]> bbs.cooldavid.org Git - net-next-2.6.git/blame - net/core/dev.c
tcp: Add SNMP counter for DEFER_ACCEPT
[net-next-2.6.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <asm/system.h>
77#include <linux/bitops.h>
4fc268d2 78#include <linux/capability.h>
1da177e4
LT
79#include <linux/cpu.h>
80#include <linux/types.h>
81#include <linux/kernel.h>
08e9897d 82#include <linux/hash.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
457c4cbc 97#include <net/net_namespace.h>
1da177e4
LT
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
100#include <linux/proc_fs.h>
101#include <linux/seq_file.h>
102#include <linux/stat.h>
103#include <linux/if_bridge.h>
b863ceb7 104#include <linux/if_macvlan.h>
1da177e4
LT
105#include <net/dst.h>
106#include <net/pkt_sched.h>
107#include <net/checksum.h>
44540960 108#include <net/xfrm.h>
1da177e4
LT
109#include <linux/highmem.h>
110#include <linux/init.h>
111#include <linux/kmod.h>
112#include <linux/module.h>
1da177e4
LT
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
295f4a1f 116#include <net/wext.h>
1da177e4 117#include <net/iw_handler.h>
1da177e4 118#include <asm/current.h>
5bdb9886 119#include <linux/audit.h>
db217334 120#include <linux/dmaengine.h>
f6a78bfc 121#include <linux/err.h>
c7fa9d18 122#include <linux/ctype.h>
723e98b7 123#include <linux/if_arp.h>
6de329e2 124#include <linux/if_vlan.h>
8f0f2223 125#include <linux/ip.h>
ad55dcaf 126#include <net/ip.h>
8f0f2223
DM
127#include <linux/ipv6.h>
128#include <linux/in.h>
b6b2fed1
DM
129#include <linux/jhash.h>
130#include <linux/random.h>
9cbc1cb8 131#include <trace/events/napi.h>
1da177e4 132
342709ef
PE
133#include "net-sysfs.h"
134
d565b0a1
HX
135/* Instead of increasing this, you should create a hash table. */
136#define MAX_GRO_SKBS 8
137
5d38a079
HX
138/* This should be increased if a protocol with a bigger head is added. */
139#define GRO_MAX_HEAD (MAX_HEADER + 128)
140
1da177e4
LT
141/*
142 * The list of packet types we will receive (as opposed to discard)
143 * and the routines to invoke.
144 *
145 * Why 16. Because with 16 the only overlap we get on a hash of the
146 * low nibble of the protocol value is RARP/SNAP/X.25.
147 *
148 * NOTE: That is no longer true with the addition of VLAN tags. Not
149 * sure which should go first, but I bet it won't make much
150 * difference if we are running VLANs. The good news is that
151 * this protocol won't be in the list unless compiled in, so
3041a069 152 * the average user (w/out VLANs) will not be adversely affected.
1da177e4
LT
153 * --BLG
154 *
155 * 0800 IP
156 * 8100 802.1Q VLAN
157 * 0001 802.3
158 * 0002 AX.25
159 * 0004 802.2
160 * 8035 RARP
161 * 0005 SNAP
162 * 0805 X.25
163 * 0806 ARP
164 * 8137 IPX
165 * 0009 Localtalk
166 * 86DD IPv6
167 */
168
82d8a867
PE
169#define PTYPE_HASH_SIZE (16)
170#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
171
1da177e4 172static DEFINE_SPINLOCK(ptype_lock);
82d8a867 173static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
6b2bedc3 174static struct list_head ptype_all __read_mostly; /* Taps */
1da177e4 175
1da177e4 176/*
7562f876 177 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
178 * semaphore.
179 *
c6d14c84 180 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
181 *
182 * Writers must hold the rtnl semaphore while they loop through the
7562f876 183 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
184 * actual updates. This allows pure readers to access the list even
185 * while a writer is preparing to update it.
186 *
187 * To put it another way, dev_base_lock is held for writing only to
188 * protect against pure readers; the rtnl semaphore provides the
189 * protection against other writers.
190 *
191 * See, for example usages, register_netdevice() and
192 * unregister_netdevice(), which must be called with the rtnl
193 * semaphore held.
194 */
1da177e4 195DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
196EXPORT_SYMBOL(dev_base_lock);
197
881d966b 198static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4
LT
199{
200 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
08e9897d 201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
202}
203
881d966b 204static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 205{
7c28bd0b 206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
207}
208
ce286d32
EB
209/* Device list insertion */
210static int list_netdevice(struct net_device *dev)
211{
c346dca1 212 struct net *net = dev_net(dev);
ce286d32
EB
213
214 ASSERT_RTNL();
215
216 write_lock_bh(&dev_base_lock);
c6d14c84 217 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 218 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
219 hlist_add_head_rcu(&dev->index_hlist,
220 dev_index_hash(net, dev->ifindex));
ce286d32
EB
221 write_unlock_bh(&dev_base_lock);
222 return 0;
223}
224
fb699dfd
ED
225/* Device list removal
226 * caller must respect a RCU grace period before freeing/reusing dev
227 */
ce286d32
EB
228static void unlist_netdevice(struct net_device *dev)
229{
230 ASSERT_RTNL();
231
232 /* Unlink dev from the device chain */
233 write_lock_bh(&dev_base_lock);
c6d14c84 234 list_del_rcu(&dev->dev_list);
72c9528b 235 hlist_del_rcu(&dev->name_hlist);
fb699dfd 236 hlist_del_rcu(&dev->index_hlist);
ce286d32
EB
237 write_unlock_bh(&dev_base_lock);
238}
239
1da177e4
LT
240/*
241 * Our notifier list
242 */
243
f07d5b94 244static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
245
246/*
247 * Device drivers call our routines to queue packets here. We empty the
248 * queue in the local softnet handler.
249 */
bea3348e
SH
250
251DEFINE_PER_CPU(struct softnet_data, softnet_data);
d1b19dff 252EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 253
cf508b12 254#ifdef CONFIG_LOCKDEP
723e98b7 255/*
c773e847 256 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
257 * according to dev->type
258 */
259static const unsigned short netdev_lock_type[] =
260 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
261 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
262 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
263 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
264 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
265 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
266 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
267 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
268 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
269 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
270 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
271 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
272 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
2d91d78b 273 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
929122cd 274 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
fcb94e42 275 ARPHRD_VOID, ARPHRD_NONE};
723e98b7 276
36cbd3dc 277static const char *const netdev_lock_name[] =
723e98b7
JP
278 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
279 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
280 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
281 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
282 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
283 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
284 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
285 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
286 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
287 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
288 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
289 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
290 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
2d91d78b 291 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
929122cd 292 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
fcb94e42 293 "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
294
295static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 296static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
297
298static inline unsigned short netdev_lock_pos(unsigned short dev_type)
299{
300 int i;
301
302 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
303 if (netdev_lock_type[i] == dev_type)
304 return i;
305 /* the last key is used by default */
306 return ARRAY_SIZE(netdev_lock_type) - 1;
307}
308
cf508b12
DM
309static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
310 unsigned short dev_type)
723e98b7
JP
311{
312 int i;
313
314 i = netdev_lock_pos(dev_type);
315 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
316 netdev_lock_name[i]);
317}
cf508b12
DM
318
319static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
320{
321 int i;
322
323 i = netdev_lock_pos(dev->type);
324 lockdep_set_class_and_name(&dev->addr_list_lock,
325 &netdev_addr_lock_key[i],
326 netdev_lock_name[i]);
327}
723e98b7 328#else
cf508b12
DM
329static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
330 unsigned short dev_type)
331{
332}
333static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
334{
335}
336#endif
1da177e4
LT
337
338/*******************************************************************************
339
340 Protocol management and registration routines
341
342*******************************************************************************/
343
1da177e4
LT
344/*
345 * Add a protocol ID to the list. Now that the input handler is
346 * smarter we can dispense with all the messy stuff that used to be
347 * here.
348 *
349 * BEWARE!!! Protocol handlers, mangling input packets,
350 * MUST BE last in hash buckets and checking protocol handlers
351 * MUST start from promiscuous ptype_all chain in net_bh.
352 * It is true now, do not change it.
353 * Explanation follows: if protocol handler, mangling packet, will
354 * be the first on list, it is not able to sense, that packet
355 * is cloned and should be copied-on-write, so that it will
356 * change it and subsequent readers will get broken packet.
357 * --ANK (980803)
358 */
359
360/**
361 * dev_add_pack - add packet handler
362 * @pt: packet type declaration
363 *
364 * Add a protocol handler to the networking stack. The passed &packet_type
365 * is linked into kernel lists and may not be freed until it has been
366 * removed from the kernel lists.
367 *
4ec93edb 368 * This call does not sleep therefore it can not
1da177e4
LT
369 * guarantee all CPU's that are in middle of receiving packets
370 * will see the new packet type (until the next received packet).
371 */
372
373void dev_add_pack(struct packet_type *pt)
374{
375 int hash;
376
377 spin_lock_bh(&ptype_lock);
9be9a6b9 378 if (pt->type == htons(ETH_P_ALL))
1da177e4 379 list_add_rcu(&pt->list, &ptype_all);
9be9a6b9 380 else {
82d8a867 381 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
1da177e4
LT
382 list_add_rcu(&pt->list, &ptype_base[hash]);
383 }
384 spin_unlock_bh(&ptype_lock);
385}
d1b19dff 386EXPORT_SYMBOL(dev_add_pack);
1da177e4 387
1da177e4
LT
388/**
389 * __dev_remove_pack - remove packet handler
390 * @pt: packet type declaration
391 *
392 * Remove a protocol handler that was previously added to the kernel
393 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
394 * from the kernel lists and can be freed or reused once this function
4ec93edb 395 * returns.
1da177e4
LT
396 *
397 * The packet type might still be in use by receivers
398 * and must not be freed until after all the CPU's have gone
399 * through a quiescent state.
400 */
401void __dev_remove_pack(struct packet_type *pt)
402{
403 struct list_head *head;
404 struct packet_type *pt1;
405
406 spin_lock_bh(&ptype_lock);
407
9be9a6b9 408 if (pt->type == htons(ETH_P_ALL))
1da177e4 409 head = &ptype_all;
9be9a6b9 410 else
82d8a867 411 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
1da177e4
LT
412
413 list_for_each_entry(pt1, head, list) {
414 if (pt == pt1) {
415 list_del_rcu(&pt->list);
416 goto out;
417 }
418 }
419
420 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
421out:
422 spin_unlock_bh(&ptype_lock);
423}
d1b19dff
ED
424EXPORT_SYMBOL(__dev_remove_pack);
425
1da177e4
LT
426/**
427 * dev_remove_pack - remove packet handler
428 * @pt: packet type declaration
429 *
430 * Remove a protocol handler that was previously added to the kernel
431 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
432 * from the kernel lists and can be freed or reused once this function
433 * returns.
434 *
435 * This call sleeps to guarantee that no CPU is looking at the packet
436 * type after return.
437 */
438void dev_remove_pack(struct packet_type *pt)
439{
440 __dev_remove_pack(pt);
4ec93edb 441
1da177e4
LT
442 synchronize_net();
443}
d1b19dff 444EXPORT_SYMBOL(dev_remove_pack);
1da177e4
LT
445
446/******************************************************************************
447
448 Device Boot-time Settings Routines
449
450*******************************************************************************/
451
452/* Boot time configuration table */
453static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
454
455/**
456 * netdev_boot_setup_add - add new setup entry
457 * @name: name of the device
458 * @map: configured settings for the device
459 *
460 * Adds new setup entry to the dev_boot_setup list. The function
461 * returns 0 on error and 1 on success. This is a generic routine to
462 * all netdevices.
463 */
464static int netdev_boot_setup_add(char *name, struct ifmap *map)
465{
466 struct netdev_boot_setup *s;
467 int i;
468
469 s = dev_boot_setup;
470 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
471 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
472 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 473 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
474 memcpy(&s[i].map, map, sizeof(s[i].map));
475 break;
476 }
477 }
478
479 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
480}
481
482/**
483 * netdev_boot_setup_check - check boot time settings
484 * @dev: the netdevice
485 *
486 * Check boot time settings for the device.
487 * The found settings are set for the device to be used
488 * later in the device probing.
489 * Returns 0 if no settings found, 1 if they are.
490 */
491int netdev_boot_setup_check(struct net_device *dev)
492{
493 struct netdev_boot_setup *s = dev_boot_setup;
494 int i;
495
496 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
497 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 498 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
499 dev->irq = s[i].map.irq;
500 dev->base_addr = s[i].map.base_addr;
501 dev->mem_start = s[i].map.mem_start;
502 dev->mem_end = s[i].map.mem_end;
503 return 1;
504 }
505 }
506 return 0;
507}
d1b19dff 508EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
509
510
511/**
512 * netdev_boot_base - get address from boot time settings
513 * @prefix: prefix for network device
514 * @unit: id for network device
515 *
516 * Check boot time settings for the base address of device.
517 * The found settings are set for the device to be used
518 * later in the device probing.
519 * Returns 0 if no settings found.
520 */
521unsigned long netdev_boot_base(const char *prefix, int unit)
522{
523 const struct netdev_boot_setup *s = dev_boot_setup;
524 char name[IFNAMSIZ];
525 int i;
526
527 sprintf(name, "%s%d", prefix, unit);
528
529 /*
530 * If device already registered then return base of 1
531 * to indicate not to probe for this interface
532 */
881d966b 533 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
534 return 1;
535
536 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
537 if (!strcmp(name, s[i].name))
538 return s[i].map.base_addr;
539 return 0;
540}
541
542/*
543 * Saves at boot time configured settings for any netdevice.
544 */
545int __init netdev_boot_setup(char *str)
546{
547 int ints[5];
548 struct ifmap map;
549
550 str = get_options(str, ARRAY_SIZE(ints), ints);
551 if (!str || !*str)
552 return 0;
553
554 /* Save settings */
555 memset(&map, 0, sizeof(map));
556 if (ints[0] > 0)
557 map.irq = ints[1];
558 if (ints[0] > 1)
559 map.base_addr = ints[2];
560 if (ints[0] > 2)
561 map.mem_start = ints[3];
562 if (ints[0] > 3)
563 map.mem_end = ints[4];
564
565 /* Add new entry to the list */
566 return netdev_boot_setup_add(str, &map);
567}
568
569__setup("netdev=", netdev_boot_setup);
570
571/*******************************************************************************
572
573 Device Interface Subroutines
574
575*******************************************************************************/
576
577/**
578 * __dev_get_by_name - find a device by its name
c4ea43c5 579 * @net: the applicable net namespace
1da177e4
LT
580 * @name: name to find
581 *
582 * Find an interface by name. Must be called under RTNL semaphore
583 * or @dev_base_lock. If the name is found a pointer to the device
584 * is returned. If the name is not found then %NULL is returned. The
585 * reference counters are not incremented so the caller must be
586 * careful with locks.
587 */
588
881d966b 589struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
590{
591 struct hlist_node *p;
0bd8d536
ED
592 struct net_device *dev;
593 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 594
0bd8d536 595 hlist_for_each_entry(dev, p, head, name_hlist)
1da177e4
LT
596 if (!strncmp(dev->name, name, IFNAMSIZ))
597 return dev;
0bd8d536 598
1da177e4
LT
599 return NULL;
600}
d1b19dff 601EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 602
72c9528b
ED
603/**
604 * dev_get_by_name_rcu - find a device by its name
605 * @net: the applicable net namespace
606 * @name: name to find
607 *
608 * Find an interface by name.
609 * If the name is found a pointer to the device is returned.
610 * If the name is not found then %NULL is returned.
611 * The reference counters are not incremented so the caller must be
612 * careful with locks. The caller must hold RCU lock.
613 */
614
615struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
616{
617 struct hlist_node *p;
618 struct net_device *dev;
619 struct hlist_head *head = dev_name_hash(net, name);
620
621 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
622 if (!strncmp(dev->name, name, IFNAMSIZ))
623 return dev;
624
625 return NULL;
626}
627EXPORT_SYMBOL(dev_get_by_name_rcu);
628
1da177e4
LT
629/**
630 * dev_get_by_name - find a device by its name
c4ea43c5 631 * @net: the applicable net namespace
1da177e4
LT
632 * @name: name to find
633 *
634 * Find an interface by name. This can be called from any
635 * context and does its own locking. The returned handle has
636 * the usage count incremented and the caller must use dev_put() to
637 * release it when it is no longer needed. %NULL is returned if no
638 * matching device is found.
639 */
640
881d966b 641struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
642{
643 struct net_device *dev;
644
72c9528b
ED
645 rcu_read_lock();
646 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
647 if (dev)
648 dev_hold(dev);
72c9528b 649 rcu_read_unlock();
1da177e4
LT
650 return dev;
651}
d1b19dff 652EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
653
654/**
655 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 656 * @net: the applicable net namespace
1da177e4
LT
657 * @ifindex: index of device
658 *
659 * Search for an interface by index. Returns %NULL if the device
660 * is not found or a pointer to the device. The device has not
661 * had its reference counter increased so the caller must be careful
662 * about locking. The caller must hold either the RTNL semaphore
663 * or @dev_base_lock.
664 */
665
881d966b 666struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
667{
668 struct hlist_node *p;
0bd8d536
ED
669 struct net_device *dev;
670 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 671
0bd8d536 672 hlist_for_each_entry(dev, p, head, index_hlist)
1da177e4
LT
673 if (dev->ifindex == ifindex)
674 return dev;
0bd8d536 675
1da177e4
LT
676 return NULL;
677}
d1b19dff 678EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 679
fb699dfd
ED
680/**
681 * dev_get_by_index_rcu - find a device by its ifindex
682 * @net: the applicable net namespace
683 * @ifindex: index of device
684 *
685 * Search for an interface by index. Returns %NULL if the device
686 * is not found or a pointer to the device. The device has not
687 * had its reference counter increased so the caller must be careful
688 * about locking. The caller must hold RCU lock.
689 */
690
691struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
692{
693 struct hlist_node *p;
694 struct net_device *dev;
695 struct hlist_head *head = dev_index_hash(net, ifindex);
696
697 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
698 if (dev->ifindex == ifindex)
699 return dev;
700
701 return NULL;
702}
703EXPORT_SYMBOL(dev_get_by_index_rcu);
704
1da177e4
LT
705
706/**
707 * dev_get_by_index - find a device by its ifindex
c4ea43c5 708 * @net: the applicable net namespace
1da177e4
LT
709 * @ifindex: index of device
710 *
711 * Search for an interface by index. Returns NULL if the device
712 * is not found or a pointer to the device. The device returned has
713 * had a reference added and the pointer is safe until the user calls
714 * dev_put to indicate they have finished with it.
715 */
716
881d966b 717struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
718{
719 struct net_device *dev;
720
fb699dfd
ED
721 rcu_read_lock();
722 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
723 if (dev)
724 dev_hold(dev);
fb699dfd 725 rcu_read_unlock();
1da177e4
LT
726 return dev;
727}
d1b19dff 728EXPORT_SYMBOL(dev_get_by_index);
1da177e4
LT
729
730/**
731 * dev_getbyhwaddr - find a device by its hardware address
c4ea43c5 732 * @net: the applicable net namespace
1da177e4
LT
733 * @type: media type of device
734 * @ha: hardware address
735 *
736 * Search for an interface by MAC address. Returns NULL if the device
737 * is not found or a pointer to the device. The caller must hold the
738 * rtnl semaphore. The returned device has not had its ref count increased
739 * and the caller must therefore be careful about locking
740 *
741 * BUGS:
742 * If the API was consistent this would be __dev_get_by_hwaddr
743 */
744
881d966b 745struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
1da177e4
LT
746{
747 struct net_device *dev;
748
749 ASSERT_RTNL();
750
81103a52 751 for_each_netdev(net, dev)
1da177e4
LT
752 if (dev->type == type &&
753 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
754 return dev;
755
756 return NULL;
1da177e4 757}
cf309e3f
JF
758EXPORT_SYMBOL(dev_getbyhwaddr);
759
881d966b 760struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
761{
762 struct net_device *dev;
763
4e9cac2b 764 ASSERT_RTNL();
881d966b 765 for_each_netdev(net, dev)
4e9cac2b 766 if (dev->type == type)
7562f876
PE
767 return dev;
768
769 return NULL;
4e9cac2b 770}
4e9cac2b
PM
771EXPORT_SYMBOL(__dev_getfirstbyhwtype);
772
881d966b 773struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b
PM
774{
775 struct net_device *dev;
776
777 rtnl_lock();
881d966b 778 dev = __dev_getfirstbyhwtype(net, type);
4e9cac2b
PM
779 if (dev)
780 dev_hold(dev);
1da177e4
LT
781 rtnl_unlock();
782 return dev;
783}
1da177e4
LT
784EXPORT_SYMBOL(dev_getfirstbyhwtype);
785
786/**
787 * dev_get_by_flags - find any device with given flags
c4ea43c5 788 * @net: the applicable net namespace
1da177e4
LT
789 * @if_flags: IFF_* values
790 * @mask: bitmask of bits in if_flags to check
791 *
792 * Search for any interface with the given flags. Returns NULL if a device
4ec93edb 793 * is not found or a pointer to the device. The device returned has
1da177e4
LT
794 * had a reference added and the pointer is safe until the user calls
795 * dev_put to indicate they have finished with it.
796 */
797
d1b19dff
ED
798struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
799 unsigned short mask)
1da177e4 800{
7562f876 801 struct net_device *dev, *ret;
1da177e4 802
7562f876 803 ret = NULL;
c6d14c84
ED
804 rcu_read_lock();
805 for_each_netdev_rcu(net, dev) {
1da177e4
LT
806 if (((dev->flags ^ if_flags) & mask) == 0) {
807 dev_hold(dev);
7562f876 808 ret = dev;
1da177e4
LT
809 break;
810 }
811 }
c6d14c84 812 rcu_read_unlock();
7562f876 813 return ret;
1da177e4 814}
d1b19dff 815EXPORT_SYMBOL(dev_get_by_flags);
1da177e4
LT
816
817/**
818 * dev_valid_name - check if name is okay for network device
819 * @name: name string
820 *
821 * Network device names need to be valid file names to
c7fa9d18
DM
822 * to allow sysfs to work. We also disallow any kind of
823 * whitespace.
1da177e4 824 */
c2373ee9 825int dev_valid_name(const char *name)
1da177e4 826{
c7fa9d18
DM
827 if (*name == '\0')
828 return 0;
b6fe17d6
SH
829 if (strlen(name) >= IFNAMSIZ)
830 return 0;
c7fa9d18
DM
831 if (!strcmp(name, ".") || !strcmp(name, ".."))
832 return 0;
833
834 while (*name) {
835 if (*name == '/' || isspace(*name))
836 return 0;
837 name++;
838 }
839 return 1;
1da177e4 840}
d1b19dff 841EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
842
843/**
b267b179
EB
844 * __dev_alloc_name - allocate a name for a device
845 * @net: network namespace to allocate the device name in
1da177e4 846 * @name: name format string
b267b179 847 * @buf: scratch buffer and result name string
1da177e4
LT
848 *
849 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
850 * id. It scans list of devices to build up a free map, then chooses
851 * the first empty slot. The caller must hold the dev_base or rtnl lock
852 * while allocating the name and adding the device in order to avoid
853 * duplicates.
854 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
855 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
856 */
857
b267b179 858static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
859{
860 int i = 0;
1da177e4
LT
861 const char *p;
862 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 863 unsigned long *inuse;
1da177e4
LT
864 struct net_device *d;
865
866 p = strnchr(name, IFNAMSIZ-1, '%');
867 if (p) {
868 /*
869 * Verify the string as this thing may have come from
870 * the user. There must be either one "%d" and no other "%"
871 * characters.
872 */
873 if (p[1] != 'd' || strchr(p + 2, '%'))
874 return -EINVAL;
875
876 /* Use one page as a bit array of possible slots */
cfcabdcc 877 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
878 if (!inuse)
879 return -ENOMEM;
880
881d966b 881 for_each_netdev(net, d) {
1da177e4
LT
882 if (!sscanf(d->name, name, &i))
883 continue;
884 if (i < 0 || i >= max_netdevices)
885 continue;
886
887 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 888 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
889 if (!strncmp(buf, d->name, IFNAMSIZ))
890 set_bit(i, inuse);
891 }
892
893 i = find_first_zero_bit(inuse, max_netdevices);
894 free_page((unsigned long) inuse);
895 }
896
d9031024
OP
897 if (buf != name)
898 snprintf(buf, IFNAMSIZ, name, i);
b267b179 899 if (!__dev_get_by_name(net, buf))
1da177e4 900 return i;
1da177e4
LT
901
902 /* It is possible to run out of possible slots
903 * when the name is long and there isn't enough space left
904 * for the digits, or if all bits are used.
905 */
906 return -ENFILE;
907}
908
b267b179
EB
909/**
910 * dev_alloc_name - allocate a name for a device
911 * @dev: device
912 * @name: name format string
913 *
914 * Passed a format string - eg "lt%d" it will try and find a suitable
915 * id. It scans list of devices to build up a free map, then chooses
916 * the first empty slot. The caller must hold the dev_base or rtnl lock
917 * while allocating the name and adding the device in order to avoid
918 * duplicates.
919 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
920 * Returns the number of the unit assigned or a negative errno code.
921 */
922
923int dev_alloc_name(struct net_device *dev, const char *name)
924{
925 char buf[IFNAMSIZ];
926 struct net *net;
927 int ret;
928
c346dca1
YH
929 BUG_ON(!dev_net(dev));
930 net = dev_net(dev);
b267b179
EB
931 ret = __dev_alloc_name(net, name, buf);
932 if (ret >= 0)
933 strlcpy(dev->name, buf, IFNAMSIZ);
934 return ret;
935}
d1b19dff 936EXPORT_SYMBOL(dev_alloc_name);
b267b179 937
d9031024
OP
938static int dev_get_valid_name(struct net *net, const char *name, char *buf,
939 bool fmt)
940{
941 if (!dev_valid_name(name))
942 return -EINVAL;
943
944 if (fmt && strchr(name, '%'))
945 return __dev_alloc_name(net, name, buf);
946 else if (__dev_get_by_name(net, name))
947 return -EEXIST;
948 else if (buf != name)
949 strlcpy(buf, name, IFNAMSIZ);
950
951 return 0;
952}
1da177e4
LT
953
954/**
955 * dev_change_name - change name of a device
956 * @dev: device
957 * @newname: name (or format string) must be at least IFNAMSIZ
958 *
959 * Change name of a device, can pass format strings "eth%d".
