]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/slab.c
page allocator: use a pre-calculated value instead of num_online_nodes() in fast...
[net-next-2.6.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
02af61bb 105#include <linux/kmemtrace.h>
1da177e4 106#include <linux/rcupdate.h>
543537bd 107#include <linux/string.h>
138ae663 108#include <linux/uaccess.h>
e498be7d 109#include <linux/nodemask.h>
d5cff635 110#include <linux/kmemleak.h>
dc85da15 111#include <linux/mempolicy.h>
fc0abb14 112#include <linux/mutex.h>
8a8b6502 113#include <linux/fault-inject.h>
e7eebaf6 114#include <linux/rtmutex.h>
6a2d7a95 115#include <linux/reciprocal_div.h>
3ac7fe5a 116#include <linux/debugobjects.h>
1da177e4 117
1da177e4
LT
118#include <asm/cacheflush.h>
119#include <asm/tlbflush.h>
120#include <asm/page.h>
121
122/*
50953fe9 123 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
124 * 0 for faster, smaller code (especially in the critical paths).
125 *
126 * STATS - 1 to collect stats for /proc/slabinfo.
127 * 0 for faster, smaller code (especially in the critical paths).
128 *
129 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
130 */
131
132#ifdef CONFIG_DEBUG_SLAB
133#define DEBUG 1
134#define STATS 1
135#define FORCED_DEBUG 1
136#else
137#define DEBUG 0
138#define STATS 0
139#define FORCED_DEBUG 0
140#endif
141
1da177e4
LT
142/* Shouldn't this be in a header file somewhere? */
143#define BYTES_PER_WORD sizeof(void *)
87a927c7 144#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 145
1da177e4
LT
146#ifndef ARCH_KMALLOC_MINALIGN
147/*
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
b46b8f19
DW
152 * alignment larger than the alignment of a 64-bit integer.
153 * ARCH_KMALLOC_MINALIGN allows that.
154 * Note that increasing this value may disable some debug features.
1da177e4 155 */
b46b8f19 156#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
1da177e4
LT
157#endif
158
159#ifndef ARCH_SLAB_MINALIGN
160/*
161 * Enforce a minimum alignment for all caches.
162 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
163 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
164 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
165 * some debug features.
166 */
167#define ARCH_SLAB_MINALIGN 0
168#endif
169
170#ifndef ARCH_KMALLOC_FLAGS
171#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
172#endif
173
174/* Legal flag mask for kmem_cache_create(). */
175#if DEBUG
50953fe9 176# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 177 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 178 SLAB_CACHE_DMA | \
5af60839 179 SLAB_STORE_USER | \
1da177e4 180 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 181 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
d5cff635 182 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE)
1da177e4 183#else
ac2b898c 184# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 185 SLAB_CACHE_DMA | \
1da177e4 186 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 187 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
d5cff635 188 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE)
1da177e4
LT
189#endif
190
191/*
192 * kmem_bufctl_t:
193 *
194 * Bufctl's are used for linking objs within a slab
195 * linked offsets.
196 *
197 * This implementation relies on "struct page" for locating the cache &
198 * slab an object belongs to.
199 * This allows the bufctl structure to be small (one int), but limits
200 * the number of objects a slab (not a cache) can contain when off-slab
201 * bufctls are used. The limit is the size of the largest general cache
202 * that does not use off-slab slabs.
203 * For 32bit archs with 4 kB pages, is this 56.
204 * This is not serious, as it is only for large objects, when it is unwise
205 * to have too many per slab.
206 * Note: This limit can be raised by introducing a general cache whose size
207 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
208 */
209
fa5b08d5 210typedef unsigned int kmem_bufctl_t;
1da177e4
LT
211#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
212#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
213#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
214#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 215
1da177e4
LT
216/*
217 * struct slab
218 *
219 * Manages the objs in a slab. Placed either at the beginning of mem allocated
220 * for a slab, or allocated from an general cache.
221 * Slabs are chained into three list: fully used, partial, fully free slabs.
222 */
223struct slab {
b28a02de
PE
224 struct list_head list;
225 unsigned long colouroff;
226 void *s_mem; /* including colour offset */
227 unsigned int inuse; /* num of objs active in slab */
228 kmem_bufctl_t free;
229 unsigned short nodeid;
1da177e4
LT
230};
231
232/*
233 * struct slab_rcu
234 *
235 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
236 * arrange for kmem_freepages to be called via RCU. This is useful if
237 * we need to approach a kernel structure obliquely, from its address
238 * obtained without the usual locking. We can lock the structure to
239 * stabilize it and check it's still at the given address, only if we
240 * can be sure that the memory has not been meanwhile reused for some
241 * other kind of object (which our subsystem's lock might corrupt).
242 *
243 * rcu_read_lock before reading the address, then rcu_read_unlock after
244 * taking the spinlock within the structure expected at that address.
245 *
246 * We assume struct slab_rcu can overlay struct slab when destroying.
247 */
248struct slab_rcu {
b28a02de 249 struct rcu_head head;
343e0d7a 250 struct kmem_cache *cachep;
b28a02de 251 void *addr;
1da177e4
LT
252};
253
254/*
255 * struct array_cache
256 *
1da177e4
LT
257 * Purpose:
258 * - LIFO ordering, to hand out cache-warm objects from _alloc
259 * - reduce the number of linked list operations
260 * - reduce spinlock operations
261 *
262 * The limit is stored in the per-cpu structure to reduce the data cache
263 * footprint.
264 *
265 */
266struct array_cache {
267 unsigned int avail;
268 unsigned int limit;
269 unsigned int batchcount;
270 unsigned int touched;
e498be7d 271 spinlock_t lock;
bda5b655 272 void *entry[]; /*
a737b3e2
AM
273 * Must have this definition in here for the proper
274 * alignment of array_cache. Also simplifies accessing
275 * the entries.
a737b3e2 276 */
1da177e4
LT
277};
278
a737b3e2
AM
279/*
280 * bootstrap: The caches do not work without cpuarrays anymore, but the
281 * cpuarrays are allocated from the generic caches...
1da177e4
LT
282 */
283#define BOOT_CPUCACHE_ENTRIES 1
284struct arraycache_init {
285 struct array_cache cache;
b28a02de 286 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
287};
288
289/*
e498be7d 290 * The slab lists for all objects.
1da177e4
LT
291 */
292struct kmem_list3 {
b28a02de
PE
293 struct list_head slabs_partial; /* partial list first, better asm code */
294 struct list_head slabs_full;
295 struct list_head slabs_free;
296 unsigned long free_objects;
b28a02de 297 unsigned int free_limit;
2e1217cf 298 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
299 spinlock_t list_lock;
300 struct array_cache *shared; /* shared per node */
301 struct array_cache **alien; /* on other nodes */
35386e3b
CL
302 unsigned long next_reap; /* updated without locking */
303 int free_touched; /* updated without locking */
1da177e4
LT
304};
305
7e85ee0c
PE
306/*
307 * The slab allocator is initialized with interrupts disabled. Therefore, make
308 * sure early boot allocations don't accidentally enable interrupts.
309 */
310static gfp_t slab_gfp_mask __read_mostly = SLAB_GFP_BOOT_MASK;
311
e498be7d
CL
312/*
313 * Need this for bootstrapping a per node allocator.
314 */
556a169d 315#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
e498be7d
CL
316struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
317#define CACHE_CACHE 0
556a169d
PE
318#define SIZE_AC MAX_NUMNODES
319#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 320
ed11d9eb
CL
321static int drain_freelist(struct kmem_cache *cache,
322 struct kmem_list3 *l3, int tofree);
323static void free_block(struct kmem_cache *cachep, void **objpp, int len,
324 int node);
83b519e8 325static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 326static void cache_reap(struct work_struct *unused);
ed11d9eb 327
e498be7d 328/*
a737b3e2
AM
329 * This function must be completely optimized away if a constant is passed to
330 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 331 */
7243cc05 332static __always_inline int index_of(const size_t size)
e498be7d 333{
5ec8a847
SR
334 extern void __bad_size(void);
335
e498be7d
CL
336 if (__builtin_constant_p(size)) {
337 int i = 0;
338
339#define CACHE(x) \
340 if (size <=x) \
341 return i; \
342 else \
343 i++;
1c61fc40 344#include <linux/kmalloc_sizes.h>
e498be7d 345#undef CACHE
5ec8a847 346 __bad_size();
7243cc05 347 } else
5ec8a847 348 __bad_size();
e498be7d
CL
349 return 0;
350}
351
e0a42726
IM
352static int slab_early_init = 1;
353
e498be7d
CL
354#define INDEX_AC index_of(sizeof(struct arraycache_init))
355#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 356
5295a74c 357static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
358{
359 INIT_LIST_HEAD(&parent->slabs_full);
360 INIT_LIST_HEAD(&parent->slabs_partial);
361 INIT_LIST_HEAD(&parent->slabs_free);
362 parent->shared = NULL;
363 parent->alien = NULL;
2e1217cf 364 parent->colour_next = 0;
e498be7d
CL
365 spin_lock_init(&parent->list_lock);
366 parent->free_objects = 0;
367 parent->free_touched = 0;
368}
369
a737b3e2
AM
370#define MAKE_LIST(cachep, listp, slab, nodeid) \
371 do { \
372 INIT_LIST_HEAD(listp); \
373 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
374 } while (0)
375
a737b3e2
AM
376#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
377 do { \
e498be7d
CL
378 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
379 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
380 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
381 } while (0)
1da177e4
LT
382
383/*
343e0d7a 384 * struct kmem_cache
1da177e4
LT
385 *
386 * manages a cache.
387 */
b28a02de 388
2109a2d1 389struct kmem_cache {
1da177e4 390/* 1) per-cpu data, touched during every alloc/free */
b28a02de 391 struct array_cache *array[NR_CPUS];
b5d8ca7c 392/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
393 unsigned int batchcount;
394 unsigned int limit;
395 unsigned int shared;
b5d8ca7c 396
3dafccf2 397 unsigned int buffer_size;
6a2d7a95 398 u32 reciprocal_buffer_size;
b5d8ca7c 399/* 3) touched by every alloc & free from the backend */
b5d8ca7c 400
a737b3e2
AM
401 unsigned int flags; /* constant flags */
402 unsigned int num; /* # of objs per slab */
1da177e4 403
b5d8ca7c 404/* 4) cache_grow/shrink */
1da177e4 405 /* order of pgs per slab (2^n) */
b28a02de 406 unsigned int gfporder;
1da177e4
LT
407
408 /* force GFP flags, e.g. GFP_DMA */
b28a02de 409 gfp_t gfpflags;
1da177e4 410
a737b3e2 411 size_t colour; /* cache colouring range */
b28a02de 412 unsigned int colour_off; /* colour offset */
343e0d7a 413 struct kmem_cache *slabp_cache;
b28a02de 414 unsigned int slab_size;
a737b3e2 415 unsigned int dflags; /* dynamic flags */
1da177e4
LT
416
417 /* constructor func */
51cc5068 418 void (*ctor)(void *obj);
1da177e4 419
b5d8ca7c 420/* 5) cache creation/removal */
b28a02de
PE
421 const char *name;
422 struct list_head next;
1da177e4 423
b5d8ca7c 424/* 6) statistics */
1da177e4 425#if STATS
b28a02de
PE
426 unsigned long num_active;
427 unsigned long num_allocations;
428 unsigned long high_mark;
429 unsigned long grown;
430 unsigned long reaped;
431 unsigned long errors;
432 unsigned long max_freeable;
433 unsigned long node_allocs;
434 unsigned long node_frees;
fb7faf33 435 unsigned long node_overflow;
b28a02de
PE
436 atomic_t allochit;
437 atomic_t allocmiss;
438 atomic_t freehit;
439 atomic_t freemiss;
1da177e4
LT
440#endif
441#if DEBUG
3dafccf2
MS
442 /*
443 * If debugging is enabled, then the allocator can add additional
444 * fields and/or padding to every object. buffer_size contains the total
445 * object size including these internal fields, the following two
446 * variables contain the offset to the user object and its size.
447 */
448 int obj_offset;
449 int obj_size;
1da177e4 450#endif
8da3430d
ED
451 /*
452 * We put nodelists[] at the end of kmem_cache, because we want to size
453 * this array to nr_node_ids slots instead of MAX_NUMNODES
454 * (see kmem_cache_init())
455 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
456 * is statically defined, so we reserve the max number of nodes.
457 */
458 struct kmem_list3 *nodelists[MAX_NUMNODES];
459 /*
460 * Do not add fields after nodelists[]
461 */
1da177e4
LT
462};
463
464#define CFLGS_OFF_SLAB (0x80000000UL)
465#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
466
467#define BATCHREFILL_LIMIT 16
a737b3e2
AM
468/*
469 * Optimization question: fewer reaps means less probability for unnessary
470 * cpucache drain/refill cycles.
1da177e4 471 *
dc6f3f27 472 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
473 * which could lock up otherwise freeable slabs.
474 */
475#define REAPTIMEOUT_CPUC (2*HZ)
476#define REAPTIMEOUT_LIST3 (4*HZ)
477
478#if STATS
479#define STATS_INC_ACTIVE(x) ((x)->num_active++)
480#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
481#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
482#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 483#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
484#define STATS_SET_HIGH(x) \
485 do { \
486 if ((x)->num_active > (x)->high_mark) \
487 (x)->high_mark = (x)->num_active; \
488 } while (0)
1da177e4
LT
489#define STATS_INC_ERR(x) ((x)->errors++)
490#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 491#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 492#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
493#define STATS_SET_FREEABLE(x, i) \
494 do { \
495 if ((x)->max_freeable < i) \
496 (x)->max_freeable = i; \
497 } while (0)
1da177e4
LT
498#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
499#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
500#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
501#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
502#else
503#define STATS_INC_ACTIVE(x) do { } while (0)
504#define STATS_DEC_ACTIVE(x) do { } while (0)
505#define STATS_INC_ALLOCED(x) do { } while (0)
506#define STATS_INC_GROWN(x) do { } while (0)
ed11d9eb 507#define STATS_ADD_REAPED(x,y) do { } while (0)
1da177e4
LT
508#define STATS_SET_HIGH(x) do { } while (0)
509#define STATS_INC_ERR(x) do { } while (0)
510#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 511#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 512#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 513#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
514#define STATS_INC_ALLOCHIT(x) do { } while (0)
515#define STATS_INC_ALLOCMISS(x) do { } while (0)
516#define STATS_INC_FREEHIT(x) do { } while (0)
517#define STATS_INC_FREEMISS(x) do { } while (0)
518#endif
519
520#if DEBUG
1da177e4 521
a737b3e2
AM
522/*
523 * memory layout of objects:
1da177e4 524 * 0 : objp
3dafccf2 525 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
526 * the end of an object is aligned with the end of the real
527 * allocation. Catches writes behind the end of the allocation.
3dafccf2 528 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 529 * redzone word.
3dafccf2
MS
530 * cachep->obj_offset: The real object.
531 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
532 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
533 * [BYTES_PER_WORD long]
1da177e4 534 */
343e0d7a 535static int obj_offset(struct kmem_cache *cachep)
1da177e4 536{
3dafccf2 537 return cachep->obj_offset;
1da177e4
LT
538}
539
343e0d7a 540static int obj_size(struct kmem_cache *cachep)
1da177e4 541{
3dafccf2 542 return cachep->obj_size;
1da177e4
LT
543}
544
b46b8f19 545static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
546{
547 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
548 return (unsigned long long*) (objp + obj_offset(cachep) -
549 sizeof(unsigned long long));
1da177e4
LT
550}
551
b46b8f19 552static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
553{
554 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
555 if (cachep->flags & SLAB_STORE_USER)
b46b8f19
DW
556 return (unsigned long long *)(objp + cachep->buffer_size -
557 sizeof(unsigned long long) -
87a927c7 558 REDZONE_ALIGN);
b46b8f19
DW
559 return (unsigned long long *) (objp + cachep->buffer_size -
560 sizeof(unsigned long long));
1da177e4
LT
561}
562
343e0d7a 563static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
564{
565 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 566 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
567}
568
569#else
570
3dafccf2
MS
571#define obj_offset(x) 0
572#define obj_size(cachep) (cachep->buffer_size)
b46b8f19
DW
573#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
574#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
575#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
576
577#endif
578
36555751
EGM
579#ifdef CONFIG_KMEMTRACE
580size_t slab_buffer_size(struct kmem_cache *cachep)
581{
582 return cachep->buffer_size;
583}
584EXPORT_SYMBOL(slab_buffer_size);
585#endif
586
1da177e4
LT
587/*
588 * Do not go above this order unless 0 objects fit into the slab.
589 */
590#define BREAK_GFP_ORDER_HI 1
591#define BREAK_GFP_ORDER_LO 0
592static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
593
a737b3e2
AM
594/*
595 * Functions for storing/retrieving the cachep and or slab from the page
596 * allocator. These are used to find the slab an obj belongs to. With kfree(),
597 * these are used to find the cache which an obj belongs to.
1da177e4 598 */
065d41cb
PE
599static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
600{
601 page->lru.next = (struct list_head *)cache;
602}
603
604static inline struct kmem_cache *page_get_cache(struct page *page)
605{
d85f3385 606 page = compound_head(page);
ddc2e812 607 BUG_ON(!PageSlab(page));
065d41cb
PE
608 return (struct kmem_cache *)page->lru.next;
609}
610
611static inline void page_set_slab(struct page *page, struct slab *slab)
612{
613 page->lru.prev = (struct list_head *)slab;
614}
615
616static inline struct slab *page_get_slab(struct page *page)
617{
ddc2e812 618 BUG_ON(!PageSlab(page));
065d41cb
PE
619 return (struct slab *)page->lru.prev;
620}
1da177e4 621
6ed5eb22
PE
622static inline struct kmem_cache *virt_to_cache(const void *obj)
623{
b49af68f 624 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
625 return page_get_cache(page);
626}
627
628static inline struct slab *virt_to_slab(const void *obj)
629{
b49af68f 630 struct page *page = virt_to_head_page(obj);
6ed5eb22
PE
631 return page_get_slab(page);
632}
633
8fea4e96
PE
634static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
635 unsigned int idx)
636{
637 return slab->s_mem + cache->buffer_size * idx;
638}
639
6a2d7a95
ED
640/*
641 * We want to avoid an expensive divide : (offset / cache->buffer_size)
642 * Using the fact that buffer_size is a constant for a particular cache,
643 * we can replace (offset / cache->buffer_size) by
644 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
645 */
646static inline unsigned int obj_to_index(const struct kmem_cache *cache,
647 const struct slab *slab, void *obj)
8fea4e96 648{
6a2d7a95
ED
649 u32 offset = (obj - slab->s_mem);
650 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
651}
652
a737b3e2
AM
653/*
654 * These are the default caches for kmalloc. Custom caches can have other sizes.
