]> bbs.cooldavid.org Git - net-next-2.6.git/blame - net/core/dev.c
rps: Receive Packet Steering
[net-next-2.6.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <asm/system.h>
77#include <linux/bitops.h>
4fc268d2 78#include <linux/capability.h>
1da177e4
LT
79#include <linux/cpu.h>
80#include <linux/types.h>
81#include <linux/kernel.h>
08e9897d 82#include <linux/hash.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
457c4cbc 97#include <net/net_namespace.h>
1da177e4
LT
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
100#include <linux/proc_fs.h>
101#include <linux/seq_file.h>
102#include <linux/stat.h>
103#include <linux/if_bridge.h>
b863ceb7 104#include <linux/if_macvlan.h>
1da177e4
LT
105#include <net/dst.h>
106#include <net/pkt_sched.h>
107#include <net/checksum.h>
44540960 108#include <net/xfrm.h>
1da177e4
LT
109#include <linux/highmem.h>
110#include <linux/init.h>
111#include <linux/kmod.h>
112#include <linux/module.h>
1da177e4
LT
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
295f4a1f 116#include <net/wext.h>
1da177e4 117#include <net/iw_handler.h>
1da177e4 118#include <asm/current.h>
5bdb9886 119#include <linux/audit.h>
db217334 120#include <linux/dmaengine.h>
f6a78bfc 121#include <linux/err.h>
c7fa9d18 122#include <linux/ctype.h>
723e98b7 123#include <linux/if_arp.h>
6de329e2 124#include <linux/if_vlan.h>
8f0f2223 125#include <linux/ip.h>
ad55dcaf 126#include <net/ip.h>
8f0f2223
DM
127#include <linux/ipv6.h>
128#include <linux/in.h>
b6b2fed1
DM
129#include <linux/jhash.h>
130#include <linux/random.h>
9cbc1cb8 131#include <trace/events/napi.h>
1da177e4 132
342709ef
PE
133#include "net-sysfs.h"
134
d565b0a1
HX
135/* Instead of increasing this, you should create a hash table. */
136#define MAX_GRO_SKBS 8
137
5d38a079
HX
138/* This should be increased if a protocol with a bigger head is added. */
139#define GRO_MAX_HEAD (MAX_HEADER + 128)
140
1da177e4
LT
141/*
142 * The list of packet types we will receive (as opposed to discard)
143 * and the routines to invoke.
144 *
145 * Why 16. Because with 16 the only overlap we get on a hash of the
146 * low nibble of the protocol value is RARP/SNAP/X.25.
147 *
148 * NOTE: That is no longer true with the addition of VLAN tags. Not
149 * sure which should go first, but I bet it won't make much
150 * difference if we are running VLANs. The good news is that
151 * this protocol won't be in the list unless compiled in, so
3041a069 152 * the average user (w/out VLANs) will not be adversely affected.
1da177e4
LT
153 * --BLG
154 *
155 * 0800 IP
156 * 8100 802.1Q VLAN
157 * 0001 802.3
158 * 0002 AX.25
159 * 0004 802.2
160 * 8035 RARP
161 * 0005 SNAP
162 * 0805 X.25
163 * 0806 ARP
164 * 8137 IPX
165 * 0009 Localtalk
166 * 86DD IPv6
167 */
168
82d8a867
PE
169#define PTYPE_HASH_SIZE (16)
170#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
171
1da177e4 172static DEFINE_SPINLOCK(ptype_lock);
82d8a867 173static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
6b2bedc3 174static struct list_head ptype_all __read_mostly; /* Taps */
1da177e4 175
1da177e4 176/*
7562f876 177 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
178 * semaphore.
179 *
c6d14c84 180 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
181 *
182 * Writers must hold the rtnl semaphore while they loop through the
7562f876 183 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
184 * actual updates. This allows pure readers to access the list even
185 * while a writer is preparing to update it.
186 *
187 * To put it another way, dev_base_lock is held for writing only to
188 * protect against pure readers; the rtnl semaphore provides the
189 * protection against other writers.
190 *
191 * See, for example usages, register_netdevice() and
192 * unregister_netdevice(), which must be called with the rtnl
193 * semaphore held.
194 */
1da177e4 195DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
196EXPORT_SYMBOL(dev_base_lock);
197
881d966b 198static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4
LT
199{
200 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
08e9897d 201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
202}
203
881d966b 204static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 205{
7c28bd0b 206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
207}
208
ce286d32
EB
209/* Device list insertion */
210static int list_netdevice(struct net_device *dev)
211{
c346dca1 212 struct net *net = dev_net(dev);
ce286d32
EB
213
214 ASSERT_RTNL();
215
216 write_lock_bh(&dev_base_lock);
c6d14c84 217 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 218 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
219 hlist_add_head_rcu(&dev->index_hlist,
220 dev_index_hash(net, dev->ifindex));
ce286d32
EB
221 write_unlock_bh(&dev_base_lock);
222 return 0;
223}
224
fb699dfd
ED
225/* Device list removal
226 * caller must respect a RCU grace period before freeing/reusing dev
227 */
ce286d32
EB
228static void unlist_netdevice(struct net_device *dev)
229{
230 ASSERT_RTNL();
231
232 /* Unlink dev from the device chain */
233 write_lock_bh(&dev_base_lock);
c6d14c84 234 list_del_rcu(&dev->dev_list);
72c9528b 235 hlist_del_rcu(&dev->name_hlist);
fb699dfd 236 hlist_del_rcu(&dev->index_hlist);
ce286d32
EB
237 write_unlock_bh(&dev_base_lock);
238}
239
1da177e4
LT
240/*
241 * Our notifier list
242 */
243
f07d5b94 244static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
245
246/*
247 * Device drivers call our routines to queue packets here. We empty the
248 * queue in the local softnet handler.
249 */
bea3348e
SH
250
251DEFINE_PER_CPU(struct softnet_data, softnet_data);
d1b19dff 252EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 253
cf508b12 254#ifdef CONFIG_LOCKDEP
723e98b7 255/*
c773e847 256 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
257 * according to dev->type
258 */
259static const unsigned short netdev_lock_type[] =
260 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
261 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
262 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
263 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
264 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
265 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
266 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
267 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
268 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
269 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
270 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
271 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
272 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
2d91d78b 273 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
929122cd 274 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
fcb94e42 275 ARPHRD_VOID, ARPHRD_NONE};
723e98b7 276
36cbd3dc 277static const char *const netdev_lock_name[] =
723e98b7
JP
278 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
279 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
280 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
281 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
282 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
283 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
284 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
285 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
286 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
287 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
288 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
289 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
290 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
2d91d78b 291 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
929122cd 292 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
fcb94e42 293 "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
294
295static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 296static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
297
298static inline unsigned short netdev_lock_pos(unsigned short dev_type)
299{
300 int i;
301
302 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
303 if (netdev_lock_type[i] == dev_type)
304 return i;
305 /* the last key is used by default */
306 return ARRAY_SIZE(netdev_lock_type) - 1;
307}
308
cf508b12
DM
309static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
310 unsigned short dev_type)
723e98b7
JP
311{
312 int i;
313
314 i = netdev_lock_pos(dev_type);
315 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
316 netdev_lock_name[i]);
317}
cf508b12
DM
318
319static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
320{
321 int i;
322
323 i = netdev_lock_pos(dev->type);
324 lockdep_set_class_and_name(&dev->addr_list_lock,
325 &netdev_addr_lock_key[i],
326 netdev_lock_name[i]);
327}
723e98b7 328#else
cf508b12
DM
329static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
330 unsigned short dev_type)
331{
332}
333static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
334{
335}
336#endif
1da177e4
LT
337
338/*******************************************************************************
339
340 Protocol management and registration routines
341
342*******************************************************************************/
343
1da177e4
LT
344/*
345 * Add a protocol ID to the list. Now that the input handler is
346 * smarter we can dispense with all the messy stuff that used to be
347 * here.
348 *
349 * BEWARE!!! Protocol handlers, mangling input packets,
350 * MUST BE last in hash buckets and checking protocol handlers
351 * MUST start from promiscuous ptype_all chain in net_bh.
352 * It is true now, do not change it.
353 * Explanation follows: if protocol handler, mangling packet, will
354 * be the first on list, it is not able to sense, that packet
355 * is cloned and should be copied-on-write, so that it will
356 * change it and subsequent readers will get broken packet.
357 * --ANK (980803)
358 */
359
360/**
361 * dev_add_pack - add packet handler
362 * @pt: packet type declaration
363 *
364 * Add a protocol handler to the networking stack. The passed &packet_type
365 * is linked into kernel lists and may not be freed until it has been
366 * removed from the kernel lists.
367 *
4ec93edb 368 * This call does not sleep therefore it can not
1da177e4
LT
369 * guarantee all CPU's that are in middle of receiving packets
370 * will see the new packet type (until the next received packet).
371 */
372
373void dev_add_pack(struct packet_type *pt)
374{
375 int hash;
376
377 spin_lock_bh(&ptype_lock);
9be9a6b9 378 if (pt->type == htons(ETH_P_ALL))
1da177e4 379 list_add_rcu(&pt->list, &ptype_all);
9be9a6b9 380 else {
82d8a867 381 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
1da177e4
LT
382 list_add_rcu(&pt->list, &ptype_base[hash]);
383 }
384 spin_unlock_bh(&ptype_lock);
385}
d1b19dff 386EXPORT_SYMBOL(dev_add_pack);
1da177e4 387
1da177e4
LT
388/**
389 * __dev_remove_pack - remove packet handler
390 * @pt: packet type declaration
391 *
392 * Remove a protocol handler that was previously added to the kernel
393 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
394 * from the kernel lists and can be freed or reused once this function
4ec93edb 395 * returns.
1da177e4
LT
396 *
397 * The packet type might still be in use by receivers
398 * and must not be freed until after all the CPU's have gone
399 * through a quiescent state.
400 */
401void __dev_remove_pack(struct packet_type *pt)
402{
403 struct list_head *head;
404 struct packet_type *pt1;
405
406 spin_lock_bh(&ptype_lock);
407
9be9a6b9 408 if (pt->type == htons(ETH_P_ALL))
1da177e4 409 head = &ptype_all;
9be9a6b9 410 else
82d8a867 411 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
1da177e4
LT
412
413 list_for_each_entry(pt1, head, list) {
414 if (pt == pt1) {
415 list_del_rcu(&pt->list);
416 goto out;
417 }
418 }
419
420 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
421out:
422 spin_unlock_bh(&ptype_lock);
423}
d1b19dff
ED
424EXPORT_SYMBOL(__dev_remove_pack);
425
1da177e4
LT
426/**
427 * dev_remove_pack - remove packet handler
428 * @pt: packet type declaration
429 *
430 * Remove a protocol handler that was previously added to the kernel
431 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
432 * from the kernel lists and can be freed or reused once this function
433 * returns.
434 *
435 * This call sleeps to guarantee that no CPU is looking at the packet
436 * type after return.
437 */
438void dev_remove_pack(struct packet_type *pt)
439{
440 __dev_remove_pack(pt);
4ec93edb 441
1da177e4
LT
442 synchronize_net();
443}
d1b19dff 444EXPORT_SYMBOL(dev_remove_pack);
1da177e4
LT
445
446/******************************************************************************
447
448 Device Boot-time Settings Routines
449
450*******************************************************************************/
451
452/* Boot time configuration table */
453static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
454
455/**
456 * netdev_boot_setup_add - add new setup entry
457 * @name: name of the device
458 * @map: configured settings for the device
459 *
460 * Adds new setup entry to the dev_boot_setup list. The function
461 * returns 0 on error and 1 on success. This is a generic routine to
462 * all netdevices.
463 */
464static int netdev_boot_setup_add(char *name, struct ifmap *map)
465{
466 struct netdev_boot_setup *s;
467 int i;
468
469 s = dev_boot_setup;
470 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
471 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
472 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 473 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
474 memcpy(&s[i].map, map, sizeof(s[i].map));
475 break;
476 }
477 }
478
479 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
480}
481
482/**
483 * netdev_boot_setup_check - check boot time settings
484 * @dev: the netdevice
485 *
486 * Check boot time settings for the device.
487 * The found settings are set for the device to be used
488 * later in the device probing.
489 * Returns 0 if no settings found, 1 if they are.
490 */
491int netdev_boot_setup_check(struct net_device *dev)
492{
493 struct netdev_boot_setup *s = dev_boot_setup;
494 int i;
495
496 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
497 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 498 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
499 dev->irq = s[i].map.irq;
500 dev->base_addr = s[i].map.base_addr;
501 dev->mem_start = s[i].map.mem_start;
502 dev->mem_end = s[i].map.mem_end;
503 return 1;
504 }
505 }
506 return 0;
507}
d1b19dff 508EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
509
510
511/**
512 * netdev_boot_base - get address from boot time settings
513 * @prefix: prefix for network device
514 * @unit: id for network device
515 *
516 * Check boot time settings for the base address of device.
517 * The found settings are set for the device to be used
518 * later in the device probing.
519 * Returns 0 if no settings found.
520 */
521unsigned long netdev_boot_base(const char *prefix, int unit)
522{
523 const struct netdev_boot_setup *s = dev_boot_setup;
524 char name[IFNAMSIZ];
525 int i;
526
527 sprintf(name, "%s%d", prefix, unit);
528
529 /*
530 * If device already registered then return base of 1
531 * to indicate not to probe for this interface
532 */
881d966b 533 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
534 return 1;
535
536 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
537 if (!strcmp(name, s[i].name))
538 return s[i].map.base_addr;
539 return 0;
540}
541
542/*
543 * Saves at boot time configured settings for any netdevice.
544 */
545int __init netdev_boot_setup(char *str)
546{
547 int ints[5];
548 struct ifmap map;
549
550 str = get_options(str, ARRAY_SIZE(ints), ints);
551 if (!str || !*str)
552 return 0;
553
554 /* Save settings */
555 memset(&map, 0, sizeof(map));
556 if (ints[0] > 0)
557 map.irq = ints[1];
558 if (ints[0] > 1)
559 map.base_addr = ints[2];
560 if (ints[0] > 2)
561 map.mem_start = ints[3];
562 if (ints[0] > 3)
563 map.mem_end = ints[4];
564
565 /* Add new entry to the list */
566 return netdev_boot_setup_add(str, &map);
567}
568
569__setup("netdev=", netdev_boot_setup);
570
571/*******************************************************************************
572
573 Device Interface Subroutines
574
575*******************************************************************************/
576
577/**
578 * __dev_get_by_name - find a device by its name
c4ea43c5 579 * @net: the applicable net namespace
1da177e4
LT
580 * @name: name to find
581 *
582 * Find an interface by name. Must be called under RTNL semaphore
583 * or @dev_base_lock. If the name is found a pointer to the device
584 * is returned. If the name is not found then %NULL is returned. The
585 * reference counters are not incremented so the caller must be
586 * careful with locks.
587 */
588
881d966b 589struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
590{
591 struct hlist_node *p;
0bd8d536
ED
592 struct net_device *dev;
593 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 594
0bd8d536 595 hlist_for_each_entry(dev, p, head, name_hlist)
1da177e4
LT
596 if (!strncmp(dev->name, name, IFNAMSIZ))
597 return dev;
0bd8d536 598
1da177e4
LT
599 return NULL;
600}
d1b19dff 601EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 602
72c9528b
ED
603/**
604 * dev_get_by_name_rcu - find a device by its name
605 * @net: the applicable net namespace
606 * @name: name to find
607 *
608 * Find an interface by name.
609 * If the name is found a pointer to the device is returned.
610 * If the name is not found then %NULL is returned.
611 * The reference counters are not incremented so the caller must be
612 * careful with locks. The caller must hold RCU lock.
613 */
614
615struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
616{
617 struct hlist_node *p;
618 struct net_device *dev;
619 struct hlist_head *head = dev_name_hash(net, name);
620
621 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
622 if (!strncmp(dev->name, name, IFNAMSIZ))
623 return dev;
624
625 return NULL;
626}
627EXPORT_SYMBOL(dev_get_by_name_rcu);
628
1da177e4
LT
629/**
630 * dev_get_by_name - find a device by its name
c4ea43c5 631 * @net: the applicable net namespace
1da177e4
LT
632 * @name: name to find
633 *
634 * Find an interface by name. This can be called from any
635 * context and does its own locking. The returned handle has
636 * the usage count incremented and the caller must use dev_put() to
637 * release it when it is no longer needed. %NULL is returned if no
638 * matching device is found.
639 */
640
881d966b 641struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
642{
643 struct net_device *dev;
644
72c9528b
ED
645 rcu_read_lock();
646 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
647 if (dev)
648 dev_hold(dev);
72c9528b 649 rcu_read_unlock();
1da177e4
LT
650 return dev;
651}
d1b19dff 652EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
653
654/**
655 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 656 * @net: the applicable net namespace
1da177e4
LT
657 * @ifindex: index of device
658 *
659 * Search for an interface by index. Returns %NULL if the device
660 * is not found or a pointer to the device. The device has not
661 * had its reference counter increased so the caller must be careful
662 * about locking. The caller must hold either the RTNL semaphore
663 * or @dev_base_lock.
664 */
665
881d966b 666struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
667{
668 struct hlist_node *p;
0bd8d536
ED
669 struct net_device *dev;
670 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 671
0bd8d536 672 hlist_for_each_entry(dev, p, head, index_hlist)
1da177e4
LT
673 if (dev->ifindex == ifindex)
674 return dev;
0bd8d536 675
1da177e4
LT
676 return NULL;
677}
d1b19dff 678EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 679
fb699dfd
ED
680/**
681 * dev_get_by_index_rcu - find a device by its ifindex
682 * @net: the applicable net namespace
683 * @ifindex: index of device
684 *
685 * Search for an interface by index. Returns %NULL if the device
686 * is not found or a pointer to the device. The device has not
687 * had its reference counter increased so the caller must be careful
688 * about locking. The caller must hold RCU lock.
689 */
690
691struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
692{
693 struct hlist_node *p;
694 struct net_device *dev;
695 struct hlist_head *head = dev_index_hash(net, ifindex);
696
697 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
698 if (dev->ifindex == ifindex)
699 return dev;
700
701 return NULL;
702}
703EXPORT_SYMBOL(dev_get_by_index_rcu);
704
1da177e4
LT
705
706/**
707 * dev_get_by_index - find a device by its ifindex
c4ea43c5 708 * @net: the applicable net namespace
1da177e4
LT
709 * @ifindex: index of device
710 *
711 * Search for an interface by index. Returns NULL if the device
712 * is not found or a pointer to the device. The device returned has
713 * had a reference added and the pointer is safe until the user calls
714 * dev_put to indicate they have finished with it.
715 */
716
881d966b 717struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
718{
719 struct net_device *dev;
720
fb699dfd
ED
721 rcu_read_lock();
722 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
723 if (dev)
724 dev_hold(dev);
fb699dfd 725 rcu_read_unlock();
1da177e4
LT
726 return dev;
727}
d1b19dff 728EXPORT_SYMBOL(dev_get_by_index);
1da177e4
LT
729
730/**
731 * dev_getbyhwaddr - find a device by its hardware address
c4ea43c5 732 * @net: the applicable net namespace
1da177e4
LT
733 * @type: media type of device
734 * @ha: hardware address
735 *
736 * Search for an interface by MAC address. Returns NULL if the device
737 * is not found or a pointer to the device. The caller must hold the
738 * rtnl semaphore. The returned device has not had its ref count increased
739 * and the caller must therefore be careful about locking
740 *
741 * BUGS:
742 * If the API was consistent this would be __dev_get_by_hwaddr
743 */
744
881d966b 745struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
1da177e4
LT
746{
747 struct net_device *dev;
748
749 ASSERT_RTNL();
750
81103a52 751 for_each_netdev(net, dev)
1da177e4
LT
752 if (dev->type == type &&
753 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
754 return dev;
755
756 return NULL;
1da177e4 757}
cf309e3f
JF
758EXPORT_SYMBOL(dev_getbyhwaddr);
759
881d966b 760struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
761{
762 struct net_device *dev;
763
4e9cac2b 764 ASSERT_RTNL();
881d966b 765 for_each_netdev(net, dev)
4e9cac2b 766 if (dev->type == type)
7562f876
PE
767 return dev;
768
769 return NULL;
4e9cac2b 770}
4e9cac2b
PM
771EXPORT_SYMBOL(__dev_getfirstbyhwtype);
772
881d966b 773struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b
PM
774{
775 struct net_device *dev;
776
777 rtnl_lock();
881d966b 778 dev = __dev_getfirstbyhwtype(net, type);
4e9cac2b
PM
779 if (dev)
780 dev_hold(dev);
1da177e4
LT
781 rtnl_unlock();
782 return dev;
783}
1da177e4
LT
784EXPORT_SYMBOL(dev_getfirstbyhwtype);
785
786/**
787 * dev_get_by_flags - find any device with given flags
c4ea43c5 788 * @net: the applicable net namespace
1da177e4
LT
789 * @if_flags: IFF_* values
790 * @mask: bitmask of bits in if_flags to check
791 *
792 * Search for any interface with the given flags. Returns NULL if a device
4ec93edb 793 * is not found or a pointer to the device. The device returned has
1da177e4
LT
794 * had a reference added and the pointer is safe until the user calls
795 * dev_put to indicate they have finished with it.
796 */
797
d1b19dff
ED
798struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
799 unsigned short mask)
1da177e4 800{
7562f876 801 struct net_device *dev, *ret;
1da177e4 802
7562f876 803 ret = NULL;
c6d14c84
ED
804 rcu_read_lock();
805 for_each_netdev_rcu(net, dev) {
1da177e4
LT
806 if (((dev->flags ^ if_flags) & mask) == 0) {
807 dev_hold(dev);
7562f876 808 ret = dev;
1da177e4
LT
809 break;
810 }
811 }
c6d14c84 812 rcu_read_unlock();
7562f876 813 return ret;
1da177e4 814}
d1b19dff 815EXPORT_SYMBOL(dev_get_by_flags);
1da177e4
LT
816
817/**
818 * dev_valid_name - check if name is okay for network device
819 * @name: name string
820 *
821 * Network device names need to be valid file names to
c7fa9d18
DM
822 * to allow sysfs to work. We also disallow any kind of
823 * whitespace.
1da177e4 824 */
c2373ee9 825int dev_valid_name(const char *name)
1da177e4 826{
c7fa9d18
DM
827 if (*name == '\0')
828 return 0;
b6fe17d6
SH
829 if (strlen(name) >= IFNAMSIZ)
830 return 0;
c7fa9d18
DM
831 if (!strcmp(name, ".") || !strcmp(name, ".."))
832 return 0;
833
834 while (*name) {
835 if (*name == '/' || isspace(*name))
836 return 0;
837 name++;
838 }
839 return 1;
1da177e4 840}
d1b19dff 841EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
842
843/**
b267b179
EB
844 * __dev_alloc_name - allocate a name for a device
845 * @net: network namespace to allocate the device name in
1da177e4 846 * @name: name format string
b267b179 847 * @buf: scratch buffer and result name string
1da177e4
LT
848 *
849 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
850 * id. It scans list of devices to build up a free map, then chooses
851 * the first empty slot. The caller must hold the dev_base or rtnl lock
852 * while allocating the name and adding the device in order to avoid
853 * duplicates.
854 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
855 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
856 */
857
b267b179 858static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
859{
860 int i = 0;
1da177e4
LT
861 const char *p;
862 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 863 unsigned long *inuse;
1da177e4
LT
864 struct net_device *d;
865
866 p = strnchr(name, IFNAMSIZ-1, '%');
867 if (p) {
868 /*
869 * Verify the string as this thing may have come from
870 * the user. There must be either one "%d" and no other "%"
871 * characters.
872 */
873 if (p[1] != 'd' || strchr(p + 2, '%'))
874 return -EINVAL;
875
876 /* Use one page as a bit array of possible slots */
cfcabdcc 877 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
878 if (!inuse)
879 return -ENOMEM;
880
881d966b 881 for_each_netdev(net, d) {
1da177e4
LT
882 if (!sscanf(d->name, name, &i))
883 continue;
884 if (i < 0 || i >= max_netdevices)
885 continue;
886
887 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 888 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
889 if (!strncmp(buf, d->name, IFNAMSIZ))
890 set_bit(i, inuse);
891 }
892
893 i = find_first_zero_bit(inuse, max_netdevices);
894 free_page((unsigned long) inuse);
895 }
896
d9031024
OP
897 if (buf != name)
898 snprintf(buf, IFNAMSIZ, name, i);
b267b179 899 if (!__dev_get_by_name(net, buf))
1da177e4 900 return i;
1da177e4
LT
901
902 /* It is possible to run out of possible slots
903 * when the name is long and there isn't enough space left
904 * for the digits, or if all bits are used.
905 */
906 return -ENFILE;
907}
908
b267b179
EB
909/**
910 * dev_alloc_name - allocate a name for a device
911 * @dev: device
912 * @name: name format string
913 *
914 * Passed a format string - eg "lt%d" it will try and find a suitable
915 * id. It scans list of devices to build up a free map, then chooses
916 * the first empty slot. The caller must hold the dev_base or rtnl lock
917 * while allocating the name and adding the device in order to avoid
918 * duplicates.
919 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
920 * Returns the number of the unit assigned or a negative errno code.
921 */
922
923int dev_alloc_name(struct net_device *dev, const char *name)
924{
925 char buf[IFNAMSIZ];
926 struct net *net;
927 int ret;
928
c346dca1
YH
929 BUG_ON(!dev_net(dev));
930 net = dev_net(dev);
b267b179
EB
931 ret = __dev_alloc_name(net, name, buf);
932 if (ret >= 0)
933 strlcpy(dev->name, buf, IFNAMSIZ);
934 return ret;
935}
d1b19dff 936EXPORT_SYMBOL(dev_alloc_name);
b267b179 937
d9031024
OP
938static int dev_get_valid_name(struct net *net, const char *name, char *buf,
939 bool fmt)
940{
941 if (!dev_valid_name(name))
942 return -EINVAL;
943
944 if (fmt && strchr(name, '%'))
945 return __dev_alloc_name(net, name, buf);
946 else if (__dev_get_by_name(net, name))
947 return -EEXIST;
948 else if (buf != name)
949 strlcpy(buf, name, IFNAMSIZ);
950
951 return 0;
952}
1da177e4
LT
953
954/**
955 * dev_change_name - change name of a device
956 * @dev: device
957 * @newname: name (or format string) must be at least IFNAMSIZ
958 *
959 * Change name of a device, can pass format strings "eth%d".
