]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/slab.c
proc: move /proc/interrupts boilerplate code to fs/proc/interrupts.c
[net-next-2.6.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
1da177e4
LT
98#include <linux/seq_file.h>
99#include <linux/notifier.h>
100#include <linux/kallsyms.h>
101#include <linux/cpu.h>
102#include <linux/sysctl.h>
103#include <linux/module.h>
104#include <linux/rcupdate.h>
543537bd 105#include <linux/string.h>
138ae663 106#include <linux/uaccess.h>
e498be7d 107#include <linux/nodemask.h>
dc85da15 108#include <linux/mempolicy.h>
fc0abb14 109#include <linux/mutex.h>
8a8b6502 110#include <linux/fault-inject.h>
e7eebaf6 111#include <linux/rtmutex.h>
6a2d7a95 112#include <linux/reciprocal_div.h>
3ac7fe5a 113#include <linux/debugobjects.h>
1da177e4 114
1da177e4
LT
115#include <asm/cacheflush.h>
116#include <asm/tlbflush.h>
117#include <asm/page.h>
118
119/*
50953fe9 120 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
121 * 0 for faster, smaller code (especially in the critical paths).
122 *
123 * STATS - 1 to collect stats for /proc/slabinfo.
124 * 0 for faster, smaller code (especially in the critical paths).
125 *
126 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
127 */
128
129#ifdef CONFIG_DEBUG_SLAB
130#define DEBUG 1
131#define STATS 1
132#define FORCED_DEBUG 1
133#else
134#define DEBUG 0
135#define STATS 0
136#define FORCED_DEBUG 0
137#endif
138
1da177e4
LT
139/* Shouldn't this be in a header file somewhere? */
140#define BYTES_PER_WORD sizeof(void *)
87a927c7 141#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 142
1da177e4
LT
143#ifndef ARCH_KMALLOC_MINALIGN
144/*
145 * Enforce a minimum alignment for the kmalloc caches.
146 * Usually, the kmalloc caches are cache_line_size() aligned, except when
147 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
148 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
b46b8f19
DW
149 * alignment larger than the alignment of a 64-bit integer.
150 * ARCH_KMALLOC_MINALIGN allows that.
151 * Note that increasing this value may disable some debug features.
1da177e4 152 */
b46b8f19 153#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
1da177e4
LT
154#endif
155
156#ifndef ARCH_SLAB_MINALIGN
157/*
158 * Enforce a minimum alignment for all caches.
159 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
160 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
161 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
162 * some debug features.
163 */
164#define ARCH_SLAB_MINALIGN 0
165#endif
166
167#ifndef ARCH_KMALLOC_FLAGS
168#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
169#endif
170
171/* Legal flag mask for kmem_cache_create(). */
172#if DEBUG
50953fe9 173# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 174 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 175 SLAB_CACHE_DMA | \
5af60839 176 SLAB_STORE_USER | \
1da177e4 177 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a
TG
178 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
179 SLAB_DEBUG_OBJECTS)
1da177e4 180#else
ac2b898c 181# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 182 SLAB_CACHE_DMA | \
1da177e4 183 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a
TG
184 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
185 SLAB_DEBUG_OBJECTS)
1da177e4
LT
186#endif
187
188/*
189 * kmem_bufctl_t:
190 *
191 * Bufctl's are used for linking objs within a slab
192 * linked offsets.
193 *
194 * This implementation relies on "struct page" for locating the cache &
195 * slab an object belongs to.
196 * This allows the bufctl structure to be small (one int), but limits
197 * the number of objects a slab (not a cache) can contain when off-slab
198 * bufctls are used. The limit is the size of the largest general cache
199 * that does not use off-slab slabs.
200 * For 32bit archs with 4 kB pages, is this 56.
201 * This is not serious, as it is only for large objects, when it is unwise
202 * to have too many per slab.
203 * Note: This limit can be raised by introducing a general cache whose size
204 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
205 */
206
fa5b08d5 207typedef unsigned int kmem_bufctl_t;
1da177e4
LT
208#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
209#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
210#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
211#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 212
1da177e4
LT
213/*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220struct slab {
b28a02de
PE
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
1da177e4
LT
227};
228
229/*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245struct slab_rcu {
b28a02de 246 struct rcu_head head;
343e0d7a 247 struct kmem_cache *cachep;
b28a02de 248 void *addr;
1da177e4
LT
249};
250
251/*
252 * struct array_cache
253 *
1da177e4
LT
254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
e498be7d 268 spinlock_t lock;
bda5b655 269 void *entry[]; /*
a737b3e2
AM
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
a737b3e2 273 */
1da177e4
LT
274};
275
a737b3e2
AM
276/*
277 * bootstrap: The caches do not work without cpuarrays anymore, but the
278 * cpuarrays are allocated from the generic caches...
1da177e4
LT
279 */
280#define BOOT_CPUCACHE_ENTRIES 1
281struct arraycache_init {
282 struct array_cache cache;
b28a02de 283 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
284};
285
286/*
e498be7d 287 * The slab lists for all objects.
1da177e4
LT
288 */
289struct kmem_list3 {
b28a02de
PE
290 struct list_head slabs_partial; /* partial list first, better asm code */
291 struct list_head slabs_full;
292 struct list_head slabs_free;
293 unsigned long free_objects;
b28a02de 294 unsigned int free_limit;
2e1217cf 295 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
296 spinlock_t list_lock;
297 struct array_cache *shared; /* shared per node */
298 struct array_cache **alien; /* on other nodes */
35386e3b
CL
299 unsigned long next_reap; /* updated without locking */
300 int free_touched; /* updated without locking */
1da177e4
LT
301};
302
e498be7d
CL
303/*
304 * Need this for bootstrapping a per node allocator.
305 */
556a169d 306#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
e498be7d
CL
307struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
308#define CACHE_CACHE 0
556a169d
PE
309#define SIZE_AC MAX_NUMNODES
310#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 311
ed11d9eb
CL
312static int drain_freelist(struct kmem_cache *cache,
313 struct kmem_list3 *l3, int tofree);
314static void free_block(struct kmem_cache *cachep, void **objpp, int len,
315 int node);
2ed3a4ef 316static int enable_cpucache(struct kmem_cache *cachep);
65f27f38 317static void cache_reap(struct work_struct *unused);
ed11d9eb 318
e498be7d 319/*
a737b3e2
AM
320 * This function must be completely optimized away if a constant is passed to
321 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 322 */
7243cc05 323static __always_inline int index_of(const size_t size)
e498be7d 324{
5ec8a847
SR
325 extern void __bad_size(void);
326
e498be7d
CL
327 if (__builtin_constant_p(size)) {
328 int i = 0;
329
330#define CACHE(x) \
331 if (size <=x) \
332 return i; \
333 else \
334 i++;
1c61fc40 335#include <linux/kmalloc_sizes.h>
e498be7d 336#undef CACHE
5ec8a847 337 __bad_size();
7243cc05 338 } else
5ec8a847 339 __bad_size();
e498be7d
CL
340 return 0;
341}
342
e0a42726
IM
343static int slab_early_init = 1;
344
e498be7d
CL
345#define INDEX_AC index_of(sizeof(struct arraycache_init))
346#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 347
5295a74c 348static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
349{
350 INIT_LIST_HEAD(&parent->slabs_full);
351 INIT_LIST_HEAD(&parent->slabs_partial);
352 INIT_LIST_HEAD(&parent->slabs_free);
353 parent->shared = NULL;
354 parent->alien = NULL;
2e1217cf 355 parent->colour_next = 0;
e498be7d
CL
356 spin_lock_init(&parent->list_lock);
357 parent->free_objects = 0;
358 parent->free_touched = 0;
359}
360
a737b3e2
AM
361#define MAKE_LIST(cachep, listp, slab, nodeid) \
362 do { \
363 INIT_LIST_HEAD(listp); \
364 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
365 } while (0)
366
a737b3e2
AM
367#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
368 do { \
e498be7d
CL
369 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
370 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
372 } while (0)
1da177e4
LT
373
374/*
343e0d7a 375 * struct kmem_cache
1da177e4
LT
376 *
377 * manages a cache.
378 */
b28a02de 379
2109a2d1 380struct kmem_cache {
1da177e4 381/* 1) per-cpu data, touched during every alloc/free */
b28a02de 382 struct array_cache *array[NR_CPUS];
b5d8ca7c 383/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
384 unsigned int batchcount;
385 unsigned int limit;
386 unsigned int shared;
b5d8ca7c 387
3dafccf2 388 unsigned int buffer_size;
6a2d7a95 389 u32 reciprocal_buffer_size;
b5d8ca7c 390/* 3) touched by every alloc & free from the backend */
b5d8ca7c 391
a737b3e2
AM
392 unsigned int flags; /* constant flags */
393 unsigned int num; /* # of objs per slab */
1da177e4 394
b5d8ca7c 395/* 4) cache_grow/shrink */
1da177e4 396 /* order of pgs per slab (2^n) */
b28a02de 397 unsigned int gfporder;
1da177e4
LT
398
399 /* force GFP flags, e.g. GFP_DMA */
b28a02de 400 gfp_t gfpflags;
1da177e4 401
a737b3e2 402 size_t colour; /* cache colouring range */
b28a02de 403 unsigned int colour_off; /* colour offset */
343e0d7a 404 struct kmem_cache *slabp_cache;
b28a02de 405 unsigned int slab_size;
a737b3e2 406 unsigned int dflags; /* dynamic flags */
1da177e4
LT
407
408 /* constructor func */
51cc5068 409 void (*ctor)(void *obj);
1da177e4 410
b5d8ca7c 411/* 5) cache creation/removal */
b28a02de
PE
412 const char *name;
413 struct list_head next;
1da177e4 414
b5d8ca7c 415/* 6) statistics */
1da177e4 416#if STATS
b28a02de
PE
417 unsigned long num_active;
418 unsigned long num_allocations;
419 unsigned long high_mark;
420 unsigned long grown;
421 unsigned long reaped;
422 unsigned long errors;
423 unsigned long max_freeable;
424 unsigned long node_allocs;
425 unsigned long node_frees;
fb7faf33 426 unsigned long node_overflow;
b28a02de
PE
427 atomic_t allochit;
428 atomic_t allocmiss;
429 atomic_t freehit;
430 atomic_t freemiss;
1da177e4
LT
431#endif
432#if DEBUG
3dafccf2
MS
433 /*
434 * If debugging is enabled, then the allocator can add additional
435 * fields and/or padding to every object. buffer_size contains the total
436 * object size including these internal fields, the following two
437 * variables contain the offset to the user object and its size.
438 */
439 int obj_offset;
440 int obj_size;
1da177e4 441#endif
8da3430d
ED
442 /*
443 * We put nodelists[] at the end of kmem_cache, because we want to size
444 * this array to nr_node_ids slots instead of MAX_NUMNODES
445 * (see kmem_cache_init())
446 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
447 * is statically defined, so we reserve the max number of nodes.
448 */
449 struct kmem_list3 *nodelists[MAX_NUMNODES];
450 /*
451 * Do not add fields after nodelists[]
452 */
1da177e4
LT
453};
454
455#define CFLGS_OFF_SLAB (0x80000000UL)
456#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
457
458#define BATCHREFILL_LIMIT 16
a737b3e2
AM
459/*
460 * Optimization question: fewer reaps means less probability for unnessary
461 * cpucache drain/refill cycles.
1da177e4 462 *
dc6f3f27 463 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
464 * which could lock up otherwise freeable slabs.
465 */
466#define REAPTIMEOUT_CPUC (2*HZ)
467#define REAPTIMEOUT_LIST3 (4*HZ)
468
469#if STATS
470#define STATS_INC_ACTIVE(x) ((x)->num_active++)
471#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
472#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
473#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 474#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
475#define STATS_SET_HIGH(x) \
476 do { \
477 if ((x)->num_active > (x)->high_mark) \
478 (x)->high_mark = (x)->num_active; \
479 } while (0)
1da177e4
LT
480#define STATS_INC_ERR(x) ((x)->errors++)
481#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 482#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 483#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
484#define STATS_SET_FREEABLE(x, i) \
485 do { \
486 if ((x)->max_freeable < i) \
487 (x)->max_freeable = i; \
488 } while (0)
1da177e4
LT
489#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
490#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
491#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
492#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
493#else
494#define STATS_INC_ACTIVE(x) do { } while (0)
495#define STATS_DEC_ACTIVE(x) do { } while (0)
496#define STATS_INC_ALLOCED(x) do { } while (0)
497#define STATS_INC_GROWN(x) do { } while (0)
ed11d9eb 498#define STATS_ADD_REAPED(x,y) do { } while (0)
1da177e4
LT
499#define STATS_SET_HIGH(x) do { } while (0)
500#define STATS_INC_ERR(x) do { } while (0)
501#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 502#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 503#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 504#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
505#define STATS_INC_ALLOCHIT(x) do { } while (0)
506#define STATS_INC_ALLOCMISS(x) do { } while (0)
507#define STATS_INC_FREEHIT(x) do { } while (0)
508#define STATS_INC_FREEMISS(x) do { } while (0)
509#endif
510
511#if DEBUG
1da177e4 512
a737b3e2
AM
513/*
514 * memory layout of objects:
1da177e4 515 * 0 : objp
3dafccf2 516 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
517 * the end of an object is aligned with the end of the real
518 * allocation. Catches writes behind the end of the allocation.
3dafccf2 519 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 520 * redzone word.
3dafccf2
MS
521 * cachep->obj_offset: The real object.
522 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
523 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
524 * [BYTES_PER_WORD long]
1da177e4 525 */
343e0d7a 526static int obj_offset(struct kmem_cache *cachep)
1da177e4 527{
3dafccf2 528 return cachep->obj_offset;
1da177e4
LT
529}
530
343e0d7a 531static int obj_size(struct kmem_cache *cachep)
1da177e4 532{
3dafccf2 533 return cachep->obj_size;
1da177e4
LT
534}
535
b46b8f19 536static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
537{
538 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
539 return (unsigned long long*) (objp + obj_offset(cachep) -
540 sizeof(unsigned long long));
1da177e4
LT
541}
542
b46b8f19 543static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
544{
545 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
546 if (cachep->flags & SLAB_STORE_USER)
b46b8f19
DW
547 return (unsigned long long *)(objp + cachep->buffer_size -
548 sizeof(unsigned long long) -
87a927c7 549 REDZONE_ALIGN);
b46b8f19
DW
550 return (unsigned long long *) (objp + cachep->buffer_size -
551 sizeof(unsigned long long));
1da177e4
LT
552}
553
343e0d7a 554static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
555{
556 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 557 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
558}
559
560#else
561
3dafccf2
MS
562#define obj_offset(x) 0
563#define obj_size(cachep) (cachep->buffer_size)
b46b8f19
DW
564#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
565#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
566#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
567
568#endif
569
1da177e4
LT
570/*
571 * Do not go above this order unless 0 objects fit into the slab.
572 */
573#define BREAK_GFP_ORDER_HI 1
574#define BREAK_GFP_ORDER_LO 0
575static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
576
a737b3e2
AM
577/*
578 * Functions for storing/retrieving the cachep and or slab from the page
579 * allocator. These are used to find the slab an obj belongs to. With kfree(),
580 * these are used to find the cache which an obj belongs to.
1da177e4 581 */
065d41cb
PE
582static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
583{
584 page->lru.next = (struct list_head *)cache;
585}
586
587static inline struct kmem_cache *page_get_cache(struct page *page)
588{
d85f3385 589 page = compound_head(page);
ddc2e812 590 BUG_ON(!PageSlab(page));
065d41cb
PE
591 return (struct kmem_cache *)page->lru.next;
592}
593
594static inline void page_set_slab(struct page *page, struct slab *slab)
595{
596 page->lru.prev = (struct list_head *)slab;
597}
598
599static inline struct slab *page_get_slab(struct page *page)
600{
ddc2e812 601 BUG_ON(!PageSlab(page));
065d41cb
PE
602 return (struct slab *)page->lru.prev;
603}
1da177e4 604
6ed5eb22
PE
605static inline struct kmem_cache *virt_to_cache(const void *obj)
606{
b49af68f 607 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
608 return page_get_cache(page);
609}
610
611static inline struct slab *virt_to_slab(const void *obj)
612{
b49af68f 613 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
614 return page_get_slab(page);
615}
616
8fea4e96
PE
617static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
618 unsigned int idx)
619{
620 return slab->s_mem + cache->buffer_size * idx;
621}
622
6a2d7a95
ED
623/*
624 * We want to avoid an expensive divide : (offset / cache->buffer_size)
625 * Using the fact that buffer_size is a constant for a particular cache,
626 * we can replace (offset / cache->buffer_size) by
627 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
628 */
629static inline unsigned int obj_to_index(const struct kmem_cache *cache,
630 const struct slab *slab, void *obj)
8fea4e96 631{
6a2d7a95
ED
632 u32 offset = (obj - slab->s_mem);
633 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
634}
635
a737b3e2
AM
636/*
637 * These are the default caches for kmalloc. Custom caches can have other sizes.
638 */
1da177e4
LT
639struct cache_sizes malloc_sizes[] = {
640#define CACHE(x) { .cs_size = (x) },
641#include <linux/kmalloc_sizes.h>
642 CACHE(ULONG_MAX)
643#undef CACHE
644};
645EXPORT_SYMBOL(malloc_sizes);
646
647/* Must match cache_sizes above. Out of line to keep cache footprint low. */
648struct cache_names {
649 char *name;
650 char *name_dma;
651};
652
653static struct cache_names __initdata cache_names[] = {
654#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
655#include <linux/kmalloc_sizes.h>
b28a02de 656 {NULL,}
1da177e4
LT
657#undef CACHE
658};
659
660static struct arraycache_init initarray_cache __initdata =
b28a02de 661 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 662static struct arraycache_init initarray_generic =
b28a02de 663 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
664
665/* internal cache of cache description objs */
343e0d7a 666static struct kmem_cache cache_cache = {
b28a02de
PE
667 .batchcount = 1,
668 .limit = BOOT_CPUCACHE_ENTRIES,
669 .shared = 1,
343e0d7a 670 .buffer_size = sizeof(struct kmem_cache),
b28a02de 671 .name = "kmem_cache",
1da177e4
LT
672};
673
056c6241
RT
674#define BAD_ALIEN_MAGIC 0x01020304ul
675
f1aaee53
AV
676#ifdef CONFIG_LOCKDEP
677
678/*
679 * Slab sometimes uses the kmalloc slabs to store the slab headers
680 * for other slabs "off slab".
