]> bbs.cooldavid.org Git - net-next-2.6.git/blame - net/core/dev.c
[NET]: Fix the prototype of call_netdevice_notifiers.
[net-next-2.6.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <asm/system.h>
77#include <linux/bitops.h>
4fc268d2 78#include <linux/capability.h>
1da177e4
LT
79#include <linux/cpu.h>
80#include <linux/types.h>
81#include <linux/kernel.h>
82#include <linux/sched.h>
4a3e2f71 83#include <linux/mutex.h>
1da177e4
LT
84#include <linux/string.h>
85#include <linux/mm.h>
86#include <linux/socket.h>
87#include <linux/sockios.h>
88#include <linux/errno.h>
89#include <linux/interrupt.h>
90#include <linux/if_ether.h>
91#include <linux/netdevice.h>
92#include <linux/etherdevice.h>
93#include <linux/notifier.h>
94#include <linux/skbuff.h>
457c4cbc 95#include <net/net_namespace.h>
1da177e4
LT
96#include <net/sock.h>
97#include <linux/rtnetlink.h>
98#include <linux/proc_fs.h>
99#include <linux/seq_file.h>
100#include <linux/stat.h>
101#include <linux/if_bridge.h>
b863ceb7 102#include <linux/if_macvlan.h>
1da177e4
LT
103#include <net/dst.h>
104#include <net/pkt_sched.h>
105#include <net/checksum.h>
106#include <linux/highmem.h>
107#include <linux/init.h>
108#include <linux/kmod.h>
109#include <linux/module.h>
110#include <linux/kallsyms.h>
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
295f4a1f 114#include <net/wext.h>
1da177e4 115#include <net/iw_handler.h>
1da177e4 116#include <asm/current.h>
5bdb9886 117#include <linux/audit.h>
db217334 118#include <linux/dmaengine.h>
f6a78bfc 119#include <linux/err.h>
c7fa9d18 120#include <linux/ctype.h>
723e98b7 121#include <linux/if_arp.h>
1da177e4 122
1da177e4
LT
123/*
124 * The list of packet types we will receive (as opposed to discard)
125 * and the routines to invoke.
126 *
127 * Why 16. Because with 16 the only overlap we get on a hash of the
128 * low nibble of the protocol value is RARP/SNAP/X.25.
129 *
130 * NOTE: That is no longer true with the addition of VLAN tags. Not
131 * sure which should go first, but I bet it won't make much
132 * difference if we are running VLANs. The good news is that
133 * this protocol won't be in the list unless compiled in, so
3041a069 134 * the average user (w/out VLANs) will not be adversely affected.
1da177e4
LT
135 * --BLG
136 *
137 * 0800 IP
138 * 8100 802.1Q VLAN
139 * 0001 802.3
140 * 0002 AX.25
141 * 0004 802.2
142 * 8035 RARP
143 * 0005 SNAP
144 * 0805 X.25
145 * 0806 ARP
146 * 8137 IPX
147 * 0009 Localtalk
148 * 86DD IPv6
149 */
150
151static DEFINE_SPINLOCK(ptype_lock);
6b2bedc3
SH
152static struct list_head ptype_base[16] __read_mostly; /* 16 way hashed list */
153static struct list_head ptype_all __read_mostly; /* Taps */
1da177e4 154
db217334 155#ifdef CONFIG_NET_DMA
d379b01e
DW
156struct net_dma {
157 struct dma_client client;
158 spinlock_t lock;
159 cpumask_t channel_mask;
160 struct dma_chan *channels[NR_CPUS];
161};
162
163static enum dma_state_client
164netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
165 enum dma_state state);
166
167static struct net_dma net_dma = {
168 .client = {
169 .event_callback = netdev_dma_event,
170 },
171};
db217334
CL
172#endif
173
1da177e4 174/*
7562f876 175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
176 * semaphore.
177 *
178 * Pure readers hold dev_base_lock for reading.
179 *
180 * Writers must hold the rtnl semaphore while they loop through the
7562f876 181 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
182 * actual updates. This allows pure readers to access the list even
183 * while a writer is preparing to update it.
184 *
185 * To put it another way, dev_base_lock is held for writing only to
186 * protect against pure readers; the rtnl semaphore provides the
187 * protection against other writers.
188 *
189 * See, for example usages, register_netdevice() and
190 * unregister_netdevice(), which must be called with the rtnl
191 * semaphore held.
192 */
1da177e4
LT
193DEFINE_RWLOCK(dev_base_lock);
194
1da177e4
LT
195EXPORT_SYMBOL(dev_base_lock);
196
197#define NETDEV_HASHBITS 8
881d966b 198#define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
1da177e4 199
881d966b 200static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4
LT
201{
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
881d966b 203 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
1da177e4
LT
204}
205
881d966b 206static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 207{
881d966b 208 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
1da177e4
LT
209}
210
ce286d32
EB
211/* Device list insertion */
212static int list_netdevice(struct net_device *dev)
213{
214 struct net *net = dev->nd_net;
215
216 ASSERT_RTNL();
217
218 write_lock_bh(&dev_base_lock);
219 list_add_tail(&dev->dev_list, &net->dev_base_head);
220 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
221 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
222 write_unlock_bh(&dev_base_lock);
223 return 0;
224}
225
226/* Device list removal */
227static void unlist_netdevice(struct net_device *dev)
228{
229 ASSERT_RTNL();
230
231 /* Unlink dev from the device chain */
232 write_lock_bh(&dev_base_lock);
233 list_del(&dev->dev_list);
234 hlist_del(&dev->name_hlist);
235 hlist_del(&dev->index_hlist);
236 write_unlock_bh(&dev_base_lock);
237}
238
1da177e4
LT
239/*
240 * Our notifier list
241 */
242
f07d5b94 243static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
244
245/*
246 * Device drivers call our routines to queue packets here. We empty the
247 * queue in the local softnet handler.
248 */
bea3348e
SH
249
250DEFINE_PER_CPU(struct softnet_data, softnet_data);
1da177e4
LT
251
252#ifdef CONFIG_SYSFS
253extern int netdev_sysfs_init(void);
254extern int netdev_register_sysfs(struct net_device *);
255extern void netdev_unregister_sysfs(struct net_device *);
256#else
257#define netdev_sysfs_init() (0)
258#define netdev_register_sysfs(dev) (0)
259#define netdev_unregister_sysfs(dev) do { } while(0)
260#endif
261
723e98b7
JP
262#ifdef CONFIG_DEBUG_LOCK_ALLOC
263/*
264 * register_netdevice() inits dev->_xmit_lock and sets lockdep class
265 * according to dev->type
266 */
267static const unsigned short netdev_lock_type[] =
268 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
269 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
270 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
271 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
272 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
273 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
274 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
275 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
276 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
277 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
278 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
279 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
280 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
281 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
282 ARPHRD_NONE};
283
284static const char *netdev_lock_name[] =
285 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
286 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
287 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
288 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
289 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
290 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
291 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
292 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
293 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
294 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
295 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
296 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
297 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
298 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
299 "_xmit_NONE"};
300
301static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
302
303static inline unsigned short netdev_lock_pos(unsigned short dev_type)
304{
305 int i;
306
307 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
308 if (netdev_lock_type[i] == dev_type)
309 return i;
310 /* the last key is used by default */
311 return ARRAY_SIZE(netdev_lock_type) - 1;
312}
313
314static inline void netdev_set_lockdep_class(spinlock_t *lock,
315 unsigned short dev_type)
316{
317 int i;
318
319 i = netdev_lock_pos(dev_type);
320 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
321 netdev_lock_name[i]);
322}
323#else
324static inline void netdev_set_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
326{
327}
328#endif
1da177e4
LT
329
330/*******************************************************************************
331
332 Protocol management and registration routines
333
334*******************************************************************************/
335
1da177e4
LT
336/*
337 * Add a protocol ID to the list. Now that the input handler is
338 * smarter we can dispense with all the messy stuff that used to be
339 * here.
340 *
341 * BEWARE!!! Protocol handlers, mangling input packets,
342 * MUST BE last in hash buckets and checking protocol handlers
343 * MUST start from promiscuous ptype_all chain in net_bh.
344 * It is true now, do not change it.
345 * Explanation follows: if protocol handler, mangling packet, will
346 * be the first on list, it is not able to sense, that packet
347 * is cloned and should be copied-on-write, so that it will
348 * change it and subsequent readers will get broken packet.
349 * --ANK (980803)
350 */
351
352/**
353 * dev_add_pack - add packet handler
354 * @pt: packet type declaration
355 *
356 * Add a protocol handler to the networking stack. The passed &packet_type
357 * is linked into kernel lists and may not be freed until it has been
358 * removed from the kernel lists.
359 *
4ec93edb 360 * This call does not sleep therefore it can not
1da177e4
LT
361 * guarantee all CPU's that are in middle of receiving packets
362 * will see the new packet type (until the next received packet).
363 */
364
365void dev_add_pack(struct packet_type *pt)
366{
367 int hash;
368
369 spin_lock_bh(&ptype_lock);
9be9a6b9 370 if (pt->type == htons(ETH_P_ALL))
1da177e4 371 list_add_rcu(&pt->list, &ptype_all);
9be9a6b9 372 else {
1da177e4
LT
373 hash = ntohs(pt->type) & 15;
374 list_add_rcu(&pt->list, &ptype_base[hash]);
375 }
376 spin_unlock_bh(&ptype_lock);
377}
378
1da177e4
LT
379/**
380 * __dev_remove_pack - remove packet handler
381 * @pt: packet type declaration
382 *
383 * Remove a protocol handler that was previously added to the kernel
384 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
385 * from the kernel lists and can be freed or reused once this function
4ec93edb 386 * returns.
1da177e4
LT
387 *
388 * The packet type might still be in use by receivers
389 * and must not be freed until after all the CPU's have gone
390 * through a quiescent state.
391 */
392void __dev_remove_pack(struct packet_type *pt)
393{
394 struct list_head *head;
395 struct packet_type *pt1;
396
397 spin_lock_bh(&ptype_lock);
398
9be9a6b9 399 if (pt->type == htons(ETH_P_ALL))
1da177e4 400 head = &ptype_all;
9be9a6b9 401 else
1da177e4
LT
402 head = &ptype_base[ntohs(pt->type) & 15];
403
404 list_for_each_entry(pt1, head, list) {
405 if (pt == pt1) {
406 list_del_rcu(&pt->list);
407 goto out;
408 }
409 }
410
411 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
412out:
413 spin_unlock_bh(&ptype_lock);
414}
415/**
416 * dev_remove_pack - remove packet handler
417 * @pt: packet type declaration
418 *
419 * Remove a protocol handler that was previously added to the kernel
420 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
421 * from the kernel lists and can be freed or reused once this function
422 * returns.
423 *
424 * This call sleeps to guarantee that no CPU is looking at the packet
425 * type after return.
426 */
427void dev_remove_pack(struct packet_type *pt)
428{
429 __dev_remove_pack(pt);
4ec93edb 430
1da177e4
LT
431 synchronize_net();
432}
433
434/******************************************************************************
435
436 Device Boot-time Settings Routines
437
438*******************************************************************************/
439
440/* Boot time configuration table */
441static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
442
443/**
444 * netdev_boot_setup_add - add new setup entry
445 * @name: name of the device
446 * @map: configured settings for the device
447 *
448 * Adds new setup entry to the dev_boot_setup list. The function
449 * returns 0 on error and 1 on success. This is a generic routine to
450 * all netdevices.
451 */
452static int netdev_boot_setup_add(char *name, struct ifmap *map)
453{
454 struct netdev_boot_setup *s;
455 int i;
456
457 s = dev_boot_setup;
458 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
459 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
460 memset(s[i].name, 0, sizeof(s[i].name));
461 strcpy(s[i].name, name);
462 memcpy(&s[i].map, map, sizeof(s[i].map));
463 break;
464 }
465 }
466
467 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
468}
469
470/**
471 * netdev_boot_setup_check - check boot time settings
472 * @dev: the netdevice
473 *
474 * Check boot time settings for the device.
475 * The found settings are set for the device to be used
476 * later in the device probing.
477 * Returns 0 if no settings found, 1 if they are.
478 */
479int netdev_boot_setup_check(struct net_device *dev)
480{
481 struct netdev_boot_setup *s = dev_boot_setup;
482 int i;
483
484 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
485 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
486 !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
487 dev->irq = s[i].map.irq;
488 dev->base_addr = s[i].map.base_addr;
489 dev->mem_start = s[i].map.mem_start;
490 dev->mem_end = s[i].map.mem_end;
491 return 1;
492 }
493 }
494 return 0;
495}
496
497
498/**
499 * netdev_boot_base - get address from boot time settings
500 * @prefix: prefix for network device
501 * @unit: id for network device
502 *
503 * Check boot time settings for the base address of device.
504 * The found settings are set for the device to be used
505 * later in the device probing.
506 * Returns 0 if no settings found.
507 */
508unsigned long netdev_boot_base(const char *prefix, int unit)
509{
510 const struct netdev_boot_setup *s = dev_boot_setup;
511 char name[IFNAMSIZ];
512 int i;
513
514 sprintf(name, "%s%d", prefix, unit);
515
516 /*
517 * If device already registered then return base of 1
518 * to indicate not to probe for this interface
519 */
881d966b 520 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
521 return 1;
522
523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
524 if (!strcmp(name, s[i].name))
525 return s[i].map.base_addr;
526 return 0;
527}
528
529/*
530 * Saves at boot time configured settings for any netdevice.
531 */
532int __init netdev_boot_setup(char *str)
533{
534 int ints[5];
535 struct ifmap map;
536
537 str = get_options(str, ARRAY_SIZE(ints), ints);
538 if (!str || !*str)
539 return 0;
540
541 /* Save settings */
542 memset(&map, 0, sizeof(map));
543 if (ints[0] > 0)
544 map.irq = ints[1];
545 if (ints[0] > 1)
546 map.base_addr = ints[2];
547 if (ints[0] > 2)
548 map.mem_start = ints[3];
549 if (ints[0] > 3)
550 map.mem_end = ints[4];
551
552 /* Add new entry to the list */
553 return netdev_boot_setup_add(str, &map);
554}
555
556__setup("netdev=", netdev_boot_setup);
557
558/*******************************************************************************
559
560 Device Interface Subroutines
561
562*******************************************************************************/
563
564/**
565 * __dev_get_by_name - find a device by its name
566 * @name: name to find
567 *
568 * Find an interface by name. Must be called under RTNL semaphore
569 * or @dev_base_lock. If the name is found a pointer to the device
570 * is returned. If the name is not found then %NULL is returned. The
571 * reference counters are not incremented so the caller must be
572 * careful with locks.
573 */
574
881d966b 575struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
576{
577 struct hlist_node *p;
578
881d966b 579 hlist_for_each(p, dev_name_hash(net, name)) {
1da177e4
LT
580 struct net_device *dev
581 = hlist_entry(p, struct net_device, name_hlist);
582 if (!strncmp(dev->name, name, IFNAMSIZ))
583 return dev;
584 }
585 return NULL;
586}
587
588/**
589 * dev_get_by_name - find a device by its name
590 * @name: name to find
591 *
592 * Find an interface by name. This can be called from any
593 * context and does its own locking. The returned handle has
594 * the usage count incremented and the caller must use dev_put() to
595 * release it when it is no longer needed. %NULL is returned if no
596 * matching device is found.
597 */
598
881d966b 599struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
600{
601 struct net_device *dev;
602
603 read_lock(&dev_base_lock);
881d966b 604 dev = __dev_get_by_name(net, name);
1da177e4
LT
605 if (dev)
606 dev_hold(dev);
607 read_unlock(&dev_base_lock);
608 return dev;
609}
610
611/**
612 * __dev_get_by_index - find a device by its ifindex
613 * @ifindex: index of device
614 *
615 * Search for an interface by index. Returns %NULL if the device
616 * is not found or a pointer to the device. The device has not
617 * had its reference counter increased so the caller must be careful
618 * about locking. The caller must hold either the RTNL semaphore
619 * or @dev_base_lock.
620 */
621
881d966b 622struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
623{
624 struct hlist_node *p;
625
881d966b 626 hlist_for_each(p, dev_index_hash(net, ifindex)) {
1da177e4
LT
627 struct net_device *dev
628 = hlist_entry(p, struct net_device, index_hlist);
629 if (dev->ifindex == ifindex)
630 return dev;
631 }
632 return NULL;
633}
634
635
636/**
637 * dev_get_by_index - find a device by its ifindex
638 * @ifindex: index of device
639 *
640 * Search for an interface by index. Returns NULL if the device
641 * is not found or a pointer to the device. The device returned has
642 * had a reference added and the pointer is safe until the user calls
643 * dev_put to indicate they have finished with it.
644 */
645
881d966b 646struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
647{
648 struct net_device *dev;
649
650 read_lock(&dev_base_lock);
881d966b 651 dev = __dev_get_by_index(net, ifindex);
1da177e4
LT
652 if (dev)
653 dev_hold(dev);
654 read_unlock(&dev_base_lock);
655 return dev;
656}
657
658/**
659 * dev_getbyhwaddr - find a device by its hardware address
660 * @type: media type of device
661 * @ha: hardware address
662 *
663 * Search for an interface by MAC address. Returns NULL if the device
664 * is not found or a pointer to the device. The caller must hold the
665 * rtnl semaphore. The returned device has not had its ref count increased
666 * and the caller must therefore be careful about locking
667 *
668 * BUGS:
669 * If the API was consistent this would be __dev_get_by_hwaddr
670 */
671
881d966b 672struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
1da177e4
LT
673{
674 struct net_device *dev;
675
676 ASSERT_RTNL();
677
881d966b 678 for_each_netdev(&init_net, dev)
1da177e4
LT
679 if (dev->type == type &&
680 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
681 return dev;
682
683 return NULL;
1da177e4
LT
684}
685
cf309e3f
JF
686EXPORT_SYMBOL(dev_getbyhwaddr);
687
881d966b 688struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
689{
690 struct net_device *dev;
691
4e9cac2b 692 ASSERT_RTNL();
881d966b 693 for_each_netdev(net, dev)
4e9cac2b 694 if (dev->type == type)
7562f876
PE
695 return dev;
696
697 return NULL;
4e9cac2b
PM
698}
699
700EXPORT_SYMBOL(__dev_getfirstbyhwtype);
701
881d966b 702struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b
PM
703{
704 struct net_device *dev;
705
706 rtnl_lock();
881d966b 707 dev = __dev_getfirstbyhwtype(net, type);
4e9cac2b
PM
708 if (dev)
709 dev_hold(dev);
1da177e4
LT
710 rtnl_unlock();
711 return dev;
712}
713
714EXPORT_SYMBOL(dev_getfirstbyhwtype);
715
716/**
717 * dev_get_by_flags - find any device with given flags
718 * @if_flags: IFF_* values
719 * @mask: bitmask of bits in if_flags to check
720 *
721 * Search for any interface with the given flags. Returns NULL if a device
4ec93edb 722 * is not found or a pointer to the device. The device returned has
1da177e4
LT
723 * had a reference added and the pointer is safe until the user calls
724 * dev_put to indicate they have finished with it.