655 */
1da177e4
LT
656struct cache_sizes malloc_sizes[] = {
657#define CACHE(x) { .cs_size = (x) },
658#include <linux/kmalloc_sizes.h>
659 CACHE(ULONG_MAX)
660#undef CACHE
661};
662EXPORT_SYMBOL(malloc_sizes);
663
664/* Must match cache_sizes above. Out of line to keep cache footprint low. */
665struct cache_names {
666 char *name;
667 char *name_dma;
668};
669
670static struct cache_names __initdata cache_names[] = {
671#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
672#include <linux/kmalloc_sizes.h>
b28a02de 673 {NULL,}
1da177e4
LT
674#undef CACHE
675};
676
677static struct arraycache_init initarray_cache __initdata =
b28a02de 678 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 679static struct arraycache_init initarray_generic =
b28a02de 680 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
681
682/* internal cache of cache description objs */
343e0d7a 683static struct kmem_cache cache_cache = {
b28a02de
PE
684 .batchcount = 1,
685 .limit = BOOT_CPUCACHE_ENTRIES,
686 .shared = 1,
343e0d7a 687 .buffer_size = sizeof(struct kmem_cache),
b28a02de 688 .name = "kmem_cache",
1da177e4
LT
689};
690
056c6241
RT
691#define BAD_ALIEN_MAGIC 0x01020304ul
692
f1aaee53
AV
693#ifdef CONFIG_LOCKDEP
694
695/*
696 * Slab sometimes uses the kmalloc slabs to store the slab headers
697 * for other slabs "off slab".
698 * The locking for this is tricky in that it nests within the locks
699 * of all other slabs in a few places; to deal with this special
700 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
701 *
702 * We set lock class for alien array caches which are up during init.
703 * The lock annotation will be lost if all cpus of a node goes down and
704 * then comes back up during hotplug
f1aaee53 705 */
056c6241
RT
706static struct lock_class_key on_slab_l3_key;
707static struct lock_class_key on_slab_alc_key;
708
709static inline void init_lock_keys(void)
f1aaee53 710
f1aaee53
AV
711{
712 int q;
056c6241
RT
713 struct cache_sizes *s = malloc_sizes;
714
715 while (s->cs_size != ULONG_MAX) {
716 for_each_node(q) {
717 struct array_cache **alc;
718 int r;
719 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
720 if (!l3 || OFF_SLAB(s->cs_cachep))
721 continue;
722 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
723 alc = l3->alien;
724 /*
725 * FIXME: This check for BAD_ALIEN_MAGIC
726 * should go away when common slab code is taught to
727 * work even without alien caches.
728 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
729 * for alloc_alien_cache,
730 */
731 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
732 continue;
733 for_each_node(r) {
734 if (alc[r])
735 lockdep_set_class(&alc[r]->lock,
736 &on_slab_alc_key);
737 }
738 }
739 s++;
f1aaee53
AV
740 }
741}
f1aaee53 742#else
056c6241 743static inline void init_lock_keys(void)
f1aaee53
AV
744{
745}
746#endif
747
8f5be20b 748/*
95402b38 749 * Guard access to the cache-chain.
8f5be20b 750 */
fc0abb14 751static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
752static struct list_head cache_chain;
753
1da177e4
LT
754/*
755 * chicken and egg problem: delay the per-cpu array allocation
756 * until the general caches are up.
757 */
758static enum {
759 NONE,
e498be7d
CL
760 PARTIAL_AC,
761 PARTIAL_L3,
8429db5c 762 EARLY,
1da177e4
LT
763 FULL
764} g_cpucache_up;
765
39d24e64
MK
766/*
767 * used by boot code to determine if it can use slab based allocator
768 */
769int slab_is_available(void)
770{
8429db5c 771 return g_cpucache_up >= EARLY;
39d24e64
MK
772}
773
52bad64d 774static DEFINE_PER_CPU(struct delayed_work, reap_work);
1da177e4 775
343e0d7a 776static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
777{
778 return cachep->array[smp_processor_id()];
779}
780
a737b3e2
AM
781static inline struct kmem_cache *__find_general_cachep(size_t size,
782 gfp_t gfpflags)
1da177e4
LT
783{
784 struct cache_sizes *csizep = malloc_sizes;
785
786#if DEBUG
787 /* This happens if someone tries to call
b28a02de
PE
788 * kmem_cache_create(), or __kmalloc(), before
789 * the generic caches are initialized.
790 */
c7e43c78 791 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 792#endif
6cb8f913
CL
793 if (!size)
794 return ZERO_SIZE_PTR;
795
1da177e4
LT
796 while (size > csizep->cs_size)
797 csizep++;
798
799 /*
0abf40c1 800 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
801 * has cs_{dma,}cachep==NULL. Thus no special case
802 * for large kmalloc calls required.
803 */
4b51d669 804#ifdef CONFIG_ZONE_DMA
1da177e4
LT
805 if (unlikely(gfpflags & GFP_DMA))
806 return csizep->cs_dmacachep;
4b51d669 807#endif
1da177e4
LT
808 return csizep->cs_cachep;
809}
810
b221385b 811static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
812{
813 return __find_general_cachep(size, gfpflags);
814}
97e2bde4 815
fbaccacf 816static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 817{
fbaccacf
SR
818 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
819}
1da177e4 820
a737b3e2
AM
821/*
822 * Calculate the number of objects and left-over bytes for a given buffer size.
823 */
fbaccacf
SR
824static void cache_estimate(unsigned long gfporder, size_t buffer_size,
825 size_t align, int flags, size_t *left_over,
826 unsigned int *num)
827{
828 int nr_objs;
829 size_t mgmt_size;
830 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 831
fbaccacf
SR
832 /*
833 * The slab management structure can be either off the slab or
834 * on it. For the latter case, the memory allocated for a
835 * slab is used for:
836 *
837 * - The struct slab
838 * - One kmem_bufctl_t for each object
839 * - Padding to respect alignment of @align
840 * - @buffer_size bytes for each object
841 *
842 * If the slab management structure is off the slab, then the
843 * alignment will already be calculated into the size. Because
844 * the slabs are all pages aligned, the objects will be at the
845 * correct alignment when allocated.
846 */
847 if (flags & CFLGS_OFF_SLAB) {
848 mgmt_size = 0;
849 nr_objs = slab_size / buffer_size;
850
851 if (nr_objs > SLAB_LIMIT)
852 nr_objs = SLAB_LIMIT;
853 } else {
854 /*
855 * Ignore padding for the initial guess. The padding
856 * is at most @align-1 bytes, and @buffer_size is at
857 * least @align. In the worst case, this result will
858 * be one greater than the number of objects that fit
859 * into the memory allocation when taking the padding
860 * into account.
861 */
862 nr_objs = (slab_size - sizeof(struct slab)) /
863 (buffer_size + sizeof(kmem_bufctl_t));
864
865 /*
866 * This calculated number will be either the right
867 * amount, or one greater than what we want.
868 */
869 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
870 > slab_size)
871 nr_objs--;
872
873 if (nr_objs > SLAB_LIMIT)
874 nr_objs = SLAB_LIMIT;
875
876 mgmt_size = slab_mgmt_size(nr_objs, align);
877 }
878 *num = nr_objs;
879 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
880}
881
d40cee24 882#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 883
a737b3e2
AM
884static void __slab_error(const char *function, struct kmem_cache *cachep,
885 char *msg)
1da177e4
LT
886{
887 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 888 function, cachep->name, msg);
1da177e4
LT
889 dump_stack();
890}
891
3395ee05
PM
892/*
893 * By default on NUMA we use alien caches to stage the freeing of
894 * objects allocated from other nodes. This causes massive memory
895 * inefficiencies when using fake NUMA setup to split memory into a
896 * large number of small nodes, so it can be disabled on the command
897 * line
898 */
899
900static int use_alien_caches __read_mostly = 1;
1807a1aa 901static int numa_platform __read_mostly = 1;
3395ee05
PM
902static int __init noaliencache_setup(char *s)
903{
904 use_alien_caches = 0;
905 return 1;
906}
907__setup("noaliencache", noaliencache_setup);
908
8fce4d8e
CL
909#ifdef CONFIG_NUMA
910/*
911 * Special reaping functions for NUMA systems called from cache_reap().
912 * These take care of doing round robin flushing of alien caches (containing
913 * objects freed on different nodes from which they were allocated) and the
914 * flushing of remote pcps by calling drain_node_pages.
915 */
916static DEFINE_PER_CPU(unsigned long, reap_node);
917
918static void init_reap_node(int cpu)
919{
920 int node;
921
922 node = next_node(cpu_to_node(cpu), node_online_map);
923 if (node == MAX_NUMNODES)
442295c9 924 node = first_node(node_online_map);
8fce4d8e 925
7f6b8876 926 per_cpu(reap_node, cpu) = node;
8fce4d8e
CL
927}
928
929static void next_reap_node(void)
930{
931 int node = __get_cpu_var(reap_node);
932
8fce4d8e
CL
933 node = next_node(node, node_online_map);
934 if (unlikely(node >= MAX_NUMNODES))
935 node = first_node(node_online_map);
936 __get_cpu_var(reap_node) = node;
937}
938
939#else
940#define init_reap_node(cpu) do { } while (0)
941#define next_reap_node(void) do { } while (0)
942#endif
943
1da177e4
LT
944/*
945 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
946 * via the workqueue/eventd.
947 * Add the CPU number into the expiration time to minimize the possibility of
948 * the CPUs getting into lockstep and contending for the global cache chain
949 * lock.
950 */
897e679b 951static void __cpuinit start_cpu_timer(int cpu)
1da177e4 952{
52bad64d 953 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
1da177e4
LT
954
955 /*
956 * When this gets called from do_initcalls via cpucache_init(),
957 * init_workqueues() has already run, so keventd will be setup
958 * at that time.
959 */
52bad64d 960 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 961 init_reap_node(cpu);
65f27f38 962 INIT_DELAYED_WORK(reap_work, cache_reap);
2b284214
AV
963 schedule_delayed_work_on(cpu, reap_work,
964 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
965 }
966}
967
e498be7d 968static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 969 int batchcount, gfp_t gfp)
1da177e4 970{
b28a02de 971 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
972 struct array_cache *nc = NULL;
973
83b519e8 974 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
975 /*
976 * The array_cache structures contain pointers to free object.
977 * However, when such objects are allocated or transfered to another
978 * cache the pointers are not cleared and they could be counted as
979 * valid references during a kmemleak scan. Therefore, kmemleak must
980 * not scan such objects.
981 */
982 kmemleak_no_scan(nc);
1da177e4
LT
983 if (nc) {
984 nc->avail = 0;
985 nc->limit = entries;
986 nc->batchcount = batchcount;
987 nc->touched = 0;
e498be7d 988 spin_lock_init(&nc->lock);
1da177e4
LT
989 }
990 return nc;
991}
992
3ded175a
CL
993/*
994 * Transfer objects in one arraycache to another.
995 * Locking must be handled by the caller.
996 *
997 * Return the number of entries transferred.
998 */
999static int transfer_objects(struct array_cache *to,
1000 struct array_cache *from, unsigned int max)
1001{
1002 /* Figure out how many entries to transfer */
1003 int nr = min(min(from->avail, max), to->limit - to->avail);
1004
1005 if (!nr)
1006 return 0;
1007
1008 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1009 sizeof(void *) *nr);
1010
1011 from->avail -= nr;
1012 to->avail += nr;
1013 to->touched = 1;
1014 return nr;
1015}
1016
765c4507
CL
1017#ifndef CONFIG_NUMA
1018
1019#define drain_alien_cache(cachep, alien) do { } while (0)
1020#define reap_alien(cachep, l3) do { } while (0)
1021
83b519e8 1022static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
1023{
1024 return (struct array_cache **)BAD_ALIEN_MAGIC;
1025}
1026
1027static inline void free_alien_cache(struct array_cache **ac_ptr)
1028{
1029}
1030
1031static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1032{
1033 return 0;
1034}
1035
1036static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1037 gfp_t flags)
1038{
1039 return NULL;
1040}
1041
8b98c169 1042static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1043 gfp_t flags, int nodeid)
1044{
1045 return NULL;
1046}
1047
1048#else /* CONFIG_NUMA */
1049
8b98c169 1050static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1051static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1052
83b519e8 1053static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
1054{
1055 struct array_cache **ac_ptr;
8ef82866 1056 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1057 int i;
1058
1059 if (limit > 1)
1060 limit = 12;
83b519e8 1061 ac_ptr = kmalloc_node(memsize, gfp, node);
e498be7d
CL
1062 if (ac_ptr) {
1063 for_each_node(i) {
1064 if (i == node || !node_online(i)) {
1065 ac_ptr[i] = NULL;
1066 continue;
1067 }
83b519e8 1068 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 1069 if (!ac_ptr[i]) {
cc550def 1070 for (i--; i >= 0; i--)
e498be7d
CL
1071 kfree(ac_ptr[i]);
1072 kfree(ac_ptr);
1073 return NULL;
1074 }
1075 }
1076 }
1077 return ac_ptr;
1078}
1079
5295a74c 1080static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1081{
1082 int i;
1083
1084 if (!ac_ptr)
1085 return;
e498be7d 1086 for_each_node(i)
b28a02de 1087 kfree(ac_ptr[i]);
e498be7d
CL
1088 kfree(ac_ptr);
1089}
1090
343e0d7a 1091static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1092 struct array_cache *ac, int node)
e498be7d
CL
1093{
1094 struct kmem_list3 *rl3 = cachep->nodelists[node];
1095
1096 if (ac->avail) {
1097 spin_lock(&rl3->list_lock);
e00946fe
CL
1098 /*
1099 * Stuff objects into the remote nodes shared array first.
1100 * That way we could avoid the overhead of putting the objects
1101 * into the free lists and getting them back later.
1102 */
693f7d36
JS
1103 if (rl3->shared)
1104 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1105
ff69416e 1106 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1107 ac->avail = 0;
1108 spin_unlock(&rl3->list_lock);
1109 }
1110}
1111
8fce4d8e
CL
1112/*
1113 * Called from cache_reap() to regularly drain alien caches round robin.
1114 */
1115static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1116{
1117 int node = __get_cpu_var(reap_node);
1118
1119 if (l3->alien) {
1120 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1121
1122 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1123 __drain_alien_cache(cachep, ac, node);
1124 spin_unlock_irq(&ac->lock);
1125 }
1126 }
1127}
1128
a737b3e2
AM
1129static void drain_alien_cache(struct kmem_cache *cachep,
1130 struct array_cache **alien)
e498be7d 1131{
b28a02de 1132 int i = 0;
e498be7d
CL
1133 struct array_cache *ac;
1134 unsigned long flags;
1135
1136 for_each_online_node(i) {
4484ebf1 1137 ac = alien[i];
e498be7d
CL
1138 if (ac) {
1139 spin_lock_irqsave(&ac->lock, flags);
1140 __drain_alien_cache(cachep, ac, i);
1141 spin_unlock_irqrestore(&ac->lock, flags);
1142 }
1143 }
1144}
729bd0b7 1145
873623df 1146static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1147{
1148 struct slab *slabp = virt_to_slab(objp);
1149 int nodeid = slabp->nodeid;
1150 struct kmem_list3 *l3;
1151 struct array_cache *alien = NULL;
1ca4cb24
PE
1152 int node;
1153
1154 node = numa_node_id();
729bd0b7
PE
1155
1156 /*
1157 * Make sure we are not freeing a object from another node to the array
1158 * cache on this cpu.
1159 */
62918a03 1160 if (likely(slabp->nodeid == node))
729bd0b7
PE
1161 return 0;
1162
1ca4cb24 1163 l3 = cachep->nodelists[node];
729bd0b7
PE
1164 STATS_INC_NODEFREES(cachep);
1165 if (l3->alien && l3->alien[nodeid]) {
1166 alien = l3->alien[nodeid];
873623df 1167 spin_lock(&alien->lock);
729bd0b7
PE
1168 if (unlikely(alien->avail == alien->limit)) {
1169 STATS_INC_ACOVERFLOW(cachep);
1170 __drain_alien_cache(cachep, alien, nodeid);
1171 }
1172 alien->entry[alien->avail++] = objp;
1173 spin_unlock(&alien->lock);
1174 } else {
1175 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1176 free_block(cachep, &objp, 1, nodeid);
1177 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1178 }
1179 return 1;
1180}
e498be7d
CL
1181#endif
1182
fbf1e473
AM
1183static void __cpuinit cpuup_canceled(long cpu)
1184{
1185 struct kmem_cache *cachep;
1186 struct kmem_list3 *l3 = NULL;
1187 int node = cpu_to_node(cpu);
a70f7302 1188 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473
AM
1189
1190 list_for_each_entry(cachep, &cache_chain, next) {
1191 struct array_cache *nc;
1192 struct array_cache *shared;
1193 struct array_cache **alien;
fbf1e473 1194
fbf1e473
AM
1195 /* cpu is dead; no one can alloc from it. */
1196 nc = cachep->array[cpu];
1197 cachep->array[cpu] = NULL;
1198 l3 = cachep->nodelists[node];
1199
1200 if (!l3)
1201 goto free_array_cache;
1202
1203 spin_lock_irq(&l3->list_lock);
1204
1205 /* Free limit for this kmem_list3 */
1206 l3->free_limit -= cachep->batchcount;
1207 if (nc)
1208 free_block(cachep, nc->entry, nc->avail, node);
1209
c5f59f08 1210 if (!cpus_empty(*mask)) {
fbf1e473
AM
1211 spin_unlock_irq(&l3->list_lock);
1212 goto free_array_cache;
1213 }
1214
1215 shared = l3->shared;
1216 if (shared) {
1217 free_block(cachep, shared->entry,
1218 shared->avail, node);
1219 l3->shared = NULL;
1220 }
1221
1222 alien = l3->alien;
1223 l3->alien = NULL;
1224
1225 spin_unlock_irq(&l3->list_lock);
1226
1227 kfree(shared);
1228 if (alien) {
1229 drain_alien_cache(cachep, alien);
1230 free_alien_cache(alien);
1231 }
1232free_array_cache:
1233 kfree(nc);
1234 }
1235 /*
1236 * In the previous loop, all the objects were freed to
1237 * the respective cache's slabs, now we can go ahead and
1238 * shrink each nodelist to its limit.
1239 */
1240 list_for_each_entry(cachep, &cache_chain, next) {
1241 l3 = cachep->nodelists[node];
1242 if (!l3)
1243 continue;
1244 drain_freelist(cachep, l3, l3->free_objects);
1245 }
1246}
1247
1248static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1249{
343e0d7a 1250 struct kmem_cache *cachep;
e498be7d
CL
1251 struct kmem_list3 *l3 = NULL;
1252 int node = cpu_to_node(cpu);
ea02e3dd 1253 const int memsize = sizeof(struct kmem_list3);
1da177e4 1254
fbf1e473
AM
1255 /*
1256 * We need to do this right in the beginning since
1257 * alloc_arraycache's are going to use this list.