681 * The locking for this is tricky in that it nests within the locks
682 * of all other slabs in a few places; to deal with this special
683 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
684 *
685 * We set lock class for alien array caches which are up during init.
686 * The lock annotation will be lost if all cpus of a node goes down and
687 * then comes back up during hotplug
f1aaee53 688 */
056c6241
RT
689static struct lock_class_key on_slab_l3_key;
690static struct lock_class_key on_slab_alc_key;
691
692static inline void init_lock_keys(void)
f1aaee53 693
f1aaee53
AV
694{
695 int q;
056c6241
RT
696 struct cache_sizes *s = malloc_sizes;
697
698 while (s->cs_size != ULONG_MAX) {
699 for_each_node(q) {
700 struct array_cache **alc;
701 int r;
702 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
703 if (!l3 || OFF_SLAB(s->cs_cachep))
704 continue;
705 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
706 alc = l3->alien;
707 /*
708 * FIXME: This check for BAD_ALIEN_MAGIC
709 * should go away when common slab code is taught to
710 * work even without alien caches.
711 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
712 * for alloc_alien_cache,
713 */
714 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
715 continue;
716 for_each_node(r) {
717 if (alc[r])
718 lockdep_set_class(&alc[r]->lock,
719 &on_slab_alc_key);
720 }
721 }
722 s++;
f1aaee53
AV
723 }
724}
f1aaee53 725#else
056c6241 726static inline void init_lock_keys(void)
f1aaee53
AV
727{
728}
729#endif
730
8f5be20b 731/*
95402b38 732 * Guard access to the cache-chain.
8f5be20b 733 */
fc0abb14 734static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
735static struct list_head cache_chain;
736
1da177e4
LT
737/*
738 * chicken and egg problem: delay the per-cpu array allocation
739 * until the general caches are up.
740 */
741static enum {
742 NONE,
e498be7d
CL
743 PARTIAL_AC,
744 PARTIAL_L3,
1da177e4
LT
745 FULL
746} g_cpucache_up;
747
39d24e64
MK
748/*
749 * used by boot code to determine if it can use slab based allocator
750 */
751int slab_is_available(void)
752{
753 return g_cpucache_up == FULL;
754}
755
52bad64d 756static DEFINE_PER_CPU(struct delayed_work, reap_work);
1da177e4 757
343e0d7a 758static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
759{
760 return cachep->array[smp_processor_id()];
761}
762
a737b3e2
AM
763static inline struct kmem_cache *__find_general_cachep(size_t size,
764 gfp_t gfpflags)
1da177e4
LT
765{
766 struct cache_sizes *csizep = malloc_sizes;
767
768#if DEBUG
769 /* This happens if someone tries to call
b28a02de
PE
770 * kmem_cache_create(), or __kmalloc(), before
771 * the generic caches are initialized.
772 */
c7e43c78 773 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 774#endif
6cb8f913
CL
775 if (!size)
776 return ZERO_SIZE_PTR;
777
1da177e4
LT
778 while (size > csizep->cs_size)
779 csizep++;
780
781 /*
0abf40c1 782 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
783 * has cs_{dma,}cachep==NULL. Thus no special case
784 * for large kmalloc calls required.
785 */
4b51d669 786#ifdef CONFIG_ZONE_DMA
1da177e4
LT
787 if (unlikely(gfpflags & GFP_DMA))
788 return csizep->cs_dmacachep;
4b51d669 789#endif
1da177e4
LT
790 return csizep->cs_cachep;
791}
792
b221385b 793static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
794{
795 return __find_general_cachep(size, gfpflags);
796}
97e2bde4 797
fbaccacf 798static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 799{
fbaccacf
SR
800 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
801}
1da177e4 802
a737b3e2
AM
803/*
804 * Calculate the number of objects and left-over bytes for a given buffer size.
805 */
fbaccacf
SR
806static void cache_estimate(unsigned long gfporder, size_t buffer_size,
807 size_t align, int flags, size_t *left_over,
808 unsigned int *num)
809{
810 int nr_objs;
811 size_t mgmt_size;
812 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 813
fbaccacf
SR
814 /*
815 * The slab management structure can be either off the slab or
816 * on it. For the latter case, the memory allocated for a
817 * slab is used for:
818 *
819 * - The struct slab
820 * - One kmem_bufctl_t for each object
821 * - Padding to respect alignment of @align
822 * - @buffer_size bytes for each object
823 *
824 * If the slab management structure is off the slab, then the
825 * alignment will already be calculated into the size. Because
826 * the slabs are all pages aligned, the objects will be at the
827 * correct alignment when allocated.
828 */
829 if (flags & CFLGS_OFF_SLAB) {
830 mgmt_size = 0;
831 nr_objs = slab_size / buffer_size;
832
833 if (nr_objs > SLAB_LIMIT)
834 nr_objs = SLAB_LIMIT;
835 } else {
836 /*
837 * Ignore padding for the initial guess. The padding
838 * is at most @align-1 bytes, and @buffer_size is at
839 * least @align. In the worst case, this result will
840 * be one greater than the number of objects that fit
841 * into the memory allocation when taking the padding
842 * into account.
843 */
844 nr_objs = (slab_size - sizeof(struct slab)) /
845 (buffer_size + sizeof(kmem_bufctl_t));
846
847 /*
848 * This calculated number will be either the right
849 * amount, or one greater than what we want.
850 */
851 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
852 > slab_size)
853 nr_objs--;
854
855 if (nr_objs > SLAB_LIMIT)
856 nr_objs = SLAB_LIMIT;
857
858 mgmt_size = slab_mgmt_size(nr_objs, align);
859 }
860 *num = nr_objs;
861 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
862}
863
d40cee24 864#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 865
a737b3e2
AM
866static void __slab_error(const char *function, struct kmem_cache *cachep,
867 char *msg)
1da177e4
LT
868{
869 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 870 function, cachep->name, msg);
1da177e4
LT
871 dump_stack();
872}
873
3395ee05
PM
874/*
875 * By default on NUMA we use alien caches to stage the freeing of
876 * objects allocated from other nodes. This causes massive memory
877 * inefficiencies when using fake NUMA setup to split memory into a
878 * large number of small nodes, so it can be disabled on the command
879 * line
880 */
881
882static int use_alien_caches __read_mostly = 1;
1807a1aa 883static int numa_platform __read_mostly = 1;
3395ee05
PM
884static int __init noaliencache_setup(char *s)
885{
886 use_alien_caches = 0;
887 return 1;
888}
889__setup("noaliencache", noaliencache_setup);
890
8fce4d8e
CL
891#ifdef CONFIG_NUMA
892/*
893 * Special reaping functions for NUMA systems called from cache_reap().
894 * These take care of doing round robin flushing of alien caches (containing
895 * objects freed on different nodes from which they were allocated) and the
896 * flushing of remote pcps by calling drain_node_pages.
897 */
898static DEFINE_PER_CPU(unsigned long, reap_node);
899
900static void init_reap_node(int cpu)
901{
902 int node;
903
904 node = next_node(cpu_to_node(cpu), node_online_map);
905 if (node == MAX_NUMNODES)
442295c9 906 node = first_node(node_online_map);
8fce4d8e 907
7f6b8876 908 per_cpu(reap_node, cpu) = node;
8fce4d8e
CL
909}
910
911static void next_reap_node(void)
912{
913 int node = __get_cpu_var(reap_node);
914
8fce4d8e
CL
915 node = next_node(node, node_online_map);
916 if (unlikely(node >= MAX_NUMNODES))
917 node = first_node(node_online_map);
918 __get_cpu_var(reap_node) = node;
919}
920
921#else
922#define init_reap_node(cpu) do { } while (0)
923#define next_reap_node(void) do { } while (0)
924#endif
925
1da177e4
LT
926/*
927 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
928 * via the workqueue/eventd.
929 * Add the CPU number into the expiration time to minimize the possibility of
930 * the CPUs getting into lockstep and contending for the global cache chain
931 * lock.
932 */
897e679b 933static void __cpuinit start_cpu_timer(int cpu)
1da177e4 934{
52bad64d 935 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
1da177e4
LT
936
937 /*
938 * When this gets called from do_initcalls via cpucache_init(),
939 * init_workqueues() has already run, so keventd will be setup
940 * at that time.
941 */
52bad64d 942 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 943 init_reap_node(cpu);
65f27f38 944 INIT_DELAYED_WORK(reap_work, cache_reap);
2b284214
AV
945 schedule_delayed_work_on(cpu, reap_work,
946 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
947 }
948}
949
e498be7d 950static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 951 int batchcount)
1da177e4 952{
b28a02de 953 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
954 struct array_cache *nc = NULL;
955
e498be7d 956 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
957 if (nc) {
958 nc->avail = 0;
959 nc->limit = entries;
960 nc->batchcount = batchcount;
961 nc->touched = 0;
e498be7d 962 spin_lock_init(&nc->lock);
1da177e4
LT
963 }
964 return nc;
965}
966
3ded175a
CL
967/*
968 * Transfer objects in one arraycache to another.
969 * Locking must be handled by the caller.
970 *
971 * Return the number of entries transferred.
972 */
973static int transfer_objects(struct array_cache *to,
974 struct array_cache *from, unsigned int max)
975{
976 /* Figure out how many entries to transfer */
977 int nr = min(min(from->avail, max), to->limit - to->avail);
978
979 if (!nr)
980 return 0;
981
982 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
983 sizeof(void *) *nr);
984
985 from->avail -= nr;
986 to->avail += nr;
987 to->touched = 1;
988 return nr;
989}
990
765c4507
CL
991#ifndef CONFIG_NUMA
992
993#define drain_alien_cache(cachep, alien) do { } while (0)
994#define reap_alien(cachep, l3) do { } while (0)
995
996static inline struct array_cache **alloc_alien_cache(int node, int limit)
997{
998 return (struct array_cache **)BAD_ALIEN_MAGIC;
999}
1000
1001static inline void free_alien_cache(struct array_cache **ac_ptr)
1002{
1003}
1004
1005static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1006{
1007 return 0;
1008}
1009
1010static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1011 gfp_t flags)
1012{
1013 return NULL;
1014}
1015
8b98c169 1016static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1017 gfp_t flags, int nodeid)
1018{
1019 return NULL;
1020}
1021
1022#else /* CONFIG_NUMA */
1023
8b98c169 1024static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1025static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1026
5295a74c 1027static struct array_cache **alloc_alien_cache(int node, int limit)
e498be7d
CL
1028{
1029 struct array_cache **ac_ptr;
8ef82866 1030 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1031 int i;
1032
1033 if (limit > 1)
1034 limit = 12;
1035 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1036 if (ac_ptr) {
1037 for_each_node(i) {
1038 if (i == node || !node_online(i)) {
1039 ac_ptr[i] = NULL;
1040 continue;
1041 }
1042 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1043 if (!ac_ptr[i]) {
cc550def 1044 for (i--; i >= 0; i--)
e498be7d
CL
1045 kfree(ac_ptr[i]);
1046 kfree(ac_ptr);
1047 return NULL;
1048 }
1049 }
1050 }
1051 return ac_ptr;
1052}
1053
5295a74c 1054static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1055{
1056 int i;
1057
1058 if (!ac_ptr)
1059 return;
e498be7d 1060 for_each_node(i)
b28a02de 1061 kfree(ac_ptr[i]);
e498be7d
CL
1062 kfree(ac_ptr);
1063}
1064
343e0d7a 1065static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1066 struct array_cache *ac, int node)
e498be7d
CL
1067{
1068 struct kmem_list3 *rl3 = cachep->nodelists[node];
1069
1070 if (ac->avail) {
1071 spin_lock(&rl3->list_lock);
e00946fe
CL
1072 /*
1073 * Stuff objects into the remote nodes shared array first.
1074 * That way we could avoid the overhead of putting the objects
1075 * into the free lists and getting them back later.
1076 */
693f7d36
JS
1077 if (rl3->shared)
1078 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1079
ff69416e 1080 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1081 ac->avail = 0;
1082 spin_unlock(&rl3->list_lock);
1083 }
1084}
1085
8fce4d8e
CL
1086/*
1087 * Called from cache_reap() to regularly drain alien caches round robin.
1088 */
1089static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1090{
1091 int node = __get_cpu_var(reap_node);
1092
1093 if (l3->alien) {
1094 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1095
1096 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1097 __drain_alien_cache(cachep, ac, node);
1098 spin_unlock_irq(&ac->lock);
1099 }
1100 }
1101}
1102
a737b3e2
AM
1103static void drain_alien_cache(struct kmem_cache *cachep,
1104 struct array_cache **alien)
e498be7d 1105{
b28a02de 1106 int i = 0;
e498be7d
CL
1107 struct array_cache *ac;
1108 unsigned long flags;
1109
1110 for_each_online_node(i) {
4484ebf1 1111 ac = alien[i];
e498be7d
CL
1112 if (ac) {
1113 spin_lock_irqsave(&ac->lock, flags);
1114 __drain_alien_cache(cachep, ac, i);
1115 spin_unlock_irqrestore(&ac->lock, flags);
1116 }
1117 }
1118}
729bd0b7 1119
873623df 1120static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1121{
1122 struct slab *slabp = virt_to_slab(objp);
1123 int nodeid = slabp->nodeid;
1124 struct kmem_list3 *l3;
1125 struct array_cache *alien = NULL;
1ca4cb24
PE
1126 int node;
1127
1128 node = numa_node_id();
729bd0b7
PE
1129
1130 /*
1131 * Make sure we are not freeing a object from another node to the array
1132 * cache on this cpu.
1133 */
62918a03 1134 if (likely(slabp->nodeid == node))
729bd0b7
PE
1135 return 0;
1136
1ca4cb24 1137 l3 = cachep->nodelists[node];
729bd0b7
PE
1138 STATS_INC_NODEFREES(cachep);
1139 if (l3->alien && l3->alien[nodeid]) {
1140 alien = l3->alien[nodeid];
873623df 1141 spin_lock(&alien->lock);
729bd0b7
PE
1142 if (unlikely(alien->avail == alien->limit)) {
1143 STATS_INC_ACOVERFLOW(cachep);
1144 __drain_alien_cache(cachep, alien, nodeid);
1145 }
1146 alien->entry[alien->avail++] = objp;
1147 spin_unlock(&alien->lock);
1148 } else {
1149 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1150 free_block(cachep, &objp, 1, nodeid);
1151 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1152 }
1153 return 1;
1154}
e498be7d
CL
1155#endif
1156
fbf1e473
AM
1157static void __cpuinit cpuup_canceled(long cpu)
1158{
1159 struct kmem_cache *cachep;
1160 struct kmem_list3 *l3 = NULL;
1161 int node = cpu_to_node(cpu);
c5f59f08 1162 node_to_cpumask_ptr(mask, node);
fbf1e473
AM
1163
1164 list_for_each_entry(cachep, &cache_chain, next) {
1165 struct array_cache *nc;
1166 struct array_cache *shared;
1167 struct array_cache **alien;
fbf1e473 1168
fbf1e473
AM
1169 /* cpu is dead; no one can alloc from it. */
1170 nc = cachep->array[cpu];
1171 cachep->array[cpu] = NULL;
1172 l3 = cachep->nodelists[node];
1173
1174 if (!l3)
1175 goto free_array_cache;
1176
1177 spin_lock_irq(&l3->list_lock);
1178
1179 /* Free limit for this kmem_list3 */
1180 l3->free_limit -= cachep->batchcount;
1181 if (nc)
1182 free_block(cachep, nc->entry, nc->avail, node);
1183
c5f59f08 1184 if (!cpus_empty(*mask)) {
fbf1e473
AM
1185 spin_unlock_irq(&l3->list_lock);
1186 goto free_array_cache;
1187 }
1188
1189 shared = l3->shared;
1190 if (shared) {
1191 free_block(cachep, shared->entry,
1192 shared->avail, node);
1193 l3->shared = NULL;
1194 }
1195
1196 alien = l3->alien;
1197 l3->alien = NULL;
1198
1199 spin_unlock_irq(&l3->list_lock);
1200
1201 kfree(shared);
1202 if (alien) {
1203 drain_alien_cache(cachep, alien);
1204 free_alien_cache(alien);
1205 }
1206free_array_cache:
1207 kfree(nc);
1208 }
1209 /*
1210 * In the previous loop, all the objects were freed to
1211 * the respective cache's slabs, now we can go ahead and
1212 * shrink each nodelist to its limit.
1213 */
1214 list_for_each_entry(cachep, &cache_chain, next) {
1215 l3 = cachep->nodelists[node];
1216 if (!l3)
1217 continue;
1218 drain_freelist(cachep, l3, l3->free_objects);
1219 }
1220}
1221
1222static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1223{
343e0d7a 1224 struct kmem_cache *cachep;
e498be7d
CL
1225 struct kmem_list3 *l3 = NULL;
1226 int node = cpu_to_node(cpu);
ea02e3dd 1227 const int memsize = sizeof(struct kmem_list3);
1da177e4 1228
fbf1e473
AM
1229 /*
1230 * We need to do this right in the beginning since
1231 * alloc_arraycache's are going to use this list.
