]> bbs.cooldavid.org Git - net-next-2.6.git/blame - net/core/dev.c
mac80211: Temporarily mark QoS support BROKEN.
[net-next-2.6.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <asm/system.h>
77#include <linux/bitops.h>
4fc268d2 78#include <linux/capability.h>
1da177e4
LT
79#include <linux/cpu.h>
80#include <linux/types.h>
81#include <linux/kernel.h>
82#include <linux/sched.h>
4a3e2f71 83#include <linux/mutex.h>
1da177e4
LT
84#include <linux/string.h>
85#include <linux/mm.h>
86#include <linux/socket.h>
87#include <linux/sockios.h>
88#include <linux/errno.h>
89#include <linux/interrupt.h>
90#include <linux/if_ether.h>
91#include <linux/netdevice.h>
92#include <linux/etherdevice.h>
0187bdfb 93#include <linux/ethtool.h>
1da177e4
LT
94#include <linux/notifier.h>
95#include <linux/skbuff.h>
457c4cbc 96#include <net/net_namespace.h>
1da177e4
LT
97#include <net/sock.h>
98#include <linux/rtnetlink.h>
99#include <linux/proc_fs.h>
100#include <linux/seq_file.h>
101#include <linux/stat.h>
102#include <linux/if_bridge.h>
b863ceb7 103#include <linux/if_macvlan.h>
1da177e4
LT
104#include <net/dst.h>
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
107#include <linux/highmem.h>
108#include <linux/init.h>
109#include <linux/kmod.h>
110#include <linux/module.h>
111#include <linux/kallsyms.h>
112#include <linux/netpoll.h>
113#include <linux/rcupdate.h>
114#include <linux/delay.h>
295f4a1f 115#include <net/wext.h>
1da177e4 116#include <net/iw_handler.h>
1da177e4 117#include <asm/current.h>
5bdb9886 118#include <linux/audit.h>
db217334 119#include <linux/dmaengine.h>
f6a78bfc 120#include <linux/err.h>
c7fa9d18 121#include <linux/ctype.h>
723e98b7 122#include <linux/if_arp.h>
6de329e2 123#include <linux/if_vlan.h>
1da177e4 124
342709ef
PE
125#include "net-sysfs.h"
126
1da177e4
LT
127/*
128 * The list of packet types we will receive (as opposed to discard)
129 * and the routines to invoke.
130 *
131 * Why 16. Because with 16 the only overlap we get on a hash of the
132 * low nibble of the protocol value is RARP/SNAP/X.25.
133 *
134 * NOTE: That is no longer true with the addition of VLAN tags. Not
135 * sure which should go first, but I bet it won't make much
136 * difference if we are running VLANs. The good news is that
137 * this protocol won't be in the list unless compiled in, so
3041a069 138 * the average user (w/out VLANs) will not be adversely affected.
1da177e4
LT
139 * --BLG
140 *
141 * 0800 IP
142 * 8100 802.1Q VLAN
143 * 0001 802.3
144 * 0002 AX.25
145 * 0004 802.2
146 * 8035 RARP
147 * 0005 SNAP
148 * 0805 X.25
149 * 0806 ARP
150 * 8137 IPX
151 * 0009 Localtalk
152 * 86DD IPv6
153 */
154
82d8a867
PE
155#define PTYPE_HASH_SIZE (16)
156#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
157
1da177e4 158static DEFINE_SPINLOCK(ptype_lock);
82d8a867 159static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
6b2bedc3 160static struct list_head ptype_all __read_mostly; /* Taps */
1da177e4 161
db217334 162#ifdef CONFIG_NET_DMA
d379b01e
DW
163struct net_dma {
164 struct dma_client client;
165 spinlock_t lock;
166 cpumask_t channel_mask;
0c0b0aca 167 struct dma_chan **channels;
d379b01e
DW
168};
169
170static enum dma_state_client
171netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
172 enum dma_state state);
173
174static struct net_dma net_dma = {
175 .client = {
176 .event_callback = netdev_dma_event,
177 },
178};
db217334
CL
179#endif
180
1da177e4 181/*
7562f876 182 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
183 * semaphore.
184 *
185 * Pure readers hold dev_base_lock for reading.
186 *
187 * Writers must hold the rtnl semaphore while they loop through the
7562f876 188 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
189 * actual updates. This allows pure readers to access the list even
190 * while a writer is preparing to update it.
191 *
192 * To put it another way, dev_base_lock is held for writing only to
193 * protect against pure readers; the rtnl semaphore provides the
194 * protection against other writers.
195 *
196 * See, for example usages, register_netdevice() and
197 * unregister_netdevice(), which must be called with the rtnl
198 * semaphore held.
199 */
1da177e4
LT
200DEFINE_RWLOCK(dev_base_lock);
201
1da177e4
LT
202EXPORT_SYMBOL(dev_base_lock);
203
204#define NETDEV_HASHBITS 8
881d966b 205#define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
1da177e4 206
881d966b 207static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4
LT
208{
209 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
881d966b 210 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
1da177e4
LT
211}
212
881d966b 213static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 214{
881d966b 215 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
1da177e4
LT
216}
217
ce286d32
EB
218/* Device list insertion */
219static int list_netdevice(struct net_device *dev)
220{
c346dca1 221 struct net *net = dev_net(dev);
ce286d32
EB
222
223 ASSERT_RTNL();
224
225 write_lock_bh(&dev_base_lock);
226 list_add_tail(&dev->dev_list, &net->dev_base_head);
227 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
228 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
229 write_unlock_bh(&dev_base_lock);
230 return 0;
231}
232
233/* Device list removal */
234static void unlist_netdevice(struct net_device *dev)
235{
236 ASSERT_RTNL();
237
238 /* Unlink dev from the device chain */
239 write_lock_bh(&dev_base_lock);
240 list_del(&dev->dev_list);
241 hlist_del(&dev->name_hlist);
242 hlist_del(&dev->index_hlist);
243 write_unlock_bh(&dev_base_lock);
244}
245
1da177e4
LT
246/*
247 * Our notifier list
248 */
249
f07d5b94 250static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
251
252/*
253 * Device drivers call our routines to queue packets here. We empty the
254 * queue in the local softnet handler.
255 */
bea3348e
SH
256
257DEFINE_PER_CPU(struct softnet_data, softnet_data);
1da177e4 258
723e98b7
JP
259#ifdef CONFIG_DEBUG_LOCK_ALLOC
260/*
c773e847 261 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
262 * according to dev->type
263 */
264static const unsigned short netdev_lock_type[] =
265 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
266 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
267 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
268 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
269 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
270 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
271 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
272 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
273 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
274 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
275 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
276 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
277 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
278 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
279 ARPHRD_NONE};
280
281static const char *netdev_lock_name[] =
282 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
283 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
284 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
285 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
286 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
287 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
288 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
289 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
290 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
291 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
292 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
293 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
294 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
295 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
296 "_xmit_NONE"};
297
298static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
299
300static inline unsigned short netdev_lock_pos(unsigned short dev_type)
301{
302 int i;
303
304 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
305 if (netdev_lock_type[i] == dev_type)
306 return i;
307 /* the last key is used by default */
308 return ARRAY_SIZE(netdev_lock_type) - 1;
309}
310
311static inline void netdev_set_lockdep_class(spinlock_t *lock,
312 unsigned short dev_type)
313{
314 int i;
315
316 i = netdev_lock_pos(dev_type);
317 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
318 netdev_lock_name[i]);
319}
320#else
321static inline void netdev_set_lockdep_class(spinlock_t *lock,
322 unsigned short dev_type)
323{
324}
325#endif
1da177e4
LT
326
327/*******************************************************************************
328
329 Protocol management and registration routines
330
331*******************************************************************************/
332
1da177e4
LT
333/*
334 * Add a protocol ID to the list. Now that the input handler is
335 * smarter we can dispense with all the messy stuff that used to be
336 * here.
337 *
338 * BEWARE!!! Protocol handlers, mangling input packets,
339 * MUST BE last in hash buckets and checking protocol handlers
340 * MUST start from promiscuous ptype_all chain in net_bh.
341 * It is true now, do not change it.
342 * Explanation follows: if protocol handler, mangling packet, will
343 * be the first on list, it is not able to sense, that packet
344 * is cloned and should be copied-on-write, so that it will
345 * change it and subsequent readers will get broken packet.
346 * --ANK (980803)
347 */
348
349/**
350 * dev_add_pack - add packet handler
351 * @pt: packet type declaration
352 *
353 * Add a protocol handler to the networking stack. The passed &packet_type
354 * is linked into kernel lists and may not be freed until it has been
355 * removed from the kernel lists.
356 *
4ec93edb 357 * This call does not sleep therefore it can not
1da177e4
LT
358 * guarantee all CPU's that are in middle of receiving packets
359 * will see the new packet type (until the next received packet).
360 */
361
362void dev_add_pack(struct packet_type *pt)
363{
364 int hash;
365
366 spin_lock_bh(&ptype_lock);
9be9a6b9 367 if (pt->type == htons(ETH_P_ALL))
1da177e4 368 list_add_rcu(&pt->list, &ptype_all);
9be9a6b9 369 else {
82d8a867 370 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
1da177e4
LT
371 list_add_rcu(&pt->list, &ptype_base[hash]);
372 }
373 spin_unlock_bh(&ptype_lock);
374}
375
1da177e4
LT
376/**
377 * __dev_remove_pack - remove packet handler
378 * @pt: packet type declaration
379 *
380 * Remove a protocol handler that was previously added to the kernel
381 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
382 * from the kernel lists and can be freed or reused once this function
4ec93edb 383 * returns.
1da177e4
LT
384 *
385 * The packet type might still be in use by receivers
386 * and must not be freed until after all the CPU's have gone
387 * through a quiescent state.
388 */
389void __dev_remove_pack(struct packet_type *pt)
390{
391 struct list_head *head;
392 struct packet_type *pt1;
393
394 spin_lock_bh(&ptype_lock);
395
9be9a6b9 396 if (pt->type == htons(ETH_P_ALL))
1da177e4 397 head = &ptype_all;
9be9a6b9 398 else
82d8a867 399 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
1da177e4
LT
400
401 list_for_each_entry(pt1, head, list) {
402 if (pt == pt1) {
403 list_del_rcu(&pt->list);
404 goto out;
405 }
406 }
407
408 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
409out:
410 spin_unlock_bh(&ptype_lock);
411}
412/**
413 * dev_remove_pack - remove packet handler
414 * @pt: packet type declaration
415 *
416 * Remove a protocol handler that was previously added to the kernel
417 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
418 * from the kernel lists and can be freed or reused once this function
419 * returns.
420 *
421 * This call sleeps to guarantee that no CPU is looking at the packet
422 * type after return.
423 */
424void dev_remove_pack(struct packet_type *pt)
425{
426 __dev_remove_pack(pt);
4ec93edb 427
1da177e4
LT
428 synchronize_net();
429}
430
431/******************************************************************************
432
433 Device Boot-time Settings Routines
434
435*******************************************************************************/
436
437/* Boot time configuration table */
438static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
439
440/**
441 * netdev_boot_setup_add - add new setup entry
442 * @name: name of the device
443 * @map: configured settings for the device
444 *
445 * Adds new setup entry to the dev_boot_setup list. The function
446 * returns 0 on error and 1 on success. This is a generic routine to
447 * all netdevices.
448 */
449static int netdev_boot_setup_add(char *name, struct ifmap *map)
450{
451 struct netdev_boot_setup *s;
452 int i;
453
454 s = dev_boot_setup;
455 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
456 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
457 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 458 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
459 memcpy(&s[i].map, map, sizeof(s[i].map));
460 break;
461 }
462 }
463
464 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
465}
466
467/**
468 * netdev_boot_setup_check - check boot time settings
469 * @dev: the netdevice
470 *
471 * Check boot time settings for the device.
472 * The found settings are set for the device to be used
473 * later in the device probing.
474 * Returns 0 if no settings found, 1 if they are.
475 */
476int netdev_boot_setup_check(struct net_device *dev)
477{
478 struct netdev_boot_setup *s = dev_boot_setup;
479 int i;
480
481 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
482 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 483 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
484 dev->irq = s[i].map.irq;
485 dev->base_addr = s[i].map.base_addr;
486 dev->mem_start = s[i].map.mem_start;
487 dev->mem_end = s[i].map.mem_end;
488 return 1;
489 }
490 }
491 return 0;
492}
493
494
495/**
496 * netdev_boot_base - get address from boot time settings
497 * @prefix: prefix for network device
498 * @unit: id for network device
499 *
500 * Check boot time settings for the base address of device.
501 * The found settings are set for the device to be used
502 * later in the device probing.
503 * Returns 0 if no settings found.
504 */
505unsigned long netdev_boot_base(const char *prefix, int unit)
506{
507 const struct netdev_boot_setup *s = dev_boot_setup;
508 char name[IFNAMSIZ];
509 int i;
510
511 sprintf(name, "%s%d", prefix, unit);
512
513 /*
514 * If device already registered then return base of 1
515 * to indicate not to probe for this interface
516 */
881d966b 517 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
518 return 1;
519
520 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
521 if (!strcmp(name, s[i].name))
522 return s[i].map.base_addr;
523 return 0;
524}
525
526/*
527 * Saves at boot time configured settings for any netdevice.
528 */
529int __init netdev_boot_setup(char *str)
530{
531 int ints[5];
532 struct ifmap map;
533
534 str = get_options(str, ARRAY_SIZE(ints), ints);
535 if (!str || !*str)
536 return 0;
537
538 /* Save settings */
539 memset(&map, 0, sizeof(map));
540 if (ints[0] > 0)
541 map.irq = ints[1];
542 if (ints[0] > 1)
543 map.base_addr = ints[2];
544 if (ints[0] > 2)
545 map.mem_start = ints[3];
546 if (ints[0] > 3)
547 map.mem_end = ints[4];
548
549 /* Add new entry to the list */
550 return netdev_boot_setup_add(str, &map);
551}
552
553__setup("netdev=", netdev_boot_setup);
554
555/*******************************************************************************
556
557 Device Interface Subroutines
558
559*******************************************************************************/
560
561/**
562 * __dev_get_by_name - find a device by its name
c4ea43c5 563 * @net: the applicable net namespace
1da177e4
LT
564 * @name: name to find
565 *
566 * Find an interface by name. Must be called under RTNL semaphore
567 * or @dev_base_lock. If the name is found a pointer to the device
568 * is returned. If the name is not found then %NULL is returned. The
569 * reference counters are not incremented so the caller must be
570 * careful with locks.
571 */
572
881d966b 573struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
574{
575 struct hlist_node *p;
576
881d966b 577 hlist_for_each(p, dev_name_hash(net, name)) {
1da177e4
LT
578 struct net_device *dev
579 = hlist_entry(p, struct net_device, name_hlist);
580 if (!strncmp(dev->name, name, IFNAMSIZ))
581 return dev;
582 }
583 return NULL;
584}
585
586/**
587 * dev_get_by_name - find a device by its name
c4ea43c5 588 * @net: the applicable net namespace
1da177e4
LT
589 * @name: name to find
590 *
591 * Find an interface by name. This can be called from any
592 * context and does its own locking. The returned handle has
593 * the usage count incremented and the caller must use dev_put() to
594 * release it when it is no longer needed. %NULL is returned if no
595 * matching device is found.
596 */
597
881d966b 598struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
599{
600 struct net_device *dev;
601
602 read_lock(&dev_base_lock);
881d966b 603 dev = __dev_get_by_name(net, name);
1da177e4
LT
604 if (dev)
605 dev_hold(dev);
606 read_unlock(&dev_base_lock);
607 return dev;
608}
609
610/**
611 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 612 * @net: the applicable net namespace
1da177e4
LT
613 * @ifindex: index of device
614 *
615 * Search for an interface by index. Returns %NULL if the device
616 * is not found or a pointer to the device. The device has not
617 * had its reference counter increased so the caller must be careful
618 * about locking. The caller must hold either the RTNL semaphore
619 * or @dev_base_lock.
620 */
621
881d966b 622struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
623{
624 struct hlist_node *p;
625
881d966b 626 hlist_for_each(p, dev_index_hash(net, ifindex)) {
1da177e4
LT
627 struct net_device *dev
628 = hlist_entry(p, struct net_device, index_hlist);
629 if (dev->ifindex == ifindex)
630 return dev;
631 }
632 return NULL;
633}
634
635
636/**
637 * dev_get_by_index - find a device by its ifindex
c4ea43c5 638 * @net: the applicable net namespace
1da177e4
LT
639 * @ifindex: index of device
640 *
641 * Search for an interface by index. Returns NULL if the device
642 * is not found or a pointer to the device. The device returned has
643 * had a reference added and the pointer is safe until the user calls
644 * dev_put to indicate they have finished with it.
645 */
646
881d966b 647struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
648{
649 struct net_device *dev;
650
651 read_lock(&dev_base_lock);
881d966b 652 dev = __dev_get_by_index(net, ifindex);
1da177e4
LT
653 if (dev)
654 dev_hold(dev);
655 read_unlock(&dev_base_lock);
656 return dev;
657}
658
659/**
660 * dev_getbyhwaddr - find a device by its hardware address
c4ea43c5 661 * @net: the applicable net namespace
1da177e4
LT
662 * @type: media type of device
663 * @ha: hardware address
664 *
665 * Search for an interface by MAC address. Returns NULL if the device
666 * is not found or a pointer to the device. The caller must hold the
667 * rtnl semaphore. The returned device has not had its ref count increased
668 * and the caller must therefore be careful about locking
669 *
670 * BUGS:
671 * If the API was consistent this would be __dev_get_by_hwaddr
672 */
673
881d966b 674struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
1da177e4
LT
675{
676 struct net_device *dev;
677
678 ASSERT_RTNL();
679
81103a52 680 for_each_netdev(net, dev)
1da177e4
LT
681 if (dev->type == type &&
682 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
683 return dev;
684
685 return NULL;
1da177e4
LT
686}
687
cf309e3f
JF
688EXPORT_SYMBOL(dev_getbyhwaddr);
689
881d966b 690struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
691{
692 struct net_device *dev;
693
4e9cac2b 694 ASSERT_RTNL();
881d966b 695 for_each_netdev(net, dev)
4e9cac2b 696 if (dev->type == type)
7562f876
PE
697 return dev;
698
699 return NULL;
4e9cac2b
PM
700}
701
702EXPORT_SYMBOL(__dev_getfirstbyhwtype);
703
881d966b 704struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b
PM
705{
706 struct net_device *dev;
707
708 rtnl_lock();
881d966b 709 dev = __dev_getfirstbyhwtype(net, type);
4e9cac2b
PM
710 if (dev)
711 dev_hold(dev);
1da177e4
LT
712 rtnl_unlock();
713 return dev;
714}
715
716EXPORT_SYMBOL(dev_getfirstbyhwtype);
717
718/**
719 * dev_get_by_flags - find any device with given flags
c4ea43c5 720 * @net: the applicable net namespace
1da177e4
LT
721 * @if_flags: IFF_* values
722 * @mask: bitmask of bits in if_flags to check
723 *
724 * Search for any interface with the given flags. Returns NULL if a device
4ec93edb 725 * is not found or a pointer to the device. The device returned has
1da177e4
LT
726 * had a reference added and the pointer is safe until the user calls
727 * dev_put to indicate they have finished with it.
