]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/slab.c
IPMI: fix warning in ipmi_si_intf.c
[net-next-2.6.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
1da177e4
LT
98#include <linux/seq_file.h>
99#include <linux/notifier.h>
100#include <linux/kallsyms.h>
101#include <linux/cpu.h>
102#include <linux/sysctl.h>
103#include <linux/module.h>
104#include <linux/rcupdate.h>
543537bd 105#include <linux/string.h>
138ae663 106#include <linux/uaccess.h>
e498be7d 107#include <linux/nodemask.h>
dc85da15 108#include <linux/mempolicy.h>
fc0abb14 109#include <linux/mutex.h>
8a8b6502 110#include <linux/fault-inject.h>
e7eebaf6 111#include <linux/rtmutex.h>
6a2d7a95 112#include <linux/reciprocal_div.h>
1da177e4 113
1da177e4
LT
114#include <asm/cacheflush.h>
115#include <asm/tlbflush.h>
116#include <asm/page.h>
117
118/*
50953fe9 119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
120 * 0 for faster, smaller code (especially in the critical paths).
121 *
122 * STATS - 1 to collect stats for /proc/slabinfo.
123 * 0 for faster, smaller code (especially in the critical paths).
124 *
125 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
126 */
127
128#ifdef CONFIG_DEBUG_SLAB
129#define DEBUG 1
130#define STATS 1
131#define FORCED_DEBUG 1
132#else
133#define DEBUG 0
134#define STATS 0
135#define FORCED_DEBUG 0
136#endif
137
1da177e4
LT
138/* Shouldn't this be in a header file somewhere? */
139#define BYTES_PER_WORD sizeof(void *)
87a927c7 140#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4
LT
141
142#ifndef cache_line_size
143#define cache_line_size() L1_CACHE_BYTES
144#endif
145
146#ifndef ARCH_KMALLOC_MINALIGN
147/*
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
b46b8f19
DW
152 * alignment larger than the alignment of a 64-bit integer.
153 * ARCH_KMALLOC_MINALIGN allows that.
154 * Note that increasing this value may disable some debug features.
1da177e4 155 */
b46b8f19 156#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
1da177e4
LT
157#endif
158
159#ifndef ARCH_SLAB_MINALIGN
160/*
161 * Enforce a minimum alignment for all caches.
162 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
163 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
164 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
165 * some debug features.
166 */
167#define ARCH_SLAB_MINALIGN 0
168#endif
169
170#ifndef ARCH_KMALLOC_FLAGS
171#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
172#endif
173
174/* Legal flag mask for kmem_cache_create(). */
175#if DEBUG
50953fe9 176# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 177 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 178 SLAB_CACHE_DMA | \
5af60839 179 SLAB_STORE_USER | \
1da177e4 180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 181 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4 182#else
ac2b898c 183# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 184 SLAB_CACHE_DMA | \
1da177e4 185 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 186 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4
LT
187#endif
188
189/*
190 * kmem_bufctl_t:
191 *
192 * Bufctl's are used for linking objs within a slab
193 * linked offsets.
194 *
195 * This implementation relies on "struct page" for locating the cache &
196 * slab an object belongs to.
197 * This allows the bufctl structure to be small (one int), but limits
198 * the number of objects a slab (not a cache) can contain when off-slab
199 * bufctls are used. The limit is the size of the largest general cache
200 * that does not use off-slab slabs.
201 * For 32bit archs with 4 kB pages, is this 56.
202 * This is not serious, as it is only for large objects, when it is unwise
203 * to have too many per slab.
204 * Note: This limit can be raised by introducing a general cache whose size
205 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
206 */
207
fa5b08d5 208typedef unsigned int kmem_bufctl_t;
1da177e4
LT
209#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
210#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
211#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
212#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 213
1da177e4
LT
214/*
215 * struct slab
216 *
217 * Manages the objs in a slab. Placed either at the beginning of mem allocated
218 * for a slab, or allocated from an general cache.
219 * Slabs are chained into three list: fully used, partial, fully free slabs.
220 */
221struct slab {
b28a02de
PE
222 struct list_head list;
223 unsigned long colouroff;
224 void *s_mem; /* including colour offset */
225 unsigned int inuse; /* num of objs active in slab */
226 kmem_bufctl_t free;
227 unsigned short nodeid;
1da177e4
LT
228};
229
230/*
231 * struct slab_rcu
232 *
233 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
234 * arrange for kmem_freepages to be called via RCU. This is useful if
235 * we need to approach a kernel structure obliquely, from its address
236 * obtained without the usual locking. We can lock the structure to
237 * stabilize it and check it's still at the given address, only if we
238 * can be sure that the memory has not been meanwhile reused for some
239 * other kind of object (which our subsystem's lock might corrupt).
240 *
241 * rcu_read_lock before reading the address, then rcu_read_unlock after
242 * taking the spinlock within the structure expected at that address.
243 *
244 * We assume struct slab_rcu can overlay struct slab when destroying.
245 */
246struct slab_rcu {
b28a02de 247 struct rcu_head head;
343e0d7a 248 struct kmem_cache *cachep;
b28a02de 249 void *addr;
1da177e4
LT
250};
251
252/*
253 * struct array_cache
254 *
1da177e4
LT
255 * Purpose:
256 * - LIFO ordering, to hand out cache-warm objects from _alloc
257 * - reduce the number of linked list operations
258 * - reduce spinlock operations
259 *
260 * The limit is stored in the per-cpu structure to reduce the data cache
261 * footprint.
262 *
263 */
264struct array_cache {
265 unsigned int avail;
266 unsigned int limit;
267 unsigned int batchcount;
268 unsigned int touched;
e498be7d 269 spinlock_t lock;
a737b3e2
AM
270 void *entry[0]; /*
271 * Must have this definition in here for the proper
272 * alignment of array_cache. Also simplifies accessing
273 * the entries.
274 * [0] is for gcc 2.95. It should really be [].
275 */
1da177e4
LT
276};
277
a737b3e2
AM
278/*
279 * bootstrap: The caches do not work without cpuarrays anymore, but the
280 * cpuarrays are allocated from the generic caches...
1da177e4
LT
281 */
282#define BOOT_CPUCACHE_ENTRIES 1
283struct arraycache_init {
284 struct array_cache cache;
b28a02de 285 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
286};
287
288/*
e498be7d 289 * The slab lists for all objects.
1da177e4
LT
290 */
291struct kmem_list3 {
b28a02de
PE
292 struct list_head slabs_partial; /* partial list first, better asm code */
293 struct list_head slabs_full;
294 struct list_head slabs_free;
295 unsigned long free_objects;
b28a02de 296 unsigned int free_limit;
2e1217cf 297 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
298 spinlock_t list_lock;
299 struct array_cache *shared; /* shared per node */
300 struct array_cache **alien; /* on other nodes */
35386e3b
CL
301 unsigned long next_reap; /* updated without locking */
302 int free_touched; /* updated without locking */
1da177e4
LT
303};
304
e498be7d
CL
305/*
306 * Need this for bootstrapping a per node allocator.
307 */
308#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
309struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
310#define CACHE_CACHE 0
311#define SIZE_AC 1
312#define SIZE_L3 (1 + MAX_NUMNODES)
313
ed11d9eb
CL
314static int drain_freelist(struct kmem_cache *cache,
315 struct kmem_list3 *l3, int tofree);
316static void free_block(struct kmem_cache *cachep, void **objpp, int len,
317 int node);
2ed3a4ef 318static int enable_cpucache(struct kmem_cache *cachep);
65f27f38 319static void cache_reap(struct work_struct *unused);
ed11d9eb 320
e498be7d 321/*
a737b3e2
AM
322 * This function must be completely optimized away if a constant is passed to
323 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 324 */
7243cc05 325static __always_inline int index_of(const size_t size)
e498be7d 326{
5ec8a847
SR
327 extern void __bad_size(void);
328
e498be7d
CL
329 if (__builtin_constant_p(size)) {
330 int i = 0;
331
332#define CACHE(x) \
333 if (size <=x) \
334 return i; \
335 else \
336 i++;
337#include "linux/kmalloc_sizes.h"
338#undef CACHE
5ec8a847 339 __bad_size();
7243cc05 340 } else
5ec8a847 341 __bad_size();
e498be7d
CL
342 return 0;
343}
344
e0a42726
IM
345static int slab_early_init = 1;
346
e498be7d
CL
347#define INDEX_AC index_of(sizeof(struct arraycache_init))
348#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 349
5295a74c 350static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
351{
352 INIT_LIST_HEAD(&parent->slabs_full);
353 INIT_LIST_HEAD(&parent->slabs_partial);
354 INIT_LIST_HEAD(&parent->slabs_free);
355 parent->shared = NULL;
356 parent->alien = NULL;
2e1217cf 357 parent->colour_next = 0;
e498be7d
CL
358 spin_lock_init(&parent->list_lock);
359 parent->free_objects = 0;
360 parent->free_touched = 0;
361}
362
a737b3e2
AM
363#define MAKE_LIST(cachep, listp, slab, nodeid) \
364 do { \
365 INIT_LIST_HEAD(listp); \
366 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
367 } while (0)
368
a737b3e2
AM
369#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
370 do { \
e498be7d
CL
371 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
373 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
374 } while (0)
1da177e4
LT
375
376/*
343e0d7a 377 * struct kmem_cache
1da177e4
LT
378 *
379 * manages a cache.
380 */
b28a02de 381
2109a2d1 382struct kmem_cache {
1da177e4 383/* 1) per-cpu data, touched during every alloc/free */
b28a02de 384 struct array_cache *array[NR_CPUS];
b5d8ca7c 385/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
386 unsigned int batchcount;
387 unsigned int limit;
388 unsigned int shared;
b5d8ca7c 389
3dafccf2 390 unsigned int buffer_size;
6a2d7a95 391 u32 reciprocal_buffer_size;
b5d8ca7c 392/* 3) touched by every alloc & free from the backend */
b5d8ca7c 393
a737b3e2
AM
394 unsigned int flags; /* constant flags */
395 unsigned int num; /* # of objs per slab */
1da177e4 396
b5d8ca7c 397/* 4) cache_grow/shrink */
1da177e4 398 /* order of pgs per slab (2^n) */
b28a02de 399 unsigned int gfporder;
1da177e4
LT
400
401 /* force GFP flags, e.g. GFP_DMA */
b28a02de 402 gfp_t gfpflags;
1da177e4 403
a737b3e2 404 size_t colour; /* cache colouring range */
b28a02de 405 unsigned int colour_off; /* colour offset */
343e0d7a 406 struct kmem_cache *slabp_cache;
b28a02de 407 unsigned int slab_size;
a737b3e2 408 unsigned int dflags; /* dynamic flags */
1da177e4
LT
409
410 /* constructor func */
343e0d7a 411 void (*ctor) (void *, struct kmem_cache *, unsigned long);
1da177e4 412
b5d8ca7c 413/* 5) cache creation/removal */
b28a02de
PE
414 const char *name;
415 struct list_head next;
1da177e4 416
b5d8ca7c 417/* 6) statistics */
1da177e4 418#if STATS
b28a02de
PE
419 unsigned long num_active;
420 unsigned long num_allocations;
421 unsigned long high_mark;
422 unsigned long grown;
423 unsigned long reaped;
424 unsigned long errors;
425 unsigned long max_freeable;
426 unsigned long node_allocs;
427 unsigned long node_frees;
fb7faf33 428 unsigned long node_overflow;
b28a02de
PE
429 atomic_t allochit;
430 atomic_t allocmiss;
431 atomic_t freehit;
432 atomic_t freemiss;
1da177e4
LT
433#endif
434#if DEBUG
3dafccf2
MS
435 /*
436 * If debugging is enabled, then the allocator can add additional
437 * fields and/or padding to every object. buffer_size contains the total
438 * object size including these internal fields, the following two
439 * variables contain the offset to the user object and its size.
440 */
441 int obj_offset;
442 int obj_size;
1da177e4 443#endif
8da3430d
ED
444 /*
445 * We put nodelists[] at the end of kmem_cache, because we want to size
446 * this array to nr_node_ids slots instead of MAX_NUMNODES
447 * (see kmem_cache_init())
448 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
449 * is statically defined, so we reserve the max number of nodes.
450 */
451 struct kmem_list3 *nodelists[MAX_NUMNODES];
452 /*
453 * Do not add fields after nodelists[]
454 */
1da177e4
LT
455};
456
457#define CFLGS_OFF_SLAB (0x80000000UL)
458#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
459
460#define BATCHREFILL_LIMIT 16
a737b3e2
AM
461/*
462 * Optimization question: fewer reaps means less probability for unnessary
463 * cpucache drain/refill cycles.
1da177e4 464 *
dc6f3f27 465 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
466 * which could lock up otherwise freeable slabs.
467 */
468#define REAPTIMEOUT_CPUC (2*HZ)
469#define REAPTIMEOUT_LIST3 (4*HZ)
470
471#if STATS
472#define STATS_INC_ACTIVE(x) ((x)->num_active++)
473#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
474#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
475#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 476#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
477#define STATS_SET_HIGH(x) \
478 do { \
479 if ((x)->num_active > (x)->high_mark) \
480 (x)->high_mark = (x)->num_active; \
481 } while (0)
1da177e4
LT
482#define STATS_INC_ERR(x) ((x)->errors++)
483#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 484#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 485#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
486#define STATS_SET_FREEABLE(x, i) \
487 do { \
488 if ((x)->max_freeable < i) \
489 (x)->max_freeable = i; \
490 } while (0)
1da177e4
LT
491#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
492#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
493#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
494#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
495#else
496#define STATS_INC_ACTIVE(x) do { } while (0)
497#define STATS_DEC_ACTIVE(x) do { } while (0)
498#define STATS_INC_ALLOCED(x) do { } while (0)
499#define STATS_INC_GROWN(x) do { } while (0)
ed11d9eb 500#define STATS_ADD_REAPED(x,y) do { } while (0)
1da177e4
LT
501#define STATS_SET_HIGH(x) do { } while (0)
502#define STATS_INC_ERR(x) do { } while (0)
503#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 504#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 505#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 506#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
507#define STATS_INC_ALLOCHIT(x) do { } while (0)
508#define STATS_INC_ALLOCMISS(x) do { } while (0)
509#define STATS_INC_FREEHIT(x) do { } while (0)
510#define STATS_INC_FREEMISS(x) do { } while (0)
511#endif
512
513#if DEBUG
1da177e4 514
a737b3e2
AM
515/*
516 * memory layout of objects:
1da177e4 517 * 0 : objp
3dafccf2 518 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
519 * the end of an object is aligned with the end of the real
520 * allocation. Catches writes behind the end of the allocation.
3dafccf2 521 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 522 * redzone word.
3dafccf2
MS
523 * cachep->obj_offset: The real object.
524 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
525 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
526 * [BYTES_PER_WORD long]
1da177e4 527 */
343e0d7a 528static int obj_offset(struct kmem_cache *cachep)
1da177e4 529{
3dafccf2 530 return cachep->obj_offset;
1da177e4
LT
531}
532
343e0d7a 533static int obj_size(struct kmem_cache *cachep)
1da177e4 534{
3dafccf2 535 return cachep->obj_size;
1da177e4
LT
536}
537
b46b8f19 538static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
539{
540 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
541 return (unsigned long long*) (objp + obj_offset(cachep) -
542 sizeof(unsigned long long));
1da177e4
LT
543}
544
b46b8f19 545static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
546{
547 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
548 if (cachep->flags & SLAB_STORE_USER)
b46b8f19
DW
549 return (unsigned long long *)(objp + cachep->buffer_size -
550 sizeof(unsigned long long) -
87a927c7 551 REDZONE_ALIGN);
b46b8f19
DW
552 return (unsigned long long *) (objp + cachep->buffer_size -
553 sizeof(unsigned long long));
1da177e4
LT
554}
555
343e0d7a 556static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
557{
558 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 559 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
560}
561
562#else
563
3dafccf2
MS
564#define obj_offset(x) 0
565#define obj_size(cachep) (cachep->buffer_size)
b46b8f19
DW
566#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
567#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
568#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
569
570#endif
571
1da177e4
LT
572/*
573 * Do not go above this order unless 0 objects fit into the slab.
574 */
575#define BREAK_GFP_ORDER_HI 1
576#define BREAK_GFP_ORDER_LO 0
577static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
578
a737b3e2
AM
579/*
580 * Functions for storing/retrieving the cachep and or slab from the page
581 * allocator. These are used to find the slab an obj belongs to. With kfree(),
582 * these are used to find the cache which an obj belongs to.
1da177e4 583 */
065d41cb
PE
584static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
585{
586 page->lru.next = (struct list_head *)cache;
587}
588
589static inline struct kmem_cache *page_get_cache(struct page *page)
590{
d85f3385 591 page = compound_head(page);
ddc2e812 592 BUG_ON(!PageSlab(page));
065d41cb
PE
593 return (struct kmem_cache *)page->lru.next;
594}
595
596static inline void page_set_slab(struct page *page, struct slab *slab)
597{
598 page->lru.prev = (struct list_head *)slab;
599}
600
601static inline struct slab *page_get_slab(struct page *page)
602{
ddc2e812 603 BUG_ON(!PageSlab(page));
065d41cb
PE
604 return (struct slab *)page->lru.prev;
605}
1da177e4 606
6ed5eb22
PE
607static inline struct kmem_cache *virt_to_cache(const void *obj)
608{
b49af68f 609 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
610 return page_get_cache(page);
611}
612
613static inline struct slab *virt_to_slab(const void *obj)
614{
b49af68f 615 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
616 return page_get_slab(page);
617}
618
8fea4e96
PE
619static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
620 unsigned int idx)
621{
622 return slab->s_mem + cache->buffer_size * idx;
623}
624
6a2d7a95
ED
625/*
626 * We want to avoid an expensive divide : (offset / cache->buffer_size)
627 * Using the fact that buffer_size is a constant for a particular cache,
628 * we can replace (offset / cache->buffer_size) by
629 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
630 */
631static inline unsigned int obj_to_index(const struct kmem_cache *cache,
632 const struct slab *slab, void *obj)
8fea4e96 633{
6a2d7a95
ED
634 u32 offset = (obj - slab->s_mem);
635 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
636}
637
a737b3e2
AM
638/*
639 * These are the default caches for kmalloc. Custom caches can have other sizes.