1232 * kmalloc_node allows us to add the slab to the right
1233 * kmem_list3 and not this cpu's kmem_list3
1234 */
1235
1236 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2 1237 /*
fbf1e473
AM
1238 * Set up the size64 kmemlist for cpu before we can
1239 * begin anything. Make sure some other cpu on this
1240 * node has not already allocated this
e498be7d 1241 */
fbf1e473
AM
1242 if (!cachep->nodelists[node]) {
1243 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1244 if (!l3)
1245 goto bad;
1246 kmem_list3_init(l3);
1247 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1248 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1249
a737b3e2 1250 /*
fbf1e473
AM
1251 * The l3s don't come and go as CPUs come and
1252 * go. cache_chain_mutex is sufficient
1253 * protection here.
e498be7d 1254 */
fbf1e473 1255 cachep->nodelists[node] = l3;
e498be7d
CL
1256 }
1257
fbf1e473
AM
1258 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1259 cachep->nodelists[node]->free_limit =
1260 (1 + nr_cpus_node(node)) *
1261 cachep->batchcount + cachep->num;
1262 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1263 }
1264
1265 /*
1266 * Now we can go ahead with allocating the shared arrays and
1267 * array caches
1268 */
1269 list_for_each_entry(cachep, &cache_chain, next) {
1270 struct array_cache *nc;
1271 struct array_cache *shared = NULL;
1272 struct array_cache **alien = NULL;
1273
1274 nc = alloc_arraycache(node, cachep->limit,
1275 cachep->batchcount);
1276 if (!nc)
1277 goto bad;
1278 if (cachep->shared) {
1279 shared = alloc_arraycache(node,
1280 cachep->shared * cachep->batchcount,
1281 0xbaadf00d);
12d00f6a
AM
1282 if (!shared) {
1283 kfree(nc);
1da177e4 1284 goto bad;
12d00f6a 1285 }
fbf1e473
AM
1286 }
1287 if (use_alien_caches) {
1288 alien = alloc_alien_cache(node, cachep->limit);
12d00f6a
AM
1289 if (!alien) {
1290 kfree(shared);
1291 kfree(nc);
fbf1e473 1292 goto bad;
12d00f6a 1293 }
fbf1e473
AM
1294 }
1295 cachep->array[cpu] = nc;
1296 l3 = cachep->nodelists[node];
1297 BUG_ON(!l3);
1298
1299 spin_lock_irq(&l3->list_lock);
1300 if (!l3->shared) {
1301 /*
1302 * We are serialised from CPU_DEAD or
1303 * CPU_UP_CANCELLED by the cpucontrol lock
1304 */
1305 l3->shared = shared;
1306 shared = NULL;
1307 }
4484ebf1 1308#ifdef CONFIG_NUMA
fbf1e473
AM
1309 if (!l3->alien) {
1310 l3->alien = alien;
1311 alien = NULL;
1da177e4 1312 }
fbf1e473
AM
1313#endif
1314 spin_unlock_irq(&l3->list_lock);
1315 kfree(shared);
1316 free_alien_cache(alien);
1317 }
1318 return 0;
1319bad:
12d00f6a 1320 cpuup_canceled(cpu);
fbf1e473
AM
1321 return -ENOMEM;
1322}
1323
1324static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1325 unsigned long action, void *hcpu)
1326{
1327 long cpu = (long)hcpu;
1328 int err = 0;
1329
1330 switch (action) {
fbf1e473
AM
1331 case CPU_UP_PREPARE:
1332 case CPU_UP_PREPARE_FROZEN:
95402b38 1333 mutex_lock(&cache_chain_mutex);
fbf1e473 1334 err = cpuup_prepare(cpu);
95402b38 1335 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1336 break;
1337 case CPU_ONLINE:
8bb78442 1338 case CPU_ONLINE_FROZEN:
1da177e4
LT
1339 start_cpu_timer(cpu);
1340 break;
1341#ifdef CONFIG_HOTPLUG_CPU
5830c590 1342 case CPU_DOWN_PREPARE:
8bb78442 1343 case CPU_DOWN_PREPARE_FROZEN:
5830c590
CL
1344 /*
1345 * Shutdown cache reaper. Note that the cache_chain_mutex is
1346 * held so that if cache_reap() is invoked it cannot do
1347 * anything expensive but will only modify reap_work
1348 * and reschedule the timer.
1349 */
1350 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1351 /* Now the cache_reaper is guaranteed to be not running. */
1352 per_cpu(reap_work, cpu).work.func = NULL;
1353 break;
1354 case CPU_DOWN_FAILED:
8bb78442 1355 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1356 start_cpu_timer(cpu);
1357 break;
1da177e4 1358 case CPU_DEAD:
8bb78442 1359 case CPU_DEAD_FROZEN:
4484ebf1
RT
1360 /*
1361 * Even if all the cpus of a node are down, we don't free the
1362 * kmem_list3 of any cache. This to avoid a race between
1363 * cpu_down, and a kmalloc allocation from another cpu for
1364 * memory from the node of the cpu going down. The list3
1365 * structure is usually allocated from kmem_cache_create() and
1366 * gets destroyed at kmem_cache_destroy().
1367 */
183ff22b 1368 /* fall through */
8f5be20b 1369#endif
1da177e4 1370 case CPU_UP_CANCELED:
8bb78442 1371 case CPU_UP_CANCELED_FROZEN:
95402b38 1372 mutex_lock(&cache_chain_mutex);
fbf1e473 1373 cpuup_canceled(cpu);
fc0abb14 1374 mutex_unlock(&cache_chain_mutex);
1da177e4 1375 break;
1da177e4 1376 }
fbf1e473 1377 return err ? NOTIFY_BAD : NOTIFY_OK;
1da177e4
LT
1378}
1379
74b85f37
CS
1380static struct notifier_block __cpuinitdata cpucache_notifier = {
1381 &cpuup_callback, NULL, 0
1382};
1da177e4 1383
e498be7d
CL
1384/*
1385 * swap the static kmem_list3 with kmalloced memory
1386 */
a737b3e2
AM
1387static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1388 int nodeid)
e498be7d
CL
1389{
1390 struct kmem_list3 *ptr;
1391
e498be7d
CL
1392 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1393 BUG_ON(!ptr);
1394
1395 local_irq_disable();
1396 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1397 /*
1398 * Do not assume that spinlocks can be initialized via memcpy:
1399 */
1400 spin_lock_init(&ptr->list_lock);
1401
e498be7d
CL
1402 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1403 cachep->nodelists[nodeid] = ptr;
1404 local_irq_enable();
1405}
1406
556a169d
PE
1407/*
1408 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1409 * size of kmem_list3.
1410 */
1411static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1412{
1413 int node;
1414
1415 for_each_online_node(node) {
1416 cachep->nodelists[node] = &initkmem_list3[index + node];
1417 cachep->nodelists[node]->next_reap = jiffies +
1418 REAPTIMEOUT_LIST3 +
1419 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1420 }
1421}
1422
a737b3e2
AM
1423/*
1424 * Initialisation. Called after the page allocator have been initialised and
1425 * before smp_init().
1da177e4
LT
1426 */
1427void __init kmem_cache_init(void)
1428{
1429 size_t left_over;
1430 struct cache_sizes *sizes;
1431 struct cache_names *names;
e498be7d 1432 int i;
07ed76b2 1433 int order;
1ca4cb24 1434 int node;
e498be7d 1435
1807a1aa 1436 if (num_possible_nodes() == 1) {
62918a03 1437 use_alien_caches = 0;
1807a1aa
SS
1438 numa_platform = 0;
1439 }
62918a03 1440
e498be7d
CL
1441 for (i = 0; i < NUM_INIT_LISTS; i++) {
1442 kmem_list3_init(&initkmem_list3[i]);
1443 if (i < MAX_NUMNODES)
1444 cache_cache.nodelists[i] = NULL;
1445 }
556a169d 1446 set_up_list3s(&cache_cache, CACHE_CACHE);
1da177e4
LT
1447
1448 /*
1449 * Fragmentation resistance on low memory - only use bigger
1450 * page orders on machines with more than 32MB of memory.
1451 */
1452 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1453 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1454
1da177e4
LT
1455 /* Bootstrap is tricky, because several objects are allocated
1456 * from caches that do not exist yet:
a737b3e2
AM
1457 * 1) initialize the cache_cache cache: it contains the struct
1458 * kmem_cache structures of all caches, except cache_cache itself:
1459 * cache_cache is statically allocated.
e498be7d
CL
1460 * Initially an __init data area is used for the head array and the
1461 * kmem_list3 structures, it's replaced with a kmalloc allocated
1462 * array at the end of the bootstrap.
1da177e4 1463 * 2) Create the first kmalloc cache.
343e0d7a 1464 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1465 * An __init data area is used for the head array.
1466 * 3) Create the remaining kmalloc caches, with minimally sized
1467 * head arrays.
1da177e4
LT
1468 * 4) Replace the __init data head arrays for cache_cache and the first
1469 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1470 * 5) Replace the __init data for kmem_list3 for cache_cache and
1471 * the other cache's with kmalloc allocated memory.
1472 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1473 */
1474
1ca4cb24
PE
1475 node = numa_node_id();
1476
1da177e4 1477 /* 1) create the cache_cache */
1da177e4
LT
1478 INIT_LIST_HEAD(&cache_chain);
1479 list_add(&cache_cache.next, &cache_chain);
1480 cache_cache.colour_off = cache_line_size();
1481 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
ec1f5eee 1482 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1da177e4 1483
8da3430d
ED
1484 /*
1485 * struct kmem_cache size depends on nr_node_ids, which
1486 * can be less than MAX_NUMNODES.
1487 */
1488 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1489 nr_node_ids * sizeof(struct kmem_list3 *);
1490#if DEBUG
1491 cache_cache.obj_size = cache_cache.buffer_size;
1492#endif
a737b3e2
AM
1493 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1494 cache_line_size());
6a2d7a95
ED
1495 cache_cache.reciprocal_buffer_size =
1496 reciprocal_value(cache_cache.buffer_size);
1da177e4 1497
07ed76b2
JS
1498 for (order = 0; order < MAX_ORDER; order++) {
1499 cache_estimate(order, cache_cache.buffer_size,
1500 cache_line_size(), 0, &left_over, &cache_cache.num);
1501 if (cache_cache.num)
1502 break;
1503 }
40094fa6 1504 BUG_ON(!cache_cache.num);
07ed76b2 1505 cache_cache.gfporder = order;
b28a02de 1506 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1507 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1508 sizeof(struct slab), cache_line_size());
1da177e4
LT
1509
1510 /* 2+3) create the kmalloc caches */
1511 sizes = malloc_sizes;
1512 names = cache_names;
1513
a737b3e2
AM
1514 /*
1515 * Initialize the caches that provide memory for the array cache and the
1516 * kmem_list3 structures first. Without this, further allocations will
1517 * bug.
e498be7d
CL
1518 */
1519
1520 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1521 sizes[INDEX_AC].cs_size,
1522 ARCH_KMALLOC_MINALIGN,
1523 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1524 NULL);
e498be7d 1525
a737b3e2 1526 if (INDEX_AC != INDEX_L3) {
e498be7d 1527 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1528 kmem_cache_create(names[INDEX_L3].name,
1529 sizes[INDEX_L3].cs_size,
1530 ARCH_KMALLOC_MINALIGN,
1531 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1532 NULL);
a737b3e2 1533 }
e498be7d 1534
e0a42726
IM
1535 slab_early_init = 0;
1536
1da177e4 1537 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1538 /*
1539 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1540 * This should be particularly beneficial on SMP boxes, as it
1541 * eliminates "false sharing".
1542 * Note for systems short on memory removing the alignment will
e498be7d
CL
1543 * allow tighter packing of the smaller caches.
1544 */
a737b3e2 1545 if (!sizes->cs_cachep) {
e498be7d 1546 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1547 sizes->cs_size,
1548 ARCH_KMALLOC_MINALIGN,
1549 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1550 NULL);
a737b3e2 1551 }
4b51d669
CL
1552#ifdef CONFIG_ZONE_DMA
1553 sizes->cs_dmacachep = kmem_cache_create(
1554 names->name_dma,
a737b3e2
AM
1555 sizes->cs_size,
1556 ARCH_KMALLOC_MINALIGN,
1557 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1558 SLAB_PANIC,
20c2df83 1559 NULL);
4b51d669 1560#endif
1da177e4
LT
1561 sizes++;
1562 names++;
1563 }
1564 /* 4) Replace the bootstrap head arrays */
1565 {
2b2d5493 1566 struct array_cache *ptr;
e498be7d 1567
1da177e4 1568 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1569
1da177e4 1570 local_irq_disable();
9a2dba4b
PE
1571 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1572 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1573 sizeof(struct arraycache_init));
2b2d5493
IM
1574 /*
1575 * Do not assume that spinlocks can be initialized via memcpy:
1576 */
1577 spin_lock_init(&ptr->lock);
1578
1da177e4
LT
1579 cache_cache.array[smp_processor_id()] = ptr;
1580 local_irq_enable();
e498be7d 1581
1da177e4 1582 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1583
1da177e4 1584 local_irq_disable();
9a2dba4b 1585 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1586 != &initarray_generic.cache);
9a2dba4b 1587 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1588 sizeof(struct arraycache_init));
2b2d5493
IM
1589 /*
1590 * Do not assume that spinlocks can be initialized via memcpy:
1591 */
1592 spin_lock_init(&ptr->lock);
1593
e498be7d 1594 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1595 ptr;
1da177e4
LT
1596 local_irq_enable();
1597 }
e498be7d
CL
1598 /* 5) Replace the bootstrap kmem_list3's */
1599 {
1ca4cb24
PE
1600 int nid;
1601
9c09a95c 1602 for_each_online_node(nid) {
ec1f5eee 1603 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
556a169d 1604
e498be7d 1605 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1606 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1607
1608 if (INDEX_AC != INDEX_L3) {
1609 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1610 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1611 }
1612 }
1613 }
1da177e4 1614
e498be7d 1615 /* 6) resize the head arrays to their final sizes */
1da177e4 1616 {
343e0d7a 1617 struct kmem_cache *cachep;
fc0abb14 1618 mutex_lock(&cache_chain_mutex);
1da177e4 1619 list_for_each_entry(cachep, &cache_chain, next)
2ed3a4ef
CL
1620 if (enable_cpucache(cachep))
1621 BUG();
fc0abb14 1622 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1623 }
1624
056c6241
RT
1625 /* Annotate slab for lockdep -- annotate the malloc caches */
1626 init_lock_keys();
1627
1628
1da177e4
LT
1629 /* Done! */
1630 g_cpucache_up = FULL;
1631
a737b3e2
AM
1632 /*
1633 * Register a cpu startup notifier callback that initializes
1634 * cpu_cache_get for all new cpus
1da177e4
LT
1635 */
1636 register_cpu_notifier(&cpucache_notifier);
1da177e4 1637
a737b3e2
AM
1638 /*
1639 * The reap timers are started later, with a module init call: That part
1640 * of the kernel is not yet operational.
1da177e4
LT
1641 */
1642}
1643
1644static int __init cpucache_init(void)
1645{
1646 int cpu;
1647
a737b3e2
AM
1648 /*
1649 * Register the timers that return unneeded pages to the page allocator
1da177e4 1650 */
e498be7d 1651 for_each_online_cpu(cpu)
a737b3e2 1652 start_cpu_timer(cpu);
1da177e4
LT
1653 return 0;
1654}
1da177e4
LT
1655__initcall(cpucache_init);
1656
1657/*
1658 * Interface to system's page allocator. No need to hold the cache-lock.
1659 *
1660 * If we requested dmaable memory, we will get it. Even if we
1661 * did not request dmaable memory, we might get it, but that
1662 * would be relatively rare and ignorable.
1663 */
343e0d7a 1664static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1665{
1666 struct page *page;
e1b6aa6f 1667 int nr_pages;
1da177e4
LT
1668 int i;
1669
d6fef9da 1670#ifndef CONFIG_MMU
e1b6aa6f
CH
1671 /*
1672 * Nommu uses slab's for process anonymous memory allocations, and thus
1673 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1674 */
e1b6aa6f 1675 flags |= __GFP_COMP;
d6fef9da 1676#endif
765c4507 1677
3c517a61 1678 flags |= cachep->gfpflags;
e12ba74d
MG
1679 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1680 flags |= __GFP_RECLAIMABLE;
e1b6aa6f
CH
1681
1682 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1683 if (!page)
1684 return NULL;
1da177e4 1685
e1b6aa6f 1686 nr_pages = (1 << cachep->gfporder);
1da177e4 1687 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1688 add_zone_page_state(page_zone(page),
1689 NR_SLAB_RECLAIMABLE, nr_pages);
1690 else
1691 add_zone_page_state(page_zone(page),
1692 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1693 for (i = 0; i < nr_pages; i++)
1694 __SetPageSlab(page + i);
1695 return page_address(page);
1da177e4
LT
1696}
1697
1698/*
1699 * Interface to system's page release.