960 * for wildcarding.
961 */
cf04a4c7 962int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 963{
fcc5a03a 964 char oldname[IFNAMSIZ];
1da177e4 965 int err = 0;
fcc5a03a 966 int ret;
881d966b 967 struct net *net;
1da177e4
LT
968
969 ASSERT_RTNL();
c346dca1 970 BUG_ON(!dev_net(dev));
1da177e4 971
c346dca1 972 net = dev_net(dev);
1da177e4
LT
973 if (dev->flags & IFF_UP)
974 return -EBUSY;
975
c8d90dca
SH
976 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
977 return 0;
978
fcc5a03a
HX
979 memcpy(oldname, dev->name, IFNAMSIZ);
980
d9031024
OP
981 err = dev_get_valid_name(net, newname, dev->name, 1);
982 if (err < 0)
983 return err;
1da177e4 984
fcc5a03a 985rollback:
3891845e
EB
986 /* For now only devices in the initial network namespace
987 * are in sysfs.
988 */
09ad9bc7 989 if (net_eq(net, &init_net)) {
3891845e
EB
990 ret = device_rename(&dev->dev, dev->name);
991 if (ret) {
992 memcpy(dev->name, oldname, IFNAMSIZ);
993 return ret;
994 }
dcc99773 995 }
7f988eab
HX
996
997 write_lock_bh(&dev_base_lock);
92749821 998 hlist_del(&dev->name_hlist);
72c9528b
ED
999 write_unlock_bh(&dev_base_lock);
1000
1001 synchronize_rcu();
1002
1003 write_lock_bh(&dev_base_lock);
1004 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1005 write_unlock_bh(&dev_base_lock);
1006
056925ab 1007 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1008 ret = notifier_to_errno(ret);
1009
1010 if (ret) {
91e9c07b
ED
1011 /* err >= 0 after dev_alloc_name() or stores the first errno */
1012 if (err >= 0) {
fcc5a03a
HX
1013 err = ret;
1014 memcpy(dev->name, oldname, IFNAMSIZ);
1015 goto rollback;
91e9c07b
ED
1016 } else {
1017 printk(KERN_ERR
1018 "%s: name change rollback failed: %d.\n",
1019 dev->name, ret);
fcc5a03a
HX
1020 }
1021 }
1da177e4
LT
1022
1023 return err;
1024}
1025
0b815a1a
SH
1026/**
1027 * dev_set_alias - change ifalias of a device
1028 * @dev: device
1029 * @alias: name up to IFALIASZ
f0db275a 1030 * @len: limit of bytes to copy from info
0b815a1a
SH
1031 *
1032 * Set ifalias for a device,
1033 */
1034int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1035{
1036 ASSERT_RTNL();
1037
1038 if (len >= IFALIASZ)
1039 return -EINVAL;
1040
96ca4a2c
OH
1041 if (!len) {
1042 if (dev->ifalias) {
1043 kfree(dev->ifalias);
1044 dev->ifalias = NULL;
1045 }
1046 return 0;
1047 }
1048
d1b19dff 1049 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
0b815a1a
SH
1050 if (!dev->ifalias)
1051 return -ENOMEM;
1052
1053 strlcpy(dev->ifalias, alias, len+1);
1054 return len;
1055}
1056
1057
d8a33ac4 1058/**
3041a069 1059 * netdev_features_change - device changes features
d8a33ac4
SH
1060 * @dev: device to cause notification
1061 *
1062 * Called to indicate a device has changed features.
1063 */
1064void netdev_features_change(struct net_device *dev)
1065{
056925ab 1066 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1067}
1068EXPORT_SYMBOL(netdev_features_change);
1069
1da177e4
LT
1070/**
1071 * netdev_state_change - device changes state
1072 * @dev: device to cause notification
1073 *
1074 * Called to indicate a device has changed state. This function calls
1075 * the notifier chains for netdev_chain and sends a NEWLINK message
1076 * to the routing socket.
1077 */
1078void netdev_state_change(struct net_device *dev)
1079{
1080 if (dev->flags & IFF_UP) {
056925ab 1081 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1da177e4
LT
1082 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1083 }
1084}
d1b19dff 1085EXPORT_SYMBOL(netdev_state_change);
1da177e4 1086
3ca5b404 1087int netdev_bonding_change(struct net_device *dev, unsigned long event)
c1da4ac7 1088{
3ca5b404 1089 return call_netdevice_notifiers(event, dev);
c1da4ac7
OG
1090}
1091EXPORT_SYMBOL(netdev_bonding_change);
1092
1da177e4
LT
1093/**
1094 * dev_load - load a network module
c4ea43c5 1095 * @net: the applicable net namespace
1da177e4
LT
1096 * @name: name of interface
1097 *
1098 * If a network interface is not present and the process has suitable
1099 * privileges this function loads the module. If module loading is not
1100 * available in this kernel then it becomes a nop.
1101 */
1102
881d966b 1103void dev_load(struct net *net, const char *name)
1da177e4 1104{
4ec93edb 1105 struct net_device *dev;
1da177e4 1106
72c9528b
ED
1107 rcu_read_lock();
1108 dev = dev_get_by_name_rcu(net, name);
1109 rcu_read_unlock();
1da177e4 1110
a8f80e8f 1111 if (!dev && capable(CAP_NET_ADMIN))
1da177e4
LT
1112 request_module("%s", name);
1113}
d1b19dff 1114EXPORT_SYMBOL(dev_load);
1da177e4 1115
bd380811 1116static int __dev_open(struct net_device *dev)
1da177e4 1117{
d314774c 1118 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1119 int ret;
1da177e4 1120
e46b66bc
BH
1121 ASSERT_RTNL();
1122
1da177e4
LT
1123 /*
1124 * Is it even present?
1125 */
1126 if (!netif_device_present(dev))
1127 return -ENODEV;
1128
3b8bcfd5
JB
1129 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1130 ret = notifier_to_errno(ret);
1131 if (ret)
1132 return ret;
1133
1da177e4
LT
1134 /*
1135 * Call device private open method
1136 */
1137 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1138
d314774c
SH
1139 if (ops->ndo_validate_addr)
1140 ret = ops->ndo_validate_addr(dev);
bada339b 1141
d314774c
SH
1142 if (!ret && ops->ndo_open)
1143 ret = ops->ndo_open(dev);
1da177e4 1144
4ec93edb 1145 /*
1da177e4
LT
1146 * If it went open OK then:
1147 */
1148
bada339b
JG
1149 if (ret)
1150 clear_bit(__LINK_STATE_START, &dev->state);
1151 else {
1da177e4
LT
1152 /*
1153 * Set the flags.
1154 */
1155 dev->flags |= IFF_UP;
1156
649274d9
DW
1157 /*
1158 * Enable NET_DMA
1159 */
b4bd07c2 1160 net_dmaengine_get();
649274d9 1161
1da177e4
LT
1162 /*
1163 * Initialize multicasting status
1164 */
4417da66 1165 dev_set_rx_mode(dev);
1da177e4
LT
1166
1167 /*
1168 * Wakeup transmit queue engine
1169 */
1170 dev_activate(dev);
1da177e4 1171 }
bada339b 1172
1da177e4
LT
1173 return ret;
1174}
1175
1176/**
bd380811
PM
1177 * dev_open - prepare an interface for use.
1178 * @dev: device to open
1da177e4 1179 *
bd380811
PM
1180 * Takes a device from down to up state. The device's private open
1181 * function is invoked and then the multicast lists are loaded. Finally
1182 * the device is moved into the up state and a %NETDEV_UP message is
1183 * sent to the netdev notifier chain.
1184 *
1185 * Calling this function on an active interface is a nop. On a failure
1186 * a negative errno code is returned.
1da177e4 1187 */
bd380811
PM
1188int dev_open(struct net_device *dev)
1189{
1190 int ret;
1191
1192 /*
1193 * Is it already up?
1194 */
1195 if (dev->flags & IFF_UP)
1196 return 0;
1197
1198 /*
1199 * Open device
1200 */
1201 ret = __dev_open(dev);
1202 if (ret < 0)
1203 return ret;
1204
1205 /*
1206 * ... and announce new interface.
1207 */
1208 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1209 call_netdevice_notifiers(NETDEV_UP, dev);
1210
1211 return ret;
1212}
1213EXPORT_SYMBOL(dev_open);
1214
1215static int __dev_close(struct net_device *dev)
1da177e4 1216{
d314774c 1217 const struct net_device_ops *ops = dev->netdev_ops;
e46b66bc 1218
bd380811 1219 ASSERT_RTNL();
9d5010db
DM
1220 might_sleep();
1221
1da177e4
LT
1222 /*
1223 * Tell people we are going down, so that they can
1224 * prepare to death, when device is still operating.
1225 */
056925ab 1226 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1227
1da177e4
LT
1228 clear_bit(__LINK_STATE_START, &dev->state);
1229
1230 /* Synchronize to scheduled poll. We cannot touch poll list,
bea3348e
SH
1231 * it can be even on different cpu. So just clear netif_running().
1232 *
1233 * dev->stop() will invoke napi_disable() on all of it's
1234 * napi_struct instances on this device.
1235 */
1da177e4 1236 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1da177e4 1237
d8b2a4d2
ML
1238 dev_deactivate(dev);
1239
1da177e4
LT
1240 /*
1241 * Call the device specific close. This cannot fail.
1242 * Only if device is UP
1243 *
1244 * We allow it to be called even after a DETACH hot-plug
1245 * event.
1246 */
d314774c
SH
1247 if (ops->ndo_stop)
1248 ops->ndo_stop(dev);
1da177e4
LT
1249
1250 /*
1251 * Device is now down.
1252 */
1253
1254 dev->flags &= ~IFF_UP;
1255
1256 /*
bd380811 1257 * Shutdown NET_DMA
1da177e4 1258 */
bd380811
PM
1259 net_dmaengine_put();
1260
1261 return 0;
1262}
1263
1264/**
1265 * dev_close - shutdown an interface.
1266 * @dev: device to shutdown
1267 *
1268 * This function moves an active device into down state. A
1269 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1270 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1271 * chain.
1272 */
1273int dev_close(struct net_device *dev)
1274{
1275 if (!(dev->flags & IFF_UP))
1276 return 0;
1277
1278 __dev_close(dev);
1da177e4 1279
649274d9 1280 /*
bd380811 1281 * Tell people we are down
649274d9 1282 */
bd380811
PM
1283 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1284 call_netdevice_notifiers(NETDEV_DOWN, dev);
649274d9 1285
1da177e4
LT
1286 return 0;
1287}
d1b19dff 1288EXPORT_SYMBOL(dev_close);
1da177e4
LT
1289
1290
0187bdfb
BH
1291/**
1292 * dev_disable_lro - disable Large Receive Offload on a device
1293 * @dev: device
1294 *
1295 * Disable Large Receive Offload (LRO) on a net device. Must be
1296 * called under RTNL. This is needed if received packets may be
1297 * forwarded to another interface.
1298 */
1299void dev_disable_lro(struct net_device *dev)
1300{
1301 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1302 dev->ethtool_ops->set_flags) {
1303 u32 flags = dev->ethtool_ops->get_flags(dev);
1304 if (flags & ETH_FLAG_LRO) {
1305 flags &= ~ETH_FLAG_LRO;
1306 dev->ethtool_ops->set_flags(dev, flags);
1307 }
1308 }
1309 WARN_ON(dev->features & NETIF_F_LRO);
1310}
1311EXPORT_SYMBOL(dev_disable_lro);
1312
1313
881d966b
EB
1314static int dev_boot_phase = 1;
1315
1da177e4
LT
1316/*
1317 * Device change register/unregister. These are not inline or static
1318 * as we export them to the world.
1319 */
1320
1321/**
1322 * register_netdevice_notifier - register a network notifier block
1323 * @nb: notifier
1324 *
1325 * Register a notifier to be called when network device events occur.
1326 * The notifier passed is linked into the kernel structures and must
1327 * not be reused until it has been unregistered. A negative errno code
1328 * is returned on a failure.
1329 *
1330 * When registered all registration and up events are replayed
4ec93edb 1331 * to the new notifier to allow device to have a race free
1da177e4
LT
1332 * view of the network device list.
1333 */
1334
1335int register_netdevice_notifier(struct notifier_block *nb)
1336{
1337 struct net_device *dev;
fcc5a03a 1338 struct net_device *last;
881d966b 1339 struct net *net;
1da177e4
LT
1340 int err;
1341
1342 rtnl_lock();
f07d5b94 1343 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1344 if (err)
1345 goto unlock;
881d966b
EB
1346 if (dev_boot_phase)
1347 goto unlock;
1348 for_each_net(net) {
1349 for_each_netdev(net, dev) {
1350 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1351 err = notifier_to_errno(err);
1352 if (err)
1353 goto rollback;
1354
1355 if (!(dev->flags & IFF_UP))
1356 continue;
1da177e4 1357
881d966b
EB
1358 nb->notifier_call(nb, NETDEV_UP, dev);
1359 }
1da177e4 1360 }
fcc5a03a
HX
1361
1362unlock:
1da177e4
LT
1363 rtnl_unlock();
1364 return err;
fcc5a03a
HX
1365
1366rollback:
1367 last = dev;
881d966b
EB
1368 for_each_net(net) {
1369 for_each_netdev(net, dev) {
1370 if (dev == last)
1371 break;
fcc5a03a 1372
881d966b
EB
1373 if (dev->flags & IFF_UP) {
1374 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1375 nb->notifier_call(nb, NETDEV_DOWN, dev);
1376 }
1377 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
a5ee1551 1378 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
fcc5a03a 1379 }
fcc5a03a 1380 }
c67625a1
PE
1381
1382 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1383 goto unlock;
1da177e4 1384}
d1b19dff 1385EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1386
1387/**
1388 * unregister_netdevice_notifier - unregister a network notifier block
1389 * @nb: notifier
1390 *
1391 * Unregister a notifier previously registered by
1392 * register_netdevice_notifier(). The notifier is unlinked into the
1393 * kernel structures and may then be reused. A negative errno code
1394 * is returned on a failure.
1395 */
1396
1397int unregister_netdevice_notifier(struct notifier_block *nb)
1398{
9f514950
HX
1399 int err;
1400
1401 rtnl_lock();
f07d5b94 1402 err = raw_notifier_chain_unregister(&netdev_chain, nb);
9f514950
HX
1403 rtnl_unlock();
1404 return err;
1da177e4 1405}
d1b19dff 1406EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4
LT
1407
1408/**
1409 * call_netdevice_notifiers - call all network notifier blocks
1410 * @val: value passed unmodified to notifier function
c4ea43c5 1411 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1412 *
1413 * Call all network notifier blocks. Parameters and return value
f07d5b94 1414 * are as for raw_notifier_call_chain().
1da177e4
LT
1415 */
1416
ad7379d4 1417int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1418{
ad7379d4 1419 return raw_notifier_call_chain(&netdev_chain, val, dev);
1da177e4
LT
1420}
1421
1422/* When > 0 there are consumers of rx skb time stamps */
1423static atomic_t netstamp_needed = ATOMIC_INIT(0);
1424
1425void net_enable_timestamp(void)
1426{
1427 atomic_inc(&netstamp_needed);
1428}
d1b19dff 1429EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1430
1431void net_disable_timestamp(void)
1432{
1433 atomic_dec(&netstamp_needed);
1434}
d1b19dff 1435EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1436
a61bbcf2 1437static inline void net_timestamp(struct sk_buff *skb)
1da177e4
LT
1438{
1439 if (atomic_read(&netstamp_needed))
a61bbcf2 1440 __net_timestamp(skb);
b7aa0bf7
ED
1441 else
1442 skb->tstamp.tv64 = 0;
1da177e4
LT
1443}
1444
44540960
AB
1445/**
1446 * dev_forward_skb - loopback an skb to another netif
1447 *
1448 * @dev: destination network device
1449 * @skb: buffer to forward
1450 *
1451 * return values:
1452 * NET_RX_SUCCESS (no congestion)
1453 * NET_RX_DROP (packet was dropped)
1454 *
1455 * dev_forward_skb can be used for injecting an skb from the
1456 * start_xmit function of one device into the receive queue
1457 * of another device.
1458 *
1459 * The receiving device may be in another namespace, so
1460 * we have to clear all information in the skb that could
1461 * impact namespace isolation.
1462 */
1463int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1464{
1465 skb_orphan(skb);
1466
1467 if (!(dev->flags & IFF_UP))
1468 return NET_RX_DROP;
1469
1470 if (skb->len > (dev->mtu + dev->hard_header_len))
1471 return NET_RX_DROP;
1472
8a83a00b 1473 skb_set_dev(skb, dev);
44540960
AB
1474 skb->tstamp.tv64 = 0;
1475 skb->pkt_type = PACKET_HOST;
1476 skb->protocol = eth_type_trans(skb, dev);
44540960
AB
1477 return netif_rx(skb);
1478}
1479EXPORT_SYMBOL_GPL(dev_forward_skb);
1480
1da177e4
LT
1481/*
1482 * Support routine. Sends outgoing frames to any network
1483 * taps currently in use.
1484 */
1485
f6a78bfc 1486static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1487{
1488 struct packet_type *ptype;
a61bbcf2 1489
8caf1539
JP
1490#ifdef CONFIG_NET_CLS_ACT
1491 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1492 net_timestamp(skb);
1493#else
a61bbcf2 1494 net_timestamp(skb);
8caf1539 1495#endif
1da177e4
LT
1496
1497 rcu_read_lock();
1498 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1499 /* Never send packets back to the socket
1500 * they originated from - MvS (miquels@drinkel.ow.org)
1501 */
1502 if ((ptype->dev == dev || !ptype->dev) &&
1503 (ptype->af_packet_priv == NULL ||
1504 (struct sock *)ptype->af_packet_priv != skb->sk)) {
d1b19dff 1505 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1da177e4
LT
1506 if (!skb2)
1507 break;
1508
1509 /* skb->nh should be correctly
1510 set by sender, so that the second statement is
1511 just protection against buggy protocols.
1512 */
459a98ed 1513 skb_reset_mac_header(skb2);
1da177e4 1514
d56f90a7 1515 if (skb_network_header(skb2) < skb2->data ||
27a884dc 1516 skb2->network_header > skb2->tail) {
1da177e4
LT
1517 if (net_ratelimit())
1518 printk(KERN_CRIT "protocol %04x is "
1519 "buggy, dev %s\n",
1520 skb2->protocol, dev->name);
c1d2bbe1 1521 skb_reset_network_header(skb2);
1da177e4
LT
1522 }
1523
b0e380b1 1524 skb2->transport_header = skb2->network_header;
1da177e4 1525 skb2->pkt_type = PACKET_OUTGOING;
f2ccd8fa 1526 ptype->func(skb2, skb->dev, ptype, skb->dev);
1da177e4
LT
1527 }
1528 }
1529 rcu_read_unlock();
1530}
1531
56079431 1532
def82a1d 1533static inline void __netif_reschedule(struct Qdisc *q)
56079431 1534{
def82a1d
JP
1535 struct softnet_data *sd;
1536 unsigned long flags;
56079431 1537
def82a1d
JP
1538 local_irq_save(flags);
1539 sd = &__get_cpu_var(softnet_data);
1540 q->next_sched = sd->output_queue;
1541 sd->output_queue = q;
1542 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1543 local_irq_restore(flags);
1544}
1545
1546void __netif_schedule(struct Qdisc *q)
1547{
1548 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1549 __netif_reschedule(q);
56079431
DV
1550}
1551EXPORT_SYMBOL(__netif_schedule);
1552
bea3348e 1553void dev_kfree_skb_irq(struct sk_buff *skb)
56079431 1554{
bea3348e
SH
1555 if (atomic_dec_and_test(&skb->users)) {
1556 struct softnet_data *sd;
1557 unsigned long flags;
56079431 1558
bea3348e
SH
1559 local_irq_save(flags);
1560 sd = &__get_cpu_var(softnet_data);
1561 skb->next = sd->completion_queue;
1562 sd->completion_queue = skb;
1563 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1564 local_irq_restore(flags);
1565 }
56079431 1566}
bea3348e 1567EXPORT_SYMBOL(dev_kfree_skb_irq);
56079431
DV
1568
1569void dev_kfree_skb_any(struct sk_buff *skb)
1570{
1571 if (in_irq() || irqs_disabled())
1572 dev_kfree_skb_irq(skb);
1573 else
1574 dev_kfree_skb(skb);
1575}
1576EXPORT_SYMBOL(dev_kfree_skb_any);
1577
1578
bea3348e
SH
1579/**
1580 * netif_device_detach - mark device as removed
1581 * @dev: network device
1582 *
1583 * Mark device as removed from system and therefore no longer available.
1584 */
56079431
DV
1585void netif_device_detach(struct net_device *dev)
1586{
1587 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1588 netif_running(dev)) {
d543103a 1589 netif_tx_stop_all_queues(dev);
56079431
DV
1590 }
1591}
1592EXPORT_SYMBOL(netif_device_detach);
1593
bea3348e
SH
1594/**
1595 * netif_device_attach - mark device as attached
1596 * @dev: network device
1597 *
1598 * Mark device as attached from system and restart if needed.
1599 */
56079431
DV
1600void netif_device_attach(struct net_device *dev)
1601{
1602 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1603 netif_running(dev)) {
d543103a 1604 netif_tx_wake_all_queues(dev);
4ec93edb 1605 __netdev_watchdog_up(dev);
56079431
DV
1606 }
1607}
1608EXPORT_SYMBOL(netif_device_attach);
1609
6de329e2
BH
1610static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1611{
1612 return ((features & NETIF_F_GEN_CSUM) ||
1613 ((features & NETIF_F_IP_CSUM) &&
1614 protocol == htons(ETH_P_IP)) ||
1615 ((features & NETIF_F_IPV6_CSUM) &&
1c8dbcf6
YZ
1616 protocol == htons(ETH_P_IPV6)) ||
1617 ((features & NETIF_F_FCOE_CRC) &&
1618 protocol == htons(ETH_P_FCOE)));
6de329e2
BH
1619}
1620
1621static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1622{
1623 if (can_checksum_protocol(dev->features, skb->protocol))
1624 return true;
1625
1626 if (skb->protocol == htons(ETH_P_8021Q)) {
1627 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1628 if (can_checksum_protocol(dev->features & dev->vlan_features,
1629 veh->h_vlan_encapsulated_proto))
1630 return true;
1631 }
1632
1633 return false;
1634}
56079431 1635
8a83a00b
AB
1636/**
1637 * skb_dev_set -- assign a new device to a buffer
1638 * @skb: buffer for the new device
1639 * @dev: network device
1640 *
1641 * If an skb is owned by a device already, we have to reset
1642 * all data private to the namespace a device belongs to
1643 * before assigning it a new device.
1644 */
1645#ifdef CONFIG_NET_NS
1646void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1647{
1648 skb_dst_drop(skb);
1649 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1650 secpath_reset(skb);
1651 nf_reset(skb);
1652 skb_init_secmark(skb);
1653 skb->mark = 0;
1654 skb->priority = 0;
1655 skb->nf_trace = 0;
1656 skb->ipvs_property = 0;
1657#ifdef CONFIG_NET_SCHED
1658 skb->tc_index = 0;
1659#endif
1660 }
1661 skb->dev = dev;
1662}
1663EXPORT_SYMBOL(skb_set_dev);
1664#endif /* CONFIG_NET_NS */
1665
1da177e4
LT
1666/*
1667 * Invalidate hardware checksum when packet is to be mangled, and
1668 * complete checksum manually on outgoing path.
1669 */
84fa7933 1670int skb_checksum_help(struct sk_buff *skb)
1da177e4 1671{
d3bc23e7 1672 __wsum csum;
663ead3b 1673 int ret = 0, offset;
1da177e4 1674
84fa7933 1675 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
1676 goto out_set_summed;
1677
1678 if (unlikely(skb_shinfo(skb)->gso_size)) {
a430a43d
HX
1679 /* Let GSO fix up the checksum. */
1680 goto out_set_summed;
1da177e4
LT
1681 }
1682
a030847e
HX
1683 offset = skb->csum_start - skb_headroom(skb);
1684 BUG_ON(offset >= skb_headlen(skb));
1685 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1686
1687 offset += skb->csum_offset;
1688 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1689
1690 if (skb_cloned(skb) &&
1691 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
1692 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1693 if (ret)
1694 goto out;
1695 }
1696
a030847e 1697 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 1698out_set_summed:
1da177e4 1699 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 1700out:
1da177e4
LT
1701 return ret;
1702}
d1b19dff 1703EXPORT_SYMBOL(skb_checksum_help);
1da177e4 1704
f6a78bfc
HX
1705/**
1706 * skb_gso_segment - Perform segmentation on skb.
1707 * @skb: buffer to segment
576a30eb 1708 * @features: features for the output path (see dev->features)
f6a78bfc
HX
1709 *
1710 * This function segments the given skb and returns a list of segments.
576a30eb
HX
1711 *
1712 * It may return NULL if the skb requires no segmentation. This is
1713 * only possible when GSO is used for verifying header integrity.
f6a78bfc 1714 */
576a30eb 1715struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
f6a78bfc
HX
1716{
1717 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1718 struct packet_type *ptype;
252e3346 1719 __be16 type = skb->protocol;
a430a43d 1720 int err;
f6a78bfc 1721
459a98ed 1722 skb_reset_mac_header(skb);
b0e380b1 1723 skb->mac_len = skb->network_header - skb->mac_header;
f6a78bfc
HX
1724 __skb_pull(skb, skb->mac_len);
1725
67fd1a73
HX
1726 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1727 struct net_device *dev = skb->dev;
1728 struct ethtool_drvinfo info = {};
1729
1730 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1731 dev->ethtool_ops->get_drvinfo(dev, &info);
1732
1733 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1734 "ip_summed=%d",
1735 info.driver, dev ? dev->features : 0L,
1736 skb->sk ? skb->sk->sk_route_caps : 0L,
1737 skb->len, skb->data_len, skb->ip_summed);
1738
a430a43d
HX
1739 if (skb_header_cloned(skb) &&
1740 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1741 return ERR_PTR(err);
1742 }
1743
f6a78bfc 1744 rcu_read_lock();
82d8a867
PE
1745 list_for_each_entry_rcu(ptype,
1746 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
f6a78bfc 1747 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
84fa7933 1748 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
a430a43d
HX
1749 err = ptype->gso_send_check(skb);
1750 segs = ERR_PTR(err);
1751 if (err || skb_gso_ok(skb, features))
1752 break;
d56f90a7
ACM
1753 __skb_push(skb, (skb->data -
1754 skb_network_header(skb)));
a430a43d 1755 }
576a30eb 1756 segs = ptype->gso_segment(skb, features);
f6a78bfc
HX
1757 break;
1758 }
1759 }
1760 rcu_read_unlock();
1761
98e399f8 1762 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 1763
f6a78bfc
HX
1764 return segs;
1765}
f6a78bfc
HX
1766EXPORT_SYMBOL(skb_gso_segment);
1767
fb286bb2
HX
1768/* Take action when hardware reception checksum errors are detected. */
1769#ifdef CONFIG_BUG
1770void netdev_rx_csum_fault(struct net_device *dev)
1771{
1772 if (net_ratelimit()) {
4ec93edb 1773 printk(KERN_ERR "%s: hw csum failure.\n",
246a4212 1774 dev ? dev->name : "<unknown>");
fb286bb2
HX
1775 dump_stack();
1776 }
1777}
1778EXPORT_SYMBOL(netdev_rx_csum_fault);
1779#endif
1780
1da177e4
LT
1781/* Actually, we should eliminate this check as soon as we know, that:
1782 * 1. IOMMU is present and allows to map all the memory.