960 * for wildcarding.
961 */
cf04a4c7 962int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 963{
fcc5a03a 964 char oldname[IFNAMSIZ];
1da177e4 965 int err = 0;
fcc5a03a 966 int ret;
881d966b 967 struct net *net;
1da177e4
LT
968
969 ASSERT_RTNL();
c346dca1 970 BUG_ON(!dev_net(dev));
1da177e4 971
c346dca1 972 net = dev_net(dev);
1da177e4
LT
973 if (dev->flags & IFF_UP)
974 return -EBUSY;
975
c8d90dca
SH
976 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
977 return 0;
978
fcc5a03a
HX
979 memcpy(oldname, dev->name, IFNAMSIZ);
980
d9031024
OP
981 err = dev_get_valid_name(net, newname, dev->name, 1);
982 if (err < 0)
983 return err;
1da177e4 984
fcc5a03a 985rollback:
3891845e
EB
986 /* For now only devices in the initial network namespace
987 * are in sysfs.
988 */
09ad9bc7 989 if (net_eq(net, &init_net)) {
3891845e
EB
990 ret = device_rename(&dev->dev, dev->name);
991 if (ret) {
992 memcpy(dev->name, oldname, IFNAMSIZ);
993 return ret;
994 }
dcc99773 995 }
7f988eab
HX
996
997 write_lock_bh(&dev_base_lock);
92749821 998 hlist_del(&dev->name_hlist);
72c9528b
ED
999 write_unlock_bh(&dev_base_lock);
1000
1001 synchronize_rcu();
1002
1003 write_lock_bh(&dev_base_lock);
1004 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1005 write_unlock_bh(&dev_base_lock);
1006
056925ab 1007 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1008 ret = notifier_to_errno(ret);
1009
1010 if (ret) {
91e9c07b
ED
1011 /* err >= 0 after dev_alloc_name() or stores the first errno */
1012 if (err >= 0) {
fcc5a03a
HX
1013 err = ret;
1014 memcpy(dev->name, oldname, IFNAMSIZ);
1015 goto rollback;
91e9c07b
ED
1016 } else {
1017 printk(KERN_ERR
1018 "%s: name change rollback failed: %d.\n",
1019 dev->name, ret);
fcc5a03a
HX
1020 }
1021 }
1da177e4
LT
1022
1023 return err;
1024}
1025
0b815a1a
SH
1026/**
1027 * dev_set_alias - change ifalias of a device
1028 * @dev: device
1029 * @alias: name up to IFALIASZ
f0db275a 1030 * @len: limit of bytes to copy from info
0b815a1a
SH
1031 *
1032 * Set ifalias for a device,
1033 */
1034int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1035{
1036 ASSERT_RTNL();
1037
1038 if (len >= IFALIASZ)
1039 return -EINVAL;
1040
96ca4a2c
OH
1041 if (!len) {
1042 if (dev->ifalias) {
1043 kfree(dev->ifalias);
1044 dev->ifalias = NULL;
1045 }
1046 return 0;
1047 }
1048
d1b19dff 1049 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
0b815a1a
SH
1050 if (!dev->ifalias)
1051 return -ENOMEM;
1052
1053 strlcpy(dev->ifalias, alias, len+1);
1054 return len;
1055}
1056
1057
d8a33ac4 1058/**
3041a069 1059 * netdev_features_change - device changes features
d8a33ac4
SH
1060 * @dev: device to cause notification
1061 *
1062 * Called to indicate a device has changed features.
1063 */
1064void netdev_features_change(struct net_device *dev)
1065{
056925ab 1066 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1067}
1068EXPORT_SYMBOL(netdev_features_change);
1069
1da177e4
LT
1070/**
1071 * netdev_state_change - device changes state
1072 * @dev: device to cause notification
1073 *
1074 * Called to indicate a device has changed state. This function calls
1075 * the notifier chains for netdev_chain and sends a NEWLINK message
1076 * to the routing socket.
1077 */
1078void netdev_state_change(struct net_device *dev)
1079{
1080 if (dev->flags & IFF_UP) {
056925ab 1081 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1da177e4
LT
1082 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1083 }
1084}
d1b19dff 1085EXPORT_SYMBOL(netdev_state_change);
1da177e4 1086
75c78500 1087void netdev_bonding_change(struct net_device *dev, unsigned long event)
c1da4ac7 1088{
75c78500 1089 call_netdevice_notifiers(event, dev);
c1da4ac7
OG
1090}
1091EXPORT_SYMBOL(netdev_bonding_change);
1092
1da177e4
LT
1093/**
1094 * dev_load - load a network module
c4ea43c5 1095 * @net: the applicable net namespace
1da177e4
LT
1096 * @name: name of interface
1097 *
1098 * If a network interface is not present and the process has suitable
1099 * privileges this function loads the module. If module loading is not
1100 * available in this kernel then it becomes a nop.
1101 */
1102
881d966b 1103void dev_load(struct net *net, const char *name)
1da177e4 1104{
4ec93edb 1105 struct net_device *dev;
1da177e4 1106
72c9528b
ED
1107 rcu_read_lock();
1108 dev = dev_get_by_name_rcu(net, name);
1109 rcu_read_unlock();
1da177e4 1110
a8f80e8f 1111 if (!dev && capable(CAP_NET_ADMIN))
1da177e4
LT
1112 request_module("%s", name);
1113}
d1b19dff 1114EXPORT_SYMBOL(dev_load);
1da177e4 1115
bd380811 1116static int __dev_open(struct net_device *dev)
1da177e4 1117{
d314774c 1118 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1119 int ret;
1da177e4 1120
e46b66bc
BH
1121 ASSERT_RTNL();
1122
1da177e4
LT
1123 /*
1124 * Is it even present?
1125 */
1126 if (!netif_device_present(dev))
1127 return -ENODEV;
1128
3b8bcfd5
JB
1129 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1130 ret = notifier_to_errno(ret);
1131 if (ret)
1132 return ret;
1133
1da177e4
LT
1134 /*
1135 * Call device private open method
1136 */
1137 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1138
d314774c
SH
1139 if (ops->ndo_validate_addr)
1140 ret = ops->ndo_validate_addr(dev);
bada339b 1141
d314774c
SH
1142 if (!ret && ops->ndo_open)
1143 ret = ops->ndo_open(dev);
1da177e4 1144
4ec93edb 1145 /*
1da177e4
LT
1146 * If it went open OK then:
1147 */
1148
bada339b
JG
1149 if (ret)
1150 clear_bit(__LINK_STATE_START, &dev->state);
1151 else {
1da177e4
LT
1152 /*
1153 * Set the flags.
1154 */
1155 dev->flags |= IFF_UP;
1156
649274d9
DW
1157 /*
1158 * Enable NET_DMA
1159 */
b4bd07c2 1160 net_dmaengine_get();
649274d9 1161
1da177e4
LT
1162 /*
1163 * Initialize multicasting status
1164 */
4417da66 1165 dev_set_rx_mode(dev);
1da177e4
LT
1166
1167 /*
1168 * Wakeup transmit queue engine
1169 */
1170 dev_activate(dev);
1da177e4 1171 }
bada339b 1172
1da177e4
LT
1173 return ret;
1174}
1175
1176/**
bd380811
PM
1177 * dev_open - prepare an interface for use.
1178 * @dev: device to open
1da177e4 1179 *
bd380811
PM
1180 * Takes a device from down to up state. The device's private open
1181 * function is invoked and then the multicast lists are loaded. Finally
1182 * the device is moved into the up state and a %NETDEV_UP message is
1183 * sent to the netdev notifier chain.
1184 *
1185 * Calling this function on an active interface is a nop. On a failure
1186 * a negative errno code is returned.
1da177e4 1187 */
bd380811
PM
1188int dev_open(struct net_device *dev)
1189{
1190 int ret;
1191
1192 /*
1193 * Is it already up?
1194 */
1195 if (dev->flags & IFF_UP)
1196 return 0;
1197
1198 /*
1199 * Open device
1200 */
1201 ret = __dev_open(dev);
1202 if (ret < 0)
1203 return ret;
1204
1205 /*
1206 * ... and announce new interface.
1207 */
1208 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1209 call_netdevice_notifiers(NETDEV_UP, dev);
1210
1211 return ret;
1212}
1213EXPORT_SYMBOL(dev_open);
1214
1215static int __dev_close(struct net_device *dev)
1da177e4 1216{
d314774c 1217 const struct net_device_ops *ops = dev->netdev_ops;
e46b66bc 1218
bd380811 1219 ASSERT_RTNL();
9d5010db
DM
1220 might_sleep();
1221
1da177e4
LT
1222 /*
1223 * Tell people we are going down, so that they can
1224 * prepare to death, when device is still operating.
1225 */
056925ab 1226 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1227
1da177e4
LT
1228 clear_bit(__LINK_STATE_START, &dev->state);
1229
1230 /* Synchronize to scheduled poll. We cannot touch poll list,
bea3348e
SH
1231 * it can be even on different cpu. So just clear netif_running().
1232 *
1233 * dev->stop() will invoke napi_disable() on all of it's
1234 * napi_struct instances on this device.
1235 */
1da177e4 1236 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1da177e4 1237
d8b2a4d2
ML
1238 dev_deactivate(dev);
1239
1da177e4
LT
1240 /*
1241 * Call the device specific close. This cannot fail.
1242 * Only if device is UP
1243 *
1244 * We allow it to be called even after a DETACH hot-plug
1245 * event.
1246 */
d314774c
SH
1247 if (ops->ndo_stop)
1248 ops->ndo_stop(dev);
1da177e4
LT
1249
1250 /*
1251 * Device is now down.
1252 */
1253
1254 dev->flags &= ~IFF_UP;
1255
1256 /*
bd380811 1257 * Shutdown NET_DMA
1da177e4 1258 */
bd380811
PM
1259 net_dmaengine_put();
1260
1261 return 0;
1262}
1263
1264/**
1265 * dev_close - shutdown an interface.
1266 * @dev: device to shutdown
1267 *
1268 * This function moves an active device into down state. A
1269 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1270 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1271 * chain.
1272 */
1273int dev_close(struct net_device *dev)
1274{
1275 if (!(dev->flags & IFF_UP))
1276 return 0;
1277
1278 __dev_close(dev);
1da177e4 1279
649274d9 1280 /*
bd380811 1281 * Tell people we are down
649274d9 1282 */
bd380811
PM
1283 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1284 call_netdevice_notifiers(NETDEV_DOWN, dev);
649274d9 1285
1da177e4
LT
1286 return 0;
1287}
d1b19dff 1288EXPORT_SYMBOL(dev_close);
1da177e4
LT
1289
1290
0187bdfb
BH
1291/**
1292 * dev_disable_lro - disable Large Receive Offload on a device
1293 * @dev: device
1294 *
1295 * Disable Large Receive Offload (LRO) on a net device. Must be
1296 * called under RTNL. This is needed if received packets may be
1297 * forwarded to another interface.
1298 */
1299void dev_disable_lro(struct net_device *dev)
1300{
1301 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1302 dev->ethtool_ops->set_flags) {
1303 u32 flags = dev->ethtool_ops->get_flags(dev);
1304 if (flags & ETH_FLAG_LRO) {
1305 flags &= ~ETH_FLAG_LRO;
1306 dev->ethtool_ops->set_flags(dev, flags);
1307 }
1308 }
1309 WARN_ON(dev->features & NETIF_F_LRO);
1310}
1311EXPORT_SYMBOL(dev_disable_lro);
1312
1313
881d966b
EB
1314static int dev_boot_phase = 1;
1315
1da177e4
LT
1316/*
1317 * Device change register/unregister. These are not inline or static
1318 * as we export them to the world.
1319 */
1320
1321/**
1322 * register_netdevice_notifier - register a network notifier block
1323 * @nb: notifier
1324 *
1325 * Register a notifier to be called when network device events occur.
1326 * The notifier passed is linked into the kernel structures and must
1327 * not be reused until it has been unregistered. A negative errno code
1328 * is returned on a failure.
1329 *
1330 * When registered all registration and up events are replayed
4ec93edb 1331 * to the new notifier to allow device to have a race free
1da177e4
LT
1332 * view of the network device list.
1333 */
1334
1335int register_netdevice_notifier(struct notifier_block *nb)
1336{
1337 struct net_device *dev;
fcc5a03a 1338 struct net_device *last;
881d966b 1339 struct net *net;
1da177e4
LT
1340 int err;
1341
1342 rtnl_lock();
f07d5b94 1343 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1344 if (err)
1345 goto unlock;
881d966b
EB
1346 if (dev_boot_phase)
1347 goto unlock;
1348 for_each_net(net) {
1349 for_each_netdev(net, dev) {
1350 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1351 err = notifier_to_errno(err);
1352 if (err)
1353 goto rollback;
1354
1355 if (!(dev->flags & IFF_UP))
1356 continue;
1da177e4 1357
881d966b
EB
1358 nb->notifier_call(nb, NETDEV_UP, dev);
1359 }
1da177e4 1360 }
fcc5a03a
HX
1361
1362unlock:
1da177e4
LT
1363 rtnl_unlock();
1364 return err;
fcc5a03a
HX
1365
1366rollback:
1367 last = dev;
881d966b
EB
1368 for_each_net(net) {
1369 for_each_netdev(net, dev) {
1370 if (dev == last)
1371 break;
fcc5a03a 1372
881d966b
EB
1373 if (dev->flags & IFF_UP) {
1374 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1375 nb->notifier_call(nb, NETDEV_DOWN, dev);
1376 }
1377 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
a5ee1551 1378 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
fcc5a03a 1379 }
fcc5a03a 1380 }
c67625a1
PE
1381
1382 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1383 goto unlock;
1da177e4 1384}
d1b19dff 1385EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1386
1387/**
1388 * unregister_netdevice_notifier - unregister a network notifier block
1389 * @nb: notifier
1390 *
1391 * Unregister a notifier previously registered by
1392 * register_netdevice_notifier(). The notifier is unlinked into the
1393 * kernel structures and may then be reused. A negative errno code
1394 * is returned on a failure.
1395 */
1396
1397int unregister_netdevice_notifier(struct notifier_block *nb)
1398{
9f514950
HX
1399 int err;
1400
1401 rtnl_lock();
f07d5b94 1402 err = raw_notifier_chain_unregister(&netdev_chain, nb);
9f514950
HX
1403 rtnl_unlock();
1404 return err;
1da177e4 1405}
d1b19dff 1406EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4
LT
1407
1408/**
1409 * call_netdevice_notifiers - call all network notifier blocks
1410 * @val: value passed unmodified to notifier function
c4ea43c5 1411 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1412 *
1413 * Call all network notifier blocks. Parameters and return value
f07d5b94 1414 * are as for raw_notifier_call_chain().
1da177e4
LT
1415 */
1416
ad7379d4 1417int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1418{
ad7379d4 1419 return raw_notifier_call_chain(&netdev_chain, val, dev);
1da177e4
LT
1420}
1421
1422/* When > 0 there are consumers of rx skb time stamps */
1423static atomic_t netstamp_needed = ATOMIC_INIT(0);
1424
1425void net_enable_timestamp(void)
1426{
1427 atomic_inc(&netstamp_needed);
1428}
d1b19dff 1429EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1430
1431void net_disable_timestamp(void)
1432{
1433 atomic_dec(&netstamp_needed);
1434}
d1b19dff 1435EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1436
a61bbcf2 1437static inline void net_timestamp(struct sk_buff *skb)
1da177e4
LT
1438{
1439 if (atomic_read(&netstamp_needed))
a61bbcf2 1440 __net_timestamp(skb);
b7aa0bf7
ED
1441 else
1442 skb->tstamp.tv64 = 0;
1da177e4
LT
1443}
1444
44540960
AB
1445/**
1446 * dev_forward_skb - loopback an skb to another netif
1447 *
1448 * @dev: destination network device
1449 * @skb: buffer to forward
1450 *
1451 * return values:
1452 * NET_RX_SUCCESS (no congestion)
1453 * NET_RX_DROP (packet was dropped)
1454 *
1455 * dev_forward_skb can be used for injecting an skb from the
1456 * start_xmit function of one device into the receive queue
1457 * of another device.
1458 *
1459 * The receiving device may be in another namespace, so
1460 * we have to clear all information in the skb that could
1461 * impact namespace isolation.
1462 */
1463int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1464{
1465 skb_orphan(skb);
1466
1467 if (!(dev->flags & IFF_UP))
1468 return NET_RX_DROP;
1469
1470 if (skb->len > (dev->mtu + dev->hard_header_len))
1471 return NET_RX_DROP;
1472
8a83a00b 1473 skb_set_dev(skb, dev);
44540960
AB
1474 skb->tstamp.tv64 = 0;
1475 skb->pkt_type = PACKET_HOST;
1476 skb->protocol = eth_type_trans(skb, dev);
44540960
AB
1477 return netif_rx(skb);
1478}
1479EXPORT_SYMBOL_GPL(dev_forward_skb);
1480
1da177e4
LT
1481/*
1482 * Support routine. Sends outgoing frames to any network
1483 * taps currently in use.
1484 */
1485
f6a78bfc 1486static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1487{
1488 struct packet_type *ptype;
a61bbcf2 1489
8caf1539
JP
1490#ifdef CONFIG_NET_CLS_ACT
1491 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1492 net_timestamp(skb);
1493#else
a61bbcf2 1494 net_timestamp(skb);
8caf1539 1495#endif
1da177e4
LT
1496
1497 rcu_read_lock();
1498 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1499 /* Never send packets back to the socket
1500 * they originated from - MvS (miquels@drinkel.ow.org)
1501 */
1502 if ((ptype->dev == dev || !ptype->dev) &&
1503 (ptype->af_packet_priv == NULL ||
1504 (struct sock *)ptype->af_packet_priv != skb->sk)) {
d1b19dff 1505 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1da177e4
LT
1506 if (!skb2)
1507 break;
1508
1509 /* skb->nh should be correctly
1510 set by sender, so that the second statement is
1511 just protection against buggy protocols.
1512 */
459a98ed 1513 skb_reset_mac_header(skb2);
1da177e4 1514
d56f90a7 1515 if (skb_network_header(skb2) < skb2->data ||
27a884dc 1516 skb2->network_header > skb2->tail) {
1da177e4
LT
1517 if (net_ratelimit())
1518 printk(KERN_CRIT "protocol %04x is "
1519 "buggy, dev %s\n",
1520 skb2->protocol, dev->name);
c1d2bbe1 1521 skb_reset_network_header(skb2);
1da177e4
LT
1522 }
1523
b0e380b1 1524 skb2->transport_header = skb2->network_header;
1da177e4 1525 skb2->pkt_type = PACKET_OUTGOING;
f2ccd8fa 1526 ptype->func(skb2, skb->dev, ptype, skb->dev);
1da177e4
LT
1527 }
1528 }
1529 rcu_read_unlock();
1530}
1531
56079431 1532
def82a1d 1533static inline void __netif_reschedule(struct Qdisc *q)
56079431 1534{
def82a1d
JP
1535 struct softnet_data *sd;
1536 unsigned long flags;
56079431 1537
def82a1d
JP
1538 local_irq_save(flags);
1539 sd = &__get_cpu_var(softnet_data);
1540 q->next_sched = sd->output_queue;
1541 sd->output_queue = q;
1542 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1543 local_irq_restore(flags);
1544}
1545
1546void __netif_schedule(struct Qdisc *q)
1547{
1548 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1549 __netif_reschedule(q);
56079431
DV
1550}
1551EXPORT_SYMBOL(__netif_schedule);
1552
bea3348e 1553void dev_kfree_skb_irq(struct sk_buff *skb)
56079431 1554{
bea3348e
SH
1555 if (atomic_dec_and_test(&skb->users)) {
1556 struct softnet_data *sd;
1557 unsigned long flags;
56079431 1558
bea3348e
SH
1559 local_irq_save(flags);
1560 sd = &__get_cpu_var(softnet_data);
1561 skb->next = sd->completion_queue;
1562 sd->completion_queue = skb;
1563 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1564 local_irq_restore(flags);
1565 }
56079431 1566}
bea3348e 1567EXPORT_SYMBOL(dev_kfree_skb_irq);
56079431
DV
1568
1569void dev_kfree_skb_any(struct sk_buff *skb)
1570{
1571 if (in_irq() || irqs_disabled())
1572 dev_kfree_skb_irq(skb);
1573 else
1574 dev_kfree_skb(skb);
1575}
1576EXPORT_SYMBOL(dev_kfree_skb_any);
1577
1578
bea3348e
SH
1579/**
1580 * netif_device_detach - mark device as removed
1581 * @dev: network device
1582 *
1583 * Mark device as removed from system and therefore no longer available.
1584 */
56079431
DV
1585void netif_device_detach(struct net_device *dev)
1586{
1587 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1588 netif_running(dev)) {
d543103a 1589 netif_tx_stop_all_queues(dev);
56079431
DV
1590 }
1591}
1592EXPORT_SYMBOL(netif_device_detach);
1593
bea3348e
SH
1594/**
1595 * netif_device_attach - mark device as attached
1596 * @dev: network device
1597 *
1598 * Mark device as attached from system and restart if needed.
1599 */
56079431
DV
1600void netif_device_attach(struct net_device *dev)
1601{
1602 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1603 netif_running(dev)) {
d543103a 1604 netif_tx_wake_all_queues(dev);
4ec93edb 1605 __netdev_watchdog_up(dev);
56079431
DV
1606 }
1607}
1608EXPORT_SYMBOL(netif_device_attach);
1609
6de329e2
BH
1610static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1611{
1612 return ((features & NETIF_F_GEN_CSUM) ||
1613 ((features & NETIF_F_IP_CSUM) &&
1614 protocol == htons(ETH_P_IP)) ||
1615 ((features & NETIF_F_IPV6_CSUM) &&
1c8dbcf6
YZ
1616 protocol == htons(ETH_P_IPV6)) ||
1617 ((features & NETIF_F_FCOE_CRC) &&
1618 protocol == htons(ETH_P_FCOE)));
6de329e2
BH
1619}
1620
1621static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1622{
1623 if (can_checksum_protocol(dev->features, skb->protocol))
1624 return true;
1625
1626 if (skb->protocol == htons(ETH_P_8021Q)) {
1627 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1628 if (can_checksum_protocol(dev->features & dev->vlan_features,
1629 veh->h_vlan_encapsulated_proto))
1630 return true;
1631 }
1632
1633 return false;
1634}
56079431 1635
8a83a00b
AB
1636/**
1637 * skb_dev_set -- assign a new device to a buffer
1638 * @skb: buffer for the new device
1639 * @dev: network device
1640 *
1641 * If an skb is owned by a device already, we have to reset
1642 * all data private to the namespace a device belongs to
1643 * before assigning it a new device.
1644 */
1645#ifdef CONFIG_NET_NS
1646void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1647{
1648 skb_dst_drop(skb);
1649 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1650 secpath_reset(skb);
1651 nf_reset(skb);
1652 skb_init_secmark(skb);
1653 skb->mark = 0;
1654 skb->priority = 0;
1655 skb->nf_trace = 0;
1656 skb->ipvs_property = 0;
1657#ifdef CONFIG_NET_SCHED
1658 skb->tc_index = 0;
1659#endif
1660 }
1661 skb->dev = dev;
1662}
1663EXPORT_SYMBOL(skb_set_dev);
1664#endif /* CONFIG_NET_NS */
1665
1da177e4
LT
1666/*
1667 * Invalidate hardware checksum when packet is to be mangled, and
1668 * complete checksum manually on outgoing path.
1669 */
84fa7933 1670int skb_checksum_help(struct sk_buff *skb)
1da177e4 1671{
d3bc23e7 1672 __wsum csum;
663ead3b 1673 int ret = 0, offset;
1da177e4 1674
84fa7933 1675 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
1676 goto out_set_summed;
1677
1678 if (unlikely(skb_shinfo(skb)->gso_size)) {
a430a43d
HX
1679 /* Let GSO fix up the checksum. */
1680 goto out_set_summed;
1da177e4
LT
1681 }
1682
a030847e
HX
1683 offset = skb->csum_start - skb_headroom(skb);
1684 BUG_ON(offset >= skb_headlen(skb));
1685 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1686
1687 offset += skb->csum_offset;
1688 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1689
1690 if (skb_cloned(skb) &&
1691 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
1692 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1693 if (ret)
1694 goto out;
1695 }
1696
a030847e 1697 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 1698out_set_summed:
1da177e4 1699 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 1700out:
1da177e4
LT
1701 return ret;
1702}
d1b19dff 1703EXPORT_SYMBOL(skb_checksum_help);
1da177e4 1704
f6a78bfc
HX
1705/**
1706 * skb_gso_segment - Perform segmentation on skb.
1707 * @skb: buffer to segment
576a30eb 1708 * @features: features for the output path (see dev->features)
f6a78bfc
HX
1709 *
1710 * This function segments the given skb and returns a list of segments.
