]> bbs.cooldavid.org Git - net-next-2.6.git/blame - kernel/sched.c
sched: fix sched_balance_self() smp group balancing
[net-next-2.6.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
5517d86b 65#include <linux/reciprocal_div.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
434d53b0 70#include <linux/bootmem.h>
f00b45c1
PZ
71#include <linux/debugfs.h>
72#include <linux/ctype.h>
1da177e4 73
5517d86b 74#include <asm/tlb.h>
838225b4 75#include <asm/irq_regs.h>
1da177e4 76
6e0534f2
GH
77#include "sched_cpupri.h"
78
1da177e4
LT
79/*
80 * Convert user-nice values [ -20 ... 0 ... 19 ]
81 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
82 * and back.
83 */
84#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
85#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
86#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
87
88/*
89 * 'User priority' is the nice value converted to something we
90 * can work with better when scaling various scheduler parameters,
91 * it's a [ 0 ... 39 ] range.
92 */
93#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
94#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
95#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
96
97/*
d7876a08 98 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 99 */
d6322faf 100#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 101
6aa645ea
IM
102#define NICE_0_LOAD SCHED_LOAD_SCALE
103#define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
1da177e4
LT
105/*
106 * These are the 'tuning knobs' of the scheduler:
107 *
a4ec24b4 108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
109 * Timeslices get refilled after they expire.
110 */
1da177e4 111#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 112
d0b27fa7
PZ
113/*
114 * single value that denotes runtime == period, ie unlimited time.
115 */
116#define RUNTIME_INF ((u64)~0ULL)
117
5517d86b
ED
118#ifdef CONFIG_SMP
119/*
120 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
121 * Since cpu_power is a 'constant', we can use a reciprocal divide.
122 */
123static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
124{
125 return reciprocal_divide(load, sg->reciprocal_cpu_power);
126}
127
128/*
129 * Each time a sched group cpu_power is changed,
130 * we must compute its reciprocal value
131 */
132static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
133{
134 sg->__cpu_power += val;
135 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
136}
137#endif
138
e05606d3
IM
139static inline int rt_policy(int policy)
140{
3f33a7ce 141 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
142 return 1;
143 return 0;
144}
145
146static inline int task_has_rt_policy(struct task_struct *p)
147{
148 return rt_policy(p->policy);
149}
150
1da177e4 151/*
6aa645ea 152 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 153 */
6aa645ea
IM
154struct rt_prio_array {
155 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
20b6331b 156 struct list_head queue[MAX_RT_PRIO];
6aa645ea
IM
157};
158
d0b27fa7 159struct rt_bandwidth {
ea736ed5
IM
160 /* nests inside the rq lock: */
161 spinlock_t rt_runtime_lock;
162 ktime_t rt_period;
163 u64 rt_runtime;
164 struct hrtimer rt_period_timer;
d0b27fa7
PZ
165};
166
167static struct rt_bandwidth def_rt_bandwidth;
168
169static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
170
171static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
172{
173 struct rt_bandwidth *rt_b =
174 container_of(timer, struct rt_bandwidth, rt_period_timer);
175 ktime_t now;
176 int overrun;
177 int idle = 0;
178
179 for (;;) {
180 now = hrtimer_cb_get_time(timer);
181 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
182
183 if (!overrun)
184 break;
185
186 idle = do_sched_rt_period_timer(rt_b, overrun);
187 }
188
189 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
190}
191
192static
193void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
194{
195 rt_b->rt_period = ns_to_ktime(period);
196 rt_b->rt_runtime = runtime;
197
ac086bc2
PZ
198 spin_lock_init(&rt_b->rt_runtime_lock);
199
d0b27fa7
PZ
200 hrtimer_init(&rt_b->rt_period_timer,
201 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
202 rt_b->rt_period_timer.function = sched_rt_period_timer;
203 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
204}
205
206static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
207{
208 ktime_t now;
209
210 if (rt_b->rt_runtime == RUNTIME_INF)
211 return;
212
213 if (hrtimer_active(&rt_b->rt_period_timer))
214 return;
215
216 spin_lock(&rt_b->rt_runtime_lock);
217 for (;;) {
218 if (hrtimer_active(&rt_b->rt_period_timer))
219 break;
220
221 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
222 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
223 hrtimer_start(&rt_b->rt_period_timer,
224 rt_b->rt_period_timer.expires,
225 HRTIMER_MODE_ABS);
226 }
227 spin_unlock(&rt_b->rt_runtime_lock);
228}
229
230#ifdef CONFIG_RT_GROUP_SCHED
231static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
232{
233 hrtimer_cancel(&rt_b->rt_period_timer);
234}
235#endif
236
712555ee
HC
237/*
238 * sched_domains_mutex serializes calls to arch_init_sched_domains,
239 * detach_destroy_domains and partition_sched_domains.
240 */
241static DEFINE_MUTEX(sched_domains_mutex);
242
052f1dc7 243#ifdef CONFIG_GROUP_SCHED
29f59db3 244
68318b8e
SV
245#include <linux/cgroup.h>
246
29f59db3
SV
247struct cfs_rq;
248
6f505b16
PZ
249static LIST_HEAD(task_groups);
250
29f59db3 251/* task group related information */
4cf86d77 252struct task_group {
052f1dc7 253#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
254 struct cgroup_subsys_state css;
255#endif
052f1dc7
PZ
256
257#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
258 /* schedulable entities of this group on each cpu */
259 struct sched_entity **se;
260 /* runqueue "owned" by this group on each cpu */
261 struct cfs_rq **cfs_rq;
262 unsigned long shares;
052f1dc7
PZ
263#endif
264
265#ifdef CONFIG_RT_GROUP_SCHED
266 struct sched_rt_entity **rt_se;
267 struct rt_rq **rt_rq;
268
d0b27fa7 269 struct rt_bandwidth rt_bandwidth;
052f1dc7 270#endif
6b2d7700 271
ae8393e5 272 struct rcu_head rcu;
6f505b16 273 struct list_head list;
f473aa5e
PZ
274
275 struct task_group *parent;
276 struct list_head siblings;
277 struct list_head children;
29f59db3
SV
278};
279
354d60c2 280#ifdef CONFIG_USER_SCHED
eff766a6
PZ
281
282/*
283 * Root task group.
284 * Every UID task group (including init_task_group aka UID-0) will
285 * be a child to this group.
286 */
287struct task_group root_task_group;
288
052f1dc7 289#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
290/* Default task group's sched entity on each cpu */
291static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
292/* Default task group's cfs_rq on each cpu */
293static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 294#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
295
296#ifdef CONFIG_RT_GROUP_SCHED
297static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
298static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad
DG
299#endif /* CONFIG_RT_GROUP_SCHED */
300#else /* !CONFIG_FAIR_GROUP_SCHED */
eff766a6 301#define root_task_group init_task_group
6d6bc0ad 302#endif /* CONFIG_FAIR_GROUP_SCHED */
6f505b16 303
8ed36996 304/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
305 * a task group's cpu shares.
306 */
8ed36996 307static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 308
052f1dc7 309#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
310#ifdef CONFIG_USER_SCHED
311# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 312#else /* !CONFIG_USER_SCHED */
052f1dc7 313# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 314#endif /* CONFIG_USER_SCHED */
052f1dc7 315
cb4ad1ff 316/*
2e084786
LJ
317 * A weight of 0 or 1 can cause arithmetics problems.
318 * A weight of a cfs_rq is the sum of weights of which entities
319 * are queued on this cfs_rq, so a weight of a entity should not be
320 * too large, so as the shares value of a task group.
cb4ad1ff
MX
321 * (The default weight is 1024 - so there's no practical
322 * limitation from this.)
323 */
18d95a28 324#define MIN_SHARES 2
2e084786 325#define MAX_SHARES (1UL << 18)
18d95a28 326
052f1dc7
PZ
327static int init_task_group_load = INIT_TASK_GROUP_LOAD;
328#endif
329
29f59db3 330/* Default task group.
3a252015 331 * Every task in system belong to this group at bootup.
29f59db3 332 */
434d53b0 333struct task_group init_task_group;
29f59db3
SV
334
335/* return group to which a task belongs */
4cf86d77 336static inline struct task_group *task_group(struct task_struct *p)
29f59db3 337{
4cf86d77 338 struct task_group *tg;
9b5b7751 339
052f1dc7 340#ifdef CONFIG_USER_SCHED
24e377a8 341 tg = p->user->tg;
052f1dc7 342#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
343 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
344 struct task_group, css);
24e377a8 345#else
41a2d6cf 346 tg = &init_task_group;
24e377a8 347#endif
9b5b7751 348 return tg;
29f59db3
SV
349}
350
351/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 352static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 353{
052f1dc7 354#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
355 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
356 p->se.parent = task_group(p)->se[cpu];
052f1dc7 357#endif
6f505b16 358
052f1dc7 359#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
360 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
361 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 362#endif
29f59db3
SV
363}
364
365#else
366
6f505b16 367static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
29f59db3 368
052f1dc7 369#endif /* CONFIG_GROUP_SCHED */
29f59db3 370
6aa645ea
IM
371/* CFS-related fields in a runqueue */
372struct cfs_rq {
373 struct load_weight load;
374 unsigned long nr_running;
375
6aa645ea 376 u64 exec_clock;
e9acbff6 377 u64 min_vruntime;
103638d9 378 u64 pair_start;
6aa645ea
IM
379
380 struct rb_root tasks_timeline;
381 struct rb_node *rb_leftmost;
4a55bd5e
PZ
382
383 struct list_head tasks;
384 struct list_head *balance_iterator;
385
386 /*
387 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
388 * It is set to NULL otherwise (i.e when none are currently running).
389 */
aa2ac252 390 struct sched_entity *curr, *next;
ddc97297
PZ
391
392 unsigned long nr_spread_over;
393
62160e3f 394#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
395 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
396
41a2d6cf
IM
397 /*
398 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
399 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
400 * (like users, containers etc.)
401 *
402 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
403 * list is used during load balance.
404 */
41a2d6cf
IM
405 struct list_head leaf_cfs_rq_list;
406 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
407
408#ifdef CONFIG_SMP
c09595f6 409 /*
c8cba857 410 * the part of load.weight contributed by tasks
c09595f6 411 */
c8cba857 412 unsigned long task_weight;
c09595f6 413
c8cba857
PZ
414 /*
415 * h_load = weight * f(tg)
416 *
417 * Where f(tg) is the recursive weight fraction assigned to
418 * this group.
419 */
420 unsigned long h_load;
c09595f6 421
c8cba857
PZ
422 /*
423 * this cpu's part of tg->shares
424 */
425 unsigned long shares;
c09595f6 426#endif
6aa645ea
IM
427#endif
428};
1da177e4 429
6aa645ea
IM
430/* Real-Time classes' related field in a runqueue: */
431struct rt_rq {
432 struct rt_prio_array active;
63489e45 433 unsigned long rt_nr_running;
052f1dc7 434#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
6f505b16
PZ
435 int highest_prio; /* highest queued rt task prio */
436#endif
fa85ae24 437#ifdef CONFIG_SMP
73fe6aae 438 unsigned long rt_nr_migratory;
a22d7fc1 439 int overloaded;
fa85ae24 440#endif
6f505b16 441 int rt_throttled;
fa85ae24 442 u64 rt_time;
ac086bc2 443 u64 rt_runtime;
ea736ed5 444 /* Nests inside the rq lock: */
ac086bc2 445 spinlock_t rt_runtime_lock;
6f505b16 446
052f1dc7 447#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
448 unsigned long rt_nr_boosted;
449
6f505b16
PZ
450 struct rq *rq;
451 struct list_head leaf_rt_rq_list;
452 struct task_group *tg;
453 struct sched_rt_entity *rt_se;
454#endif
6aa645ea
IM
455};
456
57d885fe
GH
457#ifdef CONFIG_SMP
458
459/*
460 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
461 * variables. Each exclusive cpuset essentially defines an island domain by
462 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
463 * exclusive cpuset is created, we also create and attach a new root-domain
464 * object.
465 *
57d885fe
GH
466 */
467struct root_domain {
468 atomic_t refcount;
469 cpumask_t span;
470 cpumask_t online;
637f5085 471
0eab9146 472 /*
637f5085
GH
473 * The "RT overload" flag: it gets set if a CPU has more than
474 * one runnable RT task.
475 */
476 cpumask_t rto_mask;
0eab9146 477 atomic_t rto_count;
6e0534f2
GH
478#ifdef CONFIG_SMP
479 struct cpupri cpupri;
480#endif
57d885fe
GH
481};
482
dc938520
GH
483/*
484 * By default the system creates a single root-domain with all cpus as
485 * members (mimicking the global state we have today).
486 */
57d885fe
GH
487static struct root_domain def_root_domain;
488
489#endif
490
1da177e4
LT
491/*
492 * This is the main, per-CPU runqueue data structure.
493 *
494 * Locking rule: those places that want to lock multiple runqueues
495 * (such as the load balancing or the thread migration code), lock
496 * acquire operations must be ordered by ascending &runqueue.
497 */
70b97a7f 498struct rq {
d8016491
IM
499 /* runqueue lock: */
500 spinlock_t lock;
1da177e4
LT
501
502 /*
503 * nr_running and cpu_load should be in the same cacheline because
504 * remote CPUs use both these fields when doing load calculation.
505 */
506 unsigned long nr_running;
6aa645ea
IM
507 #define CPU_LOAD_IDX_MAX 5
508 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 509 unsigned char idle_at_tick;
46cb4b7c 510#ifdef CONFIG_NO_HZ
15934a37 511 unsigned long last_tick_seen;
46cb4b7c
SS
512 unsigned char in_nohz_recently;
513#endif
d8016491
IM
514 /* capture load from *all* tasks on this cpu: */
515 struct load_weight load;
6aa645ea
IM
516 unsigned long nr_load_updates;
517 u64 nr_switches;
518
519 struct cfs_rq cfs;
6f505b16 520 struct rt_rq rt;
6f505b16 521
6aa645ea 522#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
523 /* list of leaf cfs_rq on this cpu: */
524 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
525#endif
526#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 527 struct list_head leaf_rt_rq_list;
1da177e4 528#endif
1da177e4
LT
529
530 /*
531 * This is part of a global counter where only the total sum
532 * over all CPUs matters. A task can increase this counter on
533 * one CPU and if it got migrated afterwards it may decrease
534 * it on another CPU. Always updated under the runqueue lock:
535 */
536 unsigned long nr_uninterruptible;
537
36c8b586 538 struct task_struct *curr, *idle;
c9819f45 539 unsigned long next_balance;
1da177e4 540 struct mm_struct *prev_mm;
6aa645ea 541
3e51f33f 542 u64 clock;
6aa645ea 543
1da177e4
LT
544 atomic_t nr_iowait;
545
546#ifdef CONFIG_SMP
0eab9146 547 struct root_domain *rd;
1da177e4
LT
548 struct sched_domain *sd;
549
550 /* For active balancing */
551 int active_balance;
552 int push_cpu;
d8016491
IM
553 /* cpu of this runqueue: */
554 int cpu;
1f11eb6a 555 int online;
1da177e4 556
36c8b586 557 struct task_struct *migration_thread;
1da177e4
LT
558 struct list_head migration_queue;
559#endif
560
8f4d37ec
PZ
561#ifdef CONFIG_SCHED_HRTICK
562 unsigned long hrtick_flags;
563 ktime_t hrtick_expire;
564 struct hrtimer hrtick_timer;
565#endif
566
1da177e4
LT
567#ifdef CONFIG_SCHEDSTATS
568 /* latency stats */
569 struct sched_info rq_sched_info;
570
571 /* sys_sched_yield() stats */
480b9434
KC
572 unsigned int yld_exp_empty;
573 unsigned int yld_act_empty;
574 unsigned int yld_both_empty;
575 unsigned int yld_count;
1da177e4
LT
576
577 /* schedule() stats */
480b9434
KC
578 unsigned int sched_switch;
579 unsigned int sched_count;
580 unsigned int sched_goidle;
1da177e4
LT
581
582 /* try_to_wake_up() stats */
480b9434
KC
583 unsigned int ttwu_count;
584 unsigned int ttwu_local;
b8efb561
IM
585
586 /* BKL stats */
480b9434 587 unsigned int bkl_count;
1da177e4 588#endif
fcb99371 589 struct lock_class_key rq_lock_key;
1da177e4
LT
590};
591
f34e3b61 592static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 593
dd41f596
IM
594static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
595{
596 rq->curr->sched_class->check_preempt_curr(rq, p);
597}
598
0a2966b4
CL
599static inline int cpu_of(struct rq *rq)
600{
601#ifdef CONFIG_SMP
602 return rq->cpu;
603#else
604 return 0;
605#endif
606}
607
674311d5
NP
608/*
609 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 610 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
611 *
612 * The domain tree of any CPU may only be accessed from within
613 * preempt-disabled sections.
614 */
48f24c4d
IM
615#define for_each_domain(cpu, __sd) \
616 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
617
618#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
619#define this_rq() (&__get_cpu_var(runqueues))
620#define task_rq(p) cpu_rq(task_cpu(p))
621#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
622
3e51f33f
PZ
623static inline void update_rq_clock(struct rq *rq)
624{
625 rq->clock = sched_clock_cpu(cpu_of(rq));
626}
627
bf5c91ba
IM
628/*
629 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
630 */
631#ifdef CONFIG_SCHED_DEBUG
632# define const_debug __read_mostly
633#else
634# define const_debug static const
635#endif
636
637/*
638 * Debugging: various feature bits
639 */
f00b45c1
PZ
640
641#define SCHED_FEAT(name, enabled) \
642 __SCHED_FEAT_##name ,
643
bf5c91ba 644enum {
f00b45c1 645#include "sched_features.h"
bf5c91ba
IM
646};
647
f00b45c1
PZ
648#undef SCHED_FEAT
649
650#define SCHED_FEAT(name, enabled) \
651 (1UL << __SCHED_FEAT_##name) * enabled |
652
bf5c91ba 653const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
654#include "sched_features.h"
655 0;
656
657#undef SCHED_FEAT
658
659#ifdef CONFIG_SCHED_DEBUG
660#define SCHED_FEAT(name, enabled) \
661 #name ,
662
983ed7a6 663static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
664#include "sched_features.h"
665 NULL
666};
667
668#undef SCHED_FEAT
669
983ed7a6 670static int sched_feat_open(struct inode *inode, struct file *filp)
f00b45c1
PZ
671{
672 filp->private_data = inode->i_private;
673 return 0;
674}
675
676static ssize_t
677sched_feat_read(struct file *filp, char __user *ubuf,
678 size_t cnt, loff_t *ppos)
679{
680 char *buf;
681 int r = 0;
682 int len = 0;
683 int i;
684
685 for (i = 0; sched_feat_names[i]; i++) {
686 len += strlen(sched_feat_names[i]);
687 len += 4;
688 }
689
690 buf = kmalloc(len + 2, GFP_KERNEL);
691 if (!buf)
692 return -ENOMEM;
693
694 for (i = 0; sched_feat_names[i]; i++) {
695 if (sysctl_sched_features & (1UL << i))
696 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
697 else
c24b7c52 698 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
f00b45c1
PZ
699 }
700
701 r += sprintf(buf + r, "\n");
702 WARN_ON(r >= len + 2);
703
704 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
705
706 kfree(buf);
707
708 return r;
709}
710
711static ssize_t
712sched_feat_write(struct file *filp, const char __user *ubuf,
713 size_t cnt, loff_t *ppos)
714{
715 char buf[64];
716 char *cmp = buf;
717 int neg = 0;
718 int i;
719
720 if (cnt > 63)
721 cnt = 63;
722
723 if (copy_from_user(&buf, ubuf, cnt))
724 return -EFAULT;
725
726 buf[cnt] = 0;
727
c24b7c52 728 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
729 neg = 1;
730 cmp += 3;
731 }
732
733 for (i = 0; sched_feat_names[i]; i++) {
734 int len = strlen(sched_feat_names[i]);
735
736 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
737 if (neg)
738 sysctl_sched_features &= ~(1UL << i);
739 else
740 sysctl_sched_features |= (1UL << i);
741 break;
742 }
743 }
744
745 if (!sched_feat_names[i])
746 return -EINVAL;
747
748 filp->f_pos += cnt;
749
750 return cnt;
751}
752
753static struct file_operations sched_feat_fops = {
754 .open = sched_feat_open,
755 .read = sched_feat_read,
756 .write = sched_feat_write,
757};
758
759static __init int sched_init_debug(void)
760{
f00b45c1
PZ
761 debugfs_create_file("sched_features", 0644, NULL, NULL,
762 &sched_feat_fops);
763
764 return 0;
765}
766late_initcall(sched_init_debug);
767
768#endif
769
770#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 771
b82d9fdd
PZ
772/*
773 * Number of tasks to iterate in a single balance run.
774 * Limited because this is done with IRQs disabled.
775 */
776const_debug unsigned int sysctl_sched_nr_migrate = 32;
777
fa85ae24 778/*
9f0c1e56 779 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
780 * default: 1s
781 */
9f0c1e56 782unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 783
6892b75e
IM
784static __read_mostly int scheduler_running;
785
9f0c1e56
PZ
786/*
787 * part of the period that we allow rt tasks to run in us.
788 * default: 0.95s
789 */
790int sysctl_sched_rt_runtime = 950000;
fa85ae24 791
d0b27fa7
PZ
792static inline u64 global_rt_period(void)
793{
794 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
795}
796
797static inline u64 global_rt_runtime(void)
798{
799 if (sysctl_sched_rt_period < 0)
800 return RUNTIME_INF;
801
802 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
803}
fa85ae24 804
1da177e4 805#ifndef prepare_arch_switch
4866cde0
NP
806# define prepare_arch_switch(next) do { } while (0)
807#endif
808#ifndef finish_arch_switch
809# define finish_arch_switch(prev) do { } while (0)
810#endif
811
051a1d1a
DA
812static inline int task_current(struct rq *rq, struct task_struct *p)
813{
814 return rq->curr == p;
815}
816
4866cde0 817#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 818static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 819{
051a1d1a 820 return task_current(rq, p);
4866cde0
NP
821}
822
70b97a7f 823static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
824{
825}
826
70b97a7f 827static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 828{
da04c035
IM
829#ifdef CONFIG_DEBUG_SPINLOCK
830 /* this is a valid case when another task releases the spinlock */
831 rq->lock.owner = current;
832#endif
8a25d5de
IM
833 /*
834 * If we are tracking spinlock dependencies then we have to
835 * fix up the runqueue lock - which gets 'carried over' from
836 * prev into current:
837 */
838 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
839
4866cde0
NP
840 spin_unlock_irq(&rq->lock);
841}
842
843#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 844static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
845{
846#ifdef CONFIG_SMP
847 return p->oncpu;
848#else
051a1d1a 849 return task_current(rq, p);
4866cde0
NP
850#endif
851}
852
70b97a7f 853static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
854{
855#ifdef CONFIG_SMP
856 /*
857 * We can optimise this out completely for !SMP, because the
858 * SMP rebalancing from interrupt is the only thing that cares
859 * here.
860 */
861 next->oncpu = 1;
862#endif
863#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
864 spin_unlock_irq(&rq->lock);
865#else
866 spin_unlock(&rq->lock);
867#endif
868}
869
70b97a7f 870static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
871{
872#ifdef CONFIG_SMP
873 /*
874 * After ->oncpu is cleared, the task can be moved to a different CPU.
875 * We must ensure this doesn't happen until the switch is completely
876 * finished.
877 */
878 smp_wmb();
879 prev->oncpu = 0;
880#endif
881#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
882 local_irq_enable();
1da177e4 883#endif
4866cde0
NP
884}
885#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 886
b29739f9
IM
887/*
888 * __task_rq_lock - lock the runqueue a given task resides on.
889 * Must be called interrupts disabled.
890 */
70b97a7f 891static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
892 __acquires(rq->lock)
893{
3a5c359a
AK
894 for (;;) {
895 struct rq *rq = task_rq(p);
896 spin_lock(&rq->lock);
897 if (likely(rq == task_rq(p)))
898 return rq;
b29739f9 899 spin_unlock(&rq->lock);
b29739f9 900 }
b29739f9
IM
901}
902
1da177e4
LT
903/*
904 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 905 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
906 * explicitly disabling preemption.
907 */
70b97a7f 908static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
909 __acquires(rq->lock)
910{
70b97a7f 911 struct rq *rq;
1da177e4 912
3a5c359a
AK
913 for (;;) {
914 local_irq_save(*flags);
915 rq = task_rq(p);
916 spin_lock(&rq->lock);
917 if (likely(rq == task_rq(p)))
918 return rq;
1da177e4 919 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 920 }
1da177e4
LT
921}
922
a9957449 923static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
924 __releases(rq->lock)
925{
926 spin_unlock(&rq->lock);
927}
928
70b97a7f 929static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
930 __releases(rq->lock)
931{
932 spin_unlock_irqrestore(&rq->lock, *flags);
933}
934
1da177e4 935/*
cc2a73b5 936 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 937 */
a9957449 938static struct rq *this_rq_lock(void)
1da177e4
LT
939 __acquires(rq->lock)
940{
70b97a7f 941 struct rq *rq;
1da177e4
LT
942
943 local_irq_disable();
944 rq = this_rq();
945 spin_lock(&rq->lock);
946
947 return rq;
948}
949
8f4d37ec
PZ
950static void __resched_task(struct task_struct *p, int tif_bit);
951
952static inline void resched_task(struct task_struct *p)
953{
954 __resched_task(p, TIF_NEED_RESCHED);
955}
956
957#ifdef CONFIG_SCHED_HRTICK
958/*
959 * Use HR-timers to deliver accurate preemption points.
960 *
961 * Its all a bit involved since we cannot program an hrt while holding the
962 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
963 * reschedule event.
964 *
965 * When we get rescheduled we reprogram the hrtick_timer outside of the
966 * rq->lock.
967 */
968static inline void resched_hrt(struct task_struct *p)
969{
970 __resched_task(p, TIF_HRTICK_RESCHED);
971}
972
973static inline void resched_rq(struct rq *rq)
974{
975 unsigned long flags;
976
977 spin_lock_irqsave(&rq->lock, flags);
978 resched_task(rq->curr);
979 spin_unlock_irqrestore(&rq->lock, flags);
980}
981
982enum {
983 HRTICK_SET, /* re-programm hrtick_timer */
984 HRTICK_RESET, /* not a new slice */
b328ca18 985 HRTICK_BLOCK, /* stop hrtick operations */
8f4d37ec
PZ
986};
987
988/*
989 * Use hrtick when:
990 * - enabled by features
991 * - hrtimer is actually high res
992 */
993static inline int hrtick_enabled(struct rq *rq)
994{
995 if (!sched_feat(HRTICK))
996 return 0;
b328ca18
PZ
997 if (unlikely(test_bit(HRTICK_BLOCK, &rq->hrtick_flags)))
998 return 0;
8f4d37ec
PZ
999 return hrtimer_is_hres_active(&rq->hrtick_timer);
1000}
1001
1002/*
1003 * Called to set the hrtick timer state.
1004 *
1005 * called with rq->lock held and irqs disabled
1006 */
1007static void hrtick_start(struct rq *rq, u64 delay, int reset)
1008{
1009 assert_spin_locked(&rq->lock);
1010
1011 /*
1012 * preempt at: now + delay
1013 */
1014 rq->hrtick_expire =
1015 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1016 /*
1017 * indicate we need to program the timer
1018 */
1019 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1020 if (reset)
1021 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1022
1023 /*
1024 * New slices are called from the schedule path and don't need a
1025 * forced reschedule.
1026 */
1027 if (reset)
1028 resched_hrt(rq->curr);
1029}
1030
1031static void hrtick_clear(struct rq *rq)
1032{
1033 if (hrtimer_active(&rq->hrtick_timer))
1034 hrtimer_cancel(&rq->hrtick_timer);
1035}
1036
1037/*
1038 * Update the timer from the possible pending state.
1039 */
1040static void hrtick_set(struct rq *rq)
1041{
1042 ktime_t time;
1043 int set, reset;
1044 unsigned long flags;
1045
1046 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1047
1048 spin_lock_irqsave(&rq->lock, flags);
1049 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1050 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1051 time = rq->hrtick_expire;
1052 clear_thread_flag(TIF_HRTICK_RESCHED);
1053 spin_unlock_irqrestore(&rq->lock, flags);
1054
1055 if (set) {
1056 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1057 if (reset && !hrtimer_active(&rq->hrtick_timer))
1058 resched_rq(rq);
1059 } else
1060 hrtick_clear(rq);
1061}
1062
1063/*
1064 * High-resolution timer tick.
1065 * Runs from hardirq context with interrupts disabled.
1066 */
1067static enum hrtimer_restart hrtick(struct hrtimer *timer)
1068{
1069 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1070
1071 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1072
1073 spin_lock(&rq->lock);
3e51f33f 1074 update_rq_clock(rq);
8f4d37ec
PZ
1075 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1076 spin_unlock(&rq->lock);
1077
1078 return HRTIMER_NORESTART;
1079}
1080
81d41d7e 1081#ifdef CONFIG_SMP
b328ca18
PZ
1082static void hotplug_hrtick_disable(int cpu)
1083{
1084 struct rq *rq = cpu_rq(cpu);
1085 unsigned long flags;
1086
1087 spin_lock_irqsave(&rq->lock, flags);
1088 rq->hrtick_flags = 0;
1089 __set_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1090 spin_unlock_irqrestore(&rq->lock, flags);
1091
1092 hrtick_clear(rq);
1093}
1094
1095static void hotplug_hrtick_enable(int cpu)
1096{
1097 struct rq *rq = cpu_rq(cpu);
1098 unsigned long flags;
1099
1100 spin_lock_irqsave(&rq->lock, flags);
1101 __clear_bit(HRTICK_BLOCK, &rq->hrtick_flags);
1102 spin_unlock_irqrestore(&rq->lock, flags);
1103}
1104
1105static int
1106hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1107{
1108 int cpu = (int)(long)hcpu;
1109
1110 switch (action) {
1111 case CPU_UP_CANCELED:
1112 case CPU_UP_CANCELED_FROZEN:
1113 case CPU_DOWN_PREPARE:
1114 case CPU_DOWN_PREPARE_FROZEN:
1115 case CPU_DEAD:
1116 case CPU_DEAD_FROZEN:
1117 hotplug_hrtick_disable(cpu);
1118 return NOTIFY_OK;
1119
1120 case CPU_UP_PREPARE:
1121 case CPU_UP_PREPARE_FROZEN:
1122 case CPU_DOWN_FAILED:
1123 case CPU_DOWN_FAILED_FROZEN:
1124 case CPU_ONLINE:
1125 case CPU_ONLINE_FROZEN:
1126 hotplug_hrtick_enable(cpu);
1127 return NOTIFY_OK;
1128 }
1129
1130 return NOTIFY_DONE;
1131}
1132
1133static void init_hrtick(void)
1134{
1135 hotcpu_notifier(hotplug_hrtick, 0);
1136}
81d41d7e 1137#endif /* CONFIG_SMP */
b328ca18
PZ
1138
1139static void init_rq_hrtick(struct rq *rq)
8f4d37ec
PZ
1140{
1141 rq->hrtick_flags = 0;
1142 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1143 rq->hrtick_timer.function = hrtick;
1144 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1145}
1146
1147void hrtick_resched(void)
1148{
1149 struct rq *rq;
1150 unsigned long flags;
1151
1152 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1153 return;
1154
1155 local_irq_save(flags);
1156 rq = cpu_rq(smp_processor_id());
1157 hrtick_set(rq);
1158 local_irq_restore(flags);
1159}
1160#else
1161static inline void hrtick_clear(struct rq *rq)
1162{
1163}
1164
1165static inline void hrtick_set(struct rq *rq)
1166{
1167}
1168
1169static inline void init_rq_hrtick(struct rq *rq)
1170{
1171}
1172
1173void hrtick_resched(void)
1174{
1175}
b328ca18
PZ
1176
1177static inline void init_hrtick(void)
1178{
1179}
8f4d37ec
PZ
1180#endif
1181
c24d20db
IM
1182/*
1183 * resched_task - mark a task 'to be rescheduled now'.
1184 *
1185 * On UP this means the setting of the need_resched flag, on SMP it
1186 * might also involve a cross-CPU call to trigger the scheduler on
1187 * the target CPU.
1188 */
1189#ifdef CONFIG_SMP
1190
1191#ifndef tsk_is_polling
1192#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1193#endif
1194
8f4d37ec 1195static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1196{
1197 int cpu;
1198
1199 assert_spin_locked(&task_rq(p)->lock);
1200
8f4d37ec 1201 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
c24d20db
IM
1202 return;
1203
8f4d37ec 1204 set_tsk_thread_flag(p, tif_bit);
c24d20db
IM
1205
1206 cpu = task_cpu(p);
1207 if (cpu == smp_processor_id())
1208 return;
1209
1210 /* NEED_RESCHED must be visible before we test polling */
1211 smp_mb();
1212 if (!tsk_is_polling(p))
1213 smp_send_reschedule(cpu);
1214}
1215
1216static void resched_cpu(int cpu)
1217{
1218 struct rq *rq = cpu_rq(cpu);
1219 unsigned long flags;
1220
1221 if (!spin_trylock_irqsave(&rq->lock, flags))
1222 return;
1223 resched_task(cpu_curr(cpu));
1224 spin_unlock_irqrestore(&rq->lock, flags);
1225}
06d8308c
TG
1226
1227#ifdef CONFIG_NO_HZ
1228/*
1229 * When add_timer_on() enqueues a timer into the timer wheel of an
1230 * idle CPU then this timer might expire before the next timer event
1231 * which is scheduled to wake up that CPU. In case of a completely
1232 * idle system the next event might even be infinite time into the
1233 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1234 * leaves the inner idle loop so the newly added timer is taken into
1235 * account when the CPU goes back to idle and evaluates the timer
1236 * wheel for the next timer event.
1237 */
1238void wake_up_idle_cpu(int cpu)
1239{
1240 struct rq *rq = cpu_rq(cpu);
1241
1242 if (cpu == smp_processor_id())
1243 return;
1244
1245 /*
1246 * This is safe, as this function is called with the timer
1247 * wheel base lock of (cpu) held. When the CPU is on the way
1248 * to idle and has not yet set rq->curr to idle then it will
1249 * be serialized on the timer wheel base lock and take the new
1250 * timer into account automatically.
1251 */
1252 if (rq->curr != rq->idle)
1253 return;
1254
1255 /*
1256 * We can set TIF_RESCHED on the idle task of the other CPU
1257 * lockless. The worst case is that the other CPU runs the
1258 * idle task through an additional NOOP schedule()
1259 */
1260 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1261
1262 /* NEED_RESCHED must be visible before we test polling */
1263 smp_mb();
1264 if (!tsk_is_polling(rq->idle))
1265 smp_send_reschedule(cpu);
1266}
6d6bc0ad 1267#endif /* CONFIG_NO_HZ */
06d8308c 1268
6d6bc0ad 1269#else /* !CONFIG_SMP */
8f4d37ec 1270static void __resched_task(struct task_struct *p, int tif_bit)
c24d20db
IM
1271{
1272 assert_spin_locked(&task_rq(p)->lock);
8f4d37ec 1273 set_tsk_thread_flag(p, tif_bit);
c24d20db 1274}
6d6bc0ad 1275#endif /* CONFIG_SMP */
c24d20db 1276
45bf76df
IM
1277#if BITS_PER_LONG == 32
1278# define WMULT_CONST (~0UL)
1279#else
1280# define WMULT_CONST (1UL << 32)
1281#endif
1282
1283#define WMULT_SHIFT 32
1284
194081eb
IM
1285/*
1286 * Shift right and round:
1287 */
cf2ab469 1288#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1289
a7be37ac
PZ
1290/*
1291 * delta *= weight / lw
1292 */
cb1c4fc9 1293static unsigned long
45bf76df
IM
1294calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1295 struct load_weight *lw)
1296{
1297 u64 tmp;
1298
7a232e03
LJ
1299 if (!lw->inv_weight) {
1300 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1301 lw->inv_weight = 1;
1302 else
1303 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1304 / (lw->weight+1);
1305 }
45bf76df
IM
1306
1307 tmp = (u64)delta_exec * weight;
1308 /*
1309 * Check whether we'd overflow the 64-bit multiplication:
1310 */
194081eb 1311 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1312 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1313 WMULT_SHIFT/2);
1314 else
cf2ab469 1315 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1316
ecf691da 1317 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1318}
1319
1091985b 1320static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1321{
1322 lw->weight += inc;
e89996ae 1323 lw->inv_weight = 0;
45bf76df
IM
1324}
1325
1091985b 1326static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1327{
1328 lw->weight -= dec;
e89996ae 1329 lw->inv_weight = 0;
45bf76df
IM
1330}
1331
2dd73a4f
PW
1332/*
1333 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1334 * of tasks with abnormal "nice" values across CPUs the contribution that
1335 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1336 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1337 * scaled version of the new time slice allocation that they receive on time
1338 * slice expiry etc.