1258 * kmalloc_node allows us to add the slab to the right
1259 * kmem_list3 and not this cpu's kmem_list3
1260 */
1261
1262 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2 1263 /*
fbf1e473
AM
1264 * Set up the size64 kmemlist for cpu before we can
1265 * begin anything. Make sure some other cpu on this
1266 * node has not already allocated this
e498be7d 1267 */
fbf1e473
AM
1268 if (!cachep->nodelists[node]) {
1269 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1270 if (!l3)
1271 goto bad;
1272 kmem_list3_init(l3);
1273 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1274 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1275
a737b3e2 1276 /*
fbf1e473
AM
1277 * The l3s don't come and go as CPUs come and
1278 * go. cache_chain_mutex is sufficient
1279 * protection here.
e498be7d 1280 */
fbf1e473 1281 cachep->nodelists[node] = l3;
e498be7d
CL
1282 }
1283
fbf1e473
AM
1284 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1285 cachep->nodelists[node]->free_limit =
1286 (1 + nr_cpus_node(node)) *
1287 cachep->batchcount + cachep->num;
1288 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1289 }
1290
1291 /*
1292 * Now we can go ahead with allocating the shared arrays and
1293 * array caches
1294 */
1295 list_for_each_entry(cachep, &cache_chain, next) {
1296 struct array_cache *nc;
1297 struct array_cache *shared = NULL;
1298 struct array_cache **alien = NULL;
1299
1300 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1301 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1302 if (!nc)
1303 goto bad;
1304 if (cachep->shared) {
1305 shared = alloc_arraycache(node,
1306 cachep->shared * cachep->batchcount,
83b519e8 1307 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1308 if (!shared) {
1309 kfree(nc);
1da177e4 1310 goto bad;
12d00f6a 1311 }
fbf1e473
AM
1312 }
1313 if (use_alien_caches) {
83b519e8 1314 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1315 if (!alien) {
1316 kfree(shared);
1317 kfree(nc);
fbf1e473 1318 goto bad;
12d00f6a 1319 }
fbf1e473
AM
1320 }
1321 cachep->array[cpu] = nc;
1322 l3 = cachep->nodelists[node];
1323 BUG_ON(!l3);
1324
1325 spin_lock_irq(&l3->list_lock);
1326 if (!l3->shared) {
1327 /*
1328 * We are serialised from CPU_DEAD or
1329 * CPU_UP_CANCELLED by the cpucontrol lock
1330 */
1331 l3->shared = shared;
1332 shared = NULL;
1333 }
4484ebf1 1334#ifdef CONFIG_NUMA
fbf1e473
AM
1335 if (!l3->alien) {
1336 l3->alien = alien;
1337 alien = NULL;
1da177e4 1338 }
fbf1e473
AM
1339#endif
1340 spin_unlock_irq(&l3->list_lock);
1341 kfree(shared);
1342 free_alien_cache(alien);
1343 }
1344 return 0;
1345bad:
12d00f6a 1346 cpuup_canceled(cpu);
fbf1e473
AM
1347 return -ENOMEM;
1348}
1349
1350static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1351 unsigned long action, void *hcpu)
1352{
1353 long cpu = (long)hcpu;
1354 int err = 0;
1355
1356 switch (action) {
fbf1e473
AM
1357 case CPU_UP_PREPARE:
1358 case CPU_UP_PREPARE_FROZEN:
95402b38 1359 mutex_lock(&cache_chain_mutex);
fbf1e473 1360 err = cpuup_prepare(cpu);
95402b38 1361 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1362 break;
1363 case CPU_ONLINE:
8bb78442 1364 case CPU_ONLINE_FROZEN:
1da177e4
LT
1365 start_cpu_timer(cpu);
1366 break;
1367#ifdef CONFIG_HOTPLUG_CPU
5830c590 1368 case CPU_DOWN_PREPARE:
8bb78442 1369 case CPU_DOWN_PREPARE_FROZEN:
5830c590
CL
1370 /*
1371 * Shutdown cache reaper. Note that the cache_chain_mutex is
1372 * held so that if cache_reap() is invoked it cannot do
1373 * anything expensive but will only modify reap_work
1374 * and reschedule the timer.
1375 */
1376 cancel_rearming_delayed_work(&per_cpu(reap_work, cpu));
1377 /* Now the cache_reaper is guaranteed to be not running. */
1378 per_cpu(reap_work, cpu).work.func = NULL;
1379 break;
1380 case CPU_DOWN_FAILED:
8bb78442 1381 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1382 start_cpu_timer(cpu);
1383 break;
1da177e4 1384 case CPU_DEAD:
8bb78442 1385 case CPU_DEAD_FROZEN:
4484ebf1
RT
1386 /*
1387 * Even if all the cpus of a node are down, we don't free the
1388 * kmem_list3 of any cache. This to avoid a race between
1389 * cpu_down, and a kmalloc allocation from another cpu for
1390 * memory from the node of the cpu going down. The list3
1391 * structure is usually allocated from kmem_cache_create() and
1392 * gets destroyed at kmem_cache_destroy().
1393 */
183ff22b 1394 /* fall through */
8f5be20b 1395#endif
1da177e4 1396 case CPU_UP_CANCELED:
8bb78442 1397 case CPU_UP_CANCELED_FROZEN:
95402b38 1398 mutex_lock(&cache_chain_mutex);
fbf1e473 1399 cpuup_canceled(cpu);
fc0abb14 1400 mutex_unlock(&cache_chain_mutex);
1da177e4 1401 break;
1da177e4 1402 }
fbf1e473 1403 return err ? NOTIFY_BAD : NOTIFY_OK;
1da177e4
LT
1404}
1405
74b85f37
CS
1406static struct notifier_block __cpuinitdata cpucache_notifier = {
1407 &cpuup_callback, NULL, 0
1408};
1da177e4 1409
e498be7d
CL
1410/*
1411 * swap the static kmem_list3 with kmalloced memory
1412 */
a737b3e2
AM
1413static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1414 int nodeid)
e498be7d
CL
1415{
1416 struct kmem_list3 *ptr;
1417
83b519e8 1418 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
e498be7d
CL
1419 BUG_ON(!ptr);
1420
e498be7d 1421 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1422 /*
1423 * Do not assume that spinlocks can be initialized via memcpy:
1424 */
1425 spin_lock_init(&ptr->list_lock);
1426
e498be7d
CL
1427 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1428 cachep->nodelists[nodeid] = ptr;
e498be7d
CL
1429}
1430
556a169d
PE
1431/*
1432 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1433 * size of kmem_list3.
1434 */
1435static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1436{
1437 int node;
1438
1439 for_each_online_node(node) {
1440 cachep->nodelists[node] = &initkmem_list3[index + node];
1441 cachep->nodelists[node]->next_reap = jiffies +
1442 REAPTIMEOUT_LIST3 +
1443 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1444 }
1445}
1446
a737b3e2
AM
1447/*
1448 * Initialisation. Called after the page allocator have been initialised and
1449 * before smp_init().
1da177e4
LT
1450 */
1451void __init kmem_cache_init(void)
1452{
1453 size_t left_over;
1454 struct cache_sizes *sizes;
1455 struct cache_names *names;
e498be7d 1456 int i;
07ed76b2 1457 int order;
1ca4cb24 1458 int node;
e498be7d 1459
1807a1aa 1460 if (num_possible_nodes() == 1) {
62918a03 1461 use_alien_caches = 0;
1807a1aa
SS
1462 numa_platform = 0;
1463 }
62918a03 1464
e498be7d
CL
1465 for (i = 0; i < NUM_INIT_LISTS; i++) {
1466 kmem_list3_init(&initkmem_list3[i]);
1467 if (i < MAX_NUMNODES)
1468 cache_cache.nodelists[i] = NULL;
1469 }
556a169d 1470 set_up_list3s(&cache_cache, CACHE_CACHE);
1da177e4
LT
1471
1472 /*
1473 * Fragmentation resistance on low memory - only use bigger
1474 * page orders on machines with more than 32MB of memory.
1475 */
1476 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1477 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1478
1da177e4
LT
1479 /* Bootstrap is tricky, because several objects are allocated
1480 * from caches that do not exist yet:
a737b3e2
AM
1481 * 1) initialize the cache_cache cache: it contains the struct
1482 * kmem_cache structures of all caches, except cache_cache itself:
1483 * cache_cache is statically allocated.
e498be7d
CL
1484 * Initially an __init data area is used for the head array and the
1485 * kmem_list3 structures, it's replaced with a kmalloc allocated
1486 * array at the end of the bootstrap.
1da177e4 1487 * 2) Create the first kmalloc cache.
343e0d7a 1488 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1489 * An __init data area is used for the head array.
1490 * 3) Create the remaining kmalloc caches, with minimally sized
1491 * head arrays.
1da177e4
LT
1492 * 4) Replace the __init data head arrays for cache_cache and the first
1493 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1494 * 5) Replace the __init data for kmem_list3 for cache_cache and
1495 * the other cache's with kmalloc allocated memory.
1496 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1497 */
1498
1ca4cb24
PE
1499 node = numa_node_id();
1500
1da177e4 1501 /* 1) create the cache_cache */
1da177e4
LT
1502 INIT_LIST_HEAD(&cache_chain);
1503 list_add(&cache_cache.next, &cache_chain);
1504 cache_cache.colour_off = cache_line_size();
1505 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
ec1f5eee 1506 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1da177e4 1507
8da3430d
ED
1508 /*
1509 * struct kmem_cache size depends on nr_node_ids, which
1510 * can be less than MAX_NUMNODES.
1511 */
1512 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1513 nr_node_ids * sizeof(struct kmem_list3 *);
1514#if DEBUG
1515 cache_cache.obj_size = cache_cache.buffer_size;
1516#endif
a737b3e2
AM
1517 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1518 cache_line_size());
6a2d7a95
ED
1519 cache_cache.reciprocal_buffer_size =
1520 reciprocal_value(cache_cache.buffer_size);
1da177e4 1521
07ed76b2
JS
1522 for (order = 0; order < MAX_ORDER; order++) {
1523 cache_estimate(order, cache_cache.buffer_size,
1524 cache_line_size(), 0, &left_over, &cache_cache.num);
1525 if (cache_cache.num)
1526 break;
1527 }
40094fa6 1528 BUG_ON(!cache_cache.num);
07ed76b2 1529 cache_cache.gfporder = order;
b28a02de 1530 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1531 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1532 sizeof(struct slab), cache_line_size());
1da177e4
LT
1533
1534 /* 2+3) create the kmalloc caches */
1535 sizes = malloc_sizes;
1536 names = cache_names;
1537
a737b3e2
AM
1538 /*
1539 * Initialize the caches that provide memory for the array cache and the
1540 * kmem_list3 structures first. Without this, further allocations will
1541 * bug.
e498be7d
CL
1542 */
1543
1544 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1545 sizes[INDEX_AC].cs_size,
1546 ARCH_KMALLOC_MINALIGN,
1547 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1548 NULL);
e498be7d 1549
a737b3e2 1550 if (INDEX_AC != INDEX_L3) {
e498be7d 1551 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1552 kmem_cache_create(names[INDEX_L3].name,
1553 sizes[INDEX_L3].cs_size,
1554 ARCH_KMALLOC_MINALIGN,
1555 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1556 NULL);
a737b3e2 1557 }
e498be7d 1558
e0a42726
IM
1559 slab_early_init = 0;
1560
1da177e4 1561 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1562 /*
1563 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1564 * This should be particularly beneficial on SMP boxes, as it
1565 * eliminates "false sharing".
1566 * Note for systems short on memory removing the alignment will
e498be7d
CL
1567 * allow tighter packing of the smaller caches.
1568 */
a737b3e2 1569 if (!sizes->cs_cachep) {
e498be7d 1570 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1571 sizes->cs_size,
1572 ARCH_KMALLOC_MINALIGN,
1573 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1574 NULL);
a737b3e2 1575 }
4b51d669
CL
1576#ifdef CONFIG_ZONE_DMA
1577 sizes->cs_dmacachep = kmem_cache_create(
1578 names->name_dma,
a737b3e2
AM
1579 sizes->cs_size,
1580 ARCH_KMALLOC_MINALIGN,
1581 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1582 SLAB_PANIC,
20c2df83 1583 NULL);
4b51d669 1584#endif
1da177e4
LT
1585 sizes++;
1586 names++;
1587 }
1588 /* 4) Replace the bootstrap head arrays */
1589 {
2b2d5493 1590 struct array_cache *ptr;
e498be7d 1591
83b519e8 1592 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1593
9a2dba4b
PE
1594 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1595 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1596 sizeof(struct arraycache_init));
2b2d5493
IM
1597 /*
1598 * Do not assume that spinlocks can be initialized via memcpy:
1599 */
1600 spin_lock_init(&ptr->lock);
1601
1da177e4 1602 cache_cache.array[smp_processor_id()] = ptr;
e498be7d 1603
83b519e8 1604 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1605
9a2dba4b 1606 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1607 != &initarray_generic.cache);
9a2dba4b 1608 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1609 sizeof(struct arraycache_init));
2b2d5493
IM
1610 /*
1611 * Do not assume that spinlocks can be initialized via memcpy:
1612 */
1613 spin_lock_init(&ptr->lock);
1614
e498be7d 1615 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1616 ptr;
1da177e4 1617 }
e498be7d
CL
1618 /* 5) Replace the bootstrap kmem_list3's */
1619 {
1ca4cb24
PE
1620 int nid;
1621
9c09a95c 1622 for_each_online_node(nid) {
ec1f5eee 1623 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
556a169d 1624
e498be7d 1625 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1626 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1627
1628 if (INDEX_AC != INDEX_L3) {
1629 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1630 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1631 }
1632 }
1633 }
1da177e4 1634
8429db5c 1635 g_cpucache_up = EARLY;
1da177e4 1636
056c6241
RT
1637 /* Annotate slab for lockdep -- annotate the malloc caches */
1638 init_lock_keys();
8429db5c
PE
1639}
1640
1641void __init kmem_cache_init_late(void)
1642{
1643 struct kmem_cache *cachep;
1644
1645 /*
1646 * Interrupts are enabled now so all GFP allocations are safe.
1647 */
1648 slab_gfp_mask = __GFP_BITS_MASK;
056c6241 1649
8429db5c
PE
1650 /* 6) resize the head arrays to their final sizes */
1651 mutex_lock(&cache_chain_mutex);
1652 list_for_each_entry(cachep, &cache_chain, next)
1653 if (enable_cpucache(cachep, GFP_NOWAIT))
1654 BUG();
1655 mutex_unlock(&cache_chain_mutex);
056c6241 1656
1da177e4
LT
1657 /* Done! */
1658 g_cpucache_up = FULL;
1659
a737b3e2
AM
1660 /*
1661 * Register a cpu startup notifier callback that initializes
1662 * cpu_cache_get for all new cpus
1da177e4
LT
1663 */
1664 register_cpu_notifier(&cpucache_notifier);
1da177e4 1665
a737b3e2
AM
1666 /*
1667 * The reap timers are started later, with a module init call: That part
1668 * of the kernel is not yet operational.
1da177e4
LT
1669 */
1670}
1671
1672static int __init cpucache_init(void)
1673{
1674 int cpu;
1675
a737b3e2
AM
1676 /*
1677 * Register the timers that return unneeded pages to the page allocator
1da177e4 1678 */
e498be7d 1679 for_each_online_cpu(cpu)
a737b3e2 1680 start_cpu_timer(cpu);
1da177e4
LT
1681 return 0;
1682}
1da177e4
LT
1683__initcall(cpucache_init);
1684
1685/*
1686 * Interface to system's page allocator. No need to hold the cache-lock.
1687 *
1688 * If we requested dmaable memory, we will get it. Even if we
1689 * did not request dmaable memory, we might get it, but that
1690 * would be relatively rare and ignorable.
1691 */
343e0d7a 1692static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1693{
1694 struct page *page;
e1b6aa6f 1695 int nr_pages;
1da177e4
LT
1696 int i;
1697
d6fef9da 1698#ifndef CONFIG_MMU
e1b6aa6f
CH
1699 /*
1700 * Nommu uses slab's for process anonymous memory allocations, and thus
1701 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1702 */
e1b6aa6f 1703 flags |= __GFP_COMP;
d6fef9da 1704#endif
765c4507 1705
3c517a61 1706 flags |= cachep->gfpflags;
e12ba74d
MG
1707 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1708 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1709
6484eb3e 1710 page = alloc_pages_exact_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1711 if (!page)
1712 return NULL;
1da177e4 1713
e1b6aa6f 1714 nr_pages = (1 << cachep->gfporder);
1da177e4 1715 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1716 add_zone_page_state(page_zone(page),
1717 NR_SLAB_RECLAIMABLE, nr_pages);
1718 else
1719 add_zone_page_state(page_zone(page),
1720 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1721 for (i = 0; i < nr_pages; i++)
1722 __SetPageSlab(page + i);
1723 return page_address(page);
1da177e4
LT
1724}
1725
1726/*
1727 * Interface to system's page release.