640 */
1da177e4
LT
641struct cache_sizes malloc_sizes[] = {
642#define CACHE(x) { .cs_size = (x) },
643#include <linux/kmalloc_sizes.h>
644 CACHE(ULONG_MAX)
645#undef CACHE
646};
647EXPORT_SYMBOL(malloc_sizes);
648
649/* Must match cache_sizes above. Out of line to keep cache footprint low. */
650struct cache_names {
651 char *name;
652 char *name_dma;
653};
654
655static struct cache_names __initdata cache_names[] = {
656#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
657#include <linux/kmalloc_sizes.h>
b28a02de 658 {NULL,}
1da177e4
LT
659#undef CACHE
660};
661
662static struct arraycache_init initarray_cache __initdata =
b28a02de 663 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 664static struct arraycache_init initarray_generic =
b28a02de 665 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
666
667/* internal cache of cache description objs */
343e0d7a 668static struct kmem_cache cache_cache = {
b28a02de
PE
669 .batchcount = 1,
670 .limit = BOOT_CPUCACHE_ENTRIES,
671 .shared = 1,
343e0d7a 672 .buffer_size = sizeof(struct kmem_cache),
b28a02de 673 .name = "kmem_cache",
1da177e4
LT
674};
675
056c6241
RT
676#define BAD_ALIEN_MAGIC 0x01020304ul
677
f1aaee53
AV
678#ifdef CONFIG_LOCKDEP
679
680/*
681 * Slab sometimes uses the kmalloc slabs to store the slab headers
682 * for other slabs "off slab".
683 * The locking for this is tricky in that it nests within the locks
684 * of all other slabs in a few places; to deal with this special
685 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
686 *
687 * We set lock class for alien array caches which are up during init.
688 * The lock annotation will be lost if all cpus of a node goes down and
689 * then comes back up during hotplug
f1aaee53 690 */
056c6241
RT
691static struct lock_class_key on_slab_l3_key;
692static struct lock_class_key on_slab_alc_key;
693
694static inline void init_lock_keys(void)
f1aaee53 695
f1aaee53
AV
696{
697 int q;
056c6241
RT
698 struct cache_sizes *s = malloc_sizes;
699
700 while (s->cs_size != ULONG_MAX) {
701 for_each_node(q) {
702 struct array_cache **alc;
703 int r;
704 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
705 if (!l3 || OFF_SLAB(s->cs_cachep))
706 continue;
707 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
708 alc = l3->alien;
709 /*
710 * FIXME: This check for BAD_ALIEN_MAGIC
711 * should go away when common slab code is taught to
712 * work even without alien caches.
713 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
714 * for alloc_alien_cache,
715 */
716 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
717 continue;
718 for_each_node(r) {
719 if (alc[r])
720 lockdep_set_class(&alc[r]->lock,
721 &on_slab_alc_key);
722 }
723 }
724 s++;
f1aaee53
AV
725 }
726}
f1aaee53 727#else
056c6241 728static inline void init_lock_keys(void)
f1aaee53
AV
729{
730}
731#endif
732
8f5be20b
RT
733/*
734 * 1. Guard access to the cache-chain.
735 * 2. Protect sanity of cpu_online_map against cpu hotplug events
736 */
fc0abb14 737static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
738static struct list_head cache_chain;
739
1da177e4
LT
740/*
741 * chicken and egg problem: delay the per-cpu array allocation
742 * until the general caches are up.
743 */
744static enum {
745 NONE,
e498be7d
CL
746 PARTIAL_AC,
747 PARTIAL_L3,
1da177e4
LT
748 FULL
749} g_cpucache_up;
750
39d24e64
MK
751/*
752 * used by boot code to determine if it can use slab based allocator
753 */
754int slab_is_available(void)
755{
756 return g_cpucache_up == FULL;
757}
758
52bad64d 759static DEFINE_PER_CPU(struct delayed_work, reap_work);
1da177e4 760
343e0d7a 761static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
762{
763 return cachep->array[smp_processor_id()];
764}
765
a737b3e2
AM
766static inline struct kmem_cache *__find_general_cachep(size_t size,
767 gfp_t gfpflags)
1da177e4
LT
768{
769 struct cache_sizes *csizep = malloc_sizes;
770
771#if DEBUG
772 /* This happens if someone tries to call
b28a02de
PE
773 * kmem_cache_create(), or __kmalloc(), before
774 * the generic caches are initialized.
775 */
c7e43c78 776 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 777#endif
6cb8f913
CL
778 if (!size)
779 return ZERO_SIZE_PTR;
780
1da177e4
LT
781 while (size > csizep->cs_size)
782 csizep++;
783
784 /*
0abf40c1 785 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
786 * has cs_{dma,}cachep==NULL. Thus no special case
787 * for large kmalloc calls required.
788 */
4b51d669 789#ifdef CONFIG_ZONE_DMA
1da177e4
LT
790 if (unlikely(gfpflags & GFP_DMA))
791 return csizep->cs_dmacachep;
4b51d669 792#endif
1da177e4
LT
793 return csizep->cs_cachep;
794}
795
b221385b 796static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
797{
798 return __find_general_cachep(size, gfpflags);
799}
97e2bde4 800
fbaccacf 801static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 802{
fbaccacf
SR
803 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
804}
1da177e4 805
a737b3e2
AM
806/*
807 * Calculate the number of objects and left-over bytes for a given buffer size.
808 */
fbaccacf
SR
809static void cache_estimate(unsigned long gfporder, size_t buffer_size,
810 size_t align, int flags, size_t *left_over,
811 unsigned int *num)
812{
813 int nr_objs;
814 size_t mgmt_size;
815 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 816
fbaccacf
SR
817 /*
818 * The slab management structure can be either off the slab or
819 * on it. For the latter case, the memory allocated for a
820 * slab is used for:
821 *
822 * - The struct slab
823 * - One kmem_bufctl_t for each object
824 * - Padding to respect alignment of @align
825 * - @buffer_size bytes for each object
826 *
827 * If the slab management structure is off the slab, then the
828 * alignment will already be calculated into the size. Because
829 * the slabs are all pages aligned, the objects will be at the
830 * correct alignment when allocated.
831 */
832 if (flags & CFLGS_OFF_SLAB) {
833 mgmt_size = 0;
834 nr_objs = slab_size / buffer_size;
835
836 if (nr_objs > SLAB_LIMIT)
837 nr_objs = SLAB_LIMIT;
838 } else {
839 /*
840 * Ignore padding for the initial guess. The padding
841 * is at most @align-1 bytes, and @buffer_size is at
842 * least @align. In the worst case, this result will
843 * be one greater than the number of objects that fit
844 * into the memory allocation when taking the padding
845 * into account.
846 */
847 nr_objs = (slab_size - sizeof(struct slab)) /
848 (buffer_size + sizeof(kmem_bufctl_t));
849
850 /*
851 * This calculated number will be either the right
852 * amount, or one greater than what we want.
853 */
854 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
855 > slab_size)
856 nr_objs--;
857
858 if (nr_objs > SLAB_LIMIT)
859 nr_objs = SLAB_LIMIT;
860
861 mgmt_size = slab_mgmt_size(nr_objs, align);
862 }
863 *num = nr_objs;
864 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
865}
866
867#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
868
a737b3e2
AM
869static void __slab_error(const char *function, struct kmem_cache *cachep,
870 char *msg)
1da177e4
LT
871{
872 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 873 function, cachep->name, msg);
1da177e4
LT
874 dump_stack();
875}
876
3395ee05
PM
877/*
878 * By default on NUMA we use alien caches to stage the freeing of
879 * objects allocated from other nodes. This causes massive memory
880 * inefficiencies when using fake NUMA setup to split memory into a
881 * large number of small nodes, so it can be disabled on the command
882 * line
883 */
884
885static int use_alien_caches __read_mostly = 1;
886static int __init noaliencache_setup(char *s)
887{
888 use_alien_caches = 0;
889 return 1;
890}
891__setup("noaliencache", noaliencache_setup);
892
8fce4d8e
CL
893#ifdef CONFIG_NUMA
894/*
895 * Special reaping functions for NUMA systems called from cache_reap().
896 * These take care of doing round robin flushing of alien caches (containing
897 * objects freed on different nodes from which they were allocated) and the
898 * flushing of remote pcps by calling drain_node_pages.
899 */
900static DEFINE_PER_CPU(unsigned long, reap_node);
901
902static void init_reap_node(int cpu)
903{
904 int node;
905
906 node = next_node(cpu_to_node(cpu), node_online_map);
907 if (node == MAX_NUMNODES)
442295c9 908 node = first_node(node_online_map);
8fce4d8e 909
7f6b8876 910 per_cpu(reap_node, cpu) = node;
8fce4d8e
CL
911}
912
913static void next_reap_node(void)
914{
915 int node = __get_cpu_var(reap_node);
916
8fce4d8e
CL
917 node = next_node(node, node_online_map);
918 if (unlikely(node >= MAX_NUMNODES))
919 node = first_node(node_online_map);
920 __get_cpu_var(reap_node) = node;
921}
922
923#else
924#define init_reap_node(cpu) do { } while (0)
925#define next_reap_node(void) do { } while (0)
926#endif
927
1da177e4
LT
928/*
929 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
930 * via the workqueue/eventd.
931 * Add the CPU number into the expiration time to minimize the possibility of
932 * the CPUs getting into lockstep and contending for the global cache chain
933 * lock.
934 */
897e679b 935static void __cpuinit start_cpu_timer(int cpu)
1da177e4 936{
52bad64d 937 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
1da177e4
LT
938
939 /*
940 * When this gets called from do_initcalls via cpucache_init(),
941 * init_workqueues() has already run, so keventd will be setup
942 * at that time.
943 */
52bad64d 944 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 945 init_reap_node(cpu);
65f27f38 946 INIT_DELAYED_WORK(reap_work, cache_reap);
2b284214
AV
947 schedule_delayed_work_on(cpu, reap_work,
948 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
949 }
950}
951
e498be7d 952static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 953 int batchcount)
1da177e4 954{
b28a02de 955 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
956 struct array_cache *nc = NULL;
957
e498be7d 958 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
959 if (nc) {
960 nc->avail = 0;
961 nc->limit = entries;
962 nc->batchcount = batchcount;
963 nc->touched = 0;
e498be7d 964 spin_lock_init(&nc->lock);
1da177e4
LT
965 }
966 return nc;
967}
968
3ded175a
CL
969/*
970 * Transfer objects in one arraycache to another.
971 * Locking must be handled by the caller.
972 *
973 * Return the number of entries transferred.
974 */
975static int transfer_objects(struct array_cache *to,
976 struct array_cache *from, unsigned int max)
977{
978 /* Figure out how many entries to transfer */
979 int nr = min(min(from->avail, max), to->limit - to->avail);
980
981 if (!nr)
982 return 0;
983
984 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
985 sizeof(void *) *nr);
986
987 from->avail -= nr;
988 to->avail += nr;
989 to->touched = 1;
990 return nr;
991}
992
765c4507
CL
993#ifndef CONFIG_NUMA
994
995#define drain_alien_cache(cachep, alien) do { } while (0)
996#define reap_alien(cachep, l3) do { } while (0)
997
998static inline struct array_cache **alloc_alien_cache(int node, int limit)
999{
1000 return (struct array_cache **)BAD_ALIEN_MAGIC;
1001}
1002
1003static inline void free_alien_cache(struct array_cache **ac_ptr)
1004{
1005}
1006
1007static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1008{
1009 return 0;
1010}
1011
1012static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1013 gfp_t flags)
1014{
1015 return NULL;
1016}
1017
8b98c169 1018static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1019 gfp_t flags, int nodeid)
1020{
1021 return NULL;
1022}
1023
1024#else /* CONFIG_NUMA */
1025
8b98c169 1026static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1027static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1028
5295a74c 1029static struct array_cache **alloc_alien_cache(int node, int limit)
e498be7d
CL
1030{
1031 struct array_cache **ac_ptr;
8ef82866 1032 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1033 int i;
1034
1035 if (limit > 1)
1036 limit = 12;
1037 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1038 if (ac_ptr) {
1039 for_each_node(i) {
1040 if (i == node || !node_online(i)) {
1041 ac_ptr[i] = NULL;
1042 continue;
1043 }
1044 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1045 if (!ac_ptr[i]) {
b28a02de 1046 for (i--; i <= 0; i--)
e498be7d
CL
1047 kfree(ac_ptr[i]);
1048 kfree(ac_ptr);
1049 return NULL;
1050 }
1051 }
1052 }
1053 return ac_ptr;
1054}
1055
5295a74c 1056static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1057{
1058 int i;
1059
1060 if (!ac_ptr)
1061 return;
e498be7d 1062 for_each_node(i)
b28a02de 1063 kfree(ac_ptr[i]);
e498be7d
CL
1064 kfree(ac_ptr);
1065}
1066
343e0d7a 1067static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1068 struct array_cache *ac, int node)
e498be7d
CL
1069{
1070 struct kmem_list3 *rl3 = cachep->nodelists[node];
1071
1072 if (ac->avail) {
1073 spin_lock(&rl3->list_lock);
e00946fe
CL
1074 /*
1075 * Stuff objects into the remote nodes shared array first.
1076 * That way we could avoid the overhead of putting the objects
1077 * into the free lists and getting them back later.
1078 */
693f7d36
JS
1079 if (rl3->shared)
1080 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1081
ff69416e 1082 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1083 ac->avail = 0;
1084 spin_unlock(&rl3->list_lock);
1085 }
1086}
1087
8fce4d8e
CL
1088/*
1089 * Called from cache_reap() to regularly drain alien caches round robin.
1090 */
1091static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1092{
1093 int node = __get_cpu_var(reap_node);
1094
1095 if (l3->alien) {
1096 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1097
1098 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1099 __drain_alien_cache(cachep, ac, node);
1100 spin_unlock_irq(&ac->lock);
1101 }
1102 }
1103}
1104
a737b3e2
AM
1105static void drain_alien_cache(struct kmem_cache *cachep,
1106 struct array_cache **alien)
e498be7d 1107{
b28a02de 1108 int i = 0;
e498be7d
CL
1109 struct array_cache *ac;
1110 unsigned long flags;
1111
1112 for_each_online_node(i) {
4484ebf1 1113 ac = alien[i];
e498be7d
CL
1114 if (ac) {
1115 spin_lock_irqsave(&ac->lock, flags);
1116 __drain_alien_cache(cachep, ac, i);
1117 spin_unlock_irqrestore(&ac->lock, flags);
1118 }
1119 }
1120}
729bd0b7 1121
873623df 1122static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1123{
1124 struct slab *slabp = virt_to_slab(objp);
1125 int nodeid = slabp->nodeid;
1126 struct kmem_list3 *l3;
1127 struct array_cache *alien = NULL;
1ca4cb24
PE
1128 int node;
1129
1130 node = numa_node_id();
729bd0b7
PE
1131
1132 /*
1133 * Make sure we are not freeing a object from another node to the array
1134 * cache on this cpu.
1135 */
62918a03 1136 if (likely(slabp->nodeid == node))
729bd0b7
PE
1137 return 0;
1138
1ca4cb24 1139 l3 = cachep->nodelists[node];
729bd0b7
PE
1140 STATS_INC_NODEFREES(cachep);
1141 if (l3->alien && l3->alien[nodeid]) {
1142 alien = l3->alien[nodeid];
873623df 1143 spin_lock(&alien->lock);
729bd0b7
PE
1144 if (unlikely(alien->avail == alien->limit)) {
1145 STATS_INC_ACOVERFLOW(cachep);
1146 __drain_alien_cache(cachep, alien, nodeid);
1147 }
1148 alien->entry[alien->avail++] = objp;
1149 spin_unlock(&alien->lock);
1150 } else {
1151 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1152 free_block(cachep, &objp, 1, nodeid);
1153 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1154 }
1155 return 1;
1156}
e498be7d
CL
1157#endif
1158
8c78f307 1159static int __cpuinit cpuup_callback(struct notifier_block *nfb,
b28a02de 1160 unsigned long action, void *hcpu)
1da177e4
LT
1161{
1162 long cpu = (long)hcpu;
343e0d7a 1163 struct kmem_cache *cachep;
e498be7d
CL
1164 struct kmem_list3 *l3 = NULL;
1165 int node = cpu_to_node(cpu);
ea02e3dd 1166 const int memsize = sizeof(struct kmem_list3);
1da177e4
LT
1167
1168 switch (action) {
38c3bd96 1169 case CPU_LOCK_ACQUIRE:
fc0abb14 1170 mutex_lock(&cache_chain_mutex);
38c3bd96
HC
1171 break;
1172 case CPU_UP_PREPARE:
8bb78442 1173 case CPU_UP_PREPARE_FROZEN:
a737b3e2
AM
1174 /*
1175 * We need to do this right in the beginning since
e498be7d
CL
1176 * alloc_arraycache's are going to use this list.
1177 * kmalloc_node allows us to add the slab to the right
1178 * kmem_list3 and not this cpu's kmem_list3
1179 */
1180
1da177e4 1181 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2
AM
1182 /*
1183 * Set up the size64 kmemlist for cpu before we can
e498be7d
CL
1184 * begin anything. Make sure some other cpu on this
1185 * node has not already allocated this
1186 */
1187 if (!cachep->nodelists[node]) {
a737b3e2
AM
1188 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1189 if (!l3)
e498be7d
CL
1190 goto bad;
1191 kmem_list3_init(l3);
1192 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 1193 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1194
4484ebf1
RT
1195 /*
1196 * The l3s don't come and go as CPUs come and
1197 * go. cache_chain_mutex is sufficient
1198 * protection here.
