]> bbs.cooldavid.org Git - net-next-2.6.git/blame - net/core/dev.c
[CCID3]: Remove ifdef surrounding BUG_ON
[net-next-2.6.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <asm/system.h>
77#include <linux/bitops.h>
4fc268d2 78#include <linux/capability.h>
1da177e4
LT
79#include <linux/cpu.h>
80#include <linux/types.h>
81#include <linux/kernel.h>
82#include <linux/sched.h>
4a3e2f71 83#include <linux/mutex.h>
1da177e4
LT
84#include <linux/string.h>
85#include <linux/mm.h>
86#include <linux/socket.h>
87#include <linux/sockios.h>
88#include <linux/errno.h>
89#include <linux/interrupt.h>
90#include <linux/if_ether.h>
91#include <linux/netdevice.h>
92#include <linux/etherdevice.h>
93#include <linux/notifier.h>
94#include <linux/skbuff.h>
457c4cbc 95#include <net/net_namespace.h>
1da177e4
LT
96#include <net/sock.h>
97#include <linux/rtnetlink.h>
98#include <linux/proc_fs.h>
99#include <linux/seq_file.h>
100#include <linux/stat.h>
101#include <linux/if_bridge.h>
b863ceb7 102#include <linux/if_macvlan.h>
1da177e4
LT
103#include <net/dst.h>
104#include <net/pkt_sched.h>
105#include <net/checksum.h>
106#include <linux/highmem.h>
107#include <linux/init.h>
108#include <linux/kmod.h>
109#include <linux/module.h>
110#include <linux/kallsyms.h>
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
295f4a1f 114#include <net/wext.h>
1da177e4 115#include <net/iw_handler.h>
1da177e4 116#include <asm/current.h>
5bdb9886 117#include <linux/audit.h>
db217334 118#include <linux/dmaengine.h>
f6a78bfc 119#include <linux/err.h>
c7fa9d18 120#include <linux/ctype.h>
723e98b7 121#include <linux/if_arp.h>
1da177e4 122
1da177e4
LT
123/*
124 * The list of packet types we will receive (as opposed to discard)
125 * and the routines to invoke.
126 *
127 * Why 16. Because with 16 the only overlap we get on a hash of the
128 * low nibble of the protocol value is RARP/SNAP/X.25.
129 *
130 * NOTE: That is no longer true with the addition of VLAN tags. Not
131 * sure which should go first, but I bet it won't make much
132 * difference if we are running VLANs. The good news is that
133 * this protocol won't be in the list unless compiled in, so
3041a069 134 * the average user (w/out VLANs) will not be adversely affected.
1da177e4
LT
135 * --BLG
136 *
137 * 0800 IP
138 * 8100 802.1Q VLAN
139 * 0001 802.3
140 * 0002 AX.25
141 * 0004 802.2
142 * 8035 RARP
143 * 0005 SNAP
144 * 0805 X.25
145 * 0806 ARP
146 * 8137 IPX
147 * 0009 Localtalk
148 * 86DD IPv6
149 */
150
151static DEFINE_SPINLOCK(ptype_lock);
6b2bedc3
SH
152static struct list_head ptype_base[16] __read_mostly; /* 16 way hashed list */
153static struct list_head ptype_all __read_mostly; /* Taps */
1da177e4 154
db217334 155#ifdef CONFIG_NET_DMA
d379b01e
DW
156struct net_dma {
157 struct dma_client client;
158 spinlock_t lock;
159 cpumask_t channel_mask;
160 struct dma_chan *channels[NR_CPUS];
161};
162
163static enum dma_state_client
164netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
165 enum dma_state state);
166
167static struct net_dma net_dma = {
168 .client = {
169 .event_callback = netdev_dma_event,
170 },
171};
db217334
CL
172#endif
173
1da177e4 174/*
7562f876 175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
176 * semaphore.
177 *
178 * Pure readers hold dev_base_lock for reading.
179 *
180 * Writers must hold the rtnl semaphore while they loop through the
7562f876 181 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
182 * actual updates. This allows pure readers to access the list even
183 * while a writer is preparing to update it.
184 *
185 * To put it another way, dev_base_lock is held for writing only to
186 * protect against pure readers; the rtnl semaphore provides the
187 * protection against other writers.
188 *
189 * See, for example usages, register_netdevice() and
190 * unregister_netdevice(), which must be called with the rtnl
191 * semaphore held.
192 */
1da177e4
LT
193DEFINE_RWLOCK(dev_base_lock);
194
1da177e4
LT
195EXPORT_SYMBOL(dev_base_lock);
196
197#define NETDEV_HASHBITS 8
881d966b 198#define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
1da177e4 199
881d966b 200static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4
LT
201{
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
881d966b 203 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
1da177e4
LT
204}
205
881d966b 206static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 207{
881d966b 208 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
1da177e4
LT
209}
210
ce286d32
EB
211/* Device list insertion */
212static int list_netdevice(struct net_device *dev)
213{
214 struct net *net = dev->nd_net;
215
216 ASSERT_RTNL();
217
218 write_lock_bh(&dev_base_lock);
219 list_add_tail(&dev->dev_list, &net->dev_base_head);
220 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
221 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
222 write_unlock_bh(&dev_base_lock);
223 return 0;
224}
225
226/* Device list removal */
227static void unlist_netdevice(struct net_device *dev)
228{
229 ASSERT_RTNL();
230
231 /* Unlink dev from the device chain */
232 write_lock_bh(&dev_base_lock);
233 list_del(&dev->dev_list);
234 hlist_del(&dev->name_hlist);
235 hlist_del(&dev->index_hlist);
236 write_unlock_bh(&dev_base_lock);
237}
238
1da177e4
LT
239/*
240 * Our notifier list
241 */
242
f07d5b94 243static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
244
245/*
246 * Device drivers call our routines to queue packets here. We empty the
247 * queue in the local softnet handler.
248 */
bea3348e
SH
249
250DEFINE_PER_CPU(struct softnet_data, softnet_data);
1da177e4
LT
251
252#ifdef CONFIG_SYSFS
253extern int netdev_sysfs_init(void);
254extern int netdev_register_sysfs(struct net_device *);
255extern void netdev_unregister_sysfs(struct net_device *);
256#else
257#define netdev_sysfs_init() (0)
258#define netdev_register_sysfs(dev) (0)
259#define netdev_unregister_sysfs(dev) do { } while(0)
260#endif
261
723e98b7
JP
262#ifdef CONFIG_DEBUG_LOCK_ALLOC
263/*
264 * register_netdevice() inits dev->_xmit_lock and sets lockdep class
265 * according to dev->type
266 */
267static const unsigned short netdev_lock_type[] =
268 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
269 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
270 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
271 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
272 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
273 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
274 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
275 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
276 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
277 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
278 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
279 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
280 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
281 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
282 ARPHRD_NONE};
283
284static const char *netdev_lock_name[] =
285 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
286 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
287 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
288 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
289 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
290 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
291 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
292 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
293 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
294 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
295 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
296 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
297 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
298 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
299 "_xmit_NONE"};
300
301static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
302
303static inline unsigned short netdev_lock_pos(unsigned short dev_type)
304{
305 int i;
306
307 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
308 if (netdev_lock_type[i] == dev_type)
309 return i;
310 /* the last key is used by default */
311 return ARRAY_SIZE(netdev_lock_type) - 1;
312}
313
314static inline void netdev_set_lockdep_class(spinlock_t *lock,
315 unsigned short dev_type)
316{
317 int i;
318
319 i = netdev_lock_pos(dev_type);
320 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
321 netdev_lock_name[i]);
322}
323#else
324static inline void netdev_set_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
326{
327}
328#endif
1da177e4
LT
329
330/*******************************************************************************
331
332 Protocol management and registration routines
333
334*******************************************************************************/
335
1da177e4
LT
336/*
337 * Add a protocol ID to the list. Now that the input handler is
338 * smarter we can dispense with all the messy stuff that used to be
339 * here.
340 *
341 * BEWARE!!! Protocol handlers, mangling input packets,
342 * MUST BE last in hash buckets and checking protocol handlers
343 * MUST start from promiscuous ptype_all chain in net_bh.
344 * It is true now, do not change it.
345 * Explanation follows: if protocol handler, mangling packet, will
346 * be the first on list, it is not able to sense, that packet
347 * is cloned and should be copied-on-write, so that it will
348 * change it and subsequent readers will get broken packet.
349 * --ANK (980803)
350 */
351
352/**
353 * dev_add_pack - add packet handler
354 * @pt: packet type declaration
355 *
356 * Add a protocol handler to the networking stack. The passed &packet_type
357 * is linked into kernel lists and may not be freed until it has been
358 * removed from the kernel lists.
359 *
4ec93edb 360 * This call does not sleep therefore it can not
1da177e4
LT
361 * guarantee all CPU's that are in middle of receiving packets
362 * will see the new packet type (until the next received packet).
363 */
364
365void dev_add_pack(struct packet_type *pt)
366{
367 int hash;
368
369 spin_lock_bh(&ptype_lock);
9be9a6b9 370 if (pt->type == htons(ETH_P_ALL))
1da177e4 371 list_add_rcu(&pt->list, &ptype_all);
9be9a6b9 372 else {
1da177e4
LT
373 hash = ntohs(pt->type) & 15;
374 list_add_rcu(&pt->list, &ptype_base[hash]);
375 }
376 spin_unlock_bh(&ptype_lock);
377}
378
1da177e4
LT
379/**
380 * __dev_remove_pack - remove packet handler
381 * @pt: packet type declaration
382 *
383 * Remove a protocol handler that was previously added to the kernel
384 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
385 * from the kernel lists and can be freed or reused once this function
4ec93edb 386 * returns.
1da177e4
LT
387 *
388 * The packet type might still be in use by receivers
389 * and must not be freed until after all the CPU's have gone
390 * through a quiescent state.
391 */
392void __dev_remove_pack(struct packet_type *pt)
393{
394 struct list_head *head;
395 struct packet_type *pt1;
396
397 spin_lock_bh(&ptype_lock);
398
9be9a6b9 399 if (pt->type == htons(ETH_P_ALL))
1da177e4 400 head = &ptype_all;
9be9a6b9 401 else
1da177e4
LT
402 head = &ptype_base[ntohs(pt->type) & 15];
403
404 list_for_each_entry(pt1, head, list) {
405 if (pt == pt1) {
406 list_del_rcu(&pt->list);
407 goto out;
408 }
409 }
410
411 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
412out:
413 spin_unlock_bh(&ptype_lock);
414}
415/**
416 * dev_remove_pack - remove packet handler
417 * @pt: packet type declaration
418 *
419 * Remove a protocol handler that was previously added to the kernel
420 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
421 * from the kernel lists and can be freed or reused once this function
422 * returns.
423 *
424 * This call sleeps to guarantee that no CPU is looking at the packet
425 * type after return.
426 */
427void dev_remove_pack(struct packet_type *pt)
428{
429 __dev_remove_pack(pt);
4ec93edb 430
1da177e4
LT
431 synchronize_net();
432}
433
434/******************************************************************************
435
436 Device Boot-time Settings Routines
437
438*******************************************************************************/
439
440/* Boot time configuration table */
441static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
442
443/**
444 * netdev_boot_setup_add - add new setup entry
445 * @name: name of the device
446 * @map: configured settings for the device
447 *
448 * Adds new setup entry to the dev_boot_setup list. The function
449 * returns 0 on error and 1 on success. This is a generic routine to
450 * all netdevices.
451 */
452static int netdev_boot_setup_add(char *name, struct ifmap *map)
453{
454 struct netdev_boot_setup *s;
455 int i;
456
457 s = dev_boot_setup;
458 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
459 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
460 memset(s[i].name, 0, sizeof(s[i].name));
461 strcpy(s[i].name, name);
462 memcpy(&s[i].map, map, sizeof(s[i].map));
463 break;
464 }
465 }
466
467 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
468}
469
470/**
471 * netdev_boot_setup_check - check boot time settings
472 * @dev: the netdevice
473 *
474 * Check boot time settings for the device.
475 * The found settings are set for the device to be used
476 * later in the device probing.
477 * Returns 0 if no settings found, 1 if they are.
478 */
479int netdev_boot_setup_check(struct net_device *dev)
480{
481 struct netdev_boot_setup *s = dev_boot_setup;
482 int i;
483
484 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
485 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
486 !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
487 dev->irq = s[i].map.irq;
488 dev->base_addr = s[i].map.base_addr;
489 dev->mem_start = s[i].map.mem_start;
490 dev->mem_end = s[i].map.mem_end;
491 return 1;
492 }
493 }
494 return 0;
495}
496
497
498/**
499 * netdev_boot_base - get address from boot time settings
500 * @prefix: prefix for network device
501 * @unit: id for network device
502 *
503 * Check boot time settings for the base address of device.
504 * The found settings are set for the device to be used
505 * later in the device probing.
506 * Returns 0 if no settings found.
507 */
508unsigned long netdev_boot_base(const char *prefix, int unit)
509{
510 const struct netdev_boot_setup *s = dev_boot_setup;
511 char name[IFNAMSIZ];
512 int i;
513
514 sprintf(name, "%s%d", prefix, unit);
515
516 /*
517 * If device already registered then return base of 1
518 * to indicate not to probe for this interface
519 */
881d966b 520 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
521 return 1;
522
523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
524 if (!strcmp(name, s[i].name))
525 return s[i].map.base_addr;
526 return 0;
527}
528
529/*
530 * Saves at boot time configured settings for any netdevice.
531 */
532int __init netdev_boot_setup(char *str)
533{
534 int ints[5];
535 struct ifmap map;
536
537 str = get_options(str, ARRAY_SIZE(ints), ints);
538 if (!str || !*str)
539 return 0;
540
541 /* Save settings */
542 memset(&map, 0, sizeof(map));
543 if (ints[0] > 0)
544 map.irq = ints[1];
545 if (ints[0] > 1)
546 map.base_addr = ints[2];
547 if (ints[0] > 2)
548 map.mem_start = ints[3];
549 if (ints[0] > 3)
550 map.mem_end = ints[4];
551
552 /* Add new entry to the list */
553 return netdev_boot_setup_add(str, &map);
554}
555
556__setup("netdev=", netdev_boot_setup);
557
558/*******************************************************************************
559
560 Device Interface Subroutines
561
562*******************************************************************************/
563
564/**
565 * __dev_get_by_name - find a device by its name
566 * @name: name to find
567 *
568 * Find an interface by name. Must be called under RTNL semaphore
569 * or @dev_base_lock. If the name is found a pointer to the device
570 * is returned. If the name is not found then %NULL is returned. The
571 * reference counters are not incremented so the caller must be
572 * careful with locks.
573 */
574
881d966b 575struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
576{
577 struct hlist_node *p;
578
881d966b 579 hlist_for_each(p, dev_name_hash(net, name)) {
1da177e4
LT
580 struct net_device *dev
581 = hlist_entry(p, struct net_device, name_hlist);
582 if (!strncmp(dev->name, name, IFNAMSIZ))
583 return dev;
584 }
585 return NULL;
586}
587
588/**
589 * dev_get_by_name - find a device by its name
590 * @name: name to find
591 *
592 * Find an interface by name. This can be called from any
593 * context and does its own locking. The returned handle has
594 * the usage count incremented and the caller must use dev_put() to
595 * release it when it is no longer needed. %NULL is returned if no
596 * matching device is found.
597 */
598
881d966b 599struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
600{
601 struct net_device *dev;
602
603 read_lock(&dev_base_lock);
881d966b 604 dev = __dev_get_by_name(net, name);
1da177e4
LT
605 if (dev)
606 dev_hold(dev);
607 read_unlock(&dev_base_lock);
608 return dev;
609}
610
611/**
612 * __dev_get_by_index - find a device by its ifindex
613 * @ifindex: index of device
614 *
615 * Search for an interface by index. Returns %NULL if the device
616 * is not found or a pointer to the device. The device has not
617 * had its reference counter increased so the caller must be careful
618 * about locking. The caller must hold either the RTNL semaphore
619 * or @dev_base_lock.
620 */
621
881d966b 622struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
623{
624 struct hlist_node *p;
625
881d966b 626 hlist_for_each(p, dev_index_hash(net, ifindex)) {
1da177e4
LT
627 struct net_device *dev
628 = hlist_entry(p, struct net_device, index_hlist);
629 if (dev->ifindex == ifindex)
630 return dev;
631 }
632 return NULL;
633}
634
635
636/**
637 * dev_get_by_index - find a device by its ifindex
638 * @ifindex: index of device
639 *
640 * Search for an interface by index. Returns NULL if the device
641 * is not found or a pointer to the device. The device returned has
642 * had a reference added and the pointer is safe until the user calls
643 * dev_put to indicate they have finished with it.
644 */
645
881d966b 646struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
647{
648 struct net_device *dev;
649
650 read_lock(&dev_base_lock);
881d966b 651 dev = __dev_get_by_index(net, ifindex);
1da177e4
LT
652 if (dev)
653 dev_hold(dev);
654 read_unlock(&dev_base_lock);
655 return dev;
656}
657
658/**
659 * dev_getbyhwaddr - find a device by its hardware address
660 * @type: media type of device
661 * @ha: hardware address
662 *
663 * Search for an interface by MAC address. Returns NULL if the device
664 * is not found or a pointer to the device. The caller must hold the
665 * rtnl semaphore. The returned device has not had its ref count increased
666 * and the caller must therefore be careful about locking
667 *
668 * BUGS:
669 * If the API was consistent this would be __dev_get_by_hwaddr
670 */
671
881d966b 672struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
1da177e4
LT
673{
674 struct net_device *dev;
675
676 ASSERT_RTNL();
677
881d966b 678 for_each_netdev(&init_net, dev)
1da177e4
LT
679 if (dev->type == type &&
680 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
681 return dev;
682
683 return NULL;
1da177e4
LT
684}
685
cf309e3f
JF
686EXPORT_SYMBOL(dev_getbyhwaddr);
687
881d966b 688struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
689{
690 struct net_device *dev;
691
4e9cac2b 692 ASSERT_RTNL();
881d966b 693 for_each_netdev(net, dev)
4e9cac2b 694 if (dev->type == type)
7562f876
PE
695 return dev;
696
697 return NULL;
4e9cac2b
PM
698}
699
700EXPORT_SYMBOL(__dev_getfirstbyhwtype);
701
881d966b 702struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b
PM
703{
704 struct net_device *dev;
705
706 rtnl_lock();
881d966b 707 dev = __dev_getfirstbyhwtype(net, type);
4e9cac2b
PM
708 if (dev)
709 dev_hold(dev);
1da177e4
LT
710 rtnl_unlock();
711 return dev;
712}
713
714EXPORT_SYMBOL(dev_getfirstbyhwtype);
715
716/**
717 * dev_get_by_flags - find any device with given flags
718 * @if_flags: IFF_* values
719 * @mask: bitmask of bits in if_flags to check
720 *
721 * Search for any interface with the given flags. Returns NULL if a device
4ec93edb 722 * is not found or a pointer to the device. The device returned has
1da177e4
LT
723 * had a reference added and the pointer is safe until the user calls
724 * dev_put to indicate they have finished with it.
