]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/stmmac/stmmac_main.c
stmmac: fix timer setup when use dual mac Kconfig
[net-next-2.6.git] / drivers / net / stmmac / stmmac_main.c
CommitLineData
47dd7a54
GC
1/*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
4
5 Copyright (C) 2007-2009 STMicroelectronics Ltd
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
22
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25 Documentation available at:
26 http://www.stlinux.com
27 Support available at:
28 https://bugzilla.stlinux.com/
29*******************************************************************************/
30
31#include <linux/module.h>
32#include <linux/init.h>
33#include <linux/kernel.h>
34#include <linux/interrupt.h>
47dd7a54
GC
35#include <linux/etherdevice.h>
36#include <linux/platform_device.h>
37#include <linux/ip.h>
38#include <linux/tcp.h>
39#include <linux/skbuff.h>
40#include <linux/ethtool.h>
41#include <linux/if_ether.h>
42#include <linux/crc32.h>
43#include <linux/mii.h>
44#include <linux/phy.h>
45#include <linux/if_vlan.h>
46#include <linux/dma-mapping.h>
5a0e3ad6 47#include <linux/slab.h>
47dd7a54
GC
48#include "stmmac.h"
49
50#define STMMAC_RESOURCE_NAME "stmmaceth"
51#define PHY_RESOURCE_NAME "stmmacphy"
52
53#undef STMMAC_DEBUG
54/*#define STMMAC_DEBUG*/
55#ifdef STMMAC_DEBUG
56#define DBG(nlevel, klevel, fmt, args...) \
57 ((void)(netif_msg_##nlevel(priv) && \
58 printk(KERN_##klevel fmt, ## args)))
59#else
60#define DBG(nlevel, klevel, fmt, args...) do { } while (0)
61#endif
62
63#undef STMMAC_RX_DEBUG
64/*#define STMMAC_RX_DEBUG*/
65#ifdef STMMAC_RX_DEBUG
66#define RX_DBG(fmt, args...) printk(fmt, ## args)
67#else
68#define RX_DBG(fmt, args...) do { } while (0)
69#endif
70
71#undef STMMAC_XMIT_DEBUG
72/*#define STMMAC_XMIT_DEBUG*/
73#ifdef STMMAC_TX_DEBUG
74#define TX_DBG(fmt, args...) printk(fmt, ## args)
75#else
76#define TX_DBG(fmt, args...) do { } while (0)
77#endif
78
79#define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
80#define JUMBO_LEN 9000
81
82/* Module parameters */
83#define TX_TIMEO 5000 /* default 5 seconds */
84static int watchdog = TX_TIMEO;
85module_param(watchdog, int, S_IRUGO | S_IWUSR);
86MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");
87
88static int debug = -1; /* -1: default, 0: no output, 16: all */
89module_param(debug, int, S_IRUGO | S_IWUSR);
90MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");
91
92static int phyaddr = -1;
93module_param(phyaddr, int, S_IRUGO);
94MODULE_PARM_DESC(phyaddr, "Physical device address");
95
96#define DMA_TX_SIZE 256
97static int dma_txsize = DMA_TX_SIZE;
98module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
99MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
100
101#define DMA_RX_SIZE 256
102static int dma_rxsize = DMA_RX_SIZE;
103module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
104MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
105
106static int flow_ctrl = FLOW_OFF;
107module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
108MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
109
110static int pause = PAUSE_TIME;
111module_param(pause, int, S_IRUGO | S_IWUSR);
112MODULE_PARM_DESC(pause, "Flow Control Pause Time");
113
114#define TC_DEFAULT 64
115static int tc = TC_DEFAULT;
116module_param(tc, int, S_IRUGO | S_IWUSR);
117MODULE_PARM_DESC(tc, "DMA threshold control value");
118
119#define RX_NO_COALESCE 1 /* Always interrupt on completion */
120#define TX_NO_COALESCE -1 /* No moderation by default */
121
122/* Pay attention to tune this parameter; take care of both
123 * hardware capability and network stabitily/performance impact.
124 * Many tests showed that ~4ms latency seems to be good enough. */
125#ifdef CONFIG_STMMAC_TIMER
126#define DEFAULT_PERIODIC_RATE 256
127static int tmrate = DEFAULT_PERIODIC_RATE;
128module_param(tmrate, int, S_IRUGO | S_IWUSR);
129MODULE_PARM_DESC(tmrate, "External timer freq. (default: 256Hz)");
130#endif
131
132#define DMA_BUFFER_SIZE BUF_SIZE_2KiB
133static int buf_sz = DMA_BUFFER_SIZE;
134module_param(buf_sz, int, S_IRUGO | S_IWUSR);
135MODULE_PARM_DESC(buf_sz, "DMA buffer size");
136
137/* In case of Giga ETH, we can enable/disable the COE for the
138 * transmit HW checksum computation.
139 * Note that, if tx csum is off in HW, SG will be still supported. */
140static int tx_coe = HW_CSUM;
141module_param(tx_coe, int, S_IRUGO | S_IWUSR);
142MODULE_PARM_DESC(tx_coe, "GMAC COE type 2 [on/off]");
143
144static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
145 NETIF_MSG_LINK | NETIF_MSG_IFUP |
146 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
147
148static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
149static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev);
150
151/**
152 * stmmac_verify_args - verify the driver parameters.
153 * Description: it verifies if some wrong parameter is passed to the driver.
154 * Note that wrong parameters are replaced with the default values.
155 */
156static void stmmac_verify_args(void)
157{
158 if (unlikely(watchdog < 0))
159 watchdog = TX_TIMEO;
160 if (unlikely(dma_rxsize < 0))
161 dma_rxsize = DMA_RX_SIZE;
162 if (unlikely(dma_txsize < 0))
163 dma_txsize = DMA_TX_SIZE;
164 if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
165 buf_sz = DMA_BUFFER_SIZE;
166 if (unlikely(flow_ctrl > 1))
167 flow_ctrl = FLOW_AUTO;
168 else if (likely(flow_ctrl < 0))
169 flow_ctrl = FLOW_OFF;
170 if (unlikely((pause < 0) || (pause > 0xffff)))
171 pause = PAUSE_TIME;
47dd7a54
GC
172}
173
174#if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
175static void print_pkt(unsigned char *buf, int len)
176{
177 int j;
178 pr_info("len = %d byte, buf addr: 0x%p", len, buf);
179 for (j = 0; j < len; j++) {
180 if ((j % 16) == 0)
181 pr_info("\n %03x:", j);
182 pr_info(" %02x", buf[j]);
183 }
184 pr_info("\n");
47dd7a54
GC
185}
186#endif
187
188/* minimum number of free TX descriptors required to wake up TX process */
189#define STMMAC_TX_THRESH(x) (x->dma_tx_size/4)
190
191static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
192{
193 return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
194}
195
196/**
197 * stmmac_adjust_link
198 * @dev: net device structure
199 * Description: it adjusts the link parameters.
200 */
201static void stmmac_adjust_link(struct net_device *dev)
202{
203 struct stmmac_priv *priv = netdev_priv(dev);
204 struct phy_device *phydev = priv->phydev;
205 unsigned long ioaddr = dev->base_addr;
206 unsigned long flags;
207 int new_state = 0;
208 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
209
210 if (phydev == NULL)
211 return;
212
213 DBG(probe, DEBUG, "stmmac_adjust_link: called. address %d link %d\n",
214 phydev->addr, phydev->link);
215
216 spin_lock_irqsave(&priv->lock, flags);
217 if (phydev->link) {
218 u32 ctrl = readl(ioaddr + MAC_CTRL_REG);
219
220 /* Now we make sure that we can be in full duplex mode.
221 * If not, we operate in half-duplex mode. */
222 if (phydev->duplex != priv->oldduplex) {
223 new_state = 1;
224 if (!(phydev->duplex))
db98a0b0 225 ctrl &= ~priv->hw->link.duplex;
47dd7a54 226 else
db98a0b0 227 ctrl |= priv->hw->link.duplex;
47dd7a54
GC
228 priv->oldduplex = phydev->duplex;
229 }
230 /* Flow Control operation */
231 if (phydev->pause)
db98a0b0
GC
232 priv->hw->mac->flow_ctrl(ioaddr, phydev->duplex,
233 fc, pause_time);
47dd7a54
GC
234
235 if (phydev->speed != priv->speed) {
236 new_state = 1;
237 switch (phydev->speed) {
238 case 1000:
239 if (likely(priv->is_gmac))
db98a0b0 240 ctrl &= ~priv->hw->link.port;
47dd7a54
GC
241 break;
242 case 100:
243 case 10:
244 if (priv->is_gmac) {
db98a0b0 245 ctrl |= priv->hw->link.port;
47dd7a54 246 if (phydev->speed == SPEED_100) {
db98a0b0 247 ctrl |= priv->hw->link.speed;
47dd7a54 248 } else {
db98a0b0 249 ctrl &= ~(priv->hw->link.speed);
47dd7a54
GC
250 }
251 } else {
db98a0b0 252 ctrl &= ~priv->hw->link.port;
47dd7a54 253 }
65818fa7
GC
254 if (likely(priv->fix_mac_speed))
255 priv->fix_mac_speed(priv->bsp_priv,
256 phydev->speed);
47dd7a54
GC
257 break;
258 default:
259 if (netif_msg_link(priv))
260 pr_warning("%s: Speed (%d) is not 10"
261 " or 100!\n", dev->name, phydev->speed);
262 break;
263 }
264
265 priv->speed = phydev->speed;
266 }
267
268 writel(ctrl, ioaddr + MAC_CTRL_REG);
269
270 if (!priv->oldlink) {
271 new_state = 1;
272 priv->oldlink = 1;
273 }
274 } else if (priv->oldlink) {
275 new_state = 1;
276 priv->oldlink = 0;
277 priv->speed = 0;
278 priv->oldduplex = -1;
279 }
280
281 if (new_state && netif_msg_link(priv))
282 phy_print_status(phydev);
283
284 spin_unlock_irqrestore(&priv->lock, flags);
285
286 DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
287}
288
289/**
290 * stmmac_init_phy - PHY initialization
291 * @dev: net device structure
292 * Description: it initializes the driver's PHY state, and attaches the PHY
293 * to the mac driver.
