]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/slab.c
kmemcheck: add hooks for page- and sg-dma-mappings
[net-next-2.6.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
02af61bb 105#include <linux/kmemtrace.h>
1da177e4 106#include <linux/rcupdate.h>
543537bd 107#include <linux/string.h>
138ae663 108#include <linux/uaccess.h>
e498be7d 109#include <linux/nodemask.h>
d5cff635 110#include <linux/kmemleak.h>
dc85da15 111#include <linux/mempolicy.h>
fc0abb14 112#include <linux/mutex.h>
8a8b6502 113#include <linux/fault-inject.h>
e7eebaf6 114#include <linux/rtmutex.h>
6a2d7a95 115#include <linux/reciprocal_div.h>
3ac7fe5a 116#include <linux/debugobjects.h>
c175eea4 117#include <linux/kmemcheck.h>
1da177e4 118
1da177e4
LT
119#include <asm/cacheflush.h>
120#include <asm/tlbflush.h>
121#include <asm/page.h>
122
123/*
50953fe9 124 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
125 * 0 for faster, smaller code (especially in the critical paths).
126 *
127 * STATS - 1 to collect stats for /proc/slabinfo.
128 * 0 for faster, smaller code (especially in the critical paths).
129 *
130 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
131 */
132
133#ifdef CONFIG_DEBUG_SLAB
134#define DEBUG 1
135#define STATS 1
136#define FORCED_DEBUG 1
137#else
138#define DEBUG 0
139#define STATS 0
140#define FORCED_DEBUG 0
141#endif
142
1da177e4
LT
143/* Shouldn't this be in a header file somewhere? */
144#define BYTES_PER_WORD sizeof(void *)
87a927c7 145#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 146
1da177e4
LT
147#ifndef ARCH_KMALLOC_MINALIGN
148/*
149 * Enforce a minimum alignment for the kmalloc caches.
150 * Usually, the kmalloc caches are cache_line_size() aligned, except when
151 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
152 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
b46b8f19
DW
153 * alignment larger than the alignment of a 64-bit integer.
154 * ARCH_KMALLOC_MINALIGN allows that.
155 * Note that increasing this value may disable some debug features.
1da177e4 156 */
b46b8f19 157#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
1da177e4
LT
158#endif
159
160#ifndef ARCH_SLAB_MINALIGN
161/*
162 * Enforce a minimum alignment for all caches.
163 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
164 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
165 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
166 * some debug features.
167 */
168#define ARCH_SLAB_MINALIGN 0
169#endif
170
171#ifndef ARCH_KMALLOC_FLAGS
172#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
173#endif
174
175/* Legal flag mask for kmem_cache_create(). */
176#if DEBUG
50953fe9 177# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 178 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 179 SLAB_CACHE_DMA | \
5af60839 180 SLAB_STORE_USER | \
1da177e4 181 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 182 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 183 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4 184#else
ac2b898c 185# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 186 SLAB_CACHE_DMA | \
1da177e4 187 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 188 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 189 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4
LT
190#endif
191
192/*
193 * kmem_bufctl_t:
194 *
195 * Bufctl's are used for linking objs within a slab
196 * linked offsets.
197 *
198 * This implementation relies on "struct page" for locating the cache &
199 * slab an object belongs to.
200 * This allows the bufctl structure to be small (one int), but limits
201 * the number of objects a slab (not a cache) can contain when off-slab
202 * bufctls are used. The limit is the size of the largest general cache
203 * that does not use off-slab slabs.
204 * For 32bit archs with 4 kB pages, is this 56.
205 * This is not serious, as it is only for large objects, when it is unwise
206 * to have too many per slab.
207 * Note: This limit can be raised by introducing a general cache whose size
208 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
209 */
210
fa5b08d5 211typedef unsigned int kmem_bufctl_t;
1da177e4
LT
212#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
213#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
214#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
215#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 216
1da177e4
LT
217/*
218 * struct slab
219 *
220 * Manages the objs in a slab. Placed either at the beginning of mem allocated
221 * for a slab, or allocated from an general cache.
222 * Slabs are chained into three list: fully used, partial, fully free slabs.
223 */
224struct slab {
b28a02de
PE
225 struct list_head list;
226 unsigned long colouroff;
227 void *s_mem; /* including colour offset */
228 unsigned int inuse; /* num of objs active in slab */
229 kmem_bufctl_t free;
230 unsigned short nodeid;
1da177e4
LT
231};
232
233/*
234 * struct slab_rcu
235 *
236 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
237 * arrange for kmem_freepages to be called via RCU. This is useful if
238 * we need to approach a kernel structure obliquely, from its address
239 * obtained without the usual locking. We can lock the structure to
240 * stabilize it and check it's still at the given address, only if we
241 * can be sure that the memory has not been meanwhile reused for some
242 * other kind of object (which our subsystem's lock might corrupt).
243 *
244 * rcu_read_lock before reading the address, then rcu_read_unlock after
245 * taking the spinlock within the structure expected at that address.
246 *
247 * We assume struct slab_rcu can overlay struct slab when destroying.
248 */
249struct slab_rcu {
b28a02de 250 struct rcu_head head;
343e0d7a 251 struct kmem_cache *cachep;
b28a02de 252 void *addr;
1da177e4
LT
253};
254
255/*
256 * struct array_cache
257 *
1da177e4
LT
258 * Purpose:
259 * - LIFO ordering, to hand out cache-warm objects from _alloc
260 * - reduce the number of linked list operations
261 * - reduce spinlock operations
262 *
263 * The limit is stored in the per-cpu structure to reduce the data cache
264 * footprint.
265 *
266 */
267struct array_cache {
268 unsigned int avail;
269 unsigned int limit;
270 unsigned int batchcount;
271 unsigned int touched;
e498be7d 272 spinlock_t lock;
bda5b655 273 void *entry[]; /*
a737b3e2
AM
274 * Must have this definition in here for the proper
275 * alignment of array_cache. Also simplifies accessing
276 * the entries.
a737b3e2 277 */
1da177e4
LT
278};
279
a737b3e2
AM
280/*
281 * bootstrap: The caches do not work without cpuarrays anymore, but the
282 * cpuarrays are allocated from the generic caches...
1da177e4
LT
283 */
284#define BOOT_CPUCACHE_ENTRIES 1
285struct arraycache_init {
286 struct array_cache cache;
b28a02de 287 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
288};
289
290/*
e498be7d 291 * The slab lists for all objects.
1da177e4
LT
292 */
293struct kmem_list3 {
b28a02de
PE
294 struct list_head slabs_partial; /* partial list first, better asm code */
295 struct list_head slabs_full;
296 struct list_head slabs_free;
297 unsigned long free_objects;
b28a02de 298 unsigned int free_limit;
2e1217cf 299 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
300 spinlock_t list_lock;
301 struct array_cache *shared; /* shared per node */
302 struct array_cache **alien; /* on other nodes */
35386e3b
CL
303 unsigned long next_reap; /* updated without locking */
304 int free_touched; /* updated without locking */
1da177e4
LT
305};
306
e498be7d
CL
307/*
308 * Need this for bootstrapping a per node allocator.
309 */
556a169d 310#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
e498be7d
CL
311struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
312#define CACHE_CACHE 0
556a169d
PE
313#define SIZE_AC MAX_NUMNODES
314#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 315
ed11d9eb
CL
316static int drain_freelist(struct kmem_cache *cache,
317 struct kmem_list3 *l3, int tofree);
318static void free_block(struct kmem_cache *cachep, void **objpp, int len,
319 int node);
83b519e8 320static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 321static void cache_reap(struct work_struct *unused);
ed11d9eb 322
e498be7d 323/*
a737b3e2
AM
324 * This function must be completely optimized away if a constant is passed to
325 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 326 */
7243cc05 327static __always_inline int index_of(const size_t size)
e498be7d 328{
5ec8a847
SR
329 extern void __bad_size(void);
330
e498be7d
CL
331 if (__builtin_constant_p(size)) {
332 int i = 0;
333
334#define CACHE(x) \
335 if (size <=x) \
336 return i; \
337 else \
338 i++;
1c61fc40 339#include <linux/kmalloc_sizes.h>
e498be7d 340#undef CACHE
5ec8a847 341 __bad_size();
7243cc05 342 } else
5ec8a847 343 __bad_size();
e498be7d
CL
344 return 0;
345}
346
e0a42726
IM
347static int slab_early_init = 1;
348
e498be7d
CL
349#define INDEX_AC index_of(sizeof(struct arraycache_init))
350#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 351
5295a74c 352static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
353{
354 INIT_LIST_HEAD(&parent->slabs_full);
355 INIT_LIST_HEAD(&parent->slabs_partial);
356 INIT_LIST_HEAD(&parent->slabs_free);
357 parent->shared = NULL;
358 parent->alien = NULL;
2e1217cf 359 parent->colour_next = 0;
e498be7d
CL
360 spin_lock_init(&parent->list_lock);
361 parent->free_objects = 0;
362 parent->free_touched = 0;
363}
364
a737b3e2
AM
365#define MAKE_LIST(cachep, listp, slab, nodeid) \
366 do { \
367 INIT_LIST_HEAD(listp); \
368 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
369 } while (0)
370
a737b3e2
AM
371#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
372 do { \
e498be7d
CL
373 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
374 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
375 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
376 } while (0)
1da177e4 377
1da177e4
LT
378#define CFLGS_OFF_SLAB (0x80000000UL)
379#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
380
381#define BATCHREFILL_LIMIT 16
a737b3e2
AM
382/*
383 * Optimization question: fewer reaps means less probability for unnessary
384 * cpucache drain/refill cycles.
1da177e4 385 *
dc6f3f27 386 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
387 * which could lock up otherwise freeable slabs.
388 */
389#define REAPTIMEOUT_CPUC (2*HZ)
390#define REAPTIMEOUT_LIST3 (4*HZ)
391
392#if STATS
393#define STATS_INC_ACTIVE(x) ((x)->num_active++)
394#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
395#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
396#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 397#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
398#define STATS_SET_HIGH(x) \
399 do { \
400 if ((x)->num_active > (x)->high_mark) \
401 (x)->high_mark = (x)->num_active; \
402 } while (0)
1da177e4
LT
403#define STATS_INC_ERR(x) ((x)->errors++)
404#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 405#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 406#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
407#define STATS_SET_FREEABLE(x, i) \
408 do { \
409 if ((x)->max_freeable < i) \
410 (x)->max_freeable = i; \
411 } while (0)
1da177e4
LT
412#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
413#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
414#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
415#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
416#else
417#define STATS_INC_ACTIVE(x) do { } while (0)
418#define STATS_DEC_ACTIVE(x) do { } while (0)
419#define STATS_INC_ALLOCED(x) do { } while (0)
420#define STATS_INC_GROWN(x) do { } while (0)
ed11d9eb 421#define STATS_ADD_REAPED(x,y) do { } while (0)
1da177e4
LT
422#define STATS_SET_HIGH(x) do { } while (0)
423#define STATS_INC_ERR(x) do { } while (0)
424#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 425#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 426#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 427#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
428#define STATS_INC_ALLOCHIT(x) do { } while (0)
429#define STATS_INC_ALLOCMISS(x) do { } while (0)
430#define STATS_INC_FREEHIT(x) do { } while (0)
431#define STATS_INC_FREEMISS(x) do { } while (0)
432#endif
433
434#if DEBUG
1da177e4 435
a737b3e2
AM
436/*
437 * memory layout of objects:
1da177e4 438 * 0 : objp
3dafccf2 439 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
440 * the end of an object is aligned with the end of the real
441 * allocation. Catches writes behind the end of the allocation.
3dafccf2 442 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 443 * redzone word.
3dafccf2
MS
444 * cachep->obj_offset: The real object.
445 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
446 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
447 * [BYTES_PER_WORD long]
1da177e4 448 */
343e0d7a 449static int obj_offset(struct kmem_cache *cachep)
1da177e4 450{
3dafccf2 451 return cachep->obj_offset;
1da177e4
LT
452}
453
343e0d7a 454static int obj_size(struct kmem_cache *cachep)
1da177e4 455{
3dafccf2 456 return cachep->obj_size;
1da177e4
LT
457}
458
b46b8f19 459static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
460{
461 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
462 return (unsigned long long*) (objp + obj_offset(cachep) -
463 sizeof(unsigned long long));
1da177e4
LT
464}
465
b46b8f19 466static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
467{
468 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
469 if (cachep->flags & SLAB_STORE_USER)
b46b8f19
DW
470 return (unsigned long long *)(objp + cachep->buffer_size -
471 sizeof(unsigned long long) -
87a927c7 472 REDZONE_ALIGN);
b46b8f19
DW
473 return (unsigned long long *) (objp + cachep->buffer_size -
474 sizeof(unsigned long long));
1da177e4
LT
475}
476
343e0d7a 477static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
478{
479 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 480 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
481}
482
483#else
484
3dafccf2
MS
485#define obj_offset(x) 0
486#define obj_size(cachep) (cachep->buffer_size)
b46b8f19
DW
487#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
488#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
489#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
490
491#endif
492
36555751
EGM
493#ifdef CONFIG_KMEMTRACE
494size_t slab_buffer_size(struct kmem_cache *cachep)
495{
496 return cachep->buffer_size;
497}
498EXPORT_SYMBOL(slab_buffer_size);
499#endif
500
1da177e4
LT
501/*
502 * Do not go above this order unless 0 objects fit into the slab.
503 */
504#define BREAK_GFP_ORDER_HI 1
505#define BREAK_GFP_ORDER_LO 0
506static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
507
a737b3e2
AM
508/*
509 * Functions for storing/retrieving the cachep and or slab from the page
510 * allocator. These are used to find the slab an obj belongs to. With kfree(),
511 * these are used to find the cache which an obj belongs to.
1da177e4 512 */
065d41cb
PE
513static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
514{
515 page->lru.next = (struct list_head *)cache;
516}
517
518static inline struct kmem_cache *page_get_cache(struct page *page)
519{
d85f3385 520 page = compound_head(page);
ddc2e812 521 BUG_ON(!PageSlab(page));
065d41cb
PE
522 return (struct kmem_cache *)page->lru.next;
523}
524
525static inline void page_set_slab(struct page *page, struct slab *slab)
526{
527 page->lru.prev = (struct list_head *)slab;
528}
529
530static inline struct slab *page_get_slab(struct page *page)
531{
ddc2e812 532 BUG_ON(!PageSlab(page));
065d41cb
PE
533 return (struct slab *)page->lru.prev;
534}
1da177e4 535
6ed5eb22
PE
536static inline struct kmem_cache *virt_to_cache(const void *obj)
537{
b49af68f 538 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
539 return page_get_cache(page);
540}
541
542static inline struct slab *virt_to_slab(const void *obj)
543{
b49af68f 544 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
545 return page_get_slab(page);
546}
547
8fea4e96
PE
548static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
549 unsigned int idx)
550{
551 return slab->s_mem + cache->buffer_size * idx;
552}
553
6a2d7a95
ED
554/*
555 * We want to avoid an expensive divide : (offset / cache->buffer_size)
556 * Using the fact that buffer_size is a constant for a particular cache,
557 * we can replace (offset / cache->buffer_size) by
558 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
559 */
560static inline unsigned int obj_to_index(const struct kmem_cache *cache,
561 const struct slab *slab, void *obj)
8fea4e96 562{
6a2d7a95
ED
563 u32 offset = (obj - slab->s_mem);
564 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
565}
566
a737b3e2
AM
567/*
568 * These are the default caches for kmalloc. Custom caches can have other sizes.
569 */
1da177e4
LT
570struct cache_sizes malloc_sizes[] = {
571#define CACHE(x) { .cs_size = (x) },
572#include <linux/kmalloc_sizes.h>
573 CACHE(ULONG_MAX)
574#undef CACHE
575};
576EXPORT_SYMBOL(malloc_sizes);
577
578/* Must match cache_sizes above. Out of line to keep cache footprint low. */
579struct cache_names {
580 char *name;
581 char *name_dma;
582};
583
584static struct cache_names __initdata cache_names[] = {
585#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
586#include <linux/kmalloc_sizes.h>
b28a02de 587 {NULL,}
1da177e4
LT
588#undef CACHE
589};
590
591static struct arraycache_init initarray_cache __initdata =
b28a02de 592 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 593static struct arraycache_init initarray_generic =
b28a02de 594 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
595
596/* internal cache of cache description objs */
343e0d7a 597static struct kmem_cache cache_cache = {
b28a02de
PE
598 .batchcount = 1,
599 .limit = BOOT_CPUCACHE_ENTRIES,
600 .shared = 1,
343e0d7a 601 .buffer_size = sizeof(struct kmem_cache),
b28a02de 602 .name = "kmem_cache",
1da177e4
LT
603};
604
056c6241
RT
605#define BAD_ALIEN_MAGIC 0x01020304ul
606
f1aaee53
AV
607#ifdef CONFIG_LOCKDEP
608
609/*
610 * Slab sometimes uses the kmalloc slabs to store the slab headers
611 * for other slabs "off slab".
612 * The locking for this is tricky in that it nests within the locks
613 * of all other slabs in a few places; to deal with this special
614 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
615 *
616 * We set lock class for alien array caches which are up during init.
617 * The lock annotation will be lost if all cpus of a node goes down and
618 * then comes back up during hotplug
f1aaee53 619 */
056c6241
RT
620static struct lock_class_key on_slab_l3_key;
621static struct lock_class_key on_slab_alc_key;
622
623static inline void init_lock_keys(void)
f1aaee53 624
f1aaee53
AV
625{
626 int q;
056c6241
RT
627 struct cache_sizes *s = malloc_sizes;
628
629 while (s->cs_size != ULONG_MAX) {
630 for_each_node(q) {
631 struct array_cache **alc;
632 int r;
633 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
634 if (!l3 || OFF_SLAB(s->cs_cachep))
635 continue;
636 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
637 alc = l3->alien;
638 /*
639 * FIXME: This check for BAD_ALIEN_MAGIC
640 * should go away when common slab code is taught to
641 * work even without alien caches.
642 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
643 * for alloc_alien_cache,
644 */
645 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
646 continue;
647 for_each_node(r) {
648 if (alc[r])
649 lockdep_set_class(&alc[r]->lock,
650 &on_slab_alc_key);
651 }
652 }
653 s++;
f1aaee53
AV
654 }
655}
f1aaee53 656#else
056c6241 657static inline void init_lock_keys(void)
f1aaee53
AV
658{
659}
660#endif
661
8f5be20b 662/*
95402b38 663 * Guard access to the cache-chain.