1700 */
343e0d7a 1701static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1702{
b28a02de 1703 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1704 struct page *page = virt_to_page(addr);
1705 const unsigned long nr_freed = i;
1706
972d1a7b
CL
1707 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1708 sub_zone_page_state(page_zone(page),
1709 NR_SLAB_RECLAIMABLE, nr_freed);
1710 else
1711 sub_zone_page_state(page_zone(page),
1712 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1713 while (i--) {
f205b2fe
NP
1714 BUG_ON(!PageSlab(page));
1715 __ClearPageSlab(page);
1da177e4
LT
1716 page++;
1717 }
1da177e4
LT
1718 if (current->reclaim_state)
1719 current->reclaim_state->reclaimed_slab += nr_freed;
1720 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1721}
1722
1723static void kmem_rcu_free(struct rcu_head *head)
1724{
b28a02de 1725 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1726 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1727
1728 kmem_freepages(cachep, slab_rcu->addr);
1729 if (OFF_SLAB(cachep))
1730 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1731}
1732
1733#if DEBUG
1734
1735#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1736static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1737 unsigned long caller)
1da177e4 1738{
3dafccf2 1739 int size = obj_size(cachep);
1da177e4 1740
3dafccf2 1741 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1742
b28a02de 1743 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1744 return;
1745
b28a02de
PE
1746 *addr++ = 0x12345678;
1747 *addr++ = caller;
1748 *addr++ = smp_processor_id();
1749 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1750 {
1751 unsigned long *sptr = &caller;
1752 unsigned long svalue;
1753
1754 while (!kstack_end(sptr)) {
1755 svalue = *sptr++;
1756 if (kernel_text_address(svalue)) {
b28a02de 1757 *addr++ = svalue;
1da177e4
LT
1758 size -= sizeof(unsigned long);
1759 if (size <= sizeof(unsigned long))
1760 break;
1761 }
1762 }
1763
1764 }
b28a02de 1765 *addr++ = 0x87654321;
1da177e4
LT
1766}
1767#endif
1768
343e0d7a 1769static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1770{
3dafccf2
MS
1771 int size = obj_size(cachep);
1772 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1773
1774 memset(addr, val, size);
b28a02de 1775 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1776}
1777
1778static void dump_line(char *data, int offset, int limit)
1779{
1780 int i;
aa83aa40
DJ
1781 unsigned char error = 0;
1782 int bad_count = 0;
1783
1da177e4 1784 printk(KERN_ERR "%03x:", offset);
aa83aa40
DJ
1785 for (i = 0; i < limit; i++) {
1786 if (data[offset + i] != POISON_FREE) {
1787 error = data[offset + i];
1788 bad_count++;
1789 }
b28a02de 1790 printk(" %02x", (unsigned char)data[offset + i]);
aa83aa40 1791 }
1da177e4 1792 printk("\n");
aa83aa40
DJ
1793
1794 if (bad_count == 1) {
1795 error ^= POISON_FREE;
1796 if (!(error & (error - 1))) {
1797 printk(KERN_ERR "Single bit error detected. Probably "
1798 "bad RAM.\n");
1799#ifdef CONFIG_X86
1800 printk(KERN_ERR "Run memtest86+ or a similar memory "
1801 "test tool.\n");
1802#else
1803 printk(KERN_ERR "Run a memory test tool.\n");
1804#endif
1805 }
1806 }
1da177e4
LT
1807}
1808#endif
1809
1810#if DEBUG
1811
343e0d7a 1812static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1813{
1814 int i, size;
1815 char *realobj;
1816
1817 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1818 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1819 *dbg_redzone1(cachep, objp),
1820 *dbg_redzone2(cachep, objp));
1da177e4
LT
1821 }
1822
1823 if (cachep->flags & SLAB_STORE_USER) {
1824 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1825 *dbg_userword(cachep, objp));
1da177e4 1826 print_symbol("(%s)",
a737b3e2 1827 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1828 printk("\n");
1829 }
3dafccf2
MS
1830 realobj = (char *)objp + obj_offset(cachep);
1831 size = obj_size(cachep);
b28a02de 1832 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1833 int limit;
1834 limit = 16;
b28a02de
PE
1835 if (i + limit > size)
1836 limit = size - i;
1da177e4
LT
1837 dump_line(realobj, i, limit);
1838 }
1839}
1840
343e0d7a 1841static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1842{
1843 char *realobj;
1844 int size, i;
1845 int lines = 0;
1846
3dafccf2
MS
1847 realobj = (char *)objp + obj_offset(cachep);
1848 size = obj_size(cachep);
1da177e4 1849
b28a02de 1850 for (i = 0; i < size; i++) {
1da177e4 1851 char exp = POISON_FREE;
b28a02de 1852 if (i == size - 1)
1da177e4
LT
1853 exp = POISON_END;
1854 if (realobj[i] != exp) {
1855 int limit;
1856 /* Mismatch ! */
1857 /* Print header */
1858 if (lines == 0) {
b28a02de 1859 printk(KERN_ERR
e94a40c5
DH
1860 "Slab corruption: %s start=%p, len=%d\n",
1861 cachep->name, realobj, size);
1da177e4
LT
1862 print_objinfo(cachep, objp, 0);
1863 }
1864 /* Hexdump the affected line */
b28a02de 1865 i = (i / 16) * 16;
1da177e4 1866 limit = 16;
b28a02de
PE
1867 if (i + limit > size)
1868 limit = size - i;
1da177e4
LT
1869 dump_line(realobj, i, limit);
1870 i += 16;
1871 lines++;
1872 /* Limit to 5 lines */
1873 if (lines > 5)
1874 break;
1875 }
1876 }
1877 if (lines != 0) {
1878 /* Print some data about the neighboring objects, if they
1879 * exist:
1880 */
6ed5eb22 1881 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1882 unsigned int objnr;
1da177e4 1883
8fea4e96 1884 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1885 if (objnr) {
8fea4e96 1886 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1887 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1888 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1889 realobj, size);
1da177e4
LT
1890 print_objinfo(cachep, objp, 2);
1891 }
b28a02de 1892 if (objnr + 1 < cachep->num) {
8fea4e96 1893 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1894 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1895 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1896 realobj, size);
1da177e4
LT
1897 print_objinfo(cachep, objp, 2);
1898 }
1899 }
1900}
1901#endif
1902
12dd36fa 1903#if DEBUG
e79aec29 1904static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1905{
1da177e4
LT
1906 int i;
1907 for (i = 0; i < cachep->num; i++) {
8fea4e96 1908 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1909
1910 if (cachep->flags & SLAB_POISON) {
1911#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1912 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1913 OFF_SLAB(cachep))
b28a02de 1914 kernel_map_pages(virt_to_page(objp),
a737b3e2 1915 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1916 else
1917 check_poison_obj(cachep, objp);
1918#else
1919 check_poison_obj(cachep, objp);
1920#endif
1921 }
1922 if (cachep->flags & SLAB_RED_ZONE) {
1923 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1924 slab_error(cachep, "start of a freed object "
b28a02de 1925 "was overwritten");
1da177e4
LT
1926 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1927 slab_error(cachep, "end of a freed object "
b28a02de 1928 "was overwritten");
1da177e4 1929 }
1da177e4 1930 }
12dd36fa 1931}
1da177e4 1932#else
e79aec29 1933static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1934{
12dd36fa 1935}
1da177e4
LT
1936#endif
1937
911851e6
RD
1938/**
1939 * slab_destroy - destroy and release all objects in a slab
1940 * @cachep: cache pointer being destroyed
1941 * @slabp: slab pointer being destroyed
1942 *
12dd36fa 1943 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1944 * Before calling the slab must have been unlinked from the cache. The
1945 * cache-lock is not held/needed.
12dd36fa 1946 */
343e0d7a 1947static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1948{
1949 void *addr = slabp->s_mem - slabp->colouroff;
1950
e79aec29 1951 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
1952 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1953 struct slab_rcu *slab_rcu;
1954
b28a02de 1955 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1956 slab_rcu->cachep = cachep;
1957 slab_rcu->addr = addr;
1958 call_rcu(&slab_rcu->head, kmem_rcu_free);
1959 } else {
1960 kmem_freepages(cachep, addr);
873623df
IM
1961 if (OFF_SLAB(cachep))
1962 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1963 }
1964}
1965
117f6eb1
CL
1966static void __kmem_cache_destroy(struct kmem_cache *cachep)
1967{
1968 int i;
1969 struct kmem_list3 *l3;
1970
1971 for_each_online_cpu(i)
1972 kfree(cachep->array[i]);
1973
1974 /* NUMA: free the list3 structures */
1975 for_each_online_node(i) {
1976 l3 = cachep->nodelists[i];
1977 if (l3) {
1978 kfree(l3->shared);
1979 free_alien_cache(l3->alien);
1980 kfree(l3);
1981 }
1982 }
1983 kmem_cache_free(&cache_cache, cachep);
1984}
1985
1986
4d268eba 1987/**
a70773dd
RD
1988 * calculate_slab_order - calculate size (page order) of slabs
1989 * @cachep: pointer to the cache that is being created
1990 * @size: size of objects to be created in this cache.
1991 * @align: required alignment for the objects.
1992 * @flags: slab allocation flags
1993 *
1994 * Also calculates the number of objects per slab.
4d268eba
PE
1995 *
1996 * This could be made much more intelligent. For now, try to avoid using
1997 * high order pages for slabs. When the gfp() functions are more friendly
1998 * towards high-order requests, this should be changed.
1999 */
a737b3e2 2000static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2001 size_t size, size_t align, unsigned long flags)
4d268eba 2002{
b1ab41c4 2003 unsigned long offslab_limit;
4d268eba 2004 size_t left_over = 0;
9888e6fa 2005 int gfporder;
4d268eba 2006
0aa817f0 2007 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2008 unsigned int num;
2009 size_t remainder;
2010
9888e6fa 2011 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2012 if (!num)
2013 continue;
9888e6fa 2014
b1ab41c4
IM
2015 if (flags & CFLGS_OFF_SLAB) {
2016 /*
2017 * Max number of objs-per-slab for caches which
2018 * use off-slab slabs. Needed to avoid a possible
2019 * looping condition in cache_grow().
2020 */
2021 offslab_limit = size - sizeof(struct slab);
2022 offslab_limit /= sizeof(kmem_bufctl_t);
2023
2024 if (num > offslab_limit)
2025 break;
2026 }
4d268eba 2027
9888e6fa 2028 /* Found something acceptable - save it away */
4d268eba 2029 cachep->num = num;
9888e6fa 2030 cachep->gfporder = gfporder;
4d268eba
PE
2031 left_over = remainder;
2032
f78bb8ad
LT
2033 /*
2034 * A VFS-reclaimable slab tends to have most allocations
2035 * as GFP_NOFS and we really don't want to have to be allocating
2036 * higher-order pages when we are unable to shrink dcache.
2037 */
2038 if (flags & SLAB_RECLAIM_ACCOUNT)
2039 break;
2040
4d268eba
PE
2041 /*
2042 * Large number of objects is good, but very large slabs are
2043 * currently bad for the gfp()s.
2044 */
9888e6fa 2045 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
2046 break;
2047
9888e6fa
LT
2048 /*
2049 * Acceptable internal fragmentation?
2050 */
a737b3e2 2051 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2052 break;
2053 }
2054 return left_over;
2055}
2056
38bdc32a 2057static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
f30cf7d1 2058{
2ed3a4ef
CL
2059 if (g_cpucache_up == FULL)
2060 return enable_cpucache(cachep);
2061
f30cf7d1
PE
2062 if (g_cpucache_up == NONE) {
2063 /*
2064 * Note: the first kmem_cache_create must create the cache
2065 * that's used by kmalloc(24), otherwise the creation of
2066 * further caches will BUG().
2067 */
2068 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2069
2070 /*
2071 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2072 * the first cache, then we need to set up all its list3s,
2073 * otherwise the creation of further caches will BUG().
2074 */
2075 set_up_list3s(cachep, SIZE_AC);
2076 if (INDEX_AC == INDEX_L3)
2077 g_cpucache_up = PARTIAL_L3;
2078 else
2079 g_cpucache_up = PARTIAL_AC;
2080 } else {
2081 cachep->array[smp_processor_id()] =
2082 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2083
2084 if (g_cpucache_up == PARTIAL_AC) {
2085 set_up_list3s(cachep, SIZE_L3);
2086 g_cpucache_up = PARTIAL_L3;
2087 } else {
2088 int node;
556a169d 2089 for_each_online_node(node) {
f30cf7d1
PE
2090 cachep->nodelists[node] =
2091 kmalloc_node(sizeof(struct kmem_list3),
2092 GFP_KERNEL, node);
2093 BUG_ON(!cachep->nodelists[node]);
2094 kmem_list3_init(cachep->nodelists[node]);
2095 }
2096 }
2097 }
2098 cachep->nodelists[numa_node_id()]->next_reap =
2099 jiffies + REAPTIMEOUT_LIST3 +
2100 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2101
2102 cpu_cache_get(cachep)->avail = 0;
2103 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2104 cpu_cache_get(cachep)->batchcount = 1;
2105 cpu_cache_get(cachep)->touched = 0;
2106 cachep->batchcount = 1;
2107 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2108 return 0;
f30cf7d1
PE
2109}
2110
1da177e4
LT
2111/**
2112 * kmem_cache_create - Create a cache.
2113 * @name: A string which is used in /proc/slabinfo to identify this cache.
2114 * @size: The size of objects to be created in this cache.
2115 * @align: The required alignment for the objects.
2116 * @flags: SLAB flags
2117 * @ctor: A constructor for the objects.
1da177e4
LT
2118 *
2119 * Returns a ptr to the cache on success, NULL on failure.
2120 * Cannot be called within a int, but can be interrupted.
20c2df83 2121 * The @ctor is run when new pages are allocated by the cache.
1da177e4
LT
2122 *
2123 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
2124 * the module calling this has to destroy the cache before getting unloaded.
2125 *
1da177e4
LT
2126 * The flags are
2127 *
2128 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2129 * to catch references to uninitialised memory.
2130 *
2131 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2132 * for buffer overruns.
2133 *
1da177e4
LT
2134 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2135 * cacheline. This can be beneficial if you're counting cycles as closely
2136 * as davem.
2137 */
343e0d7a 2138struct kmem_cache *
1da177e4 2139kmem_cache_create (const char *name, size_t size, size_t align,
51cc5068 2140 unsigned long flags, void (*ctor)(void *))
1da177e4
LT
2141{
2142 size_t left_over, slab_size, ralign;
7a7c381d 2143 struct kmem_cache *cachep = NULL, *pc;
1da177e4
LT
2144
2145 /*
2146 * Sanity checks... these are all serious usage bugs.
2147 */
a737b3e2 2148 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
20c2df83 2149 size > KMALLOC_MAX_SIZE) {
d40cee24 2150 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
a737b3e2 2151 name);
b28a02de
PE
2152 BUG();
2153 }
1da177e4 2154
f0188f47 2155 /*
8f5be20b
RT
2156 * We use cache_chain_mutex to ensure a consistent view of
2157 * cpu_online_map as well. Please see cpuup_callback
f0188f47 2158 */
95402b38 2159 get_online_cpus();
fc0abb14 2160 mutex_lock(&cache_chain_mutex);
4f12bb4f 2161
7a7c381d 2162 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2163 char tmp;
2164 int res;
2165
2166 /*
2167 * This happens when the module gets unloaded and doesn't
2168 * destroy its slab cache and no-one else reuses the vmalloc
2169 * area of the module. Print a warning.
2170 */
138ae663 2171 res = probe_kernel_address(pc->name, tmp);
4f12bb4f 2172 if (res) {
b4169525 2173 printk(KERN_ERR
2174 "SLAB: cache with size %d has lost its name\n",
3dafccf2 2175 pc->buffer_size);
4f12bb4f
AM
2176 continue;
2177 }
2178
b28a02de 2179 if (!strcmp(pc->name, name)) {
b4169525 2180 printk(KERN_ERR
2181 "kmem_cache_create: duplicate cache %s\n", name);
4f12bb4f
AM
2182 dump_stack();
2183 goto oops;
2184 }
2185 }
2186
1da177e4
LT
2187#if DEBUG
2188 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1da177e4
LT
2189#if FORCED_DEBUG
2190 /*
2191 * Enable redzoning and last user accounting, except for caches with
2192 * large objects, if the increased size would increase the object size
2193 * above the next power of two: caches with object sizes just above a
2194 * power of two have a significant amount of internal fragmentation.
2195 */
87a927c7
DW
2196 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2197 2 * sizeof(unsigned long long)))
b28a02de 2198 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2199 if (!(flags & SLAB_DESTROY_BY_RCU))
2200 flags |= SLAB_POISON;
2201#endif
2202 if (flags & SLAB_DESTROY_BY_RCU)
2203 BUG_ON(flags & SLAB_POISON);
2204#endif
1da177e4 2205 /*
a737b3e2
AM
2206 * Always checks flags, a caller might be expecting debug support which
2207 * isn't available.
1da177e4 2208 */
40094fa6 2209 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2210
a737b3e2
AM
2211 /*
2212 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2213 * unaligned accesses for some archs when redzoning is used, and makes
2214 * sure any on-slab bufctl's are also correctly aligned.
2215 */
b28a02de
PE
2216 if (size & (BYTES_PER_WORD - 1)) {
2217 size += (BYTES_PER_WORD - 1);
2218 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2219 }
2220
a737b3e2
AM
2221 /* calculate the final buffer alignment: */
2222
1da177e4
LT
2223 /* 1) arch recommendation: can be overridden for debug */
2224 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2225 /*
2226 * Default alignment: as specified by the arch code. Except if
2227 * an object is really small, then squeeze multiple objects into
2228 * one cacheline.
1da177e4
LT
2229 */
2230 ralign = cache_line_size();
b28a02de 2231 while (size <= ralign / 2)
1da177e4
LT
2232 ralign /= 2;
2233 } else {
2234 ralign = BYTES_PER_WORD;
2235 }
ca5f9703
PE
2236
2237 /*
87a927c7
DW
2238 * Redzoning and user store require word alignment or possibly larger.
2239 * Note this will be overridden by architecture or caller mandated
2240 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2241 */
87a927c7
DW
2242 if (flags & SLAB_STORE_USER)
2243 ralign = BYTES_PER_WORD;
2244
2245 if (flags & SLAB_RED_ZONE) {
2246 ralign = REDZONE_ALIGN;
2247 /* If redzoning, ensure that the second redzone is suitably
2248 * aligned, by adjusting the object size accordingly. */
2249 size += REDZONE_ALIGN - 1;
2250 size &= ~(REDZONE_ALIGN - 1);
2251 }
ca5f9703 2252
a44b56d3 2253 /* 2) arch mandated alignment */
1da177e4
LT
2254 if (ralign < ARCH_SLAB_MINALIGN) {
2255 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2256 }
a44b56d3 2257 /* 3) caller mandated alignment */
1da177e4
LT
2258 if (ralign < align) {
2259 ralign = align;
1da177e4 2260 }
a44b56d3 2261 /* disable debug if necessary */
b46b8f19 2262 if (ralign > __alignof__(unsigned long long))
a44b56d3 2263 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2264 /*
ca5f9703 2265 * 4) Store it.
1da177e4
LT
2266 */
2267 align = ralign;
2268
2269 /* Get cache's description obj. */
e94b1766 2270 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
1da177e4 2271 if (!cachep)
4f12bb4f 2272 goto oops;
1da177e4
LT
2273
2274#if DEBUG
3dafccf2 2275 cachep->obj_size = size;
1da177e4 2276
ca5f9703
PE
2277 /*
2278 * Both debugging options require word-alignment which is calculated
2279 * into align above.
2280 */
1da177e4 2281 if (flags & SLAB_RED_ZONE) {
1da177e4 2282 /* add space for red zone words */
b46b8f19
DW
2283 cachep->obj_offset += sizeof(unsigned long long);
2284 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2285 }
2286 if (flags & SLAB_STORE_USER) {
ca5f9703 2287 /* user store requires one word storage behind the end of
87a927c7
DW
2288 * the real object. But if the second red zone needs to be
2289 * aligned to 64 bits, we must allow that much space.