1339 */
1340
dd41f596
IM
1341#define WEIGHT_IDLEPRIO 2
1342#define WMULT_IDLEPRIO (1 << 31)
1343
1344/*
1345 * Nice levels are multiplicative, with a gentle 10% change for every
1346 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1347 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1348 * that remained on nice 0.
1349 *
1350 * The "10% effect" is relative and cumulative: from _any_ nice level,
1351 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1352 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1353 * If a task goes up by ~10% and another task goes down by ~10% then
1354 * the relative distance between them is ~25%.)
dd41f596
IM
1355 */
1356static const int prio_to_weight[40] = {
254753dc
IM
1357 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1358 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1359 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1360 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1361 /* 0 */ 1024, 820, 655, 526, 423,
1362 /* 5 */ 335, 272, 215, 172, 137,
1363 /* 10 */ 110, 87, 70, 56, 45,
1364 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1365};
1366
5714d2de
IM
1367/*
1368 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1369 *
1370 * In cases where the weight does not change often, we can use the
1371 * precalculated inverse to speed up arithmetics by turning divisions
1372 * into multiplications:
1373 */
dd41f596 1374static const u32 prio_to_wmult[40] = {
254753dc
IM
1375 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1376 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1377 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1378 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1379 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1380 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1381 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1382 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1383};
2dd73a4f 1384
dd41f596
IM
1385static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1386
1387/*
1388 * runqueue iterator, to support SMP load-balancing between different
1389 * scheduling classes, without having to expose their internal data
1390 * structures to the load-balancing proper:
1391 */
1392struct rq_iterator {
1393 void *arg;
1394 struct task_struct *(*start)(void *);
1395 struct task_struct *(*next)(void *);
1396};
1397
e1d1484f
PW
1398#ifdef CONFIG_SMP
1399static unsigned long
1400balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1401 unsigned long max_load_move, struct sched_domain *sd,
1402 enum cpu_idle_type idle, int *all_pinned,
1403 int *this_best_prio, struct rq_iterator *iterator);
1404
1405static int
1406iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1407 struct sched_domain *sd, enum cpu_idle_type idle,
1408 struct rq_iterator *iterator);
e1d1484f 1409#endif
dd41f596 1410
d842de87
SV
1411#ifdef CONFIG_CGROUP_CPUACCT
1412static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1413#else
1414static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1415#endif
1416
18d95a28
PZ
1417static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1418{
1419 update_load_add(&rq->load, load);
1420}
1421
1422static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1423{
1424 update_load_sub(&rq->load, load);
1425}
1426
e7693a36
GH
1427#ifdef CONFIG_SMP
1428static unsigned long source_load(int cpu, int type);
1429static unsigned long target_load(int cpu, int type);
1430static unsigned long cpu_avg_load_per_task(int cpu);
1431static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
c09595f6
PZ
1432
1433#ifdef CONFIG_FAIR_GROUP_SCHED
1434
c8cba857 1435typedef void (*tg_visitor)(struct task_group *, int, struct sched_domain *);
c09595f6
PZ
1436
1437/*
1438 * Iterate the full tree, calling @down when first entering a node and @up when
1439 * leaving it for the final time.
1440 */
c8cba857
PZ
1441static void
1442walk_tg_tree(tg_visitor down, tg_visitor up, int cpu, struct sched_domain *sd)
c09595f6
PZ
1443{
1444 struct task_group *parent, *child;
1445
1446 rcu_read_lock();
1447 parent = &root_task_group;
1448down:
b6a86c74 1449 (*down)(parent, cpu, sd);
c09595f6
PZ
1450 list_for_each_entry_rcu(child, &parent->children, siblings) {
1451 parent = child;
1452 goto down;
1453
1454up:
1455 continue;
1456 }
b6a86c74 1457 (*up)(parent, cpu, sd);
c09595f6
PZ
1458
1459 child = parent;
1460 parent = parent->parent;
1461 if (parent)
1462 goto up;
1463 rcu_read_unlock();
1464}
1465
c09595f6
PZ
1466static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1467
1468/*
1469 * Calculate and set the cpu's group shares.
1470 */
1471static void
b6a86c74 1472__update_group_shares_cpu(struct task_group *tg, int cpu,
c8cba857 1473 unsigned long sd_shares, unsigned long sd_rq_weight)
c09595f6
PZ
1474{
1475 int boost = 0;
1476 unsigned long shares;
1477 unsigned long rq_weight;
1478
c8cba857 1479 if (!tg->se[cpu])
c09595f6
PZ
1480 return;
1481
c8cba857 1482 rq_weight = tg->cfs_rq[cpu]->load.weight;
c09595f6
PZ
1483
1484 /*
1485 * If there are currently no tasks on the cpu pretend there is one of
1486 * average load so that when a new task gets to run here it will not
1487 * get delayed by group starvation.
1488 */
1489 if (!rq_weight) {
1490 boost = 1;
1491 rq_weight = NICE_0_LOAD;
1492 }
1493
c8cba857
PZ
1494 if (unlikely(rq_weight > sd_rq_weight))
1495 rq_weight = sd_rq_weight;
1496
c09595f6
PZ
1497 /*
1498 * \Sum shares * rq_weight
1499 * shares = -----------------------
1500 * \Sum rq_weight
1501 *
1502 */
c8cba857 1503 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
c09595f6
PZ
1504
1505 /*
1506 * record the actual number of shares, not the boosted amount.
1507 */
c8cba857 1508 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
c09595f6
PZ
1509
1510 if (shares < MIN_SHARES)
1511 shares = MIN_SHARES;
1512 else if (shares > MAX_SHARES)
1513 shares = MAX_SHARES;
1514
c8cba857 1515 __set_se_shares(tg->se[cpu], shares);
c09595f6
PZ
1516}
1517
1518/*
c8cba857
PZ
1519 * Re-compute the task group their per cpu shares over the given domain.
1520 * This needs to be done in a bottom-up fashion because the rq weight of a
1521 * parent group depends on the shares of its child groups.
c09595f6
PZ
1522 */
1523static void
c8cba857 1524tg_shares_up(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1525{
c8cba857
PZ
1526 unsigned long rq_weight = 0;
1527 unsigned long shares = 0;
1528 int i;
c09595f6 1529
c8cba857
PZ
1530 for_each_cpu_mask(i, sd->span) {
1531 rq_weight += tg->cfs_rq[i]->load.weight;
1532 shares += tg->cfs_rq[i]->shares;
c09595f6 1533 }
c09595f6 1534
c8cba857
PZ
1535 if ((!shares && rq_weight) || shares > tg->shares)
1536 shares = tg->shares;
1537
1538 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1539 shares = tg->shares;
c09595f6
PZ
1540
1541 for_each_cpu_mask(i, sd->span) {
1542 struct rq *rq = cpu_rq(i);
1543 unsigned long flags;
1544
1545 spin_lock_irqsave(&rq->lock, flags);
c8cba857 1546 __update_group_shares_cpu(tg, i, shares, rq_weight);
c09595f6
PZ
1547 spin_unlock_irqrestore(&rq->lock, flags);
1548 }
c09595f6
PZ
1549}
1550
1551/*
c8cba857
PZ
1552 * Compute the cpu's hierarchical load factor for each task group.
1553 * This needs to be done in a top-down fashion because the load of a child
1554 * group is a fraction of its parents load.
c09595f6 1555 */
b6a86c74 1556static void
c8cba857 1557tg_load_down(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1558{
c8cba857 1559 unsigned long load;
c09595f6 1560
c8cba857
PZ
1561 if (!tg->parent) {
1562 load = cpu_rq(cpu)->load.weight;
1563 } else {
1564 load = tg->parent->cfs_rq[cpu]->h_load;
1565 load *= tg->cfs_rq[cpu]->shares;
1566 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1567 }
c09595f6 1568
c8cba857 1569 tg->cfs_rq[cpu]->h_load = load;
c09595f6
PZ
1570}
1571
c8cba857
PZ
1572static void
1573tg_nop(struct task_group *tg, int cpu, struct sched_domain *sd)
c09595f6 1574{
c09595f6
PZ
1575}
1576
c8cba857 1577static void update_shares(struct sched_domain *sd)
4d8d595d 1578{
c8cba857 1579 walk_tg_tree(tg_nop, tg_shares_up, 0, sd);
4d8d595d
PZ
1580}
1581
3e5459b4
PZ
1582static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1583{
1584 spin_unlock(&rq->lock);
1585 update_shares(sd);
1586 spin_lock(&rq->lock);
1587}
1588
c8cba857 1589static void update_h_load(int cpu)
c09595f6 1590{
c8cba857 1591 walk_tg_tree(tg_load_down, tg_nop, cpu, NULL);
c09595f6
PZ
1592}
1593
1594static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1595{
1596 cfs_rq->shares = shares;
1597}
1598
1599#else
1600
c8cba857 1601static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1602{
1603}
1604
3e5459b4
PZ
1605static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1606{
1607}
1608
c09595f6
PZ
1609#endif
1610
18d95a28
PZ
1611#endif
1612
dd41f596 1613#include "sched_stats.h"
dd41f596 1614#include "sched_idletask.c"
5522d5d5
IM
1615#include "sched_fair.c"
1616#include "sched_rt.c"
dd41f596
IM
1617#ifdef CONFIG_SCHED_DEBUG
1618# include "sched_debug.c"
1619#endif
1620
1621#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1622#define for_each_class(class) \
1623 for (class = sched_class_highest; class; class = class->next)
dd41f596 1624
c09595f6 1625static void inc_nr_running(struct rq *rq)
9c217245
IM
1626{
1627 rq->nr_running++;
9c217245
IM
1628}
1629
c09595f6 1630static void dec_nr_running(struct rq *rq)
9c217245
IM
1631{
1632 rq->nr_running--;
9c217245
IM
1633}
1634
45bf76df
IM
1635static void set_load_weight(struct task_struct *p)
1636{
1637 if (task_has_rt_policy(p)) {
dd41f596
IM
1638 p->se.load.weight = prio_to_weight[0] * 2;
1639 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1640 return;
1641 }
45bf76df 1642
dd41f596
IM
1643 /*
1644 * SCHED_IDLE tasks get minimal weight:
1645 */
1646 if (p->policy == SCHED_IDLE) {
1647 p->se.load.weight = WEIGHT_IDLEPRIO;
1648 p->se.load.inv_weight = WMULT_IDLEPRIO;
1649 return;
1650 }
71f8bd46 1651
dd41f596
IM
1652 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1653 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1654}
1655
8159f87e 1656static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1657{
dd41f596 1658 sched_info_queued(p);
fd390f6a 1659 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1660 p->se.on_rq = 1;
71f8bd46
IM
1661}
1662
69be72c1 1663static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1664{
f02231e5 1665 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1666 p->se.on_rq = 0;
71f8bd46
IM
1667}
1668
14531189 1669/*
dd41f596 1670 * __normal_prio - return the priority that is based on the static prio
14531189 1671 */
14531189
IM
1672static inline int __normal_prio(struct task_struct *p)
1673{
dd41f596 1674 return p->static_prio;
14531189
IM
1675}
1676
b29739f9
IM
1677/*
1678 * Calculate the expected normal priority: i.e. priority
1679 * without taking RT-inheritance into account. Might be
1680 * boosted by interactivity modifiers. Changes upon fork,
1681 * setprio syscalls, and whenever the interactivity
1682 * estimator recalculates.
1683 */
36c8b586 1684static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1685{
1686 int prio;
1687
e05606d3 1688 if (task_has_rt_policy(p))
b29739f9
IM
1689 prio = MAX_RT_PRIO-1 - p->rt_priority;
1690 else
1691 prio = __normal_prio(p);
1692 return prio;
1693}
1694
1695/*
1696 * Calculate the current priority, i.e. the priority
1697 * taken into account by the scheduler. This value might
1698 * be boosted by RT tasks, or might be boosted by
1699 * interactivity modifiers. Will be RT if the task got
1700 * RT-boosted. If not then it returns p->normal_prio.
1701 */
36c8b586 1702static int effective_prio(struct task_struct *p)
b29739f9
IM
1703{
1704 p->normal_prio = normal_prio(p);
1705 /*
1706 * If we are RT tasks or we were boosted to RT priority,
1707 * keep the priority unchanged. Otherwise, update priority
1708 * to the normal priority:
1709 */
1710 if (!rt_prio(p->prio))
1711 return p->normal_prio;
1712 return p->prio;
1713}
1714
1da177e4 1715/*
dd41f596 1716 * activate_task - move a task to the runqueue.
1da177e4 1717 */
dd41f596 1718static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1719{
d9514f6c 1720 if (task_contributes_to_load(p))
dd41f596 1721 rq->nr_uninterruptible--;
1da177e4 1722
8159f87e 1723 enqueue_task(rq, p, wakeup);
c09595f6 1724 inc_nr_running(rq);
1da177e4
LT
1725}
1726
1da177e4
LT
1727/*
1728 * deactivate_task - remove a task from the runqueue.
1729 */
2e1cb74a 1730static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1731{
d9514f6c 1732 if (task_contributes_to_load(p))
dd41f596
IM
1733 rq->nr_uninterruptible++;
1734
69be72c1 1735 dequeue_task(rq, p, sleep);
c09595f6 1736 dec_nr_running(rq);
1da177e4
LT
1737}
1738
1da177e4
LT
1739/**
1740 * task_curr - is this task currently executing on a CPU?
1741 * @p: the task in question.
1742 */
36c8b586 1743inline int task_curr(const struct task_struct *p)
1da177e4
LT
1744{
1745 return cpu_curr(task_cpu(p)) == p;
1746}
1747
dd41f596
IM
1748static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1749{
6f505b16 1750 set_task_rq(p, cpu);
dd41f596 1751#ifdef CONFIG_SMP
ce96b5ac
DA
1752 /*
1753 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1754 * successfuly executed on another CPU. We must ensure that updates of
1755 * per-task data have been completed by this moment.
1756 */
1757 smp_wmb();
dd41f596 1758 task_thread_info(p)->cpu = cpu;
dd41f596 1759#endif
2dd73a4f
PW
1760}
1761
cb469845
SR
1762static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1763 const struct sched_class *prev_class,
1764 int oldprio, int running)
1765{
1766 if (prev_class != p->sched_class) {
1767 if (prev_class->switched_from)
1768 prev_class->switched_from(rq, p, running);
1769 p->sched_class->switched_to(rq, p, running);
1770 } else
1771 p->sched_class->prio_changed(rq, p, oldprio, running);
1772}
1773
1da177e4 1774#ifdef CONFIG_SMP
c65cc870 1775
e958b360
TG
1776/* Used instead of source_load when we know the type == 0 */
1777static unsigned long weighted_cpuload(const int cpu)
1778{
1779 return cpu_rq(cpu)->load.weight;
1780}
1781
cc367732
IM
1782/*
1783 * Is this task likely cache-hot:
1784 */
e7693a36 1785static int
cc367732
IM
1786task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1787{
1788 s64 delta;
1789
f540a608
IM
1790 /*
1791 * Buddy candidates are cache hot:
1792 */
d25ce4cd 1793 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
f540a608
IM
1794 return 1;
1795
cc367732
IM
1796 if (p->sched_class != &fair_sched_class)
1797 return 0;
1798
6bc1665b
IM
1799 if (sysctl_sched_migration_cost == -1)
1800 return 1;
1801 if (sysctl_sched_migration_cost == 0)
1802 return 0;
1803
cc367732
IM
1804 delta = now - p->se.exec_start;
1805
1806 return delta < (s64)sysctl_sched_migration_cost;
1807}
1808
1809
dd41f596 1810void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1811{
dd41f596
IM
1812 int old_cpu = task_cpu(p);
1813 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1814 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1815 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1816 u64 clock_offset;
dd41f596
IM
1817
1818 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1819
1820#ifdef CONFIG_SCHEDSTATS
1821 if (p->se.wait_start)
1822 p->se.wait_start -= clock_offset;
dd41f596
IM
1823 if (p->se.sleep_start)
1824 p->se.sleep_start -= clock_offset;
1825 if (p->se.block_start)
1826 p->se.block_start -= clock_offset;
cc367732
IM
1827 if (old_cpu != new_cpu) {
1828 schedstat_inc(p, se.nr_migrations);
1829 if (task_hot(p, old_rq->clock, NULL))
1830 schedstat_inc(p, se.nr_forced2_migrations);
1831 }
6cfb0d5d 1832#endif
2830cf8c
SV
1833 p->se.vruntime -= old_cfsrq->min_vruntime -
1834 new_cfsrq->min_vruntime;
dd41f596
IM
1835
1836 __set_task_cpu(p, new_cpu);
c65cc870
IM
1837}
1838
70b97a7f 1839struct migration_req {
1da177e4 1840 struct list_head list;
1da177e4 1841
36c8b586 1842 struct task_struct *task;
1da177e4
LT
1843 int dest_cpu;
1844
1da177e4 1845 struct completion done;
70b97a7f 1846};
1da177e4
LT
1847
1848/*
1849 * The task's runqueue lock must be held.
1850 * Returns true if you have to wait for migration thread.
1851 */
36c8b586 1852static int
70b97a7f 1853migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1854{
70b97a7f 1855 struct rq *rq = task_rq(p);
1da177e4
LT
1856
1857 /*
1858 * If the task is not on a runqueue (and not running), then
1859 * it is sufficient to simply update the task's cpu field.
1860 */
dd41f596 1861 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1862 set_task_cpu(p, dest_cpu);
1863 return 0;
1864 }
1865
1866 init_completion(&req->done);
1da177e4
LT
1867 req->task = p;
1868 req->dest_cpu = dest_cpu;
1869 list_add(&req->list, &rq->migration_queue);
48f24c4d 1870
1da177e4
LT
1871 return 1;
1872}
1873
1874/*
1875 * wait_task_inactive - wait for a thread to unschedule.
1876 *
1877 * The caller must ensure that the task *will* unschedule sometime soon,
1878 * else this function might spin for a *long* time. This function can't
1879 * be called with interrupts off, or it may introduce deadlock with
1880 * smp_call_function() if an IPI is sent by the same process we are
1881 * waiting to become inactive.
1882 */
36c8b586 1883void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1884{
1885 unsigned long flags;
dd41f596 1886 int running, on_rq;
70b97a7f 1887 struct rq *rq;
1da177e4 1888
3a5c359a
AK
1889 for (;;) {
1890 /*
1891 * We do the initial early heuristics without holding
1892 * any task-queue locks at all. We'll only try to get
1893 * the runqueue lock when things look like they will
1894 * work out!
1895 */
1896 rq = task_rq(p);
fa490cfd 1897
3a5c359a
AK
1898 /*
1899 * If the task is actively running on another CPU
1900 * still, just relax and busy-wait without holding
1901 * any locks.
1902 *
1903 * NOTE! Since we don't hold any locks, it's not
1904 * even sure that "rq" stays as the right runqueue!
1905 * But we don't care, since "task_running()" will
1906 * return false if the runqueue has changed and p
1907 * is actually now running somewhere else!
1908 */
1909 while (task_running(rq, p))
1910 cpu_relax();
fa490cfd 1911
3a5c359a
AK
1912 /*
1913 * Ok, time to look more closely! We need the rq
1914 * lock now, to be *sure*. If we're wrong, we'll
1915 * just go back and repeat.
1916 */
1917 rq = task_rq_lock(p, &flags);
1918 running = task_running(rq, p);
1919 on_rq = p->se.on_rq;
1920 task_rq_unlock(rq, &flags);
fa490cfd 1921
3a5c359a
AK
1922 /*
1923 * Was it really running after all now that we
1924 * checked with the proper locks actually held?
1925 *
1926 * Oops. Go back and try again..
1927 */
1928 if (unlikely(running)) {
1929 cpu_relax();
1930 continue;
1931 }
fa490cfd 1932
3a5c359a
AK
1933 /*
1934 * It's not enough that it's not actively running,
1935 * it must be off the runqueue _entirely_, and not
1936 * preempted!
1937 *
1938 * So if it wa still runnable (but just not actively
1939 * running right now), it's preempted, and we should
1940 * yield - it could be a while.
1941 */
1942 if (unlikely(on_rq)) {
1943 schedule_timeout_uninterruptible(1);
1944 continue;
1945 }
fa490cfd 1946
3a5c359a
AK
1947 /*
1948 * Ahh, all good. It wasn't running, and it wasn't
1949 * runnable, which means that it will never become
1950 * running in the future either. We're all done!
1951 */
1952 break;
1953 }
1da177e4
LT
1954}
1955
1956/***
1957 * kick_process - kick a running thread to enter/exit the kernel
1958 * @p: the to-be-kicked thread
1959 *
1960 * Cause a process which is running on another CPU to enter
1961 * kernel-mode, without any delay. (to get signals handled.)
1962 *
1963 * NOTE: this function doesnt have to take the runqueue lock,
1964 * because all it wants to ensure is that the remote task enters
1965 * the kernel. If the IPI races and the task has been migrated
1966 * to another CPU then no harm is done and the purpose has been
1967 * achieved as well.
1968 */
36c8b586 1969void kick_process(struct task_struct *p)
1da177e4
LT
1970{
1971 int cpu;
1972
1973 preempt_disable();
1974 cpu = task_cpu(p);
1975 if ((cpu != smp_processor_id()) && task_curr(p))
1976 smp_send_reschedule(cpu);
1977 preempt_enable();
1978}
1979
1980/*
2dd73a4f
PW
1981 * Return a low guess at the load of a migration-source cpu weighted
1982 * according to the scheduling class and "nice" value.
1da177e4
LT
1983 *
1984 * We want to under-estimate the load of migration sources, to
1985 * balance conservatively.
1986 */
a9957449 1987static unsigned long source_load(int cpu, int type)
1da177e4 1988{
70b97a7f 1989 struct rq *rq = cpu_rq(cpu);
dd41f596 1990 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1991
3b0bd9bc 1992 if (type == 0)
dd41f596 1993 return total;
b910472d 1994
dd41f596 1995 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1996}
1997
1998/*
2dd73a4f
PW
1999 * Return a high guess at the load of a migration-target cpu weighted
2000 * according to the scheduling class and "nice" value.
1da177e4 2001 */
a9957449 2002static unsigned long target_load(int cpu, int type)
1da177e4 2003{
70b97a7f 2004 struct rq *rq = cpu_rq(cpu);
dd41f596 2005 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2006
7897986b 2007 if (type == 0)
dd41f596 2008 return total;
3b0bd9bc 2009
dd41f596 2010 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2011}
2012
2013/*
2014 * Return the average load per task on the cpu's run queue
2015 */
e7693a36 2016static unsigned long cpu_avg_load_per_task(int cpu)
2dd73a4f 2017{
70b97a7f 2018 struct rq *rq = cpu_rq(cpu);
dd41f596 2019 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
2020 unsigned long n = rq->nr_running;
2021
dd41f596 2022 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
2023}
2024
147cbb4b
NP
2025/*
2026 * find_idlest_group finds and returns the least busy CPU group within the
2027 * domain.
2028 */
2029static struct sched_group *
2030find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2031{
2032 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2033 unsigned long min_load = ULONG_MAX, this_load = 0;
2034 int load_idx = sd->forkexec_idx;
2035 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2036
2037 do {
2038 unsigned long load, avg_load;
2039 int local_group;
2040 int i;
2041
da5a5522
BD
2042 /* Skip over this group if it has no CPUs allowed */
2043 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 2044 continue;
da5a5522 2045
147cbb4b 2046 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
2047
2048 /* Tally up the load of all CPUs in the group */
2049 avg_load = 0;
2050
2051 for_each_cpu_mask(i, group->cpumask) {
2052 /* Bias balancing toward cpus of our domain */
2053 if (local_group)
2054 load = source_load(i, load_idx);
2055 else
2056 load = target_load(i, load_idx);
2057
2058 avg_load += load;
2059 }
2060
2061 /* Adjust by relative CPU power of the group */
5517d86b
ED
2062 avg_load = sg_div_cpu_power(group,
2063 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2064
2065 if (local_group) {
2066 this_load = avg_load;
2067 this = group;
2068 } else if (avg_load < min_load) {
2069 min_load = avg_load;
2070 idlest = group;
2071 }
3a5c359a 2072 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2073
2074 if (!idlest || 100*this_load < imbalance*min_load)
2075 return NULL;
2076 return idlest;
2077}
2078
2079/*
0feaece9 2080 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2081 */
95cdf3b7 2082static int
7c16ec58
MT
2083find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2084 cpumask_t *tmp)
147cbb4b
NP
2085{
2086 unsigned long load, min_load = ULONG_MAX;
2087 int idlest = -1;
2088 int i;
2089
da5a5522 2090 /* Traverse only the allowed CPUs */
7c16ec58 2091 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
da5a5522 2092
7c16ec58 2093 for_each_cpu_mask(i, *tmp) {
2dd73a4f 2094 load = weighted_cpuload(i);
147cbb4b
NP
2095
2096 if (load < min_load || (load == min_load && i == this_cpu)) {
2097 min_load = load;
2098 idlest = i;
2099 }
2100 }
2101
2102 return idlest;
2103}
2104
476d139c
NP
2105/*
2106 * sched_balance_self: balance the current task (running on cpu) in domains
2107 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2108 * SD_BALANCE_EXEC.
2109 *
2110 * Balance, ie. select the least loaded group.
2111 *
2112 * Returns the target CPU number, or the same CPU if no balancing is needed.
2113 *
2114 * preempt must be disabled.
2115 */
2116static int sched_balance_self(int cpu, int flag)
2117{
2118 struct task_struct *t = current;
2119 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2120
c96d145e 2121 for_each_domain(cpu, tmp) {
9761eea8
IM
2122 /*
2123 * If power savings logic is enabled for a domain, stop there.
2124 */
5c45bf27
SS
2125 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2126 break;
476d139c
NP
2127 if (tmp->flags & flag)
2128 sd = tmp;
c96d145e 2129 }
476d139c 2130
039a1c41
PZ
2131 if (sd)
2132 update_shares(sd);
2133
476d139c 2134 while (sd) {
7c16ec58 2135 cpumask_t span, tmpmask;
476d139c 2136 struct sched_group *group;
1a848870
SS
2137 int new_cpu, weight;
2138
2139 if (!(sd->flags & flag)) {
2140 sd = sd->child;
2141 continue;
2142 }
476d139c
NP
2143
2144 span = sd->span;
2145 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2146 if (!group) {
2147 sd = sd->child;
2148 continue;
2149 }
476d139c 2150
7c16ec58 2151 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1a848870
SS
2152 if (new_cpu == -1 || new_cpu == cpu) {
2153 /* Now try balancing at a lower domain level of cpu */
2154 sd = sd->child;
2155 continue;
2156 }
476d139c 2157
1a848870 2158 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2159 cpu = new_cpu;
476d139c
NP
2160 sd = NULL;
2161 weight = cpus_weight(span);
2162 for_each_domain(cpu, tmp) {
2163 if (weight <= cpus_weight(tmp->span))
2164 break;
2165 if (tmp->flags & flag)
2166 sd = tmp;
2167 }
2168 /* while loop will break here if sd == NULL */
2169 }
2170
2171 return cpu;
2172}
2173
2174#endif /* CONFIG_SMP */
1da177e4 2175
1da177e4
LT
2176/***
2177 * try_to_wake_up - wake up a thread
2178 * @p: the to-be-woken-up thread
2179 * @state: the mask of task states that can be woken
2180 * @sync: do a synchronous wakeup?
2181 *
2182 * Put it on the run-queue if it's not already there. The "current"
2183 * thread is always on the run-queue (except when the actual
2184 * re-schedule is in progress), and as such you're allowed to do
2185 * the simpler "current->state = TASK_RUNNING" to mark yourself
2186 * runnable without the overhead of this.
2187 *
2188 * returns failure only if the task is already active.
2189 */
36c8b586 2190static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2191{
cc367732 2192 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2193 unsigned long flags;
2194 long old_state;
70b97a7f 2195 struct rq *rq;
1da177e4 2196
b85d0667
IM
2197 if (!sched_feat(SYNC_WAKEUPS))
2198 sync = 0;
2199
04e2f174 2200 smp_wmb();
1da177e4
LT
2201 rq = task_rq_lock(p, &flags);
2202 old_state = p->state;
2203 if (!(old_state & state))
2204 goto out;
2205
dd41f596 2206 if (p->se.on_rq)
1da177e4
LT
2207 goto out_running;
2208
2209 cpu = task_cpu(p);
cc367732 2210 orig_cpu = cpu;
1da177e4
LT
2211 this_cpu = smp_processor_id();
2212
2213#ifdef CONFIG_SMP
2214 if (unlikely(task_running(rq, p)))
2215 goto out_activate;
2216
5d2f5a61
DA
2217 cpu = p->sched_class->select_task_rq(p, sync);
2218 if (cpu != orig_cpu) {
2219 set_task_cpu(p, cpu);
1da177e4
LT
2220 task_rq_unlock(rq, &flags);
2221 /* might preempt at this point */
2222 rq = task_rq_lock(p, &flags);
2223 old_state = p->state;
2224 if (!(old_state & state))
2225 goto out;
dd41f596 2226 if (p->se.on_rq)
1da177e4
LT
2227 goto out_running;
2228
2229 this_cpu = smp_processor_id();
2230 cpu = task_cpu(p);
2231 }
2232
e7693a36
GH
2233#ifdef CONFIG_SCHEDSTATS
2234 schedstat_inc(rq, ttwu_count);
2235 if (cpu == this_cpu)
2236 schedstat_inc(rq, ttwu_local);
2237 else {
2238 struct sched_domain *sd;
2239 for_each_domain(this_cpu, sd) {
2240 if (cpu_isset(cpu, sd->span)) {
2241 schedstat_inc(sd, ttwu_wake_remote);
2242 break;
2243 }
2244 }
2245 }
6d6bc0ad 2246#endif /* CONFIG_SCHEDSTATS */
e7693a36 2247
1da177e4
LT
2248out_activate:
2249#endif /* CONFIG_SMP */
cc367732
IM
2250 schedstat_inc(p, se.nr_wakeups);
2251 if (sync)
2252 schedstat_inc(p, se.nr_wakeups_sync);
2253 if (orig_cpu != cpu)
2254 schedstat_inc(p, se.nr_wakeups_migrate);
2255 if (cpu == this_cpu)
2256 schedstat_inc(p, se.nr_wakeups_local);
2257 else
2258 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 2259 update_rq_clock(rq);
dd41f596 2260 activate_task(rq, p, 1);
1da177e4
LT
2261 success = 1;
2262
2263out_running:
4ae7d5ce
IM
2264 check_preempt_curr(rq, p);
2265
1da177e4 2266 p->state = TASK_RUNNING;
9a897c5a
SR
2267#ifdef CONFIG_SMP
2268 if (p->sched_class->task_wake_up)
2269 p->sched_class->task_wake_up(rq, p);
2270#endif
1da177e4
LT
2271out:
2272 task_rq_unlock(rq, &flags);
2273
2274 return success;
2275}
2276
7ad5b3a5 2277int wake_up_process(struct task_struct *p)
1da177e4 2278{
d9514f6c 2279 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2280}
1da177e4
LT
2281EXPORT_SYMBOL(wake_up_process);
2282
7ad5b3a5 2283int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2284{
2285 return try_to_wake_up(p, state, 0);
2286}
2287
1da177e4
LT
2288/*
2289 * Perform scheduler related setup for a newly forked process p.
2290 * p is forked by current.
dd41f596
IM
2291 *
2292 * __sched_fork() is basic setup used by init_idle() too:
2293 */
2294static void __sched_fork(struct task_struct *p)
2295{
dd41f596
IM
2296 p->se.exec_start = 0;
2297 p->se.sum_exec_runtime = 0;
f6cf891c 2298 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2299 p->se.last_wakeup = 0;
2300 p->se.avg_overlap = 0;
6cfb0d5d
IM
2301
2302#ifdef CONFIG_SCHEDSTATS
2303 p->se.wait_start = 0;
dd41f596
IM
2304 p->se.sum_sleep_runtime = 0;
2305 p->se.sleep_start = 0;
dd41f596
IM
2306 p->se.block_start = 0;
2307 p->se.sleep_max = 0;
2308 p->se.block_max = 0;
2309 p->se.exec_max = 0;
eba1ed4b 2310 p->se.slice_max = 0;
dd41f596 2311 p->se.wait_max = 0;
6cfb0d5d 2312#endif
476d139c 2313
fa717060 2314 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2315 p->se.on_rq = 0;
4a55bd5e 2316 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2317
e107be36
AK
2318#ifdef CONFIG_PREEMPT_NOTIFIERS
2319 INIT_HLIST_HEAD(&p->preempt_notifiers);
2320#endif
2321
1da177e4
LT
2322 /*
2323 * We mark the process as running here, but have not actually
2324 * inserted it onto the runqueue yet. This guarantees that
2325 * nobody will actually run it, and a signal or other external
2326 * event cannot wake it up and insert it on the runqueue either.
2327 */
2328 p->state = TASK_RUNNING;
dd41f596
IM
2329}
2330
2331/*
2332 * fork()/clone()-time setup:
2333 */
2334void sched_fork(struct task_struct *p, int clone_flags)
2335{
2336 int cpu = get_cpu();
2337
2338 __sched_fork(p);
2339
2340#ifdef CONFIG_SMP
2341 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2342#endif
02e4bac2 2343 set_task_cpu(p, cpu);
b29739f9
IM
2344
2345 /*
2346 * Make sure we do not leak PI boosting priority to the child:
2347 */
2348 p->prio = current->normal_prio;
2ddbf952
HS
2349 if (!rt_prio(p->prio))
2350 p->sched_class = &fair_sched_class;
b29739f9 2351
52f17b6c 2352#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2353 if (likely(sched_info_on()))
52f17b6c 2354 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2355#endif
d6077cb8 2356#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2357 p->oncpu = 0;
2358#endif
1da177e4 2359#ifdef CONFIG_PREEMPT
4866cde0 2360 /* Want to start with kernel preemption disabled. */
a1261f54 2361 task_thread_info(p)->preempt_count = 1;
1da177e4 2362#endif
476d139c 2363 put_cpu();
1da177e4
LT
2364}
2365
2366/*
2367 * wake_up_new_task - wake up a newly created task for the first time.
2368 *
2369 * This function will do some initial scheduler statistics housekeeping
2370 * that must be done for every newly created context, then puts the task
2371 * on the runqueue and wakes it.
2372 */
7ad5b3a5 2373void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2374{
2375 unsigned long flags;
dd41f596 2376 struct rq *rq;
1da177e4
LT
2377
2378 rq = task_rq_lock(p, &flags);
147cbb4b 2379 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2380 update_rq_clock(rq);
1da177e4
LT
2381
2382 p->prio = effective_prio(p);
2383
b9dca1e0 2384 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2385 activate_task(rq, p, 0);
1da177e4 2386 } else {
1da177e4 2387 /*
dd41f596
IM
2388 * Let the scheduling class do new task startup
2389 * management (if any):
1da177e4 2390 */
ee0827d8 2391 p->sched_class->task_new(rq, p);
c09595f6 2392 inc_nr_running(rq);
1da177e4 2393 }
dd41f596 2394 check_preempt_curr(rq, p);
9a897c5a
SR
2395#ifdef CONFIG_SMP
2396 if (p->sched_class->task_wake_up)
2397 p->sched_class->task_wake_up(rq, p);
2398#endif
dd41f596 2399 task_rq_unlock(rq, &flags);
1da177e4
LT
2400}
2401
e107be36
AK
2402#ifdef CONFIG_PREEMPT_NOTIFIERS
2403
2404/**
421cee29
RD
2405 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2406 * @notifier: notifier struct to register
e107be36
AK
2407 */
2408void preempt_notifier_register(struct preempt_notifier *notifier)
2409{
2410 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2411}
2412EXPORT_SYMBOL_GPL(preempt_notifier_register);
2413
2414/**
2415 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2416 * @notifier: notifier struct to unregister
e107be36
AK
2417 *
2418 * This is safe to call from within a preemption notifier.