1783 * 2. No high memory really exists on this machine.
1784 */
1785
1786static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1787{
3d3a8533 1788#ifdef CONFIG_HIGHMEM
1da177e4
LT
1789 int i;
1790
1791 if (dev->features & NETIF_F_HIGHDMA)
1792 return 0;
1793
1794 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1795 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1796 return 1;
1797
3d3a8533 1798#endif
1da177e4
LT
1799 return 0;
1800}
1da177e4 1801
f6a78bfc
HX
1802struct dev_gso_cb {
1803 void (*destructor)(struct sk_buff *skb);
1804};
1805
1806#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1807
1808static void dev_gso_skb_destructor(struct sk_buff *skb)
1809{
1810 struct dev_gso_cb *cb;
1811
1812 do {
1813 struct sk_buff *nskb = skb->next;
1814
1815 skb->next = nskb->next;
1816 nskb->next = NULL;
1817 kfree_skb(nskb);
1818 } while (skb->next);
1819
1820 cb = DEV_GSO_CB(skb);
1821 if (cb->destructor)
1822 cb->destructor(skb);
1823}
1824
1825/**
1826 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1827 * @skb: buffer to segment
1828 *
1829 * This function segments the given skb and stores the list of segments
1830 * in skb->next.
1831 */
1832static int dev_gso_segment(struct sk_buff *skb)
1833{
1834 struct net_device *dev = skb->dev;
1835 struct sk_buff *segs;
576a30eb
HX
1836 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1837 NETIF_F_SG : 0);
1838
1839 segs = skb_gso_segment(skb, features);
1840
1841 /* Verifying header integrity only. */
1842 if (!segs)
1843 return 0;
f6a78bfc 1844
801678c5 1845 if (IS_ERR(segs))
f6a78bfc
HX
1846 return PTR_ERR(segs);
1847
1848 skb->next = segs;
1849 DEV_GSO_CB(skb)->destructor = skb->destructor;
1850 skb->destructor = dev_gso_skb_destructor;
1851
1852 return 0;
1853}
1854
fd2ea0a7
DM
1855int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1856 struct netdev_queue *txq)
f6a78bfc 1857{
00829823 1858 const struct net_device_ops *ops = dev->netdev_ops;
572a9d7b 1859 int rc = NETDEV_TX_OK;
00829823 1860
f6a78bfc 1861 if (likely(!skb->next)) {
9be9a6b9 1862 if (!list_empty(&ptype_all))
f6a78bfc
HX
1863 dev_queue_xmit_nit(skb, dev);
1864
576a30eb
HX
1865 if (netif_needs_gso(dev, skb)) {
1866 if (unlikely(dev_gso_segment(skb)))
1867 goto out_kfree_skb;
1868 if (skb->next)
1869 goto gso;
1870 }
f6a78bfc 1871
93f154b5
ED
1872 /*
1873 * If device doesnt need skb->dst, release it right now while
1874 * its hot in this cpu cache
1875 */
adf30907
ED
1876 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1877 skb_dst_drop(skb);
1878
ac45f602 1879 rc = ops->ndo_start_xmit(skb, dev);
ec634fe3 1880 if (rc == NETDEV_TX_OK)
08baf561 1881 txq_trans_update(txq);
ac45f602
PO
1882 /*
1883 * TODO: if skb_orphan() was called by
1884 * dev->hard_start_xmit() (for example, the unmodified
1885 * igb driver does that; bnx2 doesn't), then
1886 * skb_tx_software_timestamp() will be unable to send
1887 * back the time stamp.
1888 *
1889 * How can this be prevented? Always create another
1890 * reference to the socket before calling
1891 * dev->hard_start_xmit()? Prevent that skb_orphan()
1892 * does anything in dev->hard_start_xmit() by clearing
1893 * the skb destructor before the call and restoring it
1894 * afterwards, then doing the skb_orphan() ourselves?
1895 */
ac45f602 1896 return rc;
f6a78bfc
HX
1897 }
1898
576a30eb 1899gso:
f6a78bfc
HX
1900 do {
1901 struct sk_buff *nskb = skb->next;
f6a78bfc
HX
1902
1903 skb->next = nskb->next;
1904 nskb->next = NULL;
068a2de5
KK
1905
1906 /*
1907 * If device doesnt need nskb->dst, release it right now while
1908 * its hot in this cpu cache
1909 */
1910 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1911 skb_dst_drop(nskb);
1912
00829823 1913 rc = ops->ndo_start_xmit(nskb, dev);
ec634fe3 1914 if (unlikely(rc != NETDEV_TX_OK)) {
572a9d7b
PM
1915 if (rc & ~NETDEV_TX_MASK)
1916 goto out_kfree_gso_skb;
f54d9e8d 1917 nskb->next = skb->next;
f6a78bfc
HX
1918 skb->next = nskb;
1919 return rc;
1920 }
08baf561 1921 txq_trans_update(txq);
fd2ea0a7 1922 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
f54d9e8d 1923 return NETDEV_TX_BUSY;
f6a78bfc 1924 } while (skb->next);
4ec93edb 1925
572a9d7b
PM
1926out_kfree_gso_skb:
1927 if (likely(skb->next == NULL))
1928 skb->destructor = DEV_GSO_CB(skb)->destructor;
f6a78bfc
HX
1929out_kfree_skb:
1930 kfree_skb(skb);
572a9d7b 1931 return rc;
f6a78bfc
HX
1932}
1933
0a9627f2 1934static u32 hashrnd __read_mostly;
b6b2fed1 1935
9247744e 1936u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
8f0f2223 1937{
7019298a 1938 u32 hash;
b6b2fed1 1939
513de11b
DM
1940 if (skb_rx_queue_recorded(skb)) {
1941 hash = skb_get_rx_queue(skb);
d1b19dff 1942 while (unlikely(hash >= dev->real_num_tx_queues))
513de11b
DM
1943 hash -= dev->real_num_tx_queues;
1944 return hash;
1945 }
ec581f6a
ED
1946
1947 if (skb->sk && skb->sk->sk_hash)
7019298a 1948 hash = skb->sk->sk_hash;
ec581f6a 1949 else
7019298a 1950 hash = skb->protocol;
d5a9e24a 1951
0a9627f2 1952 hash = jhash_1word(hash, hashrnd);
b6b2fed1
DM
1953
1954 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
8f0f2223 1955}
9247744e 1956EXPORT_SYMBOL(skb_tx_hash);
8f0f2223 1957
ed04642f
ED
1958static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1959{
1960 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1961 if (net_ratelimit()) {
0a9627f2 1962 netdev_warn(dev, "selects TX queue %d, but "
ed04642f 1963 "real number of TX queues is %d\n",
0a9627f2 1964 queue_index, dev->real_num_tx_queues);
ed04642f
ED
1965 }
1966 return 0;
1967 }
1968 return queue_index;
1969}
1970
e8a0464c
DM
1971static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1972 struct sk_buff *skb)
1973{
a4ee3ce3
KK
1974 u16 queue_index;
1975 struct sock *sk = skb->sk;
1976
1977 if (sk_tx_queue_recorded(sk)) {
1978 queue_index = sk_tx_queue_get(sk);
1979 } else {
1980 const struct net_device_ops *ops = dev->netdev_ops;
1981
1982 if (ops->ndo_select_queue) {
1983 queue_index = ops->ndo_select_queue(dev, skb);
ed04642f 1984 queue_index = dev_cap_txqueue(dev, queue_index);
a4ee3ce3
KK
1985 } else {
1986 queue_index = 0;
1987 if (dev->real_num_tx_queues > 1)
1988 queue_index = skb_tx_hash(dev, skb);
fd2ea0a7 1989
a4ee3ce3
KK
1990 if (sk && sk->sk_dst_cache)
1991 sk_tx_queue_set(sk, queue_index);
1992 }
1993 }
eae792b7 1994
fd2ea0a7
DM
1995 skb_set_queue_mapping(skb, queue_index);
1996 return netdev_get_tx_queue(dev, queue_index);
e8a0464c
DM
1997}
1998
bbd8a0d3
KK
1999static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2000 struct net_device *dev,
2001 struct netdev_queue *txq)
2002{
2003 spinlock_t *root_lock = qdisc_lock(q);
2004 int rc;
2005
2006 spin_lock(root_lock);
2007 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2008 kfree_skb(skb);
2009 rc = NET_XMIT_DROP;
2010 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2011 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
2012 /*
2013 * This is a work-conserving queue; there are no old skbs
2014 * waiting to be sent out; and the qdisc is not running -
2015 * xmit the skb directly.
2016 */
2017 __qdisc_update_bstats(q, skb->len);
2018 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
2019 __qdisc_run(q);
2020 else
2021 clear_bit(__QDISC_STATE_RUNNING, &q->state);
2022
2023 rc = NET_XMIT_SUCCESS;
2024 } else {
2025 rc = qdisc_enqueue_root(skb, q);
2026 qdisc_run(q);
2027 }
2028 spin_unlock(root_lock);
2029
2030 return rc;
2031}
2032
4b258461
KK
2033/*
2034 * Returns true if either:
2035 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2036 * 2. skb is fragmented and the device does not support SG, or if
2037 * at least one of fragments is in highmem and device does not
2038 * support DMA from it.
2039 */
2040static inline int skb_needs_linearize(struct sk_buff *skb,
2041 struct net_device *dev)
2042{
2043 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2044 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2045 illegal_highdma(dev, skb)));
2046}
2047
d29f749e
DJ
2048/**
2049 * dev_queue_xmit - transmit a buffer
2050 * @skb: buffer to transmit
2051 *
2052 * Queue a buffer for transmission to a network device. The caller must
2053 * have set the device and priority and built the buffer before calling
2054 * this function. The function can be called from an interrupt.
2055 *
2056 * A negative errno code is returned on a failure. A success does not
2057 * guarantee the frame will be transmitted as it may be dropped due
2058 * to congestion or traffic shaping.
2059 *
2060 * -----------------------------------------------------------------------------------
2061 * I notice this method can also return errors from the queue disciplines,
2062 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2063 * be positive.
2064 *
2065 * Regardless of the return value, the skb is consumed, so it is currently
2066 * difficult to retry a send to this method. (You can bump the ref count
2067 * before sending to hold a reference for retry if you are careful.)
2068 *
2069 * When calling this method, interrupts MUST be enabled. This is because
2070 * the BH enable code must have IRQs enabled so that it will not deadlock.
2071 * --BLG
2072 */
1da177e4
LT
2073int dev_queue_xmit(struct sk_buff *skb)
2074{
2075 struct net_device *dev = skb->dev;
dc2b4847 2076 struct netdev_queue *txq;
1da177e4
LT
2077 struct Qdisc *q;
2078 int rc = -ENOMEM;
2079
f6a78bfc
HX
2080 /* GSO will handle the following emulations directly. */
2081 if (netif_needs_gso(dev, skb))
2082 goto gso;
2083
4b258461
KK
2084 /* Convert a paged skb to linear, if required */
2085 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
1da177e4
LT
2086 goto out_kfree_skb;
2087
2088 /* If packet is not checksummed and device does not support
2089 * checksumming for this protocol, complete checksumming here.
2090 */
663ead3b
HX
2091 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2092 skb_set_transport_header(skb, skb->csum_start -
2093 skb_headroom(skb));
6de329e2
BH
2094 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2095 goto out_kfree_skb;
663ead3b 2096 }
1da177e4 2097
f6a78bfc 2098gso:
4ec93edb
YH
2099 /* Disable soft irqs for various locks below. Also
2100 * stops preemption for RCU.
1da177e4 2101 */
4ec93edb 2102 rcu_read_lock_bh();
1da177e4 2103
eae792b7 2104 txq = dev_pick_tx(dev, skb);
a898def2 2105 q = rcu_dereference_bh(txq->qdisc);
37437bb2 2106
1da177e4 2107#ifdef CONFIG_NET_CLS_ACT
d1b19dff 2108 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
1da177e4
LT
2109#endif
2110 if (q->enqueue) {
bbd8a0d3 2111 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 2112 goto out;
1da177e4
LT
2113 }
2114
2115 /* The device has no queue. Common case for software devices:
2116 loopback, all the sorts of tunnels...
2117
932ff279
HX
2118 Really, it is unlikely that netif_tx_lock protection is necessary
2119 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
2120 counters.)
2121 However, it is possible, that they rely on protection
2122 made by us here.
2123
2124 Check this and shot the lock. It is not prone from deadlocks.
2125 Either shot noqueue qdisc, it is even simpler 8)
2126 */
2127 if (dev->flags & IFF_UP) {
2128 int cpu = smp_processor_id(); /* ok because BHs are off */
2129
c773e847 2130 if (txq->xmit_lock_owner != cpu) {
1da177e4 2131
c773e847 2132 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 2133
fd2ea0a7 2134 if (!netif_tx_queue_stopped(txq)) {
572a9d7b
PM
2135 rc = dev_hard_start_xmit(skb, dev, txq);
2136 if (dev_xmit_complete(rc)) {
c773e847 2137 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
2138 goto out;
2139 }
2140 }
c773e847 2141 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
2142 if (net_ratelimit())
2143 printk(KERN_CRIT "Virtual device %s asks to "
2144 "queue packet!\n", dev->name);
2145 } else {
2146 /* Recursion is detected! It is possible,
2147 * unfortunately */
2148 if (net_ratelimit())
2149 printk(KERN_CRIT "Dead loop on virtual device "
2150 "%s, fix it urgently!\n", dev->name);
2151 }
2152 }
2153
2154 rc = -ENETDOWN;
d4828d85 2155 rcu_read_unlock_bh();
1da177e4
LT
2156
2157out_kfree_skb:
2158 kfree_skb(skb);
2159 return rc;
2160out:
d4828d85 2161 rcu_read_unlock_bh();
1da177e4
LT
2162 return rc;
2163}
d1b19dff 2164EXPORT_SYMBOL(dev_queue_xmit);
1da177e4
LT
2165
2166
2167/*=======================================================================
2168 Receiver routines
2169 =======================================================================*/
2170
6b2bedc3
SH
2171int netdev_max_backlog __read_mostly = 1000;
2172int netdev_budget __read_mostly = 300;
2173int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4
LT
2174
2175DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
2176
1e94d72f 2177#ifdef CONFIG_SMP
0a9627f2
TH
2178/*
2179 * get_rps_cpu is called from netif_receive_skb and returns the target
2180 * CPU from the RPS map of the receiving queue for a given skb.
2181 */
2182static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb)
2183{
2184 struct ipv6hdr *ip6;
2185 struct iphdr *ip;
2186 struct netdev_rx_queue *rxqueue;
2187 struct rps_map *map;
2188 int cpu = -1;
2189 u8 ip_proto;
2190 u32 addr1, addr2, ports, ihl;
2191
2192 rcu_read_lock();
2193
2194 if (skb_rx_queue_recorded(skb)) {
2195 u16 index = skb_get_rx_queue(skb);
2196 if (unlikely(index >= dev->num_rx_queues)) {
2197 if (net_ratelimit()) {
2198 netdev_warn(dev, "received packet on queue "
2199 "%u, but number of RX queues is %u\n",
2200 index, dev->num_rx_queues);
2201 }
2202 goto done;
2203 }
2204 rxqueue = dev->_rx + index;
2205 } else
2206 rxqueue = dev->_rx;
2207
2208 if (!rxqueue->rps_map)
2209 goto done;
2210
2211 if (skb->rxhash)
2212 goto got_hash; /* Skip hash computation on packet header */
2213
2214 switch (skb->protocol) {
2215 case __constant_htons(ETH_P_IP):
2216 if (!pskb_may_pull(skb, sizeof(*ip)))
2217 goto done;
2218
2219 ip = (struct iphdr *) skb->data;
2220 ip_proto = ip->protocol;
2221 addr1 = ip->saddr;
2222 addr2 = ip->daddr;
2223 ihl = ip->ihl;
2224 break;
2225 case __constant_htons(ETH_P_IPV6):
2226 if (!pskb_may_pull(skb, sizeof(*ip6)))
2227 goto done;
2228
2229 ip6 = (struct ipv6hdr *) skb->data;
2230 ip_proto = ip6->nexthdr;
2231 addr1 = ip6->saddr.s6_addr32[3];
2232 addr2 = ip6->daddr.s6_addr32[3];
2233 ihl = (40 >> 2);
2234 break;
2235 default:
2236 goto done;
2237 }
2238 ports = 0;
2239 switch (ip_proto) {
2240 case IPPROTO_TCP:
2241 case IPPROTO_UDP:
2242 case IPPROTO_DCCP:
2243 case IPPROTO_ESP:
2244 case IPPROTO_AH:
2245 case IPPROTO_SCTP:
2246 case IPPROTO_UDPLITE:
2247 if (pskb_may_pull(skb, (ihl * 4) + 4))
2248 ports = *((u32 *) (skb->data + (ihl * 4)));
2249 break;
2250
2251 default:
2252 break;
2253 }
2254
2255 skb->rxhash = jhash_3words(addr1, addr2, ports, hashrnd);
2256 if (!skb->rxhash)
2257 skb->rxhash = 1;
2258
2259got_hash:
2260 map = rcu_dereference(rxqueue->rps_map);
2261 if (map) {
2262 u16 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2263
2264 if (cpu_online(tcpu)) {
2265 cpu = tcpu;
2266 goto done;
2267 }
2268 }
2269
2270done:
2271 rcu_read_unlock();
2272 return cpu;
2273}
2274
2275/*
2276 * This structure holds the per-CPU mask of CPUs for which IPIs are scheduled
2277 * to be sent to kick remote softirq processing. There are two masks since
2278 * the sending of IPIs must be done with interrupts enabled. The select field
2279 * indicates the current mask that enqueue_backlog uses to schedule IPIs.
2280 * select is flipped before net_rps_action is called while still under lock,
2281 * net_rps_action then uses the non-selected mask to send the IPIs and clears
2282 * it without conflicting with enqueue_backlog operation.
2283 */
2284struct rps_remote_softirq_cpus {
2285 cpumask_t mask[2];
2286 int select;
2287};
2288static DEFINE_PER_CPU(struct rps_remote_softirq_cpus, rps_remote_softirq_cpus);
2289
2290/* Called from hardirq (IPI) context */
2291static void trigger_softirq(void *data)
2292{
2293 struct softnet_data *queue = data;
2294 __napi_schedule(&queue->backlog);
2295 __get_cpu_var(netdev_rx_stat).received_rps++;
2296}
1e94d72f 2297#endif /* CONFIG_SMP */
0a9627f2
TH
2298
2299/*
2300 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2301 * queue (may be a remote CPU queue).
2302 */
2303static int enqueue_to_backlog(struct sk_buff *skb, int cpu)
2304{
2305 struct softnet_data *queue;
2306 unsigned long flags;
2307
2308 queue = &per_cpu(softnet_data, cpu);
2309
2310 local_irq_save(flags);
2311 __get_cpu_var(netdev_rx_stat).total++;
2312
2313 spin_lock(&queue->input_pkt_queue.lock);
2314 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
2315 if (queue->input_pkt_queue.qlen) {
2316enqueue:
2317 __skb_queue_tail(&queue->input_pkt_queue, skb);
2318 spin_unlock_irqrestore(&queue->input_pkt_queue.lock,
2319 flags);
2320 return NET_RX_SUCCESS;
2321 }
2322
2323 /* Schedule NAPI for backlog device */
2324 if (napi_schedule_prep(&queue->backlog)) {
1e94d72f 2325#ifdef CONFIG_SMP
0a9627f2
TH
2326 if (cpu != smp_processor_id()) {
2327 struct rps_remote_softirq_cpus *rcpus =
2328 &__get_cpu_var(rps_remote_softirq_cpus);
2329
2330 cpu_set(cpu, rcpus->mask[rcpus->select]);
2331 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2332 } else
2333 __napi_schedule(&queue->backlog);
1e94d72f
TH
2334#else
2335 __napi_schedule(&queue->backlog);
2336#endif
0a9627f2
TH
2337 }
2338 goto enqueue;
2339 }
2340
2341 spin_unlock(&queue->input_pkt_queue.lock);
2342
2343 __get_cpu_var(netdev_rx_stat).dropped++;
2344 local_irq_restore(flags);
2345
2346 kfree_skb(skb);
2347 return NET_RX_DROP;
2348}
1da177e4 2349
1da177e4
LT
2350/**
2351 * netif_rx - post buffer to the network code
2352 * @skb: buffer to post
2353 *
2354 * This function receives a packet from a device driver and queues it for
2355 * the upper (protocol) levels to process. It always succeeds. The buffer
2356 * may be dropped during processing for congestion control or by the
2357 * protocol layers.
2358 *
2359 * return values:
2360 * NET_RX_SUCCESS (no congestion)
1da177e4
LT
2361 * NET_RX_DROP (packet was dropped)
2362 *
2363 */
2364
2365int netif_rx(struct sk_buff *skb)
2366{
0a9627f2 2367 int cpu;
1da177e4
LT
2368
2369 /* if netpoll wants it, pretend we never saw it */
2370 if (netpoll_rx(skb))
2371 return NET_RX_DROP;
2372
b7aa0bf7 2373 if (!skb->tstamp.tv64)
a61bbcf2 2374 net_timestamp(skb);
1da177e4 2375
1e94d72f 2376#ifdef CONFIG_SMP
0a9627f2
TH
2377 cpu = get_rps_cpu(skb->dev, skb);
2378 if (cpu < 0)
2379 cpu = smp_processor_id();
1e94d72f
TH
2380#else
2381 cpu = smp_processor_id();
2382#endif
1da177e4 2383
0a9627f2 2384 return enqueue_to_backlog(skb, cpu);
1da177e4 2385}
d1b19dff 2386EXPORT_SYMBOL(netif_rx);
1da177e4
LT
2387
2388int netif_rx_ni(struct sk_buff *skb)
2389{
2390 int err;
2391
2392 preempt_disable();
2393 err = netif_rx(skb);
2394 if (local_softirq_pending())
2395 do_softirq();
2396 preempt_enable();
2397
2398 return err;
2399}
1da177e4
LT
2400EXPORT_SYMBOL(netif_rx_ni);
2401
1da177e4
LT
2402static void net_tx_action(struct softirq_action *h)
2403{
2404 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2405
2406 if (sd->completion_queue) {
2407 struct sk_buff *clist;
2408
2409 local_irq_disable();
2410 clist = sd->completion_queue;
2411 sd->completion_queue = NULL;
2412 local_irq_enable();
2413
2414 while (clist) {
2415 struct sk_buff *skb = clist;
2416 clist = clist->next;
2417
547b792c 2418 WARN_ON(atomic_read(&skb->users));
1da177e4
LT
2419 __kfree_skb(skb);
2420 }
2421 }
2422
2423 if (sd->output_queue) {
37437bb2 2424 struct Qdisc *head;
1da177e4
LT
2425
2426 local_irq_disable();
2427 head = sd->output_queue;
2428 sd->output_queue = NULL;
2429 local_irq_enable();
2430
2431 while (head) {
37437bb2
DM
2432 struct Qdisc *q = head;
2433 spinlock_t *root_lock;
2434
1da177e4
LT
2435 head = head->next_sched;
2436
5fb66229 2437 root_lock = qdisc_lock(q);
37437bb2 2438 if (spin_trylock(root_lock)) {
def82a1d
JP
2439 smp_mb__before_clear_bit();
2440 clear_bit(__QDISC_STATE_SCHED,
2441 &q->state);
37437bb2
DM
2442 qdisc_run(q);
2443 spin_unlock(root_lock);
1da177e4 2444 } else {
195648bb 2445 if (!test_bit(__QDISC_STATE_DEACTIVATED,
e8a83e10 2446 &q->state)) {
195648bb 2447 __netif_reschedule(q);
e8a83e10
JP
2448 } else {
2449 smp_mb__before_clear_bit();
2450 clear_bit(__QDISC_STATE_SCHED,
2451 &q->state);
2452 }
1da177e4
LT
2453 }
2454 }
2455 }
2456}
2457
6f05f629
SH
2458static inline int deliver_skb(struct sk_buff *skb,
2459 struct packet_type *pt_prev,
2460 struct net_device *orig_dev)
1da177e4
LT
2461{
2462 atomic_inc(&skb->users);
f2ccd8fa 2463 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4
LT
2464}
2465
2466#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
da678292
MM
2467
2468#if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2469/* This hook is defined here for ATM LANE */
2470int (*br_fdb_test_addr_hook)(struct net_device *dev,
2471 unsigned char *addr) __read_mostly;
4fb019a0 2472EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 2473#endif
1da177e4 2474
6229e362
SH
2475/*
2476 * If bridge module is loaded call bridging hook.
2477 * returns NULL if packet was consumed.