728 */
729
881d966b 730struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
1da177e4 731{
7562f876 732 struct net_device *dev, *ret;
1da177e4 733
7562f876 734 ret = NULL;
1da177e4 735 read_lock(&dev_base_lock);
881d966b 736 for_each_netdev(net, dev) {
1da177e4
LT
737 if (((dev->flags ^ if_flags) & mask) == 0) {
738 dev_hold(dev);
7562f876 739 ret = dev;
1da177e4
LT
740 break;
741 }
742 }
743 read_unlock(&dev_base_lock);
7562f876 744 return ret;
1da177e4
LT
745}
746
747/**
748 * dev_valid_name - check if name is okay for network device
749 * @name: name string
750 *
751 * Network device names need to be valid file names to
c7fa9d18
DM
752 * to allow sysfs to work. We also disallow any kind of
753 * whitespace.
1da177e4 754 */
c2373ee9 755int dev_valid_name(const char *name)
1da177e4 756{
c7fa9d18
DM
757 if (*name == '\0')
758 return 0;
b6fe17d6
SH
759 if (strlen(name) >= IFNAMSIZ)
760 return 0;
c7fa9d18
DM
761 if (!strcmp(name, ".") || !strcmp(name, ".."))
762 return 0;
763
764 while (*name) {
765 if (*name == '/' || isspace(*name))
766 return 0;
767 name++;
768 }
769 return 1;
1da177e4
LT
770}
771
772/**
b267b179
EB
773 * __dev_alloc_name - allocate a name for a device
774 * @net: network namespace to allocate the device name in
1da177e4 775 * @name: name format string
b267b179 776 * @buf: scratch buffer and result name string
1da177e4
LT
777 *
778 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
779 * id. It scans list of devices to build up a free map, then chooses
780 * the first empty slot. The caller must hold the dev_base or rtnl lock
781 * while allocating the name and adding the device in order to avoid
782 * duplicates.
783 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
784 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
785 */
786
b267b179 787static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
788{
789 int i = 0;
1da177e4
LT
790 const char *p;
791 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 792 unsigned long *inuse;
1da177e4
LT
793 struct net_device *d;
794
795 p = strnchr(name, IFNAMSIZ-1, '%');
796 if (p) {
797 /*
798 * Verify the string as this thing may have come from
799 * the user. There must be either one "%d" and no other "%"
800 * characters.
801 */
802 if (p[1] != 'd' || strchr(p + 2, '%'))
803 return -EINVAL;
804
805 /* Use one page as a bit array of possible slots */
cfcabdcc 806 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
807 if (!inuse)
808 return -ENOMEM;
809
881d966b 810 for_each_netdev(net, d) {
1da177e4
LT
811 if (!sscanf(d->name, name, &i))
812 continue;
813 if (i < 0 || i >= max_netdevices)
814 continue;
815
816 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 817 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
818 if (!strncmp(buf, d->name, IFNAMSIZ))
819 set_bit(i, inuse);
820 }
821
822 i = find_first_zero_bit(inuse, max_netdevices);
823 free_page((unsigned long) inuse);
824 }
825
b267b179
EB
826 snprintf(buf, IFNAMSIZ, name, i);
827 if (!__dev_get_by_name(net, buf))
1da177e4 828 return i;
1da177e4
LT
829
830 /* It is possible to run out of possible slots
831 * when the name is long and there isn't enough space left
832 * for the digits, or if all bits are used.
833 */
834 return -ENFILE;
835}
836
b267b179
EB
837/**
838 * dev_alloc_name - allocate a name for a device
839 * @dev: device
840 * @name: name format string
841 *
842 * Passed a format string - eg "lt%d" it will try and find a suitable
843 * id. It scans list of devices to build up a free map, then chooses
844 * the first empty slot. The caller must hold the dev_base or rtnl lock
845 * while allocating the name and adding the device in order to avoid
846 * duplicates.
847 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
848 * Returns the number of the unit assigned or a negative errno code.
849 */
850
851int dev_alloc_name(struct net_device *dev, const char *name)
852{
853 char buf[IFNAMSIZ];
854 struct net *net;
855 int ret;
856
c346dca1
YH
857 BUG_ON(!dev_net(dev));
858 net = dev_net(dev);
b267b179
EB
859 ret = __dev_alloc_name(net, name, buf);
860 if (ret >= 0)
861 strlcpy(dev->name, buf, IFNAMSIZ);
862 return ret;
863}
864
1da177e4
LT
865
866/**
867 * dev_change_name - change name of a device
868 * @dev: device
869 * @newname: name (or format string) must be at least IFNAMSIZ
870 *
871 * Change name of a device, can pass format strings "eth%d".
872 * for wildcarding.
873 */
874int dev_change_name(struct net_device *dev, char *newname)
875{
fcc5a03a 876 char oldname[IFNAMSIZ];
1da177e4 877 int err = 0;
fcc5a03a 878 int ret;
881d966b 879 struct net *net;
1da177e4
LT
880
881 ASSERT_RTNL();
c346dca1 882 BUG_ON(!dev_net(dev));
1da177e4 883
c346dca1 884 net = dev_net(dev);
1da177e4
LT
885 if (dev->flags & IFF_UP)
886 return -EBUSY;
887
888 if (!dev_valid_name(newname))
889 return -EINVAL;
890
c8d90dca
SH
891 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
892 return 0;
893
fcc5a03a
HX
894 memcpy(oldname, dev->name, IFNAMSIZ);
895
1da177e4
LT
896 if (strchr(newname, '%')) {
897 err = dev_alloc_name(dev, newname);
898 if (err < 0)
899 return err;
900 strcpy(newname, dev->name);
901 }
881d966b 902 else if (__dev_get_by_name(net, newname))
1da177e4
LT
903 return -EEXIST;
904 else
905 strlcpy(dev->name, newname, IFNAMSIZ);
906
fcc5a03a 907rollback:
dcc99773
SH
908 err = device_rename(&dev->dev, dev->name);
909 if (err) {
910 memcpy(dev->name, oldname, IFNAMSIZ);
911 return err;
912 }
7f988eab
HX
913
914 write_lock_bh(&dev_base_lock);
92749821 915 hlist_del(&dev->name_hlist);
881d966b 916 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
917 write_unlock_bh(&dev_base_lock);
918
056925ab 919 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
920 ret = notifier_to_errno(ret);
921
922 if (ret) {
923 if (err) {
924 printk(KERN_ERR
925 "%s: name change rollback failed: %d.\n",
926 dev->name, ret);
927 } else {
928 err = ret;
929 memcpy(dev->name, oldname, IFNAMSIZ);
930 goto rollback;
931 }
932 }
1da177e4
LT
933
934 return err;
935}
936
d8a33ac4 937/**
3041a069 938 * netdev_features_change - device changes features
d8a33ac4
SH
939 * @dev: device to cause notification
940 *
941 * Called to indicate a device has changed features.
942 */
943void netdev_features_change(struct net_device *dev)
944{
056925ab 945 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
946}
947EXPORT_SYMBOL(netdev_features_change);
948
1da177e4
LT
949/**
950 * netdev_state_change - device changes state
951 * @dev: device to cause notification
952 *
953 * Called to indicate a device has changed state. This function calls
954 * the notifier chains for netdev_chain and sends a NEWLINK message
955 * to the routing socket.
956 */
957void netdev_state_change(struct net_device *dev)
958{
959 if (dev->flags & IFF_UP) {
056925ab 960 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1da177e4
LT
961 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
962 }
963}
964
c1da4ac7
OG
965void netdev_bonding_change(struct net_device *dev)
966{
967 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
968}
969EXPORT_SYMBOL(netdev_bonding_change);
970
1da177e4
LT
971/**
972 * dev_load - load a network module
c4ea43c5 973 * @net: the applicable net namespace
1da177e4
LT
974 * @name: name of interface
975 *
976 * If a network interface is not present and the process has suitable
977 * privileges this function loads the module. If module loading is not
978 * available in this kernel then it becomes a nop.
979 */
980
881d966b 981void dev_load(struct net *net, const char *name)
1da177e4 982{
4ec93edb 983 struct net_device *dev;
1da177e4
LT
984
985 read_lock(&dev_base_lock);
881d966b 986 dev = __dev_get_by_name(net, name);
1da177e4
LT
987 read_unlock(&dev_base_lock);
988
989 if (!dev && capable(CAP_SYS_MODULE))
990 request_module("%s", name);
991}
992
1da177e4
LT
993/**
994 * dev_open - prepare an interface for use.
995 * @dev: device to open
996 *
997 * Takes a device from down to up state. The device's private open
998 * function is invoked and then the multicast lists are loaded. Finally
999 * the device is moved into the up state and a %NETDEV_UP message is
1000 * sent to the netdev notifier chain.
1001 *
1002 * Calling this function on an active interface is a nop. On a failure
1003 * a negative errno code is returned.
1004 */
1005int dev_open(struct net_device *dev)
1006{
1007 int ret = 0;
1008
e46b66bc
BH
1009 ASSERT_RTNL();
1010
1da177e4
LT
1011 /*
1012 * Is it already up?
1013 */
1014
1015 if (dev->flags & IFF_UP)
1016 return 0;
1017
1018 /*
1019 * Is it even present?
1020 */
1021 if (!netif_device_present(dev))
1022 return -ENODEV;
1023
1024 /*
1025 * Call device private open method
1026 */
1027 set_bit(__LINK_STATE_START, &dev->state);
bada339b
JG
1028
1029 if (dev->validate_addr)
1030 ret = dev->validate_addr(dev);
1031
1032 if (!ret && dev->open)
1da177e4 1033 ret = dev->open(dev);
1da177e4 1034
4ec93edb 1035 /*
1da177e4
LT
1036 * If it went open OK then:
1037 */
1038
bada339b
JG
1039 if (ret)
1040 clear_bit(__LINK_STATE_START, &dev->state);
1041 else {
1da177e4
LT
1042 /*
1043 * Set the flags.
1044 */
1045 dev->flags |= IFF_UP;
1046
1047 /*
1048 * Initialize multicasting status
1049 */
4417da66 1050 dev_set_rx_mode(dev);
1da177e4
LT
1051
1052 /*
1053 * Wakeup transmit queue engine
1054 */
1055 dev_activate(dev);
1056
1057 /*
1058 * ... and announce new interface.
1059 */
056925ab 1060 call_netdevice_notifiers(NETDEV_UP, dev);
1da177e4 1061 }
bada339b 1062
1da177e4
LT
1063 return ret;
1064}
1065
1066/**
1067 * dev_close - shutdown an interface.
1068 * @dev: device to shutdown
1069 *
1070 * This function moves an active device into down state. A
1071 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1072 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1073 * chain.
1074 */
1075int dev_close(struct net_device *dev)
1076{
e46b66bc
BH
1077 ASSERT_RTNL();
1078
9d5010db
DM
1079 might_sleep();
1080
1da177e4
LT
1081 if (!(dev->flags & IFF_UP))
1082 return 0;
1083
1084 /*
1085 * Tell people we are going down, so that they can
1086 * prepare to death, when device is still operating.
1087 */
056925ab 1088 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1089
1da177e4
LT
1090 clear_bit(__LINK_STATE_START, &dev->state);
1091
1092 /* Synchronize to scheduled poll. We cannot touch poll list,
bea3348e
SH
1093 * it can be even on different cpu. So just clear netif_running().
1094 *
1095 * dev->stop() will invoke napi_disable() on all of it's
1096 * napi_struct instances on this device.
1097 */
1da177e4 1098 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1da177e4 1099
d8b2a4d2
ML
1100 dev_deactivate(dev);
1101
1da177e4
LT
1102 /*
1103 * Call the device specific close. This cannot fail.
1104 * Only if device is UP
1105 *
1106 * We allow it to be called even after a DETACH hot-plug
1107 * event.
1108 */
1109 if (dev->stop)
1110 dev->stop(dev);
1111
1112 /*
1113 * Device is now down.
1114 */
1115
1116 dev->flags &= ~IFF_UP;
1117
1118 /*
1119 * Tell people we are down
1120 */
056925ab 1121 call_netdevice_notifiers(NETDEV_DOWN, dev);
1da177e4
LT
1122
1123 return 0;
1124}
1125
1126
0187bdfb
BH
1127/**
1128 * dev_disable_lro - disable Large Receive Offload on a device
1129 * @dev: device
1130 *
1131 * Disable Large Receive Offload (LRO) on a net device. Must be
1132 * called under RTNL. This is needed if received packets may be
1133 * forwarded to another interface.
1134 */
1135void dev_disable_lro(struct net_device *dev)
1136{
1137 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1138 dev->ethtool_ops->set_flags) {
1139 u32 flags = dev->ethtool_ops->get_flags(dev);
1140 if (flags & ETH_FLAG_LRO) {
1141 flags &= ~ETH_FLAG_LRO;
1142 dev->ethtool_ops->set_flags(dev, flags);
1143 }
1144 }
1145 WARN_ON(dev->features & NETIF_F_LRO);
1146}
1147EXPORT_SYMBOL(dev_disable_lro);
1148
1149
881d966b
EB
1150static int dev_boot_phase = 1;
1151
1da177e4
LT
1152/*
1153 * Device change register/unregister. These are not inline or static
1154 * as we export them to the world.
1155 */
1156
1157/**
1158 * register_netdevice_notifier - register a network notifier block
1159 * @nb: notifier
1160 *
1161 * Register a notifier to be called when network device events occur.
1162 * The notifier passed is linked into the kernel structures and must
1163 * not be reused until it has been unregistered. A negative errno code
1164 * is returned on a failure.
1165 *
1166 * When registered all registration and up events are replayed
4ec93edb 1167 * to the new notifier to allow device to have a race free
1da177e4
LT
1168 * view of the network device list.
1169 */
1170
1171int register_netdevice_notifier(struct notifier_block *nb)
1172{
1173 struct net_device *dev;
fcc5a03a 1174 struct net_device *last;
881d966b 1175 struct net *net;
1da177e4
LT
1176 int err;
1177
1178 rtnl_lock();
f07d5b94 1179 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1180 if (err)
1181 goto unlock;
881d966b
EB
1182 if (dev_boot_phase)
1183 goto unlock;
1184 for_each_net(net) {
1185 for_each_netdev(net, dev) {
1186 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1187 err = notifier_to_errno(err);
1188 if (err)
1189 goto rollback;
1190
1191 if (!(dev->flags & IFF_UP))
1192 continue;
1da177e4 1193
881d966b
EB
1194 nb->notifier_call(nb, NETDEV_UP, dev);
1195 }
1da177e4 1196 }
fcc5a03a
HX
1197
1198unlock:
1da177e4
LT
1199 rtnl_unlock();
1200 return err;
fcc5a03a
HX
1201
1202rollback:
1203 last = dev;
881d966b
EB
1204 for_each_net(net) {
1205 for_each_netdev(net, dev) {
1206 if (dev == last)
1207 break;
fcc5a03a 1208
881d966b
EB
1209 if (dev->flags & IFF_UP) {
1210 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1211 nb->notifier_call(nb, NETDEV_DOWN, dev);
1212 }
1213 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1214 }
fcc5a03a 1215 }
c67625a1
PE
1216
1217 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1218 goto unlock;
1da177e4
LT
1219}
1220
1221/**
1222 * unregister_netdevice_notifier - unregister a network notifier block
1223 * @nb: notifier
1224 *
1225 * Unregister a notifier previously registered by
1226 * register_netdevice_notifier(). The notifier is unlinked into the
1227 * kernel structures and may then be reused. A negative errno code
1228 * is returned on a failure.
1229 */
1230
1231int unregister_netdevice_notifier(struct notifier_block *nb)
1232{
9f514950
HX
1233 int err;
1234
1235 rtnl_lock();
f07d5b94 1236 err = raw_notifier_chain_unregister(&netdev_chain, nb);
9f514950
HX
1237 rtnl_unlock();
1238 return err;
1da177e4
LT
1239}
1240
1241/**
1242 * call_netdevice_notifiers - call all network notifier blocks
1243 * @val: value passed unmodified to notifier function
c4ea43c5 1244 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1245 *
1246 * Call all network notifier blocks. Parameters and return value
f07d5b94 1247 * are as for raw_notifier_call_chain().
1da177e4
LT
1248 */
1249
ad7379d4 1250int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1251{
ad7379d4 1252 return raw_notifier_call_chain(&netdev_chain, val, dev);
1da177e4
LT
1253}
1254
1255/* When > 0 there are consumers of rx skb time stamps */
1256static atomic_t netstamp_needed = ATOMIC_INIT(0);
1257
1258void net_enable_timestamp(void)
1259{
1260 atomic_inc(&netstamp_needed);
1261}
1262
1263void net_disable_timestamp(void)
1264{
1265 atomic_dec(&netstamp_needed);
1266}
1267
a61bbcf2 1268static inline void net_timestamp(struct sk_buff *skb)
1da177e4
LT
1269{
1270 if (atomic_read(&netstamp_needed))
a61bbcf2 1271 __net_timestamp(skb);
b7aa0bf7
ED
1272 else
1273 skb->tstamp.tv64 = 0;
1da177e4
LT
1274}
1275
1276/*
1277 * Support routine. Sends outgoing frames to any network
1278 * taps currently in use.
1279 */
1280
f6a78bfc 1281static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1282{
1283 struct packet_type *ptype;
a61bbcf2
PM
1284
1285 net_timestamp(skb);
1da177e4
LT
1286
1287 rcu_read_lock();
1288 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1289 /* Never send packets back to the socket
1290 * they originated from - MvS (miquels@drinkel.ow.org)
1291 */
1292 if ((ptype->dev == dev || !ptype->dev) &&
1293 (ptype->af_packet_priv == NULL ||
1294 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1295 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1296 if (!skb2)
1297 break;
1298
1299 /* skb->nh should be correctly
1300 set by sender, so that the second statement is
1301 just protection against buggy protocols.
1302 */
459a98ed 1303 skb_reset_mac_header(skb2);
1da177e4 1304
d56f90a7 1305 if (skb_network_header(skb2) < skb2->data ||
27a884dc 1306 skb2->network_header > skb2->tail) {
1da177e4
LT
1307 if (net_ratelimit())
1308 printk(KERN_CRIT "protocol %04x is "
1309 "buggy, dev %s\n",
1310 skb2->protocol, dev->name);
c1d2bbe1 1311 skb_reset_network_header(skb2);
1da177e4
LT
1312 }
1313
b0e380b1 1314 skb2->transport_header = skb2->network_header;
1da177e4 1315 skb2->pkt_type = PACKET_OUTGOING;
f2ccd8fa 1316 ptype->func(skb2, skb->dev, ptype, skb->dev);
1da177e4
LT
1317 }
1318 }
1319 rcu_read_unlock();
1320}
1321
56079431 1322
86d804e1 1323void __netif_schedule(struct netdev_queue *txq)
56079431 1324{
86d804e1
DM
1325 struct net_device *dev = txq->dev;
1326
56079431 1327 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
56079431 1328 struct softnet_data *sd;
86d804e1 1329 unsigned long flags;
56079431
DV
1330
1331 local_irq_save(flags);
1332 sd = &__get_cpu_var(softnet_data);
ee609cb3
DM
1333 txq->next_sched = sd->output_queue;
1334 sd->output_queue = txq;
56079431
DV
1335 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1336 local_irq_restore(flags);
1337 }
1338}
1339EXPORT_SYMBOL(__netif_schedule);
1340
bea3348e 1341void dev_kfree_skb_irq(struct sk_buff *skb)
56079431 1342{
bea3348e
SH
1343 if (atomic_dec_and_test(&skb->users)) {
1344 struct softnet_data *sd;
1345 unsigned long flags;
56079431 1346
bea3348e
SH
1347 local_irq_save(flags);
1348 sd = &__get_cpu_var(softnet_data);
1349 skb->next = sd->completion_queue;
1350 sd->completion_queue = skb;
1351 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1352 local_irq_restore(flags);
1353 }
56079431 1354}
bea3348e 1355EXPORT_SYMBOL(dev_kfree_skb_irq);
56079431
DV
1356
1357void dev_kfree_skb_any(struct sk_buff *skb)
1358{
1359 if (in_irq() || irqs_disabled())
1360 dev_kfree_skb_irq(skb);
1361 else
1362 dev_kfree_skb(skb);
1363}
1364EXPORT_SYMBOL(dev_kfree_skb_any);
1365
1366
bea3348e
SH
1367/**
1368 * netif_device_detach - mark device as removed
1369 * @dev: network device
1370 *
1371 * Mark device as removed from system and therefore no longer available.