725 */
726
881d966b 727struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
1da177e4 728{
7562f876 729 struct net_device *dev, *ret;
1da177e4 730
7562f876 731 ret = NULL;
1da177e4 732 read_lock(&dev_base_lock);
881d966b 733 for_each_netdev(net, dev) {
1da177e4
LT
734 if (((dev->flags ^ if_flags) & mask) == 0) {
735 dev_hold(dev);
7562f876 736 ret = dev;
1da177e4
LT
737 break;
738 }
739 }
740 read_unlock(&dev_base_lock);
7562f876 741 return ret;
1da177e4
LT
742}
743
744/**
745 * dev_valid_name - check if name is okay for network device
746 * @name: name string
747 *
748 * Network device names need to be valid file names to
c7fa9d18
DM
749 * to allow sysfs to work. We also disallow any kind of
750 * whitespace.
1da177e4 751 */
c2373ee9 752int dev_valid_name(const char *name)
1da177e4 753{
c7fa9d18
DM
754 if (*name == '\0')
755 return 0;
b6fe17d6
SH
756 if (strlen(name) >= IFNAMSIZ)
757 return 0;
c7fa9d18
DM
758 if (!strcmp(name, ".") || !strcmp(name, ".."))
759 return 0;
760
761 while (*name) {
762 if (*name == '/' || isspace(*name))
763 return 0;
764 name++;
765 }
766 return 1;
1da177e4
LT
767}
768
769/**
b267b179
EB
770 * __dev_alloc_name - allocate a name for a device
771 * @net: network namespace to allocate the device name in
1da177e4 772 * @name: name format string
b267b179 773 * @buf: scratch buffer and result name string
1da177e4
LT
774 *
775 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
776 * id. It scans list of devices to build up a free map, then chooses
777 * the first empty slot. The caller must hold the dev_base or rtnl lock
778 * while allocating the name and adding the device in order to avoid
779 * duplicates.
780 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
781 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
782 */
783
b267b179 784static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
785{
786 int i = 0;
1da177e4
LT
787 const char *p;
788 const int max_netdevices = 8*PAGE_SIZE;
789 long *inuse;
790 struct net_device *d;
791
792 p = strnchr(name, IFNAMSIZ-1, '%');
793 if (p) {
794 /*
795 * Verify the string as this thing may have come from
796 * the user. There must be either one "%d" and no other "%"
797 * characters.
798 */
799 if (p[1] != 'd' || strchr(p + 2, '%'))
800 return -EINVAL;
801
802 /* Use one page as a bit array of possible slots */
803 inuse = (long *) get_zeroed_page(GFP_ATOMIC);
804 if (!inuse)
805 return -ENOMEM;
806
881d966b 807 for_each_netdev(net, d) {
1da177e4
LT
808 if (!sscanf(d->name, name, &i))
809 continue;
810 if (i < 0 || i >= max_netdevices)
811 continue;
812
813 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 814 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
815 if (!strncmp(buf, d->name, IFNAMSIZ))
816 set_bit(i, inuse);
817 }
818
819 i = find_first_zero_bit(inuse, max_netdevices);
820 free_page((unsigned long) inuse);
821 }
822
b267b179
EB
823 snprintf(buf, IFNAMSIZ, name, i);
824 if (!__dev_get_by_name(net, buf))
1da177e4 825 return i;
1da177e4
LT
826
827 /* It is possible to run out of possible slots
828 * when the name is long and there isn't enough space left
829 * for the digits, or if all bits are used.
830 */
831 return -ENFILE;
832}
833
b267b179
EB
834/**
835 * dev_alloc_name - allocate a name for a device
836 * @dev: device
837 * @name: name format string
838 *
839 * Passed a format string - eg "lt%d" it will try and find a suitable
840 * id. It scans list of devices to build up a free map, then chooses
841 * the first empty slot. The caller must hold the dev_base or rtnl lock
842 * while allocating the name and adding the device in order to avoid
843 * duplicates.
844 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
845 * Returns the number of the unit assigned or a negative errno code.
846 */
847
848int dev_alloc_name(struct net_device *dev, const char *name)
849{
850 char buf[IFNAMSIZ];
851 struct net *net;
852 int ret;
853
854 BUG_ON(!dev->nd_net);
855 net = dev->nd_net;
856 ret = __dev_alloc_name(net, name, buf);
857 if (ret >= 0)
858 strlcpy(dev->name, buf, IFNAMSIZ);
859 return ret;
860}
861
1da177e4
LT
862
863/**
864 * dev_change_name - change name of a device
865 * @dev: device
866 * @newname: name (or format string) must be at least IFNAMSIZ
867 *
868 * Change name of a device, can pass format strings "eth%d".
869 * for wildcarding.
870 */
871int dev_change_name(struct net_device *dev, char *newname)
872{
fcc5a03a 873 char oldname[IFNAMSIZ];
1da177e4 874 int err = 0;
fcc5a03a 875 int ret;
881d966b 876 struct net *net;
1da177e4
LT
877
878 ASSERT_RTNL();
881d966b 879 BUG_ON(!dev->nd_net);
1da177e4 880
881d966b 881 net = dev->nd_net;
1da177e4
LT
882 if (dev->flags & IFF_UP)
883 return -EBUSY;
884
885 if (!dev_valid_name(newname))
886 return -EINVAL;
887
fcc5a03a
HX
888 memcpy(oldname, dev->name, IFNAMSIZ);
889
1da177e4
LT
890 if (strchr(newname, '%')) {
891 err = dev_alloc_name(dev, newname);
892 if (err < 0)
893 return err;
894 strcpy(newname, dev->name);
895 }
881d966b 896 else if (__dev_get_by_name(net, newname))
1da177e4
LT
897 return -EEXIST;
898 else
899 strlcpy(dev->name, newname, IFNAMSIZ);
900
fcc5a03a 901rollback:
92749821 902 device_rename(&dev->dev, dev->name);
7f988eab
HX
903
904 write_lock_bh(&dev_base_lock);
92749821 905 hlist_del(&dev->name_hlist);
881d966b 906 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
907 write_unlock_bh(&dev_base_lock);
908
056925ab 909 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
910 ret = notifier_to_errno(ret);
911
912 if (ret) {
913 if (err) {
914 printk(KERN_ERR
915 "%s: name change rollback failed: %d.\n",
916 dev->name, ret);
917 } else {
918 err = ret;
919 memcpy(dev->name, oldname, IFNAMSIZ);
920 goto rollback;
921 }
922 }
1da177e4
LT
923
924 return err;
925}
926
d8a33ac4 927/**
3041a069 928 * netdev_features_change - device changes features
d8a33ac4
SH
929 * @dev: device to cause notification
930 *
931 * Called to indicate a device has changed features.
932 */
933void netdev_features_change(struct net_device *dev)
934{
056925ab 935 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
936}
937EXPORT_SYMBOL(netdev_features_change);
938
1da177e4
LT
939/**
940 * netdev_state_change - device changes state
941 * @dev: device to cause notification
942 *
943 * Called to indicate a device has changed state. This function calls
944 * the notifier chains for netdev_chain and sends a NEWLINK message
945 * to the routing socket.
946 */
947void netdev_state_change(struct net_device *dev)
948{
949 if (dev->flags & IFF_UP) {
056925ab 950 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1da177e4
LT
951 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
952 }
953}
954
955/**
956 * dev_load - load a network module
957 * @name: name of interface
958 *
959 * If a network interface is not present and the process has suitable
960 * privileges this function loads the module. If module loading is not
961 * available in this kernel then it becomes a nop.
962 */
963
881d966b 964void dev_load(struct net *net, const char *name)
1da177e4 965{
4ec93edb 966 struct net_device *dev;
1da177e4
LT
967
968 read_lock(&dev_base_lock);
881d966b 969 dev = __dev_get_by_name(net, name);
1da177e4
LT
970 read_unlock(&dev_base_lock);
971
972 if (!dev && capable(CAP_SYS_MODULE))
973 request_module("%s", name);
974}
975
976static int default_rebuild_header(struct sk_buff *skb)
977{
978 printk(KERN_DEBUG "%s: default_rebuild_header called -- BUG!\n",
979 skb->dev ? skb->dev->name : "NULL!!!");
980 kfree_skb(skb);
981 return 1;
982}
983
1da177e4
LT
984/**
985 * dev_open - prepare an interface for use.
986 * @dev: device to open
987 *
988 * Takes a device from down to up state. The device's private open
989 * function is invoked and then the multicast lists are loaded. Finally
990 * the device is moved into the up state and a %NETDEV_UP message is
991 * sent to the netdev notifier chain.
992 *
993 * Calling this function on an active interface is a nop. On a failure
994 * a negative errno code is returned.
995 */
996int dev_open(struct net_device *dev)
997{
998 int ret = 0;
999
1000 /*
1001 * Is it already up?
1002 */
1003
1004 if (dev->flags & IFF_UP)
1005 return 0;
1006
1007 /*
1008 * Is it even present?
1009 */
1010 if (!netif_device_present(dev))
1011 return -ENODEV;
1012
1013 /*
1014 * Call device private open method
1015 */
1016 set_bit(__LINK_STATE_START, &dev->state);
1017 if (dev->open) {
1018 ret = dev->open(dev);
1019 if (ret)
1020 clear_bit(__LINK_STATE_START, &dev->state);
1021 }
1022
4ec93edb 1023 /*
1da177e4
LT
1024 * If it went open OK then:
1025 */
1026
1027 if (!ret) {
1028 /*
1029 * Set the flags.
1030 */
1031 dev->flags |= IFF_UP;
1032
1033 /*
1034 * Initialize multicasting status
1035 */
4417da66 1036 dev_set_rx_mode(dev);
1da177e4
LT
1037
1038 /*
1039 * Wakeup transmit queue engine
1040 */
1041 dev_activate(dev);
1042
1043 /*
1044 * ... and announce new interface.
1045 */
056925ab 1046 call_netdevice_notifiers(NETDEV_UP, dev);
1da177e4
LT
1047 }
1048 return ret;
1049}
1050
1051/**
1052 * dev_close - shutdown an interface.
1053 * @dev: device to shutdown
1054 *
1055 * This function moves an active device into down state. A
1056 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1057 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1058 * chain.
1059 */
1060int dev_close(struct net_device *dev)
1061{
9d5010db
DM
1062 might_sleep();
1063
1da177e4
LT
1064 if (!(dev->flags & IFF_UP))
1065 return 0;
1066
1067 /*
1068 * Tell people we are going down, so that they can
1069 * prepare to death, when device is still operating.
1070 */
056925ab 1071 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4
LT
1072
1073 dev_deactivate(dev);
1074
1075 clear_bit(__LINK_STATE_START, &dev->state);
1076
1077 /* Synchronize to scheduled poll. We cannot touch poll list,
bea3348e
SH
1078 * it can be even on different cpu. So just clear netif_running().
1079 *
1080 * dev->stop() will invoke napi_disable() on all of it's
1081 * napi_struct instances on this device.
1082 */
1da177e4 1083 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1da177e4
LT
1084
1085 /*
1086 * Call the device specific close. This cannot fail.
1087 * Only if device is UP
1088 *
1089 * We allow it to be called even after a DETACH hot-plug
1090 * event.
1091 */
1092 if (dev->stop)
1093 dev->stop(dev);
1094
1095 /*
1096 * Device is now down.
1097 */
1098
1099 dev->flags &= ~IFF_UP;
1100
1101 /*
1102 * Tell people we are down
1103 */
056925ab 1104 call_netdevice_notifiers(NETDEV_DOWN, dev);
1da177e4
LT
1105
1106 return 0;
1107}
1108
1109
881d966b
EB
1110static int dev_boot_phase = 1;
1111
1da177e4
LT
1112/*
1113 * Device change register/unregister. These are not inline or static
1114 * as we export them to the world.
1115 */
1116
1117/**
1118 * register_netdevice_notifier - register a network notifier block
1119 * @nb: notifier
1120 *
1121 * Register a notifier to be called when network device events occur.
1122 * The notifier passed is linked into the kernel structures and must
1123 * not be reused until it has been unregistered. A negative errno code
1124 * is returned on a failure.
1125 *
1126 * When registered all registration and up events are replayed
4ec93edb 1127 * to the new notifier to allow device to have a race free
1da177e4
LT
1128 * view of the network device list.
1129 */
1130
1131int register_netdevice_notifier(struct notifier_block *nb)
1132{
1133 struct net_device *dev;
fcc5a03a 1134 struct net_device *last;
881d966b 1135 struct net *net;
1da177e4
LT
1136 int err;
1137
1138 rtnl_lock();
f07d5b94 1139 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1140 if (err)
1141 goto unlock;
881d966b
EB
1142 if (dev_boot_phase)
1143 goto unlock;
1144 for_each_net(net) {
1145 for_each_netdev(net, dev) {
1146 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1147 err = notifier_to_errno(err);
1148 if (err)
1149 goto rollback;
1150
1151 if (!(dev->flags & IFF_UP))
1152 continue;
1da177e4 1153
881d966b
EB
1154 nb->notifier_call(nb, NETDEV_UP, dev);
1155 }
1da177e4 1156 }
fcc5a03a
HX
1157
1158unlock:
1da177e4
LT
1159 rtnl_unlock();
1160 return err;
fcc5a03a
HX
1161
1162rollback:
1163 last = dev;
881d966b
EB
1164 for_each_net(net) {
1165 for_each_netdev(net, dev) {
1166 if (dev == last)
1167 break;
fcc5a03a 1168
881d966b
EB
1169 if (dev->flags & IFF_UP) {
1170 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1171 nb->notifier_call(nb, NETDEV_DOWN, dev);
1172 }
1173 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1174 }
fcc5a03a
HX
1175 }
1176 goto unlock;
1da177e4
LT
1177}
1178
1179/**
1180 * unregister_netdevice_notifier - unregister a network notifier block
1181 * @nb: notifier
1182 *
1183 * Unregister a notifier previously registered by
1184 * register_netdevice_notifier(). The notifier is unlinked into the
1185 * kernel structures and may then be reused. A negative errno code
1186 * is returned on a failure.
1187 */
1188
1189int unregister_netdevice_notifier(struct notifier_block *nb)
1190{
9f514950
HX
1191 int err;
1192
1193 rtnl_lock();
f07d5b94 1194 err = raw_notifier_chain_unregister(&netdev_chain, nb);
9f514950
HX
1195 rtnl_unlock();
1196 return err;
1da177e4
LT
1197}
1198
1199/**
1200 * call_netdevice_notifiers - call all network notifier blocks
1201 * @val: value passed unmodified to notifier function
1202 * @v: pointer passed unmodified to notifier function
1203 *
1204 * Call all network notifier blocks. Parameters and return value
f07d5b94 1205 * are as for raw_notifier_call_chain().
1da177e4
LT
1206 */
1207
ad7379d4 1208int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1209{
ad7379d4 1210 return raw_notifier_call_chain(&netdev_chain, val, dev);
1da177e4
LT
1211}
1212
1213/* When > 0 there are consumers of rx skb time stamps */
1214static atomic_t netstamp_needed = ATOMIC_INIT(0);
1215
1216void net_enable_timestamp(void)
1217{
1218 atomic_inc(&netstamp_needed);
1219}
1220
1221void net_disable_timestamp(void)
1222{
1223 atomic_dec(&netstamp_needed);
1224}
1225
a61bbcf2 1226static inline void net_timestamp(struct sk_buff *skb)
1da177e4
LT
1227{
1228 if (atomic_read(&netstamp_needed))
a61bbcf2 1229 __net_timestamp(skb);
b7aa0bf7
ED
1230 else
1231 skb->tstamp.tv64 = 0;
1da177e4
LT
1232}
1233
1234/*
1235 * Support routine. Sends outgoing frames to any network
1236 * taps currently in use.
1237 */
1238
f6a78bfc 1239static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1240{
1241 struct packet_type *ptype;
a61bbcf2
PM
1242
1243 net_timestamp(skb);
1da177e4
LT
1244
1245 rcu_read_lock();
1246 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1247 /* Never send packets back to the socket
1248 * they originated from - MvS (miquels@drinkel.ow.org)
1249 */
1250 if ((ptype->dev == dev || !ptype->dev) &&
1251 (ptype->af_packet_priv == NULL ||
1252 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1253 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1254 if (!skb2)
1255 break;
1256
1257 /* skb->nh should be correctly
1258 set by sender, so that the second statement is
1259 just protection against buggy protocols.