1199 */
e498be7d
CL
1200 cachep->nodelists[node] = l3;
1201 }
1da177e4 1202
e498be7d
CL
1203 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1204 cachep->nodelists[node]->free_limit =
a737b3e2
AM
1205 (1 + nr_cpus_node(node)) *
1206 cachep->batchcount + cachep->num;
e498be7d
CL
1207 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1208 }
1209
a737b3e2
AM
1210 /*
1211 * Now we can go ahead with allocating the shared arrays and
1212 * array caches
1213 */
e498be7d 1214 list_for_each_entry(cachep, &cache_chain, next) {
cd105df4 1215 struct array_cache *nc;
63109846 1216 struct array_cache *shared = NULL;
3395ee05 1217 struct array_cache **alien = NULL;
cd105df4 1218
e498be7d 1219 nc = alloc_arraycache(node, cachep->limit,
4484ebf1 1220 cachep->batchcount);
1da177e4
LT
1221 if (!nc)
1222 goto bad;
63109846
ED
1223 if (cachep->shared) {
1224 shared = alloc_arraycache(node,
4484ebf1
RT
1225 cachep->shared * cachep->batchcount,
1226 0xbaadf00d);
63109846
ED
1227 if (!shared)
1228 goto bad;
1229 }
3395ee05
PM
1230 if (use_alien_caches) {
1231 alien = alloc_alien_cache(node, cachep->limit);
1232 if (!alien)
1233 goto bad;
1234 }
1da177e4 1235 cachep->array[cpu] = nc;
e498be7d
CL
1236 l3 = cachep->nodelists[node];
1237 BUG_ON(!l3);
e498be7d 1238
4484ebf1
RT
1239 spin_lock_irq(&l3->list_lock);
1240 if (!l3->shared) {
1241 /*
1242 * We are serialised from CPU_DEAD or
1243 * CPU_UP_CANCELLED by the cpucontrol lock
1244 */
1245 l3->shared = shared;
1246 shared = NULL;
e498be7d 1247 }
4484ebf1
RT
1248#ifdef CONFIG_NUMA
1249 if (!l3->alien) {
1250 l3->alien = alien;
1251 alien = NULL;
1252 }
1253#endif
1254 spin_unlock_irq(&l3->list_lock);
4484ebf1
RT
1255 kfree(shared);
1256 free_alien_cache(alien);
1da177e4 1257 }
1da177e4
LT
1258 break;
1259 case CPU_ONLINE:
8bb78442 1260 case CPU_ONLINE_FROZEN:
1da177e4
LT
1261 start_cpu_timer(cpu);
1262 break;
1263#ifdef CONFIG_HOTPLUG_CPU
5830c590 1264 case CPU_DOWN_PREPARE:
8bb78442 1265 case CPU_DOWN_PREPARE_FROZEN:
5830c590
CL
1266 /*
1267 * Shutdown cache reaper. Note that the cache_chain_mutex is
1268 * held so that if cache_reap() is invoked it cannot do
1269 * anything expensive but will only modify reap_work
1270 * and reschedule the timer.
1271 */
1272 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1273 /* Now the cache_reaper is guaranteed to be not running. */
1274 per_cpu(reap_work, cpu).work.func = NULL;
1275 break;
1276 case CPU_DOWN_FAILED:
8bb78442 1277 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1278 start_cpu_timer(cpu);
1279 break;
1da177e4 1280 case CPU_DEAD:
8bb78442 1281 case CPU_DEAD_FROZEN:
4484ebf1
RT
1282 /*
1283 * Even if all the cpus of a node are down, we don't free the
1284 * kmem_list3 of any cache. This to avoid a race between
1285 * cpu_down, and a kmalloc allocation from another cpu for
1286 * memory from the node of the cpu going down. The list3
1287 * structure is usually allocated from kmem_cache_create() and
1288 * gets destroyed at kmem_cache_destroy().
1289 */
1da177e4 1290 /* fall thru */
8f5be20b 1291#endif
1da177e4 1292 case CPU_UP_CANCELED:
8bb78442 1293 case CPU_UP_CANCELED_FROZEN:
1da177e4
LT
1294 list_for_each_entry(cachep, &cache_chain, next) {
1295 struct array_cache *nc;
4484ebf1
RT
1296 struct array_cache *shared;
1297 struct array_cache **alien;
e498be7d 1298 cpumask_t mask;
1da177e4 1299
e498be7d 1300 mask = node_to_cpumask(node);
1da177e4
LT
1301 /* cpu is dead; no one can alloc from it. */
1302 nc = cachep->array[cpu];
1303 cachep->array[cpu] = NULL;
e498be7d
CL
1304 l3 = cachep->nodelists[node];
1305
1306 if (!l3)
4484ebf1 1307 goto free_array_cache;
e498be7d 1308
ca3b9b91 1309 spin_lock_irq(&l3->list_lock);
e498be7d
CL
1310
1311 /* Free limit for this kmem_list3 */
1312 l3->free_limit -= cachep->batchcount;
1313 if (nc)
ff69416e 1314 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
1315
1316 if (!cpus_empty(mask)) {
ca3b9b91 1317 spin_unlock_irq(&l3->list_lock);
4484ebf1 1318 goto free_array_cache;
b28a02de 1319 }
e498be7d 1320
4484ebf1
RT
1321 shared = l3->shared;
1322 if (shared) {
63109846
ED
1323 free_block(cachep, shared->entry,
1324 shared->avail, node);
e498be7d
CL
1325 l3->shared = NULL;
1326 }
e498be7d 1327
4484ebf1
RT
1328 alien = l3->alien;
1329 l3->alien = NULL;
1330
1331 spin_unlock_irq(&l3->list_lock);
1332
1333 kfree(shared);
1334 if (alien) {
1335 drain_alien_cache(cachep, alien);
1336 free_alien_cache(alien);
e498be7d 1337 }
4484ebf1 1338free_array_cache:
1da177e4
LT
1339 kfree(nc);
1340 }
4484ebf1
RT
1341 /*
1342 * In the previous loop, all the objects were freed to
1343 * the respective cache's slabs, now we can go ahead and
1344 * shrink each nodelist to its limit.
1345 */
1346 list_for_each_entry(cachep, &cache_chain, next) {
1347 l3 = cachep->nodelists[node];
1348 if (!l3)
1349 continue;
ed11d9eb 1350 drain_freelist(cachep, l3, l3->free_objects);
4484ebf1 1351 }
38c3bd96
HC
1352 break;
1353 case CPU_LOCK_RELEASE:
fc0abb14 1354 mutex_unlock(&cache_chain_mutex);
1da177e4 1355 break;
1da177e4
LT
1356 }
1357 return NOTIFY_OK;
a737b3e2 1358bad:
1da177e4
LT
1359 return NOTIFY_BAD;
1360}
1361
74b85f37
CS
1362static struct notifier_block __cpuinitdata cpucache_notifier = {
1363 &cpuup_callback, NULL, 0
1364};
1da177e4 1365
e498be7d
CL
1366/*
1367 * swap the static kmem_list3 with kmalloced memory
1368 */
a737b3e2
AM
1369static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1370 int nodeid)
e498be7d
CL
1371{
1372 struct kmem_list3 *ptr;
1373
e498be7d
CL
1374 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1375 BUG_ON(!ptr);
1376
1377 local_irq_disable();
1378 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1379 /*
1380 * Do not assume that spinlocks can be initialized via memcpy:
1381 */
1382 spin_lock_init(&ptr->list_lock);
1383
e498be7d
CL
1384 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1385 cachep->nodelists[nodeid] = ptr;
1386 local_irq_enable();
1387}
1388
a737b3e2
AM
1389/*
1390 * Initialisation. Called after the page allocator have been initialised and
1391 * before smp_init().
1da177e4
LT
1392 */
1393void __init kmem_cache_init(void)
1394{
1395 size_t left_over;
1396 struct cache_sizes *sizes;
1397 struct cache_names *names;
e498be7d 1398 int i;
07ed76b2 1399 int order;
1ca4cb24 1400 int node;
e498be7d 1401
62918a03
SS
1402 if (num_possible_nodes() == 1)
1403 use_alien_caches = 0;
1404
e498be7d
CL
1405 for (i = 0; i < NUM_INIT_LISTS; i++) {
1406 kmem_list3_init(&initkmem_list3[i]);
1407 if (i < MAX_NUMNODES)
1408 cache_cache.nodelists[i] = NULL;
1409 }
1da177e4
LT
1410
1411 /*
1412 * Fragmentation resistance on low memory - only use bigger
1413 * page orders on machines with more than 32MB of memory.
1414 */
1415 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1416 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1417
1da177e4
LT
1418 /* Bootstrap is tricky, because several objects are allocated
1419 * from caches that do not exist yet:
a737b3e2
AM
1420 * 1) initialize the cache_cache cache: it contains the struct
1421 * kmem_cache structures of all caches, except cache_cache itself:
1422 * cache_cache is statically allocated.
e498be7d
CL
1423 * Initially an __init data area is used for the head array and the
1424 * kmem_list3 structures, it's replaced with a kmalloc allocated
1425 * array at the end of the bootstrap.
1da177e4 1426 * 2) Create the first kmalloc cache.
343e0d7a 1427 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1428 * An __init data area is used for the head array.
1429 * 3) Create the remaining kmalloc caches, with minimally sized
1430 * head arrays.
1da177e4
LT
1431 * 4) Replace the __init data head arrays for cache_cache and the first
1432 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1433 * 5) Replace the __init data for kmem_list3 for cache_cache and
1434 * the other cache's with kmalloc allocated memory.
1435 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1436 */
1437
1ca4cb24
PE
1438 node = numa_node_id();
1439
1da177e4 1440 /* 1) create the cache_cache */
1da177e4
LT
1441 INIT_LIST_HEAD(&cache_chain);
1442 list_add(&cache_cache.next, &cache_chain);
1443 cache_cache.colour_off = cache_line_size();
1444 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1ca4cb24 1445 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1da177e4 1446
8da3430d
ED
1447 /*
1448 * struct kmem_cache size depends on nr_node_ids, which
1449 * can be less than MAX_NUMNODES.
1450 */
1451 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1452 nr_node_ids * sizeof(struct kmem_list3 *);
1453#if DEBUG
1454 cache_cache.obj_size = cache_cache.buffer_size;
1455#endif
a737b3e2
AM
1456 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1457 cache_line_size());
6a2d7a95
ED
1458 cache_cache.reciprocal_buffer_size =
1459 reciprocal_value(cache_cache.buffer_size);
1da177e4 1460
07ed76b2
JS
1461 for (order = 0; order < MAX_ORDER; order++) {
1462 cache_estimate(order, cache_cache.buffer_size,
1463 cache_line_size(), 0, &left_over, &cache_cache.num);
1464 if (cache_cache.num)
1465 break;
1466 }
40094fa6 1467 BUG_ON(!cache_cache.num);
07ed76b2 1468 cache_cache.gfporder = order;
b28a02de 1469 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1470 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1471 sizeof(struct slab), cache_line_size());
1da177e4
LT
1472
1473 /* 2+3) create the kmalloc caches */
1474 sizes = malloc_sizes;
1475 names = cache_names;
1476
a737b3e2
AM
1477 /*
1478 * Initialize the caches that provide memory for the array cache and the
1479 * kmem_list3 structures first. Without this, further allocations will
1480 * bug.
e498be7d
CL
1481 */
1482
1483 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1484 sizes[INDEX_AC].cs_size,
1485 ARCH_KMALLOC_MINALIGN,
1486 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1487 NULL);
e498be7d 1488
a737b3e2 1489 if (INDEX_AC != INDEX_L3) {
e498be7d 1490 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1491 kmem_cache_create(names[INDEX_L3].name,
1492 sizes[INDEX_L3].cs_size,
1493 ARCH_KMALLOC_MINALIGN,
1494 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1495 NULL);
a737b3e2 1496 }
e498be7d 1497
e0a42726
IM
1498 slab_early_init = 0;
1499
1da177e4 1500 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1501 /*
1502 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1503 * This should be particularly beneficial on SMP boxes, as it
1504 * eliminates "false sharing".
1505 * Note for systems short on memory removing the alignment will
e498be7d
CL
1506 * allow tighter packing of the smaller caches.
1507 */
a737b3e2 1508 if (!sizes->cs_cachep) {
e498be7d 1509 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1510 sizes->cs_size,
1511 ARCH_KMALLOC_MINALIGN,
1512 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1513 NULL);
a737b3e2 1514 }
4b51d669
CL
1515#ifdef CONFIG_ZONE_DMA
1516 sizes->cs_dmacachep = kmem_cache_create(
1517 names->name_dma,
a737b3e2
AM
1518 sizes->cs_size,
1519 ARCH_KMALLOC_MINALIGN,
1520 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1521 SLAB_PANIC,
20c2df83 1522 NULL);
4b51d669 1523#endif
1da177e4
LT
1524 sizes++;
1525 names++;
1526 }
1527 /* 4) Replace the bootstrap head arrays */
1528 {
2b2d5493 1529 struct array_cache *ptr;
e498be7d 1530
1da177e4 1531 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1532
1da177e4 1533 local_irq_disable();
9a2dba4b
PE
1534 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1535 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1536 sizeof(struct arraycache_init));
2b2d5493
IM
1537 /*
1538 * Do not assume that spinlocks can be initialized via memcpy:
1539 */
1540 spin_lock_init(&ptr->lock);
1541
1da177e4
LT
1542 cache_cache.array[smp_processor_id()] = ptr;
1543 local_irq_enable();
e498be7d 1544
1da177e4 1545 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1546
1da177e4 1547 local_irq_disable();
9a2dba4b 1548 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1549 != &initarray_generic.cache);
9a2dba4b 1550 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1551 sizeof(struct arraycache_init));
2b2d5493
IM
1552 /*
1553 * Do not assume that spinlocks can be initialized via memcpy:
1554 */
1555 spin_lock_init(&ptr->lock);
1556
e498be7d 1557 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1558 ptr;
1da177e4
LT
1559 local_irq_enable();
1560 }
e498be7d
CL
1561 /* 5) Replace the bootstrap kmem_list3's */
1562 {
1ca4cb24
PE
1563 int nid;
1564
e498be7d 1565 /* Replace the static kmem_list3 structures for the boot cpu */
1ca4cb24 1566 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
e498be7d 1567
1ca4cb24 1568 for_each_online_node(nid) {
e498be7d 1569 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1570 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1571
1572 if (INDEX_AC != INDEX_L3) {
1573 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1574 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1575 }
1576 }
1577 }
1da177e4 1578
e498be7d 1579 /* 6) resize the head arrays to their final sizes */
1da177e4 1580 {
343e0d7a 1581 struct kmem_cache *cachep;
fc0abb14 1582 mutex_lock(&cache_chain_mutex);
1da177e4 1583 list_for_each_entry(cachep, &cache_chain, next)
2ed3a4ef
CL
1584 if (enable_cpucache(cachep))
1585 BUG();
fc0abb14 1586 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1587 }
1588
056c6241
RT
1589 /* Annotate slab for lockdep -- annotate the malloc caches */
1590 init_lock_keys();
1591
1592
1da177e4
LT
1593 /* Done! */
1594 g_cpucache_up = FULL;
1595
a737b3e2
AM
1596 /*
1597 * Register a cpu startup notifier callback that initializes
1598 * cpu_cache_get for all new cpus
1da177e4
LT
1599 */
1600 register_cpu_notifier(&cpucache_notifier);
1da177e4 1601
a737b3e2
AM
1602 /*
1603 * The reap timers are started later, with a module init call: That part
1604 * of the kernel is not yet operational.
1da177e4
LT
1605 */
1606}
1607
1608static int __init cpucache_init(void)
1609{
1610 int cpu;
1611
a737b3e2
AM
1612 /*
1613 * Register the timers that return unneeded pages to the page allocator
1da177e4 1614 */
e498be7d 1615 for_each_online_cpu(cpu)
a737b3e2 1616 start_cpu_timer(cpu);
1da177e4
LT
1617 return 0;
1618}
1da177e4
LT
1619__initcall(cpucache_init);
1620
1621/*
1622 * Interface to system's page allocator. No need to hold the cache-lock.
1623 *
1624 * If we requested dmaable memory, we will get it. Even if we
1625 * did not request dmaable memory, we might get it, but that
1626 * would be relatively rare and ignorable.
1627 */
343e0d7a 1628static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1629{
1630 struct page *page;
e1b6aa6f 1631 int nr_pages;
1da177e4
LT
1632 int i;
1633
d6fef9da 1634#ifndef CONFIG_MMU
e1b6aa6f
CH
1635 /*
1636 * Nommu uses slab's for process anonymous memory allocations, and thus
1637 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1638 */
e1b6aa6f 1639 flags |= __GFP_COMP;
d6fef9da 1640#endif
765c4507 1641
3c517a61 1642 flags |= cachep->gfpflags;
e1b6aa6f
CH
1643
1644 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1645 if (!page)
1646 return NULL;
1da177e4 1647
e1b6aa6f 1648 nr_pages = (1 << cachep->gfporder);
1da177e4 1649 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1650 add_zone_page_state(page_zone(page),
1651 NR_SLAB_RECLAIMABLE, nr_pages);
1652 else
1653 add_zone_page_state(page_zone(page),
1654 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1655 for (i = 0; i < nr_pages; i++)
1656 __SetPageSlab(page + i);
1657 return page_address(page);
1da177e4
LT
1658}
1659
1660/*
1661 * Interface to system's page release.