294 * Return value:
295 * 0 on success
296 */
297static int stmmac_init_phy(struct net_device *dev)
298{
299 struct stmmac_priv *priv = netdev_priv(dev);
300 struct phy_device *phydev;
109cdd66
GC
301 char phy_id[MII_BUS_ID_SIZE + 3];
302 char bus_id[MII_BUS_ID_SIZE];
47dd7a54
GC
303
304 priv->oldlink = 0;
305 priv->speed = 0;
306 priv->oldduplex = -1;
307
308 if (priv->phy_addr == -1) {
309 /* We don't have a PHY, so do nothing */
310 return 0;
311 }
312
313 snprintf(bus_id, MII_BUS_ID_SIZE, "%x", priv->bus_id);
109cdd66
GC
314 snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
315 priv->phy_addr);
47dd7a54
GC
316 pr_debug("stmmac_init_phy: trying to attach to %s\n", phy_id);
317
318 phydev = phy_connect(dev, phy_id, &stmmac_adjust_link, 0,
319 priv->phy_interface);
320
321 if (IS_ERR(phydev)) {
322 pr_err("%s: Could not attach to PHY\n", dev->name);
323 return PTR_ERR(phydev);
324 }
325
326 /*
327 * Broken HW is sometimes missing the pull-up resistor on the
328 * MDIO line, which results in reads to non-existent devices returning
329 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
330 * device as well.
331 * Note: phydev->phy_id is the result of reading the UID PHY registers.
332 */
333 if (phydev->phy_id == 0) {
334 phy_disconnect(phydev);
335 return -ENODEV;
336 }
337 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
338 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
339
340 priv->phydev = phydev;
341
342 return 0;
343}
344
345static inline void stmmac_mac_enable_rx(unsigned long ioaddr)
346{
347 u32 value = readl(ioaddr + MAC_CTRL_REG);
348 value |= MAC_RNABLE_RX;
349 /* Set the RE (receive enable bit into the MAC CTRL register). */
350 writel(value, ioaddr + MAC_CTRL_REG);
351}
352
353static inline void stmmac_mac_enable_tx(unsigned long ioaddr)
354{
355 u32 value = readl(ioaddr + MAC_CTRL_REG);
356 value |= MAC_ENABLE_TX;
357 /* Set the TE (transmit enable bit into the MAC CTRL register). */
358 writel(value, ioaddr + MAC_CTRL_REG);
359}
360
361static inline void stmmac_mac_disable_rx(unsigned long ioaddr)
362{
363 u32 value = readl(ioaddr + MAC_CTRL_REG);
364 value &= ~MAC_RNABLE_RX;
365 writel(value, ioaddr + MAC_CTRL_REG);
366}
367
368static inline void stmmac_mac_disable_tx(unsigned long ioaddr)
369{
370 u32 value = readl(ioaddr + MAC_CTRL_REG);
371 value &= ~MAC_ENABLE_TX;
372 writel(value, ioaddr + MAC_CTRL_REG);
373}
374
375/**
376 * display_ring
377 * @p: pointer to the ring.
378 * @size: size of the ring.
379 * Description: display all the descriptors within the ring.
380 */
381static void display_ring(struct dma_desc *p, int size)
382{
383 struct tmp_s {
384 u64 a;
385 unsigned int b;
386 unsigned int c;
387 };
388 int i;
389 for (i = 0; i < size; i++) {
390 struct tmp_s *x = (struct tmp_s *)(p + i);
391 pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
392 i, (unsigned int)virt_to_phys(&p[i]),
393 (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
394 x->b, x->c);
395 pr_info("\n");
396 }
397}
398
399/**
400 * init_dma_desc_rings - init the RX/TX descriptor rings
401 * @dev: net device structure
402 * Description: this function initializes the DMA RX/TX descriptors
403 * and allocates the socket buffers.
404 */
405static void init_dma_desc_rings(struct net_device *dev)
406{
407 int i;
408 struct stmmac_priv *priv = netdev_priv(dev);
409 struct sk_buff *skb;
410 unsigned int txsize = priv->dma_tx_size;
411 unsigned int rxsize = priv->dma_rx_size;
412 unsigned int bfsize = priv->dma_buf_sz;
73cfe264 413 int buff2_needed = 0, dis_ic = 0;
47dd7a54 414
47dd7a54
GC
415 /* Set the Buffer size according to the MTU;
416 * indeed, in case of jumbo we need to bump-up the buffer sizes.
417 */
418 if (unlikely(dev->mtu >= BUF_SIZE_8KiB))
419 bfsize = BUF_SIZE_16KiB;
420 else if (unlikely(dev->mtu >= BUF_SIZE_4KiB))
421 bfsize = BUF_SIZE_8KiB;
422 else if (unlikely(dev->mtu >= BUF_SIZE_2KiB))
423 bfsize = BUF_SIZE_4KiB;
424 else if (unlikely(dev->mtu >= DMA_BUFFER_SIZE))
425 bfsize = BUF_SIZE_2KiB;
426 else
427 bfsize = DMA_BUFFER_SIZE;
428
73cfe264
GC
429#ifdef CONFIG_STMMAC_TIMER
430 /* Disable interrupts on completion for the reception if timer is on */
431 if (likely(priv->tm->enable))
432 dis_ic = 1;
433#endif
47dd7a54
GC
434 /* If the MTU exceeds 8k so use the second buffer in the chain */
435 if (bfsize >= BUF_SIZE_8KiB)
436 buff2_needed = 1;
437
438 DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
439 txsize, rxsize, bfsize);
440
441 priv->rx_skbuff_dma = kmalloc(rxsize * sizeof(dma_addr_t), GFP_KERNEL);
442 priv->rx_skbuff =
443 kmalloc(sizeof(struct sk_buff *) * rxsize, GFP_KERNEL);
444 priv->dma_rx =
445 (struct dma_desc *)dma_alloc_coherent(priv->device,
446 rxsize *
447 sizeof(struct dma_desc),
448 &priv->dma_rx_phy,
449 GFP_KERNEL);
450 priv->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * txsize,
451 GFP_KERNEL);
452 priv->dma_tx =
453 (struct dma_desc *)dma_alloc_coherent(priv->device,
454 txsize *
455 sizeof(struct dma_desc),
456 &priv->dma_tx_phy,
457 GFP_KERNEL);
458
459 if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
460 pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
461 return;
462 }
463
464 DBG(probe, INFO, "stmmac (%s) DMA desc rings: virt addr (Rx %p, "
465 "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
466 dev->name, priv->dma_rx, priv->dma_tx,
467 (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);
468
469 /* RX INITIALIZATION */
470 DBG(probe, INFO, "stmmac: SKB addresses:\n"
471 "skb\t\tskb data\tdma data\n");
472
473 for (i = 0; i < rxsize; i++) {
474 struct dma_desc *p = priv->dma_rx + i;
475
476 skb = netdev_alloc_skb_ip_align(dev, bfsize);
477 if (unlikely(skb == NULL)) {
478 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
479 break;
480 }
481 priv->rx_skbuff[i] = skb;
482 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
483 bfsize, DMA_FROM_DEVICE);
484
485 p->des2 = priv->rx_skbuff_dma[i];
486 if (unlikely(buff2_needed))
487 p->des3 = p->des2 + BUF_SIZE_8KiB;
488 DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
489 priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
490 }
491 priv->cur_rx = 0;
492 priv->dirty_rx = (unsigned int)(i - rxsize);
493 priv->dma_buf_sz = bfsize;
494 buf_sz = bfsize;
495
496 /* TX INITIALIZATION */
497 for (i = 0; i < txsize; i++) {
498 priv->tx_skbuff[i] = NULL;
499 priv->dma_tx[i].des2 = 0;
500 }
501 priv->dirty_tx = 0;
502 priv->cur_tx = 0;
503
504 /* Clear the Rx/Tx descriptors */
db98a0b0
GC
505 priv->hw->desc->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
506 priv->hw->desc->init_tx_desc(priv->dma_tx, txsize);
47dd7a54
GC
507
508 if (netif_msg_hw(priv)) {
509 pr_info("RX descriptor ring:\n");
510 display_ring(priv->dma_rx, rxsize);
511 pr_info("TX descriptor ring:\n");
512 display_ring(priv->dma_tx, txsize);
513 }
47dd7a54
GC
514}
515
516static void dma_free_rx_skbufs(struct stmmac_priv *priv)
517{
518 int i;
519
520 for (i = 0; i < priv->dma_rx_size; i++) {
521 if (priv->rx_skbuff[i]) {
522 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
523 priv->dma_buf_sz, DMA_FROM_DEVICE);
524 dev_kfree_skb_any(priv->rx_skbuff[i]);
525 }
526 priv->rx_skbuff[i] = NULL;
527 }
47dd7a54
GC
528}
529
530static void dma_free_tx_skbufs(struct stmmac_priv *priv)
531{
532 int i;
533
534 for (i = 0; i < priv->dma_tx_size; i++) {
535 if (priv->tx_skbuff[i] != NULL) {
536 struct dma_desc *p = priv->dma_tx + i;
537 if (p->des2)
538 dma_unmap_single(priv->device, p->des2,
db98a0b0
GC
539 priv->hw->desc->get_tx_len(p),
540 DMA_TO_DEVICE);
47dd7a54
GC
541 dev_kfree_skb_any(priv->tx_skbuff[i]);
542 priv->tx_skbuff[i] = NULL;
543 }
544 }
47dd7a54
GC
545}
546
547static void free_dma_desc_resources(struct stmmac_priv *priv)
548{
549 /* Release the DMA TX/RX socket buffers */
550 dma_free_rx_skbufs(priv);
551 dma_free_tx_skbufs(priv);
552
553 /* Free the region of consistent memory previously allocated for
554 * the DMA */
555 dma_free_coherent(priv->device,
556 priv->dma_tx_size * sizeof(struct dma_desc),
557 priv->dma_tx, priv->dma_tx_phy);
558 dma_free_coherent(priv->device,
559 priv->dma_rx_size * sizeof(struct dma_desc),
560 priv->dma_rx, priv->dma_rx_phy);
561 kfree(priv->rx_skbuff_dma);
562 kfree(priv->rx_skbuff);
563 kfree(priv->tx_skbuff);
47dd7a54
GC
564}
565
47dd7a54
GC
566/**
567 * stmmac_dma_operation_mode - HW DMA operation mode
568 * @priv : pointer to the private device structure.