2419 */
2420void preempt_notifier_unregister(struct preempt_notifier *notifier)
2421{
2422 hlist_del(&notifier->link);
2423}
2424EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2425
2426static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2427{
2428 struct preempt_notifier *notifier;
2429 struct hlist_node *node;
2430
2431 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2432 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2433}
2434
2435static void
2436fire_sched_out_preempt_notifiers(struct task_struct *curr,
2437 struct task_struct *next)
2438{
2439 struct preempt_notifier *notifier;
2440 struct hlist_node *node;
2441
2442 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2443 notifier->ops->sched_out(notifier, next);
2444}
2445
6d6bc0ad 2446#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2447
2448static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2449{
2450}
2451
2452static void
2453fire_sched_out_preempt_notifiers(struct task_struct *curr,
2454 struct task_struct *next)
2455{
2456}
2457
6d6bc0ad 2458#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2459
4866cde0
NP
2460/**
2461 * prepare_task_switch - prepare to switch tasks
2462 * @rq: the runqueue preparing to switch
421cee29 2463 * @prev: the current task that is being switched out
4866cde0
NP
2464 * @next: the task we are going to switch to.
2465 *
2466 * This is called with the rq lock held and interrupts off. It must
2467 * be paired with a subsequent finish_task_switch after the context
2468 * switch.
2469 *
2470 * prepare_task_switch sets up locking and calls architecture specific
2471 * hooks.
2472 */
e107be36
AK
2473static inline void
2474prepare_task_switch(struct rq *rq, struct task_struct *prev,
2475 struct task_struct *next)
4866cde0 2476{
e107be36 2477 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2478 prepare_lock_switch(rq, next);
2479 prepare_arch_switch(next);
2480}
2481
1da177e4
LT
2482/**
2483 * finish_task_switch - clean up after a task-switch
344babaa 2484 * @rq: runqueue associated with task-switch
1da177e4
LT
2485 * @prev: the thread we just switched away from.
2486 *
4866cde0
NP
2487 * finish_task_switch must be called after the context switch, paired
2488 * with a prepare_task_switch call before the context switch.
2489 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2490 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2491 *
2492 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2493 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2494 * with the lock held can cause deadlocks; see schedule() for
2495 * details.)
2496 */
a9957449 2497static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2498 __releases(rq->lock)
2499{
1da177e4 2500 struct mm_struct *mm = rq->prev_mm;
55a101f8 2501 long prev_state;
1da177e4
LT
2502
2503 rq->prev_mm = NULL;
2504
2505 /*
2506 * A task struct has one reference for the use as "current".
c394cc9f 2507 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2508 * schedule one last time. The schedule call will never return, and
2509 * the scheduled task must drop that reference.
c394cc9f 2510 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2511 * still held, otherwise prev could be scheduled on another cpu, die
2512 * there before we look at prev->state, and then the reference would
2513 * be dropped twice.
2514 * Manfred Spraul <manfred@colorfullife.com>
2515 */
55a101f8 2516 prev_state = prev->state;
4866cde0
NP
2517 finish_arch_switch(prev);
2518 finish_lock_switch(rq, prev);
9a897c5a
SR
2519#ifdef CONFIG_SMP
2520 if (current->sched_class->post_schedule)
2521 current->sched_class->post_schedule(rq);
2522#endif
e8fa1362 2523
e107be36 2524 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2525 if (mm)
2526 mmdrop(mm);
c394cc9f 2527 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2528 /*
2529 * Remove function-return probe instances associated with this
2530 * task and put them back on the free list.
9761eea8 2531 */
c6fd91f0 2532 kprobe_flush_task(prev);
1da177e4 2533 put_task_struct(prev);
c6fd91f0 2534 }
1da177e4
LT
2535}
2536
2537/**
2538 * schedule_tail - first thing a freshly forked thread must call.
2539 * @prev: the thread we just switched away from.
2540 */
36c8b586 2541asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2542 __releases(rq->lock)
2543{
70b97a7f
IM
2544 struct rq *rq = this_rq();
2545
4866cde0
NP
2546 finish_task_switch(rq, prev);
2547#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2548 /* In this case, finish_task_switch does not reenable preemption */
2549 preempt_enable();
2550#endif
1da177e4 2551 if (current->set_child_tid)
b488893a 2552 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2553}
2554
2555/*
2556 * context_switch - switch to the new MM and the new
2557 * thread's register state.
2558 */
dd41f596 2559static inline void
70b97a7f 2560context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2561 struct task_struct *next)
1da177e4 2562{
dd41f596 2563 struct mm_struct *mm, *oldmm;
1da177e4 2564
e107be36 2565 prepare_task_switch(rq, prev, next);
dd41f596
IM
2566 mm = next->mm;
2567 oldmm = prev->active_mm;
9226d125
ZA
2568 /*
2569 * For paravirt, this is coupled with an exit in switch_to to
2570 * combine the page table reload and the switch backend into
2571 * one hypercall.
2572 */
2573 arch_enter_lazy_cpu_mode();
2574
dd41f596 2575 if (unlikely(!mm)) {
1da177e4
LT
2576 next->active_mm = oldmm;
2577 atomic_inc(&oldmm->mm_count);
2578 enter_lazy_tlb(oldmm, next);
2579 } else
2580 switch_mm(oldmm, mm, next);
2581
dd41f596 2582 if (unlikely(!prev->mm)) {
1da177e4 2583 prev->active_mm = NULL;
1da177e4
LT
2584 rq->prev_mm = oldmm;
2585 }
3a5f5e48
IM
2586 /*
2587 * Since the runqueue lock will be released by the next
2588 * task (which is an invalid locking op but in the case
2589 * of the scheduler it's an obvious special-case), so we
2590 * do an early lockdep release here:
2591 */
2592#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2593 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2594#endif
1da177e4
LT
2595
2596 /* Here we just switch the register state and the stack. */
2597 switch_to(prev, next, prev);
2598
dd41f596
IM
2599 barrier();
2600 /*
2601 * this_rq must be evaluated again because prev may have moved
2602 * CPUs since it called schedule(), thus the 'rq' on its stack
2603 * frame will be invalid.
2604 */
2605 finish_task_switch(this_rq(), prev);
1da177e4
LT
2606}
2607
2608/*
2609 * nr_running, nr_uninterruptible and nr_context_switches:
2610 *
2611 * externally visible scheduler statistics: current number of runnable
2612 * threads, current number of uninterruptible-sleeping threads, total
2613 * number of context switches performed since bootup.
2614 */
2615unsigned long nr_running(void)
2616{
2617 unsigned long i, sum = 0;
2618
2619 for_each_online_cpu(i)
2620 sum += cpu_rq(i)->nr_running;
2621
2622 return sum;
2623}
2624
2625unsigned long nr_uninterruptible(void)
2626{
2627 unsigned long i, sum = 0;
2628
0a945022 2629 for_each_possible_cpu(i)
1da177e4
LT
2630 sum += cpu_rq(i)->nr_uninterruptible;
2631
2632 /*
2633 * Since we read the counters lockless, it might be slightly
2634 * inaccurate. Do not allow it to go below zero though:
2635 */
2636 if (unlikely((long)sum < 0))
2637 sum = 0;
2638
2639 return sum;
2640}
2641
2642unsigned long long nr_context_switches(void)
2643{
cc94abfc
SR
2644 int i;
2645 unsigned long long sum = 0;
1da177e4 2646
0a945022 2647 for_each_possible_cpu(i)
1da177e4
LT
2648 sum += cpu_rq(i)->nr_switches;
2649
2650 return sum;
2651}
2652
2653unsigned long nr_iowait(void)
2654{
2655 unsigned long i, sum = 0;
2656
0a945022 2657 for_each_possible_cpu(i)
1da177e4
LT
2658 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2659
2660 return sum;
2661}
2662
db1b1fef
JS
2663unsigned long nr_active(void)
2664{
2665 unsigned long i, running = 0, uninterruptible = 0;
2666
2667 for_each_online_cpu(i) {
2668 running += cpu_rq(i)->nr_running;
2669 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2670 }
2671
2672 if (unlikely((long)uninterruptible < 0))
2673 uninterruptible = 0;
2674
2675 return running + uninterruptible;
2676}
2677
48f24c4d 2678/*
dd41f596
IM
2679 * Update rq->cpu_load[] statistics. This function is usually called every
2680 * scheduler tick (TICK_NSEC).
48f24c4d 2681 */
dd41f596 2682static void update_cpu_load(struct rq *this_rq)
48f24c4d 2683{
495eca49 2684 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2685 int i, scale;
2686
2687 this_rq->nr_load_updates++;
dd41f596
IM
2688
2689 /* Update our load: */
2690 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2691 unsigned long old_load, new_load;
2692
2693 /* scale is effectively 1 << i now, and >> i divides by scale */
2694
2695 old_load = this_rq->cpu_load[i];
2696 new_load = this_load;
a25707f3
IM
2697 /*
2698 * Round up the averaging division if load is increasing. This
2699 * prevents us from getting stuck on 9 if the load is 10, for
2700 * example.
2701 */
2702 if (new_load > old_load)
2703 new_load += scale-1;
dd41f596
IM
2704 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2705 }
48f24c4d
IM
2706}
2707
dd41f596
IM
2708#ifdef CONFIG_SMP
2709
1da177e4
LT
2710/*
2711 * double_rq_lock - safely lock two runqueues
2712 *
2713 * Note this does not disable interrupts like task_rq_lock,
2714 * you need to do so manually before calling.
2715 */
70b97a7f 2716static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2717 __acquires(rq1->lock)
2718 __acquires(rq2->lock)
2719{
054b9108 2720 BUG_ON(!irqs_disabled());
1da177e4
LT
2721 if (rq1 == rq2) {
2722 spin_lock(&rq1->lock);
2723 __acquire(rq2->lock); /* Fake it out ;) */
2724 } else {
c96d145e 2725 if (rq1 < rq2) {
1da177e4
LT
2726 spin_lock(&rq1->lock);
2727 spin_lock(&rq2->lock);
2728 } else {
2729 spin_lock(&rq2->lock);
2730 spin_lock(&rq1->lock);
2731 }
2732 }
6e82a3be
IM
2733 update_rq_clock(rq1);
2734 update_rq_clock(rq2);
1da177e4
LT
2735}
2736
2737/*
2738 * double_rq_unlock - safely unlock two runqueues
2739 *
2740 * Note this does not restore interrupts like task_rq_unlock,
2741 * you need to do so manually after calling.
2742 */
70b97a7f 2743static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2744 __releases(rq1->lock)
2745 __releases(rq2->lock)
2746{
2747 spin_unlock(&rq1->lock);
2748 if (rq1 != rq2)
2749 spin_unlock(&rq2->lock);
2750 else
2751 __release(rq2->lock);
2752}
2753
2754/*
2755 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2756 */
e8fa1362 2757static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2758 __releases(this_rq->lock)
2759 __acquires(busiest->lock)
2760 __acquires(this_rq->lock)
2761{
e8fa1362
SR
2762 int ret = 0;
2763
054b9108
KK
2764 if (unlikely(!irqs_disabled())) {
2765 /* printk() doesn't work good under rq->lock */
2766 spin_unlock(&this_rq->lock);
2767 BUG_ON(1);
2768 }
1da177e4 2769 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2770 if (busiest < this_rq) {
1da177e4
LT
2771 spin_unlock(&this_rq->lock);
2772 spin_lock(&busiest->lock);
2773 spin_lock(&this_rq->lock);
e8fa1362 2774 ret = 1;
1da177e4
LT
2775 } else
2776 spin_lock(&busiest->lock);
2777 }
e8fa1362 2778 return ret;
1da177e4
LT
2779}
2780
1da177e4
LT
2781/*
2782 * If dest_cpu is allowed for this process, migrate the task to it.
2783 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2784 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2785 * the cpu_allowed mask is restored.
2786 */
36c8b586 2787static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2788{
70b97a7f 2789 struct migration_req req;
1da177e4 2790 unsigned long flags;
70b97a7f 2791 struct rq *rq;
1da177e4
LT
2792
2793 rq = task_rq_lock(p, &flags);
2794 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2795 || unlikely(cpu_is_offline(dest_cpu)))
2796 goto out;
2797
2798 /* force the process onto the specified CPU */
2799 if (migrate_task(p, dest_cpu, &req)) {
2800 /* Need to wait for migration thread (might exit: take ref). */
2801 struct task_struct *mt = rq->migration_thread;
36c8b586 2802
1da177e4
LT
2803 get_task_struct(mt);
2804 task_rq_unlock(rq, &flags);
2805 wake_up_process(mt);
2806 put_task_struct(mt);
2807 wait_for_completion(&req.done);
36c8b586 2808
1da177e4
LT
2809 return;
2810 }
2811out:
2812 task_rq_unlock(rq, &flags);
2813}
2814
2815/*
476d139c
NP
2816 * sched_exec - execve() is a valuable balancing opportunity, because at
2817 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2818 */
2819void sched_exec(void)
2820{
1da177e4 2821 int new_cpu, this_cpu = get_cpu();
476d139c 2822 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2823 put_cpu();
476d139c
NP
2824 if (new_cpu != this_cpu)
2825 sched_migrate_task(current, new_cpu);
1da177e4
LT
2826}
2827
2828/*
2829 * pull_task - move a task from a remote runqueue to the local runqueue.
2830 * Both runqueues must be locked.
2831 */
dd41f596
IM
2832static void pull_task(struct rq *src_rq, struct task_struct *p,
2833 struct rq *this_rq, int this_cpu)
1da177e4 2834{
2e1cb74a 2835 deactivate_task(src_rq, p, 0);
1da177e4 2836 set_task_cpu(p, this_cpu);
dd41f596 2837 activate_task(this_rq, p, 0);
1da177e4
LT
2838 /*
2839 * Note that idle threads have a prio of MAX_PRIO, for this test
2840 * to be always true for them.
2841 */
dd41f596 2842 check_preempt_curr(this_rq, p);
1da177e4
LT
2843}
2844
2845/*
2846 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2847 */
858119e1 2848static
70b97a7f 2849int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2850 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2851 int *all_pinned)
1da177e4
LT
2852{
2853 /*
2854 * We do not migrate tasks that are:
2855 * 1) running (obviously), or
2856 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2857 * 3) are cache-hot on their current CPU.
2858 */
cc367732
IM
2859 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2860 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2861 return 0;
cc367732 2862 }
81026794
NP
2863 *all_pinned = 0;
2864
cc367732
IM
2865 if (task_running(rq, p)) {
2866 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2867 return 0;
cc367732 2868 }
1da177e4 2869
da84d961
IM
2870 /*
2871 * Aggressive migration if:
2872 * 1) task is cache cold, or
2873 * 2) too many balance attempts have failed.
2874 */
2875
6bc1665b
IM
2876 if (!task_hot(p, rq->clock, sd) ||
2877 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2878#ifdef CONFIG_SCHEDSTATS
cc367732 2879 if (task_hot(p, rq->clock, sd)) {
da84d961 2880 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2881 schedstat_inc(p, se.nr_forced_migrations);
2882 }
da84d961
IM
2883#endif
2884 return 1;
2885 }
2886
cc367732
IM
2887 if (task_hot(p, rq->clock, sd)) {
2888 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2889 return 0;
cc367732 2890 }
1da177e4
LT
2891 return 1;
2892}
2893
e1d1484f
PW
2894static unsigned long
2895balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2896 unsigned long max_load_move, struct sched_domain *sd,
2897 enum cpu_idle_type idle, int *all_pinned,
2898 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2899{
b82d9fdd 2900 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
dd41f596
IM
2901 struct task_struct *p;
2902 long rem_load_move = max_load_move;
1da177e4 2903
e1d1484f 2904 if (max_load_move == 0)
1da177e4
LT
2905 goto out;
2906
81026794
NP
2907 pinned = 1;
2908
1da177e4 2909 /*
dd41f596 2910 * Start the load-balancing iterator:
1da177e4 2911 */
dd41f596
IM
2912 p = iterator->start(iterator->arg);
2913next:
b82d9fdd 2914 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 2915 goto out;
50ddd969 2916 /*
b82d9fdd 2917 * To help distribute high priority tasks across CPUs we don't
50ddd969
PW
2918 * skip a task if it will be the highest priority task (i.e. smallest
2919 * prio value) on its new queue regardless of its load weight
2920 */
dd41f596
IM
2921 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2922 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2923 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2924 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2925 p = iterator->next(iterator->arg);
2926 goto next;
1da177e4
LT
2927 }
2928
dd41f596 2929 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2930 pulled++;
dd41f596 2931 rem_load_move -= p->se.load.weight;
1da177e4 2932
2dd73a4f 2933 /*
b82d9fdd 2934 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 2935 */
e1d1484f 2936 if (rem_load_move > 0) {
a4ac01c3
PW
2937 if (p->prio < *this_best_prio)
2938 *this_best_prio = p->prio;
dd41f596
IM
2939 p = iterator->next(iterator->arg);
2940 goto next;
1da177e4
LT
2941 }
2942out:
2943 /*
e1d1484f 2944 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
2945 * so we can safely collect pull_task() stats here rather than
2946 * inside pull_task().
2947 */
2948 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2949
2950 if (all_pinned)
2951 *all_pinned = pinned;
e1d1484f
PW
2952
2953 return max_load_move - rem_load_move;
1da177e4
LT
2954}
2955
dd41f596 2956/*
43010659
PW
2957 * move_tasks tries to move up to max_load_move weighted load from busiest to
2958 * this_rq, as part of a balancing operation within domain "sd".
2959 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2960 *
2961 * Called with both runqueues locked.
2962 */
2963static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2964 unsigned long max_load_move,
dd41f596
IM
2965 struct sched_domain *sd, enum cpu_idle_type idle,
2966 int *all_pinned)
2967{
5522d5d5 2968 const struct sched_class *class = sched_class_highest;
43010659 2969 unsigned long total_load_moved = 0;
a4ac01c3 2970 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2971
2972 do {
43010659
PW
2973 total_load_moved +=
2974 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 2975 max_load_move - total_load_moved,
a4ac01c3 2976 sd, idle, all_pinned, &this_best_prio);
dd41f596 2977 class = class->next;
43010659 2978 } while (class && max_load_move > total_load_moved);
dd41f596 2979
43010659
PW
2980 return total_load_moved > 0;
2981}
2982
e1d1484f
PW
2983static int
2984iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2985 struct sched_domain *sd, enum cpu_idle_type idle,
2986 struct rq_iterator *iterator)
2987{
2988 struct task_struct *p = iterator->start(iterator->arg);
2989 int pinned = 0;
2990
2991 while (p) {
2992 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2993 pull_task(busiest, p, this_rq, this_cpu);
2994 /*
2995 * Right now, this is only the second place pull_task()
2996 * is called, so we can safely collect pull_task()
2997 * stats here rather than inside pull_task().
2998 */
2999 schedstat_inc(sd, lb_gained[idle]);
3000
3001 return 1;
3002 }
3003 p = iterator->next(iterator->arg);
3004 }
3005
3006 return 0;
3007}
3008
43010659
PW
3009/*
3010 * move_one_task tries to move exactly one task from busiest to this_rq, as
3011 * part of active balancing operations within "domain".
3012 * Returns 1 if successful and 0 otherwise.
3013 *
3014 * Called with both runqueues locked.
3015 */
3016static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3017 struct sched_domain *sd, enum cpu_idle_type idle)
3018{
5522d5d5 3019 const struct sched_class *class;
43010659
PW
3020
3021 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3022 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3023 return 1;
3024
3025 return 0;
dd41f596
IM
3026}
3027
1da177e4
LT
3028/*
3029 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3030 * domain. It calculates and returns the amount of weighted load which
3031 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3032 */
3033static struct sched_group *
3034find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3035 unsigned long *imbalance, enum cpu_idle_type idle,
7c16ec58 3036 int *sd_idle, const cpumask_t *cpus, int *balance)
1da177e4
LT
3037{
3038 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3039 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3040 unsigned long max_pull;
2dd73a4f
PW
3041 unsigned long busiest_load_per_task, busiest_nr_running;
3042 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3043 int load_idx, group_imb = 0;
5c45bf27
SS
3044#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3045 int power_savings_balance = 1;
3046 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3047 unsigned long min_nr_running = ULONG_MAX;
3048 struct sched_group *group_min = NULL, *group_leader = NULL;
3049#endif
1da177e4
LT
3050
3051 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3052 busiest_load_per_task = busiest_nr_running = 0;
3053 this_load_per_task = this_nr_running = 0;
d15bcfdb 3054 if (idle == CPU_NOT_IDLE)
7897986b 3055 load_idx = sd->busy_idx;
d15bcfdb 3056 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3057 load_idx = sd->newidle_idx;
3058 else
3059 load_idx = sd->idle_idx;
1da177e4
LT
3060
3061 do {
908a7c1b 3062 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3063 int local_group;
3064 int i;
908a7c1b 3065 int __group_imb = 0;
783609c6 3066 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3067 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
3068
3069 local_group = cpu_isset(this_cpu, group->cpumask);
3070
783609c6
SS
3071 if (local_group)
3072 balance_cpu = first_cpu(group->cpumask);
3073
1da177e4 3074 /* Tally up the load of all CPUs in the group */
2dd73a4f 3075 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
3076 max_cpu_load = 0;
3077 min_cpu_load = ~0UL;
1da177e4
LT
3078
3079 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
3080 struct rq *rq;
3081
3082 if (!cpu_isset(i, *cpus))
3083 continue;
3084
3085 rq = cpu_rq(i);
2dd73a4f 3086
9439aab8 3087 if (*sd_idle && rq->nr_running)
5969fe06
NP
3088 *sd_idle = 0;
3089
1da177e4 3090 /* Bias balancing toward cpus of our domain */
783609c6
SS
3091 if (local_group) {
3092 if (idle_cpu(i) && !first_idle_cpu) {
3093 first_idle_cpu = 1;
3094 balance_cpu = i;
3095 }
3096
a2000572 3097 load = target_load(i, load_idx);
908a7c1b 3098 } else {
a2000572 3099 load = source_load(i, load_idx);
908a7c1b
KC
3100 if (load > max_cpu_load)
3101 max_cpu_load = load;
3102 if (min_cpu_load > load)
3103 min_cpu_load = load;
3104 }
1da177e4
LT
3105
3106 avg_load += load;
2dd73a4f 3107 sum_nr_running += rq->nr_running;
dd41f596 3108 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
3109 }
3110
783609c6
SS
3111 /*
3112 * First idle cpu or the first cpu(busiest) in this sched group
3113 * is eligible for doing load balancing at this and above
9439aab8
SS
3114 * domains. In the newly idle case, we will allow all the cpu's
3115 * to do the newly idle load balance.
783609c6 3116 */
9439aab8
SS
3117 if (idle != CPU_NEWLY_IDLE && local_group &&
3118 balance_cpu != this_cpu && balance) {
783609c6
SS
3119 *balance = 0;
3120 goto ret;
3121 }
3122
1da177e4 3123 total_load += avg_load;
5517d86b 3124 total_pwr += group->__cpu_power;
1da177e4
LT
3125
3126 /* Adjust by relative CPU power of the group */
5517d86b
ED
3127 avg_load = sg_div_cpu_power(group,
3128 avg_load * SCHED_LOAD_SCALE);
1da177e4 3129
908a7c1b
KC
3130 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
3131 __group_imb = 1;
3132
5517d86b 3133 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3134
1da177e4
LT
3135 if (local_group) {
3136 this_load = avg_load;
3137 this = group;
2dd73a4f
PW
3138 this_nr_running = sum_nr_running;
3139 this_load_per_task = sum_weighted_load;
3140 } else if (avg_load > max_load &&
908a7c1b 3141 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3142 max_load = avg_load;
3143 busiest = group;
2dd73a4f
PW
3144 busiest_nr_running = sum_nr_running;
3145 busiest_load_per_task = sum_weighted_load;
908a7c1b 3146 group_imb = __group_imb;
1da177e4 3147 }
5c45bf27
SS
3148
3149#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3150 /*
3151 * Busy processors will not participate in power savings
3152 * balance.
3153 */
dd41f596
IM
3154 if (idle == CPU_NOT_IDLE ||
3155 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3156 goto group_next;
5c45bf27
SS
3157
3158 /*
3159 * If the local group is idle or completely loaded
3160 * no need to do power savings balance at this domain
3161 */
3162 if (local_group && (this_nr_running >= group_capacity ||
3163 !this_nr_running))
3164 power_savings_balance = 0;
3165
dd41f596 3166 /*
5c45bf27
SS
3167 * If a group is already running at full capacity or idle,
3168 * don't include that group in power savings calculations
dd41f596
IM
3169 */
3170 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3171 || !sum_nr_running)
dd41f596 3172 goto group_next;
5c45bf27 3173
dd41f596 3174 /*
5c45bf27 3175 * Calculate the group which has the least non-idle load.
dd41f596
IM
3176 * This is the group from where we need to pick up the load
3177 * for saving power
3178 */
3179 if ((sum_nr_running < min_nr_running) ||
3180 (sum_nr_running == min_nr_running &&
5c45bf27
SS
3181 first_cpu(group->cpumask) <
3182 first_cpu(group_min->cpumask))) {
dd41f596
IM
3183 group_min = group;
3184 min_nr_running = sum_nr_running;
5c45bf27
SS
3185 min_load_per_task = sum_weighted_load /
3186 sum_nr_running;
dd41f596 3187 }
5c45bf27 3188
dd41f596 3189 /*
5c45bf27 3190 * Calculate the group which is almost near its
dd41f596
IM
3191 * capacity but still has some space to pick up some load
3192 * from other group and save more power
3193 */
3194 if (sum_nr_running <= group_capacity - 1) {
3195 if (sum_nr_running > leader_nr_running ||
3196 (sum_nr_running == leader_nr_running &&
3197 first_cpu(group->cpumask) >
3198 first_cpu(group_leader->cpumask))) {
3199 group_leader = group;
3200 leader_nr_running = sum_nr_running;
3201 }
48f24c4d 3202 }
5c45bf27
SS
3203group_next:
3204#endif
1da177e4
LT
3205 group = group->next;
3206 } while (group != sd->groups);
3207
2dd73a4f 3208 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3209 goto out_balanced;
3210
3211 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3212
3213 if (this_load >= avg_load ||
3214 100*max_load <= sd->imbalance_pct*this_load)
3215 goto out_balanced;
3216
2dd73a4f 3217 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3218 if (group_imb)
3219 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3220
1da177e4
LT
3221 /*
3222 * We're trying to get all the cpus to the average_load, so we don't
3223 * want to push ourselves above the average load, nor do we wish to
3224 * reduce the max loaded cpu below the average load, as either of these
3225 * actions would just result in more rebalancing later, and ping-pong
3226 * tasks around. Thus we look for the minimum possible imbalance.
3227 * Negative imbalances (*we* are more loaded than anyone else) will
3228 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3229 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3230 * appear as very large values with unsigned longs.
3231 */
2dd73a4f
PW
3232 if (max_load <= busiest_load_per_task)
3233 goto out_balanced;
3234
3235 /*
3236 * In the presence of smp nice balancing, certain scenarios can have
3237 * max load less than avg load(as we skip the groups at or below
3238 * its cpu_power, while calculating max_load..)
3239 */
3240 if (max_load < avg_load) {
3241 *imbalance = 0;
3242 goto small_imbalance;
3243 }
0c117f1b
SS
3244
3245 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3246 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3247
1da177e4 3248 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3249 *imbalance = min(max_pull * busiest->__cpu_power,
3250 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3251 / SCHED_LOAD_SCALE;
3252
2dd73a4f
PW
3253 /*
3254 * if *imbalance is less than the average load per runnable task
3255 * there is no gaurantee that any tasks will be moved so we'll have
3256 * a think about bumping its value to force at least one task to be
3257 * moved
3258 */
7fd0d2dd 3259 if (*imbalance < busiest_load_per_task) {
48f24c4d 3260 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3261 unsigned int imbn;
3262
3263small_imbalance:
3264 pwr_move = pwr_now = 0;
3265 imbn = 2;
3266 if (this_nr_running) {
3267 this_load_per_task /= this_nr_running;
3268 if (busiest_load_per_task > this_load_per_task)
3269 imbn = 1;
3270 } else
3271 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 3272
dd41f596
IM
3273 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3274 busiest_load_per_task * imbn) {
2dd73a4f 3275 *imbalance = busiest_load_per_task;
1da177e4
LT
3276 return busiest;
3277 }
3278
3279 /*
3280 * OK, we don't have enough imbalance to justify moving tasks,
3281 * however we may be able to increase total CPU power used by
3282 * moving them.
3283 */
3284
5517d86b
ED
3285 pwr_now += busiest->__cpu_power *
3286 min(busiest_load_per_task, max_load);
3287 pwr_now += this->__cpu_power *
3288 min(this_load_per_task, this_load);
1da177e4
LT
3289 pwr_now /= SCHED_LOAD_SCALE;
3290
3291 /* Amount of load we'd subtract */
5517d86b
ED
3292 tmp = sg_div_cpu_power(busiest,
3293 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3294 if (max_load > tmp)
5517d86b 3295 pwr_move += busiest->__cpu_power *
2dd73a4f 3296 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3297
3298 /* Amount of load we'd add */
5517d86b 3299 if (max_load * busiest->__cpu_power <
33859f7f 3300 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3301 tmp = sg_div_cpu_power(this,
3302 max_load * busiest->__cpu_power);
1da177e4 3303 else
5517d86b
ED
3304 tmp = sg_div_cpu_power(this,
3305 busiest_load_per_task * SCHED_LOAD_SCALE);
3306 pwr_move += this->__cpu_power *
3307 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3308 pwr_move /= SCHED_LOAD_SCALE;
3309
3310 /* Move if we gain throughput */
7fd0d2dd
SS
3311 if (pwr_move > pwr_now)
3312 *imbalance = busiest_load_per_task;
1da177e4
LT
3313 }
3314
1da177e4
LT
3315 return busiest;
3316
3317out_balanced:
5c45bf27 3318#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3319 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3320 goto ret;
1da177e4 3321
5c45bf27
SS
3322 if (this == group_leader && group_leader != group_min) {
3323 *imbalance = min_load_per_task;
3324 return group_min;
3325 }
5c45bf27 3326#endif
783609c6 3327ret:
1da177e4
LT
3328 *imbalance = 0;
3329 return NULL;
3330}
3331
3332/*
3333 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3334 */
70b97a7f 3335static struct rq *
d15bcfdb 3336find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
7c16ec58 3337 unsigned long imbalance, const cpumask_t *cpus)
1da177e4 3338{
70b97a7f 3339 struct rq *busiest = NULL, *rq;
2dd73a4f 3340 unsigned long max_load = 0;
1da177e4
LT
3341 int i;
3342
3343 for_each_cpu_mask(i, group->cpumask) {
dd41f596 3344 unsigned long wl;
0a2966b4
CL
3345
3346 if (!cpu_isset(i, *cpus))
3347 continue;
3348
48f24c4d 3349 rq = cpu_rq(i);
dd41f596 3350 wl = weighted_cpuload(i);
2dd73a4f 3351
dd41f596 3352 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3353 continue;
1da177e4 3354
dd41f596
IM
3355 if (wl > max_load) {
3356 max_load = wl;
48f24c4d 3357 busiest = rq;
1da177e4
LT
3358 }
3359 }
3360
3361 return busiest;
3362}
3363
77391d71
NP
3364/*
3365 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3366 * so long as it is large enough.
3367 */
3368#define MAX_PINNED_INTERVAL 512
3369
1da177e4
LT
3370/*
3371 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3372 * tasks if there is an imbalance.
1da177e4 3373 */
70b97a7f 3374static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3375 struct sched_domain *sd, enum cpu_idle_type idle,
7c16ec58 3376 int *balance, cpumask_t *cpus)
1da177e4 3377{
43010659 3378 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3379 struct sched_group *group;
1da177e4 3380 unsigned long imbalance;
70b97a7f 3381 struct rq *busiest;
fe2eea3f 3382 unsigned long flags;
5969fe06 3383
7c16ec58
MT
3384 cpus_setall(*cpus);
3385
89c4710e
SS
3386 /*
3387 * When power savings policy is enabled for the parent domain, idle
3388 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3389 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3390 * portraying it as CPU_NOT_IDLE.
89c4710e 3391 */
d15bcfdb 3392 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3393 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3394 sd_idle = 1;
1da177e4 3395
2d72376b 3396 schedstat_inc(sd, lb_count[idle]);
1da177e4 3397
0a2966b4 3398redo:
c8cba857 3399 update_shares(sd);
0a2966b4 3400 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3401 cpus, balance);
783609c6 3402
06066714 3403 if (*balance == 0)
783609c6 3404 goto out_balanced;
783609c6 3405
1da177e4
LT
3406 if (!group) {
3407 schedstat_inc(sd, lb_nobusyg[idle]);
3408 goto out_balanced;
3409 }
3410
7c16ec58 3411 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3412 if (!busiest) {
3413 schedstat_inc(sd, lb_nobusyq[idle]);
3414 goto out_balanced;
3415 }
3416
db935dbd 3417 BUG_ON(busiest == this_rq);
1da177e4
LT
3418
3419 schedstat_add(sd, lb_imbalance[idle], imbalance);
3420
43010659 3421 ld_moved = 0;
1da177e4
LT
3422 if (busiest->nr_running > 1) {
3423 /*
3424 * Attempt to move tasks. If find_busiest_group has found
3425 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3426 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3427 * correctly treated as an imbalance.
3428 */
fe2eea3f 3429 local_irq_save(flags);
e17224bf 3430 double_rq_lock(this_rq, busiest);
43010659 3431 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3432 imbalance, sd, idle, &all_pinned);
e17224bf 3433 double_rq_unlock(this_rq, busiest);
fe2eea3f 3434 local_irq_restore(flags);
81026794 3435
46cb4b7c
SS
3436 /*
3437 * some other cpu did the load balance for us.
3438 */
43010659 3439 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3440 resched_cpu(this_cpu);
3441
81026794 3442 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3443 if (unlikely(all_pinned)) {
7c16ec58
MT
3444 cpu_clear(cpu_of(busiest), *cpus);
3445 if (!cpus_empty(*cpus))
0a2966b4 3446 goto redo;
81026794 3447 goto out_balanced;
0a2966b4 3448 }
1da177e4 3449 }
81026794 3450
43010659 3451 if (!ld_moved) {
1da177e4
LT
3452 schedstat_inc(sd, lb_failed[idle]);
3453 sd->nr_balance_failed++;
3454
3455 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3456
fe2eea3f 3457 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3458
3459 /* don't kick the migration_thread, if the curr
3460 * task on busiest cpu can't be moved to this_cpu
3461 */
3462 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 3463 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3464 all_pinned = 1;
3465 goto out_one_pinned;
3466 }
3467
1da177e4
LT
3468 if (!busiest->active_balance) {
3469 busiest->active_balance = 1;
3470 busiest->push_cpu = this_cpu;
81026794 3471 active_balance = 1;
1da177e4 3472 }
fe2eea3f 3473 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3474 if (active_balance)
1da177e4
LT
3475 wake_up_process(busiest->migration_thread);
3476
3477 /*
3478 * We've kicked active balancing, reset the failure
3479 * counter.
3480 */
39507451 3481 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3482 }
81026794 3483 } else
1da177e4
LT
3484 sd->nr_balance_failed = 0;
3485
81026794 3486 if (likely(!active_balance)) {
1da177e4
LT
3487 /* We were unbalanced, so reset the balancing interval */
3488 sd->balance_interval = sd->min_interval;
81026794
NP
3489 } else {
3490 /*
3491 * If we've begun active balancing, start to back off. This
3492 * case may not be covered by the all_pinned logic if there
3493 * is only 1 task on the busy runqueue (because we don't call
3494 * move_tasks).
3495 */
3496 if (sd->balance_interval < sd->max_interval)
3497 sd->balance_interval *= 2;
1da177e4
LT
3498 }
3499
43010659 3500 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3501 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3502 ld_moved = -1;
3503
3504 goto out;
1da177e4
LT
3505
3506out_balanced:
1da177e4
LT
3507 schedstat_inc(sd, lb_balanced[idle]);
3508
16cfb1c0 3509 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3510
3511out_one_pinned:
1da177e4 3512 /* tune up the balancing interval */
77391d71
NP
3513 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3514 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3515 sd->balance_interval *= 2;
3516
48f24c4d 3517 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3518 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3519 ld_moved = -1;
3520 else
3521 ld_moved = 0;
3522out:
c8cba857
PZ
3523 if (ld_moved)
3524 update_shares(sd);
c09595f6 3525 return ld_moved;
1da177e4
LT
3526}
3527
3528/*
3529 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3530 * tasks if there is an imbalance.