725 */
726
881d966b 727struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
1da177e4 728{
7562f876 729 struct net_device *dev, *ret;
1da177e4 730
7562f876 731 ret = NULL;
1da177e4 732 read_lock(&dev_base_lock);
881d966b 733 for_each_netdev(net, dev) {
1da177e4
LT
734 if (((dev->flags ^ if_flags) & mask) == 0) {
735 dev_hold(dev);
7562f876 736 ret = dev;
1da177e4
LT
737 break;
738 }
739 }
740 read_unlock(&dev_base_lock);
7562f876 741 return ret;
1da177e4
LT
742}
743
744/**
745 * dev_valid_name - check if name is okay for network device
746 * @name: name string
747 *
748 * Network device names need to be valid file names to
c7fa9d18
DM
749 * to allow sysfs to work. We also disallow any kind of
750 * whitespace.
1da177e4 751 */
c2373ee9 752int dev_valid_name(const char *name)
1da177e4 753{
c7fa9d18
DM
754 if (*name == '\0')
755 return 0;
b6fe17d6
SH
756 if (strlen(name) >= IFNAMSIZ)
757 return 0;
c7fa9d18
DM
758 if (!strcmp(name, ".") || !strcmp(name, ".."))
759 return 0;
760
761 while (*name) {
762 if (*name == '/' || isspace(*name))
763 return 0;
764 name++;
765 }
766 return 1;
1da177e4
LT
767}
768
769/**
b267b179
EB
770 * __dev_alloc_name - allocate a name for a device
771 * @net: network namespace to allocate the device name in
1da177e4 772 * @name: name format string
b267b179 773 * @buf: scratch buffer and result name string
1da177e4
LT
774 *
775 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
776 * id. It scans list of devices to build up a free map, then chooses
777 * the first empty slot. The caller must hold the dev_base or rtnl lock
778 * while allocating the name and adding the device in order to avoid
779 * duplicates.
780 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
781 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
782 */
783
b267b179 784static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
785{
786 int i = 0;
1da177e4
LT
787 const char *p;
788 const int max_netdevices = 8*PAGE_SIZE;
789 long *inuse;
790 struct net_device *d;
791
792 p = strnchr(name, IFNAMSIZ-1, '%');
793 if (p) {
794 /*
795 * Verify the string as this thing may have come from
796 * the user. There must be either one "%d" and no other "%"
797 * characters.
798 */
799 if (p[1] != 'd' || strchr(p + 2, '%'))
800 return -EINVAL;
801
802 /* Use one page as a bit array of possible slots */
803 inuse = (long *) get_zeroed_page(GFP_ATOMIC);
804 if (!inuse)
805 return -ENOMEM;
806
881d966b 807 for_each_netdev(net, d) {
1da177e4
LT
808 if (!sscanf(d->name, name, &i))
809 continue;
810 if (i < 0 || i >= max_netdevices)
811 continue;
812
813 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 814 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
815 if (!strncmp(buf, d->name, IFNAMSIZ))
816 set_bit(i, inuse);
817 }
818
819 i = find_first_zero_bit(inuse, max_netdevices);
820 free_page((unsigned long) inuse);
821 }
822
b267b179
EB
823 snprintf(buf, IFNAMSIZ, name, i);
824 if (!__dev_get_by_name(net, buf))
1da177e4 825 return i;
1da177e4
LT
826
827 /* It is possible to run out of possible slots
828 * when the name is long and there isn't enough space left
829 * for the digits, or if all bits are used.
830 */
831 return -ENFILE;
832}
833
b267b179
EB
834/**
835 * dev_alloc_name - allocate a name for a device
836 * @dev: device
837 * @name: name format string
838 *
839 * Passed a format string - eg "lt%d" it will try and find a suitable
840 * id. It scans list of devices to build up a free map, then chooses
841 * the first empty slot. The caller must hold the dev_base or rtnl lock
842 * while allocating the name and adding the device in order to avoid
843 * duplicates.
844 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
845 * Returns the number of the unit assigned or a negative errno code.
846 */
847
848int dev_alloc_name(struct net_device *dev, const char *name)
849{
850 char buf[IFNAMSIZ];
851 struct net *net;
852 int ret;
853
854 BUG_ON(!dev->nd_net);
855 net = dev->nd_net;
856 ret = __dev_alloc_name(net, name, buf);
857 if (ret >= 0)
858 strlcpy(dev->name, buf, IFNAMSIZ);
859 return ret;
860}
861
1da177e4
LT
862
863/**
864 * dev_change_name - change name of a device
865 * @dev: device
866 * @newname: name (or format string) must be at least IFNAMSIZ
867 *
868 * Change name of a device, can pass format strings "eth%d".
869 * for wildcarding.
870 */
871int dev_change_name(struct net_device *dev, char *newname)
872{
fcc5a03a 873 char oldname[IFNAMSIZ];
1da177e4 874 int err = 0;
fcc5a03a 875 int ret;
881d966b 876 struct net *net;
1da177e4
LT
877
878 ASSERT_RTNL();
881d966b 879 BUG_ON(!dev->nd_net);
1da177e4 880
881d966b 881 net = dev->nd_net;
1da177e4
LT
882 if (dev->flags & IFF_UP)
883 return -EBUSY;
884
885 if (!dev_valid_name(newname))
886 return -EINVAL;
887
fcc5a03a
HX
888 memcpy(oldname, dev->name, IFNAMSIZ);
889
1da177e4
LT
890 if (strchr(newname, '%')) {
891 err = dev_alloc_name(dev, newname);
892 if (err < 0)
893 return err;
894 strcpy(newname, dev->name);
895 }
881d966b 896 else if (__dev_get_by_name(net, newname))
1da177e4
LT
897 return -EEXIST;
898 else
899 strlcpy(dev->name, newname, IFNAMSIZ);
900
fcc5a03a 901rollback:
92749821 902 device_rename(&dev->dev, dev->name);
7f988eab
HX
903
904 write_lock_bh(&dev_base_lock);
92749821 905 hlist_del(&dev->name_hlist);
881d966b 906 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
907 write_unlock_bh(&dev_base_lock);
908
fcc5a03a
HX
909 ret = raw_notifier_call_chain(&netdev_chain, NETDEV_CHANGENAME, dev);
910 ret = notifier_to_errno(ret);
911
912 if (ret) {
913 if (err) {
914 printk(KERN_ERR
915 "%s: name change rollback failed: %d.\n",
916 dev->name, ret);
917 } else {
918 err = ret;
919 memcpy(dev->name, oldname, IFNAMSIZ);
920 goto rollback;
921 }
922 }
1da177e4
LT
923
924 return err;
925}
926
d8a33ac4 927/**
3041a069 928 * netdev_features_change - device changes features
d8a33ac4
SH
929 * @dev: device to cause notification
930 *
931 * Called to indicate a device has changed features.
932 */
933void netdev_features_change(struct net_device *dev)
934{
f07d5b94 935 raw_notifier_call_chain(&netdev_chain, NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
936}
937EXPORT_SYMBOL(netdev_features_change);
938
1da177e4
LT
939/**
940 * netdev_state_change - device changes state
941 * @dev: device to cause notification
942 *
943 * Called to indicate a device has changed state. This function calls
944 * the notifier chains for netdev_chain and sends a NEWLINK message
945 * to the routing socket.
946 */
947void netdev_state_change(struct net_device *dev)
948{
949 if (dev->flags & IFF_UP) {
f07d5b94 950 raw_notifier_call_chain(&netdev_chain,
e041c683 951 NETDEV_CHANGE, dev);
1da177e4
LT
952 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
953 }
954}
955
956/**
957 * dev_load - load a network module
958 * @name: name of interface
959 *
960 * If a network interface is not present and the process has suitable
961 * privileges this function loads the module. If module loading is not
962 * available in this kernel then it becomes a nop.
963 */
964
881d966b 965void dev_load(struct net *net, const char *name)
1da177e4 966{
4ec93edb 967 struct net_device *dev;
1da177e4
LT
968
969 read_lock(&dev_base_lock);
881d966b 970 dev = __dev_get_by_name(net, name);
1da177e4
LT
971 read_unlock(&dev_base_lock);
972
973 if (!dev && capable(CAP_SYS_MODULE))
974 request_module("%s", name);
975}
976
977static int default_rebuild_header(struct sk_buff *skb)
978{
979 printk(KERN_DEBUG "%s: default_rebuild_header called -- BUG!\n",
980 skb->dev ? skb->dev->name : "NULL!!!");
981 kfree_skb(skb);
982 return 1;
983}
984
1da177e4
LT
985/**
986 * dev_open - prepare an interface for use.
987 * @dev: device to open
988 *
989 * Takes a device from down to up state. The device's private open
990 * function is invoked and then the multicast lists are loaded. Finally
991 * the device is moved into the up state and a %NETDEV_UP message is
992 * sent to the netdev notifier chain.
993 *
994 * Calling this function on an active interface is a nop. On a failure
995 * a negative errno code is returned.
996 */
997int dev_open(struct net_device *dev)
998{
999 int ret = 0;
1000
1001 /*
1002 * Is it already up?
1003 */
1004
1005 if (dev->flags & IFF_UP)
1006 return 0;
1007
1008 /*
1009 * Is it even present?
1010 */
1011 if (!netif_device_present(dev))
1012 return -ENODEV;
1013
1014 /*
1015 * Call device private open method
1016 */
1017 set_bit(__LINK_STATE_START, &dev->state);
1018 if (dev->open) {
1019 ret = dev->open(dev);
1020 if (ret)
1021 clear_bit(__LINK_STATE_START, &dev->state);
1022 }
1023
4ec93edb 1024 /*
1da177e4
LT
1025 * If it went open OK then:
1026 */
1027
1028 if (!ret) {
1029 /*
1030 * Set the flags.
1031 */
1032 dev->flags |= IFF_UP;
1033
1034 /*
1035 * Initialize multicasting status
1036 */
4417da66 1037 dev_set_rx_mode(dev);
1da177e4
LT
1038
1039 /*
1040 * Wakeup transmit queue engine
1041 */
1042 dev_activate(dev);
1043
1044 /*
1045 * ... and announce new interface.
1046 */
f07d5b94 1047 raw_notifier_call_chain(&netdev_chain, NETDEV_UP, dev);
1da177e4
LT
1048 }
1049 return ret;
1050}
1051
1052/**
1053 * dev_close - shutdown an interface.
1054 * @dev: device to shutdown
1055 *
1056 * This function moves an active device into down state. A
1057 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1058 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1059 * chain.
1060 */
1061int dev_close(struct net_device *dev)
1062{
9d5010db
DM
1063 might_sleep();
1064
1da177e4
LT
1065 if (!(dev->flags & IFF_UP))
1066 return 0;
1067
1068 /*
1069 * Tell people we are going down, so that they can
1070 * prepare to death, when device is still operating.
1071 */
f07d5b94 1072 raw_notifier_call_chain(&netdev_chain, NETDEV_GOING_DOWN, dev);
1da177e4
LT
1073
1074 dev_deactivate(dev);
1075
1076 clear_bit(__LINK_STATE_START, &dev->state);
1077
1078 /* Synchronize to scheduled poll. We cannot touch poll list,
bea3348e
SH
1079 * it can be even on different cpu. So just clear netif_running().
1080 *
1081 * dev->stop() will invoke napi_disable() on all of it's
1082 * napi_struct instances on this device.
1083 */
1da177e4 1084 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1da177e4
LT
1085
1086 /*
1087 * Call the device specific close. This cannot fail.
1088 * Only if device is UP
1089 *
1090 * We allow it to be called even after a DETACH hot-plug
1091 * event.
1092 */
1093 if (dev->stop)
1094 dev->stop(dev);
1095
1096 /*
1097 * Device is now down.
1098 */
1099
1100 dev->flags &= ~IFF_UP;
1101
1102 /*
1103 * Tell people we are down
1104 */
f07d5b94 1105 raw_notifier_call_chain(&netdev_chain, NETDEV_DOWN, dev);
1da177e4
LT
1106
1107 return 0;
1108}
1109
1110
881d966b
EB
1111static int dev_boot_phase = 1;
1112
1da177e4
LT
1113/*
1114 * Device change register/unregister. These are not inline or static
1115 * as we export them to the world.
1116 */
1117
1118/**
1119 * register_netdevice_notifier - register a network notifier block
1120 * @nb: notifier
1121 *
1122 * Register a notifier to be called when network device events occur.
1123 * The notifier passed is linked into the kernel structures and must
1124 * not be reused until it has been unregistered. A negative errno code
1125 * is returned on a failure.
1126 *
1127 * When registered all registration and up events are replayed
4ec93edb 1128 * to the new notifier to allow device to have a race free
1da177e4
LT
1129 * view of the network device list.
1130 */
1131
1132int register_netdevice_notifier(struct notifier_block *nb)
1133{
1134 struct net_device *dev;
fcc5a03a 1135 struct net_device *last;
881d966b 1136 struct net *net;
1da177e4
LT
1137 int err;
1138
1139 rtnl_lock();
f07d5b94 1140 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1141 if (err)
1142 goto unlock;
881d966b
EB
1143 if (dev_boot_phase)
1144 goto unlock;
1145 for_each_net(net) {
1146 for_each_netdev(net, dev) {
1147 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1148 err = notifier_to_errno(err);
1149 if (err)
1150 goto rollback;
1151
1152 if (!(dev->flags & IFF_UP))
1153 continue;
1da177e4 1154
881d966b
EB
1155 nb->notifier_call(nb, NETDEV_UP, dev);
1156 }
1da177e4 1157 }
fcc5a03a
HX
1158
1159unlock:
1da177e4
LT
1160 rtnl_unlock();
1161 return err;
fcc5a03a
HX
1162
1163rollback:
1164 last = dev;
881d966b
EB
1165 for_each_net(net) {
1166 for_each_netdev(net, dev) {
1167 if (dev == last)
1168 break;
fcc5a03a 1169
881d966b
EB
1170 if (dev->flags & IFF_UP) {
1171 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1172 nb->notifier_call(nb, NETDEV_DOWN, dev);
1173 }
1174 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1175 }
fcc5a03a
HX
1176 }
1177 goto unlock;
1da177e4
LT
1178}
1179
1180/**
1181 * unregister_netdevice_notifier - unregister a network notifier block
1182 * @nb: notifier
1183 *
1184 * Unregister a notifier previously registered by
1185 * register_netdevice_notifier(). The notifier is unlinked into the
1186 * kernel structures and may then be reused. A negative errno code
1187 * is returned on a failure.
1188 */
1189
1190int unregister_netdevice_notifier(struct notifier_block *nb)
1191{
9f514950
HX
1192 int err;
1193
1194 rtnl_lock();
f07d5b94 1195 err = raw_notifier_chain_unregister(&netdev_chain, nb);
9f514950
HX
1196 rtnl_unlock();
1197 return err;
1da177e4
LT
1198}
1199
1200/**
1201 * call_netdevice_notifiers - call all network notifier blocks
1202 * @val: value passed unmodified to notifier function
1203 * @v: pointer passed unmodified to notifier function
1204 *
1205 * Call all network notifier blocks. Parameters and return value
f07d5b94 1206 * are as for raw_notifier_call_chain().
1da177e4
LT
1207 */
1208
ad7379d4 1209int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1210{
ad7379d4 1211 return raw_notifier_call_chain(&netdev_chain, val, dev);
1da177e4
LT
1212}
1213
1214/* When > 0 there are consumers of rx skb time stamps */
1215static atomic_t netstamp_needed = ATOMIC_INIT(0);
1216
1217void net_enable_timestamp(void)
1218{
1219 atomic_inc(&netstamp_needed);
1220}
1221
1222void net_disable_timestamp(void)
1223{
1224 atomic_dec(&netstamp_needed);
1225}
1226
a61bbcf2 1227static inline void net_timestamp(struct sk_buff *skb)
1da177e4
LT
1228{
1229 if (atomic_read(&netstamp_needed))
a61bbcf2 1230 __net_timestamp(skb);
b7aa0bf7
ED
1231 else
1232 skb->tstamp.tv64 = 0;
1da177e4
LT
1233}
1234
1235/*
1236 * Support routine. Sends outgoing frames to any network
1237 * taps currently in use.
1238 */
1239
f6a78bfc 1240static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1241{
1242 struct packet_type *ptype;
a61bbcf2
PM
1243
1244 net_timestamp(skb);
1da177e4
LT
1245
1246 rcu_read_lock();
1247 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1248 /* Never send packets back to the socket
1249 * they originated from - MvS (miquels@drinkel.ow.org)
1250 */
1251 if ((ptype->dev == dev || !ptype->dev) &&
1252 (ptype->af_packet_priv == NULL ||
1253 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1254 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1255 if (!skb2)
1256 break;
1257
1258 /* skb->nh should be correctly
1259 set by sender, so that the second statement is
1260 just protection against buggy protocols.