569 * Description: it sets the DMA operation mode: tx/rx DMA thresholds
570 * or Store-And-Forward capability. It also verifies the COE for the
571 * transmission in case of Giga ETH.
572 */
573static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
574{
575 if (!priv->is_gmac) {
576 /* MAC 10/100 */
db98a0b0 577 priv->hw->dma->dma_mode(priv->dev->base_addr, tc, 0);
47dd7a54
GC
578 priv->tx_coe = NO_HW_CSUM;
579 } else {
580 if ((priv->dev->mtu <= ETH_DATA_LEN) && (tx_coe)) {
db98a0b0
GC
581 priv->hw->dma->dma_mode(priv->dev->base_addr,
582 SF_DMA_MODE, SF_DMA_MODE);
47dd7a54
GC
583 tc = SF_DMA_MODE;
584 priv->tx_coe = HW_CSUM;
585 } else {
586 /* Checksum computation is performed in software. */
db98a0b0
GC
587 priv->hw->dma->dma_mode(priv->dev->base_addr, tc,
588 SF_DMA_MODE);
47dd7a54
GC
589 priv->tx_coe = NO_HW_CSUM;
590 }
591 }
592 tx_coe = priv->tx_coe;
47dd7a54
GC
593}
594
47dd7a54
GC
595/**
596 * stmmac_tx:
597 * @priv: private driver structure
598 * Description: it reclaims resources after transmission completes.
599 */
600static void stmmac_tx(struct stmmac_priv *priv)
601{
602 unsigned int txsize = priv->dma_tx_size;
603 unsigned long ioaddr = priv->dev->base_addr;
604
605 while (priv->dirty_tx != priv->cur_tx) {
606 int last;
607 unsigned int entry = priv->dirty_tx % txsize;
608 struct sk_buff *skb = priv->tx_skbuff[entry];
609 struct dma_desc *p = priv->dma_tx + entry;
610
611 /* Check if the descriptor is owned by the DMA. */
db98a0b0 612 if (priv->hw->desc->get_tx_owner(p))
47dd7a54
GC
613 break;
614
615 /* Verify tx error by looking at the last segment */
db98a0b0 616 last = priv->hw->desc->get_tx_ls(p);
47dd7a54
GC
617 if (likely(last)) {
618 int tx_error =
db98a0b0
GC
619 priv->hw->desc->tx_status(&priv->dev->stats,
620 &priv->xstats, p,
621 ioaddr);
47dd7a54
GC
622 if (likely(tx_error == 0)) {
623 priv->dev->stats.tx_packets++;
624 priv->xstats.tx_pkt_n++;
625 } else
626 priv->dev->stats.tx_errors++;
627 }
628 TX_DBG("%s: curr %d, dirty %d\n", __func__,
629 priv->cur_tx, priv->dirty_tx);
630
631 if (likely(p->des2))
632 dma_unmap_single(priv->device, p->des2,
db98a0b0 633 priv->hw->desc->get_tx_len(p),
47dd7a54
GC
634 DMA_TO_DEVICE);
635 if (unlikely(p->des3))
636 p->des3 = 0;
637
638 if (likely(skb != NULL)) {
639 /*
640 * If there's room in the queue (limit it to size)
641 * we add this skb back into the pool,
642 * if it's the right size.
643 */
644 if ((skb_queue_len(&priv->rx_recycle) <
645 priv->dma_rx_size) &&
646 skb_recycle_check(skb, priv->dma_buf_sz))
647 __skb_queue_head(&priv->rx_recycle, skb);
648 else
649 dev_kfree_skb(skb);
650
651 priv->tx_skbuff[entry] = NULL;
652 }
653
db98a0b0 654 priv->hw->desc->release_tx_desc(p);
47dd7a54
GC
655
656 entry = (++priv->dirty_tx) % txsize;
657 }
658 if (unlikely(netif_queue_stopped(priv->dev) &&
659 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
660 netif_tx_lock(priv->dev);
661 if (netif_queue_stopped(priv->dev) &&
662 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
663 TX_DBG("%s: restart transmit\n", __func__);
664 netif_wake_queue(priv->dev);
665 }
666 netif_tx_unlock(priv->dev);
667 }
47dd7a54
GC
668}
669
670static inline void stmmac_enable_irq(struct stmmac_priv *priv)
671{
73cfe264
GC
672#ifdef CONFIG_STMMAC_TIMER
673 if (likely(priv->tm->enable))
674 priv->tm->timer_start(tmrate);
675 else
47dd7a54 676#endif
aec7ff27 677 priv->hw->dma->enable_dma_irq(priv->dev->base_addr);
47dd7a54
GC
678}
679
680static inline void stmmac_disable_irq(struct stmmac_priv *priv)
681{
73cfe264
GC
682#ifdef CONFIG_STMMAC_TIMER
683 if (likely(priv->tm->enable))
684 priv->tm->timer_stop();
685 else
47dd7a54 686#endif
aec7ff27 687 priv->hw->dma->disable_dma_irq(priv->dev->base_addr);
47dd7a54
GC
688}
689
690static int stmmac_has_work(struct stmmac_priv *priv)
691{
692 unsigned int has_work = 0;
693 int rxret, tx_work = 0;
694
db98a0b0 695 rxret = priv->hw->desc->get_rx_owner(priv->dma_rx +
47dd7a54
GC
696 (priv->cur_rx % priv->dma_rx_size));
697
698 if (priv->dirty_tx != priv->cur_tx)
699 tx_work = 1;
700
701 if (likely(!rxret || tx_work))
702 has_work = 1;
703
704 return has_work;
705}
706
707static inline void _stmmac_schedule(struct stmmac_priv *priv)
708{
709 if (likely(stmmac_has_work(priv))) {
710 stmmac_disable_irq(priv);
711 napi_schedule(&priv->napi);
712 }
713}
714
715#ifdef CONFIG_STMMAC_TIMER
716void stmmac_schedule(struct net_device *dev)
717{
718 struct stmmac_priv *priv = netdev_priv(dev);
719
720 priv->xstats.sched_timer_n++;
721
722 _stmmac_schedule(priv);
47dd7a54
GC
723}
724
725static void stmmac_no_timer_started(unsigned int x)
726{;
727};
728
729static void stmmac_no_timer_stopped(void)
730{;
731};
732#endif
733
734/**
735 * stmmac_tx_err:
736 * @priv: pointer to the private device structure
737 * Description: it cleans the descriptors and restarts the transmission
738 * in case of errors.
739 */
740static void stmmac_tx_err(struct stmmac_priv *priv)
741{
742 netif_stop_queue(priv->dev);
743
aec7ff27 744 priv->hw->dma->stop_tx(priv->dev->base_addr);
47dd7a54 745 dma_free_tx_skbufs(priv);
db98a0b0 746 priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
47dd7a54
GC
747 priv->dirty_tx = 0;
748 priv->cur_tx = 0;
aec7ff27 749 priv->hw->dma->start_tx(priv->dev->base_addr);
47dd7a54
GC
750
751 priv->dev->stats.tx_errors++;
752 netif_wake_queue(priv->dev);
47dd7a54
GC
753}
754
47dd7a54 755
aec7ff27
GC
756static void stmmac_dma_interrupt(struct stmmac_priv *priv)
757{
758 unsigned long ioaddr = priv->dev->base_addr;
759 int status;
760
761 status = priv->hw->dma->dma_interrupt(priv->dev->base_addr,
762 &priv->xstats);
763 if (likely(status == handle_tx_rx))
764 _stmmac_schedule(priv);
765
766 else if (unlikely(status == tx_hard_error_bump_tc)) {
767 /* Try to bump up the dma threshold on this failure */
768 if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
769 tc += 64;
770 priv->hw->dma->dma_mode(ioaddr, tc, SF_DMA_MODE);
771 priv->xstats.threshold = tc;
47dd7a54 772 }
aec7ff27
GC
773 stmmac_tx_err(priv);
774 } else if (unlikely(status == tx_hard_error))
775 stmmac_tx_err(priv);
47dd7a54
GC
776}
777
778/**
779 * stmmac_open - open entry point of the driver
780 * @dev : pointer to the device structure.