1260 */
459a98ed 1261 skb_reset_mac_header(skb2);
1da177e4 1262
d56f90a7 1263 if (skb_network_header(skb2) < skb2->data ||
27a884dc 1264 skb2->network_header > skb2->tail) {
1da177e4
LT
1265 if (net_ratelimit())
1266 printk(KERN_CRIT "protocol %04x is "
1267 "buggy, dev %s\n",
1268 skb2->protocol, dev->name);
c1d2bbe1 1269 skb_reset_network_header(skb2);
1da177e4
LT
1270 }
1271
b0e380b1 1272 skb2->transport_header = skb2->network_header;
1da177e4 1273 skb2->pkt_type = PACKET_OUTGOING;
f2ccd8fa 1274 ptype->func(skb2, skb->dev, ptype, skb->dev);
1da177e4
LT
1275 }
1276 }
1277 rcu_read_unlock();
1278}
1279
56079431
DV
1280
1281void __netif_schedule(struct net_device *dev)
1282{
1283 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1284 unsigned long flags;
1285 struct softnet_data *sd;
1286
1287 local_irq_save(flags);
1288 sd = &__get_cpu_var(softnet_data);
1289 dev->next_sched = sd->output_queue;
1290 sd->output_queue = dev;
1291 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1292 local_irq_restore(flags);
1293 }
1294}
1295EXPORT_SYMBOL(__netif_schedule);
1296
bea3348e 1297void dev_kfree_skb_irq(struct sk_buff *skb)
56079431 1298{
bea3348e
SH
1299 if (atomic_dec_and_test(&skb->users)) {
1300 struct softnet_data *sd;
1301 unsigned long flags;
56079431 1302
bea3348e
SH
1303 local_irq_save(flags);
1304 sd = &__get_cpu_var(softnet_data);
1305 skb->next = sd->completion_queue;
1306 sd->completion_queue = skb;
1307 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1308 local_irq_restore(flags);
1309 }
56079431 1310}
bea3348e 1311EXPORT_SYMBOL(dev_kfree_skb_irq);
56079431
DV
1312
1313void dev_kfree_skb_any(struct sk_buff *skb)
1314{
1315 if (in_irq() || irqs_disabled())
1316 dev_kfree_skb_irq(skb);
1317 else
1318 dev_kfree_skb(skb);
1319}
1320EXPORT_SYMBOL(dev_kfree_skb_any);
1321
1322
bea3348e
SH
1323/**
1324 * netif_device_detach - mark device as removed
1325 * @dev: network device
1326 *
1327 * Mark device as removed from system and therefore no longer available.
1328 */
56079431
DV
1329void netif_device_detach(struct net_device *dev)
1330{
1331 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1332 netif_running(dev)) {
1333 netif_stop_queue(dev);
1334 }
1335}
1336EXPORT_SYMBOL(netif_device_detach);
1337
bea3348e
SH
1338/**
1339 * netif_device_attach - mark device as attached
1340 * @dev: network device
1341 *
1342 * Mark device as attached from system and restart if needed.
1343 */
56079431
DV
1344void netif_device_attach(struct net_device *dev)
1345{
1346 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1347 netif_running(dev)) {
1348 netif_wake_queue(dev);
4ec93edb 1349 __netdev_watchdog_up(dev);
56079431
DV
1350 }
1351}
1352EXPORT_SYMBOL(netif_device_attach);
1353
1354
1da177e4
LT
1355/*
1356 * Invalidate hardware checksum when packet is to be mangled, and
1357 * complete checksum manually on outgoing path.
1358 */
84fa7933 1359int skb_checksum_help(struct sk_buff *skb)
1da177e4 1360{
d3bc23e7 1361 __wsum csum;
663ead3b 1362 int ret = 0, offset;
1da177e4 1363
84fa7933 1364 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
1365 goto out_set_summed;
1366
1367 if (unlikely(skb_shinfo(skb)->gso_size)) {
a430a43d
HX
1368 /* Let GSO fix up the checksum. */
1369 goto out_set_summed;
1da177e4
LT
1370 }
1371
1372 if (skb_cloned(skb)) {
1373 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1374 if (ret)
1375 goto out;
1376 }
1377
663ead3b 1378 offset = skb->csum_start - skb_headroom(skb);
09a62660 1379 BUG_ON(offset > (int)skb->len);
1da177e4
LT
1380 csum = skb_checksum(skb, offset, skb->len-offset, 0);
1381
663ead3b 1382 offset = skb_headlen(skb) - offset;
09a62660 1383 BUG_ON(offset <= 0);
ff1dcadb 1384 BUG_ON(skb->csum_offset + 2 > offset);
1da177e4 1385
663ead3b
HX
1386 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) =
1387 csum_fold(csum);
a430a43d 1388out_set_summed:
1da177e4 1389 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 1390out:
1da177e4
LT
1391 return ret;
1392}
1393
f6a78bfc
HX
1394/**
1395 * skb_gso_segment - Perform segmentation on skb.
1396 * @skb: buffer to segment
576a30eb 1397 * @features: features for the output path (see dev->features)
f6a78bfc
HX
1398 *
1399 * This function segments the given skb and returns a list of segments.
576a30eb
HX
1400 *
1401 * It may return NULL if the skb requires no segmentation. This is
1402 * only possible when GSO is used for verifying header integrity.
f6a78bfc 1403 */
576a30eb 1404struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
f6a78bfc
HX
1405{
1406 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1407 struct packet_type *ptype;
252e3346 1408 __be16 type = skb->protocol;
a430a43d 1409 int err;
f6a78bfc
HX
1410
1411 BUG_ON(skb_shinfo(skb)->frag_list);
f6a78bfc 1412
459a98ed 1413 skb_reset_mac_header(skb);
b0e380b1 1414 skb->mac_len = skb->network_header - skb->mac_header;
f6a78bfc
HX
1415 __skb_pull(skb, skb->mac_len);
1416
f9d106a6 1417 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
a430a43d
HX
1418 if (skb_header_cloned(skb) &&
1419 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1420 return ERR_PTR(err);
1421 }
1422
f6a78bfc
HX
1423 rcu_read_lock();
1424 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) {
1425 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
84fa7933 1426 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
a430a43d
HX
1427 err = ptype->gso_send_check(skb);
1428 segs = ERR_PTR(err);
1429 if (err || skb_gso_ok(skb, features))
1430 break;
d56f90a7
ACM
1431 __skb_push(skb, (skb->data -
1432 skb_network_header(skb)));
a430a43d 1433 }
576a30eb 1434 segs = ptype->gso_segment(skb, features);
f6a78bfc
HX
1435 break;
1436 }
1437 }
1438 rcu_read_unlock();
1439
98e399f8 1440 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 1441
f6a78bfc
HX
1442 return segs;
1443}
1444
1445EXPORT_SYMBOL(skb_gso_segment);
1446
fb286bb2
HX
1447/* Take action when hardware reception checksum errors are detected. */
1448#ifdef CONFIG_BUG
1449void netdev_rx_csum_fault(struct net_device *dev)
1450{
1451 if (net_ratelimit()) {
4ec93edb 1452 printk(KERN_ERR "%s: hw csum failure.\n",
246a4212 1453 dev ? dev->name : "<unknown>");
fb286bb2
HX
1454 dump_stack();
1455 }
1456}
1457EXPORT_SYMBOL(netdev_rx_csum_fault);
1458#endif
1459
1da177e4
LT
1460/* Actually, we should eliminate this check as soon as we know, that:
1461 * 1. IOMMU is present and allows to map all the memory.
1462 * 2. No high memory really exists on this machine.
1463 */
1464
1465static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1466{
3d3a8533 1467#ifdef CONFIG_HIGHMEM
1da177e4
LT
1468 int i;
1469
1470 if (dev->features & NETIF_F_HIGHDMA)
1471 return 0;
1472
1473 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1474 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1475 return 1;
1476
3d3a8533 1477#endif
1da177e4
LT
1478 return 0;
1479}
1da177e4 1480
f6a78bfc
HX
1481struct dev_gso_cb {
1482 void (*destructor)(struct sk_buff *skb);
1483};
1484
1485#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1486
1487static void dev_gso_skb_destructor(struct sk_buff *skb)
1488{
1489 struct dev_gso_cb *cb;
1490
1491 do {
1492 struct sk_buff *nskb = skb->next;
1493
1494 skb->next = nskb->next;
1495 nskb->next = NULL;
1496 kfree_skb(nskb);
1497 } while (skb->next);
1498
1499 cb = DEV_GSO_CB(skb);
1500 if (cb->destructor)
1501 cb->destructor(skb);
1502}
1503
1504/**
1505 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1506 * @skb: buffer to segment
1507 *
1508 * This function segments the given skb and stores the list of segments
1509 * in skb->next.
1510 */
1511static int dev_gso_segment(struct sk_buff *skb)
1512{
1513 struct net_device *dev = skb->dev;
1514 struct sk_buff *segs;
576a30eb
HX
1515 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1516 NETIF_F_SG : 0);
1517
1518 segs = skb_gso_segment(skb, features);
1519
1520 /* Verifying header integrity only. */
1521 if (!segs)
1522 return 0;
f6a78bfc 1523
f6a78bfc
HX
1524 if (unlikely(IS_ERR(segs)))
1525 return PTR_ERR(segs);
1526
1527 skb->next = segs;
1528 DEV_GSO_CB(skb)->destructor = skb->destructor;
1529 skb->destructor = dev_gso_skb_destructor;
1530
1531 return 0;
1532}
1533
1534int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1535{
1536 if (likely(!skb->next)) {
9be9a6b9 1537 if (!list_empty(&ptype_all))
f6a78bfc
HX
1538 dev_queue_xmit_nit(skb, dev);
1539
576a30eb
HX
1540 if (netif_needs_gso(dev, skb)) {
1541 if (unlikely(dev_gso_segment(skb)))
1542 goto out_kfree_skb;
1543 if (skb->next)
1544 goto gso;
1545 }
f6a78bfc 1546
576a30eb 1547 return dev->hard_start_xmit(skb, dev);
f6a78bfc
HX
1548 }
1549
576a30eb 1550gso:
f6a78bfc
HX
1551 do {
1552 struct sk_buff *nskb = skb->next;
1553 int rc;
1554
1555 skb->next = nskb->next;
1556 nskb->next = NULL;
1557 rc = dev->hard_start_xmit(nskb, dev);
1558 if (unlikely(rc)) {
f54d9e8d 1559 nskb->next = skb->next;
f6a78bfc
HX
1560 skb->next = nskb;
1561 return rc;
1562 }
f25f4e44
PWJ
1563 if (unlikely((netif_queue_stopped(dev) ||
1564 netif_subqueue_stopped(dev, skb->queue_mapping)) &&
1565 skb->next))
f54d9e8d 1566 return NETDEV_TX_BUSY;
f6a78bfc 1567 } while (skb->next);
4ec93edb 1568
f6a78bfc
HX
1569 skb->destructor = DEV_GSO_CB(skb)->destructor;
1570
1571out_kfree_skb:
1572 kfree_skb(skb);
1573 return 0;
1574}
1575
1da177e4
LT
1576/**
1577 * dev_queue_xmit - transmit a buffer
1578 * @skb: buffer to transmit
1579 *
1580 * Queue a buffer for transmission to a network device. The caller must
1581 * have set the device and priority and built the buffer before calling
1582 * this function. The function can be called from an interrupt.
1583 *
1584 * A negative errno code is returned on a failure. A success does not
1585 * guarantee the frame will be transmitted as it may be dropped due
1586 * to congestion or traffic shaping.
af191367
BG
1587 *
1588 * -----------------------------------------------------------------------------------
1589 * I notice this method can also return errors from the queue disciplines,
1590 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1591 * be positive.
1592 *
1593 * Regardless of the return value, the skb is consumed, so it is currently
1594 * difficult to retry a send to this method. (You can bump the ref count
1595 * before sending to hold a reference for retry if you are careful.)
1596 *
1597 * When calling this method, interrupts MUST be enabled. This is because
1598 * the BH enable code must have IRQs enabled so that it will not deadlock.
1599 * --BLG
1da177e4
LT
1600 */
1601
1602int dev_queue_xmit(struct sk_buff *skb)
1603{
1604 struct net_device *dev = skb->dev;
1605 struct Qdisc *q;
1606 int rc = -ENOMEM;
1607
f6a78bfc
HX
1608 /* GSO will handle the following emulations directly. */
1609 if (netif_needs_gso(dev, skb))
1610 goto gso;
1611
1da177e4
LT
1612 if (skb_shinfo(skb)->frag_list &&
1613 !(dev->features & NETIF_F_FRAGLIST) &&
364c6bad 1614 __skb_linearize(skb))
1da177e4
LT
1615 goto out_kfree_skb;
1616
1617 /* Fragmented skb is linearized if device does not support SG,
1618 * or if at least one of fragments is in highmem and device
1619 * does not support DMA from it.
1620 */
1621 if (skb_shinfo(skb)->nr_frags &&
1622 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
364c6bad 1623 __skb_linearize(skb))
1da177e4
LT
1624 goto out_kfree_skb;
1625
1626 /* If packet is not checksummed and device does not support
1627 * checksumming for this protocol, complete checksumming here.
1628 */
663ead3b
HX
1629 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1630 skb_set_transport_header(skb, skb->csum_start -
1631 skb_headroom(skb));
1632
a298830c
HX
1633 if (!(dev->features & NETIF_F_GEN_CSUM) &&
1634 !((dev->features & NETIF_F_IP_CSUM) &&
1635 skb->protocol == htons(ETH_P_IP)) &&
1636 !((dev->features & NETIF_F_IPV6_CSUM) &&
1637 skb->protocol == htons(ETH_P_IPV6)))
663ead3b
HX
1638 if (skb_checksum_help(skb))
1639 goto out_kfree_skb;
1640 }
1da177e4 1641
f6a78bfc 1642gso:
2d7ceece
ED
1643 spin_lock_prefetch(&dev->queue_lock);
1644
4ec93edb
YH
1645 /* Disable soft irqs for various locks below. Also
1646 * stops preemption for RCU.
1da177e4 1647 */
4ec93edb 1648 rcu_read_lock_bh();
1da177e4 1649
4ec93edb
YH
1650 /* Updates of qdisc are serialized by queue_lock.
1651 * The struct Qdisc which is pointed to by qdisc is now a
1652 * rcu structure - it may be accessed without acquiring
1da177e4 1653 * a lock (but the structure may be stale.) The freeing of the
4ec93edb 1654 * qdisc will be deferred until it's known that there are no
1da177e4 1655 * more references to it.
4ec93edb
YH
1656 *
1657 * If the qdisc has an enqueue function, we still need to
1da177e4
LT
1658 * hold the queue_lock before calling it, since queue_lock
1659 * also serializes access to the device queue.
1660 */
1661
1662 q = rcu_dereference(dev->qdisc);
1663#ifdef CONFIG_NET_CLS_ACT
1664 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1665#endif
1666 if (q->enqueue) {
1667 /* Grab device queue */
1668 spin_lock(&dev->queue_lock);
85670cc1
PM
1669 q = dev->qdisc;
1670 if (q->enqueue) {
f25f4e44
PWJ
1671 /* reset queue_mapping to zero */
1672 skb->queue_mapping = 0;
85670cc1
PM
1673 rc = q->enqueue(skb, q);
1674 qdisc_run(dev);
1675 spin_unlock(&dev->queue_lock);
1da177e4 1676
85670cc1
PM
1677 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1678 goto out;
1679 }
1da177e4 1680 spin_unlock(&dev->queue_lock);
1da177e4
LT
1681 }
1682
1683 /* The device has no queue. Common case for software devices:
1684 loopback, all the sorts of tunnels...
1685
932ff279
HX
1686 Really, it is unlikely that netif_tx_lock protection is necessary
1687 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
1688 counters.)
1689 However, it is possible, that they rely on protection
1690 made by us here.
1691
1692 Check this and shot the lock. It is not prone from deadlocks.
1693 Either shot noqueue qdisc, it is even simpler 8)
1694 */
1695 if (dev->flags & IFF_UP) {
1696 int cpu = smp_processor_id(); /* ok because BHs are off */
1697
1698 if (dev->xmit_lock_owner != cpu) {
1699
1700 HARD_TX_LOCK(dev, cpu);
1701
f25f4e44
PWJ
1702 if (!netif_queue_stopped(dev) &&
1703 !netif_subqueue_stopped(dev, skb->queue_mapping)) {
1da177e4 1704 rc = 0;
f6a78bfc 1705 if (!dev_hard_start_xmit(skb, dev)) {
1da177e4
LT
1706 HARD_TX_UNLOCK(dev);
1707 goto out;
1708 }
1709 }
1710 HARD_TX_UNLOCK(dev);
1711 if (net_ratelimit())
1712 printk(KERN_CRIT "Virtual device %s asks to "
1713 "queue packet!\n", dev->name);
1714 } else {
1715 /* Recursion is detected! It is possible,
1716 * unfortunately */
1717 if (net_ratelimit())
1718 printk(KERN_CRIT "Dead loop on virtual device "
1719 "%s, fix it urgently!\n", dev->name);
1720 }
1721 }
1722
1723 rc = -ENETDOWN;
d4828d85 1724 rcu_read_unlock_bh();
1da177e4
LT
1725
1726out_kfree_skb:
1727 kfree_skb(skb);
1728 return rc;
1729out:
d4828d85 1730 rcu_read_unlock_bh();
1da177e4
LT
1731 return rc;
1732}
1733
1734
1735/*=======================================================================
1736 Receiver routines
1737 =======================================================================*/
1738
6b2bedc3
SH
1739int netdev_max_backlog __read_mostly = 1000;
1740int netdev_budget __read_mostly = 300;
1741int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4
LT
1742
1743DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1744
1745
1da177e4
LT
1746/**
1747 * netif_rx - post buffer to the network code
1748 * @skb: buffer to post
1749 *
1750 * This function receives a packet from a device driver and queues it for
1751 * the upper (protocol) levels to process. It always succeeds. The buffer
1752 * may be dropped during processing for congestion control or by the
1753 * protocol layers.