2478 */
2479struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2480 struct sk_buff *skb) __read_mostly;
4fb019a0 2481EXPORT_SYMBOL_GPL(br_handle_frame_hook);
da678292 2482
6229e362
SH
2483static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2484 struct packet_type **pt_prev, int *ret,
2485 struct net_device *orig_dev)
1da177e4
LT
2486{
2487 struct net_bridge_port *port;
2488
6229e362
SH
2489 if (skb->pkt_type == PACKET_LOOPBACK ||
2490 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2491 return skb;
1da177e4
LT
2492
2493 if (*pt_prev) {
6229e362 2494 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1da177e4 2495 *pt_prev = NULL;
4ec93edb
YH
2496 }
2497
6229e362 2498 return br_handle_frame_hook(port, skb);
1da177e4
LT
2499}
2500#else
6229e362 2501#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
1da177e4
LT
2502#endif
2503
b863ceb7
PM
2504#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2505struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2506EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2507
2508static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2509 struct packet_type **pt_prev,
2510 int *ret,
2511 struct net_device *orig_dev)
2512{
2513 if (skb->dev->macvlan_port == NULL)
2514 return skb;
2515
2516 if (*pt_prev) {
2517 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2518 *pt_prev = NULL;
2519 }
2520 return macvlan_handle_frame_hook(skb);
2521}
2522#else
2523#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2524#endif
2525
1da177e4
LT
2526#ifdef CONFIG_NET_CLS_ACT
2527/* TODO: Maybe we should just force sch_ingress to be compiled in
2528 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2529 * a compare and 2 stores extra right now if we dont have it on
2530 * but have CONFIG_NET_CLS_ACT
4ec93edb 2531 * NOTE: This doesnt stop any functionality; if you dont have
1da177e4
LT
2532 * the ingress scheduler, you just cant add policies on ingress.
2533 *
2534 */
4ec93edb 2535static int ing_filter(struct sk_buff *skb)
1da177e4 2536{
1da177e4 2537 struct net_device *dev = skb->dev;
f697c3e8 2538 u32 ttl = G_TC_RTTL(skb->tc_verd);
555353cf
DM
2539 struct netdev_queue *rxq;
2540 int result = TC_ACT_OK;
2541 struct Qdisc *q;
4ec93edb 2542
f697c3e8
HX
2543 if (MAX_RED_LOOP < ttl++) {
2544 printk(KERN_WARNING
2545 "Redir loop detected Dropping packet (%d->%d)\n",
8964be4a 2546 skb->skb_iif, dev->ifindex);
f697c3e8
HX
2547 return TC_ACT_SHOT;
2548 }
1da177e4 2549
f697c3e8
HX
2550 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2551 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
1da177e4 2552
555353cf
DM
2553 rxq = &dev->rx_queue;
2554
83874000 2555 q = rxq->qdisc;
8d50b53d 2556 if (q != &noop_qdisc) {
83874000 2557 spin_lock(qdisc_lock(q));
a9312ae8
DM
2558 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2559 result = qdisc_enqueue_root(skb, q);
83874000
DM
2560 spin_unlock(qdisc_lock(q));
2561 }
f697c3e8
HX
2562
2563 return result;
2564}
86e65da9 2565
f697c3e8
HX
2566static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2567 struct packet_type **pt_prev,
2568 int *ret, struct net_device *orig_dev)
2569{
8d50b53d 2570 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
f697c3e8 2571 goto out;
1da177e4 2572
f697c3e8
HX
2573 if (*pt_prev) {
2574 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2575 *pt_prev = NULL;
2576 } else {
2577 /* Huh? Why does turning on AF_PACKET affect this? */
2578 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
1da177e4
LT
2579 }
2580
f697c3e8
HX
2581 switch (ing_filter(skb)) {
2582 case TC_ACT_SHOT:
2583 case TC_ACT_STOLEN:
2584 kfree_skb(skb);
2585 return NULL;
2586 }
2587
2588out:
2589 skb->tc_verd = 0;
2590 return skb;
1da177e4
LT
2591}
2592#endif
2593
bc1d0411
PM
2594/*
2595 * netif_nit_deliver - deliver received packets to network taps
2596 * @skb: buffer
2597 *
2598 * This function is used to deliver incoming packets to network
2599 * taps. It should be used when the normal netif_receive_skb path
2600 * is bypassed, for example because of VLAN acceleration.
2601 */
2602void netif_nit_deliver(struct sk_buff *skb)
2603{
2604 struct packet_type *ptype;
2605
2606 if (list_empty(&ptype_all))
2607 return;
2608
2609 skb_reset_network_header(skb);
2610 skb_reset_transport_header(skb);
2611 skb->mac_len = skb->network_header - skb->mac_header;
2612
2613 rcu_read_lock();
2614 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2615 if (!ptype->dev || ptype->dev == skb->dev)
2616 deliver_skb(skb, ptype, skb->dev);
2617 }
2618 rcu_read_unlock();
2619}
2620
0a9627f2 2621int __netif_receive_skb(struct sk_buff *skb)
1da177e4
LT
2622{
2623 struct packet_type *ptype, *pt_prev;
f2ccd8fa 2624 struct net_device *orig_dev;
0641e4fb 2625 struct net_device *master;
0d7a3681 2626 struct net_device *null_or_orig;
ca8d9ea3 2627 struct net_device *null_or_bond;
1da177e4 2628 int ret = NET_RX_DROP;
252e3346 2629 __be16 type;
1da177e4 2630
81bbb3d4
ED
2631 if (!skb->tstamp.tv64)
2632 net_timestamp(skb);
2633
05423b24 2634 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
9b22ea56
PM
2635 return NET_RX_SUCCESS;
2636
1da177e4 2637 /* if we've gotten here through NAPI, check netpoll */
bea3348e 2638 if (netpoll_receive_skb(skb))
1da177e4
LT
2639 return NET_RX_DROP;
2640
8964be4a
ED
2641 if (!skb->skb_iif)
2642 skb->skb_iif = skb->dev->ifindex;
86e65da9 2643
0d7a3681 2644 null_or_orig = NULL;
cc9bd5ce 2645 orig_dev = skb->dev;
0641e4fb
ED
2646 master = ACCESS_ONCE(orig_dev->master);
2647 if (master) {
2648 if (skb_bond_should_drop(skb, master))
0d7a3681
JE
2649 null_or_orig = orig_dev; /* deliver only exact match */
2650 else
0641e4fb 2651 skb->dev = master;
cc9bd5ce 2652 }
8f903c70 2653
1da177e4
LT
2654 __get_cpu_var(netdev_rx_stat).total++;
2655
c1d2bbe1 2656 skb_reset_network_header(skb);
badff6d0 2657 skb_reset_transport_header(skb);
b0e380b1 2658 skb->mac_len = skb->network_header - skb->mac_header;
1da177e4
LT
2659
2660 pt_prev = NULL;
2661
2662 rcu_read_lock();
2663
2664#ifdef CONFIG_NET_CLS_ACT
2665 if (skb->tc_verd & TC_NCLS) {
2666 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2667 goto ncls;
2668 }
2669#endif
2670
2671 list_for_each_entry_rcu(ptype, &ptype_all, list) {
f982307f
JE
2672 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2673 ptype->dev == orig_dev) {
4ec93edb 2674 if (pt_prev)
f2ccd8fa 2675 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
2676 pt_prev = ptype;
2677 }
2678 }
2679
2680#ifdef CONFIG_NET_CLS_ACT
f697c3e8
HX
2681 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2682 if (!skb)
1da177e4 2683 goto out;
1da177e4
LT
2684ncls:
2685#endif
2686
6229e362 2687 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
b863ceb7
PM
2688 if (!skb)
2689 goto out;
2690 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
6229e362 2691 if (!skb)
1da177e4
LT
2692 goto out;
2693
1f3c8804
AG
2694 /*
2695 * Make sure frames received on VLAN interfaces stacked on
2696 * bonding interfaces still make their way to any base bonding
2697 * device that may have registered for a specific ptype. The
2698 * handler may have to adjust skb->dev and orig_dev.
1f3c8804 2699 */
ca8d9ea3 2700 null_or_bond = NULL;
1f3c8804
AG
2701 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2702 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
ca8d9ea3 2703 null_or_bond = vlan_dev_real_dev(skb->dev);
1f3c8804
AG
2704 }
2705
1da177e4 2706 type = skb->protocol;
82d8a867
PE
2707 list_for_each_entry_rcu(ptype,
2708 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1f3c8804 2709 if (ptype->type == type && (ptype->dev == null_or_orig ||
ca8d9ea3
AG
2710 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2711 ptype->dev == null_or_bond)) {
4ec93edb 2712 if (pt_prev)
f2ccd8fa 2713 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
2714 pt_prev = ptype;
2715 }
2716 }
2717
2718 if (pt_prev) {
f2ccd8fa 2719 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4
LT
2720 } else {
2721 kfree_skb(skb);
2722 /* Jamal, now you will not able to escape explaining
2723 * me how you were going to use this. :-)
2724 */
2725 ret = NET_RX_DROP;
2726 }
2727
2728out:
2729 rcu_read_unlock();
2730 return ret;
2731}
0a9627f2
TH
2732
2733/**
2734 * netif_receive_skb - process receive buffer from network
2735 * @skb: buffer to process
2736 *
2737 * netif_receive_skb() is the main receive data processing function.
2738 * It always succeeds. The buffer may be dropped during processing
2739 * for congestion control or by the protocol layers.
2740 *
2741 * This function may only be called from softirq context and interrupts
2742 * should be enabled.
2743 *
2744 * Return values (usually ignored):
2745 * NET_RX_SUCCESS: no congestion
2746 * NET_RX_DROP: packet was dropped
2747 */
2748int netif_receive_skb(struct sk_buff *skb)
2749{
1e94d72f 2750#ifdef CONFIG_SMP
0a9627f2
TH
2751 int cpu;
2752
2753 cpu = get_rps_cpu(skb->dev, skb);
2754
2755 if (cpu < 0)
2756 return __netif_receive_skb(skb);
2757 else
2758 return enqueue_to_backlog(skb, cpu);
1e94d72f
TH
2759#else
2760 return __netif_receive_skb(skb);
2761#endif
0a9627f2 2762}
d1b19dff 2763EXPORT_SYMBOL(netif_receive_skb);
1da177e4 2764
6e583ce5
SH
2765/* Network device is going away, flush any packets still pending */
2766static void flush_backlog(void *arg)
2767{
2768 struct net_device *dev = arg;
2769 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2770 struct sk_buff *skb, *tmp;
2771
2772 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2773 if (skb->dev == dev) {
2774 __skb_unlink(skb, &queue->input_pkt_queue);
2775 kfree_skb(skb);
2776 }
2777}
2778
d565b0a1
HX
2779static int napi_gro_complete(struct sk_buff *skb)
2780{
2781 struct packet_type *ptype;
2782 __be16 type = skb->protocol;
2783 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2784 int err = -ENOENT;
2785
fc59f9a3
HX
2786 if (NAPI_GRO_CB(skb)->count == 1) {
2787 skb_shinfo(skb)->gso_size = 0;
d565b0a1 2788 goto out;
fc59f9a3 2789 }
d565b0a1
HX
2790
2791 rcu_read_lock();
2792 list_for_each_entry_rcu(ptype, head, list) {
2793 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2794 continue;
2795
2796 err = ptype->gro_complete(skb);
2797 break;
2798 }
2799 rcu_read_unlock();
2800
2801 if (err) {
2802 WARN_ON(&ptype->list == head);
2803 kfree_skb(skb);
2804 return NET_RX_SUCCESS;
2805 }
2806
2807out:
d565b0a1
HX
2808 return netif_receive_skb(skb);
2809}
2810
11380a4b 2811static void napi_gro_flush(struct napi_struct *napi)
d565b0a1
HX
2812{
2813 struct sk_buff *skb, *next;
2814
2815 for (skb = napi->gro_list; skb; skb = next) {
2816 next = skb->next;
2817 skb->next = NULL;
2818 napi_gro_complete(skb);
2819 }
2820
4ae5544f 2821 napi->gro_count = 0;
d565b0a1
HX
2822 napi->gro_list = NULL;
2823}
d565b0a1 2824
5b252f0c 2825enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
2826{
2827 struct sk_buff **pp = NULL;
2828 struct packet_type *ptype;
2829 __be16 type = skb->protocol;
2830 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
0da2afd5 2831 int same_flow;
d565b0a1 2832 int mac_len;
5b252f0c 2833 enum gro_result ret;
d565b0a1
HX
2834
2835 if (!(skb->dev->features & NETIF_F_GRO))
2836 goto normal;
2837
4cf704fb 2838 if (skb_is_gso(skb) || skb_has_frags(skb))
f17f5c91
HX
2839 goto normal;
2840
d565b0a1
HX
2841 rcu_read_lock();
2842 list_for_each_entry_rcu(ptype, head, list) {
d565b0a1
HX
2843 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2844 continue;
2845
86911732 2846 skb_set_network_header(skb, skb_gro_offset(skb));
d565b0a1
HX
2847 mac_len = skb->network_header - skb->mac_header;
2848 skb->mac_len = mac_len;
2849 NAPI_GRO_CB(skb)->same_flow = 0;
2850 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 2851 NAPI_GRO_CB(skb)->free = 0;
d565b0a1 2852
d565b0a1
HX
2853 pp = ptype->gro_receive(&napi->gro_list, skb);
2854 break;
2855 }
2856 rcu_read_unlock();
2857
2858 if (&ptype->list == head)
2859 goto normal;
2860
0da2afd5 2861 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 2862 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 2863
d565b0a1
HX
2864 if (pp) {
2865 struct sk_buff *nskb = *pp;
2866
2867 *pp = nskb->next;
2868 nskb->next = NULL;
2869 napi_gro_complete(nskb);
4ae5544f 2870 napi->gro_count--;
d565b0a1
HX
2871 }
2872
0da2afd5 2873 if (same_flow)
d565b0a1
HX
2874 goto ok;
2875
4ae5544f 2876 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
d565b0a1 2877 goto normal;
d565b0a1 2878
4ae5544f 2879 napi->gro_count++;
d565b0a1 2880 NAPI_GRO_CB(skb)->count = 1;
86911732 2881 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
2882 skb->next = napi->gro_list;
2883 napi->gro_list = skb;
5d0d9be8 2884 ret = GRO_HELD;
d565b0a1 2885
ad0f9904 2886pull:
cb18978c
HX
2887 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2888 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2889
2890 BUG_ON(skb->end - skb->tail < grow);
2891
2892 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2893
2894 skb->tail += grow;
2895 skb->data_len -= grow;
2896
2897 skb_shinfo(skb)->frags[0].page_offset += grow;
2898 skb_shinfo(skb)->frags[0].size -= grow;
2899
2900 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2901 put_page(skb_shinfo(skb)->frags[0].page);
2902 memmove(skb_shinfo(skb)->frags,
2903 skb_shinfo(skb)->frags + 1,
2904 --skb_shinfo(skb)->nr_frags);
2905 }
ad0f9904
HX
2906 }
2907
d565b0a1 2908ok:
5d0d9be8 2909 return ret;
d565b0a1
HX
2910
2911normal:
ad0f9904
HX
2912 ret = GRO_NORMAL;
2913 goto pull;
5d38a079 2914}
96e93eab
HX
2915EXPORT_SYMBOL(dev_gro_receive);
2916
5b252f0c
BH
2917static gro_result_t
2918__napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
96e93eab
HX
2919{
2920 struct sk_buff *p;
2921
d1c76af9
HX
2922 if (netpoll_rx_on(skb))
2923 return GRO_NORMAL;
2924
96e93eab 2925 for (p = napi->gro_list; p; p = p->next) {
f64f9e71
JP
2926 NAPI_GRO_CB(p)->same_flow =
2927 (p->dev == skb->dev) &&
2928 !compare_ether_header(skb_mac_header(p),
2929 skb_gro_mac_header(skb));
96e93eab
HX
2930 NAPI_GRO_CB(p)->flush = 0;
2931 }
2932
2933 return dev_gro_receive(napi, skb);
2934}
5d38a079 2935
c7c4b3b6 2936gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 2937{
5d0d9be8
HX
2938 switch (ret) {
2939 case GRO_NORMAL:
c7c4b3b6
BH
2940 if (netif_receive_skb(skb))
2941 ret = GRO_DROP;
2942 break;
5d38a079 2943
5d0d9be8 2944 case GRO_DROP:
5d0d9be8 2945 case GRO_MERGED_FREE:
5d38a079
HX
2946 kfree_skb(skb);
2947 break;
5b252f0c
BH
2948
2949 case GRO_HELD:
2950 case GRO_MERGED:
2951 break;
5d38a079
HX
2952 }
2953
c7c4b3b6 2954 return ret;
5d0d9be8
HX
2955}
2956EXPORT_SYMBOL(napi_skb_finish);
2957
78a478d0
HX
2958void skb_gro_reset_offset(struct sk_buff *skb)
2959{
2960 NAPI_GRO_CB(skb)->data_offset = 0;
2961 NAPI_GRO_CB(skb)->frag0 = NULL;
7489594c 2962 NAPI_GRO_CB(skb)->frag0_len = 0;
78a478d0 2963
78d3fd0b 2964 if (skb->mac_header == skb->tail &&
7489594c 2965 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
78a478d0
HX
2966 NAPI_GRO_CB(skb)->frag0 =
2967 page_address(skb_shinfo(skb)->frags[0].page) +
2968 skb_shinfo(skb)->frags[0].page_offset;
7489594c
HX
2969 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2970 }
78a478d0
HX
2971}
2972EXPORT_SYMBOL(skb_gro_reset_offset);
2973
c7c4b3b6 2974gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 2975{
86911732
HX
2976 skb_gro_reset_offset(skb);
2977
5d0d9be8 2978 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
d565b0a1
HX
2979}
2980EXPORT_SYMBOL(napi_gro_receive);
2981
96e93eab
HX
2982void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2983{
96e93eab
HX
2984 __skb_pull(skb, skb_headlen(skb));
2985 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2986
2987 napi->skb = skb;
2988}
2989EXPORT_SYMBOL(napi_reuse_skb);
2990
76620aaf 2991struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 2992{
5d38a079 2993 struct sk_buff *skb = napi->skb;
5d38a079
HX
2994
2995 if (!skb) {
89d71a66
ED
2996 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
2997 if (skb)
2998 napi->skb = skb;
80595d59 2999 }
96e93eab
HX
3000 return skb;
3001}
76620aaf 3002EXPORT_SYMBOL(napi_get_frags);
96e93eab 3003
c7c4b3b6
BH
3004gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3005 gro_result_t ret)
96e93eab 3006{
5d0d9be8
HX
3007 switch (ret) {
3008 case GRO_NORMAL:
86911732 3009 case GRO_HELD:
e76b69cc 3010 skb->protocol = eth_type_trans(skb, skb->dev);
86911732 3011
c7c4b3b6
BH
3012 if (ret == GRO_HELD)
3013 skb_gro_pull(skb, -ETH_HLEN);
3014 else if (netif_receive_skb(skb))
3015 ret = GRO_DROP;
86911732 3016 break;
5d38a079 3017
5d0d9be8 3018 case GRO_DROP:
5d0d9be8
HX
3019 case GRO_MERGED_FREE:
3020 napi_reuse_skb(napi, skb);
3021 break;
5b252f0c
BH
3022
3023 case GRO_MERGED:
3024 break;
5d0d9be8 3025 }
5d38a079 3026
c7c4b3b6 3027 return ret;
5d38a079 3028}
5d0d9be8
HX
3029EXPORT_SYMBOL(napi_frags_finish);
3030
76620aaf
HX
3031struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3032{
3033 struct sk_buff *skb = napi->skb;
3034 struct ethhdr *eth;
a5b1cf28
HX
3035 unsigned int hlen;
3036 unsigned int off;
76620aaf
HX
3037
3038 napi->skb = NULL;
3039
3040 skb_reset_mac_header(skb);
3041 skb_gro_reset_offset(skb);
3042
a5b1cf28
HX
3043 off = skb_gro_offset(skb);
3044 hlen = off + sizeof(*eth);
3045 eth = skb_gro_header_fast(skb, off);
3046 if (skb_gro_header_hard(skb, hlen)) {
3047 eth = skb_gro_header_slow(skb, hlen, off);
3048 if (unlikely(!eth)) {
3049 napi_reuse_skb(napi, skb);
3050 skb = NULL;
3051 goto out;
3052 }
76620aaf
HX
3053 }
3054
3055 skb_gro_pull(skb, sizeof(*eth));
3056
3057 /*
3058 * This works because the only protocols we care about don't require
3059 * special handling. We'll fix it up properly at the end.
3060 */
3061 skb->protocol = eth->h_proto;
3062
3063out:
3064 return skb;
3065}
3066EXPORT_SYMBOL(napi_frags_skb);
3067
c7c4b3b6 3068gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 3069{
76620aaf 3070 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
3071
3072 if (!skb)
c7c4b3b6 3073 return GRO_DROP;
5d0d9be8
HX
3074
3075 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3076}
5d38a079
HX
3077EXPORT_SYMBOL(napi_gro_frags);
3078
bea3348e 3079static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
3080{
3081 int work = 0;
1da177e4
LT
3082 struct softnet_data *queue = &__get_cpu_var(softnet_data);
3083 unsigned long start_time = jiffies;
3084
bea3348e
SH
3085 napi->weight = weight_p;
3086 do {
1da177e4 3087 struct sk_buff *skb;
1da177e4 3088
0a9627f2 3089 spin_lock_irq(&queue->input_pkt_queue.lock);
1da177e4 3090 skb = __skb_dequeue(&queue->input_pkt_queue);
bea3348e 3091 if (!skb) {
8f1ead2d 3092 __napi_complete(napi);
0a9627f2 3093 spin_unlock_irq(&queue->input_pkt_queue.lock);
8f1ead2d 3094 break;
bea3348e 3095 }
0a9627f2 3096 spin_unlock_irq(&queue->input_pkt_queue.lock);
1da177e4 3097
0a9627f2 3098 __netif_receive_skb(skb);
bea3348e 3099 } while (++work < quota && jiffies == start_time);
1da177e4 3100
bea3348e
SH
3101 return work;
3102}
1da177e4 3103
bea3348e
SH
3104/**
3105 * __napi_schedule - schedule for receive
c4ea43c5 3106 * @n: entry to schedule
bea3348e
SH
3107 *
3108 * The entry's receive function will be scheduled to run
3109 */
b5606c2d 3110void __napi_schedule(struct napi_struct *n)
bea3348e
SH
3111{
3112 unsigned long flags;
1da177e4 3113
bea3348e
SH
3114 local_irq_save(flags);
3115 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
3116 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3117 local_irq_restore(flags);
1da177e4 3118}
bea3348e
SH
3119EXPORT_SYMBOL(__napi_schedule);
3120
d565b0a1
HX
3121void __napi_complete(struct napi_struct *n)
3122{
3123 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3124 BUG_ON(n->gro_list);
3125
3126 list_del(&n->poll_list);
3127 smp_mb__before_clear_bit();
3128 clear_bit(NAPI_STATE_SCHED, &n->state);
3129}
3130EXPORT_SYMBOL(__napi_complete);
3131
3132void napi_complete(struct napi_struct *n)
3133{
3134 unsigned long flags;
3135
3136 /*
3137 * don't let napi dequeue from the cpu poll list
3138 * just in case its running on a different cpu
3139 */
3140 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3141 return;
3142
3143 napi_gro_flush(n);
3144 local_irq_save(flags);
3145 __napi_complete(n);
3146 local_irq_restore(flags);
3147}
3148EXPORT_SYMBOL(napi_complete);
3149
3150void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3151 int (*poll)(struct napi_struct *, int), int weight)
3152{
3153 INIT_LIST_HEAD(&napi->poll_list);
4ae5544f 3154 napi->gro_count = 0;
d565b0a1 3155 napi->gro_list = NULL;
5d38a079 3156 napi->skb = NULL;
d565b0a1
HX
3157 napi->poll = poll;
3158 napi->weight = weight;
3159 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 3160 napi->dev = dev;
5d38a079 3161#ifdef CONFIG_NETPOLL
d565b0a1
HX
3162 spin_lock_init(&napi->poll_lock);
3163 napi->poll_owner = -1;
3164#endif
3165 set_bit(NAPI_STATE_SCHED, &napi->state);
3166}
3167EXPORT_SYMBOL(netif_napi_add);
3168
3169void netif_napi_del(struct napi_struct *napi)
3170{
3171 struct sk_buff *skb, *next;
3172
d7b06636 3173 list_del_init(&napi->dev_list);
76620aaf 3174 napi_free_frags(napi);
d565b0a1
HX
3175
3176 for (skb = napi->gro_list; skb; skb = next) {
3177 next = skb->next;
3178 skb->next = NULL;
3179 kfree_skb(skb);
3180 }
3181
3182 napi->gro_list = NULL;
4ae5544f 3183 napi->gro_count = 0;
d565b0a1
HX
3184}
3185EXPORT_SYMBOL(netif_napi_del);
3186
1e94d72f 3187#ifdef CONFIG_SMP
0a9627f2
TH
3188/*
3189 * net_rps_action sends any pending IPI's for rps. This is only called from
3190 * softirq and interrupts must be enabled.
3191 */
3192static void net_rps_action(cpumask_t *mask)
3193{
3194 int cpu;
3195
3196 /* Send pending IPI's to kick RPS processing on remote cpus. */
3197 for_each_cpu_mask_nr(cpu, *mask) {
3198 struct softnet_data *queue = &per_cpu(softnet_data, cpu);
3199 if (cpu_online(cpu))
3200 __smp_call_function_single(cpu, &queue->csd, 0);
3201 }
3202 cpus_clear(*mask);
3203}
1e94d72f 3204#endif
1da177e4
LT
3205
3206static void net_rx_action(struct softirq_action *h)
3207{
bea3348e 3208 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
24f8b238 3209 unsigned long time_limit = jiffies + 2;
51b0bded 3210 int budget = netdev_budget;
53fb95d3 3211 void *have;
1e94d72f 3212#ifdef CONFIG_SMP
0a9627f2
TH
3213 int select;
3214 struct rps_remote_softirq_cpus *rcpus;
1e94d72f 3215#endif
53fb95d3 3216
1da177e4
LT
3217 local_irq_disable();
3218
bea3348e
SH
3219 while (!list_empty(list)) {
3220 struct napi_struct *n;
3221 int work, weight;
1da177e4 3222
bea3348e 3223 /* If softirq window is exhuasted then punt.
24f8b238
SH
3224 * Allow this to run for 2 jiffies since which will allow
3225 * an average latency of 1.5/HZ.
bea3348e 3226 */
24f8b238 3227 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
1da177e4
LT
3228 goto softnet_break;
3229
3230 local_irq_enable();
3231
bea3348e
SH
3232 /* Even though interrupts have been re-enabled, this
3233 * access is safe because interrupts can only add new
3234 * entries to the tail of this list, and only ->poll()
3235 * calls can remove this head entry from the list.
