]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/slab.c
Linux 2.6.33-rc2
[net-next-2.6.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
02af61bb 105#include <linux/kmemtrace.h>
1da177e4 106#include <linux/rcupdate.h>
543537bd 107#include <linux/string.h>
138ae663 108#include <linux/uaccess.h>
e498be7d 109#include <linux/nodemask.h>
d5cff635 110#include <linux/kmemleak.h>
dc85da15 111#include <linux/mempolicy.h>
fc0abb14 112#include <linux/mutex.h>
8a8b6502 113#include <linux/fault-inject.h>
e7eebaf6 114#include <linux/rtmutex.h>
6a2d7a95 115#include <linux/reciprocal_div.h>
3ac7fe5a 116#include <linux/debugobjects.h>
c175eea4 117#include <linux/kmemcheck.h>
1da177e4 118
1da177e4
LT
119#include <asm/cacheflush.h>
120#include <asm/tlbflush.h>
121#include <asm/page.h>
122
123/*
50953fe9 124 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
125 * 0 for faster, smaller code (especially in the critical paths).
126 *
127 * STATS - 1 to collect stats for /proc/slabinfo.
128 * 0 for faster, smaller code (especially in the critical paths).
129 *
130 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
131 */
132
133#ifdef CONFIG_DEBUG_SLAB
134#define DEBUG 1
135#define STATS 1
136#define FORCED_DEBUG 1
137#else
138#define DEBUG 0
139#define STATS 0
140#define FORCED_DEBUG 0
141#endif
142
1da177e4
LT
143/* Shouldn't this be in a header file somewhere? */
144#define BYTES_PER_WORD sizeof(void *)
87a927c7 145#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 146
1da177e4
LT
147#ifndef ARCH_KMALLOC_MINALIGN
148/*
149 * Enforce a minimum alignment for the kmalloc caches.
150 * Usually, the kmalloc caches are cache_line_size() aligned, except when
151 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
152 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
b46b8f19
DW
153 * alignment larger than the alignment of a 64-bit integer.
154 * ARCH_KMALLOC_MINALIGN allows that.
155 * Note that increasing this value may disable some debug features.
1da177e4 156 */
b46b8f19 157#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
1da177e4
LT
158#endif
159
160#ifndef ARCH_SLAB_MINALIGN
161/*
162 * Enforce a minimum alignment for all caches.
163 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
164 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
165 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
166 * some debug features.
167 */
168#define ARCH_SLAB_MINALIGN 0
169#endif
170
171#ifndef ARCH_KMALLOC_FLAGS
172#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
173#endif
174
175/* Legal flag mask for kmem_cache_create(). */
176#if DEBUG
50953fe9 177# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 178 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 179 SLAB_CACHE_DMA | \
5af60839 180 SLAB_STORE_USER | \
1da177e4 181 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 182 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 183 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4 184#else
ac2b898c 185# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 186 SLAB_CACHE_DMA | \
1da177e4 187 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 188 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 189 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4
LT
190#endif
191
192/*
193 * kmem_bufctl_t:
194 *
195 * Bufctl's are used for linking objs within a slab
196 * linked offsets.
197 *
198 * This implementation relies on "struct page" for locating the cache &
199 * slab an object belongs to.
200 * This allows the bufctl structure to be small (one int), but limits
201 * the number of objects a slab (not a cache) can contain when off-slab
202 * bufctls are used. The limit is the size of the largest general cache
203 * that does not use off-slab slabs.
204 * For 32bit archs with 4 kB pages, is this 56.
205 * This is not serious, as it is only for large objects, when it is unwise
206 * to have too many per slab.
207 * Note: This limit can be raised by introducing a general cache whose size
208 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
209 */
210
fa5b08d5 211typedef unsigned int kmem_bufctl_t;
1da177e4
LT
212#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
213#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
214#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
215#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 216
1da177e4
LT
217/*
218 * struct slab
219 *
220 * Manages the objs in a slab. Placed either at the beginning of mem allocated
221 * for a slab, or allocated from an general cache.
222 * Slabs are chained into three list: fully used, partial, fully free slabs.
223 */
224struct slab {
b28a02de
PE
225 struct list_head list;
226 unsigned long colouroff;
227 void *s_mem; /* including colour offset */
228 unsigned int inuse; /* num of objs active in slab */
229 kmem_bufctl_t free;
230 unsigned short nodeid;
1da177e4
LT
231};
232
233/*
234 * struct slab_rcu
235 *
236 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
237 * arrange for kmem_freepages to be called via RCU. This is useful if
238 * we need to approach a kernel structure obliquely, from its address
239 * obtained without the usual locking. We can lock the structure to
240 * stabilize it and check it's still at the given address, only if we
241 * can be sure that the memory has not been meanwhile reused for some
242 * other kind of object (which our subsystem's lock might corrupt).
243 *
244 * rcu_read_lock before reading the address, then rcu_read_unlock after
245 * taking the spinlock within the structure expected at that address.
246 *
247 * We assume struct slab_rcu can overlay struct slab when destroying.
248 */
249struct slab_rcu {
b28a02de 250 struct rcu_head head;
343e0d7a 251 struct kmem_cache *cachep;
b28a02de 252 void *addr;
1da177e4
LT
253};
254
255/*
256 * struct array_cache
257 *
1da177e4
LT
258 * Purpose:
259 * - LIFO ordering, to hand out cache-warm objects from _alloc
260 * - reduce the number of linked list operations
261 * - reduce spinlock operations
262 *
263 * The limit is stored in the per-cpu structure to reduce the data cache
264 * footprint.
265 *
266 */
267struct array_cache {
268 unsigned int avail;
269 unsigned int limit;
270 unsigned int batchcount;
271 unsigned int touched;
e498be7d 272 spinlock_t lock;
bda5b655 273 void *entry[]; /*
a737b3e2
AM
274 * Must have this definition in here for the proper
275 * alignment of array_cache. Also simplifies accessing
276 * the entries.
a737b3e2 277 */
1da177e4
LT
278};
279
a737b3e2
AM
280/*
281 * bootstrap: The caches do not work without cpuarrays anymore, but the
282 * cpuarrays are allocated from the generic caches...
1da177e4
LT
283 */
284#define BOOT_CPUCACHE_ENTRIES 1
285struct arraycache_init {
286 struct array_cache cache;
b28a02de 287 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
288};
289
290/*
e498be7d 291 * The slab lists for all objects.
1da177e4
LT
292 */
293struct kmem_list3 {
b28a02de
PE
294 struct list_head slabs_partial; /* partial list first, better asm code */
295 struct list_head slabs_full;
296 struct list_head slabs_free;
297 unsigned long free_objects;
b28a02de 298 unsigned int free_limit;
2e1217cf 299 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
300 spinlock_t list_lock;
301 struct array_cache *shared; /* shared per node */
302 struct array_cache **alien; /* on other nodes */
35386e3b
CL
303 unsigned long next_reap; /* updated without locking */
304 int free_touched; /* updated without locking */
1da177e4
LT
305};
306
e498be7d
CL
307/*
308 * Need this for bootstrapping a per node allocator.
309 */
556a169d 310#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
e498be7d
CL
311struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
312#define CACHE_CACHE 0
556a169d
PE
313#define SIZE_AC MAX_NUMNODES
314#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 315
ed11d9eb
CL
316static int drain_freelist(struct kmem_cache *cache,
317 struct kmem_list3 *l3, int tofree);
318static void free_block(struct kmem_cache *cachep, void **objpp, int len,
319 int node);
83b519e8 320static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 321static void cache_reap(struct work_struct *unused);
ed11d9eb 322
e498be7d 323/*
a737b3e2
AM
324 * This function must be completely optimized away if a constant is passed to
325 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 326 */
7243cc05 327static __always_inline int index_of(const size_t size)
e498be7d 328{
5ec8a847
SR
329 extern void __bad_size(void);
330
e498be7d
CL
331 if (__builtin_constant_p(size)) {
332 int i = 0;
333
334#define CACHE(x) \
335 if (size <=x) \
336 return i; \
337 else \
338 i++;
1c61fc40 339#include <linux/kmalloc_sizes.h>
e498be7d 340#undef CACHE
5ec8a847 341 __bad_size();
7243cc05 342 } else
5ec8a847 343 __bad_size();
e498be7d
CL
344 return 0;
345}
346
e0a42726
IM
347static int slab_early_init = 1;
348
e498be7d
CL
349#define INDEX_AC index_of(sizeof(struct arraycache_init))
350#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 351
5295a74c 352static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
353{
354 INIT_LIST_HEAD(&parent->slabs_full);
355 INIT_LIST_HEAD(&parent->slabs_partial);
356 INIT_LIST_HEAD(&parent->slabs_free);
357 parent->shared = NULL;
358 parent->alien = NULL;
2e1217cf 359 parent->colour_next = 0;
e498be7d
CL
360 spin_lock_init(&parent->list_lock);
361 parent->free_objects = 0;
362 parent->free_touched = 0;
363}
364
a737b3e2
AM
365#define MAKE_LIST(cachep, listp, slab, nodeid) \
366 do { \
367 INIT_LIST_HEAD(listp); \
368 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
369 } while (0)
370
a737b3e2
AM
371#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
372 do { \
e498be7d
CL
373 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
374 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
375 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
376 } while (0)
1da177e4 377
1da177e4
LT
378#define CFLGS_OFF_SLAB (0x80000000UL)
379#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
380
381#define BATCHREFILL_LIMIT 16
a737b3e2
AM
382/*
383 * Optimization question: fewer reaps means less probability for unnessary
384 * cpucache drain/refill cycles.
1da177e4 385 *
dc6f3f27 386 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
387 * which could lock up otherwise freeable slabs.
388 */
389#define REAPTIMEOUT_CPUC (2*HZ)
390#define REAPTIMEOUT_LIST3 (4*HZ)
391
392#if STATS
393#define STATS_INC_ACTIVE(x) ((x)->num_active++)
394#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
395#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
396#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 397#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
398#define STATS_SET_HIGH(x) \
399 do { \
400 if ((x)->num_active > (x)->high_mark) \
401 (x)->high_mark = (x)->num_active; \
402 } while (0)
1da177e4
LT
403#define STATS_INC_ERR(x) ((x)->errors++)
404#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 405#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 406#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
407#define STATS_SET_FREEABLE(x, i) \
408 do { \
409 if ((x)->max_freeable < i) \
410 (x)->max_freeable = i; \
411 } while (0)
1da177e4
LT
412#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
413#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
414#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
415#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
416#else
417#define STATS_INC_ACTIVE(x) do { } while (0)
418#define STATS_DEC_ACTIVE(x) do { } while (0)
419#define STATS_INC_ALLOCED(x) do { } while (0)
420#define STATS_INC_GROWN(x) do { } while (0)
ed11d9eb 421#define STATS_ADD_REAPED(x,y) do { } while (0)
1da177e4
LT
422#define STATS_SET_HIGH(x) do { } while (0)
423#define STATS_INC_ERR(x) do { } while (0)
424#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 425#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 426#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 427#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
428#define STATS_INC_ALLOCHIT(x) do { } while (0)
429#define STATS_INC_ALLOCMISS(x) do { } while (0)
430#define STATS_INC_FREEHIT(x) do { } while (0)
431#define STATS_INC_FREEMISS(x) do { } while (0)
432#endif
433
434#if DEBUG
1da177e4 435
a737b3e2
AM
436/*
437 * memory layout of objects:
1da177e4 438 * 0 : objp
3dafccf2 439 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
440 * the end of an object is aligned with the end of the real
441 * allocation. Catches writes behind the end of the allocation.
3dafccf2 442 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 443 * redzone word.
3dafccf2
MS
444 * cachep->obj_offset: The real object.
445 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
446 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
447 * [BYTES_PER_WORD long]
1da177e4 448 */
343e0d7a 449static int obj_offset(struct kmem_cache *cachep)
1da177e4 450{
3dafccf2 451 return cachep->obj_offset;
1da177e4
LT
452}
453
343e0d7a 454static int obj_size(struct kmem_cache *cachep)
1da177e4 455{
3dafccf2 456 return cachep->obj_size;
1da177e4
LT
457}
458
b46b8f19 459static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
460{
461 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
462 return (unsigned long long*) (objp + obj_offset(cachep) -
463 sizeof(unsigned long long));
1da177e4
LT
464}
465
b46b8f19 466static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
467{
468 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
469 if (cachep->flags & SLAB_STORE_USER)
b46b8f19
DW
470 return (unsigned long long *)(objp + cachep->buffer_size -
471 sizeof(unsigned long long) -
87a927c7 472 REDZONE_ALIGN);
b46b8f19
DW
473 return (unsigned long long *) (objp + cachep->buffer_size -
474 sizeof(unsigned long long));
1da177e4
LT
475}
476
343e0d7a 477static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
478{
479 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 480 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
481}
482
483#else
484
3dafccf2
MS
485#define obj_offset(x) 0
486#define obj_size(cachep) (cachep->buffer_size)
b46b8f19
DW
487#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
488#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
489#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
490
491#endif
492
0f24f128 493#ifdef CONFIG_TRACING
36555751
EGM
494size_t slab_buffer_size(struct kmem_cache *cachep)
495{
496 return cachep->buffer_size;
497}
498EXPORT_SYMBOL(slab_buffer_size);
499#endif
500
1da177e4
LT
501/*
502 * Do not go above this order unless 0 objects fit into the slab.
503 */
504#define BREAK_GFP_ORDER_HI 1
505#define BREAK_GFP_ORDER_LO 0
506static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
507
a737b3e2
AM
508/*
509 * Functions for storing/retrieving the cachep and or slab from the page
510 * allocator. These are used to find the slab an obj belongs to. With kfree(),
511 * these are used to find the cache which an obj belongs to.
1da177e4 512 */
065d41cb
PE
513static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
514{
515 page->lru.next = (struct list_head *)cache;
516}
517
518static inline struct kmem_cache *page_get_cache(struct page *page)
519{
d85f3385 520 page = compound_head(page);
ddc2e812 521 BUG_ON(!PageSlab(page));
065d41cb
PE
522 return (struct kmem_cache *)page->lru.next;
523}
524
525static inline void page_set_slab(struct page *page, struct slab *slab)
526{
527 page->lru.prev = (struct list_head *)slab;
528}
529
530static inline struct slab *page_get_slab(struct page *page)
531{
ddc2e812 532 BUG_ON(!PageSlab(page));
065d41cb
PE
533 return (struct slab *)page->lru.prev;
534}
1da177e4 535
6ed5eb22
PE
536static inline struct kmem_cache *virt_to_cache(const void *obj)
537{
b49af68f 538 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
539 return page_get_cache(page);
540}
541
542static inline struct slab *virt_to_slab(const void *obj)
543{
b49af68f 544 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
545 return page_get_slab(page);
546}
547
8fea4e96
PE
548static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
549 unsigned int idx)
550{
551 return slab->s_mem + cache->buffer_size * idx;
552}
553
6a2d7a95
ED
554/*
555 * We want to avoid an expensive divide : (offset / cache->buffer_size)
556 * Using the fact that buffer_size is a constant for a particular cache,
557 * we can replace (offset / cache->buffer_size) by
558 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
559 */
560static inline unsigned int obj_to_index(const struct kmem_cache *cache,
561 const struct slab *slab, void *obj)
8fea4e96 562{
6a2d7a95
ED
563 u32 offset = (obj - slab->s_mem);
564 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
565}
566
a737b3e2
AM
567/*
568 * These are the default caches for kmalloc. Custom caches can have other sizes.
569 */
1da177e4
LT
570struct cache_sizes malloc_sizes[] = {
571#define CACHE(x) { .cs_size = (x) },
572#include <linux/kmalloc_sizes.h>
573 CACHE(ULONG_MAX)
574#undef CACHE
575};
576EXPORT_SYMBOL(malloc_sizes);
577
578/* Must match cache_sizes above. Out of line to keep cache footprint low. */
579struct cache_names {
580 char *name;
581 char *name_dma;
582};
583
584static struct cache_names __initdata cache_names[] = {
585#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
586#include <linux/kmalloc_sizes.h>
b28a02de 587 {NULL,}
1da177e4
LT
588#undef CACHE
589};
590
591static struct arraycache_init initarray_cache __initdata =
b28a02de 592 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 593static struct arraycache_init initarray_generic =
b28a02de 594 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
595
596/* internal cache of cache description objs */
343e0d7a 597static struct kmem_cache cache_cache = {
b28a02de
PE
598 .batchcount = 1,
599 .limit = BOOT_CPUCACHE_ENTRIES,
600 .shared = 1,
343e0d7a 601 .buffer_size = sizeof(struct kmem_cache),
b28a02de 602 .name = "kmem_cache",
1da177e4
LT
603};
604
056c6241
RT
605#define BAD_ALIEN_MAGIC 0x01020304ul
606
ce79ddc8
PE
607/*
608 * chicken and egg problem: delay the per-cpu array allocation
609 * until the general caches are up.
610 */
611static enum {
612 NONE,
613 PARTIAL_AC,
614 PARTIAL_L3,
615 EARLY,
616 FULL
617} g_cpucache_up;
618
619/*
620 * used by boot code to determine if it can use slab based allocator
621 */
622int slab_is_available(void)
623{
624 return g_cpucache_up >= EARLY;
625}
626
f1aaee53
AV
627#ifdef CONFIG_LOCKDEP
628
629/*
630 * Slab sometimes uses the kmalloc slabs to store the slab headers
631 * for other slabs "off slab".
632 * The locking for this is tricky in that it nests within the locks
633 * of all other slabs in a few places; to deal with this special
634 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
635 *
636 * We set lock class for alien array caches which are up during init.
637 * The lock annotation will be lost if all cpus of a node goes down and
638 * then comes back up during hotplug
f1aaee53 639 */
056c6241
RT
640static struct lock_class_key on_slab_l3_key;
641static struct lock_class_key on_slab_alc_key;
642
ce79ddc8 643static void init_node_lock_keys(int q)
f1aaee53 644{
056c6241
RT
645 struct cache_sizes *s = malloc_sizes;
646
ce79ddc8
PE
647 if (g_cpucache_up != FULL)
648 return;
649
650 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
651 struct array_cache **alc;
652 struct kmem_list3 *l3;
653 int r;
654
655 l3 = s->cs_cachep->nodelists[q];
656 if (!l3 || OFF_SLAB(s->cs_cachep))
657 return;
658 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
659 alc = l3->alien;
660 /*
661 * FIXME: This check for BAD_ALIEN_MAGIC
662 * should go away when common slab code is taught to
663 * work even without alien caches.