1754 *
1755 * return values:
1756 * NET_RX_SUCCESS (no congestion)
1757 * NET_RX_CN_LOW (low congestion)
1758 * NET_RX_CN_MOD (moderate congestion)
1759 * NET_RX_CN_HIGH (high congestion)
1760 * NET_RX_DROP (packet was dropped)
1761 *
1762 */
1763
1764int netif_rx(struct sk_buff *skb)
1765{
1da177e4
LT
1766 struct softnet_data *queue;
1767 unsigned long flags;
1768
1769 /* if netpoll wants it, pretend we never saw it */
1770 if (netpoll_rx(skb))
1771 return NET_RX_DROP;
1772
b7aa0bf7 1773 if (!skb->tstamp.tv64)
a61bbcf2 1774 net_timestamp(skb);
1da177e4
LT
1775
1776 /*
1777 * The code is rearranged so that the path is the most
1778 * short when CPU is congested, but is still operating.
1779 */
1780 local_irq_save(flags);
1da177e4
LT
1781 queue = &__get_cpu_var(softnet_data);
1782
1783 __get_cpu_var(netdev_rx_stat).total++;
1784 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1785 if (queue->input_pkt_queue.qlen) {
1da177e4
LT
1786enqueue:
1787 dev_hold(skb->dev);
1788 __skb_queue_tail(&queue->input_pkt_queue, skb);
1da177e4 1789 local_irq_restore(flags);
34008d8c 1790 return NET_RX_SUCCESS;
1da177e4
LT
1791 }
1792
bea3348e 1793 napi_schedule(&queue->backlog);
1da177e4
LT
1794 goto enqueue;
1795 }
1796
1da177e4
LT
1797 __get_cpu_var(netdev_rx_stat).dropped++;
1798 local_irq_restore(flags);
1799
1800 kfree_skb(skb);
1801 return NET_RX_DROP;
1802}
1803
1804int netif_rx_ni(struct sk_buff *skb)
1805{
1806 int err;
1807
1808 preempt_disable();
1809 err = netif_rx(skb);
1810 if (local_softirq_pending())
1811 do_softirq();
1812 preempt_enable();
1813
1814 return err;
1815}
1816
1817EXPORT_SYMBOL(netif_rx_ni);
1818
f2ccd8fa 1819static inline struct net_device *skb_bond(struct sk_buff *skb)
1da177e4
LT
1820{
1821 struct net_device *dev = skb->dev;
1822
8f903c70 1823 if (dev->master) {
7ea49ed7 1824 if (skb_bond_should_drop(skb)) {
8f903c70
JV
1825 kfree_skb(skb);
1826 return NULL;
1827 }
1da177e4 1828 skb->dev = dev->master;
8f903c70 1829 }
f2ccd8fa
DM
1830
1831 return dev;
1da177e4
LT
1832}
1833
bea3348e 1834
1da177e4
LT
1835static void net_tx_action(struct softirq_action *h)
1836{
1837 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1838
1839 if (sd->completion_queue) {
1840 struct sk_buff *clist;
1841
1842 local_irq_disable();
1843 clist = sd->completion_queue;
1844 sd->completion_queue = NULL;
1845 local_irq_enable();
1846
1847 while (clist) {
1848 struct sk_buff *skb = clist;
1849 clist = clist->next;
1850
1851 BUG_TRAP(!atomic_read(&skb->users));
1852 __kfree_skb(skb);
1853 }
1854 }
1855
1856 if (sd->output_queue) {
1857 struct net_device *head;
1858
1859 local_irq_disable();
1860 head = sd->output_queue;
1861 sd->output_queue = NULL;
1862 local_irq_enable();
1863
1864 while (head) {
1865 struct net_device *dev = head;
1866 head = head->next_sched;
1867
1868 smp_mb__before_clear_bit();
1869 clear_bit(__LINK_STATE_SCHED, &dev->state);
1870
1871 if (spin_trylock(&dev->queue_lock)) {
1872 qdisc_run(dev);
1873 spin_unlock(&dev->queue_lock);
1874 } else {
1875 netif_schedule(dev);
1876 }
1877 }
1878 }
1879}
1880
6f05f629
SH
1881static inline int deliver_skb(struct sk_buff *skb,
1882 struct packet_type *pt_prev,
1883 struct net_device *orig_dev)
1da177e4
LT
1884{
1885 atomic_inc(&skb->users);
f2ccd8fa 1886 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4
LT
1887}
1888
1889#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
6229e362 1890/* These hooks defined here for ATM */
1da177e4
LT
1891struct net_bridge;
1892struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1893 unsigned char *addr);
6229e362 1894void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1da177e4 1895
6229e362
SH
1896/*
1897 * If bridge module is loaded call bridging hook.
1898 * returns NULL if packet was consumed.
1899 */
1900struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1901 struct sk_buff *skb) __read_mostly;
1902static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1903 struct packet_type **pt_prev, int *ret,
1904 struct net_device *orig_dev)
1da177e4
LT
1905{
1906 struct net_bridge_port *port;
1907
6229e362
SH
1908 if (skb->pkt_type == PACKET_LOOPBACK ||
1909 (port = rcu_dereference(skb->dev->br_port)) == NULL)
1910 return skb;
1da177e4
LT
1911
1912 if (*pt_prev) {
6229e362 1913 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1da177e4 1914 *pt_prev = NULL;
4ec93edb
YH
1915 }
1916
6229e362 1917 return br_handle_frame_hook(port, skb);
1da177e4
LT
1918}
1919#else
6229e362 1920#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
1da177e4
LT
1921#endif
1922
b863ceb7
PM
1923#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
1924struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
1925EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
1926
1927static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
1928 struct packet_type **pt_prev,
1929 int *ret,
1930 struct net_device *orig_dev)
1931{
1932 if (skb->dev->macvlan_port == NULL)
1933 return skb;
1934
1935 if (*pt_prev) {
1936 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1937 *pt_prev = NULL;
1938 }
1939 return macvlan_handle_frame_hook(skb);
1940}
1941#else
1942#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
1943#endif
1944
1da177e4
LT
1945#ifdef CONFIG_NET_CLS_ACT
1946/* TODO: Maybe we should just force sch_ingress to be compiled in
1947 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
1948 * a compare and 2 stores extra right now if we dont have it on
1949 * but have CONFIG_NET_CLS_ACT
4ec93edb 1950 * NOTE: This doesnt stop any functionality; if you dont have
1da177e4
LT
1951 * the ingress scheduler, you just cant add policies on ingress.
1952 *
1953 */
4ec93edb 1954static int ing_filter(struct sk_buff *skb)
1da177e4
LT
1955{
1956 struct Qdisc *q;
1957 struct net_device *dev = skb->dev;
1958 int result = TC_ACT_OK;
4ec93edb 1959
1da177e4
LT
1960 if (dev->qdisc_ingress) {
1961 __u32 ttl = (__u32) G_TC_RTTL(skb->tc_verd);
1962 if (MAX_RED_LOOP < ttl++) {
c01003c2
PM
1963 printk(KERN_WARNING "Redir loop detected Dropping packet (%d->%d)\n",
1964 skb->iif, skb->dev->ifindex);
1da177e4
LT
1965 return TC_ACT_SHOT;
1966 }
1967
1968 skb->tc_verd = SET_TC_RTTL(skb->tc_verd,ttl);
1969
1970 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_INGRESS);
86e65da9 1971
fd44de7c 1972 spin_lock(&dev->ingress_lock);
1da177e4
LT
1973 if ((q = dev->qdisc_ingress) != NULL)
1974 result = q->enqueue(skb, q);
fd44de7c 1975 spin_unlock(&dev->ingress_lock);
1da177e4
LT
1976
1977 }
1978
1979 return result;
1980}
1981#endif
1982
1983int netif_receive_skb(struct sk_buff *skb)
1984{
1985 struct packet_type *ptype, *pt_prev;
f2ccd8fa 1986 struct net_device *orig_dev;
1da177e4 1987 int ret = NET_RX_DROP;
252e3346 1988 __be16 type;
1da177e4
LT
1989
1990 /* if we've gotten here through NAPI, check netpoll */
bea3348e 1991 if (netpoll_receive_skb(skb))
1da177e4
LT
1992 return NET_RX_DROP;
1993
b7aa0bf7 1994 if (!skb->tstamp.tv64)
a61bbcf2 1995 net_timestamp(skb);
1da177e4 1996
c01003c2
PM
1997 if (!skb->iif)
1998 skb->iif = skb->dev->ifindex;
86e65da9 1999
f2ccd8fa 2000 orig_dev = skb_bond(skb);
1da177e4 2001
8f903c70
JV
2002 if (!orig_dev)
2003 return NET_RX_DROP;
2004
1da177e4
LT
2005 __get_cpu_var(netdev_rx_stat).total++;
2006
c1d2bbe1 2007 skb_reset_network_header(skb);
badff6d0 2008 skb_reset_transport_header(skb);
b0e380b1 2009 skb->mac_len = skb->network_header - skb->mac_header;
1da177e4
LT
2010
2011 pt_prev = NULL;
2012
2013 rcu_read_lock();
2014
2015#ifdef CONFIG_NET_CLS_ACT
2016 if (skb->tc_verd & TC_NCLS) {
2017 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2018 goto ncls;
2019 }
2020#endif
2021
2022 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2023 if (!ptype->dev || ptype->dev == skb->dev) {
4ec93edb 2024 if (pt_prev)
f2ccd8fa 2025 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
2026 pt_prev = ptype;
2027 }
2028 }
2029
2030#ifdef CONFIG_NET_CLS_ACT
2031 if (pt_prev) {
f2ccd8fa 2032 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
2033 pt_prev = NULL; /* noone else should process this after*/
2034 } else {
2035 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
2036 }
2037
2038 ret = ing_filter(skb);
2039
2040 if (ret == TC_ACT_SHOT || (ret == TC_ACT_STOLEN)) {
2041 kfree_skb(skb);
2042 goto out;
2043 }
2044
2045 skb->tc_verd = 0;
2046ncls:
2047#endif
2048
6229e362 2049 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
b863ceb7
PM
2050 if (!skb)
2051 goto out;
2052 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
6229e362 2053 if (!skb)
1da177e4
LT
2054 goto out;
2055
2056 type = skb->protocol;
2057 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) {
2058 if (ptype->type == type &&
2059 (!ptype->dev || ptype->dev == skb->dev)) {
4ec93edb 2060 if (pt_prev)
f2ccd8fa 2061 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
2062 pt_prev = ptype;
2063 }
2064 }
2065
2066 if (pt_prev) {
f2ccd8fa 2067 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4
LT
2068 } else {
2069 kfree_skb(skb);
2070 /* Jamal, now you will not able to escape explaining
2071 * me how you were going to use this. :-)
2072 */
2073 ret = NET_RX_DROP;
2074 }
2075
2076out:
2077 rcu_read_unlock();
2078 return ret;
2079}
2080
bea3348e 2081static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
2082{
2083 int work = 0;
1da177e4
LT
2084 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2085 unsigned long start_time = jiffies;
2086
bea3348e
SH
2087 napi->weight = weight_p;
2088 do {
1da177e4
LT
2089 struct sk_buff *skb;
2090 struct net_device *dev;
2091
2092 local_irq_disable();
2093 skb = __skb_dequeue(&queue->input_pkt_queue);
bea3348e
SH
2094 if (!skb) {
2095 __napi_complete(napi);
2096 local_irq_enable();
2097 break;
2098 }
2099
1da177e4
LT
2100 local_irq_enable();
2101
2102 dev = skb->dev;
2103
2104 netif_receive_skb(skb);
2105
2106 dev_put(dev);
bea3348e 2107 } while (++work < quota && jiffies == start_time);
1da177e4 2108
bea3348e
SH
2109 return work;
2110}
1da177e4 2111
bea3348e
SH
2112/**
2113 * __napi_schedule - schedule for receive
2114 * @napi: entry to schedule
2115 *
2116 * The entry's receive function will be scheduled to run
2117 */
2118void fastcall __napi_schedule(struct napi_struct *n)
2119{
2120 unsigned long flags;
1da177e4 2121
bea3348e
SH
2122 local_irq_save(flags);
2123 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2124 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2125 local_irq_restore(flags);
1da177e4 2126}
bea3348e
SH
2127EXPORT_SYMBOL(__napi_schedule);
2128
1da177e4
LT
2129
2130static void net_rx_action(struct softirq_action *h)
2131{
bea3348e 2132 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
1da177e4 2133 unsigned long start_time = jiffies;
51b0bded 2134 int budget = netdev_budget;
53fb95d3
MM
2135 void *have;
2136
1da177e4
LT
2137 local_irq_disable();
2138
bea3348e
SH
2139 while (!list_empty(list)) {
2140 struct napi_struct *n;
2141 int work, weight;
1da177e4 2142
bea3348e
SH
2143 /* If softirq window is exhuasted then punt.
2144 *
2145 * Note that this is a slight policy change from the
2146 * previous NAPI code, which would allow up to 2
2147 * jiffies to pass before breaking out. The test
2148 * used to be "jiffies - start_time > 1".
2149 */
2150 if (unlikely(budget <= 0 || jiffies != start_time))
1da177e4
LT
2151 goto softnet_break;
2152
2153 local_irq_enable();
2154
bea3348e
SH
2155 /* Even though interrupts have been re-enabled, this
2156 * access is safe because interrupts can only add new
2157 * entries to the tail of this list, and only ->poll()
2158 * calls can remove this head entry from the list.
2159 */
2160 n = list_entry(list->next, struct napi_struct, poll_list);
1da177e4 2161
bea3348e
SH
2162 have = netpoll_poll_lock(n);
2163
2164 weight = n->weight;
2165
2166 work = n->poll(n, weight);
2167
2168 WARN_ON_ONCE(work > weight);
2169
2170 budget -= work;
2171
2172 local_irq_disable();
2173
2174 /* Drivers must not modify the NAPI state if they
2175 * consume the entire weight. In such cases this code
2176 * still "owns" the NAPI instance and therefore can
2177 * move the instance around on the list at-will.
2178 */
2179 if (unlikely(work == weight))
2180 list_move_tail(&n->poll_list, list);
2181
2182 netpoll_poll_unlock(have);
1da177e4
LT
2183 }
2184out:
515e06c4 2185 local_irq_enable();
bea3348e 2186
db217334
CL
2187#ifdef CONFIG_NET_DMA
2188 /*
2189 * There may not be any more sk_buffs coming right now, so push
2190 * any pending DMA copies to hardware
2191 */
d379b01e
DW
2192 if (!cpus_empty(net_dma.channel_mask)) {
2193 int chan_idx;
2194 for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2195 struct dma_chan *chan = net_dma.channels[chan_idx];
2196 if (chan)
2197 dma_async_memcpy_issue_pending(chan);
2198 }
db217334
CL
2199 }
2200#endif
bea3348e 2201
1da177e4
LT
2202 return;
2203
2204softnet_break:
2205 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2206 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2207 goto out;
2208}
2209
2210static gifconf_func_t * gifconf_list [NPROTO];
2211
2212/**
2213 * register_gifconf - register a SIOCGIF handler
2214 * @family: Address family
2215 * @gifconf: Function handler
2216 *
2217 * Register protocol dependent address dumping routines. The handler
2218 * that is passed must not be freed or reused until it has been replaced
2219 * by another handler.
2220 */
2221int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2222{
2223 if (family >= NPROTO)
2224 return -EINVAL;
2225 gifconf_list[family] = gifconf;
2226 return 0;
2227}
2228
2229
2230/*
2231 * Map an interface index to its name (SIOCGIFNAME)
2232 */
2233
2234/*
2235 * We need this ioctl for efficient implementation of the
2236 * if_indextoname() function required by the IPv6 API. Without
2237 * it, we would have to search all the interfaces to find a
2238 * match. --pb
2239 */
2240
881d966b 2241static int dev_ifname(struct net *net, struct ifreq __user *arg)
1da177e4
LT
2242{
2243 struct net_device *dev;
2244 struct ifreq ifr;
2245
2246 /*
2247 * Fetch the caller's info block.
2248 */
2249
2250 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2251 return -EFAULT;
2252
2253 read_lock(&dev_base_lock);
881d966b 2254 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
1da177e4
LT
2255 if (!dev) {
2256 read_unlock(&dev_base_lock);
2257 return -ENODEV;
2258 }
2259
2260 strcpy(ifr.ifr_name, dev->name);
2261 read_unlock(&dev_base_lock);
2262
2263 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2264 return -EFAULT;
2265 return 0;
2266}
2267
2268/*
2269 * Perform a SIOCGIFCONF call. This structure will change
2270 * size eventually, and there is nothing I can do about it.
2271 * Thus we will need a 'compatibility mode'.
2272 */
2273
881d966b 2274static int dev_ifconf(struct net *net, char __user *arg)
1da177e4
LT
2275{
2276 struct ifconf ifc;
2277 struct net_device *dev;
2278 char __user *pos;
2279 int len;
2280 int total;
2281 int i;
2282
2283 /*
2284 * Fetch the caller's info block.
2285 */
2286
2287 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2288 return -EFAULT;
2289
2290 pos = ifc.ifc_buf;
2291 len = ifc.ifc_len;
2292
2293 /*
2294 * Loop over the interfaces, and write an info block for each.
2295 */
2296
2297 total = 0;
881d966b 2298 for_each_netdev(net, dev) {
1da177e4
LT
2299 for (i = 0; i < NPROTO; i++) {
2300 if (gifconf_list[i]) {
2301 int done;
2302 if (!pos)
2303 done = gifconf_list[i](dev, NULL, 0);
2304 else
2305 done = gifconf_list[i](dev, pos + total,
2306 len - total);
2307 if (done < 0)
2308 return -EFAULT;
2309 total += done;
2310 }
2311 }
4ec93edb 2312 }
1da177e4
LT
2313
2314 /*
2315 * All done. Write the updated control block back to the caller.
2316 */
2317 ifc.ifc_len = total;
2318
2319 /*
2320 * Both BSD and Solaris return 0 here, so we do too.
2321 */
2322 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2323}
2324
2325#ifdef CONFIG_PROC_FS
2326/*
2327 * This is invoked by the /proc filesystem handler to display a device
2328 * in detail.