781 * Description:
782 * This function is the open entry point of the driver.
783 * Return value:
784 * 0 on success and an appropriate (-)ve integer as defined in errno.h
785 * file on failure.
786 */
787static int stmmac_open(struct net_device *dev)
788{
789 struct stmmac_priv *priv = netdev_priv(dev);
790 unsigned long ioaddr = dev->base_addr;
791 int ret;
792
793 /* Check that the MAC address is valid. If its not, refuse
794 * to bring the device up. The user must specify an
795 * address using the following linux command:
796 * ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx */
797 if (!is_valid_ether_addr(dev->dev_addr)) {
798 random_ether_addr(dev->dev_addr);
799 pr_warning("%s: generated random MAC address %pM\n", dev->name,
800 dev->dev_addr);
801 }
802
803 stmmac_verify_args();
804
805 ret = stmmac_init_phy(dev);
806 if (unlikely(ret)) {
807 pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
808 return ret;
809 }
810
811 /* Request the IRQ lines */
a0607fd3 812 ret = request_irq(dev->irq, stmmac_interrupt,
47dd7a54
GC
813 IRQF_SHARED, dev->name, dev);
814 if (unlikely(ret < 0)) {
815 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
816 __func__, dev->irq, ret);
817 return ret;
818 }
819
820#ifdef CONFIG_STMMAC_TIMER
73cfe264 821 priv->tm = kzalloc(sizeof(struct stmmac_timer *), GFP_KERNEL);
47dd7a54 822 if (unlikely(priv->tm == NULL)) {
2381a55c 823 pr_err("%s: ERROR: timer memory alloc failed\n", __func__);
47dd7a54
GC
824 return -ENOMEM;
825 }
826 priv->tm->freq = tmrate;
827
73cfe264
GC
828 /* Test if the external timer can be actually used.
829 * In case of failure continue without timer. */
47dd7a54 830 if (unlikely((stmmac_open_ext_timer(dev, priv->tm)) < 0)) {
73cfe264 831 pr_warning("stmmaceth: cannot attach the external timer.\n");
47dd7a54
GC
832 priv->tm->freq = 0;
833 priv->tm->timer_start = stmmac_no_timer_started;
834 priv->tm->timer_stop = stmmac_no_timer_stopped;
73cfe264
GC
835 } else
836 priv->tm->enable = 1;
47dd7a54
GC
837#endif
838
839 /* Create and initialize the TX/RX descriptors chains. */
840 priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
841 priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
842 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
843 init_dma_desc_rings(dev);
844
845 /* DMA initialization and SW reset */
db98a0b0
GC
846 if (unlikely(priv->hw->dma->init(ioaddr, priv->pbl, priv->dma_tx_phy,
847 priv->dma_rx_phy) < 0)) {
47dd7a54
GC
848
849 pr_err("%s: DMA initialization failed\n", __func__);
850 return -1;
851 }
852
853 /* Copy the MAC addr into the HW */
db98a0b0 854 priv->hw->mac->set_umac_addr(ioaddr, dev->dev_addr, 0);
ca5f12c1
GC
855 /* If required, perform hw setup of the bus. */
856 if (priv->bus_setup)
857 priv->bus_setup(ioaddr);
47dd7a54 858 /* Initialize the MAC Core */
db98a0b0 859 priv->hw->mac->core_init(ioaddr);
47dd7a54
GC
860
861 priv->shutdown = 0;
862
863 /* Initialise the MMC (if present) to disable all interrupts. */
864 writel(0xffffffff, ioaddr + MMC_HIGH_INTR_MASK);
865 writel(0xffffffff, ioaddr + MMC_LOW_INTR_MASK);
866
867 /* Enable the MAC Rx/Tx */
868 stmmac_mac_enable_rx(ioaddr);
869 stmmac_mac_enable_tx(ioaddr);
870
871 /* Set the HW DMA mode and the COE */
872 stmmac_dma_operation_mode(priv);
873
874 /* Extra statistics */
875 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
876 priv->xstats.threshold = tc;
877
878 /* Start the ball rolling... */
879 DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
aec7ff27
GC
880 priv->hw->dma->start_tx(ioaddr);
881 priv->hw->dma->start_rx(ioaddr);
47dd7a54
GC
882
883#ifdef CONFIG_STMMAC_TIMER
884 priv->tm->timer_start(tmrate);
885#endif
886 /* Dump DMA/MAC registers */
887 if (netif_msg_hw(priv)) {
db98a0b0
GC
888 priv->hw->mac->dump_regs(ioaddr);
889 priv->hw->dma->dump_regs(ioaddr);
47dd7a54
GC
890 }
891
892 if (priv->phydev)
893 phy_start(priv->phydev);
894
895 napi_enable(&priv->napi);
896 skb_queue_head_init(&priv->rx_recycle);
897 netif_start_queue(dev);
898 return 0;
899}
900
901/**
902 * stmmac_release - close entry point of the driver
903 * @dev : device pointer.
904 * Description:
905 * This is the stop entry point of the driver.
906 */
907static int stmmac_release(struct net_device *dev)
908{
909 struct stmmac_priv *priv = netdev_priv(dev);
910
911 /* Stop and disconnect the PHY */
912 if (priv->phydev) {
913 phy_stop(priv->phydev);
914 phy_disconnect(priv->phydev);
915 priv->phydev = NULL;
916 }
917
918 netif_stop_queue(dev);
919
920#ifdef CONFIG_STMMAC_TIMER
921 /* Stop and release the timer */
922 stmmac_close_ext_timer();
923 if (priv->tm != NULL)
924 kfree(priv->tm);
925#endif
926 napi_disable(&priv->napi);
927 skb_queue_purge(&priv->rx_recycle);
928
929 /* Free the IRQ lines */
930 free_irq(dev->irq, dev);
931
932 /* Stop TX/RX DMA and clear the descriptors */
aec7ff27
GC
933 priv->hw->dma->stop_tx(dev->base_addr);
934 priv->hw->dma->stop_rx(dev->base_addr);
47dd7a54
GC
935
936 /* Release and free the Rx/Tx resources */
937 free_dma_desc_resources(priv);
938
939 /* Disable the MAC core */
940 stmmac_mac_disable_tx(dev->base_addr);
941 stmmac_mac_disable_rx(dev->base_addr);
942
943 netif_carrier_off(dev);
944
945 return 0;
946}
947
948/*
949 * To perform emulated hardware segmentation on skb.
950 */
951static int stmmac_sw_tso(struct stmmac_priv *priv, struct sk_buff *skb)
952{
953 struct sk_buff *segs, *curr_skb;
954 int gso_segs = skb_shinfo(skb)->gso_segs;
955
956 /* Estimate the number of fragments in the worst case */
957 if (unlikely(stmmac_tx_avail(priv) < gso_segs)) {
958 netif_stop_queue(priv->dev);
959 TX_DBG(KERN_ERR "%s: TSO BUG! Tx Ring full when queue awake\n",
960 __func__);
961 if (stmmac_tx_avail(priv) < gso_segs)
962 return NETDEV_TX_BUSY;
963
964 netif_wake_queue(priv->dev);
965 }
966 TX_DBG("\tstmmac_sw_tso: segmenting: skb %p (len %d)\n",
967 skb, skb->len);
968
969 segs = skb_gso_segment(skb, priv->dev->features & ~NETIF_F_TSO);
970 if (unlikely(IS_ERR(segs)))
971 goto sw_tso_end;
972
973 do {
974 curr_skb = segs;
975 segs = segs->next;
976 TX_DBG("\t\tcurrent skb->len: %d, *curr %p,"
977 "*next %p\n", curr_skb->len, curr_skb, segs);
978 curr_skb->next = NULL;
979 stmmac_xmit(curr_skb, priv->dev);
980 } while (segs);
981
982sw_tso_end:
983 dev_kfree_skb(skb);
984
985 return NETDEV_TX_OK;
986}
987
988static unsigned int stmmac_handle_jumbo_frames(struct sk_buff *skb,
989 struct net_device *dev,
990 int csum_insertion)
991{
992 struct stmmac_priv *priv = netdev_priv(dev);
993 unsigned int nopaged_len = skb_headlen(skb);
994 unsigned int txsize = priv->dma_tx_size;
995 unsigned int entry = priv->cur_tx % txsize;
996 struct dma_desc *desc = priv->dma_tx + entry;
997
998 if (nopaged_len > BUF_SIZE_8KiB) {
999
1000 int buf2_size = nopaged_len - BUF_SIZE_8KiB;
1001
1002 desc->des2 = dma_map_single(priv->device, skb->data,
1003 BUF_SIZE_8KiB, DMA_TO_DEVICE);
1004 desc->des3 = desc->des2 + BUF_SIZE_4KiB;
db98a0b0
GC
1005 priv->hw->desc->prepare_tx_desc(desc, 1, BUF_SIZE_8KiB,
1006 csum_insertion);
47dd7a54
GC
1007
1008 entry = (++priv->cur_tx) % txsize;
1009 desc = priv->dma_tx + entry;
1010
1011 desc->des2 = dma_map_single(priv->device,
1012 skb->data + BUF_SIZE_8KiB,
1013 buf2_size, DMA_TO_DEVICE);
1014 desc->des3 = desc->des2 + BUF_SIZE_4KiB;
db98a0b0
GC
1015 priv->hw->desc->prepare_tx_desc(desc, 0, buf2_size,
1016 csum_insertion);
1017 priv->hw->desc->set_tx_owner(desc);
47dd7a54
GC
1018 priv->tx_skbuff[entry] = NULL;
1019 } else {
1020 desc->des2 = dma_map_single(priv->device, skb->data,
1021 nopaged_len, DMA_TO_DEVICE);
1022 desc->des3 = desc->des2 + BUF_SIZE_4KiB;
db98a0b0
GC
1023 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1024 csum_insertion);
47dd7a54
GC
1025 }
1026 return entry;
1027}
1028
1029/**
1030 * stmmac_xmit:
1031 * @skb : the socket buffer
1032 * @dev : device pointer
1033 * Description : Tx entry point of the driver.