576a30eb
HX
1711 *
1712 * It may return NULL if the skb requires no segmentation. This is
1713 * only possible when GSO is used for verifying header integrity.
f6a78bfc 1714 */
576a30eb 1715struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
f6a78bfc
HX
1716{
1717 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1718 struct packet_type *ptype;
252e3346 1719 __be16 type = skb->protocol;
a430a43d 1720 int err;
f6a78bfc 1721
459a98ed 1722 skb_reset_mac_header(skb);
b0e380b1 1723 skb->mac_len = skb->network_header - skb->mac_header;
f6a78bfc
HX
1724 __skb_pull(skb, skb->mac_len);
1725
67fd1a73
HX
1726 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1727 struct net_device *dev = skb->dev;
1728 struct ethtool_drvinfo info = {};
1729
1730 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1731 dev->ethtool_ops->get_drvinfo(dev, &info);
1732
1733 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1734 "ip_summed=%d",
1735 info.driver, dev ? dev->features : 0L,
1736 skb->sk ? skb->sk->sk_route_caps : 0L,
1737 skb->len, skb->data_len, skb->ip_summed);
1738
a430a43d
HX
1739 if (skb_header_cloned(skb) &&
1740 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1741 return ERR_PTR(err);
1742 }
1743
f6a78bfc 1744 rcu_read_lock();
82d8a867
PE
1745 list_for_each_entry_rcu(ptype,
1746 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
f6a78bfc 1747 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
84fa7933 1748 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
a430a43d
HX
1749 err = ptype->gso_send_check(skb);
1750 segs = ERR_PTR(err);
1751 if (err || skb_gso_ok(skb, features))
1752 break;
d56f90a7
ACM
1753 __skb_push(skb, (skb->data -
1754 skb_network_header(skb)));
a430a43d 1755 }
576a30eb 1756 segs = ptype->gso_segment(skb, features);
f6a78bfc
HX
1757 break;
1758 }
1759 }
1760 rcu_read_unlock();
1761
98e399f8 1762 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 1763
f6a78bfc
HX
1764 return segs;
1765}
f6a78bfc
HX
1766EXPORT_SYMBOL(skb_gso_segment);
1767
fb286bb2
HX
1768/* Take action when hardware reception checksum errors are detected. */
1769#ifdef CONFIG_BUG
1770void netdev_rx_csum_fault(struct net_device *dev)
1771{
1772 if (net_ratelimit()) {
4ec93edb 1773 printk(KERN_ERR "%s: hw csum failure.\n",
246a4212 1774 dev ? dev->name : "<unknown>");
fb286bb2
HX
1775 dump_stack();
1776 }
1777}
1778EXPORT_SYMBOL(netdev_rx_csum_fault);
1779#endif
1780
1da177e4
LT
1781/* Actually, we should eliminate this check as soon as we know, that:
1782 * 1. IOMMU is present and allows to map all the memory.
1783 * 2. No high memory really exists on this machine.
1784 */
1785
1786static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1787{
3d3a8533 1788#ifdef CONFIG_HIGHMEM
1da177e4
LT
1789 int i;
1790
1791 if (dev->features & NETIF_F_HIGHDMA)
1792 return 0;
1793
1794 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1795 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1796 return 1;
1797
3d3a8533 1798#endif
1da177e4
LT
1799 return 0;
1800}
1da177e4 1801
f6a78bfc
HX
1802struct dev_gso_cb {
1803 void (*destructor)(struct sk_buff *skb);
1804};
1805
1806#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1807
1808static void dev_gso_skb_destructor(struct sk_buff *skb)
1809{
1810 struct dev_gso_cb *cb;
1811
1812 do {
1813 struct sk_buff *nskb = skb->next;
1814
1815 skb->next = nskb->next;
1816 nskb->next = NULL;
1817 kfree_skb(nskb);
1818 } while (skb->next);
1819
1820 cb = DEV_GSO_CB(skb);
1821 if (cb->destructor)
1822 cb->destructor(skb);
1823}
1824
1825/**
1826 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1827 * @skb: buffer to segment
1828 *
1829 * This function segments the given skb and stores the list of segments
1830 * in skb->next.
1831 */
1832static int dev_gso_segment(struct sk_buff *skb)
1833{
1834 struct net_device *dev = skb->dev;
1835 struct sk_buff *segs;
576a30eb
HX
1836 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1837 NETIF_F_SG : 0);
1838
1839 segs = skb_gso_segment(skb, features);
1840
1841 /* Verifying header integrity only. */
1842 if (!segs)
1843 return 0;
f6a78bfc 1844
801678c5 1845 if (IS_ERR(segs))
f6a78bfc
HX
1846 return PTR_ERR(segs);
1847
1848 skb->next = segs;
1849 DEV_GSO_CB(skb)->destructor = skb->destructor;
1850 skb->destructor = dev_gso_skb_destructor;
1851
1852 return 0;
1853}
1854
fd2ea0a7
DM
1855int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1856 struct netdev_queue *txq)
f6a78bfc 1857{
00829823 1858 const struct net_device_ops *ops = dev->netdev_ops;
572a9d7b 1859 int rc = NETDEV_TX_OK;
00829823 1860
f6a78bfc 1861 if (likely(!skb->next)) {
9be9a6b9 1862 if (!list_empty(&ptype_all))
f6a78bfc
HX
1863 dev_queue_xmit_nit(skb, dev);
1864
576a30eb
HX
1865 if (netif_needs_gso(dev, skb)) {
1866 if (unlikely(dev_gso_segment(skb)))
1867 goto out_kfree_skb;
1868 if (skb->next)
1869 goto gso;
1870 }
f6a78bfc 1871
93f154b5
ED
1872 /*
1873 * If device doesnt need skb->dst, release it right now while
1874 * its hot in this cpu cache
1875 */
adf30907
ED
1876 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1877 skb_dst_drop(skb);
1878
ac45f602 1879 rc = ops->ndo_start_xmit(skb, dev);
ec634fe3 1880 if (rc == NETDEV_TX_OK)
08baf561 1881 txq_trans_update(txq);
ac45f602
PO
1882 /*
1883 * TODO: if skb_orphan() was called by
1884 * dev->hard_start_xmit() (for example, the unmodified
1885 * igb driver does that; bnx2 doesn't), then
1886 * skb_tx_software_timestamp() will be unable to send
1887 * back the time stamp.
1888 *
1889 * How can this be prevented? Always create another
1890 * reference to the socket before calling
1891 * dev->hard_start_xmit()? Prevent that skb_orphan()
1892 * does anything in dev->hard_start_xmit() by clearing
1893 * the skb destructor before the call and restoring it
1894 * afterwards, then doing the skb_orphan() ourselves?
1895 */
ac45f602 1896 return rc;
f6a78bfc
HX
1897 }
1898
576a30eb 1899gso:
f6a78bfc
HX
1900 do {
1901 struct sk_buff *nskb = skb->next;
f6a78bfc
HX
1902
1903 skb->next = nskb->next;
1904 nskb->next = NULL;
068a2de5
KK
1905
1906 /*
1907 * If device doesnt need nskb->dst, release it right now while
1908 * its hot in this cpu cache
1909 */
1910 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1911 skb_dst_drop(nskb);
1912
00829823 1913 rc = ops->ndo_start_xmit(nskb, dev);
ec634fe3 1914 if (unlikely(rc != NETDEV_TX_OK)) {
572a9d7b
PM
1915 if (rc & ~NETDEV_TX_MASK)
1916 goto out_kfree_gso_skb;
f54d9e8d 1917 nskb->next = skb->next;
f6a78bfc
HX
1918 skb->next = nskb;
1919 return rc;
1920 }
08baf561 1921 txq_trans_update(txq);
fd2ea0a7 1922 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
f54d9e8d 1923 return NETDEV_TX_BUSY;
f6a78bfc 1924 } while (skb->next);
4ec93edb 1925
572a9d7b
PM
1926out_kfree_gso_skb:
1927 if (likely(skb->next == NULL))
1928 skb->destructor = DEV_GSO_CB(skb)->destructor;
f6a78bfc
HX
1929out_kfree_skb:
1930 kfree_skb(skb);
572a9d7b 1931 return rc;
f6a78bfc
HX
1932}
1933
0a9627f2 1934static u32 hashrnd __read_mostly;
b6b2fed1 1935
9247744e 1936u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
8f0f2223 1937{
7019298a 1938 u32 hash;
b6b2fed1 1939
513de11b
DM
1940 if (skb_rx_queue_recorded(skb)) {
1941 hash = skb_get_rx_queue(skb);
d1b19dff 1942 while (unlikely(hash >= dev->real_num_tx_queues))
513de11b
DM
1943 hash -= dev->real_num_tx_queues;
1944 return hash;
1945 }
ec581f6a
ED
1946
1947 if (skb->sk && skb->sk->sk_hash)
7019298a 1948 hash = skb->sk->sk_hash;
ec581f6a 1949 else
7019298a 1950 hash = skb->protocol;
d5a9e24a 1951
0a9627f2 1952 hash = jhash_1word(hash, hashrnd);
b6b2fed1
DM
1953
1954 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
8f0f2223 1955}
9247744e 1956EXPORT_SYMBOL(skb_tx_hash);
8f0f2223 1957
ed04642f
ED
1958static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1959{
1960 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1961 if (net_ratelimit()) {
0a9627f2 1962 netdev_warn(dev, "selects TX queue %d, but "
ed04642f 1963 "real number of TX queues is %d\n",
0a9627f2 1964 queue_index, dev->real_num_tx_queues);
ed04642f
ED
1965 }
1966 return 0;
1967 }
1968 return queue_index;
1969}
1970
e8a0464c
DM
1971static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1972 struct sk_buff *skb)
1973{
a4ee3ce3
KK
1974 u16 queue_index;
1975 struct sock *sk = skb->sk;
1976
1977 if (sk_tx_queue_recorded(sk)) {
1978 queue_index = sk_tx_queue_get(sk);
1979 } else {
1980 const struct net_device_ops *ops = dev->netdev_ops;
1981
1982 if (ops->ndo_select_queue) {
1983 queue_index = ops->ndo_select_queue(dev, skb);
ed04642f 1984 queue_index = dev_cap_txqueue(dev, queue_index);
a4ee3ce3
KK
1985 } else {
1986 queue_index = 0;
1987 if (dev->real_num_tx_queues > 1)
1988 queue_index = skb_tx_hash(dev, skb);
fd2ea0a7 1989
a4ee3ce3
KK
1990 if (sk && sk->sk_dst_cache)
1991 sk_tx_queue_set(sk, queue_index);
1992 }
1993 }
eae792b7 1994
fd2ea0a7
DM
1995 skb_set_queue_mapping(skb, queue_index);
1996 return netdev_get_tx_queue(dev, queue_index);
e8a0464c
DM
1997}
1998
bbd8a0d3
KK
1999static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2000 struct net_device *dev,
2001 struct netdev_queue *txq)
2002{
2003 spinlock_t *root_lock = qdisc_lock(q);
2004 int rc;
2005
2006 spin_lock(root_lock);
2007 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2008 kfree_skb(skb);
2009 rc = NET_XMIT_DROP;
2010 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2011 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
2012 /*
2013 * This is a work-conserving queue; there are no old skbs
2014 * waiting to be sent out; and the qdisc is not running -
2015 * xmit the skb directly.
2016 */
2017 __qdisc_update_bstats(q, skb->len);
2018 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
2019 __qdisc_run(q);
2020 else
2021 clear_bit(__QDISC_STATE_RUNNING, &q->state);
2022
2023 rc = NET_XMIT_SUCCESS;
2024 } else {
2025 rc = qdisc_enqueue_root(skb, q);
2026 qdisc_run(q);
2027 }
2028 spin_unlock(root_lock);
2029
2030 return rc;
2031}
2032
4b258461
KK
2033/*
2034 * Returns true if either:
2035 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2036 * 2. skb is fragmented and the device does not support SG, or if
2037 * at least one of fragments is in highmem and device does not
2038 * support DMA from it.
2039 */
2040static inline int skb_needs_linearize(struct sk_buff *skb,
2041 struct net_device *dev)
2042{
2043 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2044 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2045 illegal_highdma(dev, skb)));
2046}
2047
d29f749e
DJ
2048/**
2049 * dev_queue_xmit - transmit a buffer
2050 * @skb: buffer to transmit
2051 *
2052 * Queue a buffer for transmission to a network device. The caller must
2053 * have set the device and priority and built the buffer before calling
2054 * this function. The function can be called from an interrupt.
2055 *
2056 * A negative errno code is returned on a failure. A success does not
2057 * guarantee the frame will be transmitted as it may be dropped due
2058 * to congestion or traffic shaping.
2059 *
2060 * -----------------------------------------------------------------------------------
2061 * I notice this method can also return errors from the queue disciplines,
2062 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2063 * be positive.
2064 *
2065 * Regardless of the return value, the skb is consumed, so it is currently
2066 * difficult to retry a send to this method. (You can bump the ref count
2067 * before sending to hold a reference for retry if you are careful.)
2068 *
2069 * When calling this method, interrupts MUST be enabled. This is because
2070 * the BH enable code must have IRQs enabled so that it will not deadlock.
2071 * --BLG
2072 */
1da177e4
LT
2073int dev_queue_xmit(struct sk_buff *skb)
2074{
2075 struct net_device *dev = skb->dev;
dc2b4847 2076 struct netdev_queue *txq;
1da177e4
LT
2077 struct Qdisc *q;
2078 int rc = -ENOMEM;
2079
f6a78bfc
HX
2080 /* GSO will handle the following emulations directly. */
2081 if (netif_needs_gso(dev, skb))
2082 goto gso;
2083
4b258461
KK
2084 /* Convert a paged skb to linear, if required */
2085 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
1da177e4
LT
2086 goto out_kfree_skb;
2087
2088 /* If packet is not checksummed and device does not support
2089 * checksumming for this protocol, complete checksumming here.
2090 */
663ead3b
HX
2091 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2092 skb_set_transport_header(skb, skb->csum_start -
2093 skb_headroom(skb));
6de329e2
BH
2094 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2095 goto out_kfree_skb;
663ead3b 2096 }
1da177e4 2097
f6a78bfc 2098gso:
4ec93edb
YH
2099 /* Disable soft irqs for various locks below. Also
2100 * stops preemption for RCU.
1da177e4 2101 */
4ec93edb 2102 rcu_read_lock_bh();
1da177e4 2103
eae792b7 2104 txq = dev_pick_tx(dev, skb);
a898def2 2105 q = rcu_dereference_bh(txq->qdisc);
37437bb2 2106
1da177e4 2107#ifdef CONFIG_NET_CLS_ACT
d1b19dff 2108 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
1da177e4
LT
2109#endif
2110 if (q->enqueue) {
bbd8a0d3 2111 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 2112 goto out;
1da177e4
LT
2113 }
2114
2115 /* The device has no queue. Common case for software devices:
2116 loopback, all the sorts of tunnels...
2117
932ff279
HX
2118 Really, it is unlikely that netif_tx_lock protection is necessary
2119 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
2120 counters.)
2121 However, it is possible, that they rely on protection
2122 made by us here.
2123
2124 Check this and shot the lock. It is not prone from deadlocks.
2125 Either shot noqueue qdisc, it is even simpler 8)
2126 */
2127 if (dev->flags & IFF_UP) {
2128 int cpu = smp_processor_id(); /* ok because BHs are off */
2129
c773e847 2130 if (txq->xmit_lock_owner != cpu) {
1da177e4 2131
c773e847 2132 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 2133
fd2ea0a7 2134 if (!netif_tx_queue_stopped(txq)) {
572a9d7b
PM
2135 rc = dev_hard_start_xmit(skb, dev, txq);
2136 if (dev_xmit_complete(rc)) {
c773e847 2137 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
2138 goto out;
2139 }
2140 }
c773e847 2141 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
2142 if (net_ratelimit())
2143 printk(KERN_CRIT "Virtual device %s asks to "
2144 "queue packet!\n", dev->name);
2145 } else {
2146 /* Recursion is detected! It is possible,
2147 * unfortunately */
2148 if (net_ratelimit())
2149 printk(KERN_CRIT "Dead loop on virtual device "
2150 "%s, fix it urgently!\n", dev->name);
2151 }
2152 }
2153
2154 rc = -ENETDOWN;
d4828d85 2155 rcu_read_unlock_bh();
1da177e4
LT
2156
2157out_kfree_skb:
2158 kfree_skb(skb);
2159 return rc;
2160out:
d4828d85 2161 rcu_read_unlock_bh();
1da177e4
LT
2162 return rc;
2163}
d1b19dff 2164EXPORT_SYMBOL(dev_queue_xmit);
1da177e4
LT
2165
2166
2167/*=======================================================================
2168 Receiver routines
2169 =======================================================================*/
2170
6b2bedc3
SH
2171int netdev_max_backlog __read_mostly = 1000;
2172int netdev_budget __read_mostly = 300;
2173int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4
LT
2174
2175DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
2176
0a9627f2
TH
2177/*
2178 * get_rps_cpu is called from netif_receive_skb and returns the target
2179 * CPU from the RPS map of the receiving queue for a given skb.
2180 */
2181static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb)
2182{
2183 struct ipv6hdr *ip6;
2184 struct iphdr *ip;
2185 struct netdev_rx_queue *rxqueue;
2186 struct rps_map *map;
2187 int cpu = -1;
2188 u8 ip_proto;
2189 u32 addr1, addr2, ports, ihl;
2190
2191 rcu_read_lock();
2192
2193 if (skb_rx_queue_recorded(skb)) {
2194 u16 index = skb_get_rx_queue(skb);
2195 if (unlikely(index >= dev->num_rx_queues)) {
2196 if (net_ratelimit()) {
2197 netdev_warn(dev, "received packet on queue "
2198 "%u, but number of RX queues is %u\n",
2199 index, dev->num_rx_queues);
2200 }
2201 goto done;
2202 }
2203 rxqueue = dev->_rx + index;
2204 } else
2205 rxqueue = dev->_rx;
2206
2207 if (!rxqueue->rps_map)
2208 goto done;
2209
2210 if (skb->rxhash)
2211 goto got_hash; /* Skip hash computation on packet header */
2212
2213 switch (skb->protocol) {
2214 case __constant_htons(ETH_P_IP):
2215 if (!pskb_may_pull(skb, sizeof(*ip)))
2216 goto done;
2217
2218 ip = (struct iphdr *) skb->data;
2219 ip_proto = ip->protocol;
2220 addr1 = ip->saddr;
2221 addr2 = ip->daddr;
2222 ihl = ip->ihl;
2223 break;
2224 case __constant_htons(ETH_P_IPV6):
2225 if (!pskb_may_pull(skb, sizeof(*ip6)))
2226 goto done;
2227
2228 ip6 = (struct ipv6hdr *) skb->data;
2229 ip_proto = ip6->nexthdr;
2230 addr1 = ip6->saddr.s6_addr32[3];
2231 addr2 = ip6->daddr.s6_addr32[3];
2232 ihl = (40 >> 2);
2233 break;
2234 default:
2235 goto done;
2236 }
2237 ports = 0;
2238 switch (ip_proto) {
2239 case IPPROTO_TCP:
2240 case IPPROTO_UDP:
2241 case IPPROTO_DCCP:
2242 case IPPROTO_ESP:
2243 case IPPROTO_AH:
2244 case IPPROTO_SCTP:
2245 case IPPROTO_UDPLITE:
2246 if (pskb_may_pull(skb, (ihl * 4) + 4))
2247 ports = *((u32 *) (skb->data + (ihl * 4)));
2248 break;
2249
2250 default:
2251 break;
2252 }
2253
2254 skb->rxhash = jhash_3words(addr1, addr2, ports, hashrnd);
2255 if (!skb->rxhash)
2256 skb->rxhash = 1;
2257
2258got_hash:
2259 map = rcu_dereference(rxqueue->rps_map);
2260 if (map) {
2261 u16 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2262
2263 if (cpu_online(tcpu)) {
2264 cpu = tcpu;
2265 goto done;
2266 }
2267 }
2268
2269done:
2270 rcu_read_unlock();
2271 return cpu;
2272}
2273
2274/*
2275 * This structure holds the per-CPU mask of CPUs for which IPIs are scheduled
2276 * to be sent to kick remote softirq processing. There are two masks since
2277 * the sending of IPIs must be done with interrupts enabled. The select field
2278 * indicates the current mask that enqueue_backlog uses to schedule IPIs.
2279 * select is flipped before net_rps_action is called while still under lock,
2280 * net_rps_action then uses the non-selected mask to send the IPIs and clears
2281 * it without conflicting with enqueue_backlog operation.
2282 */
2283struct rps_remote_softirq_cpus {
2284 cpumask_t mask[2];
2285 int select;
2286};
2287static DEFINE_PER_CPU(struct rps_remote_softirq_cpus, rps_remote_softirq_cpus);
2288
2289/* Called from hardirq (IPI) context */
2290static void trigger_softirq(void *data)
2291{
2292 struct softnet_data *queue = data;
2293 __napi_schedule(&queue->backlog);
2294 __get_cpu_var(netdev_rx_stat).received_rps++;
2295}
2296
2297/*
2298 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2299 * queue (may be a remote CPU queue).
2300 */
2301static int enqueue_to_backlog(struct sk_buff *skb, int cpu)
2302{
2303 struct softnet_data *queue;
2304 unsigned long flags;
2305
2306 queue = &per_cpu(softnet_data, cpu);
2307
2308 local_irq_save(flags);
2309 __get_cpu_var(netdev_rx_stat).total++;
2310
2311 spin_lock(&queue->input_pkt_queue.lock);
2312 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
2313 if (queue->input_pkt_queue.qlen) {
2314enqueue:
2315 __skb_queue_tail(&queue->input_pkt_queue, skb);
2316 spin_unlock_irqrestore(&queue->input_pkt_queue.lock,
2317 flags);
2318 return NET_RX_SUCCESS;
2319 }
2320
2321 /* Schedule NAPI for backlog device */
2322 if (napi_schedule_prep(&queue->backlog)) {
2323 if (cpu != smp_processor_id()) {
2324 struct rps_remote_softirq_cpus *rcpus =
2325 &__get_cpu_var(rps_remote_softirq_cpus);
2326
2327 cpu_set(cpu, rcpus->mask[rcpus->select]);
2328 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2329 } else
2330 __napi_schedule(&queue->backlog);
2331 }
2332 goto enqueue;
2333 }
2334
2335 spin_unlock(&queue->input_pkt_queue.lock);
2336
2337 __get_cpu_var(netdev_rx_stat).dropped++;
2338 local_irq_restore(flags);
2339
2340 kfree_skb(skb);
2341 return NET_RX_DROP;
2342}
1da177e4 2343
1da177e4
LT
2344/**
2345 * netif_rx - post buffer to the network code
2346 * @skb: buffer to post
2347 *
2348 * This function receives a packet from a device driver and queues it for
2349 * the upper (protocol) levels to process. It always succeeds. The buffer
2350 * may be dropped during processing for congestion control or by the
2351 * protocol layers.
2352 *
2353 * return values:
2354 * NET_RX_SUCCESS (no congestion)
1da177e4
LT
2355 * NET_RX_DROP (packet was dropped)
2356 *
2357 */
2358
2359int netif_rx(struct sk_buff *skb)
2360{
0a9627f2 2361 int cpu;
1da177e4
LT
2362
2363 /* if netpoll wants it, pretend we never saw it */
2364 if (netpoll_rx(skb))
2365 return NET_RX_DROP;
2366
b7aa0bf7 2367 if (!skb->tstamp.tv64)
a61bbcf2 2368 net_timestamp(skb);
1da177e4 2369
0a9627f2
TH
2370 cpu = get_rps_cpu(skb->dev, skb);
2371 if (cpu < 0)
2372 cpu = smp_processor_id();
1da177e4 2373
0a9627f2 2374 return enqueue_to_backlog(skb, cpu);
1da177e4 2375}
d1b19dff 2376EXPORT_SYMBOL(netif_rx);
1da177e4
LT
2377
2378int netif_rx_ni(struct sk_buff *skb)
2379{
2380 int err;
2381
2382 preempt_disable();
2383 err = netif_rx(skb);
2384 if (local_softirq_pending())
2385 do_softirq();
2386 preempt_enable();
2387
2388 return err;
2389}
1da177e4
LT
2390EXPORT_SYMBOL(netif_rx_ni);
2391
1da177e4
LT
2392static void net_tx_action(struct softirq_action *h)
2393{
2394 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2395
2396 if (sd->completion_queue) {
2397 struct sk_buff *clist;
2398
2399 local_irq_disable();
2400 clist = sd->completion_queue;
2401 sd->completion_queue = NULL;
2402 local_irq_enable();
2403
2404 while (clist) {
2405 struct sk_buff *skb = clist;
2406 clist = clist->next;
2407
547b792c 2408 WARN_ON(atomic_read(&skb->users));
1da177e4
LT
2409 __kfree_skb(skb);
2410 }
2411 }
2412
2413 if (sd->output_queue) {
37437bb2 2414 struct Qdisc *head;
1da177e4
LT
2415
2416 local_irq_disable();
2417 head = sd->output_queue;
2418 sd->output_queue = NULL;
2419 local_irq_enable();
2420
2421 while (head) {
37437bb2
DM
2422 struct Qdisc *q = head;
2423 spinlock_t *root_lock;
2424
1da177e4
LT
2425 head = head->next_sched;
2426
5fb66229 2427 root_lock = qdisc_lock(q);
37437bb2 2428 if (spin_trylock(root_lock)) {
def82a1d
JP
2429 smp_mb__before_clear_bit();
2430 clear_bit(__QDISC_STATE_SCHED,
2431 &q->state);
37437bb2
DM
2432 qdisc_run(q);
2433 spin_unlock(root_lock);
1da177e4 2434 } else {
195648bb 2435 if (!test_bit(__QDISC_STATE_DEACTIVATED,
e8a83e10 2436 &q->state)) {
195648bb 2437 __netif_reschedule(q);
e8a83e10
JP
2438 } else {
2439 smp_mb__before_clear_bit();
2440 clear_bit(__QDISC_STATE_SCHED,
2441 &q->state);
2442 }
1da177e4
LT
2443 }
2444 }
2445 }
2446}
2447
6f05f629
SH
2448static inline int deliver_skb(struct sk_buff *skb,
2449 struct packet_type *pt_prev,
2450 struct net_device *orig_dev)
1da177e4
LT
2451{
2452 atomic_inc(&skb->users);
f2ccd8fa 2453 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4
LT
2454}
2455
2456#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
da678292
MM
2457
2458#if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2459/* This hook is defined here for ATM LANE */
2460int (*br_fdb_test_addr_hook)(struct net_device *dev,
2461 unsigned char *addr) __read_mostly;
4fb019a0 2462EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 2463#endif
1da177e4 2464
6229e362
SH
2465/*
2466 * If bridge module is loaded call bridging hook.
2467 * returns NULL if packet was consumed.