8f5be20b 664 */
fc0abb14 665static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
666static struct list_head cache_chain;
667
1da177e4
LT
668/*
669 * chicken and egg problem: delay the per-cpu array allocation
670 * until the general caches are up.
671 */
672static enum {
673 NONE,
e498be7d
CL
674 PARTIAL_AC,
675 PARTIAL_L3,
1da177e4
LT
676 FULL
677} g_cpucache_up;
678
39d24e64
MK
679/*
680 * used by boot code to determine if it can use slab based allocator
681 */
682int slab_is_available(void)
683{
684 return g_cpucache_up == FULL;
685}
686
52bad64d 687static DEFINE_PER_CPU(struct delayed_work, reap_work);
1da177e4 688
343e0d7a 689static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
690{
691 return cachep->array[smp_processor_id()];
692}
693
a737b3e2
AM
694static inline struct kmem_cache *__find_general_cachep(size_t size,
695 gfp_t gfpflags)
1da177e4
LT
696{
697 struct cache_sizes *csizep = malloc_sizes;
698
699#if DEBUG
700 /* This happens if someone tries to call
b28a02de
PE
701 * kmem_cache_create(), or __kmalloc(), before
702 * the generic caches are initialized.
703 */
c7e43c78 704 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 705#endif
6cb8f913
CL
706 if (!size)
707 return ZERO_SIZE_PTR;
708
1da177e4
LT
709 while (size > csizep->cs_size)
710 csizep++;
711
712 /*
0abf40c1 713 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
714 * has cs_{dma,}cachep==NULL. Thus no special case
715 * for large kmalloc calls required.
716 */
4b51d669 717#ifdef CONFIG_ZONE_DMA
1da177e4
LT
718 if (unlikely(gfpflags & GFP_DMA))
719 return csizep->cs_dmacachep;
4b51d669 720#endif
1da177e4
LT
721 return csizep->cs_cachep;
722}
723
b221385b 724static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
725{
726 return __find_general_cachep(size, gfpflags);
727}
97e2bde4 728
fbaccacf 729static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 730{
fbaccacf
SR
731 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
732}
1da177e4 733
a737b3e2
AM
734/*
735 * Calculate the number of objects and left-over bytes for a given buffer size.
736 */
fbaccacf
SR
737static void cache_estimate(unsigned long gfporder, size_t buffer_size,
738 size_t align, int flags, size_t *left_over,
739 unsigned int *num)
740{
741 int nr_objs;
742 size_t mgmt_size;
743 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 744
fbaccacf
SR
745 /*
746 * The slab management structure can be either off the slab or
747 * on it. For the latter case, the memory allocated for a
748 * slab is used for:
749 *
750 * - The struct slab
751 * - One kmem_bufctl_t for each object
752 * - Padding to respect alignment of @align
753 * - @buffer_size bytes for each object
754 *
755 * If the slab management structure is off the slab, then the
756 * alignment will already be calculated into the size. Because
757 * the slabs are all pages aligned, the objects will be at the
758 * correct alignment when allocated.
759 */
760 if (flags & CFLGS_OFF_SLAB) {
761 mgmt_size = 0;
762 nr_objs = slab_size / buffer_size;
763
764 if (nr_objs > SLAB_LIMIT)
765 nr_objs = SLAB_LIMIT;
766 } else {
767 /*
768 * Ignore padding for the initial guess. The padding
769 * is at most @align-1 bytes, and @buffer_size is at
770 * least @align. In the worst case, this result will
771 * be one greater than the number of objects that fit
772 * into the memory allocation when taking the padding
773 * into account.
774 */
775 nr_objs = (slab_size - sizeof(struct slab)) /
776 (buffer_size + sizeof(kmem_bufctl_t));
777
778 /*
779 * This calculated number will be either the right
780 * amount, or one greater than what we want.
781 */
782 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
783 > slab_size)
784 nr_objs--;
785
786 if (nr_objs > SLAB_LIMIT)
787 nr_objs = SLAB_LIMIT;
788
789 mgmt_size = slab_mgmt_size(nr_objs, align);
790 }
791 *num = nr_objs;
792 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
793}
794
d40cee24 795#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 796
a737b3e2
AM
797static void __slab_error(const char *function, struct kmem_cache *cachep,
798 char *msg)
1da177e4
LT
799{
800 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 801 function, cachep->name, msg);
1da177e4
LT
802 dump_stack();
803}
804
3395ee05
PM
805/*
806 * By default on NUMA we use alien caches to stage the freeing of
807 * objects allocated from other nodes. This causes massive memory
808 * inefficiencies when using fake NUMA setup to split memory into a
809 * large number of small nodes, so it can be disabled on the command
810 * line
811 */
812
813static int use_alien_caches __read_mostly = 1;
1807a1aa 814static int numa_platform __read_mostly = 1;
3395ee05
PM
815static int __init noaliencache_setup(char *s)
816{
817 use_alien_caches = 0;
818 return 1;
819}
820__setup("noaliencache", noaliencache_setup);
821
8fce4d8e
CL
822#ifdef CONFIG_NUMA
823/*
824 * Special reaping functions for NUMA systems called from cache_reap().
825 * These take care of doing round robin flushing of alien caches (containing
826 * objects freed on different nodes from which they were allocated) and the
827 * flushing of remote pcps by calling drain_node_pages.
828 */
829static DEFINE_PER_CPU(unsigned long, reap_node);
830
831static void init_reap_node(int cpu)
832{
833 int node;
834
835 node = next_node(cpu_to_node(cpu), node_online_map);
836 if (node == MAX_NUMNODES)
442295c9 837 node = first_node(node_online_map);
8fce4d8e 838
7f6b8876 839 per_cpu(reap_node, cpu) = node;
8fce4d8e
CL
840}
841
842static void next_reap_node(void)
843{
844 int node = __get_cpu_var(reap_node);
845
8fce4d8e
CL
846 node = next_node(node, node_online_map);
847 if (unlikely(node >= MAX_NUMNODES))
848 node = first_node(node_online_map);
849 __get_cpu_var(reap_node) = node;
850}
851
852#else
853#define init_reap_node(cpu) do { } while (0)
854#define next_reap_node(void) do { } while (0)
855#endif
856
1da177e4
LT
857/*
858 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
859 * via the workqueue/eventd.
860 * Add the CPU number into the expiration time to minimize the possibility of
861 * the CPUs getting into lockstep and contending for the global cache chain
862 * lock.
863 */
897e679b 864static void __cpuinit start_cpu_timer(int cpu)
1da177e4 865{
52bad64d 866 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
1da177e4
LT
867
868 /*
869 * When this gets called from do_initcalls via cpucache_init(),
870 * init_workqueues() has already run, so keventd will be setup
871 * at that time.
872 */
52bad64d 873 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 874 init_reap_node(cpu);
65f27f38 875 INIT_DELAYED_WORK(reap_work, cache_reap);
2b284214
AV
876 schedule_delayed_work_on(cpu, reap_work,
877 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
878 }
879}
880
e498be7d 881static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 882 int batchcount, gfp_t gfp)
1da177e4 883{
b28a02de 884 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
885 struct array_cache *nc = NULL;
886
83b519e8 887 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
888 /*
889 * The array_cache structures contain pointers to free object.
890 * However, when such objects are allocated or transfered to another
891 * cache the pointers are not cleared and they could be counted as
892 * valid references during a kmemleak scan. Therefore, kmemleak must
893 * not scan such objects.
894 */
895 kmemleak_no_scan(nc);
1da177e4
LT
896 if (nc) {
897 nc->avail = 0;
898 nc->limit = entries;
899 nc->batchcount = batchcount;
900 nc->touched = 0;
e498be7d 901 spin_lock_init(&nc->lock);
1da177e4
LT
902 }
903 return nc;
904}
905
3ded175a
CL
906/*
907 * Transfer objects in one arraycache to another.
908 * Locking must be handled by the caller.
909 *
910 * Return the number of entries transferred.
911 */
912static int transfer_objects(struct array_cache *to,
913 struct array_cache *from, unsigned int max)
914{
915 /* Figure out how many entries to transfer */
916 int nr = min(min(from->avail, max), to->limit - to->avail);
917
918 if (!nr)
919 return 0;
920
921 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
922 sizeof(void *) *nr);
923
924 from->avail -= nr;
925 to->avail += nr;
926 to->touched = 1;
927 return nr;
928}
929
765c4507
CL
930#ifndef CONFIG_NUMA
931
932#define drain_alien_cache(cachep, alien) do { } while (0)
933#define reap_alien(cachep, l3) do { } while (0)
934
83b519e8 935static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
936{
937 return (struct array_cache **)BAD_ALIEN_MAGIC;
938}
939
940static inline void free_alien_cache(struct array_cache **ac_ptr)
941{
942}
943
944static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
945{
946 return 0;
947}
948
949static inline void *alternate_node_alloc(struct kmem_cache *cachep,
950 gfp_t flags)
951{
952 return NULL;
953}
954
8b98c169 955static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
956 gfp_t flags, int nodeid)
957{
958 return NULL;
959}
960
961#else /* CONFIG_NUMA */
962
8b98c169 963static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 964static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 965
83b519e8 966static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
967{
968 struct array_cache **ac_ptr;
8ef82866 969 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
970 int i;
971
972 if (limit > 1)
973 limit = 12;
83b519e8 974 ac_ptr = kmalloc_node(memsize, gfp, node);
e498be7d
CL
975 if (ac_ptr) {
976 for_each_node(i) {
977 if (i == node || !node_online(i)) {
978 ac_ptr[i] = NULL;
979 continue;
980 }
83b519e8 981 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 982 if (!ac_ptr[i]) {
cc550def 983 for (i--; i >= 0; i--)
e498be7d
CL
984 kfree(ac_ptr[i]);
985 kfree(ac_ptr);
986 return NULL;
987 }
988 }
989 }
990 return ac_ptr;
991}
992
5295a74c 993static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
994{
995 int i;
996
997 if (!ac_ptr)
998 return;
e498be7d 999 for_each_node(i)
b28a02de 1000 kfree(ac_ptr[i]);
e498be7d
CL
1001 kfree(ac_ptr);
1002}
1003
343e0d7a 1004static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1005 struct array_cache *ac, int node)
e498be7d
CL
1006{
1007 struct kmem_list3 *rl3 = cachep->nodelists[node];
1008
1009 if (ac->avail) {
1010 spin_lock(&rl3->list_lock);
e00946fe
CL
1011 /*
1012 * Stuff objects into the remote nodes shared array first.
1013 * That way we could avoid the overhead of putting the objects
1014 * into the free lists and getting them back later.
1015 */
693f7d36
JS
1016 if (rl3->shared)
1017 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1018
ff69416e 1019 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1020 ac->avail = 0;
1021 spin_unlock(&rl3->list_lock);
1022 }
1023}
1024
8fce4d8e
CL
1025/*
1026 * Called from cache_reap() to regularly drain alien caches round robin.
1027 */
1028static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1029{
1030 int node = __get_cpu_var(reap_node);
1031
1032 if (l3->alien) {
1033 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1034
1035 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1036 __drain_alien_cache(cachep, ac, node);
1037 spin_unlock_irq(&ac->lock);
1038 }
1039 }
1040}
1041
a737b3e2
AM
1042static void drain_alien_cache(struct kmem_cache *cachep,
1043 struct array_cache **alien)
e498be7d 1044{
b28a02de 1045 int i = 0;
e498be7d
CL
1046 struct array_cache *ac;
1047 unsigned long flags;
1048
1049 for_each_online_node(i) {
4484ebf1 1050 ac = alien[i];
e498be7d
CL
1051 if (ac) {
1052 spin_lock_irqsave(&ac->lock, flags);
1053 __drain_alien_cache(cachep, ac, i);
1054 spin_unlock_irqrestore(&ac->lock, flags);
1055 }
1056 }
1057}
729bd0b7 1058
873623df 1059static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1060{
1061 struct slab *slabp = virt_to_slab(objp);
1062 int nodeid = slabp->nodeid;
1063 struct kmem_list3 *l3;
1064 struct array_cache *alien = NULL;
1ca4cb24
PE
1065 int node;
1066
1067 node = numa_node_id();
729bd0b7
PE
1068
1069 /*
1070 * Make sure we are not freeing a object from another node to the array
1071 * cache on this cpu.
1072 */
62918a03 1073 if (likely(slabp->nodeid == node))
729bd0b7
PE
1074 return 0;
1075
1ca4cb24 1076 l3 = cachep->nodelists[node];
729bd0b7
PE
1077 STATS_INC_NODEFREES(cachep);
1078 if (l3->alien && l3->alien[nodeid]) {
1079 alien = l3->alien[nodeid];
873623df 1080 spin_lock(&alien->lock);
729bd0b7
PE
1081 if (unlikely(alien->avail == alien->limit)) {
1082 STATS_INC_ACOVERFLOW(cachep);
1083 __drain_alien_cache(cachep, alien, nodeid);
1084 }
1085 alien->entry[alien->avail++] = objp;
1086 spin_unlock(&alien->lock);
1087 } else {
1088 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1089 free_block(cachep, &objp, 1, nodeid);
1090 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1091 }
1092 return 1;
1093}
e498be7d
CL
1094#endif
1095
fbf1e473
AM
1096static void __cpuinit cpuup_canceled(long cpu)
1097{
1098 struct kmem_cache *cachep;
1099 struct kmem_list3 *l3 = NULL;
1100 int node = cpu_to_node(cpu);
a70f7302 1101 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473
AM
1102
1103 list_for_each_entry(cachep, &cache_chain, next) {
1104 struct array_cache *nc;
1105 struct array_cache *shared;
1106 struct array_cache **alien;
fbf1e473 1107
fbf1e473
AM
1108 /* cpu is dead; no one can alloc from it. */
1109 nc = cachep->array[cpu];
1110 cachep->array[cpu] = NULL;
1111 l3 = cachep->nodelists[node];
1112
1113 if (!l3)
1114 goto free_array_cache;
1115
1116 spin_lock_irq(&l3->list_lock);
1117
1118 /* Free limit for this kmem_list3 */
1119 l3->free_limit -= cachep->batchcount;
1120 if (nc)
1121 free_block(cachep, nc->entry, nc->avail, node);
1122
c5f59f08 1123 if (!cpus_empty(*mask)) {
fbf1e473
AM
1124 spin_unlock_irq(&l3->list_lock);
1125 goto free_array_cache;
1126 }
1127
1128 shared = l3->shared;
1129 if (shared) {
1130 free_block(cachep, shared->entry,
1131 shared->avail, node);
1132 l3->shared = NULL;
1133 }
1134
1135 alien = l3->alien;
1136 l3->alien = NULL;
1137
1138 spin_unlock_irq(&l3->list_lock);
1139
1140 kfree(shared);
1141 if (alien) {
1142 drain_alien_cache(cachep, alien);
1143 free_alien_cache(alien);
1144 }
1145free_array_cache:
1146 kfree(nc);
1147 }
1148 /*
1149 * In the previous loop, all the objects were freed to
1150 * the respective cache's slabs, now we can go ahead and
1151 * shrink each nodelist to its limit.
1152 */
1153 list_for_each_entry(cachep, &cache_chain, next) {
1154 l3 = cachep->nodelists[node];
1155 if (!l3)
1156 continue;
1157 drain_freelist(cachep, l3, l3->free_objects);
1158 }
1159}
1160
1161static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1162{
343e0d7a 1163 struct kmem_cache *cachep;
e498be7d
CL
1164 struct kmem_list3 *l3 = NULL;
1165 int node = cpu_to_node(cpu);
ea02e3dd 1166 const int memsize = sizeof(struct kmem_list3);
1da177e4 1167
fbf1e473
AM
1168 /*
1169 * We need to do this right in the beginning since
1170 * alloc_arraycache's are going to use this list.
1171 * kmalloc_node allows us to add the slab to the right
1172 * kmem_list3 and not this cpu's kmem_list3
1173 */
1174
1175 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2 1176 /*
fbf1e473
AM
1177 * Set up the size64 kmemlist for cpu before we can
1178 * begin anything. Make sure some other cpu on this
1179 * node has not already allocated this
e498be7d 1180 */
fbf1e473
AM
1181 if (!cachep->nodelists[node]) {
1182 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1183 if (!l3)
1184 goto bad;
1185 kmem_list3_init(l3);
1186 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1187 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1188
a737b3e2 1189 /*
fbf1e473
AM
1190 * The l3s don't come and go as CPUs come and
1191 * go. cache_chain_mutex is sufficient
1192 * protection here.
e498be7d 1193 */
fbf1e473 1194 cachep->nodelists[node] = l3;
e498be7d
CL
1195 }
1196
fbf1e473
AM
1197 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1198 cachep->nodelists[node]->free_limit =
1199 (1 + nr_cpus_node(node)) *
1200 cachep->batchcount + cachep->num;
1201 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1202 }
1203
1204 /*
1205 * Now we can go ahead with allocating the shared arrays and
1206 * array caches
1207 */
1208 list_for_each_entry(cachep, &cache_chain, next) {
1209 struct array_cache *nc;
1210 struct array_cache *shared = NULL;
1211 struct array_cache **alien = NULL;
1212
1213 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1214 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1215 if (!nc)
1216 goto bad;
1217 if (cachep->shared) {
1218 shared = alloc_arraycache(node,
1219 cachep->shared * cachep->batchcount,
83b519e8 1220 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1221 if (!shared) {
1222 kfree(nc);
1da177e4 1223 goto bad;
12d00f6a 1224 }
fbf1e473
AM
1225 }
1226 if (use_alien_caches) {
83b519e8 1227 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1228 if (!alien) {
1229 kfree(shared);
1230 kfree(nc);
fbf1e473 1231 goto bad;
12d00f6a 1232 }
fbf1e473
AM
1233 }
1234 cachep->array[cpu] = nc;
1235 l3 = cachep->nodelists[node];
1236 BUG_ON(!l3);
1237
1238 spin_lock_irq(&l3->list_lock);
1239 if (!l3->shared) {
1240 /*
1241 * We are serialised from CPU_DEAD or
1242 * CPU_UP_CANCELLED by the cpucontrol lock
1243 */
1244 l3->shared = shared;
1245 shared = NULL;
1246 }
4484ebf1 1247#ifdef CONFIG_NUMA
fbf1e473
AM
1248 if (!l3->alien) {
1249 l3->alien = alien;
1250 alien = NULL;
1da177e4 1251 }
fbf1e473
AM
1252#endif
1253 spin_unlock_irq(&l3->list_lock);
1254 kfree(shared);
1255 free_alien_cache(alien);
1256 }
1257 return 0;
1258bad:
12d00f6a 1259 cpuup_canceled(cpu);
fbf1e473
AM
1260 return -ENOMEM;
1261}
1262
1263static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1264 unsigned long action, void *hcpu)
1265{
1266 long cpu = (long)hcpu;
1267 int err = 0;
1268
1269 switch (action) {
fbf1e473
AM
1270 case CPU_UP_PREPARE:
1271 case CPU_UP_PREPARE_FROZEN:
95402b38 1272 mutex_lock(&cache_chain_mutex);
fbf1e473 1273 err = cpuup_prepare(cpu);
95402b38 1274 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1275 break;
1276 case CPU_ONLINE:
8bb78442 1277 case CPU_ONLINE_FROZEN:
1da177e4
LT
1278 start_cpu_timer(cpu);
1279 break;
1280#ifdef CONFIG_HOTPLUG_CPU
5830c590 1281 case CPU_DOWN_PREPARE:
8bb78442 1282 case CPU_DOWN_PREPARE_FROZEN:
5830c590
CL
1283 /*
1284 * Shutdown cache reaper. Note that the cache_chain_mutex is
1285 * held so that if cache_reap() is invoked it cannot do
1286 * anything expensive but will only modify reap_work
1287 * and reschedule the timer.