664 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
665 * for alloc_alien_cache,
666 */
667 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
668 return;
669 for_each_node(r) {
670 if (alc[r])
671 lockdep_set_class(&alc[r]->lock,
672 &on_slab_alc_key);
056c6241 673 }
f1aaee53
AV
674 }
675}
ce79ddc8
PE
676
677static inline void init_lock_keys(void)
678{
679 int node;
680
681 for_each_node(node)
682 init_node_lock_keys(node);
683}
f1aaee53 684#else
ce79ddc8
PE
685static void init_node_lock_keys(int q)
686{
687}
688
056c6241 689static inline void init_lock_keys(void)
f1aaee53
AV
690{
691}
692#endif
693
8f5be20b 694/*
95402b38 695 * Guard access to the cache-chain.
8f5be20b 696 */
fc0abb14 697static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
698static struct list_head cache_chain;
699
1871e52c 700static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 701
343e0d7a 702static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
703{
704 return cachep->array[smp_processor_id()];
705}
706
a737b3e2
AM
707static inline struct kmem_cache *__find_general_cachep(size_t size,
708 gfp_t gfpflags)
1da177e4
LT
709{
710 struct cache_sizes *csizep = malloc_sizes;
711
712#if DEBUG
713 /* This happens if someone tries to call
b28a02de
PE
714 * kmem_cache_create(), or __kmalloc(), before
715 * the generic caches are initialized.
716 */
c7e43c78 717 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 718#endif
6cb8f913
CL
719 if (!size)
720 return ZERO_SIZE_PTR;
721
1da177e4
LT
722 while (size > csizep->cs_size)
723 csizep++;
724
725 /*
0abf40c1 726 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
727 * has cs_{dma,}cachep==NULL. Thus no special case
728 * for large kmalloc calls required.
729 */
4b51d669 730#ifdef CONFIG_ZONE_DMA
1da177e4
LT
731 if (unlikely(gfpflags & GFP_DMA))
732 return csizep->cs_dmacachep;
4b51d669 733#endif
1da177e4
LT
734 return csizep->cs_cachep;
735}
736
b221385b 737static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
738{
739 return __find_general_cachep(size, gfpflags);
740}
97e2bde4 741
fbaccacf 742static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 743{
fbaccacf
SR
744 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
745}
1da177e4 746
a737b3e2
AM
747/*
748 * Calculate the number of objects and left-over bytes for a given buffer size.
749 */
fbaccacf
SR
750static void cache_estimate(unsigned long gfporder, size_t buffer_size,
751 size_t align, int flags, size_t *left_over,
752 unsigned int *num)
753{
754 int nr_objs;
755 size_t mgmt_size;
756 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 757
fbaccacf
SR
758 /*
759 * The slab management structure can be either off the slab or
760 * on it. For the latter case, the memory allocated for a
761 * slab is used for:
762 *
763 * - The struct slab
764 * - One kmem_bufctl_t for each object
765 * - Padding to respect alignment of @align
766 * - @buffer_size bytes for each object
767 *
768 * If the slab management structure is off the slab, then the
769 * alignment will already be calculated into the size. Because
770 * the slabs are all pages aligned, the objects will be at the
771 * correct alignment when allocated.
772 */
773 if (flags & CFLGS_OFF_SLAB) {
774 mgmt_size = 0;
775 nr_objs = slab_size / buffer_size;
776
777 if (nr_objs > SLAB_LIMIT)
778 nr_objs = SLAB_LIMIT;
779 } else {
780 /*
781 * Ignore padding for the initial guess. The padding
782 * is at most @align-1 bytes, and @buffer_size is at
783 * least @align. In the worst case, this result will
784 * be one greater than the number of objects that fit
785 * into the memory allocation when taking the padding
786 * into account.
787 */
788 nr_objs = (slab_size - sizeof(struct slab)) /
789 (buffer_size + sizeof(kmem_bufctl_t));
790
791 /*
792 * This calculated number will be either the right
793 * amount, or one greater than what we want.
794 */
795 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
796 > slab_size)
797 nr_objs--;
798
799 if (nr_objs > SLAB_LIMIT)
800 nr_objs = SLAB_LIMIT;
801
802 mgmt_size = slab_mgmt_size(nr_objs, align);
803 }
804 *num = nr_objs;
805 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
806}
807
d40cee24 808#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 809
a737b3e2
AM
810static void __slab_error(const char *function, struct kmem_cache *cachep,
811 char *msg)
1da177e4
LT
812{
813 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 814 function, cachep->name, msg);
1da177e4
LT
815 dump_stack();
816}
817
3395ee05
PM
818/*
819 * By default on NUMA we use alien caches to stage the freeing of
820 * objects allocated from other nodes. This causes massive memory
821 * inefficiencies when using fake NUMA setup to split memory into a
822 * large number of small nodes, so it can be disabled on the command
823 * line
824 */
825
826static int use_alien_caches __read_mostly = 1;
827static int __init noaliencache_setup(char *s)
828{
829 use_alien_caches = 0;
830 return 1;
831}
832__setup("noaliencache", noaliencache_setup);
833
8fce4d8e
CL
834#ifdef CONFIG_NUMA
835/*
836 * Special reaping functions for NUMA systems called from cache_reap().
837 * These take care of doing round robin flushing of alien caches (containing
838 * objects freed on different nodes from which they were allocated) and the
839 * flushing of remote pcps by calling drain_node_pages.
840 */
1871e52c 841static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
842
843static void init_reap_node(int cpu)
844{
845 int node;
846
847 node = next_node(cpu_to_node(cpu), node_online_map);
848 if (node == MAX_NUMNODES)
442295c9 849 node = first_node(node_online_map);
8fce4d8e 850
1871e52c 851 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
852}
853
854static void next_reap_node(void)
855{
1871e52c 856 int node = __get_cpu_var(slab_reap_node);
8fce4d8e 857
8fce4d8e
CL
858 node = next_node(node, node_online_map);
859 if (unlikely(node >= MAX_NUMNODES))
860 node = first_node(node_online_map);
1871e52c 861 __get_cpu_var(slab_reap_node) = node;
8fce4d8e
CL
862}
863
864#else
865#define init_reap_node(cpu) do { } while (0)
866#define next_reap_node(void) do { } while (0)
867#endif
868
1da177e4
LT
869/*
870 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
871 * via the workqueue/eventd.
872 * Add the CPU number into the expiration time to minimize the possibility of
873 * the CPUs getting into lockstep and contending for the global cache chain
874 * lock.
875 */
897e679b 876static void __cpuinit start_cpu_timer(int cpu)
1da177e4 877{
1871e52c 878 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
879
880 /*
881 * When this gets called from do_initcalls via cpucache_init(),
882 * init_workqueues() has already run, so keventd will be setup
883 * at that time.
884 */
52bad64d 885 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 886 init_reap_node(cpu);
65f27f38 887 INIT_DELAYED_WORK(reap_work, cache_reap);
2b284214
AV
888 schedule_delayed_work_on(cpu, reap_work,
889 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
890 }
891}
892
e498be7d 893static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 894 int batchcount, gfp_t gfp)
1da177e4 895{
b28a02de 896 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
897 struct array_cache *nc = NULL;
898
83b519e8 899 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
900 /*
901 * The array_cache structures contain pointers to free object.
902 * However, when such objects are allocated or transfered to another
903 * cache the pointers are not cleared and they could be counted as
904 * valid references during a kmemleak scan. Therefore, kmemleak must
905 * not scan such objects.
906 */
907 kmemleak_no_scan(nc);
1da177e4
LT
908 if (nc) {
909 nc->avail = 0;
910 nc->limit = entries;
911 nc->batchcount = batchcount;
912 nc->touched = 0;
e498be7d 913 spin_lock_init(&nc->lock);
1da177e4
LT
914 }
915 return nc;
916}
917
3ded175a
CL
918/*
919 * Transfer objects in one arraycache to another.
920 * Locking must be handled by the caller.
921 *
922 * Return the number of entries transferred.
923 */
924static int transfer_objects(struct array_cache *to,
925 struct array_cache *from, unsigned int max)
926{
927 /* Figure out how many entries to transfer */
928 int nr = min(min(from->avail, max), to->limit - to->avail);
929
930 if (!nr)
931 return 0;
932
933 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
934 sizeof(void *) *nr);
935
936 from->avail -= nr;
937 to->avail += nr;
938 to->touched = 1;
939 return nr;
940}
941
765c4507
CL
942#ifndef CONFIG_NUMA
943
944#define drain_alien_cache(cachep, alien) do { } while (0)
945#define reap_alien(cachep, l3) do { } while (0)
946
83b519e8 947static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
948{
949 return (struct array_cache **)BAD_ALIEN_MAGIC;
950}
951
952static inline void free_alien_cache(struct array_cache **ac_ptr)
953{
954}
955
956static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
957{
958 return 0;
959}
960
961static inline void *alternate_node_alloc(struct kmem_cache *cachep,
962 gfp_t flags)
963{
964 return NULL;
965}
966
8b98c169 967static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
968 gfp_t flags, int nodeid)
969{
970 return NULL;
971}
972
973#else /* CONFIG_NUMA */
974
8b98c169 975static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 976static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 977
83b519e8 978static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
979{
980 struct array_cache **ac_ptr;
8ef82866 981 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
982 int i;
983
984 if (limit > 1)
985 limit = 12;
83b519e8 986 ac_ptr = kmalloc_node(memsize, gfp, node);
e498be7d
CL
987 if (ac_ptr) {
988 for_each_node(i) {
989 if (i == node || !node_online(i)) {
990 ac_ptr[i] = NULL;
991 continue;
992 }
83b519e8 993 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 994 if (!ac_ptr[i]) {
cc550def 995 for (i--; i >= 0; i--)
e498be7d
CL
996 kfree(ac_ptr[i]);
997 kfree(ac_ptr);
998 return NULL;
999 }
1000 }
1001 }
1002 return ac_ptr;
1003}
1004
5295a74c 1005static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1006{
1007 int i;
1008
1009 if (!ac_ptr)
1010 return;
e498be7d 1011 for_each_node(i)
b28a02de 1012 kfree(ac_ptr[i]);
e498be7d
CL
1013 kfree(ac_ptr);
1014}
1015
343e0d7a 1016static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1017 struct array_cache *ac, int node)
e498be7d
CL
1018{
1019 struct kmem_list3 *rl3 = cachep->nodelists[node];
1020
1021 if (ac->avail) {
1022 spin_lock(&rl3->list_lock);
e00946fe
CL
1023 /*
1024 * Stuff objects into the remote nodes shared array first.
1025 * That way we could avoid the overhead of putting the objects
1026 * into the free lists and getting them back later.
1027 */
693f7d36
JS
1028 if (rl3->shared)
1029 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1030
ff69416e 1031 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1032 ac->avail = 0;
1033 spin_unlock(&rl3->list_lock);
1034 }
1035}
1036
8fce4d8e
CL
1037/*
1038 * Called from cache_reap() to regularly drain alien caches round robin.
1039 */
1040static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1041{
1871e52c 1042 int node = __get_cpu_var(slab_reap_node);
8fce4d8e
CL
1043
1044 if (l3->alien) {
1045 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1046
1047 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1048 __drain_alien_cache(cachep, ac, node);
1049 spin_unlock_irq(&ac->lock);
1050 }
1051 }
1052}
1053
a737b3e2
AM
1054static void drain_alien_cache(struct kmem_cache *cachep,
1055 struct array_cache **alien)
e498be7d 1056{
b28a02de 1057 int i = 0;
e498be7d
CL
1058 struct array_cache *ac;
1059 unsigned long flags;
1060
1061 for_each_online_node(i) {
4484ebf1 1062 ac = alien[i];
e498be7d
CL
1063 if (ac) {
1064 spin_lock_irqsave(&ac->lock, flags);
1065 __drain_alien_cache(cachep, ac, i);
1066 spin_unlock_irqrestore(&ac->lock, flags);
1067 }
1068 }
1069}
729bd0b7 1070
873623df 1071static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1072{
1073 struct slab *slabp = virt_to_slab(objp);
1074 int nodeid = slabp->nodeid;
1075 struct kmem_list3 *l3;
1076 struct array_cache *alien = NULL;
1ca4cb24
PE
1077 int node;
1078
1079 node = numa_node_id();
729bd0b7
PE
1080
1081 /*
1082 * Make sure we are not freeing a object from another node to the array
1083 * cache on this cpu.
1084 */
62918a03 1085 if (likely(slabp->nodeid == node))
729bd0b7
PE
1086 return 0;
1087
1ca4cb24 1088 l3 = cachep->nodelists[node];
729bd0b7
PE
1089 STATS_INC_NODEFREES(cachep);
1090 if (l3->alien && l3->alien[nodeid]) {
1091 alien = l3->alien[nodeid];
873623df 1092 spin_lock(&alien->lock);
729bd0b7
PE
1093 if (unlikely(alien->avail == alien->limit)) {
1094 STATS_INC_ACOVERFLOW(cachep);
1095 __drain_alien_cache(cachep, alien, nodeid);
1096 }
1097 alien->entry[alien->avail++] = objp;
1098 spin_unlock(&alien->lock);
1099 } else {
1100 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1101 free_block(cachep, &objp, 1, nodeid);
1102 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1103 }
1104 return 1;
1105}
e498be7d
CL
1106#endif
1107
fbf1e473
AM
1108static void __cpuinit cpuup_canceled(long cpu)
1109{
1110 struct kmem_cache *cachep;
1111 struct kmem_list3 *l3 = NULL;
1112 int node = cpu_to_node(cpu);
a70f7302 1113 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473
AM
1114
1115 list_for_each_entry(cachep, &cache_chain, next) {
1116 struct array_cache *nc;
1117 struct array_cache *shared;
1118 struct array_cache **alien;
fbf1e473 1119
fbf1e473
AM
1120 /* cpu is dead; no one can alloc from it. */
1121 nc = cachep->array[cpu];
1122 cachep->array[cpu] = NULL;
1123 l3 = cachep->nodelists[node];
1124
1125 if (!l3)
1126 goto free_array_cache;
1127
1128 spin_lock_irq(&l3->list_lock);
1129
1130 /* Free limit for this kmem_list3 */
1131 l3->free_limit -= cachep->batchcount;
1132 if (nc)
1133 free_block(cachep, nc->entry, nc->avail, node);
1134
58463c1f 1135 if (!cpumask_empty(mask)) {
fbf1e473
AM
1136 spin_unlock_irq(&l3->list_lock);
1137 goto free_array_cache;
1138 }
1139
1140 shared = l3->shared;
1141 if (shared) {
1142 free_block(cachep, shared->entry,
1143 shared->avail, node);
1144 l3->shared = NULL;
1145 }
1146
1147 alien = l3->alien;
1148 l3->alien = NULL;
1149
1150 spin_unlock_irq(&l3->list_lock);
1151
1152 kfree(shared);
1153 if (alien) {
1154 drain_alien_cache(cachep, alien);
1155 free_alien_cache(alien);
1156 }
1157free_array_cache:
1158 kfree(nc);
1159 }
1160 /*
1161 * In the previous loop, all the objects were freed to
1162 * the respective cache's slabs, now we can go ahead and
1163 * shrink each nodelist to its limit.
1164 */
1165 list_for_each_entry(cachep, &cache_chain, next) {
1166 l3 = cachep->nodelists[node];
1167 if (!l3)
1168 continue;
1169 drain_freelist(cachep, l3, l3->free_objects);
1170 }
1171}
1172
1173static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1174{
343e0d7a 1175 struct kmem_cache *cachep;
e498be7d
CL
1176 struct kmem_list3 *l3 = NULL;
1177 int node = cpu_to_node(cpu);
ea02e3dd 1178 const int memsize = sizeof(struct kmem_list3);
1da177e4 1179
fbf1e473
AM
1180 /*
1181 * We need to do this right in the beginning since
1182 * alloc_arraycache's are going to use this list.
1183 * kmalloc_node allows us to add the slab to the right
1184 * kmem_list3 and not this cpu's kmem_list3
1185 */
1186
1187 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2 1188 /*
fbf1e473
AM
1189 * Set up the size64 kmemlist for cpu before we can
1190 * begin anything. Make sure some other cpu on this
1191 * node has not already allocated this
e498be7d 1192 */
fbf1e473
AM
1193 if (!cachep->nodelists[node]) {
1194 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1195 if (!l3)
1196 goto bad;
1197 kmem_list3_init(l3);
1198 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1199 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1200
a737b3e2 1201 /*
fbf1e473
AM
1202 * The l3s don't come and go as CPUs come and
1203 * go. cache_chain_mutex is sufficient
1204 * protection here.
e498be7d 1205 */
fbf1e473 1206 cachep->nodelists[node] = l3;
e498be7d
CL
1207 }
1208
fbf1e473
AM
1209 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1210 cachep->nodelists[node]->free_limit =
1211 (1 + nr_cpus_node(node)) *
1212 cachep->batchcount + cachep->num;
1213 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1214 }
1215
1216 /*
1217 * Now we can go ahead with allocating the shared arrays and
1218 * array caches
1219 */
1220 list_for_each_entry(cachep, &cache_chain, next) {
1221 struct array_cache *nc;
1222 struct array_cache *shared = NULL;
1223 struct array_cache **alien = NULL;
1224
1225 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1226 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1227 if (!nc)
1228 goto bad;
1229 if (cachep->shared) {
1230 shared = alloc_arraycache(node,
1231 cachep->shared * cachep->batchcount,
83b519e8 1232 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1233 if (!shared) {
1234 kfree(nc);
1da177e4 1235 goto bad;
12d00f6a 1236 }
fbf1e473
AM
1237 }
1238 if (use_alien_caches) {
83b519e8 1239 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1240 if (!alien) {
1241 kfree(shared);
1242 kfree(nc);
fbf1e473 1243 goto bad;
12d00f6a 1244 }
fbf1e473
AM
1245 }
1246 cachep->array[cpu] = nc;
1247 l3 = cachep->nodelists[node];
1248 BUG_ON(!l3);
1249
1250 spin_lock_irq(&l3->list_lock);
1251 if (!l3->shared) {
1252 /*
1253 * We are serialised from CPU_DEAD or
1254 * CPU_UP_CANCELLED by the cpucontrol lock
1255 */
1256 l3->shared = shared;
1257 shared = NULL;
1258 }
4484ebf1 1259#ifdef CONFIG_NUMA
fbf1e473
AM
1260 if (!l3->alien) {
1261 l3->alien = alien;
1262 alien = NULL;
1da177e4 1263 }
fbf1e473
AM
1264#endif
1265 spin_unlock_irq(&l3->list_lock);
1266 kfree(shared);
1267 free_alien_cache(alien);
1268 }
ce79ddc8
PE
1269 init_node_lock_keys(node);
1270
fbf1e473
AM
1271 return 0;
1272bad:
12d00f6a 1273 cpuup_canceled(cpu);
fbf1e473
AM
1274 return -ENOMEM;
1275}
1276
1277static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1278 unsigned long action, void *hcpu)
1279{
1280 long cpu = (long)hcpu;
1281 int err = 0;
1282
1283 switch (action) {
fbf1e473
AM
1284 case CPU_UP_PREPARE:
1285 case CPU_UP_PREPARE_FROZEN:
95402b38 1286 mutex_lock(&cache_chain_mutex);
fbf1e473 1287 err = cpuup_prepare(cpu);
95402b38 1288 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1289 break;
1290 case CPU_ONLINE:
8bb78442 1291 case CPU_ONLINE_FROZEN:
1da177e4
LT
1292 start_cpu_timer(cpu);
1293 break;
1294#ifdef CONFIG_HOTPLUG_CPU
5830c590 1295 case CPU_DOWN_PREPARE:
8bb78442 1296 case CPU_DOWN_PREPARE_FROZEN:
5830c590
CL
1297 /*
1298 * Shutdown cache reaper. Note that the cache_chain_mutex is
1299 * held so that if cache_reap() is invoked it cannot do
1300 * anything expensive but will only modify reap_work
1301 * and reschedule the timer.