1662 */
343e0d7a 1663static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1664{
b28a02de 1665 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1666 struct page *page = virt_to_page(addr);
1667 const unsigned long nr_freed = i;
1668
972d1a7b
CL
1669 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1670 sub_zone_page_state(page_zone(page),
1671 NR_SLAB_RECLAIMABLE, nr_freed);
1672 else
1673 sub_zone_page_state(page_zone(page),
1674 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1675 while (i--) {
f205b2fe
NP
1676 BUG_ON(!PageSlab(page));
1677 __ClearPageSlab(page);
1da177e4
LT
1678 page++;
1679 }
1da177e4
LT
1680 if (current->reclaim_state)
1681 current->reclaim_state->reclaimed_slab += nr_freed;
1682 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1683}
1684
1685static void kmem_rcu_free(struct rcu_head *head)
1686{
b28a02de 1687 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1688 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1689
1690 kmem_freepages(cachep, slab_rcu->addr);
1691 if (OFF_SLAB(cachep))
1692 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1693}
1694
1695#if DEBUG
1696
1697#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1698static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1699 unsigned long caller)
1da177e4 1700{
3dafccf2 1701 int size = obj_size(cachep);
1da177e4 1702
3dafccf2 1703 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1704
b28a02de 1705 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1706 return;
1707
b28a02de
PE
1708 *addr++ = 0x12345678;
1709 *addr++ = caller;
1710 *addr++ = smp_processor_id();
1711 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1712 {
1713 unsigned long *sptr = &caller;
1714 unsigned long svalue;
1715
1716 while (!kstack_end(sptr)) {
1717 svalue = *sptr++;
1718 if (kernel_text_address(svalue)) {
b28a02de 1719 *addr++ = svalue;
1da177e4
LT
1720 size -= sizeof(unsigned long);
1721 if (size <= sizeof(unsigned long))
1722 break;
1723 }
1724 }
1725
1726 }
b28a02de 1727 *addr++ = 0x87654321;
1da177e4
LT
1728}
1729#endif
1730
343e0d7a 1731static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1732{
3dafccf2
MS
1733 int size = obj_size(cachep);
1734 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1735
1736 memset(addr, val, size);
b28a02de 1737 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1738}
1739
1740static void dump_line(char *data, int offset, int limit)
1741{
1742 int i;
aa83aa40
DJ
1743 unsigned char error = 0;
1744 int bad_count = 0;
1745
1da177e4 1746 printk(KERN_ERR "%03x:", offset);
aa83aa40
DJ
1747 for (i = 0; i < limit; i++) {
1748 if (data[offset + i] != POISON_FREE) {
1749 error = data[offset + i];
1750 bad_count++;
1751 }
b28a02de 1752 printk(" %02x", (unsigned char)data[offset + i]);
aa83aa40 1753 }
1da177e4 1754 printk("\n");
aa83aa40
DJ
1755
1756 if (bad_count == 1) {
1757 error ^= POISON_FREE;
1758 if (!(error & (error - 1))) {
1759 printk(KERN_ERR "Single bit error detected. Probably "
1760 "bad RAM.\n");
1761#ifdef CONFIG_X86
1762 printk(KERN_ERR "Run memtest86+ or a similar memory "
1763 "test tool.\n");
1764#else
1765 printk(KERN_ERR "Run a memory test tool.\n");
1766#endif
1767 }
1768 }
1da177e4
LT
1769}
1770#endif
1771
1772#if DEBUG
1773
343e0d7a 1774static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1775{
1776 int i, size;
1777 char *realobj;
1778
1779 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1780 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1781 *dbg_redzone1(cachep, objp),
1782 *dbg_redzone2(cachep, objp));
1da177e4
LT
1783 }
1784
1785 if (cachep->flags & SLAB_STORE_USER) {
1786 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1787 *dbg_userword(cachep, objp));
1da177e4 1788 print_symbol("(%s)",
a737b3e2 1789 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1790 printk("\n");
1791 }
3dafccf2
MS
1792 realobj = (char *)objp + obj_offset(cachep);
1793 size = obj_size(cachep);
b28a02de 1794 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1795 int limit;
1796 limit = 16;
b28a02de
PE
1797 if (i + limit > size)
1798 limit = size - i;
1da177e4
LT
1799 dump_line(realobj, i, limit);
1800 }
1801}
1802
343e0d7a 1803static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1804{
1805 char *realobj;
1806 int size, i;
1807 int lines = 0;
1808
3dafccf2
MS
1809 realobj = (char *)objp + obj_offset(cachep);
1810 size = obj_size(cachep);
1da177e4 1811
b28a02de 1812 for (i = 0; i < size; i++) {
1da177e4 1813 char exp = POISON_FREE;
b28a02de 1814 if (i == size - 1)
1da177e4
LT
1815 exp = POISON_END;
1816 if (realobj[i] != exp) {
1817 int limit;
1818 /* Mismatch ! */
1819 /* Print header */
1820 if (lines == 0) {
b28a02de 1821 printk(KERN_ERR
e94a40c5
DH
1822 "Slab corruption: %s start=%p, len=%d\n",
1823 cachep->name, realobj, size);
1da177e4
LT
1824 print_objinfo(cachep, objp, 0);
1825 }
1826 /* Hexdump the affected line */
b28a02de 1827 i = (i / 16) * 16;
1da177e4 1828 limit = 16;
b28a02de
PE
1829 if (i + limit > size)
1830 limit = size - i;
1da177e4
LT
1831 dump_line(realobj, i, limit);
1832 i += 16;
1833 lines++;
1834 /* Limit to 5 lines */
1835 if (lines > 5)
1836 break;
1837 }
1838 }
1839 if (lines != 0) {
1840 /* Print some data about the neighboring objects, if they
1841 * exist:
1842 */
6ed5eb22 1843 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1844 unsigned int objnr;
1da177e4 1845
8fea4e96 1846 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1847 if (objnr) {
8fea4e96 1848 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1849 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1850 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1851 realobj, size);
1da177e4
LT
1852 print_objinfo(cachep, objp, 2);
1853 }
b28a02de 1854 if (objnr + 1 < cachep->num) {
8fea4e96 1855 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1856 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1857 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1858 realobj, size);
1da177e4
LT
1859 print_objinfo(cachep, objp, 2);
1860 }
1861 }
1862}
1863#endif
1864
12dd36fa
MD
1865#if DEBUG
1866/**
911851e6
RD
1867 * slab_destroy_objs - destroy a slab and its objects
1868 * @cachep: cache pointer being destroyed
1869 * @slabp: slab pointer being destroyed
1870 *
1871 * Call the registered destructor for each object in a slab that is being
1872 * destroyed.
1da177e4 1873 */
343e0d7a 1874static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1875{
1da177e4
LT
1876 int i;
1877 for (i = 0; i < cachep->num; i++) {
8fea4e96 1878 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1879
1880 if (cachep->flags & SLAB_POISON) {
1881#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1882 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1883 OFF_SLAB(cachep))
b28a02de 1884 kernel_map_pages(virt_to_page(objp),
a737b3e2 1885 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1886 else
1887 check_poison_obj(cachep, objp);
1888#else
1889 check_poison_obj(cachep, objp);
1890#endif
1891 }
1892 if (cachep->flags & SLAB_RED_ZONE) {
1893 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1894 slab_error(cachep, "start of a freed object "
b28a02de 1895 "was overwritten");
1da177e4
LT
1896 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1897 slab_error(cachep, "end of a freed object "
b28a02de 1898 "was overwritten");
1da177e4 1899 }
1da177e4 1900 }
12dd36fa 1901}
1da177e4 1902#else
343e0d7a 1903static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1904{
12dd36fa 1905}
1da177e4
LT
1906#endif
1907
911851e6
RD
1908/**
1909 * slab_destroy - destroy and release all objects in a slab
1910 * @cachep: cache pointer being destroyed
1911 * @slabp: slab pointer being destroyed
1912 *
12dd36fa 1913 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1914 * Before calling the slab must have been unlinked from the cache. The
1915 * cache-lock is not held/needed.
12dd36fa 1916 */
343e0d7a 1917static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1918{
1919 void *addr = slabp->s_mem - slabp->colouroff;
1920
1921 slab_destroy_objs(cachep, slabp);
1da177e4
LT
1922 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1923 struct slab_rcu *slab_rcu;
1924
b28a02de 1925 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1926 slab_rcu->cachep = cachep;
1927 slab_rcu->addr = addr;
1928 call_rcu(&slab_rcu->head, kmem_rcu_free);
1929 } else {
1930 kmem_freepages(cachep, addr);
873623df
IM
1931 if (OFF_SLAB(cachep))
1932 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1933 }
1934}
1935
a737b3e2
AM
1936/*
1937 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1938 * size of kmem_list3.
1939 */
a3a02be7 1940static void __init set_up_list3s(struct kmem_cache *cachep, int index)
e498be7d
CL
1941{
1942 int node;
1943
1944 for_each_online_node(node) {
b28a02de 1945 cachep->nodelists[node] = &initkmem_list3[index + node];
e498be7d 1946 cachep->nodelists[node]->next_reap = jiffies +
b28a02de
PE
1947 REAPTIMEOUT_LIST3 +
1948 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
1949 }
1950}
1951
117f6eb1
CL
1952static void __kmem_cache_destroy(struct kmem_cache *cachep)
1953{
1954 int i;
1955 struct kmem_list3 *l3;
1956
1957 for_each_online_cpu(i)
1958 kfree(cachep->array[i]);
1959
1960 /* NUMA: free the list3 structures */
1961 for_each_online_node(i) {
1962 l3 = cachep->nodelists[i];
1963 if (l3) {
1964 kfree(l3->shared);
1965 free_alien_cache(l3->alien);
1966 kfree(l3);
1967 }
1968 }
1969 kmem_cache_free(&cache_cache, cachep);
1970}
1971
1972
4d268eba 1973/**
a70773dd
RD
1974 * calculate_slab_order - calculate size (page order) of slabs
1975 * @cachep: pointer to the cache that is being created
1976 * @size: size of objects to be created in this cache.
1977 * @align: required alignment for the objects.
1978 * @flags: slab allocation flags
1979 *
1980 * Also calculates the number of objects per slab.
4d268eba
PE
1981 *
1982 * This could be made much more intelligent. For now, try to avoid using
1983 * high order pages for slabs. When the gfp() functions are more friendly
1984 * towards high-order requests, this should be changed.
1985 */
a737b3e2 1986static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1987 size_t size, size_t align, unsigned long flags)
4d268eba 1988{
b1ab41c4 1989 unsigned long offslab_limit;
4d268eba 1990 size_t left_over = 0;
9888e6fa 1991 int gfporder;
4d268eba 1992
0aa817f0 1993 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1994 unsigned int num;
1995 size_t remainder;
1996
9888e6fa 1997 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
1998 if (!num)
1999 continue;
9888e6fa 2000
b1ab41c4
IM
2001 if (flags & CFLGS_OFF_SLAB) {
2002 /*
2003 * Max number of objs-per-slab for caches which
2004 * use off-slab slabs. Needed to avoid a possible
2005 * looping condition in cache_grow().
2006 */
2007 offslab_limit = size - sizeof(struct slab);
2008 offslab_limit /= sizeof(kmem_bufctl_t);
2009
2010 if (num > offslab_limit)
2011 break;
2012 }
4d268eba 2013
9888e6fa 2014 /* Found something acceptable - save it away */
4d268eba 2015 cachep->num = num;
9888e6fa 2016 cachep->gfporder = gfporder;
4d268eba
PE
2017 left_over = remainder;
2018
f78bb8ad
LT
2019 /*
2020 * A VFS-reclaimable slab tends to have most allocations
2021 * as GFP_NOFS and we really don't want to have to be allocating
2022 * higher-order pages when we are unable to shrink dcache.
2023 */
2024 if (flags & SLAB_RECLAIM_ACCOUNT)
2025 break;
2026
4d268eba
PE
2027 /*
2028 * Large number of objects is good, but very large slabs are
2029 * currently bad for the gfp()s.
2030 */
9888e6fa 2031 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
2032 break;
2033
9888e6fa
LT
2034 /*
2035 * Acceptable internal fragmentation?
2036 */
a737b3e2 2037 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2038 break;
2039 }
2040 return left_over;
2041}
2042
38bdc32a 2043static int __init_refok setup_cpu_cache(struct kmem_cache *cachep)
f30cf7d1 2044{
2ed3a4ef
CL
2045 if (g_cpucache_up == FULL)
2046 return enable_cpucache(cachep);
2047
f30cf7d1
PE
2048 if (g_cpucache_up == NONE) {
2049 /*
2050 * Note: the first kmem_cache_create must create the cache
2051 * that's used by kmalloc(24), otherwise the creation of
2052 * further caches will BUG().
2053 */
2054 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2055
2056 /*
2057 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2058 * the first cache, then we need to set up all its list3s,
2059 * otherwise the creation of further caches will BUG().
2060 */
2061 set_up_list3s(cachep, SIZE_AC);
2062 if (INDEX_AC == INDEX_L3)
2063 g_cpucache_up = PARTIAL_L3;
2064 else
2065 g_cpucache_up = PARTIAL_AC;
2066 } else {
2067 cachep->array[smp_processor_id()] =
2068 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2069
2070 if (g_cpucache_up == PARTIAL_AC) {
2071 set_up_list3s(cachep, SIZE_L3);
2072 g_cpucache_up = PARTIAL_L3;
2073 } else {
2074 int node;
2075 for_each_online_node(node) {
2076 cachep->nodelists[node] =
2077 kmalloc_node(sizeof(struct kmem_list3),
2078 GFP_KERNEL, node);
2079 BUG_ON(!cachep->nodelists[node]);
2080 kmem_list3_init(cachep->nodelists[node]);
2081 }
2082 }
2083 }
2084 cachep->nodelists[numa_node_id()]->next_reap =
2085 jiffies + REAPTIMEOUT_LIST3 +
2086 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2087
2088 cpu_cache_get(cachep)->avail = 0;
2089 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2090 cpu_cache_get(cachep)->batchcount = 1;
2091 cpu_cache_get(cachep)->touched = 0;
2092 cachep->batchcount = 1;
2093 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2094 return 0;
f30cf7d1
PE
2095}
2096
1da177e4
LT
2097/**
2098 * kmem_cache_create - Create a cache.
2099 * @name: A string which is used in /proc/slabinfo to identify this cache.
2100 * @size: The size of objects to be created in this cache.
2101 * @align: The required alignment for the objects.
2102 * @flags: SLAB flags
2103 * @ctor: A constructor for the objects.
1da177e4
LT
2104 *
2105 * Returns a ptr to the cache on success, NULL on failure.
2106 * Cannot be called within a int, but can be interrupted.
20c2df83 2107 * The @ctor is run when new pages are allocated by the cache.
1da177e4
LT
2108 *
2109 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
2110 * the module calling this has to destroy the cache before getting unloaded.
2111 *
1da177e4
LT
2112 * The flags are
2113 *
2114 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2115 * to catch references to uninitialised memory.
2116 *
2117 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2118 * for buffer overruns.
2119 *
1da177e4
LT
2120 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2121 * cacheline. This can be beneficial if you're counting cycles as closely
2122 * as davem.
2123 */
343e0d7a 2124struct kmem_cache *
1da177e4 2125kmem_cache_create (const char *name, size_t size, size_t align,
a737b3e2 2126 unsigned long flags,
20c2df83 2127 void (*ctor)(void*, struct kmem_cache *, unsigned long))
1da177e4
LT
2128{
2129 size_t left_over, slab_size, ralign;
7a7c381d 2130 struct kmem_cache *cachep = NULL, *pc;
1da177e4
LT
2131
2132 /*
2133 * Sanity checks... these are all serious usage bugs.
2134 */
a737b3e2 2135 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
20c2df83 2136 size > KMALLOC_MAX_SIZE) {
a737b3e2
AM
2137 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2138 name);
b28a02de
PE
2139 BUG();
2140 }
1da177e4 2141
f0188f47 2142 /*
8f5be20b
RT
2143 * We use cache_chain_mutex to ensure a consistent view of
2144 * cpu_online_map as well. Please see cpuup_callback
f0188f47 2145 */
fc0abb14 2146 mutex_lock(&cache_chain_mutex);
4f12bb4f 2147
7a7c381d 2148 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2149 char tmp;
2150 int res;
2151
2152 /*
2153 * This happens when the module gets unloaded and doesn't
2154 * destroy its slab cache and no-one else reuses the vmalloc
2155 * area of the module. Print a warning.
2156 */
138ae663 2157 res = probe_kernel_address(pc->name, tmp);
4f12bb4f 2158 if (res) {
b4169525 2159 printk(KERN_ERR
2160 "SLAB: cache with size %d has lost its name\n",
3dafccf2 2161 pc->buffer_size);
4f12bb4f
AM
2162 continue;
2163 }
2164
b28a02de 2165 if (!strcmp(pc->name, name)) {
b4169525 2166 printk(KERN_ERR
2167 "kmem_cache_create: duplicate cache %s\n", name);
4f12bb4f
AM
2168 dump_stack();
2169 goto oops;
2170 }
2171 }
2172
1da177e4
LT
2173#if DEBUG
2174 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1da177e4
LT
2175#if FORCED_DEBUG
2176 /*
2177 * Enable redzoning and last user accounting, except for caches with
2178 * large objects, if the increased size would increase the object size
2179 * above the next power of two: caches with object sizes just above a
2180 * power of two have a significant amount of internal fragmentation.
2181 */
87a927c7
DW
2182 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2183 2 * sizeof(unsigned long long)))
b28a02de 2184 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2185 if (!(flags & SLAB_DESTROY_BY_RCU))
2186 flags |= SLAB_POISON;
2187#endif
2188 if (flags & SLAB_DESTROY_BY_RCU)
2189 BUG_ON(flags & SLAB_POISON);
2190#endif
1da177e4 2191 /*
a737b3e2
AM
2192 * Always checks flags, a caller might be expecting debug support which
2193 * isn't available.
1da177e4 2194 */
40094fa6 2195 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2196
a737b3e2
AM
2197 /*
2198 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2199 * unaligned accesses for some archs when redzoning is used, and makes
2200 * sure any on-slab bufctl's are also correctly aligned.
2201 */
b28a02de
PE
2202 if (size & (BYTES_PER_WORD - 1)) {
2203 size += (BYTES_PER_WORD - 1);
2204 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2205 }
2206
a737b3e2
AM
2207 /* calculate the final buffer alignment: */
2208
1da177e4
LT
2209 /* 1) arch recommendation: can be overridden for debug */
2210 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2211 /*
2212 * Default alignment: as specified by the arch code. Except if
2213 * an object is really small, then squeeze multiple objects into
2214 * one cacheline.
1da177e4
LT
2215 */
2216 ralign = cache_line_size();
b28a02de 2217 while (size <= ralign / 2)
1da177e4
LT
2218 ralign /= 2;
2219 } else {
2220 ralign = BYTES_PER_WORD;
2221 }
ca5f9703
PE
2222
2223 /*
87a927c7
DW
2224 * Redzoning and user store require word alignment or possibly larger.
2225 * Note this will be overridden by architecture or caller mandated
2226 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2227 */
87a927c7
DW
2228 if (flags & SLAB_STORE_USER)
2229 ralign = BYTES_PER_WORD;
2230
2231 if (flags & SLAB_RED_ZONE) {
2232 ralign = REDZONE_ALIGN;
2233 /* If redzoning, ensure that the second redzone is suitably
2234 * aligned, by adjusting the object size accordingly. */
2235 size += REDZONE_ALIGN - 1;
2236 size &= ~(REDZONE_ALIGN - 1);
2237 }
ca5f9703 2238
a44b56d3 2239 /* 2) arch mandated alignment */
1da177e4
LT
2240 if (ralign < ARCH_SLAB_MINALIGN) {
2241 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2242 }
a44b56d3 2243 /* 3) caller mandated alignment */
1da177e4
LT
2244 if (ralign < align) {
2245 ralign = align;
1da177e4 2246 }
a44b56d3 2247 /* disable debug if necessary */
b46b8f19 2248 if (ralign > __alignof__(unsigned long long))
a44b56d3 2249 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2250 /*
ca5f9703 2251 * 4) Store it.