1372 */
56079431
DV
1373void netif_device_detach(struct net_device *dev)
1374{
1375 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1376 netif_running(dev)) {
1377 netif_stop_queue(dev);
1378 }
1379}
1380EXPORT_SYMBOL(netif_device_detach);
1381
bea3348e
SH
1382/**
1383 * netif_device_attach - mark device as attached
1384 * @dev: network device
1385 *
1386 * Mark device as attached from system and restart if needed.
1387 */
56079431
DV
1388void netif_device_attach(struct net_device *dev)
1389{
1390 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1391 netif_running(dev)) {
1392 netif_wake_queue(dev);
4ec93edb 1393 __netdev_watchdog_up(dev);
56079431
DV
1394 }
1395}
1396EXPORT_SYMBOL(netif_device_attach);
1397
6de329e2
BH
1398static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1399{
1400 return ((features & NETIF_F_GEN_CSUM) ||
1401 ((features & NETIF_F_IP_CSUM) &&
1402 protocol == htons(ETH_P_IP)) ||
1403 ((features & NETIF_F_IPV6_CSUM) &&
1404 protocol == htons(ETH_P_IPV6)));
1405}
1406
1407static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1408{
1409 if (can_checksum_protocol(dev->features, skb->protocol))
1410 return true;
1411
1412 if (skb->protocol == htons(ETH_P_8021Q)) {
1413 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1414 if (can_checksum_protocol(dev->features & dev->vlan_features,
1415 veh->h_vlan_encapsulated_proto))
1416 return true;
1417 }
1418
1419 return false;
1420}
56079431 1421
1da177e4
LT
1422/*
1423 * Invalidate hardware checksum when packet is to be mangled, and
1424 * complete checksum manually on outgoing path.
1425 */
84fa7933 1426int skb_checksum_help(struct sk_buff *skb)
1da177e4 1427{
d3bc23e7 1428 __wsum csum;
663ead3b 1429 int ret = 0, offset;
1da177e4 1430
84fa7933 1431 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
1432 goto out_set_summed;
1433
1434 if (unlikely(skb_shinfo(skb)->gso_size)) {
a430a43d
HX
1435 /* Let GSO fix up the checksum. */
1436 goto out_set_summed;
1da177e4
LT
1437 }
1438
a030847e
HX
1439 offset = skb->csum_start - skb_headroom(skb);
1440 BUG_ON(offset >= skb_headlen(skb));
1441 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1442
1443 offset += skb->csum_offset;
1444 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1445
1446 if (skb_cloned(skb) &&
1447 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
1448 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1449 if (ret)
1450 goto out;
1451 }
1452
a030847e 1453 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 1454out_set_summed:
1da177e4 1455 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 1456out:
1da177e4
LT
1457 return ret;
1458}
1459
f6a78bfc
HX
1460/**
1461 * skb_gso_segment - Perform segmentation on skb.
1462 * @skb: buffer to segment
576a30eb 1463 * @features: features for the output path (see dev->features)
f6a78bfc
HX
1464 *
1465 * This function segments the given skb and returns a list of segments.
576a30eb
HX
1466 *
1467 * It may return NULL if the skb requires no segmentation. This is
1468 * only possible when GSO is used for verifying header integrity.
f6a78bfc 1469 */
576a30eb 1470struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
f6a78bfc
HX
1471{
1472 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1473 struct packet_type *ptype;
252e3346 1474 __be16 type = skb->protocol;
a430a43d 1475 int err;
f6a78bfc
HX
1476
1477 BUG_ON(skb_shinfo(skb)->frag_list);
f6a78bfc 1478
459a98ed 1479 skb_reset_mac_header(skb);
b0e380b1 1480 skb->mac_len = skb->network_header - skb->mac_header;
f6a78bfc
HX
1481 __skb_pull(skb, skb->mac_len);
1482
f9d106a6 1483 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
a430a43d
HX
1484 if (skb_header_cloned(skb) &&
1485 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1486 return ERR_PTR(err);
1487 }
1488
f6a78bfc 1489 rcu_read_lock();
82d8a867
PE
1490 list_for_each_entry_rcu(ptype,
1491 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
f6a78bfc 1492 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
84fa7933 1493 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
a430a43d
HX
1494 err = ptype->gso_send_check(skb);
1495 segs = ERR_PTR(err);
1496 if (err || skb_gso_ok(skb, features))
1497 break;
d56f90a7
ACM
1498 __skb_push(skb, (skb->data -
1499 skb_network_header(skb)));
a430a43d 1500 }
576a30eb 1501 segs = ptype->gso_segment(skb, features);
f6a78bfc
HX
1502 break;
1503 }
1504 }
1505 rcu_read_unlock();
1506
98e399f8 1507 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 1508
f6a78bfc
HX
1509 return segs;
1510}
1511
1512EXPORT_SYMBOL(skb_gso_segment);
1513
fb286bb2
HX
1514/* Take action when hardware reception checksum errors are detected. */
1515#ifdef CONFIG_BUG
1516void netdev_rx_csum_fault(struct net_device *dev)
1517{
1518 if (net_ratelimit()) {
4ec93edb 1519 printk(KERN_ERR "%s: hw csum failure.\n",
246a4212 1520 dev ? dev->name : "<unknown>");
fb286bb2
HX
1521 dump_stack();
1522 }
1523}
1524EXPORT_SYMBOL(netdev_rx_csum_fault);
1525#endif
1526
1da177e4
LT
1527/* Actually, we should eliminate this check as soon as we know, that:
1528 * 1. IOMMU is present and allows to map all the memory.
1529 * 2. No high memory really exists on this machine.
1530 */
1531
1532static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1533{
3d3a8533 1534#ifdef CONFIG_HIGHMEM
1da177e4
LT
1535 int i;
1536
1537 if (dev->features & NETIF_F_HIGHDMA)
1538 return 0;
1539
1540 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1541 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1542 return 1;
1543
3d3a8533 1544#endif
1da177e4
LT
1545 return 0;
1546}
1da177e4 1547
f6a78bfc
HX
1548struct dev_gso_cb {
1549 void (*destructor)(struct sk_buff *skb);
1550};
1551
1552#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1553
1554static void dev_gso_skb_destructor(struct sk_buff *skb)
1555{
1556 struct dev_gso_cb *cb;
1557
1558 do {
1559 struct sk_buff *nskb = skb->next;
1560
1561 skb->next = nskb->next;
1562 nskb->next = NULL;
1563 kfree_skb(nskb);
1564 } while (skb->next);
1565
1566 cb = DEV_GSO_CB(skb);
1567 if (cb->destructor)
1568 cb->destructor(skb);
1569}
1570
1571/**
1572 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1573 * @skb: buffer to segment
1574 *
1575 * This function segments the given skb and stores the list of segments
1576 * in skb->next.
1577 */
1578static int dev_gso_segment(struct sk_buff *skb)
1579{
1580 struct net_device *dev = skb->dev;
1581 struct sk_buff *segs;
576a30eb
HX
1582 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1583 NETIF_F_SG : 0);
1584
1585 segs = skb_gso_segment(skb, features);
1586
1587 /* Verifying header integrity only. */
1588 if (!segs)
1589 return 0;
f6a78bfc 1590
801678c5 1591 if (IS_ERR(segs))
f6a78bfc
HX
1592 return PTR_ERR(segs);
1593
1594 skb->next = segs;
1595 DEV_GSO_CB(skb)->destructor = skb->destructor;
1596 skb->destructor = dev_gso_skb_destructor;
1597
1598 return 0;
1599}
1600
1601int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1602{
1603 if (likely(!skb->next)) {
9be9a6b9 1604 if (!list_empty(&ptype_all))
f6a78bfc
HX
1605 dev_queue_xmit_nit(skb, dev);
1606
576a30eb
HX
1607 if (netif_needs_gso(dev, skb)) {
1608 if (unlikely(dev_gso_segment(skb)))
1609 goto out_kfree_skb;
1610 if (skb->next)
1611 goto gso;
1612 }
f6a78bfc 1613
576a30eb 1614 return dev->hard_start_xmit(skb, dev);
f6a78bfc
HX
1615 }
1616
576a30eb 1617gso:
f6a78bfc
HX
1618 do {
1619 struct sk_buff *nskb = skb->next;
1620 int rc;
1621
1622 skb->next = nskb->next;
1623 nskb->next = NULL;
1624 rc = dev->hard_start_xmit(nskb, dev);
1625 if (unlikely(rc)) {
f54d9e8d 1626 nskb->next = skb->next;
f6a78bfc
HX
1627 skb->next = nskb;
1628 return rc;
1629 }
f25f4e44 1630 if (unlikely((netif_queue_stopped(dev) ||
668f895a 1631 netif_subqueue_stopped(dev, skb)) &&
f25f4e44 1632 skb->next))
f54d9e8d 1633 return NETDEV_TX_BUSY;
f6a78bfc 1634 } while (skb->next);
4ec93edb 1635
f6a78bfc
HX
1636 skb->destructor = DEV_GSO_CB(skb)->destructor;
1637
1638out_kfree_skb:
1639 kfree_skb(skb);
1640 return 0;
1641}
1642
1da177e4
LT
1643/**
1644 * dev_queue_xmit - transmit a buffer
1645 * @skb: buffer to transmit
1646 *
1647 * Queue a buffer for transmission to a network device. The caller must
1648 * have set the device and priority and built the buffer before calling
1649 * this function. The function can be called from an interrupt.
1650 *
1651 * A negative errno code is returned on a failure. A success does not
1652 * guarantee the frame will be transmitted as it may be dropped due
1653 * to congestion or traffic shaping.
af191367
BG
1654 *
1655 * -----------------------------------------------------------------------------------
1656 * I notice this method can also return errors from the queue disciplines,
1657 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1658 * be positive.
1659 *
1660 * Regardless of the return value, the skb is consumed, so it is currently
1661 * difficult to retry a send to this method. (You can bump the ref count
1662 * before sending to hold a reference for retry if you are careful.)
1663 *
1664 * When calling this method, interrupts MUST be enabled. This is because
1665 * the BH enable code must have IRQs enabled so that it will not deadlock.
1666 * --BLG
1da177e4
LT
1667 */
1668
e8a0464c
DM
1669static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1670 struct sk_buff *skb)
1671{
1672 return netdev_get_tx_queue(dev, 0);
1673}
1674
1da177e4
LT
1675int dev_queue_xmit(struct sk_buff *skb)
1676{
1677 struct net_device *dev = skb->dev;
dc2b4847 1678 struct netdev_queue *txq;
1da177e4
LT
1679 struct Qdisc *q;
1680 int rc = -ENOMEM;
1681
f6a78bfc
HX
1682 /* GSO will handle the following emulations directly. */
1683 if (netif_needs_gso(dev, skb))
1684 goto gso;
1685
1da177e4
LT
1686 if (skb_shinfo(skb)->frag_list &&
1687 !(dev->features & NETIF_F_FRAGLIST) &&
364c6bad 1688 __skb_linearize(skb))
1da177e4
LT
1689 goto out_kfree_skb;
1690
1691 /* Fragmented skb is linearized if device does not support SG,
1692 * or if at least one of fragments is in highmem and device
1693 * does not support DMA from it.
1694 */
1695 if (skb_shinfo(skb)->nr_frags &&
1696 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
364c6bad 1697 __skb_linearize(skb))
1da177e4
LT
1698 goto out_kfree_skb;
1699
1700 /* If packet is not checksummed and device does not support
1701 * checksumming for this protocol, complete checksumming here.
1702 */
663ead3b
HX
1703 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1704 skb_set_transport_header(skb, skb->csum_start -
1705 skb_headroom(skb));
6de329e2
BH
1706 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1707 goto out_kfree_skb;
663ead3b 1708 }
1da177e4 1709
f6a78bfc 1710gso:
e8a0464c 1711 txq = dev_pick_tx(dev, skb);
dc2b4847 1712 spin_lock_prefetch(&txq->lock);
2d7ceece 1713
4ec93edb
YH
1714 /* Disable soft irqs for various locks below. Also
1715 * stops preemption for RCU.
1da177e4 1716 */
4ec93edb 1717 rcu_read_lock_bh();
1da177e4 1718
dc2b4847 1719 /* Updates of qdisc are serialized by queue->lock.
4ec93edb
YH
1720 * The struct Qdisc which is pointed to by qdisc is now a
1721 * rcu structure - it may be accessed without acquiring
1da177e4 1722 * a lock (but the structure may be stale.) The freeing of the
4ec93edb 1723 * qdisc will be deferred until it's known that there are no
1da177e4 1724 * more references to it.
4ec93edb
YH
1725 *
1726 * If the qdisc has an enqueue function, we still need to
dc2b4847 1727 * hold the queue->lock before calling it, since queue->lock
1da177e4
LT
1728 * also serializes access to the device queue.
1729 */
1730
b0e1e646 1731 q = rcu_dereference(txq->qdisc);
1da177e4
LT
1732#ifdef CONFIG_NET_CLS_ACT
1733 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1734#endif
1735 if (q->enqueue) {
1736 /* Grab device queue */
dc2b4847 1737 spin_lock(&txq->lock);
b0e1e646 1738 q = txq->qdisc;
85670cc1 1739 if (q->enqueue) {
f25f4e44 1740 /* reset queue_mapping to zero */
dfa40911 1741 skb_set_queue_mapping(skb, 0);
85670cc1 1742 rc = q->enqueue(skb, q);
eb6aafe3 1743 qdisc_run(txq);
dc2b4847 1744 spin_unlock(&txq->lock);
1da177e4 1745
85670cc1
PM
1746 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1747 goto out;
1748 }
dc2b4847 1749 spin_unlock(&txq->lock);
1da177e4
LT
1750 }
1751
1752 /* The device has no queue. Common case for software devices:
1753 loopback, all the sorts of tunnels...
1754
932ff279
HX
1755 Really, it is unlikely that netif_tx_lock protection is necessary
1756 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
1757 counters.)
1758 However, it is possible, that they rely on protection
1759 made by us here.
1760
1761 Check this and shot the lock. It is not prone from deadlocks.
1762 Either shot noqueue qdisc, it is even simpler 8)
1763 */
1764 if (dev->flags & IFF_UP) {
1765 int cpu = smp_processor_id(); /* ok because BHs are off */
1766
c773e847 1767 if (txq->xmit_lock_owner != cpu) {
1da177e4 1768
c773e847 1769 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 1770
f25f4e44 1771 if (!netif_queue_stopped(dev) &&
668f895a 1772 !netif_subqueue_stopped(dev, skb)) {
1da177e4 1773 rc = 0;
f6a78bfc 1774 if (!dev_hard_start_xmit(skb, dev)) {
c773e847 1775 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
1776 goto out;
1777 }
1778 }
c773e847 1779 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
1780 if (net_ratelimit())
1781 printk(KERN_CRIT "Virtual device %s asks to "
1782 "queue packet!\n", dev->name);
1783 } else {
1784 /* Recursion is detected! It is possible,
1785 * unfortunately */
1786 if (net_ratelimit())
1787 printk(KERN_CRIT "Dead loop on virtual device "
1788 "%s, fix it urgently!\n", dev->name);
1789 }
1790 }
1791
1792 rc = -ENETDOWN;
d4828d85 1793 rcu_read_unlock_bh();
1da177e4
LT
1794
1795out_kfree_skb:
1796 kfree_skb(skb);
1797 return rc;
1798out:
d4828d85 1799 rcu_read_unlock_bh();
1da177e4
LT
1800 return rc;
1801}
1802
1803
1804/*=======================================================================
1805 Receiver routines
1806 =======================================================================*/
1807
6b2bedc3
SH
1808int netdev_max_backlog __read_mostly = 1000;
1809int netdev_budget __read_mostly = 300;
1810int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4
LT
1811
1812DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1813
1814
1da177e4
LT
1815/**
1816 * netif_rx - post buffer to the network code
1817 * @skb: buffer to post
1818 *
1819 * This function receives a packet from a device driver and queues it for
1820 * the upper (protocol) levels to process. It always succeeds. The buffer
1821 * may be dropped during processing for congestion control or by the
1822 * protocol layers.
1823 *
1824 * return values:
1825 * NET_RX_SUCCESS (no congestion)
1da177e4
LT
1826 * NET_RX_DROP (packet was dropped)
1827 *
1828 */
1829
1830int netif_rx(struct sk_buff *skb)
1831{
1da177e4
LT
1832 struct softnet_data *queue;
1833 unsigned long flags;
1834
1835 /* if netpoll wants it, pretend we never saw it */
1836 if (netpoll_rx(skb))
1837 return NET_RX_DROP;
1838
b7aa0bf7 1839 if (!skb->tstamp.tv64)
a61bbcf2 1840 net_timestamp(skb);
1da177e4
LT
1841
1842 /*
1843 * The code is rearranged so that the path is the most
1844 * short when CPU is congested, but is still operating.
1845 */
1846 local_irq_save(flags);
1da177e4
LT
1847 queue = &__get_cpu_var(softnet_data);
1848
1849 __get_cpu_var(netdev_rx_stat).total++;
1850 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1851 if (queue->input_pkt_queue.qlen) {
1da177e4
LT
1852enqueue:
1853 dev_hold(skb->dev);
1854 __skb_queue_tail(&queue->input_pkt_queue, skb);
1da177e4 1855 local_irq_restore(flags);
34008d8c 1856 return NET_RX_SUCCESS;
1da177e4
LT
1857 }
1858
bea3348e 1859 napi_schedule(&queue->backlog);
1da177e4
LT
1860 goto enqueue;
1861 }
1862
1da177e4
LT
1863 __get_cpu_var(netdev_rx_stat).dropped++;
1864 local_irq_restore(flags);
1865
1866 kfree_skb(skb);
1867 return NET_RX_DROP;
1868}
1869
1870int netif_rx_ni(struct sk_buff *skb)
1871{
1872 int err;
1873
1874 preempt_disable();
1875 err = netif_rx(skb);
1876 if (local_softirq_pending())
1877 do_softirq();
1878 preempt_enable();
1879
1880 return err;
1881}
1882
1883EXPORT_SYMBOL(netif_rx_ni);
1884
f2ccd8fa 1885static inline struct net_device *skb_bond(struct sk_buff *skb)
1da177e4
LT
1886{
1887 struct net_device *dev = skb->dev;
1888
8f903c70 1889 if (dev->master) {
7ea49ed7 1890 if (skb_bond_should_drop(skb)) {
8f903c70
JV
1891 kfree_skb(skb);
1892 return NULL;
1893 }
1da177e4 1894 skb->dev = dev->master;
8f903c70 1895 }
f2ccd8fa
DM
1896
1897 return dev;
1da177e4
LT
1898}
1899
bea3348e 1900
1da177e4
LT
1901static void net_tx_action(struct softirq_action *h)
1902{
1903 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1904
1905 if (sd->completion_queue) {
1906 struct sk_buff *clist;
1907
1908 local_irq_disable();
1909 clist = sd->completion_queue;
1910 sd->completion_queue = NULL;
1911 local_irq_enable();
1912
1913 while (clist) {
1914 struct sk_buff *skb = clist;
1915 clist = clist->next;
1916
1917 BUG_TRAP(!atomic_read(&skb->users));
1918 __kfree_skb(skb);
1919 }
1920 }
1921
1922 if (sd->output_queue) {
ee609cb3 1923 struct netdev_queue *head;
1da177e4
LT
1924
1925 local_irq_disable();
1926 head = sd->output_queue;
1927 sd->output_queue = NULL;
1928 local_irq_enable();
1929
1930 while (head) {
ee609cb3
DM
1931 struct netdev_queue *txq = head;
1932 struct net_device *dev = txq->dev;
1da177e4
LT
1933 head = head->next_sched;
1934
1935 smp_mb__before_clear_bit();
1936 clear_bit(__LINK_STATE_SCHED, &dev->state);
1937
dc2b4847 1938 if (spin_trylock(&txq->lock)) {
eb6aafe3 1939 qdisc_run(txq);
dc2b4847 1940 spin_unlock(&txq->lock);
1da177e4 1941 } else {
86d804e1 1942 netif_schedule_queue(txq);
1da177e4
LT
1943 }
1944 }
1945 }
1946}
1947
6f05f629
SH
1948static inline int deliver_skb(struct sk_buff *skb,
1949 struct packet_type *pt_prev,
1950 struct net_device *orig_dev)
1da177e4
LT
1951{
1952 atomic_inc(&skb->users);
f2ccd8fa 1953 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4
LT
1954}
1955
1956#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
6229e362 1957/* These hooks defined here for ATM */
1da177e4
LT
1958struct net_bridge;
1959struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1960 unsigned char *addr);
6229e362 1961void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1da177e4 1962
6229e362
SH
1963/*
1964 * If bridge module is loaded call bridging hook.