2329 */
7562f876 2330void *dev_seq_start(struct seq_file *seq, loff_t *pos)
1da177e4 2331{
881d966b 2332 struct net *net = seq->private;
7562f876 2333 loff_t off;
1da177e4 2334 struct net_device *dev;
1da177e4 2335
7562f876
PE
2336 read_lock(&dev_base_lock);
2337 if (!*pos)
2338 return SEQ_START_TOKEN;
1da177e4 2339
7562f876 2340 off = 1;
881d966b 2341 for_each_netdev(net, dev)
7562f876
PE
2342 if (off++ == *pos)
2343 return dev;
1da177e4 2344
7562f876 2345 return NULL;
1da177e4
LT
2346}
2347
2348void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2349{
881d966b 2350 struct net *net = seq->private;
1da177e4 2351 ++*pos;
7562f876 2352 return v == SEQ_START_TOKEN ?
881d966b 2353 first_net_device(net) : next_net_device((struct net_device *)v);
1da177e4
LT
2354}
2355
2356void dev_seq_stop(struct seq_file *seq, void *v)
2357{
2358 read_unlock(&dev_base_lock);
2359}
2360
2361static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2362{
c45d286e 2363 struct net_device_stats *stats = dev->get_stats(dev);
1da177e4 2364
5a1b5898
RR
2365 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2366 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2367 dev->name, stats->rx_bytes, stats->rx_packets,
2368 stats->rx_errors,
2369 stats->rx_dropped + stats->rx_missed_errors,
2370 stats->rx_fifo_errors,
2371 stats->rx_length_errors + stats->rx_over_errors +
2372 stats->rx_crc_errors + stats->rx_frame_errors,
2373 stats->rx_compressed, stats->multicast,
2374 stats->tx_bytes, stats->tx_packets,
2375 stats->tx_errors, stats->tx_dropped,
2376 stats->tx_fifo_errors, stats->collisions,
2377 stats->tx_carrier_errors +
2378 stats->tx_aborted_errors +
2379 stats->tx_window_errors +
2380 stats->tx_heartbeat_errors,
2381 stats->tx_compressed);
1da177e4
LT
2382}
2383
2384/*
2385 * Called from the PROCfs module. This now uses the new arbitrary sized
2386 * /proc/net interface to create /proc/net/dev
2387 */
2388static int dev_seq_show(struct seq_file *seq, void *v)
2389{
2390 if (v == SEQ_START_TOKEN)
2391 seq_puts(seq, "Inter-| Receive "
2392 " | Transmit\n"
2393 " face |bytes packets errs drop fifo frame "
2394 "compressed multicast|bytes packets errs "
2395 "drop fifo colls carrier compressed\n");
2396 else
2397 dev_seq_printf_stats(seq, v);
2398 return 0;
2399}
2400
2401static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2402{
2403 struct netif_rx_stats *rc = NULL;
2404
2405 while (*pos < NR_CPUS)
4ec93edb 2406 if (cpu_online(*pos)) {
1da177e4
LT
2407 rc = &per_cpu(netdev_rx_stat, *pos);
2408 break;
2409 } else
2410 ++*pos;
2411 return rc;
2412}
2413
2414static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2415{
2416 return softnet_get_online(pos);
2417}
2418
2419static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2420{
2421 ++*pos;
2422 return softnet_get_online(pos);
2423}
2424
2425static void softnet_seq_stop(struct seq_file *seq, void *v)
2426{
2427}
2428
2429static int softnet_seq_show(struct seq_file *seq, void *v)
2430{
2431 struct netif_rx_stats *s = v;
2432
2433 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
31aa02c5 2434 s->total, s->dropped, s->time_squeeze, 0,
c1ebcdb8
SH
2435 0, 0, 0, 0, /* was fastroute */
2436 s->cpu_collision );
1da177e4
LT
2437 return 0;
2438}
2439
f690808e 2440static const struct seq_operations dev_seq_ops = {
1da177e4
LT
2441 .start = dev_seq_start,
2442 .next = dev_seq_next,
2443 .stop = dev_seq_stop,
2444 .show = dev_seq_show,
2445};
2446
2447static int dev_seq_open(struct inode *inode, struct file *file)
2448{
881d966b
EB
2449 struct seq_file *seq;
2450 int res;
2451 res = seq_open(file, &dev_seq_ops);
2452 if (!res) {
2453 seq = file->private_data;
077130c0
EB
2454 seq->private = get_proc_net(inode);
2455 if (!seq->private) {
2456 seq_release(inode, file);
2457 res = -ENXIO;
2458 }
881d966b
EB
2459 }
2460 return res;
2461}
2462
2463static int dev_seq_release(struct inode *inode, struct file *file)
2464{
2465 struct seq_file *seq = file->private_data;
2466 struct net *net = seq->private;
2467 put_net(net);
2468 return seq_release(inode, file);
1da177e4
LT
2469}
2470
9a32144e 2471static const struct file_operations dev_seq_fops = {
1da177e4
LT
2472 .owner = THIS_MODULE,
2473 .open = dev_seq_open,
2474 .read = seq_read,
2475 .llseek = seq_lseek,
881d966b 2476 .release = dev_seq_release,
1da177e4
LT
2477};
2478
f690808e 2479static const struct seq_operations softnet_seq_ops = {
1da177e4
LT
2480 .start = softnet_seq_start,
2481 .next = softnet_seq_next,
2482 .stop = softnet_seq_stop,
2483 .show = softnet_seq_show,
2484};
2485
2486static int softnet_seq_open(struct inode *inode, struct file *file)
2487{
2488 return seq_open(file, &softnet_seq_ops);
2489}
2490
9a32144e 2491static const struct file_operations softnet_seq_fops = {
1da177e4
LT
2492 .owner = THIS_MODULE,
2493 .open = softnet_seq_open,
2494 .read = seq_read,
2495 .llseek = seq_lseek,
2496 .release = seq_release,
2497};
2498
0e1256ff
SH
2499static void *ptype_get_idx(loff_t pos)
2500{
2501 struct packet_type *pt = NULL;
2502 loff_t i = 0;
2503 int t;
2504
2505 list_for_each_entry_rcu(pt, &ptype_all, list) {
2506 if (i == pos)
2507 return pt;
2508 ++i;
2509 }
2510
2511 for (t = 0; t < 16; t++) {
2512 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2513 if (i == pos)
2514 return pt;
2515 ++i;
2516 }
2517 }
2518 return NULL;
2519}
2520
2521static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2522{
2523 rcu_read_lock();
2524 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2525}
2526
2527static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2528{
2529 struct packet_type *pt;
2530 struct list_head *nxt;
2531 int hash;
2532
2533 ++*pos;
2534 if (v == SEQ_START_TOKEN)
2535 return ptype_get_idx(0);
2536
2537 pt = v;
2538 nxt = pt->list.next;
2539 if (pt->type == htons(ETH_P_ALL)) {
2540 if (nxt != &ptype_all)
2541 goto found;
2542 hash = 0;
2543 nxt = ptype_base[0].next;
2544 } else
2545 hash = ntohs(pt->type) & 15;
2546
2547 while (nxt == &ptype_base[hash]) {
2548 if (++hash >= 16)
2549 return NULL;
2550 nxt = ptype_base[hash].next;
2551 }
2552found:
2553 return list_entry(nxt, struct packet_type, list);
2554}
2555
2556static void ptype_seq_stop(struct seq_file *seq, void *v)
2557{
2558 rcu_read_unlock();
2559}
2560
2561static void ptype_seq_decode(struct seq_file *seq, void *sym)
2562{
2563#ifdef CONFIG_KALLSYMS
2564 unsigned long offset = 0, symsize;
2565 const char *symname;
2566 char *modname;
2567 char namebuf[128];
2568
2569 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2570 &modname, namebuf);
2571
2572 if (symname) {
2573 char *delim = ":";
2574
2575 if (!modname)
2576 modname = delim = "";
2577 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2578 symname, offset);
2579 return;
2580 }
2581#endif
2582
2583 seq_printf(seq, "[%p]", sym);
2584}
2585
2586static int ptype_seq_show(struct seq_file *seq, void *v)
2587{
2588 struct packet_type *pt = v;
2589
2590 if (v == SEQ_START_TOKEN)
2591 seq_puts(seq, "Type Device Function\n");
2592 else {
2593 if (pt->type == htons(ETH_P_ALL))
2594 seq_puts(seq, "ALL ");
2595 else
2596 seq_printf(seq, "%04x", ntohs(pt->type));
2597
2598 seq_printf(seq, " %-8s ",
2599 pt->dev ? pt->dev->name : "");
2600 ptype_seq_decode(seq, pt->func);
2601 seq_putc(seq, '\n');
2602 }
2603
2604 return 0;
2605}
2606
2607static const struct seq_operations ptype_seq_ops = {
2608 .start = ptype_seq_start,
2609 .next = ptype_seq_next,
2610 .stop = ptype_seq_stop,
2611 .show = ptype_seq_show,
2612};
2613
2614static int ptype_seq_open(struct inode *inode, struct file *file)
2615{
2616 return seq_open(file, &ptype_seq_ops);
2617}
2618
2619static const struct file_operations ptype_seq_fops = {
2620 .owner = THIS_MODULE,
2621 .open = ptype_seq_open,
2622 .read = seq_read,
2623 .llseek = seq_lseek,
2624 .release = seq_release,
2625};
2626
2627
881d966b 2628static int dev_proc_net_init(struct net *net)
1da177e4
LT
2629{
2630 int rc = -ENOMEM;
2631
881d966b 2632 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
1da177e4 2633 goto out;
881d966b 2634 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
1da177e4 2635 goto out_dev;
881d966b 2636 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
457c4cbc 2637 goto out_softnet;
0e1256ff 2638
881d966b 2639 if (wext_proc_init(net))
457c4cbc 2640 goto out_ptype;
1da177e4
LT
2641 rc = 0;
2642out:
2643 return rc;
457c4cbc 2644out_ptype:
881d966b 2645 proc_net_remove(net, "ptype");
1da177e4 2646out_softnet:
881d966b 2647 proc_net_remove(net, "softnet_stat");
1da177e4 2648out_dev:
881d966b 2649 proc_net_remove(net, "dev");
1da177e4
LT
2650 goto out;
2651}
881d966b
EB
2652
2653static void dev_proc_net_exit(struct net *net)
2654{
2655 wext_proc_exit(net);
2656
2657 proc_net_remove(net, "ptype");
2658 proc_net_remove(net, "softnet_stat");
2659 proc_net_remove(net, "dev");
2660}
2661
2662static struct pernet_operations dev_proc_ops = {
2663 .init = dev_proc_net_init,
2664 .exit = dev_proc_net_exit,
2665};
2666
2667static int __init dev_proc_init(void)
2668{
2669 return register_pernet_subsys(&dev_proc_ops);
2670}
1da177e4
LT
2671#else
2672#define dev_proc_init() 0
2673#endif /* CONFIG_PROC_FS */
2674
2675
2676/**
2677 * netdev_set_master - set up master/slave pair
2678 * @slave: slave device
2679 * @master: new master device
2680 *
2681 * Changes the master device of the slave. Pass %NULL to break the
2682 * bonding. The caller must hold the RTNL semaphore. On a failure
2683 * a negative errno code is returned. On success the reference counts
2684 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2685 * function returns zero.
2686 */
2687int netdev_set_master(struct net_device *slave, struct net_device *master)
2688{
2689 struct net_device *old = slave->master;
2690
2691 ASSERT_RTNL();
2692
2693 if (master) {
2694 if (old)
2695 return -EBUSY;
2696 dev_hold(master);
2697 }
2698
2699 slave->master = master;
4ec93edb 2700
1da177e4
LT
2701 synchronize_net();
2702
2703 if (old)
2704 dev_put(old);
2705
2706 if (master)
2707 slave->flags |= IFF_SLAVE;
2708 else
2709 slave->flags &= ~IFF_SLAVE;
2710
2711 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2712 return 0;
2713}
2714
4417da66 2715static void __dev_set_promiscuity(struct net_device *dev, int inc)
1da177e4
LT
2716{
2717 unsigned short old_flags = dev->flags;
2718
24023451
PM
2719 ASSERT_RTNL();
2720
1da177e4
LT
2721 if ((dev->promiscuity += inc) == 0)
2722 dev->flags &= ~IFF_PROMISC;
52609c0b
DC
2723 else
2724 dev->flags |= IFF_PROMISC;
2725 if (dev->flags != old_flags) {
1da177e4
LT
2726 printk(KERN_INFO "device %s %s promiscuous mode\n",
2727 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4ec93edb 2728 "left");
5bdb9886
SG
2729 audit_log(current->audit_context, GFP_ATOMIC,
2730 AUDIT_ANOM_PROMISCUOUS,
2731 "dev=%s prom=%d old_prom=%d auid=%u",
2732 dev->name, (dev->flags & IFF_PROMISC),
2733 (old_flags & IFF_PROMISC),
4ec93edb 2734 audit_get_loginuid(current->audit_context));
24023451
PM
2735
2736 if (dev->change_rx_flags)
2737 dev->change_rx_flags(dev, IFF_PROMISC);
1da177e4
LT
2738 }
2739}
2740
4417da66
PM
2741/**
2742 * dev_set_promiscuity - update promiscuity count on a device
2743 * @dev: device
2744 * @inc: modifier
2745 *
2746 * Add or remove promiscuity from a device. While the count in the device
2747 * remains above zero the interface remains promiscuous. Once it hits zero
2748 * the device reverts back to normal filtering operation. A negative inc
2749 * value is used to drop promiscuity on the device.
2750 */
2751void dev_set_promiscuity(struct net_device *dev, int inc)
2752{
2753 unsigned short old_flags = dev->flags;
2754
2755 __dev_set_promiscuity(dev, inc);
2756 if (dev->flags != old_flags)
2757 dev_set_rx_mode(dev);
2758}
2759
1da177e4
LT
2760/**
2761 * dev_set_allmulti - update allmulti count on a device
2762 * @dev: device
2763 * @inc: modifier
2764 *
2765 * Add or remove reception of all multicast frames to a device. While the
2766 * count in the device remains above zero the interface remains listening
2767 * to all interfaces. Once it hits zero the device reverts back to normal
2768 * filtering operation. A negative @inc value is used to drop the counter
2769 * when releasing a resource needing all multicasts.
2770 */
2771
2772void dev_set_allmulti(struct net_device *dev, int inc)
2773{
2774 unsigned short old_flags = dev->flags;
2775
24023451
PM
2776 ASSERT_RTNL();
2777
1da177e4
LT
2778 dev->flags |= IFF_ALLMULTI;
2779 if ((dev->allmulti += inc) == 0)
2780 dev->flags &= ~IFF_ALLMULTI;
24023451
PM
2781 if (dev->flags ^ old_flags) {
2782 if (dev->change_rx_flags)
2783 dev->change_rx_flags(dev, IFF_ALLMULTI);
4417da66 2784 dev_set_rx_mode(dev);
24023451 2785 }
4417da66
PM
2786}
2787
2788/*
2789 * Upload unicast and multicast address lists to device and
2790 * configure RX filtering. When the device doesn't support unicast
2791 * filtering it is put in promiscous mode while unicast addresses
2792 * are present.
2793 */
2794void __dev_set_rx_mode(struct net_device *dev)
2795{
2796 /* dev_open will call this function so the list will stay sane. */
2797 if (!(dev->flags&IFF_UP))
2798 return;
2799
2800 if (!netif_device_present(dev))
40b77c94 2801 return;
4417da66
PM
2802
2803 if (dev->set_rx_mode)
2804 dev->set_rx_mode(dev);
2805 else {
2806 /* Unicast addresses changes may only happen under the rtnl,
2807 * therefore calling __dev_set_promiscuity here is safe.
2808 */
2809 if (dev->uc_count > 0 && !dev->uc_promisc) {
2810 __dev_set_promiscuity(dev, 1);
2811 dev->uc_promisc = 1;
2812 } else if (dev->uc_count == 0 && dev->uc_promisc) {
2813 __dev_set_promiscuity(dev, -1);
2814 dev->uc_promisc = 0;
2815 }
2816
2817 if (dev->set_multicast_list)
2818 dev->set_multicast_list(dev);
2819 }
2820}
2821
2822void dev_set_rx_mode(struct net_device *dev)
2823{
2824 netif_tx_lock_bh(dev);
2825 __dev_set_rx_mode(dev);
2826 netif_tx_unlock_bh(dev);
1da177e4
LT
2827}
2828
61cbc2fc
PM
2829int __dev_addr_delete(struct dev_addr_list **list, int *count,
2830 void *addr, int alen, int glbl)
bf742482
PM
2831{
2832 struct dev_addr_list *da;
2833
2834 for (; (da = *list) != NULL; list = &da->next) {
2835 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2836 alen == da->da_addrlen) {
2837 if (glbl) {
2838 int old_glbl = da->da_gusers;
2839 da->da_gusers = 0;
2840 if (old_glbl == 0)
2841 break;
2842 }
2843 if (--da->da_users)
2844 return 0;
2845
2846 *list = da->next;
2847 kfree(da);
61cbc2fc 2848 (*count)--;
bf742482
PM
2849 return 0;
2850 }
2851 }
2852 return -ENOENT;
2853}
2854
61cbc2fc
PM
2855int __dev_addr_add(struct dev_addr_list **list, int *count,
2856 void *addr, int alen, int glbl)
bf742482
PM
2857{
2858 struct dev_addr_list *da;
2859
2860 for (da = *list; da != NULL; da = da->next) {
2861 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2862 da->da_addrlen == alen) {
2863 if (glbl) {
2864 int old_glbl = da->da_gusers;
2865 da->da_gusers = 1;
2866 if (old_glbl)
2867 return 0;
2868 }
2869 da->da_users++;
2870 return 0;
2871 }
2872 }
2873
2874 da = kmalloc(sizeof(*da), GFP_ATOMIC);
2875 if (da == NULL)
2876 return -ENOMEM;
2877 memcpy(da->da_addr, addr, alen);
2878 da->da_addrlen = alen;
2879 da->da_users = 1;
2880 da->da_gusers = glbl ? 1 : 0;
2881 da->next = *list;
2882 *list = da;
61cbc2fc 2883 (*count)++;
bf742482
PM
2884 return 0;
2885}
2886
4417da66
PM
2887/**
2888 * dev_unicast_delete - Release secondary unicast address.