3236 */
e5e26d75 3237 n = list_first_entry(list, struct napi_struct, poll_list);
1da177e4 3238
bea3348e
SH
3239 have = netpoll_poll_lock(n);
3240
3241 weight = n->weight;
3242
0a7606c1
DM
3243 /* This NAPI_STATE_SCHED test is for avoiding a race
3244 * with netpoll's poll_napi(). Only the entity which
3245 * obtains the lock and sees NAPI_STATE_SCHED set will
3246 * actually make the ->poll() call. Therefore we avoid
3247 * accidently calling ->poll() when NAPI is not scheduled.
3248 */
3249 work = 0;
4ea7e386 3250 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
0a7606c1 3251 work = n->poll(n, weight);
4ea7e386
NH
3252 trace_napi_poll(n);
3253 }
bea3348e
SH
3254
3255 WARN_ON_ONCE(work > weight);
3256
3257 budget -= work;
3258
3259 local_irq_disable();
3260
3261 /* Drivers must not modify the NAPI state if they
3262 * consume the entire weight. In such cases this code
3263 * still "owns" the NAPI instance and therefore can
3264 * move the instance around on the list at-will.
3265 */
fed17f30 3266 if (unlikely(work == weight)) {
ff780cd8
HX
3267 if (unlikely(napi_disable_pending(n))) {
3268 local_irq_enable();
3269 napi_complete(n);
3270 local_irq_disable();
3271 } else
fed17f30
DM
3272 list_move_tail(&n->poll_list, list);
3273 }
bea3348e
SH
3274
3275 netpoll_poll_unlock(have);
1da177e4
LT
3276 }
3277out:
1e94d72f 3278#ifdef CONFIG_SMP
0a9627f2
TH
3279 rcpus = &__get_cpu_var(rps_remote_softirq_cpus);
3280 select = rcpus->select;
3281 rcpus->select ^= 1;
3282
515e06c4 3283 local_irq_enable();
bea3348e 3284
0a9627f2 3285 net_rps_action(&rcpus->mask[select]);
1e94d72f
TH
3286#else
3287 local_irq_enable();
3288#endif
0a9627f2 3289
db217334
CL
3290#ifdef CONFIG_NET_DMA
3291 /*
3292 * There may not be any more sk_buffs coming right now, so push
3293 * any pending DMA copies to hardware
3294 */
2ba05622 3295 dma_issue_pending_all();
db217334 3296#endif
bea3348e 3297
1da177e4
LT
3298 return;
3299
3300softnet_break:
3301 __get_cpu_var(netdev_rx_stat).time_squeeze++;
3302 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3303 goto out;
3304}
3305
d1b19dff 3306static gifconf_func_t *gifconf_list[NPROTO];
1da177e4
LT
3307
3308/**
3309 * register_gifconf - register a SIOCGIF handler
3310 * @family: Address family
3311 * @gifconf: Function handler
3312 *
3313 * Register protocol dependent address dumping routines. The handler
3314 * that is passed must not be freed or reused until it has been replaced
3315 * by another handler.
3316 */
d1b19dff 3317int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
1da177e4
LT
3318{
3319 if (family >= NPROTO)
3320 return -EINVAL;
3321 gifconf_list[family] = gifconf;
3322 return 0;
3323}
d1b19dff 3324EXPORT_SYMBOL(register_gifconf);
1da177e4
LT
3325
3326
3327/*
3328 * Map an interface index to its name (SIOCGIFNAME)
3329 */
3330
3331/*
3332 * We need this ioctl for efficient implementation of the
3333 * if_indextoname() function required by the IPv6 API. Without
3334 * it, we would have to search all the interfaces to find a
3335 * match. --pb
3336 */
3337
881d966b 3338static int dev_ifname(struct net *net, struct ifreq __user *arg)
1da177e4
LT
3339{
3340 struct net_device *dev;
3341 struct ifreq ifr;
3342
3343 /*
3344 * Fetch the caller's info block.
3345 */
3346
3347 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3348 return -EFAULT;
3349
fb699dfd
ED
3350 rcu_read_lock();
3351 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
1da177e4 3352 if (!dev) {
fb699dfd 3353 rcu_read_unlock();
1da177e4
LT
3354 return -ENODEV;
3355 }
3356
3357 strcpy(ifr.ifr_name, dev->name);
fb699dfd 3358 rcu_read_unlock();
1da177e4
LT
3359
3360 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3361 return -EFAULT;
3362 return 0;
3363}
3364
3365/*
3366 * Perform a SIOCGIFCONF call. This structure will change
3367 * size eventually, and there is nothing I can do about it.
3368 * Thus we will need a 'compatibility mode'.
3369 */
3370
881d966b 3371static int dev_ifconf(struct net *net, char __user *arg)
1da177e4
LT
3372{
3373 struct ifconf ifc;
3374 struct net_device *dev;
3375 char __user *pos;
3376 int len;
3377 int total;
3378 int i;
3379
3380 /*
3381 * Fetch the caller's info block.
3382 */
3383
3384 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3385 return -EFAULT;
3386
3387 pos = ifc.ifc_buf;
3388 len = ifc.ifc_len;
3389
3390 /*
3391 * Loop over the interfaces, and write an info block for each.
3392 */
3393
3394 total = 0;
881d966b 3395 for_each_netdev(net, dev) {
1da177e4
LT
3396 for (i = 0; i < NPROTO; i++) {
3397 if (gifconf_list[i]) {
3398 int done;
3399 if (!pos)
3400 done = gifconf_list[i](dev, NULL, 0);
3401 else
3402 done = gifconf_list[i](dev, pos + total,
3403 len - total);
3404 if (done < 0)
3405 return -EFAULT;
3406 total += done;
3407 }
3408 }
4ec93edb 3409 }
1da177e4
LT
3410
3411 /*
3412 * All done. Write the updated control block back to the caller.
3413 */
3414 ifc.ifc_len = total;
3415
3416 /*
3417 * Both BSD and Solaris return 0 here, so we do too.
3418 */
3419 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3420}
3421
3422#ifdef CONFIG_PROC_FS
3423/*
3424 * This is invoked by the /proc filesystem handler to display a device
3425 * in detail.
3426 */
7562f876 3427void *dev_seq_start(struct seq_file *seq, loff_t *pos)
c6d14c84 3428 __acquires(RCU)
1da177e4 3429{
e372c414 3430 struct net *net = seq_file_net(seq);
7562f876 3431 loff_t off;
1da177e4 3432 struct net_device *dev;
1da177e4 3433
c6d14c84 3434 rcu_read_lock();
7562f876
PE
3435 if (!*pos)
3436 return SEQ_START_TOKEN;
1da177e4 3437
7562f876 3438 off = 1;
c6d14c84 3439 for_each_netdev_rcu(net, dev)
7562f876
PE
3440 if (off++ == *pos)
3441 return dev;
1da177e4 3442
7562f876 3443 return NULL;
1da177e4
LT
3444}
3445
3446void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3447{
c6d14c84
ED
3448 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3449 first_net_device(seq_file_net(seq)) :
3450 next_net_device((struct net_device *)v);
3451
1da177e4 3452 ++*pos;
c6d14c84 3453 return rcu_dereference(dev);
1da177e4
LT
3454}
3455
3456void dev_seq_stop(struct seq_file *seq, void *v)
c6d14c84 3457 __releases(RCU)
1da177e4 3458{
c6d14c84 3459 rcu_read_unlock();
1da177e4
LT
3460}
3461
3462static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3463{
eeda3fd6 3464 const struct net_device_stats *stats = dev_get_stats(dev);
1da177e4 3465
2d13bafe 3466 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
5a1b5898
RR
3467 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3468 dev->name, stats->rx_bytes, stats->rx_packets,
3469 stats->rx_errors,
3470 stats->rx_dropped + stats->rx_missed_errors,
3471 stats->rx_fifo_errors,
3472 stats->rx_length_errors + stats->rx_over_errors +
3473 stats->rx_crc_errors + stats->rx_frame_errors,
3474 stats->rx_compressed, stats->multicast,
3475 stats->tx_bytes, stats->tx_packets,
3476 stats->tx_errors, stats->tx_dropped,
3477 stats->tx_fifo_errors, stats->collisions,
3478 stats->tx_carrier_errors +
3479 stats->tx_aborted_errors +
3480 stats->tx_window_errors +
3481 stats->tx_heartbeat_errors,
3482 stats->tx_compressed);
1da177e4
LT
3483}
3484
3485/*
3486 * Called from the PROCfs module. This now uses the new arbitrary sized
3487 * /proc/net interface to create /proc/net/dev
3488 */
3489static int dev_seq_show(struct seq_file *seq, void *v)
3490{
3491 if (v == SEQ_START_TOKEN)
3492 seq_puts(seq, "Inter-| Receive "
3493 " | Transmit\n"
3494 " face |bytes packets errs drop fifo frame "
3495 "compressed multicast|bytes packets errs "
3496 "drop fifo colls carrier compressed\n");
3497 else
3498 dev_seq_printf_stats(seq, v);
3499 return 0;
3500}
3501
3502static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3503{
3504 struct netif_rx_stats *rc = NULL;
3505
0c0b0aca 3506 while (*pos < nr_cpu_ids)
4ec93edb 3507 if (cpu_online(*pos)) {
1da177e4
LT
3508 rc = &per_cpu(netdev_rx_stat, *pos);
3509 break;
3510 } else
3511 ++*pos;
3512 return rc;
3513}
3514
3515static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3516{
3517 return softnet_get_online(pos);
3518}
3519
3520static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3521{
3522 ++*pos;
3523 return softnet_get_online(pos);
3524}
3525
3526static void softnet_seq_stop(struct seq_file *seq, void *v)
3527{
3528}
3529
3530static int softnet_seq_show(struct seq_file *seq, void *v)
3531{
3532 struct netif_rx_stats *s = v;
3533
0a9627f2 3534 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
31aa02c5 3535 s->total, s->dropped, s->time_squeeze, 0,
c1ebcdb8 3536 0, 0, 0, 0, /* was fastroute */
0a9627f2 3537 s->cpu_collision, s->received_rps);
1da177e4
LT
3538 return 0;
3539}
3540
f690808e 3541static const struct seq_operations dev_seq_ops = {
1da177e4
LT
3542 .start = dev_seq_start,
3543 .next = dev_seq_next,
3544 .stop = dev_seq_stop,
3545 .show = dev_seq_show,
3546};
3547
3548static int dev_seq_open(struct inode *inode, struct file *file)
3549{
e372c414
DL
3550 return seq_open_net(inode, file, &dev_seq_ops,
3551 sizeof(struct seq_net_private));
1da177e4
LT
3552}
3553
9a32144e 3554static const struct file_operations dev_seq_fops = {
1da177e4
LT
3555 .owner = THIS_MODULE,
3556 .open = dev_seq_open,
3557 .read = seq_read,
3558 .llseek = seq_lseek,
e372c414 3559 .release = seq_release_net,
1da177e4
LT
3560};
3561
f690808e 3562static const struct seq_operations softnet_seq_ops = {
1da177e4
LT
3563 .start = softnet_seq_start,
3564 .next = softnet_seq_next,
3565 .stop = softnet_seq_stop,
3566 .show = softnet_seq_show,
3567};
3568
3569static int softnet_seq_open(struct inode *inode, struct file *file)
3570{
3571 return seq_open(file, &softnet_seq_ops);
3572}
3573
9a32144e 3574static const struct file_operations softnet_seq_fops = {
1da177e4
LT
3575 .owner = THIS_MODULE,
3576 .open = softnet_seq_open,
3577 .read = seq_read,
3578 .llseek = seq_lseek,
3579 .release = seq_release,
3580};
3581
0e1256ff
SH
3582static void *ptype_get_idx(loff_t pos)
3583{
3584 struct packet_type *pt = NULL;
3585 loff_t i = 0;
3586 int t;
3587
3588 list_for_each_entry_rcu(pt, &ptype_all, list) {
3589 if (i == pos)
3590 return pt;
3591 ++i;
3592 }
3593
82d8a867 3594 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
0e1256ff
SH
3595 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3596 if (i == pos)
3597 return pt;
3598 ++i;
3599 }
3600 }
3601 return NULL;
3602}
3603
3604static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
72348a42 3605 __acquires(RCU)
0e1256ff
SH
3606{
3607 rcu_read_lock();
3608 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3609}
3610
3611static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3612{
3613 struct packet_type *pt;
3614 struct list_head *nxt;
3615 int hash;
3616
3617 ++*pos;
3618 if (v == SEQ_START_TOKEN)
3619 return ptype_get_idx(0);
3620
3621 pt = v;
3622 nxt = pt->list.next;
3623 if (pt->type == htons(ETH_P_ALL)) {
3624 if (nxt != &ptype_all)
3625 goto found;
3626 hash = 0;
3627 nxt = ptype_base[0].next;
3628 } else
82d8a867 3629 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
0e1256ff
SH
3630
3631 while (nxt == &ptype_base[hash]) {
82d8a867 3632 if (++hash >= PTYPE_HASH_SIZE)
0e1256ff
SH
3633 return NULL;
3634 nxt = ptype_base[hash].next;
3635 }
3636found:
3637 return list_entry(nxt, struct packet_type, list);
3638}
3639
3640static void ptype_seq_stop(struct seq_file *seq, void *v)
72348a42 3641 __releases(RCU)
0e1256ff
SH
3642{
3643 rcu_read_unlock();
3644}
3645
0e1256ff
SH
3646static int ptype_seq_show(struct seq_file *seq, void *v)
3647{
3648 struct packet_type *pt = v;
3649
3650 if (v == SEQ_START_TOKEN)
3651 seq_puts(seq, "Type Device Function\n");
c346dca1 3652 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
0e1256ff
SH
3653 if (pt->type == htons(ETH_P_ALL))
3654 seq_puts(seq, "ALL ");
3655 else
3656 seq_printf(seq, "%04x", ntohs(pt->type));
3657
908cd2da
AD
3658 seq_printf(seq, " %-8s %pF\n",
3659 pt->dev ? pt->dev->name : "", pt->func);
0e1256ff
SH
3660 }
3661
3662 return 0;
3663}
3664
3665static const struct seq_operations ptype_seq_ops = {
3666 .start = ptype_seq_start,
3667 .next = ptype_seq_next,
3668 .stop = ptype_seq_stop,
3669 .show = ptype_seq_show,
3670};
3671
3672static int ptype_seq_open(struct inode *inode, struct file *file)
3673{
2feb27db
PE
3674 return seq_open_net(inode, file, &ptype_seq_ops,
3675 sizeof(struct seq_net_private));
0e1256ff
SH
3676}
3677
3678static const struct file_operations ptype_seq_fops = {
3679 .owner = THIS_MODULE,
3680 .open = ptype_seq_open,
3681 .read = seq_read,
3682 .llseek = seq_lseek,
2feb27db 3683 .release = seq_release_net,
0e1256ff
SH
3684};
3685
3686
4665079c 3687static int __net_init dev_proc_net_init(struct net *net)
1da177e4
LT
3688{
3689 int rc = -ENOMEM;
3690
881d966b 3691 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
1da177e4 3692 goto out;
881d966b 3693 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
1da177e4 3694 goto out_dev;
881d966b 3695 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
457c4cbc 3696 goto out_softnet;
0e1256ff 3697
881d966b 3698 if (wext_proc_init(net))
457c4cbc 3699 goto out_ptype;
1da177e4
LT
3700 rc = 0;
3701out:
3702 return rc;
457c4cbc 3703out_ptype:
881d966b 3704 proc_net_remove(net, "ptype");
1da177e4 3705out_softnet:
881d966b 3706 proc_net_remove(net, "softnet_stat");
1da177e4 3707out_dev:
881d966b 3708 proc_net_remove(net, "dev");
1da177e4
LT
3709 goto out;
3710}
881d966b 3711
4665079c 3712static void __net_exit dev_proc_net_exit(struct net *net)
881d966b
EB
3713{
3714 wext_proc_exit(net);
3715
3716 proc_net_remove(net, "ptype");
3717 proc_net_remove(net, "softnet_stat");
3718 proc_net_remove(net, "dev");
3719}
3720
022cbae6 3721static struct pernet_operations __net_initdata dev_proc_ops = {
881d966b
EB
3722 .init = dev_proc_net_init,
3723 .exit = dev_proc_net_exit,
3724};
3725
3726static int __init dev_proc_init(void)
3727{
3728 return register_pernet_subsys(&dev_proc_ops);
3729}
1da177e4
LT
3730#else
3731#define dev_proc_init() 0
3732#endif /* CONFIG_PROC_FS */
3733
3734
3735/**
3736 * netdev_set_master - set up master/slave pair
3737 * @slave: slave device
3738 * @master: new master device
3739 *
3740 * Changes the master device of the slave. Pass %NULL to break the
3741 * bonding. The caller must hold the RTNL semaphore. On a failure
3742 * a negative errno code is returned. On success the reference counts
3743 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3744 * function returns zero.
3745 */
3746int netdev_set_master(struct net_device *slave, struct net_device *master)
3747{
3748 struct net_device *old = slave->master;
3749
3750 ASSERT_RTNL();
3751
3752 if (master) {
3753 if (old)
3754 return -EBUSY;
3755 dev_hold(master);
3756 }
3757
3758 slave->master = master;
4ec93edb 3759
1da177e4
LT
3760 synchronize_net();
3761
3762 if (old)
3763 dev_put(old);
3764
3765 if (master)
3766 slave->flags |= IFF_SLAVE;
3767 else
3768 slave->flags &= ~IFF_SLAVE;
3769
3770 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3771 return 0;
3772}
d1b19dff 3773EXPORT_SYMBOL(netdev_set_master);
1da177e4 3774
b6c40d68
PM
3775static void dev_change_rx_flags(struct net_device *dev, int flags)
3776{
d314774c
SH
3777 const struct net_device_ops *ops = dev->netdev_ops;
3778
3779 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3780 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
3781}
3782
dad9b335 3783static int __dev_set_promiscuity(struct net_device *dev, int inc)
1da177e4
LT
3784{
3785 unsigned short old_flags = dev->flags;
8192b0c4
DH
3786 uid_t uid;
3787 gid_t gid;
1da177e4 3788
24023451
PM
3789 ASSERT_RTNL();
3790
dad9b335
WC
3791 dev->flags |= IFF_PROMISC;
3792 dev->promiscuity += inc;
3793 if (dev->promiscuity == 0) {
3794 /*
3795 * Avoid overflow.
3796 * If inc causes overflow, untouch promisc and return error.
3797 */
3798 if (inc < 0)
3799 dev->flags &= ~IFF_PROMISC;
3800 else {
3801 dev->promiscuity -= inc;
3802 printk(KERN_WARNING "%s: promiscuity touches roof, "
3803 "set promiscuity failed, promiscuity feature "
3804 "of device might be broken.\n", dev->name);
3805 return -EOVERFLOW;
3806 }
3807 }
52609c0b 3808 if (dev->flags != old_flags) {
1da177e4
LT
3809 printk(KERN_INFO "device %s %s promiscuous mode\n",
3810 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4ec93edb 3811 "left");
8192b0c4
DH
3812 if (audit_enabled) {
3813 current_uid_gid(&uid, &gid);
7759db82
KHK
3814 audit_log(current->audit_context, GFP_ATOMIC,
3815 AUDIT_ANOM_PROMISCUOUS,
3816 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3817 dev->name, (dev->flags & IFF_PROMISC),
3818 (old_flags & IFF_PROMISC),
3819 audit_get_loginuid(current),
8192b0c4 3820 uid, gid,
7759db82 3821 audit_get_sessionid(current));
8192b0c4 3822 }
24023451 3823
b6c40d68 3824 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 3825 }
dad9b335 3826 return 0;
1da177e4
LT
3827}
3828
4417da66
PM
3829/**
3830 * dev_set_promiscuity - update promiscuity count on a device
3831 * @dev: device
3832 * @inc: modifier
3833 *
3834 * Add or remove promiscuity from a device. While the count in the device
3835 * remains above zero the interface remains promiscuous. Once it hits zero
3836 * the device reverts back to normal filtering operation. A negative inc
3837 * value is used to drop promiscuity on the device.
dad9b335 3838 * Return 0 if successful or a negative errno code on error.
4417da66 3839 */
dad9b335 3840int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66
PM
3841{
3842 unsigned short old_flags = dev->flags;
dad9b335 3843 int err;
4417da66 3844
dad9b335 3845 err = __dev_set_promiscuity(dev, inc);
4b5a698e 3846 if (err < 0)
dad9b335 3847 return err;
4417da66
PM
3848 if (dev->flags != old_flags)
3849 dev_set_rx_mode(dev);
dad9b335 3850 return err;
4417da66 3851}
d1b19dff 3852EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 3853
1da177e4
LT
3854/**
3855 * dev_set_allmulti - update allmulti count on a device
3856 * @dev: device
3857 * @inc: modifier
3858 *
3859 * Add or remove reception of all multicast frames to a device. While the
3860 * count in the device remains above zero the interface remains listening
3861 * to all interfaces. Once it hits zero the device reverts back to normal
3862 * filtering operation. A negative @inc value is used to drop the counter
3863 * when releasing a resource needing all multicasts.
dad9b335 3864 * Return 0 if successful or a negative errno code on error.
1da177e4
LT
3865 */
3866
dad9b335 3867int dev_set_allmulti(struct net_device *dev, int inc)
1da177e4
LT
3868{
3869 unsigned short old_flags = dev->flags;
3870
24023451
PM
3871 ASSERT_RTNL();
3872
1da177e4 3873 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
3874 dev->allmulti += inc;
3875 if (dev->allmulti == 0) {
3876 /*
3877 * Avoid overflow.
3878 * If inc causes overflow, untouch allmulti and return error.
3879 */
3880 if (inc < 0)
3881 dev->flags &= ~IFF_ALLMULTI;
3882 else {
3883 dev->allmulti -= inc;
3884 printk(KERN_WARNING "%s: allmulti touches roof, "
3885 "set allmulti failed, allmulti feature of "
3886 "device might be broken.\n", dev->name);
3887 return -EOVERFLOW;
3888 }
3889 }
24023451 3890 if (dev->flags ^ old_flags) {
b6c40d68 3891 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 3892 dev_set_rx_mode(dev);
24023451 3893 }
dad9b335 3894 return 0;
4417da66 3895}
d1b19dff 3896EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
3897
3898/*
3899 * Upload unicast and multicast address lists to device and
3900 * configure RX filtering. When the device doesn't support unicast
53ccaae1 3901 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
3902 * are present.
3903 */
3904void __dev_set_rx_mode(struct net_device *dev)
3905{
d314774c
SH
3906 const struct net_device_ops *ops = dev->netdev_ops;
3907
4417da66
PM
3908 /* dev_open will call this function so the list will stay sane. */
3909 if (!(dev->flags&IFF_UP))
3910 return;
3911
3912 if (!netif_device_present(dev))
40b77c94 3913 return;
4417da66 3914
d314774c
SH
3915 if (ops->ndo_set_rx_mode)
3916 ops->ndo_set_rx_mode(dev);
4417da66
PM
3917 else {
3918 /* Unicast addresses changes may only happen under the rtnl,
3919 * therefore calling __dev_set_promiscuity here is safe.