1034 */
1035static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1036{
1037 struct stmmac_priv *priv = netdev_priv(dev);
1038 unsigned int txsize = priv->dma_tx_size;
1039 unsigned int entry;
1040 int i, csum_insertion = 0;
1041 int nfrags = skb_shinfo(skb)->nr_frags;
1042 struct dma_desc *desc, *first;
1043
1044 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1045 if (!netif_queue_stopped(dev)) {
1046 netif_stop_queue(dev);
1047 /* This is a hard error, log it. */
1048 pr_err("%s: BUG! Tx Ring full when queue awake\n",
1049 __func__);
1050 }
1051 return NETDEV_TX_BUSY;
1052 }
1053
1054 entry = priv->cur_tx % txsize;
1055
1056#ifdef STMMAC_XMIT_DEBUG
1057 if ((skb->len > ETH_FRAME_LEN) || nfrags)
1058 pr_info("stmmac xmit:\n"
1059 "\tskb addr %p - len: %d - nopaged_len: %d\n"
1060 "\tn_frags: %d - ip_summed: %d - %s gso\n",
1061 skb, skb->len, skb_headlen(skb), nfrags, skb->ip_summed,
1062 !skb_is_gso(skb) ? "isn't" : "is");
1063#endif
1064
1065 if (unlikely(skb_is_gso(skb)))
1066 return stmmac_sw_tso(priv, skb);
1067
1068 if (likely((skb->ip_summed == CHECKSUM_PARTIAL))) {
1069 if (likely(priv->tx_coe == NO_HW_CSUM))
1070 skb_checksum_help(skb);
1071 else
1072 csum_insertion = 1;
1073 }
1074
1075 desc = priv->dma_tx + entry;
1076 first = desc;
1077
1078#ifdef STMMAC_XMIT_DEBUG
1079 if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1080 pr_debug("stmmac xmit: skb len: %d, nopaged_len: %d,\n"
1081 "\t\tn_frags: %d, ip_summed: %d\n",
1082 skb->len, skb_headlen(skb), nfrags, skb->ip_summed);
1083#endif
1084 priv->tx_skbuff[entry] = skb;
1085 if (unlikely(skb->len >= BUF_SIZE_4KiB)) {
1086 entry = stmmac_handle_jumbo_frames(skb, dev, csum_insertion);
1087 desc = priv->dma_tx + entry;
1088 } else {
1089 unsigned int nopaged_len = skb_headlen(skb);
1090 desc->des2 = dma_map_single(priv->device, skb->data,
1091 nopaged_len, DMA_TO_DEVICE);
db98a0b0
GC
1092 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1093 csum_insertion);
47dd7a54
GC
1094 }
1095
1096 for (i = 0; i < nfrags; i++) {
1097 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1098 int len = frag->size;
1099
1100 entry = (++priv->cur_tx) % txsize;
1101 desc = priv->dma_tx + entry;
1102
1103 TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1104 desc->des2 = dma_map_page(priv->device, frag->page,
1105 frag->page_offset,
1106 len, DMA_TO_DEVICE);
1107 priv->tx_skbuff[entry] = NULL;
db98a0b0
GC
1108 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion);
1109 priv->hw->desc->set_tx_owner(desc);
47dd7a54
GC
1110 }
1111
1112 /* Interrupt on completition only for the latest segment */
db98a0b0 1113 priv->hw->desc->close_tx_desc(desc);
73cfe264 1114
47dd7a54 1115#ifdef CONFIG_STMMAC_TIMER
73cfe264
GC
1116 /* Clean IC while using timer */
1117 if (likely(priv->tm->enable))
db98a0b0 1118 priv->hw->desc->clear_tx_ic(desc);
47dd7a54
GC
1119#endif
1120 /* To avoid raise condition */
db98a0b0 1121 priv->hw->desc->set_tx_owner(first);
47dd7a54
GC
1122
1123 priv->cur_tx++;
1124
1125#ifdef STMMAC_XMIT_DEBUG
1126 if (netif_msg_pktdata(priv)) {
1127 pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
1128 "first=%p, nfrags=%d\n",
1129 (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
1130 entry, first, nfrags);
1131 display_ring(priv->dma_tx, txsize);
1132 pr_info(">>> frame to be transmitted: ");
1133 print_pkt(skb->data, skb->len);
1134 }
1135#endif
1136 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1137 TX_DBG("%s: stop transmitted packets\n", __func__);
1138 netif_stop_queue(dev);
1139 }
1140
1141 dev->stats.tx_bytes += skb->len;
1142
aec7ff27 1143 priv->hw->dma->enable_dma_transmission(dev->base_addr);
47dd7a54
GC
1144
1145 return NETDEV_TX_OK;
1146}
1147
1148static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1149{
1150 unsigned int rxsize = priv->dma_rx_size;
1151 int bfsize = priv->dma_buf_sz;
1152 struct dma_desc *p = priv->dma_rx;
1153
1154 for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1155 unsigned int entry = priv->dirty_rx % rxsize;
1156 if (likely(priv->rx_skbuff[entry] == NULL)) {
1157 struct sk_buff *skb;
1158
1159 skb = __skb_dequeue(&priv->rx_recycle);
1160 if (skb == NULL)
1161 skb = netdev_alloc_skb_ip_align(priv->dev,
1162 bfsize);
1163
1164 if (unlikely(skb == NULL))
1165 break;
1166
1167 priv->rx_skbuff[entry] = skb;
1168 priv->rx_skbuff_dma[entry] =
1169 dma_map_single(priv->device, skb->data, bfsize,
1170 DMA_FROM_DEVICE);
1171
1172 (p + entry)->des2 = priv->rx_skbuff_dma[entry];
1173 if (unlikely(priv->is_gmac)) {
1174 if (bfsize >= BUF_SIZE_8KiB)
1175 (p + entry)->des3 =
1176 (p + entry)->des2 + BUF_SIZE_8KiB;
1177 }
1178 RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
1179 }
db98a0b0 1180 priv->hw->desc->set_rx_owner(p + entry);
47dd7a54 1181 }
47dd7a54
GC
1182}
1183
1184static int stmmac_rx(struct stmmac_priv *priv, int limit)
1185{
1186 unsigned int rxsize = priv->dma_rx_size;
1187 unsigned int entry = priv->cur_rx % rxsize;
1188 unsigned int next_entry;
1189 unsigned int count = 0;
1190 struct dma_desc *p = priv->dma_rx + entry;
1191 struct dma_desc *p_next;
1192
1193#ifdef STMMAC_RX_DEBUG
1194 if (netif_msg_hw(priv)) {
1195 pr_debug(">>> stmmac_rx: descriptor ring:\n");
1196 display_ring(priv->dma_rx, rxsize);
1197 }
1198#endif
1199 count = 0;
db98a0b0 1200 while (!priv->hw->desc->get_rx_owner(p)) {
47dd7a54
GC
1201 int status;
1202
1203 if (count >= limit)
1204 break;
1205
1206 count++;
1207
1208 next_entry = (++priv->cur_rx) % rxsize;
1209 p_next = priv->dma_rx + next_entry;
1210 prefetch(p_next);
1211
1212 /* read the status of the incoming frame */
db98a0b0
GC
1213 status = (priv->hw->desc->rx_status(&priv->dev->stats,
1214 &priv->xstats, p));
47dd7a54
GC
1215 if (unlikely(status == discard_frame))
1216 priv->dev->stats.rx_errors++;
1217 else {
1218 struct sk_buff *skb;
1219 /* Length should omit the CRC */
db98a0b0 1220 int frame_len = priv->hw->desc->get_rx_frame_len(p) - 4;
47dd7a54
GC
1221
1222#ifdef STMMAC_RX_DEBUG
1223 if (frame_len > ETH_FRAME_LEN)
1224 pr_debug("\tRX frame size %d, COE status: %d\n",
1225 frame_len, status);
1226
1227 if (netif_msg_hw(priv))
1228 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
1229 p, entry, p->des2);
1230#endif
1231 skb = priv->rx_skbuff[entry];
1232 if (unlikely(!skb)) {
1233 pr_err("%s: Inconsistent Rx descriptor chain\n",
1234 priv->dev->name);
1235 priv->dev->stats.rx_dropped++;
1236 break;
1237 }
1238 prefetch(skb->data - NET_IP_ALIGN);
1239 priv->rx_skbuff[entry] = NULL;
1240
1241 skb_put(skb, frame_len);
1242 dma_unmap_single(priv->device,
1243 priv->rx_skbuff_dma[entry],
1244 priv->dma_buf_sz, DMA_FROM_DEVICE);
1245#ifdef STMMAC_RX_DEBUG
1246 if (netif_msg_pktdata(priv)) {
1247 pr_info(" frame received (%dbytes)", frame_len);
1248 print_pkt(skb->data, frame_len);
1249 }
1250#endif
1251 skb->protocol = eth_type_trans(skb, priv->dev);
1252
1253 if (unlikely(status == csum_none)) {
1254 /* always for the old mac 10/100 */
1255 skb->ip_summed = CHECKSUM_NONE;
1256 netif_receive_skb(skb);
1257 } else {
1258 skb->ip_summed = CHECKSUM_UNNECESSARY;
1259 napi_gro_receive(&priv->napi, skb);
1260 }
1261
1262 priv->dev->stats.rx_packets++;
1263 priv->dev->stats.rx_bytes += frame_len;
47dd7a54
GC
1264 }
1265 entry = next_entry;
1266 p = p_next; /* use prefetched values */
1267 }
1268
1269 stmmac_rx_refill(priv);
1270
1271 priv->xstats.rx_pkt_n += count;
1272
1273 return count;
1274}
1275
1276/**
1277 * stmmac_poll - stmmac poll method (NAPI)
1278 * @napi : pointer to the napi structure.