3531 *
d15bcfdb 3532 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3533 * this_rq is locked.
3534 */
48f24c4d 3535static int
7c16ec58
MT
3536load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3537 cpumask_t *cpus)
1da177e4
LT
3538{
3539 struct sched_group *group;
70b97a7f 3540 struct rq *busiest = NULL;
1da177e4 3541 unsigned long imbalance;
43010659 3542 int ld_moved = 0;
5969fe06 3543 int sd_idle = 0;
969bb4e4 3544 int all_pinned = 0;
7c16ec58
MT
3545
3546 cpus_setall(*cpus);
5969fe06 3547
89c4710e
SS
3548 /*
3549 * When power savings policy is enabled for the parent domain, idle
3550 * sibling can pick up load irrespective of busy siblings. In this case,
3551 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3552 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3553 */
3554 if (sd->flags & SD_SHARE_CPUPOWER &&
3555 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3556 sd_idle = 1;
1da177e4 3557
2d72376b 3558 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3559redo:
3e5459b4 3560 update_shares_locked(this_rq, sd);
d15bcfdb 3561 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3562 &sd_idle, cpus, NULL);
1da177e4 3563 if (!group) {
d15bcfdb 3564 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3565 goto out_balanced;
1da177e4
LT
3566 }
3567
7c16ec58 3568 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3569 if (!busiest) {
d15bcfdb 3570 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3571 goto out_balanced;
1da177e4
LT
3572 }
3573
db935dbd
NP
3574 BUG_ON(busiest == this_rq);
3575
d15bcfdb 3576 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3577
43010659 3578 ld_moved = 0;
d6d5cfaf
NP
3579 if (busiest->nr_running > 1) {
3580 /* Attempt to move tasks */
3581 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3582 /* this_rq->clock is already updated */
3583 update_rq_clock(busiest);
43010659 3584 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3585 imbalance, sd, CPU_NEWLY_IDLE,
3586 &all_pinned);
d6d5cfaf 3587 spin_unlock(&busiest->lock);
0a2966b4 3588
969bb4e4 3589 if (unlikely(all_pinned)) {
7c16ec58
MT
3590 cpu_clear(cpu_of(busiest), *cpus);
3591 if (!cpus_empty(*cpus))
0a2966b4
CL
3592 goto redo;
3593 }
d6d5cfaf
NP
3594 }
3595
43010659 3596 if (!ld_moved) {
d15bcfdb 3597 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3598 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3599 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
3600 return -1;
3601 } else
16cfb1c0 3602 sd->nr_balance_failed = 0;
1da177e4 3603
3e5459b4 3604 update_shares_locked(this_rq, sd);
43010659 3605 return ld_moved;
16cfb1c0
NP
3606
3607out_balanced:
d15bcfdb 3608 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3609 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3610 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3611 return -1;
16cfb1c0 3612 sd->nr_balance_failed = 0;
48f24c4d 3613
16cfb1c0 3614 return 0;
1da177e4
LT
3615}
3616
3617/*
3618 * idle_balance is called by schedule() if this_cpu is about to become
3619 * idle. Attempts to pull tasks from other CPUs.
3620 */
70b97a7f 3621static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3622{
3623 struct sched_domain *sd;
dd41f596
IM
3624 int pulled_task = -1;
3625 unsigned long next_balance = jiffies + HZ;
7c16ec58 3626 cpumask_t tmpmask;
1da177e4
LT
3627
3628 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3629 unsigned long interval;
3630
3631 if (!(sd->flags & SD_LOAD_BALANCE))
3632 continue;
3633
3634 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3635 /* If we've pulled tasks over stop searching: */
7c16ec58
MT
3636 pulled_task = load_balance_newidle(this_cpu, this_rq,
3637 sd, &tmpmask);
92c4ca5c
CL
3638
3639 interval = msecs_to_jiffies(sd->balance_interval);
3640 if (time_after(next_balance, sd->last_balance + interval))
3641 next_balance = sd->last_balance + interval;
3642 if (pulled_task)
3643 break;
1da177e4 3644 }
dd41f596 3645 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3646 /*
3647 * We are going idle. next_balance may be set based on
3648 * a busy processor. So reset next_balance.
3649 */
3650 this_rq->next_balance = next_balance;
dd41f596 3651 }
1da177e4
LT
3652}
3653
3654/*
3655 * active_load_balance is run by migration threads. It pushes running tasks
3656 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3657 * running on each physical CPU where possible, and avoids physical /
3658 * logical imbalances.
3659 *
3660 * Called with busiest_rq locked.
3661 */
70b97a7f 3662static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3663{
39507451 3664 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3665 struct sched_domain *sd;
3666 struct rq *target_rq;
39507451 3667
48f24c4d 3668 /* Is there any task to move? */
39507451 3669 if (busiest_rq->nr_running <= 1)
39507451
NP
3670 return;
3671
3672 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3673
3674 /*
39507451 3675 * This condition is "impossible", if it occurs
41a2d6cf 3676 * we need to fix it. Originally reported by
39507451 3677 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3678 */
39507451 3679 BUG_ON(busiest_rq == target_rq);
1da177e4 3680
39507451
NP
3681 /* move a task from busiest_rq to target_rq */
3682 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3683 update_rq_clock(busiest_rq);
3684 update_rq_clock(target_rq);
39507451
NP
3685
3686 /* Search for an sd spanning us and the target CPU. */
c96d145e 3687 for_each_domain(target_cpu, sd) {
39507451 3688 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 3689 cpu_isset(busiest_cpu, sd->span))
39507451 3690 break;
c96d145e 3691 }
39507451 3692
48f24c4d 3693 if (likely(sd)) {
2d72376b 3694 schedstat_inc(sd, alb_count);
39507451 3695
43010659
PW
3696 if (move_one_task(target_rq, target_cpu, busiest_rq,
3697 sd, CPU_IDLE))
48f24c4d
IM
3698 schedstat_inc(sd, alb_pushed);
3699 else
3700 schedstat_inc(sd, alb_failed);
3701 }
39507451 3702 spin_unlock(&target_rq->lock);
1da177e4
LT
3703}
3704
46cb4b7c
SS
3705#ifdef CONFIG_NO_HZ
3706static struct {
3707 atomic_t load_balancer;
41a2d6cf 3708 cpumask_t cpu_mask;
46cb4b7c
SS
3709} nohz ____cacheline_aligned = {
3710 .load_balancer = ATOMIC_INIT(-1),
3711 .cpu_mask = CPU_MASK_NONE,
3712};
3713
7835b98b 3714/*
46cb4b7c
SS
3715 * This routine will try to nominate the ilb (idle load balancing)
3716 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3717 * load balancing on behalf of all those cpus. If all the cpus in the system
3718 * go into this tickless mode, then there will be no ilb owner (as there is
3719 * no need for one) and all the cpus will sleep till the next wakeup event
3720 * arrives...
3721 *
3722 * For the ilb owner, tick is not stopped. And this tick will be used
3723 * for idle load balancing. ilb owner will still be part of
3724 * nohz.cpu_mask..
7835b98b 3725 *
46cb4b7c
SS
3726 * While stopping the tick, this cpu will become the ilb owner if there
3727 * is no other owner. And will be the owner till that cpu becomes busy
3728 * or if all cpus in the system stop their ticks at which point
3729 * there is no need for ilb owner.
3730 *
3731 * When the ilb owner becomes busy, it nominates another owner, during the
3732 * next busy scheduler_tick()
3733 */
3734int select_nohz_load_balancer(int stop_tick)
3735{
3736 int cpu = smp_processor_id();
3737
3738 if (stop_tick) {
3739 cpu_set(cpu, nohz.cpu_mask);
3740 cpu_rq(cpu)->in_nohz_recently = 1;
3741
3742 /*
3743 * If we are going offline and still the leader, give up!
3744 */
3745 if (cpu_is_offline(cpu) &&
3746 atomic_read(&nohz.load_balancer) == cpu) {
3747 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3748 BUG();
3749 return 0;
3750 }
3751
3752 /* time for ilb owner also to sleep */
3753 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3754 if (atomic_read(&nohz.load_balancer) == cpu)
3755 atomic_set(&nohz.load_balancer, -1);
3756 return 0;
3757 }
3758
3759 if (atomic_read(&nohz.load_balancer) == -1) {
3760 /* make me the ilb owner */
3761 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3762 return 1;
3763 } else if (atomic_read(&nohz.load_balancer) == cpu)
3764 return 1;
3765 } else {
3766 if (!cpu_isset(cpu, nohz.cpu_mask))
3767 return 0;
3768
3769 cpu_clear(cpu, nohz.cpu_mask);
3770
3771 if (atomic_read(&nohz.load_balancer) == cpu)
3772 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3773 BUG();
3774 }
3775 return 0;
3776}
3777#endif
3778
3779static DEFINE_SPINLOCK(balancing);
3780
3781/*
7835b98b
CL
3782 * It checks each scheduling domain to see if it is due to be balanced,
3783 * and initiates a balancing operation if so.
3784 *
3785 * Balancing parameters are set up in arch_init_sched_domains.
3786 */
a9957449 3787static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3788{
46cb4b7c
SS
3789 int balance = 1;
3790 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3791 unsigned long interval;
3792 struct sched_domain *sd;
46cb4b7c 3793 /* Earliest time when we have to do rebalance again */
c9819f45 3794 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3795 int update_next_balance = 0;
d07355f5 3796 int need_serialize;
7c16ec58 3797 cpumask_t tmp;
1da177e4 3798
46cb4b7c 3799 for_each_domain(cpu, sd) {
1da177e4
LT
3800 if (!(sd->flags & SD_LOAD_BALANCE))
3801 continue;
3802
3803 interval = sd->balance_interval;
d15bcfdb 3804 if (idle != CPU_IDLE)
1da177e4
LT
3805 interval *= sd->busy_factor;
3806
3807 /* scale ms to jiffies */
3808 interval = msecs_to_jiffies(interval);
3809 if (unlikely(!interval))
3810 interval = 1;
dd41f596
IM
3811 if (interval > HZ*NR_CPUS/10)
3812 interval = HZ*NR_CPUS/10;
3813
d07355f5 3814 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 3815
d07355f5 3816 if (need_serialize) {
08c183f3
CL
3817 if (!spin_trylock(&balancing))
3818 goto out;
3819 }
3820
c9819f45 3821 if (time_after_eq(jiffies, sd->last_balance + interval)) {
7c16ec58 3822 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
fa3b6ddc
SS
3823 /*
3824 * We've pulled tasks over so either we're no
5969fe06
NP
3825 * longer idle, or one of our SMT siblings is
3826 * not idle.
3827 */
d15bcfdb 3828 idle = CPU_NOT_IDLE;
1da177e4 3829 }
1bd77f2d 3830 sd->last_balance = jiffies;
1da177e4 3831 }
d07355f5 3832 if (need_serialize)
08c183f3
CL
3833 spin_unlock(&balancing);
3834out:
f549da84 3835 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3836 next_balance = sd->last_balance + interval;
f549da84
SS
3837 update_next_balance = 1;
3838 }
783609c6
SS
3839
3840 /*
3841 * Stop the load balance at this level. There is another
3842 * CPU in our sched group which is doing load balancing more
3843 * actively.
3844 */
3845 if (!balance)
3846 break;
1da177e4 3847 }
f549da84
SS
3848
3849 /*
3850 * next_balance will be updated only when there is a need.
3851 * When the cpu is attached to null domain for ex, it will not be
3852 * updated.
3853 */
3854 if (likely(update_next_balance))
3855 rq->next_balance = next_balance;
46cb4b7c
SS
3856}
3857
3858/*
3859 * run_rebalance_domains is triggered when needed from the scheduler tick.
3860 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3861 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3862 */
3863static void run_rebalance_domains(struct softirq_action *h)
3864{
dd41f596
IM
3865 int this_cpu = smp_processor_id();
3866 struct rq *this_rq = cpu_rq(this_cpu);
3867 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3868 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3869
dd41f596 3870 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3871
3872#ifdef CONFIG_NO_HZ
3873 /*
3874 * If this cpu is the owner for idle load balancing, then do the
3875 * balancing on behalf of the other idle cpus whose ticks are
3876 * stopped.
3877 */
dd41f596
IM
3878 if (this_rq->idle_at_tick &&
3879 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3880 cpumask_t cpus = nohz.cpu_mask;
3881 struct rq *rq;
3882 int balance_cpu;
3883
dd41f596 3884 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3885 for_each_cpu_mask(balance_cpu, cpus) {
3886 /*
3887 * If this cpu gets work to do, stop the load balancing
3888 * work being done for other cpus. Next load
3889 * balancing owner will pick it up.
3890 */
3891 if (need_resched())
3892 break;
3893
de0cf899 3894 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3895
3896 rq = cpu_rq(balance_cpu);
dd41f596
IM
3897 if (time_after(this_rq->next_balance, rq->next_balance))
3898 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3899 }
3900 }
3901#endif
3902}
3903
3904/*
3905 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3906 *
3907 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3908 * idle load balancing owner or decide to stop the periodic load balancing,
3909 * if the whole system is idle.
3910 */
dd41f596 3911static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3912{
46cb4b7c
SS
3913#ifdef CONFIG_NO_HZ
3914 /*
3915 * If we were in the nohz mode recently and busy at the current
3916 * scheduler tick, then check if we need to nominate new idle
3917 * load balancer.
3918 */
3919 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3920 rq->in_nohz_recently = 0;
3921
3922 if (atomic_read(&nohz.load_balancer) == cpu) {
3923 cpu_clear(cpu, nohz.cpu_mask);
3924 atomic_set(&nohz.load_balancer, -1);
3925 }
3926
3927 if (atomic_read(&nohz.load_balancer) == -1) {
3928 /*
3929 * simple selection for now: Nominate the
3930 * first cpu in the nohz list to be the next
3931 * ilb owner.
3932 *
3933 * TBD: Traverse the sched domains and nominate
3934 * the nearest cpu in the nohz.cpu_mask.
3935 */
3936 int ilb = first_cpu(nohz.cpu_mask);
3937
434d53b0 3938 if (ilb < nr_cpu_ids)
46cb4b7c
SS
3939 resched_cpu(ilb);
3940 }
3941 }
3942
3943 /*
3944 * If this cpu is idle and doing idle load balancing for all the
3945 * cpus with ticks stopped, is it time for that to stop?
3946 */
3947 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3948 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3949 resched_cpu(cpu);
3950 return;
3951 }
3952
3953 /*
3954 * If this cpu is idle and the idle load balancing is done by
3955 * someone else, then no need raise the SCHED_SOFTIRQ
3956 */
3957 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3958 cpu_isset(cpu, nohz.cpu_mask))
3959 return;
3960#endif
3961 if (time_after_eq(jiffies, rq->next_balance))
3962 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3963}
dd41f596
IM
3964
3965#else /* CONFIG_SMP */
3966
1da177e4
LT
3967/*
3968 * on UP we do not need to balance between CPUs:
3969 */
70b97a7f 3970static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3971{
3972}
dd41f596 3973
1da177e4
LT
3974#endif
3975
1da177e4
LT
3976DEFINE_PER_CPU(struct kernel_stat, kstat);
3977
3978EXPORT_PER_CPU_SYMBOL(kstat);
3979
3980/*
41b86e9c
IM
3981 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3982 * that have not yet been banked in case the task is currently running.
1da177e4 3983 */
41b86e9c 3984unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3985{
1da177e4 3986 unsigned long flags;
41b86e9c
IM
3987 u64 ns, delta_exec;
3988 struct rq *rq;
48f24c4d 3989
41b86e9c
IM
3990 rq = task_rq_lock(p, &flags);
3991 ns = p->se.sum_exec_runtime;
051a1d1a 3992 if (task_current(rq, p)) {
a8e504d2
IM
3993 update_rq_clock(rq);
3994 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3995 if ((s64)delta_exec > 0)
3996 ns += delta_exec;
3997 }
3998 task_rq_unlock(rq, &flags);
48f24c4d 3999
1da177e4
LT
4000 return ns;
4001}
4002
1da177e4
LT
4003/*
4004 * Account user cpu time to a process.
4005 * @p: the process that the cpu time gets accounted to
1da177e4
LT
4006 * @cputime: the cpu time spent in user space since the last update
4007 */
4008void account_user_time(struct task_struct *p, cputime_t cputime)
4009{
4010 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4011 cputime64_t tmp;
4012
4013 p->utime = cputime_add(p->utime, cputime);
4014
4015 /* Add user time to cpustat. */
4016 tmp = cputime_to_cputime64(cputime);
4017 if (TASK_NICE(p) > 0)
4018 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4019 else
4020 cpustat->user = cputime64_add(cpustat->user, tmp);
4021}
4022
94886b84
LV
4023/*
4024 * Account guest cpu time to a process.
4025 * @p: the process that the cpu time gets accounted to
4026 * @cputime: the cpu time spent in virtual machine since the last update
4027 */
f7402e03 4028static void account_guest_time(struct task_struct *p, cputime_t cputime)
94886b84
LV
4029{
4030 cputime64_t tmp;
4031 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4032
4033 tmp = cputime_to_cputime64(cputime);
4034
4035 p->utime = cputime_add(p->utime, cputime);
4036 p->gtime = cputime_add(p->gtime, cputime);
4037
4038 cpustat->user = cputime64_add(cpustat->user, tmp);
4039 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4040}
4041
c66f08be
MN
4042/*
4043 * Account scaled user cpu time to a process.
4044 * @p: the process that the cpu time gets accounted to
4045 * @cputime: the cpu time spent in user space since the last update
4046 */
4047void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4048{
4049 p->utimescaled = cputime_add(p->utimescaled, cputime);
4050}
4051
1da177e4
LT
4052/*
4053 * Account system cpu time to a process.
4054 * @p: the process that the cpu time gets accounted to
4055 * @hardirq_offset: the offset to subtract from hardirq_count()
4056 * @cputime: the cpu time spent in kernel space since the last update
4057 */
4058void account_system_time(struct task_struct *p, int hardirq_offset,
4059 cputime_t cputime)
4060{
4061 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 4062 struct rq *rq = this_rq();
1da177e4
LT
4063 cputime64_t tmp;
4064
983ed7a6
HH
4065 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4066 account_guest_time(p, cputime);
4067 return;
4068 }
94886b84 4069
1da177e4
LT
4070 p->stime = cputime_add(p->stime, cputime);
4071
4072 /* Add system time to cpustat. */
4073 tmp = cputime_to_cputime64(cputime);
4074 if (hardirq_count() - hardirq_offset)
4075 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4076 else if (softirq_count())
4077 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
cfb52856 4078 else if (p != rq->idle)
1da177e4 4079 cpustat->system = cputime64_add(cpustat->system, tmp);
cfb52856 4080 else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
4081 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4082 else
4083 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4084 /* Account for system time used */
4085 acct_update_integrals(p);
1da177e4
LT
4086}
4087
c66f08be
MN
4088/*
4089 * Account scaled system cpu time to a process.
4090 * @p: the process that the cpu time gets accounted to
4091 * @hardirq_offset: the offset to subtract from hardirq_count()
4092 * @cputime: the cpu time spent in kernel space since the last update
4093 */
4094void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4095{
4096 p->stimescaled = cputime_add(p->stimescaled, cputime);
4097}
4098
1da177e4
LT
4099/*
4100 * Account for involuntary wait time.
4101 * @p: the process from which the cpu time has been stolen
4102 * @steal: the cpu time spent in involuntary wait
4103 */
4104void account_steal_time(struct task_struct *p, cputime_t steal)
4105{
4106 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4107 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 4108 struct rq *rq = this_rq();
1da177e4
LT
4109
4110 if (p == rq->idle) {
4111 p->stime = cputime_add(p->stime, steal);
4112 if (atomic_read(&rq->nr_iowait) > 0)
4113 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4114 else
4115 cpustat->idle = cputime64_add(cpustat->idle, tmp);
cfb52856 4116 } else
1da177e4
LT
4117 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4118}
4119
7835b98b
CL
4120/*
4121 * This function gets called by the timer code, with HZ frequency.
4122 * We call it with interrupts disabled.
4123 *
4124 * It also gets called by the fork code, when changing the parent's
4125 * timeslices.
4126 */
4127void scheduler_tick(void)
4128{
7835b98b
CL
4129 int cpu = smp_processor_id();
4130 struct rq *rq = cpu_rq(cpu);
dd41f596 4131 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4132
4133 sched_clock_tick();
dd41f596
IM
4134
4135 spin_lock(&rq->lock);
3e51f33f 4136 update_rq_clock(rq);
f1a438d8 4137 update_cpu_load(rq);
fa85ae24 4138 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4139 spin_unlock(&rq->lock);
7835b98b 4140
e418e1c2 4141#ifdef CONFIG_SMP
dd41f596
IM
4142 rq->idle_at_tick = idle_cpu(cpu);
4143 trigger_load_balance(rq, cpu);
e418e1c2 4144#endif
1da177e4
LT
4145}
4146
1da177e4
LT
4147#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
4148
43627582 4149void __kprobes add_preempt_count(int val)
1da177e4
LT
4150{
4151 /*
4152 * Underflow?
4153 */
9a11b49a
IM
4154 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4155 return;
1da177e4
LT
4156 preempt_count() += val;
4157 /*
4158 * Spinlock count overflowing soon?
4159 */
33859f7f
MOS
4160 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4161 PREEMPT_MASK - 10);
1da177e4
LT
4162}
4163EXPORT_SYMBOL(add_preempt_count);
4164
43627582 4165void __kprobes sub_preempt_count(int val)
1da177e4
LT
4166{
4167 /*
4168 * Underflow?
4169 */
9a11b49a
IM
4170 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4171 return;
1da177e4
LT
4172 /*
4173 * Is the spinlock portion underflowing?
4174 */
9a11b49a
IM
4175 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4176 !(preempt_count() & PREEMPT_MASK)))
4177 return;
4178
1da177e4
LT
4179 preempt_count() -= val;
4180}
4181EXPORT_SYMBOL(sub_preempt_count);
4182
4183#endif
4184
4185/*
dd41f596 4186 * Print scheduling while atomic bug:
1da177e4 4187 */
dd41f596 4188static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4189{
838225b4
SS
4190 struct pt_regs *regs = get_irq_regs();
4191
4192 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4193 prev->comm, prev->pid, preempt_count());
4194
dd41f596 4195 debug_show_held_locks(prev);
e21f5b15 4196 print_modules();
dd41f596
IM
4197 if (irqs_disabled())
4198 print_irqtrace_events(prev);
838225b4
SS
4199
4200 if (regs)
4201 show_regs(regs);
4202 else
4203 dump_stack();
dd41f596 4204}
1da177e4 4205
dd41f596
IM
4206/*
4207 * Various schedule()-time debugging checks and statistics:
4208 */
4209static inline void schedule_debug(struct task_struct *prev)
4210{
1da177e4 4211 /*
41a2d6cf 4212 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4213 * schedule() atomically, we ignore that path for now.
4214 * Otherwise, whine if we are scheduling when we should not be.
4215 */
3f33a7ce 4216 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4217 __schedule_bug(prev);
4218
1da177e4
LT
4219 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4220
2d72376b 4221 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4222#ifdef CONFIG_SCHEDSTATS
4223 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4224 schedstat_inc(this_rq(), bkl_count);
4225 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4226 }
4227#endif
dd41f596
IM
4228}
4229
4230/*
4231 * Pick up the highest-prio task:
4232 */
4233static inline struct task_struct *
ff95f3df 4234pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 4235{
5522d5d5 4236 const struct sched_class *class;
dd41f596 4237 struct task_struct *p;
1da177e4
LT
4238
4239 /*
dd41f596
IM
4240 * Optimization: we know that if all tasks are in
4241 * the fair class we can call that function directly:
1da177e4 4242 */
dd41f596 4243 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4244 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4245 if (likely(p))
4246 return p;
1da177e4
LT
4247 }
4248
dd41f596
IM
4249 class = sched_class_highest;
4250 for ( ; ; ) {
fb8d4724 4251 p = class->pick_next_task(rq);
dd41f596
IM
4252 if (p)
4253 return p;
4254 /*
4255 * Will never be NULL as the idle class always
4256 * returns a non-NULL p:
4257 */
4258 class = class->next;
4259 }
4260}
1da177e4 4261
dd41f596
IM
4262/*
4263 * schedule() is the main scheduler function.
4264 */
4265asmlinkage void __sched schedule(void)
4266{
4267 struct task_struct *prev, *next;
67ca7bde 4268 unsigned long *switch_count;
dd41f596 4269 struct rq *rq;
f333fdc9 4270 int cpu, hrtick = sched_feat(HRTICK);
dd41f596
IM
4271
4272need_resched:
4273 preempt_disable();
4274 cpu = smp_processor_id();
4275 rq = cpu_rq(cpu);
4276 rcu_qsctr_inc(cpu);
4277 prev = rq->curr;
4278 switch_count = &prev->nivcsw;
4279
4280 release_kernel_lock(prev);
4281need_resched_nonpreemptible:
4282
4283 schedule_debug(prev);
1da177e4 4284
f333fdc9
MG
4285 if (hrtick)
4286 hrtick_clear(rq);
8f4d37ec 4287
1e819950
IM
4288 /*
4289 * Do the rq-clock update outside the rq lock:
4290 */
4291 local_irq_disable();
3e51f33f 4292 update_rq_clock(rq);
1e819950
IM
4293 spin_lock(&rq->lock);
4294 clear_tsk_need_resched(prev);
1da177e4 4295
1da177e4 4296 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4297 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4298 prev->state = TASK_RUNNING;
16882c1e 4299 else
2e1cb74a 4300 deactivate_task(rq, prev, 1);
dd41f596 4301 switch_count = &prev->nvcsw;
1da177e4
LT
4302 }
4303
9a897c5a
SR
4304#ifdef CONFIG_SMP
4305 if (prev->sched_class->pre_schedule)
4306 prev->sched_class->pre_schedule(rq, prev);
4307#endif
f65eda4f 4308
dd41f596 4309 if (unlikely(!rq->nr_running))
1da177e4 4310 idle_balance(cpu, rq);
1da177e4 4311
31ee529c 4312 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 4313 next = pick_next_task(rq, prev);
1da177e4 4314
1da177e4 4315 if (likely(prev != next)) {
673a90a1
DS
4316 sched_info_switch(prev, next);
4317
1da177e4
LT
4318 rq->nr_switches++;
4319 rq->curr = next;
4320 ++*switch_count;
4321
dd41f596 4322 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4323 /*
4324 * the context switch might have flipped the stack from under
4325 * us, hence refresh the local variables.
4326 */
4327 cpu = smp_processor_id();
4328 rq = cpu_rq(cpu);
1da177e4
LT
4329 } else
4330 spin_unlock_irq(&rq->lock);
4331
f333fdc9
MG
4332 if (hrtick)
4333 hrtick_set(rq);
8f4d37ec
PZ
4334
4335 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4336 goto need_resched_nonpreemptible;
8f4d37ec 4337
1da177e4
LT
4338 preempt_enable_no_resched();
4339 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4340 goto need_resched;
4341}
1da177e4
LT
4342EXPORT_SYMBOL(schedule);
4343
4344#ifdef CONFIG_PREEMPT
4345/*
2ed6e34f 4346 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4347 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4348 * occur there and call schedule directly.
4349 */
4350asmlinkage void __sched preempt_schedule(void)
4351{
4352 struct thread_info *ti = current_thread_info();
6478d880 4353
1da177e4
LT
4354 /*
4355 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4356 * we do not want to preempt the current task. Just return..
1da177e4 4357 */
beed33a8 4358 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4359 return;
4360
3a5c359a
AK
4361 do {
4362 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4363 schedule();
3a5c359a 4364 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4365
3a5c359a
AK
4366 /*
4367 * Check again in case we missed a preemption opportunity
4368 * between schedule and now.
4369 */
4370 barrier();
4371 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 4372}
1da177e4
LT
4373EXPORT_SYMBOL(preempt_schedule);
4374
4375/*
2ed6e34f 4376 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4377 * off of irq context.
4378 * Note, that this is called and return with irqs disabled. This will
4379 * protect us against recursive calling from irq.
4380 */
4381asmlinkage void __sched preempt_schedule_irq(void)
4382{
4383 struct thread_info *ti = current_thread_info();
6478d880 4384
2ed6e34f 4385 /* Catch callers which need to be fixed */
1da177e4
LT
4386 BUG_ON(ti->preempt_count || !irqs_disabled());
4387
3a5c359a
AK
4388 do {
4389 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4390 local_irq_enable();
4391 schedule();
4392 local_irq_disable();
3a5c359a 4393 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4394
3a5c359a
AK
4395 /*
4396 * Check again in case we missed a preemption opportunity
4397 * between schedule and now.
4398 */
4399 barrier();
4400 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
4401}
4402
4403#endif /* CONFIG_PREEMPT */
4404
95cdf3b7
IM
4405int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4406 void *key)
1da177e4 4407{
48f24c4d 4408 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4409}
1da177e4
LT
4410EXPORT_SYMBOL(default_wake_function);
4411
4412/*
41a2d6cf
IM
4413 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4414 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4415 * number) then we wake all the non-exclusive tasks and one exclusive task.
4416 *
4417 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4418 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4419 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4420 */
4421static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4422 int nr_exclusive, int sync, void *key)
4423{
2e45874c 4424 wait_queue_t *curr, *next;
1da177e4 4425
2e45874c 4426 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4427 unsigned flags = curr->flags;
4428
1da177e4 4429 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4430 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4431 break;
4432 }
4433}
4434
4435/**
4436 * __wake_up - wake up threads blocked on a waitqueue.
4437 * @q: the waitqueue
4438 * @mode: which threads
4439 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4440 * @key: is directly passed to the wakeup function
1da177e4 4441 */
7ad5b3a5 4442void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4443 int nr_exclusive, void *key)
1da177e4
LT
4444{
4445 unsigned long flags;
4446
4447 spin_lock_irqsave(&q->lock, flags);
4448 __wake_up_common(q, mode, nr_exclusive, 0, key);
4449 spin_unlock_irqrestore(&q->lock, flags);
4450}
1da177e4
LT
4451EXPORT_SYMBOL(__wake_up);
4452
4453/*
4454 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4455 */
7ad5b3a5 4456void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4457{
4458 __wake_up_common(q, mode, 1, 0, NULL);
4459}
4460
4461/**
67be2dd1 4462 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4463 * @q: the waitqueue
4464 * @mode: which threads
4465 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4466 *
4467 * The sync wakeup differs that the waker knows that it will schedule
4468 * away soon, so while the target thread will be woken up, it will not
4469 * be migrated to another CPU - ie. the two threads are 'synchronized'
4470 * with each other. This can prevent needless bouncing between CPUs.
4471 *
4472 * On UP it can prevent extra preemption.
4473 */
7ad5b3a5 4474void
95cdf3b7 4475__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4476{
4477 unsigned long flags;
4478 int sync = 1;
4479
4480 if (unlikely(!q))
4481 return;
4482
4483 if (unlikely(!nr_exclusive))
4484 sync = 0;
4485
4486 spin_lock_irqsave(&q->lock, flags);
4487 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4488 spin_unlock_irqrestore(&q->lock, flags);
4489}
4490EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4491
b15136e9 4492void complete(struct completion *x)
1da177e4
LT
4493{
4494 unsigned long flags;
4495
4496 spin_lock_irqsave(&x->wait.lock, flags);
4497 x->done++;
d9514f6c 4498 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4499 spin_unlock_irqrestore(&x->wait.lock, flags);
4500}
4501EXPORT_SYMBOL(complete);
4502
b15136e9 4503void complete_all(struct completion *x)
1da177e4
LT
4504{
4505 unsigned long flags;
4506
4507 spin_lock_irqsave(&x->wait.lock, flags);
4508 x->done += UINT_MAX/2;
d9514f6c 4509 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4510 spin_unlock_irqrestore(&x->wait.lock, flags);
4511}
4512EXPORT_SYMBOL(complete_all);
4513
8cbbe86d
AK
4514static inline long __sched
4515do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4516{
1da177e4
LT
4517 if (!x->done) {
4518 DECLARE_WAITQUEUE(wait, current);
4519
4520 wait.flags |= WQ_FLAG_EXCLUSIVE;
4521 __add_wait_queue_tail(&x->wait, &wait);
4522 do {
009e577e
MW
4523 if ((state == TASK_INTERRUPTIBLE &&
4524 signal_pending(current)) ||
4525 (state == TASK_KILLABLE &&
4526 fatal_signal_pending(current))) {
ea71a546
ON
4527 timeout = -ERESTARTSYS;
4528 break;
8cbbe86d
AK
4529 }
4530 __set_current_state(state);
1da177e4
LT
4531 spin_unlock_irq(&x->wait.lock);
4532 timeout = schedule_timeout(timeout);
4533 spin_lock_irq(&x->wait.lock);
ea71a546 4534 } while (!x->done && timeout);
1da177e4 4535 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4536 if (!x->done)
4537 return timeout;
1da177e4
LT
4538 }
4539 x->done--;
ea71a546 4540 return timeout ?: 1;
1da177e4 4541}
1da177e4 4542
8cbbe86d
AK
4543static long __sched
4544wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4545{
1da177e4
LT
4546 might_sleep();
4547
4548 spin_lock_irq(&x->wait.lock);
8cbbe86d 4549 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4550 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4551 return timeout;
4552}
1da177e4 4553
b15136e9 4554void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4555{
4556 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4557}
8cbbe86d 4558EXPORT_SYMBOL(wait_for_completion);
1da177e4 4559
b15136e9 4560unsigned long __sched
8cbbe86d 4561wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 4562{
8cbbe86d 4563 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 4564}
8cbbe86d 4565EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 4566
8cbbe86d 4567int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 4568{
51e97990
AK
4569 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4570 if (t == -ERESTARTSYS)
4571 return t;
4572 return 0;
0fec171c 4573}
8cbbe86d 4574EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 4575
b15136e9 4576unsigned long __sched
8cbbe86d
AK
4577wait_for_completion_interruptible_timeout(struct completion *x,
4578 unsigned long timeout)
0fec171c 4579{
8cbbe86d 4580 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 4581}
8cbbe86d 4582EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 4583
009e577e
MW
4584int __sched wait_for_completion_killable(struct completion *x)
4585{
4586 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4587 if (t == -ERESTARTSYS)
4588 return t;
4589 return 0;
4590}
4591EXPORT_SYMBOL(wait_for_completion_killable);
4592
8cbbe86d
AK
4593static long __sched
4594sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 4595{
0fec171c
IM
4596 unsigned long flags;
4597 wait_queue_t wait;
4598
4599 init_waitqueue_entry(&wait, current);
1da177e4 4600
8cbbe86d 4601 __set_current_state(state);
1da177e4 4602
8cbbe86d
AK
4603 spin_lock_irqsave(&q->lock, flags);
4604 __add_wait_queue(q, &wait);
4605 spin_unlock(&q->lock);
4606 timeout = schedule_timeout(timeout);
4607 spin_lock_irq(&q->lock);
4608 __remove_wait_queue(q, &wait);
4609 spin_unlock_irqrestore(&q->lock, flags);
4610
4611 return timeout;
4612}
4613
4614void __sched interruptible_sleep_on(wait_queue_head_t *q)
4615{
4616 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4617}
1da177e4
LT
4618EXPORT_SYMBOL(interruptible_sleep_on);
4619
0fec171c 4620long __sched
95cdf3b7 4621interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4622{
8cbbe86d 4623 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 4624}
1da177e4
LT
4625EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4626
0fec171c 4627void __sched sleep_on(wait_queue_head_t *q)
1da177e4 4628{
8cbbe86d 4629 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 4630}
1da177e4
LT
4631EXPORT_SYMBOL(sleep_on);
4632
0fec171c 4633long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 4634{
8cbbe86d 4635 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 4636}
1da177e4
LT
4637EXPORT_SYMBOL(sleep_on_timeout);
4638
b29739f9
IM
4639#ifdef CONFIG_RT_MUTEXES
4640
4641/*
4642 * rt_mutex_setprio - set the current priority of a task
4643 * @p: task
4644 * @prio: prio value (kernel-internal form)
4645 *
4646 * This function changes the 'effective' priority of a task. It does
4647 * not touch ->normal_prio like __setscheduler().
4648 *
4649 * Used by the rt_mutex code to implement priority inheritance logic.