1261 */
459a98ed 1262 skb_reset_mac_header(skb2);
1da177e4 1263
d56f90a7 1264 if (skb_network_header(skb2) < skb2->data ||
27a884dc 1265 skb2->network_header > skb2->tail) {
1da177e4
LT
1266 if (net_ratelimit())
1267 printk(KERN_CRIT "protocol %04x is "
1268 "buggy, dev %s\n",
1269 skb2->protocol, dev->name);
c1d2bbe1 1270 skb_reset_network_header(skb2);
1da177e4
LT
1271 }
1272
b0e380b1 1273 skb2->transport_header = skb2->network_header;
1da177e4 1274 skb2->pkt_type = PACKET_OUTGOING;
f2ccd8fa 1275 ptype->func(skb2, skb->dev, ptype, skb->dev);
1da177e4
LT
1276 }
1277 }
1278 rcu_read_unlock();
1279}
1280
56079431
DV
1281
1282void __netif_schedule(struct net_device *dev)
1283{
1284 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1285 unsigned long flags;
1286 struct softnet_data *sd;
1287
1288 local_irq_save(flags);
1289 sd = &__get_cpu_var(softnet_data);
1290 dev->next_sched = sd->output_queue;
1291 sd->output_queue = dev;
1292 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1293 local_irq_restore(flags);
1294 }
1295}
1296EXPORT_SYMBOL(__netif_schedule);
1297
bea3348e 1298void dev_kfree_skb_irq(struct sk_buff *skb)
56079431 1299{
bea3348e
SH
1300 if (atomic_dec_and_test(&skb->users)) {
1301 struct softnet_data *sd;
1302 unsigned long flags;
56079431 1303
bea3348e
SH
1304 local_irq_save(flags);
1305 sd = &__get_cpu_var(softnet_data);
1306 skb->next = sd->completion_queue;
1307 sd->completion_queue = skb;
1308 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1309 local_irq_restore(flags);
1310 }
56079431 1311}
bea3348e 1312EXPORT_SYMBOL(dev_kfree_skb_irq);
56079431
DV
1313
1314void dev_kfree_skb_any(struct sk_buff *skb)
1315{
1316 if (in_irq() || irqs_disabled())
1317 dev_kfree_skb_irq(skb);
1318 else
1319 dev_kfree_skb(skb);
1320}
1321EXPORT_SYMBOL(dev_kfree_skb_any);
1322
1323
bea3348e
SH
1324/**
1325 * netif_device_detach - mark device as removed
1326 * @dev: network device
1327 *
1328 * Mark device as removed from system and therefore no longer available.
1329 */
56079431
DV
1330void netif_device_detach(struct net_device *dev)
1331{
1332 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1333 netif_running(dev)) {
1334 netif_stop_queue(dev);
1335 }
1336}
1337EXPORT_SYMBOL(netif_device_detach);
1338
bea3348e
SH
1339/**
1340 * netif_device_attach - mark device as attached
1341 * @dev: network device
1342 *
1343 * Mark device as attached from system and restart if needed.
1344 */
56079431
DV
1345void netif_device_attach(struct net_device *dev)
1346{
1347 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1348 netif_running(dev)) {
1349 netif_wake_queue(dev);
4ec93edb 1350 __netdev_watchdog_up(dev);
56079431
DV
1351 }
1352}
1353EXPORT_SYMBOL(netif_device_attach);
1354
1355
1da177e4
LT
1356/*
1357 * Invalidate hardware checksum when packet is to be mangled, and
1358 * complete checksum manually on outgoing path.
1359 */
84fa7933 1360int skb_checksum_help(struct sk_buff *skb)
1da177e4 1361{
d3bc23e7 1362 __wsum csum;
663ead3b 1363 int ret = 0, offset;
1da177e4 1364
84fa7933 1365 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
1366 goto out_set_summed;
1367
1368 if (unlikely(skb_shinfo(skb)->gso_size)) {
a430a43d
HX
1369 /* Let GSO fix up the checksum. */
1370 goto out_set_summed;
1da177e4
LT
1371 }
1372
1373 if (skb_cloned(skb)) {
1374 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1375 if (ret)
1376 goto out;
1377 }
1378
663ead3b 1379 offset = skb->csum_start - skb_headroom(skb);
09a62660 1380 BUG_ON(offset > (int)skb->len);
1da177e4
LT
1381 csum = skb_checksum(skb, offset, skb->len-offset, 0);
1382
663ead3b 1383 offset = skb_headlen(skb) - offset;
09a62660 1384 BUG_ON(offset <= 0);
ff1dcadb 1385 BUG_ON(skb->csum_offset + 2 > offset);
1da177e4 1386
663ead3b
HX
1387 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) =
1388 csum_fold(csum);
a430a43d 1389out_set_summed:
1da177e4 1390 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 1391out:
1da177e4
LT
1392 return ret;
1393}
1394
f6a78bfc
HX
1395/**
1396 * skb_gso_segment - Perform segmentation on skb.
1397 * @skb: buffer to segment
576a30eb 1398 * @features: features for the output path (see dev->features)
f6a78bfc
HX
1399 *
1400 * This function segments the given skb and returns a list of segments.
576a30eb
HX
1401 *
1402 * It may return NULL if the skb requires no segmentation. This is
1403 * only possible when GSO is used for verifying header integrity.
f6a78bfc 1404 */
576a30eb 1405struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
f6a78bfc
HX
1406{
1407 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1408 struct packet_type *ptype;
252e3346 1409 __be16 type = skb->protocol;
a430a43d 1410 int err;
f6a78bfc
HX
1411
1412 BUG_ON(skb_shinfo(skb)->frag_list);
f6a78bfc 1413
459a98ed 1414 skb_reset_mac_header(skb);
b0e380b1 1415 skb->mac_len = skb->network_header - skb->mac_header;
f6a78bfc
HX
1416 __skb_pull(skb, skb->mac_len);
1417
f9d106a6 1418 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
a430a43d
HX
1419 if (skb_header_cloned(skb) &&
1420 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1421 return ERR_PTR(err);
1422 }
1423
f6a78bfc
HX
1424 rcu_read_lock();
1425 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) {
1426 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
84fa7933 1427 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
a430a43d
HX
1428 err = ptype->gso_send_check(skb);
1429 segs = ERR_PTR(err);
1430 if (err || skb_gso_ok(skb, features))
1431 break;
d56f90a7
ACM
1432 __skb_push(skb, (skb->data -
1433 skb_network_header(skb)));
a430a43d 1434 }
576a30eb 1435 segs = ptype->gso_segment(skb, features);
f6a78bfc
HX
1436 break;
1437 }
1438 }
1439 rcu_read_unlock();
1440
98e399f8 1441 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 1442
f6a78bfc
HX
1443 return segs;
1444}
1445
1446EXPORT_SYMBOL(skb_gso_segment);
1447
fb286bb2
HX
1448/* Take action when hardware reception checksum errors are detected. */
1449#ifdef CONFIG_BUG
1450void netdev_rx_csum_fault(struct net_device *dev)
1451{
1452 if (net_ratelimit()) {
4ec93edb 1453 printk(KERN_ERR "%s: hw csum failure.\n",
246a4212 1454 dev ? dev->name : "<unknown>");
fb286bb2
HX
1455 dump_stack();
1456 }
1457}
1458EXPORT_SYMBOL(netdev_rx_csum_fault);
1459#endif
1460
1da177e4
LT
1461/* Actually, we should eliminate this check as soon as we know, that:
1462 * 1. IOMMU is present and allows to map all the memory.
1463 * 2. No high memory really exists on this machine.
1464 */
1465
1466static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1467{
3d3a8533 1468#ifdef CONFIG_HIGHMEM
1da177e4
LT
1469 int i;
1470
1471 if (dev->features & NETIF_F_HIGHDMA)
1472 return 0;
1473
1474 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1475 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1476 return 1;
1477
3d3a8533 1478#endif
1da177e4
LT
1479 return 0;
1480}
1da177e4 1481
f6a78bfc
HX
1482struct dev_gso_cb {
1483 void (*destructor)(struct sk_buff *skb);
1484};
1485
1486#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1487
1488static void dev_gso_skb_destructor(struct sk_buff *skb)
1489{
1490 struct dev_gso_cb *cb;
1491
1492 do {
1493 struct sk_buff *nskb = skb->next;
1494
1495 skb->next = nskb->next;
1496 nskb->next = NULL;
1497 kfree_skb(nskb);
1498 } while (skb->next);
1499
1500 cb = DEV_GSO_CB(skb);
1501 if (cb->destructor)
1502 cb->destructor(skb);
1503}
1504
1505/**
1506 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1507 * @skb: buffer to segment
1508 *
1509 * This function segments the given skb and stores the list of segments
1510 * in skb->next.
1511 */
1512static int dev_gso_segment(struct sk_buff *skb)
1513{
1514 struct net_device *dev = skb->dev;
1515 struct sk_buff *segs;
576a30eb
HX
1516 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1517 NETIF_F_SG : 0);
1518
1519 segs = skb_gso_segment(skb, features);
1520
1521 /* Verifying header integrity only. */
1522 if (!segs)
1523 return 0;
f6a78bfc 1524
f6a78bfc
HX
1525 if (unlikely(IS_ERR(segs)))
1526 return PTR_ERR(segs);
1527
1528 skb->next = segs;
1529 DEV_GSO_CB(skb)->destructor = skb->destructor;
1530 skb->destructor = dev_gso_skb_destructor;
1531
1532 return 0;
1533}
1534
1535int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1536{
1537 if (likely(!skb->next)) {
9be9a6b9 1538 if (!list_empty(&ptype_all))
f6a78bfc
HX
1539 dev_queue_xmit_nit(skb, dev);
1540
576a30eb
HX
1541 if (netif_needs_gso(dev, skb)) {
1542 if (unlikely(dev_gso_segment(skb)))
1543 goto out_kfree_skb;
1544 if (skb->next)
1545 goto gso;
1546 }
f6a78bfc 1547
576a30eb 1548 return dev->hard_start_xmit(skb, dev);
f6a78bfc
HX
1549 }
1550
576a30eb 1551gso:
f6a78bfc
HX
1552 do {
1553 struct sk_buff *nskb = skb->next;
1554 int rc;
1555
1556 skb->next = nskb->next;
1557 nskb->next = NULL;
1558 rc = dev->hard_start_xmit(nskb, dev);
1559 if (unlikely(rc)) {
f54d9e8d 1560 nskb->next = skb->next;
f6a78bfc
HX
1561 skb->next = nskb;
1562 return rc;
1563 }
f25f4e44
PWJ
1564 if (unlikely((netif_queue_stopped(dev) ||
1565 netif_subqueue_stopped(dev, skb->queue_mapping)) &&
1566 skb->next))
f54d9e8d 1567 return NETDEV_TX_BUSY;
f6a78bfc 1568 } while (skb->next);
4ec93edb 1569
f6a78bfc
HX
1570 skb->destructor = DEV_GSO_CB(skb)->destructor;
1571
1572out_kfree_skb:
1573 kfree_skb(skb);
1574 return 0;
1575}
1576
1da177e4
LT
1577/**
1578 * dev_queue_xmit - transmit a buffer
1579 * @skb: buffer to transmit
1580 *
1581 * Queue a buffer for transmission to a network device. The caller must
1582 * have set the device and priority and built the buffer before calling
1583 * this function. The function can be called from an interrupt.
1584 *
1585 * A negative errno code is returned on a failure. A success does not
1586 * guarantee the frame will be transmitted as it may be dropped due
1587 * to congestion or traffic shaping.
af191367
BG
1588 *
1589 * -----------------------------------------------------------------------------------
1590 * I notice this method can also return errors from the queue disciplines,
1591 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1592 * be positive.
1593 *
1594 * Regardless of the return value, the skb is consumed, so it is currently
1595 * difficult to retry a send to this method. (You can bump the ref count
1596 * before sending to hold a reference for retry if you are careful.)
1597 *
1598 * When calling this method, interrupts MUST be enabled. This is because
1599 * the BH enable code must have IRQs enabled so that it will not deadlock.
1600 * --BLG
1da177e4
LT
1601 */
1602
1603int dev_queue_xmit(struct sk_buff *skb)
1604{
1605 struct net_device *dev = skb->dev;
1606 struct Qdisc *q;
1607 int rc = -ENOMEM;
1608
f6a78bfc
HX
1609 /* GSO will handle the following emulations directly. */
1610 if (netif_needs_gso(dev, skb))
1611 goto gso;
1612
1da177e4
LT
1613 if (skb_shinfo(skb)->frag_list &&
1614 !(dev->features & NETIF_F_FRAGLIST) &&
364c6bad 1615 __skb_linearize(skb))
1da177e4
LT
1616 goto out_kfree_skb;
1617
1618 /* Fragmented skb is linearized if device does not support SG,
1619 * or if at least one of fragments is in highmem and device
1620 * does not support DMA from it.
1621 */
1622 if (skb_shinfo(skb)->nr_frags &&
1623 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
364c6bad 1624 __skb_linearize(skb))
1da177e4
LT
1625 goto out_kfree_skb;
1626
1627 /* If packet is not checksummed and device does not support
1628 * checksumming for this protocol, complete checksumming here.
1629 */
663ead3b
HX
1630 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1631 skb_set_transport_header(skb, skb->csum_start -
1632 skb_headroom(skb));
1633
a298830c
HX
1634 if (!(dev->features & NETIF_F_GEN_CSUM) &&
1635 !((dev->features & NETIF_F_IP_CSUM) &&
1636 skb->protocol == htons(ETH_P_IP)) &&
1637 !((dev->features & NETIF_F_IPV6_CSUM) &&
1638 skb->protocol == htons(ETH_P_IPV6)))
663ead3b
HX
1639 if (skb_checksum_help(skb))
1640 goto out_kfree_skb;
1641 }
1da177e4 1642
f6a78bfc 1643gso:
2d7ceece
ED
1644 spin_lock_prefetch(&dev->queue_lock);
1645
4ec93edb
YH
1646 /* Disable soft irqs for various locks below. Also
1647 * stops preemption for RCU.
1da177e4 1648 */
4ec93edb 1649 rcu_read_lock_bh();
1da177e4 1650
4ec93edb
YH
1651 /* Updates of qdisc are serialized by queue_lock.
1652 * The struct Qdisc which is pointed to by qdisc is now a
1653 * rcu structure - it may be accessed without acquiring
1da177e4 1654 * a lock (but the structure may be stale.) The freeing of the
4ec93edb 1655 * qdisc will be deferred until it's known that there are no
1da177e4 1656 * more references to it.
4ec93edb
YH
1657 *
1658 * If the qdisc has an enqueue function, we still need to
1da177e4
LT
1659 * hold the queue_lock before calling it, since queue_lock
1660 * also serializes access to the device queue.
1661 */
1662
1663 q = rcu_dereference(dev->qdisc);
1664#ifdef CONFIG_NET_CLS_ACT
1665 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1666#endif
1667 if (q->enqueue) {
1668 /* Grab device queue */
1669 spin_lock(&dev->queue_lock);
85670cc1
PM
1670 q = dev->qdisc;
1671 if (q->enqueue) {
f25f4e44
PWJ
1672 /* reset queue_mapping to zero */
1673 skb->queue_mapping = 0;
85670cc1
PM
1674 rc = q->enqueue(skb, q);
1675 qdisc_run(dev);
1676 spin_unlock(&dev->queue_lock);
1da177e4 1677
85670cc1
PM
1678 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1679 goto out;
1680 }
1da177e4 1681 spin_unlock(&dev->queue_lock);
1da177e4
LT
1682 }
1683
1684 /* The device has no queue. Common case for software devices:
1685 loopback, all the sorts of tunnels...
1686
932ff279
HX
1687 Really, it is unlikely that netif_tx_lock protection is necessary
1688 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
1689 counters.)
1690 However, it is possible, that they rely on protection
1691 made by us here.
1692
1693 Check this and shot the lock. It is not prone from deadlocks.
1694 Either shot noqueue qdisc, it is even simpler 8)
1695 */
1696 if (dev->flags & IFF_UP) {
1697 int cpu = smp_processor_id(); /* ok because BHs are off */
1698
1699 if (dev->xmit_lock_owner != cpu) {
1700
1701 HARD_TX_LOCK(dev, cpu);
1702
f25f4e44
PWJ
1703 if (!netif_queue_stopped(dev) &&
1704 !netif_subqueue_stopped(dev, skb->queue_mapping)) {
1da177e4 1705 rc = 0;
f6a78bfc 1706 if (!dev_hard_start_xmit(skb, dev)) {
1da177e4
LT
1707 HARD_TX_UNLOCK(dev);
1708 goto out;
1709 }
1710 }
1711 HARD_TX_UNLOCK(dev);
1712 if (net_ratelimit())
1713 printk(KERN_CRIT "Virtual device %s asks to "
1714 "queue packet!\n", dev->name);
1715 } else {
1716 /* Recursion is detected! It is possible,
1717 * unfortunately */
1718 if (net_ratelimit())
1719 printk(KERN_CRIT "Dead loop on virtual device "
1720 "%s, fix it urgently!\n", dev->name);
1721 }
1722 }
1723
1724 rc = -ENETDOWN;
d4828d85 1725 rcu_read_unlock_bh();
1da177e4
LT
1726
1727out_kfree_skb:
1728 kfree_skb(skb);
1729 return rc;
1730out:
d4828d85 1731 rcu_read_unlock_bh();
1da177e4
LT
1732 return rc;
1733}
1734
1735
1736/*=======================================================================
1737 Receiver routines
1738 =======================================================================*/
1739
6b2bedc3
SH
1740int netdev_max_backlog __read_mostly = 1000;
1741int netdev_budget __read_mostly = 300;
1742int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4
LT
1743
1744DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1745
1746
1da177e4
LT
1747/**
1748 * netif_rx - post buffer to the network code
1749 * @skb: buffer to post
1750 *
1751 * This function receives a packet from a device driver and queues it for
1752 * the upper (protocol) levels to process. It always succeeds. The buffer
1753 * may be dropped during processing for congestion control or by the
1754 * protocol layers.