2468 */
2469struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2470 struct sk_buff *skb) __read_mostly;
4fb019a0 2471EXPORT_SYMBOL_GPL(br_handle_frame_hook);
da678292 2472
6229e362
SH
2473static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2474 struct packet_type **pt_prev, int *ret,
2475 struct net_device *orig_dev)
1da177e4
LT
2476{
2477 struct net_bridge_port *port;
2478
6229e362
SH
2479 if (skb->pkt_type == PACKET_LOOPBACK ||
2480 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2481 return skb;
1da177e4
LT
2482
2483 if (*pt_prev) {
6229e362 2484 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1da177e4 2485 *pt_prev = NULL;
4ec93edb
YH
2486 }
2487
6229e362 2488 return br_handle_frame_hook(port, skb);
1da177e4
LT
2489}
2490#else
6229e362 2491#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
1da177e4
LT
2492#endif
2493
b863ceb7
PM
2494#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2495struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2496EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2497
2498static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2499 struct packet_type **pt_prev,
2500 int *ret,
2501 struct net_device *orig_dev)
2502{
2503 if (skb->dev->macvlan_port == NULL)
2504 return skb;
2505
2506 if (*pt_prev) {
2507 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2508 *pt_prev = NULL;
2509 }
2510 return macvlan_handle_frame_hook(skb);
2511}
2512#else
2513#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2514#endif
2515
1da177e4
LT
2516#ifdef CONFIG_NET_CLS_ACT
2517/* TODO: Maybe we should just force sch_ingress to be compiled in
2518 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2519 * a compare and 2 stores extra right now if we dont have it on
2520 * but have CONFIG_NET_CLS_ACT
4ec93edb 2521 * NOTE: This doesnt stop any functionality; if you dont have
1da177e4
LT
2522 * the ingress scheduler, you just cant add policies on ingress.
2523 *
2524 */
4ec93edb 2525static int ing_filter(struct sk_buff *skb)
1da177e4 2526{
1da177e4 2527 struct net_device *dev = skb->dev;
f697c3e8 2528 u32 ttl = G_TC_RTTL(skb->tc_verd);
555353cf
DM
2529 struct netdev_queue *rxq;
2530 int result = TC_ACT_OK;
2531 struct Qdisc *q;
4ec93edb 2532
f697c3e8
HX
2533 if (MAX_RED_LOOP < ttl++) {
2534 printk(KERN_WARNING
2535 "Redir loop detected Dropping packet (%d->%d)\n",
8964be4a 2536 skb->skb_iif, dev->ifindex);
f697c3e8
HX
2537 return TC_ACT_SHOT;
2538 }
1da177e4 2539
f697c3e8
HX
2540 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2541 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
1da177e4 2542
555353cf
DM
2543 rxq = &dev->rx_queue;
2544
83874000 2545 q = rxq->qdisc;
8d50b53d 2546 if (q != &noop_qdisc) {
83874000 2547 spin_lock(qdisc_lock(q));
a9312ae8
DM
2548 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2549 result = qdisc_enqueue_root(skb, q);
83874000
DM
2550 spin_unlock(qdisc_lock(q));
2551 }
f697c3e8
HX
2552
2553 return result;
2554}
86e65da9 2555
f697c3e8
HX
2556static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2557 struct packet_type **pt_prev,
2558 int *ret, struct net_device *orig_dev)
2559{
8d50b53d 2560 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
f697c3e8 2561 goto out;
1da177e4 2562
f697c3e8
HX
2563 if (*pt_prev) {
2564 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2565 *pt_prev = NULL;
2566 } else {
2567 /* Huh? Why does turning on AF_PACKET affect this? */
2568 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
1da177e4
LT
2569 }
2570
f697c3e8
HX
2571 switch (ing_filter(skb)) {
2572 case TC_ACT_SHOT:
2573 case TC_ACT_STOLEN:
2574 kfree_skb(skb);
2575 return NULL;
2576 }
2577
2578out:
2579 skb->tc_verd = 0;
2580 return skb;
1da177e4
LT
2581}
2582#endif
2583
bc1d0411
PM
2584/*
2585 * netif_nit_deliver - deliver received packets to network taps
2586 * @skb: buffer
2587 *
2588 * This function is used to deliver incoming packets to network
2589 * taps. It should be used when the normal netif_receive_skb path
2590 * is bypassed, for example because of VLAN acceleration.
2591 */
2592void netif_nit_deliver(struct sk_buff *skb)
2593{
2594 struct packet_type *ptype;
2595
2596 if (list_empty(&ptype_all))
2597 return;
2598
2599 skb_reset_network_header(skb);
2600 skb_reset_transport_header(skb);
2601 skb->mac_len = skb->network_header - skb->mac_header;
2602
2603 rcu_read_lock();
2604 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2605 if (!ptype->dev || ptype->dev == skb->dev)
2606 deliver_skb(skb, ptype, skb->dev);
2607 }
2608 rcu_read_unlock();
2609}
2610
0a9627f2 2611int __netif_receive_skb(struct sk_buff *skb)
1da177e4
LT
2612{
2613 struct packet_type *ptype, *pt_prev;
f2ccd8fa 2614 struct net_device *orig_dev;
0d7a3681 2615 struct net_device *null_or_orig;
ca8d9ea3 2616 struct net_device *null_or_bond;
1da177e4 2617 int ret = NET_RX_DROP;
252e3346 2618 __be16 type;
1da177e4 2619
81bbb3d4
ED
2620 if (!skb->tstamp.tv64)
2621 net_timestamp(skb);
2622
05423b24 2623 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
9b22ea56
PM
2624 return NET_RX_SUCCESS;
2625
1da177e4 2626 /* if we've gotten here through NAPI, check netpoll */
bea3348e 2627 if (netpoll_receive_skb(skb))
1da177e4
LT
2628 return NET_RX_DROP;
2629
8964be4a
ED
2630 if (!skb->skb_iif)
2631 skb->skb_iif = skb->dev->ifindex;
86e65da9 2632
0d7a3681 2633 null_or_orig = NULL;
cc9bd5ce
JE
2634 orig_dev = skb->dev;
2635 if (orig_dev->master) {
0d7a3681
JE
2636 if (skb_bond_should_drop(skb))
2637 null_or_orig = orig_dev; /* deliver only exact match */
2638 else
2639 skb->dev = orig_dev->master;
cc9bd5ce 2640 }
8f903c70 2641
1da177e4
LT
2642 __get_cpu_var(netdev_rx_stat).total++;
2643
c1d2bbe1 2644 skb_reset_network_header(skb);
badff6d0 2645 skb_reset_transport_header(skb);
b0e380b1 2646 skb->mac_len = skb->network_header - skb->mac_header;
1da177e4
LT
2647
2648 pt_prev = NULL;
2649
2650 rcu_read_lock();
2651
2652#ifdef CONFIG_NET_CLS_ACT
2653 if (skb->tc_verd & TC_NCLS) {
2654 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2655 goto ncls;
2656 }
2657#endif
2658
2659 list_for_each_entry_rcu(ptype, &ptype_all, list) {
f982307f
JE
2660 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2661 ptype->dev == orig_dev) {
4ec93edb 2662 if (pt_prev)
f2ccd8fa 2663 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
2664 pt_prev = ptype;
2665 }
2666 }
2667
2668#ifdef CONFIG_NET_CLS_ACT
f697c3e8
HX
2669 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2670 if (!skb)
1da177e4 2671 goto out;
1da177e4
LT
2672ncls:
2673#endif
2674
6229e362 2675 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
b863ceb7
PM
2676 if (!skb)
2677 goto out;
2678 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
6229e362 2679 if (!skb)
1da177e4
LT
2680 goto out;
2681
1f3c8804
AG
2682 /*
2683 * Make sure frames received on VLAN interfaces stacked on
2684 * bonding interfaces still make their way to any base bonding
2685 * device that may have registered for a specific ptype. The
2686 * handler may have to adjust skb->dev and orig_dev.
1f3c8804 2687 */
ca8d9ea3 2688 null_or_bond = NULL;
1f3c8804
AG
2689 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2690 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
ca8d9ea3 2691 null_or_bond = vlan_dev_real_dev(skb->dev);
1f3c8804
AG
2692 }
2693
1da177e4 2694 type = skb->protocol;
82d8a867
PE
2695 list_for_each_entry_rcu(ptype,
2696 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1f3c8804 2697 if (ptype->type == type && (ptype->dev == null_or_orig ||
ca8d9ea3
AG
2698 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2699 ptype->dev == null_or_bond)) {
4ec93edb 2700 if (pt_prev)
f2ccd8fa 2701 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
2702 pt_prev = ptype;
2703 }
2704 }
2705
2706 if (pt_prev) {
f2ccd8fa 2707 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4
LT
2708 } else {
2709 kfree_skb(skb);
2710 /* Jamal, now you will not able to escape explaining
2711 * me how you were going to use this. :-)
2712 */
2713 ret = NET_RX_DROP;
2714 }
2715
2716out:
2717 rcu_read_unlock();
2718 return ret;
2719}
0a9627f2
TH
2720
2721/**
2722 * netif_receive_skb - process receive buffer from network
2723 * @skb: buffer to process
2724 *
2725 * netif_receive_skb() is the main receive data processing function.
2726 * It always succeeds. The buffer may be dropped during processing
2727 * for congestion control or by the protocol layers.
2728 *
2729 * This function may only be called from softirq context and interrupts
2730 * should be enabled.
2731 *
2732 * Return values (usually ignored):
2733 * NET_RX_SUCCESS: no congestion
2734 * NET_RX_DROP: packet was dropped
2735 */
2736int netif_receive_skb(struct sk_buff *skb)
2737{
2738 int cpu;
2739
2740 cpu = get_rps_cpu(skb->dev, skb);
2741
2742 if (cpu < 0)
2743 return __netif_receive_skb(skb);
2744 else
2745 return enqueue_to_backlog(skb, cpu);
2746}
d1b19dff 2747EXPORT_SYMBOL(netif_receive_skb);
1da177e4 2748
6e583ce5
SH
2749/* Network device is going away, flush any packets still pending */
2750static void flush_backlog(void *arg)
2751{
2752 struct net_device *dev = arg;
2753 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2754 struct sk_buff *skb, *tmp;
2755
2756 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2757 if (skb->dev == dev) {
2758 __skb_unlink(skb, &queue->input_pkt_queue);
2759 kfree_skb(skb);
2760 }
2761}
2762
d565b0a1
HX
2763static int napi_gro_complete(struct sk_buff *skb)
2764{
2765 struct packet_type *ptype;
2766 __be16 type = skb->protocol;
2767 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2768 int err = -ENOENT;
2769
fc59f9a3
HX
2770 if (NAPI_GRO_CB(skb)->count == 1) {
2771 skb_shinfo(skb)->gso_size = 0;
d565b0a1 2772 goto out;
fc59f9a3 2773 }
d565b0a1
HX
2774
2775 rcu_read_lock();
2776 list_for_each_entry_rcu(ptype, head, list) {
2777 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2778 continue;
2779
2780 err = ptype->gro_complete(skb);
2781 break;
2782 }
2783 rcu_read_unlock();
2784
2785 if (err) {
2786 WARN_ON(&ptype->list == head);
2787 kfree_skb(skb);
2788 return NET_RX_SUCCESS;
2789 }
2790
2791out:
d565b0a1
HX
2792 return netif_receive_skb(skb);
2793}
2794
11380a4b 2795static void napi_gro_flush(struct napi_struct *napi)
d565b0a1
HX
2796{
2797 struct sk_buff *skb, *next;
2798
2799 for (skb = napi->gro_list; skb; skb = next) {
2800 next = skb->next;
2801 skb->next = NULL;
2802 napi_gro_complete(skb);
2803 }
2804
4ae5544f 2805 napi->gro_count = 0;
d565b0a1
HX
2806 napi->gro_list = NULL;
2807}
d565b0a1 2808
5b252f0c 2809enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
2810{
2811 struct sk_buff **pp = NULL;
2812 struct packet_type *ptype;
2813 __be16 type = skb->protocol;
2814 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
0da2afd5 2815 int same_flow;
d565b0a1 2816 int mac_len;
5b252f0c 2817 enum gro_result ret;
d565b0a1
HX
2818
2819 if (!(skb->dev->features & NETIF_F_GRO))
2820 goto normal;
2821
4cf704fb 2822 if (skb_is_gso(skb) || skb_has_frags(skb))
f17f5c91
HX
2823 goto normal;
2824
d565b0a1
HX
2825 rcu_read_lock();
2826 list_for_each_entry_rcu(ptype, head, list) {
d565b0a1
HX
2827 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2828 continue;
2829
86911732 2830 skb_set_network_header(skb, skb_gro_offset(skb));
d565b0a1
HX
2831 mac_len = skb->network_header - skb->mac_header;
2832 skb->mac_len = mac_len;
2833 NAPI_GRO_CB(skb)->same_flow = 0;
2834 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 2835 NAPI_GRO_CB(skb)->free = 0;
d565b0a1 2836
d565b0a1
HX
2837 pp = ptype->gro_receive(&napi->gro_list, skb);
2838 break;
2839 }
2840 rcu_read_unlock();
2841
2842 if (&ptype->list == head)
2843 goto normal;
2844
0da2afd5 2845 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 2846 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 2847
d565b0a1
HX
2848 if (pp) {
2849 struct sk_buff *nskb = *pp;
2850
2851 *pp = nskb->next;
2852 nskb->next = NULL;
2853 napi_gro_complete(nskb);
4ae5544f 2854 napi->gro_count--;
d565b0a1
HX
2855 }
2856
0da2afd5 2857 if (same_flow)
d565b0a1
HX
2858 goto ok;
2859
4ae5544f 2860 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
d565b0a1 2861 goto normal;
d565b0a1 2862
4ae5544f 2863 napi->gro_count++;
d565b0a1 2864 NAPI_GRO_CB(skb)->count = 1;
86911732 2865 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
2866 skb->next = napi->gro_list;
2867 napi->gro_list = skb;
5d0d9be8 2868 ret = GRO_HELD;
d565b0a1 2869
ad0f9904 2870pull:
cb18978c
HX
2871 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2872 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2873
2874 BUG_ON(skb->end - skb->tail < grow);
2875
2876 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2877
2878 skb->tail += grow;
2879 skb->data_len -= grow;
2880
2881 skb_shinfo(skb)->frags[0].page_offset += grow;
2882 skb_shinfo(skb)->frags[0].size -= grow;
2883
2884 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2885 put_page(skb_shinfo(skb)->frags[0].page);
2886 memmove(skb_shinfo(skb)->frags,
2887 skb_shinfo(skb)->frags + 1,
2888 --skb_shinfo(skb)->nr_frags);
2889 }
ad0f9904
HX
2890 }
2891
d565b0a1 2892ok:
5d0d9be8 2893 return ret;
d565b0a1
HX
2894
2895normal:
ad0f9904
HX
2896 ret = GRO_NORMAL;
2897 goto pull;
5d38a079 2898}
96e93eab
HX
2899EXPORT_SYMBOL(dev_gro_receive);
2900
5b252f0c
BH
2901static gro_result_t
2902__napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
96e93eab
HX
2903{
2904 struct sk_buff *p;
2905
d1c76af9
HX
2906 if (netpoll_rx_on(skb))
2907 return GRO_NORMAL;
2908
96e93eab 2909 for (p = napi->gro_list; p; p = p->next) {
f64f9e71
JP
2910 NAPI_GRO_CB(p)->same_flow =
2911 (p->dev == skb->dev) &&
2912 !compare_ether_header(skb_mac_header(p),
2913 skb_gro_mac_header(skb));
96e93eab
HX
2914 NAPI_GRO_CB(p)->flush = 0;
2915 }
2916
2917 return dev_gro_receive(napi, skb);
2918}
5d38a079 2919
c7c4b3b6 2920gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 2921{
5d0d9be8
HX
2922 switch (ret) {
2923 case GRO_NORMAL:
c7c4b3b6
BH
2924 if (netif_receive_skb(skb))
2925 ret = GRO_DROP;
2926 break;
5d38a079 2927
5d0d9be8 2928 case GRO_DROP:
5d0d9be8 2929 case GRO_MERGED_FREE:
5d38a079
HX
2930 kfree_skb(skb);
2931 break;
5b252f0c
BH
2932
2933 case GRO_HELD:
2934 case GRO_MERGED:
2935 break;
5d38a079
HX
2936 }
2937
c7c4b3b6 2938 return ret;
5d0d9be8
HX
2939}
2940EXPORT_SYMBOL(napi_skb_finish);
2941
78a478d0
HX
2942void skb_gro_reset_offset(struct sk_buff *skb)
2943{
2944 NAPI_GRO_CB(skb)->data_offset = 0;
2945 NAPI_GRO_CB(skb)->frag0 = NULL;
7489594c 2946 NAPI_GRO_CB(skb)->frag0_len = 0;
78a478d0 2947
78d3fd0b 2948 if (skb->mac_header == skb->tail &&
7489594c 2949 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
78a478d0
HX
2950 NAPI_GRO_CB(skb)->frag0 =
2951 page_address(skb_shinfo(skb)->frags[0].page) +
2952 skb_shinfo(skb)->frags[0].page_offset;
7489594c
HX
2953 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2954 }
78a478d0
HX
2955}
2956EXPORT_SYMBOL(skb_gro_reset_offset);
2957
c7c4b3b6 2958gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 2959{
86911732
HX
2960 skb_gro_reset_offset(skb);
2961
5d0d9be8 2962 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
d565b0a1
HX
2963}
2964EXPORT_SYMBOL(napi_gro_receive);
2965
96e93eab
HX
2966void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2967{
96e93eab
HX
2968 __skb_pull(skb, skb_headlen(skb));
2969 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2970
2971 napi->skb = skb;
2972}
2973EXPORT_SYMBOL(napi_reuse_skb);
2974
76620aaf 2975struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 2976{
5d38a079 2977 struct sk_buff *skb = napi->skb;
5d38a079
HX
2978
2979 if (!skb) {
89d71a66
ED
2980 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
2981 if (skb)
2982 napi->skb = skb;
80595d59 2983 }
96e93eab
HX
2984 return skb;
2985}
76620aaf 2986EXPORT_SYMBOL(napi_get_frags);
96e93eab 2987
c7c4b3b6
BH
2988gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
2989 gro_result_t ret)
96e93eab 2990{
5d0d9be8
HX
2991 switch (ret) {
2992 case GRO_NORMAL:
86911732 2993 case GRO_HELD:
e76b69cc 2994 skb->protocol = eth_type_trans(skb, skb->dev);
86911732 2995
c7c4b3b6
BH
2996 if (ret == GRO_HELD)
2997 skb_gro_pull(skb, -ETH_HLEN);
2998 else if (netif_receive_skb(skb))
2999 ret = GRO_DROP;
86911732 3000 break;
5d38a079 3001
5d0d9be8 3002 case GRO_DROP:
5d0d9be8
HX
3003 case GRO_MERGED_FREE:
3004 napi_reuse_skb(napi, skb);
3005 break;
5b252f0c
BH
3006
3007 case GRO_MERGED:
3008 break;
5d0d9be8 3009 }
5d38a079 3010
c7c4b3b6 3011 return ret;
5d38a079 3012}
5d0d9be8
HX
3013EXPORT_SYMBOL(napi_frags_finish);
3014
76620aaf
HX
3015struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3016{
3017 struct sk_buff *skb = napi->skb;
3018 struct ethhdr *eth;
a5b1cf28
HX
3019 unsigned int hlen;
3020 unsigned int off;
76620aaf
HX
3021
3022 napi->skb = NULL;
3023
3024 skb_reset_mac_header(skb);
3025 skb_gro_reset_offset(skb);
3026
a5b1cf28
HX
3027 off = skb_gro_offset(skb);
3028 hlen = off + sizeof(*eth);
3029 eth = skb_gro_header_fast(skb, off);
3030 if (skb_gro_header_hard(skb, hlen)) {
3031 eth = skb_gro_header_slow(skb, hlen, off);
3032 if (unlikely(!eth)) {
3033 napi_reuse_skb(napi, skb);
3034 skb = NULL;
3035 goto out;
3036 }
76620aaf
HX
3037 }
3038
3039 skb_gro_pull(skb, sizeof(*eth));
3040
3041 /*
3042 * This works because the only protocols we care about don't require
3043 * special handling. We'll fix it up properly at the end.
3044 */
3045 skb->protocol = eth->h_proto;
3046
3047out:
3048 return skb;
3049}
3050EXPORT_SYMBOL(napi_frags_skb);
3051
c7c4b3b6 3052gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 3053{
76620aaf 3054 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
3055
3056 if (!skb)
c7c4b3b6 3057 return GRO_DROP;
5d0d9be8
HX
3058
3059 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3060}
5d38a079
HX
3061EXPORT_SYMBOL(napi_gro_frags);
3062
bea3348e 3063static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
3064{
3065 int work = 0;
1da177e4
LT
3066 struct softnet_data *queue = &__get_cpu_var(softnet_data);
3067 unsigned long start_time = jiffies;
3068
bea3348e
SH
3069 napi->weight = weight_p;
3070 do {
1da177e4 3071 struct sk_buff *skb;
1da177e4 3072
0a9627f2 3073 spin_lock_irq(&queue->input_pkt_queue.lock);
1da177e4 3074 skb = __skb_dequeue(&queue->input_pkt_queue);
bea3348e 3075 if (!skb) {
8f1ead2d 3076 __napi_complete(napi);
0a9627f2 3077 spin_unlock_irq(&queue->input_pkt_queue.lock);
8f1ead2d 3078 break;
bea3348e 3079 }
0a9627f2 3080 spin_unlock_irq(&queue->input_pkt_queue.lock);
1da177e4 3081
0a9627f2 3082 __netif_receive_skb(skb);
bea3348e 3083 } while (++work < quota && jiffies == start_time);
1da177e4 3084
bea3348e
SH
3085 return work;
3086}
1da177e4 3087
bea3348e
SH
3088/**
3089 * __napi_schedule - schedule for receive
c4ea43c5 3090 * @n: entry to schedule
bea3348e
SH
3091 *
3092 * The entry's receive function will be scheduled to run
3093 */
b5606c2d 3094void __napi_schedule(struct napi_struct *n)
bea3348e
SH
3095{
3096 unsigned long flags;
1da177e4 3097
bea3348e
SH
3098 local_irq_save(flags);
3099 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
3100 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3101 local_irq_restore(flags);
1da177e4 3102}
bea3348e
SH
3103EXPORT_SYMBOL(__napi_schedule);
3104
d565b0a1
HX
3105void __napi_complete(struct napi_struct *n)
3106{
3107 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3108 BUG_ON(n->gro_list);
3109
3110 list_del(&n->poll_list);
3111 smp_mb__before_clear_bit();
3112 clear_bit(NAPI_STATE_SCHED, &n->state);
3113}
3114EXPORT_SYMBOL(__napi_complete);
3115
3116void napi_complete(struct napi_struct *n)
3117{
3118 unsigned long flags;
3119
3120 /*
3121 * don't let napi dequeue from the cpu poll list
3122 * just in case its running on a different cpu
3123 */
3124 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3125 return;
3126
3127 napi_gro_flush(n);
3128 local_irq_save(flags);
3129 __napi_complete(n);
3130 local_irq_restore(flags);
3131}
3132EXPORT_SYMBOL(napi_complete);
3133
3134void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3135 int (*poll)(struct napi_struct *, int), int weight)
3136{
3137 INIT_LIST_HEAD(&napi->poll_list);
4ae5544f 3138 napi->gro_count = 0;
d565b0a1 3139 napi->gro_list = NULL;
5d38a079 3140 napi->skb = NULL;
d565b0a1
HX
3141 napi->poll = poll;
3142 napi->weight = weight;
3143 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 3144 napi->dev = dev;
5d38a079 3145#ifdef CONFIG_NETPOLL
d565b0a1
HX
3146 spin_lock_init(&napi->poll_lock);
3147 napi->poll_owner = -1;
3148#endif
3149 set_bit(NAPI_STATE_SCHED, &napi->state);
3150}
3151EXPORT_SYMBOL(netif_napi_add);
3152
3153void netif_napi_del(struct napi_struct *napi)
3154{
3155 struct sk_buff *skb, *next;
3156
d7b06636 3157 list_del_init(&napi->dev_list);
76620aaf 3158 napi_free_frags(napi);
d565b0a1
HX
3159
3160 for (skb = napi->gro_list; skb; skb = next) {
3161 next = skb->next;
3162 skb->next = NULL;
3163 kfree_skb(skb);
3164 }
3165
3166 napi->gro_list = NULL;
4ae5544f 3167 napi->gro_count = 0;
d565b0a1
HX
3168}
3169EXPORT_SYMBOL(netif_napi_del);
3170
0a9627f2
TH
3171/*
3172 * net_rps_action sends any pending IPI's for rps. This is only called from
3173 * softirq and interrupts must be enabled.
3174 */
3175static void net_rps_action(cpumask_t *mask)
3176{
3177 int cpu;
3178
3179 /* Send pending IPI's to kick RPS processing on remote cpus. */
3180 for_each_cpu_mask_nr(cpu, *mask) {
3181 struct softnet_data *queue = &per_cpu(softnet_data, cpu);
3182 if (cpu_online(cpu))
3183 __smp_call_function_single(cpu, &queue->csd, 0);
3184 }
3185 cpus_clear(*mask);
3186}
1da177e4
LT
3187
3188static void net_rx_action(struct softirq_action *h)
3189{
bea3348e 3190 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
24f8b238 3191 unsigned long time_limit = jiffies + 2;
51b0bded 3192 int budget = netdev_budget;
53fb95d3 3193 void *have;
0a9627f2
TH
3194 int select;
3195 struct rps_remote_softirq_cpus *rcpus;
53fb95d3 3196
1da177e4
LT
3197 local_irq_disable();
3198
bea3348e
SH
3199 while (!list_empty(list)) {
3200 struct napi_struct *n;
3201 int work, weight;
1da177e4 3202
bea3348e 3203 /* If softirq window is exhuasted then punt.
24f8b238
SH
3204 * Allow this to run for 2 jiffies since which will allow
3205 * an average latency of 1.5/HZ.
bea3348e 3206 */
24f8b238 3207 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
1da177e4
LT
3208 goto softnet_break;
3209
3210 local_irq_enable();
3211
bea3348e
SH
3212 /* Even though interrupts have been re-enabled, this
3213 * access is safe because interrupts can only add new
3214 * entries to the tail of this list, and only ->poll()
3215 * calls can remove this head entry from the list.