1965 * returns NULL if packet was consumed.
1966 */
1967struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1968 struct sk_buff *skb) __read_mostly;
1969static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1970 struct packet_type **pt_prev, int *ret,
1971 struct net_device *orig_dev)
1da177e4
LT
1972{
1973 struct net_bridge_port *port;
1974
6229e362
SH
1975 if (skb->pkt_type == PACKET_LOOPBACK ||
1976 (port = rcu_dereference(skb->dev->br_port)) == NULL)
1977 return skb;
1da177e4
LT
1978
1979 if (*pt_prev) {
6229e362 1980 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1da177e4 1981 *pt_prev = NULL;
4ec93edb
YH
1982 }
1983
6229e362 1984 return br_handle_frame_hook(port, skb);
1da177e4
LT
1985}
1986#else
6229e362 1987#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
1da177e4
LT
1988#endif
1989
b863ceb7
PM
1990#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
1991struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
1992EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
1993
1994static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
1995 struct packet_type **pt_prev,
1996 int *ret,
1997 struct net_device *orig_dev)
1998{
1999 if (skb->dev->macvlan_port == NULL)
2000 return skb;
2001
2002 if (*pt_prev) {
2003 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2004 *pt_prev = NULL;
2005 }
2006 return macvlan_handle_frame_hook(skb);
2007}
2008#else
2009#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2010#endif
2011
1da177e4
LT
2012#ifdef CONFIG_NET_CLS_ACT
2013/* TODO: Maybe we should just force sch_ingress to be compiled in
2014 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2015 * a compare and 2 stores extra right now if we dont have it on
2016 * but have CONFIG_NET_CLS_ACT
4ec93edb 2017 * NOTE: This doesnt stop any functionality; if you dont have
1da177e4
LT
2018 * the ingress scheduler, you just cant add policies on ingress.
2019 *
2020 */
4ec93edb 2021static int ing_filter(struct sk_buff *skb)
1da177e4 2022{
1da177e4 2023 struct net_device *dev = skb->dev;
f697c3e8 2024 u32 ttl = G_TC_RTTL(skb->tc_verd);
555353cf
DM
2025 struct netdev_queue *rxq;
2026 int result = TC_ACT_OK;
2027 struct Qdisc *q;
4ec93edb 2028
f697c3e8
HX
2029 if (MAX_RED_LOOP < ttl++) {
2030 printk(KERN_WARNING
2031 "Redir loop detected Dropping packet (%d->%d)\n",
2032 skb->iif, dev->ifindex);
2033 return TC_ACT_SHOT;
2034 }
1da177e4 2035
f697c3e8
HX
2036 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2037 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
1da177e4 2038
555353cf
DM
2039 rxq = &dev->rx_queue;
2040
2041 spin_lock(&rxq->lock);
816f3258 2042 if ((q = rxq->qdisc) != NULL)
f697c3e8 2043 result = q->enqueue(skb, q);
555353cf 2044 spin_unlock(&rxq->lock);
f697c3e8
HX
2045
2046 return result;
2047}
86e65da9 2048
f697c3e8
HX
2049static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2050 struct packet_type **pt_prev,
2051 int *ret, struct net_device *orig_dev)
2052{
816f3258 2053 if (!skb->dev->rx_queue.qdisc)
f697c3e8 2054 goto out;
1da177e4 2055
f697c3e8
HX
2056 if (*pt_prev) {
2057 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2058 *pt_prev = NULL;
2059 } else {
2060 /* Huh? Why does turning on AF_PACKET affect this? */
2061 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
1da177e4
LT
2062 }
2063
f697c3e8
HX
2064 switch (ing_filter(skb)) {
2065 case TC_ACT_SHOT:
2066 case TC_ACT_STOLEN:
2067 kfree_skb(skb);
2068 return NULL;
2069 }
2070
2071out:
2072 skb->tc_verd = 0;
2073 return skb;
1da177e4
LT
2074}
2075#endif
2076
bc1d0411
PM
2077/*
2078 * netif_nit_deliver - deliver received packets to network taps
2079 * @skb: buffer
2080 *
2081 * This function is used to deliver incoming packets to network
2082 * taps. It should be used when the normal netif_receive_skb path
2083 * is bypassed, for example because of VLAN acceleration.
2084 */
2085void netif_nit_deliver(struct sk_buff *skb)
2086{
2087 struct packet_type *ptype;
2088
2089 if (list_empty(&ptype_all))
2090 return;
2091
2092 skb_reset_network_header(skb);
2093 skb_reset_transport_header(skb);
2094 skb->mac_len = skb->network_header - skb->mac_header;
2095
2096 rcu_read_lock();
2097 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2098 if (!ptype->dev || ptype->dev == skb->dev)
2099 deliver_skb(skb, ptype, skb->dev);
2100 }
2101 rcu_read_unlock();
2102}
2103
3b582cc1
SH
2104/**
2105 * netif_receive_skb - process receive buffer from network
2106 * @skb: buffer to process
2107 *
2108 * netif_receive_skb() is the main receive data processing function.
2109 * It always succeeds. The buffer may be dropped during processing
2110 * for congestion control or by the protocol layers.
2111 *
2112 * This function may only be called from softirq context and interrupts
2113 * should be enabled.
2114 *
2115 * Return values (usually ignored):
2116 * NET_RX_SUCCESS: no congestion
2117 * NET_RX_DROP: packet was dropped
2118 */
1da177e4
LT
2119int netif_receive_skb(struct sk_buff *skb)
2120{
2121 struct packet_type *ptype, *pt_prev;
f2ccd8fa 2122 struct net_device *orig_dev;
1da177e4 2123 int ret = NET_RX_DROP;
252e3346 2124 __be16 type;
1da177e4
LT
2125
2126 /* if we've gotten here through NAPI, check netpoll */
bea3348e 2127 if (netpoll_receive_skb(skb))
1da177e4
LT
2128 return NET_RX_DROP;
2129
b7aa0bf7 2130 if (!skb->tstamp.tv64)
a61bbcf2 2131 net_timestamp(skb);
1da177e4 2132
c01003c2
PM
2133 if (!skb->iif)
2134 skb->iif = skb->dev->ifindex;
86e65da9 2135
f2ccd8fa 2136 orig_dev = skb_bond(skb);
1da177e4 2137
8f903c70
JV
2138 if (!orig_dev)
2139 return NET_RX_DROP;
2140
1da177e4
LT
2141 __get_cpu_var(netdev_rx_stat).total++;
2142
c1d2bbe1 2143 skb_reset_network_header(skb);
badff6d0 2144 skb_reset_transport_header(skb);
b0e380b1 2145 skb->mac_len = skb->network_header - skb->mac_header;
1da177e4
LT
2146
2147 pt_prev = NULL;
2148
2149 rcu_read_lock();
2150
b9f75f45
EB
2151 /* Don't receive packets in an exiting network namespace */
2152 if (!net_alive(dev_net(skb->dev)))
2153 goto out;
2154
1da177e4
LT
2155#ifdef CONFIG_NET_CLS_ACT
2156 if (skb->tc_verd & TC_NCLS) {
2157 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2158 goto ncls;
2159 }
2160#endif
2161
2162 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2163 if (!ptype->dev || ptype->dev == skb->dev) {
4ec93edb 2164 if (pt_prev)
f2ccd8fa 2165 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
2166 pt_prev = ptype;
2167 }
2168 }
2169
2170#ifdef CONFIG_NET_CLS_ACT
f697c3e8
HX
2171 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2172 if (!skb)
1da177e4 2173 goto out;
1da177e4
LT
2174ncls:
2175#endif
2176
6229e362 2177 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
b863ceb7
PM
2178 if (!skb)
2179 goto out;
2180 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
6229e362 2181 if (!skb)
1da177e4
LT
2182 goto out;
2183
2184 type = skb->protocol;
82d8a867
PE
2185 list_for_each_entry_rcu(ptype,
2186 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1da177e4
LT
2187 if (ptype->type == type &&
2188 (!ptype->dev || ptype->dev == skb->dev)) {
4ec93edb 2189 if (pt_prev)
f2ccd8fa 2190 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
2191 pt_prev = ptype;
2192 }
2193 }
2194
2195 if (pt_prev) {
f2ccd8fa 2196 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4
LT
2197 } else {
2198 kfree_skb(skb);
2199 /* Jamal, now you will not able to escape explaining
2200 * me how you were going to use this. :-)
2201 */
2202 ret = NET_RX_DROP;
2203 }
2204
2205out:
2206 rcu_read_unlock();
2207 return ret;
2208}
2209
bea3348e 2210static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
2211{
2212 int work = 0;
1da177e4
LT
2213 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2214 unsigned long start_time = jiffies;
2215
bea3348e
SH
2216 napi->weight = weight_p;
2217 do {
1da177e4
LT
2218 struct sk_buff *skb;
2219 struct net_device *dev;
2220
2221 local_irq_disable();
2222 skb = __skb_dequeue(&queue->input_pkt_queue);
bea3348e
SH
2223 if (!skb) {
2224 __napi_complete(napi);
2225 local_irq_enable();
2226 break;
2227 }
2228
1da177e4
LT
2229 local_irq_enable();
2230
2231 dev = skb->dev;
2232
2233 netif_receive_skb(skb);
2234
2235 dev_put(dev);
bea3348e 2236 } while (++work < quota && jiffies == start_time);
1da177e4 2237
bea3348e
SH
2238 return work;
2239}
1da177e4 2240
bea3348e
SH
2241/**
2242 * __napi_schedule - schedule for receive
c4ea43c5 2243 * @n: entry to schedule
bea3348e
SH
2244 *
2245 * The entry's receive function will be scheduled to run
2246 */
b5606c2d 2247void __napi_schedule(struct napi_struct *n)
bea3348e
SH
2248{
2249 unsigned long flags;
1da177e4 2250
bea3348e
SH
2251 local_irq_save(flags);
2252 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2253 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2254 local_irq_restore(flags);
1da177e4 2255}
bea3348e
SH
2256EXPORT_SYMBOL(__napi_schedule);
2257
1da177e4
LT
2258
2259static void net_rx_action(struct softirq_action *h)
2260{
bea3348e 2261 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
1da177e4 2262 unsigned long start_time = jiffies;
51b0bded 2263 int budget = netdev_budget;
53fb95d3
MM
2264 void *have;
2265
1da177e4
LT
2266 local_irq_disable();
2267
bea3348e
SH
2268 while (!list_empty(list)) {
2269 struct napi_struct *n;
2270 int work, weight;
1da177e4 2271
bea3348e
SH
2272 /* If softirq window is exhuasted then punt.
2273 *
2274 * Note that this is a slight policy change from the
2275 * previous NAPI code, which would allow up to 2
2276 * jiffies to pass before breaking out. The test
2277 * used to be "jiffies - start_time > 1".
2278 */
2279 if (unlikely(budget <= 0 || jiffies != start_time))
1da177e4
LT
2280 goto softnet_break;
2281
2282 local_irq_enable();
2283
bea3348e
SH
2284 /* Even though interrupts have been re-enabled, this
2285 * access is safe because interrupts can only add new
2286 * entries to the tail of this list, and only ->poll()
2287 * calls can remove this head entry from the list.
2288 */
2289 n = list_entry(list->next, struct napi_struct, poll_list);
1da177e4 2290
bea3348e
SH
2291 have = netpoll_poll_lock(n);
2292
2293 weight = n->weight;
2294
0a7606c1
DM
2295 /* This NAPI_STATE_SCHED test is for avoiding a race
2296 * with netpoll's poll_napi(). Only the entity which
2297 * obtains the lock and sees NAPI_STATE_SCHED set will
2298 * actually make the ->poll() call. Therefore we avoid
2299 * accidently calling ->poll() when NAPI is not scheduled.
2300 */
2301 work = 0;
2302 if (test_bit(NAPI_STATE_SCHED, &n->state))
2303 work = n->poll(n, weight);
bea3348e
SH
2304
2305 WARN_ON_ONCE(work > weight);
2306
2307 budget -= work;
2308
2309 local_irq_disable();
2310
2311 /* Drivers must not modify the NAPI state if they
2312 * consume the entire weight. In such cases this code
2313 * still "owns" the NAPI instance and therefore can
2314 * move the instance around on the list at-will.
2315 */
fed17f30
DM
2316 if (unlikely(work == weight)) {
2317 if (unlikely(napi_disable_pending(n)))
2318 __napi_complete(n);
2319 else
2320 list_move_tail(&n->poll_list, list);
2321 }
bea3348e
SH
2322
2323 netpoll_poll_unlock(have);
1da177e4
LT
2324 }
2325out:
515e06c4 2326 local_irq_enable();
bea3348e 2327
db217334
CL
2328#ifdef CONFIG_NET_DMA
2329 /*
2330 * There may not be any more sk_buffs coming right now, so push
2331 * any pending DMA copies to hardware
2332 */
d379b01e
DW
2333 if (!cpus_empty(net_dma.channel_mask)) {
2334 int chan_idx;
2335 for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2336 struct dma_chan *chan = net_dma.channels[chan_idx];
2337 if (chan)
2338 dma_async_memcpy_issue_pending(chan);
2339 }
db217334
CL
2340 }
2341#endif
bea3348e 2342
1da177e4
LT
2343 return;
2344
2345softnet_break:
2346 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2347 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2348 goto out;
2349}
2350
2351static gifconf_func_t * gifconf_list [NPROTO];
2352
2353/**
2354 * register_gifconf - register a SIOCGIF handler
2355 * @family: Address family
2356 * @gifconf: Function handler
2357 *
2358 * Register protocol dependent address dumping routines. The handler
2359 * that is passed must not be freed or reused until it has been replaced
2360 * by another handler.
2361 */
2362int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2363{
2364 if (family >= NPROTO)
2365 return -EINVAL;
2366 gifconf_list[family] = gifconf;
2367 return 0;
2368}
2369
2370
2371/*
2372 * Map an interface index to its name (SIOCGIFNAME)
2373 */
2374
2375/*
2376 * We need this ioctl for efficient implementation of the
2377 * if_indextoname() function required by the IPv6 API. Without
2378 * it, we would have to search all the interfaces to find a
2379 * match. --pb
2380 */
2381
881d966b 2382static int dev_ifname(struct net *net, struct ifreq __user *arg)
1da177e4
LT
2383{
2384 struct net_device *dev;
2385 struct ifreq ifr;
2386
2387 /*
2388 * Fetch the caller's info block.
2389 */
2390
2391 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2392 return -EFAULT;
2393
2394 read_lock(&dev_base_lock);
881d966b 2395 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
1da177e4
LT
2396 if (!dev) {
2397 read_unlock(&dev_base_lock);
2398 return -ENODEV;
2399 }
2400
2401 strcpy(ifr.ifr_name, dev->name);
2402 read_unlock(&dev_base_lock);
2403
2404 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2405 return -EFAULT;
2406 return 0;
2407}
2408
2409/*
2410 * Perform a SIOCGIFCONF call. This structure will change
2411 * size eventually, and there is nothing I can do about it.
2412 * Thus we will need a 'compatibility mode'.
2413 */
2414
881d966b 2415static int dev_ifconf(struct net *net, char __user *arg)
1da177e4
LT
2416{
2417 struct ifconf ifc;
2418 struct net_device *dev;
2419 char __user *pos;
2420 int len;
2421 int total;
2422 int i;
2423
2424 /*
2425 * Fetch the caller's info block.
2426 */
2427
2428 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2429 return -EFAULT;
2430
2431 pos = ifc.ifc_buf;
2432 len = ifc.ifc_len;
2433
2434 /*
2435 * Loop over the interfaces, and write an info block for each.
2436 */
2437
2438 total = 0;
881d966b 2439 for_each_netdev(net, dev) {
1da177e4
LT
2440 for (i = 0; i < NPROTO; i++) {
2441 if (gifconf_list[i]) {
2442 int done;
2443 if (!pos)
2444 done = gifconf_list[i](dev, NULL, 0);
2445 else
2446 done = gifconf_list[i](dev, pos + total,
2447 len - total);
2448 if (done < 0)
2449 return -EFAULT;
2450 total += done;
2451 }
2452 }
4ec93edb 2453 }
1da177e4
LT
2454
2455 /*
2456 * All done. Write the updated control block back to the caller.
2457 */
2458 ifc.ifc_len = total;
2459
2460 /*
2461 * Both BSD and Solaris return 0 here, so we do too.
2462 */
2463 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2464}
2465
2466#ifdef CONFIG_PROC_FS
2467/*
2468 * This is invoked by the /proc filesystem handler to display a device
2469 * in detail.
2470 */
7562f876 2471void *dev_seq_start(struct seq_file *seq, loff_t *pos)
9a429c49 2472 __acquires(dev_base_lock)
1da177e4 2473{
e372c414 2474 struct net *net = seq_file_net(seq);
7562f876 2475 loff_t off;
1da177e4 2476 struct net_device *dev;
1da177e4 2477
7562f876
PE
2478 read_lock(&dev_base_lock);
2479 if (!*pos)
2480 return SEQ_START_TOKEN;
1da177e4 2481
7562f876 2482 off = 1;
881d966b 2483 for_each_netdev(net, dev)
7562f876
PE
2484 if (off++ == *pos)
2485 return dev;
1da177e4 2486
7562f876 2487 return NULL;
1da177e4
LT
2488}
2489
2490void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2491{
e372c414 2492 struct net *net = seq_file_net(seq);
1da177e4 2493 ++*pos;
7562f876 2494 return v == SEQ_START_TOKEN ?