1da177e4 2290 */
87a927c7
DW
2291 if (flags & SLAB_RED_ZONE)
2292 size += REDZONE_ALIGN;
2293 else
2294 size += BYTES_PER_WORD;
1da177e4
LT
2295 }
2296#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2297 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2298 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2299 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2300 size = PAGE_SIZE;
2301 }
2302#endif
2303#endif
2304
e0a42726
IM
2305 /*
2306 * Determine if the slab management is 'on' or 'off' slab.
2307 * (bootstrapping cannot cope with offslab caches so don't do
2308 * it too early on.)
2309 */
2310 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
1da177e4
LT
2311 /*
2312 * Size is large, assume best to place the slab management obj
2313 * off-slab (should allow better packing of objs).
2314 */
2315 flags |= CFLGS_OFF_SLAB;
2316
2317 size = ALIGN(size, align);
2318
f78bb8ad 2319 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2320
2321 if (!cachep->num) {
b4169525 2322 printk(KERN_ERR
2323 "kmem_cache_create: couldn't create cache %s.\n", name);
1da177e4
LT
2324 kmem_cache_free(&cache_cache, cachep);
2325 cachep = NULL;
4f12bb4f 2326 goto oops;
1da177e4 2327 }
b28a02de
PE
2328 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2329 + sizeof(struct slab), align);
1da177e4
LT
2330
2331 /*
2332 * If the slab has been placed off-slab, and we have enough space then
2333 * move it on-slab. This is at the expense of any extra colouring.
2334 */
2335 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2336 flags &= ~CFLGS_OFF_SLAB;
2337 left_over -= slab_size;
2338 }
2339
2340 if (flags & CFLGS_OFF_SLAB) {
2341 /* really off slab. No need for manual alignment */
b28a02de
PE
2342 slab_size =
2343 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2344 }
2345
2346 cachep->colour_off = cache_line_size();
2347 /* Offset must be a multiple of the alignment. */
2348 if (cachep->colour_off < align)
2349 cachep->colour_off = align;
b28a02de 2350 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2351 cachep->slab_size = slab_size;
2352 cachep->flags = flags;
2353 cachep->gfpflags = 0;
4b51d669 2354 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
1da177e4 2355 cachep->gfpflags |= GFP_DMA;
3dafccf2 2356 cachep->buffer_size = size;
6a2d7a95 2357 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2358
e5ac9c5a 2359 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2360 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2361 /*
2362 * This is a possibility for one of the malloc_sizes caches.
2363 * But since we go off slab only for object size greater than
2364 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2365 * this should not happen at all.
2366 * But leave a BUG_ON for some lucky dude.
2367 */
6cb8f913 2368 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2369 }
1da177e4 2370 cachep->ctor = ctor;
1da177e4
LT
2371 cachep->name = name;
2372
2ed3a4ef
CL
2373 if (setup_cpu_cache(cachep)) {
2374 __kmem_cache_destroy(cachep);
2375 cachep = NULL;
2376 goto oops;
2377 }
1da177e4 2378
1da177e4
LT
2379 /* cache setup completed, link it into the list */
2380 list_add(&cachep->next, &cache_chain);
a737b3e2 2381oops:
1da177e4
LT
2382 if (!cachep && (flags & SLAB_PANIC))
2383 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2384 name);
fc0abb14 2385 mutex_unlock(&cache_chain_mutex);
95402b38 2386 put_online_cpus();
1da177e4
LT
2387 return cachep;
2388}
2389EXPORT_SYMBOL(kmem_cache_create);
2390
2391#if DEBUG
2392static void check_irq_off(void)
2393{
2394 BUG_ON(!irqs_disabled());
2395}
2396
2397static void check_irq_on(void)
2398{
2399 BUG_ON(irqs_disabled());
2400}
2401
343e0d7a 2402static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2403{
2404#ifdef CONFIG_SMP
2405 check_irq_off();
e498be7d 2406 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2407#endif
2408}
e498be7d 2409
343e0d7a 2410static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2411{
2412#ifdef CONFIG_SMP
2413 check_irq_off();
2414 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2415#endif
2416}
2417
1da177e4
LT
2418#else
2419#define check_irq_off() do { } while(0)
2420#define check_irq_on() do { } while(0)
2421#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2422#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2423#endif
2424
aab2207c
CL
2425static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2426 struct array_cache *ac,
2427 int force, int node);
2428
1da177e4
LT
2429static void do_drain(void *arg)
2430{
a737b3e2 2431 struct kmem_cache *cachep = arg;
1da177e4 2432 struct array_cache *ac;
ff69416e 2433 int node = numa_node_id();
1da177e4
LT
2434
2435 check_irq_off();
9a2dba4b 2436 ac = cpu_cache_get(cachep);
ff69416e
CL
2437 spin_lock(&cachep->nodelists[node]->list_lock);
2438 free_block(cachep, ac->entry, ac->avail, node);
2439 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2440 ac->avail = 0;
2441}
2442
343e0d7a 2443static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2444{
e498be7d
CL
2445 struct kmem_list3 *l3;
2446 int node;
2447
15c8b6c1 2448 on_each_cpu(do_drain, cachep, 1);
1da177e4 2449 check_irq_on();
b28a02de 2450 for_each_online_node(node) {
e498be7d 2451 l3 = cachep->nodelists[node];
a4523a8b
RD
2452 if (l3 && l3->alien)
2453 drain_alien_cache(cachep, l3->alien);
2454 }
2455
2456 for_each_online_node(node) {
2457 l3 = cachep->nodelists[node];
2458 if (l3)
aab2207c 2459 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2460 }
1da177e4
LT
2461}
2462
ed11d9eb
CL
2463/*
2464 * Remove slabs from the list of free slabs.
2465 * Specify the number of slabs to drain in tofree.
2466 *
2467 * Returns the actual number of slabs released.
2468 */
2469static int drain_freelist(struct kmem_cache *cache,
2470 struct kmem_list3 *l3, int tofree)
1da177e4 2471{
ed11d9eb
CL
2472 struct list_head *p;
2473 int nr_freed;
1da177e4 2474 struct slab *slabp;
1da177e4 2475
ed11d9eb
CL
2476 nr_freed = 0;
2477 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2478
ed11d9eb 2479 spin_lock_irq(&l3->list_lock);
e498be7d 2480 p = l3->slabs_free.prev;
ed11d9eb
CL
2481 if (p == &l3->slabs_free) {
2482 spin_unlock_irq(&l3->list_lock);
2483 goto out;
2484 }
1da177e4 2485
ed11d9eb 2486 slabp = list_entry(p, struct slab, list);
1da177e4 2487#if DEBUG
40094fa6 2488 BUG_ON(slabp->inuse);
1da177e4
LT
2489#endif
2490 list_del(&slabp->list);
ed11d9eb
CL
2491 /*
2492 * Safe to drop the lock. The slab is no longer linked
2493 * to the cache.
2494 */
2495 l3->free_objects -= cache->num;
e498be7d 2496 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2497 slab_destroy(cache, slabp);
2498 nr_freed++;
1da177e4 2499 }
ed11d9eb
CL
2500out:
2501 return nr_freed;
1da177e4
LT
2502}
2503
8f5be20b 2504/* Called with cache_chain_mutex held to protect against cpu hotplug */
343e0d7a 2505static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2506{
2507 int ret = 0, i = 0;
2508 struct kmem_list3 *l3;
2509
2510 drain_cpu_caches(cachep);
2511
2512 check_irq_on();
2513 for_each_online_node(i) {
2514 l3 = cachep->nodelists[i];
ed11d9eb
CL
2515 if (!l3)
2516 continue;
2517
2518 drain_freelist(cachep, l3, l3->free_objects);
2519
2520 ret += !list_empty(&l3->slabs_full) ||
2521 !list_empty(&l3->slabs_partial);
e498be7d
CL
2522 }
2523 return (ret ? 1 : 0);
2524}
2525
1da177e4
LT
2526/**
2527 * kmem_cache_shrink - Shrink a cache.
2528 * @cachep: The cache to shrink.
2529 *
2530 * Releases as many slabs as possible for a cache.
2531 * To help debugging, a zero exit status indicates all slabs were released.
2532 */
343e0d7a 2533int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2534{
8f5be20b 2535 int ret;
40094fa6 2536 BUG_ON(!cachep || in_interrupt());
1da177e4 2537
95402b38 2538 get_online_cpus();
8f5be20b
RT
2539 mutex_lock(&cache_chain_mutex);
2540 ret = __cache_shrink(cachep);
2541 mutex_unlock(&cache_chain_mutex);
95402b38 2542 put_online_cpus();
8f5be20b 2543 return ret;
1da177e4
LT
2544}
2545EXPORT_SYMBOL(kmem_cache_shrink);
2546
2547/**
2548 * kmem_cache_destroy - delete a cache
2549 * @cachep: the cache to destroy
2550 *
72fd4a35 2551 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2552 *
2553 * It is expected this function will be called by a module when it is
2554 * unloaded. This will remove the cache completely, and avoid a duplicate
2555 * cache being allocated each time a module is loaded and unloaded, if the
2556 * module doesn't have persistent in-kernel storage across loads and unloads.
2557 *
2558 * The cache must be empty before calling this function.
2559 *
2560 * The caller must guarantee that noone will allocate memory from the cache
2561 * during the kmem_cache_destroy().
2562 */
133d205a 2563void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2564{
40094fa6 2565 BUG_ON(!cachep || in_interrupt());
1da177e4 2566
1da177e4 2567 /* Find the cache in the chain of caches. */
95402b38 2568 get_online_cpus();
fc0abb14 2569 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2570 /*
2571 * the chain is never empty, cache_cache is never destroyed
2572 */
2573 list_del(&cachep->next);
1da177e4
LT
2574 if (__cache_shrink(cachep)) {
2575 slab_error(cachep, "Can't free all objects");
b28a02de 2576 list_add(&cachep->next, &cache_chain);
fc0abb14 2577 mutex_unlock(&cache_chain_mutex);
95402b38 2578 put_online_cpus();
133d205a 2579 return;
1da177e4
LT
2580 }
2581
2582 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2583 synchronize_rcu();
1da177e4 2584
117f6eb1 2585 __kmem_cache_destroy(cachep);
8f5be20b 2586 mutex_unlock(&cache_chain_mutex);
95402b38 2587 put_online_cpus();
1da177e4
LT
2588}
2589EXPORT_SYMBOL(kmem_cache_destroy);
2590
e5ac9c5a
RT
2591/*
2592 * Get the memory for a slab management obj.
2593 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2594 * always come from malloc_sizes caches. The slab descriptor cannot
2595 * come from the same cache which is getting created because,
2596 * when we are searching for an appropriate cache for these
2597 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2598 * If we are creating a malloc_sizes cache here it would not be visible to
2599 * kmem_find_general_cachep till the initialization is complete.
2600 * Hence we cannot have slabp_cache same as the original cache.
2601 */
343e0d7a 2602static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2603 int colour_off, gfp_t local_flags,
2604 int nodeid)
1da177e4
LT
2605{
2606 struct slab *slabp;
b28a02de 2607
1da177e4
LT
2608 if (OFF_SLAB(cachep)) {
2609 /* Slab management obj is off-slab. */
5b74ada7 2610 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
3c517a61 2611 local_flags & ~GFP_THISNODE, nodeid);
1da177e4
LT
2612 if (!slabp)
2613 return NULL;
2614 } else {
b28a02de 2615 slabp = objp + colour_off;
1da177e4
LT
2616 colour_off += cachep->slab_size;
2617 }
2618 slabp->inuse = 0;
2619 slabp->colouroff = colour_off;
b28a02de 2620 slabp->s_mem = objp + colour_off;
5b74ada7 2621 slabp->nodeid = nodeid;
e51bfd0a 2622 slabp->free = 0;
1da177e4
LT
2623 return slabp;
2624}
2625
2626static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2627{
b28a02de 2628 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2629}
2630
343e0d7a 2631static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2632 struct slab *slabp)
1da177e4
LT
2633{
2634 int i;
2635
2636 for (i = 0; i < cachep->num; i++) {
8fea4e96 2637 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2638#if DEBUG
2639 /* need to poison the objs? */
2640 if (cachep->flags & SLAB_POISON)
2641 poison_obj(cachep, objp, POISON_FREE);
2642 if (cachep->flags & SLAB_STORE_USER)
2643 *dbg_userword(cachep, objp) = NULL;
2644
2645 if (cachep->flags & SLAB_RED_ZONE) {
2646 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2647 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2648 }
2649 /*
a737b3e2
AM
2650 * Constructors are not allowed to allocate memory from the same
2651 * cache which they are a constructor for. Otherwise, deadlock.
2652 * They must also be threaded.
1da177e4
LT
2653 */
2654 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2655 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2656
2657 if (cachep->flags & SLAB_RED_ZONE) {
2658 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2659 slab_error(cachep, "constructor overwrote the"
b28a02de 2660 " end of an object");
1da177e4
LT
2661 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2662 slab_error(cachep, "constructor overwrote the"
b28a02de 2663 " start of an object");
1da177e4 2664 }
a737b3e2
AM
2665 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2666 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2667 kernel_map_pages(virt_to_page(objp),
3dafccf2 2668 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2669#else
2670 if (cachep->ctor)
51cc5068 2671 cachep->ctor(objp);
1da177e4 2672#endif
b28a02de 2673 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2674 }
b28a02de 2675 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2676}
2677
343e0d7a 2678static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2679{
4b51d669
CL
2680 if (CONFIG_ZONE_DMA_FLAG) {
2681 if (flags & GFP_DMA)
2682 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2683 else
2684 BUG_ON(cachep->gfpflags & GFP_DMA);
2685 }
1da177e4
LT
2686}
2687
a737b3e2
AM
2688static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2689 int nodeid)
78d382d7 2690{
8fea4e96 2691 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2692 kmem_bufctl_t next;
2693
2694 slabp->inuse++;
2695 next = slab_bufctl(slabp)[slabp->free];
2696#if DEBUG
2697 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2698 WARN_ON(slabp->nodeid != nodeid);
2699#endif
2700 slabp->free = next;
2701
2702 return objp;
2703}
2704
a737b3e2
AM
2705static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2706 void *objp, int nodeid)
78d382d7 2707{
8fea4e96 2708 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2709
2710#if DEBUG
2711 /* Verify that the slab belongs to the intended node */
2712 WARN_ON(slabp->nodeid != nodeid);
2713
871751e2 2714 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2715 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2716 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2717 BUG();
2718 }
2719#endif
2720 slab_bufctl(slabp)[objnr] = slabp->free;
2721 slabp->free = objnr;
2722 slabp->inuse--;
2723}
2724
4776874f
PE
2725/*
2726 * Map pages beginning at addr to the given cache and slab. This is required
2727 * for the slab allocator to be able to lookup the cache and slab of a
2728 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2729 */
2730static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2731 void *addr)
1da177e4 2732{
4776874f 2733 int nr_pages;
1da177e4
LT
2734 struct page *page;
2735
4776874f 2736 page = virt_to_page(addr);
84097518 2737
4776874f 2738 nr_pages = 1;
84097518 2739 if (likely(!PageCompound(page)))
4776874f
PE
2740 nr_pages <<= cache->gfporder;
2741
1da177e4 2742 do {
4776874f
PE
2743 page_set_cache(page, cache);
2744 page_set_slab(page, slab);
1da177e4 2745 page++;
4776874f 2746 } while (--nr_pages);
1da177e4
LT
2747}
2748
2749/*
2750 * Grow (by 1) the number of slabs within a cache. This is called by
2751 * kmem_cache_alloc() when there are no active objs left in a cache.
2752 */
3c517a61
CL
2753static int cache_grow(struct kmem_cache *cachep,
2754 gfp_t flags, int nodeid, void *objp)
1da177e4 2755{
b28a02de 2756 struct slab *slabp;
b28a02de
PE
2757 size_t offset;
2758 gfp_t local_flags;
e498be7d 2759 struct kmem_list3 *l3;
1da177e4 2760
a737b3e2
AM
2761 /*
2762 * Be lazy and only check for valid flags here, keeping it out of the
2763 * critical path in kmem_cache_alloc().
1da177e4 2764 */
6cb06229
CL
2765 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2766 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2767
2e1217cf 2768 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2769 check_irq_off();
2e1217cf
RT
2770 l3 = cachep->nodelists[nodeid];
2771 spin_lock(&l3->list_lock);
1da177e4
LT
2772
2773 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2774 offset = l3->colour_next;
2775 l3->colour_next++;
2776 if (l3->colour_next >= cachep->colour)
2777 l3->colour_next = 0;
2778 spin_unlock(&l3->list_lock);
1da177e4 2779
2e1217cf 2780 offset *= cachep->colour_off;
1da177e4
LT
2781
2782 if (local_flags & __GFP_WAIT)
2783 local_irq_enable();
2784
2785 /*
2786 * The test for missing atomic flag is performed here, rather than
2787 * the more obvious place, simply to reduce the critical path length
2788 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2789 * will eventually be caught here (where it matters).
2790 */
2791 kmem_flagcheck(cachep, flags);
2792
a737b3e2
AM
2793 /*
2794 * Get mem for the objs. Attempt to allocate a physical page from
2795 * 'nodeid'.
e498be7d 2796 */
3c517a61 2797 if (!objp)
b8c1c5da 2798 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2799 if (!objp)
1da177e4
LT
2800 goto failed;
2801
2802 /* Get slab management. */
3c517a61 2803 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2804 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2805 if (!slabp)
1da177e4
LT
2806 goto opps1;
2807
4776874f 2808 slab_map_pages(cachep, slabp, objp);
1da177e4 2809
a35afb83 2810 cache_init_objs(cachep, slabp);
1da177e4
LT
2811
2812 if (local_flags & __GFP_WAIT)
2813 local_irq_disable();
2814 check_irq_off();
e498be7d 2815 spin_lock(&l3->list_lock);
1da177e4
LT
2816
2817 /* Make slab active. */
e498be7d 2818 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2819 STATS_INC_GROWN(cachep);
e498be7d
CL
2820 l3->free_objects += cachep->num;
2821 spin_unlock(&l3->list_lock);
1da177e4 2822 return 1;
a737b3e2 2823opps1:
1da177e4 2824 kmem_freepages(cachep, objp);
a737b3e2 2825failed:
1da177e4
LT
2826 if (local_flags & __GFP_WAIT)
2827 local_irq_disable();
2828 return 0;
2829}
2830
2831#if DEBUG
2832
2833/*
2834 * Perform extra freeing checks:
2835 * - detect bad pointers.