2889 * @dev: device
0ed72ec4
RD
2890 * @addr: address to delete
2891 * @alen: length of @addr
4417da66
PM
2892 *
2893 * Release reference to a secondary unicast address and remove it
0ed72ec4 2894 * from the device if the reference count drops to zero.
4417da66
PM
2895 *
2896 * The caller must hold the rtnl_mutex.
2897 */
2898int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
2899{
2900 int err;
2901
2902 ASSERT_RTNL();
2903
2904 netif_tx_lock_bh(dev);
61cbc2fc
PM
2905 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2906 if (!err)
4417da66 2907 __dev_set_rx_mode(dev);
4417da66
PM
2908 netif_tx_unlock_bh(dev);
2909 return err;
2910}
2911EXPORT_SYMBOL(dev_unicast_delete);
2912
2913/**
2914 * dev_unicast_add - add a secondary unicast address
2915 * @dev: device
0ed72ec4
RD
2916 * @addr: address to delete
2917 * @alen: length of @addr
4417da66
PM
2918 *
2919 * Add a secondary unicast address to the device or increase
2920 * the reference count if it already exists.
2921 *
2922 * The caller must hold the rtnl_mutex.
2923 */
2924int dev_unicast_add(struct net_device *dev, void *addr, int alen)
2925{
2926 int err;
2927
2928 ASSERT_RTNL();
2929
2930 netif_tx_lock_bh(dev);
61cbc2fc
PM
2931 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2932 if (!err)
4417da66 2933 __dev_set_rx_mode(dev);
4417da66
PM
2934 netif_tx_unlock_bh(dev);
2935 return err;
2936}
2937EXPORT_SYMBOL(dev_unicast_add);
2938
12972621
DC
2939static void __dev_addr_discard(struct dev_addr_list **list)
2940{
2941 struct dev_addr_list *tmp;
2942
2943 while (*list != NULL) {
2944 tmp = *list;
2945 *list = tmp->next;
2946 if (tmp->da_users > tmp->da_gusers)
2947 printk("__dev_addr_discard: address leakage! "
2948 "da_users=%d\n", tmp->da_users);
2949 kfree(tmp);
2950 }
2951}
2952
26cc2522 2953static void dev_addr_discard(struct net_device *dev)
4417da66
PM
2954{
2955 netif_tx_lock_bh(dev);
26cc2522 2956
4417da66
PM
2957 __dev_addr_discard(&dev->uc_list);
2958 dev->uc_count = 0;
4417da66 2959
456ad75c
DC
2960 __dev_addr_discard(&dev->mc_list);
2961 dev->mc_count = 0;
26cc2522 2962
456ad75c
DC
2963 netif_tx_unlock_bh(dev);
2964}
2965
1da177e4
LT
2966unsigned dev_get_flags(const struct net_device *dev)
2967{
2968 unsigned flags;
2969
2970 flags = (dev->flags & ~(IFF_PROMISC |
2971 IFF_ALLMULTI |
b00055aa
SR
2972 IFF_RUNNING |
2973 IFF_LOWER_UP |
2974 IFF_DORMANT)) |
1da177e4
LT
2975 (dev->gflags & (IFF_PROMISC |
2976 IFF_ALLMULTI));
2977
b00055aa
SR
2978 if (netif_running(dev)) {
2979 if (netif_oper_up(dev))
2980 flags |= IFF_RUNNING;
2981 if (netif_carrier_ok(dev))
2982 flags |= IFF_LOWER_UP;
2983 if (netif_dormant(dev))
2984 flags |= IFF_DORMANT;
2985 }
1da177e4
LT
2986
2987 return flags;
2988}
2989
2990int dev_change_flags(struct net_device *dev, unsigned flags)
2991{
7c355f53 2992 int ret, changes;
1da177e4
LT
2993 int old_flags = dev->flags;
2994
24023451
PM
2995 ASSERT_RTNL();
2996
1da177e4
LT
2997 /*
2998 * Set the flags on our device.
2999 */
3000
3001 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3002 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3003 IFF_AUTOMEDIA)) |
3004 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3005 IFF_ALLMULTI));
3006
3007 /*
3008 * Load in the correct multicast list now the flags have changed.
3009 */
3010
24023451
PM
3011 if (dev->change_rx_flags && (dev->flags ^ flags) & IFF_MULTICAST)
3012 dev->change_rx_flags(dev, IFF_MULTICAST);
3013
4417da66 3014 dev_set_rx_mode(dev);
1da177e4
LT
3015
3016 /*
3017 * Have we downed the interface. We handle IFF_UP ourselves
3018 * according to user attempts to set it, rather than blindly
3019 * setting it.
3020 */
3021
3022 ret = 0;
3023 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3024 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3025
3026 if (!ret)
4417da66 3027 dev_set_rx_mode(dev);
1da177e4
LT
3028 }
3029
3030 if (dev->flags & IFF_UP &&
3031 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3032 IFF_VOLATILE)))
056925ab 3033 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1da177e4
LT
3034
3035 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3036 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3037 dev->gflags ^= IFF_PROMISC;
3038 dev_set_promiscuity(dev, inc);
3039 }
3040
3041 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3042 is important. Some (broken) drivers set IFF_PROMISC, when
3043 IFF_ALLMULTI is requested not asking us and not reporting.
3044 */
3045 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3046 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3047 dev->gflags ^= IFF_ALLMULTI;
3048 dev_set_allmulti(dev, inc);
3049 }
3050
7c355f53
TG
3051 /* Exclude state transition flags, already notified */
3052 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3053 if (changes)
3054 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
1da177e4
LT
3055
3056 return ret;
3057}
3058
3059int dev_set_mtu(struct net_device *dev, int new_mtu)
3060{
3061 int err;
3062
3063 if (new_mtu == dev->mtu)
3064 return 0;
3065
3066 /* MTU must be positive. */
3067 if (new_mtu < 0)
3068 return -EINVAL;
3069
3070 if (!netif_device_present(dev))
3071 return -ENODEV;
3072
3073 err = 0;
3074 if (dev->change_mtu)
3075 err = dev->change_mtu(dev, new_mtu);
3076 else
3077 dev->mtu = new_mtu;
3078 if (!err && dev->flags & IFF_UP)
056925ab 3079 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
1da177e4
LT
3080 return err;
3081}
3082
3083int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3084{
3085 int err;
3086
3087 if (!dev->set_mac_address)
3088 return -EOPNOTSUPP;
3089 if (sa->sa_family != dev->type)
3090 return -EINVAL;
3091 if (!netif_device_present(dev))
3092 return -ENODEV;
3093 err = dev->set_mac_address(dev, sa);
3094 if (!err)
056925ab 3095 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
1da177e4
LT
3096 return err;
3097}
3098
3099/*
3100 * Perform the SIOCxIFxxx calls.
3101 */
881d966b 3102static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
1da177e4
LT
3103{
3104 int err;
881d966b 3105 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
1da177e4
LT
3106
3107 if (!dev)
3108 return -ENODEV;
3109
3110 switch (cmd) {
3111 case SIOCGIFFLAGS: /* Get interface flags */
3112 ifr->ifr_flags = dev_get_flags(dev);
3113 return 0;
3114
3115 case SIOCSIFFLAGS: /* Set interface flags */
3116 return dev_change_flags(dev, ifr->ifr_flags);
3117
3118 case SIOCGIFMETRIC: /* Get the metric on the interface
3119 (currently unused) */
3120 ifr->ifr_metric = 0;
3121 return 0;
3122
3123 case SIOCSIFMETRIC: /* Set the metric on the interface
3124 (currently unused) */
3125 return -EOPNOTSUPP;
3126
3127 case SIOCGIFMTU: /* Get the MTU of a device */
3128 ifr->ifr_mtu = dev->mtu;
3129 return 0;
3130
3131 case SIOCSIFMTU: /* Set the MTU of a device */
3132 return dev_set_mtu(dev, ifr->ifr_mtu);
3133
3134 case SIOCGIFHWADDR:
3135 if (!dev->addr_len)
3136 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3137 else
3138 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3139 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3140 ifr->ifr_hwaddr.sa_family = dev->type;
3141 return 0;
3142
3143 case SIOCSIFHWADDR:
3144 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3145
3146 case SIOCSIFHWBROADCAST:
3147 if (ifr->ifr_hwaddr.sa_family != dev->type)
3148 return -EINVAL;
3149 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3150 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
056925ab 3151 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
1da177e4
LT
3152 return 0;
3153
3154 case SIOCGIFMAP:
3155 ifr->ifr_map.mem_start = dev->mem_start;
3156 ifr->ifr_map.mem_end = dev->mem_end;
3157 ifr->ifr_map.base_addr = dev->base_addr;
3158 ifr->ifr_map.irq = dev->irq;
3159 ifr->ifr_map.dma = dev->dma;
3160 ifr->ifr_map.port = dev->if_port;
3161 return 0;
3162
3163 case SIOCSIFMAP:
3164 if (dev->set_config) {
3165 if (!netif_device_present(dev))
3166 return -ENODEV;
3167 return dev->set_config(dev, &ifr->ifr_map);
3168 }
3169 return -EOPNOTSUPP;
3170
3171 case SIOCADDMULTI:
3172 if (!dev->set_multicast_list ||
3173 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3174 return -EINVAL;
3175 if (!netif_device_present(dev))
3176 return -ENODEV;
3177 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3178 dev->addr_len, 1);
3179
3180 case SIOCDELMULTI:
3181 if (!dev->set_multicast_list ||
3182 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3183 return -EINVAL;
3184 if (!netif_device_present(dev))
3185 return -ENODEV;
3186 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3187 dev->addr_len, 1);
3188
3189 case SIOCGIFINDEX:
3190 ifr->ifr_ifindex = dev->ifindex;
3191 return 0;
3192
3193 case SIOCGIFTXQLEN:
3194 ifr->ifr_qlen = dev->tx_queue_len;
3195 return 0;
3196
3197 case SIOCSIFTXQLEN:
3198 if (ifr->ifr_qlen < 0)
3199 return -EINVAL;
3200 dev->tx_queue_len = ifr->ifr_qlen;
3201 return 0;
3202
3203 case SIOCSIFNAME:
3204 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3205 return dev_change_name(dev, ifr->ifr_newname);
3206
3207 /*
3208 * Unknown or private ioctl
3209 */
3210
3211 default:
3212 if ((cmd >= SIOCDEVPRIVATE &&
3213 cmd <= SIOCDEVPRIVATE + 15) ||
3214 cmd == SIOCBONDENSLAVE ||
3215 cmd == SIOCBONDRELEASE ||
3216 cmd == SIOCBONDSETHWADDR ||
3217 cmd == SIOCBONDSLAVEINFOQUERY ||
3218 cmd == SIOCBONDINFOQUERY ||
3219 cmd == SIOCBONDCHANGEACTIVE ||
3220 cmd == SIOCGMIIPHY ||
3221 cmd == SIOCGMIIREG ||
3222 cmd == SIOCSMIIREG ||
3223 cmd == SIOCBRADDIF ||
3224 cmd == SIOCBRDELIF ||
3225 cmd == SIOCWANDEV) {
3226 err = -EOPNOTSUPP;
3227 if (dev->do_ioctl) {
3228 if (netif_device_present(dev))
3229 err = dev->do_ioctl(dev, ifr,
3230 cmd);
3231 else
3232 err = -ENODEV;
3233 }
3234 } else
3235 err = -EINVAL;
3236
3237 }
3238 return err;
3239}
3240
3241/*
3242 * This function handles all "interface"-type I/O control requests. The actual
3243 * 'doing' part of this is dev_ifsioc above.
3244 */
3245
3246/**
3247 * dev_ioctl - network device ioctl
3248 * @cmd: command to issue
3249 * @arg: pointer to a struct ifreq in user space
3250 *
3251 * Issue ioctl functions to devices. This is normally called by the
3252 * user space syscall interfaces but can sometimes be useful for
3253 * other purposes. The return value is the return from the syscall if
3254 * positive or a negative errno code on error.
3255 */
3256
881d966b 3257int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1da177e4
LT
3258{
3259 struct ifreq ifr;
3260 int ret;
3261 char *colon;
3262
3263 /* One special case: SIOCGIFCONF takes ifconf argument
3264 and requires shared lock, because it sleeps writing
3265 to user space.
3266 */
3267
3268 if (cmd == SIOCGIFCONF) {
6756ae4b 3269 rtnl_lock();
881d966b 3270 ret = dev_ifconf(net, (char __user *) arg);
6756ae4b 3271 rtnl_unlock();
1da177e4
LT
3272 return ret;
3273 }
3274 if (cmd == SIOCGIFNAME)
881d966b 3275 return dev_ifname(net, (struct ifreq __user *)arg);
1da177e4
LT
3276
3277 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3278 return -EFAULT;
3279
3280 ifr.ifr_name[IFNAMSIZ-1] = 0;
3281
3282 colon = strchr(ifr.ifr_name, ':');
3283 if (colon)
3284 *colon = 0;
3285
3286 /*
3287 * See which interface the caller is talking about.
3288 */
3289
3290 switch (cmd) {
3291 /*
3292 * These ioctl calls:
3293 * - can be done by all.
3294 * - atomic and do not require locking.
3295 * - return a value
3296 */
3297 case SIOCGIFFLAGS:
3298 case SIOCGIFMETRIC:
3299 case SIOCGIFMTU:
3300 case SIOCGIFHWADDR:
3301 case SIOCGIFSLAVE:
3302 case SIOCGIFMAP:
3303 case SIOCGIFINDEX:
3304 case SIOCGIFTXQLEN:
881d966b 3305 dev_load(net, ifr.ifr_name);
1da177e4 3306 read_lock(&dev_base_lock);
881d966b 3307 ret = dev_ifsioc(net, &ifr, cmd);
1da177e4
LT
3308 read_unlock(&dev_base_lock);
3309 if (!ret) {
3310 if (colon)
3311 *colon = ':';
3312 if (copy_to_user(arg, &ifr,
3313 sizeof(struct ifreq)))
3314 ret = -EFAULT;
3315 }
3316 return ret;
3317
3318 case SIOCETHTOOL:
881d966b 3319 dev_load(net, ifr.ifr_name);
1da177e4 3320 rtnl_lock();
881d966b 3321 ret = dev_ethtool(net, &ifr);
1da177e4
LT
3322 rtnl_unlock();
3323 if (!ret) {
3324 if (colon)
3325 *colon = ':';
3326 if (copy_to_user(arg, &ifr,
3327 sizeof(struct ifreq)))
3328 ret = -EFAULT;
3329 }
3330 return ret;
3331
3332 /*
3333 * These ioctl calls:
3334 * - require superuser power.
3335 * - require strict serialization.
3336 * - return a value
3337 */
3338 case SIOCGMIIPHY:
3339 case SIOCGMIIREG:
3340 case SIOCSIFNAME:
3341 if (!capable(CAP_NET_ADMIN))
3342 return -EPERM;
881d966b 3343 dev_load(net, ifr.ifr_name);
1da177e4 3344 rtnl_lock();
881d966b 3345 ret = dev_ifsioc(net, &ifr, cmd);
1da177e4
LT
3346 rtnl_unlock();
3347 if (!ret) {
3348 if (colon)
3349 *colon = ':';
3350 if (copy_to_user(arg, &ifr,
3351 sizeof(struct ifreq)))
3352 ret = -EFAULT;
3353 }
3354 return ret;
3355
3356 /*
3357 * These ioctl calls:
3358 * - require superuser power.
3359 * - require strict serialization.
3360 * - do not return a value
3361 */
3362 case SIOCSIFFLAGS:
3363 case SIOCSIFMETRIC:
3364 case SIOCSIFMTU:
3365 case SIOCSIFMAP:
3366 case SIOCSIFHWADDR:
3367 case SIOCSIFSLAVE:
3368 case SIOCADDMULTI:
3369 case SIOCDELMULTI:
3370 case SIOCSIFHWBROADCAST:
3371 case SIOCSIFTXQLEN:
3372 case SIOCSMIIREG:
3373 case SIOCBONDENSLAVE:
3374 case SIOCBONDRELEASE:
3375 case SIOCBONDSETHWADDR:
1da177e4
LT
3376 case SIOCBONDCHANGEACTIVE:
3377 case SIOCBRADDIF:
3378 case SIOCBRDELIF:
3379 if (!capable(CAP_NET_ADMIN))
3380 return -EPERM;
cabcac0b
TG
3381 /* fall through */
3382 case SIOCBONDSLAVEINFOQUERY:
3383 case SIOCBONDINFOQUERY:
881d966b 3384 dev_load(net, ifr.ifr_name);
1da177e4 3385 rtnl_lock();
881d966b 3386 ret = dev_ifsioc(net, &ifr, cmd);
1da177e4
LT
3387 rtnl_unlock();
3388 return ret;
3389
3390 case SIOCGIFMEM:
3391 /* Get the per device memory space. We can add this but
3392 * currently do not support it */
3393 case SIOCSIFMEM:
3394 /* Set the per device memory buffer space.
3395 * Not applicable in our case */
3396 case SIOCSIFLINK:
3397 return -EINVAL;
3398
3399 /*
3400 * Unknown or private ioctl.
3401 */
3402 default:
3403 if (cmd == SIOCWANDEV ||
3404 (cmd >= SIOCDEVPRIVATE &&
3405 cmd <= SIOCDEVPRIVATE + 15)) {
881d966b 3406 dev_load(net, ifr.ifr_name);
1da177e4 3407 rtnl_lock();
881d966b 3408 ret = dev_ifsioc(net, &ifr, cmd);
1da177e4
LT
3409 rtnl_unlock();
3410 if (!ret && copy_to_user(arg, &ifr,
3411 sizeof(struct ifreq)))
3412 ret = -EFAULT;
3413 return ret;
3414 }
1da177e4 3415 /* Take care of Wireless Extensions */
295f4a1f 3416 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
881d966b 3417 return wext_handle_ioctl(net, &ifr, cmd, arg);
1da177e4
LT
3418 return -EINVAL;
3419 }
3420}
3421
3422
3423/**
3424 * dev_new_index - allocate an ifindex
3425 *
3426 * Returns a suitable unique value for a new device interface
3427 * number. The caller must hold the rtnl semaphore or the
3428 * dev_base_lock to be sure it remains unique.