1728 */
343e0d7a 1729static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1730{
b28a02de 1731 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1732 struct page *page = virt_to_page(addr);
1733 const unsigned long nr_freed = i;
1734
972d1a7b
CL
1735 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1736 sub_zone_page_state(page_zone(page),
1737 NR_SLAB_RECLAIMABLE, nr_freed);
1738 else
1739 sub_zone_page_state(page_zone(page),
1740 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1741 while (i--) {
f205b2fe
NP
1742 BUG_ON(!PageSlab(page));
1743 __ClearPageSlab(page);
1da177e4
LT
1744 page++;
1745 }
1da177e4
LT
1746 if (current->reclaim_state)
1747 current->reclaim_state->reclaimed_slab += nr_freed;
1748 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1749}
1750
1751static void kmem_rcu_free(struct rcu_head *head)
1752{
b28a02de 1753 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1754 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1755
1756 kmem_freepages(cachep, slab_rcu->addr);
1757 if (OFF_SLAB(cachep))
1758 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1759}
1760
1761#if DEBUG
1762
1763#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1764static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1765 unsigned long caller)
1da177e4 1766{
3dafccf2 1767 int size = obj_size(cachep);
1da177e4 1768
3dafccf2 1769 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1770
b28a02de 1771 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1772 return;
1773
b28a02de
PE
1774 *addr++ = 0x12345678;
1775 *addr++ = caller;
1776 *addr++ = smp_processor_id();
1777 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1778 {
1779 unsigned long *sptr = &caller;
1780 unsigned long svalue;
1781
1782 while (!kstack_end(sptr)) {
1783 svalue = *sptr++;
1784 if (kernel_text_address(svalue)) {
b28a02de 1785 *addr++ = svalue;
1da177e4
LT
1786 size -= sizeof(unsigned long);
1787 if (size <= sizeof(unsigned long))
1788 break;
1789 }
1790 }
1791
1792 }
b28a02de 1793 *addr++ = 0x87654321;
1da177e4
LT
1794}
1795#endif
1796
343e0d7a 1797static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1798{
3dafccf2
MS
1799 int size = obj_size(cachep);
1800 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1801
1802 memset(addr, val, size);
b28a02de 1803 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1804}
1805
1806static void dump_line(char *data, int offset, int limit)
1807{
1808 int i;
aa83aa40
DJ
1809 unsigned char error = 0;
1810 int bad_count = 0;
1811
1da177e4 1812 printk(KERN_ERR "%03x:", offset);
aa83aa40
DJ
1813 for (i = 0; i < limit; i++) {
1814 if (data[offset + i] != POISON_FREE) {
1815 error = data[offset + i];
1816 bad_count++;
1817 }
b28a02de 1818 printk(" %02x", (unsigned char)data[offset + i]);
aa83aa40 1819 }
1da177e4 1820 printk("\n");
aa83aa40
DJ
1821
1822 if (bad_count == 1) {
1823 error ^= POISON_FREE;
1824 if (!(error & (error - 1))) {
1825 printk(KERN_ERR "Single bit error detected. Probably "
1826 "bad RAM.\n");
1827#ifdef CONFIG_X86
1828 printk(KERN_ERR "Run memtest86+ or a similar memory "
1829 "test tool.\n");
1830#else
1831 printk(KERN_ERR "Run a memory test tool.\n");
1832#endif
1833 }
1834 }
1da177e4
LT
1835}
1836#endif
1837
1838#if DEBUG
1839
343e0d7a 1840static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1841{
1842 int i, size;
1843 char *realobj;
1844
1845 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1846 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1847 *dbg_redzone1(cachep, objp),
1848 *dbg_redzone2(cachep, objp));
1da177e4
LT
1849 }
1850
1851 if (cachep->flags & SLAB_STORE_USER) {
1852 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1853 *dbg_userword(cachep, objp));
1da177e4 1854 print_symbol("(%s)",
a737b3e2 1855 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1856 printk("\n");
1857 }
3dafccf2
MS
1858 realobj = (char *)objp + obj_offset(cachep);
1859 size = obj_size(cachep);
b28a02de 1860 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1861 int limit;
1862 limit = 16;
b28a02de
PE
1863 if (i + limit > size)
1864 limit = size - i;
1da177e4
LT
1865 dump_line(realobj, i, limit);
1866 }
1867}
1868
343e0d7a 1869static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1870{
1871 char *realobj;
1872 int size, i;
1873 int lines = 0;
1874
3dafccf2
MS
1875 realobj = (char *)objp + obj_offset(cachep);
1876 size = obj_size(cachep);
1da177e4 1877
b28a02de 1878 for (i = 0; i < size; i++) {
1da177e4 1879 char exp = POISON_FREE;
b28a02de 1880 if (i == size - 1)
1da177e4
LT
1881 exp = POISON_END;
1882 if (realobj[i] != exp) {
1883 int limit;
1884 /* Mismatch ! */
1885 /* Print header */
1886 if (lines == 0) {
b28a02de 1887 printk(KERN_ERR
e94a40c5
DH
1888 "Slab corruption: %s start=%p, len=%d\n",
1889 cachep->name, realobj, size);
1da177e4
LT
1890 print_objinfo(cachep, objp, 0);
1891 }
1892 /* Hexdump the affected line */
b28a02de 1893 i = (i / 16) * 16;
1da177e4 1894 limit = 16;
b28a02de
PE
1895 if (i + limit > size)
1896 limit = size - i;
1da177e4
LT
1897 dump_line(realobj, i, limit);
1898 i += 16;
1899 lines++;
1900 /* Limit to 5 lines */
1901 if (lines > 5)
1902 break;
1903 }
1904 }
1905 if (lines != 0) {
1906 /* Print some data about the neighboring objects, if they
1907 * exist:
1908 */
6ed5eb22 1909 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1910 unsigned int objnr;
1da177e4 1911
8fea4e96 1912 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1913 if (objnr) {
8fea4e96 1914 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1915 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1916 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1917 realobj, size);
1da177e4
LT
1918 print_objinfo(cachep, objp, 2);
1919 }
b28a02de 1920 if (objnr + 1 < cachep->num) {
8fea4e96 1921 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1922 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1923 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1924 realobj, size);
1da177e4
LT
1925 print_objinfo(cachep, objp, 2);
1926 }
1927 }
1928}
1929#endif
1930
12dd36fa 1931#if DEBUG
e79aec29 1932static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1933{
1da177e4
LT
1934 int i;
1935 for (i = 0; i < cachep->num; i++) {
8fea4e96 1936 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1937
1938 if (cachep->flags & SLAB_POISON) {
1939#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1940 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1941 OFF_SLAB(cachep))
b28a02de 1942 kernel_map_pages(virt_to_page(objp),
a737b3e2 1943 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1944 else
1945 check_poison_obj(cachep, objp);
1946#else
1947 check_poison_obj(cachep, objp);
1948#endif
1949 }
1950 if (cachep->flags & SLAB_RED_ZONE) {
1951 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1952 slab_error(cachep, "start of a freed object "
b28a02de 1953 "was overwritten");
1da177e4
LT
1954 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1955 slab_error(cachep, "end of a freed object "
b28a02de 1956 "was overwritten");
1da177e4 1957 }
1da177e4 1958 }
12dd36fa 1959}
1da177e4 1960#else
e79aec29 1961static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1962{
12dd36fa 1963}
1da177e4
LT
1964#endif
1965
911851e6
RD
1966/**
1967 * slab_destroy - destroy and release all objects in a slab
1968 * @cachep: cache pointer being destroyed
1969 * @slabp: slab pointer being destroyed
1970 *
12dd36fa 1971 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1972 * Before calling the slab must have been unlinked from the cache. The
1973 * cache-lock is not held/needed.
12dd36fa 1974 */
343e0d7a 1975static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1976{
1977 void *addr = slabp->s_mem - slabp->colouroff;
1978
e79aec29 1979 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
1980 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1981 struct slab_rcu *slab_rcu;
1982
b28a02de 1983 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1984 slab_rcu->cachep = cachep;
1985 slab_rcu->addr = addr;
1986 call_rcu(&slab_rcu->head, kmem_rcu_free);
1987 } else {
1988 kmem_freepages(cachep, addr);
873623df
IM
1989 if (OFF_SLAB(cachep))
1990 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1991 }
1992}
1993
117f6eb1
CL
1994static void __kmem_cache_destroy(struct kmem_cache *cachep)
1995{
1996 int i;
1997 struct kmem_list3 *l3;
1998
1999 for_each_online_cpu(i)
2000 kfree(cachep->array[i]);
2001
2002 /* NUMA: free the list3 structures */
2003 for_each_online_node(i) {
2004 l3 = cachep->nodelists[i];
2005 if (l3) {
2006 kfree(l3->shared);
2007 free_alien_cache(l3->alien);
2008 kfree(l3);
2009 }
2010 }
2011 kmem_cache_free(&cache_cache, cachep);
2012}
2013
2014
4d268eba 2015/**
a70773dd
RD
2016 * calculate_slab_order - calculate size (page order) of slabs
2017 * @cachep: pointer to the cache that is being created
2018 * @size: size of objects to be created in this cache.
2019 * @align: required alignment for the objects.
2020 * @flags: slab allocation flags
2021 *
2022 * Also calculates the number of objects per slab.
4d268eba
PE
2023 *
2024 * This could be made much more intelligent. For now, try to avoid using
2025 * high order pages for slabs. When the gfp() functions are more friendly
2026 * towards high-order requests, this should be changed.
2027 */
a737b3e2 2028static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2029 size_t size, size_t align, unsigned long flags)
4d268eba 2030{
b1ab41c4 2031 unsigned long offslab_limit;
4d268eba 2032 size_t left_over = 0;
9888e6fa 2033 int gfporder;
4d268eba 2034
0aa817f0 2035 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2036 unsigned int num;
2037 size_t remainder;
2038
9888e6fa 2039 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2040 if (!num)
2041 continue;
9888e6fa 2042
b1ab41c4
IM
2043 if (flags & CFLGS_OFF_SLAB) {
2044 /*
2045 * Max number of objs-per-slab for caches which
2046 * use off-slab slabs. Needed to avoid a possible
2047 * looping condition in cache_grow().
2048 */
2049 offslab_limit = size - sizeof(struct slab);
2050 offslab_limit /= sizeof(kmem_bufctl_t);
2051
2052 if (num > offslab_limit)
2053 break;
2054 }
4d268eba 2055
9888e6fa 2056 /* Found something acceptable - save it away */
4d268eba 2057 cachep->num = num;
9888e6fa 2058 cachep->gfporder = gfporder;
4d268eba
PE
2059 left_over = remainder;
2060
f78bb8ad
LT
2061 /*
2062 * A VFS-reclaimable slab tends to have most allocations
2063 * as GFP_NOFS and we really don't want to have to be allocating
2064 * higher-order pages when we are unable to shrink dcache.
2065 */
2066 if (flags & SLAB_RECLAIM_ACCOUNT)
2067 break;
2068
4d268eba
PE
2069 /*
2070 * Large number of objects is good, but very large slabs are
2071 * currently bad for the gfp()s.
2072 */
9888e6fa 2073 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
2074 break;
2075
9888e6fa
LT
2076 /*
2077 * Acceptable internal fragmentation?
2078 */
a737b3e2 2079 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2080 break;
2081 }
2082 return left_over;
2083}
2084
83b519e8 2085static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2086{
2ed3a4ef 2087 if (g_cpucache_up == FULL)
83b519e8 2088 return enable_cpucache(cachep, gfp);
2ed3a4ef 2089
f30cf7d1
PE
2090 if (g_cpucache_up == NONE) {
2091 /*
2092 * Note: the first kmem_cache_create must create the cache
2093 * that's used by kmalloc(24), otherwise the creation of
2094 * further caches will BUG().
2095 */
2096 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2097
2098 /*
2099 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2100 * the first cache, then we need to set up all its list3s,
2101 * otherwise the creation of further caches will BUG().
2102 */
2103 set_up_list3s(cachep, SIZE_AC);
2104 if (INDEX_AC == INDEX_L3)
2105 g_cpucache_up = PARTIAL_L3;
2106 else
2107 g_cpucache_up = PARTIAL_AC;
2108 } else {
2109 cachep->array[smp_processor_id()] =
83b519e8 2110 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1
PE
2111
2112 if (g_cpucache_up == PARTIAL_AC) {
2113 set_up_list3s(cachep, SIZE_L3);
2114 g_cpucache_up = PARTIAL_L3;
2115 } else {
2116 int node;
556a169d 2117 for_each_online_node(node) {
f30cf7d1
PE
2118 cachep->nodelists[node] =
2119 kmalloc_node(sizeof(struct kmem_list3),
eb91f1d0 2120 gfp, node);
f30cf7d1
PE
2121 BUG_ON(!cachep->nodelists[node]);
2122 kmem_list3_init(cachep->nodelists[node]);
2123 }
2124 }
2125 }
2126 cachep->nodelists[numa_node_id()]->next_reap =
2127 jiffies + REAPTIMEOUT_LIST3 +
2128 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2129
2130 cpu_cache_get(cachep)->avail = 0;
2131 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2132 cpu_cache_get(cachep)->batchcount = 1;
2133 cpu_cache_get(cachep)->touched = 0;
2134 cachep->batchcount = 1;
2135 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2136 return 0;
f30cf7d1
PE
2137}
2138
1da177e4
LT
2139/**
2140 * kmem_cache_create - Create a cache.
2141 * @name: A string which is used in /proc/slabinfo to identify this cache.
2142 * @size: The size of objects to be created in this cache.
2143 * @align: The required alignment for the objects.
2144 * @flags: SLAB flags
2145 * @ctor: A constructor for the objects.
1da177e4
LT
2146 *
2147 * Returns a ptr to the cache on success, NULL on failure.
2148 * Cannot be called within a int, but can be interrupted.
20c2df83 2149 * The @ctor is run when new pages are allocated by the cache.
1da177e4
LT
2150 *
2151 * @name must be valid until the cache is destroyed. This implies that
a737b3e2 2152 * the module calling this has to destroy the cache before getting unloaded.
249da166
CM
2153 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
2154 * therefore applications must manage it themselves.
a737b3e2 2155 *
1da177e4
LT
2156 * The flags are
2157 *
2158 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2159 * to catch references to uninitialised memory.
2160 *
2161 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2162 * for buffer overruns.
2163 *
1da177e4
LT
2164 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2165 * cacheline. This can be beneficial if you're counting cycles as closely
2166 * as davem.
2167 */
343e0d7a 2168struct kmem_cache *
1da177e4 2169kmem_cache_create (const char *name, size_t size, size_t align,
51cc5068 2170 unsigned long flags, void (*ctor)(void *))
1da177e4
LT
2171{
2172 size_t left_over, slab_size, ralign;
7a7c381d 2173 struct kmem_cache *cachep = NULL, *pc;
83b519e8 2174 gfp_t gfp;
1da177e4
LT
2175
2176 /*
2177 * Sanity checks... these are all serious usage bugs.
2178 */
a737b3e2 2179 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
20c2df83 2180 size > KMALLOC_MAX_SIZE) {
d40cee24 2181 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
a737b3e2 2182 name);
b28a02de
PE
2183 BUG();
2184 }
1da177e4 2185
f0188f47 2186 /*
8f5be20b 2187 * We use cache_chain_mutex to ensure a consistent view of
174596a0 2188 * cpu_online_mask as well. Please see cpuup_callback
f0188f47 2189 */
83b519e8
PE
2190 if (slab_is_available()) {
2191 get_online_cpus();
2192 mutex_lock(&cache_chain_mutex);
2193 }
4f12bb4f 2194
7a7c381d 2195 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2196 char tmp;
2197 int res;
2198
2199 /*
2200 * This happens when the module gets unloaded and doesn't
2201 * destroy its slab cache and no-one else reuses the vmalloc
2202 * area of the module. Print a warning.
2203 */
138ae663 2204 res = probe_kernel_address(pc->name, tmp);
4f12bb4f 2205 if (res) {
b4169525 2206 printk(KERN_ERR
2207 "SLAB: cache with size %d has lost its name\n",
3dafccf2 2208 pc->buffer_size);
4f12bb4f
AM
2209 continue;
2210 }
2211
b28a02de 2212 if (!strcmp(pc->name, name)) {
b4169525 2213 printk(KERN_ERR
2214 "kmem_cache_create: duplicate cache %s\n", name);
4f12bb4f
AM
2215 dump_stack();
2216 goto oops;
2217 }
2218 }
2219
1da177e4
LT
2220#if DEBUG
2221 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1da177e4
LT
2222#if FORCED_DEBUG
2223 /*
2224 * Enable redzoning and last user accounting, except for caches with
2225 * large objects, if the increased size would increase the object size
2226 * above the next power of two: caches with object sizes just above a
2227 * power of two have a significant amount of internal fragmentation.
2228 */
87a927c7
DW
2229 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2230 2 * sizeof(unsigned long long)))
b28a02de 2231 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2232 if (!(flags & SLAB_DESTROY_BY_RCU))
2233 flags |= SLAB_POISON;
2234#endif
2235 if (flags & SLAB_DESTROY_BY_RCU)
2236 BUG_ON(flags & SLAB_POISON);
2237#endif
1da177e4 2238 /*
a737b3e2
AM
2239 * Always checks flags, a caller might be expecting debug support which
2240 * isn't available.
1da177e4 2241 */
40094fa6 2242 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2243
a737b3e2
AM
2244 /*
2245 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2246 * unaligned accesses for some archs when redzoning is used, and makes
2247 * sure any on-slab bufctl's are also correctly aligned.
2248 */
b28a02de
PE
2249 if (size & (BYTES_PER_WORD - 1)) {
2250 size += (BYTES_PER_WORD - 1);
2251 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2252 }
2253
a737b3e2
AM
2254 /* calculate the final buffer alignment: */
2255
1da177e4
LT
2256 /* 1) arch recommendation: can be overridden for debug */
2257 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2258 /*
2259 * Default alignment: as specified by the arch code. Except if
2260 * an object is really small, then squeeze multiple objects into
2261 * one cacheline.
1da177e4
LT
2262 */
2263 ralign = cache_line_size();
b28a02de 2264 while (size <= ralign / 2)
1da177e4
LT
2265 ralign /= 2;
2266 } else {
2267 ralign = BYTES_PER_WORD;
2268 }
ca5f9703
PE
2269
2270 /*
87a927c7
DW
2271 * Redzoning and user store require word alignment or possibly larger.
2272 * Note this will be overridden by architecture or caller mandated
2273 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2274 */
87a927c7
DW
2275 if (flags & SLAB_STORE_USER)
2276 ralign = BYTES_PER_WORD;
2277
2278 if (flags & SLAB_RED_ZONE) {
2279 ralign = REDZONE_ALIGN;
2280 /* If redzoning, ensure that the second redzone is suitably
2281 * aligned, by adjusting the object size accordingly. */
2282 size += REDZONE_ALIGN - 1;
2283 size &= ~(REDZONE_ALIGN - 1);
2284 }
ca5f9703 2285
a44b56d3 2286 /* 2) arch mandated alignment */
1da177e4
LT
2287 if (ralign < ARCH_SLAB_MINALIGN) {
2288 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2289 }
a44b56d3 2290 /* 3) caller mandated alignment */
1da177e4
LT
2291 if (ralign < align) {
2292 ralign = align;
1da177e4 2293 }
a44b56d3 2294 /* disable debug if necessary */
b46b8f19 2295 if (ralign > __alignof__(unsigned long long))
a44b56d3 2296 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2297 /*
ca5f9703 2298 * 4) Store it.
1da177e4
LT
2299 */
2300 align = ralign;
2301
83b519e8
PE
2302 if (slab_is_available())
2303 gfp = GFP_KERNEL;
2304 else
2305 gfp = GFP_NOWAIT;
2306
1da177e4 2307 /* Get cache's description obj. */
83b519e8 2308 cachep = kmem_cache_zalloc(&cache_cache, gfp);
1da177e4 2309 if (!cachep)
4f12bb4f 2310 goto oops;
1da177e4
LT
2311
2312#if DEBUG
3dafccf2 2313 cachep->obj_size = size;
1da177e4 2314
ca5f9703
PE
2315 /*
2316 * Both debugging options require word-alignment which is calculated
2317 * into align above.