1755 *
1756 * return values:
1757 * NET_RX_SUCCESS (no congestion)
1758 * NET_RX_CN_LOW (low congestion)
1759 * NET_RX_CN_MOD (moderate congestion)
1760 * NET_RX_CN_HIGH (high congestion)
1761 * NET_RX_DROP (packet was dropped)
1762 *
1763 */
1764
1765int netif_rx(struct sk_buff *skb)
1766{
1da177e4
LT
1767 struct softnet_data *queue;
1768 unsigned long flags;
1769
1770 /* if netpoll wants it, pretend we never saw it */
1771 if (netpoll_rx(skb))
1772 return NET_RX_DROP;
1773
b7aa0bf7 1774 if (!skb->tstamp.tv64)
a61bbcf2 1775 net_timestamp(skb);
1da177e4
LT
1776
1777 /*
1778 * The code is rearranged so that the path is the most
1779 * short when CPU is congested, but is still operating.
1780 */
1781 local_irq_save(flags);
1da177e4
LT
1782 queue = &__get_cpu_var(softnet_data);
1783
1784 __get_cpu_var(netdev_rx_stat).total++;
1785 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1786 if (queue->input_pkt_queue.qlen) {
1da177e4
LT
1787enqueue:
1788 dev_hold(skb->dev);
1789 __skb_queue_tail(&queue->input_pkt_queue, skb);
1da177e4 1790 local_irq_restore(flags);
34008d8c 1791 return NET_RX_SUCCESS;
1da177e4
LT
1792 }
1793
bea3348e 1794 napi_schedule(&queue->backlog);
1da177e4
LT
1795 goto enqueue;
1796 }
1797
1da177e4
LT
1798 __get_cpu_var(netdev_rx_stat).dropped++;
1799 local_irq_restore(flags);
1800
1801 kfree_skb(skb);
1802 return NET_RX_DROP;
1803}
1804
1805int netif_rx_ni(struct sk_buff *skb)
1806{
1807 int err;
1808
1809 preempt_disable();
1810 err = netif_rx(skb);
1811 if (local_softirq_pending())
1812 do_softirq();
1813 preempt_enable();
1814
1815 return err;
1816}
1817
1818EXPORT_SYMBOL(netif_rx_ni);
1819
f2ccd8fa 1820static inline struct net_device *skb_bond(struct sk_buff *skb)
1da177e4
LT
1821{
1822 struct net_device *dev = skb->dev;
1823
8f903c70 1824 if (dev->master) {
7ea49ed7 1825 if (skb_bond_should_drop(skb)) {
8f903c70
JV
1826 kfree_skb(skb);
1827 return NULL;
1828 }
1da177e4 1829 skb->dev = dev->master;
8f903c70 1830 }
f2ccd8fa
DM
1831
1832 return dev;
1da177e4
LT
1833}
1834
bea3348e 1835
1da177e4
LT
1836static void net_tx_action(struct softirq_action *h)
1837{
1838 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1839
1840 if (sd->completion_queue) {
1841 struct sk_buff *clist;
1842
1843 local_irq_disable();
1844 clist = sd->completion_queue;
1845 sd->completion_queue = NULL;
1846 local_irq_enable();
1847
1848 while (clist) {
1849 struct sk_buff *skb = clist;
1850 clist = clist->next;
1851
1852 BUG_TRAP(!atomic_read(&skb->users));
1853 __kfree_skb(skb);
1854 }
1855 }
1856
1857 if (sd->output_queue) {
1858 struct net_device *head;
1859
1860 local_irq_disable();
1861 head = sd->output_queue;
1862 sd->output_queue = NULL;
1863 local_irq_enable();
1864
1865 while (head) {
1866 struct net_device *dev = head;
1867 head = head->next_sched;
1868
1869 smp_mb__before_clear_bit();
1870 clear_bit(__LINK_STATE_SCHED, &dev->state);
1871
1872 if (spin_trylock(&dev->queue_lock)) {
1873 qdisc_run(dev);
1874 spin_unlock(&dev->queue_lock);
1875 } else {
1876 netif_schedule(dev);
1877 }
1878 }
1879 }
1880}
1881
6f05f629
SH
1882static inline int deliver_skb(struct sk_buff *skb,
1883 struct packet_type *pt_prev,
1884 struct net_device *orig_dev)
1da177e4
LT
1885{
1886 atomic_inc(&skb->users);
f2ccd8fa 1887 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4
LT
1888}
1889
1890#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
6229e362 1891/* These hooks defined here for ATM */
1da177e4
LT
1892struct net_bridge;
1893struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1894 unsigned char *addr);
6229e362 1895void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1da177e4 1896
6229e362
SH
1897/*
1898 * If bridge module is loaded call bridging hook.
1899 * returns NULL if packet was consumed.
1900 */
1901struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1902 struct sk_buff *skb) __read_mostly;
1903static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1904 struct packet_type **pt_prev, int *ret,
1905 struct net_device *orig_dev)
1da177e4
LT
1906{
1907 struct net_bridge_port *port;
1908
6229e362
SH
1909 if (skb->pkt_type == PACKET_LOOPBACK ||
1910 (port = rcu_dereference(skb->dev->br_port)) == NULL)
1911 return skb;
1da177e4
LT
1912
1913 if (*pt_prev) {
6229e362 1914 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1da177e4 1915 *pt_prev = NULL;
4ec93edb
YH
1916 }
1917
6229e362 1918 return br_handle_frame_hook(port, skb);
1da177e4
LT
1919}
1920#else
6229e362 1921#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
1da177e4
LT
1922#endif
1923
b863ceb7
PM
1924#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
1925struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
1926EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
1927
1928static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
1929 struct packet_type **pt_prev,
1930 int *ret,
1931 struct net_device *orig_dev)
1932{
1933 if (skb->dev->macvlan_port == NULL)
1934 return skb;
1935
1936 if (*pt_prev) {
1937 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1938 *pt_prev = NULL;
1939 }
1940 return macvlan_handle_frame_hook(skb);
1941}
1942#else
1943#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
1944#endif
1945
1da177e4
LT
1946#ifdef CONFIG_NET_CLS_ACT
1947/* TODO: Maybe we should just force sch_ingress to be compiled in
1948 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
1949 * a compare and 2 stores extra right now if we dont have it on
1950 * but have CONFIG_NET_CLS_ACT
4ec93edb 1951 * NOTE: This doesnt stop any functionality; if you dont have
1da177e4
LT
1952 * the ingress scheduler, you just cant add policies on ingress.
1953 *
1954 */
4ec93edb 1955static int ing_filter(struct sk_buff *skb)
1da177e4
LT
1956{
1957 struct Qdisc *q;
1958 struct net_device *dev = skb->dev;
1959 int result = TC_ACT_OK;
4ec93edb 1960
1da177e4
LT
1961 if (dev->qdisc_ingress) {
1962 __u32 ttl = (__u32) G_TC_RTTL(skb->tc_verd);
1963 if (MAX_RED_LOOP < ttl++) {
c01003c2
PM
1964 printk(KERN_WARNING "Redir loop detected Dropping packet (%d->%d)\n",
1965 skb->iif, skb->dev->ifindex);
1da177e4
LT
1966 return TC_ACT_SHOT;
1967 }
1968
1969 skb->tc_verd = SET_TC_RTTL(skb->tc_verd,ttl);
1970
1971 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_INGRESS);
86e65da9 1972
fd44de7c 1973 spin_lock(&dev->ingress_lock);
1da177e4
LT
1974 if ((q = dev->qdisc_ingress) != NULL)
1975 result = q->enqueue(skb, q);
fd44de7c 1976 spin_unlock(&dev->ingress_lock);
1da177e4
LT
1977
1978 }
1979
1980 return result;
1981}
1982#endif
1983
1984int netif_receive_skb(struct sk_buff *skb)
1985{
1986 struct packet_type *ptype, *pt_prev;
f2ccd8fa 1987 struct net_device *orig_dev;
1da177e4 1988 int ret = NET_RX_DROP;
252e3346 1989 __be16 type;
1da177e4
LT
1990
1991 /* if we've gotten here through NAPI, check netpoll */
bea3348e 1992 if (netpoll_receive_skb(skb))
1da177e4
LT
1993 return NET_RX_DROP;
1994
b7aa0bf7 1995 if (!skb->tstamp.tv64)
a61bbcf2 1996 net_timestamp(skb);
1da177e4 1997
c01003c2
PM
1998 if (!skb->iif)
1999 skb->iif = skb->dev->ifindex;
86e65da9 2000
f2ccd8fa 2001 orig_dev = skb_bond(skb);
1da177e4 2002
8f903c70
JV
2003 if (!orig_dev)
2004 return NET_RX_DROP;
2005
1da177e4
LT
2006 __get_cpu_var(netdev_rx_stat).total++;
2007
c1d2bbe1 2008 skb_reset_network_header(skb);
badff6d0 2009 skb_reset_transport_header(skb);
b0e380b1 2010 skb->mac_len = skb->network_header - skb->mac_header;
1da177e4
LT
2011
2012 pt_prev = NULL;
2013
2014 rcu_read_lock();
2015
2016#ifdef CONFIG_NET_CLS_ACT
2017 if (skb->tc_verd & TC_NCLS) {
2018 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2019 goto ncls;
2020 }
2021#endif
2022
2023 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2024 if (!ptype->dev || ptype->dev == skb->dev) {
4ec93edb 2025 if (pt_prev)
f2ccd8fa 2026 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
2027 pt_prev = ptype;
2028 }
2029 }
2030
2031#ifdef CONFIG_NET_CLS_ACT
2032 if (pt_prev) {
f2ccd8fa 2033 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
2034 pt_prev = NULL; /* noone else should process this after*/
2035 } else {
2036 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2037 }
2038
2039 ret = ing_filter(skb);
2040
2041 if (ret == TC_ACT_SHOT || (ret == TC_ACT_STOLEN)) {
2042 kfree_skb(skb);
2043 goto out;
2044 }
2045
2046 skb->tc_verd = 0;
2047ncls:
2048#endif
2049
6229e362 2050 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
b863ceb7
PM
2051 if (!skb)
2052 goto out;
2053 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
6229e362 2054 if (!skb)
1da177e4
LT
2055 goto out;
2056
2057 type = skb->protocol;
2058 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) {
2059 if (ptype->type == type &&
2060 (!ptype->dev || ptype->dev == skb->dev)) {
4ec93edb 2061 if (pt_prev)
f2ccd8fa 2062 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
2063 pt_prev = ptype;
2064 }
2065 }
2066
2067 if (pt_prev) {
f2ccd8fa 2068 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4
LT
2069 } else {
2070 kfree_skb(skb);
2071 /* Jamal, now you will not able to escape explaining
2072 * me how you were going to use this. :-)
2073 */
2074 ret = NET_RX_DROP;
2075 }
2076
2077out:
2078 rcu_read_unlock();
2079 return ret;
2080}
2081
bea3348e 2082static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
2083{
2084 int work = 0;
1da177e4
LT
2085 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2086 unsigned long start_time = jiffies;
2087
bea3348e
SH
2088 napi->weight = weight_p;
2089 do {
1da177e4
LT
2090 struct sk_buff *skb;
2091 struct net_device *dev;
2092
2093 local_irq_disable();
2094 skb = __skb_dequeue(&queue->input_pkt_queue);
bea3348e
SH
2095 if (!skb) {
2096 __napi_complete(napi);
2097 local_irq_enable();
2098 break;
2099 }
2100
1da177e4
LT
2101 local_irq_enable();
2102
2103 dev = skb->dev;
2104
2105 netif_receive_skb(skb);
2106
2107 dev_put(dev);
bea3348e 2108 } while (++work < quota && jiffies == start_time);
1da177e4 2109
bea3348e
SH
2110 return work;
2111}
1da177e4 2112
bea3348e
SH
2113/**
2114 * __napi_schedule - schedule for receive
2115 * @napi: entry to schedule
2116 *
2117 * The entry's receive function will be scheduled to run
2118 */
2119void fastcall __napi_schedule(struct napi_struct *n)
2120{
2121 unsigned long flags;
1da177e4 2122
bea3348e
SH
2123 local_irq_save(flags);
2124 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2125 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2126 local_irq_restore(flags);
1da177e4 2127}
bea3348e
SH
2128EXPORT_SYMBOL(__napi_schedule);
2129
1da177e4
LT
2130
2131static void net_rx_action(struct softirq_action *h)
2132{
bea3348e 2133 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
1da177e4 2134 unsigned long start_time = jiffies;
51b0bded 2135 int budget = netdev_budget;
53fb95d3
MM
2136 void *have;
2137
1da177e4
LT
2138 local_irq_disable();
2139
bea3348e
SH
2140 while (!list_empty(list)) {
2141 struct napi_struct *n;
2142 int work, weight;
1da177e4 2143
bea3348e
SH
2144 /* If softirq window is exhuasted then punt.
2145 *
2146 * Note that this is a slight policy change from the
2147 * previous NAPI code, which would allow up to 2
2148 * jiffies to pass before breaking out. The test
2149 * used to be "jiffies - start_time > 1".
2150 */
2151 if (unlikely(budget <= 0 || jiffies != start_time))
1da177e4
LT
2152 goto softnet_break;
2153
2154 local_irq_enable();
2155
bea3348e
SH
2156 /* Even though interrupts have been re-enabled, this
2157 * access is safe because interrupts can only add new
2158 * entries to the tail of this list, and only ->poll()
2159 * calls can remove this head entry from the list.
2160 */
2161 n = list_entry(list->next, struct napi_struct, poll_list);
1da177e4 2162
bea3348e
SH
2163 have = netpoll_poll_lock(n);
2164
2165 weight = n->weight;
2166
2167 work = n->poll(n, weight);
2168
2169 WARN_ON_ONCE(work > weight);
2170
2171 budget -= work;
2172
2173 local_irq_disable();
2174
2175 /* Drivers must not modify the NAPI state if they
2176 * consume the entire weight. In such cases this code
2177 * still "owns" the NAPI instance and therefore can
2178 * move the instance around on the list at-will.
2179 */
2180 if (unlikely(work == weight))
2181 list_move_tail(&n->poll_list, list);
2182
2183 netpoll_poll_unlock(have);
1da177e4
LT
2184 }
2185out:
515e06c4 2186 local_irq_enable();
bea3348e 2187
db217334
CL
2188#ifdef CONFIG_NET_DMA
2189 /*
2190 * There may not be any more sk_buffs coming right now, so push
2191 * any pending DMA copies to hardware
2192 */
d379b01e
DW
2193 if (!cpus_empty(net_dma.channel_mask)) {
2194 int chan_idx;
2195 for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2196 struct dma_chan *chan = net_dma.channels[chan_idx];
2197 if (chan)
2198 dma_async_memcpy_issue_pending(chan);
2199 }
db217334
CL
2200 }
2201#endif
bea3348e 2202
1da177e4
LT
2203 return;
2204
2205softnet_break:
2206 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2207 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2208 goto out;
2209}
2210
2211static gifconf_func_t * gifconf_list [NPROTO];
2212
2213/**
2214 * register_gifconf - register a SIOCGIF handler
2215 * @family: Address family
2216 * @gifconf: Function handler
2217 *
2218 * Register protocol dependent address dumping routines. The handler
2219 * that is passed must not be freed or reused until it has been replaced
2220 * by another handler.
2221 */
2222int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2223{
2224 if (family >= NPROTO)
2225 return -EINVAL;
2226 gifconf_list[family] = gifconf;
2227 return 0;
2228}
2229
2230
2231/*
2232 * Map an interface index to its name (SIOCGIFNAME)
2233 */
2234
2235/*
2236 * We need this ioctl for efficient implementation of the
2237 * if_indextoname() function required by the IPv6 API. Without
2238 * it, we would have to search all the interfaces to find a
2239 * match. --pb
2240 */
2241
881d966b 2242static int dev_ifname(struct net *net, struct ifreq __user *arg)
1da177e4
LT
2243{
2244 struct net_device *dev;
2245 struct ifreq ifr;
2246
2247 /*
2248 * Fetch the caller's info block.
2249 */
2250
2251 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2252 return -EFAULT;
2253
2254 read_lock(&dev_base_lock);
881d966b 2255 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
1da177e4
LT
2256 if (!dev) {
2257 read_unlock(&dev_base_lock);
2258 return -ENODEV;
2259 }
2260
2261 strcpy(ifr.ifr_name, dev->name);
2262 read_unlock(&dev_base_lock);
2263
2264 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2265 return -EFAULT;
2266 return 0;
2267}
2268
2269/*
2270 * Perform a SIOCGIFCONF call. This structure will change
2271 * size eventually, and there is nothing I can do about it.
2272 * Thus we will need a 'compatibility mode'.
2273 */
2274
881d966b 2275static int dev_ifconf(struct net *net, char __user *arg)
1da177e4
LT
2276{
2277 struct ifconf ifc;
2278 struct net_device *dev;
2279 char __user *pos;
2280 int len;
2281 int total;
2282 int i;
2283
2284 /*
2285 * Fetch the caller's info block.
2286 */
2287
2288 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2289 return -EFAULT;
2290
2291 pos = ifc.ifc_buf;
2292 len = ifc.ifc_len;
2293
2294 /*
2295 * Loop over the interfaces, and write an info block for each.
2296 */
2297
2298 total = 0;
881d966b 2299 for_each_netdev(net, dev) {
1da177e4
LT
2300 for (i = 0; i < NPROTO; i++) {
2301 if (gifconf_list[i]) {
2302 int done;
2303 if (!pos)
2304 done = gifconf_list[i](dev, NULL, 0);
2305 else
2306 done = gifconf_list[i](dev, pos + total,
2307 len - total);
2308 if (done < 0)
2309 return -EFAULT;
2310 total += done;
2311 }
2312 }
4ec93edb 2313 }
1da177e4
LT
2314
2315 /*
2316 * All done. Write the updated control block back to the caller.
2317 */
2318 ifc.ifc_len = total;
2319
2320 /*
2321 * Both BSD and Solaris return 0 here, so we do too.
2322 */
2323 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2324}
2325
2326#ifdef CONFIG_PROC_FS
2327/*
2328 * This is invoked by the /proc filesystem handler to display a device
2329 * in detail.