1302 */
1871e52c 1303 cancel_rearming_delayed_work(&per_cpu(slab_reap_work, cpu));
5830c590 1304 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1305 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1306 break;
1307 case CPU_DOWN_FAILED:
8bb78442 1308 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1309 start_cpu_timer(cpu);
1310 break;
1da177e4 1311 case CPU_DEAD:
8bb78442 1312 case CPU_DEAD_FROZEN:
4484ebf1
RT
1313 /*
1314 * Even if all the cpus of a node are down, we don't free the
1315 * kmem_list3 of any cache. This to avoid a race between
1316 * cpu_down, and a kmalloc allocation from another cpu for
1317 * memory from the node of the cpu going down. The list3
1318 * structure is usually allocated from kmem_cache_create() and
1319 * gets destroyed at kmem_cache_destroy().
1320 */
183ff22b 1321 /* fall through */
8f5be20b 1322#endif
1da177e4 1323 case CPU_UP_CANCELED:
8bb78442 1324 case CPU_UP_CANCELED_FROZEN:
95402b38 1325 mutex_lock(&cache_chain_mutex);
fbf1e473 1326 cpuup_canceled(cpu);
fc0abb14 1327 mutex_unlock(&cache_chain_mutex);
1da177e4 1328 break;
1da177e4 1329 }
fbf1e473 1330 return err ? NOTIFY_BAD : NOTIFY_OK;
1da177e4
LT
1331}
1332
74b85f37
CS
1333static struct notifier_block __cpuinitdata cpucache_notifier = {
1334 &cpuup_callback, NULL, 0
1335};
1da177e4 1336
e498be7d
CL
1337/*
1338 * swap the static kmem_list3 with kmalloced memory
1339 */
a737b3e2
AM
1340static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1341 int nodeid)
e498be7d
CL
1342{
1343 struct kmem_list3 *ptr;
1344
83b519e8 1345 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
e498be7d
CL
1346 BUG_ON(!ptr);
1347
e498be7d 1348 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1349 /*
1350 * Do not assume that spinlocks can be initialized via memcpy:
1351 */
1352 spin_lock_init(&ptr->list_lock);
1353
e498be7d
CL
1354 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1355 cachep->nodelists[nodeid] = ptr;
e498be7d
CL
1356}
1357
556a169d
PE
1358/*
1359 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1360 * size of kmem_list3.
1361 */
1362static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1363{
1364 int node;
1365
1366 for_each_online_node(node) {
1367 cachep->nodelists[node] = &initkmem_list3[index + node];
1368 cachep->nodelists[node]->next_reap = jiffies +
1369 REAPTIMEOUT_LIST3 +
1370 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1371 }
1372}
1373
a737b3e2
AM
1374/*
1375 * Initialisation. Called after the page allocator have been initialised and
1376 * before smp_init().
1da177e4
LT
1377 */
1378void __init kmem_cache_init(void)
1379{
1380 size_t left_over;
1381 struct cache_sizes *sizes;
1382 struct cache_names *names;
e498be7d 1383 int i;
07ed76b2 1384 int order;
1ca4cb24 1385 int node;
e498be7d 1386
b6e68bc1 1387 if (num_possible_nodes() == 1)
62918a03
SS
1388 use_alien_caches = 0;
1389
e498be7d
CL
1390 for (i = 0; i < NUM_INIT_LISTS; i++) {
1391 kmem_list3_init(&initkmem_list3[i]);
1392 if (i < MAX_NUMNODES)
1393 cache_cache.nodelists[i] = NULL;
1394 }
556a169d 1395 set_up_list3s(&cache_cache, CACHE_CACHE);
1da177e4
LT
1396
1397 /*
1398 * Fragmentation resistance on low memory - only use bigger
1399 * page orders on machines with more than 32MB of memory.
1400 */
4481374c 1401 if (totalram_pages > (32 << 20) >> PAGE_SHIFT)
1da177e4
LT
1402 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1403
1da177e4
LT
1404 /* Bootstrap is tricky, because several objects are allocated
1405 * from caches that do not exist yet:
a737b3e2
AM
1406 * 1) initialize the cache_cache cache: it contains the struct
1407 * kmem_cache structures of all caches, except cache_cache itself:
1408 * cache_cache is statically allocated.
e498be7d
CL
1409 * Initially an __init data area is used for the head array and the
1410 * kmem_list3 structures, it's replaced with a kmalloc allocated
1411 * array at the end of the bootstrap.
1da177e4 1412 * 2) Create the first kmalloc cache.
343e0d7a 1413 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1414 * An __init data area is used for the head array.
1415 * 3) Create the remaining kmalloc caches, with minimally sized
1416 * head arrays.
1da177e4
LT
1417 * 4) Replace the __init data head arrays for cache_cache and the first
1418 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1419 * 5) Replace the __init data for kmem_list3 for cache_cache and
1420 * the other cache's with kmalloc allocated memory.
1421 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1422 */
1423
1ca4cb24
PE
1424 node = numa_node_id();
1425
1da177e4 1426 /* 1) create the cache_cache */
1da177e4
LT
1427 INIT_LIST_HEAD(&cache_chain);
1428 list_add(&cache_cache.next, &cache_chain);
1429 cache_cache.colour_off = cache_line_size();
1430 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
ec1f5eee 1431 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1da177e4 1432
8da3430d
ED
1433 /*
1434 * struct kmem_cache size depends on nr_node_ids, which
1435 * can be less than MAX_NUMNODES.
1436 */
1437 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1438 nr_node_ids * sizeof(struct kmem_list3 *);
1439#if DEBUG
1440 cache_cache.obj_size = cache_cache.buffer_size;
1441#endif
a737b3e2
AM
1442 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1443 cache_line_size());
6a2d7a95
ED
1444 cache_cache.reciprocal_buffer_size =
1445 reciprocal_value(cache_cache.buffer_size);
1da177e4 1446
07ed76b2
JS
1447 for (order = 0; order < MAX_ORDER; order++) {
1448 cache_estimate(order, cache_cache.buffer_size,
1449 cache_line_size(), 0, &left_over, &cache_cache.num);
1450 if (cache_cache.num)
1451 break;
1452 }
40094fa6 1453 BUG_ON(!cache_cache.num);
07ed76b2 1454 cache_cache.gfporder = order;
b28a02de 1455 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1456 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1457 sizeof(struct slab), cache_line_size());
1da177e4
LT
1458
1459 /* 2+3) create the kmalloc caches */
1460 sizes = malloc_sizes;
1461 names = cache_names;
1462
a737b3e2
AM
1463 /*
1464 * Initialize the caches that provide memory for the array cache and the
1465 * kmem_list3 structures first. Without this, further allocations will
1466 * bug.
e498be7d
CL
1467 */
1468
1469 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1470 sizes[INDEX_AC].cs_size,
1471 ARCH_KMALLOC_MINALIGN,
1472 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1473 NULL);
e498be7d 1474
a737b3e2 1475 if (INDEX_AC != INDEX_L3) {
e498be7d 1476 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1477 kmem_cache_create(names[INDEX_L3].name,
1478 sizes[INDEX_L3].cs_size,
1479 ARCH_KMALLOC_MINALIGN,
1480 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1481 NULL);
a737b3e2 1482 }
e498be7d 1483
e0a42726
IM
1484 slab_early_init = 0;
1485
1da177e4 1486 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1487 /*
1488 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1489 * This should be particularly beneficial on SMP boxes, as it
1490 * eliminates "false sharing".
1491 * Note for systems short on memory removing the alignment will
e498be7d
CL
1492 * allow tighter packing of the smaller caches.
1493 */
a737b3e2 1494 if (!sizes->cs_cachep) {
e498be7d 1495 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1496 sizes->cs_size,
1497 ARCH_KMALLOC_MINALIGN,
1498 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1499 NULL);
a737b3e2 1500 }
4b51d669
CL
1501#ifdef CONFIG_ZONE_DMA
1502 sizes->cs_dmacachep = kmem_cache_create(
1503 names->name_dma,
a737b3e2
AM
1504 sizes->cs_size,
1505 ARCH_KMALLOC_MINALIGN,
1506 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1507 SLAB_PANIC,
20c2df83 1508 NULL);
4b51d669 1509#endif
1da177e4
LT
1510 sizes++;
1511 names++;
1512 }
1513 /* 4) Replace the bootstrap head arrays */
1514 {
2b2d5493 1515 struct array_cache *ptr;
e498be7d 1516
83b519e8 1517 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1518
9a2dba4b
PE
1519 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1520 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1521 sizeof(struct arraycache_init));
2b2d5493
IM
1522 /*
1523 * Do not assume that spinlocks can be initialized via memcpy:
1524 */
1525 spin_lock_init(&ptr->lock);
1526
1da177e4 1527 cache_cache.array[smp_processor_id()] = ptr;
e498be7d 1528
83b519e8 1529 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1530
9a2dba4b 1531 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1532 != &initarray_generic.cache);
9a2dba4b 1533 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1534 sizeof(struct arraycache_init));
2b2d5493
IM
1535 /*
1536 * Do not assume that spinlocks can be initialized via memcpy:
1537 */
1538 spin_lock_init(&ptr->lock);
1539
e498be7d 1540 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1541 ptr;
1da177e4 1542 }
e498be7d
CL
1543 /* 5) Replace the bootstrap kmem_list3's */
1544 {
1ca4cb24
PE
1545 int nid;
1546
9c09a95c 1547 for_each_online_node(nid) {
ec1f5eee 1548 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
556a169d 1549
e498be7d 1550 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1551 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1552
1553 if (INDEX_AC != INDEX_L3) {
1554 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1555 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1556 }
1557 }
1558 }
1da177e4 1559
8429db5c 1560 g_cpucache_up = EARLY;
8429db5c
PE
1561}
1562
1563void __init kmem_cache_init_late(void)
1564{
1565 struct kmem_cache *cachep;
1566
8429db5c
PE
1567 /* 6) resize the head arrays to their final sizes */
1568 mutex_lock(&cache_chain_mutex);
1569 list_for_each_entry(cachep, &cache_chain, next)
1570 if (enable_cpucache(cachep, GFP_NOWAIT))
1571 BUG();
1572 mutex_unlock(&cache_chain_mutex);
056c6241 1573
1da177e4
LT
1574 /* Done! */
1575 g_cpucache_up = FULL;
1576
ec5a36f9
PE
1577 /* Annotate slab for lockdep -- annotate the malloc caches */
1578 init_lock_keys();
1579
a737b3e2
AM
1580 /*
1581 * Register a cpu startup notifier callback that initializes
1582 * cpu_cache_get for all new cpus
1da177e4
LT
1583 */
1584 register_cpu_notifier(&cpucache_notifier);
1da177e4 1585
a737b3e2
AM
1586 /*
1587 * The reap timers are started later, with a module init call: That part
1588 * of the kernel is not yet operational.
1da177e4
LT
1589 */
1590}
1591
1592static int __init cpucache_init(void)
1593{
1594 int cpu;
1595
a737b3e2
AM
1596 /*
1597 * Register the timers that return unneeded pages to the page allocator
1da177e4 1598 */
e498be7d 1599 for_each_online_cpu(cpu)
a737b3e2 1600 start_cpu_timer(cpu);
1da177e4
LT
1601 return 0;
1602}
1da177e4
LT
1603__initcall(cpucache_init);
1604
1605/*
1606 * Interface to system's page allocator. No need to hold the cache-lock.
1607 *
1608 * If we requested dmaable memory, we will get it. Even if we
1609 * did not request dmaable memory, we might get it, but that
1610 * would be relatively rare and ignorable.
1611 */
343e0d7a 1612static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1613{
1614 struct page *page;
e1b6aa6f 1615 int nr_pages;
1da177e4
LT
1616 int i;
1617
d6fef9da 1618#ifndef CONFIG_MMU
e1b6aa6f
CH
1619 /*
1620 * Nommu uses slab's for process anonymous memory allocations, and thus
1621 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1622 */
e1b6aa6f 1623 flags |= __GFP_COMP;
d6fef9da 1624#endif
765c4507 1625
3c517a61 1626 flags |= cachep->gfpflags;
e12ba74d
MG
1627 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1628 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1629
517d0869 1630 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
1da177e4
LT
1631 if (!page)
1632 return NULL;
1da177e4 1633
e1b6aa6f 1634 nr_pages = (1 << cachep->gfporder);
1da177e4 1635 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1636 add_zone_page_state(page_zone(page),
1637 NR_SLAB_RECLAIMABLE, nr_pages);
1638 else
1639 add_zone_page_state(page_zone(page),
1640 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1641 for (i = 0; i < nr_pages; i++)
1642 __SetPageSlab(page + i);
c175eea4 1643
b1eeab67
VN
1644 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1645 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1646
1647 if (cachep->ctor)
1648 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1649 else
1650 kmemcheck_mark_unallocated_pages(page, nr_pages);
1651 }
c175eea4 1652
e1b6aa6f 1653 return page_address(page);
1da177e4
LT
1654}
1655
1656/*
1657 * Interface to system's page release.