3216 */
e5e26d75 3217 n = list_first_entry(list, struct napi_struct, poll_list);
1da177e4 3218
bea3348e
SH
3219 have = netpoll_poll_lock(n);
3220
3221 weight = n->weight;
3222
0a7606c1
DM
3223 /* This NAPI_STATE_SCHED test is for avoiding a race
3224 * with netpoll's poll_napi(). Only the entity which
3225 * obtains the lock and sees NAPI_STATE_SCHED set will
3226 * actually make the ->poll() call. Therefore we avoid
3227 * accidently calling ->poll() when NAPI is not scheduled.
3228 */
3229 work = 0;
4ea7e386 3230 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
0a7606c1 3231 work = n->poll(n, weight);
4ea7e386
NH
3232 trace_napi_poll(n);
3233 }
bea3348e
SH
3234
3235 WARN_ON_ONCE(work > weight);
3236
3237 budget -= work;
3238
3239 local_irq_disable();
3240
3241 /* Drivers must not modify the NAPI state if they
3242 * consume the entire weight. In such cases this code
3243 * still "owns" the NAPI instance and therefore can
3244 * move the instance around on the list at-will.
3245 */
fed17f30 3246 if (unlikely(work == weight)) {
ff780cd8
HX
3247 if (unlikely(napi_disable_pending(n))) {
3248 local_irq_enable();
3249 napi_complete(n);
3250 local_irq_disable();
3251 } else
fed17f30
DM
3252 list_move_tail(&n->poll_list, list);
3253 }
bea3348e
SH
3254
3255 netpoll_poll_unlock(have);
1da177e4
LT
3256 }
3257out:
0a9627f2
TH
3258 rcpus = &__get_cpu_var(rps_remote_softirq_cpus);
3259 select = rcpus->select;
3260 rcpus->select ^= 1;
3261
515e06c4 3262 local_irq_enable();
bea3348e 3263
0a9627f2
TH
3264 net_rps_action(&rcpus->mask[select]);
3265
db217334
CL
3266#ifdef CONFIG_NET_DMA
3267 /*
3268 * There may not be any more sk_buffs coming right now, so push
3269 * any pending DMA copies to hardware
3270 */
2ba05622 3271 dma_issue_pending_all();
db217334 3272#endif
bea3348e 3273
1da177e4
LT
3274 return;
3275
3276softnet_break:
3277 __get_cpu_var(netdev_rx_stat).time_squeeze++;
3278 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3279 goto out;
3280}
3281
d1b19dff 3282static gifconf_func_t *gifconf_list[NPROTO];
1da177e4
LT
3283
3284/**
3285 * register_gifconf - register a SIOCGIF handler
3286 * @family: Address family
3287 * @gifconf: Function handler
3288 *
3289 * Register protocol dependent address dumping routines. The handler
3290 * that is passed must not be freed or reused until it has been replaced
3291 * by another handler.
3292 */
d1b19dff 3293int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
1da177e4
LT
3294{
3295 if (family >= NPROTO)
3296 return -EINVAL;
3297 gifconf_list[family] = gifconf;
3298 return 0;
3299}
d1b19dff 3300EXPORT_SYMBOL(register_gifconf);
1da177e4
LT
3301
3302
3303/*
3304 * Map an interface index to its name (SIOCGIFNAME)
3305 */
3306
3307/*
3308 * We need this ioctl for efficient implementation of the
3309 * if_indextoname() function required by the IPv6 API. Without
3310 * it, we would have to search all the interfaces to find a
3311 * match. --pb
3312 */
3313
881d966b 3314static int dev_ifname(struct net *net, struct ifreq __user *arg)
1da177e4
LT
3315{
3316 struct net_device *dev;
3317 struct ifreq ifr;
3318
3319 /*
3320 * Fetch the caller's info block.
3321 */
3322
3323 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3324 return -EFAULT;
3325
fb699dfd
ED
3326 rcu_read_lock();
3327 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
1da177e4 3328 if (!dev) {
fb699dfd 3329 rcu_read_unlock();
1da177e4
LT
3330 return -ENODEV;
3331 }
3332
3333 strcpy(ifr.ifr_name, dev->name);
fb699dfd 3334 rcu_read_unlock();
1da177e4
LT
3335
3336 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3337 return -EFAULT;
3338 return 0;
3339}
3340
3341/*
3342 * Perform a SIOCGIFCONF call. This structure will change
3343 * size eventually, and there is nothing I can do about it.
3344 * Thus we will need a 'compatibility mode'.
3345 */
3346
881d966b 3347static int dev_ifconf(struct net *net, char __user *arg)
1da177e4
LT
3348{
3349 struct ifconf ifc;
3350 struct net_device *dev;
3351 char __user *pos;
3352 int len;
3353 int total;
3354 int i;
3355
3356 /*
3357 * Fetch the caller's info block.
3358 */
3359
3360 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3361 return -EFAULT;
3362
3363 pos = ifc.ifc_buf;
3364 len = ifc.ifc_len;
3365
3366 /*
3367 * Loop over the interfaces, and write an info block for each.
3368 */
3369
3370 total = 0;
881d966b 3371 for_each_netdev(net, dev) {
1da177e4
LT
3372 for (i = 0; i < NPROTO; i++) {
3373 if (gifconf_list[i]) {
3374 int done;
3375 if (!pos)
3376 done = gifconf_list[i](dev, NULL, 0);
3377 else
3378 done = gifconf_list[i](dev, pos + total,
3379 len - total);
3380 if (done < 0)
3381 return -EFAULT;
3382 total += done;
3383 }
3384 }
4ec93edb 3385 }
1da177e4
LT
3386
3387 /*
3388 * All done. Write the updated control block back to the caller.
3389 */
3390 ifc.ifc_len = total;
3391
3392 /*
3393 * Both BSD and Solaris return 0 here, so we do too.
3394 */
3395 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3396}
3397
3398#ifdef CONFIG_PROC_FS
3399/*
3400 * This is invoked by the /proc filesystem handler to display a device
3401 * in detail.
3402 */
7562f876 3403void *dev_seq_start(struct seq_file *seq, loff_t *pos)
c6d14c84 3404 __acquires(RCU)
1da177e4 3405{
e372c414 3406 struct net *net = seq_file_net(seq);
7562f876 3407 loff_t off;
1da177e4 3408 struct net_device *dev;
1da177e4 3409
c6d14c84 3410 rcu_read_lock();
7562f876
PE
3411 if (!*pos)
3412 return SEQ_START_TOKEN;
1da177e4 3413
7562f876 3414 off = 1;
c6d14c84 3415 for_each_netdev_rcu(net, dev)
7562f876
PE
3416 if (off++ == *pos)
3417 return dev;
1da177e4 3418
7562f876 3419 return NULL;
1da177e4
LT
3420}
3421
3422void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3423{
c6d14c84
ED
3424 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3425 first_net_device(seq_file_net(seq)) :
3426 next_net_device((struct net_device *)v);
3427
1da177e4 3428 ++*pos;
c6d14c84 3429 return rcu_dereference(dev);
1da177e4
LT
3430}
3431
3432void dev_seq_stop(struct seq_file *seq, void *v)
c6d14c84 3433 __releases(RCU)
1da177e4 3434{
c6d14c84 3435 rcu_read_unlock();
1da177e4
LT
3436}
3437
3438static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3439{
eeda3fd6 3440 const struct net_device_stats *stats = dev_get_stats(dev);
1da177e4 3441
2d13bafe 3442 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
5a1b5898
RR
3443 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3444 dev->name, stats->rx_bytes, stats->rx_packets,
3445 stats->rx_errors,
3446 stats->rx_dropped + stats->rx_missed_errors,
3447 stats->rx_fifo_errors,
3448 stats->rx_length_errors + stats->rx_over_errors +
3449 stats->rx_crc_errors + stats->rx_frame_errors,
3450 stats->rx_compressed, stats->multicast,
3451 stats->tx_bytes, stats->tx_packets,
3452 stats->tx_errors, stats->tx_dropped,
3453 stats->tx_fifo_errors, stats->collisions,
3454 stats->tx_carrier_errors +
3455 stats->tx_aborted_errors +
3456 stats->tx_window_errors +
3457 stats->tx_heartbeat_errors,
3458 stats->tx_compressed);
1da177e4
LT
3459}
3460
3461/*
3462 * Called from the PROCfs module. This now uses the new arbitrary sized
3463 * /proc/net interface to create /proc/net/dev
3464 */
3465static int dev_seq_show(struct seq_file *seq, void *v)
3466{
3467 if (v == SEQ_START_TOKEN)
3468 seq_puts(seq, "Inter-| Receive "
3469 " | Transmit\n"
3470 " face |bytes packets errs drop fifo frame "
3471 "compressed multicast|bytes packets errs "
3472 "drop fifo colls carrier compressed\n");
3473 else
3474 dev_seq_printf_stats(seq, v);
3475 return 0;
3476}
3477
3478static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3479{
3480 struct netif_rx_stats *rc = NULL;
3481
0c0b0aca 3482 while (*pos < nr_cpu_ids)
4ec93edb 3483 if (cpu_online(*pos)) {
1da177e4
LT
3484 rc = &per_cpu(netdev_rx_stat, *pos);
3485 break;
3486 } else
3487 ++*pos;
3488 return rc;
3489}
3490
3491static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3492{
3493 return softnet_get_online(pos);
3494}
3495
3496static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3497{
3498 ++*pos;
3499 return softnet_get_online(pos);
3500}
3501
3502static void softnet_seq_stop(struct seq_file *seq, void *v)
3503{
3504}
3505
3506static int softnet_seq_show(struct seq_file *seq, void *v)
3507{
3508 struct netif_rx_stats *s = v;
3509
0a9627f2 3510 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
31aa02c5 3511 s->total, s->dropped, s->time_squeeze, 0,
c1ebcdb8 3512 0, 0, 0, 0, /* was fastroute */
0a9627f2 3513 s->cpu_collision, s->received_rps);
1da177e4
LT
3514 return 0;
3515}
3516
f690808e 3517static const struct seq_operations dev_seq_ops = {
1da177e4
LT
3518 .start = dev_seq_start,
3519 .next = dev_seq_next,
3520 .stop = dev_seq_stop,
3521 .show = dev_seq_show,
3522};
3523
3524static int dev_seq_open(struct inode *inode, struct file *file)
3525{
e372c414
DL
3526 return seq_open_net(inode, file, &dev_seq_ops,
3527 sizeof(struct seq_net_private));
1da177e4
LT
3528}
3529
9a32144e 3530static const struct file_operations dev_seq_fops = {
1da177e4
LT
3531 .owner = THIS_MODULE,
3532 .open = dev_seq_open,
3533 .read = seq_read,
3534 .llseek = seq_lseek,
e372c414 3535 .release = seq_release_net,
1da177e4
LT
3536};
3537
f690808e 3538static const struct seq_operations softnet_seq_ops = {
1da177e4
LT
3539 .start = softnet_seq_start,
3540 .next = softnet_seq_next,
3541 .stop = softnet_seq_stop,
3542 .show = softnet_seq_show,
3543};
3544
3545static int softnet_seq_open(struct inode *inode, struct file *file)
3546{
3547 return seq_open(file, &softnet_seq_ops);
3548}
3549
9a32144e 3550static const struct file_operations softnet_seq_fops = {
1da177e4
LT
3551 .owner = THIS_MODULE,
3552 .open = softnet_seq_open,
3553 .read = seq_read,
3554 .llseek = seq_lseek,
3555 .release = seq_release,
3556};
3557
0e1256ff
SH
3558static void *ptype_get_idx(loff_t pos)
3559{
3560 struct packet_type *pt = NULL;
3561 loff_t i = 0;
3562 int t;
3563
3564 list_for_each_entry_rcu(pt, &ptype_all, list) {
3565 if (i == pos)
3566 return pt;
3567 ++i;
3568 }
3569
82d8a867 3570 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
0e1256ff
SH
3571 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3572 if (i == pos)
3573 return pt;
3574 ++i;
3575 }
3576 }
3577 return NULL;
3578}
3579
3580static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
72348a42 3581 __acquires(RCU)
0e1256ff
SH
3582{
3583 rcu_read_lock();
3584 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3585}
3586
3587static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3588{
3589 struct packet_type *pt;
3590 struct list_head *nxt;
3591 int hash;
3592
3593 ++*pos;
3594 if (v == SEQ_START_TOKEN)
3595 return ptype_get_idx(0);
3596
3597 pt = v;
3598 nxt = pt->list.next;
3599 if (pt->type == htons(ETH_P_ALL)) {
3600 if (nxt != &ptype_all)
3601 goto found;
3602 hash = 0;
3603 nxt = ptype_base[0].next;
3604 } else
82d8a867 3605 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
0e1256ff
SH
3606
3607 while (nxt == &ptype_base[hash]) {
82d8a867 3608 if (++hash >= PTYPE_HASH_SIZE)
0e1256ff
SH
3609 return NULL;
3610 nxt = ptype_base[hash].next;
3611 }
3612found:
3613 return list_entry(nxt, struct packet_type, list);
3614}
3615
3616static void ptype_seq_stop(struct seq_file *seq, void *v)
72348a42 3617 __releases(RCU)
0e1256ff
SH
3618{
3619 rcu_read_unlock();
3620}
3621
0e1256ff
SH
3622static int ptype_seq_show(struct seq_file *seq, void *v)
3623{
3624 struct packet_type *pt = v;
3625
3626 if (v == SEQ_START_TOKEN)
3627 seq_puts(seq, "Type Device Function\n");
c346dca1 3628 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
0e1256ff
SH
3629 if (pt->type == htons(ETH_P_ALL))
3630 seq_puts(seq, "ALL ");
3631 else
3632 seq_printf(seq, "%04x", ntohs(pt->type));
3633
908cd2da
AD
3634 seq_printf(seq, " %-8s %pF\n",
3635 pt->dev ? pt->dev->name : "", pt->func);
0e1256ff
SH
3636 }
3637
3638 return 0;
3639}
3640
3641static const struct seq_operations ptype_seq_ops = {
3642 .start = ptype_seq_start,
3643 .next = ptype_seq_next,
3644 .stop = ptype_seq_stop,
3645 .show = ptype_seq_show,
3646};
3647
3648static int ptype_seq_open(struct inode *inode, struct file *file)
3649{
2feb27db
PE
3650 return seq_open_net(inode, file, &ptype_seq_ops,
3651 sizeof(struct seq_net_private));
0e1256ff
SH
3652}
3653
3654static const struct file_operations ptype_seq_fops = {
3655 .owner = THIS_MODULE,
3656 .open = ptype_seq_open,
3657 .read = seq_read,
3658 .llseek = seq_lseek,
2feb27db 3659 .release = seq_release_net,
0e1256ff
SH
3660};
3661
3662
4665079c 3663static int __net_init dev_proc_net_init(struct net *net)
1da177e4
LT
3664{
3665 int rc = -ENOMEM;
3666
881d966b 3667 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
1da177e4 3668 goto out;
881d966b 3669 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
1da177e4 3670 goto out_dev;
881d966b 3671 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
457c4cbc 3672 goto out_softnet;
0e1256ff 3673
881d966b 3674 if (wext_proc_init(net))
457c4cbc 3675 goto out_ptype;
1da177e4
LT
3676 rc = 0;
3677out:
3678 return rc;
457c4cbc 3679out_ptype:
881d966b 3680 proc_net_remove(net, "ptype");
1da177e4 3681out_softnet:
881d966b 3682 proc_net_remove(net, "softnet_stat");
1da177e4 3683out_dev:
881d966b 3684 proc_net_remove(net, "dev");
1da177e4
LT
3685 goto out;
3686}
881d966b 3687
4665079c 3688static void __net_exit dev_proc_net_exit(struct net *net)
881d966b
EB
3689{
3690 wext_proc_exit(net);
3691
3692 proc_net_remove(net, "ptype");
3693 proc_net_remove(net, "softnet_stat");
3694 proc_net_remove(net, "dev");
3695}
3696
022cbae6 3697static struct pernet_operations __net_initdata dev_proc_ops = {
881d966b
EB
3698 .init = dev_proc_net_init,
3699 .exit = dev_proc_net_exit,
3700};
3701
3702static int __init dev_proc_init(void)
3703{
3704 return register_pernet_subsys(&dev_proc_ops);
3705}
1da177e4
LT
3706#else
3707#define dev_proc_init() 0
3708#endif /* CONFIG_PROC_FS */
3709
3710
3711/**
3712 * netdev_set_master - set up master/slave pair
3713 * @slave: slave device
3714 * @master: new master device
3715 *
3716 * Changes the master device of the slave. Pass %NULL to break the
3717 * bonding. The caller must hold the RTNL semaphore. On a failure
3718 * a negative errno code is returned. On success the reference counts
3719 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3720 * function returns zero.
3721 */
3722int netdev_set_master(struct net_device *slave, struct net_device *master)
3723{
3724 struct net_device *old = slave->master;
3725
3726 ASSERT_RTNL();
3727
3728 if (master) {
3729 if (old)
3730 return -EBUSY;
3731 dev_hold(master);
3732 }
3733
3734 slave->master = master;
4ec93edb 3735
1da177e4
LT
3736 synchronize_net();
3737
3738 if (old)
3739 dev_put(old);
3740
3741 if (master)
3742 slave->flags |= IFF_SLAVE;
3743 else
3744 slave->flags &= ~IFF_SLAVE;
3745
3746 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3747 return 0;
3748}
d1b19dff 3749EXPORT_SYMBOL(netdev_set_master);
1da177e4 3750
b6c40d68
PM
3751static void dev_change_rx_flags(struct net_device *dev, int flags)
3752{
d314774c
SH
3753 const struct net_device_ops *ops = dev->netdev_ops;
3754
3755 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3756 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
3757}
3758
dad9b335 3759static int __dev_set_promiscuity(struct net_device *dev, int inc)
1da177e4
LT
3760{
3761 unsigned short old_flags = dev->flags;
8192b0c4
DH
3762 uid_t uid;
3763 gid_t gid;
1da177e4 3764
24023451
PM
3765 ASSERT_RTNL();
3766
dad9b335
WC
3767 dev->flags |= IFF_PROMISC;
3768 dev->promiscuity += inc;
3769 if (dev->promiscuity == 0) {
3770 /*
3771 * Avoid overflow.
3772 * If inc causes overflow, untouch promisc and return error.
3773 */
3774 if (inc < 0)
3775 dev->flags &= ~IFF_PROMISC;
3776 else {
3777 dev->promiscuity -= inc;
3778 printk(KERN_WARNING "%s: promiscuity touches roof, "
3779 "set promiscuity failed, promiscuity feature "
3780 "of device might be broken.\n", dev->name);
3781 return -EOVERFLOW;
3782 }
3783 }
52609c0b 3784 if (dev->flags != old_flags) {
1da177e4
LT
3785 printk(KERN_INFO "device %s %s promiscuous mode\n",
3786 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4ec93edb 3787 "left");
8192b0c4
DH
3788 if (audit_enabled) {
3789 current_uid_gid(&uid, &gid);
7759db82
KHK
3790 audit_log(current->audit_context, GFP_ATOMIC,
3791 AUDIT_ANOM_PROMISCUOUS,
3792 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3793 dev->name, (dev->flags & IFF_PROMISC),
3794 (old_flags & IFF_PROMISC),
3795 audit_get_loginuid(current),
8192b0c4 3796 uid, gid,
7759db82 3797 audit_get_sessionid(current));
8192b0c4 3798 }
24023451 3799
b6c40d68 3800 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 3801 }
dad9b335 3802 return 0;
1da177e4
LT
3803}
3804
4417da66
PM
3805/**
3806 * dev_set_promiscuity - update promiscuity count on a device
3807 * @dev: device
3808 * @inc: modifier
3809 *
3810 * Add or remove promiscuity from a device. While the count in the device
3811 * remains above zero the interface remains promiscuous. Once it hits zero
3812 * the device reverts back to normal filtering operation. A negative inc
3813 * value is used to drop promiscuity on the device.
dad9b335 3814 * Return 0 if successful or a negative errno code on error.
4417da66 3815 */
dad9b335 3816int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66
PM
3817{
3818 unsigned short old_flags = dev->flags;
dad9b335 3819 int err;
4417da66 3820
dad9b335 3821 err = __dev_set_promiscuity(dev, inc);
4b5a698e 3822 if (err < 0)
dad9b335 3823 return err;
4417da66
PM
3824 if (dev->flags != old_flags)
3825 dev_set_rx_mode(dev);
dad9b335 3826 return err;
4417da66 3827}
d1b19dff 3828EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 3829
1da177e4
LT
3830/**
3831 * dev_set_allmulti - update allmulti count on a device
3832 * @dev: device
3833 * @inc: modifier
3834 *
3835 * Add or remove reception of all multicast frames to a device. While the
3836 * count in the device remains above zero the interface remains listening
3837 * to all interfaces. Once it hits zero the device reverts back to normal
3838 * filtering operation. A negative @inc value is used to drop the counter
3839 * when releasing a resource needing all multicasts.
dad9b335 3840 * Return 0 if successful or a negative errno code on error.
1da177e4
LT
3841 */
3842
dad9b335 3843int dev_set_allmulti(struct net_device *dev, int inc)
1da177e4
LT
3844{
3845 unsigned short old_flags = dev->flags;
3846
24023451
PM
3847 ASSERT_RTNL();
3848
1da177e4 3849 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
3850 dev->allmulti += inc;
3851 if (dev->allmulti == 0) {
3852 /*
3853 * Avoid overflow.
3854 * If inc causes overflow, untouch allmulti and return error.
3855 */
3856 if (inc < 0)
3857 dev->flags &= ~IFF_ALLMULTI;
3858 else {
3859 dev->allmulti -= inc;
3860 printk(KERN_WARNING "%s: allmulti touches roof, "
3861 "set allmulti failed, allmulti feature of "
3862 "device might be broken.\n", dev->name);
3863 return -EOVERFLOW;
3864 }
3865 }
24023451 3866 if (dev->flags ^ old_flags) {
b6c40d68 3867 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 3868 dev_set_rx_mode(dev);
24023451 3869 }
dad9b335 3870 return 0;
4417da66 3871}
d1b19dff 3872EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
3873
3874/*
3875 * Upload unicast and multicast address lists to device and
3876 * configure RX filtering. When the device doesn't support unicast
53ccaae1 3877 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
3878 * are present.
3879 */
3880void __dev_set_rx_mode(struct net_device *dev)
3881{
d314774c
SH
3882 const struct net_device_ops *ops = dev->netdev_ops;
3883
4417da66
PM
3884 /* dev_open will call this function so the list will stay sane. */
3885 if (!(dev->flags&IFF_UP))
3886 return;
3887
3888 if (!netif_device_present(dev))
40b77c94 3889 return;
4417da66 3890
d314774c
SH
3891 if (ops->ndo_set_rx_mode)
3892 ops->ndo_set_rx_mode(dev);
4417da66
PM
3893 else {
3894 /* Unicast addresses changes may only happen under the rtnl,
3895 * therefore calling __dev_set_promiscuity here is safe.