1288 */
1289 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1290 /* Now the cache_reaper is guaranteed to be not running. */
1291 per_cpu(reap_work, cpu).work.func = NULL;
1292 break;
1293 case CPU_DOWN_FAILED:
8bb78442 1294 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1295 start_cpu_timer(cpu);
1296 break;
1da177e4 1297 case CPU_DEAD:
8bb78442 1298 case CPU_DEAD_FROZEN:
4484ebf1
RT
1299 /*
1300 * Even if all the cpus of a node are down, we don't free the
1301 * kmem_list3 of any cache. This to avoid a race between
1302 * cpu_down, and a kmalloc allocation from another cpu for
1303 * memory from the node of the cpu going down. The list3
1304 * structure is usually allocated from kmem_cache_create() and
1305 * gets destroyed at kmem_cache_destroy().
1306 */
183ff22b 1307 /* fall through */
8f5be20b 1308#endif
1da177e4 1309 case CPU_UP_CANCELED:
8bb78442 1310 case CPU_UP_CANCELED_FROZEN:
95402b38 1311 mutex_lock(&cache_chain_mutex);
fbf1e473 1312 cpuup_canceled(cpu);
fc0abb14 1313 mutex_unlock(&cache_chain_mutex);
1da177e4 1314 break;
1da177e4 1315 }
fbf1e473 1316 return err ? NOTIFY_BAD : NOTIFY_OK;
1da177e4
LT
1317}
1318
74b85f37
CS
1319static struct notifier_block __cpuinitdata cpucache_notifier = {
1320 &cpuup_callback, NULL, 0
1321};
1da177e4 1322
e498be7d
CL
1323/*
1324 * swap the static kmem_list3 with kmalloced memory
1325 */
a737b3e2
AM
1326static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1327 int nodeid)
e498be7d
CL
1328{
1329 struct kmem_list3 *ptr;
1330
83b519e8 1331 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
e498be7d
CL
1332 BUG_ON(!ptr);
1333
e498be7d 1334 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1335 /*
1336 * Do not assume that spinlocks can be initialized via memcpy:
1337 */
1338 spin_lock_init(&ptr->list_lock);
1339
e498be7d
CL
1340 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1341 cachep->nodelists[nodeid] = ptr;
e498be7d
CL
1342}
1343
556a169d
PE
1344/*
1345 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1346 * size of kmem_list3.
1347 */
1348static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1349{
1350 int node;
1351
1352 for_each_online_node(node) {
1353 cachep->nodelists[node] = &initkmem_list3[index + node];
1354 cachep->nodelists[node]->next_reap = jiffies +
1355 REAPTIMEOUT_LIST3 +
1356 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1357 }
1358}
1359
a737b3e2
AM
1360/*
1361 * Initialisation. Called after the page allocator have been initialised and
1362 * before smp_init().
1da177e4
LT
1363 */
1364void __init kmem_cache_init(void)
1365{
1366 size_t left_over;
1367 struct cache_sizes *sizes;
1368 struct cache_names *names;
e498be7d 1369 int i;
07ed76b2 1370 int order;
1ca4cb24 1371 int node;
e498be7d 1372
1807a1aa 1373 if (num_possible_nodes() == 1) {
62918a03 1374 use_alien_caches = 0;
1807a1aa
SS
1375 numa_platform = 0;
1376 }
62918a03 1377
e498be7d
CL
1378 for (i = 0; i < NUM_INIT_LISTS; i++) {
1379 kmem_list3_init(&initkmem_list3[i]);
1380 if (i < MAX_NUMNODES)
1381 cache_cache.nodelists[i] = NULL;
1382 }
556a169d 1383 set_up_list3s(&cache_cache, CACHE_CACHE);
1da177e4
LT
1384
1385 /*
1386 * Fragmentation resistance on low memory - only use bigger
1387 * page orders on machines with more than 32MB of memory.
1388 */
1389 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1390 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1391
1da177e4
LT
1392 /* Bootstrap is tricky, because several objects are allocated
1393 * from caches that do not exist yet:
a737b3e2
AM
1394 * 1) initialize the cache_cache cache: it contains the struct
1395 * kmem_cache structures of all caches, except cache_cache itself:
1396 * cache_cache is statically allocated.
e498be7d
CL
1397 * Initially an __init data area is used for the head array and the
1398 * kmem_list3 structures, it's replaced with a kmalloc allocated
1399 * array at the end of the bootstrap.
1da177e4 1400 * 2) Create the first kmalloc cache.
343e0d7a 1401 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1402 * An __init data area is used for the head array.
1403 * 3) Create the remaining kmalloc caches, with minimally sized
1404 * head arrays.
1da177e4
LT
1405 * 4) Replace the __init data head arrays for cache_cache and the first
1406 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1407 * 5) Replace the __init data for kmem_list3 for cache_cache and
1408 * the other cache's with kmalloc allocated memory.
1409 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1410 */
1411
1ca4cb24
PE
1412 node = numa_node_id();
1413
1da177e4 1414 /* 1) create the cache_cache */
1da177e4
LT
1415 INIT_LIST_HEAD(&cache_chain);
1416 list_add(&cache_cache.next, &cache_chain);
1417 cache_cache.colour_off = cache_line_size();
1418 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
ec1f5eee 1419 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1da177e4 1420
8da3430d
ED
1421 /*
1422 * struct kmem_cache size depends on nr_node_ids, which
1423 * can be less than MAX_NUMNODES.
1424 */
1425 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1426 nr_node_ids * sizeof(struct kmem_list3 *);
1427#if DEBUG
1428 cache_cache.obj_size = cache_cache.buffer_size;
1429#endif
a737b3e2
AM
1430 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1431 cache_line_size());
6a2d7a95
ED
1432 cache_cache.reciprocal_buffer_size =
1433 reciprocal_value(cache_cache.buffer_size);
1da177e4 1434
07ed76b2
JS
1435 for (order = 0; order < MAX_ORDER; order++) {
1436 cache_estimate(order, cache_cache.buffer_size,
1437 cache_line_size(), 0, &left_over, &cache_cache.num);
1438 if (cache_cache.num)
1439 break;
1440 }
40094fa6 1441 BUG_ON(!cache_cache.num);
07ed76b2 1442 cache_cache.gfporder = order;
b28a02de 1443 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1444 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1445 sizeof(struct slab), cache_line_size());
1da177e4
LT
1446
1447 /* 2+3) create the kmalloc caches */
1448 sizes = malloc_sizes;
1449 names = cache_names;
1450
a737b3e2
AM
1451 /*
1452 * Initialize the caches that provide memory for the array cache and the
1453 * kmem_list3 structures first. Without this, further allocations will
1454 * bug.
e498be7d
CL
1455 */
1456
1457 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1458 sizes[INDEX_AC].cs_size,
1459 ARCH_KMALLOC_MINALIGN,
1460 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1461 NULL);
e498be7d 1462
a737b3e2 1463 if (INDEX_AC != INDEX_L3) {
e498be7d 1464 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1465 kmem_cache_create(names[INDEX_L3].name,
1466 sizes[INDEX_L3].cs_size,
1467 ARCH_KMALLOC_MINALIGN,
1468 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1469 NULL);
a737b3e2 1470 }
e498be7d 1471
e0a42726
IM
1472 slab_early_init = 0;
1473
1da177e4 1474 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1475 /*
1476 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1477 * This should be particularly beneficial on SMP boxes, as it
1478 * eliminates "false sharing".
1479 * Note for systems short on memory removing the alignment will
e498be7d
CL
1480 * allow tighter packing of the smaller caches.
1481 */
a737b3e2 1482 if (!sizes->cs_cachep) {
e498be7d 1483 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1484 sizes->cs_size,
1485 ARCH_KMALLOC_MINALIGN,
1486 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1487 NULL);
a737b3e2 1488 }
4b51d669
CL
1489#ifdef CONFIG_ZONE_DMA
1490 sizes->cs_dmacachep = kmem_cache_create(
1491 names->name_dma,
a737b3e2
AM
1492 sizes->cs_size,
1493 ARCH_KMALLOC_MINALIGN,
1494 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1495 SLAB_PANIC,
20c2df83 1496 NULL);
4b51d669 1497#endif
1da177e4
LT
1498 sizes++;
1499 names++;
1500 }
1501 /* 4) Replace the bootstrap head arrays */
1502 {
2b2d5493 1503 struct array_cache *ptr;
e498be7d 1504
83b519e8 1505 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1506
9a2dba4b
PE
1507 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1508 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1509 sizeof(struct arraycache_init));
2b2d5493
IM
1510 /*
1511 * Do not assume that spinlocks can be initialized via memcpy:
1512 */
1513 spin_lock_init(&ptr->lock);
1514
1da177e4 1515 cache_cache.array[smp_processor_id()] = ptr;
e498be7d 1516
83b519e8 1517 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1518
9a2dba4b 1519 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1520 != &initarray_generic.cache);
9a2dba4b 1521 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1522 sizeof(struct arraycache_init));
2b2d5493
IM
1523 /*
1524 * Do not assume that spinlocks can be initialized via memcpy:
1525 */
1526 spin_lock_init(&ptr->lock);
1527
e498be7d 1528 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1529 ptr;
1da177e4 1530 }
e498be7d
CL
1531 /* 5) Replace the bootstrap kmem_list3's */
1532 {
1ca4cb24
PE
1533 int nid;
1534
9c09a95c 1535 for_each_online_node(nid) {
ec1f5eee 1536 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
556a169d 1537
e498be7d 1538 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1539 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1540
1541 if (INDEX_AC != INDEX_L3) {
1542 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1543 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1544 }
1545 }
1546 }
1da177e4 1547
e498be7d 1548 /* 6) resize the head arrays to their final sizes */
1da177e4 1549 {
343e0d7a 1550 struct kmem_cache *cachep;
fc0abb14 1551 mutex_lock(&cache_chain_mutex);
1da177e4 1552 list_for_each_entry(cachep, &cache_chain, next)
83b519e8 1553 if (enable_cpucache(cachep, GFP_NOWAIT))
2ed3a4ef 1554 BUG();
fc0abb14 1555 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1556 }
1557
056c6241
RT
1558 /* Annotate slab for lockdep -- annotate the malloc caches */
1559 init_lock_keys();
1560
1561
1da177e4
LT
1562 /* Done! */
1563 g_cpucache_up = FULL;
1564
a737b3e2
AM
1565 /*
1566 * Register a cpu startup notifier callback that initializes
1567 * cpu_cache_get for all new cpus
1da177e4
LT
1568 */
1569 register_cpu_notifier(&cpucache_notifier);
1da177e4 1570
a737b3e2
AM
1571 /*
1572 * The reap timers are started later, with a module init call: That part
1573 * of the kernel is not yet operational.
1da177e4
LT
1574 */
1575}
1576
1577static int __init cpucache_init(void)
1578{
1579 int cpu;
1580
a737b3e2
AM
1581 /*
1582 * Register the timers that return unneeded pages to the page allocator
1da177e4 1583 */
e498be7d 1584 for_each_online_cpu(cpu)
a737b3e2 1585 start_cpu_timer(cpu);
1da177e4
LT
1586 return 0;
1587}
1da177e4
LT
1588__initcall(cpucache_init);
1589
1590/*
1591 * Interface to system's page allocator. No need to hold the cache-lock.
1592 *
1593 * If we requested dmaable memory, we will get it. Even if we
1594 * did not request dmaable memory, we might get it, but that
1595 * would be relatively rare and ignorable.
1596 */
343e0d7a 1597static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1598{
1599 struct page *page;
e1b6aa6f 1600 int nr_pages;
1da177e4
LT
1601 int i;
1602
d6fef9da 1603#ifndef CONFIG_MMU
e1b6aa6f
CH
1604 /*
1605 * Nommu uses slab's for process anonymous memory allocations, and thus
1606 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1607 */
e1b6aa6f 1608 flags |= __GFP_COMP;
d6fef9da 1609#endif
765c4507 1610
3c517a61 1611 flags |= cachep->gfpflags;
e12ba74d
MG
1612 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1613 flags |= __GFP_RECLAIMABLE;
e1b6aa6f
CH
1614
1615 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1616 if (!page)
1617 return NULL;
1da177e4 1618
e1b6aa6f 1619 nr_pages = (1 << cachep->gfporder);
1da177e4 1620 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1621 add_zone_page_state(page_zone(page),
1622 NR_SLAB_RECLAIMABLE, nr_pages);
1623 else
1624 add_zone_page_state(page_zone(page),
1625 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1626 for (i = 0; i < nr_pages; i++)
1627 __SetPageSlab(page + i);
c175eea4
PE
1628
1629 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK))
1630 kmemcheck_alloc_shadow(cachep, flags, nodeid, page, cachep->gfporder);
1631
e1b6aa6f 1632 return page_address(page);
1da177e4
LT
1633}
1634
1635/*
1636 * Interface to system's page release.