881d966b 2495 first_net_device(net) : next_net_device((struct net_device *)v);
1da177e4
LT
2496}
2497
2498void dev_seq_stop(struct seq_file *seq, void *v)
9a429c49 2499 __releases(dev_base_lock)
1da177e4
LT
2500{
2501 read_unlock(&dev_base_lock);
2502}
2503
2504static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2505{
c45d286e 2506 struct net_device_stats *stats = dev->get_stats(dev);
1da177e4 2507
5a1b5898
RR
2508 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2509 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2510 dev->name, stats->rx_bytes, stats->rx_packets,
2511 stats->rx_errors,
2512 stats->rx_dropped + stats->rx_missed_errors,
2513 stats->rx_fifo_errors,
2514 stats->rx_length_errors + stats->rx_over_errors +
2515 stats->rx_crc_errors + stats->rx_frame_errors,
2516 stats->rx_compressed, stats->multicast,
2517 stats->tx_bytes, stats->tx_packets,
2518 stats->tx_errors, stats->tx_dropped,
2519 stats->tx_fifo_errors, stats->collisions,
2520 stats->tx_carrier_errors +
2521 stats->tx_aborted_errors +
2522 stats->tx_window_errors +
2523 stats->tx_heartbeat_errors,
2524 stats->tx_compressed);
1da177e4
LT
2525}
2526
2527/*
2528 * Called from the PROCfs module. This now uses the new arbitrary sized
2529 * /proc/net interface to create /proc/net/dev
2530 */
2531static int dev_seq_show(struct seq_file *seq, void *v)
2532{
2533 if (v == SEQ_START_TOKEN)
2534 seq_puts(seq, "Inter-| Receive "
2535 " | Transmit\n"
2536 " face |bytes packets errs drop fifo frame "
2537 "compressed multicast|bytes packets errs "
2538 "drop fifo colls carrier compressed\n");
2539 else
2540 dev_seq_printf_stats(seq, v);
2541 return 0;
2542}
2543
2544static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2545{
2546 struct netif_rx_stats *rc = NULL;
2547
0c0b0aca 2548 while (*pos < nr_cpu_ids)
4ec93edb 2549 if (cpu_online(*pos)) {
1da177e4
LT
2550 rc = &per_cpu(netdev_rx_stat, *pos);
2551 break;
2552 } else
2553 ++*pos;
2554 return rc;
2555}
2556
2557static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2558{
2559 return softnet_get_online(pos);
2560}
2561
2562static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2563{
2564 ++*pos;
2565 return softnet_get_online(pos);
2566}
2567
2568static void softnet_seq_stop(struct seq_file *seq, void *v)
2569{
2570}
2571
2572static int softnet_seq_show(struct seq_file *seq, void *v)
2573{
2574 struct netif_rx_stats *s = v;
2575
2576 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
31aa02c5 2577 s->total, s->dropped, s->time_squeeze, 0,
c1ebcdb8
SH
2578 0, 0, 0, 0, /* was fastroute */
2579 s->cpu_collision );
1da177e4
LT
2580 return 0;
2581}
2582
f690808e 2583static const struct seq_operations dev_seq_ops = {
1da177e4
LT
2584 .start = dev_seq_start,
2585 .next = dev_seq_next,
2586 .stop = dev_seq_stop,
2587 .show = dev_seq_show,
2588};
2589
2590static int dev_seq_open(struct inode *inode, struct file *file)
2591{
e372c414
DL
2592 return seq_open_net(inode, file, &dev_seq_ops,
2593 sizeof(struct seq_net_private));
1da177e4
LT
2594}
2595
9a32144e 2596static const struct file_operations dev_seq_fops = {
1da177e4
LT
2597 .owner = THIS_MODULE,
2598 .open = dev_seq_open,
2599 .read = seq_read,
2600 .llseek = seq_lseek,
e372c414 2601 .release = seq_release_net,
1da177e4
LT
2602};
2603
f690808e 2604static const struct seq_operations softnet_seq_ops = {
1da177e4
LT
2605 .start = softnet_seq_start,
2606 .next = softnet_seq_next,
2607 .stop = softnet_seq_stop,
2608 .show = softnet_seq_show,
2609};
2610
2611static int softnet_seq_open(struct inode *inode, struct file *file)
2612{
2613 return seq_open(file, &softnet_seq_ops);
2614}
2615
9a32144e 2616static const struct file_operations softnet_seq_fops = {
1da177e4
LT
2617 .owner = THIS_MODULE,
2618 .open = softnet_seq_open,
2619 .read = seq_read,
2620 .llseek = seq_lseek,
2621 .release = seq_release,
2622};
2623
0e1256ff
SH
2624static void *ptype_get_idx(loff_t pos)
2625{
2626 struct packet_type *pt = NULL;
2627 loff_t i = 0;
2628 int t;
2629
2630 list_for_each_entry_rcu(pt, &ptype_all, list) {
2631 if (i == pos)
2632 return pt;
2633 ++i;
2634 }
2635
82d8a867 2636 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
0e1256ff
SH
2637 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2638 if (i == pos)
2639 return pt;
2640 ++i;
2641 }
2642 }
2643 return NULL;
2644}
2645
2646static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
72348a42 2647 __acquires(RCU)
0e1256ff
SH
2648{
2649 rcu_read_lock();
2650 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2651}
2652
2653static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2654{
2655 struct packet_type *pt;
2656 struct list_head *nxt;
2657 int hash;
2658
2659 ++*pos;
2660 if (v == SEQ_START_TOKEN)
2661 return ptype_get_idx(0);
2662
2663 pt = v;
2664 nxt = pt->list.next;
2665 if (pt->type == htons(ETH_P_ALL)) {
2666 if (nxt != &ptype_all)
2667 goto found;
2668 hash = 0;
2669 nxt = ptype_base[0].next;
2670 } else
82d8a867 2671 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
0e1256ff
SH
2672
2673 while (nxt == &ptype_base[hash]) {
82d8a867 2674 if (++hash >= PTYPE_HASH_SIZE)
0e1256ff
SH
2675 return NULL;
2676 nxt = ptype_base[hash].next;
2677 }
2678found:
2679 return list_entry(nxt, struct packet_type, list);
2680}
2681
2682static void ptype_seq_stop(struct seq_file *seq, void *v)
72348a42 2683 __releases(RCU)
0e1256ff
SH
2684{
2685 rcu_read_unlock();
2686}
2687
2688static void ptype_seq_decode(struct seq_file *seq, void *sym)
2689{
2690#ifdef CONFIG_KALLSYMS
2691 unsigned long offset = 0, symsize;
2692 const char *symname;
2693 char *modname;
2694 char namebuf[128];
2695
2696 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2697 &modname, namebuf);
2698
2699 if (symname) {
2700 char *delim = ":";
2701
2702 if (!modname)
2703 modname = delim = "";
2704 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2705 symname, offset);
2706 return;
2707 }
2708#endif
2709
2710 seq_printf(seq, "[%p]", sym);
2711}
2712
2713static int ptype_seq_show(struct seq_file *seq, void *v)
2714{
2715 struct packet_type *pt = v;
2716
2717 if (v == SEQ_START_TOKEN)
2718 seq_puts(seq, "Type Device Function\n");
c346dca1 2719 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
0e1256ff
SH
2720 if (pt->type == htons(ETH_P_ALL))
2721 seq_puts(seq, "ALL ");
2722 else
2723 seq_printf(seq, "%04x", ntohs(pt->type));
2724
2725 seq_printf(seq, " %-8s ",
2726 pt->dev ? pt->dev->name : "");
2727 ptype_seq_decode(seq, pt->func);
2728 seq_putc(seq, '\n');
2729 }
2730
2731 return 0;
2732}
2733
2734static const struct seq_operations ptype_seq_ops = {
2735 .start = ptype_seq_start,
2736 .next = ptype_seq_next,
2737 .stop = ptype_seq_stop,
2738 .show = ptype_seq_show,
2739};
2740
2741static int ptype_seq_open(struct inode *inode, struct file *file)
2742{
2feb27db
PE
2743 return seq_open_net(inode, file, &ptype_seq_ops,
2744 sizeof(struct seq_net_private));
0e1256ff
SH
2745}
2746
2747static const struct file_operations ptype_seq_fops = {
2748 .owner = THIS_MODULE,
2749 .open = ptype_seq_open,
2750 .read = seq_read,
2751 .llseek = seq_lseek,
2feb27db 2752 .release = seq_release_net,
0e1256ff
SH
2753};
2754
2755
4665079c 2756static int __net_init dev_proc_net_init(struct net *net)
1da177e4
LT
2757{
2758 int rc = -ENOMEM;
2759
881d966b 2760 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
1da177e4 2761 goto out;
881d966b 2762 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
1da177e4 2763 goto out_dev;
881d966b 2764 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
457c4cbc 2765 goto out_softnet;
0e1256ff 2766
881d966b 2767 if (wext_proc_init(net))
457c4cbc 2768 goto out_ptype;
1da177e4
LT
2769 rc = 0;
2770out:
2771 return rc;
457c4cbc 2772out_ptype:
881d966b 2773 proc_net_remove(net, "ptype");
1da177e4 2774out_softnet:
881d966b 2775 proc_net_remove(net, "softnet_stat");
1da177e4 2776out_dev:
881d966b 2777 proc_net_remove(net, "dev");
1da177e4
LT
2778 goto out;
2779}
881d966b 2780
4665079c 2781static void __net_exit dev_proc_net_exit(struct net *net)
881d966b
EB
2782{
2783 wext_proc_exit(net);
2784
2785 proc_net_remove(net, "ptype");
2786 proc_net_remove(net, "softnet_stat");
2787 proc_net_remove(net, "dev");
2788}
2789
022cbae6 2790static struct pernet_operations __net_initdata dev_proc_ops = {
881d966b
EB
2791 .init = dev_proc_net_init,
2792 .exit = dev_proc_net_exit,
2793};
2794
2795static int __init dev_proc_init(void)
2796{
2797 return register_pernet_subsys(&dev_proc_ops);
2798}
1da177e4
LT
2799#else
2800#define dev_proc_init() 0
2801#endif /* CONFIG_PROC_FS */
2802
2803
2804/**
2805 * netdev_set_master - set up master/slave pair
2806 * @slave: slave device
2807 * @master: new master device
2808 *
2809 * Changes the master device of the slave. Pass %NULL to break the
2810 * bonding. The caller must hold the RTNL semaphore. On a failure
2811 * a negative errno code is returned. On success the reference counts
2812 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2813 * function returns zero.
2814 */
2815int netdev_set_master(struct net_device *slave, struct net_device *master)
2816{
2817 struct net_device *old = slave->master;
2818
2819 ASSERT_RTNL();
2820
2821 if (master) {
2822 if (old)
2823 return -EBUSY;
2824 dev_hold(master);
2825 }
2826
2827 slave->master = master;
4ec93edb 2828
1da177e4
LT
2829 synchronize_net();
2830
2831 if (old)
2832 dev_put(old);
2833
2834 if (master)
2835 slave->flags |= IFF_SLAVE;
2836 else
2837 slave->flags &= ~IFF_SLAVE;
2838
2839 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2840 return 0;
2841}
2842
dad9b335 2843static int __dev_set_promiscuity(struct net_device *dev, int inc)
1da177e4
LT
2844{
2845 unsigned short old_flags = dev->flags;
2846
24023451
PM
2847 ASSERT_RTNL();
2848
dad9b335
WC
2849 dev->flags |= IFF_PROMISC;
2850 dev->promiscuity += inc;
2851 if (dev->promiscuity == 0) {
2852 /*
2853 * Avoid overflow.
2854 * If inc causes overflow, untouch promisc and return error.
2855 */
2856 if (inc < 0)
2857 dev->flags &= ~IFF_PROMISC;
2858 else {
2859 dev->promiscuity -= inc;
2860 printk(KERN_WARNING "%s: promiscuity touches roof, "
2861 "set promiscuity failed, promiscuity feature "
2862 "of device might be broken.\n", dev->name);
2863 return -EOVERFLOW;
2864 }
2865 }
52609c0b 2866 if (dev->flags != old_flags) {
1da177e4
LT
2867 printk(KERN_INFO "device %s %s promiscuous mode\n",
2868 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4ec93edb 2869 "left");
7759db82
KHK
2870 if (audit_enabled)
2871 audit_log(current->audit_context, GFP_ATOMIC,
2872 AUDIT_ANOM_PROMISCUOUS,
2873 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
2874 dev->name, (dev->flags & IFF_PROMISC),
2875 (old_flags & IFF_PROMISC),
2876 audit_get_loginuid(current),
2877 current->uid, current->gid,
2878 audit_get_sessionid(current));
24023451
PM
2879
2880 if (dev->change_rx_flags)
2881 dev->change_rx_flags(dev, IFF_PROMISC);
1da177e4 2882 }
dad9b335 2883 return 0;
1da177e4
LT
2884}
2885
4417da66
PM
2886/**
2887 * dev_set_promiscuity - update promiscuity count on a device
2888 * @dev: device
2889 * @inc: modifier
2890 *
2891 * Add or remove promiscuity from a device. While the count in the device
2892 * remains above zero the interface remains promiscuous. Once it hits zero
2893 * the device reverts back to normal filtering operation. A negative inc
2894 * value is used to drop promiscuity on the device.
dad9b335 2895 * Return 0 if successful or a negative errno code on error.
4417da66 2896 */
dad9b335 2897int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66
PM
2898{
2899 unsigned short old_flags = dev->flags;
dad9b335 2900 int err;
4417da66 2901
dad9b335 2902 err = __dev_set_promiscuity(dev, inc);
4b5a698e 2903 if (err < 0)
dad9b335 2904 return err;
4417da66
PM
2905 if (dev->flags != old_flags)
2906 dev_set_rx_mode(dev);
dad9b335 2907 return err;
4417da66
PM
2908}
2909
1da177e4
LT
2910/**
2911 * dev_set_allmulti - update allmulti count on a device
2912 * @dev: device
2913 * @inc: modifier
2914 *
2915 * Add or remove reception of all multicast frames to a device. While the
2916 * count in the device remains above zero the interface remains listening
2917 * to all interfaces. Once it hits zero the device reverts back to normal
2918 * filtering operation. A negative @inc value is used to drop the counter
2919 * when releasing a resource needing all multicasts.
dad9b335 2920 * Return 0 if successful or a negative errno code on error.
1da177e4
LT
2921 */
2922
dad9b335 2923int dev_set_allmulti(struct net_device *dev, int inc)
1da177e4
LT
2924{
2925 unsigned short old_flags = dev->flags;
2926
24023451
PM
2927 ASSERT_RTNL();
2928
1da177e4 2929 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
2930 dev->allmulti += inc;
2931 if (dev->allmulti == 0) {
2932 /*
2933 * Avoid overflow.
2934 * If inc causes overflow, untouch allmulti and return error.
2935 */
2936 if (inc < 0)
2937 dev->flags &= ~IFF_ALLMULTI;
2938 else {
2939 dev->allmulti -= inc;
2940 printk(KERN_WARNING "%s: allmulti touches roof, "
2941 "set allmulti failed, allmulti feature of "
2942 "device might be broken.\n", dev->name);
2943 return -EOVERFLOW;
2944 }
2945 }
24023451
PM
2946 if (dev->flags ^ old_flags) {
2947 if (dev->change_rx_flags)
2948 dev->change_rx_flags(dev, IFF_ALLMULTI);
4417da66 2949 dev_set_rx_mode(dev);
24023451 2950 }
dad9b335 2951 return 0;
4417da66
PM
2952}
2953
2954/*
2955 * Upload unicast and multicast address lists to device and
2956 * configure RX filtering. When the device doesn't support unicast
53ccaae1 2957 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
2958 * are present.
2959 */
2960void __dev_set_rx_mode(struct net_device *dev)
2961{
2962 /* dev_open will call this function so the list will stay sane. */
2963 if (!(dev->flags&IFF_UP))
2964 return;
2965
2966 if (!netif_device_present(dev))
40b77c94 2967 return;
4417da66
PM
2968
2969 if (dev->set_rx_mode)
2970 dev->set_rx_mode(dev);
2971 else {
2972 /* Unicast addresses changes may only happen under the rtnl,
2973 * therefore calling __dev_set_promiscuity here is safe.
2974 */
2975 if (dev->uc_count > 0 && !dev->uc_promisc) {
2976 __dev_set_promiscuity(dev, 1);
2977 dev->uc_promisc = 1;
2978 } else if (dev->uc_count == 0 && dev->uc_promisc) {
2979 __dev_set_promiscuity(dev, -1);
2980 dev->uc_promisc = 0;
2981 }
2982
2983 if (dev->set_multicast_list)
2984 dev->set_multicast_list(dev);
2985 }
2986}
2987
2988void dev_set_rx_mode(struct net_device *dev)
2989{
b9e40857 2990 netif_addr_lock_bh(dev);
4417da66 2991 __dev_set_rx_mode(dev);
b9e40857 2992 netif_addr_unlock_bh(dev);
1da177e4
LT
2993}
2994
61cbc2fc
PM
2995int __dev_addr_delete(struct dev_addr_list **list, int *count,
2996 void *addr, int alen, int glbl)
bf742482
PM
2997{
2998 struct dev_addr_list *da;
2999
3000 for (; (da = *list) != NULL; list = &da->next) {
3001 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3002 alen == da->da_addrlen) {
3003 if (glbl) {
3004 int old_glbl = da->da_gusers;
3005 da->da_gusers = 0;
3006 if (old_glbl == 0)
3007 break;
3008 }
3009 if (--da->da_users)
3010 return 0;
3011
3012 *list = da->next;
3013 kfree(da);
61cbc2fc 3014 (*count)--;
bf742482
PM
3015 return 0;
3016 }
3017 }
3018 return -ENOENT;
3019}
3020
61cbc2fc
PM
3021int __dev_addr_add(struct dev_addr_list **list, int *count,
3022 void *addr, int alen, int glbl)
bf742482
PM
3023{
3024 struct dev_addr_list *da;
3025
3026 for (da = *list; da != NULL; da = da->next) {
3027 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3028 da->da_addrlen == alen) {
3029 if (glbl) {
3030 int old_glbl = da->da_gusers;
3031 da->da_gusers = 1;
3032 if (old_glbl)
3033 return 0;
3034 }
3035 da->da_users++;
3036 return 0;
3037 }
3038 }
3039
12aa343a 3040 da = kzalloc(sizeof(*da), GFP_ATOMIC);
bf742482
PM
3041 if (da == NULL)
3042 return -ENOMEM;
3043 memcpy(da->da_addr, addr, alen);
3044 da->da_addrlen = alen;
3045 da->da_users = 1;
3046 da->da_gusers = glbl ? 1 : 0;
3047 da->next = *list;
3048 *list = da;
61cbc2fc 3049 (*count)++;
bf742482
PM
3050 return 0;
3051}
3052
4417da66
PM
3053/**
3054 * dev_unicast_delete - Release secondary unicast address.
3055 * @dev: device
0ed72ec4
RD
3056 * @addr: address to delete
3057 * @alen: length of @addr
4417da66
PM
3058 *
3059 * Release reference to a secondary unicast address and remove it
0ed72ec4 3060 * from the device if the reference count drops to zero.
4417da66
PM
3061 *
3062 * The caller must hold the rtnl_mutex.
3063 */
3064int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3065{
3066 int err;
3067
3068 ASSERT_RTNL();
3069
b9e40857 3070 netif_addr_lock_bh(dev);
61cbc2fc
PM
3071 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3072 if (!err)
4417da66 3073 __dev_set_rx_mode(dev);
b9e40857 3074 netif_addr_unlock_bh(dev);
4417da66
PM
3075 return err;
3076}
3077EXPORT_SYMBOL(dev_unicast_delete);
3078
3079/**
3080 * dev_unicast_add - add a secondary unicast address
3081 * @dev: device
5dbaec5d 3082 * @addr: address to add
0ed72ec4 3083 * @alen: length of @addr
4417da66
PM
3084 *
3085 * Add a secondary unicast address to the device or increase
3086 * the reference count if it already exists.