3920 */
32e7bfc4 3921 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4417da66
PM
3922 __dev_set_promiscuity(dev, 1);
3923 dev->uc_promisc = 1;
32e7bfc4 3924 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4417da66
PM
3925 __dev_set_promiscuity(dev, -1);
3926 dev->uc_promisc = 0;
3927 }
3928
d314774c
SH
3929 if (ops->ndo_set_multicast_list)
3930 ops->ndo_set_multicast_list(dev);
4417da66
PM
3931 }
3932}
3933
3934void dev_set_rx_mode(struct net_device *dev)
3935{
b9e40857 3936 netif_addr_lock_bh(dev);
4417da66 3937 __dev_set_rx_mode(dev);
b9e40857 3938 netif_addr_unlock_bh(dev);
1da177e4
LT
3939}
3940
f001fde5
JP
3941/* hw addresses list handling functions */
3942
31278e71
JP
3943static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr,
3944 int addr_len, unsigned char addr_type)
f001fde5
JP
3945{
3946 struct netdev_hw_addr *ha;
3947 int alloc_size;
3948
3949 if (addr_len > MAX_ADDR_LEN)
3950 return -EINVAL;
3951
31278e71 3952 list_for_each_entry(ha, &list->list, list) {
ccffad25
JP
3953 if (!memcmp(ha->addr, addr, addr_len) &&
3954 ha->type == addr_type) {
3955 ha->refcount++;
3956 return 0;
3957 }
3958 }
3959
3960
f001fde5
JP
3961 alloc_size = sizeof(*ha);
3962 if (alloc_size < L1_CACHE_BYTES)
3963 alloc_size = L1_CACHE_BYTES;
3964 ha = kmalloc(alloc_size, GFP_ATOMIC);
3965 if (!ha)
3966 return -ENOMEM;
3967 memcpy(ha->addr, addr, addr_len);
3968 ha->type = addr_type;
ccffad25
JP
3969 ha->refcount = 1;
3970 ha->synced = false;
31278e71
JP
3971 list_add_tail_rcu(&ha->list, &list->list);
3972 list->count++;
f001fde5
JP
3973 return 0;
3974}
3975
3976static void ha_rcu_free(struct rcu_head *head)
3977{
3978 struct netdev_hw_addr *ha;
3979
3980 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3981 kfree(ha);
3982}
3983
31278e71
JP
3984static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr,
3985 int addr_len, unsigned char addr_type)
f001fde5
JP
3986{
3987 struct netdev_hw_addr *ha;
f001fde5 3988
31278e71 3989 list_for_each_entry(ha, &list->list, list) {
ccffad25 3990 if (!memcmp(ha->addr, addr, addr_len) &&
f001fde5 3991 (ha->type == addr_type || !addr_type)) {
ccffad25
JP
3992 if (--ha->refcount)
3993 return 0;
f001fde5
JP
3994 list_del_rcu(&ha->list);
3995 call_rcu(&ha->rcu_head, ha_rcu_free);
31278e71 3996 list->count--;
f001fde5
JP
3997 return 0;
3998 }
3999 }
4000 return -ENOENT;
4001}
4002
31278e71
JP
4003static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
4004 struct netdev_hw_addr_list *from_list,
4005 int addr_len,
ccffad25 4006 unsigned char addr_type)
f001fde5
JP
4007{
4008 int err;
4009 struct netdev_hw_addr *ha, *ha2;
4010 unsigned char type;
4011
31278e71 4012 list_for_each_entry(ha, &from_list->list, list) {
f001fde5 4013 type = addr_type ? addr_type : ha->type;
31278e71 4014 err = __hw_addr_add(to_list, ha->addr, addr_len, type);
f001fde5
JP
4015 if (err)
4016 goto unroll;
4017 }
4018 return 0;
4019
4020unroll:
31278e71 4021 list_for_each_entry(ha2, &from_list->list, list) {
f001fde5
JP
4022 if (ha2 == ha)
4023 break;
4024 type = addr_type ? addr_type : ha2->type;
31278e71 4025 __hw_addr_del(to_list, ha2->addr, addr_len, type);
f001fde5
JP
4026 }
4027 return err;
4028}
4029
31278e71
JP
4030static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
4031 struct netdev_hw_addr_list *from_list,
4032 int addr_len,
ccffad25 4033 unsigned char addr_type)
f001fde5
JP
4034{
4035 struct netdev_hw_addr *ha;
4036 unsigned char type;
4037
31278e71 4038 list_for_each_entry(ha, &from_list->list, list) {
f001fde5 4039 type = addr_type ? addr_type : ha->type;
31278e71 4040 __hw_addr_del(to_list, ha->addr, addr_len, addr_type);
ccffad25
JP
4041 }
4042}
4043
31278e71
JP
4044static int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4045 struct netdev_hw_addr_list *from_list,
ccffad25
JP
4046 int addr_len)
4047{
4048 int err = 0;
4049 struct netdev_hw_addr *ha, *tmp;
4050
31278e71 4051 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
ccffad25 4052 if (!ha->synced) {
31278e71 4053 err = __hw_addr_add(to_list, ha->addr,
ccffad25
JP
4054 addr_len, ha->type);
4055 if (err)
4056 break;
4057 ha->synced = true;
4058 ha->refcount++;
4059 } else if (ha->refcount == 1) {
31278e71
JP
4060 __hw_addr_del(to_list, ha->addr, addr_len, ha->type);
4061 __hw_addr_del(from_list, ha->addr, addr_len, ha->type);
ccffad25 4062 }
f001fde5 4063 }
ccffad25 4064 return err;
f001fde5
JP
4065}
4066
31278e71
JP
4067static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4068 struct netdev_hw_addr_list *from_list,
ccffad25
JP
4069 int addr_len)
4070{
4071 struct netdev_hw_addr *ha, *tmp;
4072
31278e71 4073 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
ccffad25 4074 if (ha->synced) {
31278e71 4075 __hw_addr_del(to_list, ha->addr,
ccffad25
JP
4076 addr_len, ha->type);
4077 ha->synced = false;
31278e71 4078 __hw_addr_del(from_list, ha->addr,
ccffad25
JP
4079 addr_len, ha->type);
4080 }
4081 }
4082}
4083
31278e71 4084static void __hw_addr_flush(struct netdev_hw_addr_list *list)
f001fde5
JP
4085{
4086 struct netdev_hw_addr *ha, *tmp;
4087
31278e71 4088 list_for_each_entry_safe(ha, tmp, &list->list, list) {
f001fde5
JP
4089 list_del_rcu(&ha->list);
4090 call_rcu(&ha->rcu_head, ha_rcu_free);
4091 }
31278e71
JP
4092 list->count = 0;
4093}
4094
4095static void __hw_addr_init(struct netdev_hw_addr_list *list)
4096{
4097 INIT_LIST_HEAD(&list->list);
4098 list->count = 0;
f001fde5
JP
4099}
4100
4101/* Device addresses handling functions */
4102
4103static void dev_addr_flush(struct net_device *dev)
4104{
4105 /* rtnl_mutex must be held here */
4106
31278e71 4107 __hw_addr_flush(&dev->dev_addrs);
f001fde5
JP
4108 dev->dev_addr = NULL;
4109}
4110
4111static int dev_addr_init(struct net_device *dev)
4112{
4113 unsigned char addr[MAX_ADDR_LEN];
4114 struct netdev_hw_addr *ha;
4115 int err;
4116
4117 /* rtnl_mutex must be held here */
4118
31278e71 4119 __hw_addr_init(&dev->dev_addrs);
0c27922e 4120 memset(addr, 0, sizeof(addr));
31278e71 4121 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr),
f001fde5
JP
4122 NETDEV_HW_ADDR_T_LAN);
4123 if (!err) {
4124 /*
4125 * Get the first (previously created) address from the list
4126 * and set dev_addr pointer to this location.
4127 */
31278e71 4128 ha = list_first_entry(&dev->dev_addrs.list,
f001fde5
JP
4129 struct netdev_hw_addr, list);
4130 dev->dev_addr = ha->addr;
4131 }
4132 return err;
4133}
4134
4135/**
4136 * dev_addr_add - Add a device address
4137 * @dev: device
4138 * @addr: address to add
4139 * @addr_type: address type
4140 *
4141 * Add a device address to the device or increase the reference count if
4142 * it already exists.
4143 *
4144 * The caller must hold the rtnl_mutex.
4145 */
4146int dev_addr_add(struct net_device *dev, unsigned char *addr,
4147 unsigned char addr_type)
4148{
4149 int err;
4150
4151 ASSERT_RTNL();
4152
31278e71 4153 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type);
f001fde5
JP
4154 if (!err)
4155 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4156 return err;
4157}
4158EXPORT_SYMBOL(dev_addr_add);
4159
4160/**
4161 * dev_addr_del - Release a device address.
4162 * @dev: device
4163 * @addr: address to delete
4164 * @addr_type: address type
4165 *
4166 * Release reference to a device address and remove it from the device
4167 * if the reference count drops to zero.
4168 *
4169 * The caller must hold the rtnl_mutex.
4170 */
4171int dev_addr_del(struct net_device *dev, unsigned char *addr,
4172 unsigned char addr_type)
4173{
4174 int err;
ccffad25 4175 struct netdev_hw_addr *ha;
f001fde5
JP
4176
4177 ASSERT_RTNL();
4178
ccffad25
JP
4179 /*
4180 * We can not remove the first address from the list because
4181 * dev->dev_addr points to that.
4182 */
31278e71
JP
4183 ha = list_first_entry(&dev->dev_addrs.list,
4184 struct netdev_hw_addr, list);
ccffad25
JP
4185 if (ha->addr == dev->dev_addr && ha->refcount == 1)
4186 return -ENOENT;
4187
31278e71 4188 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len,
ccffad25 4189 addr_type);
f001fde5
JP
4190 if (!err)
4191 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4192 return err;
4193}
4194EXPORT_SYMBOL(dev_addr_del);
4195
4196/**
4197 * dev_addr_add_multiple - Add device addresses from another device
4198 * @to_dev: device to which addresses will be added
4199 * @from_dev: device from which addresses will be added
4200 * @addr_type: address type - 0 means type will be used from from_dev
4201 *
4202 * Add device addresses of the one device to another.
4203 **
4204 * The caller must hold the rtnl_mutex.
4205 */
4206int dev_addr_add_multiple(struct net_device *to_dev,
4207 struct net_device *from_dev,
4208 unsigned char addr_type)
4209{
4210 int err;
4211
4212 ASSERT_RTNL();
4213
4214 if (from_dev->addr_len != to_dev->addr_len)
4215 return -EINVAL;
31278e71 4216 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
ccffad25 4217 to_dev->addr_len, addr_type);
f001fde5
JP
4218 if (!err)
4219 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
4220 return err;
4221}
4222EXPORT_SYMBOL(dev_addr_add_multiple);
4223
4224/**
4225 * dev_addr_del_multiple - Delete device addresses by another device
4226 * @to_dev: device where the addresses will be deleted
4227 * @from_dev: device by which addresses the addresses will be deleted
4228 * @addr_type: address type - 0 means type will used from from_dev
4229 *
4230 * Deletes addresses in to device by the list of addresses in from device.
4231 *
4232 * The caller must hold the rtnl_mutex.
4233 */
4234int dev_addr_del_multiple(struct net_device *to_dev,
4235 struct net_device *from_dev,
4236 unsigned char addr_type)
4237{
4238 ASSERT_RTNL();
4239
4240 if (from_dev->addr_len != to_dev->addr_len)
4241 return -EINVAL;
31278e71 4242 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
ccffad25 4243 to_dev->addr_len, addr_type);
f001fde5
JP
4244 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
4245 return 0;
4246}
4247EXPORT_SYMBOL(dev_addr_del_multiple);
4248
31278e71 4249/* multicast addresses handling functions */
f001fde5 4250
61cbc2fc
PM
4251int __dev_addr_delete(struct dev_addr_list **list, int *count,
4252 void *addr, int alen, int glbl)
bf742482
PM
4253{
4254 struct dev_addr_list *da;
4255
4256 for (; (da = *list) != NULL; list = &da->next) {
4257 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4258 alen == da->da_addrlen) {
4259 if (glbl) {
4260 int old_glbl = da->da_gusers;
4261 da->da_gusers = 0;
4262 if (old_glbl == 0)
4263 break;
4264 }
4265 if (--da->da_users)
4266 return 0;
4267
4268 *list = da->next;
4269 kfree(da);
61cbc2fc 4270 (*count)--;
bf742482
PM
4271 return 0;
4272 }
4273 }
4274 return -ENOENT;
4275}
4276
61cbc2fc
PM
4277int __dev_addr_add(struct dev_addr_list **list, int *count,
4278 void *addr, int alen, int glbl)
bf742482
PM
4279{
4280 struct dev_addr_list *da;
4281
4282 for (da = *list; da != NULL; da = da->next) {
4283 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4284 da->da_addrlen == alen) {
4285 if (glbl) {
4286 int old_glbl = da->da_gusers;
4287 da->da_gusers = 1;
4288 if (old_glbl)
4289 return 0;
4290 }
4291 da->da_users++;
4292 return 0;
4293 }
4294 }
4295
12aa343a 4296 da = kzalloc(sizeof(*da), GFP_ATOMIC);
bf742482
PM
4297 if (da == NULL)
4298 return -ENOMEM;
4299 memcpy(da->da_addr, addr, alen);
4300 da->da_addrlen = alen;
4301 da->da_users = 1;
4302 da->da_gusers = glbl ? 1 : 0;
4303 da->next = *list;
4304 *list = da;
61cbc2fc 4305 (*count)++;
bf742482
PM
4306 return 0;
4307}
4308
4417da66
PM
4309/**
4310 * dev_unicast_delete - Release secondary unicast address.
4311 * @dev: device
0ed72ec4 4312 * @addr: address to delete
4417da66
PM
4313 *
4314 * Release reference to a secondary unicast address and remove it
0ed72ec4 4315 * from the device if the reference count drops to zero.
4417da66
PM
4316 *
4317 * The caller must hold the rtnl_mutex.
4318 */
ccffad25 4319int dev_unicast_delete(struct net_device *dev, void *addr)
4417da66
PM
4320{
4321 int err;
4322
4323 ASSERT_RTNL();
4324
a6ac65db 4325 netif_addr_lock_bh(dev);
31278e71
JP
4326 err = __hw_addr_del(&dev->uc, addr, dev->addr_len,
4327 NETDEV_HW_ADDR_T_UNICAST);
61cbc2fc 4328 if (!err)
4417da66 4329 __dev_set_rx_mode(dev);
a6ac65db 4330 netif_addr_unlock_bh(dev);
4417da66
PM
4331 return err;
4332}
4333EXPORT_SYMBOL(dev_unicast_delete);
4334
4335/**
4336 * dev_unicast_add - add a secondary unicast address
4337 * @dev: device
5dbaec5d 4338 * @addr: address to add
4417da66
PM
4339 *
4340 * Add a secondary unicast address to the device or increase
4341 * the reference count if it already exists.
4342 *
4343 * The caller must hold the rtnl_mutex.
4344 */
ccffad25 4345int dev_unicast_add(struct net_device *dev, void *addr)
4417da66
PM
4346{
4347 int err;
4348
4349 ASSERT_RTNL();
4350
a6ac65db 4351 netif_addr_lock_bh(dev);
31278e71
JP
4352 err = __hw_addr_add(&dev->uc, addr, dev->addr_len,
4353 NETDEV_HW_ADDR_T_UNICAST);
61cbc2fc 4354 if (!err)
4417da66 4355 __dev_set_rx_mode(dev);
a6ac65db 4356 netif_addr_unlock_bh(dev);
4417da66
PM
4357 return err;
4358}
4359EXPORT_SYMBOL(dev_unicast_add);
4360
e83a2ea8
CL
4361int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
4362 struct dev_addr_list **from, int *from_count)
4363{
4364 struct dev_addr_list *da, *next;
4365 int err = 0;
4366
4367 da = *from;
4368 while (da != NULL) {
4369 next = da->next;
4370 if (!da->da_synced) {
4371 err = __dev_addr_add(to, to_count,
4372 da->da_addr, da->da_addrlen, 0);
4373 if (err < 0)
4374 break;
4375 da->da_synced = 1;
4376 da->da_users++;
4377 } else if (da->da_users == 1) {
4378 __dev_addr_delete(to, to_count,
4379 da->da_addr, da->da_addrlen, 0);
4380 __dev_addr_delete(from, from_count,
4381 da->da_addr, da->da_addrlen, 0);
4382 }
4383 da = next;
4384 }
4385 return err;
4386}
c4029083 4387EXPORT_SYMBOL_GPL(__dev_addr_sync);
e83a2ea8
CL
4388
4389void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
4390 struct dev_addr_list **from, int *from_count)
4391{
4392 struct dev_addr_list *da, *next;
4393
4394 da = *from;
4395 while (da != NULL) {
4396 next = da->next;
4397 if (da->da_synced) {
4398 __dev_addr_delete(to, to_count,
4399 da->da_addr, da->da_addrlen, 0);
4400 da->da_synced = 0;
4401 __dev_addr_delete(from, from_count,
4402 da->da_addr, da->da_addrlen, 0);
4403 }
4404 da = next;
4405 }
4406}
c4029083 4407EXPORT_SYMBOL_GPL(__dev_addr_unsync);
e83a2ea8
CL
4408
4409/**
4410 * dev_unicast_sync - Synchronize device's unicast list to another device
4411 * @to: destination device
4412 * @from: source device
4413 *
4414 * Add newly added addresses to the destination device and release
a6ac65db
JP
4415 * addresses that have no users left. The source device must be
4416 * locked by netif_tx_lock_bh.
e83a2ea8
CL
4417 *
4418 * This function is intended to be called from the dev->set_rx_mode
4419 * function of layered software devices.
4420 */
4421int dev_unicast_sync(struct net_device *to, struct net_device *from)
4422{
4423 int err = 0;
4424
ccffad25
JP
4425 if (to->addr_len != from->addr_len)
4426 return -EINVAL;
4427
a6ac65db 4428 netif_addr_lock_bh(to);
31278e71 4429 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len);
e83a2ea8
CL
4430 if (!err)
4431 __dev_set_rx_mode(to);
a6ac65db 4432 netif_addr_unlock_bh(to);
e83a2ea8
CL
4433 return err;
4434}
4435EXPORT_SYMBOL(dev_unicast_sync);
4436
4437/**
bc2cda1e 4438 * dev_unicast_unsync - Remove synchronized addresses from the destination device
e83a2ea8
CL
4439 * @to: destination device
4440 * @from: source device
4441 *
4442 * Remove all addresses that were added to the destination device by
4443 * dev_unicast_sync(). This function is intended to be called from the
4444 * dev->stop function of layered software devices.
4445 */
4446void dev_unicast_unsync(struct net_device *to, struct net_device *from)
4447{
ccffad25
JP
4448 if (to->addr_len != from->addr_len)
4449 return;
e83a2ea8 4450
a6ac65db
JP
4451 netif_addr_lock_bh(from);
4452 netif_addr_lock(to);
31278e71 4453 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len);
ccffad25 4454 __dev_set_rx_mode(to);
a6ac65db
JP
4455 netif_addr_unlock(to);
4456 netif_addr_unlock_bh(from);
e83a2ea8
CL
4457}
4458EXPORT_SYMBOL(dev_unicast_unsync);
4459
32a806c1 4460void dev_unicast_flush(struct net_device *dev)
ccffad25 4461{
a6ac65db 4462 netif_addr_lock_bh(dev);
31278e71 4463 __hw_addr_flush(&dev->uc);
a6ac65db 4464 netif_addr_unlock_bh(dev);
ccffad25 4465}
32a806c1 4466EXPORT_SYMBOL(dev_unicast_flush);
ccffad25
JP
4467
4468static void dev_unicast_init(struct net_device *dev)
4469{
31278e71 4470 __hw_addr_init(&dev->uc);
ccffad25
JP
4471}
4472
4473
12972621
DC
4474static void __dev_addr_discard(struct dev_addr_list **list)
4475{
4476 struct dev_addr_list *tmp;
4477
4478 while (*list != NULL) {
4479 tmp = *list;
4480 *list = tmp->next;
4481 if (tmp->da_users > tmp->da_gusers)
4482 printk("__dev_addr_discard: address leakage! "
4483 "da_users=%d\n", tmp->da_users);
4484 kfree(tmp);
4485 }
4486}
4487
32a806c1 4488void dev_addr_discard(struct net_device *dev)
4417da66 4489{
b9e40857 4490 netif_addr_lock_bh(dev);
26cc2522 4491
456ad75c 4492 __dev_addr_discard(&dev->mc_list);
4cd24eaf 4493 netdev_mc_count(dev) = 0;
26cc2522 4494
b9e40857 4495 netif_addr_unlock_bh(dev);
456ad75c 4496}
32a806c1 4497EXPORT_SYMBOL(dev_addr_discard);
456ad75c 4498
f0db275a
SH
4499/**
4500 * dev_get_flags - get flags reported to userspace
4501 * @dev: device
4502 *
4503 * Get the combination of flag bits exported through APIs to userspace.
4504 */
1da177e4
LT
4505unsigned dev_get_flags(const struct net_device *dev)
4506{
4507 unsigned flags;
4508
4509 flags = (dev->flags & ~(IFF_PROMISC |
4510 IFF_ALLMULTI |
b00055aa
SR
4511 IFF_RUNNING |
4512 IFF_LOWER_UP |
4513 IFF_DORMANT)) |
1da177e4
LT
4514 (dev->gflags & (IFF_PROMISC |
4515 IFF_ALLMULTI));
4516
b00055aa
SR
4517 if (netif_running(dev)) {
4518 if (netif_oper_up(dev))
4519 flags |= IFF_RUNNING;
4520 if (netif_carrier_ok(dev))
4521 flags |= IFF_LOWER_UP;
4522 if (netif_dormant(dev))
4523 flags |= IFF_DORMANT;
4524 }
1da177e4
LT
4525
4526 return flags;
4527}
d1b19dff 4528EXPORT_SYMBOL(dev_get_flags);
1da177e4 4529
bd380811 4530int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 4531{
1da177e4 4532 int old_flags = dev->flags;
bd380811 4533 int ret;
1da177e4 4534
24023451
PM
4535 ASSERT_RTNL();
4536
1da177e4
LT
4537 /*
4538 * Set the flags on our device.
4539 */
4540
4541 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4542 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4543 IFF_AUTOMEDIA)) |
4544 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4545 IFF_ALLMULTI));
4546
4547 /*
4548 * Load in the correct multicast list now the flags have changed.
4549 */
4550
b6c40d68
PM
4551 if ((old_flags ^ flags) & IFF_MULTICAST)
4552 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 4553
4417da66 4554 dev_set_rx_mode(dev);
1da177e4
LT
4555
4556 /*
4557 * Have we downed the interface. We handle IFF_UP ourselves
4558 * according to user attempts to set it, rather than blindly
4559 * setting it.
4560 */
4561
4562 ret = 0;
4563 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
bd380811 4564 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4
LT
4565
4566 if (!ret)
4417da66 4567 dev_set_rx_mode(dev);
1da177e4
LT
4568 }
4569
1da177e4 4570 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff
ED
4571 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4572
1da177e4
LT
4573 dev->gflags ^= IFF_PROMISC;
4574 dev_set_promiscuity(dev, inc);
4575 }
4576
4577 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4578 is important. Some (broken) drivers set IFF_PROMISC, when
4579 IFF_ALLMULTI is requested not asking us and not reporting.
4580 */
4581 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
4582 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4583
1da177e4
LT
4584 dev->gflags ^= IFF_ALLMULTI;
4585 dev_set_allmulti(dev, inc);
4586 }
4587
bd380811
PM
4588 return ret;
4589}
4590
4591void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4592{
4593 unsigned int changes = dev->flags ^ old_flags;
4594
4595 if (changes & IFF_UP) {
4596 if (dev->flags & IFF_UP)
4597 call_netdevice_notifiers(NETDEV_UP, dev);
4598 else
4599 call_netdevice_notifiers(NETDEV_DOWN, dev);
4600 }
4601
4602 if (dev->flags & IFF_UP &&
4603 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4604 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4605}
4606
4607/**
4608 * dev_change_flags - change device settings
4609 * @dev: device
4610 * @flags: device state flags
4611 *
4612 * Change settings on device based state flags. The flags are
4613 * in the userspace exported format.
4614 */
4615int dev_change_flags(struct net_device *dev, unsigned flags)
4616{
4617 int ret, changes;
4618 int old_flags = dev->flags;
4619
4620 ret = __dev_change_flags(dev, flags);
4621 if (ret < 0)
4622 return ret;
4623
4624 changes = old_flags ^ dev->flags;
7c355f53
TG
4625 if (changes)
4626 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
1da177e4 4627
bd380811 4628 __dev_notify_flags(dev, old_flags);
1da177e4
LT
4629 return ret;
4630}
d1b19dff 4631EXPORT_SYMBOL(dev_change_flags);
1da177e4 4632
f0db275a
SH
4633/**
4634 * dev_set_mtu - Change maximum transfer unit
4635 * @dev: device
4636 * @new_mtu: new transfer unit
4637 *
4638 * Change the maximum transfer size of the network device.
4639 */
1da177e4
LT
4640int dev_set_mtu(struct net_device *dev, int new_mtu)
4641{
d314774c 4642 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
4643 int err;
4644
4645 if (new_mtu == dev->mtu)
4646 return 0;
4647
4648 /* MTU must be positive. */
4649 if (new_mtu < 0)
4650 return -EINVAL;
4651
4652 if (!netif_device_present(dev))
4653 return -ENODEV;
4654
4655 err = 0;
d314774c
SH
4656 if (ops->ndo_change_mtu)
4657 err = ops->ndo_change_mtu(dev, new_mtu);
1da177e4
LT
4658 else
4659 dev->mtu = new_mtu;
d314774c 4660
1da177e4 4661 if (!err && dev->flags & IFF_UP)
056925ab 4662 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
1da177e4
LT
4663 return err;
4664}
d1b19dff 4665EXPORT_SYMBOL(dev_set_mtu);
1da177e4 4666
f0db275a
SH
4667/**
4668 * dev_set_mac_address - Change Media Access Control Address
4669 * @dev: device
4670 * @sa: new address
4671 *
4672 * Change the hardware (MAC) address of the device
4673 */
1da177e4
LT
4674int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4675{
d314774c 4676 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
4677 int err;
4678
d314774c 4679 if (!ops->ndo_set_mac_address)
1da177e4
LT
4680 return -EOPNOTSUPP;
4681 if (sa->sa_family != dev->type)
4682 return -EINVAL;
4683 if (!netif_device_present(dev))
4684 return -ENODEV;
d314774c 4685 err = ops->ndo_set_mac_address(dev, sa);
1da177e4 4686 if (!err)
056925ab 4687 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
1da177e4
LT
4688 return err;
4689}
d1b19dff 4690EXPORT_SYMBOL(dev_set_mac_address);
1da177e4
LT
4691
4692/*
3710becf 4693 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
1da177e4 4694 */
14e3e079 4695static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
1da177e4
LT
4696{
4697 int err;
3710becf 4698 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
1da177e4
LT
4699
4700 if (!dev)
4701 return -ENODEV;
4702
4703 switch (cmd) {
d1b19dff
ED
4704 case SIOCGIFFLAGS: /* Get interface flags */
4705 ifr->ifr_flags = (short) dev_get_flags(dev);
4706 return 0;
1da177e4 4707
d1b19dff
ED
4708 case SIOCGIFMETRIC: /* Get the metric on the interface
4709 (currently unused) */
4710 ifr->ifr_metric = 0;
4711 return 0;
1da177e4 4712
d1b19dff
ED
4713 case SIOCGIFMTU: /* Get the MTU of a device */
4714 ifr->ifr_mtu = dev->mtu;
4715 return 0;
1da177e4 4716
d1b19dff
ED
4717 case SIOCGIFHWADDR:
4718 if (!dev->addr_len)
4719 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4720 else
4721 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4722 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4723 ifr->ifr_hwaddr.sa_family = dev->type;
4724 return 0;
1da177e4 4725
d1b19dff
ED
4726 case SIOCGIFSLAVE:
4727 err = -EINVAL;
4728 break;
14e3e079 4729
d1b19dff
ED
4730 case SIOCGIFMAP:
4731 ifr->ifr_map.mem_start = dev->mem_start;
4732 ifr->ifr_map.mem_end = dev->mem_end;
4733 ifr->ifr_map.base_addr = dev->base_addr;
4734 ifr->ifr_map.irq = dev->irq;
4735 ifr->ifr_map.dma = dev->dma;
4736 ifr->ifr_map.port = dev->if_port;
4737 return 0;
14e3e079 4738
d1b19dff
ED
4739 case SIOCGIFINDEX:
4740 ifr->ifr_ifindex = dev->ifindex;
4741 return 0;
14e3e079 4742
d1b19dff
ED
4743 case SIOCGIFTXQLEN:
4744 ifr->ifr_qlen = dev->tx_queue_len;
4745 return 0;
14e3e079 4746
d1b19dff
ED
4747 default:
4748 /* dev_ioctl() should ensure this case
4749 * is never reached
4750 */
4751 WARN_ON(1);
4752 err = -EINVAL;
4753 break;
14e3e079
JG
4754
4755 }
4756 return err;
4757}
4758
4759/*
4760 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4761 */
4762static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4763{
4764 int err;
4765 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
5f2f6da7 4766 const struct net_device_ops *ops;
14e3e079
JG
4767
4768 if (!dev)
4769 return -ENODEV;
4770
5f2f6da7
JP
4771 ops = dev->netdev_ops;
4772
14e3e079 4773 switch (cmd) {
d1b19dff
ED
4774 case SIOCSIFFLAGS: /* Set interface flags */
4775 return dev_change_flags(dev, ifr->ifr_flags);
14e3e079 4776
d1b19dff
ED
4777 case SIOCSIFMETRIC: /* Set the metric on the interface
4778 (currently unused) */
4779 return -EOPNOTSUPP;
14e3e079 4780
d1b19dff
ED
4781 case SIOCSIFMTU: /* Set the MTU of a device */
4782 return dev_set_mtu(dev, ifr->ifr_mtu);
1da177e4 4783
d1b19dff
ED
4784 case SIOCSIFHWADDR:
4785 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
1da177e4 4786
d1b19dff
ED
4787 case SIOCSIFHWBROADCAST:
4788 if (ifr->ifr_hwaddr.sa_family != dev->type)
4789 return -EINVAL;
4790 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4791 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4792 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4793 return 0;
1da177e4 4794
d1b19dff
ED
4795 case SIOCSIFMAP:
4796 if (ops->ndo_set_config) {
1da177e4
LT
4797 if (!netif_device_present(dev))
4798 return -ENODEV;
d1b19dff
ED
4799 return ops->ndo_set_config(dev, &ifr->ifr_map);
4800 }
4801 return -EOPNOTSUPP;
1da177e4 4802
d1b19dff
ED
4803 case SIOCADDMULTI:
4804 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4805 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4806 return -EINVAL;
4807 if (!netif_device_present(dev))
4808 return -ENODEV;
4809 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4810 dev->addr_len, 1);
4811
4812 case SIOCDELMULTI:
4813 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4814 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4815 return -EINVAL;
4816 if (!netif_device_present(dev))
4817 return -ENODEV;
4818 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4819 dev->addr_len, 1);
1da177e4 4820
d1b19dff
ED
4821 case SIOCSIFTXQLEN:
4822 if (ifr->ifr_qlen < 0)
4823 return -EINVAL;
4824 dev->tx_queue_len = ifr->ifr_qlen;
4825 return 0;
1da177e4 4826
d1b19dff
ED
4827 case SIOCSIFNAME:
4828 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4829 return dev_change_name(dev, ifr->ifr_newname);
1da177e4 4830
d1b19dff
ED
4831 /*
4832 * Unknown or private ioctl
4833 */
4834 default:
4835 if ((cmd >= SIOCDEVPRIVATE &&
4836 cmd <= SIOCDEVPRIVATE + 15) ||
4837 cmd == SIOCBONDENSLAVE ||
4838 cmd == SIOCBONDRELEASE ||
4839 cmd == SIOCBONDSETHWADDR ||
4840 cmd == SIOCBONDSLAVEINFOQUERY ||
4841 cmd == SIOCBONDINFOQUERY ||
4842 cmd == SIOCBONDCHANGEACTIVE ||
4843 cmd == SIOCGMIIPHY ||
4844 cmd == SIOCGMIIREG ||
4845 cmd == SIOCSMIIREG ||
4846 cmd == SIOCBRADDIF ||
4847 cmd == SIOCBRDELIF ||
4848 cmd == SIOCSHWTSTAMP ||
4849 cmd == SIOCWANDEV) {
4850 err = -EOPNOTSUPP;
4851 if (ops->ndo_do_ioctl) {
4852 if (netif_device_present(dev))
4853 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4854 else
4855 err = -ENODEV;
4856 }
4857 } else
4858 err = -EINVAL;
1da177e4
LT
4859
4860 }
4861 return err;
4862}
4863
4864/*
4865 * This function handles all "interface"-type I/O control requests. The actual
4866 * 'doing' part of this is dev_ifsioc above.