1658 */
343e0d7a 1659static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1660{
b28a02de 1661 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1662 struct page *page = virt_to_page(addr);
1663 const unsigned long nr_freed = i;
1664
b1eeab67 1665 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1666
972d1a7b
CL
1667 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1668 sub_zone_page_state(page_zone(page),
1669 NR_SLAB_RECLAIMABLE, nr_freed);
1670 else
1671 sub_zone_page_state(page_zone(page),
1672 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1673 while (i--) {
f205b2fe
NP
1674 BUG_ON(!PageSlab(page));
1675 __ClearPageSlab(page);
1da177e4
LT
1676 page++;
1677 }
1da177e4
LT
1678 if (current->reclaim_state)
1679 current->reclaim_state->reclaimed_slab += nr_freed;
1680 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1681}
1682
1683static void kmem_rcu_free(struct rcu_head *head)
1684{
b28a02de 1685 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1686 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1687
1688 kmem_freepages(cachep, slab_rcu->addr);
1689 if (OFF_SLAB(cachep))
1690 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1691}
1692
1693#if DEBUG
1694
1695#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1696static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1697 unsigned long caller)
1da177e4 1698{
3dafccf2 1699 int size = obj_size(cachep);
1da177e4 1700
3dafccf2 1701 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1702
b28a02de 1703 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1704 return;
1705
b28a02de
PE
1706 *addr++ = 0x12345678;
1707 *addr++ = caller;
1708 *addr++ = smp_processor_id();
1709 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1710 {
1711 unsigned long *sptr = &caller;
1712 unsigned long svalue;
1713
1714 while (!kstack_end(sptr)) {
1715 svalue = *sptr++;
1716 if (kernel_text_address(svalue)) {
b28a02de 1717 *addr++ = svalue;
1da177e4
LT
1718 size -= sizeof(unsigned long);
1719 if (size <= sizeof(unsigned long))
1720 break;
1721 }
1722 }
1723
1724 }
b28a02de 1725 *addr++ = 0x87654321;
1da177e4
LT
1726}
1727#endif
1728
343e0d7a 1729static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1730{
3dafccf2
MS
1731 int size = obj_size(cachep);
1732 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1733
1734 memset(addr, val, size);
b28a02de 1735 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1736}
1737
1738static void dump_line(char *data, int offset, int limit)
1739{
1740 int i;
aa83aa40
DJ
1741 unsigned char error = 0;
1742 int bad_count = 0;
1743
1da177e4 1744 printk(KERN_ERR "%03x:", offset);
aa83aa40
DJ
1745 for (i = 0; i < limit; i++) {
1746 if (data[offset + i] != POISON_FREE) {
1747 error = data[offset + i];
1748 bad_count++;
1749 }
b28a02de 1750 printk(" %02x", (unsigned char)data[offset + i]);
aa83aa40 1751 }
1da177e4 1752 printk("\n");
aa83aa40
DJ
1753
1754 if (bad_count == 1) {
1755 error ^= POISON_FREE;
1756 if (!(error & (error - 1))) {
1757 printk(KERN_ERR "Single bit error detected. Probably "
1758 "bad RAM.\n");
1759#ifdef CONFIG_X86
1760 printk(KERN_ERR "Run memtest86+ or a similar memory "
1761 "test tool.\n");
1762#else
1763 printk(KERN_ERR "Run a memory test tool.\n");
1764#endif
1765 }
1766 }
1da177e4
LT
1767}
1768#endif
1769
1770#if DEBUG
1771
343e0d7a 1772static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1773{
1774 int i, size;
1775 char *realobj;
1776
1777 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1778 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1779 *dbg_redzone1(cachep, objp),
1780 *dbg_redzone2(cachep, objp));
1da177e4
LT
1781 }
1782
1783 if (cachep->flags & SLAB_STORE_USER) {
1784 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1785 *dbg_userword(cachep, objp));
1da177e4 1786 print_symbol("(%s)",
a737b3e2 1787 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1788 printk("\n");
1789 }
3dafccf2
MS
1790 realobj = (char *)objp + obj_offset(cachep);
1791 size = obj_size(cachep);
b28a02de 1792 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1793 int limit;
1794 limit = 16;
b28a02de
PE
1795 if (i + limit > size)
1796 limit = size - i;
1da177e4
LT
1797 dump_line(realobj, i, limit);
1798 }
1799}
1800
343e0d7a 1801static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1802{
1803 char *realobj;
1804 int size, i;
1805 int lines = 0;
1806
3dafccf2
MS
1807 realobj = (char *)objp + obj_offset(cachep);
1808 size = obj_size(cachep);
1da177e4 1809
b28a02de 1810 for (i = 0; i < size; i++) {
1da177e4 1811 char exp = POISON_FREE;
b28a02de 1812 if (i == size - 1)
1da177e4
LT
1813 exp = POISON_END;
1814 if (realobj[i] != exp) {
1815 int limit;
1816 /* Mismatch ! */
1817 /* Print header */
1818 if (lines == 0) {
b28a02de 1819 printk(KERN_ERR
e94a40c5
DH
1820 "Slab corruption: %s start=%p, len=%d\n",
1821 cachep->name, realobj, size);
1da177e4
LT
1822 print_objinfo(cachep, objp, 0);
1823 }
1824 /* Hexdump the affected line */
b28a02de 1825 i = (i / 16) * 16;
1da177e4 1826 limit = 16;
b28a02de
PE
1827 if (i + limit > size)
1828 limit = size - i;
1da177e4
LT
1829 dump_line(realobj, i, limit);
1830 i += 16;
1831 lines++;
1832 /* Limit to 5 lines */
1833 if (lines > 5)
1834 break;
1835 }
1836 }
1837 if (lines != 0) {
1838 /* Print some data about the neighboring objects, if they
1839 * exist:
1840 */
6ed5eb22 1841 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1842 unsigned int objnr;
1da177e4 1843
8fea4e96 1844 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1845 if (objnr) {
8fea4e96 1846 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1847 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1848 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1849 realobj, size);
1da177e4
LT
1850 print_objinfo(cachep, objp, 2);
1851 }
b28a02de 1852 if (objnr + 1 < cachep->num) {
8fea4e96 1853 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1854 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1855 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1856 realobj, size);
1da177e4
LT
1857 print_objinfo(cachep, objp, 2);
1858 }
1859 }
1860}
1861#endif
1862
12dd36fa 1863#if DEBUG
e79aec29 1864static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1865{
1da177e4
LT
1866 int i;
1867 for (i = 0; i < cachep->num; i++) {
8fea4e96 1868 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1869
1870 if (cachep->flags & SLAB_POISON) {
1871#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1872 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1873 OFF_SLAB(cachep))
b28a02de 1874 kernel_map_pages(virt_to_page(objp),
a737b3e2 1875 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1876 else
1877 check_poison_obj(cachep, objp);
1878#else
1879 check_poison_obj(cachep, objp);
1880#endif
1881 }
1882 if (cachep->flags & SLAB_RED_ZONE) {
1883 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1884 slab_error(cachep, "start of a freed object "
b28a02de 1885 "was overwritten");
1da177e4
LT
1886 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1887 slab_error(cachep, "end of a freed object "
b28a02de 1888 "was overwritten");
1da177e4 1889 }
1da177e4 1890 }
12dd36fa 1891}
1da177e4 1892#else
e79aec29 1893static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1894{
12dd36fa 1895}
1da177e4
LT
1896#endif
1897
911851e6
RD
1898/**
1899 * slab_destroy - destroy and release all objects in a slab
1900 * @cachep: cache pointer being destroyed
1901 * @slabp: slab pointer being destroyed
1902 *
12dd36fa 1903 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1904 * Before calling the slab must have been unlinked from the cache. The
1905 * cache-lock is not held/needed.
12dd36fa 1906 */
343e0d7a 1907static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1908{
1909 void *addr = slabp->s_mem - slabp->colouroff;
1910
e79aec29 1911 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
1912 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1913 struct slab_rcu *slab_rcu;
1914
b28a02de 1915 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1916 slab_rcu->cachep = cachep;
1917 slab_rcu->addr = addr;
1918 call_rcu(&slab_rcu->head, kmem_rcu_free);
1919 } else {
1920 kmem_freepages(cachep, addr);
873623df
IM
1921 if (OFF_SLAB(cachep))
1922 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1923 }
1924}
1925
117f6eb1
CL
1926static void __kmem_cache_destroy(struct kmem_cache *cachep)
1927{
1928 int i;
1929 struct kmem_list3 *l3;
1930
1931 for_each_online_cpu(i)
1932 kfree(cachep->array[i]);
1933
1934 /* NUMA: free the list3 structures */
1935 for_each_online_node(i) {
1936 l3 = cachep->nodelists[i];
1937 if (l3) {
1938 kfree(l3->shared);
1939 free_alien_cache(l3->alien);
1940 kfree(l3);
1941 }
1942 }
1943 kmem_cache_free(&cache_cache, cachep);
1944}
1945
1946
4d268eba 1947/**
a70773dd
RD
1948 * calculate_slab_order - calculate size (page order) of slabs
1949 * @cachep: pointer to the cache that is being created
1950 * @size: size of objects to be created in this cache.
1951 * @align: required alignment for the objects.
1952 * @flags: slab allocation flags
1953 *
1954 * Also calculates the number of objects per slab.
4d268eba
PE
1955 *
1956 * This could be made much more intelligent. For now, try to avoid using
1957 * high order pages for slabs. When the gfp() functions are more friendly
1958 * towards high-order requests, this should be changed.
1959 */
a737b3e2 1960static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1961 size_t size, size_t align, unsigned long flags)
4d268eba 1962{
b1ab41c4 1963 unsigned long offslab_limit;
4d268eba 1964 size_t left_over = 0;
9888e6fa 1965 int gfporder;
4d268eba 1966
0aa817f0 1967 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1968 unsigned int num;
1969 size_t remainder;
1970
9888e6fa 1971 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
1972 if (!num)
1973 continue;
9888e6fa 1974
b1ab41c4
IM
1975 if (flags & CFLGS_OFF_SLAB) {
1976 /*
1977 * Max number of objs-per-slab for caches which
1978 * use off-slab slabs. Needed to avoid a possible
1979 * looping condition in cache_grow().
1980 */
1981 offslab_limit = size - sizeof(struct slab);
1982 offslab_limit /= sizeof(kmem_bufctl_t);
1983
1984 if (num > offslab_limit)
1985 break;
1986 }
4d268eba 1987
9888e6fa 1988 /* Found something acceptable - save it away */
4d268eba 1989 cachep->num = num;
9888e6fa 1990 cachep->gfporder = gfporder;
4d268eba
PE
1991 left_over = remainder;
1992
f78bb8ad
LT
1993 /*
1994 * A VFS-reclaimable slab tends to have most allocations
1995 * as GFP_NOFS and we really don't want to have to be allocating
1996 * higher-order pages when we are unable to shrink dcache.
1997 */
1998 if (flags & SLAB_RECLAIM_ACCOUNT)
1999 break;
2000
4d268eba
PE
2001 /*
2002 * Large number of objects is good, but very large slabs are
2003 * currently bad for the gfp()s.
2004 */
9888e6fa 2005 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
2006 break;
2007
9888e6fa
LT
2008 /*
2009 * Acceptable internal fragmentation?
2010 */
a737b3e2 2011 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2012 break;
2013 }
2014 return left_over;
2015}
2016
83b519e8 2017static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2018{
2ed3a4ef 2019 if (g_cpucache_up == FULL)
83b519e8 2020 return enable_cpucache(cachep, gfp);
2ed3a4ef 2021
f30cf7d1
PE
2022 if (g_cpucache_up == NONE) {
2023 /*
2024 * Note: the first kmem_cache_create must create the cache
2025 * that's used by kmalloc(24), otherwise the creation of
2026 * further caches will BUG().
2027 */
2028 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2029
2030 /*
2031 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2032 * the first cache, then we need to set up all its list3s,
2033 * otherwise the creation of further caches will BUG().
2034 */
2035 set_up_list3s(cachep, SIZE_AC);
2036 if (INDEX_AC == INDEX_L3)
2037 g_cpucache_up = PARTIAL_L3;
2038 else
2039 g_cpucache_up = PARTIAL_AC;
2040 } else {
2041 cachep->array[smp_processor_id()] =
83b519e8 2042 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1
PE
2043
2044 if (g_cpucache_up == PARTIAL_AC) {
2045 set_up_list3s(cachep, SIZE_L3);
2046 g_cpucache_up = PARTIAL_L3;
2047 } else {
2048 int node;
556a169d 2049 for_each_online_node(node) {
f30cf7d1
PE
2050 cachep->nodelists[node] =
2051 kmalloc_node(sizeof(struct kmem_list3),
eb91f1d0 2052 gfp, node);
f30cf7d1
PE
2053 BUG_ON(!cachep->nodelists[node]);
2054 kmem_list3_init(cachep->nodelists[node]);
2055 }
2056 }
2057 }
2058 cachep->nodelists[numa_node_id()]->next_reap =
2059 jiffies + REAPTIMEOUT_LIST3 +
2060 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2061
2062 cpu_cache_get(cachep)->avail = 0;
2063 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2064 cpu_cache_get(cachep)->batchcount = 1;
2065 cpu_cache_get(cachep)->touched = 0;
2066 cachep->batchcount = 1;
2067 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2068 return 0;
f30cf7d1
PE
2069}
2070
1da177e4
LT
2071/**
2072 * kmem_cache_create - Create a cache.
2073 * @name: A string which is used in /proc/slabinfo to identify this cache.
2074 * @size: The size of objects to be created in this cache.
2075 * @align: The required alignment for the objects.
2076 * @flags: SLAB flags
2077 * @ctor: A constructor for the objects.
1da177e4
LT
2078 *
2079 * Returns a ptr to the cache on success, NULL on failure.
2080 * Cannot be called within a int, but can be interrupted.
20c2df83 2081 * The @ctor is run when new pages are allocated by the cache.
1da177e4
LT
2082 *
2083 * @name must be valid until the cache is destroyed. This implies that
a737b3e2 2084 * the module calling this has to destroy the cache before getting unloaded.
249da166
CM
2085 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
2086 * therefore applications must manage it themselves.
a737b3e2 2087 *
1da177e4
LT
2088 * The flags are
2089 *
2090 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2091 * to catch references to uninitialised memory.
2092 *
2093 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2094 * for buffer overruns.
2095 *
1da177e4
LT
2096 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2097 * cacheline. This can be beneficial if you're counting cycles as closely
2098 * as davem.
2099 */
343e0d7a 2100struct kmem_cache *
1da177e4 2101kmem_cache_create (const char *name, size_t size, size_t align,
51cc5068 2102 unsigned long flags, void (*ctor)(void *))
1da177e4
LT
2103{
2104 size_t left_over, slab_size, ralign;
7a7c381d 2105 struct kmem_cache *cachep = NULL, *pc;
83b519e8 2106 gfp_t gfp;
1da177e4
LT
2107
2108 /*
2109 * Sanity checks... these are all serious usage bugs.
2110 */
a737b3e2 2111 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
20c2df83 2112 size > KMALLOC_MAX_SIZE) {
d40cee24 2113 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
a737b3e2 2114 name);
b28a02de
PE
2115 BUG();
2116 }
1da177e4 2117
f0188f47 2118 /*
8f5be20b 2119 * We use cache_chain_mutex to ensure a consistent view of
174596a0 2120 * cpu_online_mask as well. Please see cpuup_callback
f0188f47 2121 */
83b519e8
PE
2122 if (slab_is_available()) {
2123 get_online_cpus();
2124 mutex_lock(&cache_chain_mutex);
2125 }
4f12bb4f 2126
7a7c381d 2127 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2128 char tmp;
2129 int res;
2130
2131 /*
2132 * This happens when the module gets unloaded and doesn't
2133 * destroy its slab cache and no-one else reuses the vmalloc
2134 * area of the module. Print a warning.
2135 */
138ae663 2136 res = probe_kernel_address(pc->name, tmp);
4f12bb4f 2137 if (res) {
b4169525 2138 printk(KERN_ERR
2139 "SLAB: cache with size %d has lost its name\n",
3dafccf2 2140 pc->buffer_size);
4f12bb4f
AM
2141 continue;
2142 }
2143
b28a02de 2144 if (!strcmp(pc->name, name)) {
b4169525 2145 printk(KERN_ERR
2146 "kmem_cache_create: duplicate cache %s\n", name);
4f12bb4f
AM
2147 dump_stack();
2148 goto oops;
2149 }
2150 }
2151
1da177e4
LT
2152#if DEBUG
2153 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1da177e4
LT
2154#if FORCED_DEBUG
2155 /*
2156 * Enable redzoning and last user accounting, except for caches with
2157 * large objects, if the increased size would increase the object size
2158 * above the next power of two: caches with object sizes just above a
2159 * power of two have a significant amount of internal fragmentation.
2160 */
87a927c7
DW
2161 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2162 2 * sizeof(unsigned long long)))
b28a02de 2163 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2164 if (!(flags & SLAB_DESTROY_BY_RCU))
2165 flags |= SLAB_POISON;
2166#endif
2167 if (flags & SLAB_DESTROY_BY_RCU)
2168 BUG_ON(flags & SLAB_POISON);
2169#endif
1da177e4 2170 /*
a737b3e2
AM
2171 * Always checks flags, a caller might be expecting debug support which
2172 * isn't available.
1da177e4 2173 */
40094fa6 2174 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2175
a737b3e2
AM
2176 /*
2177 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2178 * unaligned accesses for some archs when redzoning is used, and makes
2179 * sure any on-slab bufctl's are also correctly aligned.
2180 */
b28a02de
PE
2181 if (size & (BYTES_PER_WORD - 1)) {
2182 size += (BYTES_PER_WORD - 1);
2183 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2184 }
2185
a737b3e2
AM
2186 /* calculate the final buffer alignment: */
2187
1da177e4
LT
2188 /* 1) arch recommendation: can be overridden for debug */
2189 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2190 /*
2191 * Default alignment: as specified by the arch code. Except if
2192 * an object is really small, then squeeze multiple objects into
2193 * one cacheline.
1da177e4
LT
2194 */
2195 ralign = cache_line_size();
b28a02de 2196 while (size <= ralign / 2)
1da177e4
LT
2197 ralign /= 2;
2198 } else {
2199 ralign = BYTES_PER_WORD;
2200 }
ca5f9703
PE
2201
2202 /*
87a927c7
DW
2203 * Redzoning and user store require word alignment or possibly larger.
2204 * Note this will be overridden by architecture or caller mandated
2205 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2206 */
87a927c7
DW
2207 if (flags & SLAB_STORE_USER)
2208 ralign = BYTES_PER_WORD;
2209
2210 if (flags & SLAB_RED_ZONE) {
2211 ralign = REDZONE_ALIGN;
2212 /* If redzoning, ensure that the second redzone is suitably
2213 * aligned, by adjusting the object size accordingly. */
2214 size += REDZONE_ALIGN - 1;
2215 size &= ~(REDZONE_ALIGN - 1);
2216 }
ca5f9703 2217
a44b56d3 2218 /* 2) arch mandated alignment */
1da177e4
LT
2219 if (ralign < ARCH_SLAB_MINALIGN) {
2220 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2221 }
a44b56d3 2222 /* 3) caller mandated alignment */
1da177e4
LT
2223 if (ralign < align) {
2224 ralign = align;
1da177e4 2225 }
a44b56d3 2226 /* disable debug if necessary */
b46b8f19 2227 if (ralign > __alignof__(unsigned long long))
a44b56d3 2228 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2229 /*
ca5f9703 2230 * 4) Store it.
1da177e4
LT
2231 */
2232 align = ralign;
2233
83b519e8
PE
2234 if (slab_is_available())
2235 gfp = GFP_KERNEL;
2236 else
2237 gfp = GFP_NOWAIT;
2238
1da177e4 2239 /* Get cache's description obj. */
83b519e8 2240 cachep = kmem_cache_zalloc(&cache_cache, gfp);
1da177e4 2241 if (!cachep)
4f12bb4f 2242 goto oops;
1da177e4
LT
2243
2244#if DEBUG
3dafccf2 2245 cachep->obj_size = size;
1da177e4 2246
ca5f9703
PE
2247 /*
2248 * Both debugging options require word-alignment which is calculated
2249 * into align above.
2250 */
1da177e4 2251 if (flags & SLAB_RED_ZONE) {
1da177e4 2252 /* add space for red zone words */
b46b8f19
DW
2253 cachep->obj_offset += sizeof(unsigned long long);
2254 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2255 }
2256 if (flags & SLAB_STORE_USER) {
ca5f9703 2257 /* user store requires one word storage behind the end of
87a927c7
DW
2258 * the real object. But if the second red zone needs to be
2259 * aligned to 64 bits, we must allow that much space.
1da177e4 2260 */
87a927c7
DW
2261 if (flags & SLAB_RED_ZONE)
2262 size += REDZONE_ALIGN;
2263 else
2264 size += BYTES_PER_WORD;
1da177e4
LT
2265 }
2266#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2267 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2268 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2269 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2270 size = PAGE_SIZE;
2271 }
2272#endif
2273#endif
2274
e0a42726
IM
2275 /*
2276 * Determine if the slab management is 'on' or 'off' slab.
2277 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2278 * it too early on. Always use on-slab management when
2279 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2280 */
e7cb55b9
CM
2281 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2282 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2283 /*
2284 * Size is large, assume best to place the slab management obj
2285 * off-slab (should allow better packing of objs).
2286 */
2287 flags |= CFLGS_OFF_SLAB;
2288
2289 size = ALIGN(size, align);
2290
f78bb8ad 2291 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2292
2293 if (!cachep->num) {
b4169525 2294 printk(KERN_ERR
2295 "kmem_cache_create: couldn't create cache %s.\n", name);
1da177e4
LT
2296 kmem_cache_free(&cache_cache, cachep);
2297 cachep = NULL;
4f12bb4f 2298 goto oops;
1da177e4 2299 }
b28a02de
PE
2300 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2301 + sizeof(struct slab), align);
1da177e4
LT
2302
2303 /*
2304 * If the slab has been placed off-slab, and we have enough space then
2305 * move it on-slab. This is at the expense of any extra colouring.