1da177e4
LT
2252 */
2253 align = ralign;
2254
2255 /* Get cache's description obj. */
e94b1766 2256 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
1da177e4 2257 if (!cachep)
4f12bb4f 2258 goto oops;
1da177e4
LT
2259
2260#if DEBUG
3dafccf2 2261 cachep->obj_size = size;
1da177e4 2262
ca5f9703
PE
2263 /*
2264 * Both debugging options require word-alignment which is calculated
2265 * into align above.
2266 */
1da177e4 2267 if (flags & SLAB_RED_ZONE) {
1da177e4 2268 /* add space for red zone words */
b46b8f19
DW
2269 cachep->obj_offset += sizeof(unsigned long long);
2270 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2271 }
2272 if (flags & SLAB_STORE_USER) {
ca5f9703 2273 /* user store requires one word storage behind the end of
87a927c7
DW
2274 * the real object. But if the second red zone needs to be
2275 * aligned to 64 bits, we must allow that much space.
1da177e4 2276 */
87a927c7
DW
2277 if (flags & SLAB_RED_ZONE)
2278 size += REDZONE_ALIGN;
2279 else
2280 size += BYTES_PER_WORD;
1da177e4
LT
2281 }
2282#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2283 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2284 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2285 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2286 size = PAGE_SIZE;
2287 }
2288#endif
2289#endif
2290
e0a42726
IM
2291 /*
2292 * Determine if the slab management is 'on' or 'off' slab.
2293 * (bootstrapping cannot cope with offslab caches so don't do
2294 * it too early on.)
2295 */
2296 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
1da177e4
LT
2297 /*
2298 * Size is large, assume best to place the slab management obj
2299 * off-slab (should allow better packing of objs).
2300 */
2301 flags |= CFLGS_OFF_SLAB;
2302
2303 size = ALIGN(size, align);
2304
f78bb8ad 2305 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2306
2307 if (!cachep->num) {
b4169525 2308 printk(KERN_ERR
2309 "kmem_cache_create: couldn't create cache %s.\n", name);
1da177e4
LT
2310 kmem_cache_free(&cache_cache, cachep);
2311 cachep = NULL;
4f12bb4f 2312 goto oops;
1da177e4 2313 }
b28a02de
PE
2314 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2315 + sizeof(struct slab), align);
1da177e4
LT
2316
2317 /*
2318 * If the slab has been placed off-slab, and we have enough space then
2319 * move it on-slab. This is at the expense of any extra colouring.
2320 */
2321 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2322 flags &= ~CFLGS_OFF_SLAB;
2323 left_over -= slab_size;
2324 }
2325
2326 if (flags & CFLGS_OFF_SLAB) {
2327 /* really off slab. No need for manual alignment */
b28a02de
PE
2328 slab_size =
2329 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2330 }
2331
2332 cachep->colour_off = cache_line_size();
2333 /* Offset must be a multiple of the alignment. */
2334 if (cachep->colour_off < align)
2335 cachep->colour_off = align;
b28a02de 2336 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2337 cachep->slab_size = slab_size;
2338 cachep->flags = flags;
2339 cachep->gfpflags = 0;
4b51d669 2340 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
1da177e4 2341 cachep->gfpflags |= GFP_DMA;
3dafccf2 2342 cachep->buffer_size = size;
6a2d7a95 2343 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2344
e5ac9c5a 2345 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2346 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2347 /*
2348 * This is a possibility for one of the malloc_sizes caches.
2349 * But since we go off slab only for object size greater than
2350 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2351 * this should not happen at all.
2352 * But leave a BUG_ON for some lucky dude.
2353 */
6cb8f913 2354 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2355 }
1da177e4 2356 cachep->ctor = ctor;
1da177e4
LT
2357 cachep->name = name;
2358
2ed3a4ef
CL
2359 if (setup_cpu_cache(cachep)) {
2360 __kmem_cache_destroy(cachep);
2361 cachep = NULL;
2362 goto oops;
2363 }
1da177e4 2364
1da177e4
LT
2365 /* cache setup completed, link it into the list */
2366 list_add(&cachep->next, &cache_chain);
a737b3e2 2367oops:
1da177e4
LT
2368 if (!cachep && (flags & SLAB_PANIC))
2369 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2370 name);
fc0abb14 2371 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2372 return cachep;
2373}
2374EXPORT_SYMBOL(kmem_cache_create);
2375
2376#if DEBUG
2377static void check_irq_off(void)
2378{
2379 BUG_ON(!irqs_disabled());
2380}
2381
2382static void check_irq_on(void)
2383{
2384 BUG_ON(irqs_disabled());
2385}
2386
343e0d7a 2387static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2388{
2389#ifdef CONFIG_SMP
2390 check_irq_off();
e498be7d 2391 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2392#endif
2393}
e498be7d 2394
343e0d7a 2395static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2396{
2397#ifdef CONFIG_SMP
2398 check_irq_off();
2399 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2400#endif
2401}
2402
1da177e4
LT
2403#else
2404#define check_irq_off() do { } while(0)
2405#define check_irq_on() do { } while(0)
2406#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2407#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2408#endif
2409
aab2207c
CL
2410static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2411 struct array_cache *ac,
2412 int force, int node);
2413
1da177e4
LT
2414static void do_drain(void *arg)
2415{
a737b3e2 2416 struct kmem_cache *cachep = arg;
1da177e4 2417 struct array_cache *ac;
ff69416e 2418 int node = numa_node_id();
1da177e4
LT
2419
2420 check_irq_off();
9a2dba4b 2421 ac = cpu_cache_get(cachep);
ff69416e
CL
2422 spin_lock(&cachep->nodelists[node]->list_lock);
2423 free_block(cachep, ac->entry, ac->avail, node);
2424 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2425 ac->avail = 0;
2426}
2427
343e0d7a 2428static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2429{
e498be7d
CL
2430 struct kmem_list3 *l3;
2431 int node;
2432
a07fa394 2433 on_each_cpu(do_drain, cachep, 1, 1);
1da177e4 2434 check_irq_on();
b28a02de 2435 for_each_online_node(node) {
e498be7d 2436 l3 = cachep->nodelists[node];
a4523a8b
RD
2437 if (l3 && l3->alien)
2438 drain_alien_cache(cachep, l3->alien);
2439 }
2440
2441 for_each_online_node(node) {
2442 l3 = cachep->nodelists[node];
2443 if (l3)
aab2207c 2444 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2445 }
1da177e4
LT
2446}
2447
ed11d9eb
CL
2448/*
2449 * Remove slabs from the list of free slabs.
2450 * Specify the number of slabs to drain in tofree.
2451 *
2452 * Returns the actual number of slabs released.
2453 */
2454static int drain_freelist(struct kmem_cache *cache,
2455 struct kmem_list3 *l3, int tofree)
1da177e4 2456{
ed11d9eb
CL
2457 struct list_head *p;
2458 int nr_freed;
1da177e4 2459 struct slab *slabp;
1da177e4 2460
ed11d9eb
CL
2461 nr_freed = 0;
2462 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2463
ed11d9eb 2464 spin_lock_irq(&l3->list_lock);
e498be7d 2465 p = l3->slabs_free.prev;
ed11d9eb
CL
2466 if (p == &l3->slabs_free) {
2467 spin_unlock_irq(&l3->list_lock);
2468 goto out;
2469 }
1da177e4 2470
ed11d9eb 2471 slabp = list_entry(p, struct slab, list);
1da177e4 2472#if DEBUG
40094fa6 2473 BUG_ON(slabp->inuse);
1da177e4
LT
2474#endif
2475 list_del(&slabp->list);
ed11d9eb
CL
2476 /*
2477 * Safe to drop the lock. The slab is no longer linked
2478 * to the cache.
2479 */
2480 l3->free_objects -= cache->num;
e498be7d 2481 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2482 slab_destroy(cache, slabp);
2483 nr_freed++;
1da177e4 2484 }
ed11d9eb
CL
2485out:
2486 return nr_freed;
1da177e4
LT
2487}
2488
8f5be20b 2489/* Called with cache_chain_mutex held to protect against cpu hotplug */
343e0d7a 2490static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2491{
2492 int ret = 0, i = 0;
2493 struct kmem_list3 *l3;
2494
2495 drain_cpu_caches(cachep);
2496
2497 check_irq_on();
2498 for_each_online_node(i) {
2499 l3 = cachep->nodelists[i];
ed11d9eb
CL
2500 if (!l3)
2501 continue;
2502
2503 drain_freelist(cachep, l3, l3->free_objects);
2504
2505 ret += !list_empty(&l3->slabs_full) ||
2506 !list_empty(&l3->slabs_partial);
e498be7d
CL
2507 }
2508 return (ret ? 1 : 0);
2509}
2510
1da177e4
LT
2511/**
2512 * kmem_cache_shrink - Shrink a cache.
2513 * @cachep: The cache to shrink.
2514 *
2515 * Releases as many slabs as possible for a cache.
2516 * To help debugging, a zero exit status indicates all slabs were released.
2517 */
343e0d7a 2518int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2519{
8f5be20b 2520 int ret;
40094fa6 2521 BUG_ON(!cachep || in_interrupt());
1da177e4 2522
8f5be20b
RT
2523 mutex_lock(&cache_chain_mutex);
2524 ret = __cache_shrink(cachep);
2525 mutex_unlock(&cache_chain_mutex);
2526 return ret;
1da177e4
LT
2527}
2528EXPORT_SYMBOL(kmem_cache_shrink);
2529
2530/**
2531 * kmem_cache_destroy - delete a cache
2532 * @cachep: the cache to destroy
2533 *
72fd4a35 2534 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2535 *
2536 * It is expected this function will be called by a module when it is
2537 * unloaded. This will remove the cache completely, and avoid a duplicate
2538 * cache being allocated each time a module is loaded and unloaded, if the
2539 * module doesn't have persistent in-kernel storage across loads and unloads.
2540 *
2541 * The cache must be empty before calling this function.
2542 *
2543 * The caller must guarantee that noone will allocate memory from the cache
2544 * during the kmem_cache_destroy().
2545 */
133d205a 2546void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2547{
40094fa6 2548 BUG_ON(!cachep || in_interrupt());
1da177e4 2549
1da177e4 2550 /* Find the cache in the chain of caches. */
fc0abb14 2551 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2552 /*
2553 * the chain is never empty, cache_cache is never destroyed
2554 */
2555 list_del(&cachep->next);
1da177e4
LT
2556 if (__cache_shrink(cachep)) {
2557 slab_error(cachep, "Can't free all objects");
b28a02de 2558 list_add(&cachep->next, &cache_chain);
fc0abb14 2559 mutex_unlock(&cache_chain_mutex);
133d205a 2560 return;
1da177e4
LT
2561 }
2562
2563 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2564 synchronize_rcu();
1da177e4 2565
117f6eb1 2566 __kmem_cache_destroy(cachep);
8f5be20b 2567 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2568}
2569EXPORT_SYMBOL(kmem_cache_destroy);
2570
e5ac9c5a
RT
2571/*
2572 * Get the memory for a slab management obj.
2573 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2574 * always come from malloc_sizes caches. The slab descriptor cannot
2575 * come from the same cache which is getting created because,
2576 * when we are searching for an appropriate cache for these
2577 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2578 * If we are creating a malloc_sizes cache here it would not be visible to
2579 * kmem_find_general_cachep till the initialization is complete.
2580 * Hence we cannot have slabp_cache same as the original cache.
2581 */
343e0d7a 2582static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2583 int colour_off, gfp_t local_flags,
2584 int nodeid)
1da177e4
LT
2585{
2586 struct slab *slabp;
b28a02de 2587
1da177e4
LT
2588 if (OFF_SLAB(cachep)) {
2589 /* Slab management obj is off-slab. */
5b74ada7 2590 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
3c517a61 2591 local_flags & ~GFP_THISNODE, nodeid);
1da177e4
LT
2592 if (!slabp)
2593 return NULL;
2594 } else {
b28a02de 2595 slabp = objp + colour_off;
1da177e4
LT
2596 colour_off += cachep->slab_size;
2597 }
2598 slabp->inuse = 0;
2599 slabp->colouroff = colour_off;
b28a02de 2600 slabp->s_mem = objp + colour_off;
5b74ada7 2601 slabp->nodeid = nodeid;
1da177e4
LT
2602 return slabp;
2603}
2604
2605static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2606{
b28a02de 2607 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2608}
2609
343e0d7a 2610static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2611 struct slab *slabp)
1da177e4
LT
2612{
2613 int i;
2614
2615 for (i = 0; i < cachep->num; i++) {
8fea4e96 2616 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2617#if DEBUG
2618 /* need to poison the objs? */
2619 if (cachep->flags & SLAB_POISON)
2620 poison_obj(cachep, objp, POISON_FREE);
2621 if (cachep->flags & SLAB_STORE_USER)
2622 *dbg_userword(cachep, objp) = NULL;
2623
2624 if (cachep->flags & SLAB_RED_ZONE) {
2625 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2626 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2627 }
2628 /*
a737b3e2
AM
2629 * Constructors are not allowed to allocate memory from the same
2630 * cache which they are a constructor for. Otherwise, deadlock.
2631 * They must also be threaded.
1da177e4
LT
2632 */
2633 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
3dafccf2 2634 cachep->ctor(objp + obj_offset(cachep), cachep,
a35afb83 2635 0);
1da177e4
LT
2636
2637 if (cachep->flags & SLAB_RED_ZONE) {
2638 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2639 slab_error(cachep, "constructor overwrote the"
b28a02de 2640 " end of an object");
1da177e4
LT
2641 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2642 slab_error(cachep, "constructor overwrote the"
b28a02de 2643 " start of an object");
1da177e4 2644 }
a737b3e2
AM
2645 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2646 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2647 kernel_map_pages(virt_to_page(objp),
3dafccf2 2648 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2649#else
2650 if (cachep->ctor)
a35afb83 2651 cachep->ctor(objp, cachep, 0);
1da177e4 2652#endif
b28a02de 2653 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2654 }
b28a02de 2655 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2656 slabp->free = 0;
2657}
2658
343e0d7a 2659static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2660{
4b51d669
CL
2661 if (CONFIG_ZONE_DMA_FLAG) {
2662 if (flags & GFP_DMA)
2663 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2664 else
2665 BUG_ON(cachep->gfpflags & GFP_DMA);
2666 }
1da177e4
LT
2667}
2668
a737b3e2
AM
2669static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2670 int nodeid)
78d382d7 2671{
8fea4e96 2672 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2673 kmem_bufctl_t next;
2674
2675 slabp->inuse++;
2676 next = slab_bufctl(slabp)[slabp->free];
2677#if DEBUG
2678 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2679 WARN_ON(slabp->nodeid != nodeid);
2680#endif
2681 slabp->free = next;
2682
2683 return objp;
2684}
2685
a737b3e2
AM
2686static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2687 void *objp, int nodeid)
78d382d7 2688{
8fea4e96 2689 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2690
2691#if DEBUG
2692 /* Verify that the slab belongs to the intended node */
2693 WARN_ON(slabp->nodeid != nodeid);
2694
871751e2 2695 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2696 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2697 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2698 BUG();
2699 }
2700#endif
2701 slab_bufctl(slabp)[objnr] = slabp->free;
2702 slabp->free = objnr;
2703 slabp->inuse--;
2704}
2705
4776874f
PE
2706/*
2707 * Map pages beginning at addr to the given cache and slab. This is required
2708 * for the slab allocator to be able to lookup the cache and slab of a
2709 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2710 */
2711static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2712 void *addr)
1da177e4 2713{
4776874f 2714 int nr_pages;
1da177e4
LT
2715 struct page *page;
2716
4776874f 2717 page = virt_to_page(addr);
84097518 2718
4776874f 2719 nr_pages = 1;
84097518 2720 if (likely(!PageCompound(page)))
4776874f
PE
2721 nr_pages <<= cache->gfporder;
2722
1da177e4 2723 do {
4776874f
PE
2724 page_set_cache(page, cache);
2725 page_set_slab(page, slab);
1da177e4 2726 page++;
4776874f 2727 } while (--nr_pages);
1da177e4
LT
2728}
2729
2730/*
2731 * Grow (by 1) the number of slabs within a cache. This is called by
2732 * kmem_cache_alloc() when there are no active objs left in a cache.
2733 */
3c517a61
CL
2734static int cache_grow(struct kmem_cache *cachep,
2735 gfp_t flags, int nodeid, void *objp)
1da177e4 2736{
b28a02de 2737 struct slab *slabp;
b28a02de
PE
2738 size_t offset;
2739 gfp_t local_flags;
e498be7d 2740 struct kmem_list3 *l3;
1da177e4 2741
a737b3e2
AM
2742 /*
2743 * Be lazy and only check for valid flags here, keeping it out of the
2744 * critical path in kmem_cache_alloc().
1da177e4 2745 */
d07dbea4 2746 BUG_ON(flags & ~(GFP_DMA | __GFP_ZERO | GFP_LEVEL_MASK));
1da177e4 2747
a06d72c1 2748 local_flags = (flags & GFP_LEVEL_MASK);
2e1217cf 2749 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2750 check_irq_off();
2e1217cf
RT
2751 l3 = cachep->nodelists[nodeid];
2752 spin_lock(&l3->list_lock);
1da177e4
LT
2753
2754 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2755 offset = l3->colour_next;
2756 l3->colour_next++;
2757 if (l3->colour_next >= cachep->colour)
2758 l3->colour_next = 0;
2759 spin_unlock(&l3->list_lock);
1da177e4 2760
2e1217cf 2761 offset *= cachep->colour_off;
1da177e4
LT
2762
2763 if (local_flags & __GFP_WAIT)
2764 local_irq_enable();
2765
2766 /*
2767 * The test for missing atomic flag is performed here, rather than
2768 * the more obvious place, simply to reduce the critical path length
2769 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2770 * will eventually be caught here (where it matters).