2318 */
1da177e4 2319 if (flags & SLAB_RED_ZONE) {
1da177e4 2320 /* add space for red zone words */
b46b8f19
DW
2321 cachep->obj_offset += sizeof(unsigned long long);
2322 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2323 }
2324 if (flags & SLAB_STORE_USER) {
ca5f9703 2325 /* user store requires one word storage behind the end of
87a927c7
DW
2326 * the real object. But if the second red zone needs to be
2327 * aligned to 64 bits, we must allow that much space.
1da177e4 2328 */
87a927c7
DW
2329 if (flags & SLAB_RED_ZONE)
2330 size += REDZONE_ALIGN;
2331 else
2332 size += BYTES_PER_WORD;
1da177e4
LT
2333 }
2334#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2335 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2336 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2337 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2338 size = PAGE_SIZE;
2339 }
2340#endif
2341#endif
2342
e0a42726
IM
2343 /*
2344 * Determine if the slab management is 'on' or 'off' slab.
2345 * (bootstrapping cannot cope with offslab caches so don't do
2346 * it too early on.)
2347 */
2348 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
1da177e4
LT
2349 /*
2350 * Size is large, assume best to place the slab management obj
2351 * off-slab (should allow better packing of objs).
2352 */
2353 flags |= CFLGS_OFF_SLAB;
2354
2355 size = ALIGN(size, align);
2356
f78bb8ad 2357 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2358
2359 if (!cachep->num) {
b4169525 2360 printk(KERN_ERR
2361 "kmem_cache_create: couldn't create cache %s.\n", name);
1da177e4
LT
2362 kmem_cache_free(&cache_cache, cachep);
2363 cachep = NULL;
4f12bb4f 2364 goto oops;
1da177e4 2365 }
b28a02de
PE
2366 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2367 + sizeof(struct slab), align);
1da177e4
LT
2368
2369 /*
2370 * If the slab has been placed off-slab, and we have enough space then
2371 * move it on-slab. This is at the expense of any extra colouring.
2372 */
2373 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2374 flags &= ~CFLGS_OFF_SLAB;
2375 left_over -= slab_size;
2376 }
2377
2378 if (flags & CFLGS_OFF_SLAB) {
2379 /* really off slab. No need for manual alignment */
b28a02de
PE
2380 slab_size =
2381 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2382 }
2383
2384 cachep->colour_off = cache_line_size();
2385 /* Offset must be a multiple of the alignment. */
2386 if (cachep->colour_off < align)
2387 cachep->colour_off = align;
b28a02de 2388 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2389 cachep->slab_size = slab_size;
2390 cachep->flags = flags;
2391 cachep->gfpflags = 0;
4b51d669 2392 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
1da177e4 2393 cachep->gfpflags |= GFP_DMA;
3dafccf2 2394 cachep->buffer_size = size;
6a2d7a95 2395 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2396
e5ac9c5a 2397 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2398 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2399 /*
2400 * This is a possibility for one of the malloc_sizes caches.
2401 * But since we go off slab only for object size greater than
2402 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2403 * this should not happen at all.
2404 * But leave a BUG_ON for some lucky dude.
2405 */
6cb8f913 2406 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2407 }
1da177e4 2408 cachep->ctor = ctor;
1da177e4
LT
2409 cachep->name = name;
2410
83b519e8 2411 if (setup_cpu_cache(cachep, gfp)) {
2ed3a4ef
CL
2412 __kmem_cache_destroy(cachep);
2413 cachep = NULL;
2414 goto oops;
2415 }
1da177e4 2416
1da177e4
LT
2417 /* cache setup completed, link it into the list */
2418 list_add(&cachep->next, &cache_chain);
a737b3e2 2419oops:
1da177e4
LT
2420 if (!cachep && (flags & SLAB_PANIC))
2421 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2422 name);
83b519e8
PE
2423 if (slab_is_available()) {
2424 mutex_unlock(&cache_chain_mutex);
2425 put_online_cpus();
2426 }
1da177e4
LT
2427 return cachep;
2428}
2429EXPORT_SYMBOL(kmem_cache_create);
2430
2431#if DEBUG
2432static void check_irq_off(void)
2433{
2434 BUG_ON(!irqs_disabled());
2435}
2436
2437static void check_irq_on(void)
2438{
2439 BUG_ON(irqs_disabled());
2440}
2441
343e0d7a 2442static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2443{
2444#ifdef CONFIG_SMP
2445 check_irq_off();
e498be7d 2446 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2447#endif
2448}
e498be7d 2449
343e0d7a 2450static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2451{
2452#ifdef CONFIG_SMP
2453 check_irq_off();
2454 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2455#endif
2456}
2457
1da177e4
LT
2458#else
2459#define check_irq_off() do { } while(0)
2460#define check_irq_on() do { } while(0)
2461#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2462#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2463#endif
2464
aab2207c
CL
2465static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2466 struct array_cache *ac,
2467 int force, int node);
2468
1da177e4
LT
2469static void do_drain(void *arg)
2470{
a737b3e2 2471 struct kmem_cache *cachep = arg;
1da177e4 2472 struct array_cache *ac;
ff69416e 2473 int node = numa_node_id();
1da177e4
LT
2474
2475 check_irq_off();
9a2dba4b 2476 ac = cpu_cache_get(cachep);
ff69416e
CL
2477 spin_lock(&cachep->nodelists[node]->list_lock);
2478 free_block(cachep, ac->entry, ac->avail, node);
2479 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2480 ac->avail = 0;
2481}
2482
343e0d7a 2483static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2484{
e498be7d
CL
2485 struct kmem_list3 *l3;
2486 int node;
2487
15c8b6c1 2488 on_each_cpu(do_drain, cachep, 1);
1da177e4 2489 check_irq_on();
b28a02de 2490 for_each_online_node(node) {
e498be7d 2491 l3 = cachep->nodelists[node];
a4523a8b
RD
2492 if (l3 && l3->alien)
2493 drain_alien_cache(cachep, l3->alien);
2494 }
2495
2496 for_each_online_node(node) {
2497 l3 = cachep->nodelists[node];
2498 if (l3)
aab2207c 2499 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2500 }
1da177e4
LT
2501}
2502
ed11d9eb
CL
2503/*
2504 * Remove slabs from the list of free slabs.
2505 * Specify the number of slabs to drain in tofree.
2506 *
2507 * Returns the actual number of slabs released.
2508 */
2509static int drain_freelist(struct kmem_cache *cache,
2510 struct kmem_list3 *l3, int tofree)
1da177e4 2511{
ed11d9eb
CL
2512 struct list_head *p;
2513 int nr_freed;
1da177e4 2514 struct slab *slabp;
1da177e4 2515
ed11d9eb
CL
2516 nr_freed = 0;
2517 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2518
ed11d9eb 2519 spin_lock_irq(&l3->list_lock);
e498be7d 2520 p = l3->slabs_free.prev;
ed11d9eb
CL
2521 if (p == &l3->slabs_free) {
2522 spin_unlock_irq(&l3->list_lock);
2523 goto out;
2524 }
1da177e4 2525
ed11d9eb 2526 slabp = list_entry(p, struct slab, list);
1da177e4 2527#if DEBUG
40094fa6 2528 BUG_ON(slabp->inuse);
1da177e4
LT
2529#endif
2530 list_del(&slabp->list);
ed11d9eb
CL
2531 /*
2532 * Safe to drop the lock. The slab is no longer linked
2533 * to the cache.
2534 */
2535 l3->free_objects -= cache->num;
e498be7d 2536 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2537 slab_destroy(cache, slabp);
2538 nr_freed++;
1da177e4 2539 }
ed11d9eb
CL
2540out:
2541 return nr_freed;
1da177e4
LT
2542}
2543
8f5be20b 2544/* Called with cache_chain_mutex held to protect against cpu hotplug */
343e0d7a 2545static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2546{
2547 int ret = 0, i = 0;
2548 struct kmem_list3 *l3;
2549
2550 drain_cpu_caches(cachep);
2551
2552 check_irq_on();
2553 for_each_online_node(i) {
2554 l3 = cachep->nodelists[i];
ed11d9eb
CL
2555 if (!l3)
2556 continue;
2557
2558 drain_freelist(cachep, l3, l3->free_objects);
2559
2560 ret += !list_empty(&l3->slabs_full) ||
2561 !list_empty(&l3->slabs_partial);
e498be7d
CL
2562 }
2563 return (ret ? 1 : 0);
2564}
2565
1da177e4
LT
2566/**
2567 * kmem_cache_shrink - Shrink a cache.
2568 * @cachep: The cache to shrink.
2569 *
2570 * Releases as many slabs as possible for a cache.
2571 * To help debugging, a zero exit status indicates all slabs were released.
2572 */
343e0d7a 2573int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2574{
8f5be20b 2575 int ret;
40094fa6 2576 BUG_ON(!cachep || in_interrupt());
1da177e4 2577
95402b38 2578 get_online_cpus();
8f5be20b
RT
2579 mutex_lock(&cache_chain_mutex);
2580 ret = __cache_shrink(cachep);
2581 mutex_unlock(&cache_chain_mutex);
95402b38 2582 put_online_cpus();
8f5be20b 2583 return ret;
1da177e4
LT
2584}
2585EXPORT_SYMBOL(kmem_cache_shrink);
2586
2587/**
2588 * kmem_cache_destroy - delete a cache
2589 * @cachep: the cache to destroy
2590 *
72fd4a35 2591 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2592 *
2593 * It is expected this function will be called by a module when it is
2594 * unloaded. This will remove the cache completely, and avoid a duplicate
2595 * cache being allocated each time a module is loaded and unloaded, if the
2596 * module doesn't have persistent in-kernel storage across loads and unloads.
2597 *
2598 * The cache must be empty before calling this function.
2599 *
2600 * The caller must guarantee that noone will allocate memory from the cache
2601 * during the kmem_cache_destroy().
2602 */
133d205a 2603void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2604{
40094fa6 2605 BUG_ON(!cachep || in_interrupt());
1da177e4 2606
1da177e4 2607 /* Find the cache in the chain of caches. */
95402b38 2608 get_online_cpus();
fc0abb14 2609 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2610 /*
2611 * the chain is never empty, cache_cache is never destroyed
2612 */
2613 list_del(&cachep->next);
1da177e4
LT
2614 if (__cache_shrink(cachep)) {
2615 slab_error(cachep, "Can't free all objects");
b28a02de 2616 list_add(&cachep->next, &cache_chain);
fc0abb14 2617 mutex_unlock(&cache_chain_mutex);
95402b38 2618 put_online_cpus();
133d205a 2619 return;
1da177e4
LT
2620 }
2621
2622 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2623 synchronize_rcu();
1da177e4 2624
117f6eb1 2625 __kmem_cache_destroy(cachep);
8f5be20b 2626 mutex_unlock(&cache_chain_mutex);
95402b38 2627 put_online_cpus();
1da177e4
LT
2628}
2629EXPORT_SYMBOL(kmem_cache_destroy);
2630
e5ac9c5a
RT
2631/*
2632 * Get the memory for a slab management obj.
2633 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2634 * always come from malloc_sizes caches. The slab descriptor cannot
2635 * come from the same cache which is getting created because,
2636 * when we are searching for an appropriate cache for these
2637 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2638 * If we are creating a malloc_sizes cache here it would not be visible to
2639 * kmem_find_general_cachep till the initialization is complete.
2640 * Hence we cannot have slabp_cache same as the original cache.
2641 */
343e0d7a 2642static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2643 int colour_off, gfp_t local_flags,
2644 int nodeid)
1da177e4
LT
2645{
2646 struct slab *slabp;
b28a02de 2647
1da177e4
LT
2648 if (OFF_SLAB(cachep)) {
2649 /* Slab management obj is off-slab. */
5b74ada7 2650 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2651 local_flags, nodeid);
d5cff635
CM
2652 /*
2653 * If the first object in the slab is leaked (it's allocated
2654 * but no one has a reference to it), we want to make sure
2655 * kmemleak does not treat the ->s_mem pointer as a reference
2656 * to the object. Otherwise we will not report the leak.
2657 */
2658 kmemleak_scan_area(slabp, offsetof(struct slab, list),
2659 sizeof(struct list_head), local_flags);
1da177e4
LT
2660 if (!slabp)
2661 return NULL;
2662 } else {
b28a02de 2663 slabp = objp + colour_off;
1da177e4
LT
2664 colour_off += cachep->slab_size;
2665 }
2666 slabp->inuse = 0;
2667 slabp->colouroff = colour_off;
b28a02de 2668 slabp->s_mem = objp + colour_off;
5b74ada7 2669 slabp->nodeid = nodeid;
e51bfd0a 2670 slabp->free = 0;
1da177e4
LT
2671 return slabp;
2672}
2673
2674static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2675{
b28a02de 2676 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2677}
2678
343e0d7a 2679static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2680 struct slab *slabp)
1da177e4
LT
2681{
2682 int i;
2683
2684 for (i = 0; i < cachep->num; i++) {
8fea4e96 2685 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2686#if DEBUG
2687 /* need to poison the objs? */
2688 if (cachep->flags & SLAB_POISON)
2689 poison_obj(cachep, objp, POISON_FREE);
2690 if (cachep->flags & SLAB_STORE_USER)
2691 *dbg_userword(cachep, objp) = NULL;
2692
2693 if (cachep->flags & SLAB_RED_ZONE) {
2694 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2695 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2696 }
2697 /*
a737b3e2
AM
2698 * Constructors are not allowed to allocate memory from the same
2699 * cache which they are a constructor for. Otherwise, deadlock.
2700 * They must also be threaded.
1da177e4
LT
2701 */
2702 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2703 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2704
2705 if (cachep->flags & SLAB_RED_ZONE) {
2706 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2707 slab_error(cachep, "constructor overwrote the"
b28a02de 2708 " end of an object");
1da177e4
LT
2709 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2710 slab_error(cachep, "constructor overwrote the"
b28a02de 2711 " start of an object");
1da177e4 2712 }
a737b3e2
AM
2713 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2714 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2715 kernel_map_pages(virt_to_page(objp),
3dafccf2 2716 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2717#else
2718 if (cachep->ctor)
51cc5068 2719 cachep->ctor(objp);
1da177e4 2720#endif
b28a02de 2721 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2722 }
b28a02de 2723 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2724}
2725
343e0d7a 2726static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2727{
4b51d669
CL
2728 if (CONFIG_ZONE_DMA_FLAG) {
2729 if (flags & GFP_DMA)
2730 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2731 else
2732 BUG_ON(cachep->gfpflags & GFP_DMA);
2733 }
1da177e4
LT
2734}
2735
a737b3e2
AM
2736static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2737 int nodeid)
78d382d7 2738{
8fea4e96 2739 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2740 kmem_bufctl_t next;
2741
2742 slabp->inuse++;
2743 next = slab_bufctl(slabp)[slabp->free];
2744#if DEBUG
2745 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2746 WARN_ON(slabp->nodeid != nodeid);
2747#endif
2748 slabp->free = next;
2749
2750 return objp;
2751}
2752
a737b3e2
AM
2753static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2754 void *objp, int nodeid)
78d382d7 2755{
8fea4e96 2756 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2757
2758#if DEBUG
2759 /* Verify that the slab belongs to the intended node */
2760 WARN_ON(slabp->nodeid != nodeid);
2761
871751e2 2762 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2763 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2764 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2765 BUG();
2766 }
2767#endif
2768 slab_bufctl(slabp)[objnr] = slabp->free;
2769 slabp->free = objnr;
2770 slabp->inuse--;
2771}
2772
4776874f
PE
2773/*
2774 * Map pages beginning at addr to the given cache and slab. This is required
2775 * for the slab allocator to be able to lookup the cache and slab of a
2776 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2777 */
2778static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2779 void *addr)
1da177e4 2780{
4776874f 2781 int nr_pages;
1da177e4
LT
2782 struct page *page;
2783
4776874f 2784 page = virt_to_page(addr);
84097518 2785
4776874f 2786 nr_pages = 1;
84097518 2787 if (likely(!PageCompound(page)))
4776874f
PE
2788 nr_pages <<= cache->gfporder;
2789
1da177e4 2790 do {
4776874f
PE
2791 page_set_cache(page, cache);
2792 page_set_slab(page, slab);
1da177e4 2793 page++;
4776874f 2794 } while (--nr_pages);
1da177e4
LT
2795}
2796
2797/*
2798 * Grow (by 1) the number of slabs within a cache. This is called by
2799 * kmem_cache_alloc() when there are no active objs left in a cache.
2800 */
3c517a61
CL
2801static int cache_grow(struct kmem_cache *cachep,
2802 gfp_t flags, int nodeid, void *objp)
1da177e4 2803{
b28a02de 2804 struct slab *slabp;
b28a02de
PE
2805 size_t offset;
2806 gfp_t local_flags;
e498be7d 2807 struct kmem_list3 *l3;
1da177e4 2808
a737b3e2
AM
2809 /*
2810 * Be lazy and only check for valid flags here, keeping it out of the
2811 * critical path in kmem_cache_alloc().
1da177e4 2812 */
6cb06229
CL
2813 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2814 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2815
2e1217cf 2816 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2817 check_irq_off();
2e1217cf
RT
2818 l3 = cachep->nodelists[nodeid];
2819 spin_lock(&l3->list_lock);
1da177e4
LT
2820
2821 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2822 offset = l3->colour_next;
2823 l3->colour_next++;
2824 if (l3->colour_next >= cachep->colour)
2825 l3->colour_next = 0;
2826 spin_unlock(&l3->list_lock);
1da177e4 2827
2e1217cf 2828 offset *= cachep->colour_off;
1da177e4
LT
2829
2830 if (local_flags & __GFP_WAIT)
2831 local_irq_enable();
2832
2833 /*
2834 * The test for missing atomic flag is performed here, rather than
2835 * the more obvious place, simply to reduce the critical path length
2836 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2837 * will eventually be caught here (where it matters).
2838 */
2839 kmem_flagcheck(cachep, flags);
2840
a737b3e2
AM
2841 /*
2842 * Get mem for the objs. Attempt to allocate a physical page from
2843 * 'nodeid'.
e498be7d 2844 */
3c517a61 2845 if (!objp)
b8c1c5da 2846 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2847 if (!objp)
1da177e4
LT
2848 goto failed;
2849
2850 /* Get slab management. */
3c517a61 2851 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2852 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2853 if (!slabp)
1da177e4
LT
2854 goto opps1;
2855
4776874f 2856 slab_map_pages(cachep, slabp, objp);
1da177e4 2857
a35afb83 2858 cache_init_objs(cachep, slabp);
1da177e4
LT
2859
2860 if (local_flags & __GFP_WAIT)
2861 local_irq_disable();
2862 check_irq_off();
e498be7d 2863 spin_lock(&l3->list_lock);
1da177e4
LT
2864
2865 /* Make slab active. */
e498be7d 2866 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2867 STATS_INC_GROWN(cachep);
e498be7d
CL
2868 l3->free_objects += cachep->num;
2869 spin_unlock(&l3->list_lock);
1da177e4 2870 return 1;
a737b3e2 2871opps1:
1da177e4 2872 kmem_freepages(cachep, objp);
a737b3e2 2873failed:
1da177e4
LT
2874 if (local_flags & __GFP_WAIT)
2875 local_irq_disable();
2876 return 0;
2877}
2878
2879#if DEBUG
2880
2881/*
2882 * Perform extra freeing checks:
2883 * - detect bad pointers.