2330 */
7562f876 2331void *dev_seq_start(struct seq_file *seq, loff_t *pos)
1da177e4 2332{
881d966b 2333 struct net *net = seq->private;
7562f876 2334 loff_t off;
1da177e4 2335 struct net_device *dev;
1da177e4 2336
7562f876
PE
2337 read_lock(&dev_base_lock);
2338 if (!*pos)
2339 return SEQ_START_TOKEN;
1da177e4 2340
7562f876 2341 off = 1;
881d966b 2342 for_each_netdev(net, dev)
7562f876
PE
2343 if (off++ == *pos)
2344 return dev;
1da177e4 2345
7562f876 2346 return NULL;
1da177e4
LT
2347}
2348
2349void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2350{
881d966b 2351 struct net *net = seq->private;
1da177e4 2352 ++*pos;
7562f876 2353 return v == SEQ_START_TOKEN ?
881d966b 2354 first_net_device(net) : next_net_device((struct net_device *)v);
1da177e4
LT
2355}
2356
2357void dev_seq_stop(struct seq_file *seq, void *v)
2358{
2359 read_unlock(&dev_base_lock);
2360}
2361
2362static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2363{
c45d286e 2364 struct net_device_stats *stats = dev->get_stats(dev);
1da177e4 2365
5a1b5898
RR
2366 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2367 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2368 dev->name, stats->rx_bytes, stats->rx_packets,
2369 stats->rx_errors,
2370 stats->rx_dropped + stats->rx_missed_errors,
2371 stats->rx_fifo_errors,
2372 stats->rx_length_errors + stats->rx_over_errors +
2373 stats->rx_crc_errors + stats->rx_frame_errors,
2374 stats->rx_compressed, stats->multicast,
2375 stats->tx_bytes, stats->tx_packets,
2376 stats->tx_errors, stats->tx_dropped,
2377 stats->tx_fifo_errors, stats->collisions,
2378 stats->tx_carrier_errors +
2379 stats->tx_aborted_errors +
2380 stats->tx_window_errors +
2381 stats->tx_heartbeat_errors,
2382 stats->tx_compressed);
1da177e4
LT
2383}
2384
2385/*
2386 * Called from the PROCfs module. This now uses the new arbitrary sized
2387 * /proc/net interface to create /proc/net/dev
2388 */
2389static int dev_seq_show(struct seq_file *seq, void *v)
2390{
2391 if (v == SEQ_START_TOKEN)
2392 seq_puts(seq, "Inter-| Receive "
2393 " | Transmit\n"
2394 " face |bytes packets errs drop fifo frame "
2395 "compressed multicast|bytes packets errs "
2396 "drop fifo colls carrier compressed\n");
2397 else
2398 dev_seq_printf_stats(seq, v);
2399 return 0;
2400}
2401
2402static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2403{
2404 struct netif_rx_stats *rc = NULL;
2405
2406 while (*pos < NR_CPUS)
4ec93edb 2407 if (cpu_online(*pos)) {
1da177e4
LT
2408 rc = &per_cpu(netdev_rx_stat, *pos);
2409 break;
2410 } else
2411 ++*pos;
2412 return rc;
2413}
2414
2415static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2416{
2417 return softnet_get_online(pos);
2418}
2419
2420static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2421{
2422 ++*pos;
2423 return softnet_get_online(pos);
2424}
2425
2426static void softnet_seq_stop(struct seq_file *seq, void *v)
2427{
2428}
2429
2430static int softnet_seq_show(struct seq_file *seq, void *v)
2431{
2432 struct netif_rx_stats *s = v;
2433
2434 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
31aa02c5 2435 s->total, s->dropped, s->time_squeeze, 0,
c1ebcdb8
SH
2436 0, 0, 0, 0, /* was fastroute */
2437 s->cpu_collision );
1da177e4
LT
2438 return 0;
2439}
2440
f690808e 2441static const struct seq_operations dev_seq_ops = {
1da177e4
LT
2442 .start = dev_seq_start,
2443 .next = dev_seq_next,
2444 .stop = dev_seq_stop,
2445 .show = dev_seq_show,
2446};
2447
2448static int dev_seq_open(struct inode *inode, struct file *file)
2449{
881d966b
EB
2450 struct seq_file *seq;
2451 int res;
2452 res = seq_open(file, &dev_seq_ops);
2453 if (!res) {
2454 seq = file->private_data;
077130c0
EB
2455 seq->private = get_proc_net(inode);
2456 if (!seq->private) {
2457 seq_release(inode, file);
2458 res = -ENXIO;
2459 }
881d966b
EB
2460 }
2461 return res;
2462}
2463
2464static int dev_seq_release(struct inode *inode, struct file *file)
2465{
2466 struct seq_file *seq = file->private_data;
2467 struct net *net = seq->private;
2468 put_net(net);
2469 return seq_release(inode, file);
1da177e4
LT
2470}
2471
9a32144e 2472static const struct file_operations dev_seq_fops = {
1da177e4
LT
2473 .owner = THIS_MODULE,
2474 .open = dev_seq_open,
2475 .read = seq_read,
2476 .llseek = seq_lseek,
881d966b 2477 .release = dev_seq_release,
1da177e4
LT
2478};
2479
f690808e 2480static const struct seq_operations softnet_seq_ops = {
1da177e4
LT
2481 .start = softnet_seq_start,
2482 .next = softnet_seq_next,
2483 .stop = softnet_seq_stop,
2484 .show = softnet_seq_show,
2485};
2486
2487static int softnet_seq_open(struct inode *inode, struct file *file)
2488{
2489 return seq_open(file, &softnet_seq_ops);
2490}
2491
9a32144e 2492static const struct file_operations softnet_seq_fops = {
1da177e4
LT
2493 .owner = THIS_MODULE,
2494 .open = softnet_seq_open,
2495 .read = seq_read,
2496 .llseek = seq_lseek,
2497 .release = seq_release,
2498};
2499
0e1256ff
SH
2500static void *ptype_get_idx(loff_t pos)
2501{
2502 struct packet_type *pt = NULL;
2503 loff_t i = 0;
2504 int t;
2505
2506 list_for_each_entry_rcu(pt, &ptype_all, list) {
2507 if (i == pos)
2508 return pt;
2509 ++i;
2510 }
2511
2512 for (t = 0; t < 16; t++) {
2513 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2514 if (i == pos)
2515 return pt;
2516 ++i;
2517 }
2518 }
2519 return NULL;
2520}
2521
2522static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2523{
2524 rcu_read_lock();
2525 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2526}
2527
2528static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2529{
2530 struct packet_type *pt;
2531 struct list_head *nxt;
2532 int hash;
2533
2534 ++*pos;
2535 if (v == SEQ_START_TOKEN)
2536 return ptype_get_idx(0);
2537
2538 pt = v;
2539 nxt = pt->list.next;
2540 if (pt->type == htons(ETH_P_ALL)) {
2541 if (nxt != &ptype_all)
2542 goto found;
2543 hash = 0;
2544 nxt = ptype_base[0].next;
2545 } else
2546 hash = ntohs(pt->type) & 15;
2547
2548 while (nxt == &ptype_base[hash]) {
2549 if (++hash >= 16)
2550 return NULL;
2551 nxt = ptype_base[hash].next;
2552 }
2553found:
2554 return list_entry(nxt, struct packet_type, list);
2555}
2556
2557static void ptype_seq_stop(struct seq_file *seq, void *v)
2558{
2559 rcu_read_unlock();
2560}
2561
2562static void ptype_seq_decode(struct seq_file *seq, void *sym)
2563{
2564#ifdef CONFIG_KALLSYMS
2565 unsigned long offset = 0, symsize;
2566 const char *symname;
2567 char *modname;
2568 char namebuf[128];
2569
2570 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2571 &modname, namebuf);
2572
2573 if (symname) {
2574 char *delim = ":";
2575
2576 if (!modname)
2577 modname = delim = "";
2578 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2579 symname, offset);
2580 return;
2581 }
2582#endif
2583
2584 seq_printf(seq, "[%p]", sym);
2585}
2586
2587static int ptype_seq_show(struct seq_file *seq, void *v)
2588{
2589 struct packet_type *pt = v;
2590
2591 if (v == SEQ_START_TOKEN)
2592 seq_puts(seq, "Type Device Function\n");
2593 else {
2594 if (pt->type == htons(ETH_P_ALL))
2595 seq_puts(seq, "ALL ");
2596 else
2597 seq_printf(seq, "%04x", ntohs(pt->type));
2598
2599 seq_printf(seq, " %-8s ",
2600 pt->dev ? pt->dev->name : "");
2601 ptype_seq_decode(seq, pt->func);
2602 seq_putc(seq, '\n');
2603 }
2604
2605 return 0;
2606}
2607
2608static const struct seq_operations ptype_seq_ops = {
2609 .start = ptype_seq_start,
2610 .next = ptype_seq_next,
2611 .stop = ptype_seq_stop,
2612 .show = ptype_seq_show,
2613};
2614
2615static int ptype_seq_open(struct inode *inode, struct file *file)
2616{
2617 return seq_open(file, &ptype_seq_ops);
2618}
2619
2620static const struct file_operations ptype_seq_fops = {
2621 .owner = THIS_MODULE,
2622 .open = ptype_seq_open,
2623 .read = seq_read,
2624 .llseek = seq_lseek,
2625 .release = seq_release,
2626};
2627
2628
881d966b 2629static int dev_proc_net_init(struct net *net)
1da177e4
LT
2630{
2631 int rc = -ENOMEM;
2632
881d966b 2633 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
1da177e4 2634 goto out;
881d966b 2635 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
1da177e4 2636 goto out_dev;
881d966b 2637 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
457c4cbc 2638 goto out_softnet;
0e1256ff 2639
881d966b 2640 if (wext_proc_init(net))
457c4cbc 2641 goto out_ptype;
1da177e4
LT
2642 rc = 0;
2643out:
2644 return rc;
457c4cbc 2645out_ptype:
881d966b 2646 proc_net_remove(net, "ptype");
1da177e4 2647out_softnet:
881d966b 2648 proc_net_remove(net, "softnet_stat");
1da177e4 2649out_dev:
881d966b 2650 proc_net_remove(net, "dev");
1da177e4
LT
2651 goto out;
2652}
881d966b
EB
2653
2654static void dev_proc_net_exit(struct net *net)
2655{
2656 wext_proc_exit(net);
2657
2658 proc_net_remove(net, "ptype");
2659 proc_net_remove(net, "softnet_stat");
2660 proc_net_remove(net, "dev");
2661}
2662
2663static struct pernet_operations dev_proc_ops = {
2664 .init = dev_proc_net_init,
2665 .exit = dev_proc_net_exit,
2666};
2667
2668static int __init dev_proc_init(void)
2669{
2670 return register_pernet_subsys(&dev_proc_ops);
2671}
1da177e4
LT
2672#else
2673#define dev_proc_init() 0
2674#endif /* CONFIG_PROC_FS */
2675
2676
2677/**
2678 * netdev_set_master - set up master/slave pair
2679 * @slave: slave device
2680 * @master: new master device
2681 *
2682 * Changes the master device of the slave. Pass %NULL to break the
2683 * bonding. The caller must hold the RTNL semaphore. On a failure
2684 * a negative errno code is returned. On success the reference counts
2685 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2686 * function returns zero.
2687 */
2688int netdev_set_master(struct net_device *slave, struct net_device *master)
2689{
2690 struct net_device *old = slave->master;
2691
2692 ASSERT_RTNL();
2693
2694 if (master) {
2695 if (old)
2696 return -EBUSY;
2697 dev_hold(master);
2698 }
2699
2700 slave->master = master;
4ec93edb 2701
1da177e4
LT
2702 synchronize_net();
2703
2704 if (old)
2705 dev_put(old);
2706
2707 if (master)
2708 slave->flags |= IFF_SLAVE;
2709 else
2710 slave->flags &= ~IFF_SLAVE;
2711
2712 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2713 return 0;
2714}
2715
4417da66 2716static void __dev_set_promiscuity(struct net_device *dev, int inc)
1da177e4
LT
2717{
2718 unsigned short old_flags = dev->flags;
2719
24023451
PM
2720 ASSERT_RTNL();
2721
1da177e4
LT
2722 if ((dev->promiscuity += inc) == 0)
2723 dev->flags &= ~IFF_PROMISC;
52609c0b
DC
2724 else
2725 dev->flags |= IFF_PROMISC;
2726 if (dev->flags != old_flags) {
1da177e4
LT
2727 printk(KERN_INFO "device %s %s promiscuous mode\n",
2728 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4ec93edb 2729 "left");
5bdb9886
SG
2730 audit_log(current->audit_context, GFP_ATOMIC,
2731 AUDIT_ANOM_PROMISCUOUS,
2732 "dev=%s prom=%d old_prom=%d auid=%u",
2733 dev->name, (dev->flags & IFF_PROMISC),
2734 (old_flags & IFF_PROMISC),
4ec93edb 2735 audit_get_loginuid(current->audit_context));
24023451
PM
2736
2737 if (dev->change_rx_flags)
2738 dev->change_rx_flags(dev, IFF_PROMISC);
1da177e4
LT
2739 }
2740}
2741
4417da66
PM
2742/**
2743 * dev_set_promiscuity - update promiscuity count on a device
2744 * @dev: device
2745 * @inc: modifier
2746 *
2747 * Add or remove promiscuity from a device. While the count in the device
2748 * remains above zero the interface remains promiscuous. Once it hits zero
2749 * the device reverts back to normal filtering operation. A negative inc
2750 * value is used to drop promiscuity on the device.
2751 */
2752void dev_set_promiscuity(struct net_device *dev, int inc)
2753{
2754 unsigned short old_flags = dev->flags;
2755
2756 __dev_set_promiscuity(dev, inc);
2757 if (dev->flags != old_flags)
2758 dev_set_rx_mode(dev);
2759}
2760
1da177e4
LT
2761/**
2762 * dev_set_allmulti - update allmulti count on a device
2763 * @dev: device
2764 * @inc: modifier
2765 *
2766 * Add or remove reception of all multicast frames to a device. While the
2767 * count in the device remains above zero the interface remains listening
2768 * to all interfaces. Once it hits zero the device reverts back to normal
2769 * filtering operation. A negative @inc value is used to drop the counter
2770 * when releasing a resource needing all multicasts.
2771 */
2772
2773void dev_set_allmulti(struct net_device *dev, int inc)
2774{
2775 unsigned short old_flags = dev->flags;
2776
24023451
PM
2777 ASSERT_RTNL();
2778
1da177e4
LT
2779 dev->flags |= IFF_ALLMULTI;
2780 if ((dev->allmulti += inc) == 0)
2781 dev->flags &= ~IFF_ALLMULTI;
24023451
PM
2782 if (dev->flags ^ old_flags) {
2783 if (dev->change_rx_flags)
2784 dev->change_rx_flags(dev, IFF_ALLMULTI);
4417da66 2785 dev_set_rx_mode(dev);
24023451 2786 }
4417da66
PM
2787}
2788
2789/*
2790 * Upload unicast and multicast address lists to device and
2791 * configure RX filtering. When the device doesn't support unicast
2792 * filtering it is put in promiscous mode while unicast addresses
2793 * are present.
2794 */
2795void __dev_set_rx_mode(struct net_device *dev)
2796{
2797 /* dev_open will call this function so the list will stay sane. */
2798 if (!(dev->flags&IFF_UP))
2799 return;
2800
2801 if (!netif_device_present(dev))
40b77c94 2802 return;
4417da66
PM
2803
2804 if (dev->set_rx_mode)
2805 dev->set_rx_mode(dev);
2806 else {
2807 /* Unicast addresses changes may only happen under the rtnl,
2808 * therefore calling __dev_set_promiscuity here is safe.
2809 */
2810 if (dev->uc_count > 0 && !dev->uc_promisc) {
2811 __dev_set_promiscuity(dev, 1);
2812 dev->uc_promisc = 1;
2813 } else if (dev->uc_count == 0 && dev->uc_promisc) {
2814 __dev_set_promiscuity(dev, -1);
2815 dev->uc_promisc = 0;
2816 }
2817
2818 if (dev->set_multicast_list)
2819 dev->set_multicast_list(dev);
2820 }
2821}
2822
2823void dev_set_rx_mode(struct net_device *dev)
2824{
2825 netif_tx_lock_bh(dev);
2826 __dev_set_rx_mode(dev);
2827 netif_tx_unlock_bh(dev);
1da177e4
LT
2828}
2829
61cbc2fc
PM
2830int __dev_addr_delete(struct dev_addr_list **list, int *count,
2831 void *addr, int alen, int glbl)
bf742482
PM
2832{
2833 struct dev_addr_list *da;
2834
2835 for (; (da = *list) != NULL; list = &da->next) {
2836 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2837 alen == da->da_addrlen) {
2838 if (glbl) {
2839 int old_glbl = da->da_gusers;
2840 da->da_gusers = 0;
2841 if (old_glbl == 0)
2842 break;
2843 }
2844 if (--da->da_users)
2845 return 0;
2846
2847 *list = da->next;
2848 kfree(da);
61cbc2fc 2849 (*count)--;
bf742482
PM
2850 return 0;
2851 }
2852 }
2853 return -ENOENT;
2854}
2855
61cbc2fc
PM
2856int __dev_addr_add(struct dev_addr_list **list, int *count,
2857 void *addr, int alen, int glbl)
bf742482
PM
2858{
2859 struct dev_addr_list *da;
2860
2861 for (da = *list; da != NULL; da = da->next) {
2862 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2863 da->da_addrlen == alen) {
2864 if (glbl) {
2865 int old_glbl = da->da_gusers;
2866 da->da_gusers = 1;
2867 if (old_glbl)
2868 return 0;
2869 }
2870 da->da_users++;
2871 return 0;
2872 }
2873 }
2874
2875 da = kmalloc(sizeof(*da), GFP_ATOMIC);
2876 if (da == NULL)
2877 return -ENOMEM;
2878 memcpy(da->da_addr, addr, alen);
2879 da->da_addrlen = alen;
2880 da->da_users = 1;
2881 da->da_gusers = glbl ? 1 : 0;
2882 da->next = *list;
2883 *list = da;
61cbc2fc 2884 (*count)++;
bf742482
PM
2885 return 0;
2886}
2887
4417da66
PM
2888/**
2889 * dev_unicast_delete - Release secondary unicast address.