2771 */
2772 kmem_flagcheck(cachep, flags);
2773
a737b3e2
AM
2774 /*
2775 * Get mem for the objs. Attempt to allocate a physical page from
2776 * 'nodeid'.
e498be7d 2777 */
3c517a61 2778 if (!objp)
b8c1c5da 2779 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2780 if (!objp)
1da177e4
LT
2781 goto failed;
2782
2783 /* Get slab management. */
3c517a61
CL
2784 slabp = alloc_slabmgmt(cachep, objp, offset,
2785 local_flags & ~GFP_THISNODE, nodeid);
a737b3e2 2786 if (!slabp)
1da177e4
LT
2787 goto opps1;
2788
e498be7d 2789 slabp->nodeid = nodeid;
4776874f 2790 slab_map_pages(cachep, slabp, objp);
1da177e4 2791
a35afb83 2792 cache_init_objs(cachep, slabp);
1da177e4
LT
2793
2794 if (local_flags & __GFP_WAIT)
2795 local_irq_disable();
2796 check_irq_off();
e498be7d 2797 spin_lock(&l3->list_lock);
1da177e4
LT
2798
2799 /* Make slab active. */
e498be7d 2800 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2801 STATS_INC_GROWN(cachep);
e498be7d
CL
2802 l3->free_objects += cachep->num;
2803 spin_unlock(&l3->list_lock);
1da177e4 2804 return 1;
a737b3e2 2805opps1:
1da177e4 2806 kmem_freepages(cachep, objp);
a737b3e2 2807failed:
1da177e4
LT
2808 if (local_flags & __GFP_WAIT)
2809 local_irq_disable();
2810 return 0;
2811}
2812
2813#if DEBUG
2814
2815/*
2816 * Perform extra freeing checks:
2817 * - detect bad pointers.
2818 * - POISON/RED_ZONE checking
1da177e4
LT
2819 */
2820static void kfree_debugcheck(const void *objp)
2821{
1da177e4
LT
2822 if (!virt_addr_valid(objp)) {
2823 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2824 (unsigned long)objp);
2825 BUG();
1da177e4 2826 }
1da177e4
LT
2827}
2828
58ce1fd5
PE
2829static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2830{
b46b8f19 2831 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2832
2833 redzone1 = *dbg_redzone1(cache, obj);
2834 redzone2 = *dbg_redzone2(cache, obj);
2835
2836 /*
2837 * Redzone is ok.
2838 */
2839 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2840 return;
2841
2842 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2843 slab_error(cache, "double free detected");
2844 else
2845 slab_error(cache, "memory outside object was overwritten");
2846
b46b8f19 2847 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2848 obj, redzone1, redzone2);
2849}
2850
343e0d7a 2851static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2852 void *caller)
1da177e4
LT
2853{
2854 struct page *page;
2855 unsigned int objnr;
2856 struct slab *slabp;
2857
3dafccf2 2858 objp -= obj_offset(cachep);
1da177e4 2859 kfree_debugcheck(objp);
b49af68f 2860 page = virt_to_head_page(objp);
1da177e4 2861
065d41cb 2862 slabp = page_get_slab(page);
1da177e4
LT
2863
2864 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2865 verify_redzone_free(cachep, objp);
1da177e4
LT
2866 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2867 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2868 }
2869 if (cachep->flags & SLAB_STORE_USER)
2870 *dbg_userword(cachep, objp) = caller;
2871
8fea4e96 2872 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2873
2874 BUG_ON(objnr >= cachep->num);
8fea4e96 2875 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 2876
871751e2
AV
2877#ifdef CONFIG_DEBUG_SLAB_LEAK
2878 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2879#endif
1da177e4
LT
2880 if (cachep->flags & SLAB_POISON) {
2881#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2882 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2883 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2884 kernel_map_pages(virt_to_page(objp),
3dafccf2 2885 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2886 } else {
2887 poison_obj(cachep, objp, POISON_FREE);
2888 }
2889#else
2890 poison_obj(cachep, objp, POISON_FREE);
2891#endif
2892 }
2893 return objp;
2894}
2895
343e0d7a 2896static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2897{
2898 kmem_bufctl_t i;
2899 int entries = 0;
b28a02de 2900
1da177e4
LT
2901 /* Check slab's freelist to see if this obj is there. */
2902 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2903 entries++;
2904 if (entries > cachep->num || i >= cachep->num)
2905 goto bad;
2906 }
2907 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2908bad:
2909 printk(KERN_ERR "slab: Internal list corruption detected in "
2910 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2911 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2912 for (i = 0;
264132bc 2913 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2914 i++) {
a737b3e2 2915 if (i % 16 == 0)
1da177e4 2916 printk("\n%03x:", i);
b28a02de 2917 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2918 }
2919 printk("\n");
2920 BUG();
2921 }
2922}
2923#else
2924#define kfree_debugcheck(x) do { } while(0)
2925#define cache_free_debugcheck(x,objp,z) (objp)
2926#define check_slabp(x,y) do { } while(0)
2927#endif
2928
343e0d7a 2929static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2930{
2931 int batchcount;
2932 struct kmem_list3 *l3;
2933 struct array_cache *ac;
1ca4cb24
PE
2934 int node;
2935
2936 node = numa_node_id();
1da177e4
LT
2937
2938 check_irq_off();
9a2dba4b 2939 ac = cpu_cache_get(cachep);
a737b3e2 2940retry:
1da177e4
LT
2941 batchcount = ac->batchcount;
2942 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2943 /*
2944 * If there was little recent activity on this cache, then
2945 * perform only a partial refill. Otherwise we could generate
2946 * refill bouncing.
1da177e4
LT
2947 */
2948 batchcount = BATCHREFILL_LIMIT;
2949 }
1ca4cb24 2950 l3 = cachep->nodelists[node];
e498be7d
CL
2951
2952 BUG_ON(ac->avail > 0 || !l3);
2953 spin_lock(&l3->list_lock);
1da177e4 2954
3ded175a
CL
2955 /* See if we can refill from the shared array */
2956 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2957 goto alloc_done;
2958
1da177e4
LT
2959 while (batchcount > 0) {
2960 struct list_head *entry;
2961 struct slab *slabp;
2962 /* Get slab alloc is to come from. */
2963 entry = l3->slabs_partial.next;
2964 if (entry == &l3->slabs_partial) {
2965 l3->free_touched = 1;
2966 entry = l3->slabs_free.next;
2967 if (entry == &l3->slabs_free)
2968 goto must_grow;
2969 }
2970
2971 slabp = list_entry(entry, struct slab, list);
2972 check_slabp(cachep, slabp);
2973 check_spinlock_acquired(cachep);
714b8171
PE
2974
2975 /*
2976 * The slab was either on partial or free list so
2977 * there must be at least one object available for
2978 * allocation.
2979 */
2980 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
2981
1da177e4 2982 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
2983 STATS_INC_ALLOCED(cachep);
2984 STATS_INC_ACTIVE(cachep);
2985 STATS_SET_HIGH(cachep);
2986
78d382d7 2987 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
1ca4cb24 2988 node);
1da177e4
LT
2989 }
2990 check_slabp(cachep, slabp);
2991
2992 /* move slabp to correct slabp list: */
2993 list_del(&slabp->list);
2994 if (slabp->free == BUFCTL_END)
2995 list_add(&slabp->list, &l3->slabs_full);
2996 else
2997 list_add(&slabp->list, &l3->slabs_partial);
2998 }
2999
a737b3e2 3000must_grow:
1da177e4 3001 l3->free_objects -= ac->avail;
a737b3e2 3002alloc_done:
e498be7d 3003 spin_unlock(&l3->list_lock);
1da177e4
LT
3004
3005 if (unlikely(!ac->avail)) {
3006 int x;
3c517a61 3007 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3008
a737b3e2 3009 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3010 ac = cpu_cache_get(cachep);
a737b3e2 3011 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
3012 return NULL;
3013
a737b3e2 3014 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3015 goto retry;
3016 }
3017 ac->touched = 1;
e498be7d 3018 return ac->entry[--ac->avail];
1da177e4
LT
3019}
3020
a737b3e2
AM
3021static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3022 gfp_t flags)
1da177e4
LT
3023{
3024 might_sleep_if(flags & __GFP_WAIT);
3025#if DEBUG
3026 kmem_flagcheck(cachep, flags);
3027#endif
3028}
3029
3030#if DEBUG
a737b3e2
AM
3031static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3032 gfp_t flags, void *objp, void *caller)
1da177e4 3033{
b28a02de 3034 if (!objp)
1da177e4 3035 return objp;
b28a02de 3036 if (cachep->flags & SLAB_POISON) {
1da177e4 3037#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 3038 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3039 kernel_map_pages(virt_to_page(objp),
3dafccf2 3040 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
3041 else
3042 check_poison_obj(cachep, objp);
3043#else
3044 check_poison_obj(cachep, objp);
3045#endif
3046 poison_obj(cachep, objp, POISON_INUSE);
3047 }
3048 if (cachep->flags & SLAB_STORE_USER)
3049 *dbg_userword(cachep, objp) = caller;
3050
3051 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3052 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3053 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3054 slab_error(cachep, "double free, or memory outside"
3055 " object was overwritten");
b28a02de 3056 printk(KERN_ERR
b46b8f19 3057 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3058 objp, *dbg_redzone1(cachep, objp),
3059 *dbg_redzone2(cachep, objp));
1da177e4
LT
3060 }
3061 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3062 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3063 }
871751e2
AV
3064#ifdef CONFIG_DEBUG_SLAB_LEAK
3065 {
3066 struct slab *slabp;
3067 unsigned objnr;
3068
b49af68f 3069 slabp = page_get_slab(virt_to_head_page(objp));
871751e2
AV
3070 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3071 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3072 }
3073#endif
3dafccf2 3074 objp += obj_offset(cachep);
4f104934 3075 if (cachep->ctor && cachep->flags & SLAB_POISON)
a35afb83 3076 cachep->ctor(objp, cachep, 0);
a44b56d3
KH
3077#if ARCH_SLAB_MINALIGN
3078 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3079 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3080 objp, ARCH_SLAB_MINALIGN);
3081 }
3082#endif
1da177e4
LT
3083 return objp;
3084}
3085#else
3086#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3087#endif
3088
8a8b6502
AM
3089#ifdef CONFIG_FAILSLAB
3090
3091static struct failslab_attr {
3092
3093 struct fault_attr attr;
3094
3095 u32 ignore_gfp_wait;
3096#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3097 struct dentry *ignore_gfp_wait_file;
3098#endif
3099
3100} failslab = {
3101 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4 3102 .ignore_gfp_wait = 1,
8a8b6502
AM
3103};
3104
3105static int __init setup_failslab(char *str)
3106{
3107 return setup_fault_attr(&failslab.attr, str);
3108}
3109__setup("failslab=", setup_failslab);
3110
3111static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3112{
3113 if (cachep == &cache_cache)
3114 return 0;
3115 if (flags & __GFP_NOFAIL)
3116 return 0;
3117 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3118 return 0;
3119
3120 return should_fail(&failslab.attr, obj_size(cachep));
3121}
3122
3123#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3124
3125static int __init failslab_debugfs(void)
3126{
3127 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3128 struct dentry *dir;
3129 int err;
3130
824ebef1 3131 err = init_fault_attr_dentries(&failslab.attr, "failslab");
8a8b6502
AM
3132 if (err)
3133 return err;
3134 dir = failslab.attr.dentries.dir;
3135
3136 failslab.ignore_gfp_wait_file =
3137 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3138 &failslab.ignore_gfp_wait);
3139
3140 if (!failslab.ignore_gfp_wait_file) {
3141 err = -ENOMEM;
3142 debugfs_remove(failslab.ignore_gfp_wait_file);
3143 cleanup_fault_attr_dentries(&failslab.attr);
3144 }
3145
3146 return err;
3147}
3148
3149late_initcall(failslab_debugfs);
3150
3151#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3152
3153#else /* CONFIG_FAILSLAB */
3154
3155static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3156{
3157 return 0;
3158}
3159
3160#endif /* CONFIG_FAILSLAB */
3161
343e0d7a 3162static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3163{
b28a02de 3164 void *objp;
1da177e4
LT
3165 struct array_cache *ac;
3166
5c382300 3167 check_irq_off();
8a8b6502 3168
9a2dba4b 3169 ac = cpu_cache_get(cachep);
1da177e4
LT
3170 if (likely(ac->avail)) {
3171 STATS_INC_ALLOCHIT(cachep);
3172 ac->touched = 1;
e498be7d 3173 objp = ac->entry[--ac->avail];
1da177e4
LT
3174 } else {
3175 STATS_INC_ALLOCMISS(cachep);
3176 objp = cache_alloc_refill(cachep, flags);
3177 }
5c382300
AK
3178 return objp;
3179}
3180
e498be7d 3181#ifdef CONFIG_NUMA
c61afb18 3182/*
b2455396 3183 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3184 *
3185 * If we are in_interrupt, then process context, including cpusets and
3186 * mempolicy, may not apply and should not be used for allocation policy.
3187 */
3188static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3189{
3190 int nid_alloc, nid_here;
3191
765c4507 3192 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18
PJ
3193 return NULL;
3194 nid_alloc = nid_here = numa_node_id();
3195 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3196 nid_alloc = cpuset_mem_spread_node();
3197 else if (current->mempolicy)
3198 nid_alloc = slab_node(current->mempolicy);
3199 if (nid_alloc != nid_here)
8b98c169 3200 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3201 return NULL;
3202}
3203
765c4507
CL
3204/*
3205 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3206 * certain node and fall back is permitted. First we scan all the
3207 * available nodelists for available objects. If that fails then we
3208 * perform an allocation without specifying a node. This allows the page
3209 * allocator to do its reclaim / fallback magic. We then insert the
3210 * slab into the proper nodelist and then allocate from it.
765c4507 3211 */
8c8cc2c1 3212static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3213{
8c8cc2c1
PE
3214 struct zonelist *zonelist;
3215 gfp_t local_flags;
765c4507
CL
3216 struct zone **z;
3217 void *obj = NULL;
3c517a61 3218 int nid;
8c8cc2c1
PE
3219
3220 if (flags & __GFP_THISNODE)
3221 return NULL;
3222
3223 zonelist = &NODE_DATA(slab_node(current->mempolicy))
3224 ->node_zonelists[gfp_zone(flags)];
3225 local_flags = (flags & GFP_LEVEL_MASK);
765c4507 3226
3c517a61
CL
3227retry:
3228 /*
3229 * Look through allowed nodes for objects available
3230 * from existing per node queues.
3231 */
aedb0eb1 3232 for (z = zonelist->zones; *z && !obj; z++) {
3c517a61 3233 nid = zone_to_nid(*z);
aedb0eb1 3234
02a0e53d 3235 if (cpuset_zone_allowed_hardwall(*z, flags) &&
3c517a61
CL
3236 cache->nodelists[nid] &&
3237 cache->nodelists[nid]->free_objects)
3238 obj = ____cache_alloc_node(cache,
3239 flags | GFP_THISNODE, nid);
3240 }
3241
cfce6604 3242 if (!obj) {
3c517a61
CL
3243 /*
3244 * This allocation will be performed within the constraints
3245 * of the current cpuset / memory policy requirements.
3246 * We may trigger various forms of reclaim on the allowed
3247 * set and go into memory reserves if necessary.
3248 */
dd47ea75
CL
3249 if (local_flags & __GFP_WAIT)
3250 local_irq_enable();
3251 kmem_flagcheck(cache, flags);
3c517a61 3252 obj = kmem_getpages(cache, flags, -1);
dd47ea75
CL
3253 if (local_flags & __GFP_WAIT)
3254 local_irq_disable();
3c517a61
CL
3255 if (obj) {
3256 /*
3257 * Insert into the appropriate per node queues
3258 */
3259 nid = page_to_nid(virt_to_page(obj));
3260 if (cache_grow(cache, flags, nid, obj)) {
3261 obj = ____cache_alloc_node(cache,
3262 flags | GFP_THISNODE, nid);
3263 if (!obj)
3264 /*
3265 * Another processor may allocate the
3266 * objects in the slab since we are
3267 * not holding any locks.
3268 */
3269 goto retry;
3270 } else {
b6a60451 3271 /* cache_grow already freed obj */
3c517a61
CL
3272 obj = NULL;
3273 }
3274 }
aedb0eb1 3275 }
765c4507
CL
3276 return obj;
3277}
3278
e498be7d
CL
3279/*
3280 * A interface to enable slab creation on nodeid
1da177e4 3281 */
8b98c169 3282static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3283 int nodeid)
e498be7d
CL
3284{
3285 struct list_head *entry;
b28a02de
PE
3286 struct slab *slabp;
3287 struct kmem_list3 *l3;
3288 void *obj;
b28a02de
PE
3289 int x;
3290
3291 l3 = cachep->nodelists[nodeid];
3292 BUG_ON(!l3);
3293
a737b3e2 3294retry:
ca3b9b91 3295 check_irq_off();
b28a02de
PE
3296 spin_lock(&l3->list_lock);
3297 entry = l3->slabs_partial.next;
3298 if (entry == &l3->slabs_partial) {
3299 l3->free_touched = 1;
3300 entry = l3->slabs_free.next;
3301 if (entry == &l3->slabs_free)
3302 goto must_grow;
3303 }
3304
3305 slabp = list_entry(entry, struct slab, list);
3306 check_spinlock_acquired_node(cachep, nodeid);
3307 check_slabp(cachep, slabp);
3308
3309 STATS_INC_NODEALLOCS(cachep);
3310 STATS_INC_ACTIVE(cachep);
3311 STATS_SET_HIGH(cachep);
3312
3313 BUG_ON(slabp->inuse == cachep->num);
3314
78d382d7 3315 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3316 check_slabp(cachep, slabp);
3317 l3->free_objects--;
3318 /* move slabp to correct slabp list: */
3319 list_del(&slabp->list);
3320
a737b3e2 3321 if (slabp->free == BUFCTL_END)
b28a02de 3322 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3323 else
b28a02de 3324 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3325
b28a02de
PE
3326 spin_unlock(&l3->list_lock);
3327 goto done;
e498be7d 3328
a737b3e2 3329must_grow:
b28a02de 3330 spin_unlock(&l3->list_lock);
3c517a61 3331 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3332 if (x)
3333 goto retry;
1da177e4 3334
8c8cc2c1 3335 return fallback_alloc(cachep, flags);
e498be7d 3336
a737b3e2 3337done:
b28a02de 3338 return obj;
e498be7d 3339}
8c8cc2c1
PE
3340
3341/**
3342 * kmem_cache_alloc_node - Allocate an object on the specified node
3343 * @cachep: The cache to allocate from.