2884 * - POISON/RED_ZONE checking
1da177e4
LT
2885 */
2886static void kfree_debugcheck(const void *objp)
2887{
1da177e4
LT
2888 if (!virt_addr_valid(objp)) {
2889 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2890 (unsigned long)objp);
2891 BUG();
1da177e4 2892 }
1da177e4
LT
2893}
2894
58ce1fd5
PE
2895static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2896{
b46b8f19 2897 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2898
2899 redzone1 = *dbg_redzone1(cache, obj);
2900 redzone2 = *dbg_redzone2(cache, obj);
2901
2902 /*
2903 * Redzone is ok.
2904 */
2905 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2906 return;
2907
2908 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2909 slab_error(cache, "double free detected");
2910 else
2911 slab_error(cache, "memory outside object was overwritten");
2912
b46b8f19 2913 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
2914 obj, redzone1, redzone2);
2915}
2916
343e0d7a 2917static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2918 void *caller)
1da177e4
LT
2919{
2920 struct page *page;
2921 unsigned int objnr;
2922 struct slab *slabp;
2923
80cbd911
MW
2924 BUG_ON(virt_to_cache(objp) != cachep);
2925
3dafccf2 2926 objp -= obj_offset(cachep);
1da177e4 2927 kfree_debugcheck(objp);
b49af68f 2928 page = virt_to_head_page(objp);
1da177e4 2929
065d41cb 2930 slabp = page_get_slab(page);
1da177e4
LT
2931
2932 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2933 verify_redzone_free(cachep, objp);
1da177e4
LT
2934 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2935 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2936 }
2937 if (cachep->flags & SLAB_STORE_USER)
2938 *dbg_userword(cachep, objp) = caller;
2939
8fea4e96 2940 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2941
2942 BUG_ON(objnr >= cachep->num);
8fea4e96 2943 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 2944
871751e2
AV
2945#ifdef CONFIG_DEBUG_SLAB_LEAK
2946 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2947#endif
1da177e4
LT
2948 if (cachep->flags & SLAB_POISON) {
2949#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2950 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2951 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2952 kernel_map_pages(virt_to_page(objp),
3dafccf2 2953 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2954 } else {
2955 poison_obj(cachep, objp, POISON_FREE);
2956 }
2957#else
2958 poison_obj(cachep, objp, POISON_FREE);
2959#endif
2960 }
2961 return objp;
2962}
2963
343e0d7a 2964static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2965{
2966 kmem_bufctl_t i;
2967 int entries = 0;
b28a02de 2968
1da177e4
LT
2969 /* Check slab's freelist to see if this obj is there. */
2970 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2971 entries++;
2972 if (entries > cachep->num || i >= cachep->num)
2973 goto bad;
2974 }
2975 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2976bad:
2977 printk(KERN_ERR "slab: Internal list corruption detected in "
2978 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2979 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2980 for (i = 0;
264132bc 2981 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2982 i++) {
a737b3e2 2983 if (i % 16 == 0)
1da177e4 2984 printk("\n%03x:", i);
b28a02de 2985 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2986 }
2987 printk("\n");
2988 BUG();
2989 }
2990}
2991#else
2992#define kfree_debugcheck(x) do { } while(0)
2993#define cache_free_debugcheck(x,objp,z) (objp)
2994#define check_slabp(x,y) do { } while(0)
2995#endif
2996
343e0d7a 2997static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2998{
2999 int batchcount;
3000 struct kmem_list3 *l3;
3001 struct array_cache *ac;
1ca4cb24
PE
3002 int node;
3003
6d2144d3 3004retry:
1da177e4 3005 check_irq_off();
6d2144d3 3006 node = numa_node_id();
9a2dba4b 3007 ac = cpu_cache_get(cachep);
1da177e4
LT
3008 batchcount = ac->batchcount;
3009 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
3010 /*
3011 * If there was little recent activity on this cache, then
3012 * perform only a partial refill. Otherwise we could generate
3013 * refill bouncing.
1da177e4
LT
3014 */
3015 batchcount = BATCHREFILL_LIMIT;
3016 }
1ca4cb24 3017 l3 = cachep->nodelists[node];
e498be7d
CL
3018
3019 BUG_ON(ac->avail > 0 || !l3);
3020 spin_lock(&l3->list_lock);
1da177e4 3021
3ded175a
CL
3022 /* See if we can refill from the shared array */
3023 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
3024 goto alloc_done;
3025
1da177e4
LT
3026 while (batchcount > 0) {
3027 struct list_head *entry;
3028 struct slab *slabp;
3029 /* Get slab alloc is to come from. */
3030 entry = l3->slabs_partial.next;
3031 if (entry == &l3->slabs_partial) {
3032 l3->free_touched = 1;
3033 entry = l3->slabs_free.next;
3034 if (entry == &l3->slabs_free)
3035 goto must_grow;
3036 }
3037
3038 slabp = list_entry(entry, struct slab, list);
3039 check_slabp(cachep, slabp);
3040 check_spinlock_acquired(cachep);
714b8171
PE
3041
3042 /*
3043 * The slab was either on partial or free list so
3044 * there must be at least one object available for
3045 * allocation.
3046 */
249b9f33 3047 BUG_ON(slabp->inuse >= cachep->num);
714b8171 3048
1da177e4 3049 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3050 STATS_INC_ALLOCED(cachep);
3051 STATS_INC_ACTIVE(cachep);
3052 STATS_SET_HIGH(cachep);
3053
78d382d7 3054 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
1ca4cb24 3055 node);
1da177e4
LT
3056 }
3057 check_slabp(cachep, slabp);
3058
3059 /* move slabp to correct slabp list: */
3060 list_del(&slabp->list);
3061 if (slabp->free == BUFCTL_END)
3062 list_add(&slabp->list, &l3->slabs_full);
3063 else
3064 list_add(&slabp->list, &l3->slabs_partial);
3065 }
3066
a737b3e2 3067must_grow:
1da177e4 3068 l3->free_objects -= ac->avail;
a737b3e2 3069alloc_done:
e498be7d 3070 spin_unlock(&l3->list_lock);
1da177e4
LT
3071
3072 if (unlikely(!ac->avail)) {
3073 int x;
3c517a61 3074 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3075
a737b3e2 3076 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3077 ac = cpu_cache_get(cachep);
a737b3e2 3078 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
3079 return NULL;
3080
a737b3e2 3081 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3082 goto retry;
3083 }
3084 ac->touched = 1;
e498be7d 3085 return ac->entry[--ac->avail];
1da177e4
LT
3086}
3087
a737b3e2
AM
3088static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3089 gfp_t flags)
1da177e4
LT
3090{
3091 might_sleep_if(flags & __GFP_WAIT);
3092#if DEBUG
3093 kmem_flagcheck(cachep, flags);
3094#endif
3095}
3096
3097#if DEBUG
a737b3e2
AM
3098static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3099 gfp_t flags, void *objp, void *caller)
1da177e4 3100{
b28a02de 3101 if (!objp)
1da177e4 3102 return objp;
b28a02de 3103 if (cachep->flags & SLAB_POISON) {
1da177e4 3104#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 3105 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3106 kernel_map_pages(virt_to_page(objp),
3dafccf2 3107 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
3108 else
3109 check_poison_obj(cachep, objp);
3110#else
3111 check_poison_obj(cachep, objp);
3112#endif
3113 poison_obj(cachep, objp, POISON_INUSE);
3114 }
3115 if (cachep->flags & SLAB_STORE_USER)
3116 *dbg_userword(cachep, objp) = caller;
3117
3118 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3119 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3120 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3121 slab_error(cachep, "double free, or memory outside"
3122 " object was overwritten");
b28a02de 3123 printk(KERN_ERR
b46b8f19 3124 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3125 objp, *dbg_redzone1(cachep, objp),
3126 *dbg_redzone2(cachep, objp));
1da177e4
LT
3127 }
3128 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3129 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3130 }
871751e2
AV
3131#ifdef CONFIG_DEBUG_SLAB_LEAK
3132 {
3133 struct slab *slabp;
3134 unsigned objnr;
3135
b49af68f 3136 slabp = page_get_slab(virt_to_head_page(objp));
871751e2
AV
3137 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3138 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3139 }
3140#endif
3dafccf2 3141 objp += obj_offset(cachep);
4f104934 3142 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3143 cachep->ctor(objp);
a44b56d3
KH
3144#if ARCH_SLAB_MINALIGN
3145 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3146 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3147 objp, ARCH_SLAB_MINALIGN);
3148 }
3149#endif
1da177e4
LT
3150 return objp;
3151}
3152#else
3153#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3154#endif
3155
773ff60e 3156static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502
AM
3157{
3158 if (cachep == &cache_cache)
773ff60e 3159 return false;
8a8b6502 3160
773ff60e 3161 return should_failslab(obj_size(cachep), flags);
8a8b6502
AM
3162}
3163
343e0d7a 3164static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3165{
b28a02de 3166 void *objp;
1da177e4
LT
3167 struct array_cache *ac;
3168
5c382300 3169 check_irq_off();
8a8b6502 3170
9a2dba4b 3171 ac = cpu_cache_get(cachep);
1da177e4
LT
3172 if (likely(ac->avail)) {
3173 STATS_INC_ALLOCHIT(cachep);
3174 ac->touched = 1;
e498be7d 3175 objp = ac->entry[--ac->avail];
1da177e4
LT
3176 } else {
3177 STATS_INC_ALLOCMISS(cachep);
3178 objp = cache_alloc_refill(cachep, flags);
3179 }
d5cff635
CM
3180 /*
3181 * To avoid a false negative, if an object that is in one of the
3182 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3183 * treat the array pointers as a reference to the object.
3184 */
3185 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3186 return objp;
3187}
3188
e498be7d 3189#ifdef CONFIG_NUMA
c61afb18 3190/*
b2455396 3191 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3192 *
3193 * If we are in_interrupt, then process context, including cpusets and
3194 * mempolicy, may not apply and should not be used for allocation policy.
3195 */
3196static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3197{
3198 int nid_alloc, nid_here;
3199
765c4507 3200 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18
PJ
3201 return NULL;
3202 nid_alloc = nid_here = numa_node_id();
3203 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3204 nid_alloc = cpuset_mem_spread_node();
3205 else if (current->mempolicy)
3206 nid_alloc = slab_node(current->mempolicy);
3207 if (nid_alloc != nid_here)
8b98c169 3208 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3209 return NULL;
3210}
3211
765c4507
CL
3212/*
3213 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3214 * certain node and fall back is permitted. First we scan all the
3215 * available nodelists for available objects. If that fails then we
3216 * perform an allocation without specifying a node. This allows the page
3217 * allocator to do its reclaim / fallback magic. We then insert the
3218 * slab into the proper nodelist and then allocate from it.
765c4507 3219 */
8c8cc2c1 3220static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3221{
8c8cc2c1
PE
3222 struct zonelist *zonelist;
3223 gfp_t local_flags;
dd1a239f 3224 struct zoneref *z;
54a6eb5c
MG
3225 struct zone *zone;
3226 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3227 void *obj = NULL;
3c517a61 3228 int nid;
8c8cc2c1
PE
3229
3230 if (flags & __GFP_THISNODE)
3231 return NULL;
3232
0e88460d 3233 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
6cb06229 3234 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3235
3c517a61
CL
3236retry:
3237 /*
3238 * Look through allowed nodes for objects available
3239 * from existing per node queues.
3240 */
54a6eb5c
MG
3241 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3242 nid = zone_to_nid(zone);
aedb0eb1 3243
54a6eb5c 3244 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3c517a61 3245 cache->nodelists[nid] &&
481c5346 3246 cache->nodelists[nid]->free_objects) {
3c517a61
CL
3247 obj = ____cache_alloc_node(cache,
3248 flags | GFP_THISNODE, nid);
481c5346
CL
3249 if (obj)
3250 break;
3251 }
3c517a61
CL
3252 }
3253
cfce6604 3254 if (!obj) {
3c517a61
CL
3255 /*
3256 * This allocation will be performed within the constraints
3257 * of the current cpuset / memory policy requirements.
3258 * We may trigger various forms of reclaim on the allowed
3259 * set and go into memory reserves if necessary.
3260 */
dd47ea75
CL
3261 if (local_flags & __GFP_WAIT)
3262 local_irq_enable();
3263 kmem_flagcheck(cache, flags);
6484eb3e 3264 obj = kmem_getpages(cache, local_flags, numa_node_id());
dd47ea75
CL
3265 if (local_flags & __GFP_WAIT)
3266 local_irq_disable();
3c517a61
CL
3267 if (obj) {
3268 /*
3269 * Insert into the appropriate per node queues
3270 */
3271 nid = page_to_nid(virt_to_page(obj));
3272 if (cache_grow(cache, flags, nid, obj)) {
3273 obj = ____cache_alloc_node(cache,
3274 flags | GFP_THISNODE, nid);
3275 if (!obj)
3276 /*
3277 * Another processor may allocate the
3278 * objects in the slab since we are
3279 * not holding any locks.
3280 */
3281 goto retry;
3282 } else {
b6a60451 3283 /* cache_grow already freed obj */
3c517a61
CL
3284 obj = NULL;
3285 }
3286 }
aedb0eb1 3287 }
765c4507
CL
3288 return obj;
3289}
3290
e498be7d
CL
3291/*
3292 * A interface to enable slab creation on nodeid
1da177e4 3293 */
8b98c169 3294static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3295 int nodeid)
e498be7d
CL
3296{
3297 struct list_head *entry;
b28a02de
PE
3298 struct slab *slabp;
3299 struct kmem_list3 *l3;
3300 void *obj;
b28a02de
PE
3301 int x;
3302
3303 l3 = cachep->nodelists[nodeid];
3304 BUG_ON(!l3);
3305
a737b3e2 3306retry:
ca3b9b91 3307 check_irq_off();
b28a02de
PE
3308 spin_lock(&l3->list_lock);
3309 entry = l3->slabs_partial.next;
3310 if (entry == &l3->slabs_partial) {
3311 l3->free_touched = 1;
3312 entry = l3->slabs_free.next;
3313 if (entry == &l3->slabs_free)
3314 goto must_grow;
3315 }
3316
3317 slabp = list_entry(entry, struct slab, list);
3318 check_spinlock_acquired_node(cachep, nodeid);
3319 check_slabp(cachep, slabp);
3320
3321 STATS_INC_NODEALLOCS(cachep);
3322 STATS_INC_ACTIVE(cachep);
3323 STATS_SET_HIGH(cachep);
3324
3325 BUG_ON(slabp->inuse == cachep->num);
3326
78d382d7 3327 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3328 check_slabp(cachep, slabp);
3329 l3->free_objects--;
3330 /* move slabp to correct slabp list: */
3331 list_del(&slabp->list);
3332
a737b3e2 3333 if (slabp->free == BUFCTL_END)
b28a02de 3334 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3335 else
b28a02de 3336 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3337
b28a02de
PE
3338 spin_unlock(&l3->list_lock);
3339 goto done;
e498be7d 3340
a737b3e2 3341must_grow:
b28a02de 3342 spin_unlock(&l3->list_lock);
3c517a61 3343 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3344 if (x)
3345 goto retry;
1da177e4 3346
8c8cc2c1 3347 return fallback_alloc(cachep, flags);
e498be7d 3348
a737b3e2 3349done:
b28a02de 3350 return obj;
e498be7d 3351}
8c8cc2c1
PE
3352
3353/**
3354 * kmem_cache_alloc_node - Allocate an object on the specified node
3355 * @cachep: The cache to allocate from.
3356 * @flags: See kmalloc().
3357 * @nodeid: node number of the target node.
3358 * @caller: return address of caller, used for debug information
3359 *
3360 * Identical to kmem_cache_alloc but it will allocate memory on the given
3361 * node, which can improve the performance for cpu bound structures.
3362 *
3363 * Fallback to other node is possible if __GFP_THISNODE is not set.
3364 */
3365static __always_inline void *
3366__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3367 void *caller)
3368{
3369 unsigned long save_flags;
3370 void *ptr;
3371
7e85ee0c
PE
3372 flags &= slab_gfp_mask;
3373
cf40bd16
NP
3374 lockdep_trace_alloc(flags);
3375
773ff60e 3376 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3377 return NULL;
3378
8c8cc2c1
PE
3379 cache_alloc_debugcheck_before(cachep, flags);
3380 local_irq_save(save_flags);
3381
3382 if (unlikely(nodeid == -1))
3383 nodeid = numa_node_id();
3384
3385 if (unlikely(!cachep->nodelists[nodeid])) {
3386 /* Node not bootstrapped yet */
3387 ptr = fallback_alloc(cachep, flags);
3388 goto out;
3389 }
3390
3391 if (nodeid == numa_node_id()) {
3392 /*
3393 * Use the locally cached objects if possible.
3394 * However ____cache_alloc does not allow fallback
3395 * to other nodes. It may fail while we still have
3396 * objects on other nodes available.
3397 */
3398 ptr = ____cache_alloc(cachep, flags);
3399 if (ptr)
3400 goto out;
3401 }
3402 /* ___cache_alloc_node can fall back to other nodes */
3403 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3404 out:
3405 local_irq_restore(save_flags);
3406 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
d5cff635
CM
3407 kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3408 flags);
8c8cc2c1 3409
d07dbea4
CL
3410 if (unlikely((flags & __GFP_ZERO) && ptr))
3411 memset(ptr, 0, obj_size(cachep));
3412
8c8cc2c1
PE
3413 return ptr;
3414}
3415
3416static __always_inline void *
3417__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3418{
3419 void *objp;
3420
3421 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3422 objp = alternate_node_alloc(cache, flags);
3423 if (objp)
3424 goto out;
3425 }
3426 objp = ____cache_alloc(cache, flags);
3427
3428 /*
3429 * We may just have run out of memory on the local node.