3896 */
32e7bfc4 3897 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4417da66
PM
3898 __dev_set_promiscuity(dev, 1);
3899 dev->uc_promisc = 1;
32e7bfc4 3900 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4417da66
PM
3901 __dev_set_promiscuity(dev, -1);
3902 dev->uc_promisc = 0;
3903 }
3904
d314774c
SH
3905 if (ops->ndo_set_multicast_list)
3906 ops->ndo_set_multicast_list(dev);
4417da66
PM
3907 }
3908}
3909
3910void dev_set_rx_mode(struct net_device *dev)
3911{
b9e40857 3912 netif_addr_lock_bh(dev);
4417da66 3913 __dev_set_rx_mode(dev);
b9e40857 3914 netif_addr_unlock_bh(dev);
1da177e4
LT
3915}
3916
f001fde5
JP
3917/* hw addresses list handling functions */
3918
31278e71
JP
3919static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr,
3920 int addr_len, unsigned char addr_type)
f001fde5
JP
3921{
3922 struct netdev_hw_addr *ha;
3923 int alloc_size;
3924
3925 if (addr_len > MAX_ADDR_LEN)
3926 return -EINVAL;
3927
31278e71 3928 list_for_each_entry(ha, &list->list, list) {
ccffad25
JP
3929 if (!memcmp(ha->addr, addr, addr_len) &&
3930 ha->type == addr_type) {
3931 ha->refcount++;
3932 return 0;
3933 }
3934 }
3935
3936
f001fde5
JP
3937 alloc_size = sizeof(*ha);
3938 if (alloc_size < L1_CACHE_BYTES)
3939 alloc_size = L1_CACHE_BYTES;
3940 ha = kmalloc(alloc_size, GFP_ATOMIC);
3941 if (!ha)
3942 return -ENOMEM;
3943 memcpy(ha->addr, addr, addr_len);
3944 ha->type = addr_type;
ccffad25
JP
3945 ha->refcount = 1;
3946 ha->synced = false;
31278e71
JP
3947 list_add_tail_rcu(&ha->list, &list->list);
3948 list->count++;
f001fde5
JP
3949 return 0;
3950}
3951
3952static void ha_rcu_free(struct rcu_head *head)
3953{
3954 struct netdev_hw_addr *ha;
3955
3956 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3957 kfree(ha);
3958}
3959
31278e71
JP
3960static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr,
3961 int addr_len, unsigned char addr_type)
f001fde5
JP
3962{
3963 struct netdev_hw_addr *ha;
f001fde5 3964
31278e71 3965 list_for_each_entry(ha, &list->list, list) {
ccffad25 3966 if (!memcmp(ha->addr, addr, addr_len) &&
f001fde5 3967 (ha->type == addr_type || !addr_type)) {
ccffad25
JP
3968 if (--ha->refcount)
3969 return 0;
f001fde5
JP
3970 list_del_rcu(&ha->list);
3971 call_rcu(&ha->rcu_head, ha_rcu_free);
31278e71 3972 list->count--;
f001fde5
JP
3973 return 0;
3974 }
3975 }
3976 return -ENOENT;
3977}
3978
31278e71
JP
3979static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
3980 struct netdev_hw_addr_list *from_list,
3981 int addr_len,
ccffad25 3982 unsigned char addr_type)
f001fde5
JP
3983{
3984 int err;
3985 struct netdev_hw_addr *ha, *ha2;
3986 unsigned char type;
3987
31278e71 3988 list_for_each_entry(ha, &from_list->list, list) {
f001fde5 3989 type = addr_type ? addr_type : ha->type;
31278e71 3990 err = __hw_addr_add(to_list, ha->addr, addr_len, type);
f001fde5
JP
3991 if (err)
3992 goto unroll;
3993 }
3994 return 0;
3995
3996unroll:
31278e71 3997 list_for_each_entry(ha2, &from_list->list, list) {
f001fde5
JP
3998 if (ha2 == ha)
3999 break;
4000 type = addr_type ? addr_type : ha2->type;
31278e71 4001 __hw_addr_del(to_list, ha2->addr, addr_len, type);
f001fde5
JP
4002 }
4003 return err;
4004}
4005
31278e71
JP
4006static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
4007 struct netdev_hw_addr_list *from_list,
4008 int addr_len,
ccffad25 4009 unsigned char addr_type)
f001fde5
JP
4010{
4011 struct netdev_hw_addr *ha;
4012 unsigned char type;
4013
31278e71 4014 list_for_each_entry(ha, &from_list->list, list) {
f001fde5 4015 type = addr_type ? addr_type : ha->type;
31278e71 4016 __hw_addr_del(to_list, ha->addr, addr_len, addr_type);
ccffad25
JP
4017 }
4018}
4019
31278e71
JP
4020static int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4021 struct netdev_hw_addr_list *from_list,
ccffad25
JP
4022 int addr_len)
4023{
4024 int err = 0;
4025 struct netdev_hw_addr *ha, *tmp;
4026
31278e71 4027 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
ccffad25 4028 if (!ha->synced) {
31278e71 4029 err = __hw_addr_add(to_list, ha->addr,
ccffad25
JP
4030 addr_len, ha->type);
4031 if (err)
4032 break;
4033 ha->synced = true;
4034 ha->refcount++;
4035 } else if (ha->refcount == 1) {
31278e71
JP
4036 __hw_addr_del(to_list, ha->addr, addr_len, ha->type);
4037 __hw_addr_del(from_list, ha->addr, addr_len, ha->type);
ccffad25 4038 }
f001fde5 4039 }
ccffad25 4040 return err;
f001fde5
JP
4041}
4042
31278e71
JP
4043static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4044 struct netdev_hw_addr_list *from_list,
ccffad25
JP
4045 int addr_len)
4046{
4047 struct netdev_hw_addr *ha, *tmp;
4048
31278e71 4049 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
ccffad25 4050 if (ha->synced) {
31278e71 4051 __hw_addr_del(to_list, ha->addr,
ccffad25
JP
4052 addr_len, ha->type);
4053 ha->synced = false;
31278e71 4054 __hw_addr_del(from_list, ha->addr,
ccffad25
JP
4055 addr_len, ha->type);
4056 }
4057 }
4058}
4059
31278e71 4060static void __hw_addr_flush(struct netdev_hw_addr_list *list)
f001fde5
JP
4061{
4062 struct netdev_hw_addr *ha, *tmp;
4063
31278e71 4064 list_for_each_entry_safe(ha, tmp, &list->list, list) {
f001fde5
JP
4065 list_del_rcu(&ha->list);
4066 call_rcu(&ha->rcu_head, ha_rcu_free);
4067 }
31278e71
JP
4068 list->count = 0;
4069}
4070
4071static void __hw_addr_init(struct netdev_hw_addr_list *list)
4072{
4073 INIT_LIST_HEAD(&list->list);
4074 list->count = 0;
f001fde5
JP
4075}
4076
4077/* Device addresses handling functions */
4078
4079static void dev_addr_flush(struct net_device *dev)
4080{
4081 /* rtnl_mutex must be held here */
4082
31278e71 4083 __hw_addr_flush(&dev->dev_addrs);
f001fde5
JP
4084 dev->dev_addr = NULL;
4085}
4086
4087static int dev_addr_init(struct net_device *dev)
4088{
4089 unsigned char addr[MAX_ADDR_LEN];
4090 struct netdev_hw_addr *ha;
4091 int err;
4092
4093 /* rtnl_mutex must be held here */
4094
31278e71 4095 __hw_addr_init(&dev->dev_addrs);
0c27922e 4096 memset(addr, 0, sizeof(addr));
31278e71 4097 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr),
f001fde5
JP
4098 NETDEV_HW_ADDR_T_LAN);
4099 if (!err) {
4100 /*
4101 * Get the first (previously created) address from the list
4102 * and set dev_addr pointer to this location.
4103 */
31278e71 4104 ha = list_first_entry(&dev->dev_addrs.list,
f001fde5
JP
4105 struct netdev_hw_addr, list);
4106 dev->dev_addr = ha->addr;
4107 }
4108 return err;
4109}
4110
4111/**
4112 * dev_addr_add - Add a device address
4113 * @dev: device
4114 * @addr: address to add
4115 * @addr_type: address type
4116 *
4117 * Add a device address to the device or increase the reference count if
4118 * it already exists.
4119 *
4120 * The caller must hold the rtnl_mutex.
4121 */
4122int dev_addr_add(struct net_device *dev, unsigned char *addr,
4123 unsigned char addr_type)
4124{
4125 int err;
4126
4127 ASSERT_RTNL();
4128
31278e71 4129 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type);
f001fde5
JP
4130 if (!err)
4131 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4132 return err;
4133}
4134EXPORT_SYMBOL(dev_addr_add);
4135
4136/**
4137 * dev_addr_del - Release a device address.
4138 * @dev: device
4139 * @addr: address to delete
4140 * @addr_type: address type
4141 *
4142 * Release reference to a device address and remove it from the device
4143 * if the reference count drops to zero.
4144 *
4145 * The caller must hold the rtnl_mutex.
4146 */
4147int dev_addr_del(struct net_device *dev, unsigned char *addr,
4148 unsigned char addr_type)
4149{
4150 int err;
ccffad25 4151 struct netdev_hw_addr *ha;
f001fde5
JP
4152
4153 ASSERT_RTNL();
4154
ccffad25
JP
4155 /*
4156 * We can not remove the first address from the list because
4157 * dev->dev_addr points to that.
4158 */
31278e71
JP
4159 ha = list_first_entry(&dev->dev_addrs.list,
4160 struct netdev_hw_addr, list);
ccffad25
JP
4161 if (ha->addr == dev->dev_addr && ha->refcount == 1)
4162 return -ENOENT;
4163
31278e71 4164 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len,
ccffad25 4165 addr_type);
f001fde5
JP
4166 if (!err)
4167 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4168 return err;
4169}
4170EXPORT_SYMBOL(dev_addr_del);
4171
4172/**
4173 * dev_addr_add_multiple - Add device addresses from another device
4174 * @to_dev: device to which addresses will be added
4175 * @from_dev: device from which addresses will be added
4176 * @addr_type: address type - 0 means type will be used from from_dev
4177 *
4178 * Add device addresses of the one device to another.
4179 **
4180 * The caller must hold the rtnl_mutex.
4181 */
4182int dev_addr_add_multiple(struct net_device *to_dev,
4183 struct net_device *from_dev,
4184 unsigned char addr_type)
4185{
4186 int err;
4187
4188 ASSERT_RTNL();
4189
4190 if (from_dev->addr_len != to_dev->addr_len)
4191 return -EINVAL;
31278e71 4192 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
ccffad25 4193 to_dev->addr_len, addr_type);
f001fde5
JP
4194 if (!err)
4195 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
4196 return err;
4197}
4198EXPORT_SYMBOL(dev_addr_add_multiple);
4199
4200/**
4201 * dev_addr_del_multiple - Delete device addresses by another device
4202 * @to_dev: device where the addresses will be deleted
4203 * @from_dev: device by which addresses the addresses will be deleted
4204 * @addr_type: address type - 0 means type will used from from_dev
4205 *
4206 * Deletes addresses in to device by the list of addresses in from device.
4207 *
4208 * The caller must hold the rtnl_mutex.
4209 */
4210int dev_addr_del_multiple(struct net_device *to_dev,
4211 struct net_device *from_dev,
4212 unsigned char addr_type)
4213{
4214 ASSERT_RTNL();
4215
4216 if (from_dev->addr_len != to_dev->addr_len)
4217 return -EINVAL;
31278e71 4218 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
ccffad25 4219 to_dev->addr_len, addr_type);
f001fde5
JP
4220 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
4221 return 0;
4222}
4223EXPORT_SYMBOL(dev_addr_del_multiple);
4224
31278e71 4225/* multicast addresses handling functions */
f001fde5 4226
61cbc2fc
PM
4227int __dev_addr_delete(struct dev_addr_list **list, int *count,
4228 void *addr, int alen, int glbl)
bf742482
PM
4229{
4230 struct dev_addr_list *da;
4231
4232 for (; (da = *list) != NULL; list = &da->next) {
4233 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4234 alen == da->da_addrlen) {
4235 if (glbl) {
4236 int old_glbl = da->da_gusers;
4237 da->da_gusers = 0;
4238 if (old_glbl == 0)
4239 break;
4240 }
4241 if (--da->da_users)
4242 return 0;
4243
4244 *list = da->next;
4245 kfree(da);
61cbc2fc 4246 (*count)--;
bf742482
PM
4247 return 0;
4248 }
4249 }
4250 return -ENOENT;
4251}
4252
61cbc2fc
PM
4253int __dev_addr_add(struct dev_addr_list **list, int *count,
4254 void *addr, int alen, int glbl)
bf742482
PM
4255{
4256 struct dev_addr_list *da;
4257
4258 for (da = *list; da != NULL; da = da->next) {
4259 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4260 da->da_addrlen == alen) {
4261 if (glbl) {
4262 int old_glbl = da->da_gusers;
4263 da->da_gusers = 1;
4264 if (old_glbl)
4265 return 0;
4266 }
4267 da->da_users++;
4268 return 0;
4269 }
4270 }
4271
12aa343a 4272 da = kzalloc(sizeof(*da), GFP_ATOMIC);
bf742482
PM
4273 if (da == NULL)
4274 return -ENOMEM;
4275 memcpy(da->da_addr, addr, alen);
4276 da->da_addrlen = alen;
4277 da->da_users = 1;
4278 da->da_gusers = glbl ? 1 : 0;
4279 da->next = *list;
4280 *list = da;
61cbc2fc 4281 (*count)++;
bf742482
PM
4282 return 0;
4283}
4284
4417da66
PM
4285/**
4286 * dev_unicast_delete - Release secondary unicast address.
4287 * @dev: device
0ed72ec4 4288 * @addr: address to delete
4417da66
PM
4289 *
4290 * Release reference to a secondary unicast address and remove it
0ed72ec4 4291 * from the device if the reference count drops to zero.
4417da66
PM
4292 *
4293 * The caller must hold the rtnl_mutex.
4294 */
ccffad25 4295int dev_unicast_delete(struct net_device *dev, void *addr)
4417da66
PM
4296{
4297 int err;
4298
4299 ASSERT_RTNL();
4300
a6ac65db 4301 netif_addr_lock_bh(dev);
31278e71
JP
4302 err = __hw_addr_del(&dev->uc, addr, dev->addr_len,
4303 NETDEV_HW_ADDR_T_UNICAST);
61cbc2fc 4304 if (!err)
4417da66 4305 __dev_set_rx_mode(dev);
a6ac65db 4306 netif_addr_unlock_bh(dev);
4417da66
PM
4307 return err;
4308}
4309EXPORT_SYMBOL(dev_unicast_delete);
4310
4311/**
4312 * dev_unicast_add - add a secondary unicast address
4313 * @dev: device
5dbaec5d 4314 * @addr: address to add
4417da66
PM
4315 *
4316 * Add a secondary unicast address to the device or increase
4317 * the reference count if it already exists.
4318 *
4319 * The caller must hold the rtnl_mutex.
4320 */
ccffad25 4321int dev_unicast_add(struct net_device *dev, void *addr)
4417da66
PM
4322{
4323 int err;
4324
4325 ASSERT_RTNL();
4326
a6ac65db 4327 netif_addr_lock_bh(dev);
31278e71
JP
4328 err = __hw_addr_add(&dev->uc, addr, dev->addr_len,
4329 NETDEV_HW_ADDR_T_UNICAST);
61cbc2fc 4330 if (!err)
4417da66 4331 __dev_set_rx_mode(dev);
a6ac65db 4332 netif_addr_unlock_bh(dev);
4417da66
PM
4333 return err;
4334}
4335EXPORT_SYMBOL(dev_unicast_add);
4336
e83a2ea8
CL
4337int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
4338 struct dev_addr_list **from, int *from_count)
4339{
4340 struct dev_addr_list *da, *next;
4341 int err = 0;
4342
4343 da = *from;
4344 while (da != NULL) {
4345 next = da->next;
4346 if (!da->da_synced) {
4347 err = __dev_addr_add(to, to_count,
4348 da->da_addr, da->da_addrlen, 0);
4349 if (err < 0)
4350 break;
4351 da->da_synced = 1;
4352 da->da_users++;
4353 } else if (da->da_users == 1) {
4354 __dev_addr_delete(to, to_count,
4355 da->da_addr, da->da_addrlen, 0);
4356 __dev_addr_delete(from, from_count,
4357 da->da_addr, da->da_addrlen, 0);
4358 }
4359 da = next;
4360 }
4361 return err;
4362}
c4029083 4363EXPORT_SYMBOL_GPL(__dev_addr_sync);
e83a2ea8
CL
4364
4365void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
4366 struct dev_addr_list **from, int *from_count)
4367{
4368 struct dev_addr_list *da, *next;
4369
4370 da = *from;
4371 while (da != NULL) {
4372 next = da->next;
4373 if (da->da_synced) {
4374 __dev_addr_delete(to, to_count,
4375 da->da_addr, da->da_addrlen, 0);
4376 da->da_synced = 0;
4377 __dev_addr_delete(from, from_count,
4378 da->da_addr, da->da_addrlen, 0);
4379 }
4380 da = next;
4381 }
4382}
c4029083 4383EXPORT_SYMBOL_GPL(__dev_addr_unsync);
e83a2ea8
CL
4384
4385/**
4386 * dev_unicast_sync - Synchronize device's unicast list to another device
4387 * @to: destination device
4388 * @from: source device
4389 *
4390 * Add newly added addresses to the destination device and release
a6ac65db
JP
4391 * addresses that have no users left. The source device must be
4392 * locked by netif_tx_lock_bh.
e83a2ea8
CL
4393 *
4394 * This function is intended to be called from the dev->set_rx_mode
4395 * function of layered software devices.
4396 */
4397int dev_unicast_sync(struct net_device *to, struct net_device *from)
4398{
4399 int err = 0;
4400
ccffad25
JP
4401 if (to->addr_len != from->addr_len)
4402 return -EINVAL;
4403
a6ac65db 4404 netif_addr_lock_bh(to);
31278e71 4405 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len);
e83a2ea8
CL
4406 if (!err)
4407 __dev_set_rx_mode(to);
a6ac65db 4408 netif_addr_unlock_bh(to);
e83a2ea8
CL
4409 return err;
4410}
4411EXPORT_SYMBOL(dev_unicast_sync);
4412
4413/**
bc2cda1e 4414 * dev_unicast_unsync - Remove synchronized addresses from the destination device
e83a2ea8
CL
4415 * @to: destination device
4416 * @from: source device
4417 *
4418 * Remove all addresses that were added to the destination device by
4419 * dev_unicast_sync(). This function is intended to be called from the
4420 * dev->stop function of layered software devices.
4421 */
4422void dev_unicast_unsync(struct net_device *to, struct net_device *from)
4423{
ccffad25
JP
4424 if (to->addr_len != from->addr_len)
4425 return;
e83a2ea8 4426
a6ac65db
JP
4427 netif_addr_lock_bh(from);
4428 netif_addr_lock(to);
31278e71 4429 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len);
ccffad25 4430 __dev_set_rx_mode(to);
a6ac65db
JP
4431 netif_addr_unlock(to);
4432 netif_addr_unlock_bh(from);
e83a2ea8
CL
4433}
4434EXPORT_SYMBOL(dev_unicast_unsync);
4435
ccffad25
JP
4436static void dev_unicast_flush(struct net_device *dev)
4437{
a6ac65db 4438 netif_addr_lock_bh(dev);
31278e71 4439 __hw_addr_flush(&dev->uc);
a6ac65db 4440 netif_addr_unlock_bh(dev);
ccffad25
JP
4441}
4442
4443static void dev_unicast_init(struct net_device *dev)
4444{
31278e71 4445 __hw_addr_init(&dev->uc);
ccffad25
JP
4446}
4447
4448
12972621
DC
4449static void __dev_addr_discard(struct dev_addr_list **list)
4450{
4451 struct dev_addr_list *tmp;
4452
4453 while (*list != NULL) {
4454 tmp = *list;
4455 *list = tmp->next;
4456 if (tmp->da_users > tmp->da_gusers)
4457 printk("__dev_addr_discard: address leakage! "
4458 "da_users=%d\n", tmp->da_users);
4459 kfree(tmp);
4460 }
4461}
4462
26cc2522 4463static void dev_addr_discard(struct net_device *dev)
4417da66 4464{
b9e40857 4465 netif_addr_lock_bh(dev);
26cc2522 4466
456ad75c 4467 __dev_addr_discard(&dev->mc_list);
4cd24eaf 4468 netdev_mc_count(dev) = 0;
26cc2522 4469
b9e40857 4470 netif_addr_unlock_bh(dev);
456ad75c
DC
4471}
4472
f0db275a
SH
4473/**
4474 * dev_get_flags - get flags reported to userspace
4475 * @dev: device
4476 *
4477 * Get the combination of flag bits exported through APIs to userspace.
4478 */
1da177e4
LT
4479unsigned dev_get_flags(const struct net_device *dev)
4480{
4481 unsigned flags;
4482
4483 flags = (dev->flags & ~(IFF_PROMISC |
4484 IFF_ALLMULTI |
b00055aa
SR
4485 IFF_RUNNING |
4486 IFF_LOWER_UP |
4487 IFF_DORMANT)) |
1da177e4
LT
4488 (dev->gflags & (IFF_PROMISC |
4489 IFF_ALLMULTI));
4490
b00055aa
SR
4491 if (netif_running(dev)) {
4492 if (netif_oper_up(dev))
4493 flags |= IFF_RUNNING;
4494 if (netif_carrier_ok(dev))
4495 flags |= IFF_LOWER_UP;
4496 if (netif_dormant(dev))
4497 flags |= IFF_DORMANT;
4498 }
1da177e4
LT
4499
4500 return flags;
4501}
d1b19dff 4502EXPORT_SYMBOL(dev_get_flags);
1da177e4 4503
bd380811 4504int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 4505{
1da177e4 4506 int old_flags = dev->flags;
bd380811 4507 int ret;
1da177e4 4508
24023451
PM
4509 ASSERT_RTNL();
4510
1da177e4
LT
4511 /*
4512 * Set the flags on our device.
4513 */
4514
4515 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4516 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4517 IFF_AUTOMEDIA)) |
4518 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4519 IFF_ALLMULTI));
4520
4521 /*
4522 * Load in the correct multicast list now the flags have changed.
4523 */
4524
b6c40d68
PM
4525 if ((old_flags ^ flags) & IFF_MULTICAST)
4526 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 4527
4417da66 4528 dev_set_rx_mode(dev);
1da177e4
LT
4529
4530 /*
4531 * Have we downed the interface. We handle IFF_UP ourselves
4532 * according to user attempts to set it, rather than blindly
4533 * setting it.
4534 */
4535
4536 ret = 0;
4537 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
bd380811 4538 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4
LT
4539
4540 if (!ret)
4417da66 4541 dev_set_rx_mode(dev);
1da177e4
LT
4542 }
4543
1da177e4 4544 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff
ED
4545 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4546
1da177e4
LT
4547 dev->gflags ^= IFF_PROMISC;
4548 dev_set_promiscuity(dev, inc);
4549 }
4550
4551 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4552 is important. Some (broken) drivers set IFF_PROMISC, when
4553 IFF_ALLMULTI is requested not asking us and not reporting.
4554 */
4555 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
4556 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4557
1da177e4
LT
4558 dev->gflags ^= IFF_ALLMULTI;
4559 dev_set_allmulti(dev, inc);
4560 }
4561
bd380811
PM
4562 return ret;
4563}
4564
4565void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4566{
4567 unsigned int changes = dev->flags ^ old_flags;
4568
4569 if (changes & IFF_UP) {
4570 if (dev->flags & IFF_UP)
4571 call_netdevice_notifiers(NETDEV_UP, dev);
4572 else
4573 call_netdevice_notifiers(NETDEV_DOWN, dev);
4574 }
4575
4576 if (dev->flags & IFF_UP &&
4577 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4578 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4579}
4580
4581/**
4582 * dev_change_flags - change device settings
4583 * @dev: device
4584 * @flags: device state flags
4585 *
4586 * Change settings on device based state flags. The flags are
4587 * in the userspace exported format.
4588 */
4589int dev_change_flags(struct net_device *dev, unsigned flags)
4590{
4591 int ret, changes;
4592 int old_flags = dev->flags;
4593
4594 ret = __dev_change_flags(dev, flags);
4595 if (ret < 0)
4596 return ret;
4597
4598 changes = old_flags ^ dev->flags;
7c355f53
TG
4599 if (changes)
4600 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
1da177e4 4601
bd380811 4602 __dev_notify_flags(dev, old_flags);
1da177e4
LT
4603 return ret;
4604}
d1b19dff 4605EXPORT_SYMBOL(dev_change_flags);
1da177e4 4606
f0db275a
SH
4607/**
4608 * dev_set_mtu - Change maximum transfer unit
4609 * @dev: device
4610 * @new_mtu: new transfer unit
4611 *
4612 * Change the maximum transfer size of the network device.
4613 */
1da177e4
LT
4614int dev_set_mtu(struct net_device *dev, int new_mtu)
4615{
d314774c 4616 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
4617 int err;
4618
4619 if (new_mtu == dev->mtu)
4620 return 0;
4621
4622 /* MTU must be positive. */
4623 if (new_mtu < 0)
4624 return -EINVAL;
4625
4626 if (!netif_device_present(dev))
4627 return -ENODEV;
4628
4629 err = 0;
d314774c
SH
4630 if (ops->ndo_change_mtu)
4631 err = ops->ndo_change_mtu(dev, new_mtu);
1da177e4
LT
4632 else
4633 dev->mtu = new_mtu;
d314774c 4634
1da177e4 4635 if (!err && dev->flags & IFF_UP)
056925ab 4636 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
1da177e4
LT
4637 return err;
4638}
d1b19dff 4639EXPORT_SYMBOL(dev_set_mtu);
1da177e4 4640
f0db275a
SH
4641/**
4642 * dev_set_mac_address - Change Media Access Control Address
4643 * @dev: device
4644 * @sa: new address
4645 *
4646 * Change the hardware (MAC) address of the device
4647 */
1da177e4
LT
4648int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4649{
d314774c 4650 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
4651 int err;
4652
d314774c 4653 if (!ops->ndo_set_mac_address)
1da177e4
LT
4654 return -EOPNOTSUPP;
4655 if (sa->sa_family != dev->type)
4656 return -EINVAL;
4657 if (!netif_device_present(dev))
4658 return -ENODEV;
d314774c 4659 err = ops->ndo_set_mac_address(dev, sa);
1da177e4 4660 if (!err)
056925ab 4661 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
1da177e4
LT
4662 return err;
4663}
d1b19dff 4664EXPORT_SYMBOL(dev_set_mac_address);
1da177e4
LT
4665
4666/*
3710becf 4667 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
1da177e4 4668 */
14e3e079 4669static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
1da177e4
LT
4670{
4671 int err;
3710becf 4672 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
1da177e4
LT
4673
4674 if (!dev)
4675 return -ENODEV;
4676
4677 switch (cmd) {
d1b19dff
ED
4678 case SIOCGIFFLAGS: /* Get interface flags */
4679 ifr->ifr_flags = (short) dev_get_flags(dev);
4680 return 0;
1da177e4 4681
d1b19dff
ED
4682 case SIOCGIFMETRIC: /* Get the metric on the interface
4683 (currently unused) */
4684 ifr->ifr_metric = 0;
4685 return 0;
1da177e4 4686
d1b19dff
ED
4687 case SIOCGIFMTU: /* Get the MTU of a device */
4688 ifr->ifr_mtu = dev->mtu;
4689 return 0;
1da177e4 4690
d1b19dff
ED
4691 case SIOCGIFHWADDR:
4692 if (!dev->addr_len)
4693 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4694 else
4695 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4696 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4697 ifr->ifr_hwaddr.sa_family = dev->type;
4698 return 0;
1da177e4 4699
d1b19dff
ED
4700 case SIOCGIFSLAVE:
4701 err = -EINVAL;
4702 break;
14e3e079 4703
d1b19dff
ED
4704 case SIOCGIFMAP:
4705 ifr->ifr_map.mem_start = dev->mem_start;
4706 ifr->ifr_map.mem_end = dev->mem_end;
4707 ifr->ifr_map.base_addr = dev->base_addr;
4708 ifr->ifr_map.irq = dev->irq;
4709 ifr->ifr_map.dma = dev->dma;
4710 ifr->ifr_map.port = dev->if_port;
4711 return 0;
14e3e079 4712
d1b19dff
ED
4713 case SIOCGIFINDEX:
4714 ifr->ifr_ifindex = dev->ifindex;
4715 return 0;
14e3e079 4716
d1b19dff
ED
4717 case SIOCGIFTXQLEN:
4718 ifr->ifr_qlen = dev->tx_queue_len;
4719 return 0;
14e3e079 4720
d1b19dff
ED
4721 default:
4722 /* dev_ioctl() should ensure this case
4723 * is never reached
4724 */
4725 WARN_ON(1);
4726 err = -EINVAL;
4727 break;
14e3e079
JG
4728
4729 }
4730 return err;
4731}
4732
4733/*
4734 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4735 */
4736static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4737{
4738 int err;
4739 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
5f2f6da7 4740 const struct net_device_ops *ops;
14e3e079
JG
4741
4742 if (!dev)
4743 return -ENODEV;
4744
5f2f6da7
JP
4745 ops = dev->netdev_ops;
4746
14e3e079 4747 switch (cmd) {
d1b19dff
ED
4748 case SIOCSIFFLAGS: /* Set interface flags */
4749 return dev_change_flags(dev, ifr->ifr_flags);
14e3e079 4750
d1b19dff
ED
4751 case SIOCSIFMETRIC: /* Set the metric on the interface
4752 (currently unused) */
4753 return -EOPNOTSUPP;
14e3e079 4754
d1b19dff
ED
4755 case SIOCSIFMTU: /* Set the MTU of a device */
4756 return dev_set_mtu(dev, ifr->ifr_mtu);
1da177e4 4757
d1b19dff
ED
4758 case SIOCSIFHWADDR:
4759 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
1da177e4 4760
d1b19dff
ED
4761 case SIOCSIFHWBROADCAST:
4762 if (ifr->ifr_hwaddr.sa_family != dev->type)
4763 return -EINVAL;
4764 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4765 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4766 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4767 return 0;
1da177e4 4768
d1b19dff
ED
4769 case SIOCSIFMAP:
4770 if (ops->ndo_set_config) {
1da177e4
LT
4771 if (!netif_device_present(dev))
4772 return -ENODEV;
d1b19dff
ED
4773 return ops->ndo_set_config(dev, &ifr->ifr_map);
4774 }
4775 return -EOPNOTSUPP;
1da177e4 4776
d1b19dff
ED
4777 case SIOCADDMULTI:
4778 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4779 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4780 return -EINVAL;
4781 if (!netif_device_present(dev))
4782 return -ENODEV;
4783 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4784 dev->addr_len, 1);
4785
4786 case SIOCDELMULTI:
4787 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4788 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4789 return -EINVAL;
4790 if (!netif_device_present(dev))
4791 return -ENODEV;
4792 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4793 dev->addr_len, 1);
1da177e4 4794
d1b19dff
ED
4795 case SIOCSIFTXQLEN:
4796 if (ifr->ifr_qlen < 0)
4797 return -EINVAL;
4798 dev->tx_queue_len = ifr->ifr_qlen;
4799 return 0;
1da177e4 4800
d1b19dff
ED
4801 case SIOCSIFNAME:
4802 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4803 return dev_change_name(dev, ifr->ifr_newname);
1da177e4 4804
d1b19dff
ED
4805 /*
4806 * Unknown or private ioctl
4807 */
4808 default:
4809 if ((cmd >= SIOCDEVPRIVATE &&
4810 cmd <= SIOCDEVPRIVATE + 15) ||
4811 cmd == SIOCBONDENSLAVE ||
4812 cmd == SIOCBONDRELEASE ||
4813 cmd == SIOCBONDSETHWADDR ||
4814 cmd == SIOCBONDSLAVEINFOQUERY ||
4815 cmd == SIOCBONDINFOQUERY ||
4816 cmd == SIOCBONDCHANGEACTIVE ||
4817 cmd == SIOCGMIIPHY ||
4818 cmd == SIOCGMIIREG ||
4819 cmd == SIOCSMIIREG ||
4820 cmd == SIOCBRADDIF ||
4821 cmd == SIOCBRDELIF ||
4822 cmd == SIOCSHWTSTAMP ||
4823 cmd == SIOCWANDEV) {
4824 err = -EOPNOTSUPP;
4825 if (ops->ndo_do_ioctl) {
4826 if (netif_device_present(dev))
4827 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4828 else
4829 err = -ENODEV;
4830 }
4831 } else
4832 err = -EINVAL;
1da177e4
LT
4833
4834 }
4835 return err;
4836}
4837
4838/*
4839 * This function handles all "interface"-type I/O control requests. The actual
4840 * 'doing' part of this is dev_ifsioc above.