3087 *
3088 * The caller must hold the rtnl_mutex.
3089 */
3090int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3091{
3092 int err;
3093
3094 ASSERT_RTNL();
3095
b9e40857 3096 netif_addr_lock_bh(dev);
61cbc2fc
PM
3097 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3098 if (!err)
4417da66 3099 __dev_set_rx_mode(dev);
b9e40857 3100 netif_addr_unlock_bh(dev);
4417da66
PM
3101 return err;
3102}
3103EXPORT_SYMBOL(dev_unicast_add);
3104
e83a2ea8
CL
3105int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3106 struct dev_addr_list **from, int *from_count)
3107{
3108 struct dev_addr_list *da, *next;
3109 int err = 0;
3110
3111 da = *from;
3112 while (da != NULL) {
3113 next = da->next;
3114 if (!da->da_synced) {
3115 err = __dev_addr_add(to, to_count,
3116 da->da_addr, da->da_addrlen, 0);
3117 if (err < 0)
3118 break;
3119 da->da_synced = 1;
3120 da->da_users++;
3121 } else if (da->da_users == 1) {
3122 __dev_addr_delete(to, to_count,
3123 da->da_addr, da->da_addrlen, 0);
3124 __dev_addr_delete(from, from_count,
3125 da->da_addr, da->da_addrlen, 0);
3126 }
3127 da = next;
3128 }
3129 return err;
3130}
3131
3132void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3133 struct dev_addr_list **from, int *from_count)
3134{
3135 struct dev_addr_list *da, *next;
3136
3137 da = *from;
3138 while (da != NULL) {
3139 next = da->next;
3140 if (da->da_synced) {
3141 __dev_addr_delete(to, to_count,
3142 da->da_addr, da->da_addrlen, 0);
3143 da->da_synced = 0;
3144 __dev_addr_delete(from, from_count,
3145 da->da_addr, da->da_addrlen, 0);
3146 }
3147 da = next;
3148 }
3149}
3150
3151/**
3152 * dev_unicast_sync - Synchronize device's unicast list to another device
3153 * @to: destination device
3154 * @from: source device
3155 *
3156 * Add newly added addresses to the destination device and release
3157 * addresses that have no users left. The source device must be
3158 * locked by netif_tx_lock_bh.
3159 *
3160 * This function is intended to be called from the dev->set_rx_mode
3161 * function of layered software devices.
3162 */
3163int dev_unicast_sync(struct net_device *to, struct net_device *from)
3164{
3165 int err = 0;
3166
b9e40857 3167 netif_addr_lock_bh(to);
e83a2ea8
CL
3168 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3169 &from->uc_list, &from->uc_count);
3170 if (!err)
3171 __dev_set_rx_mode(to);
b9e40857 3172 netif_addr_unlock_bh(to);
e83a2ea8
CL
3173 return err;
3174}
3175EXPORT_SYMBOL(dev_unicast_sync);
3176
3177/**
bc2cda1e 3178 * dev_unicast_unsync - Remove synchronized addresses from the destination device
e83a2ea8
CL
3179 * @to: destination device
3180 * @from: source device
3181 *
3182 * Remove all addresses that were added to the destination device by
3183 * dev_unicast_sync(). This function is intended to be called from the
3184 * dev->stop function of layered software devices.
3185 */
3186void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3187{
b9e40857 3188 netif_addr_lock_bh(from);
e308a5d8 3189 netif_addr_lock(to);
e83a2ea8
CL
3190
3191 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3192 &from->uc_list, &from->uc_count);
3193 __dev_set_rx_mode(to);
3194
e308a5d8 3195 netif_addr_unlock(to);
b9e40857 3196 netif_addr_unlock_bh(from);
e83a2ea8
CL
3197}
3198EXPORT_SYMBOL(dev_unicast_unsync);
3199
12972621
DC
3200static void __dev_addr_discard(struct dev_addr_list **list)
3201{
3202 struct dev_addr_list *tmp;
3203
3204 while (*list != NULL) {
3205 tmp = *list;
3206 *list = tmp->next;
3207 if (tmp->da_users > tmp->da_gusers)
3208 printk("__dev_addr_discard: address leakage! "
3209 "da_users=%d\n", tmp->da_users);
3210 kfree(tmp);
3211 }
3212}
3213
26cc2522 3214static void dev_addr_discard(struct net_device *dev)
4417da66 3215{
b9e40857 3216 netif_addr_lock_bh(dev);
26cc2522 3217
4417da66
PM
3218 __dev_addr_discard(&dev->uc_list);
3219 dev->uc_count = 0;
4417da66 3220
456ad75c
DC
3221 __dev_addr_discard(&dev->mc_list);
3222 dev->mc_count = 0;
26cc2522 3223
b9e40857 3224 netif_addr_unlock_bh(dev);
456ad75c
DC
3225}
3226
1da177e4
LT
3227unsigned dev_get_flags(const struct net_device *dev)
3228{
3229 unsigned flags;
3230
3231 flags = (dev->flags & ~(IFF_PROMISC |
3232 IFF_ALLMULTI |
b00055aa
SR
3233 IFF_RUNNING |
3234 IFF_LOWER_UP |
3235 IFF_DORMANT)) |
1da177e4
LT
3236 (dev->gflags & (IFF_PROMISC |
3237 IFF_ALLMULTI));
3238
b00055aa
SR
3239 if (netif_running(dev)) {
3240 if (netif_oper_up(dev))
3241 flags |= IFF_RUNNING;
3242 if (netif_carrier_ok(dev))
3243 flags |= IFF_LOWER_UP;
3244 if (netif_dormant(dev))
3245 flags |= IFF_DORMANT;
3246 }
1da177e4
LT
3247
3248 return flags;
3249}
3250
3251int dev_change_flags(struct net_device *dev, unsigned flags)
3252{
7c355f53 3253 int ret, changes;
1da177e4
LT
3254 int old_flags = dev->flags;
3255
24023451
PM
3256 ASSERT_RTNL();
3257
1da177e4
LT
3258 /*
3259 * Set the flags on our device.
3260 */
3261
3262 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3263 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3264 IFF_AUTOMEDIA)) |
3265 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3266 IFF_ALLMULTI));
3267
3268 /*
3269 * Load in the correct multicast list now the flags have changed.
3270 */
3271
0e91796e 3272 if (dev->change_rx_flags && (old_flags ^ flags) & IFF_MULTICAST)
24023451
PM
3273 dev->change_rx_flags(dev, IFF_MULTICAST);
3274
4417da66 3275 dev_set_rx_mode(dev);
1da177e4
LT
3276
3277 /*
3278 * Have we downed the interface. We handle IFF_UP ourselves
3279 * according to user attempts to set it, rather than blindly
3280 * setting it.
3281 */
3282
3283 ret = 0;
3284 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3285 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3286
3287 if (!ret)
4417da66 3288 dev_set_rx_mode(dev);
1da177e4
LT
3289 }
3290
3291 if (dev->flags & IFF_UP &&
3292 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3293 IFF_VOLATILE)))
056925ab 3294 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1da177e4
LT
3295
3296 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3297 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3298 dev->gflags ^= IFF_PROMISC;
3299 dev_set_promiscuity(dev, inc);
3300 }
3301
3302 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3303 is important. Some (broken) drivers set IFF_PROMISC, when
3304 IFF_ALLMULTI is requested not asking us and not reporting.
3305 */
3306 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3307 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3308 dev->gflags ^= IFF_ALLMULTI;
3309 dev_set_allmulti(dev, inc);
3310 }
3311
7c355f53
TG
3312 /* Exclude state transition flags, already notified */
3313 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3314 if (changes)
3315 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
1da177e4
LT
3316
3317 return ret;
3318}
3319
3320int dev_set_mtu(struct net_device *dev, int new_mtu)
3321{
3322 int err;
3323
3324 if (new_mtu == dev->mtu)
3325 return 0;
3326
3327 /* MTU must be positive. */
3328 if (new_mtu < 0)
3329 return -EINVAL;
3330
3331 if (!netif_device_present(dev))
3332 return -ENODEV;
3333
3334 err = 0;
3335 if (dev->change_mtu)
3336 err = dev->change_mtu(dev, new_mtu);
3337 else
3338 dev->mtu = new_mtu;
3339 if (!err && dev->flags & IFF_UP)
056925ab 3340 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
1da177e4
LT
3341 return err;
3342}
3343
3344int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3345{
3346 int err;
3347
3348 if (!dev->set_mac_address)
3349 return -EOPNOTSUPP;
3350 if (sa->sa_family != dev->type)
3351 return -EINVAL;
3352 if (!netif_device_present(dev))
3353 return -ENODEV;
3354 err = dev->set_mac_address(dev, sa);
3355 if (!err)
056925ab 3356 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
1da177e4
LT
3357 return err;
3358}
3359
3360/*
14e3e079 3361 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
1da177e4 3362 */
14e3e079 3363static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
1da177e4
LT
3364{
3365 int err;
881d966b 3366 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
1da177e4
LT
3367
3368 if (!dev)
3369 return -ENODEV;
3370
3371 switch (cmd) {
3372 case SIOCGIFFLAGS: /* Get interface flags */
3373 ifr->ifr_flags = dev_get_flags(dev);
3374 return 0;
3375
1da177e4
LT
3376 case SIOCGIFMETRIC: /* Get the metric on the interface
3377 (currently unused) */
3378 ifr->ifr_metric = 0;
3379 return 0;
3380
1da177e4
LT
3381 case SIOCGIFMTU: /* Get the MTU of a device */
3382 ifr->ifr_mtu = dev->mtu;
3383 return 0;
3384
1da177e4
LT
3385 case SIOCGIFHWADDR:
3386 if (!dev->addr_len)
3387 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3388 else
3389 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3390 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3391 ifr->ifr_hwaddr.sa_family = dev->type;
3392 return 0;
3393
14e3e079
JG
3394 case SIOCGIFSLAVE:
3395 err = -EINVAL;
3396 break;
3397
3398 case SIOCGIFMAP:
3399 ifr->ifr_map.mem_start = dev->mem_start;
3400 ifr->ifr_map.mem_end = dev->mem_end;
3401 ifr->ifr_map.base_addr = dev->base_addr;
3402 ifr->ifr_map.irq = dev->irq;
3403 ifr->ifr_map.dma = dev->dma;
3404 ifr->ifr_map.port = dev->if_port;
3405 return 0;
3406
3407 case SIOCGIFINDEX:
3408 ifr->ifr_ifindex = dev->ifindex;
3409 return 0;
3410
3411 case SIOCGIFTXQLEN:
3412 ifr->ifr_qlen = dev->tx_queue_len;
3413 return 0;
3414
3415 default:
3416 /* dev_ioctl() should ensure this case
3417 * is never reached
3418 */
3419 WARN_ON(1);
3420 err = -EINVAL;
3421 break;
3422
3423 }
3424 return err;
3425}
3426
3427/*
3428 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3429 */
3430static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3431{
3432 int err;
3433 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3434
3435 if (!dev)
3436 return -ENODEV;
3437
3438 switch (cmd) {
3439 case SIOCSIFFLAGS: /* Set interface flags */
3440 return dev_change_flags(dev, ifr->ifr_flags);
3441
3442 case SIOCSIFMETRIC: /* Set the metric on the interface
3443 (currently unused) */
3444 return -EOPNOTSUPP;
3445
3446 case SIOCSIFMTU: /* Set the MTU of a device */
3447 return dev_set_mtu(dev, ifr->ifr_mtu);
3448
1da177e4
LT
3449 case SIOCSIFHWADDR:
3450 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3451
3452 case SIOCSIFHWBROADCAST:
3453 if (ifr->ifr_hwaddr.sa_family != dev->type)
3454 return -EINVAL;
3455 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3456 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
056925ab 3457 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
1da177e4
LT
3458 return 0;
3459
1da177e4
LT
3460 case SIOCSIFMAP:
3461 if (dev->set_config) {
3462 if (!netif_device_present(dev))
3463 return -ENODEV;
3464 return dev->set_config(dev, &ifr->ifr_map);
3465 }
3466 return -EOPNOTSUPP;
3467
3468 case SIOCADDMULTI:
61ee6bd4 3469 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
1da177e4
LT
3470 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3471 return -EINVAL;
3472 if (!netif_device_present(dev))
3473 return -ENODEV;
3474 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3475 dev->addr_len, 1);
3476
3477 case SIOCDELMULTI:
61ee6bd4 3478 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
1da177e4
LT
3479 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3480 return -EINVAL;
3481 if (!netif_device_present(dev))
3482 return -ENODEV;
3483 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3484 dev->addr_len, 1);
3485
1da177e4
LT
3486 case SIOCSIFTXQLEN:
3487 if (ifr->ifr_qlen < 0)
3488 return -EINVAL;
3489 dev->tx_queue_len = ifr->ifr_qlen;
3490 return 0;
3491
3492 case SIOCSIFNAME:
3493 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3494 return dev_change_name(dev, ifr->ifr_newname);
3495
3496 /*
3497 * Unknown or private ioctl
3498 */
3499
3500 default:
3501 if ((cmd >= SIOCDEVPRIVATE &&
3502 cmd <= SIOCDEVPRIVATE + 15) ||
3503 cmd == SIOCBONDENSLAVE ||
3504 cmd == SIOCBONDRELEASE ||
3505 cmd == SIOCBONDSETHWADDR ||
3506 cmd == SIOCBONDSLAVEINFOQUERY ||
3507 cmd == SIOCBONDINFOQUERY ||
3508 cmd == SIOCBONDCHANGEACTIVE ||
3509 cmd == SIOCGMIIPHY ||
3510 cmd == SIOCGMIIREG ||
3511 cmd == SIOCSMIIREG ||
3512 cmd == SIOCBRADDIF ||
3513 cmd == SIOCBRDELIF ||
3514 cmd == SIOCWANDEV) {
3515 err = -EOPNOTSUPP;
3516 if (dev->do_ioctl) {
3517 if (netif_device_present(dev))
3518 err = dev->do_ioctl(dev, ifr,
3519 cmd);
3520 else
3521 err = -ENODEV;
3522 }
3523 } else
3524 err = -EINVAL;
3525
3526 }
3527 return err;
3528}
3529
3530/*
3531 * This function handles all "interface"-type I/O control requests. The actual
3532 * 'doing' part of this is dev_ifsioc above.
3533 */
3534
3535/**
3536 * dev_ioctl - network device ioctl
c4ea43c5 3537 * @net: the applicable net namespace
1da177e4
LT
3538 * @cmd: command to issue
3539 * @arg: pointer to a struct ifreq in user space
3540 *
3541 * Issue ioctl functions to devices. This is normally called by the
3542 * user space syscall interfaces but can sometimes be useful for
3543 * other purposes. The return value is the return from the syscall if
3544 * positive or a negative errno code on error.
3545 */
3546
881d966b 3547int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1da177e4
LT
3548{
3549 struct ifreq ifr;
3550 int ret;
3551 char *colon;
3552
3553 /* One special case: SIOCGIFCONF takes ifconf argument
3554 and requires shared lock, because it sleeps writing
3555 to user space.
3556 */
3557
3558 if (cmd == SIOCGIFCONF) {
6756ae4b 3559 rtnl_lock();
881d966b 3560 ret = dev_ifconf(net, (char __user *) arg);
6756ae4b 3561 rtnl_unlock();
1da177e4
LT
3562 return ret;
3563 }
3564 if (cmd == SIOCGIFNAME)
881d966b 3565 return dev_ifname(net, (struct ifreq __user *)arg);
1da177e4
LT
3566
3567 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3568 return -EFAULT;
3569
3570 ifr.ifr_name[IFNAMSIZ-1] = 0;
3571
3572 colon = strchr(ifr.ifr_name, ':');
3573 if (colon)
3574 *colon = 0;
3575
3576 /*
3577 * See which interface the caller is talking about.
3578 */
3579
3580 switch (cmd) {
3581 /*
3582 * These ioctl calls:
3583 * - can be done by all.
3584 * - atomic and do not require locking.
3585 * - return a value
3586 */
3587 case SIOCGIFFLAGS:
3588 case SIOCGIFMETRIC:
3589 case SIOCGIFMTU:
3590 case SIOCGIFHWADDR:
3591 case SIOCGIFSLAVE:
3592 case SIOCGIFMAP:
3593 case SIOCGIFINDEX:
3594 case SIOCGIFTXQLEN:
881d966b 3595 dev_load(net, ifr.ifr_name);
1da177e4 3596 read_lock(&dev_base_lock);
14e3e079 3597 ret = dev_ifsioc_locked(net, &ifr, cmd);
1da177e4
LT
3598 read_unlock(&dev_base_lock);
3599 if (!ret) {
3600 if (colon)
3601 *colon = ':';
3602 if (copy_to_user(arg, &ifr,
3603 sizeof(struct ifreq)))
3604 ret = -EFAULT;
3605 }
3606 return ret;
3607
3608 case SIOCETHTOOL:
881d966b 3609 dev_load(net, ifr.ifr_name);
1da177e4 3610 rtnl_lock();
881d966b 3611 ret = dev_ethtool(net, &ifr);
1da177e4
LT
3612 rtnl_unlock();
3613 if (!ret) {
3614 if (colon)
3615 *colon = ':';
3616 if (copy_to_user(arg, &ifr,
3617 sizeof(struct ifreq)))
3618 ret = -EFAULT;
3619 }
3620 return ret;
3621
3622 /*
3623 * These ioctl calls:
3624 * - require superuser power.
3625 * - require strict serialization.
3626 * - return a value
3627 */
3628 case SIOCGMIIPHY:
3629 case SIOCGMIIREG:
3630 case SIOCSIFNAME:
3631 if (!capable(CAP_NET_ADMIN))
3632 return -EPERM;
881d966b 3633 dev_load(net, ifr.ifr_name);
1da177e4 3634 rtnl_lock();
881d966b 3635 ret = dev_ifsioc(net, &ifr, cmd);
1da177e4
LT
3636 rtnl_unlock();
3637 if (!ret) {
3638 if (colon)
3639 *colon = ':';
3640 if (copy_to_user(arg, &ifr,
3641 sizeof(struct ifreq)))
3642 ret = -EFAULT;
3643 }
3644 return ret;
3645
3646 /*
3647 * These ioctl calls:
3648 * - require superuser power.
3649 * - require strict serialization.
3650 * - do not return a value
3651 */
3652 case SIOCSIFFLAGS:
3653 case SIOCSIFMETRIC:
3654 case SIOCSIFMTU:
3655 case SIOCSIFMAP:
3656 case SIOCSIFHWADDR:
3657 case SIOCSIFSLAVE:
3658 case SIOCADDMULTI:
3659 case SIOCDELMULTI:
3660 case SIOCSIFHWBROADCAST:
3661 case SIOCSIFTXQLEN:
3662 case SIOCSMIIREG:
3663 case SIOCBONDENSLAVE:
3664 case SIOCBONDRELEASE:
3665 case SIOCBONDSETHWADDR:
1da177e4
LT
3666 case SIOCBONDCHANGEACTIVE:
3667 case SIOCBRADDIF:
3668 case SIOCBRDELIF:
3669 if (!capable(CAP_NET_ADMIN))
3670 return -EPERM;
cabcac0b
TG
3671 /* fall through */
3672 case SIOCBONDSLAVEINFOQUERY:
3673 case SIOCBONDINFOQUERY:
881d966b 3674 dev_load(net, ifr.ifr_name);
1da177e4 3675 rtnl_lock();
881d966b 3676 ret = dev_ifsioc(net, &ifr, cmd);
1da177e4
LT
3677 rtnl_unlock();
3678 return ret;
3679
3680 case SIOCGIFMEM:
3681 /* Get the per device memory space. We can add this but
3682 * currently do not support it */
3683 case SIOCSIFMEM:
3684 /* Set the per device memory buffer space.