2306 */
2307 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2308 flags &= ~CFLGS_OFF_SLAB;
2309 left_over -= slab_size;
2310 }
2311
2312 if (flags & CFLGS_OFF_SLAB) {
2313 /* really off slab. No need for manual alignment */
b28a02de
PE
2314 slab_size =
2315 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
67461365
RL
2316
2317#ifdef CONFIG_PAGE_POISONING
2318 /* If we're going to use the generic kernel_map_pages()
2319 * poisoning, then it's going to smash the contents of
2320 * the redzone and userword anyhow, so switch them off.
2321 */
2322 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2323 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2324#endif
1da177e4
LT
2325 }
2326
2327 cachep->colour_off = cache_line_size();
2328 /* Offset must be a multiple of the alignment. */
2329 if (cachep->colour_off < align)
2330 cachep->colour_off = align;
b28a02de 2331 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2332 cachep->slab_size = slab_size;
2333 cachep->flags = flags;
2334 cachep->gfpflags = 0;
4b51d669 2335 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
1da177e4 2336 cachep->gfpflags |= GFP_DMA;
3dafccf2 2337 cachep->buffer_size = size;
6a2d7a95 2338 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2339
e5ac9c5a 2340 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2341 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2342 /*
2343 * This is a possibility for one of the malloc_sizes caches.
2344 * But since we go off slab only for object size greater than
2345 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2346 * this should not happen at all.
2347 * But leave a BUG_ON for some lucky dude.
2348 */
6cb8f913 2349 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2350 }
1da177e4 2351 cachep->ctor = ctor;
1da177e4
LT
2352 cachep->name = name;
2353
83b519e8 2354 if (setup_cpu_cache(cachep, gfp)) {
2ed3a4ef
CL
2355 __kmem_cache_destroy(cachep);
2356 cachep = NULL;
2357 goto oops;
2358 }
1da177e4 2359
1da177e4
LT
2360 /* cache setup completed, link it into the list */
2361 list_add(&cachep->next, &cache_chain);
a737b3e2 2362oops:
1da177e4
LT
2363 if (!cachep && (flags & SLAB_PANIC))
2364 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2365 name);
83b519e8
PE
2366 if (slab_is_available()) {
2367 mutex_unlock(&cache_chain_mutex);
2368 put_online_cpus();
2369 }
1da177e4
LT
2370 return cachep;
2371}
2372EXPORT_SYMBOL(kmem_cache_create);
2373
2374#if DEBUG
2375static void check_irq_off(void)
2376{
2377 BUG_ON(!irqs_disabled());
2378}
2379
2380static void check_irq_on(void)
2381{
2382 BUG_ON(irqs_disabled());
2383}
2384
343e0d7a 2385static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2386{
2387#ifdef CONFIG_SMP
2388 check_irq_off();
e498be7d 2389 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2390#endif
2391}
e498be7d 2392
343e0d7a 2393static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2394{
2395#ifdef CONFIG_SMP
2396 check_irq_off();
2397 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2398#endif
2399}
2400
1da177e4
LT
2401#else
2402#define check_irq_off() do { } while(0)
2403#define check_irq_on() do { } while(0)
2404#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2405#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2406#endif
2407
aab2207c
CL
2408static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2409 struct array_cache *ac,
2410 int force, int node);
2411
1da177e4
LT
2412static void do_drain(void *arg)
2413{
a737b3e2 2414 struct kmem_cache *cachep = arg;
1da177e4 2415 struct array_cache *ac;
ff69416e 2416 int node = numa_node_id();
1da177e4
LT
2417
2418 check_irq_off();
9a2dba4b 2419 ac = cpu_cache_get(cachep);
ff69416e
CL
2420 spin_lock(&cachep->nodelists[node]->list_lock);
2421 free_block(cachep, ac->entry, ac->avail, node);
2422 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2423 ac->avail = 0;
2424}
2425
343e0d7a 2426static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2427{
e498be7d
CL
2428 struct kmem_list3 *l3;
2429 int node;
2430
15c8b6c1 2431 on_each_cpu(do_drain, cachep, 1);
1da177e4 2432 check_irq_on();
b28a02de 2433 for_each_online_node(node) {
e498be7d 2434 l3 = cachep->nodelists[node];
a4523a8b
RD
2435 if (l3 && l3->alien)
2436 drain_alien_cache(cachep, l3->alien);
2437 }
2438
2439 for_each_online_node(node) {
2440 l3 = cachep->nodelists[node];
2441 if (l3)
aab2207c 2442 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2443 }
1da177e4
LT
2444}
2445
ed11d9eb
CL
2446/*
2447 * Remove slabs from the list of free slabs.
2448 * Specify the number of slabs to drain in tofree.
2449 *
2450 * Returns the actual number of slabs released.
2451 */
2452static int drain_freelist(struct kmem_cache *cache,
2453 struct kmem_list3 *l3, int tofree)
1da177e4 2454{
ed11d9eb
CL
2455 struct list_head *p;
2456 int nr_freed;
1da177e4 2457 struct slab *slabp;
1da177e4 2458
ed11d9eb
CL
2459 nr_freed = 0;
2460 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2461
ed11d9eb 2462 spin_lock_irq(&l3->list_lock);
e498be7d 2463 p = l3->slabs_free.prev;
ed11d9eb
CL
2464 if (p == &l3->slabs_free) {
2465 spin_unlock_irq(&l3->list_lock);
2466 goto out;
2467 }
1da177e4 2468
ed11d9eb 2469 slabp = list_entry(p, struct slab, list);
1da177e4 2470#if DEBUG
40094fa6 2471 BUG_ON(slabp->inuse);
1da177e4
LT
2472#endif
2473 list_del(&slabp->list);
ed11d9eb
CL
2474 /*
2475 * Safe to drop the lock. The slab is no longer linked
2476 * to the cache.
2477 */
2478 l3->free_objects -= cache->num;
e498be7d 2479 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2480 slab_destroy(cache, slabp);
2481 nr_freed++;
1da177e4 2482 }
ed11d9eb
CL
2483out:
2484 return nr_freed;
1da177e4
LT
2485}
2486
8f5be20b 2487/* Called with cache_chain_mutex held to protect against cpu hotplug */
343e0d7a 2488static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2489{
2490 int ret = 0, i = 0;
2491 struct kmem_list3 *l3;
2492
2493 drain_cpu_caches(cachep);
2494
2495 check_irq_on();
2496 for_each_online_node(i) {
2497 l3 = cachep->nodelists[i];
ed11d9eb
CL
2498 if (!l3)
2499 continue;
2500
2501 drain_freelist(cachep, l3, l3->free_objects);
2502
2503 ret += !list_empty(&l3->slabs_full) ||
2504 !list_empty(&l3->slabs_partial);
e498be7d
CL
2505 }
2506 return (ret ? 1 : 0);
2507}
2508
1da177e4
LT
2509/**
2510 * kmem_cache_shrink - Shrink a cache.
2511 * @cachep: The cache to shrink.
2512 *
2513 * Releases as many slabs as possible for a cache.
2514 * To help debugging, a zero exit status indicates all slabs were released.
2515 */
343e0d7a 2516int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2517{
8f5be20b 2518 int ret;
40094fa6 2519 BUG_ON(!cachep || in_interrupt());
1da177e4 2520
95402b38 2521 get_online_cpus();
8f5be20b
RT
2522 mutex_lock(&cache_chain_mutex);
2523 ret = __cache_shrink(cachep);
2524 mutex_unlock(&cache_chain_mutex);
95402b38 2525 put_online_cpus();
8f5be20b 2526 return ret;
1da177e4
LT
2527}
2528EXPORT_SYMBOL(kmem_cache_shrink);
2529
2530/**
2531 * kmem_cache_destroy - delete a cache
2532 * @cachep: the cache to destroy
2533 *
72fd4a35 2534 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2535 *
2536 * It is expected this function will be called by a module when it is
2537 * unloaded. This will remove the cache completely, and avoid a duplicate
2538 * cache being allocated each time a module is loaded and unloaded, if the
2539 * module doesn't have persistent in-kernel storage across loads and unloads.
2540 *
2541 * The cache must be empty before calling this function.
2542 *
2543 * The caller must guarantee that noone will allocate memory from the cache
2544 * during the kmem_cache_destroy().
2545 */
133d205a 2546void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2547{
40094fa6 2548 BUG_ON(!cachep || in_interrupt());
1da177e4 2549
1da177e4 2550 /* Find the cache in the chain of caches. */
95402b38 2551 get_online_cpus();
fc0abb14 2552 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2553 /*
2554 * the chain is never empty, cache_cache is never destroyed
2555 */
2556 list_del(&cachep->next);
1da177e4
LT
2557 if (__cache_shrink(cachep)) {
2558 slab_error(cachep, "Can't free all objects");
b28a02de 2559 list_add(&cachep->next, &cache_chain);
fc0abb14 2560 mutex_unlock(&cache_chain_mutex);
95402b38 2561 put_online_cpus();
133d205a 2562 return;
1da177e4
LT
2563 }
2564
2565 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
7ed9f7e5 2566 rcu_barrier();
1da177e4 2567
117f6eb1 2568 __kmem_cache_destroy(cachep);
8f5be20b 2569 mutex_unlock(&cache_chain_mutex);
95402b38 2570 put_online_cpus();
1da177e4
LT
2571}
2572EXPORT_SYMBOL(kmem_cache_destroy);
2573
e5ac9c5a
RT
2574/*
2575 * Get the memory for a slab management obj.
2576 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2577 * always come from malloc_sizes caches. The slab descriptor cannot
2578 * come from the same cache which is getting created because,
2579 * when we are searching for an appropriate cache for these
2580 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2581 * If we are creating a malloc_sizes cache here it would not be visible to
2582 * kmem_find_general_cachep till the initialization is complete.
2583 * Hence we cannot have slabp_cache same as the original cache.
2584 */
343e0d7a 2585static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2586 int colour_off, gfp_t local_flags,
2587 int nodeid)
1da177e4
LT
2588{
2589 struct slab *slabp;
b28a02de 2590
1da177e4
LT
2591 if (OFF_SLAB(cachep)) {
2592 /* Slab management obj is off-slab. */
5b74ada7 2593 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2594 local_flags, nodeid);
d5cff635
CM
2595 /*
2596 * If the first object in the slab is leaked (it's allocated
2597 * but no one has a reference to it), we want to make sure
2598 * kmemleak does not treat the ->s_mem pointer as a reference
2599 * to the object. Otherwise we will not report the leak.
2600 */
c017b4be
CM
2601 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2602 local_flags);
1da177e4
LT
2603 if (!slabp)
2604 return NULL;
2605 } else {
b28a02de 2606 slabp = objp + colour_off;
1da177e4
LT
2607 colour_off += cachep->slab_size;
2608 }
2609 slabp->inuse = 0;
2610 slabp->colouroff = colour_off;
b28a02de 2611 slabp->s_mem = objp + colour_off;
5b74ada7 2612 slabp->nodeid = nodeid;
e51bfd0a 2613 slabp->free = 0;
1da177e4
LT
2614 return slabp;
2615}
2616
2617static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2618{
b28a02de 2619 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2620}
2621
343e0d7a 2622static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2623 struct slab *slabp)
1da177e4
LT
2624{
2625 int i;
2626
2627 for (i = 0; i < cachep->num; i++) {
8fea4e96 2628 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2629#if DEBUG
2630 /* need to poison the objs? */
2631 if (cachep->flags & SLAB_POISON)
2632 poison_obj(cachep, objp, POISON_FREE);
2633 if (cachep->flags & SLAB_STORE_USER)
2634 *dbg_userword(cachep, objp) = NULL;
2635
2636 if (cachep->flags & SLAB_RED_ZONE) {
2637 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2638 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2639 }
2640 /*
a737b3e2
AM
2641 * Constructors are not allowed to allocate memory from the same
2642 * cache which they are a constructor for. Otherwise, deadlock.
2643 * They must also be threaded.
1da177e4
LT
2644 */
2645 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2646 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2647
2648 if (cachep->flags & SLAB_RED_ZONE) {
2649 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2650 slab_error(cachep, "constructor overwrote the"
b28a02de 2651 " end of an object");
1da177e4
LT
2652 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2653 slab_error(cachep, "constructor overwrote the"
b28a02de 2654 " start of an object");
1da177e4 2655 }
a737b3e2
AM
2656 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2657 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2658 kernel_map_pages(virt_to_page(objp),
3dafccf2 2659 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2660#else
2661 if (cachep->ctor)
51cc5068 2662 cachep->ctor(objp);
1da177e4 2663#endif
b28a02de 2664 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2665 }
b28a02de 2666 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2667}
2668
343e0d7a 2669static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2670{
4b51d669
CL
2671 if (CONFIG_ZONE_DMA_FLAG) {
2672 if (flags & GFP_DMA)
2673 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2674 else
2675 BUG_ON(cachep->gfpflags & GFP_DMA);
2676 }
1da177e4
LT
2677}
2678
a737b3e2
AM
2679static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2680 int nodeid)
78d382d7 2681{
8fea4e96 2682 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2683 kmem_bufctl_t next;
2684
2685 slabp->inuse++;
2686 next = slab_bufctl(slabp)[slabp->free];
2687#if DEBUG
2688 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2689 WARN_ON(slabp->nodeid != nodeid);
2690#endif
2691 slabp->free = next;
2692
2693 return objp;
2694}
2695
a737b3e2
AM
2696static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2697 void *objp, int nodeid)
78d382d7 2698{
8fea4e96 2699 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2700
2701#if DEBUG
2702 /* Verify that the slab belongs to the intended node */
2703 WARN_ON(slabp->nodeid != nodeid);
2704
871751e2 2705 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2706 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2707 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2708 BUG();
2709 }
2710#endif
2711 slab_bufctl(slabp)[objnr] = slabp->free;
2712 slabp->free = objnr;
2713 slabp->inuse--;
2714}
2715
4776874f
PE
2716/*
2717 * Map pages beginning at addr to the given cache and slab. This is required
2718 * for the slab allocator to be able to lookup the cache and slab of a
2719 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2720 */
2721static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2722 void *addr)
1da177e4 2723{
4776874f 2724 int nr_pages;
1da177e4
LT
2725 struct page *page;
2726
4776874f 2727 page = virt_to_page(addr);
84097518 2728
4776874f 2729 nr_pages = 1;
84097518 2730 if (likely(!PageCompound(page)))
4776874f
PE
2731 nr_pages <<= cache->gfporder;
2732
1da177e4 2733 do {
4776874f
PE
2734 page_set_cache(page, cache);
2735 page_set_slab(page, slab);
1da177e4 2736 page++;
4776874f 2737 } while (--nr_pages);
1da177e4
LT
2738}
2739
2740/*
2741 * Grow (by 1) the number of slabs within a cache. This is called by
2742 * kmem_cache_alloc() when there are no active objs left in a cache.
2743 */
3c517a61
CL
2744static int cache_grow(struct kmem_cache *cachep,
2745 gfp_t flags, int nodeid, void *objp)
1da177e4 2746{
b28a02de 2747 struct slab *slabp;
b28a02de
PE
2748 size_t offset;
2749 gfp_t local_flags;
e498be7d 2750 struct kmem_list3 *l3;
1da177e4 2751
a737b3e2
AM
2752 /*
2753 * Be lazy and only check for valid flags here, keeping it out of the
2754 * critical path in kmem_cache_alloc().
1da177e4 2755 */
6cb06229
CL
2756 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2757 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2758
2e1217cf 2759 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2760 check_irq_off();
2e1217cf
RT
2761 l3 = cachep->nodelists[nodeid];
2762 spin_lock(&l3->list_lock);
1da177e4
LT
2763
2764 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2765 offset = l3->colour_next;
2766 l3->colour_next++;
2767 if (l3->colour_next >= cachep->colour)
2768 l3->colour_next = 0;
2769 spin_unlock(&l3->list_lock);
1da177e4 2770
2e1217cf 2771 offset *= cachep->colour_off;
1da177e4
LT
2772
2773 if (local_flags & __GFP_WAIT)
2774 local_irq_enable();
2775
2776 /*
2777 * The test for missing atomic flag is performed here, rather than
2778 * the more obvious place, simply to reduce the critical path length
2779 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2780 * will eventually be caught here (where it matters).
2781 */
2782 kmem_flagcheck(cachep, flags);
2783
a737b3e2
AM
2784 /*
2785 * Get mem for the objs. Attempt to allocate a physical page from
2786 * 'nodeid'.
e498be7d 2787 */
3c517a61 2788 if (!objp)
b8c1c5da 2789 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2790 if (!objp)
1da177e4
LT
2791 goto failed;
2792
2793 /* Get slab management. */
3c517a61 2794 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2795 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2796 if (!slabp)
1da177e4
LT
2797 goto opps1;
2798
4776874f 2799 slab_map_pages(cachep, slabp, objp);
1da177e4 2800
a35afb83 2801 cache_init_objs(cachep, slabp);
1da177e4
LT
2802
2803 if (local_flags & __GFP_WAIT)
2804 local_irq_disable();
2805 check_irq_off();
e498be7d 2806 spin_lock(&l3->list_lock);
1da177e4
LT
2807
2808 /* Make slab active. */
e498be7d 2809 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2810 STATS_INC_GROWN(cachep);
e498be7d
CL
2811 l3->free_objects += cachep->num;
2812 spin_unlock(&l3->list_lock);
1da177e4 2813 return 1;
a737b3e2 2814opps1:
1da177e4 2815 kmem_freepages(cachep, objp);
a737b3e2 2816failed:
1da177e4
LT
2817 if (local_flags & __GFP_WAIT)
2818 local_irq_disable();
2819 return 0;
2820}
2821
2822#if DEBUG
2823
2824/*
2825 * Perform extra freeing checks:
2826 * - detect bad pointers.
2827 * - POISON/RED_ZONE checking
1da177e4
LT
2828 */
2829static void kfree_debugcheck(const void *objp)
2830{
1da177e4
LT
2831 if (!virt_addr_valid(objp)) {
2832 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2833 (unsigned long)objp);
2834 BUG();
1da177e4 2835 }
1da177e4
LT
2836}
2837
58ce1fd5
PE
2838static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2839{
b46b8f19 2840 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2841
2842 redzone1 = *dbg_redzone1(cache, obj);
2843 redzone2 = *dbg_redzone2(cache, obj);
2844
2845 /*
2846 * Redzone is ok.