1637 */
343e0d7a 1638static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1639{
b28a02de 1640 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1641 struct page *page = virt_to_page(addr);
1642 const unsigned long nr_freed = i;
1643
c175eea4
PE
1644 if (kmemcheck_page_is_tracked(page))
1645 kmemcheck_free_shadow(cachep, page, cachep->gfporder);
1646
972d1a7b
CL
1647 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1648 sub_zone_page_state(page_zone(page),
1649 NR_SLAB_RECLAIMABLE, nr_freed);
1650 else
1651 sub_zone_page_state(page_zone(page),
1652 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1653 while (i--) {
f205b2fe
NP
1654 BUG_ON(!PageSlab(page));
1655 __ClearPageSlab(page);
1da177e4
LT
1656 page++;
1657 }
1da177e4
LT
1658 if (current->reclaim_state)
1659 current->reclaim_state->reclaimed_slab += nr_freed;
1660 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1661}
1662
1663static void kmem_rcu_free(struct rcu_head *head)
1664{
b28a02de 1665 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1666 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1667
1668 kmem_freepages(cachep, slab_rcu->addr);
1669 if (OFF_SLAB(cachep))
1670 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1671}
1672
1673#if DEBUG
1674
1675#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1676static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1677 unsigned long caller)
1da177e4 1678{
3dafccf2 1679 int size = obj_size(cachep);
1da177e4 1680
3dafccf2 1681 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1682
b28a02de 1683 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1684 return;
1685
b28a02de
PE
1686 *addr++ = 0x12345678;
1687 *addr++ = caller;
1688 *addr++ = smp_processor_id();
1689 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1690 {
1691 unsigned long *sptr = &caller;
1692 unsigned long svalue;
1693
1694 while (!kstack_end(sptr)) {
1695 svalue = *sptr++;
1696 if (kernel_text_address(svalue)) {
b28a02de 1697 *addr++ = svalue;
1da177e4
LT
1698 size -= sizeof(unsigned long);
1699 if (size <= sizeof(unsigned long))
1700 break;
1701 }
1702 }
1703
1704 }
b28a02de 1705 *addr++ = 0x87654321;
1da177e4
LT
1706}
1707#endif
1708
343e0d7a 1709static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1710{
3dafccf2
MS
1711 int size = obj_size(cachep);
1712 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1713
1714 memset(addr, val, size);
b28a02de 1715 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1716}
1717
1718static void dump_line(char *data, int offset, int limit)
1719{
1720 int i;
aa83aa40
DJ
1721 unsigned char error = 0;
1722 int bad_count = 0;
1723
1da177e4 1724 printk(KERN_ERR "%03x:", offset);
aa83aa40
DJ
1725 for (i = 0; i < limit; i++) {
1726 if (data[offset + i] != POISON_FREE) {
1727 error = data[offset + i];
1728 bad_count++;
1729 }
b28a02de 1730 printk(" %02x", (unsigned char)data[offset + i]);
aa83aa40 1731 }
1da177e4 1732 printk("\n");
aa83aa40
DJ
1733
1734 if (bad_count == 1) {
1735 error ^= POISON_FREE;
1736 if (!(error & (error - 1))) {
1737 printk(KERN_ERR "Single bit error detected. Probably "
1738 "bad RAM.\n");
1739#ifdef CONFIG_X86
1740 printk(KERN_ERR "Run memtest86+ or a similar memory "
1741 "test tool.\n");
1742#else
1743 printk(KERN_ERR "Run a memory test tool.\n");
1744#endif
1745 }
1746 }
1da177e4
LT
1747}
1748#endif
1749
1750#if DEBUG
1751
343e0d7a 1752static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1753{
1754 int i, size;
1755 char *realobj;
1756
1757 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1758 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1759 *dbg_redzone1(cachep, objp),
1760 *dbg_redzone2(cachep, objp));
1da177e4
LT
1761 }
1762
1763 if (cachep->flags & SLAB_STORE_USER) {
1764 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1765 *dbg_userword(cachep, objp));
1da177e4 1766 print_symbol("(%s)",
a737b3e2 1767 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1768 printk("\n");
1769 }
3dafccf2
MS
1770 realobj = (char *)objp + obj_offset(cachep);
1771 size = obj_size(cachep);
b28a02de 1772 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1773 int limit;
1774 limit = 16;
b28a02de
PE
1775 if (i + limit > size)
1776 limit = size - i;
1da177e4
LT
1777 dump_line(realobj, i, limit);
1778 }
1779}
1780
343e0d7a 1781static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1782{
1783 char *realobj;
1784 int size, i;
1785 int lines = 0;
1786
3dafccf2
MS
1787 realobj = (char *)objp + obj_offset(cachep);
1788 size = obj_size(cachep);
1da177e4 1789
b28a02de 1790 for (i = 0; i < size; i++) {
1da177e4 1791 char exp = POISON_FREE;
b28a02de 1792 if (i == size - 1)
1da177e4
LT
1793 exp = POISON_END;
1794 if (realobj[i] != exp) {
1795 int limit;
1796 /* Mismatch ! */
1797 /* Print header */
1798 if (lines == 0) {
b28a02de 1799 printk(KERN_ERR
e94a40c5
DH
1800 "Slab corruption: %s start=%p, len=%d\n",
1801 cachep->name, realobj, size);
1da177e4
LT
1802 print_objinfo(cachep, objp, 0);
1803 }
1804 /* Hexdump the affected line */
b28a02de 1805 i = (i / 16) * 16;
1da177e4 1806 limit = 16;
b28a02de
PE
1807 if (i + limit > size)
1808 limit = size - i;
1da177e4
LT
1809 dump_line(realobj, i, limit);
1810 i += 16;
1811 lines++;
1812 /* Limit to 5 lines */
1813 if (lines > 5)
1814 break;
1815 }
1816 }
1817 if (lines != 0) {
1818 /* Print some data about the neighboring objects, if they
1819 * exist:
1820 */
6ed5eb22 1821 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1822 unsigned int objnr;
1da177e4 1823
8fea4e96 1824 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1825 if (objnr) {
8fea4e96 1826 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1827 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1828 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1829 realobj, size);
1da177e4
LT
1830 print_objinfo(cachep, objp, 2);
1831 }
b28a02de 1832 if (objnr + 1 < cachep->num) {
8fea4e96 1833 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1834 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1835 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1836 realobj, size);
1da177e4
LT
1837 print_objinfo(cachep, objp, 2);
1838 }
1839 }
1840}
1841#endif
1842
12dd36fa 1843#if DEBUG
e79aec29 1844static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1845{
1da177e4
LT
1846 int i;
1847 for (i = 0; i < cachep->num; i++) {
8fea4e96 1848 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1849
1850 if (cachep->flags & SLAB_POISON) {
1851#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1852 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1853 OFF_SLAB(cachep))
b28a02de 1854 kernel_map_pages(virt_to_page(objp),
a737b3e2 1855 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1856 else
1857 check_poison_obj(cachep, objp);
1858#else
1859 check_poison_obj(cachep, objp);
1860#endif
1861 }
1862 if (cachep->flags & SLAB_RED_ZONE) {
1863 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1864 slab_error(cachep, "start of a freed object "
b28a02de 1865 "was overwritten");
1da177e4
LT
1866 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1867 slab_error(cachep, "end of a freed object "
b28a02de 1868 "was overwritten");
1da177e4 1869 }
1da177e4 1870 }
12dd36fa 1871}
1da177e4 1872#else
e79aec29 1873static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1874{
12dd36fa 1875}
1da177e4
LT
1876#endif
1877
911851e6
RD
1878/**
1879 * slab_destroy - destroy and release all objects in a slab
1880 * @cachep: cache pointer being destroyed
1881 * @slabp: slab pointer being destroyed
1882 *
12dd36fa 1883 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1884 * Before calling the slab must have been unlinked from the cache. The
1885 * cache-lock is not held/needed.
12dd36fa 1886 */
343e0d7a 1887static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1888{
1889 void *addr = slabp->s_mem - slabp->colouroff;
1890
e79aec29 1891 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
1892 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1893 struct slab_rcu *slab_rcu;
1894
b28a02de 1895 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1896 slab_rcu->cachep = cachep;
1897 slab_rcu->addr = addr;
1898 call_rcu(&slab_rcu->head, kmem_rcu_free);
1899 } else {
1900 kmem_freepages(cachep, addr);
873623df
IM
1901 if (OFF_SLAB(cachep))
1902 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1903 }
1904}
1905
117f6eb1
CL
1906static void __kmem_cache_destroy(struct kmem_cache *cachep)
1907{
1908 int i;
1909 struct kmem_list3 *l3;
1910
1911 for_each_online_cpu(i)
1912 kfree(cachep->array[i]);
1913
1914 /* NUMA: free the list3 structures */
1915 for_each_online_node(i) {
1916 l3 = cachep->nodelists[i];
1917 if (l3) {
1918 kfree(l3->shared);
1919 free_alien_cache(l3->alien);
1920 kfree(l3);
1921 }
1922 }
1923 kmem_cache_free(&cache_cache, cachep);
1924}
1925
1926
4d268eba 1927/**
a70773dd
RD
1928 * calculate_slab_order - calculate size (page order) of slabs
1929 * @cachep: pointer to the cache that is being created
1930 * @size: size of objects to be created in this cache.
1931 * @align: required alignment for the objects.
1932 * @flags: slab allocation flags
1933 *
1934 * Also calculates the number of objects per slab.
4d268eba
PE
1935 *
1936 * This could be made much more intelligent. For now, try to avoid using
1937 * high order pages for slabs. When the gfp() functions are more friendly
1938 * towards high-order requests, this should be changed.
1939 */
a737b3e2 1940static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1941 size_t size, size_t align, unsigned long flags)
4d268eba 1942{
b1ab41c4 1943 unsigned long offslab_limit;
4d268eba 1944 size_t left_over = 0;
9888e6fa 1945 int gfporder;
4d268eba 1946
0aa817f0 1947 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1948 unsigned int num;
1949 size_t remainder;
1950
9888e6fa 1951 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
1952 if (!num)
1953 continue;
9888e6fa 1954
b1ab41c4
IM
1955 if (flags & CFLGS_OFF_SLAB) {
1956 /*
1957 * Max number of objs-per-slab for caches which
1958 * use off-slab slabs. Needed to avoid a possible
1959 * looping condition in cache_grow().
1960 */
1961 offslab_limit = size - sizeof(struct slab);
1962 offslab_limit /= sizeof(kmem_bufctl_t);
1963
1964 if (num > offslab_limit)
1965 break;
1966 }
4d268eba 1967
9888e6fa 1968 /* Found something acceptable - save it away */
4d268eba 1969 cachep->num = num;
9888e6fa 1970 cachep->gfporder = gfporder;
4d268eba
PE
1971 left_over = remainder;
1972
f78bb8ad
LT
1973 /*
1974 * A VFS-reclaimable slab tends to have most allocations
1975 * as GFP_NOFS and we really don't want to have to be allocating
1976 * higher-order pages when we are unable to shrink dcache.
1977 */
1978 if (flags & SLAB_RECLAIM_ACCOUNT)
1979 break;
1980
4d268eba
PE
1981 /*
1982 * Large number of objects is good, but very large slabs are
1983 * currently bad for the gfp()s.
1984 */
9888e6fa 1985 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
1986 break;
1987
9888e6fa
LT
1988 /*
1989 * Acceptable internal fragmentation?
1990 */
a737b3e2 1991 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1992 break;
1993 }
1994 return left_over;
1995}
1996
83b519e8 1997static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 1998{
2ed3a4ef 1999 if (g_cpucache_up == FULL)
83b519e8 2000 return enable_cpucache(cachep, gfp);
2ed3a4ef 2001
f30cf7d1
PE
2002 if (g_cpucache_up == NONE) {
2003 /*
2004 * Note: the first kmem_cache_create must create the cache
2005 * that's used by kmalloc(24), otherwise the creation of
2006 * further caches will BUG().
2007 */
2008 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2009
2010 /*
2011 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2012 * the first cache, then we need to set up all its list3s,
2013 * otherwise the creation of further caches will BUG().
2014 */
2015 set_up_list3s(cachep, SIZE_AC);
2016 if (INDEX_AC == INDEX_L3)
2017 g_cpucache_up = PARTIAL_L3;
2018 else
2019 g_cpucache_up = PARTIAL_AC;
2020 } else {
2021 cachep->array[smp_processor_id()] =
83b519e8 2022 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1
PE
2023
2024 if (g_cpucache_up == PARTIAL_AC) {
2025 set_up_list3s(cachep, SIZE_L3);
2026 g_cpucache_up = PARTIAL_L3;
2027 } else {
2028 int node;
556a169d 2029 for_each_online_node(node) {
f30cf7d1
PE
2030 cachep->nodelists[node] =
2031 kmalloc_node(sizeof(struct kmem_list3),
2032 GFP_KERNEL, node);
2033 BUG_ON(!cachep->nodelists[node]);
2034 kmem_list3_init(cachep->nodelists[node]);
2035 }
2036 }
2037 }
2038 cachep->nodelists[numa_node_id()]->next_reap =
2039 jiffies + REAPTIMEOUT_LIST3 +
2040 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2041
2042 cpu_cache_get(cachep)->avail = 0;
2043 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2044 cpu_cache_get(cachep)->batchcount = 1;
2045 cpu_cache_get(cachep)->touched = 0;
2046 cachep->batchcount = 1;
2047 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2048 return 0;
f30cf7d1
PE
2049}
2050
1da177e4
LT
2051/**
2052 * kmem_cache_create - Create a cache.
2053 * @name: A string which is used in /proc/slabinfo to identify this cache.
2054 * @size: The size of objects to be created in this cache.
2055 * @align: The required alignment for the objects.
2056 * @flags: SLAB flags
2057 * @ctor: A constructor for the objects.
1da177e4
LT
2058 *
2059 * Returns a ptr to the cache on success, NULL on failure.
2060 * Cannot be called within a int, but can be interrupted.
20c2df83 2061 * The @ctor is run when new pages are allocated by the cache.
1da177e4
LT
2062 *
2063 * @name must be valid until the cache is destroyed. This implies that
a737b3e2 2064 * the module calling this has to destroy the cache before getting unloaded.
249da166
CM
2065 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
2066 * therefore applications must manage it themselves.
a737b3e2 2067 *
1da177e4
LT
2068 * The flags are
2069 *
2070 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2071 * to catch references to uninitialised memory.
2072 *
2073 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2074 * for buffer overruns.
2075 *
1da177e4
LT
2076 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2077 * cacheline. This can be beneficial if you're counting cycles as closely
2078 * as davem.
2079 */
343e0d7a 2080struct kmem_cache *
1da177e4 2081kmem_cache_create (const char *name, size_t size, size_t align,
51cc5068 2082 unsigned long flags, void (*ctor)(void *))
1da177e4
LT
2083{
2084 size_t left_over, slab_size, ralign;
7a7c381d 2085 struct kmem_cache *cachep = NULL, *pc;
83b519e8 2086 gfp_t gfp;
1da177e4
LT
2087
2088 /*
2089 * Sanity checks... these are all serious usage bugs.
2090 */
a737b3e2 2091 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
20c2df83 2092 size > KMALLOC_MAX_SIZE) {
d40cee24 2093 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
a737b3e2 2094 name);
b28a02de
PE
2095 BUG();
2096 }
1da177e4 2097
f0188f47 2098 /*
8f5be20b 2099 * We use cache_chain_mutex to ensure a consistent view of
174596a0 2100 * cpu_online_mask as well. Please see cpuup_callback
f0188f47 2101 */
83b519e8
PE
2102 if (slab_is_available()) {
2103 get_online_cpus();
2104 mutex_lock(&cache_chain_mutex);
2105 }
4f12bb4f 2106
7a7c381d 2107 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2108 char tmp;
2109 int res;
2110
2111 /*
2112 * This happens when the module gets unloaded and doesn't
2113 * destroy its slab cache and no-one else reuses the vmalloc
2114 * area of the module. Print a warning.
2115 */
138ae663 2116 res = probe_kernel_address(pc->name, tmp);
4f12bb4f 2117 if (res) {
b4169525 2118 printk(KERN_ERR
2119 "SLAB: cache with size %d has lost its name\n",
3dafccf2 2120 pc->buffer_size);
4f12bb4f
AM
2121 continue;
2122 }
2123
b28a02de 2124 if (!strcmp(pc->name, name)) {
b4169525 2125 printk(KERN_ERR
2126 "kmem_cache_create: duplicate cache %s\n", name);
4f12bb4f
AM
2127 dump_stack();
2128 goto oops;
2129 }
2130 }
2131
1da177e4
LT
2132#if DEBUG
2133 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1da177e4
LT
2134#if FORCED_DEBUG
2135 /*
2136 * Enable redzoning and last user accounting, except for caches with
2137 * large objects, if the increased size would increase the object size
2138 * above the next power of two: caches with object sizes just above a
2139 * power of two have a significant amount of internal fragmentation.
2140 */
87a927c7
DW
2141 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2142 2 * sizeof(unsigned long long)))
b28a02de 2143 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2144 if (!(flags & SLAB_DESTROY_BY_RCU))
2145 flags |= SLAB_POISON;
2146#endif
2147 if (flags & SLAB_DESTROY_BY_RCU)
2148 BUG_ON(flags & SLAB_POISON);
2149#endif
1da177e4 2150 /*
a737b3e2
AM
2151 * Always checks flags, a caller might be expecting debug support which
2152 * isn't available.
1da177e4 2153 */
40094fa6 2154 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2155
a737b3e2
AM
2156 /*
2157 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2158 * unaligned accesses for some archs when redzoning is used, and makes
2159 * sure any on-slab bufctl's are also correctly aligned.
2160 */
b28a02de
PE
2161 if (size & (BYTES_PER_WORD - 1)) {
2162 size += (BYTES_PER_WORD - 1);
2163 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2164 }
2165
a737b3e2
AM
2166 /* calculate the final buffer alignment: */
2167
1da177e4
LT
2168 /* 1) arch recommendation: can be overridden for debug */
2169 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2170 /*
2171 * Default alignment: as specified by the arch code. Except if
2172 * an object is really small, then squeeze multiple objects into
2173 * one cacheline.
1da177e4
LT
2174 */
2175 ralign = cache_line_size();
b28a02de 2176 while (size <= ralign / 2)
1da177e4
LT
2177 ralign /= 2;
2178 } else {
2179 ralign = BYTES_PER_WORD;
2180 }
ca5f9703
PE
2181
2182 /*
87a927c7
DW
2183 * Redzoning and user store require word alignment or possibly larger.
2184 * Note this will be overridden by architecture or caller mandated
2185 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2186 */
87a927c7
DW
2187 if (flags & SLAB_STORE_USER)
2188 ralign = BYTES_PER_WORD;
2189
2190 if (flags & SLAB_RED_ZONE) {
2191 ralign = REDZONE_ALIGN;
2192 /* If redzoning, ensure that the second redzone is suitably
2193 * aligned, by adjusting the object size accordingly. */
2194 size += REDZONE_ALIGN - 1;
2195 size &= ~(REDZONE_ALIGN - 1);
2196 }
ca5f9703 2197
a44b56d3 2198 /* 2) arch mandated alignment */
1da177e4
LT
2199 if (ralign < ARCH_SLAB_MINALIGN) {
2200 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2201 }
a44b56d3 2202 /* 3) caller mandated alignment */
1da177e4
LT
2203 if (ralign < align) {
2204 ralign = align;
1da177e4 2205 }
a44b56d3 2206 /* disable debug if necessary */
b46b8f19 2207 if (ralign > __alignof__(unsigned long long))
a44b56d3 2208 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2209 /*
ca5f9703 2210 * 4) Store it.
1da177e4
LT
2211 */
2212 align = ralign;
2213
83b519e8
PE
2214 if (slab_is_available())
2215 gfp = GFP_KERNEL;
2216 else
2217 gfp = GFP_NOWAIT;
2218
1da177e4 2219 /* Get cache's description obj. */
83b519e8 2220 cachep = kmem_cache_zalloc(&cache_cache, gfp);
1da177e4 2221 if (!cachep)
4f12bb4f 2222 goto oops;
1da177e4
LT
2223
2224#if DEBUG
3dafccf2 2225 cachep->obj_size = size;
1da177e4 2226
ca5f9703
PE
2227 /*
2228 * Both debugging options require word-alignment which is calculated
2229 * into align above.
2230 */
1da177e4 2231 if (flags & SLAB_RED_ZONE) {
1da177e4 2232 /* add space for red zone words */
b46b8f19
DW
2233 cachep->obj_offset += sizeof(unsigned long long);
2234 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2235 }
2236 if (flags & SLAB_STORE_USER) {
ca5f9703 2237 /* user store requires one word storage behind the end of
87a927c7
DW
2238 * the real object. But if the second red zone needs to be
2239 * aligned to 64 bits, we must allow that much space.
1da177e4 2240 */
87a927c7
DW
2241 if (flags & SLAB_RED_ZONE)
2242 size += REDZONE_ALIGN;
2243 else
2244 size += BYTES_PER_WORD;
1da177e4
LT
2245 }
2246#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2247 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2248 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2249 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2250 size = PAGE_SIZE;
2251 }
2252#endif
2253#endif
2254
e0a42726
IM
2255 /*
2256 * Determine if the slab management is 'on' or 'off' slab.
2257 * (bootstrapping cannot cope with offslab caches so don't do
2258 * it too early on.)
2259 */
2260 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
1da177e4
LT
2261 /*
2262 * Size is large, assume best to place the slab management obj
2263 * off-slab (should allow better packing of objs).
2264 */
2265 flags |= CFLGS_OFF_SLAB;
2266
2267 size = ALIGN(size, align);
2268
f78bb8ad 2269 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2270
2271 if (!cachep->num) {
b4169525 2272 printk(KERN_ERR
2273 "kmem_cache_create: couldn't create cache %s.\n", name);
1da177e4
LT
2274 kmem_cache_free(&cache_cache, cachep);
2275 cachep = NULL;
4f12bb4f 2276 goto oops;
1da177e4 2277 }
b28a02de
PE
2278 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2279 + sizeof(struct slab), align);
1da177e4
LT
2280
2281 /*
2282 * If the slab has been placed off-slab, and we have enough space then
2283 * move it on-slab. This is at the expense of any extra colouring.