4650 */
36c8b586 4651void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
4652{
4653 unsigned long flags;
83b699ed 4654 int oldprio, on_rq, running;
70b97a7f 4655 struct rq *rq;
cb469845 4656 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
4657
4658 BUG_ON(prio < 0 || prio > MAX_PRIO);
4659
4660 rq = task_rq_lock(p, &flags);
a8e504d2 4661 update_rq_clock(rq);
b29739f9 4662
d5f9f942 4663 oldprio = p->prio;
dd41f596 4664 on_rq = p->se.on_rq;
051a1d1a 4665 running = task_current(rq, p);
0e1f3483 4666 if (on_rq)
69be72c1 4667 dequeue_task(rq, p, 0);
0e1f3483
HS
4668 if (running)
4669 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
4670
4671 if (rt_prio(prio))
4672 p->sched_class = &rt_sched_class;
4673 else
4674 p->sched_class = &fair_sched_class;
4675
b29739f9
IM
4676 p->prio = prio;
4677
0e1f3483
HS
4678 if (running)
4679 p->sched_class->set_curr_task(rq);
dd41f596 4680 if (on_rq) {
8159f87e 4681 enqueue_task(rq, p, 0);
cb469845
SR
4682
4683 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
4684 }
4685 task_rq_unlock(rq, &flags);
4686}
4687
4688#endif
4689
36c8b586 4690void set_user_nice(struct task_struct *p, long nice)
1da177e4 4691{
dd41f596 4692 int old_prio, delta, on_rq;
1da177e4 4693 unsigned long flags;
70b97a7f 4694 struct rq *rq;
1da177e4
LT
4695
4696 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4697 return;
4698 /*
4699 * We have to be careful, if called from sys_setpriority(),
4700 * the task might be in the middle of scheduling on another CPU.
4701 */
4702 rq = task_rq_lock(p, &flags);
a8e504d2 4703 update_rq_clock(rq);
1da177e4
LT
4704 /*
4705 * The RT priorities are set via sched_setscheduler(), but we still
4706 * allow the 'normal' nice value to be set - but as expected
4707 * it wont have any effect on scheduling until the task is
dd41f596 4708 * SCHED_FIFO/SCHED_RR:
1da177e4 4709 */
e05606d3 4710 if (task_has_rt_policy(p)) {
1da177e4
LT
4711 p->static_prio = NICE_TO_PRIO(nice);
4712 goto out_unlock;
4713 }
dd41f596 4714 on_rq = p->se.on_rq;
c09595f6 4715 if (on_rq)
69be72c1 4716 dequeue_task(rq, p, 0);
1da177e4 4717
1da177e4 4718 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4719 set_load_weight(p);
b29739f9
IM
4720 old_prio = p->prio;
4721 p->prio = effective_prio(p);
4722 delta = p->prio - old_prio;
1da177e4 4723
dd41f596 4724 if (on_rq) {
8159f87e 4725 enqueue_task(rq, p, 0);
1da177e4 4726 /*
d5f9f942
AM
4727 * If the task increased its priority or is running and
4728 * lowered its priority, then reschedule its CPU:
1da177e4 4729 */
d5f9f942 4730 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4731 resched_task(rq->curr);
4732 }
4733out_unlock:
4734 task_rq_unlock(rq, &flags);
4735}
1da177e4
LT
4736EXPORT_SYMBOL(set_user_nice);
4737
e43379f1
MM
4738/*
4739 * can_nice - check if a task can reduce its nice value
4740 * @p: task
4741 * @nice: nice value
4742 */
36c8b586 4743int can_nice(const struct task_struct *p, const int nice)
e43379f1 4744{
024f4747
MM
4745 /* convert nice value [19,-20] to rlimit style value [1,40] */
4746 int nice_rlim = 20 - nice;
48f24c4d 4747
e43379f1
MM
4748 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4749 capable(CAP_SYS_NICE));
4750}
4751
1da177e4
LT
4752#ifdef __ARCH_WANT_SYS_NICE
4753
4754/*
4755 * sys_nice - change the priority of the current process.
4756 * @increment: priority increment
4757 *
4758 * sys_setpriority is a more generic, but much slower function that
4759 * does similar things.
4760 */
4761asmlinkage long sys_nice(int increment)
4762{
48f24c4d 4763 long nice, retval;
1da177e4
LT
4764
4765 /*
4766 * Setpriority might change our priority at the same moment.
4767 * We don't have to worry. Conceptually one call occurs first
4768 * and we have a single winner.
4769 */
e43379f1
MM
4770 if (increment < -40)
4771 increment = -40;
1da177e4
LT
4772 if (increment > 40)
4773 increment = 40;
4774
4775 nice = PRIO_TO_NICE(current->static_prio) + increment;
4776 if (nice < -20)
4777 nice = -20;
4778 if (nice > 19)
4779 nice = 19;
4780
e43379f1
MM
4781 if (increment < 0 && !can_nice(current, nice))
4782 return -EPERM;
4783
1da177e4
LT
4784 retval = security_task_setnice(current, nice);
4785 if (retval)
4786 return retval;
4787
4788 set_user_nice(current, nice);
4789 return 0;
4790}
4791
4792#endif
4793
4794/**
4795 * task_prio - return the priority value of a given task.
4796 * @p: the task in question.
4797 *
4798 * This is the priority value as seen by users in /proc.
4799 * RT tasks are offset by -200. Normal tasks are centered
4800 * around 0, value goes from -16 to +15.
4801 */
36c8b586 4802int task_prio(const struct task_struct *p)
1da177e4
LT
4803{
4804 return p->prio - MAX_RT_PRIO;
4805}
4806
4807/**
4808 * task_nice - return the nice value of a given task.
4809 * @p: the task in question.
4810 */
36c8b586 4811int task_nice(const struct task_struct *p)
1da177e4
LT
4812{
4813 return TASK_NICE(p);
4814}
150d8bed 4815EXPORT_SYMBOL(task_nice);
1da177e4
LT
4816
4817/**
4818 * idle_cpu - is a given cpu idle currently?
4819 * @cpu: the processor in question.
4820 */
4821int idle_cpu(int cpu)
4822{
4823 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4824}
4825
1da177e4
LT
4826/**
4827 * idle_task - return the idle task for a given cpu.
4828 * @cpu: the processor in question.
4829 */
36c8b586 4830struct task_struct *idle_task(int cpu)
1da177e4
LT
4831{
4832 return cpu_rq(cpu)->idle;
4833}
4834
4835/**
4836 * find_process_by_pid - find a process with a matching PID value.
4837 * @pid: the pid in question.
4838 */
a9957449 4839static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4840{
228ebcbe 4841 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4842}
4843
4844/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4845static void
4846__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4847{
dd41f596 4848 BUG_ON(p->se.on_rq);
48f24c4d 4849
1da177e4 4850 p->policy = policy;
dd41f596
IM
4851 switch (p->policy) {
4852 case SCHED_NORMAL:
4853 case SCHED_BATCH:
4854 case SCHED_IDLE:
4855 p->sched_class = &fair_sched_class;
4856 break;
4857 case SCHED_FIFO:
4858 case SCHED_RR:
4859 p->sched_class = &rt_sched_class;
4860 break;
4861 }
4862
1da177e4 4863 p->rt_priority = prio;
b29739f9
IM
4864 p->normal_prio = normal_prio(p);
4865 /* we are holding p->pi_lock already */
4866 p->prio = rt_mutex_getprio(p);
2dd73a4f 4867 set_load_weight(p);
1da177e4
LT
4868}
4869
4870/**
72fd4a35 4871 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4872 * @p: the task in question.
4873 * @policy: new policy.
4874 * @param: structure containing the new RT priority.
5fe1d75f 4875 *
72fd4a35 4876 * NOTE that the task may be already dead.
1da177e4 4877 */
95cdf3b7
IM
4878int sched_setscheduler(struct task_struct *p, int policy,
4879 struct sched_param *param)
1da177e4 4880{
83b699ed 4881 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4882 unsigned long flags;
cb469845 4883 const struct sched_class *prev_class = p->sched_class;
70b97a7f 4884 struct rq *rq;
1da177e4 4885
66e5393a
SR
4886 /* may grab non-irq protected spin_locks */
4887 BUG_ON(in_interrupt());
1da177e4
LT
4888recheck:
4889 /* double check policy once rq lock held */
4890 if (policy < 0)
4891 policy = oldpolicy = p->policy;
4892 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4893 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4894 policy != SCHED_IDLE)
b0a9499c 4895 return -EINVAL;
1da177e4
LT
4896 /*
4897 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4898 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4899 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4900 */
4901 if (param->sched_priority < 0 ||
95cdf3b7 4902 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4903 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4904 return -EINVAL;
e05606d3 4905 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4906 return -EINVAL;
4907
37e4ab3f
OC
4908 /*
4909 * Allow unprivileged RT tasks to decrease priority:
4910 */
4911 if (!capable(CAP_SYS_NICE)) {
e05606d3 4912 if (rt_policy(policy)) {
8dc3e909 4913 unsigned long rlim_rtprio;
8dc3e909
ON
4914
4915 if (!lock_task_sighand(p, &flags))
4916 return -ESRCH;
4917 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4918 unlock_task_sighand(p, &flags);
4919
4920 /* can't set/change the rt policy */
4921 if (policy != p->policy && !rlim_rtprio)
4922 return -EPERM;
4923
4924 /* can't increase priority */
4925 if (param->sched_priority > p->rt_priority &&
4926 param->sched_priority > rlim_rtprio)
4927 return -EPERM;
4928 }
dd41f596
IM
4929 /*
4930 * Like positive nice levels, dont allow tasks to
4931 * move out of SCHED_IDLE either:
4932 */
4933 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4934 return -EPERM;
5fe1d75f 4935
37e4ab3f
OC
4936 /* can't change other user's priorities */
4937 if ((current->euid != p->euid) &&
4938 (current->euid != p->uid))
4939 return -EPERM;
4940 }
1da177e4 4941
b68aa230
PZ
4942#ifdef CONFIG_RT_GROUP_SCHED
4943 /*
4944 * Do not allow realtime tasks into groups that have no runtime
4945 * assigned.
4946 */
d0b27fa7 4947 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
4948 return -EPERM;
4949#endif
4950
1da177e4
LT
4951 retval = security_task_setscheduler(p, policy, param);
4952 if (retval)
4953 return retval;
b29739f9
IM
4954 /*
4955 * make sure no PI-waiters arrive (or leave) while we are
4956 * changing the priority of the task:
4957 */
4958 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4959 /*
4960 * To be able to change p->policy safely, the apropriate
4961 * runqueue lock must be held.
4962 */
b29739f9 4963 rq = __task_rq_lock(p);
1da177e4
LT
4964 /* recheck policy now with rq lock held */
4965 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4966 policy = oldpolicy = -1;
b29739f9
IM
4967 __task_rq_unlock(rq);
4968 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4969 goto recheck;
4970 }
2daa3577 4971 update_rq_clock(rq);
dd41f596 4972 on_rq = p->se.on_rq;
051a1d1a 4973 running = task_current(rq, p);
0e1f3483 4974 if (on_rq)
2e1cb74a 4975 deactivate_task(rq, p, 0);
0e1f3483
HS
4976 if (running)
4977 p->sched_class->put_prev_task(rq, p);
f6b53205 4978
1da177e4 4979 oldprio = p->prio;
dd41f596 4980 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4981
0e1f3483
HS
4982 if (running)
4983 p->sched_class->set_curr_task(rq);
dd41f596
IM
4984 if (on_rq) {
4985 activate_task(rq, p, 0);
cb469845
SR
4986
4987 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 4988 }
b29739f9
IM
4989 __task_rq_unlock(rq);
4990 spin_unlock_irqrestore(&p->pi_lock, flags);
4991
95e02ca9
TG
4992 rt_mutex_adjust_pi(p);
4993
1da177e4
LT
4994 return 0;
4995}
4996EXPORT_SYMBOL_GPL(sched_setscheduler);
4997
95cdf3b7
IM
4998static int
4999do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5000{
1da177e4
LT
5001 struct sched_param lparam;
5002 struct task_struct *p;
36c8b586 5003 int retval;
1da177e4
LT
5004
5005 if (!param || pid < 0)
5006 return -EINVAL;
5007 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5008 return -EFAULT;
5fe1d75f
ON
5009
5010 rcu_read_lock();
5011 retval = -ESRCH;
1da177e4 5012 p = find_process_by_pid(pid);
5fe1d75f
ON
5013 if (p != NULL)
5014 retval = sched_setscheduler(p, policy, &lparam);
5015 rcu_read_unlock();
36c8b586 5016
1da177e4
LT
5017 return retval;
5018}
5019
5020/**
5021 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5022 * @pid: the pid in question.
5023 * @policy: new policy.
5024 * @param: structure containing the new RT priority.
5025 */
41a2d6cf
IM
5026asmlinkage long
5027sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5028{
c21761f1
JB
5029 /* negative values for policy are not valid */
5030 if (policy < 0)
5031 return -EINVAL;
5032
1da177e4
LT
5033 return do_sched_setscheduler(pid, policy, param);
5034}
5035
5036/**
5037 * sys_sched_setparam - set/change the RT priority of a thread
5038 * @pid: the pid in question.
5039 * @param: structure containing the new RT priority.
5040 */
5041asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5042{
5043 return do_sched_setscheduler(pid, -1, param);
5044}
5045
5046/**
5047 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5048 * @pid: the pid in question.
5049 */
5050asmlinkage long sys_sched_getscheduler(pid_t pid)
5051{
36c8b586 5052 struct task_struct *p;
3a5c359a 5053 int retval;
1da177e4
LT
5054
5055 if (pid < 0)
3a5c359a 5056 return -EINVAL;
1da177e4
LT
5057
5058 retval = -ESRCH;
5059 read_lock(&tasklist_lock);
5060 p = find_process_by_pid(pid);
5061 if (p) {
5062 retval = security_task_getscheduler(p);
5063 if (!retval)
5064 retval = p->policy;
5065 }
5066 read_unlock(&tasklist_lock);
1da177e4
LT
5067 return retval;
5068}
5069
5070/**
5071 * sys_sched_getscheduler - get the RT priority of a thread
5072 * @pid: the pid in question.
5073 * @param: structure containing the RT priority.
5074 */
5075asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5076{
5077 struct sched_param lp;
36c8b586 5078 struct task_struct *p;
3a5c359a 5079 int retval;
1da177e4
LT
5080
5081 if (!param || pid < 0)
3a5c359a 5082 return -EINVAL;
1da177e4
LT
5083
5084 read_lock(&tasklist_lock);
5085 p = find_process_by_pid(pid);
5086 retval = -ESRCH;
5087 if (!p)
5088 goto out_unlock;
5089
5090 retval = security_task_getscheduler(p);
5091 if (retval)
5092 goto out_unlock;
5093
5094 lp.sched_priority = p->rt_priority;
5095 read_unlock(&tasklist_lock);
5096
5097 /*
5098 * This one might sleep, we cannot do it with a spinlock held ...
5099 */
5100 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5101
1da177e4
LT
5102 return retval;
5103
5104out_unlock:
5105 read_unlock(&tasklist_lock);
5106 return retval;
5107}
5108
b53e921b 5109long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
1da177e4 5110{
1da177e4 5111 cpumask_t cpus_allowed;
b53e921b 5112 cpumask_t new_mask = *in_mask;
36c8b586
IM
5113 struct task_struct *p;
5114 int retval;
1da177e4 5115
95402b38 5116 get_online_cpus();
1da177e4
LT
5117 read_lock(&tasklist_lock);
5118
5119 p = find_process_by_pid(pid);
5120 if (!p) {
5121 read_unlock(&tasklist_lock);
95402b38 5122 put_online_cpus();
1da177e4
LT
5123 return -ESRCH;
5124 }
5125
5126 /*
5127 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5128 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5129 * usage count and then drop tasklist_lock.
5130 */
5131 get_task_struct(p);
5132 read_unlock(&tasklist_lock);
5133
5134 retval = -EPERM;
5135 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5136 !capable(CAP_SYS_NICE))
5137 goto out_unlock;
5138
e7834f8f
DQ
5139 retval = security_task_setscheduler(p, 0, NULL);
5140 if (retval)
5141 goto out_unlock;
5142
f9a86fcb 5143 cpuset_cpus_allowed(p, &cpus_allowed);
1da177e4 5144 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 5145 again:
7c16ec58 5146 retval = set_cpus_allowed_ptr(p, &new_mask);
1da177e4 5147
8707d8b8 5148 if (!retval) {
f9a86fcb 5149 cpuset_cpus_allowed(p, &cpus_allowed);
8707d8b8
PM
5150 if (!cpus_subset(new_mask, cpus_allowed)) {
5151 /*
5152 * We must have raced with a concurrent cpuset
5153 * update. Just reset the cpus_allowed to the
5154 * cpuset's cpus_allowed
5155 */
5156 new_mask = cpus_allowed;
5157 goto again;
5158 }
5159 }
1da177e4
LT
5160out_unlock:
5161 put_task_struct(p);
95402b38 5162 put_online_cpus();
1da177e4
LT
5163 return retval;
5164}
5165
5166static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5167 cpumask_t *new_mask)
5168{
5169 if (len < sizeof(cpumask_t)) {
5170 memset(new_mask, 0, sizeof(cpumask_t));
5171 } else if (len > sizeof(cpumask_t)) {
5172 len = sizeof(cpumask_t);
5173 }
5174 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5175}
5176
5177/**
5178 * sys_sched_setaffinity - set the cpu affinity of a process
5179 * @pid: pid of the process
5180 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5181 * @user_mask_ptr: user-space pointer to the new cpu mask
5182 */
5183asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5184 unsigned long __user *user_mask_ptr)
5185{
5186 cpumask_t new_mask;
5187 int retval;
5188
5189 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5190 if (retval)
5191 return retval;
5192
b53e921b 5193 return sched_setaffinity(pid, &new_mask);
1da177e4
LT
5194}
5195
1da177e4
LT
5196long sched_getaffinity(pid_t pid, cpumask_t *mask)
5197{
36c8b586 5198 struct task_struct *p;
1da177e4 5199 int retval;
1da177e4 5200
95402b38 5201 get_online_cpus();
1da177e4
LT
5202 read_lock(&tasklist_lock);
5203
5204 retval = -ESRCH;
5205 p = find_process_by_pid(pid);
5206 if (!p)
5207 goto out_unlock;
5208
e7834f8f
DQ
5209 retval = security_task_getscheduler(p);
5210 if (retval)
5211 goto out_unlock;
5212
2f7016d9 5213 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
5214
5215out_unlock:
5216 read_unlock(&tasklist_lock);
95402b38 5217 put_online_cpus();
1da177e4 5218
9531b62f 5219 return retval;
1da177e4
LT
5220}
5221
5222/**
5223 * sys_sched_getaffinity - get the cpu affinity of a process
5224 * @pid: pid of the process
5225 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5226 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5227 */
5228asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5229 unsigned long __user *user_mask_ptr)
5230{
5231 int ret;
5232 cpumask_t mask;
5233
5234 if (len < sizeof(cpumask_t))
5235 return -EINVAL;
5236
5237 ret = sched_getaffinity(pid, &mask);
5238 if (ret < 0)
5239 return ret;
5240
5241 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5242 return -EFAULT;
5243
5244 return sizeof(cpumask_t);
5245}
5246
5247/**
5248 * sys_sched_yield - yield the current processor to other threads.
5249 *
dd41f596
IM
5250 * This function yields the current CPU to other tasks. If there are no
5251 * other threads running on this CPU then this function will return.
1da177e4
LT
5252 */
5253asmlinkage long sys_sched_yield(void)
5254{
70b97a7f 5255 struct rq *rq = this_rq_lock();
1da177e4 5256
2d72376b 5257 schedstat_inc(rq, yld_count);
4530d7ab 5258 current->sched_class->yield_task(rq);
1da177e4
LT
5259
5260 /*
5261 * Since we are going to call schedule() anyway, there's
5262 * no need to preempt or enable interrupts:
5263 */
5264 __release(rq->lock);
8a25d5de 5265 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5266 _raw_spin_unlock(&rq->lock);
5267 preempt_enable_no_resched();
5268
5269 schedule();
5270
5271 return 0;
5272}
5273
e7b38404 5274static void __cond_resched(void)
1da177e4 5275{
8e0a43d8
IM
5276#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5277 __might_sleep(__FILE__, __LINE__);
5278#endif
5bbcfd90
IM
5279 /*
5280 * The BKS might be reacquired before we have dropped
5281 * PREEMPT_ACTIVE, which could trigger a second
5282 * cond_resched() call.
5283 */
1da177e4
LT
5284 do {
5285 add_preempt_count(PREEMPT_ACTIVE);
5286 schedule();
5287 sub_preempt_count(PREEMPT_ACTIVE);
5288 } while (need_resched());
5289}
5290
02b67cc3 5291int __sched _cond_resched(void)
1da177e4 5292{
9414232f
IM
5293 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5294 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5295 __cond_resched();
5296 return 1;
5297 }
5298 return 0;
5299}
02b67cc3 5300EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5301
5302/*
5303 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5304 * call schedule, and on return reacquire the lock.
5305 *
41a2d6cf 5306 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5307 * operations here to prevent schedule() from being called twice (once via
5308 * spin_unlock(), once by hand).
5309 */
95cdf3b7 5310int cond_resched_lock(spinlock_t *lock)
1da177e4 5311{
95c354fe 5312 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5313 int ret = 0;
5314
95c354fe 5315 if (spin_needbreak(lock) || resched) {
1da177e4 5316 spin_unlock(lock);
95c354fe
NP
5317 if (resched && need_resched())
5318 __cond_resched();
5319 else
5320 cpu_relax();
6df3cecb 5321 ret = 1;
1da177e4 5322 spin_lock(lock);
1da177e4 5323 }
6df3cecb 5324 return ret;
1da177e4 5325}
1da177e4
LT
5326EXPORT_SYMBOL(cond_resched_lock);
5327
5328int __sched cond_resched_softirq(void)
5329{
5330 BUG_ON(!in_softirq());
5331
9414232f 5332 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5333 local_bh_enable();
1da177e4
LT
5334 __cond_resched();
5335 local_bh_disable();
5336 return 1;
5337 }
5338 return 0;
5339}
1da177e4
LT
5340EXPORT_SYMBOL(cond_resched_softirq);
5341
1da177e4
LT
5342/**
5343 * yield - yield the current processor to other threads.
5344 *
72fd4a35 5345 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5346 * thread runnable and calls sys_sched_yield().
5347 */
5348void __sched yield(void)
5349{
5350 set_current_state(TASK_RUNNING);
5351 sys_sched_yield();
5352}
1da177e4
LT
5353EXPORT_SYMBOL(yield);
5354
5355/*
41a2d6cf 5356 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5357 * that process accounting knows that this is a task in IO wait state.
5358 *
5359 * But don't do that if it is a deliberate, throttling IO wait (this task
5360 * has set its backing_dev_info: the queue against which it should throttle)
5361 */
5362void __sched io_schedule(void)
5363{
70b97a7f 5364 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5365
0ff92245 5366 delayacct_blkio_start();
1da177e4
LT
5367 atomic_inc(&rq->nr_iowait);
5368 schedule();
5369 atomic_dec(&rq->nr_iowait);
0ff92245 5370 delayacct_blkio_end();
1da177e4 5371}
1da177e4
LT
5372EXPORT_SYMBOL(io_schedule);
5373
5374long __sched io_schedule_timeout(long timeout)
5375{
70b97a7f 5376 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5377 long ret;
5378
0ff92245 5379 delayacct_blkio_start();
1da177e4
LT
5380 atomic_inc(&rq->nr_iowait);
5381 ret = schedule_timeout(timeout);
5382 atomic_dec(&rq->nr_iowait);
0ff92245 5383 delayacct_blkio_end();
1da177e4
LT
5384 return ret;
5385}
5386
5387/**
5388 * sys_sched_get_priority_max - return maximum RT priority.
5389 * @policy: scheduling class.
5390 *
5391 * this syscall returns the maximum rt_priority that can be used
5392 * by a given scheduling class.
5393 */
5394asmlinkage long sys_sched_get_priority_max(int policy)
5395{
5396 int ret = -EINVAL;
5397
5398 switch (policy) {
5399 case SCHED_FIFO:
5400 case SCHED_RR:
5401 ret = MAX_USER_RT_PRIO-1;
5402 break;
5403 case SCHED_NORMAL:
b0a9499c 5404 case SCHED_BATCH:
dd41f596 5405 case SCHED_IDLE:
1da177e4
LT
5406 ret = 0;
5407 break;
5408 }
5409 return ret;
5410}
5411
5412/**
5413 * sys_sched_get_priority_min - return minimum RT priority.
5414 * @policy: scheduling class.
5415 *
5416 * this syscall returns the minimum rt_priority that can be used
5417 * by a given scheduling class.
5418 */
5419asmlinkage long sys_sched_get_priority_min(int policy)
5420{
5421 int ret = -EINVAL;
5422
5423 switch (policy) {
5424 case SCHED_FIFO:
5425 case SCHED_RR:
5426 ret = 1;
5427 break;
5428 case SCHED_NORMAL:
b0a9499c 5429 case SCHED_BATCH:
dd41f596 5430 case SCHED_IDLE:
1da177e4
LT
5431 ret = 0;
5432 }
5433 return ret;
5434}
5435
5436/**
5437 * sys_sched_rr_get_interval - return the default timeslice of a process.
5438 * @pid: pid of the process.
5439 * @interval: userspace pointer to the timeslice value.
5440 *
5441 * this syscall writes the default timeslice value of a given process
5442 * into the user-space timespec buffer. A value of '0' means infinity.
5443 */
5444asmlinkage
5445long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5446{
36c8b586 5447 struct task_struct *p;
a4ec24b4 5448 unsigned int time_slice;
3a5c359a 5449 int retval;
1da177e4 5450 struct timespec t;
1da177e4
LT
5451
5452 if (pid < 0)
3a5c359a 5453 return -EINVAL;
1da177e4
LT
5454
5455 retval = -ESRCH;
5456 read_lock(&tasklist_lock);
5457 p = find_process_by_pid(pid);
5458 if (!p)
5459 goto out_unlock;
5460
5461 retval = security_task_getscheduler(p);
5462 if (retval)
5463 goto out_unlock;
5464
77034937
IM
5465 /*
5466 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5467 * tasks that are on an otherwise idle runqueue:
5468 */
5469 time_slice = 0;
5470 if (p->policy == SCHED_RR) {
a4ec24b4 5471 time_slice = DEF_TIMESLICE;
1868f958 5472 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
5473 struct sched_entity *se = &p->se;
5474 unsigned long flags;
5475 struct rq *rq;
5476
5477 rq = task_rq_lock(p, &flags);
77034937
IM
5478 if (rq->cfs.load.weight)
5479 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
5480 task_rq_unlock(rq, &flags);
5481 }
1da177e4 5482 read_unlock(&tasklist_lock);
a4ec24b4 5483 jiffies_to_timespec(time_slice, &t);
1da177e4 5484 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 5485 return retval;
3a5c359a 5486
1da177e4
LT
5487out_unlock:
5488 read_unlock(&tasklist_lock);
5489 return retval;
5490}
5491
2ed6e34f 5492static const char stat_nam[] = "RSDTtZX";
36c8b586 5493
82a1fcb9 5494void sched_show_task(struct task_struct *p)
1da177e4 5495{
1da177e4 5496 unsigned long free = 0;
36c8b586 5497 unsigned state;
1da177e4 5498
1da177e4 5499 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 5500 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 5501 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 5502#if BITS_PER_LONG == 32
1da177e4 5503 if (state == TASK_RUNNING)
cc4ea795 5504 printk(KERN_CONT " running ");
1da177e4 5505 else
cc4ea795 5506 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
5507#else
5508 if (state == TASK_RUNNING)
cc4ea795 5509 printk(KERN_CONT " running task ");
1da177e4 5510 else
cc4ea795 5511 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
5512#endif
5513#ifdef CONFIG_DEBUG_STACK_USAGE
5514 {
10ebffde 5515 unsigned long *n = end_of_stack(p);
1da177e4
LT
5516 while (!*n)
5517 n++;
10ebffde 5518 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
5519 }
5520#endif
ba25f9dc 5521 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 5522 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 5523
5fb5e6de 5524 show_stack(p, NULL);
1da177e4
LT
5525}
5526
e59e2ae2 5527void show_state_filter(unsigned long state_filter)
1da177e4 5528{
36c8b586 5529 struct task_struct *g, *p;
1da177e4 5530
4bd77321
IM
5531#if BITS_PER_LONG == 32
5532 printk(KERN_INFO
5533 " task PC stack pid father\n");
1da177e4 5534#else
4bd77321
IM
5535 printk(KERN_INFO
5536 " task PC stack pid father\n");
1da177e4
LT
5537#endif
5538 read_lock(&tasklist_lock);
5539 do_each_thread(g, p) {
5540 /*
5541 * reset the NMI-timeout, listing all files on a slow
5542 * console might take alot of time:
5543 */
5544 touch_nmi_watchdog();
39bc89fd 5545 if (!state_filter || (p->state & state_filter))
82a1fcb9 5546 sched_show_task(p);
1da177e4
LT
5547 } while_each_thread(g, p);
5548
04c9167f
JF
5549 touch_all_softlockup_watchdogs();
5550
dd41f596
IM
5551#ifdef CONFIG_SCHED_DEBUG
5552 sysrq_sched_debug_show();
5553#endif
1da177e4 5554 read_unlock(&tasklist_lock);
e59e2ae2
IM
5555 /*
5556 * Only show locks if all tasks are dumped:
5557 */
5558 if (state_filter == -1)
5559 debug_show_all_locks();
1da177e4
LT
5560}
5561
1df21055
IM
5562void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5563{
dd41f596 5564 idle->sched_class = &idle_sched_class;
1df21055
IM
5565}
5566
f340c0d1
IM
5567/**
5568 * init_idle - set up an idle thread for a given CPU
5569 * @idle: task in question
5570 * @cpu: cpu the idle task belongs to
5571 *
5572 * NOTE: this function does not set the idle thread's NEED_RESCHED
5573 * flag, to make booting more robust.
5574 */
5c1e1767 5575void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 5576{
70b97a7f 5577 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5578 unsigned long flags;
5579
dd41f596
IM
5580 __sched_fork(idle);
5581 idle->se.exec_start = sched_clock();
5582
b29739f9 5583 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 5584 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 5585 __set_task_cpu(idle, cpu);
1da177e4
LT
5586
5587 spin_lock_irqsave(&rq->lock, flags);
5588 rq->curr = rq->idle = idle;
4866cde0
NP
5589#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5590 idle->oncpu = 1;
5591#endif
1da177e4
LT
5592 spin_unlock_irqrestore(&rq->lock, flags);
5593
5594 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
5595#if defined(CONFIG_PREEMPT)
5596 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5597#else
a1261f54 5598 task_thread_info(idle)->preempt_count = 0;
8e3e076c 5599#endif
dd41f596
IM
5600 /*
5601 * The idle tasks have their own, simple scheduling class:
5602 */
5603 idle->sched_class = &idle_sched_class;
1da177e4
LT
5604}
5605
5606/*
5607 * In a system that switches off the HZ timer nohz_cpu_mask
5608 * indicates which cpus entered this state. This is used
5609 * in the rcu update to wait only for active cpus. For system
5610 * which do not switch off the HZ timer nohz_cpu_mask should
5611 * always be CPU_MASK_NONE.
5612 */
5613cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5614
19978ca6
IM
5615/*
5616 * Increase the granularity value when there are more CPUs,
5617 * because with more CPUs the 'effective latency' as visible
5618 * to users decreases. But the relationship is not linear,
5619 * so pick a second-best guess by going with the log2 of the
5620 * number of CPUs.
5621 *
5622 * This idea comes from the SD scheduler of Con Kolivas:
5623 */
5624static inline void sched_init_granularity(void)
5625{
5626 unsigned int factor = 1 + ilog2(num_online_cpus());
5627 const unsigned long limit = 200000000;
5628
5629 sysctl_sched_min_granularity *= factor;
5630 if (sysctl_sched_min_granularity > limit)
5631 sysctl_sched_min_granularity = limit;
5632
5633 sysctl_sched_latency *= factor;
5634 if (sysctl_sched_latency > limit)
5635 sysctl_sched_latency = limit;
5636
5637 sysctl_sched_wakeup_granularity *= factor;
19978ca6
IM
5638}
5639
1da177e4
LT
5640#ifdef CONFIG_SMP
5641/*
5642 * This is how migration works:
5643 *
70b97a7f 5644 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
5645 * runqueue and wake up that CPU's migration thread.
5646 * 2) we down() the locked semaphore => thread blocks.
5647 * 3) migration thread wakes up (implicitly it forces the migrated
5648 * thread off the CPU)
5649 * 4) it gets the migration request and checks whether the migrated
5650 * task is still in the wrong runqueue.
5651 * 5) if it's in the wrong runqueue then the migration thread removes
5652 * it and puts it into the right queue.
5653 * 6) migration thread up()s the semaphore.
5654 * 7) we wake up and the migration is done.
5655 */
5656
5657/*
5658 * Change a given task's CPU affinity. Migrate the thread to a
5659 * proper CPU and schedule it away if the CPU it's executing on
5660 * is removed from the allowed bitmask.
5661 *
5662 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5663 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5664 * call is not atomic; no spinlocks may be held.
5665 */
cd8ba7cd 5666int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
1da177e4 5667{
70b97a7f 5668 struct migration_req req;
1da177e4 5669 unsigned long flags;
70b97a7f 5670 struct rq *rq;
48f24c4d 5671 int ret = 0;
1da177e4
LT
5672
5673 rq = task_rq_lock(p, &flags);
cd8ba7cd 5674 if (!cpus_intersects(*new_mask, cpu_online_map)) {
1da177e4
LT
5675 ret = -EINVAL;
5676 goto out;
5677 }
5678
9985b0ba
DR
5679 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5680 !cpus_equal(p->cpus_allowed, *new_mask))) {
5681 ret = -EINVAL;
5682 goto out;
5683 }
5684
73fe6aae 5685 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 5686 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 5687 else {
cd8ba7cd
MT
5688 p->cpus_allowed = *new_mask;
5689 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
73fe6aae
GH
5690 }
5691
1da177e4 5692 /* Can the task run on the task's current CPU? If so, we're done */
cd8ba7cd 5693 if (cpu_isset(task_cpu(p), *new_mask))
1da177e4
LT
5694 goto out;
5695
cd8ba7cd 5696 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
1da177e4
LT
5697 /* Need help from migration thread: drop lock and wait. */
5698 task_rq_unlock(rq, &flags);
5699 wake_up_process(rq->migration_thread);
5700 wait_for_completion(&req.done);
5701 tlb_migrate_finish(p->mm);
5702 return 0;
5703 }
5704out:
5705 task_rq_unlock(rq, &flags);
48f24c4d 5706
1da177e4
LT
5707 return ret;
5708}
cd8ba7cd 5709EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5710
5711/*
41a2d6cf 5712 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5713 * this because either it can't run here any more (set_cpus_allowed()
5714 * away from this CPU, or CPU going down), or because we're
5715 * attempting to rebalance this task on exec (sched_exec).
5716 *
5717 * So we race with normal scheduler movements, but that's OK, as long
5718 * as the task is no longer on this CPU.
efc30814
KK
5719 *
5720 * Returns non-zero if task was successfully migrated.
1da177e4 5721 */
efc30814 5722static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5723{
70b97a7f 5724 struct rq *rq_dest, *rq_src;
dd41f596 5725 int ret = 0, on_rq;
1da177e4
LT
5726
5727 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5728 return ret;
1da177e4
LT
5729
5730 rq_src = cpu_rq(src_cpu);
5731 rq_dest = cpu_rq(dest_cpu);
5732
5733 double_rq_lock(rq_src, rq_dest);
5734 /* Already moved. */
5735 if (task_cpu(p) != src_cpu)
5736 goto out;
5737 /* Affinity changed (again). */
5738 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5739 goto out;
5740
dd41f596 5741 on_rq = p->se.on_rq;
6e82a3be 5742 if (on_rq)
2e1cb74a 5743 deactivate_task(rq_src, p, 0);
6e82a3be 5744
1da177e4 5745 set_task_cpu(p, dest_cpu);
dd41f596
IM
5746 if (on_rq) {
5747 activate_task(rq_dest, p, 0);
5748 check_preempt_curr(rq_dest, p);
1da177e4 5749 }
efc30814 5750 ret = 1;
1da177e4
LT
5751out:
5752 double_rq_unlock(rq_src, rq_dest);
efc30814 5753 return ret;
1da177e4
LT
5754}
5755
5756/*
5757 * migration_thread - this is a highprio system thread that performs
5758 * thread migration by bumping thread off CPU then 'pushing' onto
5759 * another runqueue.