1279 * @budget : maximum number of packets that the current CPU can receive from
1280 * all interfaces.
1281 * Description :
1282 * This function implements the the reception process.
1283 * Also it runs the TX completion thread
1284 */
1285static int stmmac_poll(struct napi_struct *napi, int budget)
1286{
1287 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
1288 int work_done = 0;
1289
1290 priv->xstats.poll_n++;
1291 stmmac_tx(priv);
1292 work_done = stmmac_rx(priv, budget);
1293
1294 if (work_done < budget) {
1295 napi_complete(napi);
1296 stmmac_enable_irq(priv);
1297 }
1298 return work_done;
1299}
1300
1301/**
1302 * stmmac_tx_timeout
1303 * @dev : Pointer to net device structure
1304 * Description: this function is called when a packet transmission fails to
1305 * complete within a reasonable tmrate. The driver will mark the error in the
1306 * netdev structure and arrange for the device to be reset to a sane state
1307 * in order to transmit a new packet.
1308 */
1309static void stmmac_tx_timeout(struct net_device *dev)
1310{
1311 struct stmmac_priv *priv = netdev_priv(dev);
1312
1313 /* Clear Tx resources and restart transmitting again */
1314 stmmac_tx_err(priv);
47dd7a54
GC
1315}
1316
1317/* Configuration changes (passed on by ifconfig) */
1318static int stmmac_config(struct net_device *dev, struct ifmap *map)
1319{
1320 if (dev->flags & IFF_UP) /* can't act on a running interface */
1321 return -EBUSY;
1322
1323 /* Don't allow changing the I/O address */
1324 if (map->base_addr != dev->base_addr) {
1325 pr_warning("%s: can't change I/O address\n", dev->name);
1326 return -EOPNOTSUPP;
1327 }
1328
1329 /* Don't allow changing the IRQ */
1330 if (map->irq != dev->irq) {
1331 pr_warning("%s: can't change IRQ number %d\n",
1332 dev->name, dev->irq);
1333 return -EOPNOTSUPP;
1334 }
1335
1336 /* ignore other fields */
1337 return 0;
1338}
1339
1340/**
1341 * stmmac_multicast_list - entry point for multicast addressing
1342 * @dev : pointer to the device structure
1343 * Description:
1344 * This function is a driver entry point which gets called by the kernel
1345 * whenever multicast addresses must be enabled/disabled.
1346 * Return value:
1347 * void.
1348 */
1349static void stmmac_multicast_list(struct net_device *dev)
1350{
1351 struct stmmac_priv *priv = netdev_priv(dev);
1352
1353 spin_lock(&priv->lock);
db98a0b0 1354 priv->hw->mac->set_filter(dev);
47dd7a54 1355 spin_unlock(&priv->lock);
47dd7a54
GC
1356}
1357
1358/**
1359 * stmmac_change_mtu - entry point to change MTU size for the device.
1360 * @dev : device pointer.
1361 * @new_mtu : the new MTU size for the device.
1362 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
1363 * to drive packet transmission. Ethernet has an MTU of 1500 octets
1364 * (ETH_DATA_LEN). This value can be changed with ifconfig.
1365 * Return value:
1366 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1367 * file on failure.
1368 */
1369static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
1370{
1371 struct stmmac_priv *priv = netdev_priv(dev);
1372 int max_mtu;
1373
1374 if (netif_running(dev)) {
1375 pr_err("%s: must be stopped to change its MTU\n", dev->name);
1376 return -EBUSY;
1377 }
1378
1379 if (priv->is_gmac)
1380 max_mtu = JUMBO_LEN;
1381 else
1382 max_mtu = ETH_DATA_LEN;
1383
1384 if ((new_mtu < 46) || (new_mtu > max_mtu)) {
1385 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
1386 return -EINVAL;
1387 }
1388
1389 dev->mtu = new_mtu;
1390
1391 return 0;
1392}
1393
1394static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
1395{
1396 struct net_device *dev = (struct net_device *)dev_id;
1397 struct stmmac_priv *priv = netdev_priv(dev);
1398
1399 if (unlikely(!dev)) {
1400 pr_err("%s: invalid dev pointer\n", __func__);
1401 return IRQ_NONE;
1402 }
1403
1404 if (priv->is_gmac) {
1405 unsigned long ioaddr = dev->base_addr;
1406 /* To handle GMAC own interrupts */
db98a0b0 1407 priv->hw->mac->host_irq_status(ioaddr);
47dd7a54 1408 }
aec7ff27
GC
1409
1410 stmmac_dma_interrupt(priv);
47dd7a54
GC
1411
1412 return IRQ_HANDLED;
1413}
1414
1415#ifdef CONFIG_NET_POLL_CONTROLLER
1416/* Polling receive - used by NETCONSOLE and other diagnostic tools
1417 * to allow network I/O with interrupts disabled. */
1418static void stmmac_poll_controller(struct net_device *dev)
1419{
1420 disable_irq(dev->irq);
1421 stmmac_interrupt(dev->irq, dev);
1422 enable_irq(dev->irq);
1423}
1424#endif
1425
1426/**
1427 * stmmac_ioctl - Entry point for the Ioctl
1428 * @dev: Device pointer.
1429 * @rq: An IOCTL specefic structure, that can contain a pointer to
1430 * a proprietary structure used to pass information to the driver.
1431 * @cmd: IOCTL command
1432 * Description:
1433 * Currently there are no special functionality supported in IOCTL, just the
1434 * phy_mii_ioctl(...) can be invoked.
1435 */
1436static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1437{
1438 struct stmmac_priv *priv = netdev_priv(dev);
28b04113 1439 int ret;
47dd7a54
GC
1440
1441 if (!netif_running(dev))
1442 return -EINVAL;
1443
28b04113
RC
1444 if (!priv->phydev)
1445 return -EINVAL;
1446
1447 spin_lock(&priv->lock);
1448 ret = phy_mii_ioctl(priv->phydev, rq, cmd);
1449 spin_unlock(&priv->lock);
1450
47dd7a54
GC
1451 return ret;
1452}
1453
1454#ifdef STMMAC_VLAN_TAG_USED
1455static void stmmac_vlan_rx_register(struct net_device *dev,
1456 struct vlan_group *grp)
1457{
1458 struct stmmac_priv *priv = netdev_priv(dev);
1459
1460 DBG(probe, INFO, "%s: Setting vlgrp to %p\n", dev->name, grp);
1461
1462 spin_lock(&priv->lock);
1463 priv->vlgrp = grp;
1464 spin_unlock(&priv->lock);
47dd7a54
GC
1465}
1466#endif
1467
1468static const struct net_device_ops stmmac_netdev_ops = {
1469 .ndo_open = stmmac_open,
1470 .ndo_start_xmit = stmmac_xmit,
1471 .ndo_stop = stmmac_release,
1472 .ndo_change_mtu = stmmac_change_mtu,
1473 .ndo_set_multicast_list = stmmac_multicast_list,
1474 .ndo_tx_timeout = stmmac_tx_timeout,
1475 .ndo_do_ioctl = stmmac_ioctl,
1476 .ndo_set_config = stmmac_config,
1477#ifdef STMMAC_VLAN_TAG_USED
1478 .ndo_vlan_rx_register = stmmac_vlan_rx_register,
1479#endif
1480#ifdef CONFIG_NET_POLL_CONTROLLER
1481 .ndo_poll_controller = stmmac_poll_controller,
1482#endif
1483 .ndo_set_mac_address = eth_mac_addr,
1484};
1485
1486/**
1487 * stmmac_probe - Initialization of the adapter .