3429 */
881d966b 3430static int dev_new_index(struct net *net)
1da177e4
LT
3431{
3432 static int ifindex;
3433 for (;;) {
3434 if (++ifindex <= 0)
3435 ifindex = 1;
881d966b 3436 if (!__dev_get_by_index(net, ifindex))
1da177e4
LT
3437 return ifindex;
3438 }
3439}
3440
1da177e4
LT
3441/* Delayed registration/unregisteration */
3442static DEFINE_SPINLOCK(net_todo_list_lock);
3443static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list);
3444
6f05f629 3445static void net_set_todo(struct net_device *dev)
1da177e4
LT
3446{
3447 spin_lock(&net_todo_list_lock);
3448 list_add_tail(&dev->todo_list, &net_todo_list);
3449 spin_unlock(&net_todo_list_lock);
3450}
3451
3452/**
3453 * register_netdevice - register a network device
3454 * @dev: device to register
3455 *
3456 * Take a completed network device structure and add it to the kernel
3457 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3458 * chain. 0 is returned on success. A negative errno code is returned
3459 * on a failure to set up the device, or if the name is a duplicate.
3460 *
3461 * Callers must hold the rtnl semaphore. You may want
3462 * register_netdev() instead of this.
3463 *
3464 * BUGS:
3465 * The locking appears insufficient to guarantee two parallel registers
3466 * will not get the same name.
3467 */
3468
3469int register_netdevice(struct net_device *dev)
3470{
3471 struct hlist_head *head;
3472 struct hlist_node *p;
3473 int ret;
881d966b 3474 struct net *net;
1da177e4
LT
3475
3476 BUG_ON(dev_boot_phase);
3477 ASSERT_RTNL();
3478
b17a7c17
SH
3479 might_sleep();
3480
1da177e4
LT
3481 /* When net_device's are persistent, this will be fatal. */
3482 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
881d966b
EB
3483 BUG_ON(!dev->nd_net);
3484 net = dev->nd_net;
1da177e4
LT
3485
3486 spin_lock_init(&dev->queue_lock);
932ff279 3487 spin_lock_init(&dev->_xmit_lock);
723e98b7 3488 netdev_set_lockdep_class(&dev->_xmit_lock, dev->type);
1da177e4 3489 dev->xmit_lock_owner = -1;
1da177e4 3490 spin_lock_init(&dev->ingress_lock);
1da177e4 3491
1da177e4
LT
3492 dev->iflink = -1;
3493
3494 /* Init, if this function is available */
3495 if (dev->init) {
3496 ret = dev->init(dev);
3497 if (ret) {
3498 if (ret > 0)
3499 ret = -EIO;
90833aa4 3500 goto out;
1da177e4
LT
3501 }
3502 }
4ec93edb 3503
1da177e4
LT
3504 if (!dev_valid_name(dev->name)) {
3505 ret = -EINVAL;
7ce1b0ed 3506 goto err_uninit;
1da177e4
LT
3507 }
3508
881d966b 3509 dev->ifindex = dev_new_index(net);
1da177e4
LT
3510 if (dev->iflink == -1)
3511 dev->iflink = dev->ifindex;
3512
3513 /* Check for existence of name */
881d966b 3514 head = dev_name_hash(net, dev->name);
1da177e4
LT
3515 hlist_for_each(p, head) {
3516 struct net_device *d
3517 = hlist_entry(p, struct net_device, name_hlist);
3518 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3519 ret = -EEXIST;
7ce1b0ed 3520 goto err_uninit;
1da177e4 3521 }
4ec93edb 3522 }
1da177e4 3523
d212f87b
SH
3524 /* Fix illegal checksum combinations */
3525 if ((dev->features & NETIF_F_HW_CSUM) &&
3526 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3527 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3528 dev->name);
3529 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3530 }
3531
3532 if ((dev->features & NETIF_F_NO_CSUM) &&
3533 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3534 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3535 dev->name);
3536 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3537 }
3538
3539
1da177e4
LT
3540 /* Fix illegal SG+CSUM combinations. */
3541 if ((dev->features & NETIF_F_SG) &&
8648b305 3542 !(dev->features & NETIF_F_ALL_CSUM)) {
5a8da02b 3543 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
1da177e4
LT
3544 dev->name);
3545 dev->features &= ~NETIF_F_SG;
3546 }
3547
3548 /* TSO requires that SG is present as well. */
3549 if ((dev->features & NETIF_F_TSO) &&
3550 !(dev->features & NETIF_F_SG)) {
5a8da02b 3551 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
1da177e4
LT
3552 dev->name);
3553 dev->features &= ~NETIF_F_TSO;
3554 }
e89e9cf5
AR
3555 if (dev->features & NETIF_F_UFO) {
3556 if (!(dev->features & NETIF_F_HW_CSUM)) {
3557 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3558 "NETIF_F_HW_CSUM feature.\n",
3559 dev->name);
3560 dev->features &= ~NETIF_F_UFO;
3561 }
3562 if (!(dev->features & NETIF_F_SG)) {
3563 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3564 "NETIF_F_SG feature.\n",
3565 dev->name);
3566 dev->features &= ~NETIF_F_UFO;
3567 }
3568 }
1da177e4
LT
3569
3570 /*
3571 * nil rebuild_header routine,
3572 * that should be never called and used as just bug trap.
3573 */
3574
3575 if (!dev->rebuild_header)
3576 dev->rebuild_header = default_rebuild_header;
3577
b17a7c17
SH
3578 ret = netdev_register_sysfs(dev);
3579 if (ret)
7ce1b0ed 3580 goto err_uninit;
b17a7c17
SH
3581 dev->reg_state = NETREG_REGISTERED;
3582
1da177e4
LT
3583 /*
3584 * Default initial state at registry is that the
3585 * device is present.
3586 */
3587
3588 set_bit(__LINK_STATE_PRESENT, &dev->state);
3589
1da177e4 3590 dev_init_scheduler(dev);
1da177e4 3591 dev_hold(dev);
ce286d32 3592 list_netdevice(dev);
1da177e4
LT
3593
3594 /* Notify protocols, that a new device appeared. */
056925ab 3595 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a
HX
3596 ret = notifier_to_errno(ret);
3597 if (ret)
3598 unregister_netdevice(dev);
1da177e4
LT
3599
3600out:
3601 return ret;
7ce1b0ed
HX
3602
3603err_uninit:
3604 if (dev->uninit)
3605 dev->uninit(dev);
3606 goto out;
1da177e4
LT
3607}
3608
3609/**
3610 * register_netdev - register a network device
3611 * @dev: device to register
3612 *
3613 * Take a completed network device structure and add it to the kernel
3614 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3615 * chain. 0 is returned on success. A negative errno code is returned
3616 * on a failure to set up the device, or if the name is a duplicate.
3617 *
38b4da38 3618 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
3619 * and expands the device name if you passed a format string to
3620 * alloc_netdev.
3621 */
3622int register_netdev(struct net_device *dev)
3623{
3624 int err;
3625
3626 rtnl_lock();
3627
3628 /*
3629 * If the name is a format string the caller wants us to do a
3630 * name allocation.
3631 */
3632 if (strchr(dev->name, '%')) {
3633 err = dev_alloc_name(dev, dev->name);
3634 if (err < 0)
3635 goto out;
3636 }
4ec93edb 3637
1da177e4
LT
3638 err = register_netdevice(dev);
3639out:
3640 rtnl_unlock();
3641 return err;
3642}
3643EXPORT_SYMBOL(register_netdev);
3644
3645/*
3646 * netdev_wait_allrefs - wait until all references are gone.
3647 *
3648 * This is called when unregistering network devices.
3649 *
3650 * Any protocol or device that holds a reference should register
3651 * for netdevice notification, and cleanup and put back the
3652 * reference if they receive an UNREGISTER event.
3653 * We can get stuck here if buggy protocols don't correctly
4ec93edb 3654 * call dev_put.
1da177e4
LT
3655 */
3656static void netdev_wait_allrefs(struct net_device *dev)
3657{
3658 unsigned long rebroadcast_time, warning_time;
3659
3660 rebroadcast_time = warning_time = jiffies;
3661 while (atomic_read(&dev->refcnt) != 0) {
3662 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 3663 rtnl_lock();
1da177e4
LT
3664
3665 /* Rebroadcast unregister notification */
056925ab 3666 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4
LT
3667
3668 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
3669 &dev->state)) {
3670 /* We must not have linkwatch events
3671 * pending on unregister. If this
3672 * happens, we simply run the queue
3673 * unscheduled, resulting in a noop
3674 * for this device.
3675 */
3676 linkwatch_run_queue();
3677 }
3678
6756ae4b 3679 __rtnl_unlock();
1da177e4
LT
3680
3681 rebroadcast_time = jiffies;
3682 }
3683
3684 msleep(250);
3685
3686 if (time_after(jiffies, warning_time + 10 * HZ)) {
3687 printk(KERN_EMERG "unregister_netdevice: "
3688 "waiting for %s to become free. Usage "
3689 "count = %d\n",
3690 dev->name, atomic_read(&dev->refcnt));
3691 warning_time = jiffies;
3692 }
3693 }
3694}
3695
3696/* The sequence is:
3697 *
3698 * rtnl_lock();
3699 * ...
3700 * register_netdevice(x1);
3701 * register_netdevice(x2);
3702 * ...
3703 * unregister_netdevice(y1);
3704 * unregister_netdevice(y2);
3705 * ...
3706 * rtnl_unlock();
3707 * free_netdev(y1);
3708 * free_netdev(y2);
3709 *
3710 * We are invoked by rtnl_unlock() after it drops the semaphore.
3711 * This allows us to deal with problems:
b17a7c17 3712 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
3713 * without deadlocking with linkwatch via keventd.
3714 * 2) Since we run with the RTNL semaphore not held, we can sleep
3715 * safely in order to wait for the netdev refcnt to drop to zero.
3716 */
4a3e2f71 3717static DEFINE_MUTEX(net_todo_run_mutex);
1da177e4
LT
3718void netdev_run_todo(void)
3719{
626ab0e6 3720 struct list_head list;
1da177e4
LT
3721
3722 /* Need to guard against multiple cpu's getting out of order. */
4a3e2f71 3723 mutex_lock(&net_todo_run_mutex);
1da177e4
LT
3724
3725 /* Not safe to do outside the semaphore. We must not return
3726 * until all unregister events invoked by the local processor
3727 * have been completed (either by this todo run, or one on
3728 * another cpu).
3729 */
3730 if (list_empty(&net_todo_list))
3731 goto out;
3732
3733 /* Snapshot list, allow later requests */
3734 spin_lock(&net_todo_list_lock);
626ab0e6 3735 list_replace_init(&net_todo_list, &list);
1da177e4 3736 spin_unlock(&net_todo_list_lock);
626ab0e6 3737
1da177e4
LT
3738 while (!list_empty(&list)) {
3739 struct net_device *dev
3740 = list_entry(list.next, struct net_device, todo_list);
3741 list_del(&dev->todo_list);
3742
b17a7c17
SH
3743 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
3744 printk(KERN_ERR "network todo '%s' but state %d\n",
3745 dev->name, dev->reg_state);
3746 dump_stack();
3747 continue;
3748 }
1da177e4 3749
b17a7c17 3750 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 3751
b17a7c17 3752 netdev_wait_allrefs(dev);
1da177e4 3753
b17a7c17
SH
3754 /* paranoia */
3755 BUG_ON(atomic_read(&dev->refcnt));
3756 BUG_TRAP(!dev->ip_ptr);
3757 BUG_TRAP(!dev->ip6_ptr);
3758 BUG_TRAP(!dev->dn_ptr);
1da177e4 3759
b17a7c17
SH
3760 if (dev->destructor)
3761 dev->destructor(dev);
9093bbb2
SH
3762
3763 /* Free network device */
3764 kobject_put(&dev->dev.kobj);
1da177e4
LT
3765 }
3766
3767out:
4a3e2f71 3768 mutex_unlock(&net_todo_run_mutex);
1da177e4
LT
3769}
3770
5a1b5898 3771static struct net_device_stats *internal_stats(struct net_device *dev)
c45d286e 3772{
5a1b5898 3773 return &dev->stats;
c45d286e
RR
3774}
3775
1da177e4 3776/**
f25f4e44 3777 * alloc_netdev_mq - allocate network device
1da177e4
LT
3778 * @sizeof_priv: size of private data to allocate space for
3779 * @name: device name format string
3780 * @setup: callback to initialize device
f25f4e44 3781 * @queue_count: the number of subqueues to allocate
1da177e4
LT
3782 *
3783 * Allocates a struct net_device with private data area for driver use
f25f4e44
PWJ
3784 * and performs basic initialization. Also allocates subquue structs
3785 * for each queue on the device at the end of the netdevice.
1da177e4 3786 */
f25f4e44
PWJ
3787struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
3788 void (*setup)(struct net_device *), unsigned int queue_count)
1da177e4
LT
3789{
3790 void *p;
3791 struct net_device *dev;
3792 int alloc_size;
3793
b6fe17d6
SH
3794 BUG_ON(strlen(name) >= sizeof(dev->name));
3795
1da177e4 3796 /* ensure 32-byte alignment of both the device and private area */
f25f4e44 3797 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST +
31ce72a6 3798 (sizeof(struct net_device_subqueue) * (queue_count - 1))) &
f25f4e44 3799 ~NETDEV_ALIGN_CONST;
1da177e4
LT
3800 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST;
3801
31380de9 3802 p = kzalloc(alloc_size, GFP_KERNEL);
1da177e4 3803 if (!p) {
b6fe17d6 3804 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
1da177e4
LT
3805 return NULL;
3806 }
1da177e4
LT
3807
3808 dev = (struct net_device *)
3809 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
3810 dev->padded = (char *)dev - (char *)p;
6d34b1c2 3811 dev->nd_net = &init_net;
1da177e4 3812
f25f4e44
PWJ
3813 if (sizeof_priv) {
3814 dev->priv = ((char *)dev +
3815 ((sizeof(struct net_device) +
3816 (sizeof(struct net_device_subqueue) *
31ce72a6 3817 (queue_count - 1)) + NETDEV_ALIGN_CONST)
f25f4e44
PWJ
3818 & ~NETDEV_ALIGN_CONST));
3819 }
3820
3821 dev->egress_subqueue_count = queue_count;
1da177e4 3822
5a1b5898 3823 dev->get_stats = internal_stats;
bea3348e 3824 netpoll_netdev_init(dev);
1da177e4
LT
3825 setup(dev);
3826 strcpy(dev->name, name);
3827 return dev;
3828}
f25f4e44 3829EXPORT_SYMBOL(alloc_netdev_mq);
1da177e4
LT
3830
3831/**
3832 * free_netdev - free network device
3833 * @dev: device
3834 *
4ec93edb
YH
3835 * This function does the last stage of destroying an allocated device
3836 * interface. The reference to the device object is released.
1da177e4
LT
3837 * If this is the last reference then it will be freed.
3838 */
3839void free_netdev(struct net_device *dev)
3840{
3841#ifdef CONFIG_SYSFS
3041a069 3842 /* Compatibility with error handling in drivers */
1da177e4
LT
3843 if (dev->reg_state == NETREG_UNINITIALIZED) {
3844 kfree((char *)dev - dev->padded);
3845 return;
3846 }
3847
3848 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
3849 dev->reg_state = NETREG_RELEASED;
3850
43cb76d9
GKH
3851 /* will free via device release */
3852 put_device(&dev->dev);
1da177e4
LT
3853#else
3854 kfree((char *)dev - dev->padded);
3855#endif
3856}
4ec93edb 3857
1da177e4 3858/* Synchronize with packet receive processing. */
4ec93edb 3859void synchronize_net(void)
1da177e4
LT
3860{
3861 might_sleep();
fbd568a3 3862 synchronize_rcu();
1da177e4
LT
3863}
3864
3865/**
3866 * unregister_netdevice - remove device from the kernel
3867 * @dev: device
3868 *
3869 * This function shuts down a device interface and removes it
3870 * from the kernel tables. On success 0 is returned, on a failure
3871 * a negative errno code is returned.
3872 *
3873 * Callers must hold the rtnl semaphore. You may want
3874 * unregister_netdev() instead of this.
3875 */
3876
22f8cde5 3877void unregister_netdevice(struct net_device *dev)
1da177e4 3878{
1da177e4
LT
3879 BUG_ON(dev_boot_phase);
3880 ASSERT_RTNL();
3881
3882 /* Some devices call without registering for initialization unwind. */
3883 if (dev->reg_state == NETREG_UNINITIALIZED) {
3884 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3885 "was registered\n", dev->name, dev);
22f8cde5
SH
3886
3887 WARN_ON(1);
3888 return;
1da177e4
LT
3889 }
3890
3891 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3892
3893 /* If device is running, close it first. */
3894 if (dev->flags & IFF_UP)
3895 dev_close(dev);
3896
3897 /* And unlink it from device chain. */
ce286d32 3898 unlist_netdevice(dev);
1da177e4
LT
3899
3900 dev->reg_state = NETREG_UNREGISTERING;
3901
3902 synchronize_net();
3903
3904 /* Shutdown queueing discipline. */
3905 dev_shutdown(dev);
3906
4ec93edb 3907
1da177e4
LT
3908 /* Notify protocols, that we are about to destroy
3909 this device. They should clean all the things.