3430 * ____cache_alloc_node() knows how to locate memory on other nodes
3431 */
3432 if (!objp)
3433 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3434
3435 out:
3436 return objp;
3437}
3438#else
3439
3440static __always_inline void *
3441__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3442{
3443 return ____cache_alloc(cachep, flags);
3444}
3445
3446#endif /* CONFIG_NUMA */
3447
3448static __always_inline void *
3449__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3450{
3451 unsigned long save_flags;
3452 void *objp;
3453
7e85ee0c
PE
3454 flags &= slab_gfp_mask;
3455
cf40bd16
NP
3456 lockdep_trace_alloc(flags);
3457
773ff60e 3458 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3459 return NULL;
3460
8c8cc2c1
PE
3461 cache_alloc_debugcheck_before(cachep, flags);
3462 local_irq_save(save_flags);
3463 objp = __do_cache_alloc(cachep, flags);
3464 local_irq_restore(save_flags);
3465 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
d5cff635
CM
3466 kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3467 flags);
8c8cc2c1
PE
3468 prefetchw(objp);
3469
d07dbea4
CL
3470 if (unlikely((flags & __GFP_ZERO) && objp))
3471 memset(objp, 0, obj_size(cachep));
3472
8c8cc2c1
PE
3473 return objp;
3474}
e498be7d
CL
3475
3476/*
3477 * Caller needs to acquire correct kmem_list's list_lock
3478 */
343e0d7a 3479static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3480 int node)
1da177e4
LT
3481{
3482 int i;
e498be7d 3483 struct kmem_list3 *l3;
1da177e4
LT
3484
3485 for (i = 0; i < nr_objects; i++) {
3486 void *objp = objpp[i];
3487 struct slab *slabp;
1da177e4 3488
6ed5eb22 3489 slabp = virt_to_slab(objp);
ff69416e 3490 l3 = cachep->nodelists[node];
1da177e4 3491 list_del(&slabp->list);
ff69416e 3492 check_spinlock_acquired_node(cachep, node);
1da177e4 3493 check_slabp(cachep, slabp);
78d382d7 3494 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3495 STATS_DEC_ACTIVE(cachep);
e498be7d 3496 l3->free_objects++;
1da177e4
LT
3497 check_slabp(cachep, slabp);
3498
3499 /* fixup slab chains */
3500 if (slabp->inuse == 0) {
e498be7d
CL
3501 if (l3->free_objects > l3->free_limit) {
3502 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3503 /* No need to drop any previously held
3504 * lock here, even if we have a off-slab slab
3505 * descriptor it is guaranteed to come from
3506 * a different cache, refer to comments before
3507 * alloc_slabmgmt.
3508 */
1da177e4
LT
3509 slab_destroy(cachep, slabp);
3510 } else {
e498be7d 3511 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3512 }
3513 } else {
3514 /* Unconditionally move a slab to the end of the
3515 * partial list on free - maximum time for the
3516 * other objects to be freed, too.
3517 */
e498be7d 3518 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3519 }
3520 }
3521}
3522
343e0d7a 3523static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3524{
3525 int batchcount;
e498be7d 3526 struct kmem_list3 *l3;
ff69416e 3527 int node = numa_node_id();
1da177e4
LT
3528
3529 batchcount = ac->batchcount;
3530#if DEBUG
3531 BUG_ON(!batchcount || batchcount > ac->avail);
3532#endif
3533 check_irq_off();
ff69416e 3534 l3 = cachep->nodelists[node];
873623df 3535 spin_lock(&l3->list_lock);
e498be7d
CL
3536 if (l3->shared) {
3537 struct array_cache *shared_array = l3->shared;
b28a02de 3538 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3539 if (max) {
3540 if (batchcount > max)
3541 batchcount = max;
e498be7d 3542 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3543 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3544 shared_array->avail += batchcount;
3545 goto free_done;
3546 }
3547 }
3548
ff69416e 3549 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3550free_done:
1da177e4
LT
3551#if STATS
3552 {
3553 int i = 0;
3554 struct list_head *p;
3555
e498be7d
CL
3556 p = l3->slabs_free.next;
3557 while (p != &(l3->slabs_free)) {
1da177e4
LT
3558 struct slab *slabp;
3559
3560 slabp = list_entry(p, struct slab, list);
3561 BUG_ON(slabp->inuse);
3562
3563 i++;
3564 p = p->next;
3565 }
3566 STATS_SET_FREEABLE(cachep, i);
3567 }
3568#endif
e498be7d 3569 spin_unlock(&l3->list_lock);
1da177e4 3570 ac->avail -= batchcount;
a737b3e2 3571 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3572}
3573
3574/*
a737b3e2
AM
3575 * Release an obj back to its cache. If the obj has a constructed state, it must
3576 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3577 */
873623df 3578static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3579{
9a2dba4b 3580 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3581
3582 check_irq_off();
d5cff635 3583 kmemleak_free_recursive(objp, cachep->flags);
1da177e4
LT
3584 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3585
1807a1aa
SS
3586 /*
3587 * Skip calling cache_free_alien() when the platform is not numa.
3588 * This will avoid cache misses that happen while accessing slabp (which
3589 * is per page memory reference) to get nodeid. Instead use a global
3590 * variable to skip the call, which is mostly likely to be present in
3591 * the cache.
3592 */
3593 if (numa_platform && cache_free_alien(cachep, objp))
729bd0b7
PE
3594 return;
3595
1da177e4
LT
3596 if (likely(ac->avail < ac->limit)) {
3597 STATS_INC_FREEHIT(cachep);
e498be7d 3598 ac->entry[ac->avail++] = objp;
1da177e4
LT
3599 return;
3600 } else {
3601 STATS_INC_FREEMISS(cachep);
3602 cache_flusharray(cachep, ac);
e498be7d 3603 ac->entry[ac->avail++] = objp;
1da177e4
LT
3604 }
3605}
3606
3607/**
3608 * kmem_cache_alloc - Allocate an object
3609 * @cachep: The cache to allocate from.
3610 * @flags: See kmalloc().
3611 *
3612 * Allocate an object from this cache. The flags are only relevant
3613 * if the cache has no available objects.
3614 */
343e0d7a 3615void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3616{
36555751
EGM
3617 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3618
ca2b84cb
EGM
3619 trace_kmem_cache_alloc(_RET_IP_, ret,
3620 obj_size(cachep), cachep->buffer_size, flags);
36555751
EGM
3621
3622 return ret;
1da177e4
LT
3623}
3624EXPORT_SYMBOL(kmem_cache_alloc);
3625
36555751
EGM
3626#ifdef CONFIG_KMEMTRACE
3627void *kmem_cache_alloc_notrace(struct kmem_cache *cachep, gfp_t flags)
3628{
3629 return __cache_alloc(cachep, flags, __builtin_return_address(0));
3630}
3631EXPORT_SYMBOL(kmem_cache_alloc_notrace);
3632#endif
3633
1da177e4 3634/**
7682486b 3635 * kmem_ptr_validate - check if an untrusted pointer might be a slab entry.
1da177e4
LT
3636 * @cachep: the cache we're checking against
3637 * @ptr: pointer to validate
3638 *
7682486b 3639 * This verifies that the untrusted pointer looks sane;
1da177e4
LT
3640 * it is _not_ a guarantee that the pointer is actually
3641 * part of the slab cache in question, but it at least
3642 * validates that the pointer can be dereferenced and
3643 * looks half-way sane.
3644 *
3645 * Currently only used for dentry validation.
3646 */
b7f869a2 3647int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
1da177e4 3648{
b28a02de 3649 unsigned long addr = (unsigned long)ptr;
1da177e4 3650 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3651 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3652 unsigned long size = cachep->buffer_size;
1da177e4
LT
3653 struct page *page;
3654
3655 if (unlikely(addr < min_addr))
3656 goto out;
3657 if (unlikely(addr > (unsigned long)high_memory - size))
3658 goto out;
3659 if (unlikely(addr & align_mask))
3660 goto out;
3661 if (unlikely(!kern_addr_valid(addr)))
3662 goto out;
3663 if (unlikely(!kern_addr_valid(addr + size - 1)))
3664 goto out;
3665 page = virt_to_page(ptr);
3666 if (unlikely(!PageSlab(page)))
3667 goto out;
065d41cb 3668 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3669 goto out;
3670 return 1;
a737b3e2 3671out:
1da177e4
LT
3672 return 0;
3673}
3674
3675#ifdef CONFIG_NUMA
8b98c169
CH
3676void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3677{
36555751
EGM
3678 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3679 __builtin_return_address(0));
3680
ca2b84cb
EGM
3681 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3682 obj_size(cachep), cachep->buffer_size,
3683 flags, nodeid);
36555751
EGM
3684
3685 return ret;
8b98c169 3686}
1da177e4
LT
3687EXPORT_SYMBOL(kmem_cache_alloc_node);
3688
36555751
EGM
3689#ifdef CONFIG_KMEMTRACE
3690void *kmem_cache_alloc_node_notrace(struct kmem_cache *cachep,
3691 gfp_t flags,
3692 int nodeid)
3693{
3694 return __cache_alloc_node(cachep, flags, nodeid,
3695 __builtin_return_address(0));
3696}
3697EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
3698#endif
3699
8b98c169
CH
3700static __always_inline void *
3701__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3702{
343e0d7a 3703 struct kmem_cache *cachep;
36555751 3704 void *ret;
97e2bde4
MS
3705
3706 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3707 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3708 return cachep;
36555751
EGM
3709 ret = kmem_cache_alloc_node_notrace(cachep, flags, node);
3710
ca2b84cb
EGM
3711 trace_kmalloc_node((unsigned long) caller, ret,
3712 size, cachep->buffer_size, flags, node);
36555751
EGM
3713
3714 return ret;
97e2bde4 3715}
8b98c169 3716
36555751 3717#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
8b98c169
CH
3718void *__kmalloc_node(size_t size, gfp_t flags, int node)
3719{
3720 return __do_kmalloc_node(size, flags, node,
3721 __builtin_return_address(0));
3722}
dbe5e69d 3723EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3724
3725void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3726 int node, unsigned long caller)
8b98c169 3727{
ce71e27c 3728 return __do_kmalloc_node(size, flags, node, (void *)caller);
8b98c169
CH
3729}
3730EXPORT_SYMBOL(__kmalloc_node_track_caller);
3731#else
3732void *__kmalloc_node(size_t size, gfp_t flags, int node)
3733{
3734 return __do_kmalloc_node(size, flags, node, NULL);
3735}
3736EXPORT_SYMBOL(__kmalloc_node);
3737#endif /* CONFIG_DEBUG_SLAB */
3738#endif /* CONFIG_NUMA */
1da177e4
LT
3739
3740/**
800590f5 3741 * __do_kmalloc - allocate memory
1da177e4 3742 * @size: how many bytes of memory are required.
800590f5 3743 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3744 * @caller: function caller for debug tracking of the caller
1da177e4 3745 */
7fd6b141
PE
3746static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3747 void *caller)
1da177e4 3748{
343e0d7a 3749 struct kmem_cache *cachep;
36555751 3750 void *ret;
1da177e4 3751
97e2bde4
MS
3752 /* If you want to save a few bytes .text space: replace
3753 * __ with kmem_.
3754 * Then kmalloc uses the uninlined functions instead of the inline
3755 * functions.
3756 */
3757 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3758 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3759 return cachep;
36555751
EGM
3760 ret = __cache_alloc(cachep, flags, caller);
3761
ca2b84cb
EGM
3762 trace_kmalloc((unsigned long) caller, ret,
3763 size, cachep->buffer_size, flags);
36555751
EGM
3764
3765 return ret;
7fd6b141
PE
3766}
3767
7fd6b141 3768
36555751 3769#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_KMEMTRACE)
7fd6b141
PE
3770void *__kmalloc(size_t size, gfp_t flags)
3771{
871751e2 3772 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3773}
3774EXPORT_SYMBOL(__kmalloc);
3775
ce71e27c 3776void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3777{
ce71e27c 3778 return __do_kmalloc(size, flags, (void *)caller);
7fd6b141
PE
3779}
3780EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3781
3782#else
3783void *__kmalloc(size_t size, gfp_t flags)
3784{
3785 return __do_kmalloc(size, flags, NULL);
3786}
3787EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3788#endif
3789
1da177e4
LT
3790/**
3791 * kmem_cache_free - Deallocate an object
3792 * @cachep: The cache the allocation was from.
3793 * @objp: The previously allocated object.
3794 *
3795 * Free an object which was previously allocated from this
3796 * cache.
3797 */
343e0d7a 3798void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3799{
3800 unsigned long flags;
3801
3802 local_irq_save(flags);
898552c9 3803 debug_check_no_locks_freed(objp, obj_size(cachep));
3ac7fe5a
TG
3804 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3805 debug_check_no_obj_freed(objp, obj_size(cachep));
873623df 3806 __cache_free(cachep, objp);
1da177e4 3807 local_irq_restore(flags);
36555751 3808
ca2b84cb 3809 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3810}
3811EXPORT_SYMBOL(kmem_cache_free);
3812
1da177e4
LT
3813/**
3814 * kfree - free previously allocated memory
3815 * @objp: pointer returned by kmalloc.
3816 *
80e93eff
PE
3817 * If @objp is NULL, no operation is performed.
3818 *
1da177e4
LT
3819 * Don't free memory not originally allocated by kmalloc()
3820 * or you will run into trouble.
3821 */
3822void kfree(const void *objp)
3823{
343e0d7a 3824 struct kmem_cache *c;
1da177e4
LT
3825 unsigned long flags;
3826
2121db74
PE
3827 trace_kfree(_RET_IP_, objp);
3828
6cb8f913 3829 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3830 return;
3831 local_irq_save(flags);
3832 kfree_debugcheck(objp);
6ed5eb22 3833 c = virt_to_cache(objp);
f9b8404c 3834 debug_check_no_locks_freed(objp, obj_size(c));
3ac7fe5a 3835 debug_check_no_obj_freed(objp, obj_size(c));
873623df 3836 __cache_free(c, (void *)objp);
1da177e4
LT
3837 local_irq_restore(flags);
3838}
3839EXPORT_SYMBOL(kfree);
3840
343e0d7a 3841unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3842{
3dafccf2 3843 return obj_size(cachep);
1da177e4
LT
3844}
3845EXPORT_SYMBOL(kmem_cache_size);
3846
343e0d7a 3847const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3848{
3849 return cachep->name;
3850}
3851EXPORT_SYMBOL_GPL(kmem_cache_name);
3852
e498be7d 3853/*
183ff22b 3854 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 3855 */
83b519e8 3856static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3857{
3858 int node;
3859 struct kmem_list3 *l3;
cafeb02e 3860 struct array_cache *new_shared;
3395ee05 3861 struct array_cache **new_alien = NULL;
e498be7d 3862
9c09a95c 3863 for_each_online_node(node) {
cafeb02e 3864
3395ee05 3865 if (use_alien_caches) {
83b519e8 3866 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3867 if (!new_alien)
3868 goto fail;
3869 }
cafeb02e 3870
63109846
ED
3871 new_shared = NULL;
3872 if (cachep->shared) {
3873 new_shared = alloc_arraycache(node,
0718dc2a 3874 cachep->shared*cachep->batchcount,
83b519e8 3875 0xbaadf00d, gfp);
63109846
ED
3876 if (!new_shared) {
3877 free_alien_cache(new_alien);
3878 goto fail;
3879 }
0718dc2a 3880 }
cafeb02e 3881
a737b3e2
AM
3882 l3 = cachep->nodelists[node];
3883 if (l3) {
cafeb02e
CL
3884 struct array_cache *shared = l3->shared;
3885
e498be7d
CL
3886 spin_lock_irq(&l3->list_lock);
3887
cafeb02e 3888 if (shared)
0718dc2a
CL
3889 free_block(cachep, shared->entry,
3890 shared->avail, node);
e498be7d 3891
cafeb02e
CL
3892 l3->shared = new_shared;
3893 if (!l3->alien) {
e498be7d
CL
3894 l3->alien = new_alien;
3895 new_alien = NULL;
3896 }
b28a02de 3897 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3898 cachep->batchcount + cachep->num;
e498be7d 3899 spin_unlock_irq(&l3->list_lock);
cafeb02e 3900 kfree(shared);
e498be7d
CL
3901 free_alien_cache(new_alien);
3902 continue;
3903 }
83b519e8 3904 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
0718dc2a
CL
3905 if (!l3) {
3906 free_alien_cache(new_alien);
3907 kfree(new_shared);
e498be7d 3908 goto fail;
0718dc2a 3909 }
e498be7d
CL
3910
3911 kmem_list3_init(l3);
3912 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3913 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3914 l3->shared = new_shared;
e498be7d 3915 l3->alien = new_alien;
b28a02de 3916 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3917 cachep->batchcount + cachep->num;
e498be7d
CL
3918 cachep->nodelists[node] = l3;
3919 }
cafeb02e 3920 return 0;
0718dc2a 3921
a737b3e2 3922fail:
0718dc2a
CL
3923 if (!cachep->next.next) {
3924 /* Cache is not active yet. Roll back what we did */
3925 node--;
3926 while (node >= 0) {
3927 if (cachep->nodelists[node]) {
3928 l3 = cachep->nodelists[node];
3929
3930 kfree(l3->shared);
3931 free_alien_cache(l3->alien);
3932 kfree(l3);
3933 cachep->nodelists[node] = NULL;
3934 }
3935 node--;
3936 }
3937 }
cafeb02e 3938 return -ENOMEM;
e498be7d
CL
3939}
3940
1da177e4 3941struct ccupdate_struct {
343e0d7a 3942 struct kmem_cache *cachep;
1da177e4
LT
3943 struct array_cache *new[NR_CPUS];
3944};
3945
3946static void do_ccupdate_local(void *info)
3947{
a737b3e2 3948 struct ccupdate_struct *new = info;
1da177e4
LT
3949 struct array_cache *old;
3950
3951 check_irq_off();
9a2dba4b 3952 old = cpu_cache_get(new->cachep);
e498be7d 3953
1da177e4
LT
3954 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3955 new->new[smp_processor_id()] = old;
3956}
3957
b5d8ca7c 3958/* Always called with the cache_chain_mutex held */
a737b3e2 3959static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3960 int batchcount, int shared, gfp_t gfp)
1da177e4 3961{
d2e7b7d0 3962 struct ccupdate_struct *new;
2ed3a4ef 3963 int i;
1da177e4 3964
83b519e8 3965 new = kzalloc(sizeof(*new), gfp);
d2e7b7d0
SS
3966 if (!new)
3967 return -ENOMEM;
3968
e498be7d 3969 for_each_online_cpu(i) {
d2e7b7d0 3970 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
83b519e8 3971 batchcount, gfp);
d2e7b7d0 3972 if (!new->new[i]) {
b28a02de 3973 for (i--; i >= 0; i--)
d2e7b7d0
SS
3974 kfree(new->new[i]);
3975 kfree(new);
e498be7d 3976 return -ENOMEM;
1da177e4
LT
3977 }
3978 }
d2e7b7d0 3979 new->cachep = cachep;
1da177e4 3980
15c8b6c1 3981 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 3982
1da177e4 3983 check_irq_on();
1da177e4
LT
3984 cachep->batchcount = batchcount;
3985 cachep->limit = limit;
e498be7d 3986 cachep->shared = shared;
1da177e4 3987
e498be7d 3988 for_each_online_cpu(i) {
d2e7b7d0 3989 struct array_cache *ccold = new->new[i];
1da177e4
LT
3990 if (!ccold)
3991 continue;
e498be7d 3992 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 3993 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 3994 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
3995 kfree(ccold);
3996 }
d2e7b7d0 3997 kfree(new);
83b519e8 3998 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
3999}
4000
b5d8ca7c 4001/* Called with cache_chain_mutex held always */
83b519e8 4002static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
4003{
4004 int err;
4005 int limit, shared;
4006
a737b3e2
AM
4007 /*
4008 * The head array serves three purposes:
1da177e4
LT
4009 * - create a LIFO ordering, i.e. return objects that are cache-warm
4010 * - reduce the number of spinlock operations.
a737b3e2 4011 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4012 * bufctl chains: array operations are cheaper.