1488 * @dev : device pointer
1489 * Description: The function initializes the network device structure for
1490 * the STMMAC driver. It also calls the low level routines
1491 * in order to init the HW (i.e. the DMA engine)
1492 */
1493static int stmmac_probe(struct net_device *dev)
1494{
1495 int ret = 0;
1496 struct stmmac_priv *priv = netdev_priv(dev);
1497
1498 ether_setup(dev);
1499
1500 dev->netdev_ops = &stmmac_netdev_ops;
1501 stmmac_set_ethtool_ops(dev);
1502
1503 dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_HIGHDMA);
1504 dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1505#ifdef STMMAC_VLAN_TAG_USED
1506 /* Both mac100 and gmac support receive VLAN tag detection */
1507 dev->features |= NETIF_F_HW_VLAN_RX;
1508#endif
1509 priv->msg_enable = netif_msg_init(debug, default_msg_level);
1510
1511 if (priv->is_gmac)
1512 priv->rx_csum = 1;
1513
1514 if (flow_ctrl)
1515 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
1516
1517 priv->pause = pause;
1518 netif_napi_add(dev, &priv->napi, stmmac_poll, 64);
1519
1520 /* Get the MAC address */
db98a0b0 1521 priv->hw->mac->get_umac_addr(dev->base_addr, dev->dev_addr, 0);
47dd7a54
GC
1522
1523 if (!is_valid_ether_addr(dev->dev_addr))
1524 pr_warning("\tno valid MAC address;"
1525 "please, use ifconfig or nwhwconfig!\n");
1526
1527 ret = register_netdev(dev);
1528 if (ret) {
1529 pr_err("%s: ERROR %i registering the device\n",
1530 __func__, ret);
1531 return -ENODEV;
1532 }
1533
1534 DBG(probe, DEBUG, "%s: Scatter/Gather: %s - HW checksums: %s\n",
1535 dev->name, (dev->features & NETIF_F_SG) ? "on" : "off",
1536 (dev->features & NETIF_F_HW_CSUM) ? "on" : "off");
1537
1538 spin_lock_init(&priv->lock);
1539
1540 return ret;
1541}
1542
1543/**
1544 * stmmac_mac_device_setup
1545 * @dev : device pointer
1546 * Description: select and initialise the mac device (mac100 or Gmac).
1547 */
1548static int stmmac_mac_device_setup(struct net_device *dev)
1549{
1550 struct stmmac_priv *priv = netdev_priv(dev);
1551 unsigned long ioaddr = dev->base_addr;
1552
1553 struct mac_device_info *device;
1554
3d90c508 1555 if (priv->is_gmac)
21d437cc 1556 device = dwmac1000_setup(ioaddr);
3d90c508 1557 else
7e848ae1 1558 device = dwmac100_setup(ioaddr);
3d90c508 1559
1ff21906
DC
1560 if (!device)
1561 return -ENOMEM;
1562
3d90c508
GC
1563 if (priv->enh_desc) {
1564 device->desc = &enh_desc_ops;
1565 pr_info("\tEnhanced descriptor structure\n");
1566 } else
56b106ae 1567 device->desc = &ndesc_ops;
47dd7a54 1568
db98a0b0 1569 priv->hw = device;
47dd7a54 1570
db98a0b0 1571 priv->wolenabled = priv->hw->pmt; /* PMT supported */
47dd7a54
GC
1572 if (priv->wolenabled == PMT_SUPPORTED)
1573 priv->wolopts = WAKE_MAGIC; /* Magic Frame */
1574
1575 return 0;
1576}
1577
1578static int stmmacphy_dvr_probe(struct platform_device *pdev)
1579{
ee7946a7 1580 struct plat_stmmacphy_data *plat_dat = pdev->dev.platform_data;
47dd7a54
GC
1581
1582 pr_debug("stmmacphy_dvr_probe: added phy for bus %d\n",
1583 plat_dat->bus_id);
1584
1585 return 0;
1586}
1587
1588static int stmmacphy_dvr_remove(struct platform_device *pdev)
1589{
1590 return 0;
1591}
1592
1593static struct platform_driver stmmacphy_driver = {
1594 .driver = {
1595 .name = PHY_RESOURCE_NAME,
1596 },
1597 .probe = stmmacphy_dvr_probe,
1598 .remove = stmmacphy_dvr_remove,
1599};
1600
1601/**
1602 * stmmac_associate_phy
1603 * @dev: pointer to device structure
1604 * @data: points to the private structure.
1605 * Description: Scans through all the PHYs we have registered and checks if
1606 * any are associated with our MAC. If so, then just fill in
1607 * the blanks in our local context structure
1608 */
1609static int stmmac_associate_phy(struct device *dev, void *data)
1610{
1611 struct stmmac_priv *priv = (struct stmmac_priv *)data;
ee7946a7 1612 struct plat_stmmacphy_data *plat_dat = dev->platform_data;
47dd7a54
GC
1613
1614 DBG(probe, DEBUG, "%s: checking phy for bus %d\n", __func__,
1615 plat_dat->bus_id);
1616
1617 /* Check that this phy is for the MAC being initialised */
1618 if (priv->bus_id != plat_dat->bus_id)
1619 return 0;
1620
1621 /* OK, this PHY is connected to the MAC.
1622 Go ahead and get the parameters */
1623 DBG(probe, DEBUG, "%s: OK. Found PHY config\n", __func__);
1624 priv->phy_irq =
1625 platform_get_irq_byname(to_platform_device(dev), "phyirq");
1626 DBG(probe, DEBUG, "%s: PHY irq on bus %d is %d\n", __func__,
1627 plat_dat->bus_id, priv->phy_irq);
1628
1629 /* Override with kernel parameters if supplied XXX CRS XXX
1630 * this needs to have multiple instances */
1631 if ((phyaddr >= 0) && (phyaddr <= 31))
1632 plat_dat->phy_addr = phyaddr;
1633
1634 priv->phy_addr = plat_dat->phy_addr;
1635 priv->phy_mask = plat_dat->phy_mask;
1636 priv->phy_interface = plat_dat->interface;
1637 priv->phy_reset = plat_dat->phy_reset;
1638
1639 DBG(probe, DEBUG, "%s: exiting\n", __func__);
1640 return 1; /* forces exit of driver_for_each_device() */
1641}
1642
1643/**
1644 * stmmac_dvr_probe
1645 * @pdev: platform device pointer
1646 * Description: the driver is initialized through platform_device.
1647 */
1648static int stmmac_dvr_probe(struct platform_device *pdev)
1649{
1650 int ret = 0;
1651 struct resource *res;
1652 unsigned int *addr = NULL;
1653 struct net_device *ndev = NULL;
1654 struct stmmac_priv *priv;
1655 struct plat_stmmacenet_data *plat_dat;
1656
1657 pr_info("STMMAC driver:\n\tplatform registration... ");
1658 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1659 if (!res) {
1660 ret = -ENODEV;
1661 goto out;
1662 }
1663 pr_info("done!\n");
1664
b6222682 1665 if (!request_mem_region(res->start, resource_size(res),
47dd7a54
GC
1666 pdev->name)) {
1667 pr_err("%s: ERROR: memory allocation failed"
1668 "cannot get the I/O addr 0x%x\n",
1669 __func__, (unsigned int)res->start);
1670 ret = -EBUSY;
1671 goto out;
1672 }
1673
7c5365bc 1674 addr = ioremap(res->start, resource_size(res));
47dd7a54 1675 if (!addr) {
7c5365bc 1676 pr_err("%s: ERROR: memory mapping failed\n", __func__);
47dd7a54
GC
1677 ret = -ENOMEM;
1678 goto out;
1679 }
1680
1681 ndev = alloc_etherdev(sizeof(struct stmmac_priv));
1682 if (!ndev) {
1683 pr_err("%s: ERROR: allocating the device\n", __func__);
1684 ret = -ENOMEM;
1685 goto out;
1686 }
1687
1688 SET_NETDEV_DEV(ndev, &pdev->dev);
1689
1690 /* Get the MAC information */
1691 ndev->irq = platform_get_irq_byname(pdev, "macirq");
1692 if (ndev->irq == -ENXIO) {
1693 pr_err("%s: ERROR: MAC IRQ configuration "
1694 "information not found\n", __func__);
1695 ret = -ENODEV;
1696 goto out;
1697 }
1698
1699 priv = netdev_priv(ndev);
1700 priv->device = &(pdev->dev);
1701 priv->dev = ndev;
ee7946a7 1702 plat_dat = pdev->dev.platform_data;
47dd7a54
GC
1703 priv->bus_id = plat_dat->bus_id;
1704 priv->pbl = plat_dat->pbl; /* TLI */
1705 priv->is_gmac = plat_dat->has_gmac; /* GMAC is on board */
3d90c508 1706 priv->enh_desc = plat_dat->enh_desc;
47dd7a54
GC
1707
1708 platform_set_drvdata(pdev, ndev);
1709
1710 /* Set the I/O base addr */
1711 ndev->base_addr = (unsigned long)addr;
1712
ee7946a7
GC
1713 /* Verify embedded resource for the platform */
1714 ret = stmmac_claim_resource(pdev);
1715 if (ret < 0)
1716 goto out;
1717
47dd7a54
GC
1718 /* MAC HW revice detection */
1719 ret = stmmac_mac_device_setup(ndev);
1720 if (ret < 0)
1721 goto out;
1722
1723 /* Network Device Registration */
1724 ret = stmmac_probe(ndev);
1725 if (ret < 0)
1726 goto out;
1727
1728 /* associate a PHY - it is provided by another platform bus */
1729 if (!driver_for_each_device
1730 (&(stmmacphy_driver.driver), NULL, (void *)priv,
1731 stmmac_associate_phy)) {
1732 pr_err("No PHY device is associated with this MAC!\n");
1733 ret = -ENODEV;
1734 goto out;
1735 }
1736
1737 priv->fix_mac_speed = plat_dat->fix_mac_speed;
ee7946a7 1738 priv->bus_setup = plat_dat->bus_setup;
47dd7a54
GC
1739 priv->bsp_priv = plat_dat->bsp_priv;
1740
1741 pr_info("\t%s - (dev. name: %s - id: %d, IRQ #%d\n"
1742 "\tIO base addr: 0x%08x)\n", ndev->name, pdev->name,
1743 pdev->id, ndev->irq, (unsigned int)addr);
1744
1745 /* MDIO bus Registration */
1746 pr_debug("\tMDIO bus (id: %d)...", priv->bus_id);
1747 ret = stmmac_mdio_register(ndev);
1748 if (ret < 0)
1749 goto out;
1750 pr_debug("registered!\n");
1751
1752out:
1753 if (ret < 0) {
1754 platform_set_drvdata(pdev, NULL);
7c5365bc 1755 release_mem_region(res->start, resource_size(res));
47dd7a54
GC
1756 if (addr != NULL)
1757 iounmap(addr);
1758 }
1759
1760 return ret;
1761}
1762
1763/**
1764 * stmmac_dvr_remove
1765 * @pdev: platform device pointer
1766 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
1767 * changes the link status, releases the DMA descriptor rings,
1768 * unregisters the MDIO bus and unmaps the allocated memory.