2836 * - POISON/RED_ZONE checking
1da177e4
LT
2837 */
2838static void kfree_debugcheck(const void *objp)
2839{
1da177e4
LT
2840 if (!virt_addr_valid(objp)) {
2841 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2842 (unsigned long)objp);
2843 BUG();
1da177e4 2844 }
1da177e4
LT
2845}
2846
58ce1fd5
PE
2847static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2848{
b46b8f19 2849 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2850
2851 redzone1 = *dbg_redzone1(cache, obj);
2852 redzone2 = *dbg_redzone2(cache, obj);
2853
2854 /*
2855 * Redzone is ok.
2856 */
2857 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2858 return;
2859
2860 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2861 slab_error(cache, "double free detected");
2862 else
2863 slab_error(cache, "memory outside object was overwritten");
2864
b46b8f19 2865 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2866 obj, redzone1, redzone2);
2867}
2868
343e0d7a 2869static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2870 void *caller)
1da177e4
LT
2871{
2872 struct page *page;
2873 unsigned int objnr;
2874 struct slab *slabp;
2875
80cbd911
MW
2876 BUG_ON(virt_to_cache(objp) != cachep);
2877
3dafccf2 2878 objp -= obj_offset(cachep);
1da177e4 2879 kfree_debugcheck(objp);
b49af68f 2880 page = virt_to_head_page(objp);
1da177e4 2881
065d41cb 2882 slabp = page_get_slab(page);
1da177e4
LT
2883
2884 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2885 verify_redzone_free(cachep, objp);
1da177e4
LT
2886 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2887 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2888 }
2889 if (cachep->flags & SLAB_STORE_USER)
2890 *dbg_userword(cachep, objp) = caller;
2891
8fea4e96 2892 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2893
2894 BUG_ON(objnr >= cachep->num);
8fea4e96 2895 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 2896
871751e2
AV
2897#ifdef CONFIG_DEBUG_SLAB_LEAK
2898 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2899#endif
1da177e4
LT
2900 if (cachep->flags & SLAB_POISON) {
2901#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2902 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2903 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2904 kernel_map_pages(virt_to_page(objp),
3dafccf2 2905 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2906 } else {
2907 poison_obj(cachep, objp, POISON_FREE);
2908 }
2909#else
2910 poison_obj(cachep, objp, POISON_FREE);
2911#endif
2912 }
2913 return objp;
2914}
2915
343e0d7a 2916static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2917{
2918 kmem_bufctl_t i;
2919 int entries = 0;
b28a02de 2920
1da177e4
LT
2921 /* Check slab's freelist to see if this obj is there. */
2922 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2923 entries++;
2924 if (entries > cachep->num || i >= cachep->num)
2925 goto bad;
2926 }
2927 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2928bad:
2929 printk(KERN_ERR "slab: Internal list corruption detected in "
2930 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2931 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2932 for (i = 0;
264132bc 2933 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2934 i++) {
a737b3e2 2935 if (i % 16 == 0)
1da177e4 2936 printk("\n%03x:", i);
b28a02de 2937 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2938 }
2939 printk("\n");
2940 BUG();
2941 }
2942}
2943#else
2944#define kfree_debugcheck(x) do { } while(0)
2945#define cache_free_debugcheck(x,objp,z) (objp)
2946#define check_slabp(x,y) do { } while(0)
2947#endif
2948
343e0d7a 2949static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2950{
2951 int batchcount;
2952 struct kmem_list3 *l3;
2953 struct array_cache *ac;
1ca4cb24
PE
2954 int node;
2955
6d2144d3 2956retry:
1da177e4 2957 check_irq_off();
6d2144d3 2958 node = numa_node_id();
9a2dba4b 2959 ac = cpu_cache_get(cachep);
1da177e4
LT
2960 batchcount = ac->batchcount;
2961 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2962 /*
2963 * If there was little recent activity on this cache, then
2964 * perform only a partial refill. Otherwise we could generate
2965 * refill bouncing.
1da177e4
LT
2966 */
2967 batchcount = BATCHREFILL_LIMIT;
2968 }
1ca4cb24 2969 l3 = cachep->nodelists[node];
e498be7d
CL
2970
2971 BUG_ON(ac->avail > 0 || !l3);
2972 spin_lock(&l3->list_lock);
1da177e4 2973
3ded175a
CL
2974 /* See if we can refill from the shared array */
2975 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2976 goto alloc_done;
2977
1da177e4
LT
2978 while (batchcount > 0) {
2979 struct list_head *entry;
2980 struct slab *slabp;
2981 /* Get slab alloc is to come from. */
2982 entry = l3->slabs_partial.next;
2983 if (entry == &l3->slabs_partial) {
2984 l3->free_touched = 1;
2985 entry = l3->slabs_free.next;
2986 if (entry == &l3->slabs_free)
2987 goto must_grow;
2988 }
2989
2990 slabp = list_entry(entry, struct slab, list);
2991 check_slabp(cachep, slabp);
2992 check_spinlock_acquired(cachep);
714b8171
PE
2993
2994 /*
2995 * The slab was either on partial or free list so
2996 * there must be at least one object available for
2997 * allocation.
2998 */
2999 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
3000
1da177e4 3001 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3002 STATS_INC_ALLOCED(cachep);
3003 STATS_INC_ACTIVE(cachep);
3004 STATS_SET_HIGH(cachep);
3005
78d382d7 3006 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
1ca4cb24 3007 node);
1da177e4
LT
3008 }
3009 check_slabp(cachep, slabp);
3010
3011 /* move slabp to correct slabp list: */
3012 list_del(&slabp->list);
3013 if (slabp->free == BUFCTL_END)
3014 list_add(&slabp->list, &l3->slabs_full);
3015 else
3016 list_add(&slabp->list, &l3->slabs_partial);
3017 }
3018
a737b3e2 3019must_grow:
1da177e4 3020 l3->free_objects -= ac->avail;
a737b3e2 3021alloc_done:
e498be7d 3022 spin_unlock(&l3->list_lock);
1da177e4
LT
3023
3024 if (unlikely(!ac->avail)) {
3025 int x;
3c517a61 3026 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3027
a737b3e2 3028 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3029 ac = cpu_cache_get(cachep);
a737b3e2 3030 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
3031 return NULL;
3032
a737b3e2 3033 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3034 goto retry;
3035 }
3036 ac->touched = 1;
e498be7d 3037 return ac->entry[--ac->avail];
1da177e4
LT
3038}
3039
a737b3e2
AM
3040static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3041 gfp_t flags)
1da177e4
LT
3042{
3043 might_sleep_if(flags & __GFP_WAIT);
3044#if DEBUG
3045 kmem_flagcheck(cachep, flags);
3046#endif
3047}
3048
3049#if DEBUG
a737b3e2
AM
3050static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3051 gfp_t flags, void *objp, void *caller)
1da177e4 3052{
b28a02de 3053 if (!objp)
1da177e4 3054 return objp;
b28a02de 3055 if (cachep->flags & SLAB_POISON) {
1da177e4 3056#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 3057 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3058 kernel_map_pages(virt_to_page(objp),
3dafccf2 3059 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
3060 else
3061 check_poison_obj(cachep, objp);
3062#else
3063 check_poison_obj(cachep, objp);
3064#endif
3065 poison_obj(cachep, objp, POISON_INUSE);
3066 }
3067 if (cachep->flags & SLAB_STORE_USER)
3068 *dbg_userword(cachep, objp) = caller;
3069
3070 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3071 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3072 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3073 slab_error(cachep, "double free, or memory outside"
3074 " object was overwritten");
b28a02de 3075 printk(KERN_ERR
b46b8f19 3076 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3077 objp, *dbg_redzone1(cachep, objp),
3078 *dbg_redzone2(cachep, objp));
1da177e4
LT
3079 }
3080 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3081 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3082 }
871751e2
AV
3083#ifdef CONFIG_DEBUG_SLAB_LEAK
3084 {
3085 struct slab *slabp;
3086 unsigned objnr;
3087
b49af68f 3088 slabp = page_get_slab(virt_to_head_page(objp));
871751e2
AV
3089 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3090 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3091 }
3092#endif
3dafccf2 3093 objp += obj_offset(cachep);
4f104934 3094 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3095 cachep->ctor(objp);
a44b56d3
KH
3096#if ARCH_SLAB_MINALIGN
3097 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3098 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3099 objp, ARCH_SLAB_MINALIGN);
3100 }
3101#endif
1da177e4
LT
3102 return objp;
3103}
3104#else
3105#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3106#endif
3107
8a8b6502
AM
3108#ifdef CONFIG_FAILSLAB
3109
3110static struct failslab_attr {
3111
3112 struct fault_attr attr;
3113
3114 u32 ignore_gfp_wait;
3115#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3116 struct dentry *ignore_gfp_wait_file;
3117#endif
3118
3119} failslab = {
3120 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4 3121 .ignore_gfp_wait = 1,
8a8b6502
AM
3122};
3123
3124static int __init setup_failslab(char *str)
3125{
3126 return setup_fault_attr(&failslab.attr, str);
3127}
3128__setup("failslab=", setup_failslab);
3129
3130static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3131{
3132 if (cachep == &cache_cache)
3133 return 0;
3134 if (flags & __GFP_NOFAIL)
3135 return 0;
3136 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3137 return 0;
3138
3139 return should_fail(&failslab.attr, obj_size(cachep));
3140}
3141
3142#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3143
3144static int __init failslab_debugfs(void)
3145{
3146 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3147 struct dentry *dir;
3148 int err;
3149
824ebef1 3150 err = init_fault_attr_dentries(&failslab.attr, "failslab");
8a8b6502
AM
3151 if (err)
3152 return err;
3153 dir = failslab.attr.dentries.dir;
3154
3155 failslab.ignore_gfp_wait_file =
3156 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3157 &failslab.ignore_gfp_wait);
3158
3159 if (!failslab.ignore_gfp_wait_file) {
3160 err = -ENOMEM;
3161 debugfs_remove(failslab.ignore_gfp_wait_file);
3162 cleanup_fault_attr_dentries(&failslab.attr);
3163 }
3164
3165 return err;
3166}
3167
3168late_initcall(failslab_debugfs);
3169
3170#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3171
3172#else /* CONFIG_FAILSLAB */
3173
3174static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3175{
3176 return 0;
3177}
3178
3179#endif /* CONFIG_FAILSLAB */
3180
343e0d7a 3181static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3182{
b28a02de 3183 void *objp;
1da177e4
LT
3184 struct array_cache *ac;
3185
5c382300 3186 check_irq_off();
8a8b6502 3187
9a2dba4b 3188 ac = cpu_cache_get(cachep);
1da177e4
LT
3189 if (likely(ac->avail)) {
3190 STATS_INC_ALLOCHIT(cachep);
3191 ac->touched = 1;
e498be7d 3192 objp = ac->entry[--ac->avail];
1da177e4
LT
3193 } else {
3194 STATS_INC_ALLOCMISS(cachep);
3195 objp = cache_alloc_refill(cachep, flags);
3196 }
5c382300
AK
3197 return objp;
3198}
3199
e498be7d 3200#ifdef CONFIG_NUMA
c61afb18 3201/*
b2455396 3202 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3203 *
3204 * If we are in_interrupt, then process context, including cpusets and
3205 * mempolicy, may not apply and should not be used for allocation policy.
3206 */
3207static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3208{
3209 int nid_alloc, nid_here;
3210
765c4507 3211 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18
PJ
3212 return NULL;
3213 nid_alloc = nid_here = numa_node_id();
3214 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3215 nid_alloc = cpuset_mem_spread_node();
3216 else if (current->mempolicy)
3217 nid_alloc = slab_node(current->mempolicy);
3218 if (nid_alloc != nid_here)
8b98c169 3219 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3220 return NULL;
3221}
3222
765c4507
CL
3223/*
3224 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3225 * certain node and fall back is permitted. First we scan all the
3226 * available nodelists for available objects. If that fails then we
3227 * perform an allocation without specifying a node. This allows the page
3228 * allocator to do its reclaim / fallback magic. We then insert the
3229 * slab into the proper nodelist and then allocate from it.
765c4507 3230 */
8c8cc2c1 3231static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3232{
8c8cc2c1
PE
3233 struct zonelist *zonelist;
3234 gfp_t local_flags;
dd1a239f 3235 struct zoneref *z;
54a6eb5c
MG
3236 struct zone *zone;
3237 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3238 void *obj = NULL;
3c517a61 3239 int nid;
8c8cc2c1
PE
3240
3241 if (flags & __GFP_THISNODE)
3242 return NULL;
3243
0e88460d 3244 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
6cb06229 3245 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3246
3c517a61
CL
3247retry:
3248 /*
3249 * Look through allowed nodes for objects available
3250 * from existing per node queues.
3251 */
54a6eb5c
MG
3252 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3253 nid = zone_to_nid(zone);
aedb0eb1 3254
54a6eb5c 3255 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3c517a61 3256 cache->nodelists[nid] &&
481c5346 3257 cache->nodelists[nid]->free_objects) {
3c517a61
CL
3258 obj = ____cache_alloc_node(cache,
3259 flags | GFP_THISNODE, nid);
481c5346
CL
3260 if (obj)
3261 break;
3262 }
3c517a61
CL
3263 }
3264
cfce6604 3265 if (!obj) {
3c517a61
CL
3266 /*
3267 * This allocation will be performed within the constraints
3268 * of the current cpuset / memory policy requirements.
3269 * We may trigger various forms of reclaim on the allowed
3270 * set and go into memory reserves if necessary.
3271 */
dd47ea75
CL
3272 if (local_flags & __GFP_WAIT)
3273 local_irq_enable();
3274 kmem_flagcheck(cache, flags);
9ac33b2b 3275 obj = kmem_getpages(cache, local_flags, -1);
dd47ea75
CL
3276 if (local_flags & __GFP_WAIT)
3277 local_irq_disable();
3c517a61
CL
3278 if (obj) {
3279 /*
3280 * Insert into the appropriate per node queues
3281 */
3282 nid = page_to_nid(virt_to_page(obj));
3283 if (cache_grow(cache, flags, nid, obj)) {
3284 obj = ____cache_alloc_node(cache,
3285 flags | GFP_THISNODE, nid);
3286 if (!obj)
3287 /*
3288 * Another processor may allocate the
3289 * objects in the slab since we are
3290 * not holding any locks.
3291 */
3292 goto retry;
3293 } else {
b6a60451 3294 /* cache_grow already freed obj */
3c517a61
CL
3295 obj = NULL;
3296 }
3297 }
aedb0eb1 3298 }
765c4507
CL
3299 return obj;
3300}
3301
e498be7d
CL
3302/*
3303 * A interface to enable slab creation on nodeid
1da177e4 3304 */
8b98c169 3305static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3306 int nodeid)
e498be7d
CL
3307{
3308 struct list_head *entry;
b28a02de
PE
3309 struct slab *slabp;
3310 struct kmem_list3 *l3;
3311 void *obj;
b28a02de
PE
3312 int x;
3313
3314 l3 = cachep->nodelists[nodeid];
3315 BUG_ON(!l3);
3316
a737b3e2 3317retry:
ca3b9b91 3318 check_irq_off();
b28a02de
PE
3319 spin_lock(&l3->list_lock);
3320 entry = l3->slabs_partial.next;
3321 if (entry == &l3->slabs_partial) {
3322 l3->free_touched = 1;
3323 entry = l3->slabs_free.next;
3324 if (entry == &l3->slabs_free)
3325 goto must_grow;
3326 }
3327
3328 slabp = list_entry(entry, struct slab, list);
3329 check_spinlock_acquired_node(cachep, nodeid);
3330 check_slabp(cachep, slabp);
3331
3332 STATS_INC_NODEALLOCS(cachep);
3333 STATS_INC_ACTIVE(cachep);
3334 STATS_SET_HIGH(cachep);
3335
3336 BUG_ON(slabp->inuse == cachep->num);
3337
78d382d7 3338 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3339 check_slabp(cachep, slabp);
3340 l3->free_objects--;
3341 /* move slabp to correct slabp list: */
3342 list_del(&slabp->list);
3343
a737b3e2 3344 if (slabp->free == BUFCTL_END)
b28a02de 3345 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3346 else
b28a02de 3347 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3348
b28a02de
PE
3349 spin_unlock(&l3->list_lock);
3350 goto done;
e498be7d 3351
a737b3e2 3352must_grow:
b28a02de 3353 spin_unlock(&l3->list_lock);
3c517a61 3354 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3355 if (x)
3356 goto retry;
1da177e4 3357
8c8cc2c1 3358 return fallback_alloc(cachep, flags);
e498be7d 3359
a737b3e2 3360done:
b28a02de 3361 return obj;
e498be7d 3362}
8c8cc2c1
PE
3363
3364/**
3365 * kmem_cache_alloc_node - Allocate an object on the specified node
3366 * @cachep: The cache to allocate from.
3367 * @flags: See kmalloc().
3368 * @nodeid: node number of the target node.
3369 * @caller: return address of caller, used for debug information
3370 *
3371 * Identical to kmem_cache_alloc but it will allocate memory on the given
3372 * node, which can improve the performance for cpu bound structures.
3373 *
3374 * Fallback to other node is possible if __GFP_THISNODE is not set.