2890 * @dev: device
0ed72ec4
RD
2891 * @addr: address to delete
2892 * @alen: length of @addr
4417da66
PM
2893 *
2894 * Release reference to a secondary unicast address and remove it
0ed72ec4 2895 * from the device if the reference count drops to zero.
4417da66
PM
2896 *
2897 * The caller must hold the rtnl_mutex.
2898 */
2899int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
2900{
2901 int err;
2902
2903 ASSERT_RTNL();
2904
2905 netif_tx_lock_bh(dev);
61cbc2fc
PM
2906 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2907 if (!err)
4417da66 2908 __dev_set_rx_mode(dev);
4417da66
PM
2909 netif_tx_unlock_bh(dev);
2910 return err;
2911}
2912EXPORT_SYMBOL(dev_unicast_delete);
2913
2914/**
2915 * dev_unicast_add - add a secondary unicast address
2916 * @dev: device
0ed72ec4
RD
2917 * @addr: address to delete
2918 * @alen: length of @addr
4417da66
PM
2919 *
2920 * Add a secondary unicast address to the device or increase
2921 * the reference count if it already exists.
2922 *
2923 * The caller must hold the rtnl_mutex.
2924 */
2925int dev_unicast_add(struct net_device *dev, void *addr, int alen)
2926{
2927 int err;
2928
2929 ASSERT_RTNL();
2930
2931 netif_tx_lock_bh(dev);
61cbc2fc
PM
2932 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2933 if (!err)
4417da66 2934 __dev_set_rx_mode(dev);
4417da66
PM
2935 netif_tx_unlock_bh(dev);
2936 return err;
2937}
2938EXPORT_SYMBOL(dev_unicast_add);
2939
12972621
DC
2940static void __dev_addr_discard(struct dev_addr_list **list)
2941{
2942 struct dev_addr_list *tmp;
2943
2944 while (*list != NULL) {
2945 tmp = *list;
2946 *list = tmp->next;
2947 if (tmp->da_users > tmp->da_gusers)
2948 printk("__dev_addr_discard: address leakage! "
2949 "da_users=%d\n", tmp->da_users);
2950 kfree(tmp);
2951 }
2952}
2953
26cc2522 2954static void dev_addr_discard(struct net_device *dev)
4417da66
PM
2955{
2956 netif_tx_lock_bh(dev);
26cc2522 2957
4417da66
PM
2958 __dev_addr_discard(&dev->uc_list);
2959 dev->uc_count = 0;
4417da66 2960
456ad75c
DC
2961 __dev_addr_discard(&dev->mc_list);
2962 dev->mc_count = 0;
26cc2522 2963
456ad75c
DC
2964 netif_tx_unlock_bh(dev);
2965}
2966
1da177e4
LT
2967unsigned dev_get_flags(const struct net_device *dev)
2968{
2969 unsigned flags;
2970
2971 flags = (dev->flags & ~(IFF_PROMISC |
2972 IFF_ALLMULTI |
b00055aa
SR
2973 IFF_RUNNING |
2974 IFF_LOWER_UP |
2975 IFF_DORMANT)) |
1da177e4
LT
2976 (dev->gflags & (IFF_PROMISC |
2977 IFF_ALLMULTI));
2978
b00055aa
SR
2979 if (netif_running(dev)) {
2980 if (netif_oper_up(dev))
2981 flags |= IFF_RUNNING;
2982 if (netif_carrier_ok(dev))
2983 flags |= IFF_LOWER_UP;
2984 if (netif_dormant(dev))
2985 flags |= IFF_DORMANT;
2986 }
1da177e4
LT
2987
2988 return flags;
2989}
2990
2991int dev_change_flags(struct net_device *dev, unsigned flags)
2992{
7c355f53 2993 int ret, changes;
1da177e4
LT
2994 int old_flags = dev->flags;
2995
24023451
PM
2996 ASSERT_RTNL();
2997
1da177e4
LT
2998 /*
2999 * Set the flags on our device.
3000 */
3001
3002 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3003 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3004 IFF_AUTOMEDIA)) |
3005 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3006 IFF_ALLMULTI));
3007
3008 /*
3009 * Load in the correct multicast list now the flags have changed.
3010 */
3011
24023451
PM
3012 if (dev->change_rx_flags && (dev->flags ^ flags) & IFF_MULTICAST)
3013 dev->change_rx_flags(dev, IFF_MULTICAST);
3014
4417da66 3015 dev_set_rx_mode(dev);
1da177e4
LT
3016
3017 /*
3018 * Have we downed the interface. We handle IFF_UP ourselves
3019 * according to user attempts to set it, rather than blindly
3020 * setting it.
3021 */
3022
3023 ret = 0;
3024 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3025 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3026
3027 if (!ret)
4417da66 3028 dev_set_rx_mode(dev);
1da177e4
LT
3029 }
3030
3031 if (dev->flags & IFF_UP &&
3032 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3033 IFF_VOLATILE)))
f07d5b94 3034 raw_notifier_call_chain(&netdev_chain,
e041c683 3035 NETDEV_CHANGE, dev);
1da177e4
LT
3036
3037 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3038 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3039 dev->gflags ^= IFF_PROMISC;
3040 dev_set_promiscuity(dev, inc);
3041 }
3042
3043 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3044 is important. Some (broken) drivers set IFF_PROMISC, when
3045 IFF_ALLMULTI is requested not asking us and not reporting.
3046 */
3047 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3048 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3049 dev->gflags ^= IFF_ALLMULTI;
3050 dev_set_allmulti(dev, inc);
3051 }
3052
7c355f53
TG
3053 /* Exclude state transition flags, already notified */
3054 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3055 if (changes)
3056 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
1da177e4
LT
3057
3058 return ret;
3059}
3060
3061int dev_set_mtu(struct net_device *dev, int new_mtu)
3062{
3063 int err;
3064
3065 if (new_mtu == dev->mtu)
3066 return 0;
3067
3068 /* MTU must be positive. */
3069 if (new_mtu < 0)
3070 return -EINVAL;
3071
3072 if (!netif_device_present(dev))
3073 return -ENODEV;
3074
3075 err = 0;
3076 if (dev->change_mtu)
3077 err = dev->change_mtu(dev, new_mtu);
3078 else
3079 dev->mtu = new_mtu;
3080 if (!err && dev->flags & IFF_UP)
f07d5b94 3081 raw_notifier_call_chain(&netdev_chain,
e041c683 3082 NETDEV_CHANGEMTU, dev);
1da177e4
LT
3083 return err;
3084}
3085
3086int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3087{
3088 int err;
3089
3090 if (!dev->set_mac_address)
3091 return -EOPNOTSUPP;
3092 if (sa->sa_family != dev->type)
3093 return -EINVAL;
3094 if (!netif_device_present(dev))
3095 return -ENODEV;
3096 err = dev->set_mac_address(dev, sa);
3097 if (!err)
f07d5b94 3098 raw_notifier_call_chain(&netdev_chain,
e041c683 3099 NETDEV_CHANGEADDR, dev);
1da177e4
LT
3100 return err;
3101}
3102
3103/*
3104 * Perform the SIOCxIFxxx calls.
3105 */
881d966b 3106static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
1da177e4
LT
3107{
3108 int err;
881d966b 3109 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
1da177e4
LT
3110
3111 if (!dev)
3112 return -ENODEV;
3113
3114 switch (cmd) {
3115 case SIOCGIFFLAGS: /* Get interface flags */
3116 ifr->ifr_flags = dev_get_flags(dev);
3117 return 0;
3118
3119 case SIOCSIFFLAGS: /* Set interface flags */
3120 return dev_change_flags(dev, ifr->ifr_flags);
3121
3122 case SIOCGIFMETRIC: /* Get the metric on the interface
3123 (currently unused) */
3124 ifr->ifr_metric = 0;
3125 return 0;
3126
3127 case SIOCSIFMETRIC: /* Set the metric on the interface
3128 (currently unused) */
3129 return -EOPNOTSUPP;
3130
3131 case SIOCGIFMTU: /* Get the MTU of a device */
3132 ifr->ifr_mtu = dev->mtu;
3133 return 0;
3134
3135 case SIOCSIFMTU: /* Set the MTU of a device */
3136 return dev_set_mtu(dev, ifr->ifr_mtu);
3137
3138 case SIOCGIFHWADDR:
3139 if (!dev->addr_len)
3140 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3141 else
3142 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3143 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3144 ifr->ifr_hwaddr.sa_family = dev->type;
3145 return 0;
3146
3147 case SIOCSIFHWADDR:
3148 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3149
3150 case SIOCSIFHWBROADCAST:
3151 if (ifr->ifr_hwaddr.sa_family != dev->type)
3152 return -EINVAL;
3153 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3154 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
f07d5b94 3155 raw_notifier_call_chain(&netdev_chain,
1da177e4
LT
3156 NETDEV_CHANGEADDR, dev);
3157 return 0;
3158
3159 case SIOCGIFMAP:
3160 ifr->ifr_map.mem_start = dev->mem_start;
3161 ifr->ifr_map.mem_end = dev->mem_end;
3162 ifr->ifr_map.base_addr = dev->base_addr;
3163 ifr->ifr_map.irq = dev->irq;
3164 ifr->ifr_map.dma = dev->dma;
3165 ifr->ifr_map.port = dev->if_port;
3166 return 0;
3167
3168 case SIOCSIFMAP:
3169 if (dev->set_config) {
3170 if (!netif_device_present(dev))
3171 return -ENODEV;
3172 return dev->set_config(dev, &ifr->ifr_map);
3173 }
3174 return -EOPNOTSUPP;
3175
3176 case SIOCADDMULTI:
3177 if (!dev->set_multicast_list ||
3178 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3179 return -EINVAL;
3180 if (!netif_device_present(dev))
3181 return -ENODEV;
3182 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3183 dev->addr_len, 1);
3184
3185 case SIOCDELMULTI:
3186 if (!dev->set_multicast_list ||
3187 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3188 return -EINVAL;
3189 if (!netif_device_present(dev))
3190 return -ENODEV;
3191 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3192 dev->addr_len, 1);
3193
3194 case SIOCGIFINDEX:
3195 ifr->ifr_ifindex = dev->ifindex;
3196 return 0;
3197
3198 case SIOCGIFTXQLEN:
3199 ifr->ifr_qlen = dev->tx_queue_len;
3200 return 0;
3201
3202 case SIOCSIFTXQLEN:
3203 if (ifr->ifr_qlen < 0)
3204 return -EINVAL;
3205 dev->tx_queue_len = ifr->ifr_qlen;
3206 return 0;
3207
3208 case SIOCSIFNAME:
3209 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3210 return dev_change_name(dev, ifr->ifr_newname);
3211
3212 /*
3213 * Unknown or private ioctl
3214 */
3215
3216 default:
3217 if ((cmd >= SIOCDEVPRIVATE &&
3218 cmd <= SIOCDEVPRIVATE + 15) ||
3219 cmd == SIOCBONDENSLAVE ||
3220 cmd == SIOCBONDRELEASE ||
3221 cmd == SIOCBONDSETHWADDR ||
3222 cmd == SIOCBONDSLAVEINFOQUERY ||
3223 cmd == SIOCBONDINFOQUERY ||
3224 cmd == SIOCBONDCHANGEACTIVE ||
3225 cmd == SIOCGMIIPHY ||
3226 cmd == SIOCGMIIREG ||
3227 cmd == SIOCSMIIREG ||
3228 cmd == SIOCBRADDIF ||
3229 cmd == SIOCBRDELIF ||
3230 cmd == SIOCWANDEV) {
3231 err = -EOPNOTSUPP;
3232 if (dev->do_ioctl) {
3233 if (netif_device_present(dev))
3234 err = dev->do_ioctl(dev, ifr,
3235 cmd);
3236 else
3237 err = -ENODEV;
3238 }
3239 } else
3240 err = -EINVAL;
3241
3242 }
3243 return err;
3244}
3245
3246/*
3247 * This function handles all "interface"-type I/O control requests. The actual
3248 * 'doing' part of this is dev_ifsioc above.
3249 */
3250
3251/**
3252 * dev_ioctl - network device ioctl
3253 * @cmd: command to issue
3254 * @arg: pointer to a struct ifreq in user space
3255 *
3256 * Issue ioctl functions to devices. This is normally called by the
3257 * user space syscall interfaces but can sometimes be useful for
3258 * other purposes. The return value is the return from the syscall if
3259 * positive or a negative errno code on error.
3260 */
3261
881d966b 3262int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1da177e4
LT
3263{
3264 struct ifreq ifr;
3265 int ret;
3266 char *colon;
3267
3268 /* One special case: SIOCGIFCONF takes ifconf argument
3269 and requires shared lock, because it sleeps writing
3270 to user space.
3271 */
3272
3273 if (cmd == SIOCGIFCONF) {
6756ae4b 3274 rtnl_lock();
881d966b 3275 ret = dev_ifconf(net, (char __user *) arg);
6756ae4b 3276 rtnl_unlock();
1da177e4
LT
3277 return ret;
3278 }
3279 if (cmd == SIOCGIFNAME)
881d966b 3280 return dev_ifname(net, (struct ifreq __user *)arg);
1da177e4
LT
3281
3282 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3283 return -EFAULT;
3284
3285 ifr.ifr_name[IFNAMSIZ-1] = 0;
3286
3287 colon = strchr(ifr.ifr_name, ':');
3288 if (colon)
3289 *colon = 0;
3290
3291 /*
3292 * See which interface the caller is talking about.
3293 */
3294
3295 switch (cmd) {
3296 /*
3297 * These ioctl calls:
3298 * - can be done by all.
3299 * - atomic and do not require locking.
3300 * - return a value
3301 */
3302 case SIOCGIFFLAGS:
3303 case SIOCGIFMETRIC:
3304 case SIOCGIFMTU:
3305 case SIOCGIFHWADDR:
3306 case SIOCGIFSLAVE:
3307 case SIOCGIFMAP:
3308 case SIOCGIFINDEX:
3309 case SIOCGIFTXQLEN:
881d966b 3310 dev_load(net, ifr.ifr_name);
1da177e4 3311 read_lock(&dev_base_lock);
881d966b 3312 ret = dev_ifsioc(net, &ifr, cmd);
1da177e4
LT
3313 read_unlock(&dev_base_lock);
3314 if (!ret) {
3315 if (colon)
3316 *colon = ':';
3317 if (copy_to_user(arg, &ifr,
3318 sizeof(struct ifreq)))
3319 ret = -EFAULT;
3320 }
3321 return ret;
3322
3323 case SIOCETHTOOL:
881d966b 3324 dev_load(net, ifr.ifr_name);
1da177e4 3325 rtnl_lock();
881d966b 3326 ret = dev_ethtool(net, &ifr);
1da177e4
LT
3327 rtnl_unlock();
3328 if (!ret) {
3329 if (colon)
3330 *colon = ':';
3331 if (copy_to_user(arg, &ifr,
3332 sizeof(struct ifreq)))
3333 ret = -EFAULT;
3334 }
3335 return ret;
3336
3337 /*
3338 * These ioctl calls:
3339 * - require superuser power.
3340 * - require strict serialization.
3341 * - return a value
3342 */
3343 case SIOCGMIIPHY:
3344 case SIOCGMIIREG:
3345 case SIOCSIFNAME:
3346 if (!capable(CAP_NET_ADMIN))
3347 return -EPERM;
881d966b 3348 dev_load(net, ifr.ifr_name);
1da177e4 3349 rtnl_lock();
881d966b 3350 ret = dev_ifsioc(net, &ifr, cmd);
1da177e4
LT
3351 rtnl_unlock();
3352 if (!ret) {
3353 if (colon)
3354 *colon = ':';
3355 if (copy_to_user(arg, &ifr,
3356 sizeof(struct ifreq)))
3357 ret = -EFAULT;
3358 }
3359 return ret;
3360
3361 /*
3362 * These ioctl calls:
3363 * - require superuser power.
3364 * - require strict serialization.
3365 * - do not return a value
3366 */
3367 case SIOCSIFFLAGS:
3368 case SIOCSIFMETRIC:
3369 case SIOCSIFMTU:
3370 case SIOCSIFMAP:
3371 case SIOCSIFHWADDR:
3372 case SIOCSIFSLAVE:
3373 case SIOCADDMULTI:
3374 case SIOCDELMULTI:
3375 case SIOCSIFHWBROADCAST:
3376 case SIOCSIFTXQLEN:
3377 case SIOCSMIIREG:
3378 case SIOCBONDENSLAVE:
3379 case SIOCBONDRELEASE:
3380 case SIOCBONDSETHWADDR:
1da177e4
LT
3381 case SIOCBONDCHANGEACTIVE:
3382 case SIOCBRADDIF:
3383 case SIOCBRDELIF:
3384 if (!capable(CAP_NET_ADMIN))
3385 return -EPERM;
cabcac0b
TG
3386 /* fall through */
3387 case SIOCBONDSLAVEINFOQUERY:
3388 case SIOCBONDINFOQUERY:
881d966b 3389 dev_load(net, ifr.ifr_name);
1da177e4 3390 rtnl_lock();
881d966b 3391 ret = dev_ifsioc(net, &ifr, cmd);
1da177e4
LT
3392 rtnl_unlock();
3393 return ret;
3394
3395 case SIOCGIFMEM:
3396 /* Get the per device memory space. We can add this but
3397 * currently do not support it */
3398 case SIOCSIFMEM:
3399 /* Set the per device memory buffer space.
3400 * Not applicable in our case */
3401 case SIOCSIFLINK:
3402 return -EINVAL;
3403
3404 /*
3405 * Unknown or private ioctl.
3406 */
3407 default:
3408 if (cmd == SIOCWANDEV ||
3409 (cmd >= SIOCDEVPRIVATE &&
3410 cmd <= SIOCDEVPRIVATE + 15)) {
881d966b 3411 dev_load(net, ifr.ifr_name);
1da177e4 3412 rtnl_lock();
881d966b 3413 ret = dev_ifsioc(net, &ifr, cmd);
1da177e4
LT
3414 rtnl_unlock();
3415 if (!ret && copy_to_user(arg, &ifr,
3416 sizeof(struct ifreq)))
3417 ret = -EFAULT;
3418 return ret;
3419 }
1da177e4 3420 /* Take care of Wireless Extensions */
295f4a1f 3421 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
881d966b 3422 return wext_handle_ioctl(net, &ifr, cmd, arg);
1da177e4
LT
3423 return -EINVAL;
3424 }
3425}
3426
3427
3428/**
3429 * dev_new_index - allocate an ifindex
3430 *
3431 * Returns a suitable unique value for a new device interface
3432 * number. The caller must hold the rtnl semaphore or the
3433 * dev_base_lock to be sure it remains unique.