1769 */
1770static int stmmac_dvr_remove(struct platform_device *pdev)
1771{
1772 struct net_device *ndev = platform_get_drvdata(pdev);
aec7ff27 1773 struct stmmac_priv *priv = netdev_priv(ndev);
47dd7a54
GC
1774 struct resource *res;
1775
1776 pr_info("%s:\n\tremoving driver", __func__);
1777
aec7ff27
GC
1778 priv->hw->dma->stop_rx(ndev->base_addr);
1779 priv->hw->dma->stop_tx(ndev->base_addr);
47dd7a54
GC
1780
1781 stmmac_mac_disable_rx(ndev->base_addr);
1782 stmmac_mac_disable_tx(ndev->base_addr);
1783
1784 netif_carrier_off(ndev);
1785
1786 stmmac_mdio_unregister(ndev);
1787
1788 platform_set_drvdata(pdev, NULL);
1789 unregister_netdev(ndev);
1790
1791 iounmap((void *)ndev->base_addr);
1792 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
7c5365bc 1793 release_mem_region(res->start, resource_size(res));
47dd7a54
GC
1794
1795 free_netdev(ndev);
1796
1797 return 0;
1798}
1799
1800#ifdef CONFIG_PM
1801static int stmmac_suspend(struct platform_device *pdev, pm_message_t state)
1802{
1803 struct net_device *dev = platform_get_drvdata(pdev);
1804 struct stmmac_priv *priv = netdev_priv(dev);
1805 int dis_ic = 0;
1806
1807 if (!dev || !netif_running(dev))
1808 return 0;
1809
1810 spin_lock(&priv->lock);
1811
1812 if (state.event == PM_EVENT_SUSPEND) {
1813 netif_device_detach(dev);
1814 netif_stop_queue(dev);
1815 if (priv->phydev)
1816 phy_stop(priv->phydev);
1817
1818#ifdef CONFIG_STMMAC_TIMER
1819 priv->tm->timer_stop();
73cfe264
GC
1820 if (likely(priv->tm->enable))
1821 dis_ic = 1;
47dd7a54
GC
1822#endif
1823 napi_disable(&priv->napi);
1824
1825 /* Stop TX/RX DMA */
aec7ff27
GC
1826 priv->hw->dma->stop_tx(dev->base_addr);
1827 priv->hw->dma->stop_rx(dev->base_addr);
47dd7a54 1828 /* Clear the Rx/Tx descriptors */
db98a0b0
GC
1829 priv->hw->desc->init_rx_desc(priv->dma_rx, priv->dma_rx_size,
1830 dis_ic);
1831 priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
47dd7a54
GC
1832
1833 stmmac_mac_disable_tx(dev->base_addr);
1834
1835 if (device_may_wakeup(&(pdev->dev))) {
1836 /* Enable Power down mode by programming the PMT regs */
1837 if (priv->wolenabled == PMT_SUPPORTED)
db98a0b0
GC
1838 priv->hw->mac->pmt(dev->base_addr,
1839 priv->wolopts);
47dd7a54
GC
1840 } else {
1841 stmmac_mac_disable_rx(dev->base_addr);
1842 }
1843 } else {
1844 priv->shutdown = 1;
1845 /* Although this can appear slightly redundant it actually
1846 * makes fast the standby operation and guarantees the driver
1847 * working if hibernation is on media. */
1848 stmmac_release(dev);
1849 }
1850
1851 spin_unlock(&priv->lock);
1852 return 0;
1853}
1854
1855static int stmmac_resume(struct platform_device *pdev)
1856{
1857 struct net_device *dev = platform_get_drvdata(pdev);
1858 struct stmmac_priv *priv = netdev_priv(dev);
1859 unsigned long ioaddr = dev->base_addr;
1860
1861 if (!netif_running(dev))
1862 return 0;
1863
1864 spin_lock(&priv->lock);
1865
1866 if (priv->shutdown) {
1867 /* Re-open the interface and re-init the MAC/DMA
1868 and the rings. */
1869 stmmac_open(dev);
1870 goto out_resume;
1871 }
1872
1873 /* Power Down bit, into the PM register, is cleared
1874 * automatically as soon as a magic packet or a Wake-up frame
1875 * is received. Anyway, it's better to manually clear
1876 * this bit because it can generate problems while resuming
1877 * from another devices (e.g. serial console). */
1878 if (device_may_wakeup(&(pdev->dev)))
1879 if (priv->wolenabled == PMT_SUPPORTED)
db98a0b0 1880 priv->hw->mac->pmt(dev->base_addr, 0);
47dd7a54
GC
1881
1882 netif_device_attach(dev);
1883
1884 /* Enable the MAC and DMA */
1885 stmmac_mac_enable_rx(ioaddr);
1886 stmmac_mac_enable_tx(ioaddr);
aec7ff27
GC
1887 priv->hw->dma->start_tx(ioaddr);
1888 priv->hw->dma->start_rx(ioaddr);
47dd7a54
GC
1889
1890#ifdef CONFIG_STMMAC_TIMER
1891 priv->tm->timer_start(tmrate);
1892#endif
1893 napi_enable(&priv->napi);
1894
1895 if (priv->phydev)
1896 phy_start(priv->phydev);
1897
1898 netif_start_queue(dev);
1899
1900out_resume:
1901 spin_unlock(&priv->lock);
1902 return 0;
1903}
1904#endif
1905
1906static struct platform_driver stmmac_driver = {
1907 .driver = {
1908 .name = STMMAC_RESOURCE_NAME,
1909 },
1910 .probe = stmmac_dvr_probe,
1911 .remove = stmmac_dvr_remove,
1912#ifdef CONFIG_PM
1913 .suspend = stmmac_suspend,
1914 .resume = stmmac_resume,
1915#endif
1916
1917};
1918
1919/**
1920 * stmmac_init_module - Entry point for the driver
1921 * Description: This function is the entry point for the driver.
1922 */
1923static int __init stmmac_init_module(void)
1924{
1925 int ret;
1926
1927 if (platform_driver_register(&stmmacphy_driver)) {
1928 pr_err("No PHY devices registered!\n");
1929 return -ENODEV;
1930 }
1931
1932 ret = platform_driver_register(&stmmac_driver);
1933 return ret;
1934}
1935
1936/**
1937 * stmmac_cleanup_module - Cleanup routine for the driver
1938 * Description: This function is the cleanup routine for the driver.
1939 */
1940static void __exit stmmac_cleanup_module(void)
1941{
1942 platform_driver_unregister(&stmmacphy_driver);
1943 platform_driver_unregister(&stmmac_driver);
1944}
1945
1946#ifndef MODULE
1947static int __init stmmac_cmdline_opt(char *str)
1948{
1949 char *opt;
1950
1951 if (!str || !*str)
1952 return -EINVAL;
1953 while ((opt = strsep(&str, ",")) != NULL) {
1954 if (!strncmp(opt, "debug:", 6))
1955 strict_strtoul(opt + 6, 0, (unsigned long *)&debug);
1956 else if (!strncmp(opt, "phyaddr:", 8))
1957 strict_strtoul(opt + 8, 0, (unsigned long *)&phyaddr);
1958 else if (!strncmp(opt, "dma_txsize:", 11))
1959 strict_strtoul(opt + 11, 0,
1960 (unsigned long *)&dma_txsize);
1961 else if (!strncmp(opt, "dma_rxsize:", 11))
1962 strict_strtoul(opt + 11, 0,
1963 (unsigned long *)&dma_rxsize);
1964 else if (!strncmp(opt, "buf_sz:", 7))
1965 strict_strtoul(opt + 7, 0, (unsigned long *)&buf_sz);
1966 else if (!strncmp(opt, "tc:", 3))
1967 strict_strtoul(opt + 3, 0, (unsigned long *)&tc);
1968 else if (!strncmp(opt, "tx_coe:", 7))
1969 strict_strtoul(opt + 7, 0, (unsigned long *)&tx_coe);
1970 else if (!strncmp(opt, "watchdog:", 9))
1971 strict_strtoul(opt + 9, 0, (unsigned long *)&watchdog);
1972 else if (!strncmp(opt, "flow_ctrl:", 10))
1973 strict_strtoul(opt + 10, 0,
1974 (unsigned long *)&flow_ctrl);
1975 else if (!strncmp(opt, "pause:", 6))
1976 strict_strtoul(opt + 6, 0, (unsigned long *)&pause);
1977#ifdef CONFIG_STMMAC_TIMER
1978 else if (!strncmp(opt, "tmrate:", 7))
1979 strict_strtoul(opt + 7, 0, (unsigned long *)&tmrate);
1980#endif
1981 }
1982 return 0;
1983}
1984
1985__setup("stmmaceth=", stmmac_cmdline_opt);
1986#endif
1987
1988module_init(stmmac_init_module);
1989module_exit(stmmac_cleanup_module);
1990
1991MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet driver");
1992MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
1993MODULE_LICENSE("GPL");