3685 * Not applicable in our case */
3686 case SIOCSIFLINK:
3687 return -EINVAL;
3688
3689 /*
3690 * Unknown or private ioctl.
3691 */
3692 default:
3693 if (cmd == SIOCWANDEV ||
3694 (cmd >= SIOCDEVPRIVATE &&
3695 cmd <= SIOCDEVPRIVATE + 15)) {
881d966b 3696 dev_load(net, ifr.ifr_name);
1da177e4 3697 rtnl_lock();
881d966b 3698 ret = dev_ifsioc(net, &ifr, cmd);
1da177e4
LT
3699 rtnl_unlock();
3700 if (!ret && copy_to_user(arg, &ifr,
3701 sizeof(struct ifreq)))
3702 ret = -EFAULT;
3703 return ret;
3704 }
1da177e4 3705 /* Take care of Wireless Extensions */
295f4a1f 3706 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
881d966b 3707 return wext_handle_ioctl(net, &ifr, cmd, arg);
1da177e4
LT
3708 return -EINVAL;
3709 }
3710}
3711
3712
3713/**
3714 * dev_new_index - allocate an ifindex
c4ea43c5 3715 * @net: the applicable net namespace
1da177e4
LT
3716 *
3717 * Returns a suitable unique value for a new device interface
3718 * number. The caller must hold the rtnl semaphore or the
3719 * dev_base_lock to be sure it remains unique.
3720 */
881d966b 3721static int dev_new_index(struct net *net)
1da177e4
LT
3722{
3723 static int ifindex;
3724 for (;;) {
3725 if (++ifindex <= 0)
3726 ifindex = 1;
881d966b 3727 if (!__dev_get_by_index(net, ifindex))
1da177e4
LT
3728 return ifindex;
3729 }
3730}
3731
1da177e4
LT
3732/* Delayed registration/unregisteration */
3733static DEFINE_SPINLOCK(net_todo_list_lock);
3b5b34fd 3734static LIST_HEAD(net_todo_list);
1da177e4 3735
6f05f629 3736static void net_set_todo(struct net_device *dev)
1da177e4
LT
3737{
3738 spin_lock(&net_todo_list_lock);
3739 list_add_tail(&dev->todo_list, &net_todo_list);
3740 spin_unlock(&net_todo_list_lock);
3741}
3742
93ee31f1
DL
3743static void rollback_registered(struct net_device *dev)
3744{
3745 BUG_ON(dev_boot_phase);
3746 ASSERT_RTNL();
3747
3748 /* Some devices call without registering for initialization unwind. */
3749 if (dev->reg_state == NETREG_UNINITIALIZED) {
3750 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3751 "was registered\n", dev->name, dev);
3752
3753 WARN_ON(1);
3754 return;
3755 }
3756
3757 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3758
3759 /* If device is running, close it first. */
3760 dev_close(dev);
3761
3762 /* And unlink it from device chain. */
3763 unlist_netdevice(dev);
3764
3765 dev->reg_state = NETREG_UNREGISTERING;
3766
3767 synchronize_net();
3768
3769 /* Shutdown queueing discipline. */
3770 dev_shutdown(dev);
3771
3772
3773 /* Notify protocols, that we are about to destroy
3774 this device. They should clean all the things.
3775 */
3776 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3777
3778 /*
3779 * Flush the unicast and multicast chains
3780 */
3781 dev_addr_discard(dev);
3782
3783 if (dev->uninit)
3784 dev->uninit(dev);
3785
3786 /* Notifier chain MUST detach us from master device. */
3787 BUG_TRAP(!dev->master);
3788
3789 /* Remove entries from kobject tree */
3790 netdev_unregister_kobject(dev);
3791
3792 synchronize_net();
3793
3794 dev_put(dev);
3795}
3796
e8a0464c
DM
3797static void __netdev_init_queue_locks_one(struct net_device *dev,
3798 struct netdev_queue *dev_queue,
3799 void *_unused)
c773e847
DM
3800{
3801 spin_lock_init(&dev_queue->_xmit_lock);
3802 netdev_set_lockdep_class(&dev_queue->_xmit_lock, dev->type);
3803 dev_queue->xmit_lock_owner = -1;
3804}
3805
3806static void netdev_init_queue_locks(struct net_device *dev)
3807{
e8a0464c
DM
3808 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
3809 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
c773e847
DM
3810}
3811
1da177e4
LT
3812/**
3813 * register_netdevice - register a network device
3814 * @dev: device to register
3815 *
3816 * Take a completed network device structure and add it to the kernel
3817 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3818 * chain. 0 is returned on success. A negative errno code is returned
3819 * on a failure to set up the device, or if the name is a duplicate.
3820 *
3821 * Callers must hold the rtnl semaphore. You may want
3822 * register_netdev() instead of this.
3823 *
3824 * BUGS:
3825 * The locking appears insufficient to guarantee two parallel registers
3826 * will not get the same name.
3827 */
3828
3829int register_netdevice(struct net_device *dev)
3830{
3831 struct hlist_head *head;
3832 struct hlist_node *p;
3833 int ret;
881d966b 3834 struct net *net;
1da177e4
LT
3835
3836 BUG_ON(dev_boot_phase);
3837 ASSERT_RTNL();
3838
b17a7c17
SH
3839 might_sleep();
3840
1da177e4
LT
3841 /* When net_device's are persistent, this will be fatal. */
3842 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
c346dca1
YH
3843 BUG_ON(!dev_net(dev));
3844 net = dev_net(dev);
1da177e4 3845
f1f28aa3 3846 spin_lock_init(&dev->addr_list_lock);
c773e847 3847 netdev_init_queue_locks(dev);
1da177e4 3848
1da177e4
LT
3849 dev->iflink = -1;
3850
3851 /* Init, if this function is available */
3852 if (dev->init) {
3853 ret = dev->init(dev);
3854 if (ret) {
3855 if (ret > 0)
3856 ret = -EIO;
90833aa4 3857 goto out;
1da177e4
LT
3858 }
3859 }
4ec93edb 3860
1da177e4
LT
3861 if (!dev_valid_name(dev->name)) {
3862 ret = -EINVAL;
7ce1b0ed 3863 goto err_uninit;
1da177e4
LT
3864 }
3865
881d966b 3866 dev->ifindex = dev_new_index(net);
1da177e4
LT
3867 if (dev->iflink == -1)
3868 dev->iflink = dev->ifindex;
3869
3870 /* Check for existence of name */
881d966b 3871 head = dev_name_hash(net, dev->name);
1da177e4
LT
3872 hlist_for_each(p, head) {
3873 struct net_device *d
3874 = hlist_entry(p, struct net_device, name_hlist);
3875 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3876 ret = -EEXIST;
7ce1b0ed 3877 goto err_uninit;
1da177e4 3878 }
4ec93edb 3879 }
1da177e4 3880
d212f87b
SH
3881 /* Fix illegal checksum combinations */
3882 if ((dev->features & NETIF_F_HW_CSUM) &&
3883 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3884 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3885 dev->name);
3886 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3887 }
3888
3889 if ((dev->features & NETIF_F_NO_CSUM) &&
3890 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3891 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3892 dev->name);
3893 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3894 }
3895
3896
1da177e4
LT
3897 /* Fix illegal SG+CSUM combinations. */
3898 if ((dev->features & NETIF_F_SG) &&
8648b305 3899 !(dev->features & NETIF_F_ALL_CSUM)) {
5a8da02b 3900 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
1da177e4
LT
3901 dev->name);
3902 dev->features &= ~NETIF_F_SG;
3903 }
3904
3905 /* TSO requires that SG is present as well. */
3906 if ((dev->features & NETIF_F_TSO) &&
3907 !(dev->features & NETIF_F_SG)) {
5a8da02b 3908 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
1da177e4
LT
3909 dev->name);
3910 dev->features &= ~NETIF_F_TSO;
3911 }
e89e9cf5
AR
3912 if (dev->features & NETIF_F_UFO) {
3913 if (!(dev->features & NETIF_F_HW_CSUM)) {
3914 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3915 "NETIF_F_HW_CSUM feature.\n",
3916 dev->name);
3917 dev->features &= ~NETIF_F_UFO;
3918 }
3919 if (!(dev->features & NETIF_F_SG)) {
3920 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3921 "NETIF_F_SG feature.\n",
3922 dev->name);
3923 dev->features &= ~NETIF_F_UFO;
3924 }
3925 }
1da177e4 3926
aaf8cdc3 3927 netdev_initialize_kobject(dev);
8b41d188 3928 ret = netdev_register_kobject(dev);
b17a7c17 3929 if (ret)
7ce1b0ed 3930 goto err_uninit;
b17a7c17
SH
3931 dev->reg_state = NETREG_REGISTERED;
3932
1da177e4
LT
3933 /*
3934 * Default initial state at registry is that the
3935 * device is present.
3936 */
3937
3938 set_bit(__LINK_STATE_PRESENT, &dev->state);
3939
1da177e4 3940 dev_init_scheduler(dev);
1da177e4 3941 dev_hold(dev);
ce286d32 3942 list_netdevice(dev);
1da177e4
LT
3943
3944 /* Notify protocols, that a new device appeared. */
056925ab 3945 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 3946 ret = notifier_to_errno(ret);
93ee31f1
DL
3947 if (ret) {
3948 rollback_registered(dev);
3949 dev->reg_state = NETREG_UNREGISTERED;
3950 }
1da177e4
LT
3951
3952out:
3953 return ret;
7ce1b0ed
HX
3954
3955err_uninit:
3956 if (dev->uninit)
3957 dev->uninit(dev);
3958 goto out;
1da177e4
LT
3959}
3960
3961/**
3962 * register_netdev - register a network device
3963 * @dev: device to register
3964 *
3965 * Take a completed network device structure and add it to the kernel
3966 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3967 * chain. 0 is returned on success. A negative errno code is returned
3968 * on a failure to set up the device, or if the name is a duplicate.
3969 *
38b4da38 3970 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
3971 * and expands the device name if you passed a format string to
3972 * alloc_netdev.
3973 */
3974int register_netdev(struct net_device *dev)
3975{
3976 int err;
3977
3978 rtnl_lock();
3979
3980 /*
3981 * If the name is a format string the caller wants us to do a
3982 * name allocation.
3983 */
3984 if (strchr(dev->name, '%')) {
3985 err = dev_alloc_name(dev, dev->name);
3986 if (err < 0)
3987 goto out;
3988 }
4ec93edb 3989
1da177e4
LT
3990 err = register_netdevice(dev);
3991out:
3992 rtnl_unlock();
3993 return err;
3994}
3995EXPORT_SYMBOL(register_netdev);
3996
3997/*
3998 * netdev_wait_allrefs - wait until all references are gone.
3999 *
4000 * This is called when unregistering network devices.
4001 *
4002 * Any protocol or device that holds a reference should register
4003 * for netdevice notification, and cleanup and put back the
4004 * reference if they receive an UNREGISTER event.
4005 * We can get stuck here if buggy protocols don't correctly
4ec93edb 4006 * call dev_put.
1da177e4
LT
4007 */
4008static void netdev_wait_allrefs(struct net_device *dev)
4009{
4010 unsigned long rebroadcast_time, warning_time;
4011
4012 rebroadcast_time = warning_time = jiffies;
4013 while (atomic_read(&dev->refcnt) != 0) {
4014 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 4015 rtnl_lock();
1da177e4
LT
4016
4017 /* Rebroadcast unregister notification */
056925ab 4018 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4
LT
4019
4020 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4021 &dev->state)) {
4022 /* We must not have linkwatch events
4023 * pending on unregister. If this
4024 * happens, we simply run the queue
4025 * unscheduled, resulting in a noop
4026 * for this device.
4027 */
4028 linkwatch_run_queue();
4029 }
4030
6756ae4b 4031 __rtnl_unlock();
1da177e4
LT
4032
4033 rebroadcast_time = jiffies;
4034 }
4035
4036 msleep(250);
4037
4038 if (time_after(jiffies, warning_time + 10 * HZ)) {
4039 printk(KERN_EMERG "unregister_netdevice: "
4040 "waiting for %s to become free. Usage "
4041 "count = %d\n",
4042 dev->name, atomic_read(&dev->refcnt));
4043 warning_time = jiffies;
4044 }
4045 }
4046}
4047
4048/* The sequence is:
4049 *
4050 * rtnl_lock();
4051 * ...
4052 * register_netdevice(x1);
4053 * register_netdevice(x2);
4054 * ...
4055 * unregister_netdevice(y1);
4056 * unregister_netdevice(y2);
4057 * ...
4058 * rtnl_unlock();
4059 * free_netdev(y1);
4060 * free_netdev(y2);
4061 *
4062 * We are invoked by rtnl_unlock() after it drops the semaphore.
4063 * This allows us to deal with problems:
b17a7c17 4064 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
4065 * without deadlocking with linkwatch via keventd.
4066 * 2) Since we run with the RTNL semaphore not held, we can sleep
4067 * safely in order to wait for the netdev refcnt to drop to zero.
4068 */
4a3e2f71 4069static DEFINE_MUTEX(net_todo_run_mutex);
1da177e4
LT
4070void netdev_run_todo(void)
4071{
626ab0e6 4072 struct list_head list;
1da177e4
LT
4073
4074 /* Need to guard against multiple cpu's getting out of order. */
4a3e2f71 4075 mutex_lock(&net_todo_run_mutex);
1da177e4
LT
4076
4077 /* Not safe to do outside the semaphore. We must not return
4078 * until all unregister events invoked by the local processor
4079 * have been completed (either by this todo run, or one on
4080 * another cpu).
4081 */
4082 if (list_empty(&net_todo_list))
4083 goto out;
4084
4085 /* Snapshot list, allow later requests */
4086 spin_lock(&net_todo_list_lock);
626ab0e6 4087 list_replace_init(&net_todo_list, &list);
1da177e4 4088 spin_unlock(&net_todo_list_lock);
626ab0e6 4089
1da177e4
LT
4090 while (!list_empty(&list)) {
4091 struct net_device *dev
4092 = list_entry(list.next, struct net_device, todo_list);
4093 list_del(&dev->todo_list);
4094
b17a7c17
SH
4095 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4096 printk(KERN_ERR "network todo '%s' but state %d\n",
4097 dev->name, dev->reg_state);
4098 dump_stack();
4099 continue;
4100 }
1da177e4 4101
b17a7c17 4102 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 4103
b17a7c17 4104 netdev_wait_allrefs(dev);
1da177e4 4105
b17a7c17
SH
4106 /* paranoia */
4107 BUG_ON(atomic_read(&dev->refcnt));
4108 BUG_TRAP(!dev->ip_ptr);
4109 BUG_TRAP(!dev->ip6_ptr);
4110 BUG_TRAP(!dev->dn_ptr);
1da177e4 4111
b17a7c17
SH
4112 if (dev->destructor)
4113 dev->destructor(dev);
9093bbb2
SH
4114
4115 /* Free network device */
4116 kobject_put(&dev->dev.kobj);
1da177e4
LT
4117 }
4118
4119out:
4a3e2f71 4120 mutex_unlock(&net_todo_run_mutex);
1da177e4
LT
4121}
4122
5a1b5898 4123static struct net_device_stats *internal_stats(struct net_device *dev)
c45d286e 4124{
5a1b5898 4125 return &dev->stats;
c45d286e
RR
4126}
4127
dc2b4847 4128static void netdev_init_one_queue(struct net_device *dev,
e8a0464c
DM
4129 struct netdev_queue *queue,
4130 void *_unused)
dc2b4847
DM
4131{
4132 spin_lock_init(&queue->lock);
4133 queue->dev = dev;
4134}
4135
bb949fbd
DM
4136static void netdev_init_queues(struct net_device *dev)
4137{
e8a0464c
DM
4138 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4139 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
bb949fbd
DM
4140}
4141
1da177e4 4142/**
f25f4e44 4143 * alloc_netdev_mq - allocate network device
1da177e4
LT
4144 * @sizeof_priv: size of private data to allocate space for
4145 * @name: device name format string
4146 * @setup: callback to initialize device
f25f4e44 4147 * @queue_count: the number of subqueues to allocate
1da177e4
LT
4148 *
4149 * Allocates a struct net_device with private data area for driver use
f25f4e44
PWJ
4150 * and performs basic initialization. Also allocates subquue structs
4151 * for each queue on the device at the end of the netdevice.
1da177e4 4152 */
f25f4e44
PWJ
4153struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4154 void (*setup)(struct net_device *), unsigned int queue_count)
1da177e4 4155{
e8a0464c 4156 struct netdev_queue *tx;
1da177e4
LT
4157 struct net_device *dev;
4158 int alloc_size;
e8a0464c 4159 void *p;
1da177e4 4160
b6fe17d6
SH
4161 BUG_ON(strlen(name) >= sizeof(dev->name));
4162
d1643d24
AD
4163 alloc_size = sizeof(struct net_device) +
4164 sizeof(struct net_device_subqueue) * (queue_count - 1);
4165 if (sizeof_priv) {
4166 /* ensure 32-byte alignment of private area */
4167 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4168 alloc_size += sizeof_priv;
4169 }
4170 /* ensure 32-byte alignment of whole construct */
4171 alloc_size += NETDEV_ALIGN_CONST;
1da177e4 4172
31380de9 4173 p = kzalloc(alloc_size, GFP_KERNEL);
1da177e4 4174 if (!p) {
b6fe17d6 4175 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
1da177e4
LT
4176 return NULL;
4177 }
1da177e4 4178
e8a0464c
DM
4179 tx = kzalloc(sizeof(struct netdev_queue) * queue_count, GFP_KERNEL);
4180 if (!tx) {
4181 printk(KERN_ERR "alloc_netdev: Unable to allocate "
4182 "tx qdiscs.\n");
4183 kfree(p);
4184 return NULL;
4185 }
4186
1da177e4
LT
4187 dev = (struct net_device *)
4188 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4189 dev->padded = (char *)dev - (char *)p;
c346dca1 4190 dev_net_set(dev, &init_net);
1da177e4 4191
e8a0464c
DM
4192 dev->_tx = tx;
4193 dev->num_tx_queues = queue_count;
4194
f25f4e44
PWJ
4195 if (sizeof_priv) {
4196 dev->priv = ((char *)dev +
4197 ((sizeof(struct net_device) +
4198 (sizeof(struct net_device_subqueue) *
31ce72a6 4199 (queue_count - 1)) + NETDEV_ALIGN_CONST)
f25f4e44
PWJ
4200 & ~NETDEV_ALIGN_CONST));
4201 }
4202
4203 dev->egress_subqueue_count = queue_count;
82cc1a7a 4204 dev->gso_max_size = GSO_MAX_SIZE;
1da177e4 4205
bb949fbd
DM
4206 netdev_init_queues(dev);
4207
5a1b5898 4208 dev->get_stats = internal_stats;
bea3348e 4209 netpoll_netdev_init(dev);
1da177e4
LT
4210 setup(dev);
4211 strcpy(dev->name, name);
4212 return dev;
4213}
f25f4e44 4214EXPORT_SYMBOL(alloc_netdev_mq);
1da177e4
LT
4215
4216/**
4217 * free_netdev - free network device
4218 * @dev: device
4219 *
4ec93edb
YH
4220 * This function does the last stage of destroying an allocated device
4221 * interface. The reference to the device object is released.
1da177e4
LT
4222 * If this is the last reference then it will be freed.