3344 * @flags: See kmalloc().
3345 * @nodeid: node number of the target node.
3346 * @caller: return address of caller, used for debug information
3347 *
3348 * Identical to kmem_cache_alloc but it will allocate memory on the given
3349 * node, which can improve the performance for cpu bound structures.
3350 *
3351 * Fallback to other node is possible if __GFP_THISNODE is not set.
3352 */
3353static __always_inline void *
3354__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3355 void *caller)
3356{
3357 unsigned long save_flags;
3358 void *ptr;
3359
824ebef1
AM
3360 if (should_failslab(cachep, flags))
3361 return NULL;
3362
8c8cc2c1
PE
3363 cache_alloc_debugcheck_before(cachep, flags);
3364 local_irq_save(save_flags);
3365
3366 if (unlikely(nodeid == -1))
3367 nodeid = numa_node_id();
3368
3369 if (unlikely(!cachep->nodelists[nodeid])) {
3370 /* Node not bootstrapped yet */
3371 ptr = fallback_alloc(cachep, flags);
3372 goto out;
3373 }
3374
3375 if (nodeid == numa_node_id()) {
3376 /*
3377 * Use the locally cached objects if possible.
3378 * However ____cache_alloc does not allow fallback
3379 * to other nodes. It may fail while we still have
3380 * objects on other nodes available.
3381 */
3382 ptr = ____cache_alloc(cachep, flags);
3383 if (ptr)
3384 goto out;
3385 }
3386 /* ___cache_alloc_node can fall back to other nodes */
3387 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3388 out:
3389 local_irq_restore(save_flags);
3390 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3391
d07dbea4
CL
3392 if (unlikely((flags & __GFP_ZERO) && ptr))
3393 memset(ptr, 0, obj_size(cachep));
3394
8c8cc2c1
PE
3395 return ptr;
3396}
3397
3398static __always_inline void *
3399__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3400{
3401 void *objp;
3402
3403 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3404 objp = alternate_node_alloc(cache, flags);
3405 if (objp)
3406 goto out;
3407 }
3408 objp = ____cache_alloc(cache, flags);
3409
3410 /*
3411 * We may just have run out of memory on the local node.
3412 * ____cache_alloc_node() knows how to locate memory on other nodes
3413 */
3414 if (!objp)
3415 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3416
3417 out:
3418 return objp;
3419}
3420#else
3421
3422static __always_inline void *
3423__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3424{
3425 return ____cache_alloc(cachep, flags);
3426}
3427
3428#endif /* CONFIG_NUMA */
3429
3430static __always_inline void *
3431__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3432{
3433 unsigned long save_flags;
3434 void *objp;
3435
824ebef1
AM
3436 if (should_failslab(cachep, flags))
3437 return NULL;
3438
8c8cc2c1
PE
3439 cache_alloc_debugcheck_before(cachep, flags);
3440 local_irq_save(save_flags);
3441 objp = __do_cache_alloc(cachep, flags);
3442 local_irq_restore(save_flags);
3443 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3444 prefetchw(objp);
3445
d07dbea4
CL
3446 if (unlikely((flags & __GFP_ZERO) && objp))
3447 memset(objp, 0, obj_size(cachep));
3448
8c8cc2c1
PE
3449 return objp;
3450}
e498be7d
CL
3451
3452/*
3453 * Caller needs to acquire correct kmem_list's list_lock
3454 */
343e0d7a 3455static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3456 int node)
1da177e4
LT
3457{
3458 int i;
e498be7d 3459 struct kmem_list3 *l3;
1da177e4
LT
3460
3461 for (i = 0; i < nr_objects; i++) {
3462 void *objp = objpp[i];
3463 struct slab *slabp;
1da177e4 3464
6ed5eb22 3465 slabp = virt_to_slab(objp);
ff69416e 3466 l3 = cachep->nodelists[node];
1da177e4 3467 list_del(&slabp->list);
ff69416e 3468 check_spinlock_acquired_node(cachep, node);
1da177e4 3469 check_slabp(cachep, slabp);
78d382d7 3470 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3471 STATS_DEC_ACTIVE(cachep);
e498be7d 3472 l3->free_objects++;
1da177e4
LT
3473 check_slabp(cachep, slabp);
3474
3475 /* fixup slab chains */
3476 if (slabp->inuse == 0) {
e498be7d
CL
3477 if (l3->free_objects > l3->free_limit) {
3478 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3479 /* No need to drop any previously held
3480 * lock here, even if we have a off-slab slab
3481 * descriptor it is guaranteed to come from
3482 * a different cache, refer to comments before
3483 * alloc_slabmgmt.
3484 */
1da177e4
LT
3485 slab_destroy(cachep, slabp);
3486 } else {
e498be7d 3487 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3488 }
3489 } else {
3490 /* Unconditionally move a slab to the end of the
3491 * partial list on free - maximum time for the
3492 * other objects to be freed, too.
3493 */
e498be7d 3494 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3495 }
3496 }
3497}
3498
343e0d7a 3499static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3500{
3501 int batchcount;
e498be7d 3502 struct kmem_list3 *l3;
ff69416e 3503 int node = numa_node_id();
1da177e4
LT
3504
3505 batchcount = ac->batchcount;
3506#if DEBUG
3507 BUG_ON(!batchcount || batchcount > ac->avail);
3508#endif
3509 check_irq_off();
ff69416e 3510 l3 = cachep->nodelists[node];
873623df 3511 spin_lock(&l3->list_lock);
e498be7d
CL
3512 if (l3->shared) {
3513 struct array_cache *shared_array = l3->shared;
b28a02de 3514 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3515 if (max) {
3516 if (batchcount > max)
3517 batchcount = max;
e498be7d 3518 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3519 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3520 shared_array->avail += batchcount;
3521 goto free_done;
3522 }
3523 }
3524
ff69416e 3525 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3526free_done:
1da177e4
LT
3527#if STATS
3528 {
3529 int i = 0;
3530 struct list_head *p;
3531
e498be7d
CL
3532 p = l3->slabs_free.next;
3533 while (p != &(l3->slabs_free)) {
1da177e4
LT
3534 struct slab *slabp;
3535
3536 slabp = list_entry(p, struct slab, list);
3537 BUG_ON(slabp->inuse);
3538
3539 i++;
3540 p = p->next;
3541 }
3542 STATS_SET_FREEABLE(cachep, i);
3543 }
3544#endif
e498be7d 3545 spin_unlock(&l3->list_lock);
1da177e4 3546 ac->avail -= batchcount;
a737b3e2 3547 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3548}
3549
3550/*
a737b3e2
AM
3551 * Release an obj back to its cache. If the obj has a constructed state, it must
3552 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3553 */
873623df 3554static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3555{
9a2dba4b 3556 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3557
3558 check_irq_off();
3559 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3560
3cdc0ed0 3561 if (cache_free_alien(cachep, objp))
729bd0b7
PE
3562 return;
3563
1da177e4
LT
3564 if (likely(ac->avail < ac->limit)) {
3565 STATS_INC_FREEHIT(cachep);
e498be7d 3566 ac->entry[ac->avail++] = objp;
1da177e4
LT
3567 return;
3568 } else {
3569 STATS_INC_FREEMISS(cachep);
3570 cache_flusharray(cachep, ac);
e498be7d 3571 ac->entry[ac->avail++] = objp;
1da177e4
LT
3572 }
3573}
3574
3575/**
3576 * kmem_cache_alloc - Allocate an object
3577 * @cachep: The cache to allocate from.
3578 * @flags: See kmalloc().
3579 *
3580 * Allocate an object from this cache. The flags are only relevant
3581 * if the cache has no available objects.
3582 */
343e0d7a 3583void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3584{
7fd6b141 3585 return __cache_alloc(cachep, flags, __builtin_return_address(0));
1da177e4
LT
3586}
3587EXPORT_SYMBOL(kmem_cache_alloc);
3588
3589/**
3590 * kmem_ptr_validate - check if an untrusted pointer might
3591 * be a slab entry.
3592 * @cachep: the cache we're checking against
3593 * @ptr: pointer to validate
3594 *
3595 * This verifies that the untrusted pointer looks sane:
3596 * it is _not_ a guarantee that the pointer is actually
3597 * part of the slab cache in question, but it at least
3598 * validates that the pointer can be dereferenced and
3599 * looks half-way sane.
3600 *
3601 * Currently only used for dentry validation.
3602 */
b7f869a2 3603int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
1da177e4 3604{
b28a02de 3605 unsigned long addr = (unsigned long)ptr;
1da177e4 3606 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3607 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3608 unsigned long size = cachep->buffer_size;
1da177e4
LT
3609 struct page *page;
3610
3611 if (unlikely(addr < min_addr))
3612 goto out;
3613 if (unlikely(addr > (unsigned long)high_memory - size))
3614 goto out;
3615 if (unlikely(addr & align_mask))
3616 goto out;
3617 if (unlikely(!kern_addr_valid(addr)))
3618 goto out;
3619 if (unlikely(!kern_addr_valid(addr + size - 1)))
3620 goto out;
3621 page = virt_to_page(ptr);
3622 if (unlikely(!PageSlab(page)))
3623 goto out;
065d41cb 3624 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3625 goto out;
3626 return 1;
a737b3e2 3627out:
1da177e4
LT
3628 return 0;
3629}
3630
3631#ifdef CONFIG_NUMA
8b98c169
CH
3632void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3633{
3634 return __cache_alloc_node(cachep, flags, nodeid,
3635 __builtin_return_address(0));
3636}
1da177e4
LT
3637EXPORT_SYMBOL(kmem_cache_alloc_node);
3638
8b98c169
CH
3639static __always_inline void *
3640__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3641{
343e0d7a 3642 struct kmem_cache *cachep;
97e2bde4
MS
3643
3644 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3645 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3646 return cachep;
97e2bde4
MS
3647 return kmem_cache_alloc_node(cachep, flags, node);
3648}
8b98c169
CH
3649
3650#ifdef CONFIG_DEBUG_SLAB
3651void *__kmalloc_node(size_t size, gfp_t flags, int node)
3652{
3653 return __do_kmalloc_node(size, flags, node,
3654 __builtin_return_address(0));
3655}
dbe5e69d 3656EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3657
3658void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3659 int node, void *caller)
3660{
3661 return __do_kmalloc_node(size, flags, node, caller);
3662}
3663EXPORT_SYMBOL(__kmalloc_node_track_caller);
3664#else
3665void *__kmalloc_node(size_t size, gfp_t flags, int node)
3666{
3667 return __do_kmalloc_node(size, flags, node, NULL);
3668}
3669EXPORT_SYMBOL(__kmalloc_node);
3670#endif /* CONFIG_DEBUG_SLAB */
3671#endif /* CONFIG_NUMA */
1da177e4
LT
3672
3673/**
800590f5 3674 * __do_kmalloc - allocate memory
1da177e4 3675 * @size: how many bytes of memory are required.
800590f5 3676 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3677 * @caller: function caller for debug tracking of the caller
1da177e4 3678 */
7fd6b141
PE
3679static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3680 void *caller)
1da177e4 3681{
343e0d7a 3682 struct kmem_cache *cachep;
1da177e4 3683
97e2bde4
MS
3684 /* If you want to save a few bytes .text space: replace
3685 * __ with kmem_.
3686 * Then kmalloc uses the uninlined functions instead of the inline
3687 * functions.
3688 */
3689 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3690 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3691 return cachep;
7fd6b141
PE
3692 return __cache_alloc(cachep, flags, caller);
3693}
3694
7fd6b141 3695
1d2c8eea 3696#ifdef CONFIG_DEBUG_SLAB
7fd6b141
PE
3697void *__kmalloc(size_t size, gfp_t flags)
3698{
871751e2 3699 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3700}
3701EXPORT_SYMBOL(__kmalloc);
3702
7fd6b141
PE
3703void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3704{
3705 return __do_kmalloc(size, flags, caller);
3706}
3707EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3708
3709#else
3710void *__kmalloc(size_t size, gfp_t flags)
3711{
3712 return __do_kmalloc(size, flags, NULL);
3713}
3714EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3715#endif
3716
1da177e4
LT
3717/**
3718 * kmem_cache_free - Deallocate an object
3719 * @cachep: The cache the allocation was from.
3720 * @objp: The previously allocated object.
3721 *
3722 * Free an object which was previously allocated from this
3723 * cache.
3724 */
343e0d7a 3725void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3726{
3727 unsigned long flags;
3728
ddc2e812
PE
3729 BUG_ON(virt_to_cache(objp) != cachep);
3730
1da177e4 3731 local_irq_save(flags);
898552c9 3732 debug_check_no_locks_freed(objp, obj_size(cachep));
873623df 3733 __cache_free(cachep, objp);
1da177e4
LT
3734 local_irq_restore(flags);
3735}
3736EXPORT_SYMBOL(kmem_cache_free);
3737
1da177e4
LT
3738/**
3739 * kfree - free previously allocated memory
3740 * @objp: pointer returned by kmalloc.
3741 *
80e93eff
PE
3742 * If @objp is NULL, no operation is performed.
3743 *
1da177e4
LT
3744 * Don't free memory not originally allocated by kmalloc()
3745 * or you will run into trouble.
3746 */
3747void kfree(const void *objp)
3748{
343e0d7a 3749 struct kmem_cache *c;
1da177e4
LT
3750 unsigned long flags;
3751
6cb8f913 3752 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3753 return;
3754 local_irq_save(flags);
3755 kfree_debugcheck(objp);
6ed5eb22 3756 c = virt_to_cache(objp);
f9b8404c 3757 debug_check_no_locks_freed(objp, obj_size(c));
873623df 3758 __cache_free(c, (void *)objp);
1da177e4
LT
3759 local_irq_restore(flags);
3760}
3761EXPORT_SYMBOL(kfree);
3762
343e0d7a 3763unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3764{
3dafccf2 3765 return obj_size(cachep);
1da177e4
LT
3766}
3767EXPORT_SYMBOL(kmem_cache_size);
3768
343e0d7a 3769const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3770{
3771 return cachep->name;
3772}
3773EXPORT_SYMBOL_GPL(kmem_cache_name);
3774
e498be7d 3775/*
0718dc2a 3776 * This initializes kmem_list3 or resizes varioius caches for all nodes.
e498be7d 3777 */
343e0d7a 3778static int alloc_kmemlist(struct kmem_cache *cachep)
e498be7d
CL
3779{
3780 int node;
3781 struct kmem_list3 *l3;
cafeb02e 3782 struct array_cache *new_shared;
3395ee05 3783 struct array_cache **new_alien = NULL;
e498be7d
CL
3784
3785 for_each_online_node(node) {
cafeb02e 3786
3395ee05
PM
3787 if (use_alien_caches) {
3788 new_alien = alloc_alien_cache(node, cachep->limit);
3789 if (!new_alien)
3790 goto fail;
3791 }
cafeb02e 3792
63109846
ED
3793 new_shared = NULL;
3794 if (cachep->shared) {
3795 new_shared = alloc_arraycache(node,
0718dc2a 3796 cachep->shared*cachep->batchcount,
a737b3e2 3797 0xbaadf00d);
63109846
ED
3798 if (!new_shared) {
3799 free_alien_cache(new_alien);
3800 goto fail;
3801 }
0718dc2a 3802 }
cafeb02e 3803
a737b3e2
AM
3804 l3 = cachep->nodelists[node];
3805 if (l3) {
cafeb02e
CL
3806 struct array_cache *shared = l3->shared;
3807
e498be7d
CL
3808 spin_lock_irq(&l3->list_lock);
3809
cafeb02e 3810 if (shared)
0718dc2a
CL
3811 free_block(cachep, shared->entry,
3812 shared->avail, node);
e498be7d 3813
cafeb02e
CL
3814 l3->shared = new_shared;
3815 if (!l3->alien) {
e498be7d
CL
3816 l3->alien = new_alien;
3817 new_alien = NULL;
3818 }
b28a02de 3819 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3820 cachep->batchcount + cachep->num;
e498be7d 3821 spin_unlock_irq(&l3->list_lock);
cafeb02e 3822 kfree(shared);
e498be7d
CL
3823 free_alien_cache(new_alien);
3824 continue;
3825 }
a737b3e2 3826 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
0718dc2a
CL
3827 if (!l3) {
3828 free_alien_cache(new_alien);
3829 kfree(new_shared);
e498be7d 3830 goto fail;
0718dc2a 3831 }
e498be7d
CL
3832
3833 kmem_list3_init(l3);
3834 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3835 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3836 l3->shared = new_shared;
e498be7d 3837 l3->alien = new_alien;
b28a02de 3838 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3839 cachep->batchcount + cachep->num;
e498be7d
CL
3840 cachep->nodelists[node] = l3;
3841 }
cafeb02e 3842 return 0;
0718dc2a 3843
a737b3e2 3844fail:
0718dc2a
CL
3845 if (!cachep->next.next) {
3846 /* Cache is not active yet. Roll back what we did */
3847 node--;
3848 while (node >= 0) {
3849 if (cachep->nodelists[node]) {
3850 l3 = cachep->nodelists[node];
3851
3852 kfree(l3->shared);
3853 free_alien_cache(l3->alien);
3854 kfree(l3);
3855 cachep->nodelists[node] = NULL;
3856 }
3857 node--;
3858 }
3859 }
cafeb02e 3860 return -ENOMEM;
e498be7d
CL
3861}
3862
1da177e4 3863struct ccupdate_struct {
343e0d7a 3864 struct kmem_cache *cachep;
1da177e4
LT
3865 struct array_cache *new[NR_CPUS];
3866};
3867
3868static void do_ccupdate_local(void *info)
3869{
a737b3e2 3870 struct ccupdate_struct *new = info;
1da177e4
LT
3871 struct array_cache *old;
3872
3873 check_irq_off();
9a2dba4b 3874 old = cpu_cache_get(new->cachep);
e498be7d 3875
1da177e4
LT
3876 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3877 new->new[smp_processor_id()] = old;
3878}
3879
b5d8ca7c 3880/* Always called with the cache_chain_mutex held */
a737b3e2
AM
3881static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3882 int batchcount, int shared)
1da177e4 3883{
d2e7b7d0 3884 struct ccupdate_struct *new;
2ed3a4ef 3885 int i;
1da177e4 3886
d2e7b7d0
SS
3887 new = kzalloc(sizeof(*new), GFP_KERNEL);
3888 if (!new)
3889 return -ENOMEM;
3890
e498be7d 3891 for_each_online_cpu(i) {
d2e7b7d0 3892 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
a737b3e2 3893 batchcount);
d2e7b7d0 3894 if (!new->new[i]) {
b28a02de 3895 for (i--; i >= 0; i--)
d2e7b7d0
SS
3896 kfree(new->new[i]);
3897 kfree(new);
e498be7d 3898 return -ENOMEM;
1da177e4
LT
3899 }
3900 }
d2e7b7d0 3901 new->cachep = cachep;
1da177e4 3902
d2e7b7d0 3903 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
e498be7d 3904
1da177e4 3905 check_irq_on();
1da177e4
LT
3906 cachep->batchcount = batchcount;
3907 cachep->limit = limit;
e498be7d 3908 cachep->shared = shared;
1da177e4 3909
e498be7d 3910 for_each_online_cpu(i) {
d2e7b7d0 3911 struct array_cache *ccold = new->new[i];
1da177e4
LT
3912 if (!ccold)
3913 continue;
e498be7d 3914 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3915 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3916 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3917 kfree(ccold);
3918 }
d2e7b7d0 3919 kfree(new);
2ed3a4ef 3920 return alloc_kmemlist(cachep);
1da177e4
LT
3921}
3922
b5d8ca7c 3923/* Called with cache_chain_mutex held always */
2ed3a4ef 3924static int enable_cpucache(struct kmem_cache *cachep)
1da177e4
LT
3925{
3926 int err;
3927 int limit, shared;
3928
a737b3e2
AM
3929 /*
3930 * The head array serves three purposes:
1da177e4
LT
3931 * - create a LIFO ordering, i.e. return objects that are cache-warm
3932 * - reduce the number of spinlock operations.
a737b3e2 3933 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3934 * bufctl chains: array operations are cheaper.