3434 */
881d966b 3435static int dev_new_index(struct net *net)
1da177e4
LT
3436{
3437 static int ifindex;
3438 for (;;) {
3439 if (++ifindex <= 0)
3440 ifindex = 1;
881d966b 3441 if (!__dev_get_by_index(net, ifindex))
1da177e4
LT
3442 return ifindex;
3443 }
3444}
3445
1da177e4
LT
3446/* Delayed registration/unregisteration */
3447static DEFINE_SPINLOCK(net_todo_list_lock);
3448static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list);
3449
6f05f629 3450static void net_set_todo(struct net_device *dev)
1da177e4
LT
3451{
3452 spin_lock(&net_todo_list_lock);
3453 list_add_tail(&dev->todo_list, &net_todo_list);
3454 spin_unlock(&net_todo_list_lock);
3455}
3456
3457/**
3458 * register_netdevice - register a network device
3459 * @dev: device to register
3460 *
3461 * Take a completed network device structure and add it to the kernel
3462 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3463 * chain. 0 is returned on success. A negative errno code is returned
3464 * on a failure to set up the device, or if the name is a duplicate.
3465 *
3466 * Callers must hold the rtnl semaphore. You may want
3467 * register_netdev() instead of this.
3468 *
3469 * BUGS:
3470 * The locking appears insufficient to guarantee two parallel registers
3471 * will not get the same name.
3472 */
3473
3474int register_netdevice(struct net_device *dev)
3475{
3476 struct hlist_head *head;
3477 struct hlist_node *p;
3478 int ret;
881d966b 3479 struct net *net;
1da177e4
LT
3480
3481 BUG_ON(dev_boot_phase);
3482 ASSERT_RTNL();
3483
b17a7c17
SH
3484 might_sleep();
3485
1da177e4
LT
3486 /* When net_device's are persistent, this will be fatal. */
3487 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
881d966b
EB
3488 BUG_ON(!dev->nd_net);
3489 net = dev->nd_net;
1da177e4
LT
3490
3491 spin_lock_init(&dev->queue_lock);
932ff279 3492 spin_lock_init(&dev->_xmit_lock);
723e98b7 3493 netdev_set_lockdep_class(&dev->_xmit_lock, dev->type);
1da177e4 3494 dev->xmit_lock_owner = -1;
1da177e4 3495 spin_lock_init(&dev->ingress_lock);
1da177e4 3496
1da177e4
LT
3497 dev->iflink = -1;
3498
3499 /* Init, if this function is available */
3500 if (dev->init) {
3501 ret = dev->init(dev);
3502 if (ret) {
3503 if (ret > 0)
3504 ret = -EIO;
90833aa4 3505 goto out;
1da177e4
LT
3506 }
3507 }
4ec93edb 3508
1da177e4
LT
3509 if (!dev_valid_name(dev->name)) {
3510 ret = -EINVAL;
7ce1b0ed 3511 goto err_uninit;
1da177e4
LT
3512 }
3513
881d966b 3514 dev->ifindex = dev_new_index(net);
1da177e4
LT
3515 if (dev->iflink == -1)
3516 dev->iflink = dev->ifindex;
3517
3518 /* Check for existence of name */
881d966b 3519 head = dev_name_hash(net, dev->name);
1da177e4
LT
3520 hlist_for_each(p, head) {
3521 struct net_device *d
3522 = hlist_entry(p, struct net_device, name_hlist);
3523 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3524 ret = -EEXIST;
7ce1b0ed 3525 goto err_uninit;
1da177e4 3526 }
4ec93edb 3527 }
1da177e4 3528
d212f87b
SH
3529 /* Fix illegal checksum combinations */
3530 if ((dev->features & NETIF_F_HW_CSUM) &&
3531 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3532 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3533 dev->name);
3534 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3535 }
3536
3537 if ((dev->features & NETIF_F_NO_CSUM) &&
3538 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3539 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3540 dev->name);
3541 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3542 }
3543
3544
1da177e4
LT
3545 /* Fix illegal SG+CSUM combinations. */
3546 if ((dev->features & NETIF_F_SG) &&
8648b305 3547 !(dev->features & NETIF_F_ALL_CSUM)) {
5a8da02b 3548 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
1da177e4
LT
3549 dev->name);
3550 dev->features &= ~NETIF_F_SG;
3551 }
3552
3553 /* TSO requires that SG is present as well. */
3554 if ((dev->features & NETIF_F_TSO) &&
3555 !(dev->features & NETIF_F_SG)) {
5a8da02b 3556 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
1da177e4
LT
3557 dev->name);
3558 dev->features &= ~NETIF_F_TSO;
3559 }
e89e9cf5
AR
3560 if (dev->features & NETIF_F_UFO) {
3561 if (!(dev->features & NETIF_F_HW_CSUM)) {
3562 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3563 "NETIF_F_HW_CSUM feature.\n",
3564 dev->name);
3565 dev->features &= ~NETIF_F_UFO;
3566 }
3567 if (!(dev->features & NETIF_F_SG)) {
3568 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3569 "NETIF_F_SG feature.\n",
3570 dev->name);
3571 dev->features &= ~NETIF_F_UFO;
3572 }
3573 }
1da177e4
LT
3574
3575 /*
3576 * nil rebuild_header routine,
3577 * that should be never called and used as just bug trap.
3578 */
3579
3580 if (!dev->rebuild_header)
3581 dev->rebuild_header = default_rebuild_header;
3582
b17a7c17
SH
3583 ret = netdev_register_sysfs(dev);
3584 if (ret)
7ce1b0ed 3585 goto err_uninit;
b17a7c17
SH
3586 dev->reg_state = NETREG_REGISTERED;
3587
1da177e4
LT
3588 /*
3589 * Default initial state at registry is that the
3590 * device is present.
3591 */
3592
3593 set_bit(__LINK_STATE_PRESENT, &dev->state);
3594
1da177e4 3595 dev_init_scheduler(dev);
1da177e4 3596 dev_hold(dev);
ce286d32 3597 list_netdevice(dev);
1da177e4
LT
3598
3599 /* Notify protocols, that a new device appeared. */
fcc5a03a
HX
3600 ret = raw_notifier_call_chain(&netdev_chain, NETDEV_REGISTER, dev);
3601 ret = notifier_to_errno(ret);
3602 if (ret)
3603 unregister_netdevice(dev);
1da177e4
LT
3604
3605out:
3606 return ret;
7ce1b0ed
HX
3607
3608err_uninit:
3609 if (dev->uninit)
3610 dev->uninit(dev);
3611 goto out;
1da177e4
LT
3612}
3613
3614/**
3615 * register_netdev - register a network device
3616 * @dev: device to register
3617 *
3618 * Take a completed network device structure and add it to the kernel
3619 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3620 * chain. 0 is returned on success. A negative errno code is returned
3621 * on a failure to set up the device, or if the name is a duplicate.
3622 *
38b4da38 3623 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
3624 * and expands the device name if you passed a format string to
3625 * alloc_netdev.
3626 */
3627int register_netdev(struct net_device *dev)
3628{
3629 int err;
3630
3631 rtnl_lock();
3632
3633 /*
3634 * If the name is a format string the caller wants us to do a
3635 * name allocation.
3636 */
3637 if (strchr(dev->name, '%')) {
3638 err = dev_alloc_name(dev, dev->name);
3639 if (err < 0)
3640 goto out;
3641 }
4ec93edb 3642
1da177e4
LT
3643 err = register_netdevice(dev);
3644out:
3645 rtnl_unlock();
3646 return err;
3647}
3648EXPORT_SYMBOL(register_netdev);
3649
3650/*
3651 * netdev_wait_allrefs - wait until all references are gone.
3652 *
3653 * This is called when unregistering network devices.
3654 *
3655 * Any protocol or device that holds a reference should register
3656 * for netdevice notification, and cleanup and put back the
3657 * reference if they receive an UNREGISTER event.
3658 * We can get stuck here if buggy protocols don't correctly
4ec93edb 3659 * call dev_put.
1da177e4
LT
3660 */
3661static void netdev_wait_allrefs(struct net_device *dev)
3662{
3663 unsigned long rebroadcast_time, warning_time;
3664
3665 rebroadcast_time = warning_time = jiffies;
3666 while (atomic_read(&dev->refcnt) != 0) {
3667 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 3668 rtnl_lock();
1da177e4
LT
3669
3670 /* Rebroadcast unregister notification */
f07d5b94 3671 raw_notifier_call_chain(&netdev_chain,
1da177e4
LT
3672 NETDEV_UNREGISTER, dev);
3673
3674 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
3675 &dev->state)) {
3676 /* We must not have linkwatch events
3677 * pending on unregister. If this
3678 * happens, we simply run the queue
3679 * unscheduled, resulting in a noop
3680 * for this device.
3681 */
3682 linkwatch_run_queue();
3683 }
3684
6756ae4b 3685 __rtnl_unlock();
1da177e4
LT
3686
3687 rebroadcast_time = jiffies;
3688 }
3689
3690 msleep(250);
3691
3692 if (time_after(jiffies, warning_time + 10 * HZ)) {
3693 printk(KERN_EMERG "unregister_netdevice: "
3694 "waiting for %s to become free. Usage "
3695 "count = %d\n",
3696 dev->name, atomic_read(&dev->refcnt));
3697 warning_time = jiffies;
3698 }
3699 }
3700}
3701
3702/* The sequence is:
3703 *
3704 * rtnl_lock();
3705 * ...
3706 * register_netdevice(x1);
3707 * register_netdevice(x2);
3708 * ...
3709 * unregister_netdevice(y1);
3710 * unregister_netdevice(y2);
3711 * ...
3712 * rtnl_unlock();
3713 * free_netdev(y1);
3714 * free_netdev(y2);
3715 *
3716 * We are invoked by rtnl_unlock() after it drops the semaphore.
3717 * This allows us to deal with problems:
b17a7c17 3718 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
3719 * without deadlocking with linkwatch via keventd.
3720 * 2) Since we run with the RTNL semaphore not held, we can sleep
3721 * safely in order to wait for the netdev refcnt to drop to zero.
3722 */
4a3e2f71 3723static DEFINE_MUTEX(net_todo_run_mutex);
1da177e4
LT
3724void netdev_run_todo(void)
3725{
626ab0e6 3726 struct list_head list;
1da177e4
LT
3727
3728 /* Need to guard against multiple cpu's getting out of order. */
4a3e2f71 3729 mutex_lock(&net_todo_run_mutex);
1da177e4
LT
3730
3731 /* Not safe to do outside the semaphore. We must not return
3732 * until all unregister events invoked by the local processor
3733 * have been completed (either by this todo run, or one on
3734 * another cpu).
3735 */
3736 if (list_empty(&net_todo_list))
3737 goto out;
3738
3739 /* Snapshot list, allow later requests */
3740 spin_lock(&net_todo_list_lock);
626ab0e6 3741 list_replace_init(&net_todo_list, &list);
1da177e4 3742 spin_unlock(&net_todo_list_lock);
626ab0e6 3743
1da177e4
LT
3744 while (!list_empty(&list)) {
3745 struct net_device *dev
3746 = list_entry(list.next, struct net_device, todo_list);
3747 list_del(&dev->todo_list);
3748
b17a7c17
SH
3749 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
3750 printk(KERN_ERR "network todo '%s' but state %d\n",
3751 dev->name, dev->reg_state);
3752 dump_stack();
3753 continue;
3754 }
1da177e4 3755
b17a7c17 3756 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 3757
b17a7c17 3758 netdev_wait_allrefs(dev);
1da177e4 3759
b17a7c17
SH
3760 /* paranoia */
3761 BUG_ON(atomic_read(&dev->refcnt));
3762 BUG_TRAP(!dev->ip_ptr);
3763 BUG_TRAP(!dev->ip6_ptr);
3764 BUG_TRAP(!dev->dn_ptr);
1da177e4 3765
b17a7c17
SH
3766 if (dev->destructor)
3767 dev->destructor(dev);
9093bbb2
SH
3768
3769 /* Free network device */
3770 kobject_put(&dev->dev.kobj);
1da177e4
LT
3771 }
3772
3773out:
4a3e2f71 3774 mutex_unlock(&net_todo_run_mutex);
1da177e4
LT
3775}
3776
5a1b5898 3777static struct net_device_stats *internal_stats(struct net_device *dev)
c45d286e 3778{
5a1b5898 3779 return &dev->stats;
c45d286e
RR
3780}
3781
1da177e4 3782/**
f25f4e44 3783 * alloc_netdev_mq - allocate network device
1da177e4
LT
3784 * @sizeof_priv: size of private data to allocate space for
3785 * @name: device name format string
3786 * @setup: callback to initialize device
f25f4e44 3787 * @queue_count: the number of subqueues to allocate
1da177e4
LT
3788 *
3789 * Allocates a struct net_device with private data area for driver use
f25f4e44
PWJ
3790 * and performs basic initialization. Also allocates subquue structs
3791 * for each queue on the device at the end of the netdevice.
1da177e4 3792 */
f25f4e44
PWJ
3793struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
3794 void (*setup)(struct net_device *), unsigned int queue_count)
1da177e4
LT
3795{
3796 void *p;
3797 struct net_device *dev;
3798 int alloc_size;
3799
b6fe17d6
SH
3800 BUG_ON(strlen(name) >= sizeof(dev->name));
3801
1da177e4 3802 /* ensure 32-byte alignment of both the device and private area */
f25f4e44 3803 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST +
31ce72a6 3804 (sizeof(struct net_device_subqueue) * (queue_count - 1))) &
f25f4e44 3805 ~NETDEV_ALIGN_CONST;
1da177e4
LT
3806 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST;
3807
31380de9 3808 p = kzalloc(alloc_size, GFP_KERNEL);
1da177e4 3809 if (!p) {
b6fe17d6 3810 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
1da177e4
LT
3811 return NULL;
3812 }
1da177e4
LT
3813
3814 dev = (struct net_device *)
3815 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
3816 dev->padded = (char *)dev - (char *)p;
6d34b1c2 3817 dev->nd_net = &init_net;
1da177e4 3818
f25f4e44
PWJ
3819 if (sizeof_priv) {
3820 dev->priv = ((char *)dev +
3821 ((sizeof(struct net_device) +
3822 (sizeof(struct net_device_subqueue) *
31ce72a6 3823 (queue_count - 1)) + NETDEV_ALIGN_CONST)
f25f4e44
PWJ
3824 & ~NETDEV_ALIGN_CONST));
3825 }
3826
3827 dev->egress_subqueue_count = queue_count;
1da177e4 3828
5a1b5898 3829 dev->get_stats = internal_stats;
bea3348e 3830 netpoll_netdev_init(dev);
1da177e4
LT
3831 setup(dev);
3832 strcpy(dev->name, name);
3833 return dev;
3834}
f25f4e44 3835EXPORT_SYMBOL(alloc_netdev_mq);
1da177e4
LT
3836
3837/**
3838 * free_netdev - free network device
3839 * @dev: device
3840 *
4ec93edb
YH
3841 * This function does the last stage of destroying an allocated device
3842 * interface. The reference to the device object is released.
1da177e4
LT
3843 * If this is the last reference then it will be freed.
3844 */
3845void free_netdev(struct net_device *dev)
3846{
3847#ifdef CONFIG_SYSFS
3041a069 3848 /* Compatibility with error handling in drivers */
1da177e4
LT
3849 if (dev->reg_state == NETREG_UNINITIALIZED) {
3850 kfree((char *)dev - dev->padded);
3851 return;
3852 }
3853
3854 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
3855 dev->reg_state = NETREG_RELEASED;
3856
43cb76d9
GKH
3857 /* will free via device release */
3858 put_device(&dev->dev);
1da177e4
LT
3859#else
3860 kfree((char *)dev - dev->padded);
3861#endif
3862}
4ec93edb 3863
1da177e4 3864/* Synchronize with packet receive processing. */
4ec93edb 3865void synchronize_net(void)
1da177e4
LT
3866{
3867 might_sleep();
fbd568a3 3868 synchronize_rcu();
1da177e4
LT
3869}
3870
3871/**
3872 * unregister_netdevice - remove device from the kernel
3873 * @dev: device
3874 *
3875 * This function shuts down a device interface and removes it
3876 * from the kernel tables. On success 0 is returned, on a failure
3877 * a negative errno code is returned.
3878 *
3879 * Callers must hold the rtnl semaphore. You may want
3880 * unregister_netdev() instead of this.
3881 */
3882
22f8cde5 3883void unregister_netdevice(struct net_device *dev)
1da177e4 3884{
1da177e4
LT
3885 BUG_ON(dev_boot_phase);
3886 ASSERT_RTNL();
3887
3888 /* Some devices call without registering for initialization unwind. */
3889 if (dev->reg_state == NETREG_UNINITIALIZED) {
3890 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3891 "was registered\n", dev->name, dev);
22f8cde5
SH
3892
3893 WARN_ON(1);
3894 return;
1da177e4
LT
3895 }
3896
3897 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3898
3899 /* If device is running, close it first. */
3900 if (dev->flags & IFF_UP)
3901 dev_close(dev);
3902
3903 /* And unlink it from device chain. */
ce286d32 3904 unlist_netdevice(dev);
1da177e4
LT
3905
3906 dev->reg_state = NETREG_UNREGISTERING;
3907
3908 synchronize_net();
3909
3910 /* Shutdown queueing discipline. */
3911 dev_shutdown(dev);
3912
4ec93edb 3913
1da177e4
LT
3914 /* Notify protocols, that we are about to destroy
3915 this device. They should clean all the things.