2284 */
2285 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2286 flags &= ~CFLGS_OFF_SLAB;
2287 left_over -= slab_size;
2288 }
2289
2290 if (flags & CFLGS_OFF_SLAB) {
2291 /* really off slab. No need for manual alignment */
b28a02de
PE
2292 slab_size =
2293 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2294 }
2295
2296 cachep->colour_off = cache_line_size();
2297 /* Offset must be a multiple of the alignment. */
2298 if (cachep->colour_off < align)
2299 cachep->colour_off = align;
b28a02de 2300 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2301 cachep->slab_size = slab_size;
2302 cachep->flags = flags;
2303 cachep->gfpflags = 0;
4b51d669 2304 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
1da177e4 2305 cachep->gfpflags |= GFP_DMA;
3dafccf2 2306 cachep->buffer_size = size;
6a2d7a95 2307 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2308
e5ac9c5a 2309 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2310 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2311 /*
2312 * This is a possibility for one of the malloc_sizes caches.
2313 * But since we go off slab only for object size greater than
2314 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2315 * this should not happen at all.
2316 * But leave a BUG_ON for some lucky dude.
2317 */
6cb8f913 2318 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2319 }
1da177e4 2320 cachep->ctor = ctor;
1da177e4
LT
2321 cachep->name = name;
2322
83b519e8 2323 if (setup_cpu_cache(cachep, gfp)) {
2ed3a4ef
CL
2324 __kmem_cache_destroy(cachep);
2325 cachep = NULL;
2326 goto oops;
2327 }
1da177e4 2328
1da177e4
LT
2329 /* cache setup completed, link it into the list */
2330 list_add(&cachep->next, &cache_chain);
a737b3e2 2331oops:
1da177e4
LT
2332 if (!cachep && (flags & SLAB_PANIC))
2333 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2334 name);
83b519e8
PE
2335 if (slab_is_available()) {
2336 mutex_unlock(&cache_chain_mutex);
2337 put_online_cpus();
2338 }
1da177e4
LT
2339 return cachep;
2340}
2341EXPORT_SYMBOL(kmem_cache_create);
2342
2343#if DEBUG
2344static void check_irq_off(void)
2345{
2346 BUG_ON(!irqs_disabled());
2347}
2348
2349static void check_irq_on(void)
2350{
2351 BUG_ON(irqs_disabled());
2352}
2353
343e0d7a 2354static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2355{
2356#ifdef CONFIG_SMP
2357 check_irq_off();
e498be7d 2358 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2359#endif
2360}
e498be7d 2361
343e0d7a 2362static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2363{
2364#ifdef CONFIG_SMP
2365 check_irq_off();
2366 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2367#endif
2368}
2369
1da177e4
LT
2370#else
2371#define check_irq_off() do { } while(0)
2372#define check_irq_on() do { } while(0)
2373#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2374#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2375#endif
2376
aab2207c
CL
2377static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2378 struct array_cache *ac,
2379 int force, int node);
2380
1da177e4
LT
2381static void do_drain(void *arg)
2382{
a737b3e2 2383 struct kmem_cache *cachep = arg;
1da177e4 2384 struct array_cache *ac;
ff69416e 2385 int node = numa_node_id();
1da177e4
LT
2386
2387 check_irq_off();
9a2dba4b 2388 ac = cpu_cache_get(cachep);
ff69416e
CL
2389 spin_lock(&cachep->nodelists[node]->list_lock);
2390 free_block(cachep, ac->entry, ac->avail, node);
2391 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2392 ac->avail = 0;
2393}
2394
343e0d7a 2395static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2396{
e498be7d
CL
2397 struct kmem_list3 *l3;
2398 int node;
2399
15c8b6c1 2400 on_each_cpu(do_drain, cachep, 1);
1da177e4 2401 check_irq_on();
b28a02de 2402 for_each_online_node(node) {
e498be7d 2403 l3 = cachep->nodelists[node];
a4523a8b
RD
2404 if (l3 && l3->alien)
2405 drain_alien_cache(cachep, l3->alien);
2406 }
2407
2408 for_each_online_node(node) {
2409 l3 = cachep->nodelists[node];
2410 if (l3)
aab2207c 2411 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2412 }
1da177e4
LT
2413}
2414
ed11d9eb
CL
2415/*
2416 * Remove slabs from the list of free slabs.
2417 * Specify the number of slabs to drain in tofree.
2418 *
2419 * Returns the actual number of slabs released.
2420 */
2421static int drain_freelist(struct kmem_cache *cache,
2422 struct kmem_list3 *l3, int tofree)
1da177e4 2423{
ed11d9eb
CL
2424 struct list_head *p;
2425 int nr_freed;
1da177e4 2426 struct slab *slabp;
1da177e4 2427
ed11d9eb
CL
2428 nr_freed = 0;
2429 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2430
ed11d9eb 2431 spin_lock_irq(&l3->list_lock);
e498be7d 2432 p = l3->slabs_free.prev;
ed11d9eb
CL
2433 if (p == &l3->slabs_free) {
2434 spin_unlock_irq(&l3->list_lock);
2435 goto out;
2436 }
1da177e4 2437
ed11d9eb 2438 slabp = list_entry(p, struct slab, list);
1da177e4 2439#if DEBUG
40094fa6 2440 BUG_ON(slabp->inuse);
1da177e4
LT
2441#endif
2442 list_del(&slabp->list);
ed11d9eb
CL
2443 /*
2444 * Safe to drop the lock. The slab is no longer linked
2445 * to the cache.
2446 */
2447 l3->free_objects -= cache->num;
e498be7d 2448 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2449 slab_destroy(cache, slabp);
2450 nr_freed++;
1da177e4 2451 }
ed11d9eb
CL
2452out:
2453 return nr_freed;
1da177e4
LT
2454}
2455
8f5be20b 2456/* Called with cache_chain_mutex held to protect against cpu hotplug */
343e0d7a 2457static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2458{
2459 int ret = 0, i = 0;
2460 struct kmem_list3 *l3;
2461
2462 drain_cpu_caches(cachep);
2463
2464 check_irq_on();
2465 for_each_online_node(i) {
2466 l3 = cachep->nodelists[i];
ed11d9eb
CL
2467 if (!l3)
2468 continue;
2469
2470 drain_freelist(cachep, l3, l3->free_objects);
2471
2472 ret += !list_empty(&l3->slabs_full) ||
2473 !list_empty(&l3->slabs_partial);
e498be7d
CL
2474 }
2475 return (ret ? 1 : 0);
2476}
2477
1da177e4
LT
2478/**
2479 * kmem_cache_shrink - Shrink a cache.
2480 * @cachep: The cache to shrink.
2481 *
2482 * Releases as many slabs as possible for a cache.
2483 * To help debugging, a zero exit status indicates all slabs were released.
2484 */
343e0d7a 2485int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2486{
8f5be20b 2487 int ret;
40094fa6 2488 BUG_ON(!cachep || in_interrupt());
1da177e4 2489
95402b38 2490 get_online_cpus();
8f5be20b
RT
2491 mutex_lock(&cache_chain_mutex);
2492 ret = __cache_shrink(cachep);
2493 mutex_unlock(&cache_chain_mutex);
95402b38 2494 put_online_cpus();
8f5be20b 2495 return ret;
1da177e4
LT
2496}
2497EXPORT_SYMBOL(kmem_cache_shrink);
2498
2499/**
2500 * kmem_cache_destroy - delete a cache
2501 * @cachep: the cache to destroy
2502 *
72fd4a35 2503 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2504 *
2505 * It is expected this function will be called by a module when it is
2506 * unloaded. This will remove the cache completely, and avoid a duplicate
2507 * cache being allocated each time a module is loaded and unloaded, if the
2508 * module doesn't have persistent in-kernel storage across loads and unloads.
2509 *
2510 * The cache must be empty before calling this function.
2511 *
2512 * The caller must guarantee that noone will allocate memory from the cache
2513 * during the kmem_cache_destroy().
2514 */
133d205a 2515void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2516{
40094fa6 2517 BUG_ON(!cachep || in_interrupt());
1da177e4 2518
1da177e4 2519 /* Find the cache in the chain of caches. */
95402b38 2520 get_online_cpus();
fc0abb14 2521 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2522 /*
2523 * the chain is never empty, cache_cache is never destroyed
2524 */
2525 list_del(&cachep->next);
1da177e4
LT
2526 if (__cache_shrink(cachep)) {
2527 slab_error(cachep, "Can't free all objects");
b28a02de 2528 list_add(&cachep->next, &cache_chain);
fc0abb14 2529 mutex_unlock(&cache_chain_mutex);
95402b38 2530 put_online_cpus();
133d205a 2531 return;
1da177e4
LT
2532 }
2533
2534 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2535 synchronize_rcu();
1da177e4 2536
117f6eb1 2537 __kmem_cache_destroy(cachep);
8f5be20b 2538 mutex_unlock(&cache_chain_mutex);
95402b38 2539 put_online_cpus();
1da177e4
LT
2540}
2541EXPORT_SYMBOL(kmem_cache_destroy);
2542
e5ac9c5a
RT
2543/*
2544 * Get the memory for a slab management obj.
2545 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2546 * always come from malloc_sizes caches. The slab descriptor cannot
2547 * come from the same cache which is getting created because,
2548 * when we are searching for an appropriate cache for these
2549 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2550 * If we are creating a malloc_sizes cache here it would not be visible to
2551 * kmem_find_general_cachep till the initialization is complete.
2552 * Hence we cannot have slabp_cache same as the original cache.
2553 */
343e0d7a 2554static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2555 int colour_off, gfp_t local_flags,
2556 int nodeid)
1da177e4
LT
2557{
2558 struct slab *slabp;
b28a02de 2559
1da177e4
LT
2560 if (OFF_SLAB(cachep)) {
2561 /* Slab management obj is off-slab. */
5b74ada7 2562 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2563 local_flags, nodeid);
d5cff635
CM
2564 /*
2565 * If the first object in the slab is leaked (it's allocated
2566 * but no one has a reference to it), we want to make sure
2567 * kmemleak does not treat the ->s_mem pointer as a reference
2568 * to the object. Otherwise we will not report the leak.
2569 */
2570 kmemleak_scan_area(slabp, offsetof(struct slab, list),
2571 sizeof(struct list_head), local_flags);
1da177e4
LT
2572 if (!slabp)
2573 return NULL;
2574 } else {
b28a02de 2575 slabp = objp + colour_off;
1da177e4
LT
2576 colour_off += cachep->slab_size;
2577 }
2578 slabp->inuse = 0;
2579 slabp->colouroff = colour_off;
b28a02de 2580 slabp->s_mem = objp + colour_off;
5b74ada7 2581 slabp->nodeid = nodeid;
e51bfd0a 2582 slabp->free = 0;
1da177e4
LT
2583 return slabp;
2584}
2585
2586static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2587{
b28a02de 2588 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2589}
2590
343e0d7a 2591static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2592 struct slab *slabp)
1da177e4
LT
2593{
2594 int i;
2595
2596 for (i = 0; i < cachep->num; i++) {
8fea4e96 2597 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2598#if DEBUG
2599 /* need to poison the objs? */
2600 if (cachep->flags & SLAB_POISON)
2601 poison_obj(cachep, objp, POISON_FREE);
2602 if (cachep->flags & SLAB_STORE_USER)
2603 *dbg_userword(cachep, objp) = NULL;
2604
2605 if (cachep->flags & SLAB_RED_ZONE) {
2606 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2607 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2608 }
2609 /*
a737b3e2
AM
2610 * Constructors are not allowed to allocate memory from the same
2611 * cache which they are a constructor for. Otherwise, deadlock.
2612 * They must also be threaded.
1da177e4
LT
2613 */
2614 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2615 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2616
2617 if (cachep->flags & SLAB_RED_ZONE) {
2618 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2619 slab_error(cachep, "constructor overwrote the"
b28a02de 2620 " end of an object");
1da177e4
LT
2621 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2622 slab_error(cachep, "constructor overwrote the"
b28a02de 2623 " start of an object");
1da177e4 2624 }
a737b3e2
AM
2625 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2626 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2627 kernel_map_pages(virt_to_page(objp),
3dafccf2 2628 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2629#else
2630 if (cachep->ctor)
51cc5068 2631 cachep->ctor(objp);
1da177e4 2632#endif
b28a02de 2633 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2634 }
b28a02de 2635 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2636}
2637
343e0d7a 2638static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2639{
4b51d669
CL
2640 if (CONFIG_ZONE_DMA_FLAG) {
2641 if (flags & GFP_DMA)
2642 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2643 else
2644 BUG_ON(cachep->gfpflags & GFP_DMA);
2645 }
1da177e4
LT
2646}
2647
a737b3e2
AM
2648static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2649 int nodeid)
78d382d7 2650{
8fea4e96 2651 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2652 kmem_bufctl_t next;
2653
2654 slabp->inuse++;
2655 next = slab_bufctl(slabp)[slabp->free];
2656#if DEBUG
2657 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2658 WARN_ON(slabp->nodeid != nodeid);
2659#endif
2660 slabp->free = next;
2661
2662 return objp;
2663}
2664
a737b3e2
AM
2665static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2666 void *objp, int nodeid)
78d382d7 2667{
8fea4e96 2668 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2669
2670#if DEBUG
2671 /* Verify that the slab belongs to the intended node */
2672 WARN_ON(slabp->nodeid != nodeid);
2673
871751e2 2674 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2675 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2676 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2677 BUG();
2678 }
2679#endif
2680 slab_bufctl(slabp)[objnr] = slabp->free;
2681 slabp->free = objnr;
2682 slabp->inuse--;
2683}
2684
4776874f
PE
2685/*
2686 * Map pages beginning at addr to the given cache and slab. This is required
2687 * for the slab allocator to be able to lookup the cache and slab of a
2688 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2689 */
2690static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2691 void *addr)
1da177e4 2692{
4776874f 2693 int nr_pages;
1da177e4
LT
2694 struct page *page;
2695
4776874f 2696 page = virt_to_page(addr);
84097518 2697
4776874f 2698 nr_pages = 1;
84097518 2699 if (likely(!PageCompound(page)))
4776874f
PE
2700 nr_pages <<= cache->gfporder;
2701
1da177e4 2702 do {
4776874f
PE
2703 page_set_cache(page, cache);
2704 page_set_slab(page, slab);
1da177e4 2705 page++;
4776874f 2706 } while (--nr_pages);
1da177e4
LT
2707}
2708
2709/*
2710 * Grow (by 1) the number of slabs within a cache. This is called by
2711 * kmem_cache_alloc() when there are no active objs left in a cache.
2712 */
3c517a61
CL
2713static int cache_grow(struct kmem_cache *cachep,
2714 gfp_t flags, int nodeid, void *objp)
1da177e4 2715{
b28a02de 2716 struct slab *slabp;
b28a02de
PE
2717 size_t offset;
2718 gfp_t local_flags;
e498be7d 2719 struct kmem_list3 *l3;
1da177e4 2720
a737b3e2
AM
2721 /*
2722 * Be lazy and only check for valid flags here, keeping it out of the
2723 * critical path in kmem_cache_alloc().
1da177e4 2724 */
6cb06229
CL
2725 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2726 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2727
2e1217cf 2728 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2729 check_irq_off();
2e1217cf
RT
2730 l3 = cachep->nodelists[nodeid];
2731 spin_lock(&l3->list_lock);
1da177e4
LT
2732
2733 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2734 offset = l3->colour_next;
2735 l3->colour_next++;
2736 if (l3->colour_next >= cachep->colour)
2737 l3->colour_next = 0;
2738 spin_unlock(&l3->list_lock);
1da177e4 2739
2e1217cf 2740 offset *= cachep->colour_off;
1da177e4
LT
2741
2742 if (local_flags & __GFP_WAIT)
2743 local_irq_enable();
2744
2745 /*
2746 * The test for missing atomic flag is performed here, rather than
2747 * the more obvious place, simply to reduce the critical path length
2748 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2749 * will eventually be caught here (where it matters).
2750 */
2751 kmem_flagcheck(cachep, flags);
2752
a737b3e2
AM
2753 /*
2754 * Get mem for the objs. Attempt to allocate a physical page from
2755 * 'nodeid'.
e498be7d 2756 */
3c517a61 2757 if (!objp)
b8c1c5da 2758 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2759 if (!objp)
1da177e4
LT
2760 goto failed;
2761
2762 /* Get slab management. */
3c517a61 2763 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2764 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2765 if (!slabp)
1da177e4
LT
2766 goto opps1;
2767
4776874f 2768 slab_map_pages(cachep, slabp, objp);
1da177e4 2769
a35afb83 2770 cache_init_objs(cachep, slabp);
1da177e4
LT
2771
2772 if (local_flags & __GFP_WAIT)
2773 local_irq_disable();
2774 check_irq_off();
e498be7d 2775 spin_lock(&l3->list_lock);
1da177e4
LT
2776
2777 /* Make slab active. */
e498be7d 2778 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2779 STATS_INC_GROWN(cachep);
e498be7d
CL
2780 l3->free_objects += cachep->num;
2781 spin_unlock(&l3->list_lock);
1da177e4 2782 return 1;
a737b3e2 2783opps1:
1da177e4 2784 kmem_freepages(cachep, objp);
a737b3e2 2785failed:
1da177e4
LT
2786 if (local_flags & __GFP_WAIT)
2787 local_irq_disable();
2788 return 0;
2789}
2790
2791#if DEBUG
2792
2793/*
2794 * Perform extra freeing checks:
2795 * - detect bad pointers.
2796 * - POISON/RED_ZONE checking
1da177e4
LT
2797 */
2798static void kfree_debugcheck(const void *objp)
2799{
1da177e4
LT
2800 if (!virt_addr_valid(objp)) {
2801 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2802 (unsigned long)objp);
2803 BUG();
1da177e4 2804 }
1da177e4
LT
2805}
2806
58ce1fd5
PE
2807static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2808{
b46b8f19 2809 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2810
2811 redzone1 = *dbg_redzone1(cache, obj);
2812 redzone2 = *dbg_redzone2(cache, obj);
2813
2814 /*
2815 * Redzone is ok.