3910 */
056925ab 3911 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4ec93edb 3912
1da177e4 3913 /*
4417da66 3914 * Flush the unicast and multicast chains
1da177e4 3915 */
26cc2522 3916 dev_addr_discard(dev);
1da177e4
LT
3917
3918 if (dev->uninit)
3919 dev->uninit(dev);
3920
3921 /* Notifier chain MUST detach us from master device. */
3922 BUG_TRAP(!dev->master);
3923
9093bbb2
SH
3924 /* Remove entries from sysfs */
3925 netdev_unregister_sysfs(dev);
3926
1da177e4
LT
3927 /* Finish processing unregister after unlock */
3928 net_set_todo(dev);
3929
3930 synchronize_net();
3931
3932 dev_put(dev);
1da177e4
LT
3933}
3934
3935/**
3936 * unregister_netdev - remove device from the kernel
3937 * @dev: device
3938 *
3939 * This function shuts down a device interface and removes it
3940 * from the kernel tables. On success 0 is returned, on a failure
3941 * a negative errno code is returned.
3942 *
3943 * This is just a wrapper for unregister_netdevice that takes
3944 * the rtnl semaphore. In general you want to use this and not
3945 * unregister_netdevice.
3946 */
3947void unregister_netdev(struct net_device *dev)
3948{
3949 rtnl_lock();
3950 unregister_netdevice(dev);
3951 rtnl_unlock();
3952}
3953
3954EXPORT_SYMBOL(unregister_netdev);
3955
ce286d32
EB
3956/**
3957 * dev_change_net_namespace - move device to different nethost namespace
3958 * @dev: device
3959 * @net: network namespace
3960 * @pat: If not NULL name pattern to try if the current device name
3961 * is already taken in the destination network namespace.
3962 *
3963 * This function shuts down a device interface and moves it
3964 * to a new network namespace. On success 0 is returned, on
3965 * a failure a netagive errno code is returned.
3966 *
3967 * Callers must hold the rtnl semaphore.
3968 */
3969
3970int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
3971{
3972 char buf[IFNAMSIZ];
3973 const char *destname;
3974 int err;
3975
3976 ASSERT_RTNL();
3977
3978 /* Don't allow namespace local devices to be moved. */
3979 err = -EINVAL;
3980 if (dev->features & NETIF_F_NETNS_LOCAL)
3981 goto out;
3982
3983 /* Ensure the device has been registrered */
3984 err = -EINVAL;
3985 if (dev->reg_state != NETREG_REGISTERED)
3986 goto out;
3987
3988 /* Get out if there is nothing todo */
3989 err = 0;
3990 if (dev->nd_net == net)
3991 goto out;
3992
3993 /* Pick the destination device name, and ensure
3994 * we can use it in the destination network namespace.
3995 */
3996 err = -EEXIST;
3997 destname = dev->name;
3998 if (__dev_get_by_name(net, destname)) {
3999 /* We get here if we can't use the current device name */
4000 if (!pat)
4001 goto out;
4002 if (!dev_valid_name(pat))
4003 goto out;
4004 if (strchr(pat, '%')) {
4005 if (__dev_alloc_name(net, pat, buf) < 0)
4006 goto out;
4007 destname = buf;
4008 } else
4009 destname = pat;
4010 if (__dev_get_by_name(net, destname))
4011 goto out;
4012 }
4013
4014 /*
4015 * And now a mini version of register_netdevice unregister_netdevice.
4016 */
4017
4018 /* If device is running close it first. */
4019 if (dev->flags & IFF_UP)
4020 dev_close(dev);
4021
4022 /* And unlink it from device chain */
4023 err = -ENODEV;
4024 unlist_netdevice(dev);
4025
4026 synchronize_net();
4027
4028 /* Shutdown queueing discipline. */
4029 dev_shutdown(dev);
4030
4031 /* Notify protocols, that we are about to destroy
4032 this device. They should clean all the things.
4033 */
4034 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4035
4036 /*
4037 * Flush the unicast and multicast chains
4038 */
4039 dev_addr_discard(dev);
4040
4041 /* Actually switch the network namespace */
4042 dev->nd_net = net;
4043
4044 /* Assign the new device name */
4045 if (destname != dev->name)
4046 strcpy(dev->name, destname);
4047
4048 /* If there is an ifindex conflict assign a new one */
4049 if (__dev_get_by_index(net, dev->ifindex)) {
4050 int iflink = (dev->iflink == dev->ifindex);
4051 dev->ifindex = dev_new_index(net);
4052 if (iflink)
4053 dev->iflink = dev->ifindex;
4054 }
4055
4056 /* Fixup sysfs */
4057 err = device_rename(&dev->dev, dev->name);
4058 BUG_ON(err);
4059
4060 /* Add the device back in the hashes */
4061 list_netdevice(dev);
4062
4063 /* Notify protocols, that a new device appeared. */
4064 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4065
4066 synchronize_net();
4067 err = 0;
4068out:
4069 return err;
4070}
4071
1da177e4
LT
4072static int dev_cpu_callback(struct notifier_block *nfb,
4073 unsigned long action,
4074 void *ocpu)
4075{
4076 struct sk_buff **list_skb;
4077 struct net_device **list_net;
4078 struct sk_buff *skb;
4079 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4080 struct softnet_data *sd, *oldsd;
4081
8bb78442 4082 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
4083 return NOTIFY_OK;
4084
4085 local_irq_disable();
4086 cpu = smp_processor_id();
4087 sd = &per_cpu(softnet_data, cpu);
4088 oldsd = &per_cpu(softnet_data, oldcpu);
4089
4090 /* Find end of our completion_queue. */
4091 list_skb = &sd->completion_queue;
4092 while (*list_skb)
4093 list_skb = &(*list_skb)->next;
4094 /* Append completion queue from offline CPU. */
4095 *list_skb = oldsd->completion_queue;
4096 oldsd->completion_queue = NULL;
4097
4098 /* Find end of our output_queue. */
4099 list_net = &sd->output_queue;
4100 while (*list_net)
4101 list_net = &(*list_net)->next_sched;
4102 /* Append output queue from offline CPU. */
4103 *list_net = oldsd->output_queue;
4104 oldsd->output_queue = NULL;
4105
4106 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4107 local_irq_enable();
4108
4109 /* Process offline CPU's input_pkt_queue */
4110 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4111 netif_rx(skb);
4112
4113 return NOTIFY_OK;
4114}
1da177e4 4115
db217334
CL
4116#ifdef CONFIG_NET_DMA
4117/**
0ed72ec4
RD
4118 * net_dma_rebalance - try to maintain one DMA channel per CPU
4119 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4120 *
4121 * This is called when the number of channels allocated to the net_dma client
4122 * changes. The net_dma client tries to have one DMA channel per CPU.
db217334 4123 */
d379b01e
DW
4124
4125static void net_dma_rebalance(struct net_dma *net_dma)
db217334 4126{
d379b01e 4127 unsigned int cpu, i, n, chan_idx;
db217334
CL
4128 struct dma_chan *chan;
4129
d379b01e 4130 if (cpus_empty(net_dma->channel_mask)) {
db217334 4131 for_each_online_cpu(cpu)
29bbd72d 4132 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
db217334
CL
4133 return;
4134 }
4135
4136 i = 0;
4137 cpu = first_cpu(cpu_online_map);
4138
d379b01e
DW
4139 for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
4140 chan = net_dma->channels[chan_idx];
4141
4142 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4143 + (i < (num_online_cpus() %
4144 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
db217334
CL
4145
4146 while(n) {
29bbd72d 4147 per_cpu(softnet_data, cpu).net_dma = chan;
db217334
CL
4148 cpu = next_cpu(cpu, cpu_online_map);
4149 n--;
4150 }
4151 i++;
4152 }
db217334
CL
4153}
4154
4155/**
4156 * netdev_dma_event - event callback for the net_dma_client
4157 * @client: should always be net_dma_client
f4b8ea78 4158 * @chan: DMA channel for the event
0ed72ec4 4159 * @state: DMA state to be handled
db217334 4160 */
d379b01e
DW
4161static enum dma_state_client
4162netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4163 enum dma_state state)
4164{
4165 int i, found = 0, pos = -1;
4166 struct net_dma *net_dma =
4167 container_of(client, struct net_dma, client);
4168 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4169
4170 spin_lock(&net_dma->lock);
4171 switch (state) {
4172 case DMA_RESOURCE_AVAILABLE:
4173 for (i = 0; i < NR_CPUS; i++)
4174 if (net_dma->channels[i] == chan) {
4175 found = 1;
4176 break;
4177 } else if (net_dma->channels[i] == NULL && pos < 0)
4178 pos = i;
4179
4180 if (!found && pos >= 0) {
4181 ack = DMA_ACK;
4182 net_dma->channels[pos] = chan;
4183 cpu_set(pos, net_dma->channel_mask);
4184 net_dma_rebalance(net_dma);
4185 }
db217334
CL
4186 break;
4187 case DMA_RESOURCE_REMOVED:
d379b01e
DW
4188 for (i = 0; i < NR_CPUS; i++)
4189 if (net_dma->channels[i] == chan) {
4190 found = 1;
4191 pos = i;
4192 break;
4193 }
4194
4195 if (found) {
4196 ack = DMA_ACK;
4197 cpu_clear(pos, net_dma->channel_mask);
4198 net_dma->channels[i] = NULL;
4199 net_dma_rebalance(net_dma);
4200 }
db217334
CL
4201 break;
4202 default:
4203 break;
4204 }
d379b01e
DW
4205 spin_unlock(&net_dma->lock);
4206
4207 return ack;
db217334
CL
4208}
4209
4210/**
4211 * netdev_dma_regiser - register the networking subsystem as a DMA client
4212 */
4213static int __init netdev_dma_register(void)
4214{
d379b01e
DW
4215 spin_lock_init(&net_dma.lock);
4216 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4217 dma_async_client_register(&net_dma.client);
4218 dma_async_client_chan_request(&net_dma.client);
db217334
CL
4219 return 0;
4220}
4221
4222#else
4223static int __init netdev_dma_register(void) { return -ENODEV; }
4224#endif /* CONFIG_NET_DMA */
1da177e4 4225
7f353bf2
HX
4226/**
4227 * netdev_compute_feature - compute conjunction of two feature sets
4228 * @all: first feature set
4229 * @one: second feature set
4230 *
4231 * Computes a new feature set after adding a device with feature set
4232 * @one to the master device with current feature set @all. Returns
4233 * the new feature set.
4234 */
4235int netdev_compute_features(unsigned long all, unsigned long one)
4236{
4237 /* if device needs checksumming, downgrade to hw checksumming */
4238 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4239 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4240
4241 /* if device can't do all checksum, downgrade to ipv4/ipv6 */
4242 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4243 all ^= NETIF_F_HW_CSUM
4244 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4245
4246 if (one & NETIF_F_GSO)
4247 one |= NETIF_F_GSO_SOFTWARE;
4248 one |= NETIF_F_GSO;
4249
4250 /* If even one device supports robust GSO, enable it for all. */
4251 if (one & NETIF_F_GSO_ROBUST)
4252 all |= NETIF_F_GSO_ROBUST;
4253
4254 all &= one | NETIF_F_LLTX;
4255
4256 if (!(all & NETIF_F_ALL_CSUM))
4257 all &= ~NETIF_F_SG;
4258 if (!(all & NETIF_F_SG))
4259 all &= ~NETIF_F_GSO_MASK;
4260
4261 return all;
4262}
4263EXPORT_SYMBOL(netdev_compute_features);
4264
30d97d35
PE
4265static struct hlist_head *netdev_create_hash(void)
4266{
4267 int i;
4268 struct hlist_head *hash;
4269
4270 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4271 if (hash != NULL)
4272 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4273 INIT_HLIST_HEAD(&hash[i]);
4274
4275 return hash;
4276}
4277
881d966b
EB
4278/* Initialize per network namespace state */
4279static int netdev_init(struct net *net)
4280{
881d966b
EB
4281 INIT_LIST_HEAD(&net->dev_base_head);
4282 rwlock_init(&dev_base_lock);
4283
30d97d35
PE
4284 net->dev_name_head = netdev_create_hash();
4285 if (net->dev_name_head == NULL)
4286 goto err_name;
881d966b 4287
30d97d35
PE
4288 net->dev_index_head = netdev_create_hash();
4289 if (net->dev_index_head == NULL)
4290 goto err_idx;
881d966b
EB
4291
4292 return 0;
30d97d35
PE
4293
4294err_idx:
4295 kfree(net->dev_name_head);
4296err_name:
4297 return -ENOMEM;
881d966b
EB
4298}
4299
4300static void netdev_exit(struct net *net)
4301{
4302 kfree(net->dev_name_head);
4303 kfree(net->dev_index_head);
4304}
4305
4306static struct pernet_operations netdev_net_ops = {
4307 .init = netdev_init,
4308 .exit = netdev_exit,
4309};
4310
ce286d32
EB
4311static void default_device_exit(struct net *net)
4312{
4313 struct net_device *dev, *next;
4314 /*
4315 * Push all migratable of the network devices back to the
4316 * initial network namespace
4317 */
4318 rtnl_lock();
4319 for_each_netdev_safe(net, dev, next) {
4320 int err;
4321
4322 /* Ignore unmoveable devices (i.e. loopback) */
4323 if (dev->features & NETIF_F_NETNS_LOCAL)
4324 continue;
4325
4326 /* Push remaing network devices to init_net */
4327 err = dev_change_net_namespace(dev, &init_net, "dev%d");
4328 if (err) {
4329 printk(KERN_WARNING "%s: failed to move %s to init_net: %d\n",
4330 __func__, dev->name, err);
4331 unregister_netdevice(dev);
4332 }
4333 }
4334 rtnl_unlock();
4335}
4336
4337static struct pernet_operations default_device_ops = {
4338 .exit = default_device_exit,
4339};
4340
1da177e4
LT
4341/*
4342 * Initialize the DEV module. At boot time this walks the device list and
4343 * unhooks any devices that fail to initialise (normally hardware not
4344 * present) and leaves us with a valid list of present and active devices.
4345 *
4346 */
4347
4348/*
4349 * This is called single threaded during boot, so no need
4350 * to take the rtnl semaphore.
4351 */
4352static int __init net_dev_init(void)
4353{
4354 int i, rc = -ENOMEM;
4355
4356 BUG_ON(!dev_boot_phase);
4357
1da177e4
LT
4358 if (dev_proc_init())
4359 goto out;
4360
4361 if (netdev_sysfs_init())
4362 goto out;
4363
4364 INIT_LIST_HEAD(&ptype_all);
4ec93edb 4365 for (i = 0; i < 16; i++)
1da177e4
LT
4366 INIT_LIST_HEAD(&ptype_base[i]);
4367
881d966b
EB
4368 if (register_pernet_subsys(&netdev_net_ops))
4369 goto out;
1da177e4 4370
ce286d32
EB
4371 if (register_pernet_device(&default_device_ops))
4372 goto out;
4373
1da177e4
LT
4374 /*
4375 * Initialise the packet receive queues.
4376 */
4377
6f912042 4378 for_each_possible_cpu(i) {
1da177e4
LT
4379 struct softnet_data *queue;
4380
4381 queue = &per_cpu(softnet_data, i);
4382 skb_queue_head_init(&queue->input_pkt_queue);
1da177e4
LT
4383 queue->completion_queue = NULL;
4384 INIT_LIST_HEAD(&queue->poll_list);
bea3348e
SH
4385
4386 queue->backlog.poll = process_backlog;
4387 queue->backlog.weight = weight_p;
1da177e4
LT
4388 }
4389
db217334
CL
4390 netdev_dma_register();
4391
1da177e4
LT
4392 dev_boot_phase = 0;
4393
4394 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
4395 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
4396
4397 hotcpu_notifier(dev_cpu_callback, 0);
4398 dst_init();
4399 dev_mcast_init();
4400 rc = 0;
4401out:
4402 return rc;
4403}
4404
4405subsys_initcall(net_dev_init);
4406
4407EXPORT_SYMBOL(__dev_get_by_index);
4408EXPORT_SYMBOL(__dev_get_by_name);
4409EXPORT_SYMBOL(__dev_remove_pack);
c2373ee9 4410EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
4411EXPORT_SYMBOL(dev_add_pack);
4412EXPORT_SYMBOL(dev_alloc_name);
4413EXPORT_SYMBOL(dev_close);
4414EXPORT_SYMBOL(dev_get_by_flags);
4415EXPORT_SYMBOL(dev_get_by_index);
4416EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
4417EXPORT_SYMBOL(dev_open);
4418EXPORT_SYMBOL(dev_queue_xmit);
4419EXPORT_SYMBOL(dev_remove_pack);
4420EXPORT_SYMBOL(dev_set_allmulti);
4421EXPORT_SYMBOL(dev_set_promiscuity);
4422EXPORT_SYMBOL(dev_change_flags);
4423EXPORT_SYMBOL(dev_set_mtu);
4424EXPORT_SYMBOL(dev_set_mac_address);
4425EXPORT_SYMBOL(free_netdev);
4426EXPORT_SYMBOL(netdev_boot_setup_check);
4427EXPORT_SYMBOL(netdev_set_master);
4428EXPORT_SYMBOL(netdev_state_change);
4429EXPORT_SYMBOL(netif_receive_skb);
4430EXPORT_SYMBOL(netif_rx);
4431EXPORT_SYMBOL(register_gifconf);
4432EXPORT_SYMBOL(register_netdevice);
4433EXPORT_SYMBOL(register_netdevice_notifier);
4434EXPORT_SYMBOL(skb_checksum_help);
4435EXPORT_SYMBOL(synchronize_net);
4436EXPORT_SYMBOL(unregister_netdevice);
4437EXPORT_SYMBOL(unregister_netdevice_notifier);
4438EXPORT_SYMBOL(net_enable_timestamp);
4439EXPORT_SYMBOL(net_disable_timestamp);
4440EXPORT_SYMBOL(dev_get_flags);
4441
4442#if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4443EXPORT_SYMBOL(br_handle_frame_hook);
4444EXPORT_SYMBOL(br_fdb_get_hook);
4445EXPORT_SYMBOL(br_fdb_put_hook);
4446#endif
4447
4448#ifdef CONFIG_KMOD
4449EXPORT_SYMBOL(dev_load);
4450#endif
4451
4452EXPORT_PER_CPU_SYMBOL(softnet_data);