3916 */
f07d5b94 3917 raw_notifier_call_chain(&netdev_chain, NETDEV_UNREGISTER, dev);
4ec93edb 3918
1da177e4 3919 /*
4417da66 3920 * Flush the unicast and multicast chains
1da177e4 3921 */
26cc2522 3922 dev_addr_discard(dev);
1da177e4
LT
3923
3924 if (dev->uninit)
3925 dev->uninit(dev);
3926
3927 /* Notifier chain MUST detach us from master device. */
3928 BUG_TRAP(!dev->master);
3929
9093bbb2
SH
3930 /* Remove entries from sysfs */
3931 netdev_unregister_sysfs(dev);
3932
1da177e4
LT
3933 /* Finish processing unregister after unlock */
3934 net_set_todo(dev);
3935
3936 synchronize_net();
3937
3938 dev_put(dev);
1da177e4
LT
3939}
3940
3941/**
3942 * unregister_netdev - remove device from the kernel
3943 * @dev: device
3944 *
3945 * This function shuts down a device interface and removes it
3946 * from the kernel tables. On success 0 is returned, on a failure
3947 * a negative errno code is returned.
3948 *
3949 * This is just a wrapper for unregister_netdevice that takes
3950 * the rtnl semaphore. In general you want to use this and not
3951 * unregister_netdevice.
3952 */
3953void unregister_netdev(struct net_device *dev)
3954{
3955 rtnl_lock();
3956 unregister_netdevice(dev);
3957 rtnl_unlock();
3958}
3959
3960EXPORT_SYMBOL(unregister_netdev);
3961
ce286d32
EB
3962/**
3963 * dev_change_net_namespace - move device to different nethost namespace
3964 * @dev: device
3965 * @net: network namespace
3966 * @pat: If not NULL name pattern to try if the current device name
3967 * is already taken in the destination network namespace.
3968 *
3969 * This function shuts down a device interface and moves it
3970 * to a new network namespace. On success 0 is returned, on
3971 * a failure a netagive errno code is returned.
3972 *
3973 * Callers must hold the rtnl semaphore.
3974 */
3975
3976int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
3977{
3978 char buf[IFNAMSIZ];
3979 const char *destname;
3980 int err;
3981
3982 ASSERT_RTNL();
3983
3984 /* Don't allow namespace local devices to be moved. */
3985 err = -EINVAL;
3986 if (dev->features & NETIF_F_NETNS_LOCAL)
3987 goto out;
3988
3989 /* Ensure the device has been registrered */
3990 err = -EINVAL;
3991 if (dev->reg_state != NETREG_REGISTERED)
3992 goto out;
3993
3994 /* Get out if there is nothing todo */
3995 err = 0;
3996 if (dev->nd_net == net)
3997 goto out;
3998
3999 /* Pick the destination device name, and ensure
4000 * we can use it in the destination network namespace.
4001 */
4002 err = -EEXIST;
4003 destname = dev->name;
4004 if (__dev_get_by_name(net, destname)) {
4005 /* We get here if we can't use the current device name */
4006 if (!pat)
4007 goto out;
4008 if (!dev_valid_name(pat))
4009 goto out;
4010 if (strchr(pat, '%')) {
4011 if (__dev_alloc_name(net, pat, buf) < 0)
4012 goto out;
4013 destname = buf;
4014 } else
4015 destname = pat;
4016 if (__dev_get_by_name(net, destname))
4017 goto out;
4018 }
4019
4020 /*
4021 * And now a mini version of register_netdevice unregister_netdevice.
4022 */
4023
4024 /* If device is running close it first. */
4025 if (dev->flags & IFF_UP)
4026 dev_close(dev);
4027
4028 /* And unlink it from device chain */
4029 err = -ENODEV;
4030 unlist_netdevice(dev);
4031
4032 synchronize_net();
4033
4034 /* Shutdown queueing discipline. */
4035 dev_shutdown(dev);
4036
4037 /* Notify protocols, that we are about to destroy
4038 this device. They should clean all the things.
4039 */
4040 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4041
4042 /*
4043 * Flush the unicast and multicast chains
4044 */
4045 dev_addr_discard(dev);
4046
4047 /* Actually switch the network namespace */
4048 dev->nd_net = net;
4049
4050 /* Assign the new device name */
4051 if (destname != dev->name)
4052 strcpy(dev->name, destname);
4053
4054 /* If there is an ifindex conflict assign a new one */
4055 if (__dev_get_by_index(net, dev->ifindex)) {
4056 int iflink = (dev->iflink == dev->ifindex);
4057 dev->ifindex = dev_new_index(net);
4058 if (iflink)
4059 dev->iflink = dev->ifindex;
4060 }
4061
4062 /* Fixup sysfs */
4063 err = device_rename(&dev->dev, dev->name);
4064 BUG_ON(err);
4065
4066 /* Add the device back in the hashes */
4067 list_netdevice(dev);
4068
4069 /* Notify protocols, that a new device appeared. */
4070 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4071
4072 synchronize_net();
4073 err = 0;
4074out:
4075 return err;
4076}
4077
1da177e4
LT
4078static int dev_cpu_callback(struct notifier_block *nfb,
4079 unsigned long action,
4080 void *ocpu)
4081{
4082 struct sk_buff **list_skb;
4083 struct net_device **list_net;
4084 struct sk_buff *skb;
4085 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4086 struct softnet_data *sd, *oldsd;
4087
8bb78442 4088 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
4089 return NOTIFY_OK;
4090
4091 local_irq_disable();
4092 cpu = smp_processor_id();
4093 sd = &per_cpu(softnet_data, cpu);
4094 oldsd = &per_cpu(softnet_data, oldcpu);
4095
4096 /* Find end of our completion_queue. */
4097 list_skb = &sd->completion_queue;
4098 while (*list_skb)
4099 list_skb = &(*list_skb)->next;
4100 /* Append completion queue from offline CPU. */
4101 *list_skb = oldsd->completion_queue;
4102 oldsd->completion_queue = NULL;
4103
4104 /* Find end of our output_queue. */
4105 list_net = &sd->output_queue;
4106 while (*list_net)
4107 list_net = &(*list_net)->next_sched;
4108 /* Append output queue from offline CPU. */
4109 *list_net = oldsd->output_queue;
4110 oldsd->output_queue = NULL;
4111
4112 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4113 local_irq_enable();
4114
4115 /* Process offline CPU's input_pkt_queue */
4116 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4117 netif_rx(skb);
4118
4119 return NOTIFY_OK;
4120}
1da177e4 4121
db217334
CL
4122#ifdef CONFIG_NET_DMA
4123/**
0ed72ec4
RD
4124 * net_dma_rebalance - try to maintain one DMA channel per CPU
4125 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4126 *
4127 * This is called when the number of channels allocated to the net_dma client
4128 * changes. The net_dma client tries to have one DMA channel per CPU.
db217334 4129 */
d379b01e
DW
4130
4131static void net_dma_rebalance(struct net_dma *net_dma)
db217334 4132{
d379b01e 4133 unsigned int cpu, i, n, chan_idx;
db217334
CL
4134 struct dma_chan *chan;
4135
d379b01e 4136 if (cpus_empty(net_dma->channel_mask)) {
db217334 4137 for_each_online_cpu(cpu)
29bbd72d 4138 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
db217334
CL
4139 return;
4140 }
4141
4142 i = 0;
4143 cpu = first_cpu(cpu_online_map);
4144
d379b01e
DW
4145 for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
4146 chan = net_dma->channels[chan_idx];
4147
4148 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4149 + (i < (num_online_cpus() %
4150 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
db217334
CL
4151
4152 while(n) {
29bbd72d 4153 per_cpu(softnet_data, cpu).net_dma = chan;
db217334
CL
4154 cpu = next_cpu(cpu, cpu_online_map);
4155 n--;
4156 }
4157 i++;
4158 }
db217334
CL
4159}
4160
4161/**
4162 * netdev_dma_event - event callback for the net_dma_client
4163 * @client: should always be net_dma_client
f4b8ea78 4164 * @chan: DMA channel for the event
0ed72ec4 4165 * @state: DMA state to be handled
db217334 4166 */
d379b01e
DW
4167static enum dma_state_client
4168netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4169 enum dma_state state)
4170{
4171 int i, found = 0, pos = -1;
4172 struct net_dma *net_dma =
4173 container_of(client, struct net_dma, client);
4174 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4175
4176 spin_lock(&net_dma->lock);
4177 switch (state) {
4178 case DMA_RESOURCE_AVAILABLE:
4179 for (i = 0; i < NR_CPUS; i++)
4180 if (net_dma->channels[i] == chan) {
4181 found = 1;
4182 break;
4183 } else if (net_dma->channels[i] == NULL && pos < 0)
4184 pos = i;
4185
4186 if (!found && pos >= 0) {
4187 ack = DMA_ACK;
4188 net_dma->channels[pos] = chan;
4189 cpu_set(pos, net_dma->channel_mask);
4190 net_dma_rebalance(net_dma);
4191 }
db217334
CL
4192 break;
4193 case DMA_RESOURCE_REMOVED:
d379b01e
DW
4194 for (i = 0; i < NR_CPUS; i++)
4195 if (net_dma->channels[i] == chan) {
4196 found = 1;
4197 pos = i;
4198 break;
4199 }
4200
4201 if (found) {
4202 ack = DMA_ACK;
4203 cpu_clear(pos, net_dma->channel_mask);
4204 net_dma->channels[i] = NULL;
4205 net_dma_rebalance(net_dma);
4206 }
db217334
CL
4207 break;
4208 default:
4209 break;
4210 }
d379b01e
DW
4211 spin_unlock(&net_dma->lock);
4212
4213 return ack;
db217334
CL
4214}
4215
4216/**
4217 * netdev_dma_regiser - register the networking subsystem as a DMA client
4218 */
4219static int __init netdev_dma_register(void)
4220{
d379b01e
DW
4221 spin_lock_init(&net_dma.lock);
4222 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4223 dma_async_client_register(&net_dma.client);
4224 dma_async_client_chan_request(&net_dma.client);
db217334
CL
4225 return 0;
4226}
4227
4228#else
4229static int __init netdev_dma_register(void) { return -ENODEV; }
4230#endif /* CONFIG_NET_DMA */
1da177e4 4231
7f353bf2
HX
4232/**
4233 * netdev_compute_feature - compute conjunction of two feature sets
4234 * @all: first feature set
4235 * @one: second feature set
4236 *
4237 * Computes a new feature set after adding a device with feature set
4238 * @one to the master device with current feature set @all. Returns
4239 * the new feature set.
4240 */
4241int netdev_compute_features(unsigned long all, unsigned long one)
4242{
4243 /* if device needs checksumming, downgrade to hw checksumming */
4244 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4245 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4246
4247 /* if device can't do all checksum, downgrade to ipv4/ipv6 */
4248 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4249 all ^= NETIF_F_HW_CSUM
4250 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4251
4252 if (one & NETIF_F_GSO)
4253 one |= NETIF_F_GSO_SOFTWARE;
4254 one |= NETIF_F_GSO;
4255
4256 /* If even one device supports robust GSO, enable it for all. */
4257 if (one & NETIF_F_GSO_ROBUST)
4258 all |= NETIF_F_GSO_ROBUST;
4259
4260 all &= one | NETIF_F_LLTX;
4261
4262 if (!(all & NETIF_F_ALL_CSUM))
4263 all &= ~NETIF_F_SG;
4264 if (!(all & NETIF_F_SG))
4265 all &= ~NETIF_F_GSO_MASK;
4266
4267 return all;
4268}
4269EXPORT_SYMBOL(netdev_compute_features);
4270
881d966b
EB
4271/* Initialize per network namespace state */
4272static int netdev_init(struct net *net)
4273{
4274 int i;
4275 INIT_LIST_HEAD(&net->dev_base_head);
4276 rwlock_init(&dev_base_lock);
4277
4278 net->dev_name_head = kmalloc(
4279 sizeof(*net->dev_name_head)*NETDEV_HASHENTRIES, GFP_KERNEL);
4280 if (!net->dev_name_head)
4281 return -ENOMEM;
4282
4283 net->dev_index_head = kmalloc(
4284 sizeof(*net->dev_index_head)*NETDEV_HASHENTRIES, GFP_KERNEL);
4285 if (!net->dev_index_head) {
4286 kfree(net->dev_name_head);
4287 return -ENOMEM;
4288 }
4289
4290 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4291 INIT_HLIST_HEAD(&net->dev_name_head[i]);
4292
4293 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4294 INIT_HLIST_HEAD(&net->dev_index_head[i]);
4295
4296 return 0;
4297}
4298
4299static void netdev_exit(struct net *net)
4300{
4301 kfree(net->dev_name_head);
4302 kfree(net->dev_index_head);
4303}
4304
4305static struct pernet_operations netdev_net_ops = {
4306 .init = netdev_init,
4307 .exit = netdev_exit,
4308};
4309
ce286d32
EB
4310static void default_device_exit(struct net *net)
4311{
4312 struct net_device *dev, *next;
4313 /*
4314 * Push all migratable of the network devices back to the
4315 * initial network namespace
4316 */
4317 rtnl_lock();
4318 for_each_netdev_safe(net, dev, next) {
4319 int err;
4320
4321 /* Ignore unmoveable devices (i.e. loopback) */
4322 if (dev->features & NETIF_F_NETNS_LOCAL)
4323 continue;
4324
4325 /* Push remaing network devices to init_net */
4326 err = dev_change_net_namespace(dev, &init_net, "dev%d");
4327 if (err) {
4328 printk(KERN_WARNING "%s: failed to move %s to init_net: %d\n",
4329 __func__, dev->name, err);
4330 unregister_netdevice(dev);
4331 }
4332 }
4333 rtnl_unlock();
4334}
4335
4336static struct pernet_operations default_device_ops = {
4337 .exit = default_device_exit,
4338};
4339
1da177e4
LT
4340/*
4341 * Initialize the DEV module. At boot time this walks the device list and
4342 * unhooks any devices that fail to initialise (normally hardware not
4343 * present) and leaves us with a valid list of present and active devices.
4344 *
4345 */
4346
4347/*
4348 * This is called single threaded during boot, so no need
4349 * to take the rtnl semaphore.
4350 */
4351static int __init net_dev_init(void)
4352{
4353 int i, rc = -ENOMEM;
4354
4355 BUG_ON(!dev_boot_phase);
4356
1da177e4
LT
4357 if (dev_proc_init())
4358 goto out;
4359
4360 if (netdev_sysfs_init())
4361 goto out;
4362
4363 INIT_LIST_HEAD(&ptype_all);
4ec93edb 4364 for (i = 0; i < 16; i++)
1da177e4
LT
4365 INIT_LIST_HEAD(&ptype_base[i]);
4366
881d966b
EB
4367 if (register_pernet_subsys(&netdev_net_ops))
4368 goto out;
1da177e4 4369
ce286d32
EB
4370 if (register_pernet_device(&default_device_ops))
4371 goto out;
4372
1da177e4
LT
4373 /*
4374 * Initialise the packet receive queues.
4375 */
4376
6f912042 4377 for_each_possible_cpu(i) {
1da177e4
LT
4378 struct softnet_data *queue;
4379
4380 queue = &per_cpu(softnet_data, i);
4381 skb_queue_head_init(&queue->input_pkt_queue);
1da177e4
LT
4382 queue->completion_queue = NULL;
4383 INIT_LIST_HEAD(&queue->poll_list);
bea3348e
SH
4384
4385 queue->backlog.poll = process_backlog;
4386 queue->backlog.weight = weight_p;
1da177e4
LT
4387 }
4388
db217334
CL
4389 netdev_dma_register();
4390
1da177e4
LT
4391 dev_boot_phase = 0;
4392
4393 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
4394 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
4395
4396 hotcpu_notifier(dev_cpu_callback, 0);
4397 dst_init();
4398 dev_mcast_init();
4399 rc = 0;
4400out:
4401 return rc;
4402}
4403
4404subsys_initcall(net_dev_init);
4405
4406EXPORT_SYMBOL(__dev_get_by_index);
4407EXPORT_SYMBOL(__dev_get_by_name);
4408EXPORT_SYMBOL(__dev_remove_pack);
c2373ee9 4409EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
4410EXPORT_SYMBOL(dev_add_pack);
4411EXPORT_SYMBOL(dev_alloc_name);
4412EXPORT_SYMBOL(dev_close);
4413EXPORT_SYMBOL(dev_get_by_flags);
4414EXPORT_SYMBOL(dev_get_by_index);
4415EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
4416EXPORT_SYMBOL(dev_open);
4417EXPORT_SYMBOL(dev_queue_xmit);
4418EXPORT_SYMBOL(dev_remove_pack);
4419EXPORT_SYMBOL(dev_set_allmulti);
4420EXPORT_SYMBOL(dev_set_promiscuity);
4421EXPORT_SYMBOL(dev_change_flags);
4422EXPORT_SYMBOL(dev_set_mtu);
4423EXPORT_SYMBOL(dev_set_mac_address);
4424EXPORT_SYMBOL(free_netdev);
4425EXPORT_SYMBOL(netdev_boot_setup_check);
4426EXPORT_SYMBOL(netdev_set_master);
4427EXPORT_SYMBOL(netdev_state_change);
4428EXPORT_SYMBOL(netif_receive_skb);
4429EXPORT_SYMBOL(netif_rx);
4430EXPORT_SYMBOL(register_gifconf);
4431EXPORT_SYMBOL(register_netdevice);
4432EXPORT_SYMBOL(register_netdevice_notifier);
4433EXPORT_SYMBOL(skb_checksum_help);
4434EXPORT_SYMBOL(synchronize_net);
4435EXPORT_SYMBOL(unregister_netdevice);
4436EXPORT_SYMBOL(unregister_netdevice_notifier);
4437EXPORT_SYMBOL(net_enable_timestamp);
4438EXPORT_SYMBOL(net_disable_timestamp);
4439EXPORT_SYMBOL(dev_get_flags);
4440
4441#if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4442EXPORT_SYMBOL(br_handle_frame_hook);
4443EXPORT_SYMBOL(br_fdb_get_hook);
4444EXPORT_SYMBOL(br_fdb_put_hook);
4445#endif
4446
4447#ifdef CONFIG_KMOD
4448EXPORT_SYMBOL(dev_load);
4449#endif
4450
4451EXPORT_PER_CPU_SYMBOL(softnet_data);