2816 */
2817 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2818 return;
2819
2820 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2821 slab_error(cache, "double free detected");
2822 else
2823 slab_error(cache, "memory outside object was overwritten");
2824
b46b8f19 2825 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2826 obj, redzone1, redzone2);
2827}
2828
343e0d7a 2829static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2830 void *caller)
1da177e4
LT
2831{
2832 struct page *page;
2833 unsigned int objnr;
2834 struct slab *slabp;
2835
80cbd911
MW
2836 BUG_ON(virt_to_cache(objp) != cachep);
2837
3dafccf2 2838 objp -= obj_offset(cachep);
1da177e4 2839 kfree_debugcheck(objp);
b49af68f 2840 page = virt_to_head_page(objp);
1da177e4 2841
065d41cb 2842 slabp = page_get_slab(page);
1da177e4
LT
2843
2844 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2845 verify_redzone_free(cachep, objp);
1da177e4
LT
2846 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2847 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2848 }
2849 if (cachep->flags & SLAB_STORE_USER)
2850 *dbg_userword(cachep, objp) = caller;
2851
8fea4e96 2852 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2853
2854 BUG_ON(objnr >= cachep->num);
8fea4e96 2855 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 2856
871751e2
AV
2857#ifdef CONFIG_DEBUG_SLAB_LEAK
2858 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2859#endif
1da177e4
LT
2860 if (cachep->flags & SLAB_POISON) {
2861#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2862 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2863 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2864 kernel_map_pages(virt_to_page(objp),
3dafccf2 2865 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2866 } else {
2867 poison_obj(cachep, objp, POISON_FREE);
2868 }
2869#else
2870 poison_obj(cachep, objp, POISON_FREE);
2871#endif
2872 }
2873 return objp;
2874}
2875
343e0d7a 2876static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2877{
2878 kmem_bufctl_t i;
2879 int entries = 0;
b28a02de 2880
1da177e4
LT
2881 /* Check slab's freelist to see if this obj is there. */
2882 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2883 entries++;
2884 if (entries > cachep->num || i >= cachep->num)
2885 goto bad;
2886 }
2887 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2888bad:
2889 printk(KERN_ERR "slab: Internal list corruption detected in "
2890 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2891 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2892 for (i = 0;
264132bc 2893 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2894 i++) {
a737b3e2 2895 if (i % 16 == 0)
1da177e4 2896 printk("\n%03x:", i);
b28a02de 2897 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2898 }
2899 printk("\n");
2900 BUG();
2901 }
2902}
2903#else
2904#define kfree_debugcheck(x) do { } while(0)
2905#define cache_free_debugcheck(x,objp,z) (objp)
2906#define check_slabp(x,y) do { } while(0)
2907#endif
2908
343e0d7a 2909static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2910{
2911 int batchcount;
2912 struct kmem_list3 *l3;
2913 struct array_cache *ac;
1ca4cb24
PE
2914 int node;
2915
6d2144d3 2916retry:
1da177e4 2917 check_irq_off();
6d2144d3 2918 node = numa_node_id();
9a2dba4b 2919 ac = cpu_cache_get(cachep);
1da177e4
LT
2920 batchcount = ac->batchcount;
2921 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2922 /*
2923 * If there was little recent activity on this cache, then
2924 * perform only a partial refill. Otherwise we could generate
2925 * refill bouncing.
1da177e4
LT
2926 */
2927 batchcount = BATCHREFILL_LIMIT;
2928 }
1ca4cb24 2929 l3 = cachep->nodelists[node];
e498be7d
CL
2930
2931 BUG_ON(ac->avail > 0 || !l3);
2932 spin_lock(&l3->list_lock);
1da177e4 2933
3ded175a
CL
2934 /* See if we can refill from the shared array */
2935 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2936 goto alloc_done;
2937
1da177e4
LT
2938 while (batchcount > 0) {
2939 struct list_head *entry;
2940 struct slab *slabp;
2941 /* Get slab alloc is to come from. */
2942 entry = l3->slabs_partial.next;
2943 if (entry == &l3->slabs_partial) {
2944 l3->free_touched = 1;
2945 entry = l3->slabs_free.next;
2946 if (entry == &l3->slabs_free)
2947 goto must_grow;
2948 }
2949
2950 slabp = list_entry(entry, struct slab, list);
2951 check_slabp(cachep, slabp);
2952 check_spinlock_acquired(cachep);
714b8171
PE
2953
2954 /*
2955 * The slab was either on partial or free list so
2956 * there must be at least one object available for
2957 * allocation.
2958 */
249b9f33 2959 BUG_ON(slabp->inuse >= cachep->num);
714b8171 2960
1da177e4 2961 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
2962 STATS_INC_ALLOCED(cachep);
2963 STATS_INC_ACTIVE(cachep);
2964 STATS_SET_HIGH(cachep);
2965
78d382d7 2966 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
1ca4cb24 2967 node);
1da177e4
LT
2968 }
2969 check_slabp(cachep, slabp);
2970
2971 /* move slabp to correct slabp list: */
2972 list_del(&slabp->list);
2973 if (slabp->free == BUFCTL_END)
2974 list_add(&slabp->list, &l3->slabs_full);
2975 else
2976 list_add(&slabp->list, &l3->slabs_partial);
2977 }
2978
a737b3e2 2979must_grow:
1da177e4 2980 l3->free_objects -= ac->avail;
a737b3e2 2981alloc_done:
e498be7d 2982 spin_unlock(&l3->list_lock);
1da177e4
LT
2983
2984 if (unlikely(!ac->avail)) {
2985 int x;
3c517a61 2986 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 2987
a737b3e2 2988 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 2989 ac = cpu_cache_get(cachep);
a737b3e2 2990 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
2991 return NULL;
2992
a737b3e2 2993 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
2994 goto retry;
2995 }
2996 ac->touched = 1;
e498be7d 2997 return ac->entry[--ac->avail];
1da177e4
LT
2998}
2999
a737b3e2
AM
3000static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3001 gfp_t flags)
1da177e4
LT
3002{
3003 might_sleep_if(flags & __GFP_WAIT);
3004#if DEBUG
3005 kmem_flagcheck(cachep, flags);
3006#endif
3007}
3008
3009#if DEBUG
a737b3e2
AM
3010static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3011 gfp_t flags, void *objp, void *caller)
1da177e4 3012{
b28a02de 3013 if (!objp)
1da177e4 3014 return objp;
b28a02de 3015 if (cachep->flags & SLAB_POISON) {
1da177e4 3016#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 3017 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3018 kernel_map_pages(virt_to_page(objp),
3dafccf2 3019 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
3020 else
3021 check_poison_obj(cachep, objp);
3022#else
3023 check_poison_obj(cachep, objp);
3024#endif
3025 poison_obj(cachep, objp, POISON_INUSE);
3026 }
3027 if (cachep->flags & SLAB_STORE_USER)
3028 *dbg_userword(cachep, objp) = caller;
3029
3030 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3031 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3032 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3033 slab_error(cachep, "double free, or memory outside"
3034 " object was overwritten");
b28a02de 3035 printk(KERN_ERR
b46b8f19 3036 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3037 objp, *dbg_redzone1(cachep, objp),
3038 *dbg_redzone2(cachep, objp));
1da177e4
LT
3039 }
3040 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3041 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3042 }
871751e2
AV
3043#ifdef CONFIG_DEBUG_SLAB_LEAK
3044 {
3045 struct slab *slabp;
3046 unsigned objnr;
3047
b49af68f 3048 slabp = page_get_slab(virt_to_head_page(objp));
871751e2
AV
3049 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3050 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3051 }
3052#endif
3dafccf2 3053 objp += obj_offset(cachep);
4f104934 3054 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3055 cachep->ctor(objp);
a44b56d3
KH
3056#if ARCH_SLAB_MINALIGN
3057 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3058 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3059 objp, ARCH_SLAB_MINALIGN);
3060 }
3061#endif
1da177e4
LT
3062 return objp;
3063}
3064#else
3065#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3066#endif
3067
773ff60e 3068static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502
AM
3069{
3070 if (cachep == &cache_cache)
773ff60e 3071 return false;
8a8b6502 3072
773ff60e 3073 return should_failslab(obj_size(cachep), flags);
8a8b6502
AM
3074}
3075
343e0d7a 3076static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3077{
b28a02de 3078 void *objp;
1da177e4
LT
3079 struct array_cache *ac;
3080
5c382300 3081 check_irq_off();
8a8b6502 3082
9a2dba4b 3083 ac = cpu_cache_get(cachep);
1da177e4
LT
3084 if (likely(ac->avail)) {
3085 STATS_INC_ALLOCHIT(cachep);
3086 ac->touched = 1;
e498be7d 3087 objp = ac->entry[--ac->avail];
1da177e4
LT
3088 } else {
3089 STATS_INC_ALLOCMISS(cachep);
3090 objp = cache_alloc_refill(cachep, flags);
3091 }
d5cff635
CM
3092 /*
3093 * To avoid a false negative, if an object that is in one of the
3094 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3095 * treat the array pointers as a reference to the object.
3096 */
3097 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3098 return objp;
3099}
3100
e498be7d 3101#ifdef CONFIG_NUMA
c61afb18 3102/*
b2455396 3103 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3104 *
3105 * If we are in_interrupt, then process context, including cpusets and
3106 * mempolicy, may not apply and should not be used for allocation policy.
3107 */
3108static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3109{
3110 int nid_alloc, nid_here;
3111
765c4507 3112 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18
PJ
3113 return NULL;
3114 nid_alloc = nid_here = numa_node_id();
3115 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3116 nid_alloc = cpuset_mem_spread_node();
3117 else if (current->mempolicy)
3118 nid_alloc = slab_node(current->mempolicy);
3119 if (nid_alloc != nid_here)
8b98c169 3120 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3121 return NULL;
3122}
3123
765c4507
CL
3124/*
3125 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3126 * certain node and fall back is permitted. First we scan all the
3127 * available nodelists for available objects. If that fails then we
3128 * perform an allocation without specifying a node. This allows the page
3129 * allocator to do its reclaim / fallback magic. We then insert the
3130 * slab into the proper nodelist and then allocate from it.
765c4507 3131 */
8c8cc2c1 3132static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3133{
8c8cc2c1
PE
3134 struct zonelist *zonelist;
3135 gfp_t local_flags;
dd1a239f 3136 struct zoneref *z;
54a6eb5c
MG
3137 struct zone *zone;
3138 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3139 void *obj = NULL;
3c517a61 3140 int nid;
8c8cc2c1
PE
3141
3142 if (flags & __GFP_THISNODE)
3143 return NULL;
3144
0e88460d 3145 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
6cb06229 3146 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3147
3c517a61
CL
3148retry:
3149 /*
3150 * Look through allowed nodes for objects available
3151 * from existing per node queues.
3152 */
54a6eb5c
MG
3153 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3154 nid = zone_to_nid(zone);
aedb0eb1 3155
54a6eb5c 3156 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3c517a61 3157 cache->nodelists[nid] &&
481c5346 3158 cache->nodelists[nid]->free_objects) {
3c517a61
CL
3159 obj = ____cache_alloc_node(cache,
3160 flags | GFP_THISNODE, nid);
481c5346
CL
3161 if (obj)
3162 break;
3163 }
3c517a61
CL
3164 }
3165
cfce6604 3166 if (!obj) {
3c517a61
CL
3167 /*
3168 * This allocation will be performed within the constraints
3169 * of the current cpuset / memory policy requirements.
3170 * We may trigger various forms of reclaim on the allowed
3171 * set and go into memory reserves if necessary.
3172 */
dd47ea75
CL
3173 if (local_flags & __GFP_WAIT)
3174 local_irq_enable();
3175 kmem_flagcheck(cache, flags);
9ac33b2b 3176 obj = kmem_getpages(cache, local_flags, -1);
dd47ea75
CL
3177 if (local_flags & __GFP_WAIT)
3178 local_irq_disable();
3c517a61
CL
3179 if (obj) {
3180 /*
3181 * Insert into the appropriate per node queues
3182 */
3183 nid = page_to_nid(virt_to_page(obj));
3184 if (cache_grow(cache, flags, nid, obj)) {
3185 obj = ____cache_alloc_node(cache,
3186 flags | GFP_THISNODE, nid);
3187 if (!obj)
3188 /*
3189 * Another processor may allocate the
3190 * objects in the slab since we are
3191 * not holding any locks.
3192 */
3193 goto retry;
3194 } else {
b6a60451 3195 /* cache_grow already freed obj */
3c517a61
CL
3196 obj = NULL;
3197 }
3198 }
aedb0eb1 3199 }
765c4507
CL
3200 return obj;
3201}
3202
e498be7d
CL
3203/*
3204 * A interface to enable slab creation on nodeid
1da177e4 3205 */
8b98c169 3206static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3207 int nodeid)
e498be7d
CL
3208{
3209 struct list_head *entry;
b28a02de
PE
3210 struct slab *slabp;
3211 struct kmem_list3 *l3;
3212 void *obj;
b28a02de
PE
3213 int x;
3214
3215 l3 = cachep->nodelists[nodeid];
3216 BUG_ON(!l3);
3217
a737b3e2 3218retry:
ca3b9b91 3219 check_irq_off();
b28a02de
PE
3220 spin_lock(&l3->list_lock);
3221 entry = l3->slabs_partial.next;
3222 if (entry == &l3->slabs_partial) {
3223 l3->free_touched = 1;
3224 entry = l3->slabs_free.next;
3225 if (entry == &l3->slabs_free)
3226 goto must_grow;
3227 }
3228
3229 slabp = list_entry(entry, struct slab, list);
3230 check_spinlock_acquired_node(cachep, nodeid);
3231 check_slabp(cachep, slabp);
3232
3233 STATS_INC_NODEALLOCS(cachep);
3234 STATS_INC_ACTIVE(cachep);
3235 STATS_SET_HIGH(cachep);
3236
3237 BUG_ON(slabp->inuse == cachep->num);
3238
78d382d7 3239 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3240 check_slabp(cachep, slabp);
3241 l3->free_objects--;
3242 /* move slabp to correct slabp list: */
3243 list_del(&slabp->list);
3244
a737b3e2 3245 if (slabp->free == BUFCTL_END)
b28a02de 3246 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3247 else
b28a02de 3248 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3249
b28a02de
PE
3250 spin_unlock(&l3->list_lock);
3251 goto done;
e498be7d 3252
a737b3e2 3253must_grow:
b28a02de 3254 spin_unlock(&l3->list_lock);
3c517a61 3255 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3256 if (x)
3257 goto retry;
1da177e4 3258
8c8cc2c1 3259 return fallback_alloc(cachep, flags);
e498be7d 3260
a737b3e2 3261done:
b28a02de 3262 return obj;
e498be7d 3263}
8c8cc2c1
PE
3264
3265/**
3266 * kmem_cache_alloc_node - Allocate an object on the specified node
3267 * @cachep: The cache to allocate from.
3268 * @flags: See kmalloc().
3269 * @nodeid: node number of the target node.
3270 * @caller: return address of caller, used for debug information
3271 *
3272 * Identical to kmem_cache_alloc but it will allocate memory on the given
3273 * node, which can improve the performance for cpu bound structures.
3274 *
3275 * Fallback to other node is possible if __GFP_THISNODE is not set.
3276 */
3277static __always_inline void *
3278__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3279 void *caller)
3280{
3281 unsigned long save_flags;
3282 void *ptr;
3283
cf40bd16
NP
3284 lockdep_trace_alloc(flags);
3285
773ff60e 3286 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3287 return NULL;
3288
8c8cc2c1
PE
3289 cache_alloc_debugcheck_before(cachep, flags);
3290 local_irq_save(save_flags);
3291
3292 if (unlikely(nodeid == -1))
3293 nodeid = numa_node_id();
3294
3295 if (unlikely(!cachep->nodelists[nodeid])) {
3296 /* Node not bootstrapped yet */
3297 ptr = fallback_alloc(cachep, flags);
3298 goto out;
3299 }
3300
3301 if (nodeid == numa_node_id()) {
3302 /*
3303 * Use the locally cached objects if possible.
3304 * However ____cache_alloc does not allow fallback
3305 * to other nodes. It may fail while we still have
3306 * objects on other nodes available.
3307 */
3308 ptr = ____cache_alloc(cachep, flags);
3309 if (ptr)
3310 goto out;
3311 }
3312 /* ___cache_alloc_node can fall back to other nodes */
3313 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3314 out:
3315 local_irq_restore(save_flags);
3316 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
d5cff635
CM
3317 kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3318 flags);
8c8cc2c1 3319
c175eea4
PE
3320 if (likely(ptr))
3321 kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3322
d07dbea4
CL
3323 if (unlikely((flags & __GFP_ZERO) && ptr))
3324 memset(ptr, 0, obj_size(cachep));
3325
8c8cc2c1
PE
3326 return ptr;
3327}
3328
3329static __always_inline void *
3330__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3331{
3332 void *objp;
3333
3334 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3335 objp = alternate_node_alloc(cache, flags);
3336 if (objp)
3337 goto out;
3338 }
3339 objp = ____cache_alloc(cache, flags);
3340
3341 /*
3342 * We may just have run out of memory on the local node.