4841 */
4842
4843/**
4844 * dev_ioctl - network device ioctl
c4ea43c5 4845 * @net: the applicable net namespace
1da177e4
LT
4846 * @cmd: command to issue
4847 * @arg: pointer to a struct ifreq in user space
4848 *
4849 * Issue ioctl functions to devices. This is normally called by the
4850 * user space syscall interfaces but can sometimes be useful for
4851 * other purposes. The return value is the return from the syscall if
4852 * positive or a negative errno code on error.
4853 */
4854
881d966b 4855int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1da177e4
LT
4856{
4857 struct ifreq ifr;
4858 int ret;
4859 char *colon;
4860
4861 /* One special case: SIOCGIFCONF takes ifconf argument
4862 and requires shared lock, because it sleeps writing
4863 to user space.
4864 */
4865
4866 if (cmd == SIOCGIFCONF) {
6756ae4b 4867 rtnl_lock();
881d966b 4868 ret = dev_ifconf(net, (char __user *) arg);
6756ae4b 4869 rtnl_unlock();
1da177e4
LT
4870 return ret;
4871 }
4872 if (cmd == SIOCGIFNAME)
881d966b 4873 return dev_ifname(net, (struct ifreq __user *)arg);
1da177e4
LT
4874
4875 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4876 return -EFAULT;
4877
4878 ifr.ifr_name[IFNAMSIZ-1] = 0;
4879
4880 colon = strchr(ifr.ifr_name, ':');
4881 if (colon)
4882 *colon = 0;
4883
4884 /*
4885 * See which interface the caller is talking about.
4886 */
4887
4888 switch (cmd) {
d1b19dff
ED
4889 /*
4890 * These ioctl calls:
4891 * - can be done by all.
4892 * - atomic and do not require locking.
4893 * - return a value
4894 */
4895 case SIOCGIFFLAGS:
4896 case SIOCGIFMETRIC:
4897 case SIOCGIFMTU:
4898 case SIOCGIFHWADDR:
4899 case SIOCGIFSLAVE:
4900 case SIOCGIFMAP:
4901 case SIOCGIFINDEX:
4902 case SIOCGIFTXQLEN:
4903 dev_load(net, ifr.ifr_name);
3710becf 4904 rcu_read_lock();
d1b19dff 4905 ret = dev_ifsioc_locked(net, &ifr, cmd);
3710becf 4906 rcu_read_unlock();
d1b19dff
ED
4907 if (!ret) {
4908 if (colon)
4909 *colon = ':';
4910 if (copy_to_user(arg, &ifr,
4911 sizeof(struct ifreq)))
4912 ret = -EFAULT;
4913 }
4914 return ret;
1da177e4 4915
d1b19dff
ED
4916 case SIOCETHTOOL:
4917 dev_load(net, ifr.ifr_name);
4918 rtnl_lock();
4919 ret = dev_ethtool(net, &ifr);
4920 rtnl_unlock();
4921 if (!ret) {
4922 if (colon)
4923 *colon = ':';
4924 if (copy_to_user(arg, &ifr,
4925 sizeof(struct ifreq)))
4926 ret = -EFAULT;
4927 }
4928 return ret;
1da177e4 4929
d1b19dff
ED
4930 /*
4931 * These ioctl calls:
4932 * - require superuser power.
4933 * - require strict serialization.
4934 * - return a value
4935 */
4936 case SIOCGMIIPHY:
4937 case SIOCGMIIREG:
4938 case SIOCSIFNAME:
4939 if (!capable(CAP_NET_ADMIN))
4940 return -EPERM;
4941 dev_load(net, ifr.ifr_name);
4942 rtnl_lock();
4943 ret = dev_ifsioc(net, &ifr, cmd);
4944 rtnl_unlock();
4945 if (!ret) {
4946 if (colon)
4947 *colon = ':';
4948 if (copy_to_user(arg, &ifr,
4949 sizeof(struct ifreq)))
4950 ret = -EFAULT;
4951 }
4952 return ret;
1da177e4 4953
d1b19dff
ED
4954 /*
4955 * These ioctl calls:
4956 * - require superuser power.
4957 * - require strict serialization.
4958 * - do not return a value
4959 */
4960 case SIOCSIFFLAGS:
4961 case SIOCSIFMETRIC:
4962 case SIOCSIFMTU:
4963 case SIOCSIFMAP:
4964 case SIOCSIFHWADDR:
4965 case SIOCSIFSLAVE:
4966 case SIOCADDMULTI:
4967 case SIOCDELMULTI:
4968 case SIOCSIFHWBROADCAST:
4969 case SIOCSIFTXQLEN:
4970 case SIOCSMIIREG:
4971 case SIOCBONDENSLAVE:
4972 case SIOCBONDRELEASE:
4973 case SIOCBONDSETHWADDR:
4974 case SIOCBONDCHANGEACTIVE:
4975 case SIOCBRADDIF:
4976 case SIOCBRDELIF:
4977 case SIOCSHWTSTAMP:
4978 if (!capable(CAP_NET_ADMIN))
4979 return -EPERM;
4980 /* fall through */
4981 case SIOCBONDSLAVEINFOQUERY:
4982 case SIOCBONDINFOQUERY:
4983 dev_load(net, ifr.ifr_name);
4984 rtnl_lock();
4985 ret = dev_ifsioc(net, &ifr, cmd);
4986 rtnl_unlock();
4987 return ret;
4988
4989 case SIOCGIFMEM:
4990 /* Get the per device memory space. We can add this but
4991 * currently do not support it */
4992 case SIOCSIFMEM:
4993 /* Set the per device memory buffer space.
4994 * Not applicable in our case */
4995 case SIOCSIFLINK:
4996 return -EINVAL;
4997
4998 /*
4999 * Unknown or private ioctl.
5000 */
5001 default:
5002 if (cmd == SIOCWANDEV ||
5003 (cmd >= SIOCDEVPRIVATE &&
5004 cmd <= SIOCDEVPRIVATE + 15)) {
881d966b 5005 dev_load(net, ifr.ifr_name);
1da177e4 5006 rtnl_lock();
881d966b 5007 ret = dev_ifsioc(net, &ifr, cmd);
1da177e4 5008 rtnl_unlock();
d1b19dff
ED
5009 if (!ret && copy_to_user(arg, &ifr,
5010 sizeof(struct ifreq)))
5011 ret = -EFAULT;
1da177e4 5012 return ret;
d1b19dff
ED
5013 }
5014 /* Take care of Wireless Extensions */
5015 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5016 return wext_handle_ioctl(net, &ifr, cmd, arg);
5017 return -EINVAL;
1da177e4
LT
5018 }
5019}
5020
5021
5022/**
5023 * dev_new_index - allocate an ifindex
c4ea43c5 5024 * @net: the applicable net namespace
1da177e4
LT
5025 *
5026 * Returns a suitable unique value for a new device interface
5027 * number. The caller must hold the rtnl semaphore or the
5028 * dev_base_lock to be sure it remains unique.
5029 */
881d966b 5030static int dev_new_index(struct net *net)
1da177e4
LT
5031{
5032 static int ifindex;
5033 for (;;) {
5034 if (++ifindex <= 0)
5035 ifindex = 1;
881d966b 5036 if (!__dev_get_by_index(net, ifindex))
1da177e4
LT
5037 return ifindex;
5038 }
5039}
5040
1da177e4 5041/* Delayed registration/unregisteration */
3b5b34fd 5042static LIST_HEAD(net_todo_list);
1da177e4 5043
6f05f629 5044static void net_set_todo(struct net_device *dev)
1da177e4 5045{
1da177e4 5046 list_add_tail(&dev->todo_list, &net_todo_list);
1da177e4
LT
5047}
5048
9b5e383c 5049static void rollback_registered_many(struct list_head *head)
93ee31f1 5050{
e93737b0 5051 struct net_device *dev, *tmp;
9b5e383c 5052
93ee31f1
DL
5053 BUG_ON(dev_boot_phase);
5054 ASSERT_RTNL();
5055
e93737b0 5056 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 5057 /* Some devices call without registering
e93737b0
KK
5058 * for initialization unwind. Remove those
5059 * devices and proceed with the remaining.
9b5e383c
ED
5060 */
5061 if (dev->reg_state == NETREG_UNINITIALIZED) {
5062 pr_debug("unregister_netdevice: device %s/%p never "
5063 "was registered\n", dev->name, dev);
93ee31f1 5064
9b5e383c 5065 WARN_ON(1);
e93737b0
KK
5066 list_del(&dev->unreg_list);
5067 continue;
9b5e383c 5068 }
93ee31f1 5069
9b5e383c 5070 BUG_ON(dev->reg_state != NETREG_REGISTERED);
93ee31f1 5071
9b5e383c
ED
5072 /* If device is running, close it first. */
5073 dev_close(dev);
93ee31f1 5074
9b5e383c
ED
5075 /* And unlink it from device chain. */
5076 unlist_netdevice(dev);
93ee31f1 5077
9b5e383c
ED
5078 dev->reg_state = NETREG_UNREGISTERING;
5079 }
93ee31f1
DL
5080
5081 synchronize_net();
5082
9b5e383c
ED
5083 list_for_each_entry(dev, head, unreg_list) {
5084 /* Shutdown queueing discipline. */
5085 dev_shutdown(dev);
93ee31f1
DL
5086
5087
9b5e383c
ED
5088 /* Notify protocols, that we are about to destroy
5089 this device. They should clean all the things.
5090 */
5091 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 5092
a2835763
PM
5093 if (!dev->rtnl_link_ops ||
5094 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5095 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5096
9b5e383c
ED
5097 /*
5098 * Flush the unicast and multicast chains
5099 */
5100 dev_unicast_flush(dev);
5101 dev_addr_discard(dev);
93ee31f1 5102
9b5e383c
ED
5103 if (dev->netdev_ops->ndo_uninit)
5104 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 5105
9b5e383c
ED
5106 /* Notifier chain MUST detach us from master device. */
5107 WARN_ON(dev->master);
93ee31f1 5108
9b5e383c
ED
5109 /* Remove entries from kobject tree */
5110 netdev_unregister_kobject(dev);
5111 }
93ee31f1 5112
a5ee1551 5113 /* Process any work delayed until the end of the batch */
e5e26d75 5114 dev = list_first_entry(head, struct net_device, unreg_list);
a5ee1551 5115 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
93ee31f1 5116
a5ee1551 5117 synchronize_net();
395264d5 5118
a5ee1551 5119 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
5120 dev_put(dev);
5121}
5122
5123static void rollback_registered(struct net_device *dev)
5124{
5125 LIST_HEAD(single);
5126
5127 list_add(&dev->unreg_list, &single);
5128 rollback_registered_many(&single);
93ee31f1
DL
5129}
5130
e8a0464c
DM
5131static void __netdev_init_queue_locks_one(struct net_device *dev,
5132 struct netdev_queue *dev_queue,
5133 void *_unused)
c773e847
DM
5134{
5135 spin_lock_init(&dev_queue->_xmit_lock);
cf508b12 5136 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
c773e847
DM
5137 dev_queue->xmit_lock_owner = -1;
5138}
5139
5140static void netdev_init_queue_locks(struct net_device *dev)
5141{
e8a0464c
DM
5142 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
5143 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
c773e847
DM
5144}
5145
b63365a2
HX
5146unsigned long netdev_fix_features(unsigned long features, const char *name)
5147{
5148 /* Fix illegal SG+CSUM combinations. */
5149 if ((features & NETIF_F_SG) &&
5150 !(features & NETIF_F_ALL_CSUM)) {
5151 if (name)
5152 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
5153 "checksum feature.\n", name);
5154 features &= ~NETIF_F_SG;
5155 }
5156
5157 /* TSO requires that SG is present as well. */
5158 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
5159 if (name)
5160 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
5161 "SG feature.\n", name);
5162 features &= ~NETIF_F_TSO;
5163 }
5164
5165 if (features & NETIF_F_UFO) {
5166 if (!(features & NETIF_F_GEN_CSUM)) {
5167 if (name)
5168 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5169 "since no NETIF_F_HW_CSUM feature.\n",
5170 name);
5171 features &= ~NETIF_F_UFO;
5172 }
5173
5174 if (!(features & NETIF_F_SG)) {
5175 if (name)
5176 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5177 "since no NETIF_F_SG feature.\n", name);
5178 features &= ~NETIF_F_UFO;
5179 }
5180 }
5181
5182 return features;
5183}
5184EXPORT_SYMBOL(netdev_fix_features);
5185
fc4a7489
PM
5186/**
5187 * netif_stacked_transfer_operstate - transfer operstate
5188 * @rootdev: the root or lower level device to transfer state from
5189 * @dev: the device to transfer operstate to
5190 *
5191 * Transfer operational state from root to device. This is normally
5192 * called when a stacking relationship exists between the root
5193 * device and the device(a leaf device).
5194 */
5195void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5196 struct net_device *dev)
5197{
5198 if (rootdev->operstate == IF_OPER_DORMANT)
5199 netif_dormant_on(dev);
5200 else
5201 netif_dormant_off(dev);
5202
5203 if (netif_carrier_ok(rootdev)) {
5204 if (!netif_carrier_ok(dev))
5205 netif_carrier_on(dev);
5206 } else {
5207 if (netif_carrier_ok(dev))
5208 netif_carrier_off(dev);
5209 }
5210}
5211EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5212
1da177e4
LT
5213/**
5214 * register_netdevice - register a network device
5215 * @dev: device to register
5216 *
5217 * Take a completed network device structure and add it to the kernel
5218 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5219 * chain. 0 is returned on success. A negative errno code is returned
5220 * on a failure to set up the device, or if the name is a duplicate.
5221 *
5222 * Callers must hold the rtnl semaphore. You may want
5223 * register_netdev() instead of this.
5224 *
5225 * BUGS:
5226 * The locking appears insufficient to guarantee two parallel registers
5227 * will not get the same name.
5228 */
5229
5230int register_netdevice(struct net_device *dev)
5231{
1da177e4 5232 int ret;
d314774c 5233 struct net *net = dev_net(dev);
1da177e4
LT
5234
5235 BUG_ON(dev_boot_phase);
5236 ASSERT_RTNL();
5237
b17a7c17
SH
5238 might_sleep();
5239
1da177e4
LT
5240 /* When net_device's are persistent, this will be fatal. */
5241 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 5242 BUG_ON(!net);
1da177e4 5243
f1f28aa3 5244 spin_lock_init(&dev->addr_list_lock);
cf508b12 5245 netdev_set_addr_lockdep_class(dev);
c773e847 5246 netdev_init_queue_locks(dev);
1da177e4 5247
1da177e4
LT
5248 dev->iflink = -1;
5249
0a9627f2
TH
5250 if (!dev->num_rx_queues) {
5251 /*
5252 * Allocate a single RX queue if driver never called
5253 * alloc_netdev_mq
5254 */
5255
5256 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
5257 if (!dev->_rx) {
5258 ret = -ENOMEM;
5259 goto out;
5260 }
5261
5262 dev->_rx->first = dev->_rx;
5263 atomic_set(&dev->_rx->count, 1);
5264 dev->num_rx_queues = 1;
5265 }
5266
1da177e4 5267 /* Init, if this function is available */
d314774c
SH
5268 if (dev->netdev_ops->ndo_init) {
5269 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
5270 if (ret) {
5271 if (ret > 0)
5272 ret = -EIO;
90833aa4 5273 goto out;
1da177e4
LT
5274 }
5275 }
4ec93edb 5276
d9031024
OP
5277 ret = dev_get_valid_name(net, dev->name, dev->name, 0);
5278 if (ret)
7ce1b0ed 5279 goto err_uninit;
1da177e4 5280
881d966b 5281 dev->ifindex = dev_new_index(net);
1da177e4
LT
5282 if (dev->iflink == -1)
5283 dev->iflink = dev->ifindex;
5284
d212f87b
SH
5285 /* Fix illegal checksum combinations */
5286 if ((dev->features & NETIF_F_HW_CSUM) &&
5287 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5288 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5289 dev->name);
5290 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5291 }
5292
5293 if ((dev->features & NETIF_F_NO_CSUM) &&
5294 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5295 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5296 dev->name);
5297 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5298 }
5299
b63365a2 5300 dev->features = netdev_fix_features(dev->features, dev->name);
1da177e4 5301
e5a4a72d
LB
5302 /* Enable software GSO if SG is supported. */
5303 if (dev->features & NETIF_F_SG)
5304 dev->features |= NETIF_F_GSO;
5305
aaf8cdc3 5306 netdev_initialize_kobject(dev);
7ffbe3fd
JB
5307
5308 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5309 ret = notifier_to_errno(ret);
5310 if (ret)
5311 goto err_uninit;
5312
8b41d188 5313 ret = netdev_register_kobject(dev);
b17a7c17 5314 if (ret)
7ce1b0ed 5315 goto err_uninit;
b17a7c17
SH
5316 dev->reg_state = NETREG_REGISTERED;
5317
1da177e4
LT
5318 /*
5319 * Default initial state at registry is that the
5320 * device is present.
5321 */
5322
5323 set_bit(__LINK_STATE_PRESENT, &dev->state);
5324
1da177e4 5325 dev_init_scheduler(dev);
1da177e4 5326 dev_hold(dev);
ce286d32 5327 list_netdevice(dev);
1da177e4
LT
5328
5329 /* Notify protocols, that a new device appeared. */
056925ab 5330 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 5331 ret = notifier_to_errno(ret);
93ee31f1
DL
5332 if (ret) {
5333 rollback_registered(dev);
5334 dev->reg_state = NETREG_UNREGISTERED;
5335 }
d90a909e
EB
5336 /*
5337 * Prevent userspace races by waiting until the network
5338 * device is fully setup before sending notifications.
5339 */
a2835763
PM
5340 if (!dev->rtnl_link_ops ||
5341 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5342 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
1da177e4
LT
5343
5344out:
5345 return ret;
7ce1b0ed
HX
5346
5347err_uninit:
d314774c
SH
5348 if (dev->netdev_ops->ndo_uninit)
5349 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 5350 goto out;
1da177e4 5351}
d1b19dff 5352EXPORT_SYMBOL(register_netdevice);
1da177e4 5353
937f1ba5
BH
5354/**
5355 * init_dummy_netdev - init a dummy network device for NAPI
5356 * @dev: device to init
5357 *
5358 * This takes a network device structure and initialize the minimum
5359 * amount of fields so it can be used to schedule NAPI polls without
5360 * registering a full blown interface. This is to be used by drivers
5361 * that need to tie several hardware interfaces to a single NAPI
5362 * poll scheduler due to HW limitations.
5363 */
5364int init_dummy_netdev(struct net_device *dev)
5365{
5366 /* Clear everything. Note we don't initialize spinlocks
5367 * are they aren't supposed to be taken by any of the
5368 * NAPI code and this dummy netdev is supposed to be
5369 * only ever used for NAPI polls
5370 */
5371 memset(dev, 0, sizeof(struct net_device));
5372
5373 /* make sure we BUG if trying to hit standard
5374 * register/unregister code path
5375 */
5376 dev->reg_state = NETREG_DUMMY;
5377
5378 /* initialize the ref count */
5379 atomic_set(&dev->refcnt, 1);
5380
5381 /* NAPI wants this */
5382 INIT_LIST_HEAD(&dev->napi_list);
5383
5384 /* a dummy interface is started by default */
5385 set_bit(__LINK_STATE_PRESENT, &dev->state);
5386 set_bit(__LINK_STATE_START, &dev->state);
5387
5388 return 0;
5389}
5390EXPORT_SYMBOL_GPL(init_dummy_netdev);
5391
5392
1da177e4
LT
5393/**
5394 * register_netdev - register a network device
5395 * @dev: device to register
5396 *
5397 * Take a completed network device structure and add it to the kernel
5398 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5399 * chain. 0 is returned on success. A negative errno code is returned
5400 * on a failure to set up the device, or if the name is a duplicate.
5401 *
38b4da38 5402 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
5403 * and expands the device name if you passed a format string to
5404 * alloc_netdev.
5405 */
5406int register_netdev(struct net_device *dev)
5407{
5408 int err;
5409
5410 rtnl_lock();
5411
5412 /*
5413 * If the name is a format string the caller wants us to do a
5414 * name allocation.
5415 */
5416 if (strchr(dev->name, '%')) {
5417 err = dev_alloc_name(dev, dev->name);
5418 if (err < 0)
5419 goto out;
5420 }
4ec93edb 5421
1da177e4
LT
5422 err = register_netdevice(dev);
5423out:
5424 rtnl_unlock();
5425 return err;
5426}
5427EXPORT_SYMBOL(register_netdev);
5428
5429/*
5430 * netdev_wait_allrefs - wait until all references are gone.
5431 *
5432 * This is called when unregistering network devices.
5433 *
5434 * Any protocol or device that holds a reference should register
5435 * for netdevice notification, and cleanup and put back the
5436 * reference if they receive an UNREGISTER event.
5437 * We can get stuck here if buggy protocols don't correctly
4ec93edb 5438 * call dev_put.
1da177e4
LT
5439 */
5440static void netdev_wait_allrefs(struct net_device *dev)
5441{
5442 unsigned long rebroadcast_time, warning_time;
5443
e014debe
ED
5444 linkwatch_forget_dev(dev);
5445
1da177e4
LT
5446 rebroadcast_time = warning_time = jiffies;
5447 while (atomic_read(&dev->refcnt) != 0) {
5448 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 5449 rtnl_lock();
1da177e4
LT
5450
5451 /* Rebroadcast unregister notification */
056925ab 5452 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
a5ee1551 5453 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
395264d5 5454 * should have already handle it the first time */
1da177e4
LT
5455
5456 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5457 &dev->state)) {
5458 /* We must not have linkwatch events
5459 * pending on unregister. If this
5460 * happens, we simply run the queue
5461 * unscheduled, resulting in a noop
5462 * for this device.
5463 */
5464 linkwatch_run_queue();
5465 }
5466
6756ae4b 5467 __rtnl_unlock();
1da177e4
LT
5468
5469 rebroadcast_time = jiffies;
5470 }
5471
5472 msleep(250);
5473
5474 if (time_after(jiffies, warning_time + 10 * HZ)) {
5475 printk(KERN_EMERG "unregister_netdevice: "
5476 "waiting for %s to become free. Usage "
5477 "count = %d\n",
5478 dev->name, atomic_read(&dev->refcnt));
5479 warning_time = jiffies;
5480 }
5481 }
5482}
5483
5484/* The sequence is:
5485 *
5486 * rtnl_lock();
5487 * ...
5488 * register_netdevice(x1);
5489 * register_netdevice(x2);
5490 * ...
5491 * unregister_netdevice(y1);
5492 * unregister_netdevice(y2);
5493 * ...
5494 * rtnl_unlock();
5495 * free_netdev(y1);
5496 * free_netdev(y2);
5497 *
58ec3b4d 5498 * We are invoked by rtnl_unlock().
1da177e4 5499 * This allows us to deal with problems:
b17a7c17 5500 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
5501 * without deadlocking with linkwatch via keventd.