3375 */
3376static __always_inline void *
3377__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3378 void *caller)
3379{
3380 unsigned long save_flags;
3381 void *ptr;
3382
824ebef1
AM
3383 if (should_failslab(cachep, flags))
3384 return NULL;
3385
8c8cc2c1
PE
3386 cache_alloc_debugcheck_before(cachep, flags);
3387 local_irq_save(save_flags);
3388
3389 if (unlikely(nodeid == -1))
3390 nodeid = numa_node_id();
3391
3392 if (unlikely(!cachep->nodelists[nodeid])) {
3393 /* Node not bootstrapped yet */
3394 ptr = fallback_alloc(cachep, flags);
3395 goto out;
3396 }
3397
3398 if (nodeid == numa_node_id()) {
3399 /*
3400 * Use the locally cached objects if possible.
3401 * However ____cache_alloc does not allow fallback
3402 * to other nodes. It may fail while we still have
3403 * objects on other nodes available.
3404 */
3405 ptr = ____cache_alloc(cachep, flags);
3406 if (ptr)
3407 goto out;
3408 }
3409 /* ___cache_alloc_node can fall back to other nodes */
3410 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3411 out:
3412 local_irq_restore(save_flags);
3413 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3414
d07dbea4
CL
3415 if (unlikely((flags & __GFP_ZERO) && ptr))
3416 memset(ptr, 0, obj_size(cachep));
3417
8c8cc2c1
PE
3418 return ptr;
3419}
3420
3421static __always_inline void *
3422__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3423{
3424 void *objp;
3425
3426 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3427 objp = alternate_node_alloc(cache, flags);
3428 if (objp)
3429 goto out;
3430 }
3431 objp = ____cache_alloc(cache, flags);
3432
3433 /*
3434 * We may just have run out of memory on the local node.
3435 * ____cache_alloc_node() knows how to locate memory on other nodes
3436 */
3437 if (!objp)
3438 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3439
3440 out:
3441 return objp;
3442}
3443#else
3444
3445static __always_inline void *
3446__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3447{
3448 return ____cache_alloc(cachep, flags);
3449}
3450
3451#endif /* CONFIG_NUMA */
3452
3453static __always_inline void *
3454__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3455{
3456 unsigned long save_flags;
3457 void *objp;
3458
824ebef1
AM
3459 if (should_failslab(cachep, flags))
3460 return NULL;
3461
8c8cc2c1
PE
3462 cache_alloc_debugcheck_before(cachep, flags);
3463 local_irq_save(save_flags);
3464 objp = __do_cache_alloc(cachep, flags);
3465 local_irq_restore(save_flags);
3466 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3467 prefetchw(objp);
3468
d07dbea4
CL
3469 if (unlikely((flags & __GFP_ZERO) && objp))
3470 memset(objp, 0, obj_size(cachep));
3471
8c8cc2c1
PE
3472 return objp;
3473}
e498be7d
CL
3474
3475/*
3476 * Caller needs to acquire correct kmem_list's list_lock
3477 */
343e0d7a 3478static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3479 int node)
1da177e4
LT
3480{
3481 int i;
e498be7d 3482 struct kmem_list3 *l3;
1da177e4
LT
3483
3484 for (i = 0; i < nr_objects; i++) {
3485 void *objp = objpp[i];
3486 struct slab *slabp;
1da177e4 3487
6ed5eb22 3488 slabp = virt_to_slab(objp);
ff69416e 3489 l3 = cachep->nodelists[node];
1da177e4 3490 list_del(&slabp->list);
ff69416e 3491 check_spinlock_acquired_node(cachep, node);
1da177e4 3492 check_slabp(cachep, slabp);
78d382d7 3493 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3494 STATS_DEC_ACTIVE(cachep);
e498be7d 3495 l3->free_objects++;
1da177e4
LT
3496 check_slabp(cachep, slabp);
3497
3498 /* fixup slab chains */
3499 if (slabp->inuse == 0) {
e498be7d
CL
3500 if (l3->free_objects > l3->free_limit) {
3501 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3502 /* No need to drop any previously held
3503 * lock here, even if we have a off-slab slab
3504 * descriptor it is guaranteed to come from
3505 * a different cache, refer to comments before
3506 * alloc_slabmgmt.
3507 */
1da177e4
LT
3508 slab_destroy(cachep, slabp);
3509 } else {
e498be7d 3510 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3511 }
3512 } else {
3513 /* Unconditionally move a slab to the end of the
3514 * partial list on free - maximum time for the
3515 * other objects to be freed, too.
3516 */
e498be7d 3517 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3518 }
3519 }
3520}
3521
343e0d7a 3522static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3523{
3524 int batchcount;
e498be7d 3525 struct kmem_list3 *l3;
ff69416e 3526 int node = numa_node_id();
1da177e4
LT
3527
3528 batchcount = ac->batchcount;
3529#if DEBUG
3530 BUG_ON(!batchcount || batchcount > ac->avail);
3531#endif
3532 check_irq_off();
ff69416e 3533 l3 = cachep->nodelists[node];
873623df 3534 spin_lock(&l3->list_lock);
e498be7d
CL
3535 if (l3->shared) {
3536 struct array_cache *shared_array = l3->shared;
b28a02de 3537 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3538 if (max) {
3539 if (batchcount > max)
3540 batchcount = max;
e498be7d 3541 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3542 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3543 shared_array->avail += batchcount;
3544 goto free_done;
3545 }
3546 }
3547
ff69416e 3548 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3549free_done:
1da177e4
LT
3550#if STATS
3551 {
3552 int i = 0;
3553 struct list_head *p;
3554
e498be7d
CL
3555 p = l3->slabs_free.next;
3556 while (p != &(l3->slabs_free)) {
1da177e4
LT
3557 struct slab *slabp;
3558
3559 slabp = list_entry(p, struct slab, list);
3560 BUG_ON(slabp->inuse);
3561
3562 i++;
3563 p = p->next;
3564 }
3565 STATS_SET_FREEABLE(cachep, i);
3566 }
3567#endif
e498be7d 3568 spin_unlock(&l3->list_lock);
1da177e4 3569 ac->avail -= batchcount;
a737b3e2 3570 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3571}
3572
3573/*
a737b3e2
AM
3574 * Release an obj back to its cache. If the obj has a constructed state, it must
3575 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3576 */
873623df 3577static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3578{
9a2dba4b 3579 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3580
3581 check_irq_off();
3582 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3583
1807a1aa
SS
3584 /*
3585 * Skip calling cache_free_alien() when the platform is not numa.
3586 * This will avoid cache misses that happen while accessing slabp (which
3587 * is per page memory reference) to get nodeid. Instead use a global
3588 * variable to skip the call, which is mostly likely to be present in
3589 * the cache.
3590 */
3591 if (numa_platform && cache_free_alien(cachep, objp))
729bd0b7
PE
3592 return;
3593
1da177e4
LT
3594 if (likely(ac->avail < ac->limit)) {
3595 STATS_INC_FREEHIT(cachep);
e498be7d 3596 ac->entry[ac->avail++] = objp;
1da177e4
LT
3597 return;
3598 } else {
3599 STATS_INC_FREEMISS(cachep);
3600 cache_flusharray(cachep, ac);
e498be7d 3601 ac->entry[ac->avail++] = objp;
1da177e4
LT
3602 }
3603}
3604
3605/**
3606 * kmem_cache_alloc - Allocate an object
3607 * @cachep: The cache to allocate from.
3608 * @flags: See kmalloc().
3609 *
3610 * Allocate an object from this cache. The flags are only relevant
3611 * if the cache has no available objects.
3612 */
343e0d7a 3613void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3614{
7fd6b141 3615 return __cache_alloc(cachep, flags, __builtin_return_address(0));
1da177e4
LT
3616}
3617EXPORT_SYMBOL(kmem_cache_alloc);
3618
3619/**
7682486b 3620 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
1da177e4
LT
3621 * @cachep: the cache we're checking against
3622 * @ptr: pointer to validate
3623 *
7682486b 3624 * This verifies that the untrusted pointer looks sane;
1da177e4
LT
3625 * it is _not_ a guarantee that the pointer is actually
3626 * part of the slab cache in question, but it at least
3627 * validates that the pointer can be dereferenced and
3628 * looks half-way sane.
3629 *
3630 * Currently only used for dentry validation.
3631 */
b7f869a2 3632int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
1da177e4 3633{
b28a02de 3634 unsigned long addr = (unsigned long)ptr;
1da177e4 3635 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3636 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3637 unsigned long size = cachep->buffer_size;
1da177e4
LT
3638 struct page *page;
3639
3640 if (unlikely(addr < min_addr))
3641 goto out;
3642 if (unlikely(addr > (unsigned long)high_memory - size))
3643 goto out;
3644 if (unlikely(addr & align_mask))
3645 goto out;
3646 if (unlikely(!kern_addr_valid(addr)))
3647 goto out;
3648 if (unlikely(!kern_addr_valid(addr + size - 1)))
3649 goto out;
3650 page = virt_to_page(ptr);
3651 if (unlikely(!PageSlab(page)))
3652 goto out;
065d41cb 3653 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3654 goto out;
3655 return 1;
a737b3e2 3656out:
1da177e4
LT
3657 return 0;
3658}
3659
3660#ifdef CONFIG_NUMA
8b98c169
CH
3661void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3662{
3663 return __cache_alloc_node(cachep, flags, nodeid,
3664 __builtin_return_address(0));
3665}
1da177e4
LT
3666EXPORT_SYMBOL(kmem_cache_alloc_node);
3667
8b98c169
CH
3668static __always_inline void *
3669__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3670{
343e0d7a 3671 struct kmem_cache *cachep;
97e2bde4
MS
3672
3673 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3674 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3675 return cachep;
97e2bde4
MS
3676 return kmem_cache_alloc_node(cachep, flags, node);
3677}
8b98c169
CH
3678
3679#ifdef CONFIG_DEBUG_SLAB
3680void *__kmalloc_node(size_t size, gfp_t flags, int node)
3681{
3682 return __do_kmalloc_node(size, flags, node,
3683 __builtin_return_address(0));
3684}
dbe5e69d 3685EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3686
3687void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3688 int node, void *caller)
3689{
3690 return __do_kmalloc_node(size, flags, node, caller);
3691}
3692EXPORT_SYMBOL(__kmalloc_node_track_caller);
3693#else
3694void *__kmalloc_node(size_t size, gfp_t flags, int node)
3695{
3696 return __do_kmalloc_node(size, flags, node, NULL);
3697}
3698EXPORT_SYMBOL(__kmalloc_node);
3699#endif /* CONFIG_DEBUG_SLAB */
3700#endif /* CONFIG_NUMA */
1da177e4
LT
3701
3702/**
800590f5 3703 * __do_kmalloc - allocate memory
1da177e4 3704 * @size: how many bytes of memory are required.
800590f5 3705 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3706 * @caller: function caller for debug tracking of the caller
1da177e4 3707 */
7fd6b141
PE
3708static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3709 void *caller)
1da177e4 3710{
343e0d7a 3711 struct kmem_cache *cachep;
1da177e4 3712
97e2bde4
MS
3713 /* If you want to save a few bytes .text space: replace
3714 * __ with kmem_.
3715 * Then kmalloc uses the uninlined functions instead of the inline
3716 * functions.
3717 */
3718 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3719 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3720 return cachep;
7fd6b141
PE
3721 return __cache_alloc(cachep, flags, caller);
3722}
3723
7fd6b141 3724
1d2c8eea 3725#ifdef CONFIG_DEBUG_SLAB
7fd6b141
PE
3726void *__kmalloc(size_t size, gfp_t flags)
3727{
871751e2 3728 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3729}
3730EXPORT_SYMBOL(__kmalloc);
3731
7fd6b141
PE
3732void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3733{
3734 return __do_kmalloc(size, flags, caller);
3735}
3736EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3737
3738#else
3739void *__kmalloc(size_t size, gfp_t flags)
3740{
3741 return __do_kmalloc(size, flags, NULL);
3742}
3743EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3744#endif
3745
1da177e4
LT
3746/**
3747 * kmem_cache_free - Deallocate an object
3748 * @cachep: The cache the allocation was from.
3749 * @objp: The previously allocated object.
3750 *
3751 * Free an object which was previously allocated from this
3752 * cache.
3753 */
343e0d7a 3754void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3755{
3756 unsigned long flags;
3757
3758 local_irq_save(flags);
898552c9 3759 debug_check_no_locks_freed(objp, obj_size(cachep));
3ac7fe5a
TG
3760 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3761 debug_check_no_obj_freed(objp, obj_size(cachep));
873623df 3762 __cache_free(cachep, objp);
1da177e4
LT
3763 local_irq_restore(flags);
3764}
3765EXPORT_SYMBOL(kmem_cache_free);
3766
1da177e4
LT
3767/**
3768 * kfree - free previously allocated memory
3769 * @objp: pointer returned by kmalloc.
3770 *
80e93eff
PE
3771 * If @objp is NULL, no operation is performed.
3772 *
1da177e4
LT
3773 * Don't free memory not originally allocated by kmalloc()
3774 * or you will run into trouble.
3775 */
3776void kfree(const void *objp)
3777{
343e0d7a 3778 struct kmem_cache *c;
1da177e4
LT
3779 unsigned long flags;
3780
6cb8f913 3781 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3782 return;
3783 local_irq_save(flags);
3784 kfree_debugcheck(objp);
6ed5eb22 3785 c = virt_to_cache(objp);
f9b8404c 3786 debug_check_no_locks_freed(objp, obj_size(c));
3ac7fe5a 3787 debug_check_no_obj_freed(objp, obj_size(c));
873623df 3788 __cache_free(c, (void *)objp);
1da177e4
LT
3789 local_irq_restore(flags);
3790}
3791EXPORT_SYMBOL(kfree);
3792
343e0d7a 3793unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3794{
3dafccf2 3795 return obj_size(cachep);
1da177e4
LT
3796}
3797EXPORT_SYMBOL(kmem_cache_size);
3798
343e0d7a 3799const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3800{
3801 return cachep->name;
3802}
3803EXPORT_SYMBOL_GPL(kmem_cache_name);
3804
e498be7d 3805/*
183ff22b 3806 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 3807 */
343e0d7a 3808static int alloc_kmemlist(struct kmem_cache *cachep)
e498be7d
CL
3809{
3810 int node;
3811 struct kmem_list3 *l3;
cafeb02e 3812 struct array_cache *new_shared;
3395ee05 3813 struct array_cache **new_alien = NULL;
e498be7d 3814
9c09a95c 3815 for_each_online_node(node) {
cafeb02e 3816
3395ee05
PM
3817 if (use_alien_caches) {
3818 new_alien = alloc_alien_cache(node, cachep->limit);
3819 if (!new_alien)
3820 goto fail;
3821 }
cafeb02e 3822
63109846
ED
3823 new_shared = NULL;
3824 if (cachep->shared) {
3825 new_shared = alloc_arraycache(node,
0718dc2a 3826 cachep->shared*cachep->batchcount,
a737b3e2 3827 0xbaadf00d);
63109846
ED
3828 if (!new_shared) {
3829 free_alien_cache(new_alien);
3830 goto fail;
3831 }
0718dc2a 3832 }
cafeb02e 3833
a737b3e2
AM
3834 l3 = cachep->nodelists[node];
3835 if (l3) {
cafeb02e
CL
3836 struct array_cache *shared = l3->shared;
3837
e498be7d
CL
3838 spin_lock_irq(&l3->list_lock);
3839
cafeb02e 3840 if (shared)
0718dc2a
CL
3841 free_block(cachep, shared->entry,
3842 shared->avail, node);
e498be7d 3843
cafeb02e
CL
3844 l3->shared = new_shared;
3845 if (!l3->alien) {
e498be7d
CL
3846 l3->alien = new_alien;
3847 new_alien = NULL;
3848 }
b28a02de 3849 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3850 cachep->batchcount + cachep->num;
e498be7d 3851 spin_unlock_irq(&l3->list_lock);
cafeb02e 3852 kfree(shared);
e498be7d
CL
3853 free_alien_cache(new_alien);
3854 continue;
3855 }
a737b3e2 3856 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
0718dc2a
CL
3857 if (!l3) {
3858 free_alien_cache(new_alien);
3859 kfree(new_shared);
e498be7d 3860 goto fail;
0718dc2a 3861 }
e498be7d
CL
3862
3863 kmem_list3_init(l3);
3864 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3865 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3866 l3->shared = new_shared;
e498be7d 3867 l3->alien = new_alien;
b28a02de 3868 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3869 cachep->batchcount + cachep->num;
e498be7d
CL
3870 cachep->nodelists[node] = l3;
3871 }
cafeb02e 3872 return 0;
0718dc2a 3873
a737b3e2 3874fail:
0718dc2a
CL
3875 if (!cachep->next.next) {
3876 /* Cache is not active yet. Roll back what we did */
3877 node--;
3878 while (node >= 0) {
3879 if (cachep->nodelists[node]) {
3880 l3 = cachep->nodelists[node];
3881
3882 kfree(l3->shared);
3883 free_alien_cache(l3->alien);
3884 kfree(l3);
3885 cachep->nodelists[node] = NULL;
3886 }
3887 node--;
3888 }
3889 }
cafeb02e 3890 return -ENOMEM;
e498be7d
CL
3891}
3892
1da177e4 3893struct ccupdate_struct {
343e0d7a 3894 struct kmem_cache *cachep;
1da177e4
LT
3895 struct array_cache *new[NR_CPUS];
3896};
3897
3898static void do_ccupdate_local(void *info)
3899{
a737b3e2 3900 struct ccupdate_struct *new = info;
1da177e4
LT
3901 struct array_cache *old;
3902
3903 check_irq_off();
9a2dba4b 3904 old = cpu_cache_get(new->cachep);
e498be7d 3905
1da177e4
LT
3906 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3907 new->new[smp_processor_id()] = old;
3908}
3909
b5d8ca7c 3910/* Always called with the cache_chain_mutex held */
a737b3e2
AM
3911static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3912 int batchcount, int shared)
1da177e4 3913{
d2e7b7d0 3914 struct ccupdate_struct *new;
2ed3a4ef 3915 int i;
1da177e4 3916
d2e7b7d0
SS
3917 new = kzalloc(sizeof(*new), GFP_KERNEL);
3918 if (!new)
3919 return -ENOMEM;
3920
e498be7d 3921 for_each_online_cpu(i) {
d2e7b7d0 3922 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
a737b3e2 3923 batchcount);
d2e7b7d0 3924 if (!new->new[i]) {
b28a02de 3925 for (i--; i >= 0; i--)
d2e7b7d0
SS
3926 kfree(new->new[i]);
3927 kfree(new);
e498be7d 3928 return -ENOMEM;
1da177e4
LT
3929 }
3930 }
d2e7b7d0 3931 new->cachep = cachep;
1da177e4 3932
15c8b6c1 3933 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 3934
1da177e4 3935 check_irq_on();
1da177e4
LT
3936 cachep->batchcount = batchcount;
3937 cachep->limit = limit;
e498be7d 3938 cachep->shared = shared;
1da177e4 3939
e498be7d 3940 for_each_online_cpu(i) {
d2e7b7d0 3941 struct array_cache *ccold = new->new[i];
1da177e4
LT
3942 if (!ccold)
3943 continue;
e498be7d 3944 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3945 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3946 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3947 kfree(ccold);
3948 }
d2e7b7d0 3949 kfree(new);
2ed3a4ef 3950 return alloc_kmemlist(cachep);
1da177e4
LT
3951}
3952
b5d8ca7c 3953/* Called with cache_chain_mutex held always */
2ed3a4ef 3954static int enable_cpucache(struct kmem_cache *cachep)
1da177e4
LT
3955{
3956 int err;
3957 int limit, shared;
3958
a737b3e2
AM
3959 /*
3960 * The head array serves three purposes:
1da177e4
LT
3961 * - create a LIFO ordering, i.e. return objects that are cache-warm
3962 * - reduce the number of spinlock operations.
a737b3e2 3963 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3964 * bufctl chains: array operations are cheaper.