4867 */
4868
4869/**
4870 * dev_ioctl - network device ioctl
c4ea43c5 4871 * @net: the applicable net namespace
1da177e4
LT
4872 * @cmd: command to issue
4873 * @arg: pointer to a struct ifreq in user space
4874 *
4875 * Issue ioctl functions to devices. This is normally called by the
4876 * user space syscall interfaces but can sometimes be useful for
4877 * other purposes. The return value is the return from the syscall if
4878 * positive or a negative errno code on error.
4879 */
4880
881d966b 4881int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1da177e4
LT
4882{
4883 struct ifreq ifr;
4884 int ret;
4885 char *colon;
4886
4887 /* One special case: SIOCGIFCONF takes ifconf argument
4888 and requires shared lock, because it sleeps writing
4889 to user space.
4890 */
4891
4892 if (cmd == SIOCGIFCONF) {
6756ae4b 4893 rtnl_lock();
881d966b 4894 ret = dev_ifconf(net, (char __user *) arg);
6756ae4b 4895 rtnl_unlock();
1da177e4
LT
4896 return ret;
4897 }
4898 if (cmd == SIOCGIFNAME)
881d966b 4899 return dev_ifname(net, (struct ifreq __user *)arg);
1da177e4
LT
4900
4901 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4902 return -EFAULT;
4903
4904 ifr.ifr_name[IFNAMSIZ-1] = 0;
4905
4906 colon = strchr(ifr.ifr_name, ':');
4907 if (colon)
4908 *colon = 0;
4909
4910 /*
4911 * See which interface the caller is talking about.
4912 */
4913
4914 switch (cmd) {
d1b19dff
ED
4915 /*
4916 * These ioctl calls:
4917 * - can be done by all.
4918 * - atomic and do not require locking.
4919 * - return a value
4920 */
4921 case SIOCGIFFLAGS:
4922 case SIOCGIFMETRIC:
4923 case SIOCGIFMTU:
4924 case SIOCGIFHWADDR:
4925 case SIOCGIFSLAVE:
4926 case SIOCGIFMAP:
4927 case SIOCGIFINDEX:
4928 case SIOCGIFTXQLEN:
4929 dev_load(net, ifr.ifr_name);
3710becf 4930 rcu_read_lock();
d1b19dff 4931 ret = dev_ifsioc_locked(net, &ifr, cmd);
3710becf 4932 rcu_read_unlock();
d1b19dff
ED
4933 if (!ret) {
4934 if (colon)
4935 *colon = ':';
4936 if (copy_to_user(arg, &ifr,
4937 sizeof(struct ifreq)))
4938 ret = -EFAULT;
4939 }
4940 return ret;
1da177e4 4941
d1b19dff
ED
4942 case SIOCETHTOOL:
4943 dev_load(net, ifr.ifr_name);
4944 rtnl_lock();
4945 ret = dev_ethtool(net, &ifr);
4946 rtnl_unlock();
4947 if (!ret) {
4948 if (colon)
4949 *colon = ':';
4950 if (copy_to_user(arg, &ifr,
4951 sizeof(struct ifreq)))
4952 ret = -EFAULT;
4953 }
4954 return ret;
1da177e4 4955
d1b19dff
ED
4956 /*
4957 * These ioctl calls:
4958 * - require superuser power.
4959 * - require strict serialization.
4960 * - return a value
4961 */
4962 case SIOCGMIIPHY:
4963 case SIOCGMIIREG:
4964 case SIOCSIFNAME:
4965 if (!capable(CAP_NET_ADMIN))
4966 return -EPERM;
4967 dev_load(net, ifr.ifr_name);
4968 rtnl_lock();
4969 ret = dev_ifsioc(net, &ifr, cmd);
4970 rtnl_unlock();
4971 if (!ret) {
4972 if (colon)
4973 *colon = ':';
4974 if (copy_to_user(arg, &ifr,
4975 sizeof(struct ifreq)))
4976 ret = -EFAULT;
4977 }
4978 return ret;
1da177e4 4979
d1b19dff
ED
4980 /*
4981 * These ioctl calls:
4982 * - require superuser power.
4983 * - require strict serialization.
4984 * - do not return a value
4985 */
4986 case SIOCSIFFLAGS:
4987 case SIOCSIFMETRIC:
4988 case SIOCSIFMTU:
4989 case SIOCSIFMAP:
4990 case SIOCSIFHWADDR:
4991 case SIOCSIFSLAVE:
4992 case SIOCADDMULTI:
4993 case SIOCDELMULTI:
4994 case SIOCSIFHWBROADCAST:
4995 case SIOCSIFTXQLEN:
4996 case SIOCSMIIREG:
4997 case SIOCBONDENSLAVE:
4998 case SIOCBONDRELEASE:
4999 case SIOCBONDSETHWADDR:
5000 case SIOCBONDCHANGEACTIVE:
5001 case SIOCBRADDIF:
5002 case SIOCBRDELIF:
5003 case SIOCSHWTSTAMP:
5004 if (!capable(CAP_NET_ADMIN))
5005 return -EPERM;
5006 /* fall through */
5007 case SIOCBONDSLAVEINFOQUERY:
5008 case SIOCBONDINFOQUERY:
5009 dev_load(net, ifr.ifr_name);
5010 rtnl_lock();
5011 ret = dev_ifsioc(net, &ifr, cmd);
5012 rtnl_unlock();
5013 return ret;
5014
5015 case SIOCGIFMEM:
5016 /* Get the per device memory space. We can add this but
5017 * currently do not support it */
5018 case SIOCSIFMEM:
5019 /* Set the per device memory buffer space.
5020 * Not applicable in our case */
5021 case SIOCSIFLINK:
5022 return -EINVAL;
5023
5024 /*
5025 * Unknown or private ioctl.
5026 */
5027 default:
5028 if (cmd == SIOCWANDEV ||
5029 (cmd >= SIOCDEVPRIVATE &&
5030 cmd <= SIOCDEVPRIVATE + 15)) {
881d966b 5031 dev_load(net, ifr.ifr_name);
1da177e4 5032 rtnl_lock();
881d966b 5033 ret = dev_ifsioc(net, &ifr, cmd);
1da177e4 5034 rtnl_unlock();
d1b19dff
ED
5035 if (!ret && copy_to_user(arg, &ifr,
5036 sizeof(struct ifreq)))
5037 ret = -EFAULT;
1da177e4 5038 return ret;
d1b19dff
ED
5039 }
5040 /* Take care of Wireless Extensions */
5041 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5042 return wext_handle_ioctl(net, &ifr, cmd, arg);
5043 return -EINVAL;
1da177e4
LT
5044 }
5045}
5046
5047
5048/**
5049 * dev_new_index - allocate an ifindex
c4ea43c5 5050 * @net: the applicable net namespace
1da177e4
LT
5051 *
5052 * Returns a suitable unique value for a new device interface
5053 * number. The caller must hold the rtnl semaphore or the
5054 * dev_base_lock to be sure it remains unique.
5055 */
881d966b 5056static int dev_new_index(struct net *net)
1da177e4
LT
5057{
5058 static int ifindex;
5059 for (;;) {
5060 if (++ifindex <= 0)
5061 ifindex = 1;
881d966b 5062 if (!__dev_get_by_index(net, ifindex))
1da177e4
LT
5063 return ifindex;
5064 }
5065}
5066
1da177e4 5067/* Delayed registration/unregisteration */
3b5b34fd 5068static LIST_HEAD(net_todo_list);
1da177e4 5069
6f05f629 5070static void net_set_todo(struct net_device *dev)
1da177e4 5071{
1da177e4 5072 list_add_tail(&dev->todo_list, &net_todo_list);
1da177e4
LT
5073}
5074
9b5e383c 5075static void rollback_registered_many(struct list_head *head)
93ee31f1 5076{
e93737b0 5077 struct net_device *dev, *tmp;
9b5e383c 5078
93ee31f1
DL
5079 BUG_ON(dev_boot_phase);
5080 ASSERT_RTNL();
5081
e93737b0 5082 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 5083 /* Some devices call without registering
e93737b0
KK
5084 * for initialization unwind. Remove those
5085 * devices and proceed with the remaining.
9b5e383c
ED
5086 */
5087 if (dev->reg_state == NETREG_UNINITIALIZED) {
5088 pr_debug("unregister_netdevice: device %s/%p never "
5089 "was registered\n", dev->name, dev);
93ee31f1 5090
9b5e383c 5091 WARN_ON(1);
e93737b0
KK
5092 list_del(&dev->unreg_list);
5093 continue;
9b5e383c 5094 }
93ee31f1 5095
9b5e383c 5096 BUG_ON(dev->reg_state != NETREG_REGISTERED);
93ee31f1 5097
9b5e383c
ED
5098 /* If device is running, close it first. */
5099 dev_close(dev);
93ee31f1 5100
9b5e383c
ED
5101 /* And unlink it from device chain. */
5102 unlist_netdevice(dev);
93ee31f1 5103
9b5e383c
ED
5104 dev->reg_state = NETREG_UNREGISTERING;
5105 }
93ee31f1
DL
5106
5107 synchronize_net();
5108
9b5e383c
ED
5109 list_for_each_entry(dev, head, unreg_list) {
5110 /* Shutdown queueing discipline. */
5111 dev_shutdown(dev);
93ee31f1
DL
5112
5113
9b5e383c
ED
5114 /* Notify protocols, that we are about to destroy
5115 this device. They should clean all the things.
5116 */
5117 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 5118
a2835763
PM
5119 if (!dev->rtnl_link_ops ||
5120 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5121 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5122
9b5e383c
ED
5123 /*
5124 * Flush the unicast and multicast chains
5125 */
5126 dev_unicast_flush(dev);
5127 dev_addr_discard(dev);
93ee31f1 5128
9b5e383c
ED
5129 if (dev->netdev_ops->ndo_uninit)
5130 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 5131
9b5e383c
ED
5132 /* Notifier chain MUST detach us from master device. */
5133 WARN_ON(dev->master);
93ee31f1 5134
9b5e383c
ED
5135 /* Remove entries from kobject tree */
5136 netdev_unregister_kobject(dev);
5137 }
93ee31f1 5138
a5ee1551 5139 /* Process any work delayed until the end of the batch */
e5e26d75 5140 dev = list_first_entry(head, struct net_device, unreg_list);
a5ee1551 5141 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
93ee31f1 5142
a5ee1551 5143 synchronize_net();
395264d5 5144
a5ee1551 5145 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
5146 dev_put(dev);
5147}
5148
5149static void rollback_registered(struct net_device *dev)
5150{
5151 LIST_HEAD(single);
5152
5153 list_add(&dev->unreg_list, &single);
5154 rollback_registered_many(&single);
93ee31f1
DL
5155}
5156
e8a0464c
DM
5157static void __netdev_init_queue_locks_one(struct net_device *dev,
5158 struct netdev_queue *dev_queue,
5159 void *_unused)
c773e847
DM
5160{
5161 spin_lock_init(&dev_queue->_xmit_lock);
cf508b12 5162 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
c773e847
DM
5163 dev_queue->xmit_lock_owner = -1;
5164}
5165
5166static void netdev_init_queue_locks(struct net_device *dev)
5167{
e8a0464c
DM
5168 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
5169 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
c773e847
DM
5170}
5171
b63365a2
HX
5172unsigned long netdev_fix_features(unsigned long features, const char *name)
5173{
5174 /* Fix illegal SG+CSUM combinations. */
5175 if ((features & NETIF_F_SG) &&
5176 !(features & NETIF_F_ALL_CSUM)) {
5177 if (name)
5178 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
5179 "checksum feature.\n", name);
5180 features &= ~NETIF_F_SG;
5181 }
5182
5183 /* TSO requires that SG is present as well. */
5184 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
5185 if (name)
5186 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
5187 "SG feature.\n", name);
5188 features &= ~NETIF_F_TSO;
5189 }
5190
5191 if (features & NETIF_F_UFO) {
5192 if (!(features & NETIF_F_GEN_CSUM)) {
5193 if (name)
5194 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5195 "since no NETIF_F_HW_CSUM feature.\n",
5196 name);
5197 features &= ~NETIF_F_UFO;
5198 }
5199
5200 if (!(features & NETIF_F_SG)) {
5201 if (name)
5202 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5203 "since no NETIF_F_SG feature.\n", name);
5204 features &= ~NETIF_F_UFO;
5205 }
5206 }
5207
5208 return features;
5209}
5210EXPORT_SYMBOL(netdev_fix_features);
5211
fc4a7489
PM
5212/**
5213 * netif_stacked_transfer_operstate - transfer operstate
5214 * @rootdev: the root or lower level device to transfer state from
5215 * @dev: the device to transfer operstate to
5216 *
5217 * Transfer operational state from root to device. This is normally
5218 * called when a stacking relationship exists between the root
5219 * device and the device(a leaf device).
5220 */
5221void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5222 struct net_device *dev)
5223{
5224 if (rootdev->operstate == IF_OPER_DORMANT)
5225 netif_dormant_on(dev);
5226 else
5227 netif_dormant_off(dev);
5228
5229 if (netif_carrier_ok(rootdev)) {
5230 if (!netif_carrier_ok(dev))
5231 netif_carrier_on(dev);
5232 } else {
5233 if (netif_carrier_ok(dev))
5234 netif_carrier_off(dev);
5235 }
5236}
5237EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5238
1da177e4
LT
5239/**
5240 * register_netdevice - register a network device
5241 * @dev: device to register
5242 *
5243 * Take a completed network device structure and add it to the kernel
5244 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5245 * chain. 0 is returned on success. A negative errno code is returned
5246 * on a failure to set up the device, or if the name is a duplicate.
5247 *
5248 * Callers must hold the rtnl semaphore. You may want
5249 * register_netdev() instead of this.
5250 *
5251 * BUGS:
5252 * The locking appears insufficient to guarantee two parallel registers
5253 * will not get the same name.
5254 */
5255
5256int register_netdevice(struct net_device *dev)
5257{
1da177e4 5258 int ret;
d314774c 5259 struct net *net = dev_net(dev);
1da177e4
LT
5260
5261 BUG_ON(dev_boot_phase);
5262 ASSERT_RTNL();
5263
b17a7c17
SH
5264 might_sleep();
5265
1da177e4
LT
5266 /* When net_device's are persistent, this will be fatal. */
5267 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 5268 BUG_ON(!net);
1da177e4 5269
f1f28aa3 5270 spin_lock_init(&dev->addr_list_lock);
cf508b12 5271 netdev_set_addr_lockdep_class(dev);
c773e847 5272 netdev_init_queue_locks(dev);
1da177e4 5273
1da177e4
LT
5274 dev->iflink = -1;
5275
0a9627f2
TH
5276 if (!dev->num_rx_queues) {
5277 /*
5278 * Allocate a single RX queue if driver never called
5279 * alloc_netdev_mq
5280 */
5281
5282 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
5283 if (!dev->_rx) {
5284 ret = -ENOMEM;
5285 goto out;
5286 }
5287
5288 dev->_rx->first = dev->_rx;
5289 atomic_set(&dev->_rx->count, 1);
5290 dev->num_rx_queues = 1;
5291 }
5292
1da177e4 5293 /* Init, if this function is available */
d314774c
SH
5294 if (dev->netdev_ops->ndo_init) {
5295 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
5296 if (ret) {
5297 if (ret > 0)
5298 ret = -EIO;
90833aa4 5299 goto out;
1da177e4
LT
5300 }
5301 }
4ec93edb 5302
d9031024
OP
5303 ret = dev_get_valid_name(net, dev->name, dev->name, 0);
5304 if (ret)
7ce1b0ed 5305 goto err_uninit;
1da177e4 5306
881d966b 5307 dev->ifindex = dev_new_index(net);
1da177e4
LT
5308 if (dev->iflink == -1)
5309 dev->iflink = dev->ifindex;
5310
d212f87b
SH
5311 /* Fix illegal checksum combinations */
5312 if ((dev->features & NETIF_F_HW_CSUM) &&
5313 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5314 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5315 dev->name);
5316 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5317 }
5318
5319 if ((dev->features & NETIF_F_NO_CSUM) &&
5320 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5321 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5322 dev->name);
5323 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5324 }
5325
b63365a2 5326 dev->features = netdev_fix_features(dev->features, dev->name);
1da177e4 5327
e5a4a72d
LB
5328 /* Enable software GSO if SG is supported. */
5329 if (dev->features & NETIF_F_SG)
5330 dev->features |= NETIF_F_GSO;
5331
aaf8cdc3 5332 netdev_initialize_kobject(dev);
7ffbe3fd
JB
5333
5334 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5335 ret = notifier_to_errno(ret);
5336 if (ret)
5337 goto err_uninit;
5338
8b41d188 5339 ret = netdev_register_kobject(dev);
b17a7c17 5340 if (ret)
7ce1b0ed 5341 goto err_uninit;
b17a7c17
SH
5342 dev->reg_state = NETREG_REGISTERED;
5343
1da177e4
LT
5344 /*
5345 * Default initial state at registry is that the
5346 * device is present.
5347 */
5348
5349 set_bit(__LINK_STATE_PRESENT, &dev->state);
5350
1da177e4 5351 dev_init_scheduler(dev);
1da177e4 5352 dev_hold(dev);
ce286d32 5353 list_netdevice(dev);
1da177e4
LT
5354
5355 /* Notify protocols, that a new device appeared. */
056925ab 5356 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 5357 ret = notifier_to_errno(ret);
93ee31f1
DL
5358 if (ret) {
5359 rollback_registered(dev);
5360 dev->reg_state = NETREG_UNREGISTERED;
5361 }
d90a909e
EB
5362 /*
5363 * Prevent userspace races by waiting until the network
5364 * device is fully setup before sending notifications.
5365 */
a2835763
PM
5366 if (!dev->rtnl_link_ops ||
5367 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5368 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
1da177e4
LT
5369
5370out:
5371 return ret;
7ce1b0ed
HX
5372
5373err_uninit:
d314774c
SH
5374 if (dev->netdev_ops->ndo_uninit)
5375 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 5376 goto out;
1da177e4 5377}
d1b19dff 5378EXPORT_SYMBOL(register_netdevice);
1da177e4 5379
937f1ba5
BH
5380/**
5381 * init_dummy_netdev - init a dummy network device for NAPI
5382 * @dev: device to init
5383 *
5384 * This takes a network device structure and initialize the minimum
5385 * amount of fields so it can be used to schedule NAPI polls without
5386 * registering a full blown interface. This is to be used by drivers
5387 * that need to tie several hardware interfaces to a single NAPI
5388 * poll scheduler due to HW limitations.
5389 */
5390int init_dummy_netdev(struct net_device *dev)
5391{
5392 /* Clear everything. Note we don't initialize spinlocks
5393 * are they aren't supposed to be taken by any of the
5394 * NAPI code and this dummy netdev is supposed to be
5395 * only ever used for NAPI polls
5396 */
5397 memset(dev, 0, sizeof(struct net_device));
5398
5399 /* make sure we BUG if trying to hit standard
5400 * register/unregister code path
5401 */
5402 dev->reg_state = NETREG_DUMMY;
5403
5404 /* initialize the ref count */
5405 atomic_set(&dev->refcnt, 1);
5406
5407 /* NAPI wants this */
5408 INIT_LIST_HEAD(&dev->napi_list);
5409
5410 /* a dummy interface is started by default */
5411 set_bit(__LINK_STATE_PRESENT, &dev->state);
5412 set_bit(__LINK_STATE_START, &dev->state);
5413
5414 return 0;
5415}
5416EXPORT_SYMBOL_GPL(init_dummy_netdev);
5417
5418
1da177e4
LT
5419/**
5420 * register_netdev - register a network device
5421 * @dev: device to register
5422 *
5423 * Take a completed network device structure and add it to the kernel
5424 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5425 * chain. 0 is returned on success. A negative errno code is returned
5426 * on a failure to set up the device, or if the name is a duplicate.
5427 *
38b4da38 5428 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
5429 * and expands the device name if you passed a format string to
5430 * alloc_netdev.
5431 */
5432int register_netdev(struct net_device *dev)
5433{
5434 int err;
5435
5436 rtnl_lock();
5437
5438 /*
5439 * If the name is a format string the caller wants us to do a
5440 * name allocation.
5441 */
5442 if (strchr(dev->name, '%')) {
5443 err = dev_alloc_name(dev, dev->name);
5444 if (err < 0)
5445 goto out;
5446 }
4ec93edb 5447
1da177e4
LT
5448 err = register_netdevice(dev);
5449out:
5450 rtnl_unlock();
5451 return err;
5452}
5453EXPORT_SYMBOL(register_netdev);
5454
5455/*
5456 * netdev_wait_allrefs - wait until all references are gone.
5457 *
5458 * This is called when unregistering network devices.
5459 *
5460 * Any protocol or device that holds a reference should register
5461 * for netdevice notification, and cleanup and put back the
5462 * reference if they receive an UNREGISTER event.
5463 * We can get stuck here if buggy protocols don't correctly
4ec93edb 5464 * call dev_put.
1da177e4
LT
5465 */
5466static void netdev_wait_allrefs(struct net_device *dev)
5467{
5468 unsigned long rebroadcast_time, warning_time;
5469
e014debe
ED
5470 linkwatch_forget_dev(dev);
5471
1da177e4
LT
5472 rebroadcast_time = warning_time = jiffies;
5473 while (atomic_read(&dev->refcnt) != 0) {
5474 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 5475 rtnl_lock();
1da177e4
LT
5476
5477 /* Rebroadcast unregister notification */
056925ab 5478 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
a5ee1551 5479 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
395264d5 5480 * should have already handle it the first time */
1da177e4
LT
5481
5482 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5483 &dev->state)) {
5484 /* We must not have linkwatch events
5485 * pending on unregister. If this
5486 * happens, we simply run the queue
5487 * unscheduled, resulting in a noop
5488 * for this device.
5489 */
5490 linkwatch_run_queue();
5491 }
5492
6756ae4b 5493 __rtnl_unlock();
1da177e4
LT
5494
5495 rebroadcast_time = jiffies;
5496 }
5497
5498 msleep(250);
5499
5500 if (time_after(jiffies, warning_time + 10 * HZ)) {
5501 printk(KERN_EMERG "unregister_netdevice: "
5502 "waiting for %s to become free. Usage "
5503 "count = %d\n",
5504 dev->name, atomic_read(&dev->refcnt));
5505 warning_time = jiffies;
5506 }
5507 }
5508}
5509
5510/* The sequence is:
5511 *
5512 * rtnl_lock();
5513 * ...
5514 * register_netdevice(x1);
5515 * register_netdevice(x2);
5516 * ...
5517 * unregister_netdevice(y1);
5518 * unregister_netdevice(y2);
5519 * ...
5520 * rtnl_unlock();
5521 * free_netdev(y1);
5522 * free_netdev(y2);
5523 *
58ec3b4d 5524 * We are invoked by rtnl_unlock().
1da177e4 5525 * This allows us to deal with problems:
b17a7c17 5526 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
5527 * without deadlocking with linkwatch via keventd.
