slab allocator
4268 * @file: unused
4269 * @buffer: user buffer
4270 * @count: data length
4271 * @ppos: unused
4272 */
b28a02de
PE
4273ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4274 size_t count, loff_t *ppos)
1da177e4 4275{
b28a02de 4276 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4277 int limit, batchcount, shared, res;
7a7c381d 4278 struct kmem_cache *cachep;
b28a02de 4279
1da177e4
LT
4280 if (count > MAX_SLABINFO_WRITE)
4281 return -EINVAL;
4282 if (copy_from_user(&kbuf, buffer, count))
4283 return -EFAULT;
b28a02de 4284 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4285
4286 tmp = strchr(kbuf, ' ');
4287 if (!tmp)
4288 return -EINVAL;
4289 *tmp = '\0';
4290 tmp++;
4291 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4292 return -EINVAL;
4293
4294 /* Find the cache in the chain of caches. */
fc0abb14 4295 mutex_lock(&cache_chain_mutex);
1da177e4 4296 res = -EINVAL;
7a7c381d 4297 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4298 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4299 if (limit < 1 || batchcount < 1 ||
4300 batchcount > limit || shared < 0) {
e498be7d 4301 res = 0;
1da177e4 4302 } else {
e498be7d 4303 res = do_tune_cpucache(cachep, limit,
b28a02de 4304 batchcount, shared);
1da177e4
LT
4305 }
4306 break;
4307 }
4308 }
fc0abb14 4309 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4310 if (res >= 0)
4311 res = count;
4312 return res;
4313}
871751e2 4314
7b3c3a50
AD
4315static int slabinfo_open(struct inode *inode, struct file *file)
4316{
4317 return seq_open(file, &slabinfo_op);
4318}
4319
4320static const struct file_operations proc_slabinfo_operations = {
4321 .open = slabinfo_open,
4322 .read = seq_read,
4323 .write = slabinfo_write,
4324 .llseek = seq_lseek,
4325 .release = seq_release,
4326};
4327
871751e2
AV
4328#ifdef CONFIG_DEBUG_SLAB_LEAK
4329
4330static void *leaks_start(struct seq_file *m, loff_t *pos)
4331{
871751e2 4332 mutex_lock(&cache_chain_mutex);
b92151ba 4333 return seq_list_start(&cache_chain, *pos);
871751e2
AV
4334}
4335
4336static inline int add_caller(unsigned long *n, unsigned long v)
4337{
4338 unsigned long *p;
4339 int l;
4340 if (!v)
4341 return 1;
4342 l = n[1];
4343 p = n + 2;
4344 while (l) {
4345 int i = l/2;
4346 unsigned long *q = p + 2 * i;
4347 if (*q == v) {
4348 q[1]++;
4349 return 1;
4350 }
4351 if (*q > v) {
4352 l = i;
4353 } else {
4354 p = q + 2;
4355 l -= i + 1;
4356 }
4357 }
4358 if (++n[1] == n[0])
4359 return 0;
4360 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4361 p[0] = v;
4362 p[1] = 1;
4363 return 1;
4364}
4365
4366static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4367{
4368 void *p;
4369 int i;
4370 if (n[0] == n[1])
4371 return;
4372 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4373 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4374 continue;
4375 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4376 return;
4377 }
4378}
4379
4380static void show_symbol(struct seq_file *m, unsigned long address)
4381{
4382#ifdef CONFIG_KALLSYMS
871751e2 4383 unsigned long offset, size;
9281acea 4384 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4385
a5c43dae 4386 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4387 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4388 if (modname[0])
871751e2
AV
4389 seq_printf(m, " [%s]", modname);
4390 return;
4391 }
4392#endif
4393 seq_printf(m, "%p", (void *)address);
4394}
4395
4396static int leaks_show(struct seq_file *m, void *p)
4397{
b92151ba 4398 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
871751e2
AV