3935 * The numbers are guessed, we should auto-tune as described by
3936 * Bonwick.
3937 */
3dafccf2 3938 if (cachep->buffer_size > 131072)
1da177e4 3939 limit = 1;
3dafccf2 3940 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 3941 limit = 8;
3dafccf2 3942 else if (cachep->buffer_size > 1024)
1da177e4 3943 limit = 24;
3dafccf2 3944 else if (cachep->buffer_size > 256)
1da177e4
LT
3945 limit = 54;
3946 else
3947 limit = 120;
3948
a737b3e2
AM
3949 /*
3950 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3951 * allocation behaviour: Most allocs on one cpu, most free operations
3952 * on another cpu. For these cases, an efficient object passing between
3953 * cpus is necessary. This is provided by a shared array. The array
3954 * replaces Bonwick's magazine layer.
3955 * On uniprocessor, it's functionally equivalent (but less efficient)
3956 * to a larger limit. Thus disabled by default.
3957 */
3958 shared = 0;
364fbb29 3959 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3960 shared = 8;
1da177e4
LT
3961
3962#if DEBUG
a737b3e2
AM
3963 /*
3964 * With debugging enabled, large batchcount lead to excessively long
3965 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3966 */
3967 if (limit > 32)
3968 limit = 32;
3969#endif
b28a02de 3970 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
3971 if (err)
3972 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3973 cachep->name, -err);
2ed3a4ef 3974 return err;
1da177e4
LT
3975}
3976
1b55253a
CL
3977/*
3978 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
3979 * necessary. Note that the l3 listlock also protects the array_cache
3980 * if drain_array() is used on the shared array.
1b55253a
CL
3981 */
3982void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3983 struct array_cache *ac, int force, int node)
1da177e4
LT
3984{
3985 int tofree;
3986
1b55253a
CL
3987 if (!ac || !ac->avail)
3988 return;
1da177e4
LT
3989 if (ac->touched && !force) {
3990 ac->touched = 0;
b18e7e65 3991 } else {
1b55253a 3992 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
3993 if (ac->avail) {
3994 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3995 if (tofree > ac->avail)
3996 tofree = (ac->avail + 1) / 2;
3997 free_block(cachep, ac->entry, tofree, node);
3998 ac->avail -= tofree;
3999 memmove(ac->entry, &(ac->entry[tofree]),
4000 sizeof(void *) * ac->avail);
4001 }
1b55253a 4002 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4003 }
4004}
4005
4006/**
4007 * cache_reap - Reclaim memory from caches.
05fb6bf0 4008 * @w: work descriptor
1da177e4
LT
4009 *
4010 * Called from workqueue/eventd every few seconds.
4011 * Purpose:
4012 * - clear the per-cpu caches for this CPU.
4013 * - return freeable pages to the main free memory pool.
4014 *
a737b3e2
AM
4015 * If we cannot acquire the cache chain mutex then just give up - we'll try
4016 * again on the next iteration.
1da177e4 4017 */
7c5cae36 4018static void cache_reap(struct work_struct *w)
1da177e4 4019{
7a7c381d 4020 struct kmem_cache *searchp;
e498be7d 4021 struct kmem_list3 *l3;
aab2207c 4022 int node = numa_node_id();
7c5cae36
CL
4023 struct delayed_work *work =
4024 container_of(w, struct delayed_work, work);
1da177e4 4025
7c5cae36 4026 if (!mutex_trylock(&cache_chain_mutex))
1da177e4 4027 /* Give up. Setup the next iteration. */
7c5cae36 4028 goto out;
1da177e4 4029
7a7c381d 4030 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
4031 check_irq_on();
4032
35386e3b
CL
4033 /*
4034 * We only take the l3 lock if absolutely necessary and we
4035 * have established with reasonable certainty that
4036 * we can do some work if the lock was obtained.
4037 */
aab2207c 4038 l3 = searchp->nodelists[node];
35386e3b 4039
8fce4d8e 4040 reap_alien(searchp, l3);
1da177e4 4041
aab2207c 4042 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4043
35386e3b
CL
4044 /*
4045 * These are racy checks but it does not matter
4046 * if we skip one check or scan twice.
4047 */
e498be7d 4048 if (time_after(l3->next_reap, jiffies))
35386e3b 4049 goto next;
1da177e4 4050
e498be7d 4051 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4052
aab2207c 4053 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4054
ed11d9eb 4055 if (l3->free_touched)
e498be7d 4056 l3->free_touched = 0;
ed11d9eb
CL
4057 else {
4058 int freed;
1da177e4 4059
ed11d9eb
CL
4060 freed = drain_freelist(searchp, l3, (l3->free_limit +
4061 5 * searchp->num - 1) / (5 * searchp->num));
4062 STATS_ADD_REAPED(searchp, freed);
4063 }
35386e3b 4064next:
1da177e4
LT
4065 cond_resched();
4066 }
4067 check_irq_on();
fc0abb14 4068 mutex_unlock(&cache_chain_mutex);
8fce4d8e 4069 next_reap_node();
7c5cae36 4070out:
a737b3e2 4071 /* Set up the next iteration */
7c5cae36 4072 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4073}
4074
4075#ifdef CONFIG_PROC_FS
4076
85289f98 4077static void print_slabinfo_header(struct seq_file *m)
1da177e4 4078{
85289f98
PE
4079 /*
4080 * Output format version, so at least we can change it
4081 * without _too_ many complaints.
4082 */
1da177e4 4083#if STATS
85289f98 4084 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4085#else
85289f98 4086 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4087#endif
85289f98
PE
4088 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4089 "<objperslab> <pagesperslab>");
4090 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4091 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4092#if STATS
85289f98 4093 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4094 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4095 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4096#endif
85289f98
PE
4097 seq_putc(m, '\n');
4098}
4099
4100static void *s_start(struct seq_file *m, loff_t *pos)
4101{
4102 loff_t n = *pos;
85289f98 4103
fc0abb14 4104 mutex_lock(&cache_chain_mutex);
85289f98
PE
4105 if (!n)
4106 print_slabinfo_header(m);
b92151ba
PE
4107
4108 return seq_list_start(&cache_chain, *pos);
1da177e4
LT
4109}
4110
4111static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4112{
b92151ba 4113 return seq_list_next(p, &cache_chain, pos);
1da177e4
LT
4114}
4115
4116static void s_stop(struct seq_file *m, void *p)
4117{
fc0abb14 4118 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4119}
4120
4121static int s_show(struct seq_file *m, void *p)
4122{
b92151ba 4123 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
b28a02de
PE
4124 struct slab *slabp;
4125 unsigned long active_objs;
4126 unsigned long num_objs;
4127 unsigned long active_slabs = 0;
4128 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4129 const char *name;
1da177e4 4130 char *error = NULL;
e498be7d
CL
4131 int node;
4132 struct kmem_list3 *l3;
1da177e4 4133
1da177e4
LT
4134 active_objs = 0;
4135 num_slabs = 0;
e498be7d
CL
4136 for_each_online_node(node) {
4137 l3 = cachep->nodelists[node];
4138 if (!l3)
4139 continue;
4140
ca3b9b91
RT
4141 check_irq_on();
4142 spin_lock_irq(&l3->list_lock);
e498be7d 4143
7a7c381d 4144 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4145 if (slabp->inuse != cachep->num && !error)
4146 error = "slabs_full accounting error";
4147 active_objs += cachep->num;
4148 active_slabs++;
4149 }
7a7c381d 4150 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4151 if (slabp->inuse == cachep->num && !error)
4152 error = "slabs_partial inuse accounting error";
4153 if (!slabp->inuse && !error)
4154 error = "slabs_partial/inuse accounting error";
4155 active_objs += slabp->inuse;
4156 active_slabs++;
4157 }
7a7c381d 4158 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4159 if (slabp->inuse && !error)
4160 error = "slabs_free/inuse accounting error";
4161 num_slabs++;
4162 }
4163 free_objects += l3->free_objects;
4484ebf1
RT
4164 if (l3->shared)
4165 shared_avail += l3->shared->avail;
e498be7d 4166
ca3b9b91 4167 spin_unlock_irq(&l3->list_lock);
1da177e4 4168 }
b28a02de
PE
4169 num_slabs += active_slabs;
4170 num_objs = num_slabs * cachep->num;
e498be7d 4171 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4172 error = "free_objects accounting error";
4173
b28a02de 4174 name = cachep->name;
1da177e4
LT
4175 if (error)
4176 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4177
4178 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 4179 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 4180 cachep->num, (1 << cachep->gfporder));
1da177e4 4181 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4182 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4183 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4184 active_slabs, num_slabs, shared_avail);
1da177e4 4185#if STATS
b28a02de 4186 { /* list3 stats */
1da177e4
LT
4187 unsigned long high = cachep->high_mark;
4188 unsigned long allocs = cachep->num_allocations;
4189 unsigned long grown = cachep->grown;
4190 unsigned long reaped = cachep->reaped;
4191 unsigned long errors = cachep->errors;
4192 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4193 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4194 unsigned long node_frees = cachep->node_frees;
fb7faf33 4195 unsigned long overflows = cachep->node_overflow;
1da177e4 4196
e498be7d 4197 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 4198 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 4199 reaped, errors, max_freeable, node_allocs,
fb7faf33 4200 node_frees, overflows);
1da177e4
LT
4201 }
4202 /* cpu stats */
4203 {
4204 unsigned long allochit = atomic_read(&cachep->allochit);
4205 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4206 unsigned long freehit = atomic_read(&cachep->freehit);
4207 unsigned long freemiss = atomic_read(&cachep->freemiss);
4208
4209 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4210 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4211 }
4212#endif
4213 seq_putc(m, '\n');
1da177e4
LT
4214 return 0;
4215}
4216
4217/*
4218 * slabinfo_op - iterator that generates /proc/slabinfo
4219 *
4220 * Output layout:
4221 * cache-name
4222 * num-active-objs
4223 * total-objs
4224 * object size
4225 * num-active-slabs
4226 * total-slabs
4227 * num-pages-per-slab
4228 * + further values on SMP and with statistics enabled
4229 */
4230
15ad7cdc 4231const struct seq_operations slabinfo_op = {
b28a02de
PE
4232 .start = s_start,
4233 .next = s_next,
4234 .stop = s_stop,
4235 .show = s_show,
1da177e4
LT
4236};
4237
4238#define MAX_SLABINFO_WRITE 128
4239/**
4240 * slabinfo_write - Tuning for the slab allocator
4241 * @file: unused
4242 * @buffer: user buffer
4243 * @count: data length
4244 * @ppos: unused
4245 */
b28a02de
PE
4246ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4247 size_t count, loff_t *ppos)
1da177e4 4248{
b28a02de 4249 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4250 int limit, batchcount, shared, res;
7a7c381d 4251 struct kmem_cache *cachep;
b28a02de 4252
1da177e4
LT
4253 if (count > MAX_SLABINFO_WRITE)
4254 return -EINVAL;
4255 if (copy_from_user(&kbuf, buffer, count))
4256 return -EFAULT;
b28a02de 4257 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4258
4259 tmp = strchr(kbuf, ' ');
4260 if (!tmp)
4261 return -EINVAL;
4262 *tmp = '\0';
4263 tmp++;
4264 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4265 return -EINVAL;
4266
4267 /* Find the cache in the chain of caches. */
fc0abb14 4268 mutex_lock(&cache_chain_mutex);
1da177e4 4269 res = -EINVAL;
7a7c381d 4270 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4271 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4272 if (limit < 1 || batchcount < 1 ||
4273 batchcount > limit || shared < 0) {
e498be7d 4274 res = 0;
1da177e4 4275 } else {
e498be7d 4276 res = do_tune_cpucache(cachep, limit,
b28a02de 4277 batchcount, shared);
1da177e4
LT
4278 }
4279 break;
4280 }
4281 }
fc0abb14 4282 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4283 if (res >= 0)
4284 res = count;
4285 return res;
4286}
871751e2
AV
4287
4288#ifdef CONFIG_DEBUG_SLAB_LEAK
4289
4290static void *leaks_start(struct seq_file *m, loff_t *pos)
4291{
871751e2 4292 mutex_lock(&cache_chain_mutex);
b92151ba 4293 return seq_list_start(&cache_chain, *pos);
871751e2
AV
4294}
4295
4296static inline int add_caller(unsigned long *n, unsigned long v)
4297{
4298 unsigned long *p;
4299 int l;
4300 if (!v)
4301 return 1;
4302 l = n[1];
4303 p = n + 2;
4304 while (l) {
4305 int i = l/2;
4306 unsigned long *q = p + 2 * i;
4307 if (*q == v) {
4308 q[1]++;
4309 return 1;
4310 }
4311 if (*q > v) {
4312 l = i;
4313 } else {
4314 p = q + 2;
4315 l -= i + 1;
4316 }
4317 }
4318 if (++n[1] == n[0])
4319 return 0;
4320 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4321 p[0] = v;
4322 p[1] = 1;
4323 return 1;
4324}
4325
4326static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4327{
4328 void *p;
4329 int i;
4330 if (n[0] == n[1])
4331 return;
4332 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4333 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4334 continue;
4335 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4336 return;
4337 }
4338}
4339
4340static void show_symbol(struct seq_file *m, unsigned long address)
4341{
4342#ifdef CONFIG_KALLSYMS
871751e2 4343 unsigned long offset, size;
9281acea 4344 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4345
a5c43dae 4346 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4347 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4348 if (modname[0])
871751e2
AV
4349 seq_printf(m, " [%s]", modname);
4350 return;
4351 }
4352#endif
4353 seq_printf(m, "%p", (void *)address);
4354}
4355
4356static int leaks_show(struct seq_file *m, void *p)
4357{
b92151ba 4358 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
871751e2
AV
4359 struct slab *slabp;
4360 struct kmem_list3 *l3;
4361 const char *name;
4362 unsigned long *n = m->private;
4363 int node;
4364 int i;
4365
4366 if (!(cachep->flags & SLAB_STORE_USER))
4367 return 0;
4368 if (!(cachep->flags & SLAB_RED_ZONE))
4369 return 0;
4370
4371 /* OK, we can do it */
4372
4373 n[1] = 0;
4374
4375 for_each_online_node(node) {
4376 l3 = cachep->nodelists[node];
4377 if (!l3)
4378 continue;
4379
4380 check_irq_on();
4381 spin_lock_irq(&l3->list_lock);
4382
7a7c381d 4383 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4384 handle_slab(n, cachep, slabp);
7a7c381d 4385 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4386 handle_slab(n, cachep, slabp);
871751e2
AV
4387 spin_unlock_irq(&l3->list_lock);
4388 }
4389 name = cachep->name;
4390 if (n[0] == n[1]) {
4391 /* Increase the buffer size */
4392 mutex_unlock(&cache_chain_mutex);
4393 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4394 if (!m->private) {
4395 /* Too bad, we are really out */
4396 m->private = n;
4397 mutex_lock(&cache_chain_mutex);
4398 return -ENOMEM;
4399 }
4400 *(unsigned long *)m->private = n[0] * 2;
4401 kfree(n);
4402 mutex_lock(&cache_chain_mutex);
4403 /* Now make sure this entry will be retried */
4404 m->count = m->size;
4405 return 0;
4406 }
4407 for (i = 0; i < n[1]; i++) {
4408 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4409 show_symbol(m, n[2*i+2]);
4410 seq_putc(m, '\n');
4411 }
d2e7b7d0 4412
871751e2
AV
4413 return 0;
4414}
4415
15ad7cdc 4416const struct seq_operations slabstats_op = {
871751e2
AV
4417 .start = leaks_start,
4418 .next = s_next,
4419 .stop = s_stop,
4420 .show = leaks_show,
4421};
4422#endif
1da177e4
LT
4423#endif
4424
00e145b6
MS
4425/**
4426 * ksize - get the actual amount of memory allocated for a given object
4427 * @objp: Pointer to the object
4428 *
4429 * kmalloc may internally round up allocations and return more memory
4430 * than requested. ksize() can be used to determine the actual amount of
4431 * memory allocated. The caller may use this additional memory, even though
4432 * a smaller amount of memory was initially specified with the kmalloc call.
4433 * The caller must guarantee that objp points to a valid object previously
4434 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4435 * must not be freed during the duration of the call.
4436 */
fd76bab2 4437size_t ksize(const void *objp)
1da177e4 4438{
6cb8f913 4439 if (unlikely(ZERO_OR_NULL_PTR(objp)))
00e145b6 4440 return 0;
1da177e4 4441
6ed5eb22 4442 return obj_size(virt_to_cache(objp));
1da177e4 4443}