5760 */
95cdf3b7 5761static int migration_thread(void *data)
1da177e4 5762{
1da177e4 5763 int cpu = (long)data;
70b97a7f 5764 struct rq *rq;
1da177e4
LT
5765
5766 rq = cpu_rq(cpu);
5767 BUG_ON(rq->migration_thread != current);
5768
5769 set_current_state(TASK_INTERRUPTIBLE);
5770 while (!kthread_should_stop()) {
70b97a7f 5771 struct migration_req *req;
1da177e4 5772 struct list_head *head;
1da177e4 5773
1da177e4
LT
5774 spin_lock_irq(&rq->lock);
5775
5776 if (cpu_is_offline(cpu)) {
5777 spin_unlock_irq(&rq->lock);
5778 goto wait_to_die;
5779 }
5780
5781 if (rq->active_balance) {
5782 active_load_balance(rq, cpu);
5783 rq->active_balance = 0;
5784 }
5785
5786 head = &rq->migration_queue;
5787
5788 if (list_empty(head)) {
5789 spin_unlock_irq(&rq->lock);
5790 schedule();
5791 set_current_state(TASK_INTERRUPTIBLE);
5792 continue;
5793 }
70b97a7f 5794 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5795 list_del_init(head->next);
5796
674311d5
NP
5797 spin_unlock(&rq->lock);
5798 __migrate_task(req->task, cpu, req->dest_cpu);
5799 local_irq_enable();
1da177e4
LT
5800
5801 complete(&req->done);
5802 }
5803 __set_current_state(TASK_RUNNING);
5804 return 0;
5805
5806wait_to_die:
5807 /* Wait for kthread_stop */
5808 set_current_state(TASK_INTERRUPTIBLE);
5809 while (!kthread_should_stop()) {
5810 schedule();
5811 set_current_state(TASK_INTERRUPTIBLE);
5812 }
5813 __set_current_state(TASK_RUNNING);
5814 return 0;
5815}
5816
5817#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5818
5819static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5820{
5821 int ret;
5822
5823 local_irq_disable();
5824 ret = __migrate_task(p, src_cpu, dest_cpu);
5825 local_irq_enable();
5826 return ret;
5827}
5828
054b9108 5829/*
3a4fa0a2 5830 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5831 * NOTE: interrupts should be disabled by the caller
5832 */
48f24c4d 5833static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5834{
efc30814 5835 unsigned long flags;
1da177e4 5836 cpumask_t mask;
70b97a7f
IM
5837 struct rq *rq;
5838 int dest_cpu;
1da177e4 5839
3a5c359a
AK
5840 do {
5841 /* On same node? */
5842 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5843 cpus_and(mask, mask, p->cpus_allowed);
5844 dest_cpu = any_online_cpu(mask);
5845
5846 /* On any allowed CPU? */
434d53b0 5847 if (dest_cpu >= nr_cpu_ids)
3a5c359a
AK
5848 dest_cpu = any_online_cpu(p->cpus_allowed);
5849
5850 /* No more Mr. Nice Guy. */
434d53b0 5851 if (dest_cpu >= nr_cpu_ids) {
f9a86fcb
MT
5852 cpumask_t cpus_allowed;
5853
5854 cpuset_cpus_allowed_locked(p, &cpus_allowed);
470fd646
CW
5855 /*
5856 * Try to stay on the same cpuset, where the
5857 * current cpuset may be a subset of all cpus.
5858 * The cpuset_cpus_allowed_locked() variant of
41a2d6cf 5859 * cpuset_cpus_allowed() will not block. It must be
470fd646
CW
5860 * called within calls to cpuset_lock/cpuset_unlock.
5861 */
3a5c359a 5862 rq = task_rq_lock(p, &flags);
470fd646 5863 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5864 dest_cpu = any_online_cpu(p->cpus_allowed);
5865 task_rq_unlock(rq, &flags);
1da177e4 5866
3a5c359a
AK
5867 /*
5868 * Don't tell them about moving exiting tasks or
5869 * kernel threads (both mm NULL), since they never
5870 * leave kernel.
5871 */
41a2d6cf 5872 if (p->mm && printk_ratelimit()) {
3a5c359a
AK
5873 printk(KERN_INFO "process %d (%s) no "
5874 "longer affine to cpu%d\n",
41a2d6cf
IM
5875 task_pid_nr(p), p->comm, dead_cpu);
5876 }
3a5c359a 5877 }
f7b4cddc 5878 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5879}
5880
5881/*
5882 * While a dead CPU has no uninterruptible tasks queued at this point,
5883 * it might still have a nonzero ->nr_uninterruptible counter, because
5884 * for performance reasons the counter is not stricly tracking tasks to
5885 * their home CPUs. So we just add the counter to another CPU's counter,
5886 * to keep the global sum constant after CPU-down:
5887 */
70b97a7f 5888static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5889{
7c16ec58 5890 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
1da177e4
LT
5891 unsigned long flags;
5892
5893 local_irq_save(flags);
5894 double_rq_lock(rq_src, rq_dest);
5895 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5896 rq_src->nr_uninterruptible = 0;
5897 double_rq_unlock(rq_src, rq_dest);
5898 local_irq_restore(flags);
5899}
5900
5901/* Run through task list and migrate tasks from the dead cpu. */
5902static void migrate_live_tasks(int src_cpu)
5903{
48f24c4d 5904 struct task_struct *p, *t;
1da177e4 5905
f7b4cddc 5906 read_lock(&tasklist_lock);
1da177e4 5907
48f24c4d
IM
5908 do_each_thread(t, p) {
5909 if (p == current)
1da177e4
LT
5910 continue;
5911
48f24c4d
IM
5912 if (task_cpu(p) == src_cpu)
5913 move_task_off_dead_cpu(src_cpu, p);
5914 } while_each_thread(t, p);
1da177e4 5915
f7b4cddc 5916 read_unlock(&tasklist_lock);
1da177e4
LT
5917}
5918
dd41f596
IM
5919/*
5920 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
5921 * It does so by boosting its priority to highest possible.
5922 * Used by CPU offline code.
1da177e4
LT
5923 */
5924void sched_idle_next(void)
5925{
48f24c4d 5926 int this_cpu = smp_processor_id();
70b97a7f 5927 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5928 struct task_struct *p = rq->idle;
5929 unsigned long flags;
5930
5931 /* cpu has to be offline */
48f24c4d 5932 BUG_ON(cpu_online(this_cpu));
1da177e4 5933
48f24c4d
IM
5934 /*
5935 * Strictly not necessary since rest of the CPUs are stopped by now
5936 * and interrupts disabled on the current cpu.
1da177e4
LT
5937 */
5938 spin_lock_irqsave(&rq->lock, flags);
5939
dd41f596 5940 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 5941
94bc9a7b
DA
5942 update_rq_clock(rq);
5943 activate_task(rq, p, 0);
1da177e4
LT
5944
5945 spin_unlock_irqrestore(&rq->lock, flags);
5946}
5947
48f24c4d
IM
5948/*
5949 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5950 * offline.
5951 */
5952void idle_task_exit(void)
5953{
5954 struct mm_struct *mm = current->active_mm;
5955
5956 BUG_ON(cpu_online(smp_processor_id()));
5957
5958 if (mm != &init_mm)
5959 switch_mm(mm, &init_mm, current);
5960 mmdrop(mm);
5961}
5962
054b9108 5963/* called under rq->lock with disabled interrupts */
36c8b586 5964static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5965{
70b97a7f 5966 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5967
5968 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5969 BUG_ON(!p->exit_state);
1da177e4
LT
5970
5971 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5972 BUG_ON(p->state == TASK_DEAD);
1da177e4 5973
48f24c4d 5974 get_task_struct(p);
1da177e4
LT
5975
5976 /*
5977 * Drop lock around migration; if someone else moves it,
41a2d6cf 5978 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
5979 * fine.
5980 */
f7b4cddc 5981 spin_unlock_irq(&rq->lock);
48f24c4d 5982 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5983 spin_lock_irq(&rq->lock);
1da177e4 5984
48f24c4d 5985 put_task_struct(p);
1da177e4
LT
5986}
5987
5988/* release_task() removes task from tasklist, so we won't find dead tasks. */
5989static void migrate_dead_tasks(unsigned int dead_cpu)
5990{
70b97a7f 5991 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5992 struct task_struct *next;
48f24c4d 5993
dd41f596
IM
5994 for ( ; ; ) {
5995 if (!rq->nr_running)
5996 break;
a8e504d2 5997 update_rq_clock(rq);
ff95f3df 5998 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5999 if (!next)
6000 break;
6001 migrate_dead(dead_cpu, next);
e692ab53 6002
1da177e4
LT
6003 }
6004}
6005#endif /* CONFIG_HOTPLUG_CPU */
6006
e692ab53
NP
6007#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6008
6009static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6010 {
6011 .procname = "sched_domain",
c57baf1e 6012 .mode = 0555,
e0361851 6013 },
38605cae 6014 {0, },
e692ab53
NP
6015};
6016
6017static struct ctl_table sd_ctl_root[] = {
e0361851 6018 {
c57baf1e 6019 .ctl_name = CTL_KERN,
e0361851 6020 .procname = "kernel",
c57baf1e 6021 .mode = 0555,
e0361851
AD
6022 .child = sd_ctl_dir,
6023 },
38605cae 6024 {0, },
e692ab53
NP
6025};
6026
6027static struct ctl_table *sd_alloc_ctl_entry(int n)
6028{
6029 struct ctl_table *entry =
5cf9f062 6030 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6031
e692ab53
NP
6032 return entry;
6033}
6034
6382bc90
MM
6035static void sd_free_ctl_entry(struct ctl_table **tablep)
6036{
cd790076 6037 struct ctl_table *entry;
6382bc90 6038
cd790076
MM
6039 /*
6040 * In the intermediate directories, both the child directory and
6041 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6042 * will always be set. In the lowest directory the names are
cd790076
MM
6043 * static strings and all have proc handlers.
6044 */
6045 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6046 if (entry->child)
6047 sd_free_ctl_entry(&entry->child);
cd790076
MM
6048 if (entry->proc_handler == NULL)
6049 kfree(entry->procname);
6050 }
6382bc90
MM
6051
6052 kfree(*tablep);
6053 *tablep = NULL;
6054}
6055
e692ab53 6056static void
e0361851 6057set_table_entry(struct ctl_table *entry,
e692ab53
NP
6058 const char *procname, void *data, int maxlen,
6059 mode_t mode, proc_handler *proc_handler)
6060{
e692ab53
NP
6061 entry->procname = procname;
6062 entry->data = data;
6063 entry->maxlen = maxlen;
6064 entry->mode = mode;
6065 entry->proc_handler = proc_handler;
6066}
6067
6068static struct ctl_table *
6069sd_alloc_ctl_domain_table(struct sched_domain *sd)
6070{
ace8b3d6 6071 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 6072
ad1cdc1d
MM
6073 if (table == NULL)
6074 return NULL;
6075
e0361851 6076 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6077 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6078 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6079 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6080 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6081 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6082 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6083 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6084 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6085 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6086 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6087 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6088 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6089 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6090 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6091 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6092 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6093 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6094 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6095 &sd->cache_nice_tries,
6096 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6097 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6098 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 6099 /* &table[11] is terminator */
e692ab53
NP
6100
6101 return table;
6102}
6103
9a4e7159 6104static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6105{
6106 struct ctl_table *entry, *table;
6107 struct sched_domain *sd;
6108 int domain_num = 0, i;
6109 char buf[32];
6110
6111 for_each_domain(cpu, sd)
6112 domain_num++;
6113 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6114 if (table == NULL)
6115 return NULL;
e692ab53
NP
6116
6117 i = 0;
6118 for_each_domain(cpu, sd) {
6119 snprintf(buf, 32, "domain%d", i);
e692ab53 6120 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6121 entry->mode = 0555;
e692ab53
NP
6122 entry->child = sd_alloc_ctl_domain_table(sd);
6123 entry++;
6124 i++;
6125 }
6126 return table;
6127}
6128
6129static struct ctl_table_header *sd_sysctl_header;
6382bc90 6130static void register_sched_domain_sysctl(void)
e692ab53
NP
6131{
6132 int i, cpu_num = num_online_cpus();
6133 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6134 char buf[32];
6135
7378547f
MM
6136 WARN_ON(sd_ctl_dir[0].child);
6137 sd_ctl_dir[0].child = entry;
6138
ad1cdc1d
MM
6139 if (entry == NULL)
6140 return;
6141
97b6ea7b 6142 for_each_online_cpu(i) {
e692ab53 6143 snprintf(buf, 32, "cpu%d", i);
e692ab53 6144 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6145 entry->mode = 0555;
e692ab53 6146 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6147 entry++;
e692ab53 6148 }
7378547f
MM
6149
6150 WARN_ON(sd_sysctl_header);
e692ab53
NP
6151 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6152}
6382bc90 6153
7378547f 6154/* may be called multiple times per register */
6382bc90
MM
6155static void unregister_sched_domain_sysctl(void)
6156{
7378547f
MM
6157 if (sd_sysctl_header)
6158 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6159 sd_sysctl_header = NULL;
7378547f
MM
6160 if (sd_ctl_dir[0].child)
6161 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6162}
e692ab53 6163#else
6382bc90
MM
6164static void register_sched_domain_sysctl(void)
6165{
6166}
6167static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6168{
6169}
6170#endif
6171
1f11eb6a
GH
6172static void set_rq_online(struct rq *rq)
6173{
6174 if (!rq->online) {
6175 const struct sched_class *class;
6176
6177 cpu_set(rq->cpu, rq->rd->online);
6178 rq->online = 1;
6179
6180 for_each_class(class) {
6181 if (class->rq_online)
6182 class->rq_online(rq);
6183 }
6184 }
6185}
6186
6187static void set_rq_offline(struct rq *rq)
6188{
6189 if (rq->online) {
6190 const struct sched_class *class;
6191
6192 for_each_class(class) {
6193 if (class->rq_offline)
6194 class->rq_offline(rq);
6195 }
6196
6197 cpu_clear(rq->cpu, rq->rd->online);
6198 rq->online = 0;
6199 }
6200}
6201
1da177e4
LT
6202/*
6203 * migration_call - callback that gets triggered when a CPU is added.
6204 * Here we can start up the necessary migration thread for the new CPU.
6205 */
48f24c4d
IM
6206static int __cpuinit
6207migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6208{
1da177e4 6209 struct task_struct *p;
48f24c4d 6210 int cpu = (long)hcpu;
1da177e4 6211 unsigned long flags;
70b97a7f 6212 struct rq *rq;
1da177e4
LT
6213
6214 switch (action) {
5be9361c 6215
1da177e4 6216 case CPU_UP_PREPARE:
8bb78442 6217 case CPU_UP_PREPARE_FROZEN:
dd41f596 6218 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6219 if (IS_ERR(p))
6220 return NOTIFY_BAD;
1da177e4
LT
6221 kthread_bind(p, cpu);
6222 /* Must be high prio: stop_machine expects to yield to it. */
6223 rq = task_rq_lock(p, &flags);
dd41f596 6224 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6225 task_rq_unlock(rq, &flags);
6226 cpu_rq(cpu)->migration_thread = p;
6227 break;
48f24c4d 6228
1da177e4 6229 case CPU_ONLINE:
8bb78442 6230 case CPU_ONLINE_FROZEN:
3a4fa0a2 6231 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6232 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6233
6234 /* Update our root-domain */
6235 rq = cpu_rq(cpu);
6236 spin_lock_irqsave(&rq->lock, flags);
6237 if (rq->rd) {
6238 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a
GH
6239
6240 set_rq_online(rq);
1f94ef59
GH
6241 }
6242 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6243 break;
48f24c4d 6244
1da177e4
LT
6245#ifdef CONFIG_HOTPLUG_CPU
6246 case CPU_UP_CANCELED:
8bb78442 6247 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6248 if (!cpu_rq(cpu)->migration_thread)
6249 break;
41a2d6cf 6250 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
6251 kthread_bind(cpu_rq(cpu)->migration_thread,
6252 any_online_cpu(cpu_online_map));
1da177e4
LT
6253 kthread_stop(cpu_rq(cpu)->migration_thread);
6254 cpu_rq(cpu)->migration_thread = NULL;
6255 break;
48f24c4d 6256
1da177e4 6257 case CPU_DEAD:
8bb78442 6258 case CPU_DEAD_FROZEN:
470fd646 6259 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6260 migrate_live_tasks(cpu);
6261 rq = cpu_rq(cpu);
6262 kthread_stop(rq->migration_thread);
6263 rq->migration_thread = NULL;
6264 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6265 spin_lock_irq(&rq->lock);
a8e504d2 6266 update_rq_clock(rq);
2e1cb74a 6267 deactivate_task(rq, rq->idle, 0);
1da177e4 6268 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6269 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6270 rq->idle->sched_class = &idle_sched_class;
1da177e4 6271 migrate_dead_tasks(cpu);
d2da272a 6272 spin_unlock_irq(&rq->lock);
470fd646 6273 cpuset_unlock();
1da177e4
LT
6274 migrate_nr_uninterruptible(rq);
6275 BUG_ON(rq->nr_running != 0);
6276
41a2d6cf
IM
6277 /*
6278 * No need to migrate the tasks: it was best-effort if
6279 * they didn't take sched_hotcpu_mutex. Just wake up
6280 * the requestors.
6281 */
1da177e4
LT
6282 spin_lock_irq(&rq->lock);
6283 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6284 struct migration_req *req;
6285
1da177e4 6286 req = list_entry(rq->migration_queue.next,
70b97a7f 6287 struct migration_req, list);
1da177e4
LT
6288 list_del_init(&req->list);
6289 complete(&req->done);
6290 }
6291 spin_unlock_irq(&rq->lock);
6292 break;
57d885fe 6293
08f503b0
GH
6294 case CPU_DYING:
6295 case CPU_DYING_FROZEN:
57d885fe
GH
6296 /* Update our root-domain */
6297 rq = cpu_rq(cpu);
6298 spin_lock_irqsave(&rq->lock, flags);
6299 if (rq->rd) {
6300 BUG_ON(!cpu_isset(cpu, rq->rd->span));
1f11eb6a 6301 set_rq_offline(rq);
57d885fe
GH
6302 }
6303 spin_unlock_irqrestore(&rq->lock, flags);
6304 break;
1da177e4
LT
6305#endif
6306 }
6307 return NOTIFY_OK;
6308}
6309
6310/* Register at highest priority so that task migration (migrate_all_tasks)
6311 * happens before everything else.
6312 */
26c2143b 6313static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6314 .notifier_call = migration_call,
6315 .priority = 10
6316};
6317
e6fe6649 6318void __init migration_init(void)
1da177e4
LT
6319{
6320 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6321 int err;
48f24c4d
IM
6322
6323 /* Start one for the boot CPU: */
07dccf33
AM
6324 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6325 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6326 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6327 register_cpu_notifier(&migration_notifier);
1da177e4
LT
6328}
6329#endif
6330
6331#ifdef CONFIG_SMP
476f3534 6332
3e9830dc 6333#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6334
099f98c8
GS
6335static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6336{
6337 switch (lvl) {
6338 case SD_LV_NONE:
6339 return "NONE";
6340 case SD_LV_SIBLING:
6341 return "SIBLING";
6342 case SD_LV_MC:
6343 return "MC";
6344 case SD_LV_CPU:
6345 return "CPU";
6346 case SD_LV_NODE:
6347 return "NODE";
6348 case SD_LV_ALLNODES:
6349 return "ALLNODES";
6350 case SD_LV_MAX:
6351 return "MAX";
6352
6353 }
6354 return "MAX";
6355}
6356
7c16ec58
MT
6357static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6358 cpumask_t *groupmask)
1da177e4 6359{
4dcf6aff 6360 struct sched_group *group = sd->groups;
434d53b0 6361 char str[256];
1da177e4 6362
434d53b0 6363 cpulist_scnprintf(str, sizeof(str), sd->span);
7c16ec58 6364 cpus_clear(*groupmask);
4dcf6aff
IM
6365
6366 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6367
6368 if (!(sd->flags & SD_LOAD_BALANCE)) {
6369 printk("does not load-balance\n");
6370 if (sd->parent)
6371 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6372 " has parent");
6373 return -1;
41c7ce9a
NP
6374 }
6375
099f98c8
GS
6376 printk(KERN_CONT "span %s level %s\n",
6377 str, sd_level_to_string(sd->level));
4dcf6aff
IM
6378
6379 if (!cpu_isset(cpu, sd->span)) {
6380 printk(KERN_ERR "ERROR: domain->span does not contain "
6381 "CPU%d\n", cpu);
6382 }
6383 if (!cpu_isset(cpu, group->cpumask)) {
6384 printk(KERN_ERR "ERROR: domain->groups does not contain"
6385 " CPU%d\n", cpu);
6386 }
1da177e4 6387
4dcf6aff 6388 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6389 do {
4dcf6aff
IM
6390 if (!group) {
6391 printk("\n");
6392 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6393 break;
6394 }
6395
4dcf6aff
IM
6396 if (!group->__cpu_power) {
6397 printk(KERN_CONT "\n");
6398 printk(KERN_ERR "ERROR: domain->cpu_power not "
6399 "set\n");
6400 break;
6401 }
1da177e4 6402
4dcf6aff
IM
6403 if (!cpus_weight(group->cpumask)) {
6404 printk(KERN_CONT "\n");
6405 printk(KERN_ERR "ERROR: empty group\n");
6406 break;
6407 }
1da177e4 6408
7c16ec58 6409 if (cpus_intersects(*groupmask, group->cpumask)) {
4dcf6aff
IM
6410 printk(KERN_CONT "\n");
6411 printk(KERN_ERR "ERROR: repeated CPUs\n");
6412 break;
6413 }
1da177e4 6414
7c16ec58 6415 cpus_or(*groupmask, *groupmask, group->cpumask);
1da177e4 6416
434d53b0 6417 cpulist_scnprintf(str, sizeof(str), group->cpumask);
4dcf6aff 6418 printk(KERN_CONT " %s", str);
1da177e4 6419
4dcf6aff
IM
6420 group = group->next;
6421 } while (group != sd->groups);
6422 printk(KERN_CONT "\n");
1da177e4 6423
7c16ec58 6424 if (!cpus_equal(sd->span, *groupmask))
4dcf6aff 6425 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6426
7c16ec58 6427 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
4dcf6aff
IM
6428 printk(KERN_ERR "ERROR: parent span is not a superset "
6429 "of domain->span\n");
6430 return 0;
6431}
1da177e4 6432
4dcf6aff
IM
6433static void sched_domain_debug(struct sched_domain *sd, int cpu)
6434{
7c16ec58 6435 cpumask_t *groupmask;
4dcf6aff 6436 int level = 0;
1da177e4 6437
4dcf6aff
IM
6438 if (!sd) {
6439 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6440 return;
6441 }
1da177e4 6442
4dcf6aff
IM
6443 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6444
7c16ec58
MT
6445 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6446 if (!groupmask) {
6447 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6448 return;
6449 }
6450
4dcf6aff 6451 for (;;) {
7c16ec58 6452 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 6453 break;
1da177e4
LT
6454 level++;
6455 sd = sd->parent;
33859f7f 6456 if (!sd)
4dcf6aff
IM
6457 break;
6458 }
7c16ec58 6459 kfree(groupmask);
1da177e4 6460}
6d6bc0ad 6461#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 6462# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 6463#endif /* CONFIG_SCHED_DEBUG */
1da177e4 6464
1a20ff27 6465static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
6466{
6467 if (cpus_weight(sd->span) == 1)
6468 return 1;
6469
6470 /* Following flags need at least 2 groups */
6471 if (sd->flags & (SD_LOAD_BALANCE |
6472 SD_BALANCE_NEWIDLE |
6473 SD_BALANCE_FORK |
89c4710e
SS
6474 SD_BALANCE_EXEC |
6475 SD_SHARE_CPUPOWER |
6476 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
6477 if (sd->groups != sd->groups->next)
6478 return 0;
6479 }
6480
6481 /* Following flags don't use groups */
6482 if (sd->flags & (SD_WAKE_IDLE |
6483 SD_WAKE_AFFINE |
6484 SD_WAKE_BALANCE))
6485 return 0;
6486
6487 return 1;
6488}
6489
48f24c4d
IM
6490static int
6491sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
6492{
6493 unsigned long cflags = sd->flags, pflags = parent->flags;
6494
6495 if (sd_degenerate(parent))
6496 return 1;
6497
6498 if (!cpus_equal(sd->span, parent->span))
6499 return 0;
6500
6501 /* Does parent contain flags not in child? */
6502 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6503 if (cflags & SD_WAKE_AFFINE)
6504 pflags &= ~SD_WAKE_BALANCE;
6505 /* Flags needing groups don't count if only 1 group in parent */
6506 if (parent->groups == parent->groups->next) {
6507 pflags &= ~(SD_LOAD_BALANCE |
6508 SD_BALANCE_NEWIDLE |
6509 SD_BALANCE_FORK |
89c4710e
SS
6510 SD_BALANCE_EXEC |
6511 SD_SHARE_CPUPOWER |
6512 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
6513 }
6514 if (~cflags & pflags)
6515 return 0;
6516
6517 return 1;
6518}
6519
57d885fe
GH
6520static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6521{
6522 unsigned long flags;
57d885fe
GH
6523
6524 spin_lock_irqsave(&rq->lock, flags);
6525
6526 if (rq->rd) {
6527 struct root_domain *old_rd = rq->rd;
6528
1f11eb6a
GH
6529 if (cpu_isset(rq->cpu, old_rd->online))
6530 set_rq_offline(rq);
57d885fe 6531
dc938520 6532 cpu_clear(rq->cpu, old_rd->span);
dc938520 6533
57d885fe
GH
6534 if (atomic_dec_and_test(&old_rd->refcount))
6535 kfree(old_rd);
6536 }
6537
6538 atomic_inc(&rd->refcount);
6539 rq->rd = rd;
6540
dc938520 6541 cpu_set(rq->cpu, rd->span);
1f94ef59 6542 if (cpu_isset(rq->cpu, cpu_online_map))
1f11eb6a 6543 set_rq_online(rq);
57d885fe
GH
6544
6545 spin_unlock_irqrestore(&rq->lock, flags);
6546}
6547
dc938520 6548static void init_rootdomain(struct root_domain *rd)
57d885fe
GH
6549{
6550 memset(rd, 0, sizeof(*rd));
6551
dc938520
GH
6552 cpus_clear(rd->span);
6553 cpus_clear(rd->online);
6e0534f2
GH
6554
6555 cpupri_init(&rd->cpupri);
57d885fe
GH
6556}
6557
6558static void init_defrootdomain(void)
6559{
dc938520 6560 init_rootdomain(&def_root_domain);
57d885fe
GH
6561 atomic_set(&def_root_domain.refcount, 1);
6562}
6563
dc938520 6564static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
6565{
6566 struct root_domain *rd;
6567
6568 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6569 if (!rd)
6570 return NULL;
6571
dc938520 6572 init_rootdomain(rd);
57d885fe
GH
6573
6574 return rd;
6575}
6576
1da177e4 6577/*
0eab9146 6578 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
6579 * hold the hotplug lock.
6580 */
0eab9146
IM
6581static void
6582cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 6583{
70b97a7f 6584 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
6585 struct sched_domain *tmp;
6586
6587 /* Remove the sched domains which do not contribute to scheduling. */
6588 for (tmp = sd; tmp; tmp = tmp->parent) {
6589 struct sched_domain *parent = tmp->parent;
6590 if (!parent)
6591 break;
1a848870 6592 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 6593 tmp->parent = parent->parent;
1a848870
SS
6594 if (parent->parent)
6595 parent->parent->child = tmp;
6596 }
245af2c7
SS
6597 }
6598
1a848870 6599 if (sd && sd_degenerate(sd)) {
245af2c7 6600 sd = sd->parent;
1a848870
SS
6601 if (sd)
6602 sd->child = NULL;
6603 }
1da177e4
LT
6604
6605 sched_domain_debug(sd, cpu);
6606
57d885fe 6607 rq_attach_root(rq, rd);
674311d5 6608 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
6609}
6610
6611/* cpus with isolated domains */
67af63a6 6612static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
6613
6614/* Setup the mask of cpus configured for isolated domains */
6615static int __init isolated_cpu_setup(char *str)
6616{
6617 int ints[NR_CPUS], i;
6618
6619 str = get_options(str, ARRAY_SIZE(ints), ints);
6620 cpus_clear(cpu_isolated_map);
6621 for (i = 1; i <= ints[0]; i++)
6622 if (ints[i] < NR_CPUS)
6623 cpu_set(ints[i], cpu_isolated_map);
6624 return 1;
6625}
6626
8927f494 6627__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
6628
6629/*
6711cab4
SS
6630 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6631 * to a function which identifies what group(along with sched group) a CPU
6632 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6633 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
6634 *
6635 * init_sched_build_groups will build a circular linked list of the groups
6636 * covered by the given span, and will set each group's ->cpumask correctly,
6637 * and ->cpu_power to 0.
6638 */
a616058b 6639static void
7c16ec58 6640init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6711cab4 6641 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
7c16ec58
MT
6642 struct sched_group **sg,
6643 cpumask_t *tmpmask),
6644 cpumask_t *covered, cpumask_t *tmpmask)
1da177e4
LT
6645{
6646 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
6647 int i;
6648
7c16ec58
MT
6649 cpus_clear(*covered);
6650
6651 for_each_cpu_mask(i, *span) {
6711cab4 6652 struct sched_group *sg;
7c16ec58 6653 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
6654 int j;
6655
7c16ec58 6656 if (cpu_isset(i, *covered))
1da177e4
LT
6657 continue;
6658
7c16ec58 6659 cpus_clear(sg->cpumask);
5517d86b 6660 sg->__cpu_power = 0;
1da177e4 6661
7c16ec58
MT
6662 for_each_cpu_mask(j, *span) {
6663 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
6664 continue;
6665
7c16ec58 6666 cpu_set(j, *covered);
1da177e4
LT
6667 cpu_set(j, sg->cpumask);
6668 }
6669 if (!first)
6670 first = sg;
6671 if (last)
6672 last->next = sg;
6673 last = sg;
6674 }
6675 last->next = first;
6676}
6677
9c1cfda2 6678#define SD_NODES_PER_DOMAIN 16
1da177e4 6679
9c1cfda2 6680#ifdef CONFIG_NUMA
198e2f18 6681
9c1cfda2
JH
6682/**
6683 * find_next_best_node - find the next node to include in a sched_domain
6684 * @node: node whose sched_domain we're building
6685 * @used_nodes: nodes already in the sched_domain
6686 *
41a2d6cf 6687 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
6688 * finds the closest node not already in the @used_nodes map.
6689 *
6690 * Should use nodemask_t.
6691 */
c5f59f08 6692static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
6693{
6694 int i, n, val, min_val, best_node = 0;
6695
6696 min_val = INT_MAX;
6697
6698 for (i = 0; i < MAX_NUMNODES; i++) {
6699 /* Start at @node */
6700 n = (node + i) % MAX_NUMNODES;
6701
6702 if (!nr_cpus_node(n))
6703 continue;
6704
6705 /* Skip already used nodes */
c5f59f08 6706 if (node_isset(n, *used_nodes))
9c1cfda2
JH
6707 continue;
6708
6709 /* Simple min distance search */
6710 val = node_distance(node, n);
6711
6712 if (val < min_val) {
6713 min_val = val;
6714 best_node = n;
6715 }
6716 }
6717
c5f59f08 6718 node_set(best_node, *used_nodes);
9c1cfda2
JH
6719 return best_node;
6720}
6721
6722/**
6723 * sched_domain_node_span - get a cpumask for a node's sched_domain
6724 * @node: node whose cpumask we're constructing
73486722 6725 * @span: resulting cpumask
9c1cfda2 6726 *
41a2d6cf 6727 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
6728 * should be one that prevents unnecessary balancing, but also spreads tasks
6729 * out optimally.
6730 */
4bdbaad3 6731static void sched_domain_node_span(int node, cpumask_t *span)
9c1cfda2 6732{
c5f59f08 6733 nodemask_t used_nodes;
c5f59f08 6734 node_to_cpumask_ptr(nodemask, node);
48f24c4d 6735 int i;
9c1cfda2 6736
4bdbaad3 6737 cpus_clear(*span);
c5f59f08 6738 nodes_clear(used_nodes);
9c1cfda2 6739
4bdbaad3 6740 cpus_or(*span, *span, *nodemask);
c5f59f08 6741 node_set(node, used_nodes);
9c1cfda2
JH
6742
6743 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 6744 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 6745
c5f59f08 6746 node_to_cpumask_ptr_next(nodemask, next_node);
4bdbaad3 6747 cpus_or(*span, *span, *nodemask);
9c1cfda2 6748 }
9c1cfda2 6749}
6d6bc0ad 6750#endif /* CONFIG_NUMA */
9c1cfda2 6751
5c45bf27 6752int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6753
9c1cfda2 6754/*
48f24c4d 6755 * SMT sched-domains:
9c1cfda2 6756 */
1da177e4
LT
6757#ifdef CONFIG_SCHED_SMT
6758static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6759static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6760
41a2d6cf 6761static int
7c16ec58
MT
6762cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6763 cpumask_t *unused)
1da177e4 6764{
6711cab4
SS
6765 if (sg)
6766 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6767 return cpu;
6768}
6d6bc0ad 6769#endif /* CONFIG_SCHED_SMT */
1da177e4 6770
48f24c4d
IM
6771/*
6772 * multi-core sched-domains:
6773 */
1e9f28fa
SS
6774#ifdef CONFIG_SCHED_MC
6775static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6776static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6d6bc0ad 6777#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
6778
6779#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 6780static int
7c16ec58
MT
6781cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6782 cpumask_t *mask)
1e9f28fa 6783{
6711cab4 6784 int group;
7c16ec58
MT
6785
6786 *mask = per_cpu(cpu_sibling_map, cpu);
6787 cpus_and(*mask, *mask, *cpu_map);
6788 group = first_cpu(*mask);
6711cab4
SS
6789 if (sg)
6790 *sg = &per_cpu(sched_group_core, group);
6791 return group;
1e9f28fa
SS
6792}
6793#elif defined(CONFIG_SCHED_MC)
41a2d6cf 6794static int
7c16ec58
MT
6795cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6796 cpumask_t *unused)
1e9f28fa 6797{
6711cab4
SS
6798 if (sg)
6799 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6800 return cpu;
6801}
6802#endif
6803
1da177e4 6804static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6805static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6806
41a2d6cf 6807static int
7c16ec58
MT
6808cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6809 cpumask_t *mask)
1da177e4 6810{
6711cab4 6811 int group;
48f24c4d 6812#ifdef CONFIG_SCHED_MC
7c16ec58
MT
6813 *mask = cpu_coregroup_map(cpu);
6814 cpus_and(*mask, *mask, *cpu_map);
6815 group = first_cpu(*mask);
1e9f28fa 6816#elif defined(CONFIG_SCHED_SMT)
7c16ec58
MT
6817 *mask = per_cpu(cpu_sibling_map, cpu);
6818 cpus_and(*mask, *mask, *cpu_map);
6819 group = first_cpu(*mask);
1da177e4 6820#else
6711cab4 6821 group = cpu;
1da177e4 6822#endif
6711cab4
SS
6823 if (sg)
6824 *sg = &per_cpu(sched_group_phys, group);
6825 return group;
1da177e4
LT
6826}
6827
6828#ifdef CONFIG_NUMA
1da177e4 6829/*
9c1cfda2
JH
6830 * The init_sched_build_groups can't handle what we want to do with node
6831 * groups, so roll our own. Now each node has its own list of groups which
6832 * gets dynamically allocated.
1da177e4 6833 */
9c1cfda2 6834static DEFINE_PER_CPU(struct sched_domain, node_domains);
434d53b0 6835static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 6836
9c1cfda2 6837static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6838static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6839
6711cab4 6840static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7c16ec58 6841 struct sched_group **sg, cpumask_t *nodemask)
9c1cfda2 6842{
6711cab4
SS
6843 int group;
6844
7c16ec58
MT
6845 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6846 cpus_and(*nodemask, *nodemask, *cpu_map);
6847 group = first_cpu(*nodemask);
6711cab4
SS
6848
6849 if (sg)
6850 *sg = &per_cpu(sched_group_allnodes, group);
6851 return group;
1da177e4 6852}
6711cab4 6853
08069033
SS
6854static void init_numa_sched_groups_power(struct sched_group *group_head)
6855{
6856 struct sched_group *sg = group_head;
6857 int j;
6858
6859 if (!sg)
6860 return;
3a5c359a
AK
6861 do {
6862 for_each_cpu_mask(j, sg->cpumask) {
6863 struct sched_domain *sd;
08069033 6864
3a5c359a
AK
6865 sd = &per_cpu(phys_domains, j);
6866 if (j != first_cpu(sd->groups->cpumask)) {
6867 /*
6868 * Only add "power" once for each
6869 * physical package.