3343 * ____cache_alloc_node() knows how to locate memory on other nodes
3344 */
3345 if (!objp)
3346 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3347
3348 out:
3349 return objp;
3350}
3351#else
3352
3353static __always_inline void *
3354__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3355{
3356 return ____cache_alloc(cachep, flags);
3357}
3358
3359#endif /* CONFIG_NUMA */
3360
3361static __always_inline void *
3362__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3363{
3364 unsigned long save_flags;
3365 void *objp;
3366
cf40bd16
NP
3367 lockdep_trace_alloc(flags);
3368
773ff60e 3369 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3370 return NULL;
3371
8c8cc2c1
PE
3372 cache_alloc_debugcheck_before(cachep, flags);
3373 local_irq_save(save_flags);
3374 objp = __do_cache_alloc(cachep, flags);
3375 local_irq_restore(save_flags);
3376 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
d5cff635
CM
3377 kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3378 flags);
8c8cc2c1
PE
3379 prefetchw(objp);
3380
c175eea4
PE
3381 if (likely(objp))
3382 kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
3383
d07dbea4
CL
3384 if (unlikely((flags & __GFP_ZERO) && objp))
3385 memset(objp, 0, obj_size(cachep));
3386
8c8cc2c1
PE
3387 return objp;
3388}
e498be7d
CL
3389
3390/*
3391 * Caller needs to acquire correct kmem_list's list_lock
3392 */
343e0d7a 3393static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3394 int node)
1da177e4
LT
3395{
3396 int i;
e498be7d 3397 struct kmem_list3 *l3;
1da177e4
LT
3398
3399 for (i = 0; i < nr_objects; i++) {
3400 void *objp = objpp[i];
3401 struct slab *slabp;
1da177e4 3402
6ed5eb22 3403 slabp = virt_to_slab(objp);
ff69416e 3404 l3 = cachep->nodelists[node];
1da177e4 3405 list_del(&slabp->list);
ff69416e 3406 check_spinlock_acquired_node(cachep, node);
1da177e4 3407 check_slabp(cachep, slabp);
78d382d7 3408 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3409 STATS_DEC_ACTIVE(cachep);
e498be7d 3410 l3->free_objects++;
1da177e4
LT
3411 check_slabp(cachep, slabp);
3412
3413 /* fixup slab chains */
3414 if (slabp->inuse == 0) {
e498be7d
CL
3415 if (l3->free_objects > l3->free_limit) {
3416 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3417 /* No need to drop any previously held
3418 * lock here, even if we have a off-slab slab
3419 * descriptor it is guaranteed to come from
3420 * a different cache, refer to comments before
3421 * alloc_slabmgmt.
3422 */
1da177e4
LT
3423 slab_destroy(cachep, slabp);
3424 } else {
e498be7d 3425 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3426 }
3427 } else {
3428 /* Unconditionally move a slab to the end of the
3429 * partial list on free - maximum time for the
3430 * other objects to be freed, too.
3431 */
e498be7d 3432 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3433 }
3434 }
3435}
3436
343e0d7a 3437static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3438{
3439 int batchcount;
e498be7d 3440 struct kmem_list3 *l3;
ff69416e 3441 int node = numa_node_id();
1da177e4
LT
3442
3443 batchcount = ac->batchcount;
3444#if DEBUG
3445 BUG_ON(!batchcount || batchcount > ac->avail);
3446#endif
3447 check_irq_off();
ff69416e 3448 l3 = cachep->nodelists[node];
873623df 3449 spin_lock(&l3->list_lock);
e498be7d
CL
3450 if (l3->shared) {
3451 struct array_cache *shared_array = l3->shared;
b28a02de 3452 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3453 if (max) {
3454 if (batchcount > max)
3455 batchcount = max;
e498be7d 3456 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3457 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3458 shared_array->avail += batchcount;
3459 goto free_done;
3460 }
3461 }
3462
ff69416e 3463 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3464free_done:
1da177e4
LT
3465#if STATS
3466 {
3467 int i = 0;
3468 struct list_head *p;
3469
e498be7d
CL
3470 p = l3->slabs_free.next;
3471 while (p != &(l3->slabs_free)) {
1da177e4
LT
3472 struct slab *slabp;
3473
3474 slabp = list_entry(p, struct slab, list);
3475 BUG_ON(slabp->inuse);
3476
3477 i++;
3478 p = p->next;
3479 }
3480 STATS_SET_FREEABLE(cachep, i);
3481 }
3482#endif
e498be7d 3483 spin_unlock(&l3->list_lock);
1da177e4 3484 ac->avail -= batchcount;
a737b3e2 3485 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3486}
3487
3488/*
a737b3e2
AM
3489 * Release an obj back to its cache. If the obj has a constructed state, it must
3490 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3491 */
873623df 3492static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3493{
9a2dba4b 3494 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3495
3496 check_irq_off();
d5cff635 3497 kmemleak_free_recursive(objp, cachep->flags);
1da177e4
LT
3498 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3499
c175eea4
PE
3500 kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3501
1807a1aa
SS
3502 /*
3503 * Skip calling cache_free_alien() when the platform is not numa.
3504 * This will avoid cache misses that happen while accessing slabp (which
3505 * is per page memory reference) to get nodeid. Instead use a global
3506 * variable to skip the call, which is mostly likely to be present in
3507 * the cache.
3508 */
3509 if (numa_platform && cache_free_alien(cachep, objp))
729bd0b7
PE
3510 return;
3511
1da177e4
LT
3512 if (likely(ac->avail < ac->limit)) {
3513 STATS_INC_FREEHIT(cachep);
e498be7d 3514 ac->entry[ac->avail++] = objp;
1da177e4
LT
3515 return;
3516 } else {
3517 STATS_INC_FREEMISS(cachep);
3518 cache_flusharray(cachep, ac);
e498be7d 3519 ac->entry[ac->avail++] = objp;
1da177e4
LT
3520 }
3521}
3522
3523/**
3524 * kmem_cache_alloc - Allocate an object
3525 * @cachep: The cache to allocate from.
3526 * @flags: See kmalloc().
3527 *
3528 * Allocate an object from this cache. The flags are only relevant
3529 * if the cache has no available objects.
3530 */
343e0d7a 3531void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3532{
36555751
EGM
3533 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3534
ca2b84cb
EGM
3535 trace_kmem_cache_alloc(_RET_IP_, ret,
3536 obj_size(cachep), cachep->buffer_size, flags);
36555751
EGM
3537
3538 return ret;
1da177e4
LT
3539}
3540EXPORT_SYMBOL(kmem_cache_alloc);
3541
36555751
EGM
3542#ifdef CONFIG_KMEMTRACE
3543void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
3544{
3545 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3546}
3547EXPORT_SYMBOL(kmem_cache_alloc_notrace);
3548#endif
3549
1da177e4 3550/**
7682486b 3551 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
1da177e4
LT
3552 * @cachep: the cache we're checking against
3553 * @ptr: pointer to validate
3554 *
7682486b 3555 * This verifies that the untrusted pointer looks sane;
1da177e4
LT
3556 * it is _not_ a guarantee that the pointer is actually
3557 * part of the slab cache in question, but it at least
3558 * validates that the pointer can be dereferenced and
3559 * looks half-way sane.
3560 *
3561 * Currently only used for dentry validation.
3562 */
b7f869a2 3563int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
1da177e4 3564{
b28a02de 3565 unsigned long addr = (unsigned long)ptr;
1da177e4 3566 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3567 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3568 unsigned long size = cachep->buffer_size;
1da177e4
LT
3569 struct page *page;
3570
3571 if (unlikely(addr < min_addr))
3572 goto out;
3573 if (unlikely(addr > (unsigned long)high_memory - size))
3574 goto out;
3575 if (unlikely(addr & align_mask))
3576 goto out;
3577 if (unlikely(!kern_addr_valid(addr)))
3578 goto out;
3579 if (unlikely(!kern_addr_valid(addr + size - 1)))
3580 goto out;
3581 page = virt_to_page(ptr);
3582 if (unlikely(!PageSlab(page)))
3583 goto out;
065d41cb 3584 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3585 goto out;
3586 return 1;
a737b3e2 3587out:
1da177e4
LT
3588 return 0;
3589}
3590
3591#ifdef CONFIG_NUMA
8b98c169
CH
3592void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3593{
36555751
EGM
3594 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3595 __builtin_return_address(0));
3596
ca2b84cb
EGM
3597 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3598 obj_size(cachep), cachep->buffer_size,
3599 flags, nodeid);
36555751
EGM
3600
3601 return ret;
8b98c169 3602}
1da177e4
LT
3603EXPORT_SYMBOL(kmem_cache_alloc_node);
3604
36555751
EGM
3605#ifdef CONFIG_KMEMTRACE
3606void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
3607 gfp_t flags,
3608 int nodeid)
3609{
3610 return __cache_alloc_node(cachep, flags, nodeid,
3611 __builtin_return_address(0));
3612}
3613EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
3614#endif
3615
8b98c169
CH
3616static __always_inline void *
3617__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3618{
343e0d7a 3619 struct kmem_cache *cachep;
36555751 3620 void *ret;
97e2bde4
MS
3621
3622 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3623 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3624 return cachep;
36555751
EGM
3625 ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
3626
ca2b84cb
EGM
3627 trace_kmalloc_node((unsigned long) caller, ret,
3628 size, cachep->buffer_size, flags, node);
36555751
EGM
3629
3630 return ret;
97e2bde4 3631}
8b98c169 3632
36555751 3633#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
8b98c169
CH
3634void *__kmalloc_node(size_t size, gfp_t flags, int node)
3635{
3636 return __do_kmalloc_node(size, flags, node,
3637 __builtin_return_address(0));
3638}
dbe5e69d 3639EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3640
3641void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3642 int node, unsigned long caller)
8b98c169 3643{
ce71e27c 3644 return __do_kmalloc_node(size, flags, node, (void *)caller);
8b98c169
CH
3645}
3646EXPORT_SYMBOL(__kmalloc_node_track_caller);
3647#else
3648void *__kmalloc_node(size_t size, gfp_t flags, int node)
3649{
3650 return __do_kmalloc_node(size, flags, node, NULL);
3651}
3652EXPORT_SYMBOL(__kmalloc_node);
3653#endif /* CONFIG_DEBUG_SLAB */
3654#endif /* CONFIG_NUMA */
1da177e4
LT
3655
3656/**
800590f5 3657 * __do_kmalloc - allocate memory
1da177e4 3658 * @size: how many bytes of memory are required.
800590f5 3659 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3660 * @caller: function caller for debug tracking of the caller
1da177e4 3661 */
7fd6b141
PE
3662static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3663 void *caller)
1da177e4 3664{
343e0d7a 3665 struct kmem_cache *cachep;
36555751 3666 void *ret;
1da177e4 3667
97e2bde4
MS
3668 /* If you want to save a few bytes .text space: replace
3669 * __ with kmem_.
3670 * Then kmalloc uses the uninlined functions instead of the inline
3671 * functions.
3672 */
3673 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3674 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3675 return cachep;
36555751
EGM
3676 ret = __cache_alloc(cachep, flags, caller);
3677
ca2b84cb
EGM
3678 trace_kmalloc((unsigned long) caller, ret,
3679 size, cachep->buffer_size, flags);
36555751
EGM
3680
3681 return ret;
7fd6b141
PE
3682}
3683
7fd6b141 3684
36555751 3685#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
7fd6b141
PE
3686void *__kmalloc(size_t size, gfp_t flags)
3687{
871751e2 3688 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3689}
3690EXPORT_SYMBOL(__kmalloc);
3691
ce71e27c 3692void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3693{
ce71e27c 3694 return __do_kmalloc(size, flags, (void *)caller);
7fd6b141
PE
3695}
3696EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3697
3698#else
3699void *__kmalloc(size_t size, gfp_t flags)
3700{
3701 return __do_kmalloc(size, flags, NULL);
3702}
3703EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3704#endif
3705
1da177e4
LT
3706/**
3707 * kmem_cache_free - Deallocate an object
3708 * @cachep: The cache the allocation was from.
3709 * @objp: The previously allocated object.
3710 *
3711 * Free an object which was previously allocated from this
3712 * cache.
3713 */
343e0d7a 3714void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3715{
3716 unsigned long flags;
3717
3718 local_irq_save(flags);
898552c9 3719 debug_check_no_locks_freed(objp, obj_size(cachep));
3ac7fe5a
TG
3720 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3721 debug_check_no_obj_freed(objp, obj_size(cachep));
873623df 3722 __cache_free(cachep, objp);
1da177e4 3723 local_irq_restore(flags);
36555751 3724
ca2b84cb 3725 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3726}
3727EXPORT_SYMBOL(kmem_cache_free);
3728
1da177e4
LT
3729/**
3730 * kfree - free previously allocated memory
3731 * @objp: pointer returned by kmalloc.
3732 *
80e93eff
PE
3733 * If @objp is NULL, no operation is performed.
3734 *
1da177e4
LT
3735 * Don't free memory not originally allocated by kmalloc()
3736 * or you will run into trouble.
3737 */
3738void kfree(const void *objp)
3739{
343e0d7a 3740 struct kmem_cache *c;
1da177e4
LT
3741 unsigned long flags;
3742
2121db74
PE
3743 trace_kfree(_RET_IP_, objp);
3744
6cb8f913 3745 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3746 return;
3747 local_irq_save(flags);
3748 kfree_debugcheck(objp);
6ed5eb22 3749 c = virt_to_cache(objp);
f9b8404c 3750 debug_check_no_locks_freed(objp, obj_size(c));
3ac7fe5a 3751 debug_check_no_obj_freed(objp, obj_size(c));
873623df 3752 __cache_free(c, (void *)objp);
1da177e4
LT
3753 local_irq_restore(flags);
3754}
3755EXPORT_SYMBOL(kfree);
3756
343e0d7a 3757unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3758{
3dafccf2 3759 return obj_size(cachep);
1da177e4
LT
3760}
3761EXPORT_SYMBOL(kmem_cache_size);
3762
343e0d7a 3763const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3764{
3765 return cachep->name;
3766}
3767EXPORT_SYMBOL_GPL(kmem_cache_name);
3768
e498be7d 3769/*
183ff22b 3770 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 3771 */
83b519e8 3772static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3773{
3774 int node;
3775 struct kmem_list3 *l3;
cafeb02e 3776 struct array_cache *new_shared;
3395ee05 3777 struct array_cache **new_alien = NULL;
e498be7d 3778
9c09a95c 3779 for_each_online_node(node) {
cafeb02e 3780
3395ee05 3781 if (use_alien_caches) {
83b519e8 3782 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3783 if (!new_alien)
3784 goto fail;
3785 }
cafeb02e 3786
63109846
ED
3787 new_shared = NULL;
3788 if (cachep->shared) {
3789 new_shared = alloc_arraycache(node,
0718dc2a 3790 cachep->shared*cachep->batchcount,
83b519e8 3791 0xbaadf00d, gfp);
63109846
ED
3792 if (!new_shared) {
3793 free_alien_cache(new_alien);
3794 goto fail;
3795 }
0718dc2a 3796 }
cafeb02e 3797
a737b3e2
AM
3798 l3 = cachep->nodelists[node];
3799 if (l3) {
cafeb02e
CL
3800 struct array_cache *shared = l3->shared;
3801
e498be7d
CL
3802 spin_lock_irq(&l3->list_lock);
3803
cafeb02e 3804 if (shared)
0718dc2a
CL
3805 free_block(cachep, shared->entry,
3806 shared->avail, node);
e498be7d 3807
cafeb02e
CL
3808 l3->shared = new_shared;
3809 if (!l3->alien) {
e498be7d
CL
3810 l3->alien = new_alien;
3811 new_alien = NULL;
3812 }
b28a02de 3813 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3814 cachep->batchcount + cachep->num;
e498be7d 3815 spin_unlock_irq(&l3->list_lock);
cafeb02e 3816 kfree(shared);
e498be7d
CL
3817 free_alien_cache(new_alien);
3818 continue;
3819 }
83b519e8 3820 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
0718dc2a
CL
3821 if (!l3) {
3822 free_alien_cache(new_alien);
3823 kfree(new_shared);
e498be7d 3824 goto fail;
0718dc2a 3825 }
e498be7d
CL
3826
3827 kmem_list3_init(l3);
3828 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3829 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3830 l3->shared = new_shared;
e498be7d 3831 l3->alien = new_alien;
b28a02de 3832 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3833 cachep->batchcount + cachep->num;
e498be7d
CL
3834 cachep->nodelists[node] = l3;
3835 }
cafeb02e 3836 return 0;
0718dc2a 3837
a737b3e2 3838fail:
0718dc2a
CL
3839 if (!cachep->next.next) {
3840 /* Cache is not active yet. Roll back what we did */
3841 node--;
3842 while (node >= 0) {
3843 if (cachep->nodelists[node]) {
3844 l3 = cachep->nodelists[node];
3845
3846 kfree(l3->shared);
3847 free_alien_cache(l3->alien);
3848 kfree(l3);
3849 cachep->nodelists[node] = NULL;
3850 }
3851 node--;
3852 }
3853 }
cafeb02e 3854 return -ENOMEM;
e498be7d
CL
3855}
3856
1da177e4 3857struct ccupdate_struct {
343e0d7a 3858 struct kmem_cache *cachep;
1da177e4
LT
3859 struct array_cache *new[NR_CPUS];
3860};
3861
3862static void do_ccupdate_local(void *info)
3863{
a737b3e2 3864 struct ccupdate_struct *new = info;
1da177e4
LT
3865 struct array_cache *old;
3866
3867 check_irq_off();
9a2dba4b 3868 old = cpu_cache_get(new->cachep);
e498be7d 3869
1da177e4
LT
3870 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3871 new->new[smp_processor_id()] = old;
3872}
3873
b5d8ca7c 3874/* Always called with the cache_chain_mutex held */
a737b3e2 3875static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3876 int batchcount, int shared, gfp_t gfp)
1da177e4 3877{
d2e7b7d0 3878 struct ccupdate_struct *new;
2ed3a4ef 3879 int i;
1da177e4 3880
83b519e8 3881 new = kzalloc(sizeof(*new), gfp);
d2e7b7d0
SS
3882 if (!new)
3883 return -ENOMEM;
3884
e498be7d 3885 for_each_online_cpu(i) {
d2e7b7d0 3886 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
83b519e8 3887 batchcount, gfp);
d2e7b7d0 3888 if (!new->new[i]) {
b28a02de 3889 for (i--; i >= 0; i--)
d2e7b7d0
SS
3890 kfree(new->new[i]);
3891 kfree(new);
e498be7d 3892 return -ENOMEM;
1da177e4
LT
3893 }
3894 }
d2e7b7d0 3895 new->cachep = cachep;
1da177e4 3896
15c8b6c1 3897 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 3898
1da177e4 3899 check_irq_on();
1da177e4
LT
3900 cachep->batchcount = batchcount;
3901 cachep->limit = limit;
e498be7d 3902 cachep->shared = shared;
1da177e4 3903
e498be7d 3904 for_each_online_cpu(i) {
d2e7b7d0 3905 struct array_cache *ccold = new->new[i];
1da177e4
LT
3906 if (!ccold)
3907 continue;
e498be7d 3908 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3909 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3910 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3911 kfree(ccold);
3912 }
d2e7b7d0 3913 kfree(new);
83b519e8 3914 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
3915}
3916
b5d8ca7c 3917/* Called with cache_chain_mutex held always */
83b519e8 3918static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3919{
3920 int err;
3921 int limit, shared;
3922
a737b3e2
AM
3923 /*
3924 * The head array serves three purposes:
1da177e4
LT
3925 * - create a LIFO ordering, i.e. return objects that are cache-warm
3926 * - reduce the number of spinlock operations.
a737b3e2 3927 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3928 * bufctl chains: array operations are cheaper.