4399 struct slab *slabp;
4400 struct kmem_list3 *l3;
4401 const char *name;
4402 unsigned long *n = m->private;
4403 int node;
4404 int i;
4405
4406 if (!(cachep->flags & SLAB_STORE_USER))
4407 return 0;
4408 if (!(cachep->flags & SLAB_RED_ZONE))
4409 return 0;
4410
4411 /* OK, we can do it */
4412
4413 n[1] = 0;
4414
4415 for_each_online_node(node) {
4416 l3 = cachep->nodelists[node];
4417 if (!l3)
4418 continue;
4419
4420 check_irq_on();
4421 spin_lock_irq(&l3->list_lock);
4422
7a7c381d 4423 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4424 handle_slab(n, cachep, slabp);
7a7c381d 4425 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4426 handle_slab(n, cachep, slabp);
871751e2
AV
4427 spin_unlock_irq(&l3->list_lock);
4428 }
4429 name = cachep->name;
4430 if (n[0] == n[1]) {
4431 /* Increase the buffer size */
4432 mutex_unlock(&cache_chain_mutex);
4433 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4434 if (!m->private) {
4435 /* Too bad, we are really out */
4436 m->private = n;
4437 mutex_lock(&cache_chain_mutex);
4438 return -ENOMEM;
4439 }
4440 *(unsigned long *)m->private = n[0] * 2;
4441 kfree(n);
4442 mutex_lock(&cache_chain_mutex);
4443 /* Now make sure this entry will be retried */
4444 m->count = m->size;
4445 return 0;
4446 }
4447 for (i = 0; i < n[1]; i++) {
4448 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4449 show_symbol(m, n[2*i+2]);
4450 seq_putc(m, '\n');
4451 }
d2e7b7d0 4452
871751e2
AV
4453 return 0;
4454}
4455
a0ec95a8 4456static const struct seq_operations slabstats_op = {
871751e2
AV
4457 .start = leaks_start,
4458 .next = s_next,
4459 .stop = s_stop,
4460 .show = leaks_show,
4461};
a0ec95a8
AD
4462
4463static int slabstats_open(struct inode *inode, struct file *file)
4464{
4465 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4466 int ret = -ENOMEM;
4467 if (n) {
4468 ret = seq_open(file, &slabstats_op);
4469 if (!ret) {
4470 struct seq_file *m = file->private_data;
4471 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4472 m->private = n;
4473 n = NULL;
4474 }
4475 kfree(n);
4476 }
4477 return ret;
4478}
4479
4480static const struct file_operations proc_slabstats_operations = {
4481 .open = slabstats_open,
4482 .read = seq_read,
4483 .llseek = seq_lseek,
4484 .release = seq_release_private,
4485};
4486#endif
4487
4488static int __init slab_proc_init(void)
4489{
7b3c3a50 4490 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
a0ec95a8
AD
4491#ifdef CONFIG_DEBUG_SLAB_LEAK
4492 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4493#endif
a0ec95a8
AD
4494 return 0;
4495}
4496module_init(slab_proc_init);
1da177e4
LT
4497#endif
4498
00e145b6
MS
4499/**
4500 * ksize - get the actual amount of memory allocated for a given object
4501 * @objp: Pointer to the object
4502 *
4503 * kmalloc may internally round up allocations and return more memory
4504 * than requested. ksize() can be used to determine the actual amount of
4505 * memory allocated. The caller may use this additional memory, even though
4506 * a smaller amount of memory was initially specified with the kmalloc call.
4507 * The caller must guarantee that objp points to a valid object previously
4508 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4509 * must not be freed during the duration of the call.
4510 */
fd76bab2 4511size_t ksize(const void *objp)
1da177e4 4512{
ef8b4520
CL
4513 BUG_ON(!objp);
4514 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4515 return 0;
1da177e4 4516
6ed5eb22 4517 return obj_size(virt_to_cache(objp));
1da177e4 4518}
b1aabecd 4519EXPORT_SYMBOL(ksize);