4223 */
4224void free_netdev(struct net_device *dev)
4225{
f3005d7f
DL
4226 release_net(dev_net(dev));
4227
e8a0464c
DM
4228 kfree(dev->_tx);
4229
3041a069 4230 /* Compatibility with error handling in drivers */
1da177e4
LT
4231 if (dev->reg_state == NETREG_UNINITIALIZED) {
4232 kfree((char *)dev - dev->padded);
4233 return;
4234 }
4235
4236 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4237 dev->reg_state = NETREG_RELEASED;
4238
43cb76d9
GKH
4239 /* will free via device release */
4240 put_device(&dev->dev);
1da177e4 4241}
4ec93edb 4242
1da177e4 4243/* Synchronize with packet receive processing. */
4ec93edb 4244void synchronize_net(void)
1da177e4
LT
4245{
4246 might_sleep();
fbd568a3 4247 synchronize_rcu();
1da177e4
LT
4248}
4249
4250/**
4251 * unregister_netdevice - remove device from the kernel
4252 * @dev: device
4253 *
4254 * This function shuts down a device interface and removes it
d59b54b1 4255 * from the kernel tables.
1da177e4
LT
4256 *
4257 * Callers must hold the rtnl semaphore. You may want
4258 * unregister_netdev() instead of this.
4259 */
4260
22f8cde5 4261void unregister_netdevice(struct net_device *dev)
1da177e4 4262{
a6620712
HX
4263 ASSERT_RTNL();
4264
93ee31f1 4265 rollback_registered(dev);
1da177e4
LT
4266 /* Finish processing unregister after unlock */
4267 net_set_todo(dev);
1da177e4
LT
4268}
4269
4270/**
4271 * unregister_netdev - remove device from the kernel
4272 * @dev: device
4273 *
4274 * This function shuts down a device interface and removes it
d59b54b1 4275 * from the kernel tables.
1da177e4
LT
4276 *
4277 * This is just a wrapper for unregister_netdevice that takes
4278 * the rtnl semaphore. In general you want to use this and not
4279 * unregister_netdevice.
4280 */
4281void unregister_netdev(struct net_device *dev)
4282{
4283 rtnl_lock();
4284 unregister_netdevice(dev);
4285 rtnl_unlock();
4286}
4287
4288EXPORT_SYMBOL(unregister_netdev);
4289
ce286d32
EB
4290/**
4291 * dev_change_net_namespace - move device to different nethost namespace
4292 * @dev: device
4293 * @net: network namespace
4294 * @pat: If not NULL name pattern to try if the current device name
4295 * is already taken in the destination network namespace.
4296 *
4297 * This function shuts down a device interface and moves it
4298 * to a new network namespace. On success 0 is returned, on
4299 * a failure a netagive errno code is returned.
4300 *
4301 * Callers must hold the rtnl semaphore.
4302 */
4303
4304int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4305{
4306 char buf[IFNAMSIZ];
4307 const char *destname;
4308 int err;
4309
4310 ASSERT_RTNL();
4311
4312 /* Don't allow namespace local devices to be moved. */
4313 err = -EINVAL;
4314 if (dev->features & NETIF_F_NETNS_LOCAL)
4315 goto out;
4316
4317 /* Ensure the device has been registrered */
4318 err = -EINVAL;
4319 if (dev->reg_state != NETREG_REGISTERED)
4320 goto out;
4321
4322 /* Get out if there is nothing todo */
4323 err = 0;
878628fb 4324 if (net_eq(dev_net(dev), net))
ce286d32
EB
4325 goto out;
4326
4327 /* Pick the destination device name, and ensure
4328 * we can use it in the destination network namespace.
4329 */
4330 err = -EEXIST;
4331 destname = dev->name;
4332 if (__dev_get_by_name(net, destname)) {
4333 /* We get here if we can't use the current device name */
4334 if (!pat)
4335 goto out;
4336 if (!dev_valid_name(pat))
4337 goto out;
4338 if (strchr(pat, '%')) {
4339 if (__dev_alloc_name(net, pat, buf) < 0)
4340 goto out;
4341 destname = buf;
4342 } else
4343 destname = pat;
4344 if (__dev_get_by_name(net, destname))
4345 goto out;
4346 }
4347
4348 /*
4349 * And now a mini version of register_netdevice unregister_netdevice.
4350 */
4351
4352 /* If device is running close it first. */
9b772652 4353 dev_close(dev);
ce286d32
EB
4354
4355 /* And unlink it from device chain */
4356 err = -ENODEV;
4357 unlist_netdevice(dev);
4358
4359 synchronize_net();
4360
4361 /* Shutdown queueing discipline. */
4362 dev_shutdown(dev);
4363
4364 /* Notify protocols, that we are about to destroy
4365 this device. They should clean all the things.
4366 */
4367 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4368
4369 /*
4370 * Flush the unicast and multicast chains
4371 */
4372 dev_addr_discard(dev);
4373
4374 /* Actually switch the network namespace */
c346dca1 4375 dev_net_set(dev, net);
ce286d32
EB
4376
4377 /* Assign the new device name */
4378 if (destname != dev->name)
4379 strcpy(dev->name, destname);
4380
4381 /* If there is an ifindex conflict assign a new one */
4382 if (__dev_get_by_index(net, dev->ifindex)) {
4383 int iflink = (dev->iflink == dev->ifindex);
4384 dev->ifindex = dev_new_index(net);
4385 if (iflink)
4386 dev->iflink = dev->ifindex;
4387 }
4388
8b41d188 4389 /* Fixup kobjects */
aaf8cdc3
DL
4390 netdev_unregister_kobject(dev);
4391 err = netdev_register_kobject(dev);
8b41d188 4392 WARN_ON(err);
ce286d32
EB
4393
4394 /* Add the device back in the hashes */
4395 list_netdevice(dev);
4396
4397 /* Notify protocols, that a new device appeared. */
4398 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4399
4400 synchronize_net();
4401 err = 0;
4402out:
4403 return err;
4404}
4405
1da177e4
LT
4406static int dev_cpu_callback(struct notifier_block *nfb,
4407 unsigned long action,
4408 void *ocpu)
4409{
4410 struct sk_buff **list_skb;
ee609cb3 4411 struct netdev_queue **list_net;
1da177e4
LT
4412 struct sk_buff *skb;
4413 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4414 struct softnet_data *sd, *oldsd;
4415
8bb78442 4416 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
4417 return NOTIFY_OK;
4418
4419 local_irq_disable();
4420 cpu = smp_processor_id();
4421 sd = &per_cpu(softnet_data, cpu);
4422 oldsd = &per_cpu(softnet_data, oldcpu);
4423
4424 /* Find end of our completion_queue. */
4425 list_skb = &sd->completion_queue;
4426 while (*list_skb)
4427 list_skb = &(*list_skb)->next;
4428 /* Append completion queue from offline CPU. */
4429 *list_skb = oldsd->completion_queue;
4430 oldsd->completion_queue = NULL;
4431
4432 /* Find end of our output_queue. */
4433 list_net = &sd->output_queue;
4434 while (*list_net)
4435 list_net = &(*list_net)->next_sched;
4436 /* Append output queue from offline CPU. */
4437 *list_net = oldsd->output_queue;
4438 oldsd->output_queue = NULL;
4439
4440 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4441 local_irq_enable();
4442
4443 /* Process offline CPU's input_pkt_queue */
4444 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4445 netif_rx(skb);
4446
4447 return NOTIFY_OK;
4448}
1da177e4 4449
db217334
CL
4450#ifdef CONFIG_NET_DMA
4451/**
0ed72ec4
RD
4452 * net_dma_rebalance - try to maintain one DMA channel per CPU
4453 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4454 *
4455 * This is called when the number of channels allocated to the net_dma client
4456 * changes. The net_dma client tries to have one DMA channel per CPU.
db217334 4457 */
d379b01e
DW
4458
4459static void net_dma_rebalance(struct net_dma *net_dma)
db217334 4460{
d379b01e 4461 unsigned int cpu, i, n, chan_idx;
db217334
CL
4462 struct dma_chan *chan;
4463
d379b01e 4464 if (cpus_empty(net_dma->channel_mask)) {
db217334 4465 for_each_online_cpu(cpu)
29bbd72d 4466 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
db217334
CL
4467 return;
4468 }
4469
4470 i = 0;
4471 cpu = first_cpu(cpu_online_map);
4472
d379b01e
DW
4473 for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
4474 chan = net_dma->channels[chan_idx];
4475
4476 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4477 + (i < (num_online_cpus() %
4478 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
db217334
CL
4479
4480 while(n) {
29bbd72d 4481 per_cpu(softnet_data, cpu).net_dma = chan;
db217334
CL
4482 cpu = next_cpu(cpu, cpu_online_map);
4483 n--;
4484 }
4485 i++;
4486 }
db217334
CL
4487}
4488
4489/**
4490 * netdev_dma_event - event callback for the net_dma_client
4491 * @client: should always be net_dma_client
f4b8ea78 4492 * @chan: DMA channel for the event
0ed72ec4 4493 * @state: DMA state to be handled
db217334 4494 */
d379b01e
DW
4495static enum dma_state_client
4496netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4497 enum dma_state state)
4498{
4499 int i, found = 0, pos = -1;
4500 struct net_dma *net_dma =
4501 container_of(client, struct net_dma, client);
4502 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4503
4504 spin_lock(&net_dma->lock);
4505 switch (state) {
4506 case DMA_RESOURCE_AVAILABLE:
0c0b0aca 4507 for (i = 0; i < nr_cpu_ids; i++)
d379b01e
DW
4508 if (net_dma->channels[i] == chan) {
4509 found = 1;
4510 break;
4511 } else if (net_dma->channels[i] == NULL && pos < 0)
4512 pos = i;
4513
4514 if (!found && pos >= 0) {
4515 ack = DMA_ACK;
4516 net_dma->channels[pos] = chan;
4517 cpu_set(pos, net_dma->channel_mask);
4518 net_dma_rebalance(net_dma);
4519 }
db217334
CL
4520 break;
4521 case DMA_RESOURCE_REMOVED:
0c0b0aca 4522 for (i = 0; i < nr_cpu_ids; i++)
d379b01e
DW
4523 if (net_dma->channels[i] == chan) {
4524 found = 1;
4525 pos = i;
4526 break;
4527 }
4528
4529 if (found) {
4530 ack = DMA_ACK;
4531 cpu_clear(pos, net_dma->channel_mask);
4532 net_dma->channels[i] = NULL;
4533 net_dma_rebalance(net_dma);
4534 }
db217334
CL
4535 break;
4536 default:
4537 break;
4538 }
d379b01e
DW
4539 spin_unlock(&net_dma->lock);
4540
4541 return ack;
db217334
CL
4542}
4543
4544/**
4545 * netdev_dma_regiser - register the networking subsystem as a DMA client
4546 */
4547static int __init netdev_dma_register(void)
4548{
0c0b0aca
MT
4549 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4550 GFP_KERNEL);
4551 if (unlikely(!net_dma.channels)) {
4552 printk(KERN_NOTICE
4553 "netdev_dma: no memory for net_dma.channels\n");
4554 return -ENOMEM;
4555 }
d379b01e
DW
4556 spin_lock_init(&net_dma.lock);
4557 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4558 dma_async_client_register(&net_dma.client);
4559 dma_async_client_chan_request(&net_dma.client);
db217334
CL
4560 return 0;
4561}
4562
4563#else
4564static int __init netdev_dma_register(void) { return -ENODEV; }
4565#endif /* CONFIG_NET_DMA */
1da177e4 4566
7f353bf2
HX
4567/**
4568 * netdev_compute_feature - compute conjunction of two feature sets
4569 * @all: first feature set
4570 * @one: second feature set
4571 *
4572 * Computes a new feature set after adding a device with feature set
4573 * @one to the master device with current feature set @all. Returns
4574 * the new feature set.
4575 */
4576int netdev_compute_features(unsigned long all, unsigned long one)
4577{
4578 /* if device needs checksumming, downgrade to hw checksumming */
4579 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4580 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4581
4582 /* if device can't do all checksum, downgrade to ipv4/ipv6 */
4583 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4584 all ^= NETIF_F_HW_CSUM
4585 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4586
4587 if (one & NETIF_F_GSO)
4588 one |= NETIF_F_GSO_SOFTWARE;
4589 one |= NETIF_F_GSO;
4590
4591 /* If even one device supports robust GSO, enable it for all. */
4592 if (one & NETIF_F_GSO_ROBUST)
4593 all |= NETIF_F_GSO_ROBUST;
4594
4595 all &= one | NETIF_F_LLTX;
4596
4597 if (!(all & NETIF_F_ALL_CSUM))
4598 all &= ~NETIF_F_SG;
4599 if (!(all & NETIF_F_SG))
4600 all &= ~NETIF_F_GSO_MASK;
4601
4602 return all;
4603}
4604EXPORT_SYMBOL(netdev_compute_features);
4605
30d97d35
PE
4606static struct hlist_head *netdev_create_hash(void)
4607{
4608 int i;
4609 struct hlist_head *hash;
4610
4611 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4612 if (hash != NULL)
4613 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4614 INIT_HLIST_HEAD(&hash[i]);
4615
4616 return hash;
4617}
4618
881d966b 4619/* Initialize per network namespace state */
4665079c 4620static int __net_init netdev_init(struct net *net)
881d966b 4621{
881d966b 4622 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 4623
30d97d35
PE
4624 net->dev_name_head = netdev_create_hash();
4625 if (net->dev_name_head == NULL)
4626 goto err_name;
881d966b 4627
30d97d35
PE
4628 net->dev_index_head = netdev_create_hash();
4629 if (net->dev_index_head == NULL)
4630 goto err_idx;
881d966b
EB
4631
4632 return 0;
30d97d35
PE
4633
4634err_idx:
4635 kfree(net->dev_name_head);
4636err_name:
4637 return -ENOMEM;
881d966b
EB
4638}
4639
4665079c 4640static void __net_exit netdev_exit(struct net *net)
881d966b
EB
4641{
4642 kfree(net->dev_name_head);
4643 kfree(net->dev_index_head);
4644}
4645
022cbae6 4646static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
4647 .init = netdev_init,
4648 .exit = netdev_exit,
4649};
4650
4665079c 4651static void __net_exit default_device_exit(struct net *net)
ce286d32
EB
4652{
4653 struct net_device *dev, *next;
4654 /*
4655 * Push all migratable of the network devices back to the
4656 * initial network namespace
4657 */
4658 rtnl_lock();
4659 for_each_netdev_safe(net, dev, next) {
4660 int err;
aca51397 4661 char fb_name[IFNAMSIZ];
ce286d32
EB
4662
4663 /* Ignore unmoveable devices (i.e. loopback) */
4664 if (dev->features & NETIF_F_NETNS_LOCAL)
4665 continue;
4666
4667 /* Push remaing network devices to init_net */
aca51397
PE
4668 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
4669 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 4670 if (err) {
aca51397 4671 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
ce286d32 4672 __func__, dev->name, err);
aca51397 4673 BUG();
ce286d32
EB
4674 }
4675 }
4676 rtnl_unlock();
4677}
4678
022cbae6 4679static struct pernet_operations __net_initdata default_device_ops = {
ce286d32
EB
4680 .exit = default_device_exit,
4681};
4682
1da177e4
LT
4683/*
4684 * Initialize the DEV module. At boot time this walks the device list and
4685 * unhooks any devices that fail to initialise (normally hardware not
4686 * present) and leaves us with a valid list of present and active devices.
4687 *
4688 */
4689
4690/*
4691 * This is called single threaded during boot, so no need
4692 * to take the rtnl semaphore.
4693 */
4694static int __init net_dev_init(void)
4695{
4696 int i, rc = -ENOMEM;
4697
4698 BUG_ON(!dev_boot_phase);
4699
1da177e4
LT
4700 if (dev_proc_init())
4701 goto out;
4702
8b41d188 4703 if (netdev_kobject_init())
1da177e4
LT
4704 goto out;
4705
4706 INIT_LIST_HEAD(&ptype_all);
82d8a867 4707 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
4708 INIT_LIST_HEAD(&ptype_base[i]);
4709
881d966b
EB
4710 if (register_pernet_subsys(&netdev_net_ops))
4711 goto out;
1da177e4 4712
ce286d32
EB
4713 if (register_pernet_device(&default_device_ops))
4714 goto out;
4715
1da177e4
LT
4716 /*
4717 * Initialise the packet receive queues.
4718 */
4719
6f912042 4720 for_each_possible_cpu(i) {
1da177e4
LT
4721 struct softnet_data *queue;
4722
4723 queue = &per_cpu(softnet_data, i);
4724 skb_queue_head_init(&queue->input_pkt_queue);
1da177e4
LT
4725 queue->completion_queue = NULL;
4726 INIT_LIST_HEAD(&queue->poll_list);
bea3348e
SH
4727
4728 queue->backlog.poll = process_backlog;
4729 queue->backlog.weight = weight_p;
1da177e4
LT
4730 }
4731
db217334
CL
4732 netdev_dma_register();
4733
1da177e4
LT
4734 dev_boot_phase = 0;
4735
4736 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
4737 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
4738
4739 hotcpu_notifier(dev_cpu_callback, 0);
4740 dst_init();
4741 dev_mcast_init();
4742 rc = 0;
4743out:
4744 return rc;
4745}
4746
4747subsys_initcall(net_dev_init);
4748
4749EXPORT_SYMBOL(__dev_get_by_index);
4750EXPORT_SYMBOL(__dev_get_by_name);
4751EXPORT_SYMBOL(__dev_remove_pack);
c2373ee9 4752EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
4753EXPORT_SYMBOL(dev_add_pack);
4754EXPORT_SYMBOL(dev_alloc_name);
4755EXPORT_SYMBOL(dev_close);
4756EXPORT_SYMBOL(dev_get_by_flags);
4757EXPORT_SYMBOL(dev_get_by_index);
4758EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
4759EXPORT_SYMBOL(dev_open);
4760EXPORT_SYMBOL(dev_queue_xmit);
4761EXPORT_SYMBOL(dev_remove_pack);
4762EXPORT_SYMBOL(dev_set_allmulti);
4763EXPORT_SYMBOL(dev_set_promiscuity);
4764EXPORT_SYMBOL(dev_change_flags);
4765EXPORT_SYMBOL(dev_set_mtu);
4766EXPORT_SYMBOL(dev_set_mac_address);
4767EXPORT_SYMBOL(free_netdev);
4768EXPORT_SYMBOL(netdev_boot_setup_check);
4769EXPORT_SYMBOL(netdev_set_master);
4770EXPORT_SYMBOL(netdev_state_change);
4771EXPORT_SYMBOL(netif_receive_skb);
4772EXPORT_SYMBOL(netif_rx);
4773EXPORT_SYMBOL(register_gifconf);
4774EXPORT_SYMBOL(register_netdevice);
4775EXPORT_SYMBOL(register_netdevice_notifier);
4776EXPORT_SYMBOL(skb_checksum_help);
4777EXPORT_SYMBOL(synchronize_net);
4778EXPORT_SYMBOL(unregister_netdevice);
4779EXPORT_SYMBOL(unregister_netdevice_notifier);
4780EXPORT_SYMBOL(net_enable_timestamp);
4781EXPORT_SYMBOL(net_disable_timestamp);
4782EXPORT_SYMBOL(dev_get_flags);
4783
4784#if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4785EXPORT_SYMBOL(br_handle_frame_hook);
4786EXPORT_SYMBOL(br_fdb_get_hook);
4787EXPORT_SYMBOL(br_fdb_put_hook);
4788#endif
4789
4790#ifdef CONFIG_KMOD
4791EXPORT_SYMBOL(dev_load);
4792#endif
4793
4794EXPORT_PER_CPU_SYMBOL(softnet_data);