5528 * 2) Since we run with the RTNL semaphore not held, we can sleep
5529 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
5530 *
5531 * We must not return until all unregister events added during
5532 * the interval the lock was held have been completed.
1da177e4 5533 */
1da177e4
LT
5534void netdev_run_todo(void)
5535{
626ab0e6 5536 struct list_head list;
1da177e4 5537
1da177e4 5538 /* Snapshot list, allow later requests */
626ab0e6 5539 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
5540
5541 __rtnl_unlock();
626ab0e6 5542
1da177e4
LT
5543 while (!list_empty(&list)) {
5544 struct net_device *dev
e5e26d75 5545 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
5546 list_del(&dev->todo_list);
5547
b17a7c17
SH
5548 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5549 printk(KERN_ERR "network todo '%s' but state %d\n",
5550 dev->name, dev->reg_state);
5551 dump_stack();
5552 continue;
5553 }
1da177e4 5554
b17a7c17 5555 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 5556
6e583ce5
SH
5557 on_each_cpu(flush_backlog, dev, 1);
5558
b17a7c17 5559 netdev_wait_allrefs(dev);
1da177e4 5560
b17a7c17
SH
5561 /* paranoia */
5562 BUG_ON(atomic_read(&dev->refcnt));
547b792c
IJ
5563 WARN_ON(dev->ip_ptr);
5564 WARN_ON(dev->ip6_ptr);
5565 WARN_ON(dev->dn_ptr);
1da177e4 5566
b17a7c17
SH
5567 if (dev->destructor)
5568 dev->destructor(dev);
9093bbb2
SH
5569
5570 /* Free network device */
5571 kobject_put(&dev->dev.kobj);
1da177e4 5572 }
1da177e4
LT
5573}
5574
d83345ad
ED
5575/**
5576 * dev_txq_stats_fold - fold tx_queues stats
5577 * @dev: device to get statistics from
5578 * @stats: struct net_device_stats to hold results
5579 */
5580void dev_txq_stats_fold(const struct net_device *dev,
5581 struct net_device_stats *stats)
5582{
5583 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5584 unsigned int i;
5585 struct netdev_queue *txq;
5586
5587 for (i = 0; i < dev->num_tx_queues; i++) {
5588 txq = netdev_get_tx_queue(dev, i);
5589 tx_bytes += txq->tx_bytes;
5590 tx_packets += txq->tx_packets;
5591 tx_dropped += txq->tx_dropped;
5592 }
5593 if (tx_bytes || tx_packets || tx_dropped) {
5594 stats->tx_bytes = tx_bytes;
5595 stats->tx_packets = tx_packets;
5596 stats->tx_dropped = tx_dropped;
5597 }
5598}
5599EXPORT_SYMBOL(dev_txq_stats_fold);
5600
eeda3fd6
SH
5601/**
5602 * dev_get_stats - get network device statistics
5603 * @dev: device to get statistics from
5604 *
5605 * Get network statistics from device. The device driver may provide
5606 * its own method by setting dev->netdev_ops->get_stats; otherwise
5607 * the internal statistics structure is used.
5608 */
5609const struct net_device_stats *dev_get_stats(struct net_device *dev)
7004bf25 5610{
eeda3fd6
SH
5611 const struct net_device_ops *ops = dev->netdev_ops;
5612
5613 if (ops->ndo_get_stats)
5614 return ops->ndo_get_stats(dev);
d83345ad
ED
5615
5616 dev_txq_stats_fold(dev, &dev->stats);
5617 return &dev->stats;
c45d286e 5618}
eeda3fd6 5619EXPORT_SYMBOL(dev_get_stats);
c45d286e 5620
dc2b4847 5621static void netdev_init_one_queue(struct net_device *dev,
e8a0464c
DM
5622 struct netdev_queue *queue,
5623 void *_unused)
dc2b4847 5624{
dc2b4847
DM
5625 queue->dev = dev;
5626}
5627
bb949fbd
DM
5628static void netdev_init_queues(struct net_device *dev)
5629{
e8a0464c
DM
5630 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5631 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
c3f26a26 5632 spin_lock_init(&dev->tx_global_lock);
bb949fbd
DM
5633}
5634
1da177e4 5635/**
f25f4e44 5636 * alloc_netdev_mq - allocate network device
1da177e4
LT
5637 * @sizeof_priv: size of private data to allocate space for
5638 * @name: device name format string
5639 * @setup: callback to initialize device
f25f4e44 5640 * @queue_count: the number of subqueues to allocate
1da177e4
LT
5641 *
5642 * Allocates a struct net_device with private data area for driver use
f25f4e44
PWJ
5643 * and performs basic initialization. Also allocates subquue structs
5644 * for each queue on the device at the end of the netdevice.
1da177e4 5645 */
f25f4e44
PWJ
5646struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5647 void (*setup)(struct net_device *), unsigned int queue_count)
1da177e4 5648{
e8a0464c 5649 struct netdev_queue *tx;
0a9627f2 5650 struct netdev_rx_queue *rx;
1da177e4 5651 struct net_device *dev;
7943986c 5652 size_t alloc_size;
1ce8e7b5 5653 struct net_device *p;
0a9627f2 5654 int i;
1da177e4 5655
b6fe17d6
SH
5656 BUG_ON(strlen(name) >= sizeof(dev->name));
5657
fd2ea0a7 5658 alloc_size = sizeof(struct net_device);
d1643d24
AD
5659 if (sizeof_priv) {
5660 /* ensure 32-byte alignment of private area */
1ce8e7b5 5661 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
5662 alloc_size += sizeof_priv;
5663 }
5664 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 5665 alloc_size += NETDEV_ALIGN - 1;
1da177e4 5666
31380de9 5667 p = kzalloc(alloc_size, GFP_KERNEL);
1da177e4 5668 if (!p) {
b6fe17d6 5669 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
1da177e4
LT
5670 return NULL;
5671 }
1da177e4 5672
7943986c 5673 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
e8a0464c
DM
5674 if (!tx) {
5675 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5676 "tx qdiscs.\n");
ab9c73cc 5677 goto free_p;
e8a0464c
DM
5678 }
5679
0a9627f2
TH
5680 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5681 if (!rx) {
5682 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5683 "rx queues.\n");
5684 goto free_tx;
5685 }
5686
5687 atomic_set(&rx->count, queue_count);
5688
5689 /*
5690 * Set a pointer to first element in the array which holds the
5691 * reference count.
5692 */
5693 for (i = 0; i < queue_count; i++)
5694 rx[i].first = rx;
5695
1ce8e7b5 5696 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 5697 dev->padded = (char *)dev - (char *)p;
ab9c73cc
JP
5698
5699 if (dev_addr_init(dev))
0a9627f2 5700 goto free_rx;
ab9c73cc 5701
ccffad25
JP
5702 dev_unicast_init(dev);
5703
c346dca1 5704 dev_net_set(dev, &init_net);
1da177e4 5705
e8a0464c
DM
5706 dev->_tx = tx;
5707 dev->num_tx_queues = queue_count;
fd2ea0a7 5708 dev->real_num_tx_queues = queue_count;
e8a0464c 5709
0a9627f2
TH
5710 dev->_rx = rx;
5711 dev->num_rx_queues = queue_count;
5712
82cc1a7a 5713 dev->gso_max_size = GSO_MAX_SIZE;
1da177e4 5714
bb949fbd
DM
5715 netdev_init_queues(dev);
5716
15682bc4
PWJ
5717 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5718 dev->ethtool_ntuple_list.count = 0;
d565b0a1 5719 INIT_LIST_HEAD(&dev->napi_list);
9fdce099 5720 INIT_LIST_HEAD(&dev->unreg_list);
e014debe 5721 INIT_LIST_HEAD(&dev->link_watch_list);
93f154b5 5722 dev->priv_flags = IFF_XMIT_DST_RELEASE;
1da177e4
LT
5723 setup(dev);
5724 strcpy(dev->name, name);
5725 return dev;
ab9c73cc 5726
0a9627f2
TH
5727free_rx:
5728 kfree(rx);
ab9c73cc
JP
5729free_tx:
5730 kfree(tx);
ab9c73cc
JP
5731free_p:
5732 kfree(p);
5733 return NULL;
1da177e4 5734}
f25f4e44 5735EXPORT_SYMBOL(alloc_netdev_mq);
1da177e4
LT
5736
5737/**
5738 * free_netdev - free network device
5739 * @dev: device
5740 *
4ec93edb
YH
5741 * This function does the last stage of destroying an allocated device
5742 * interface. The reference to the device object is released.
1da177e4
LT
5743 * If this is the last reference then it will be freed.
5744 */
5745void free_netdev(struct net_device *dev)
5746{
d565b0a1
HX
5747 struct napi_struct *p, *n;
5748
f3005d7f
DL
5749 release_net(dev_net(dev));
5750
e8a0464c
DM
5751 kfree(dev->_tx);
5752
f001fde5
JP
5753 /* Flush device addresses */
5754 dev_addr_flush(dev);
5755
15682bc4
PWJ
5756 /* Clear ethtool n-tuple list */
5757 ethtool_ntuple_flush(dev);
5758
d565b0a1
HX
5759 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5760 netif_napi_del(p);
5761
3041a069 5762 /* Compatibility with error handling in drivers */
1da177e4
LT
5763 if (dev->reg_state == NETREG_UNINITIALIZED) {
5764 kfree((char *)dev - dev->padded);
5765 return;
5766 }
5767
5768 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5769 dev->reg_state = NETREG_RELEASED;
5770
43cb76d9
GKH
5771 /* will free via device release */
5772 put_device(&dev->dev);
1da177e4 5773}
d1b19dff 5774EXPORT_SYMBOL(free_netdev);
4ec93edb 5775
f0db275a
SH
5776/**
5777 * synchronize_net - Synchronize with packet receive processing
5778 *
5779 * Wait for packets currently being received to be done.
5780 * Does not block later packets from starting.
5781 */
4ec93edb 5782void synchronize_net(void)
1da177e4
LT
5783{
5784 might_sleep();
fbd568a3 5785 synchronize_rcu();
1da177e4 5786}
d1b19dff 5787EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
5788
5789/**
44a0873d 5790 * unregister_netdevice_queue - remove device from the kernel
1da177e4 5791 * @dev: device
44a0873d 5792 * @head: list
6ebfbc06 5793 *
1da177e4 5794 * This function shuts down a device interface and removes it
d59b54b1 5795 * from the kernel tables.
44a0873d 5796 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
5797 *
5798 * Callers must hold the rtnl semaphore. You may want
5799 * unregister_netdev() instead of this.
5800 */
5801
44a0873d 5802void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 5803{
a6620712
HX
5804 ASSERT_RTNL();
5805
44a0873d 5806 if (head) {
9fdce099 5807 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
5808 } else {
5809 rollback_registered(dev);
5810 /* Finish processing unregister after unlock */
5811 net_set_todo(dev);
5812 }
1da177e4 5813}
44a0873d 5814EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 5815
9b5e383c
ED
5816/**
5817 * unregister_netdevice_many - unregister many devices
5818 * @head: list of devices
9b5e383c
ED
5819 */
5820void unregister_netdevice_many(struct list_head *head)
5821{
5822 struct net_device *dev;
5823
5824 if (!list_empty(head)) {
5825 rollback_registered_many(head);
5826 list_for_each_entry(dev, head, unreg_list)
5827 net_set_todo(dev);
5828 }
5829}
63c8099d 5830EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 5831
1da177e4
LT
5832/**
5833 * unregister_netdev - remove device from the kernel
5834 * @dev: device
5835 *
5836 * This function shuts down a device interface and removes it
d59b54b1 5837 * from the kernel tables.
1da177e4
LT
5838 *
5839 * This is just a wrapper for unregister_netdevice that takes
5840 * the rtnl semaphore. In general you want to use this and not
5841 * unregister_netdevice.
5842 */
5843void unregister_netdev(struct net_device *dev)
5844{
5845 rtnl_lock();
5846 unregister_netdevice(dev);
5847 rtnl_unlock();
5848}
1da177e4
LT
5849EXPORT_SYMBOL(unregister_netdev);
5850
ce286d32
EB
5851/**
5852 * dev_change_net_namespace - move device to different nethost namespace
5853 * @dev: device
5854 * @net: network namespace
5855 * @pat: If not NULL name pattern to try if the current device name
5856 * is already taken in the destination network namespace.
5857 *
5858 * This function shuts down a device interface and moves it
5859 * to a new network namespace. On success 0 is returned, on
5860 * a failure a netagive errno code is returned.
5861 *
5862 * Callers must hold the rtnl semaphore.
5863 */
5864
5865int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5866{
ce286d32
EB
5867 int err;
5868
5869 ASSERT_RTNL();
5870
5871 /* Don't allow namespace local devices to be moved. */
5872 err = -EINVAL;
5873 if (dev->features & NETIF_F_NETNS_LOCAL)
5874 goto out;
5875
3891845e
EB
5876#ifdef CONFIG_SYSFS
5877 /* Don't allow real devices to be moved when sysfs
5878 * is enabled.
5879 */
5880 err = -EINVAL;
5881 if (dev->dev.parent)
5882 goto out;
5883#endif
5884
ce286d32
EB
5885 /* Ensure the device has been registrered */
5886 err = -EINVAL;
5887 if (dev->reg_state != NETREG_REGISTERED)
5888 goto out;
5889
5890 /* Get out if there is nothing todo */
5891 err = 0;
878628fb 5892 if (net_eq(dev_net(dev), net))
ce286d32
EB
5893 goto out;
5894
5895 /* Pick the destination device name, and ensure
5896 * we can use it in the destination network namespace.
5897 */
5898 err = -EEXIST;
d9031024 5899 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
5900 /* We get here if we can't use the current device name */
5901 if (!pat)
5902 goto out;
d9031024 5903 if (dev_get_valid_name(net, pat, dev->name, 1))
ce286d32
EB
5904 goto out;
5905 }
5906
5907 /*
5908 * And now a mini version of register_netdevice unregister_netdevice.
5909 */
5910
5911 /* If device is running close it first. */
9b772652 5912 dev_close(dev);
ce286d32
EB
5913
5914 /* And unlink it from device chain */
5915 err = -ENODEV;
5916 unlist_netdevice(dev);
5917
5918 synchronize_net();
5919
5920 /* Shutdown queueing discipline. */
5921 dev_shutdown(dev);
5922
5923 /* Notify protocols, that we are about to destroy
5924 this device. They should clean all the things.
5925 */
5926 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
a5ee1551 5927 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
ce286d32
EB
5928
5929 /*
5930 * Flush the unicast and multicast chains
5931 */
ccffad25 5932 dev_unicast_flush(dev);
ce286d32
EB
5933 dev_addr_discard(dev);
5934
3891845e
EB
5935 netdev_unregister_kobject(dev);
5936
ce286d32 5937 /* Actually switch the network namespace */
c346dca1 5938 dev_net_set(dev, net);
ce286d32 5939
ce286d32
EB
5940 /* If there is an ifindex conflict assign a new one */
5941 if (__dev_get_by_index(net, dev->ifindex)) {
5942 int iflink = (dev->iflink == dev->ifindex);
5943 dev->ifindex = dev_new_index(net);
5944 if (iflink)
5945 dev->iflink = dev->ifindex;
5946 }
5947
8b41d188 5948 /* Fixup kobjects */
aaf8cdc3 5949 err = netdev_register_kobject(dev);
8b41d188 5950 WARN_ON(err);
ce286d32
EB
5951
5952 /* Add the device back in the hashes */
5953 list_netdevice(dev);
5954
5955 /* Notify protocols, that a new device appeared. */
5956 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5957
d90a909e
EB
5958 /*
5959 * Prevent userspace races by waiting until the network
5960 * device is fully setup before sending notifications.
5961 */
5962 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5963
ce286d32
EB
5964 synchronize_net();
5965 err = 0;
5966out:
5967 return err;
5968}
463d0183 5969EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 5970
1da177e4
LT
5971static int dev_cpu_callback(struct notifier_block *nfb,
5972 unsigned long action,
5973 void *ocpu)
5974{
5975 struct sk_buff **list_skb;
37437bb2 5976 struct Qdisc **list_net;
1da177e4
LT
5977 struct sk_buff *skb;
5978 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5979 struct softnet_data *sd, *oldsd;
5980
8bb78442 5981 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
5982 return NOTIFY_OK;
5983
5984 local_irq_disable();
5985 cpu = smp_processor_id();
5986 sd = &per_cpu(softnet_data, cpu);
5987 oldsd = &per_cpu(softnet_data, oldcpu);
5988
5989 /* Find end of our completion_queue. */
5990 list_skb = &sd->completion_queue;
5991 while (*list_skb)
5992 list_skb = &(*list_skb)->next;
5993 /* Append completion queue from offline CPU. */
5994 *list_skb = oldsd->completion_queue;
5995 oldsd->completion_queue = NULL;
5996
5997 /* Find end of our output_queue. */
5998 list_net = &sd->output_queue;
5999 while (*list_net)
6000 list_net = &(*list_net)->next_sched;
6001 /* Append output queue from offline CPU. */
6002 *list_net = oldsd->output_queue;
6003 oldsd->output_queue = NULL;
6004
6005 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6006 local_irq_enable();
6007
6008 /* Process offline CPU's input_pkt_queue */
6009 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
6010 netif_rx(skb);
6011
6012 return NOTIFY_OK;
6013}
1da177e4
LT
6014
6015
7f353bf2 6016/**
b63365a2
HX
6017 * netdev_increment_features - increment feature set by one
6018 * @all: current feature set
6019 * @one: new feature set
6020 * @mask: mask feature set
7f353bf2
HX
6021 *
6022 * Computes a new feature set after adding a device with feature set
b63365a2
HX
6023 * @one to the master device with current feature set @all. Will not
6024 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 6025 */
b63365a2
HX
6026unsigned long netdev_increment_features(unsigned long all, unsigned long one,
6027 unsigned long mask)
6028{
6029 /* If device needs checksumming, downgrade to it. */
d1b19dff 6030 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
b63365a2
HX
6031 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
6032 else if (mask & NETIF_F_ALL_CSUM) {
6033 /* If one device supports v4/v6 checksumming, set for all. */
6034 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
6035 !(all & NETIF_F_GEN_CSUM)) {
6036 all &= ~NETIF_F_ALL_CSUM;
6037 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
6038 }
e2a6b852 6039
b63365a2
HX
6040 /* If one device supports hw checksumming, set for all. */
6041 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
6042 all &= ~NETIF_F_ALL_CSUM;
6043 all |= NETIF_F_HW_CSUM;
6044 }
6045 }
7f353bf2 6046
b63365a2 6047 one |= NETIF_F_ALL_CSUM;
7f353bf2 6048
b63365a2 6049 one |= all & NETIF_F_ONE_FOR_ALL;
d9f5950f 6050 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
b63365a2 6051 all |= one & mask & NETIF_F_ONE_FOR_ALL;
7f353bf2
HX
6052
6053 return all;
6054}
b63365a2 6055EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 6056
30d97d35
PE
6057static struct hlist_head *netdev_create_hash(void)
6058{
6059 int i;
6060 struct hlist_head *hash;
6061
6062 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6063 if (hash != NULL)
6064 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6065 INIT_HLIST_HEAD(&hash[i]);
6066
6067 return hash;
6068}
6069
881d966b 6070/* Initialize per network namespace state */
4665079c 6071static int __net_init netdev_init(struct net *net)
881d966b 6072{
881d966b 6073 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 6074
30d97d35
PE
6075 net->dev_name_head = netdev_create_hash();
6076 if (net->dev_name_head == NULL)
6077 goto err_name;
881d966b 6078
30d97d35
PE
6079 net->dev_index_head = netdev_create_hash();
6080 if (net->dev_index_head == NULL)
6081 goto err_idx;
881d966b
EB
6082
6083 return 0;
30d97d35
PE
6084
6085err_idx:
6086 kfree(net->dev_name_head);
6087err_name:
6088 return -ENOMEM;
881d966b
EB
6089}
6090
f0db275a
SH
6091/**
6092 * netdev_drivername - network driver for the device
6093 * @dev: network device
6094 * @buffer: buffer for resulting name
6095 * @len: size of buffer
6096 *
6097 * Determine network driver for device.
6098 */
cf04a4c7 6099char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6579e57b 6100{
cf04a4c7
SH
6101 const struct device_driver *driver;
6102 const struct device *parent;
6579e57b
AV
6103
6104 if (len <= 0 || !buffer)
6105 return buffer;
6106 buffer[0] = 0;
6107
6108 parent = dev->dev.parent;
6109
6110 if (!parent)
6111 return buffer;
6112
6113 driver = parent->driver;
6114 if (driver && driver->name)
6115 strlcpy(buffer, driver->name, len);
6116 return buffer;
6117}
6118
4665079c 6119static void __net_exit netdev_exit(struct net *net)
881d966b
EB
6120{
6121 kfree(net->dev_name_head);
6122 kfree(net->dev_index_head);
6123}
6124
022cbae6 6125static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
6126 .init = netdev_init,
6127 .exit = netdev_exit,
6128};
6129
4665079c 6130static void __net_exit default_device_exit(struct net *net)
ce286d32 6131{
e008b5fc 6132 struct net_device *dev, *aux;
ce286d32 6133 /*
e008b5fc 6134 * Push all migratable network devices back to the
ce286d32
EB
6135 * initial network namespace
6136 */
6137 rtnl_lock();
e008b5fc 6138 for_each_netdev_safe(net, dev, aux) {
ce286d32 6139 int err;
aca51397 6140 char fb_name[IFNAMSIZ];
ce286d32
EB
6141
6142 /* Ignore unmoveable devices (i.e. loopback) */
6143 if (dev->features & NETIF_F_NETNS_LOCAL)
6144 continue;
6145
e008b5fc
EB
6146 /* Leave virtual devices for the generic cleanup */
6147 if (dev->rtnl_link_ops)
6148 continue;
d0c082ce 6149
ce286d32 6150 /* Push remaing network devices to init_net */
aca51397
PE
6151 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6152 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 6153 if (err) {
aca51397 6154 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
ce286d32 6155 __func__, dev->name, err);
aca51397 6156 BUG();
ce286d32
EB
6157 }
6158 }
6159 rtnl_unlock();
6160}
6161
04dc7f6b
EB
6162static void __net_exit default_device_exit_batch(struct list_head *net_list)
6163{
6164 /* At exit all network devices most be removed from a network
6165 * namespace. Do this in the reverse order of registeration.
6166 * Do this across as many network namespaces as possible to
6167 * improve batching efficiency.
6168 */
6169 struct net_device *dev;
6170 struct net *net;
6171 LIST_HEAD(dev_kill_list);
6172
6173 rtnl_lock();
6174 list_for_each_entry(net, net_list, exit_list) {
6175 for_each_netdev_reverse(net, dev) {
6176 if (dev->rtnl_link_ops)
6177 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6178 else
6179 unregister_netdevice_queue(dev, &dev_kill_list);
6180 }
6181 }
6182 unregister_netdevice_many(&dev_kill_list);
6183 rtnl_unlock();
6184}
6185
022cbae6 6186static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 6187 .exit = default_device_exit,
04dc7f6b 6188 .exit_batch = default_device_exit_batch,
ce286d32
EB
6189};
6190
1da177e4
LT
6191/*
6192 * Initialize the DEV module. At boot time this walks the device list and
6193 * unhooks any devices that fail to initialise (normally hardware not
6194 * present) and leaves us with a valid list of present and active devices.
6195 *
6196 */
6197
6198/*
6199 * This is called single threaded during boot, so no need
6200 * to take the rtnl semaphore.
6201 */
6202static int __init net_dev_init(void)
6203{
6204 int i, rc = -ENOMEM;
6205
6206 BUG_ON(!dev_boot_phase);
6207
1da177e4
LT
6208 if (dev_proc_init())
6209 goto out;
6210
8b41d188 6211 if (netdev_kobject_init())
1da177e4
LT
6212 goto out;
6213
6214 INIT_LIST_HEAD(&ptype_all);
82d8a867 6215 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
6216 INIT_LIST_HEAD(&ptype_base[i]);
6217
881d966b
EB
6218 if (register_pernet_subsys(&netdev_net_ops))
6219 goto out;
1da177e4
LT
6220
6221 /*
6222 * Initialise the packet receive queues.
6223 */
6224
6f912042 6225 for_each_possible_cpu(i) {
1da177e4
LT
6226 struct softnet_data *queue;
6227
6228 queue = &per_cpu(softnet_data, i);
6229 skb_queue_head_init(&queue->input_pkt_queue);
1da177e4
LT
6230 queue->completion_queue = NULL;
6231 INIT_LIST_HEAD(&queue->poll_list);
bea3348e 6232
1e94d72f 6233#ifdef CONFIG_SMP
0a9627f2
TH
6234 queue->csd.func = trigger_softirq;
6235 queue->csd.info = queue;
6236 queue->csd.flags = 0;
1e94d72f 6237#endif
0a9627f2 6238
bea3348e
SH
6239 queue->backlog.poll = process_backlog;
6240 queue->backlog.weight = weight_p;
d565b0a1 6241 queue->backlog.gro_list = NULL;
4ae5544f 6242 queue->backlog.gro_count = 0;
1da177e4
LT
6243 }
6244
1da177e4
LT
6245 dev_boot_phase = 0;
6246
505d4f73
EB
6247 /* The loopback device is special if any other network devices
6248 * is present in a network namespace the loopback device must
6249 * be present. Since we now dynamically allocate and free the
6250 * loopback device ensure this invariant is maintained by
6251 * keeping the loopback device as the first device on the
6252 * list of network devices. Ensuring the loopback devices
6253 * is the first device that appears and the last network device
6254 * that disappears.
6255 */
6256 if (register_pernet_device(&loopback_net_ops))
6257 goto out;
6258
6259 if (register_pernet_device(&default_device_ops))
6260 goto out;
6261
962cf36c
CM
6262 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6263 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
6264
6265 hotcpu_notifier(dev_cpu_callback, 0);
6266 dst_init();
6267 dev_mcast_init();
6268 rc = 0;
6269out:
6270 return rc;
6271}
6272
6273subsys_initcall(net_dev_init);
6274
e88721f8
KK
6275static int __init initialize_hashrnd(void)
6276{
0a9627f2 6277 get_random_bytes(&hashrnd, sizeof(hashrnd));
e88721f8
KK
6278 return 0;
6279}
6280
6281late_initcall_sync(initialize_hashrnd);
6282