2847 */
2848 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2849 return;
2850
2851 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2852 slab_error(cache, "double free detected");
2853 else
2854 slab_error(cache, "memory outside object was overwritten");
2855
b46b8f19 2856 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2857 obj, redzone1, redzone2);
2858}
2859
343e0d7a 2860static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2861 void *caller)
1da177e4
LT
2862{
2863 struct page *page;
2864 unsigned int objnr;
2865 struct slab *slabp;
2866
80cbd911
MW
2867 BUG_ON(virt_to_cache(objp) != cachep);
2868
3dafccf2 2869 objp -= obj_offset(cachep);
1da177e4 2870 kfree_debugcheck(objp);
b49af68f 2871 page = virt_to_head_page(objp);
1da177e4 2872
065d41cb 2873 slabp = page_get_slab(page);
1da177e4
LT
2874
2875 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2876 verify_redzone_free(cachep, objp);
1da177e4
LT
2877 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2878 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2879 }
2880 if (cachep->flags & SLAB_STORE_USER)
2881 *dbg_userword(cachep, objp) = caller;
2882
8fea4e96 2883 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2884
2885 BUG_ON(objnr >= cachep->num);
8fea4e96 2886 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 2887
871751e2
AV
2888#ifdef CONFIG_DEBUG_SLAB_LEAK
2889 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2890#endif
1da177e4
LT
2891 if (cachep->flags & SLAB_POISON) {
2892#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2893 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2894 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2895 kernel_map_pages(virt_to_page(objp),
3dafccf2 2896 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2897 } else {
2898 poison_obj(cachep, objp, POISON_FREE);
2899 }
2900#else
2901 poison_obj(cachep, objp, POISON_FREE);
2902#endif
2903 }
2904 return objp;
2905}
2906
343e0d7a 2907static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2908{
2909 kmem_bufctl_t i;
2910 int entries = 0;
b28a02de 2911
1da177e4
LT
2912 /* Check slab's freelist to see if this obj is there. */
2913 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2914 entries++;
2915 if (entries > cachep->num || i >= cachep->num)
2916 goto bad;
2917 }
2918 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2919bad:
2920 printk(KERN_ERR "slab: Internal list corruption detected in "
2921 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2922 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2923 for (i = 0;
264132bc 2924 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2925 i++) {
a737b3e2 2926 if (i % 16 == 0)
1da177e4 2927 printk("\n%03x:", i);
b28a02de 2928 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2929 }
2930 printk("\n");
2931 BUG();
2932 }
2933}
2934#else
2935#define kfree_debugcheck(x) do { } while(0)
2936#define cache_free_debugcheck(x,objp,z) (objp)
2937#define check_slabp(x,y) do { } while(0)
2938#endif
2939
343e0d7a 2940static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2941{
2942 int batchcount;
2943 struct kmem_list3 *l3;
2944 struct array_cache *ac;
1ca4cb24
PE
2945 int node;
2946
6d2144d3 2947retry:
1da177e4 2948 check_irq_off();
6d2144d3 2949 node = numa_node_id();
9a2dba4b 2950 ac = cpu_cache_get(cachep);
1da177e4
LT
2951 batchcount = ac->batchcount;
2952 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2953 /*
2954 * If there was little recent activity on this cache, then
2955 * perform only a partial refill. Otherwise we could generate
2956 * refill bouncing.
1da177e4
LT
2957 */
2958 batchcount = BATCHREFILL_LIMIT;
2959 }
1ca4cb24 2960 l3 = cachep->nodelists[node];
e498be7d
CL
2961
2962 BUG_ON(ac->avail > 0 || !l3);
2963 spin_lock(&l3->list_lock);
1da177e4 2964
3ded175a
CL
2965 /* See if we can refill from the shared array */
2966 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2967 goto alloc_done;
2968
1da177e4
LT
2969 while (batchcount > 0) {
2970 struct list_head *entry;
2971 struct slab *slabp;
2972 /* Get slab alloc is to come from. */
2973 entry = l3->slabs_partial.next;
2974 if (entry == &l3->slabs_partial) {
2975 l3->free_touched = 1;
2976 entry = l3->slabs_free.next;
2977 if (entry == &l3->slabs_free)
2978 goto must_grow;
2979 }
2980
2981 slabp = list_entry(entry, struct slab, list);
2982 check_slabp(cachep, slabp);
2983 check_spinlock_acquired(cachep);
714b8171
PE
2984
2985 /*
2986 * The slab was either on partial or free list so
2987 * there must be at least one object available for
2988 * allocation.
2989 */
249b9f33 2990 BUG_ON(slabp->inuse >= cachep->num);
714b8171 2991
1da177e4 2992 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
2993 STATS_INC_ALLOCED(cachep);
2994 STATS_INC_ACTIVE(cachep);
2995 STATS_SET_HIGH(cachep);
2996
78d382d7 2997 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
1ca4cb24 2998 node);
1da177e4
LT
2999 }
3000 check_slabp(cachep, slabp);
3001
3002 /* move slabp to correct slabp list: */
3003 list_del(&slabp->list);
3004 if (slabp->free == BUFCTL_END)
3005 list_add(&slabp->list, &l3->slabs_full);
3006 else
3007 list_add(&slabp->list, &l3->slabs_partial);
3008 }
3009
a737b3e2 3010must_grow:
1da177e4 3011 l3->free_objects -= ac->avail;
a737b3e2 3012alloc_done:
e498be7d 3013 spin_unlock(&l3->list_lock);
1da177e4
LT
3014
3015 if (unlikely(!ac->avail)) {
3016 int x;
3c517a61 3017 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3018
a737b3e2 3019 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3020 ac = cpu_cache_get(cachep);
a737b3e2 3021 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
3022 return NULL;
3023
a737b3e2 3024 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3025 goto retry;
3026 }
3027 ac->touched = 1;
e498be7d 3028 return ac->entry[--ac->avail];
1da177e4
LT
3029}
3030
a737b3e2
AM
3031static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3032 gfp_t flags)
1da177e4
LT
3033{
3034 might_sleep_if(flags & __GFP_WAIT);
3035#if DEBUG
3036 kmem_flagcheck(cachep, flags);
3037#endif
3038}
3039
3040#if DEBUG
a737b3e2
AM
3041static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3042 gfp_t flags, void *objp, void *caller)
1da177e4 3043{
b28a02de 3044 if (!objp)
1da177e4 3045 return objp;
b28a02de 3046 if (cachep->flags & SLAB_POISON) {
1da177e4 3047#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 3048 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3049 kernel_map_pages(virt_to_page(objp),
3dafccf2 3050 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
3051 else
3052 check_poison_obj(cachep, objp);
3053#else
3054 check_poison_obj(cachep, objp);
3055#endif
3056 poison_obj(cachep, objp, POISON_INUSE);
3057 }
3058 if (cachep->flags & SLAB_STORE_USER)
3059 *dbg_userword(cachep, objp) = caller;
3060
3061 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3062 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3063 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3064 slab_error(cachep, "double free, or memory outside"
3065 " object was overwritten");
b28a02de 3066 printk(KERN_ERR
b46b8f19 3067 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3068 objp, *dbg_redzone1(cachep, objp),
3069 *dbg_redzone2(cachep, objp));
1da177e4
LT
3070 }
3071 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3072 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3073 }
871751e2
AV
3074#ifdef CONFIG_DEBUG_SLAB_LEAK
3075 {
3076 struct slab *slabp;
3077 unsigned objnr;
3078
b49af68f 3079 slabp = page_get_slab(virt_to_head_page(objp));
871751e2
AV
3080 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3081 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3082 }
3083#endif
3dafccf2 3084 objp += obj_offset(cachep);
4f104934 3085 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3086 cachep->ctor(objp);
a44b56d3
KH
3087#if ARCH_SLAB_MINALIGN
3088 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3089 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3090 objp, ARCH_SLAB_MINALIGN);
3091 }
3092#endif
1da177e4
LT
3093 return objp;
3094}
3095#else
3096#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3097#endif
3098
773ff60e 3099static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502
AM
3100{
3101 if (cachep == &cache_cache)
773ff60e 3102 return false;
8a8b6502 3103
773ff60e 3104 return should_failslab(obj_size(cachep), flags);
8a8b6502
AM
3105}
3106
343e0d7a 3107static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3108{
b28a02de 3109 void *objp;
1da177e4
LT
3110 struct array_cache *ac;
3111
5c382300 3112 check_irq_off();
8a8b6502 3113
9a2dba4b 3114 ac = cpu_cache_get(cachep);
1da177e4
LT
3115 if (likely(ac->avail)) {
3116 STATS_INC_ALLOCHIT(cachep);
3117 ac->touched = 1;
e498be7d 3118 objp = ac->entry[--ac->avail];
1da177e4
LT
3119 } else {
3120 STATS_INC_ALLOCMISS(cachep);
3121 objp = cache_alloc_refill(cachep, flags);
ddbf2e83
O
3122 /*
3123 * the 'ac' may be updated by cache_alloc_refill(),
3124 * and kmemleak_erase() requires its correct value.
3125 */
3126 ac = cpu_cache_get(cachep);
1da177e4 3127 }
d5cff635
CM
3128 /*
3129 * To avoid a false negative, if an object that is in one of the
3130 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3131 * treat the array pointers as a reference to the object.
3132 */
f3d8b53a
O
3133 if (objp)
3134 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3135 return objp;
3136}
3137
e498be7d 3138#ifdef CONFIG_NUMA
c61afb18 3139/*
b2455396 3140 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3141 *
3142 * If we are in_interrupt, then process context, including cpusets and
3143 * mempolicy, may not apply and should not be used for allocation policy.
3144 */
3145static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3146{
3147 int nid_alloc, nid_here;
3148
765c4507 3149 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18
PJ
3150 return NULL;
3151 nid_alloc = nid_here = numa_node_id();
3152 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3153 nid_alloc = cpuset_mem_spread_node();
3154 else if (current->mempolicy)
3155 nid_alloc = slab_node(current->mempolicy);
3156 if (nid_alloc != nid_here)
8b98c169 3157 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3158 return NULL;
3159}
3160
765c4507
CL
3161/*
3162 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3163 * certain node and fall back is permitted. First we scan all the
3164 * available nodelists for available objects. If that fails then we
3165 * perform an allocation without specifying a node. This allows the page
3166 * allocator to do its reclaim / fallback magic. We then insert the
3167 * slab into the proper nodelist and then allocate from it.
765c4507 3168 */
8c8cc2c1 3169static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3170{
8c8cc2c1
PE
3171 struct zonelist *zonelist;
3172 gfp_t local_flags;
dd1a239f 3173 struct zoneref *z;
54a6eb5c
MG
3174 struct zone *zone;
3175 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3176 void *obj = NULL;
3c517a61 3177 int nid;
8c8cc2c1
PE
3178
3179 if (flags & __GFP_THISNODE)
3180 return NULL;
3181
0e88460d 3182 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
6cb06229 3183 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3184
3c517a61
CL
3185retry:
3186 /*
3187 * Look through allowed nodes for objects available
3188 * from existing per node queues.
3189 */
54a6eb5c
MG
3190 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3191 nid = zone_to_nid(zone);
aedb0eb1 3192
54a6eb5c 3193 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3c517a61 3194 cache->nodelists[nid] &&
481c5346 3195 cache->nodelists[nid]->free_objects) {
3c517a61
CL
3196 obj = ____cache_alloc_node(cache,
3197 flags | GFP_THISNODE, nid);
481c5346
CL
3198 if (obj)
3199 break;
3200 }
3c517a61
CL
3201 }
3202
cfce6604 3203 if (!obj) {
3c517a61
CL
3204 /*
3205 * This allocation will be performed within the constraints
3206 * of the current cpuset / memory policy requirements.
3207 * We may trigger various forms of reclaim on the allowed
3208 * set and go into memory reserves if necessary.
3209 */
dd47ea75
CL
3210 if (local_flags & __GFP_WAIT)
3211 local_irq_enable();
3212 kmem_flagcheck(cache, flags);
6484eb3e 3213 obj = kmem_getpages(cache, local_flags, numa_node_id());
dd47ea75
CL
3214 if (local_flags & __GFP_WAIT)
3215 local_irq_disable();
3c517a61
CL
3216 if (obj) {
3217 /*
3218 * Insert into the appropriate per node queues
3219 */
3220 nid = page_to_nid(virt_to_page(obj));
3221 if (cache_grow(cache, flags, nid, obj)) {
3222 obj = ____cache_alloc_node(cache,
3223 flags | GFP_THISNODE, nid);
3224 if (!obj)
3225 /*
3226 * Another processor may allocate the
3227 * objects in the slab since we are
3228 * not holding any locks.
3229 */
3230 goto retry;
3231 } else {
b6a60451 3232 /* cache_grow already freed obj */
3c517a61
CL
3233 obj = NULL;
3234 }
3235 }
aedb0eb1 3236 }
765c4507
CL
3237 return obj;
3238}
3239
e498be7d
CL
3240/*
3241 * A interface to enable slab creation on nodeid
1da177e4 3242 */
8b98c169 3243static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3244 int nodeid)
e498be7d
CL
3245{
3246 struct list_head *entry;
b28a02de
PE
3247 struct slab *slabp;
3248 struct kmem_list3 *l3;
3249 void *obj;
b28a02de
PE
3250 int x;
3251
3252 l3 = cachep->nodelists[nodeid];
3253 BUG_ON(!l3);
3254
a737b3e2 3255retry:
ca3b9b91 3256 check_irq_off();
b28a02de
PE
3257 spin_lock(&l3->list_lock);
3258 entry = l3->slabs_partial.next;
3259 if (entry == &l3->slabs_partial) {
3260 l3->free_touched = 1;
3261 entry = l3->slabs_free.next;
3262 if (entry == &l3->slabs_free)
3263 goto must_grow;
3264 }
3265
3266 slabp = list_entry(entry, struct slab, list);
3267 check_spinlock_acquired_node(cachep, nodeid);
3268 check_slabp(cachep, slabp);
3269
3270 STATS_INC_NODEALLOCS(cachep);
3271 STATS_INC_ACTIVE(cachep);
3272 STATS_SET_HIGH(cachep);
3273
3274 BUG_ON(slabp->inuse == cachep->num);
3275
78d382d7 3276 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3277 check_slabp(cachep, slabp);
3278 l3->free_objects--;
3279 /* move slabp to correct slabp list: */
3280 list_del(&slabp->list);
3281
a737b3e2 3282 if (slabp->free == BUFCTL_END)
b28a02de 3283 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3284 else
b28a02de 3285 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3286
b28a02de
PE
3287 spin_unlock(&l3->list_lock);
3288 goto done;
e498be7d 3289
a737b3e2 3290must_grow:
b28a02de 3291 spin_unlock(&l3->list_lock);
3c517a61 3292 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3293 if (x)
3294 goto retry;
1da177e4 3295
8c8cc2c1 3296 return fallback_alloc(cachep, flags);
e498be7d 3297
a737b3e2 3298done:
b28a02de 3299 return obj;
e498be7d 3300}
8c8cc2c1
PE
3301
3302/**
3303 * kmem_cache_alloc_node - Allocate an object on the specified node
3304 * @cachep: The cache to allocate from.
3305 * @flags: See kmalloc().
3306 * @nodeid: node number of the target node.
3307 * @caller: return address of caller, used for debug information
3308 *
3309 * Identical to kmem_cache_alloc but it will allocate memory on the given
3310 * node, which can improve the performance for cpu bound structures.
3311 *
3312 * Fallback to other node is possible if __GFP_THISNODE is not set.
3313 */
3314static __always_inline void *
3315__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3316 void *caller)
3317{
3318 unsigned long save_flags;
3319 void *ptr;
3320
dcce284a 3321 flags &= gfp_allowed_mask;
7e85ee0c 3322
cf40bd16
NP
3323 lockdep_trace_alloc(flags);
3324
773ff60e 3325 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3326 return NULL;
3327
8c8cc2c1
PE
3328 cache_alloc_debugcheck_before(cachep, flags);
3329 local_irq_save(save_flags);
3330
8e15b79c 3331 if (nodeid == -1)
8c8cc2c1
PE
3332 nodeid = numa_node_id();
3333
3334 if (unlikely(!cachep->nodelists[nodeid])) {
3335 /* Node not bootstrapped yet */
3336 ptr = fallback_alloc(cachep, flags);
3337 goto out;
3338 }
3339
3340 if (nodeid == numa_node_id()) {
3341 /*
3342 * Use the locally cached objects if possible.
3343 * However ____cache_alloc does not allow fallback
3344 * to other nodes. It may fail while we still have
3345 * objects on other nodes available.
3346 */
3347 ptr = ____cache_alloc(cachep, flags);
3348 if (ptr)
3349 goto out;
3350 }
3351 /* ___cache_alloc_node can fall back to other nodes */
3352 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3353 out:
3354 local_irq_restore(save_flags);
3355 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
d5cff635
CM
3356 kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3357 flags);
8c8cc2c1 3358
c175eea4
PE
3359 if (likely(ptr))
3360 kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3361
d07dbea4
CL
3362 if (unlikely((flags & __GFP_ZERO) && ptr))
3363 memset(ptr, 0, obj_size(cachep));
3364
8c8cc2c1
PE
3365 return ptr;
3366}
3367
3368static __always_inline void *
3369__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3370{
3371 void *objp;
3372
3373 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3374 objp = alternate_node_alloc(cache, flags);
3375 if (objp)
3376 goto out;
3377 }
3378 objp = ____cache_alloc(cache, flags);
3379
3380 /*
3381 * We may just have run out of memory on the local node.