3965 * The numbers are guessed, we should auto-tune as described by
3966 * Bonwick.
3967 */
3dafccf2 3968 if (cachep->buffer_size > 131072)
1da177e4 3969 limit = 1;
3dafccf2 3970 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 3971 limit = 8;
3dafccf2 3972 else if (cachep->buffer_size > 1024)
1da177e4 3973 limit = 24;
3dafccf2 3974 else if (cachep->buffer_size > 256)
1da177e4
LT
3975 limit = 54;
3976 else
3977 limit = 120;
3978
a737b3e2
AM
3979 /*
3980 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3981 * allocation behaviour: Most allocs on one cpu, most free operations
3982 * on another cpu. For these cases, an efficient object passing between
3983 * cpus is necessary. This is provided by a shared array. The array
3984 * replaces Bonwick's magazine layer.
3985 * On uniprocessor, it's functionally equivalent (but less efficient)
3986 * to a larger limit. Thus disabled by default.
3987 */
3988 shared = 0;
364fbb29 3989 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3990 shared = 8;
1da177e4
LT
3991
3992#if DEBUG
a737b3e2
AM
3993 /*
3994 * With debugging enabled, large batchcount lead to excessively long
3995 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3996 */
3997 if (limit > 32)
3998 limit = 32;
3999#endif
b28a02de 4000 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
4001 if (err)
4002 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4003 cachep->name, -err);
2ed3a4ef 4004 return err;
1da177e4
LT
4005}
4006
1b55253a
CL
4007/*
4008 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4009 * necessary. Note that the l3 listlock also protects the array_cache
4010 * if drain_array() is used on the shared array.
1b55253a
CL
4011 */
4012void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4013 struct array_cache *ac, int force, int node)
1da177e4
LT
4014{
4015 int tofree;
4016
1b55253a
CL
4017 if (!ac || !ac->avail)
4018 return;
1da177e4
LT
4019 if (ac->touched && !force) {
4020 ac->touched = 0;
b18e7e65 4021 } else {
1b55253a 4022 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4023 if (ac->avail) {
4024 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4025 if (tofree > ac->avail)
4026 tofree = (ac->avail + 1) / 2;
4027 free_block(cachep, ac->entry, tofree, node);
4028 ac->avail -= tofree;
4029 memmove(ac->entry, &(ac->entry[tofree]),
4030 sizeof(void *) * ac->avail);
4031 }
1b55253a 4032 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4033 }
4034}
4035
4036/**
4037 * cache_reap - Reclaim memory from caches.
05fb6bf0 4038 * @w: work descriptor
1da177e4
LT
4039 *
4040 * Called from workqueue/eventd every few seconds.
4041 * Purpose:
4042 * - clear the per-cpu caches for this CPU.
4043 * - return freeable pages to the main free memory pool.
4044 *
a737b3e2
AM
4045 * If we cannot acquire the cache chain mutex then just give up - we'll try
4046 * again on the next iteration.
1da177e4 4047 */
7c5cae36 4048static void cache_reap(struct work_struct *w)
1da177e4 4049{
7a7c381d 4050 struct kmem_cache *searchp;
e498be7d 4051 struct kmem_list3 *l3;
aab2207c 4052 int node = numa_node_id();
7c5cae36
CL
4053 struct delayed_work *work =
4054 container_of(w, struct delayed_work, work);
1da177e4 4055
7c5cae36 4056 if (!mutex_trylock(&cache_chain_mutex))
1da177e4 4057 /* Give up. Setup the next iteration. */
7c5cae36 4058 goto out;
1da177e4 4059
7a7c381d 4060 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
4061 check_irq_on();
4062
35386e3b
CL
4063 /*
4064 * We only take the l3 lock if absolutely necessary and we
4065 * have established with reasonable certainty that
4066 * we can do some work if the lock was obtained.
4067 */
aab2207c 4068 l3 = searchp->nodelists[node];
35386e3b 4069
8fce4d8e 4070 reap_alien(searchp, l3);
1da177e4 4071
aab2207c 4072 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4073
35386e3b
CL
4074 /*
4075 * These are racy checks but it does not matter
4076 * if we skip one check or scan twice.
4077 */
e498be7d 4078 if (time_after(l3->next_reap, jiffies))
35386e3b 4079 goto next;
1da177e4 4080
e498be7d 4081 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4082
aab2207c 4083 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4084
ed11d9eb 4085 if (l3->free_touched)
e498be7d 4086 l3->free_touched = 0;
ed11d9eb
CL
4087 else {
4088 int freed;
1da177e4 4089
ed11d9eb
CL
4090 freed = drain_freelist(searchp, l3, (l3->free_limit +
4091 5 * searchp->num - 1) / (5 * searchp->num));
4092 STATS_ADD_REAPED(searchp, freed);
4093 }
35386e3b 4094next:
1da177e4
LT
4095 cond_resched();
4096 }
4097 check_irq_on();
fc0abb14 4098 mutex_unlock(&cache_chain_mutex);
8fce4d8e 4099 next_reap_node();
7c5cae36 4100out:
a737b3e2 4101 /* Set up the next iteration */
7c5cae36 4102 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4103}
4104
158a9624 4105#ifdef CONFIG_SLABINFO
1da177e4 4106
85289f98 4107static void print_slabinfo_header(struct seq_file *m)
1da177e4 4108{
85289f98
PE
4109 /*
4110 * Output format version, so at least we can change it
4111 * without _too_ many complaints.
4112 */
1da177e4 4113#if STATS
85289f98 4114 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4115#else
85289f98 4116 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4117#endif
85289f98
PE
4118 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4119 "<objperslab> <pagesperslab>");
4120 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4121 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4122#if STATS
85289f98 4123 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4124 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4125 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4126#endif
85289f98
PE
4127 seq_putc(m, '\n');
4128}
4129
4130static void *s_start(struct seq_file *m, loff_t *pos)
4131{
4132 loff_t n = *pos;
85289f98 4133
fc0abb14 4134 mutex_lock(&cache_chain_mutex);
85289f98
PE
4135 if (!n)
4136 print_slabinfo_header(m);
b92151ba
PE
4137
4138 return seq_list_start(&cache_chain, *pos);
1da177e4
LT
4139}
4140
4141static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4142{
b92151ba 4143 return seq_list_next(p, &cache_chain, pos);
1da177e4
LT
4144}
4145
4146static void s_stop(struct seq_file *m, void *p)
4147{
fc0abb14 4148 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4149}
4150
4151static int s_show(struct seq_file *m, void *p)
4152{
b92151ba 4153 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
b28a02de
PE
4154 struct slab *slabp;
4155 unsigned long active_objs;
4156 unsigned long num_objs;
4157 unsigned long active_slabs = 0;
4158 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4159 const char *name;
1da177e4 4160 char *error = NULL;
e498be7d
CL
4161 int node;
4162 struct kmem_list3 *l3;
1da177e4 4163
1da177e4
LT
4164 active_objs = 0;
4165 num_slabs = 0;
e498be7d
CL
4166 for_each_online_node(node) {
4167 l3 = cachep->nodelists[node];
4168 if (!l3)
4169 continue;
4170
ca3b9b91
RT
4171 check_irq_on();
4172 spin_lock_irq(&l3->list_lock);
e498be7d 4173
7a7c381d 4174 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4175 if (slabp->inuse != cachep->num && !error)
4176 error = "slabs_full accounting error";
4177 active_objs += cachep->num;
4178 active_slabs++;
4179 }
7a7c381d 4180 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4181 if (slabp->inuse == cachep->num && !error)
4182 error = "slabs_partial inuse accounting error";
4183 if (!slabp->inuse && !error)
4184 error = "slabs_partial/inuse accounting error";
4185 active_objs += slabp->inuse;
4186 active_slabs++;
4187 }
7a7c381d 4188 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4189 if (slabp->inuse && !error)
4190 error = "slabs_free/inuse accounting error";
4191 num_slabs++;
4192 }
4193 free_objects += l3->free_objects;
4484ebf1
RT
4194 if (l3->shared)
4195 shared_avail += l3->shared->avail;
e498be7d 4196
ca3b9b91 4197 spin_unlock_irq(&l3->list_lock);
1da177e4 4198 }
b28a02de
PE
4199 num_slabs += active_slabs;
4200 num_objs = num_slabs * cachep->num;
e498be7d 4201 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4202 error = "free_objects accounting error";
4203
b28a02de 4204 name = cachep->name;
1da177e4
LT
4205 if (error)
4206 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4207
4208 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 4209 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 4210 cachep->num, (1 << cachep->gfporder));
1da177e4 4211 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4212 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4213 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4214 active_slabs, num_slabs, shared_avail);
1da177e4 4215#if STATS
b28a02de 4216 { /* list3 stats */
1da177e4
LT
4217 unsigned long high = cachep->high_mark;
4218 unsigned long allocs = cachep->num_allocations;
4219 unsigned long grown = cachep->grown;
4220 unsigned long reaped = cachep->reaped;
4221 unsigned long errors = cachep->errors;
4222 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4223 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4224 unsigned long node_frees = cachep->node_frees;
fb7faf33 4225 unsigned long overflows = cachep->node_overflow;
1da177e4 4226
e498be7d 4227 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 4228 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 4229 reaped, errors, max_freeable, node_allocs,
fb7faf33 4230 node_frees, overflows);
1da177e4
LT
4231 }
4232 /* cpu stats */
4233 {
4234 unsigned long allochit = atomic_read(&cachep->allochit);
4235 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4236 unsigned long freehit = atomic_read(&cachep->freehit);
4237 unsigned long freemiss = atomic_read(&cachep->freemiss);
4238
4239 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4240 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4241 }
4242#endif
4243 seq_putc(m, '\n');
1da177e4
LT
4244 return 0;
4245}
4246
4247/*
4248 * slabinfo_op - iterator that generates /proc/slabinfo
4249 *
4250 * Output layout:
4251 * cache-name
4252 * num-active-objs
4253 * total-objs
4254 * object size
4255 * num-active-slabs
4256 * total-slabs
4257 * num-pages-per-slab
4258 * + further values on SMP and with statistics enabled
4259 */
4260
15ad7cdc 4261const struct seq_operations slabinfo_op = {
b28a02de
PE
4262 .start = s_start,
4263 .next = s_next,
4264 .stop = s_stop,
4265 .show = s_show,
1da177e4
LT
4266};
4267
4268#define MAX_SLABINFO_WRITE 128
4269/**
4270 * slabinfo_write - Tuning for the slab allocator
4271 * @file: unused
4272 * @buffer: user buffer
4273 * @count: data length
4274 * @ppos: unused
4275 */
b28a02de
PE
4276ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4277 size_t count, loff_t *ppos)
1da177e4 4278{
b28a02de 4279 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4280 int limit, batchcount, shared, res;
7a7c381d 4281 struct kmem_cache *cachep;
b28a02de 4282
1da177e4
LT
4283 if (count > MAX_SLABINFO_WRITE)
4284 return -EINVAL;
4285 if (copy_from_user(&kbuf, buffer, count))
4286 return -EFAULT;
b28a02de 4287 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4288
4289 tmp = strchr(kbuf, ' ');
4290 if (!tmp)
4291 return -EINVAL;
4292 *tmp = '\0';
4293 tmp++;
4294 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4295 return -EINVAL;
4296
4297 /* Find the cache in the chain of caches. */
fc0abb14 4298 mutex_lock(&cache_chain_mutex);
1da177e4 4299 res = -EINVAL;
7a7c381d 4300 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4301 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4302 if (limit < 1 || batchcount < 1 ||
4303 batchcount > limit || shared < 0) {
e498be7d 4304 res = 0;
1da177e4 4305 } else {
e498be7d 4306 res = do_tune_cpucache(cachep, limit,
b28a02de 4307 batchcount, shared);
1da177e4
LT
4308 }
4309 break;
4310 }
4311 }
fc0abb14 4312 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4313 if (res >= 0)
4314 res = count;
4315 return res;
4316}
871751e2
AV
4317
4318#ifdef CONFIG_DEBUG_SLAB_LEAK
4319
4320static void *leaks_start(struct seq_file *m, loff_t *pos)
4321{
871751e2 4322 mutex_lock(&cache_chain_mutex);
b92151ba 4323 return seq_list_start(&cache_chain, *pos);
871751e2
AV
4324}
4325
4326static inline int add_caller(unsigned long *n, unsigned long v)
4327{
4328 unsigned long *p;
4329 int l;
4330 if (!v)
4331 return 1;
4332 l = n[1];
4333 p = n + 2;
4334 while (l) {
4335 int i = l/2;
4336 unsigned long *q = p + 2 * i;
4337 if (*q == v) {
4338 q[1]++;
4339 return 1;
4340 }
4341 if (*q > v) {
4342 l = i;
4343 } else {
4344 p = q + 2;
4345 l -= i + 1;
4346 }
4347 }
4348 if (++n[1] == n[0])
4349 return 0;
4350 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4351 p[0] = v;
4352 p[1] = 1;
4353 return 1;
4354}
4355
4356static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4357{
4358 void *p;
4359 int i;
4360 if (n[0] == n[1])
4361 return;
4362 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4363 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4364 continue;
4365 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4366 return;
4367 }
4368}
4369
4370static void show_symbol(struct seq_file *m, unsigned long address)
4371{
4372#ifdef CONFIG_KALLSYMS
871751e2 4373 unsigned long offset, size;
9281acea 4374 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4375
a5c43dae 4376 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4377 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4378 if (modname[0])
871751e2
AV
4379 seq_printf(m, " [%s]", modname);
4380 return;
4381 }
4382#endif
4383 seq_printf(m, "%p", (void *)address);
4384}
4385
4386static int leaks_show(struct seq_file *m, void *p)
4387{
b92151ba 4388 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
871751e2
AV
4389 struct slab *slabp;
4390 struct kmem_list3 *l3;
4391 const char *name;
4392 unsigned long *n = m->private;
4393 int node;
4394 int i;
4395
4396 if (!(cachep->flags & SLAB_STORE_USER))
4397 return 0;
4398 if (!(cachep->flags & SLAB_RED_ZONE))
4399 return 0;
4400
4401 /* OK, we can do it */
4402
4403 n[1] = 0;
4404
4405 for_each_online_node(node) {
4406 l3 = cachep->nodelists[node];
4407 if (!l3)
4408 continue;
4409
4410 check_irq_on();
4411 spin_lock_irq(&l3->list_lock);
4412
7a7c381d 4413 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4414 handle_slab(n, cachep, slabp);
7a7c381d 4415 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4416 handle_slab(n, cachep, slabp);
871751e2
AV
4417 spin_unlock_irq(&l3->list_lock);
4418 }
4419 name = cachep->name;
4420 if (n[0] == n[1]) {
4421 /* Increase the buffer size */
4422 mutex_unlock(&cache_chain_mutex);
4423 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4424 if (!m->private) {
4425 /* Too bad, we are really out */
4426 m->private = n;
4427 mutex_lock(&cache_chain_mutex);
4428 return -ENOMEM;
4429 }
4430 *(unsigned long *)m->private = n[0] * 2;
4431 kfree(n);
4432 mutex_lock(&cache_chain_mutex);
4433 /* Now make sure this entry will be retried */
4434 m->count = m->size;
4435 return 0;
4436 }
4437 for (i = 0; i < n[1]; i++) {
4438 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4439 show_symbol(m, n[2*i+2]);
4440 seq_putc(m, '\n');
4441 }
d2e7b7d0 4442
871751e2
AV
4443 return 0;
4444}
4445
15ad7cdc 4446const struct seq_operations slabstats_op = {
871751e2
AV
4447 .start = leaks_start,
4448 .next = s_next,
4449 .stop = s_stop,
4450 .show = leaks_show,
4451};
4452#endif
1da177e4
LT
4453#endif
4454
00e145b6
MS
4455/**
4456 * ksize - get the actual amount of memory allocated for a given object
4457 * @objp: Pointer to the object
4458 *
4459 * kmalloc may internally round up allocations and return more memory
4460 * than requested. ksize() can be used to determine the actual amount of
4461 * memory allocated. The caller may use this additional memory, even though
4462 * a smaller amount of memory was initially specified with the kmalloc call.
4463 * The caller must guarantee that objp points to a valid object previously
4464 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4465 * must not be freed during the duration of the call.
4466 */
fd76bab2 4467size_t ksize(const void *objp)
1da177e4 4468{
ef8b4520
CL
4469 BUG_ON(!objp);
4470 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4471 return 0;
1da177e4 4472
6ed5eb22 4473 return obj_size(virt_to_cache(objp));
1da177e4 4474}