6870 */
6871 continue;
6872 }
08069033 6873
3a5c359a
AK
6874 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6875 }
6876 sg = sg->next;
6877 } while (sg != group_head);
08069033 6878}
6d6bc0ad 6879#endif /* CONFIG_NUMA */
1da177e4 6880
a616058b 6881#ifdef CONFIG_NUMA
51888ca2 6882/* Free memory allocated for various sched_group structures */
7c16ec58 6883static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
51888ca2 6884{
a616058b 6885 int cpu, i;
51888ca2
SV
6886
6887 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6888 struct sched_group **sched_group_nodes
6889 = sched_group_nodes_bycpu[cpu];
6890
51888ca2
SV
6891 if (!sched_group_nodes)
6892 continue;
6893
6894 for (i = 0; i < MAX_NUMNODES; i++) {
51888ca2
SV
6895 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6896
7c16ec58
MT
6897 *nodemask = node_to_cpumask(i);
6898 cpus_and(*nodemask, *nodemask, *cpu_map);
6899 if (cpus_empty(*nodemask))
51888ca2
SV
6900 continue;
6901
6902 if (sg == NULL)
6903 continue;
6904 sg = sg->next;
6905next_sg:
6906 oldsg = sg;
6907 sg = sg->next;
6908 kfree(oldsg);
6909 if (oldsg != sched_group_nodes[i])
6910 goto next_sg;
6911 }
6912 kfree(sched_group_nodes);
6913 sched_group_nodes_bycpu[cpu] = NULL;
6914 }
51888ca2 6915}
6d6bc0ad 6916#else /* !CONFIG_NUMA */
7c16ec58 6917static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
a616058b
SS
6918{
6919}
6d6bc0ad 6920#endif /* CONFIG_NUMA */
51888ca2 6921
89c4710e
SS
6922/*
6923 * Initialize sched groups cpu_power.
6924 *
6925 * cpu_power indicates the capacity of sched group, which is used while
6926 * distributing the load between different sched groups in a sched domain.
6927 * Typically cpu_power for all the groups in a sched domain will be same unless
6928 * there are asymmetries in the topology. If there are asymmetries, group
6929 * having more cpu_power will pickup more load compared to the group having
6930 * less cpu_power.
6931 *
6932 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6933 * the maximum number of tasks a group can handle in the presence of other idle
6934 * or lightly loaded groups in the same sched domain.
6935 */
6936static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6937{
6938 struct sched_domain *child;
6939 struct sched_group *group;
6940
6941 WARN_ON(!sd || !sd->groups);
6942
6943 if (cpu != first_cpu(sd->groups->cpumask))
6944 return;
6945
6946 child = sd->child;
6947
5517d86b
ED
6948 sd->groups->__cpu_power = 0;
6949
89c4710e
SS
6950 /*
6951 * For perf policy, if the groups in child domain share resources
6952 * (for example cores sharing some portions of the cache hierarchy
6953 * or SMT), then set this domain groups cpu_power such that each group
6954 * can handle only one task, when there are other idle groups in the
6955 * same sched domain.
6956 */
6957 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6958 (child->flags &
6959 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6960 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6961 return;
6962 }
6963
89c4710e
SS
6964 /*
6965 * add cpu_power of each child group to this groups cpu_power
6966 */
6967 group = child->groups;
6968 do {
5517d86b 6969 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6970 group = group->next;
6971 } while (group != child->groups);
6972}
6973
7c16ec58
MT
6974/*
6975 * Initializers for schedule domains
6976 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6977 */
6978
6979#define SD_INIT(sd, type) sd_init_##type(sd)
6980#define SD_INIT_FUNC(type) \
6981static noinline void sd_init_##type(struct sched_domain *sd) \
6982{ \
6983 memset(sd, 0, sizeof(*sd)); \
6984 *sd = SD_##type##_INIT; \
1d3504fc 6985 sd->level = SD_LV_##type; \
7c16ec58
MT
6986}
6987
6988SD_INIT_FUNC(CPU)
6989#ifdef CONFIG_NUMA
6990 SD_INIT_FUNC(ALLNODES)
6991 SD_INIT_FUNC(NODE)
6992#endif
6993#ifdef CONFIG_SCHED_SMT
6994 SD_INIT_FUNC(SIBLING)
6995#endif
6996#ifdef CONFIG_SCHED_MC
6997 SD_INIT_FUNC(MC)
6998#endif
6999
7000/*
7001 * To minimize stack usage kmalloc room for cpumasks and share the
7002 * space as the usage in build_sched_domains() dictates. Used only
7003 * if the amount of space is significant.
7004 */
7005struct allmasks {
7006 cpumask_t tmpmask; /* make this one first */
7007 union {
7008 cpumask_t nodemask;
7009 cpumask_t this_sibling_map;
7010 cpumask_t this_core_map;
7011 };
7012 cpumask_t send_covered;
7013
7014#ifdef CONFIG_NUMA
7015 cpumask_t domainspan;
7016 cpumask_t covered;
7017 cpumask_t notcovered;
7018#endif
7019};
7020
7021#if NR_CPUS > 128
7022#define SCHED_CPUMASK_ALLOC 1
7023#define SCHED_CPUMASK_FREE(v) kfree(v)
7024#define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7025#else
7026#define SCHED_CPUMASK_ALLOC 0
7027#define SCHED_CPUMASK_FREE(v)
7028#define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7029#endif
7030
7031#define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7032 ((unsigned long)(a) + offsetof(struct allmasks, v))
7033
1d3504fc
HS
7034static int default_relax_domain_level = -1;
7035
7036static int __init setup_relax_domain_level(char *str)
7037{
30e0e178
LZ
7038 unsigned long val;
7039
7040 val = simple_strtoul(str, NULL, 0);
7041 if (val < SD_LV_MAX)
7042 default_relax_domain_level = val;
7043
1d3504fc
HS
7044 return 1;
7045}
7046__setup("relax_domain_level=", setup_relax_domain_level);
7047
7048static void set_domain_attribute(struct sched_domain *sd,
7049 struct sched_domain_attr *attr)
7050{
7051 int request;
7052
7053 if (!attr || attr->relax_domain_level < 0) {
7054 if (default_relax_domain_level < 0)
7055 return;
7056 else
7057 request = default_relax_domain_level;
7058 } else
7059 request = attr->relax_domain_level;
7060 if (request < sd->level) {
7061 /* turn off idle balance on this domain */
7062 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7063 } else {
7064 /* turn on idle balance on this domain */
7065 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7066 }
7067}
7068
1da177e4 7069/*
1a20ff27
DG
7070 * Build sched domains for a given set of cpus and attach the sched domains
7071 * to the individual cpus
1da177e4 7072 */
1d3504fc
HS
7073static int __build_sched_domains(const cpumask_t *cpu_map,
7074 struct sched_domain_attr *attr)
1da177e4
LT
7075{
7076 int i;
57d885fe 7077 struct root_domain *rd;
7c16ec58
MT
7078 SCHED_CPUMASK_DECLARE(allmasks);
7079 cpumask_t *tmpmask;
d1b55138
JH
7080#ifdef CONFIG_NUMA
7081 struct sched_group **sched_group_nodes = NULL;
6711cab4 7082 int sd_allnodes = 0;
d1b55138
JH
7083
7084 /*
7085 * Allocate the per-node list of sched groups
7086 */
5cf9f062 7087 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
41a2d6cf 7088 GFP_KERNEL);
d1b55138
JH
7089 if (!sched_group_nodes) {
7090 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 7091 return -ENOMEM;
d1b55138 7092 }
d1b55138 7093#endif
1da177e4 7094
dc938520 7095 rd = alloc_rootdomain();
57d885fe
GH
7096 if (!rd) {
7097 printk(KERN_WARNING "Cannot alloc root domain\n");
7c16ec58
MT
7098#ifdef CONFIG_NUMA
7099 kfree(sched_group_nodes);
7100#endif
57d885fe
GH
7101 return -ENOMEM;
7102 }
7103
7c16ec58
MT
7104#if SCHED_CPUMASK_ALLOC
7105 /* get space for all scratch cpumask variables */
7106 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7107 if (!allmasks) {
7108 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7109 kfree(rd);
7110#ifdef CONFIG_NUMA
7111 kfree(sched_group_nodes);
7112#endif
7113 return -ENOMEM;
7114 }
7115#endif
7116 tmpmask = (cpumask_t *)allmasks;
7117
7118
7119#ifdef CONFIG_NUMA
7120 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7121#endif
7122
1da177e4 7123 /*
1a20ff27 7124 * Set up domains for cpus specified by the cpu_map.
1da177e4 7125 */
1a20ff27 7126 for_each_cpu_mask(i, *cpu_map) {
1da177e4 7127 struct sched_domain *sd = NULL, *p;
7c16ec58 7128 SCHED_CPUMASK_VAR(nodemask, allmasks);
1da177e4 7129
7c16ec58
MT
7130 *nodemask = node_to_cpumask(cpu_to_node(i));
7131 cpus_and(*nodemask, *nodemask, *cpu_map);
1da177e4
LT
7132
7133#ifdef CONFIG_NUMA
dd41f596 7134 if (cpus_weight(*cpu_map) >
7c16ec58 7135 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
9c1cfda2 7136 sd = &per_cpu(allnodes_domains, i);
7c16ec58 7137 SD_INIT(sd, ALLNODES);
1d3504fc 7138 set_domain_attribute(sd, attr);
9c1cfda2 7139 sd->span = *cpu_map;
7c16ec58 7140 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7141 p = sd;
6711cab4 7142 sd_allnodes = 1;
9c1cfda2
JH
7143 } else
7144 p = NULL;
7145
1da177e4 7146 sd = &per_cpu(node_domains, i);
7c16ec58 7147 SD_INIT(sd, NODE);
1d3504fc 7148 set_domain_attribute(sd, attr);
4bdbaad3 7149 sched_domain_node_span(cpu_to_node(i), &sd->span);
9c1cfda2 7150 sd->parent = p;
1a848870
SS
7151 if (p)
7152 p->child = sd;
9c1cfda2 7153 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
7154#endif
7155
7156 p = sd;
7157 sd = &per_cpu(phys_domains, i);
7c16ec58 7158 SD_INIT(sd, CPU);
1d3504fc 7159 set_domain_attribute(sd, attr);
7c16ec58 7160 sd->span = *nodemask;
1da177e4 7161 sd->parent = p;
1a848870
SS
7162 if (p)
7163 p->child = sd;
7c16ec58 7164 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7165
1e9f28fa
SS
7166#ifdef CONFIG_SCHED_MC
7167 p = sd;
7168 sd = &per_cpu(core_domains, i);
7c16ec58 7169 SD_INIT(sd, MC);
1d3504fc 7170 set_domain_attribute(sd, attr);
1e9f28fa
SS
7171 sd->span = cpu_coregroup_map(i);
7172 cpus_and(sd->span, sd->span, *cpu_map);
7173 sd->parent = p;
1a848870 7174 p->child = sd;
7c16ec58 7175 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7176#endif
7177
1da177e4
LT
7178#ifdef CONFIG_SCHED_SMT
7179 p = sd;
7180 sd = &per_cpu(cpu_domains, i);
7c16ec58 7181 SD_INIT(sd, SIBLING);
1d3504fc 7182 set_domain_attribute(sd, attr);
d5a7430d 7183 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 7184 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 7185 sd->parent = p;
1a848870 7186 p->child = sd;
7c16ec58 7187 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7188#endif
7189 }
7190
7191#ifdef CONFIG_SCHED_SMT
7192 /* Set up CPU (sibling) groups */
9c1cfda2 7193 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7194 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7195 SCHED_CPUMASK_VAR(send_covered, allmasks);
7196
7197 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7198 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7199 if (i != first_cpu(*this_sibling_map))
1da177e4
LT
7200 continue;
7201
dd41f596 7202 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7203 &cpu_to_cpu_group,
7204 send_covered, tmpmask);
1da177e4
LT
7205 }
7206#endif
7207
1e9f28fa
SS
7208#ifdef CONFIG_SCHED_MC
7209 /* Set up multi-core groups */
7210 for_each_cpu_mask(i, *cpu_map) {
7c16ec58
MT
7211 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7212 SCHED_CPUMASK_VAR(send_covered, allmasks);
7213
7214 *this_core_map = cpu_coregroup_map(i);
7215 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7216 if (i != first_cpu(*this_core_map))
1e9f28fa 7217 continue;
7c16ec58 7218
dd41f596 7219 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7220 &cpu_to_core_group,
7221 send_covered, tmpmask);
1e9f28fa
SS
7222 }
7223#endif
7224
1da177e4
LT
7225 /* Set up physical groups */
7226 for (i = 0; i < MAX_NUMNODES; i++) {
7c16ec58
MT
7227 SCHED_CPUMASK_VAR(nodemask, allmasks);
7228 SCHED_CPUMASK_VAR(send_covered, allmasks);
1da177e4 7229
7c16ec58
MT
7230 *nodemask = node_to_cpumask(i);
7231 cpus_and(*nodemask, *nodemask, *cpu_map);
7232 if (cpus_empty(*nodemask))
1da177e4
LT
7233 continue;
7234
7c16ec58
MT
7235 init_sched_build_groups(nodemask, cpu_map,
7236 &cpu_to_phys_group,
7237 send_covered, tmpmask);
1da177e4
LT
7238 }
7239
7240#ifdef CONFIG_NUMA
7241 /* Set up node groups */
7c16ec58
MT
7242 if (sd_allnodes) {
7243 SCHED_CPUMASK_VAR(send_covered, allmasks);
7244
7245 init_sched_build_groups(cpu_map, cpu_map,
7246 &cpu_to_allnodes_group,
7247 send_covered, tmpmask);
7248 }
9c1cfda2
JH
7249
7250 for (i = 0; i < MAX_NUMNODES; i++) {
7251 /* Set up node groups */
7252 struct sched_group *sg, *prev;
7c16ec58
MT
7253 SCHED_CPUMASK_VAR(nodemask, allmasks);
7254 SCHED_CPUMASK_VAR(domainspan, allmasks);
7255 SCHED_CPUMASK_VAR(covered, allmasks);
9c1cfda2
JH
7256 int j;
7257
7c16ec58
MT
7258 *nodemask = node_to_cpumask(i);
7259 cpus_clear(*covered);
7260
7261 cpus_and(*nodemask, *nodemask, *cpu_map);
7262 if (cpus_empty(*nodemask)) {
d1b55138 7263 sched_group_nodes[i] = NULL;
9c1cfda2 7264 continue;
d1b55138 7265 }
9c1cfda2 7266
4bdbaad3 7267 sched_domain_node_span(i, domainspan);
7c16ec58 7268 cpus_and(*domainspan, *domainspan, *cpu_map);
9c1cfda2 7269
15f0b676 7270 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
7271 if (!sg) {
7272 printk(KERN_WARNING "Can not alloc domain group for "
7273 "node %d\n", i);
7274 goto error;
7275 }
9c1cfda2 7276 sched_group_nodes[i] = sg;
7c16ec58 7277 for_each_cpu_mask(j, *nodemask) {
9c1cfda2 7278 struct sched_domain *sd;
9761eea8 7279
9c1cfda2
JH
7280 sd = &per_cpu(node_domains, j);
7281 sd->groups = sg;
9c1cfda2 7282 }
5517d86b 7283 sg->__cpu_power = 0;
7c16ec58 7284 sg->cpumask = *nodemask;
51888ca2 7285 sg->next = sg;
7c16ec58 7286 cpus_or(*covered, *covered, *nodemask);
9c1cfda2
JH
7287 prev = sg;
7288
7289 for (j = 0; j < MAX_NUMNODES; j++) {
7c16ec58 7290 SCHED_CPUMASK_VAR(notcovered, allmasks);
9c1cfda2 7291 int n = (i + j) % MAX_NUMNODES;
c5f59f08 7292 node_to_cpumask_ptr(pnodemask, n);
9c1cfda2 7293
7c16ec58
MT
7294 cpus_complement(*notcovered, *covered);
7295 cpus_and(*tmpmask, *notcovered, *cpu_map);
7296 cpus_and(*tmpmask, *tmpmask, *domainspan);
7297 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7298 break;
7299
7c16ec58
MT
7300 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7301 if (cpus_empty(*tmpmask))
9c1cfda2
JH
7302 continue;
7303
15f0b676
SV
7304 sg = kmalloc_node(sizeof(struct sched_group),
7305 GFP_KERNEL, i);
9c1cfda2
JH
7306 if (!sg) {
7307 printk(KERN_WARNING
7308 "Can not alloc domain group for node %d\n", j);
51888ca2 7309 goto error;
9c1cfda2 7310 }
5517d86b 7311 sg->__cpu_power = 0;
7c16ec58 7312 sg->cpumask = *tmpmask;
51888ca2 7313 sg->next = prev->next;
7c16ec58 7314 cpus_or(*covered, *covered, *tmpmask);
9c1cfda2
JH
7315 prev->next = sg;
7316 prev = sg;
7317 }
9c1cfda2 7318 }
1da177e4
LT
7319#endif
7320
7321 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7322#ifdef CONFIG_SCHED_SMT
1a20ff27 7323 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7324 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7325
89c4710e 7326 init_sched_groups_power(i, sd);
5c45bf27 7327 }
1da177e4 7328#endif
1e9f28fa 7329#ifdef CONFIG_SCHED_MC
5c45bf27 7330 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7331 struct sched_domain *sd = &per_cpu(core_domains, i);
7332
89c4710e 7333 init_sched_groups_power(i, sd);
5c45bf27
SS
7334 }
7335#endif
1e9f28fa 7336
5c45bf27 7337 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
7338 struct sched_domain *sd = &per_cpu(phys_domains, i);
7339
89c4710e 7340 init_sched_groups_power(i, sd);
1da177e4
LT
7341 }
7342
9c1cfda2 7343#ifdef CONFIG_NUMA
08069033
SS
7344 for (i = 0; i < MAX_NUMNODES; i++)
7345 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7346
6711cab4
SS
7347 if (sd_allnodes) {
7348 struct sched_group *sg;
f712c0c7 7349
7c16ec58
MT
7350 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7351 tmpmask);
f712c0c7
SS
7352 init_numa_sched_groups_power(sg);
7353 }
9c1cfda2
JH
7354#endif
7355
1da177e4 7356 /* Attach the domains */
1a20ff27 7357 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
7358 struct sched_domain *sd;
7359#ifdef CONFIG_SCHED_SMT
7360 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
7361#elif defined(CONFIG_SCHED_MC)
7362 sd = &per_cpu(core_domains, i);
1da177e4
LT
7363#else
7364 sd = &per_cpu(phys_domains, i);
7365#endif
57d885fe 7366 cpu_attach_domain(sd, rd, i);
1da177e4 7367 }
51888ca2 7368
7c16ec58 7369 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2
SV
7370 return 0;
7371
a616058b 7372#ifdef CONFIG_NUMA
51888ca2 7373error:
7c16ec58
MT
7374 free_sched_groups(cpu_map, tmpmask);
7375 SCHED_CPUMASK_FREE((void *)allmasks);
51888ca2 7376 return -ENOMEM;
a616058b 7377#endif
1da177e4 7378}
029190c5 7379
1d3504fc
HS
7380static int build_sched_domains(const cpumask_t *cpu_map)
7381{
7382 return __build_sched_domains(cpu_map, NULL);
7383}
7384
029190c5
PJ
7385static cpumask_t *doms_cur; /* current sched domains */
7386static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7387static struct sched_domain_attr *dattr_cur;
7388 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7389
7390/*
7391 * Special case: If a kmalloc of a doms_cur partition (array of
7392 * cpumask_t) fails, then fallback to a single sched domain,
7393 * as determined by the single cpumask_t fallback_doms.
7394 */
7395static cpumask_t fallback_doms;
7396
22e52b07
HC
7397void __attribute__((weak)) arch_update_cpu_topology(void)
7398{
7399}
7400
5c8e1ed1
MK
7401/*
7402 * Free current domain masks.
7403 * Called after all cpus are attached to NULL domain.
7404 */
7405static void free_sched_domains(void)
7406{
7407 ndoms_cur = 0;
7408 if (doms_cur != &fallback_doms)
7409 kfree(doms_cur);
7410 doms_cur = &fallback_doms;
7411}
7412
1a20ff27 7413/*
41a2d6cf 7414 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7415 * For now this just excludes isolated cpus, but could be used to
7416 * exclude other special cases in the future.
1a20ff27 7417 */
51888ca2 7418static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 7419{
7378547f
MM
7420 int err;
7421
22e52b07 7422 arch_update_cpu_topology();
029190c5
PJ
7423 ndoms_cur = 1;
7424 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7425 if (!doms_cur)
7426 doms_cur = &fallback_doms;
7427 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
1d3504fc 7428 dattr_cur = NULL;
7378547f 7429 err = build_sched_domains(doms_cur);
6382bc90 7430 register_sched_domain_sysctl();
7378547f
MM
7431
7432 return err;
1a20ff27
DG
7433}
7434
7c16ec58
MT
7435static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7436 cpumask_t *tmpmask)
1da177e4 7437{
7c16ec58 7438 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 7439}
1da177e4 7440
1a20ff27
DG
7441/*
7442 * Detach sched domains from a group of cpus specified in cpu_map
7443 * These cpus will now be attached to the NULL domain
7444 */
858119e1 7445static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27 7446{
7c16ec58 7447 cpumask_t tmpmask;
1a20ff27
DG
7448 int i;
7449
6382bc90
MM
7450 unregister_sched_domain_sysctl();
7451
1a20ff27 7452 for_each_cpu_mask(i, *cpu_map)
57d885fe 7453 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 7454 synchronize_sched();
7c16ec58 7455 arch_destroy_sched_domains(cpu_map, &tmpmask);
1a20ff27
DG
7456}
7457
1d3504fc
HS
7458/* handle null as "default" */
7459static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7460 struct sched_domain_attr *new, int idx_new)
7461{
7462 struct sched_domain_attr tmp;
7463
7464 /* fast path */
7465 if (!new && !cur)
7466 return 1;
7467
7468 tmp = SD_ATTR_INIT;
7469 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7470 new ? (new + idx_new) : &tmp,
7471 sizeof(struct sched_domain_attr));
7472}
7473
029190c5
PJ
7474/*
7475 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7476 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7477 * doms_new[] to the current sched domain partitioning, doms_cur[].
7478 * It destroys each deleted domain and builds each new domain.
7479 *
7480 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
41a2d6cf
IM
7481 * The masks don't intersect (don't overlap.) We should setup one
7482 * sched domain for each mask. CPUs not in any of the cpumasks will
7483 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7484 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7485 * it as it is.
7486 *
41a2d6cf
IM
7487 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7488 * ownership of it and will kfree it when done with it. If the caller
029190c5
PJ
7489 * failed the kmalloc call, then it can pass in doms_new == NULL,
7490 * and partition_sched_domains() will fallback to the single partition
7491 * 'fallback_doms'.
7492 *
7493 * Call with hotplug lock held
7494 */
1d3504fc
HS
7495void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7496 struct sched_domain_attr *dattr_new)
029190c5
PJ
7497{
7498 int i, j;
7499
712555ee 7500 mutex_lock(&sched_domains_mutex);
a1835615 7501
7378547f
MM
7502 /* always unregister in case we don't destroy any domains */
7503 unregister_sched_domain_sysctl();
7504
029190c5
PJ
7505 if (doms_new == NULL) {
7506 ndoms_new = 1;
7507 doms_new = &fallback_doms;
7508 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
1d3504fc 7509 dattr_new = NULL;
029190c5
PJ
7510 }
7511
7512 /* Destroy deleted domains */
7513 for (i = 0; i < ndoms_cur; i++) {
7514 for (j = 0; j < ndoms_new; j++) {
1d3504fc
HS
7515 if (cpus_equal(doms_cur[i], doms_new[j])
7516 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7517 goto match1;
7518 }
7519 /* no match - a current sched domain not in new doms_new[] */
7520 detach_destroy_domains(doms_cur + i);
7521match1:
7522 ;
7523 }
7524
7525 /* Build new domains */
7526 for (i = 0; i < ndoms_new; i++) {
7527 for (j = 0; j < ndoms_cur; j++) {
1d3504fc
HS
7528 if (cpus_equal(doms_new[i], doms_cur[j])
7529 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7530 goto match2;
7531 }
7532 /* no match - add a new doms_new */
1d3504fc
HS
7533 __build_sched_domains(doms_new + i,
7534 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7535match2:
7536 ;
7537 }
7538
7539 /* Remember the new sched domains */
7540 if (doms_cur != &fallback_doms)
7541 kfree(doms_cur);
1d3504fc 7542 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7543 doms_cur = doms_new;
1d3504fc 7544 dattr_cur = dattr_new;
029190c5 7545 ndoms_cur = ndoms_new;
7378547f
MM
7546
7547 register_sched_domain_sysctl();
a1835615 7548
712555ee 7549 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7550}
7551
5c45bf27 7552#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9aefd0ab 7553int arch_reinit_sched_domains(void)
5c45bf27
SS
7554{
7555 int err;
7556
95402b38 7557 get_online_cpus();
712555ee 7558 mutex_lock(&sched_domains_mutex);
5c45bf27 7559 detach_destroy_domains(&cpu_online_map);
5c8e1ed1 7560 free_sched_domains();
5c45bf27 7561 err = arch_init_sched_domains(&cpu_online_map);
712555ee 7562 mutex_unlock(&sched_domains_mutex);
95402b38 7563 put_online_cpus();
5c45bf27
SS
7564
7565 return err;
7566}
7567
7568static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7569{
7570 int ret;
7571
7572 if (buf[0] != '0' && buf[0] != '1')
7573 return -EINVAL;
7574
7575 if (smt)
7576 sched_smt_power_savings = (buf[0] == '1');
7577 else
7578 sched_mc_power_savings = (buf[0] == '1');
7579
7580 ret = arch_reinit_sched_domains();
7581
7582 return ret ? ret : count;
7583}
7584
5c45bf27
SS
7585#ifdef CONFIG_SCHED_MC
7586static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7587{
7588 return sprintf(page, "%u\n", sched_mc_power_savings);
7589}
48f24c4d
IM
7590static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7591 const char *buf, size_t count)
5c45bf27
SS
7592{
7593 return sched_power_savings_store(buf, count, 0);
7594}
6707de00
AB
7595static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7596 sched_mc_power_savings_store);
5c45bf27
SS
7597#endif
7598
7599#ifdef CONFIG_SCHED_SMT
7600static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7601{
7602 return sprintf(page, "%u\n", sched_smt_power_savings);
7603}
48f24c4d
IM
7604static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7605 const char *buf, size_t count)
5c45bf27
SS
7606{
7607 return sched_power_savings_store(buf, count, 1);
7608}
6707de00
AB
7609static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7610 sched_smt_power_savings_store);
7611#endif
7612
7613int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7614{
7615 int err = 0;
7616
7617#ifdef CONFIG_SCHED_SMT
7618 if (smt_capable())
7619 err = sysfs_create_file(&cls->kset.kobj,
7620 &attr_sched_smt_power_savings.attr);
7621#endif
7622#ifdef CONFIG_SCHED_MC
7623 if (!err && mc_capable())
7624 err = sysfs_create_file(&cls->kset.kobj,
7625 &attr_sched_mc_power_savings.attr);
7626#endif
7627 return err;
7628}
6d6bc0ad 7629#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 7630
1da177e4 7631/*
41a2d6cf 7632 * Force a reinitialization of the sched domains hierarchy. The domains
1da177e4 7633 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 7634 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
7635 * which will prevent rebalancing while the sched domains are recalculated.
7636 */
7637static int update_sched_domains(struct notifier_block *nfb,
7638 unsigned long action, void *hcpu)
7639{
7def2be1
PZ
7640 int cpu = (int)(long)hcpu;
7641
1da177e4 7642 switch (action) {
1da177e4 7643 case CPU_DOWN_PREPARE:
8bb78442 7644 case CPU_DOWN_PREPARE_FROZEN:
7def2be1
PZ
7645 disable_runtime(cpu_rq(cpu));
7646 /* fall-through */
7647 case CPU_UP_PREPARE:
7648 case CPU_UP_PREPARE_FROZEN:
1a20ff27 7649 detach_destroy_domains(&cpu_online_map);
5c8e1ed1 7650 free_sched_domains();
1da177e4
LT
7651 return NOTIFY_OK;
7652
7def2be1 7653
1da177e4 7654 case CPU_DOWN_FAILED:
8bb78442 7655 case CPU_DOWN_FAILED_FROZEN:
1da177e4 7656 case CPU_ONLINE:
8bb78442 7657 case CPU_ONLINE_FROZEN:
7def2be1
PZ
7658 enable_runtime(cpu_rq(cpu));
7659 /* fall-through */
7660 case CPU_UP_CANCELED:
7661 case CPU_UP_CANCELED_FROZEN:
1da177e4 7662 case CPU_DEAD:
8bb78442 7663 case CPU_DEAD_FROZEN:
1da177e4
LT
7664 /*
7665 * Fall through and re-initialise the domains.
7666 */
7667 break;
7668 default:
7669 return NOTIFY_DONE;
7670 }
7671
5c8e1ed1
MK
7672#ifndef CONFIG_CPUSETS
7673 /*
7674 * Create default domain partitioning if cpusets are disabled.
7675 * Otherwise we let cpusets rebuild the domains based on the
7676 * current setup.
7677 */
7678
1da177e4 7679 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 7680 arch_init_sched_domains(&cpu_online_map);
5c8e1ed1 7681#endif
1da177e4
LT
7682
7683 return NOTIFY_OK;
7684}
1da177e4
LT
7685
7686void __init sched_init_smp(void)
7687{
5c1e1767
NP
7688 cpumask_t non_isolated_cpus;
7689
434d53b0
MT
7690#if defined(CONFIG_NUMA)
7691 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7692 GFP_KERNEL);
7693 BUG_ON(sched_group_nodes_bycpu == NULL);
7694#endif
95402b38 7695 get_online_cpus();
712555ee 7696 mutex_lock(&sched_domains_mutex);
1a20ff27 7697 arch_init_sched_domains(&cpu_online_map);
e5e5673f 7698 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
7699 if (cpus_empty(non_isolated_cpus))
7700 cpu_set(smp_processor_id(), non_isolated_cpus);
712555ee 7701 mutex_unlock(&sched_domains_mutex);
95402b38 7702 put_online_cpus();
1da177e4
LT
7703 /* XXX: Theoretical race here - CPU may be hotplugged now */
7704 hotcpu_notifier(update_sched_domains, 0);
b328ca18 7705 init_hrtick();
5c1e1767
NP
7706
7707 /* Move init over to a non-isolated CPU */
7c16ec58 7708 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
5c1e1767 7709 BUG();
19978ca6 7710 sched_init_granularity();
1da177e4
LT
7711}
7712#else
7713void __init sched_init_smp(void)
7714{
19978ca6 7715 sched_init_granularity();
1da177e4
LT
7716}
7717#endif /* CONFIG_SMP */
7718
7719int in_sched_functions(unsigned long addr)
7720{
1da177e4
LT
7721 return in_lock_functions(addr) ||
7722 (addr >= (unsigned long)__sched_text_start
7723 && addr < (unsigned long)__sched_text_end);
7724}
7725
a9957449 7726static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
7727{
7728 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 7729 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
7730#ifdef CONFIG_FAIR_GROUP_SCHED
7731 cfs_rq->rq = rq;
7732#endif
67e9fb2a 7733 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
7734}
7735
fa85ae24
PZ
7736static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7737{
7738 struct rt_prio_array *array;
7739 int i;
7740
7741 array = &rt_rq->active;
7742 for (i = 0; i < MAX_RT_PRIO; i++) {
20b6331b 7743 INIT_LIST_HEAD(array->queue + i);
fa85ae24
PZ
7744 __clear_bit(i, array->bitmap);
7745 }
7746 /* delimiter for bitsearch: */
7747 __set_bit(MAX_RT_PRIO, array->bitmap);
7748
052f1dc7 7749#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
48d5e258
PZ
7750 rt_rq->highest_prio = MAX_RT_PRIO;
7751#endif
fa85ae24
PZ
7752#ifdef CONFIG_SMP
7753 rt_rq->rt_nr_migratory = 0;
fa85ae24
PZ
7754 rt_rq->overloaded = 0;
7755#endif
7756
7757 rt_rq->rt_time = 0;
7758 rt_rq->rt_throttled = 0;
ac086bc2
PZ
7759 rt_rq->rt_runtime = 0;
7760 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 7761
052f1dc7 7762#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 7763 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
7764 rt_rq->rq = rq;
7765#endif
fa85ae24
PZ
7766}
7767
6f505b16 7768#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
7769static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7770 struct sched_entity *se, int cpu, int add,
7771 struct sched_entity *parent)
6f505b16 7772{
ec7dc8ac 7773 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
7774 tg->cfs_rq[cpu] = cfs_rq;
7775 init_cfs_rq(cfs_rq, rq);
7776 cfs_rq->tg = tg;
7777 if (add)
7778 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7779
7780 tg->se[cpu] = se;
354d60c2
DG
7781 /* se could be NULL for init_task_group */
7782 if (!se)
7783 return;
7784
ec7dc8ac
DG
7785 if (!parent)
7786 se->cfs_rq = &rq->cfs;
7787 else
7788 se->cfs_rq = parent->my_q;
7789
6f505b16
PZ
7790 se->my_q = cfs_rq;
7791 se->load.weight = tg->shares;
e05510d0 7792 se->load.inv_weight = 0;
ec7dc8ac 7793 se->parent = parent;
6f505b16 7794}
052f1dc7 7795#endif
6f505b16 7796
052f1dc7 7797#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
7798static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7799 struct sched_rt_entity *rt_se, int cpu, int add,
7800 struct sched_rt_entity *parent)
6f505b16 7801{
ec7dc8ac
DG
7802 struct rq *rq = cpu_rq(cpu);
7803
6f505b16
PZ
7804 tg->rt_rq[cpu] = rt_rq;
7805 init_rt_rq(rt_rq, rq);
7806 rt_rq->tg = tg;
7807 rt_rq->rt_se = rt_se;
ac086bc2 7808 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
7809 if (add)
7810 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7811
7812 tg->rt_se[cpu] = rt_se;
354d60c2
DG
7813 if (!rt_se)
7814 return;
7815
ec7dc8ac
DG
7816 if (!parent)
7817 rt_se->rt_rq = &rq->rt;
7818 else
7819 rt_se->rt_rq = parent->my_q;
7820
6f505b16 7821 rt_se->my_q = rt_rq;
ec7dc8ac 7822 rt_se->parent = parent;
6f505b16
PZ
7823 INIT_LIST_HEAD(&rt_se->run_list);
7824}
7825#endif
7826
1da177e4
LT
7827void __init sched_init(void)
7828{
dd41f596 7829 int i, j;
434d53b0
MT
7830 unsigned long alloc_size = 0, ptr;
7831
7832#ifdef CONFIG_FAIR_GROUP_SCHED
7833 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7834#endif
7835#ifdef CONFIG_RT_GROUP_SCHED
7836 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7837#endif
7838#ifdef CONFIG_USER_SCHED
7839 alloc_size *= 2;
434d53b0
MT
7840#endif
7841 /*
7842 * As sched_init() is called before page_alloc is setup,
7843 * we use alloc_bootmem().