3382 * ____cache_alloc_node() knows how to locate memory on other nodes
3383 */
3384 if (!objp)
3385 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3386
3387 out:
3388 return objp;
3389}
3390#else
3391
3392static __always_inline void *
3393__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3394{
3395 return ____cache_alloc(cachep, flags);
3396}
3397
3398#endif /* CONFIG_NUMA */
3399
3400static __always_inline void *
3401__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3402{
3403 unsigned long save_flags;
3404 void *objp;
3405
dcce284a 3406 flags &= gfp_allowed_mask;
7e85ee0c 3407
cf40bd16
NP
3408 lockdep_trace_alloc(flags);
3409
773ff60e 3410 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3411 return NULL;
3412
8c8cc2c1
PE
3413 cache_alloc_debugcheck_before(cachep, flags);
3414 local_irq_save(save_flags);
3415 objp = __do_cache_alloc(cachep, flags);
3416 local_irq_restore(save_flags);
3417 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
d5cff635
CM
3418 kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3419 flags);
8c8cc2c1
PE
3420 prefetchw(objp);
3421
c175eea4
PE
3422 if (likely(objp))
3423 kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
3424
d07dbea4
CL
3425 if (unlikely((flags & __GFP_ZERO) && objp))
3426 memset(objp, 0, obj_size(cachep));
3427
8c8cc2c1
PE
3428 return objp;
3429}
e498be7d
CL
3430
3431/*
3432 * Caller needs to acquire correct kmem_list's list_lock
3433 */
343e0d7a 3434static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3435 int node)
1da177e4
LT
3436{
3437 int i;
e498be7d 3438 struct kmem_list3 *l3;
1da177e4
LT
3439
3440 for (i = 0; i < nr_objects; i++) {
3441 void *objp = objpp[i];
3442 struct slab *slabp;
1da177e4 3443
6ed5eb22 3444 slabp = virt_to_slab(objp);
ff69416e 3445 l3 = cachep->nodelists[node];
1da177e4 3446 list_del(&slabp->list);
ff69416e 3447 check_spinlock_acquired_node(cachep, node);
1da177e4 3448 check_slabp(cachep, slabp);
78d382d7 3449 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3450 STATS_DEC_ACTIVE(cachep);
e498be7d 3451 l3->free_objects++;
1da177e4
LT
3452 check_slabp(cachep, slabp);
3453
3454 /* fixup slab chains */
3455 if (slabp->inuse == 0) {
e498be7d
CL
3456 if (l3->free_objects > l3->free_limit) {
3457 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3458 /* No need to drop any previously held
3459 * lock here, even if we have a off-slab slab
3460 * descriptor it is guaranteed to come from
3461 * a different cache, refer to comments before
3462 * alloc_slabmgmt.
3463 */
1da177e4
LT
3464 slab_destroy(cachep, slabp);
3465 } else {
e498be7d 3466 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3467 }
3468 } else {
3469 /* Unconditionally move a slab to the end of the
3470 * partial list on free - maximum time for the
3471 * other objects to be freed, too.
3472 */
e498be7d 3473 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3474 }
3475 }
3476}
3477
343e0d7a 3478static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3479{
3480 int batchcount;
e498be7d 3481 struct kmem_list3 *l3;
ff69416e 3482 int node = numa_node_id();
1da177e4
LT
3483
3484 batchcount = ac->batchcount;
3485#if DEBUG
3486 BUG_ON(!batchcount || batchcount > ac->avail);
3487#endif
3488 check_irq_off();
ff69416e 3489 l3 = cachep->nodelists[node];
873623df 3490 spin_lock(&l3->list_lock);
e498be7d
CL
3491 if (l3->shared) {
3492 struct array_cache *shared_array = l3->shared;
b28a02de 3493 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3494 if (max) {
3495 if (batchcount > max)
3496 batchcount = max;
e498be7d 3497 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3498 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3499 shared_array->avail += batchcount;
3500 goto free_done;
3501 }
3502 }
3503
ff69416e 3504 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3505free_done:
1da177e4
LT
3506#if STATS
3507 {
3508 int i = 0;
3509 struct list_head *p;
3510
e498be7d
CL
3511 p = l3->slabs_free.next;
3512 while (p != &(l3->slabs_free)) {
1da177e4
LT
3513 struct slab *slabp;
3514
3515 slabp = list_entry(p, struct slab, list);
3516 BUG_ON(slabp->inuse);
3517
3518 i++;
3519 p = p->next;
3520 }
3521 STATS_SET_FREEABLE(cachep, i);
3522 }
3523#endif
e498be7d 3524 spin_unlock(&l3->list_lock);
1da177e4 3525 ac->avail -= batchcount;
a737b3e2 3526 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3527}
3528
3529/*
a737b3e2
AM
3530 * Release an obj back to its cache. If the obj has a constructed state, it must
3531 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3532 */
873623df 3533static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3534{
9a2dba4b 3535 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3536
3537 check_irq_off();
d5cff635 3538 kmemleak_free_recursive(objp, cachep->flags);
1da177e4
LT
3539 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3540
c175eea4
PE
3541 kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3542
1807a1aa
SS
3543 /*
3544 * Skip calling cache_free_alien() when the platform is not numa.
3545 * This will avoid cache misses that happen while accessing slabp (which
3546 * is per page memory reference) to get nodeid. Instead use a global
3547 * variable to skip the call, which is mostly likely to be present in
3548 * the cache.
3549 */
b6e68bc1 3550 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3551 return;
3552
1da177e4
LT
3553 if (likely(ac->avail < ac->limit)) {
3554 STATS_INC_FREEHIT(cachep);
e498be7d 3555 ac->entry[ac->avail++] = objp;
1da177e4
LT
3556 return;
3557 } else {
3558 STATS_INC_FREEMISS(cachep);
3559 cache_flusharray(cachep, ac);
e498be7d 3560 ac->entry[ac->avail++] = objp;
1da177e4
LT
3561 }
3562}
3563
3564/**
3565 * kmem_cache_alloc - Allocate an object
3566 * @cachep: The cache to allocate from.
3567 * @flags: See kmalloc().
3568 *
3569 * Allocate an object from this cache. The flags are only relevant
3570 * if the cache has no available objects.
3571 */
343e0d7a 3572void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3573{
36555751
EGM
3574 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3575
ca2b84cb
EGM
3576 trace_kmem_cache_alloc(_RET_IP_, ret,
3577 obj_size(cachep), cachep->buffer_size, flags);
36555751
EGM
3578
3579 return ret;
1da177e4
LT
3580}
3581EXPORT_SYMBOL(kmem_cache_alloc);
3582
0f24f128 3583#ifdef CONFIG_TRACING
36555751
EGM
3584void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
3585{
3586 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3587}
3588EXPORT_SYMBOL(kmem_cache_alloc_notrace);
3589#endif
3590
1da177e4 3591/**
7682486b 3592 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
1da177e4
LT
3593 * @cachep: the cache we're checking against
3594 * @ptr: pointer to validate
3595 *
7682486b 3596 * This verifies that the untrusted pointer looks sane;
1da177e4
LT
3597 * it is _not_ a guarantee that the pointer is actually
3598 * part of the slab cache in question, but it at least
3599 * validates that the pointer can be dereferenced and
3600 * looks half-way sane.
3601 *
3602 * Currently only used for dentry validation.
3603 */
b7f869a2 3604int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
1da177e4 3605{
b28a02de 3606 unsigned long addr = (unsigned long)ptr;
1da177e4 3607 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3608 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3609 unsigned long size = cachep->buffer_size;
1da177e4
LT
3610 struct page *page;
3611
3612 if (unlikely(addr < min_addr))
3613 goto out;
3614 if (unlikely(addr > (unsigned long)high_memory - size))
3615 goto out;
3616 if (unlikely(addr & align_mask))
3617 goto out;
3618 if (unlikely(!kern_addr_valid(addr)))
3619 goto out;
3620 if (unlikely(!kern_addr_valid(addr + size - 1)))
3621 goto out;
3622 page = virt_to_page(ptr);
3623 if (unlikely(!PageSlab(page)))
3624 goto out;
065d41cb 3625 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3626 goto out;
3627 return 1;
a737b3e2 3628out:
1da177e4
LT
3629 return 0;
3630}
3631
3632#ifdef CONFIG_NUMA
8b98c169
CH
3633void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3634{
36555751
EGM
3635 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3636 __builtin_return_address(0));
3637
ca2b84cb
EGM
3638 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3639 obj_size(cachep), cachep->buffer_size,
3640 flags, nodeid);
36555751
EGM
3641
3642 return ret;
8b98c169 3643}
1da177e4
LT
3644EXPORT_SYMBOL(kmem_cache_alloc_node);
3645
0f24f128 3646#ifdef CONFIG_TRACING
36555751
EGM
3647void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
3648 gfp_t flags,
3649 int nodeid)
3650{
3651 return __cache_alloc_node(cachep, flags, nodeid,
3652 __builtin_return_address(0));
3653}
3654EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
3655#endif
3656
8b98c169
CH
3657static __always_inline void *
3658__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3659{
343e0d7a 3660 struct kmem_cache *cachep;
36555751 3661 void *ret;
97e2bde4
MS
3662
3663 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3664 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3665 return cachep;
36555751
EGM
3666 ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
3667
ca2b84cb
EGM
3668 trace_kmalloc_node((unsigned long) caller, ret,
3669 size, cachep->buffer_size, flags, node);
36555751
EGM
3670
3671 return ret;
97e2bde4 3672}
8b98c169 3673
0bb38a5c 3674#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3675void *__kmalloc_node(size_t size, gfp_t flags, int node)
3676{
3677 return __do_kmalloc_node(size, flags, node,
3678 __builtin_return_address(0));
3679}
dbe5e69d 3680EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3681
3682void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3683 int node, unsigned long caller)
8b98c169 3684{
ce71e27c 3685 return __do_kmalloc_node(size, flags, node, (void *)caller);
8b98c169
CH
3686}
3687EXPORT_SYMBOL(__kmalloc_node_track_caller);
3688#else
3689void *__kmalloc_node(size_t size, gfp_t flags, int node)
3690{
3691 return __do_kmalloc_node(size, flags, node, NULL);
3692}
3693EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3694#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3695#endif /* CONFIG_NUMA */
1da177e4
LT
3696
3697/**
800590f5 3698 * __do_kmalloc - allocate memory
1da177e4 3699 * @size: how many bytes of memory are required.
800590f5 3700 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3701 * @caller: function caller for debug tracking of the caller
1da177e4 3702 */
7fd6b141
PE
3703static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3704 void *caller)
1da177e4 3705{
343e0d7a 3706 struct kmem_cache *cachep;
36555751 3707 void *ret;
1da177e4 3708
97e2bde4
MS
3709 /* If you want to save a few bytes .text space: replace
3710 * __ with kmem_.
3711 * Then kmalloc uses the uninlined functions instead of the inline
3712 * functions.
3713 */
3714 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3715 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3716 return cachep;
36555751
EGM
3717 ret = __cache_alloc(cachep, flags, caller);
3718
ca2b84cb
EGM
3719 trace_kmalloc((unsigned long) caller, ret,
3720 size, cachep->buffer_size, flags);
36555751
EGM
3721
3722 return ret;
7fd6b141
PE
3723}
3724
7fd6b141 3725
0bb38a5c 3726#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3727void *__kmalloc(size_t size, gfp_t flags)
3728{
871751e2 3729 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3730}
3731EXPORT_SYMBOL(__kmalloc);
3732
ce71e27c 3733void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3734{
ce71e27c 3735 return __do_kmalloc(size, flags, (void *)caller);
7fd6b141
PE
3736}
3737EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3738
3739#else
3740void *__kmalloc(size_t size, gfp_t flags)
3741{
3742 return __do_kmalloc(size, flags, NULL);
3743}
3744EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3745#endif
3746
1da177e4
LT
3747/**
3748 * kmem_cache_free - Deallocate an object
3749 * @cachep: The cache the allocation was from.
3750 * @objp: The previously allocated object.
3751 *
3752 * Free an object which was previously allocated from this
3753 * cache.
3754 */
343e0d7a 3755void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3756{
3757 unsigned long flags;
3758
3759 local_irq_save(flags);
898552c9 3760 debug_check_no_locks_freed(objp, obj_size(cachep));
3ac7fe5a
TG
3761 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3762 debug_check_no_obj_freed(objp, obj_size(cachep));
873623df 3763 __cache_free(cachep, objp);
1da177e4 3764 local_irq_restore(flags);
36555751 3765
ca2b84cb 3766 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3767}
3768EXPORT_SYMBOL(kmem_cache_free);
3769
1da177e4
LT
3770/**
3771 * kfree - free previously allocated memory
3772 * @objp: pointer returned by kmalloc.
3773 *
80e93eff
PE
3774 * If @objp is NULL, no operation is performed.
3775 *
1da177e4
LT
3776 * Don't free memory not originally allocated by kmalloc()
3777 * or you will run into trouble.
3778 */
3779void kfree(const void *objp)
3780{
343e0d7a 3781 struct kmem_cache *c;
1da177e4
LT
3782 unsigned long flags;
3783
2121db74
PE
3784 trace_kfree(_RET_IP_, objp);
3785
6cb8f913 3786 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3787 return;
3788 local_irq_save(flags);
3789 kfree_debugcheck(objp);
6ed5eb22 3790 c = virt_to_cache(objp);
f9b8404c 3791 debug_check_no_locks_freed(objp, obj_size(c));
3ac7fe5a 3792 debug_check_no_obj_freed(objp, obj_size(c));
873623df 3793 __cache_free(c, (void *)objp);
1da177e4
LT
3794 local_irq_restore(flags);
3795}
3796EXPORT_SYMBOL(kfree);
3797
343e0d7a 3798unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3799{
3dafccf2 3800 return obj_size(cachep);
1da177e4
LT
3801}
3802EXPORT_SYMBOL(kmem_cache_size);
3803
343e0d7a 3804const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3805{
3806 return cachep->name;
3807}
3808EXPORT_SYMBOL_GPL(kmem_cache_name);
3809
e498be7d 3810/*
183ff22b 3811 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 3812 */
83b519e8 3813static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3814{
3815 int node;
3816 struct kmem_list3 *l3;
cafeb02e 3817 struct array_cache *new_shared;
3395ee05 3818 struct array_cache **new_alien = NULL;
e498be7d 3819
9c09a95c 3820 for_each_online_node(node) {
cafeb02e 3821
3395ee05 3822 if (use_alien_caches) {
83b519e8 3823 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3824 if (!new_alien)
3825 goto fail;
3826 }
cafeb02e 3827
63109846
ED
3828 new_shared = NULL;
3829 if (cachep->shared) {
3830 new_shared = alloc_arraycache(node,
0718dc2a 3831 cachep->shared*cachep->batchcount,
83b519e8 3832 0xbaadf00d, gfp);
63109846
ED
3833 if (!new_shared) {
3834 free_alien_cache(new_alien);
3835 goto fail;
3836 }
0718dc2a 3837 }
cafeb02e 3838
a737b3e2
AM
3839 l3 = cachep->nodelists[node];
3840 if (l3) {
cafeb02e
CL
3841 struct array_cache *shared = l3->shared;
3842
e498be7d
CL
3843 spin_lock_irq(&l3->list_lock);
3844
cafeb02e 3845 if (shared)
0718dc2a
CL
3846 free_block(cachep, shared->entry,
3847 shared->avail, node);
e498be7d 3848
cafeb02e
CL
3849 l3->shared = new_shared;
3850 if (!l3->alien) {
e498be7d
CL
3851 l3->alien = new_alien;
3852 new_alien = NULL;
3853 }
b28a02de 3854 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3855 cachep->batchcount + cachep->num;
e498be7d 3856 spin_unlock_irq(&l3->list_lock);
cafeb02e 3857 kfree(shared);
e498be7d
CL
3858 free_alien_cache(new_alien);
3859 continue;
3860 }
83b519e8 3861 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
0718dc2a
CL
3862 if (!l3) {
3863 free_alien_cache(new_alien);
3864 kfree(new_shared);
e498be7d 3865 goto fail;
0718dc2a 3866 }
e498be7d
CL
3867
3868 kmem_list3_init(l3);
3869 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3870 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3871 l3->shared = new_shared;
e498be7d 3872 l3->alien = new_alien;
b28a02de 3873 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3874 cachep->batchcount + cachep->num;
e498be7d
CL
3875 cachep->nodelists[node] = l3;
3876 }
cafeb02e 3877 return 0;
0718dc2a 3878
a737b3e2 3879fail:
0718dc2a
CL
3880 if (!cachep->next.next) {
3881 /* Cache is not active yet. Roll back what we did */
3882 node--;
3883 while (node >= 0) {
3884 if (cachep->nodelists[node]) {
3885 l3 = cachep->nodelists[node];
3886
3887 kfree(l3->shared);
3888 free_alien_cache(l3->alien);
3889 kfree(l3);
3890 cachep->nodelists[node] = NULL;
3891 }
3892 node--;
3893 }
3894 }
cafeb02e 3895 return -ENOMEM;
e498be7d
CL
3896}
3897
1da177e4 3898struct ccupdate_struct {
343e0d7a 3899 struct kmem_cache *cachep;
1da177e4
LT
3900 struct array_cache *new[NR_CPUS];
3901};
3902
3903static void do_ccupdate_local(void *info)
3904{
a737b3e2 3905 struct ccupdate_struct *new = info;
1da177e4
LT
3906 struct array_cache *old;
3907
3908 check_irq_off();
9a2dba4b 3909 old = cpu_cache_get(new->cachep);
e498be7d 3910
1da177e4
LT
3911 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3912 new->new[smp_processor_id()] = old;
3913}
3914
b5d8ca7c 3915/* Always called with the cache_chain_mutex held */
a737b3e2 3916static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3917 int batchcount, int shared, gfp_t gfp)
1da177e4 3918{
d2e7b7d0 3919 struct ccupdate_struct *new;
2ed3a4ef 3920 int i;
1da177e4 3921
83b519e8 3922 new = kzalloc(sizeof(*new), gfp);
d2e7b7d0
SS
3923 if (!new)
3924 return -ENOMEM;
3925
e498be7d 3926 for_each_online_cpu(i) {
d2e7b7d0 3927 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
83b519e8 3928 batchcount, gfp);
d2e7b7d0 3929 if (!new->new[i]) {
b28a02de 3930 for (i--; i >= 0; i--)
d2e7b7d0
SS
3931 kfree(new->new[i]);
3932 kfree(new);
e498be7d 3933 return -ENOMEM;
1da177e4
LT
3934 }
3935 }
d2e7b7d0 3936 new->cachep = cachep;
1da177e4 3937
15c8b6c1 3938 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 3939
1da177e4 3940 check_irq_on();
1da177e4
LT
3941 cachep->batchcount = batchcount;
3942 cachep->limit = limit;
e498be7d 3943 cachep->shared = shared;
1da177e4 3944
e498be7d 3945 for_each_online_cpu(i) {
d2e7b7d0 3946 struct array_cache *ccold = new->new[i];
1da177e4
LT
3947 if (!ccold)
3948 continue;
e498be7d 3949 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3950 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3951 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3952 kfree(ccold);
3953 }
d2e7b7d0 3954 kfree(new);
83b519e8 3955 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
3956}
3957
b5d8ca7c 3958/* Called with cache_chain_mutex held always */
83b519e8 3959static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3960{
3961 int err;
3962 int limit, shared;
3963
a737b3e2
AM
3964 /*
3965 * The head array serves three purposes:
1da177e4
LT
3966 * - create a LIFO ordering, i.e. return objects that are cache-warm
3967 * - reduce the number of spinlock operations.
a737b3e2 3968 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3969 * bufctl chains: array operations are cheaper.