5502 * 2) Since we run with the RTNL semaphore not held, we can sleep
5503 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
5504 *
5505 * We must not return until all unregister events added during
5506 * the interval the lock was held have been completed.
1da177e4 5507 */
1da177e4
LT
5508void netdev_run_todo(void)
5509{
626ab0e6 5510 struct list_head list;
1da177e4 5511
1da177e4 5512 /* Snapshot list, allow later requests */
626ab0e6 5513 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
5514
5515 __rtnl_unlock();
626ab0e6 5516
1da177e4
LT
5517 while (!list_empty(&list)) {
5518 struct net_device *dev
e5e26d75 5519 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
5520 list_del(&dev->todo_list);
5521
b17a7c17
SH
5522 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5523 printk(KERN_ERR "network todo '%s' but state %d\n",
5524 dev->name, dev->reg_state);
5525 dump_stack();
5526 continue;
5527 }
1da177e4 5528
b17a7c17 5529 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 5530
6e583ce5
SH
5531 on_each_cpu(flush_backlog, dev, 1);
5532
b17a7c17 5533 netdev_wait_allrefs(dev);
1da177e4 5534
b17a7c17
SH
5535 /* paranoia */
5536 BUG_ON(atomic_read(&dev->refcnt));
547b792c
IJ
5537 WARN_ON(dev->ip_ptr);
5538 WARN_ON(dev->ip6_ptr);
5539 WARN_ON(dev->dn_ptr);
1da177e4 5540
b17a7c17
SH
5541 if (dev->destructor)
5542 dev->destructor(dev);
9093bbb2
SH
5543
5544 /* Free network device */
5545 kobject_put(&dev->dev.kobj);
1da177e4 5546 }
1da177e4
LT
5547}
5548
d83345ad
ED
5549/**
5550 * dev_txq_stats_fold - fold tx_queues stats
5551 * @dev: device to get statistics from
5552 * @stats: struct net_device_stats to hold results
5553 */
5554void dev_txq_stats_fold(const struct net_device *dev,
5555 struct net_device_stats *stats)
5556{
5557 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5558 unsigned int i;
5559 struct netdev_queue *txq;
5560
5561 for (i = 0; i < dev->num_tx_queues; i++) {
5562 txq = netdev_get_tx_queue(dev, i);
5563 tx_bytes += txq->tx_bytes;
5564 tx_packets += txq->tx_packets;
5565 tx_dropped += txq->tx_dropped;
5566 }
5567 if (tx_bytes || tx_packets || tx_dropped) {
5568 stats->tx_bytes = tx_bytes;
5569 stats->tx_packets = tx_packets;
5570 stats->tx_dropped = tx_dropped;
5571 }
5572}
5573EXPORT_SYMBOL(dev_txq_stats_fold);
5574
eeda3fd6
SH
5575/**
5576 * dev_get_stats - get network device statistics
5577 * @dev: device to get statistics from
5578 *
5579 * Get network statistics from device. The device driver may provide
5580 * its own method by setting dev->netdev_ops->get_stats; otherwise
5581 * the internal statistics structure is used.
5582 */
5583const struct net_device_stats *dev_get_stats(struct net_device *dev)
7004bf25 5584{
eeda3fd6
SH
5585 const struct net_device_ops *ops = dev->netdev_ops;
5586
5587 if (ops->ndo_get_stats)
5588 return ops->ndo_get_stats(dev);
d83345ad
ED
5589
5590 dev_txq_stats_fold(dev, &dev->stats);
5591 return &dev->stats;
c45d286e 5592}
eeda3fd6 5593EXPORT_SYMBOL(dev_get_stats);
c45d286e 5594
dc2b4847 5595static void netdev_init_one_queue(struct net_device *dev,
e8a0464c
DM
5596 struct netdev_queue *queue,
5597 void *_unused)
dc2b4847 5598{
dc2b4847
DM
5599 queue->dev = dev;
5600}
5601
bb949fbd
DM
5602static void netdev_init_queues(struct net_device *dev)
5603{
e8a0464c
DM
5604 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5605 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
c3f26a26 5606 spin_lock_init(&dev->tx_global_lock);
bb949fbd
DM
5607}
5608
1da177e4 5609/**
f25f4e44 5610 * alloc_netdev_mq - allocate network device
1da177e4
LT
5611 * @sizeof_priv: size of private data to allocate space for
5612 * @name: device name format string
5613 * @setup: callback to initialize device
f25f4e44 5614 * @queue_count: the number of subqueues to allocate
1da177e4
LT
5615 *
5616 * Allocates a struct net_device with private data area for driver use
f25f4e44
PWJ
5617 * and performs basic initialization. Also allocates subquue structs
5618 * for each queue on the device at the end of the netdevice.
1da177e4 5619 */
f25f4e44
PWJ
5620struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5621 void (*setup)(struct net_device *), unsigned int queue_count)
1da177e4 5622{
e8a0464c 5623 struct netdev_queue *tx;
0a9627f2 5624 struct netdev_rx_queue *rx;
1da177e4 5625 struct net_device *dev;
7943986c 5626 size_t alloc_size;
1ce8e7b5 5627 struct net_device *p;
0a9627f2 5628 int i;
1da177e4 5629
b6fe17d6
SH
5630 BUG_ON(strlen(name) >= sizeof(dev->name));
5631
fd2ea0a7 5632 alloc_size = sizeof(struct net_device);
d1643d24
AD
5633 if (sizeof_priv) {
5634 /* ensure 32-byte alignment of private area */
1ce8e7b5 5635 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
5636 alloc_size += sizeof_priv;
5637 }
5638 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 5639 alloc_size += NETDEV_ALIGN - 1;
1da177e4 5640
31380de9 5641 p = kzalloc(alloc_size, GFP_KERNEL);
1da177e4 5642 if (!p) {
b6fe17d6 5643 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
1da177e4
LT
5644 return NULL;
5645 }
1da177e4 5646
7943986c 5647 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
e8a0464c
DM
5648 if (!tx) {
5649 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5650 "tx qdiscs.\n");
ab9c73cc 5651 goto free_p;
e8a0464c
DM
5652 }
5653
0a9627f2
TH
5654 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5655 if (!rx) {
5656 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5657 "rx queues.\n");
5658 goto free_tx;
5659 }
5660
5661 atomic_set(&rx->count, queue_count);
5662
5663 /*
5664 * Set a pointer to first element in the array which holds the
5665 * reference count.
5666 */
5667 for (i = 0; i < queue_count; i++)
5668 rx[i].first = rx;
5669
1ce8e7b5 5670 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 5671 dev->padded = (char *)dev - (char *)p;
ab9c73cc
JP
5672
5673 if (dev_addr_init(dev))
0a9627f2 5674 goto free_rx;
ab9c73cc 5675
ccffad25
JP
5676 dev_unicast_init(dev);
5677
c346dca1 5678 dev_net_set(dev, &init_net);
1da177e4 5679
e8a0464c
DM
5680 dev->_tx = tx;
5681 dev->num_tx_queues = queue_count;
fd2ea0a7 5682 dev->real_num_tx_queues = queue_count;
e8a0464c 5683
0a9627f2
TH
5684 dev->_rx = rx;
5685 dev->num_rx_queues = queue_count;
5686
82cc1a7a 5687 dev->gso_max_size = GSO_MAX_SIZE;
1da177e4 5688
bb949fbd
DM
5689 netdev_init_queues(dev);
5690
15682bc4
PWJ
5691 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5692 dev->ethtool_ntuple_list.count = 0;
d565b0a1 5693 INIT_LIST_HEAD(&dev->napi_list);
9fdce099 5694 INIT_LIST_HEAD(&dev->unreg_list);
e014debe 5695 INIT_LIST_HEAD(&dev->link_watch_list);
93f154b5 5696 dev->priv_flags = IFF_XMIT_DST_RELEASE;
1da177e4
LT
5697 setup(dev);
5698 strcpy(dev->name, name);
5699 return dev;
ab9c73cc 5700
0a9627f2
TH
5701free_rx:
5702 kfree(rx);
ab9c73cc
JP
5703free_tx:
5704 kfree(tx);
ab9c73cc
JP
5705free_p:
5706 kfree(p);
5707 return NULL;
1da177e4 5708}
f25f4e44 5709EXPORT_SYMBOL(alloc_netdev_mq);
1da177e4
LT
5710
5711/**
5712 * free_netdev - free network device
5713 * @dev: device
5714 *
4ec93edb
YH
5715 * This function does the last stage of destroying an allocated device
5716 * interface. The reference to the device object is released.
1da177e4
LT
5717 * If this is the last reference then it will be freed.
5718 */
5719void free_netdev(struct net_device *dev)
5720{
d565b0a1
HX
5721 struct napi_struct *p, *n;
5722
f3005d7f
DL
5723 release_net(dev_net(dev));
5724
e8a0464c
DM
5725 kfree(dev->_tx);
5726
f001fde5
JP
5727 /* Flush device addresses */
5728 dev_addr_flush(dev);
5729
15682bc4
PWJ
5730 /* Clear ethtool n-tuple list */
5731 ethtool_ntuple_flush(dev);
5732
d565b0a1
HX
5733 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5734 netif_napi_del(p);
5735
3041a069 5736 /* Compatibility with error handling in drivers */
1da177e4
LT
5737 if (dev->reg_state == NETREG_UNINITIALIZED) {
5738 kfree((char *)dev - dev->padded);
5739 return;
5740 }
5741
5742 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5743 dev->reg_state = NETREG_RELEASED;
5744
43cb76d9
GKH
5745 /* will free via device release */
5746 put_device(&dev->dev);
1da177e4 5747}
d1b19dff 5748EXPORT_SYMBOL(free_netdev);
4ec93edb 5749
f0db275a
SH
5750/**
5751 * synchronize_net - Synchronize with packet receive processing
5752 *
5753 * Wait for packets currently being received to be done.
5754 * Does not block later packets from starting.
5755 */
4ec93edb 5756void synchronize_net(void)
1da177e4
LT
5757{
5758 might_sleep();
fbd568a3 5759 synchronize_rcu();
1da177e4 5760}
d1b19dff 5761EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
5762
5763/**
44a0873d 5764 * unregister_netdevice_queue - remove device from the kernel
1da177e4 5765 * @dev: device
44a0873d 5766 * @head: list
6ebfbc06 5767 *
1da177e4 5768 * This function shuts down a device interface and removes it
d59b54b1 5769 * from the kernel tables.
44a0873d 5770 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
5771 *
5772 * Callers must hold the rtnl semaphore. You may want
5773 * unregister_netdev() instead of this.
5774 */
5775
44a0873d 5776void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 5777{
a6620712
HX
5778 ASSERT_RTNL();
5779
44a0873d 5780 if (head) {
9fdce099 5781 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
5782 } else {
5783 rollback_registered(dev);
5784 /* Finish processing unregister after unlock */
5785 net_set_todo(dev);
5786 }
1da177e4 5787}
44a0873d 5788EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 5789
9b5e383c
ED
5790/**
5791 * unregister_netdevice_many - unregister many devices
5792 * @head: list of devices
9b5e383c
ED
5793 */
5794void unregister_netdevice_many(struct list_head *head)
5795{
5796 struct net_device *dev;
5797
5798 if (!list_empty(head)) {
5799 rollback_registered_many(head);
5800 list_for_each_entry(dev, head, unreg_list)
5801 net_set_todo(dev);
5802 }
5803}
63c8099d 5804EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 5805
1da177e4
LT
5806/**
5807 * unregister_netdev - remove device from the kernel
5808 * @dev: device
5809 *
5810 * This function shuts down a device interface and removes it
d59b54b1 5811 * from the kernel tables.
1da177e4
LT
5812 *
5813 * This is just a wrapper for unregister_netdevice that takes
5814 * the rtnl semaphore. In general you want to use this and not
5815 * unregister_netdevice.
5816 */
5817void unregister_netdev(struct net_device *dev)
5818{
5819 rtnl_lock();
5820 unregister_netdevice(dev);
5821 rtnl_unlock();
5822}
1da177e4
LT
5823EXPORT_SYMBOL(unregister_netdev);
5824
ce286d32
EB
5825/**
5826 * dev_change_net_namespace - move device to different nethost namespace
5827 * @dev: device
5828 * @net: network namespace
5829 * @pat: If not NULL name pattern to try if the current device name
5830 * is already taken in the destination network namespace.
5831 *
5832 * This function shuts down a device interface and moves it
5833 * to a new network namespace. On success 0 is returned, on
5834 * a failure a netagive errno code is returned.
5835 *
5836 * Callers must hold the rtnl semaphore.
5837 */
5838
5839int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5840{
ce286d32
EB
5841 int err;
5842
5843 ASSERT_RTNL();
5844
5845 /* Don't allow namespace local devices to be moved. */
5846 err = -EINVAL;
5847 if (dev->features & NETIF_F_NETNS_LOCAL)
5848 goto out;
5849
3891845e
EB
5850#ifdef CONFIG_SYSFS
5851 /* Don't allow real devices to be moved when sysfs
5852 * is enabled.
5853 */
5854 err = -EINVAL;
5855 if (dev->dev.parent)
5856 goto out;
5857#endif
5858
ce286d32
EB
5859 /* Ensure the device has been registrered */
5860 err = -EINVAL;
5861 if (dev->reg_state != NETREG_REGISTERED)
5862 goto out;
5863
5864 /* Get out if there is nothing todo */
5865 err = 0;
878628fb 5866 if (net_eq(dev_net(dev), net))
ce286d32
EB
5867 goto out;
5868
5869 /* Pick the destination device name, and ensure
5870 * we can use it in the destination network namespace.
5871 */
5872 err = -EEXIST;
d9031024 5873 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
5874 /* We get here if we can't use the current device name */
5875 if (!pat)
5876 goto out;
d9031024 5877 if (dev_get_valid_name(net, pat, dev->name, 1))
ce286d32
EB
5878 goto out;
5879 }
5880
5881 /*
5882 * And now a mini version of register_netdevice unregister_netdevice.
5883 */
5884
5885 /* If device is running close it first. */
9b772652 5886 dev_close(dev);
ce286d32
EB
5887
5888 /* And unlink it from device chain */
5889 err = -ENODEV;
5890 unlist_netdevice(dev);
5891
5892 synchronize_net();
5893
5894 /* Shutdown queueing discipline. */
5895 dev_shutdown(dev);
5896
5897 /* Notify protocols, that we are about to destroy
5898 this device. They should clean all the things.
5899 */
5900 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
a5ee1551 5901 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
ce286d32
EB
5902
5903 /*
5904 * Flush the unicast and multicast chains
5905 */
ccffad25 5906 dev_unicast_flush(dev);
ce286d32
EB
5907 dev_addr_discard(dev);
5908
3891845e
EB
5909 netdev_unregister_kobject(dev);
5910
ce286d32 5911 /* Actually switch the network namespace */
c346dca1 5912 dev_net_set(dev, net);
ce286d32 5913
ce286d32
EB
5914 /* If there is an ifindex conflict assign a new one */
5915 if (__dev_get_by_index(net, dev->ifindex)) {
5916 int iflink = (dev->iflink == dev->ifindex);
5917 dev->ifindex = dev_new_index(net);
5918 if (iflink)
5919 dev->iflink = dev->ifindex;
5920 }
5921
8b41d188 5922 /* Fixup kobjects */
aaf8cdc3 5923 err = netdev_register_kobject(dev);
8b41d188 5924 WARN_ON(err);
ce286d32
EB
5925
5926 /* Add the device back in the hashes */
5927 list_netdevice(dev);
5928
5929 /* Notify protocols, that a new device appeared. */
5930 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5931
d90a909e
EB
5932 /*
5933 * Prevent userspace races by waiting until the network
5934 * device is fully setup before sending notifications.
5935 */
5936 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5937
ce286d32
EB
5938 synchronize_net();
5939 err = 0;
5940out:
5941 return err;
5942}
463d0183 5943EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 5944
1da177e4
LT
5945static int dev_cpu_callback(struct notifier_block *nfb,
5946 unsigned long action,
5947 void *ocpu)
5948{
5949 struct sk_buff **list_skb;
37437bb2 5950 struct Qdisc **list_net;
1da177e4
LT
5951 struct sk_buff *skb;
5952 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5953 struct softnet_data *sd, *oldsd;
5954
8bb78442 5955 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
5956 return NOTIFY_OK;
5957
5958 local_irq_disable();
5959 cpu = smp_processor_id();
5960 sd = &per_cpu(softnet_data, cpu);
5961 oldsd = &per_cpu(softnet_data, oldcpu);
5962
5963 /* Find end of our completion_queue. */
5964 list_skb = &sd->completion_queue;
5965 while (*list_skb)
5966 list_skb = &(*list_skb)->next;
5967 /* Append completion queue from offline CPU. */
5968 *list_skb = oldsd->completion_queue;
5969 oldsd->completion_queue = NULL;
5970
5971 /* Find end of our output_queue. */
5972 list_net = &sd->output_queue;
5973 while (*list_net)
5974 list_net = &(*list_net)->next_sched;
5975 /* Append output queue from offline CPU. */
5976 *list_net = oldsd->output_queue;
5977 oldsd->output_queue = NULL;
5978
5979 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5980 local_irq_enable();
5981
5982 /* Process offline CPU's input_pkt_queue */
5983 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5984 netif_rx(skb);
5985
5986 return NOTIFY_OK;
5987}
1da177e4
LT
5988
5989
7f353bf2 5990/**
b63365a2
HX
5991 * netdev_increment_features - increment feature set by one
5992 * @all: current feature set
5993 * @one: new feature set
5994 * @mask: mask feature set
7f353bf2
HX
5995 *
5996 * Computes a new feature set after adding a device with feature set
b63365a2
HX
5997 * @one to the master device with current feature set @all. Will not
5998 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 5999 */
b63365a2
HX
6000unsigned long netdev_increment_features(unsigned long all, unsigned long one,
6001 unsigned long mask)
6002{
6003 /* If device needs checksumming, downgrade to it. */
d1b19dff 6004 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
b63365a2
HX
6005 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
6006 else if (mask & NETIF_F_ALL_CSUM) {
6007 /* If one device supports v4/v6 checksumming, set for all. */
6008 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
6009 !(all & NETIF_F_GEN_CSUM)) {
6010 all &= ~NETIF_F_ALL_CSUM;
6011 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
6012 }
e2a6b852 6013
b63365a2
HX
6014 /* If one device supports hw checksumming, set for all. */
6015 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
6016 all &= ~NETIF_F_ALL_CSUM;
6017 all |= NETIF_F_HW_CSUM;
6018 }
6019 }
7f353bf2 6020
b63365a2 6021 one |= NETIF_F_ALL_CSUM;
7f353bf2 6022
b63365a2 6023 one |= all & NETIF_F_ONE_FOR_ALL;
d9f5950f 6024 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
b63365a2 6025 all |= one & mask & NETIF_F_ONE_FOR_ALL;
7f353bf2
HX
6026
6027 return all;
6028}
b63365a2 6029EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 6030
30d97d35
PE
6031static struct hlist_head *netdev_create_hash(void)
6032{
6033 int i;
6034 struct hlist_head *hash;
6035
6036 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6037 if (hash != NULL)
6038 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6039 INIT_HLIST_HEAD(&hash[i]);
6040
6041 return hash;
6042}
6043
881d966b 6044/* Initialize per network namespace state */
4665079c 6045static int __net_init netdev_init(struct net *net)
881d966b 6046{
881d966b 6047 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 6048
30d97d35
PE
6049 net->dev_name_head = netdev_create_hash();
6050 if (net->dev_name_head == NULL)
6051 goto err_name;
881d966b 6052
30d97d35
PE
6053 net->dev_index_head = netdev_create_hash();
6054 if (net->dev_index_head == NULL)
6055 goto err_idx;
881d966b
EB
6056
6057 return 0;
30d97d35
PE
6058
6059err_idx:
6060 kfree(net->dev_name_head);
6061err_name:
6062 return -ENOMEM;
881d966b
EB
6063}
6064
f0db275a
SH
6065/**
6066 * netdev_drivername - network driver for the device
6067 * @dev: network device
6068 * @buffer: buffer for resulting name
6069 * @len: size of buffer
6070 *
6071 * Determine network driver for device.
6072 */
cf04a4c7 6073char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6579e57b 6074{
cf04a4c7
SH
6075 const struct device_driver *driver;
6076 const struct device *parent;
6579e57b
AV
6077
6078 if (len <= 0 || !buffer)
6079 return buffer;
6080 buffer[0] = 0;
6081
6082 parent = dev->dev.parent;
6083
6084 if (!parent)
6085 return buffer;
6086
6087 driver = parent->driver;
6088 if (driver && driver->name)
6089 strlcpy(buffer, driver->name, len);
6090 return buffer;
6091}
6092
4665079c 6093static void __net_exit netdev_exit(struct net *net)
881d966b
EB
6094{
6095 kfree(net->dev_name_head);
6096 kfree(net->dev_index_head);
6097}
6098
022cbae6 6099static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
6100 .init = netdev_init,
6101 .exit = netdev_exit,
6102};
6103
4665079c 6104static void __net_exit default_device_exit(struct net *net)
ce286d32 6105{
e008b5fc 6106 struct net_device *dev, *aux;
ce286d32 6107 /*
e008b5fc 6108 * Push all migratable network devices back to the
ce286d32
EB
6109 * initial network namespace
6110 */
6111 rtnl_lock();
e008b5fc 6112 for_each_netdev_safe(net, dev, aux) {
ce286d32 6113 int err;
aca51397 6114 char fb_name[IFNAMSIZ];
ce286d32
EB
6115
6116 /* Ignore unmoveable devices (i.e. loopback) */
6117 if (dev->features & NETIF_F_NETNS_LOCAL)
6118 continue;
6119
e008b5fc
EB
6120 /* Leave virtual devices for the generic cleanup */
6121 if (dev->rtnl_link_ops)
6122 continue;
d0c082ce 6123
ce286d32 6124 /* Push remaing network devices to init_net */
aca51397
PE
6125 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6126 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 6127 if (err) {
aca51397 6128 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
ce286d32 6129 __func__, dev->name, err);
aca51397 6130 BUG();
ce286d32
EB
6131 }
6132 }
6133 rtnl_unlock();
6134}
6135
04dc7f6b
EB
6136static void __net_exit default_device_exit_batch(struct list_head *net_list)
6137{
6138 /* At exit all network devices most be removed from a network
6139 * namespace. Do this in the reverse order of registeration.
6140 * Do this across as many network namespaces as possible to
6141 * improve batching efficiency.
6142 */
6143 struct net_device *dev;
6144 struct net *net;
6145 LIST_HEAD(dev_kill_list);
6146
6147 rtnl_lock();
6148 list_for_each_entry(net, net_list, exit_list) {
6149 for_each_netdev_reverse(net, dev) {
6150 if (dev->rtnl_link_ops)
6151 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6152 else
6153 unregister_netdevice_queue(dev, &dev_kill_list);
6154 }
6155 }
6156 unregister_netdevice_many(&dev_kill_list);
6157 rtnl_unlock();
6158}
6159
022cbae6 6160static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 6161 .exit = default_device_exit,
04dc7f6b 6162 .exit_batch = default_device_exit_batch,
ce286d32
EB
6163};
6164
1da177e4
LT
6165/*
6166 * Initialize the DEV module. At boot time this walks the device list and
6167 * unhooks any devices that fail to initialise (normally hardware not
6168 * present) and leaves us with a valid list of present and active devices.
6169 *
6170 */
6171
6172/*
6173 * This is called single threaded during boot, so no need
6174 * to take the rtnl semaphore.
6175 */
6176static int __init net_dev_init(void)
6177{
6178 int i, rc = -ENOMEM;
6179
6180 BUG_ON(!dev_boot_phase);
6181
1da177e4
LT
6182 if (dev_proc_init())
6183 goto out;
6184
8b41d188 6185 if (netdev_kobject_init())
1da177e4
LT
6186 goto out;
6187
6188 INIT_LIST_HEAD(&ptype_all);
82d8a867 6189 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
6190 INIT_LIST_HEAD(&ptype_base[i]);
6191
881d966b
EB
6192 if (register_pernet_subsys(&netdev_net_ops))
6193 goto out;
1da177e4
LT
6194
6195 /*
6196 * Initialise the packet receive queues.
6197 */
6198
6f912042 6199 for_each_possible_cpu(i) {
1da177e4
LT
6200 struct softnet_data *queue;
6201
6202 queue = &per_cpu(softnet_data, i);
6203 skb_queue_head_init(&queue->input_pkt_queue);
1da177e4
LT
6204 queue->completion_queue = NULL;
6205 INIT_LIST_HEAD(&queue->poll_list);
bea3348e 6206
0a9627f2
TH
6207 queue->csd.func = trigger_softirq;
6208 queue->csd.info = queue;
6209 queue->csd.flags = 0;
6210
bea3348e
SH
6211 queue->backlog.poll = process_backlog;
6212 queue->backlog.weight = weight_p;
d565b0a1 6213 queue->backlog.gro_list = NULL;
4ae5544f 6214 queue->backlog.gro_count = 0;
1da177e4
LT
6215 }
6216
1da177e4
LT
6217 dev_boot_phase = 0;
6218
505d4f73
EB
6219 /* The loopback device is special if any other network devices
6220 * is present in a network namespace the loopback device must
6221 * be present. Since we now dynamically allocate and free the
6222 * loopback device ensure this invariant is maintained by
6223 * keeping the loopback device as the first device on the
6224 * list of network devices. Ensuring the loopback devices
6225 * is the first device that appears and the last network device
6226 * that disappears.
6227 */
6228 if (register_pernet_device(&loopback_net_ops))
6229 goto out;
6230
6231 if (register_pernet_device(&default_device_ops))
6232 goto out;
6233
962cf36c
CM
6234 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6235 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
6236
6237 hotcpu_notifier(dev_cpu_callback, 0);
6238 dst_init();
6239 dev_mcast_init();
6240 rc = 0;
6241out:
6242 return rc;
6243}
6244
6245subsys_initcall(net_dev_init);
6246
e88721f8
KK
6247static int __init initialize_hashrnd(void)
6248{
0a9627f2 6249 get_random_bytes(&hashrnd, sizeof(hashrnd));
e88721f8
KK
6250 return 0;
6251}
6252
6253late_initcall_sync(initialize_hashrnd);
6254