4013 * The numbers are guessed, we should auto-tune as described by
4014 * Bonwick.
4015 */
3dafccf2 4016 if (cachep->buffer_size > 131072)
1da177e4 4017 limit = 1;
3dafccf2 4018 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 4019 limit = 8;
3dafccf2 4020 else if (cachep->buffer_size > 1024)
1da177e4 4021 limit = 24;
3dafccf2 4022 else if (cachep->buffer_size > 256)
1da177e4
LT
4023 limit = 54;
4024 else
4025 limit = 120;
4026
a737b3e2
AM
4027 /*
4028 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4029 * allocation behaviour: Most allocs on one cpu, most free operations
4030 * on another cpu. For these cases, an efficient object passing between
4031 * cpus is necessary. This is provided by a shared array. The array
4032 * replaces Bonwick's magazine layer.
4033 * On uniprocessor, it's functionally equivalent (but less efficient)
4034 * to a larger limit. Thus disabled by default.
4035 */
4036 shared = 0;
364fbb29 4037 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4038 shared = 8;
1da177e4
LT
4039
4040#if DEBUG
a737b3e2
AM
4041 /*
4042 * With debugging enabled, large batchcount lead to excessively long
4043 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4044 */
4045 if (limit > 32)
4046 limit = 32;
4047#endif
83b519e8 4048 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
1da177e4
LT
4049 if (err)
4050 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4051 cachep->name, -err);
2ed3a4ef 4052 return err;
1da177e4
LT
4053}
4054
1b55253a
CL
4055/*
4056 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4057 * necessary. Note that the l3 listlock also protects the array_cache
4058 * if drain_array() is used on the shared array.
1b55253a
CL
4059 */
4060void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4061 struct array_cache *ac, int force, int node)
1da177e4
LT
4062{
4063 int tofree;
4064
1b55253a
CL
4065 if (!ac || !ac->avail)
4066 return;
1da177e4
LT
4067 if (ac->touched && !force) {
4068 ac->touched = 0;
b18e7e65 4069 } else {
1b55253a 4070 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4071 if (ac->avail) {
4072 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4073 if (tofree > ac->avail)
4074 tofree = (ac->avail + 1) / 2;
4075 free_block(cachep, ac->entry, tofree, node);
4076 ac->avail -= tofree;
4077 memmove(ac->entry, &(ac->entry[tofree]),
4078 sizeof(void *) * ac->avail);
4079 }
1b55253a 4080 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4081 }
4082}
4083
4084/**
4085 * cache_reap - Reclaim memory from caches.
05fb6bf0 4086 * @w: work descriptor
1da177e4
LT
4087 *
4088 * Called from workqueue/eventd every few seconds.
4089 * Purpose:
4090 * - clear the per-cpu caches for this CPU.
4091 * - return freeable pages to the main free memory pool.
4092 *
a737b3e2
AM
4093 * If we cannot acquire the cache chain mutex then just give up - we'll try
4094 * again on the next iteration.
1da177e4 4095 */
7c5cae36 4096static void cache_reap(struct work_struct *w)
1da177e4 4097{
7a7c381d 4098 struct kmem_cache *searchp;
e498be7d 4099 struct kmem_list3 *l3;
aab2207c 4100 int node = numa_node_id();
bf6aede7 4101 struct delayed_work *work = to_delayed_work(w);
1da177e4 4102
7c5cae36 4103 if (!mutex_trylock(&cache_chain_mutex))
1da177e4 4104 /* Give up. Setup the next iteration. */
7c5cae36 4105 goto out;
1da177e4 4106
7a7c381d 4107 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
4108 check_irq_on();
4109
35386e3b
CL
4110 /*
4111 * We only take the l3 lock if absolutely necessary and we
4112 * have established with reasonable certainty that
4113 * we can do some work if the lock was obtained.
4114 */
aab2207c 4115 l3 = searchp->nodelists[node];
35386e3b 4116
8fce4d8e 4117 reap_alien(searchp, l3);
1da177e4 4118
aab2207c 4119 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4120
35386e3b
CL
4121 /*
4122 * These are racy checks but it does not matter
4123 * if we skip one check or scan twice.
4124 */
e498be7d 4125 if (time_after(l3->next_reap, jiffies))
35386e3b 4126 goto next;
1da177e4 4127
e498be7d 4128 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4129
aab2207c 4130 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4131
ed11d9eb 4132 if (l3->free_touched)
e498be7d 4133 l3->free_touched = 0;
ed11d9eb
CL
4134 else {
4135 int freed;
1da177e4 4136
ed11d9eb
CL
4137 freed = drain_freelist(searchp, l3, (l3->free_limit +
4138 5 * searchp->num - 1) / (5 * searchp->num));
4139 STATS_ADD_REAPED(searchp, freed);
4140 }
35386e3b 4141next:
1da177e4
LT
4142 cond_resched();
4143 }
4144 check_irq_on();
fc0abb14 4145 mutex_unlock(&cache_chain_mutex);
8fce4d8e 4146 next_reap_node();
7c5cae36 4147out:
a737b3e2 4148 /* Set up the next iteration */
7c5cae36 4149 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4150}
4151
158a9624 4152#ifdef CONFIG_SLABINFO
1da177e4 4153
85289f98 4154static void print_slabinfo_header(struct seq_file *m)
1da177e4 4155{
85289f98
PE
4156 /*
4157 * Output format version, so at least we can change it
4158 * without _too_ many complaints.
4159 */
1da177e4 4160#if STATS
85289f98 4161 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4162#else
85289f98 4163 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4164#endif
85289f98
PE
4165 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4166 "<objperslab> <pagesperslab>");
4167 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4168 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4169#if STATS
85289f98 4170 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4171 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4172 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4173#endif
85289f98
PE
4174 seq_putc(m, '\n');
4175}
4176
4177static void *s_start(struct seq_file *m, loff_t *pos)
4178{
4179 loff_t n = *pos;
85289f98 4180
fc0abb14 4181 mutex_lock(&cache_chain_mutex);
85289f98
PE
4182 if (!n)
4183 print_slabinfo_header(m);
b92151ba
PE
4184
4185 return seq_list_start(&cache_chain, *pos);
1da177e4
LT
4186}
4187
4188static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4189{
b92151ba 4190 return seq_list_next(p, &cache_chain, pos);
1da177e4
LT
4191}
4192
4193static void s_stop(struct seq_file *m, void *p)
4194{
fc0abb14 4195 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4196}
4197
4198static int s_show(struct seq_file *m, void *p)
4199{
b92151ba 4200 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
b28a02de
PE
4201 struct slab *slabp;
4202 unsigned long active_objs;
4203 unsigned long num_objs;
4204 unsigned long active_slabs = 0;
4205 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4206 const char *name;
1da177e4 4207 char *error = NULL;
e498be7d
CL
4208 int node;
4209 struct kmem_list3 *l3;
1da177e4 4210
1da177e4
LT
4211 active_objs = 0;
4212 num_slabs = 0;
e498be7d
CL
4213 for_each_online_node(node) {
4214 l3 = cachep->nodelists[node];
4215 if (!l3)
4216 continue;
4217
ca3b9b91
RT
4218 check_irq_on();
4219 spin_lock_irq(&l3->list_lock);
e498be7d 4220
7a7c381d 4221 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4222 if (slabp->inuse != cachep->num && !error)
4223 error = "slabs_full accounting error";
4224 active_objs += cachep->num;
4225 active_slabs++;
4226 }
7a7c381d 4227 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4228 if (slabp->inuse == cachep->num && !error)
4229 error = "slabs_partial inuse accounting error";
4230 if (!slabp->inuse && !error)
4231 error = "slabs_partial/inuse accounting error";
4232 active_objs += slabp->inuse;
4233 active_slabs++;
4234 }
7a7c381d 4235 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4236 if (slabp->inuse && !error)
4237 error = "slabs_free/inuse accounting error";
4238 num_slabs++;
4239 }
4240 free_objects += l3->free_objects;
4484ebf1
RT
4241 if (l3->shared)
4242 shared_avail += l3->shared->avail;
e498be7d 4243
ca3b9b91 4244 spin_unlock_irq(&l3->list_lock);
1da177e4 4245 }
b28a02de
PE
4246 num_slabs += active_slabs;
4247 num_objs = num_slabs * cachep->num;
e498be7d 4248 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4249 error = "free_objects accounting error";
4250
b28a02de 4251 name = cachep->name;
1da177e4
LT
4252 if (error)
4253 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4254
4255 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 4256 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 4257 cachep->num, (1 << cachep->gfporder));
1da177e4 4258 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4259 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4260 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4261 active_slabs, num_slabs, shared_avail);
1da177e4 4262#if STATS
b28a02de 4263 { /* list3 stats */
1da177e4
LT
4264 unsigned long high = cachep->high_mark;
4265 unsigned long allocs = cachep->num_allocations;
4266 unsigned long grown = cachep->grown;
4267 unsigned long reaped = cachep->reaped;
4268 unsigned long errors = cachep->errors;
4269 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4270 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4271 unsigned long node_frees = cachep->node_frees;
fb7faf33 4272 unsigned long overflows = cachep->node_overflow;
1da177e4 4273
e498be7d 4274 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 4275 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 4276 reaped, errors, max_freeable, node_allocs,
fb7faf33 4277 node_frees, overflows);
1da177e4
LT
4278 }
4279 /* cpu stats */
4280 {
4281 unsigned long allochit = atomic_read(&cachep->allochit);
4282 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4283 unsigned long freehit = atomic_read(&cachep->freehit);
4284 unsigned long freemiss = atomic_read(&cachep->freemiss);
4285
4286 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4287 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4288 }
4289#endif
4290 seq_putc(m, '\n');
1da177e4
LT
4291 return 0;
4292}
4293
4294/*
4295 * slabinfo_op - iterator that generates /proc/slabinfo
4296 *
4297 * Output layout:
4298 * cache-name
4299 * num-active-objs
4300 * total-objs
4301 * object size
4302 * num-active-slabs
4303 * total-slabs
4304 * num-pages-per-slab
4305 * + further values on SMP and with statistics enabled
4306 */
4307
7b3c3a50 4308static const struct seq_operations slabinfo_op = {
b28a02de
PE
4309 .start = s_start,
4310 .next = s_next,
4311 .stop = s_stop,
4312 .show = s_show,
1da177e4
LT
4313};
4314
4315#define MAX_SLABINFO_WRITE 128
4316/**
4317 * slabinfo_write - Tuning for the slab allocator
4318 * @file: unused
4319 * @buffer: user buffer
4320 * @count: data length
4321 * @ppos: unused
4322 */
b28a02de
PE
4323ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4324 size_t count, loff_t *ppos)
1da177e4 4325{
b28a02de 4326 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4327 int limit, batchcount, shared, res;
7a7c381d 4328 struct kmem_cache *cachep;
b28a02de 4329
1da177e4
LT
4330 if (count > MAX_SLABINFO_WRITE)
4331 return -EINVAL;
4332 if (copy_from_user(&kbuf, buffer, count))
4333 return -EFAULT;
b28a02de 4334 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4335
4336 tmp = strchr(kbuf, ' ');
4337 if (!tmp)
4338 return -EINVAL;
4339 *tmp = '\0';
4340 tmp++;
4341 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4342 return -EINVAL;
4343
4344 /* Find the cache in the chain of caches. */
fc0abb14 4345 mutex_lock(&cache_chain_mutex);
1da177e4 4346 res = -EINVAL;
7a7c381d 4347 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4348 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4349 if (limit < 1 || batchcount < 1 ||
4350 batchcount > limit || shared < 0) {
e498be7d 4351 res = 0;
1da177e4 4352 } else {
e498be7d 4353 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4354 batchcount, shared,
4355 GFP_KERNEL);
1da177e4
LT
4356 }
4357 break;
4358 }
4359 }
fc0abb14 4360 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4361 if (res >= 0)
4362 res = count;
4363 return res;
4364}
871751e2 4365
7b3c3a50
AD
4366static int slabinfo_open(struct inode *inode, struct file *file)
4367{
4368 return seq_open(file, &slabinfo_op);
4369}
4370
4371static const struct file_operations proc_slabinfo_operations = {
4372 .open = slabinfo_open,
4373 .read = seq_read,
4374 .write = slabinfo_write,
4375 .llseek = seq_lseek,
4376 .release = seq_release,
4377};
4378
871751e2
AV
4379#ifdef CONFIG_DEBUG_SLAB_LEAK
4380
4381static void *leaks_start(struct seq_file *m, loff_t *pos)
4382{
871751e2 4383 mutex_lock(&cache_chain_mutex);
b92151ba 4384 return seq_list_start(&cache_chain, *pos);
871751e2
AV
4385}
4386
4387static inline int add_caller(unsigned long *n, unsigned long v)
4388{
4389 unsigned long *p;
4390 int l;
4391 if (!v)
4392 return 1;
4393 l = n[1];
4394 p = n + 2;
4395 while (l) {
4396 int i = l/2;
4397 unsigned long *q = p + 2 * i;
4398 if (*q == v) {
4399 q[1]++;
4400 return 1;
4401 }
4402 if (*q > v) {
4403 l = i;
4404 } else {
4405 p = q + 2;
4406 l -= i + 1;
4407 }
4408 }
4409 if (++n[1] == n[0])
4410 return 0;
4411 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4412 p[0] = v;
4413 p[1] = 1;
4414 return 1;
4415}
4416
4417static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4418{
4419 void *p;
4420 int i;
4421 if (n[0] == n[1])
4422 return;
4423 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4424 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4425 continue;
4426 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4427 return;
4428 }
4429}
4430
4431static void show_symbol(struct seq_file *m, unsigned long address)
4432{
4433#ifdef CONFIG_KALLSYMS
871751e2 4434 unsigned long offset, size;
9281acea 4435 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4436
a5c43dae 4437 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4438 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4439 if (modname[0])
871751e2
AV
4440 seq_printf(m, " [%s]", modname);
4441 return;
4442 }
4443#endif
4444 seq_printf(m, "%p", (void *)address);
4445}
4446
4447static int leaks_show(struct seq_file *m, void *p)
4448{
b92151ba 4449 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
871751e2
AV
4450 struct slab *slabp;
4451 struct kmem_list3 *l3;
4452 const char *name;
4453 unsigned long *n = m->private;
4454 int node;
4455 int i;
4456
4457 if (!(cachep->flags & SLAB_STORE_USER))
4458 return 0;
4459 if (!(cachep->flags & SLAB_RED_ZONE))
4460 return 0;
4461
4462 /* OK, we can do it */
4463
4464 n[1] = 0;
4465
4466 for_each_online_node(node) {
4467 l3 = cachep->nodelists[node];
4468 if (!l3)
4469 continue;
4470
4471 check_irq_on();
4472 spin_lock_irq(&l3->list_lock);
4473
7a7c381d 4474 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4475 handle_slab(n, cachep, slabp);
7a7c381d 4476 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4477 handle_slab(n, cachep, slabp);
871751e2
AV
4478 spin_unlock_irq(&l3->list_lock);
4479 }
4480 name = cachep->name;
4481 if (n[0] == n[1]) {
4482 /* Increase the buffer size */
4483 mutex_unlock(&cache_chain_mutex);
4484 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4485 if (!m->private) {
4486 /* Too bad, we are really out */
4487 m->private = n;
4488 mutex_lock(&cache_chain_mutex);
4489 return -ENOMEM;
4490 }
4491 *(unsigned long *)m->private = n[0] * 2;
4492 kfree(n);
4493 mutex_lock(&cache_chain_mutex);
4494 /* Now make sure this entry will be retried */
4495 m->count = m->size;
4496 return 0;
4497 }
4498 for (i = 0; i < n[1]; i++) {
4499 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4500 show_symbol(m, n[2*i+2]);
4501 seq_putc(m, '\n');
4502 }
d2e7b7d0 4503
871751e2
AV
4504 return 0;
4505}
4506
a0ec95a8 4507static const struct seq_operations slabstats_op = {
871751e2
AV
4508 .start = leaks_start,
4509 .next = s_next,
4510 .stop = s_stop,
4511 .show = leaks_show,
4512};
a0ec95a8
AD
4513
4514static int slabstats_open(struct inode *inode, struct file *file)
4515{
4516 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4517 int ret = -ENOMEM;
4518 if (n) {
4519 ret = seq_open(file, &slabstats_op);
4520 if (!ret) {
4521 struct seq_file *m = file->private_data;
4522 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4523 m->private = n;
4524 n = NULL;
4525 }
4526 kfree(n);
4527 }
4528 return ret;
4529}
4530
4531static const struct file_operations proc_slabstats_operations = {
4532 .open = slabstats_open,
4533 .read = seq_read,
4534 .llseek = seq_lseek,
4535 .release = seq_release_private,
4536};
4537#endif
4538
4539static int __init slab_proc_init(void)
4540{
7b3c3a50 4541 proc_create("slabinfo",S_IWUSR|S_IRUGO,NULL,&proc_slabinfo_operations);
a0ec95a8
AD
4542#ifdef CONFIG_DEBUG_SLAB_LEAK
4543 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4544#endif
a0ec95a8
AD
4545 return 0;
4546}
4547module_init(slab_proc_init);
1da177e4
LT
4548#endif
4549
00e145b6
MS
4550/**
4551 * ksize - get the actual amount of memory allocated for a given object
4552 * @objp: Pointer to the object
4553 *
4554 * kmalloc may internally round up allocations and return more memory
4555 * than requested. ksize() can be used to determine the actual amount of
4556 * memory allocated. The caller may use this additional memory, even though
4557 * a smaller amount of memory was initially specified with the kmalloc call.
4558 * The caller must guarantee that objp points to a valid object previously
4559 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4560 * must not be freed during the duration of the call.
4561 */
fd76bab2 4562size_t ksize(const void *objp)
1da177e4 4563{
ef8b4520
CL
4564 BUG_ON(!objp);
4565 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4566 return 0;
1da177e4 4567
6ed5eb22 4568 return obj_size(virt_to_cache(objp));
1da177e4 4569}
b1aabecd 4570EXPORT_SYMBOL(ksize);