3970 * The numbers are guessed, we should auto-tune as described by
3971 * Bonwick.
3972 */
3dafccf2 3973 if (cachep->buffer_size > 131072)
1da177e4 3974 limit = 1;
3dafccf2 3975 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 3976 limit = 8;
3dafccf2 3977 else if (cachep->buffer_size > 1024)
1da177e4 3978 limit = 24;
3dafccf2 3979 else if (cachep->buffer_size > 256)
1da177e4
LT
3980 limit = 54;
3981 else
3982 limit = 120;
3983
a737b3e2
AM
3984 /*
3985 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3986 * allocation behaviour: Most allocs on one cpu, most free operations
3987 * on another cpu. For these cases, an efficient object passing between
3988 * cpus is necessary. This is provided by a shared array. The array
3989 * replaces Bonwick's magazine layer.
3990 * On uniprocessor, it's functionally equivalent (but less efficient)
3991 * to a larger limit. Thus disabled by default.
3992 */
3993 shared = 0;
364fbb29 3994 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3995 shared = 8;
1da177e4
LT
3996
3997#if DEBUG
a737b3e2
AM
3998 /*
3999 * With debugging enabled, large batchcount lead to excessively long
4000 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4001 */
4002 if (limit > 32)
4003 limit = 32;
4004#endif
83b519e8 4005 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
1da177e4
LT
4006 if (err)
4007 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4008 cachep->name, -err);
2ed3a4ef 4009 return err;
1da177e4
LT
4010}
4011
1b55253a
CL
4012/*
4013 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4014 * necessary. Note that the l3 listlock also protects the array_cache
4015 * if drain_array() is used on the shared array.
1b55253a
CL
4016 */
4017void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4018 struct array_cache *ac, int force, int node)
1da177e4
LT
4019{
4020 int tofree;
4021
1b55253a
CL
4022 if (!ac || !ac->avail)
4023 return;
1da177e4
LT
4024 if (ac->touched && !force) {
4025 ac->touched = 0;
b18e7e65 4026 } else {
1b55253a 4027 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4028 if (ac->avail) {
4029 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4030 if (tofree > ac->avail)
4031 tofree = (ac->avail + 1) / 2;
4032 free_block(cachep, ac->entry, tofree, node);
4033 ac->avail -= tofree;
4034 memmove(ac->entry, &(ac->entry[tofree]),
4035 sizeof(void *) * ac->avail);
4036 }
1b55253a 4037 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4038 }
4039}
4040
4041/**
4042 * cache_reap - Reclaim memory from caches.
05fb6bf0 4043 * @w: work descriptor
1da177e4
LT
4044 *
4045 * Called from workqueue/eventd every few seconds.
4046 * Purpose:
4047 * - clear the per-cpu caches for this CPU.
4048 * - return freeable pages to the main free memory pool.
4049 *
a737b3e2
AM
4050 * If we cannot acquire the cache chain mutex then just give up - we'll try
4051 * again on the next iteration.
1da177e4 4052 */
7c5cae36 4053static void cache_reap(struct work_struct *w)
1da177e4 4054{
7a7c381d 4055 struct kmem_cache *searchp;
e498be7d 4056 struct kmem_list3 *l3;
aab2207c 4057 int node = numa_node_id();
bf6aede7 4058 struct delayed_work *work = to_delayed_work(w);
1da177e4 4059
7c5cae36 4060 if (!mutex_trylock(&cache_chain_mutex))
1da177e4 4061 /* Give up. Setup the next iteration. */
7c5cae36 4062 goto out;
1da177e4 4063
7a7c381d 4064 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
4065 check_irq_on();
4066
35386e3b
CL
4067 /*
4068 * We only take the l3 lock if absolutely necessary and we
4069 * have established with reasonable certainty that
4070 * we can do some work if the lock was obtained.
4071 */
aab2207c 4072 l3 = searchp->nodelists[node];
35386e3b 4073
8fce4d8e 4074 reap_alien(searchp, l3);
1da177e4 4075
aab2207c 4076 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4077
35386e3b
CL
4078 /*
4079 * These are racy checks but it does not matter
4080 * if we skip one check or scan twice.
4081 */
e498be7d 4082 if (time_after(l3->next_reap, jiffies))
35386e3b 4083 goto next;
1da177e4 4084
e498be7d 4085 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4086
aab2207c 4087 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4088
ed11d9eb 4089 if (l3->free_touched)
e498be7d 4090 l3->free_touched = 0;
ed11d9eb
CL
4091 else {
4092 int freed;
1da177e4 4093
ed11d9eb
CL
4094 freed = drain_freelist(searchp, l3, (l3->free_limit +
4095 5 * searchp->num - 1) / (5 * searchp->num));
4096 STATS_ADD_REAPED(searchp, freed);
4097 }
35386e3b 4098next:
1da177e4
LT
4099 cond_resched();
4100 }
4101 check_irq_on();
fc0abb14 4102 mutex_unlock(&cache_chain_mutex);
8fce4d8e 4103 next_reap_node();
7c5cae36 4104out:
a737b3e2 4105 /* Set up the next iteration */
7c5cae36 4106 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4107}
4108
158a9624 4109#ifdef CONFIG_SLABINFO
1da177e4 4110
85289f98 4111static void print_slabinfo_header(struct seq_file *m)
1da177e4 4112{
85289f98
PE
4113 /*
4114 * Output format version, so at least we can change it
4115 * without _too_ many complaints.
4116 */
1da177e4 4117#if STATS
85289f98 4118 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4119#else
85289f98 4120 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4121#endif
85289f98
PE
4122 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4123 "<objperslab> <pagesperslab>");
4124 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4125 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4126#if STATS
85289f98 4127 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4128 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4129 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4130#endif
85289f98
PE
4131 seq_putc(m, '\n');
4132}
4133
4134static void *s_start(struct seq_file *m, loff_t *pos)
4135{
4136 loff_t n = *pos;
85289f98 4137
fc0abb14 4138 mutex_lock(&cache_chain_mutex);
85289f98
PE
4139 if (!n)
4140 print_slabinfo_header(m);
b92151ba
PE
4141
4142 return seq_list_start(&cache_chain, *pos);
1da177e4
LT
4143}
4144
4145static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4146{
b92151ba 4147 return seq_list_next(p, &cache_chain, pos);
1da177e4
LT
4148}
4149
4150static void s_stop(struct seq_file *m, void *p)
4151{
fc0abb14 4152 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4153}
4154
4155static int s_show(struct seq_file *m, void *p)
4156{
b92151ba 4157 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
b28a02de
PE
4158 struct slab *slabp;
4159 unsigned long active_objs;
4160 unsigned long num_objs;
4161 unsigned long active_slabs = 0;
4162 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4163 const char *name;
1da177e4 4164 char *error = NULL;
e498be7d
CL
4165 int node;
4166 struct kmem_list3 *l3;
1da177e4 4167
1da177e4
LT
4168 active_objs = 0;
4169 num_slabs = 0;
e498be7d
CL
4170 for_each_online_node(node) {
4171 l3 = cachep->nodelists[node];
4172 if (!l3)
4173 continue;
4174
ca3b9b91
RT
4175 check_irq_on();
4176 spin_lock_irq(&l3->list_lock);
e498be7d 4177
7a7c381d 4178 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4179 if (slabp->inuse != cachep->num && !error)
4180 error = "slabs_full accounting error";
4181 active_objs += cachep->num;
4182 active_slabs++;
4183 }
7a7c381d 4184 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4185 if (slabp->inuse == cachep->num && !error)
4186 error = "slabs_partial inuse accounting error";
4187 if (!slabp->inuse && !error)
4188 error = "slabs_partial/inuse accounting error";
4189 active_objs += slabp->inuse;
4190 active_slabs++;
4191 }
7a7c381d 4192 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4193 if (slabp->inuse && !error)
4194 error = "slabs_free/inuse accounting error";
4195 num_slabs++;
4196 }
4197 free_objects += l3->free_objects;
4484ebf1
RT
4198 if (l3->shared)
4199 shared_avail += l3->shared->avail;
e498be7d 4200
ca3b9b91 4201 spin_unlock_irq(&l3->list_lock);
1da177e4 4202 }
b28a02de
PE
4203 num_slabs += active_slabs;
4204 num_objs = num_slabs * cachep->num;
e498be7d 4205 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4206 error = "free_objects accounting error";
4207
b28a02de 4208 name = cachep->name;
1da177e4
LT
4209 if (error)
4210 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4211
4212 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 4213 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 4214 cachep->num, (1 << cachep->gfporder));
1da177e4 4215 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4216 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4217 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4218 active_slabs, num_slabs, shared_avail);
1da177e4 4219#if STATS
b28a02de 4220 { /* list3 stats */
1da177e4
LT
4221 unsigned long high = cachep->high_mark;
4222 unsigned long allocs = cachep->num_allocations;
4223 unsigned long grown = cachep->grown;
4224 unsigned long reaped = cachep->reaped;
4225 unsigned long errors = cachep->errors;
4226 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4227 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4228 unsigned long node_frees = cachep->node_frees;
fb7faf33 4229 unsigned long overflows = cachep->node_overflow;
1da177e4 4230
e498be7d 4231 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 4232 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 4233 reaped, errors, max_freeable, node_allocs,
fb7faf33 4234 node_frees, overflows);
1da177e4
LT
4235 }
4236 /* cpu stats */
4237 {
4238 unsigned long allochit = atomic_read(&cachep->allochit);
4239 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4240 unsigned long freehit = atomic_read(&cachep->freehit);
4241 unsigned long freemiss = atomic_read(&cachep->freemiss);
4242
4243 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4244 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4245 }
4246#endif
4247 seq_putc(m, '\n');
1da177e4
LT
4248 return 0;
4249}
4250
4251/*
4252 * slabinfo_op - iterator that generates /proc/slabinfo
4253 *
4254 * Output layout:
4255 * cache-name
4256 * num-active-objs
4257 * total-objs
4258 * object size
4259 * num-active-slabs
4260 * total-slabs
4261 * num-pages-per-slab
4262 * + further values on SMP and with statistics enabled
4263 */
4264
7b3c3a50 4265static const struct seq_operations slabinfo_op = {
b28a02de
PE
4266 .start = s_start,
4267 .next = s_next,
4268 .stop = s_stop,
4269 .show = s_show,
1da177e4
LT
4270};
4271
4272#define MAX_SLABINFO_WRITE 128
4273/**
4274 * slabinfo_write - Tuning for the slab allocator
4275 * @file: unused
4276 * @buffer: user buffer
4277 * @count: data length
4278 * @ppos: unused
4279 */
b28a02de
PE
4280ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4281 size_t count, loff_t *ppos)
1da177e4 4282{
b28a02de 4283 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4284 int limit, batchcount, shared, res;
7a7c381d 4285 struct kmem_cache *cachep;
b28a02de 4286
1da177e4
LT
4287 if (count > MAX_SLABINFO_WRITE)
4288 return -EINVAL;
4289 if (copy_from_user(&kbuf, buffer, count))
4290 return -EFAULT;
b28a02de 4291 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4292
4293 tmp = strchr(kbuf, ' ');
4294 if (!tmp)
4295 return -EINVAL;
4296 *tmp = '\0';
4297 tmp++;
4298 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4299 return -EINVAL;
4300
4301 /* Find the cache in the chain of caches. */
fc0abb14 4302 mutex_lock(&cache_chain_mutex);
1da177e4 4303 res = -EINVAL;
7a7c381d 4304 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4305 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4306 if (limit < 1 || batchcount < 1 ||
4307 batchcount > limit || shared < 0) {
e498be7d 4308 res = 0;
1da177e4 4309 } else {
e498be7d 4310 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4311 batchcount, shared,
4312 GFP_KERNEL);
1da177e4
LT
4313 }
4314 break;
4315 }
4316 }
fc0abb14 4317 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4318 if (res >= 0)
4319 res = count;
4320 return res;
4321}
871751e2 4322
7b3c3a50
AD
4323static int slabinfo_open(struct inode *inode, struct file *file)
4324{
4325 return seq_open(file, &slabinfo_op);
4326}
4327
4328static const struct file_operations proc_slabinfo_operations = {
4329 .open = slabinfo_open,
4330 .read = seq_read,
4331 .write = slabinfo_write,
4332 .llseek = seq_lseek,
4333 .release = seq_release,
4334};
4335
871751e2
AV
4336#ifdef CONFIG_DEBUG_SLAB_LEAK
4337
4338static void *leaks_start(struct seq_file *m, loff_t *pos)
4339{
871751e2 4340 mutex_lock(&cache_chain_mutex);
b92151ba 4341 return seq_list_start(&cache_chain, *pos);
871751e2
AV
4342}
4343
4344static inline int add_caller(unsigned long *n, unsigned long v)
4345{
4346 unsigned long *p;
4347 int l;
4348 if (!v)
4349 return 1;
4350 l = n[1];
4351 p = n + 2;
4352 while (l) {
4353 int i = l/2;
4354 unsigned long *q = p + 2 * i;
4355 if (*q == v) {
4356 q[1]++;
4357 return 1;
4358 }
4359 if (*q > v) {
4360 l = i;
4361 } else {
4362 p = q + 2;
4363 l -= i + 1;
4364 }
4365 }
4366 if (++n[1] == n[0])
4367 return 0;
4368 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4369 p[0] = v;
4370 p[1] = 1;
4371 return 1;
4372}
4373
4374static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4375{
4376 void *p;
4377 int i;
4378 if (n[0] == n[1])
4379 return;
4380 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4381 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4382 continue;
4383 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4384 return;
4385 }
4386}
4387
4388static void show_symbol(struct seq_file *m, unsigned long address)
4389{
4390#ifdef CONFIG_KALLSYMS
871751e2 4391 unsigned long offset, size;
9281acea 4392 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4393
a5c43dae 4394 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4395 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4396 if (modname[0])
871751e2
AV
4397 seq_printf(m, " [%s]", modname);
4398 return;
4399 }
4400#endif
4401 seq_printf(m, "%p", (void *)address);
4402}
4403
4404static int leaks_show(struct seq_file *m, void *p)
4405{
b92151ba 4406 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
871751e2
AV
4407 struct slab *slabp;
4408 struct kmem_list3 *l3;
4409 const char *name;
4410 unsigned long *n = m->private;
4411 int node;
4412 int i;
4413
4414 if (!(cachep->flags & SLAB_STORE_USER))
4415 return 0;
4416 if (!(cachep->flags & SLAB_RED_ZONE))
4417 return 0;
4418
4419 /* OK, we can do it */
4420
4421 n[1] = 0;
4422
4423 for_each_online_node(node) {
4424 l3 = cachep->nodelists[node];
4425 if (!l3)
4426 continue;
4427
4428 check_irq_on();
4429 spin_lock_irq(&l3->list_lock);
4430
7a7c381d 4431 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4432 handle_slab(n, cachep, slabp);
7a7c381d 4433 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4434 handle_slab(n, cachep, slabp);
871751e2
AV
4435 spin_unlock_irq(&l3->list_lock);
4436 }
4437 name = cachep->name;
4438 if (n[0] == n[1]) {
4439 /* Increase the buffer size */
4440 mutex_unlock(&cache_chain_mutex);
4441 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4442 if (!m->private) {
4443 /* Too bad, we are really out */
4444 m->private = n;
4445 mutex_lock(&cache_chain_mutex);
4446 return -ENOMEM;
4447 }
4448 *(unsigned long *)m->private = n[0] * 2;
4449 kfree(n);
4450 mutex_lock(&cache_chain_mutex);
4451 /* Now make sure this entry will be retried */
4452 m->count = m->size;
4453 return 0;
4454 }
4455 for (i = 0; i < n[1]; i++) {
4456 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4457 show_symbol(m, n[2*i+2]);
4458 seq_putc(m, '\n');
4459 }
d2e7b7d0 4460
871751e2
AV
4461 return 0;
4462}
4463
a0ec95a8 4464static const struct seq_operations slabstats_op = {
871751e2
AV
4465 .start = leaks_start,
4466 .next = s_next,
4467 .stop = s_stop,
4468 .show = leaks_show,
4469};
a0ec95a8
AD
4470
4471static int slabstats_open(struct inode *inode, struct file *file)
4472{
4473 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4474 int ret = -ENOMEM;
4475 if (n) {
4476 ret = seq_open(file, &slabstats_op);
4477 if (!ret) {
4478 struct seq_file *m = file->private_data;
4479 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4480 m->private = n;
4481 n = NULL;
4482 }
4483 kfree(n);
4484 }
4485 return ret;
4486}
4487
4488static const struct file_operations proc_slabstats_operations = {
4489 .open = slabstats_open,
4490 .read = seq_read,
4491 .llseek = seq_lseek,
4492 .release = seq_release_private,
4493};
4494#endif
4495
4496static int __init slab_proc_init(void)
4497{
7b3c3a50 4498 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
a0ec95a8
AD
4499#ifdef CONFIG_DEBUG_SLAB_LEAK
4500 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4501#endif
a0ec95a8
AD
4502 return 0;
4503}
4504module_init(slab_proc_init);
1da177e4
LT
4505#endif
4506
00e145b6
MS
4507/**
4508 * ksize - get the actual amount of memory allocated for a given object
4509 * @objp: Pointer to the object
4510 *
4511 * kmalloc may internally round up allocations and return more memory
4512 * than requested. ksize() can be used to determine the actual amount of
4513 * memory allocated. The caller may use this additional memory, even though
4514 * a smaller amount of memory was initially specified with the kmalloc call.
4515 * The caller must guarantee that objp points to a valid object previously
4516 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4517 * must not be freed during the duration of the call.
4518 */
fd76bab2 4519size_t ksize(const void *objp)
1da177e4 4520{
ef8b4520
CL
4521 BUG_ON(!objp);
4522 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4523 return 0;
1da177e4 4524
6ed5eb22 4525 return obj_size(virt_to_cache(objp));
1da177e4 4526}
b1aabecd 4527EXPORT_SYMBOL(ksize);