3929 * The numbers are guessed, we should auto-tune as described by
3930 * Bonwick.
3931 */
3dafccf2 3932 if (cachep->buffer_size > 131072)
1da177e4 3933 limit = 1;
3dafccf2 3934 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 3935 limit = 8;
3dafccf2 3936 else if (cachep->buffer_size > 1024)
1da177e4 3937 limit = 24;
3dafccf2 3938 else if (cachep->buffer_size > 256)
1da177e4
LT
3939 limit = 54;
3940 else
3941 limit = 120;
3942
a737b3e2
AM
3943 /*
3944 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3945 * allocation behaviour: Most allocs on one cpu, most free operations
3946 * on another cpu. For these cases, an efficient object passing between
3947 * cpus is necessary. This is provided by a shared array. The array
3948 * replaces Bonwick's magazine layer.
3949 * On uniprocessor, it's functionally equivalent (but less efficient)
3950 * to a larger limit. Thus disabled by default.
3951 */
3952 shared = 0;
364fbb29 3953 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3954 shared = 8;
1da177e4
LT
3955
3956#if DEBUG
a737b3e2
AM
3957 /*
3958 * With debugging enabled, large batchcount lead to excessively long
3959 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3960 */
3961 if (limit > 32)
3962 limit = 32;
3963#endif
83b519e8 3964 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
1da177e4
LT
3965 if (err)
3966 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 3967 cachep->name, -err);
2ed3a4ef 3968 return err;
1da177e4
LT
3969}
3970
1b55253a
CL
3971/*
3972 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
3973 * necessary. Note that the l3 listlock also protects the array_cache
3974 * if drain_array() is used on the shared array.
1b55253a
CL
3975 */
3976void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
3977 struct array_cache *ac, int force, int node)
1da177e4
LT
3978{
3979 int tofree;
3980
1b55253a
CL
3981 if (!ac || !ac->avail)
3982 return;
1da177e4
LT
3983 if (ac->touched && !force) {
3984 ac->touched = 0;
b18e7e65 3985 } else {
1b55253a 3986 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
3987 if (ac->avail) {
3988 tofree = force ? ac->avail : (ac->limit + 4) / 5;
3989 if (tofree > ac->avail)
3990 tofree = (ac->avail + 1) / 2;
3991 free_block(cachep, ac->entry, tofree, node);
3992 ac->avail -= tofree;
3993 memmove(ac->entry, &(ac->entry[tofree]),
3994 sizeof(void *) * ac->avail);
3995 }
1b55253a 3996 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
3997 }
3998}
3999
4000/**
4001 * cache_reap - Reclaim memory from caches.
05fb6bf0 4002 * @w: work descriptor
1da177e4
LT
4003 *
4004 * Called from workqueue/eventd every few seconds.
4005 * Purpose:
4006 * - clear the per-cpu caches for this CPU.
4007 * - return freeable pages to the main free memory pool.
4008 *
a737b3e2
AM
4009 * If we cannot acquire the cache chain mutex then just give up - we'll try
4010 * again on the next iteration.
1da177e4 4011 */
7c5cae36 4012static void cache_reap(struct work_struct *w)
1da177e4 4013{
7a7c381d 4014 struct kmem_cache *searchp;
e498be7d 4015 struct kmem_list3 *l3;
aab2207c 4016 int node = numa_node_id();
bf6aede7 4017 struct delayed_work *work = to_delayed_work(w);
1da177e4 4018
7c5cae36 4019 if (!mutex_trylock(&cache_chain_mutex))
1da177e4 4020 /* Give up. Setup the next iteration. */
7c5cae36 4021 goto out;
1da177e4 4022
7a7c381d 4023 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
4024 check_irq_on();
4025
35386e3b
CL
4026 /*
4027 * We only take the l3 lock if absolutely necessary and we
4028 * have established with reasonable certainty that
4029 * we can do some work if the lock was obtained.
4030 */
aab2207c 4031 l3 = searchp->nodelists[node];
35386e3b 4032
8fce4d8e 4033 reap_alien(searchp, l3);
1da177e4 4034
aab2207c 4035 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4036
35386e3b
CL
4037 /*
4038 * These are racy checks but it does not matter
4039 * if we skip one check or scan twice.
4040 */
e498be7d 4041 if (time_after(l3->next_reap, jiffies))
35386e3b 4042 goto next;
1da177e4 4043
e498be7d 4044 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4045
aab2207c 4046 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4047
ed11d9eb 4048 if (l3->free_touched)
e498be7d 4049 l3->free_touched = 0;
ed11d9eb
CL
4050 else {
4051 int freed;
1da177e4 4052
ed11d9eb
CL
4053 freed = drain_freelist(searchp, l3, (l3->free_limit +
4054 5 * searchp->num - 1) / (5 * searchp->num));
4055 STATS_ADD_REAPED(searchp, freed);
4056 }
35386e3b 4057next:
1da177e4
LT
4058 cond_resched();
4059 }
4060 check_irq_on();
fc0abb14 4061 mutex_unlock(&cache_chain_mutex);
8fce4d8e 4062 next_reap_node();
7c5cae36 4063out:
a737b3e2 4064 /* Set up the next iteration */
7c5cae36 4065 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4066}
4067
158a9624 4068#ifdef CONFIG_SLABINFO
1da177e4 4069
85289f98 4070static void print_slabinfo_header(struct seq_file *m)
1da177e4 4071{
85289f98
PE
4072 /*
4073 * Output format version, so at least we can change it
4074 * without _too_ many complaints.
4075 */
1da177e4 4076#if STATS
85289f98 4077 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4078#else
85289f98 4079 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4080#endif
85289f98
PE
4081 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4082 "<objperslab> <pagesperslab>");
4083 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4084 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4085#if STATS
85289f98 4086 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4087 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4088 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4089#endif
85289f98
PE
4090 seq_putc(m, '\n');
4091}
4092
4093static void *s_start(struct seq_file *m, loff_t *pos)
4094{
4095 loff_t n = *pos;
85289f98 4096
fc0abb14 4097 mutex_lock(&cache_chain_mutex);
85289f98
PE
4098 if (!n)
4099 print_slabinfo_header(m);
b92151ba
PE
4100
4101 return seq_list_start(&cache_chain, *pos);
1da177e4
LT
4102}
4103
4104static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4105{
b92151ba 4106 return seq_list_next(p, &cache_chain, pos);
1da177e4
LT
4107}
4108
4109static void s_stop(struct seq_file *m, void *p)
4110{
fc0abb14 4111 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4112}
4113
4114static int s_show(struct seq_file *m, void *p)
4115{
b92151ba 4116 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
b28a02de
PE
4117 struct slab *slabp;
4118 unsigned long active_objs;
4119 unsigned long num_objs;
4120 unsigned long active_slabs = 0;
4121 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4122 const char *name;
1da177e4 4123 char *error = NULL;
e498be7d
CL
4124 int node;
4125 struct kmem_list3 *l3;
1da177e4 4126
1da177e4
LT
4127 active_objs = 0;
4128 num_slabs = 0;
e498be7d
CL
4129 for_each_online_node(node) {
4130 l3 = cachep->nodelists[node];
4131 if (!l3)
4132 continue;
4133
ca3b9b91
RT
4134 check_irq_on();
4135 spin_lock_irq(&l3->list_lock);
e498be7d 4136
7a7c381d 4137 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4138 if (slabp->inuse != cachep->num && !error)
4139 error = "slabs_full accounting error";
4140 active_objs += cachep->num;
4141 active_slabs++;
4142 }
7a7c381d 4143 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4144 if (slabp->inuse == cachep->num && !error)
4145 error = "slabs_partial inuse accounting error";
4146 if (!slabp->inuse && !error)
4147 error = "slabs_partial/inuse accounting error";
4148 active_objs += slabp->inuse;
4149 active_slabs++;
4150 }
7a7c381d 4151 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4152 if (slabp->inuse && !error)
4153 error = "slabs_free/inuse accounting error";
4154 num_slabs++;
4155 }
4156 free_objects += l3->free_objects;
4484ebf1
RT
4157 if (l3->shared)
4158 shared_avail += l3->shared->avail;
e498be7d 4159
ca3b9b91 4160 spin_unlock_irq(&l3->list_lock);
1da177e4 4161 }
b28a02de
PE
4162 num_slabs += active_slabs;
4163 num_objs = num_slabs * cachep->num;
e498be7d 4164 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4165 error = "free_objects accounting error";
4166
b28a02de 4167 name = cachep->name;
1da177e4
LT
4168 if (error)
4169 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4170
4171 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 4172 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 4173 cachep->num, (1 << cachep->gfporder));
1da177e4 4174 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4175 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4176 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4177 active_slabs, num_slabs, shared_avail);
1da177e4 4178#if STATS
b28a02de 4179 { /* list3 stats */
1da177e4
LT
4180 unsigned long high = cachep->high_mark;
4181 unsigned long allocs = cachep->num_allocations;
4182 unsigned long grown = cachep->grown;
4183 unsigned long reaped = cachep->reaped;
4184 unsigned long errors = cachep->errors;
4185 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4186 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4187 unsigned long node_frees = cachep->node_frees;
fb7faf33 4188 unsigned long overflows = cachep->node_overflow;
1da177e4 4189
e498be7d 4190 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 4191 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 4192 reaped, errors, max_freeable, node_allocs,
fb7faf33 4193 node_frees, overflows);
1da177e4
LT
4194 }
4195 /* cpu stats */
4196 {
4197 unsigned long allochit = atomic_read(&cachep->allochit);
4198 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4199 unsigned long freehit = atomic_read(&cachep->freehit);
4200 unsigned long freemiss = atomic_read(&cachep->freemiss);
4201
4202 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4203 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4204 }
4205#endif
4206 seq_putc(m, '\n');
1da177e4
LT
4207 return 0;
4208}
4209
4210/*
4211 * slabinfo_op - iterator that generates /proc/slabinfo
4212 *
4213 * Output layout:
4214 * cache-name
4215 * num-active-objs
4216 * total-objs
4217 * object size
4218 * num-active-slabs
4219 * total-slabs
4220 * num-pages-per-slab
4221 * + further values on SMP and with statistics enabled
4222 */
4223
7b3c3a50 4224static const struct seq_operations slabinfo_op = {
b28a02de
PE
4225 .start = s_start,
4226 .next = s_next,
4227 .stop = s_stop,
4228 .show = s_show,
1da177e4
LT
4229};
4230
4231#define MAX_SLABINFO_WRITE 128
4232/**
4233 * slabinfo_write - Tuning for the slab allocator
4234 * @file: unused
4235 * @buffer: user buffer
4236 * @count: data length
4237 * @ppos: unused
4238 */
b28a02de
PE
4239ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4240 size_t count, loff_t *ppos)
1da177e4 4241{
b28a02de 4242 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4243 int limit, batchcount, shared, res;
7a7c381d 4244 struct kmem_cache *cachep;
b28a02de 4245
1da177e4
LT
4246 if (count > MAX_SLABINFO_WRITE)
4247 return -EINVAL;
4248 if (copy_from_user(&kbuf, buffer, count))
4249 return -EFAULT;
b28a02de 4250 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4251
4252 tmp = strchr(kbuf, ' ');
4253 if (!tmp)
4254 return -EINVAL;
4255 *tmp = '\0';
4256 tmp++;
4257 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4258 return -EINVAL;
4259
4260 /* Find the cache in the chain of caches. */
fc0abb14 4261 mutex_lock(&cache_chain_mutex);
1da177e4 4262 res = -EINVAL;
7a7c381d 4263 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4264 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4265 if (limit < 1 || batchcount < 1 ||
4266 batchcount > limit || shared < 0) {
e498be7d 4267 res = 0;
1da177e4 4268 } else {
e498be7d 4269 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4270 batchcount, shared,
4271 GFP_KERNEL);
1da177e4
LT
4272 }
4273 break;
4274 }
4275 }
fc0abb14 4276 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4277 if (res >= 0)
4278 res = count;
4279 return res;
4280}
871751e2 4281
7b3c3a50
AD
4282static int slabinfo_open(struct inode *inode, struct file *file)
4283{
4284 return seq_open(file, &slabinfo_op);
4285}
4286
4287static const struct file_operations proc_slabinfo_operations = {
4288 .open = slabinfo_open,
4289 .read = seq_read,
4290 .write = slabinfo_write,
4291 .llseek = seq_lseek,
4292 .release = seq_release,
4293};
4294
871751e2
AV
4295#ifdef CONFIG_DEBUG_SLAB_LEAK
4296
4297static void *leaks_start(struct seq_file *m, loff_t *pos)
4298{
871751e2 4299 mutex_lock(&cache_chain_mutex);
b92151ba 4300 return seq_list_start(&cache_chain, *pos);
871751e2
AV
4301}
4302
4303static inline int add_caller(unsigned long *n, unsigned long v)
4304{
4305 unsigned long *p;
4306 int l;
4307 if (!v)
4308 return 1;
4309 l = n[1];
4310 p = n + 2;
4311 while (l) {
4312 int i = l/2;
4313 unsigned long *q = p + 2 * i;
4314 if (*q == v) {
4315 q[1]++;
4316 return 1;
4317 }
4318 if (*q > v) {
4319 l = i;
4320 } else {
4321 p = q + 2;
4322 l -= i + 1;
4323 }
4324 }
4325 if (++n[1] == n[0])
4326 return 0;
4327 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4328 p[0] = v;
4329 p[1] = 1;
4330 return 1;
4331}
4332
4333static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4334{
4335 void *p;
4336 int i;
4337 if (n[0] == n[1])
4338 return;
4339 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4340 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4341 continue;
4342 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4343 return;
4344 }
4345}
4346
4347static void show_symbol(struct seq_file *m, unsigned long address)
4348{
4349#ifdef CONFIG_KALLSYMS
871751e2 4350 unsigned long offset, size;
9281acea 4351 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4352
a5c43dae 4353 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4354 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4355 if (modname[0])
871751e2
AV
4356 seq_printf(m, " [%s]", modname);
4357 return;
4358 }
4359#endif
4360 seq_printf(m, "%p", (void *)address);
4361}
4362
4363static int leaks_show(struct seq_file *m, void *p)
4364{
b92151ba 4365 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
871751e2
AV
4366 struct slab *slabp;
4367 struct kmem_list3 *l3;
4368 const char *name;
4369 unsigned long *n = m->private;
4370 int node;
4371 int i;
4372
4373 if (!(cachep->flags & SLAB_STORE_USER))
4374 return 0;
4375 if (!(cachep->flags & SLAB_RED_ZONE))
4376 return 0;
4377
4378 /* OK, we can do it */
4379
4380 n[1] = 0;
4381
4382 for_each_online_node(node) {
4383 l3 = cachep->nodelists[node];
4384 if (!l3)
4385 continue;
4386
4387 check_irq_on();
4388 spin_lock_irq(&l3->list_lock);
4389
7a7c381d 4390 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4391 handle_slab(n, cachep, slabp);
7a7c381d 4392 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4393 handle_slab(n, cachep, slabp);
871751e2
AV
4394 spin_unlock_irq(&l3->list_lock);
4395 }
4396 name = cachep->name;
4397 if (n[0] == n[1]) {
4398 /* Increase the buffer size */
4399 mutex_unlock(&cache_chain_mutex);
4400 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4401 if (!m->private) {
4402 /* Too bad, we are really out */
4403 m->private = n;
4404 mutex_lock(&cache_chain_mutex);
4405 return -ENOMEM;
4406 }
4407 *(unsigned long *)m->private = n[0] * 2;
4408 kfree(n);
4409 mutex_lock(&cache_chain_mutex);
4410 /* Now make sure this entry will be retried */
4411 m->count = m->size;
4412 return 0;
4413 }
4414 for (i = 0; i < n[1]; i++) {
4415 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4416 show_symbol(m, n[2*i+2]);
4417 seq_putc(m, '\n');
4418 }
d2e7b7d0 4419
871751e2
AV
4420 return 0;
4421}
4422
a0ec95a8 4423static const struct seq_operations slabstats_op = {
871751e2
AV
4424 .start = leaks_start,
4425 .next = s_next,
4426 .stop = s_stop,
4427 .show = leaks_show,
4428};
a0ec95a8
AD
4429
4430static int slabstats_open(struct inode *inode, struct file *file)
4431{
4432 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4433 int ret = -ENOMEM;
4434 if (n) {
4435 ret = seq_open(file, &slabstats_op);
4436 if (!ret) {
4437 struct seq_file *m = file->private_data;
4438 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4439 m->private = n;
4440 n = NULL;
4441 }
4442 kfree(n);
4443 }
4444 return ret;
4445}
4446
4447static const struct file_operations proc_slabstats_operations = {
4448 .open = slabstats_open,
4449 .read = seq_read,
4450 .llseek = seq_lseek,
4451 .release = seq_release_private,
4452};
4453#endif
4454
4455static int __init slab_proc_init(void)
4456{
7b3c3a50 4457 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
a0ec95a8
AD
4458#ifdef CONFIG_DEBUG_SLAB_LEAK
4459 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4460#endif
a0ec95a8
AD
4461 return 0;
4462}
4463module_init(slab_proc_init);
1da177e4
LT
4464#endif
4465
00e145b6
MS
4466/**
4467 * ksize - get the actual amount of memory allocated for a given object
4468 * @objp: Pointer to the object
4469 *
4470 * kmalloc may internally round up allocations and return more memory
4471 * than requested. ksize() can be used to determine the actual amount of
4472 * memory allocated. The caller may use this additional memory, even though
4473 * a smaller amount of memory was initially specified with the kmalloc call.
4474 * The caller must guarantee that objp points to a valid object previously
4475 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4476 * must not be freed during the duration of the call.
4477 */
fd76bab2 4478size_t ksize(const void *objp)
1da177e4 4479{
ef8b4520
CL
4480 BUG_ON(!objp);
4481 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4482 return 0;
1da177e4 4483
6ed5eb22 4484 return obj_size(virt_to_cache(objp));
1da177e4 4485}
b1aabecd 4486EXPORT_SYMBOL(ksize);