7844 */
7845 if (alloc_size) {
5a9d3225 7846 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
7847
7848#ifdef CONFIG_FAIR_GROUP_SCHED
7849 init_task_group.se = (struct sched_entity **)ptr;
7850 ptr += nr_cpu_ids * sizeof(void **);
7851
7852 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7853 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
7854
7855#ifdef CONFIG_USER_SCHED
7856 root_task_group.se = (struct sched_entity **)ptr;
7857 ptr += nr_cpu_ids * sizeof(void **);
7858
7859 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7860 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
7861#endif /* CONFIG_USER_SCHED */
7862#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
7863#ifdef CONFIG_RT_GROUP_SCHED
7864 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7865 ptr += nr_cpu_ids * sizeof(void **);
7866
7867 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7868 ptr += nr_cpu_ids * sizeof(void **);
7869
7870#ifdef CONFIG_USER_SCHED
7871 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7872 ptr += nr_cpu_ids * sizeof(void **);
7873
7874 root_task_group.rt_rq = (struct rt_rq **)ptr;
7875 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
7876#endif /* CONFIG_USER_SCHED */
7877#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 7878 }
dd41f596 7879
57d885fe
GH
7880#ifdef CONFIG_SMP
7881 init_defrootdomain();
7882#endif
7883
d0b27fa7
PZ
7884 init_rt_bandwidth(&def_rt_bandwidth,
7885 global_rt_period(), global_rt_runtime());
7886
7887#ifdef CONFIG_RT_GROUP_SCHED
7888 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7889 global_rt_period(), global_rt_runtime());
eff766a6
PZ
7890#ifdef CONFIG_USER_SCHED
7891 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7892 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
7893#endif /* CONFIG_USER_SCHED */
7894#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7895
052f1dc7 7896#ifdef CONFIG_GROUP_SCHED
6f505b16 7897 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
7898 INIT_LIST_HEAD(&init_task_group.children);
7899
7900#ifdef CONFIG_USER_SCHED
7901 INIT_LIST_HEAD(&root_task_group.children);
7902 init_task_group.parent = &root_task_group;
7903 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
7904#endif /* CONFIG_USER_SCHED */
7905#endif /* CONFIG_GROUP_SCHED */
6f505b16 7906
0a945022 7907 for_each_possible_cpu(i) {
70b97a7f 7908 struct rq *rq;
1da177e4
LT
7909
7910 rq = cpu_rq(i);
7911 spin_lock_init(&rq->lock);
fcb99371 7912 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 7913 rq->nr_running = 0;
dd41f596 7914 init_cfs_rq(&rq->cfs, rq);
6f505b16 7915 init_rt_rq(&rq->rt, rq);
dd41f596 7916#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 7917 init_task_group.shares = init_task_group_load;
6f505b16 7918 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
7919#ifdef CONFIG_CGROUP_SCHED
7920 /*
7921 * How much cpu bandwidth does init_task_group get?
7922 *
7923 * In case of task-groups formed thr' the cgroup filesystem, it
7924 * gets 100% of the cpu resources in the system. This overall
7925 * system cpu resource is divided among the tasks of
7926 * init_task_group and its child task-groups in a fair manner,
7927 * based on each entity's (task or task-group's) weight
7928 * (se->load.weight).
7929 *
7930 * In other words, if init_task_group has 10 tasks of weight
7931 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7932 * then A0's share of the cpu resource is:
7933 *
7934 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7935 *
7936 * We achieve this by letting init_task_group's tasks sit
7937 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7938 */
ec7dc8ac 7939 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 7940#elif defined CONFIG_USER_SCHED
eff766a6
PZ
7941 root_task_group.shares = NICE_0_LOAD;
7942 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
7943 /*
7944 * In case of task-groups formed thr' the user id of tasks,
7945 * init_task_group represents tasks belonging to root user.
7946 * Hence it forms a sibling of all subsequent groups formed.
7947 * In this case, init_task_group gets only a fraction of overall
7948 * system cpu resource, based on the weight assigned to root
7949 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
7950 * by letting tasks of init_task_group sit in a separate cfs_rq
7951 * (init_cfs_rq) and having one entity represent this group of
7952 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
7953 */
ec7dc8ac 7954 init_tg_cfs_entry(&init_task_group,
6f505b16 7955 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
7956 &per_cpu(init_sched_entity, i), i, 1,
7957 root_task_group.se[i]);
6f505b16 7958
052f1dc7 7959#endif
354d60c2
DG
7960#endif /* CONFIG_FAIR_GROUP_SCHED */
7961
7962 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7963#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7964 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 7965#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 7966 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 7967#elif defined CONFIG_USER_SCHED
eff766a6 7968 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 7969 init_tg_rt_entry(&init_task_group,
6f505b16 7970 &per_cpu(init_rt_rq, i),
eff766a6
PZ
7971 &per_cpu(init_sched_rt_entity, i), i, 1,
7972 root_task_group.rt_se[i]);
354d60c2 7973#endif
dd41f596 7974#endif
1da177e4 7975
dd41f596
IM
7976 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7977 rq->cpu_load[j] = 0;
1da177e4 7978#ifdef CONFIG_SMP
41c7ce9a 7979 rq->sd = NULL;
57d885fe 7980 rq->rd = NULL;
1da177e4 7981 rq->active_balance = 0;
dd41f596 7982 rq->next_balance = jiffies;
1da177e4 7983 rq->push_cpu = 0;
0a2966b4 7984 rq->cpu = i;
1f11eb6a 7985 rq->online = 0;
1da177e4
LT
7986 rq->migration_thread = NULL;
7987 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 7988 rq_attach_root(rq, &def_root_domain);
1da177e4 7989#endif
8f4d37ec 7990 init_rq_hrtick(rq);
1da177e4 7991 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7992 }
7993
2dd73a4f 7994 set_load_weight(&init_task);
b50f60ce 7995
e107be36
AK
7996#ifdef CONFIG_PREEMPT_NOTIFIERS
7997 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7998#endif
7999
c9819f45
CL
8000#ifdef CONFIG_SMP
8001 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
8002#endif
8003
b50f60ce
HC
8004#ifdef CONFIG_RT_MUTEXES
8005 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8006#endif
8007
1da177e4
LT
8008 /*
8009 * The boot idle thread does lazy MMU switching as well:
8010 */
8011 atomic_inc(&init_mm.mm_count);
8012 enter_lazy_tlb(&init_mm, current);
8013
8014 /*
8015 * Make us the idle thread. Technically, schedule() should not be
8016 * called from this thread, however somewhere below it might be,
8017 * but because we are the idle thread, we just pick up running again
8018 * when this runqueue becomes "idle".
8019 */
8020 init_idle(current, smp_processor_id());
dd41f596
IM
8021 /*
8022 * During early bootup we pretend to be a normal task:
8023 */
8024 current->sched_class = &fair_sched_class;
6892b75e
IM
8025
8026 scheduler_running = 1;
1da177e4
LT
8027}
8028
8029#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8030void __might_sleep(char *file, int line)
8031{
48f24c4d 8032#ifdef in_atomic
1da177e4
LT
8033 static unsigned long prev_jiffy; /* ratelimiting */
8034
8035 if ((in_atomic() || irqs_disabled()) &&
8036 system_state == SYSTEM_RUNNING && !oops_in_progress) {
8037 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8038 return;
8039 prev_jiffy = jiffies;
91368d73 8040 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
8041 " context at %s:%d\n", file, line);
8042 printk("in_atomic():%d, irqs_disabled():%d\n",
8043 in_atomic(), irqs_disabled());
a4c410f0 8044 debug_show_held_locks(current);
3117df04
IM
8045 if (irqs_disabled())
8046 print_irqtrace_events(current);
1da177e4
LT
8047 dump_stack();
8048 }
8049#endif
8050}
8051EXPORT_SYMBOL(__might_sleep);
8052#endif
8053
8054#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8055static void normalize_task(struct rq *rq, struct task_struct *p)
8056{
8057 int on_rq;
3e51f33f 8058
3a5e4dc1
AK
8059 update_rq_clock(rq);
8060 on_rq = p->se.on_rq;
8061 if (on_rq)
8062 deactivate_task(rq, p, 0);
8063 __setscheduler(rq, p, SCHED_NORMAL, 0);
8064 if (on_rq) {
8065 activate_task(rq, p, 0);
8066 resched_task(rq->curr);
8067 }
8068}
8069
1da177e4
LT
8070void normalize_rt_tasks(void)
8071{
a0f98a1c 8072 struct task_struct *g, *p;
1da177e4 8073 unsigned long flags;
70b97a7f 8074 struct rq *rq;
1da177e4 8075
4cf5d77a 8076 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8077 do_each_thread(g, p) {
178be793
IM
8078 /*
8079 * Only normalize user tasks:
8080 */
8081 if (!p->mm)
8082 continue;
8083
6cfb0d5d 8084 p->se.exec_start = 0;
6cfb0d5d 8085#ifdef CONFIG_SCHEDSTATS
dd41f596 8086 p->se.wait_start = 0;
dd41f596 8087 p->se.sleep_start = 0;
dd41f596 8088 p->se.block_start = 0;
6cfb0d5d 8089#endif
dd41f596
IM
8090
8091 if (!rt_task(p)) {
8092 /*
8093 * Renice negative nice level userspace
8094 * tasks back to 0:
8095 */
8096 if (TASK_NICE(p) < 0 && p->mm)
8097 set_user_nice(p, 0);
1da177e4 8098 continue;
dd41f596 8099 }
1da177e4 8100
4cf5d77a 8101 spin_lock(&p->pi_lock);
b29739f9 8102 rq = __task_rq_lock(p);
1da177e4 8103
178be793 8104 normalize_task(rq, p);
3a5e4dc1 8105
b29739f9 8106 __task_rq_unlock(rq);
4cf5d77a 8107 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8108 } while_each_thread(g, p);
8109
4cf5d77a 8110 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8111}
8112
8113#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8114
8115#ifdef CONFIG_IA64
8116/*
8117 * These functions are only useful for the IA64 MCA handling.
8118 *
8119 * They can only be called when the whole system has been
8120 * stopped - every CPU needs to be quiescent, and no scheduling
8121 * activity can take place. Using them for anything else would
8122 * be a serious bug, and as a result, they aren't even visible
8123 * under any other configuration.
8124 */
8125
8126/**
8127 * curr_task - return the current task for a given cpu.
8128 * @cpu: the processor in question.
8129 *
8130 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8131 */
36c8b586 8132struct task_struct *curr_task(int cpu)
1df5c10a
LT
8133{
8134 return cpu_curr(cpu);
8135}
8136
8137/**
8138 * set_curr_task - set the current task for a given cpu.
8139 * @cpu: the processor in question.
8140 * @p: the task pointer to set.
8141 *
8142 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8143 * are serviced on a separate stack. It allows the architecture to switch the
8144 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8145 * must be called with all CPU's synchronized, and interrupts disabled, the
8146 * and caller must save the original value of the current task (see
8147 * curr_task() above) and restore that value before reenabling interrupts and
8148 * re-starting the system.
8149 *
8150 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8151 */
36c8b586 8152void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8153{
8154 cpu_curr(cpu) = p;
8155}
8156
8157#endif
29f59db3 8158
bccbe08a
PZ
8159#ifdef CONFIG_FAIR_GROUP_SCHED
8160static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8161{
8162 int i;
8163
8164 for_each_possible_cpu(i) {
8165 if (tg->cfs_rq)
8166 kfree(tg->cfs_rq[i]);
8167 if (tg->se)
8168 kfree(tg->se[i]);
6f505b16
PZ
8169 }
8170
8171 kfree(tg->cfs_rq);
8172 kfree(tg->se);
6f505b16
PZ
8173}
8174
ec7dc8ac
DG
8175static
8176int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8177{
29f59db3 8178 struct cfs_rq *cfs_rq;
ec7dc8ac 8179 struct sched_entity *se, *parent_se;
9b5b7751 8180 struct rq *rq;
29f59db3
SV
8181 int i;
8182
434d53b0 8183 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8184 if (!tg->cfs_rq)
8185 goto err;
434d53b0 8186 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8187 if (!tg->se)
8188 goto err;
052f1dc7
PZ
8189
8190 tg->shares = NICE_0_LOAD;
29f59db3
SV
8191
8192 for_each_possible_cpu(i) {
9b5b7751 8193 rq = cpu_rq(i);
29f59db3 8194
6f505b16
PZ
8195 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8196 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8197 if (!cfs_rq)
8198 goto err;
8199
6f505b16
PZ
8200 se = kmalloc_node(sizeof(struct sched_entity),
8201 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
29f59db3
SV
8202 if (!se)
8203 goto err;
8204
ec7dc8ac
DG
8205 parent_se = parent ? parent->se[i] : NULL;
8206 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
bccbe08a
PZ
8207 }
8208
8209 return 1;
8210
8211 err:
8212 return 0;
8213}
8214
8215static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8216{
8217 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8218 &cpu_rq(cpu)->leaf_cfs_rq_list);
8219}
8220
8221static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8222{
8223 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8224}
6d6bc0ad 8225#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8226static inline void free_fair_sched_group(struct task_group *tg)
8227{
8228}
8229
ec7dc8ac
DG
8230static inline
8231int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8232{
8233 return 1;
8234}
8235
8236static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8237{
8238}
8239
8240static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8241{
8242}
6d6bc0ad 8243#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8244
8245#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8246static void free_rt_sched_group(struct task_group *tg)
8247{
8248 int i;
8249
d0b27fa7
PZ
8250 destroy_rt_bandwidth(&tg->rt_bandwidth);
8251
bccbe08a
PZ
8252 for_each_possible_cpu(i) {
8253 if (tg->rt_rq)
8254 kfree(tg->rt_rq[i]);
8255 if (tg->rt_se)
8256 kfree(tg->rt_se[i]);
8257 }
8258
8259 kfree(tg->rt_rq);
8260 kfree(tg->rt_se);
8261}
8262
ec7dc8ac
DG
8263static
8264int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8265{
8266 struct rt_rq *rt_rq;
ec7dc8ac 8267 struct sched_rt_entity *rt_se, *parent_se;
bccbe08a
PZ
8268 struct rq *rq;
8269 int i;
8270
434d53b0 8271 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8272 if (!tg->rt_rq)
8273 goto err;
434d53b0 8274 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8275 if (!tg->rt_se)
8276 goto err;
8277
d0b27fa7
PZ
8278 init_rt_bandwidth(&tg->rt_bandwidth,
8279 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8280
8281 for_each_possible_cpu(i) {
8282 rq = cpu_rq(i);
8283
6f505b16
PZ
8284 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8285 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8286 if (!rt_rq)
8287 goto err;
29f59db3 8288
6f505b16
PZ
8289 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8290 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8291 if (!rt_se)
8292 goto err;
29f59db3 8293
ec7dc8ac
DG
8294 parent_se = parent ? parent->rt_se[i] : NULL;
8295 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
29f59db3
SV
8296 }
8297
bccbe08a
PZ
8298 return 1;
8299
8300 err:
8301 return 0;
8302}
8303
8304static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8305{
8306 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8307 &cpu_rq(cpu)->leaf_rt_rq_list);
8308}
8309
8310static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8311{
8312 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8313}
6d6bc0ad 8314#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8315static inline void free_rt_sched_group(struct task_group *tg)
8316{
8317}
8318
ec7dc8ac
DG
8319static inline
8320int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8321{
8322 return 1;
8323}
8324
8325static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8326{
8327}
8328
8329static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8330{
8331}
6d6bc0ad 8332#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8333
d0b27fa7 8334#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8335static void free_sched_group(struct task_group *tg)
8336{
8337 free_fair_sched_group(tg);
8338 free_rt_sched_group(tg);
8339 kfree(tg);
8340}
8341
8342/* allocate runqueue etc for a new task group */
ec7dc8ac 8343struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8344{
8345 struct task_group *tg;
8346 unsigned long flags;
8347 int i;
8348
8349 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8350 if (!tg)
8351 return ERR_PTR(-ENOMEM);
8352
ec7dc8ac 8353 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8354 goto err;
8355
ec7dc8ac 8356 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8357 goto err;
8358
8ed36996 8359 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8360 for_each_possible_cpu(i) {
bccbe08a
PZ
8361 register_fair_sched_group(tg, i);
8362 register_rt_sched_group(tg, i);
9b5b7751 8363 }
6f505b16 8364 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8365
8366 WARN_ON(!parent); /* root should already exist */
8367
8368 tg->parent = parent;
8369 list_add_rcu(&tg->siblings, &parent->children);
8370 INIT_LIST_HEAD(&tg->children);
8ed36996 8371 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8372
9b5b7751 8373 return tg;
29f59db3
SV
8374
8375err:
6f505b16 8376 free_sched_group(tg);
29f59db3
SV
8377 return ERR_PTR(-ENOMEM);
8378}
8379
9b5b7751 8380/* rcu callback to free various structures associated with a task group */
6f505b16 8381static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 8382{
29f59db3 8383 /* now it should be safe to free those cfs_rqs */
6f505b16 8384 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
8385}
8386
9b5b7751 8387/* Destroy runqueue etc associated with a task group */
4cf86d77 8388void sched_destroy_group(struct task_group *tg)
29f59db3 8389{
8ed36996 8390 unsigned long flags;
9b5b7751 8391 int i;
29f59db3 8392
8ed36996 8393 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8394 for_each_possible_cpu(i) {
bccbe08a
PZ
8395 unregister_fair_sched_group(tg, i);
8396 unregister_rt_sched_group(tg, i);
9b5b7751 8397 }
6f505b16 8398 list_del_rcu(&tg->list);
f473aa5e 8399 list_del_rcu(&tg->siblings);
8ed36996 8400 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 8401
9b5b7751 8402 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 8403 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
8404}
8405
9b5b7751 8406/* change task's runqueue when it moves between groups.
3a252015
IM
8407 * The caller of this function should have put the task in its new group
8408 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8409 * reflect its new group.
9b5b7751
SV
8410 */
8411void sched_move_task(struct task_struct *tsk)
29f59db3
SV
8412{
8413 int on_rq, running;
8414 unsigned long flags;
8415 struct rq *rq;
8416
8417 rq = task_rq_lock(tsk, &flags);
8418
29f59db3
SV
8419 update_rq_clock(rq);
8420
051a1d1a 8421 running = task_current(rq, tsk);
29f59db3
SV
8422 on_rq = tsk->se.on_rq;
8423
0e1f3483 8424 if (on_rq)
29f59db3 8425 dequeue_task(rq, tsk, 0);
0e1f3483
HS
8426 if (unlikely(running))
8427 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 8428
6f505b16 8429 set_task_rq(tsk, task_cpu(tsk));
29f59db3 8430
810b3817
PZ
8431#ifdef CONFIG_FAIR_GROUP_SCHED
8432 if (tsk->sched_class->moved_group)
8433 tsk->sched_class->moved_group(tsk);
8434#endif
8435
0e1f3483
HS
8436 if (unlikely(running))
8437 tsk->sched_class->set_curr_task(rq);
8438 if (on_rq)
7074badb 8439 enqueue_task(rq, tsk, 0);
29f59db3 8440
29f59db3
SV
8441 task_rq_unlock(rq, &flags);
8442}
6d6bc0ad 8443#endif /* CONFIG_GROUP_SCHED */
29f59db3 8444
052f1dc7 8445#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 8446static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
8447{
8448 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
8449 int on_rq;
8450
29f59db3 8451 on_rq = se->on_rq;
62fb1851 8452 if (on_rq)
29f59db3
SV
8453 dequeue_entity(cfs_rq, se, 0);
8454
8455 se->load.weight = shares;
e05510d0 8456 se->load.inv_weight = 0;
29f59db3 8457
62fb1851 8458 if (on_rq)
29f59db3 8459 enqueue_entity(cfs_rq, se, 0);
c09595f6 8460}
62fb1851 8461
c09595f6
PZ
8462static void set_se_shares(struct sched_entity *se, unsigned long shares)
8463{
8464 struct cfs_rq *cfs_rq = se->cfs_rq;
8465 struct rq *rq = cfs_rq->rq;
8466 unsigned long flags;
8467
8468 spin_lock_irqsave(&rq->lock, flags);
8469 __set_se_shares(se, shares);
8470 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
8471}
8472
8ed36996
PZ
8473static DEFINE_MUTEX(shares_mutex);
8474
4cf86d77 8475int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
8476{
8477 int i;
8ed36996 8478 unsigned long flags;
c61935fd 8479
ec7dc8ac
DG
8480 /*
8481 * We can't change the weight of the root cgroup.
8482 */
8483 if (!tg->se[0])
8484 return -EINVAL;
8485
18d95a28
PZ
8486 if (shares < MIN_SHARES)
8487 shares = MIN_SHARES;
cb4ad1ff
MX
8488 else if (shares > MAX_SHARES)
8489 shares = MAX_SHARES;
62fb1851 8490
8ed36996 8491 mutex_lock(&shares_mutex);
9b5b7751 8492 if (tg->shares == shares)
5cb350ba 8493 goto done;
29f59db3 8494
8ed36996 8495 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8496 for_each_possible_cpu(i)
8497 unregister_fair_sched_group(tg, i);
f473aa5e 8498 list_del_rcu(&tg->siblings);
8ed36996 8499 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
8500
8501 /* wait for any ongoing reference to this group to finish */
8502 synchronize_sched();
8503
8504 /*
8505 * Now we are free to modify the group's share on each cpu
8506 * w/o tripping rebalance_share or load_balance_fair.
8507 */
9b5b7751 8508 tg->shares = shares;
c09595f6
PZ
8509 for_each_possible_cpu(i) {
8510 /*
8511 * force a rebalance
8512 */
8513 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 8514 set_se_shares(tg->se[i], shares);
c09595f6 8515 }
29f59db3 8516
6b2d7700
SV
8517 /*
8518 * Enable load balance activity on this group, by inserting it back on
8519 * each cpu's rq->leaf_cfs_rq_list.
8520 */
8ed36996 8521 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
8522 for_each_possible_cpu(i)
8523 register_fair_sched_group(tg, i);
f473aa5e 8524 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 8525 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 8526done:
8ed36996 8527 mutex_unlock(&shares_mutex);
9b5b7751 8528 return 0;
29f59db3
SV
8529}
8530
5cb350ba
DG
8531unsigned long sched_group_shares(struct task_group *tg)
8532{
8533 return tg->shares;
8534}
052f1dc7 8535#endif
5cb350ba 8536
052f1dc7 8537#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8538/*
9f0c1e56 8539 * Ensure that the real time constraints are schedulable.
6f505b16 8540 */
9f0c1e56
PZ
8541static DEFINE_MUTEX(rt_constraints_mutex);
8542
8543static unsigned long to_ratio(u64 period, u64 runtime)
8544{
8545 if (runtime == RUNTIME_INF)
8546 return 1ULL << 16;
8547
6f6d6a1a 8548 return div64_u64(runtime << 16, period);
9f0c1e56
PZ
8549}
8550
b40b2e8e
PZ
8551#ifdef CONFIG_CGROUP_SCHED
8552static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8553{
10b612f4 8554 struct task_group *tgi, *parent = tg->parent;
b40b2e8e
PZ
8555 unsigned long total = 0;
8556
8557 if (!parent) {
8558 if (global_rt_period() < period)
8559 return 0;
8560
8561 return to_ratio(period, runtime) <
8562 to_ratio(global_rt_period(), global_rt_runtime());
8563 }
8564
8565 if (ktime_to_ns(parent->rt_bandwidth.rt_period) < period)
8566 return 0;
8567
8568 rcu_read_lock();
8569 list_for_each_entry_rcu(tgi, &parent->children, siblings) {
8570 if (tgi == tg)
8571 continue;
8572
8573 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8574 tgi->rt_bandwidth.rt_runtime);
8575 }
8576 rcu_read_unlock();
8577
10b612f4 8578 return total + to_ratio(period, runtime) <=
b40b2e8e
PZ
8579 to_ratio(ktime_to_ns(parent->rt_bandwidth.rt_period),
8580 parent->rt_bandwidth.rt_runtime);
8581}
8582#elif defined CONFIG_USER_SCHED
9f0c1e56 8583static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
6f505b16
PZ
8584{
8585 struct task_group *tgi;
8586 unsigned long total = 0;
9f0c1e56 8587 unsigned long global_ratio =
d0b27fa7 8588 to_ratio(global_rt_period(), global_rt_runtime());
6f505b16
PZ
8589
8590 rcu_read_lock();
9f0c1e56
PZ
8591 list_for_each_entry_rcu(tgi, &task_groups, list) {
8592 if (tgi == tg)
8593 continue;
6f505b16 8594
d0b27fa7
PZ
8595 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8596 tgi->rt_bandwidth.rt_runtime);
9f0c1e56
PZ
8597 }
8598 rcu_read_unlock();
6f505b16 8599
9f0c1e56 8600 return total + to_ratio(period, runtime) < global_ratio;
6f505b16 8601}
b40b2e8e 8602#endif
6f505b16 8603
521f1a24
DG
8604/* Must be called with tasklist_lock held */
8605static inline int tg_has_rt_tasks(struct task_group *tg)
8606{
8607 struct task_struct *g, *p;
8608 do_each_thread(g, p) {
8609 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8610 return 1;
8611 } while_each_thread(g, p);
8612 return 0;
8613}
8614
d0b27fa7
PZ
8615static int tg_set_bandwidth(struct task_group *tg,
8616 u64 rt_period, u64 rt_runtime)
6f505b16 8617{
ac086bc2 8618 int i, err = 0;
9f0c1e56 8619
9f0c1e56 8620 mutex_lock(&rt_constraints_mutex);
521f1a24 8621 read_lock(&tasklist_lock);
ac086bc2 8622 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
521f1a24
DG
8623 err = -EBUSY;
8624 goto unlock;
8625 }
9f0c1e56
PZ
8626 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8627 err = -EINVAL;
8628 goto unlock;
8629 }
ac086bc2
PZ
8630
8631 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
8632 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8633 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
8634
8635 for_each_possible_cpu(i) {
8636 struct rt_rq *rt_rq = tg->rt_rq[i];
8637
8638 spin_lock(&rt_rq->rt_runtime_lock);
8639 rt_rq->rt_runtime = rt_runtime;
8640 spin_unlock(&rt_rq->rt_runtime_lock);
8641 }
8642 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 8643 unlock:
521f1a24 8644 read_unlock(&tasklist_lock);
9f0c1e56
PZ
8645 mutex_unlock(&rt_constraints_mutex);
8646
8647 return err;
6f505b16
PZ
8648}
8649
d0b27fa7
PZ
8650int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8651{
8652 u64 rt_runtime, rt_period;
8653
8654 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8655 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8656 if (rt_runtime_us < 0)
8657 rt_runtime = RUNTIME_INF;
8658
8659 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8660}
8661
9f0c1e56
PZ
8662long sched_group_rt_runtime(struct task_group *tg)
8663{
8664 u64 rt_runtime_us;
8665
d0b27fa7 8666 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
8667 return -1;
8668
d0b27fa7 8669 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
8670 do_div(rt_runtime_us, NSEC_PER_USEC);
8671 return rt_runtime_us;
8672}
d0b27fa7
PZ
8673
8674int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8675{
8676 u64 rt_runtime, rt_period;
8677
8678 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8679 rt_runtime = tg->rt_bandwidth.rt_runtime;
8680
8681 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8682}
8683
8684long sched_group_rt_period(struct task_group *tg)
8685{
8686 u64 rt_period_us;
8687
8688 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8689 do_div(rt_period_us, NSEC_PER_USEC);
8690 return rt_period_us;
8691}
8692
8693static int sched_rt_global_constraints(void)
8694{
10b612f4
PZ
8695 struct task_group *tg = &root_task_group;
8696 u64 rt_runtime, rt_period;
d0b27fa7
PZ
8697 int ret = 0;
8698
10b612f4
PZ
8699 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8700 rt_runtime = tg->rt_bandwidth.rt_runtime;
8701
d0b27fa7 8702 mutex_lock(&rt_constraints_mutex);
10b612f4 8703 if (!__rt_schedulable(tg, rt_period, rt_runtime))
d0b27fa7
PZ
8704 ret = -EINVAL;
8705 mutex_unlock(&rt_constraints_mutex);
8706
8707 return ret;
8708}
6d6bc0ad 8709#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8710static int sched_rt_global_constraints(void)
8711{
ac086bc2
PZ
8712 unsigned long flags;
8713 int i;
8714
8715 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8716 for_each_possible_cpu(i) {
8717 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8718
8719 spin_lock(&rt_rq->rt_runtime_lock);
8720 rt_rq->rt_runtime = global_rt_runtime();
8721 spin_unlock(&rt_rq->rt_runtime_lock);
8722 }
8723 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8724
d0b27fa7
PZ
8725 return 0;
8726}
6d6bc0ad 8727#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
8728
8729int sched_rt_handler(struct ctl_table *table, int write,
8730 struct file *filp, void __user *buffer, size_t *lenp,
8731 loff_t *ppos)
8732{
8733 int ret;
8734 int old_period, old_runtime;
8735 static DEFINE_MUTEX(mutex);
8736
8737 mutex_lock(&mutex);
8738 old_period = sysctl_sched_rt_period;
8739 old_runtime = sysctl_sched_rt_runtime;
8740
8741 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8742
8743 if (!ret && write) {
8744 ret = sched_rt_global_constraints();
8745 if (ret) {
8746 sysctl_sched_rt_period = old_period;
8747 sysctl_sched_rt_runtime = old_runtime;
8748 } else {
8749 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8750 def_rt_bandwidth.rt_period =
8751 ns_to_ktime(global_rt_period());
8752 }
8753 }
8754 mutex_unlock(&mutex);
8755
8756 return ret;
8757}
68318b8e 8758
052f1dc7 8759#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
8760
8761/* return corresponding task_group object of a cgroup */
2b01dfe3 8762static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 8763{
2b01dfe3
PM
8764 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8765 struct task_group, css);
68318b8e
SV
8766}
8767
8768static struct cgroup_subsys_state *
2b01dfe3 8769cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8770{
ec7dc8ac 8771 struct task_group *tg, *parent;
68318b8e 8772
2b01dfe3 8773 if (!cgrp->parent) {
68318b8e 8774 /* This is early initialization for the top cgroup */
2b01dfe3 8775 init_task_group.css.cgroup = cgrp;
68318b8e
SV
8776 return &init_task_group.css;
8777 }
8778
ec7dc8ac
DG
8779 parent = cgroup_tg(cgrp->parent);
8780 tg = sched_create_group(parent);
68318b8e
SV
8781 if (IS_ERR(tg))
8782 return ERR_PTR(-ENOMEM);
8783
8784 /* Bind the cgroup to task_group object we just created */
2b01dfe3 8785 tg->css.cgroup = cgrp;
68318b8e
SV
8786
8787 return &tg->css;
8788}
8789
41a2d6cf
IM
8790static void
8791cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 8792{
2b01dfe3 8793 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8794
8795 sched_destroy_group(tg);
8796}
8797
41a2d6cf
IM
8798static int
8799cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8800 struct task_struct *tsk)
68318b8e 8801{
b68aa230
PZ
8802#ifdef CONFIG_RT_GROUP_SCHED
8803 /* Don't accept realtime tasks when there is no way for them to run */
d0b27fa7 8804 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
b68aa230
PZ
8805 return -EINVAL;
8806#else
68318b8e
SV
8807 /* We don't support RT-tasks being in separate groups */
8808 if (tsk->sched_class != &fair_sched_class)
8809 return -EINVAL;
b68aa230 8810#endif
68318b8e
SV
8811
8812 return 0;
8813}
8814
8815static void
2b01dfe3 8816cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
8817 struct cgroup *old_cont, struct task_struct *tsk)
8818{
8819 sched_move_task(tsk);
8820}
8821
052f1dc7 8822#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 8823static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 8824 u64 shareval)
68318b8e 8825{
2b01dfe3 8826 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
8827}
8828
f4c753b7 8829static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 8830{
2b01dfe3 8831 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
8832
8833 return (u64) tg->shares;
8834}
6d6bc0ad 8835#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8836
052f1dc7 8837#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8838static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8839 s64 val)
6f505b16 8840{
06ecb27c 8841 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8842}
8843
06ecb27c 8844static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8845{
06ecb27c 8846 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8847}
d0b27fa7
PZ
8848
8849static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8850 u64 rt_period_us)
8851{
8852 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8853}
8854
8855static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8856{
8857 return sched_group_rt_period(cgroup_tg(cgrp));
8858}
6d6bc0ad 8859#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8860
fe5c7cc2 8861static struct cftype cpu_files[] = {
052f1dc7 8862#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8863 {
8864 .name = "shares",
f4c753b7
PM
8865 .read_u64 = cpu_shares_read_u64,
8866 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8867 },
052f1dc7
PZ
8868#endif
8869#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8870 {
9f0c1e56 8871 .name = "rt_runtime_us",
06ecb27c
PM
8872 .read_s64 = cpu_rt_runtime_read,
8873 .write_s64 = cpu_rt_runtime_write,
6f505b16 8874 },
d0b27fa7
PZ
8875 {
8876 .name = "rt_period_us",
f4c753b7
PM
8877 .read_u64 = cpu_rt_period_read_uint,
8878 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8879 },
052f1dc7 8880#endif
68318b8e
SV
8881};
8882
8883static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8884{
fe5c7cc2 8885 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
8886}
8887
8888struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8889 .name = "cpu",
8890 .create = cpu_cgroup_create,
8891 .destroy = cpu_cgroup_destroy,
8892 .can_attach = cpu_cgroup_can_attach,
8893 .attach = cpu_cgroup_attach,
8894 .populate = cpu_cgroup_populate,
8895 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
8896 .early_init = 1,
8897};
8898
052f1dc7 8899#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8900
8901#ifdef CONFIG_CGROUP_CPUACCT
8902
8903/*
8904 * CPU accounting code for task groups.
8905 *
8906 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8907 * (balbir@in.ibm.com).
8908 */
8909
8910/* track cpu usage of a group of tasks */
8911struct cpuacct {
8912 struct cgroup_subsys_state css;
8913 /* cpuusage holds pointer to a u64-type object on every cpu */
8914 u64 *cpuusage;
8915};
8916
8917struct cgroup_subsys cpuacct_subsys;
8918
8919/* return cpu accounting group corresponding to this container */
32cd756a 8920static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 8921{
32cd756a 8922 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
8923 struct cpuacct, css);
8924}
8925
8926/* return cpu accounting group to which this task belongs */
8927static inline struct cpuacct *task_ca(struct task_struct *tsk)
8928{
8929 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8930 struct cpuacct, css);
8931}
8932
8933/* create a new cpu accounting group */
8934static struct cgroup_subsys_state *cpuacct_create(
32cd756a 8935 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
8936{
8937 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8938
8939 if (!ca)
8940 return ERR_PTR(-ENOMEM);
8941
8942 ca->cpuusage = alloc_percpu(u64);
8943 if (!ca->cpuusage) {
8944 kfree(ca);
8945 return ERR_PTR(-ENOMEM);
8946 }
8947
8948 return &ca->css;
8949}
8950
8951/* destroy an existing cpu accounting group */
41a2d6cf 8952static void
32cd756a 8953cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 8954{
32cd756a 8955 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8956
8957 free_percpu(ca->cpuusage);
8958 kfree(ca);
8959}
8960
8961/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8962static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8963{
32cd756a 8964 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8965 u64 totalcpuusage = 0;
8966 int i;
8967
8968 for_each_possible_cpu(i) {
8969 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8970
8971 /*
8972 * Take rq->lock to make 64-bit addition safe on 32-bit
8973 * platforms.
8974 */
8975 spin_lock_irq(&cpu_rq(i)->lock);
8976 totalcpuusage += *cpuusage;
8977 spin_unlock_irq(&cpu_rq(i)->lock);
8978 }
8979
8980 return totalcpuusage;
8981}
8982
0297b803
DG
8983static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8984 u64 reset)
8985{
8986 struct cpuacct *ca = cgroup_ca(cgrp);
8987 int err = 0;
8988 int i;
8989
8990 if (reset) {
8991 err = -EINVAL;
8992 goto out;
8993 }
8994
8995 for_each_possible_cpu(i) {
8996 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8997
8998 spin_lock_irq(&cpu_rq(i)->lock);
8999 *cpuusage = 0;
9000 spin_unlock_irq(&cpu_rq(i)->lock);
9001 }
9002out:
9003 return err;
9004}
9005
d842de87
SV
9006static struct cftype files[] = {
9007 {
9008 .name = "usage",
f4c753b7
PM
9009 .read_u64 = cpuusage_read,
9010 .write_u64 = cpuusage_write,
d842de87
SV
9011 },
9012};
9013
32cd756a 9014static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9015{
32cd756a 9016 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9017}
9018
9019/*
9020 * charge this task's execution time to its accounting group.
9021 *
9022 * called with rq->lock held.
9023 */
9024static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9025{
9026 struct cpuacct *ca;
9027
9028 if (!cpuacct_subsys.active)
9029 return;
9030
9031 ca = task_ca(tsk);
9032 if (ca) {
9033 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9034
9035 *cpuusage += cputime;
9036 }
9037}
9038
9039struct cgroup_subsys cpuacct_subsys = {
9040 .name = "cpuacct",
9041 .create = cpuacct_create,
9042 .destroy = cpuacct_destroy,
9043 .populate = cpuacct_populate,
9044 .subsys_id = cpuacct_subsys_id,
9045};
9046#endif /* CONFIG_CGROUP_CPUACCT */