]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/stmmac/stmmac_main.c
drivers/net/skfp/skfddi.c: use %pMF to show MAC address
[net-next-2.6.git] / drivers / net / stmmac / stmmac_main.c
CommitLineData
47dd7a54
GC
1/*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
4
5 Copyright (C) 2007-2009 STMicroelectronics Ltd
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
22
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25 Documentation available at:
26 http://www.stlinux.com
27 Support available at:
28 https://bugzilla.stlinux.com/
29*******************************************************************************/
30
31#include <linux/module.h>
32#include <linux/init.h>
33#include <linux/kernel.h>
34#include <linux/interrupt.h>
35#include <linux/netdevice.h>
36#include <linux/etherdevice.h>
37#include <linux/platform_device.h>
38#include <linux/ip.h>
39#include <linux/tcp.h>
40#include <linux/skbuff.h>
41#include <linux/ethtool.h>
42#include <linux/if_ether.h>
43#include <linux/crc32.h>
44#include <linux/mii.h>
45#include <linux/phy.h>
46#include <linux/if_vlan.h>
47#include <linux/dma-mapping.h>
48#include <linux/stm/soc.h>
49#include "stmmac.h"
50
51#define STMMAC_RESOURCE_NAME "stmmaceth"
52#define PHY_RESOURCE_NAME "stmmacphy"
53
54#undef STMMAC_DEBUG
55/*#define STMMAC_DEBUG*/
56#ifdef STMMAC_DEBUG
57#define DBG(nlevel, klevel, fmt, args...) \
58 ((void)(netif_msg_##nlevel(priv) && \
59 printk(KERN_##klevel fmt, ## args)))
60#else
61#define DBG(nlevel, klevel, fmt, args...) do { } while (0)
62#endif
63
64#undef STMMAC_RX_DEBUG
65/*#define STMMAC_RX_DEBUG*/
66#ifdef STMMAC_RX_DEBUG
67#define RX_DBG(fmt, args...) printk(fmt, ## args)
68#else
69#define RX_DBG(fmt, args...) do { } while (0)
70#endif
71
72#undef STMMAC_XMIT_DEBUG
73/*#define STMMAC_XMIT_DEBUG*/
74#ifdef STMMAC_TX_DEBUG
75#define TX_DBG(fmt, args...) printk(fmt, ## args)
76#else
77#define TX_DBG(fmt, args...) do { } while (0)
78#endif
79
80#define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
81#define JUMBO_LEN 9000
82
83/* Module parameters */
84#define TX_TIMEO 5000 /* default 5 seconds */
85static int watchdog = TX_TIMEO;
86module_param(watchdog, int, S_IRUGO | S_IWUSR);
87MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");
88
89static int debug = -1; /* -1: default, 0: no output, 16: all */
90module_param(debug, int, S_IRUGO | S_IWUSR);
91MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");
92
93static int phyaddr = -1;
94module_param(phyaddr, int, S_IRUGO);
95MODULE_PARM_DESC(phyaddr, "Physical device address");
96
97#define DMA_TX_SIZE 256
98static int dma_txsize = DMA_TX_SIZE;
99module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
100MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
101
102#define DMA_RX_SIZE 256
103static int dma_rxsize = DMA_RX_SIZE;
104module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
105MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
106
107static int flow_ctrl = FLOW_OFF;
108module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
109MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
110
111static int pause = PAUSE_TIME;
112module_param(pause, int, S_IRUGO | S_IWUSR);
113MODULE_PARM_DESC(pause, "Flow Control Pause Time");
114
115#define TC_DEFAULT 64
116static int tc = TC_DEFAULT;
117module_param(tc, int, S_IRUGO | S_IWUSR);
118MODULE_PARM_DESC(tc, "DMA threshold control value");
119
120#define RX_NO_COALESCE 1 /* Always interrupt on completion */
121#define TX_NO_COALESCE -1 /* No moderation by default */
122
123/* Pay attention to tune this parameter; take care of both
124 * hardware capability and network stabitily/performance impact.
125 * Many tests showed that ~4ms latency seems to be good enough. */
126#ifdef CONFIG_STMMAC_TIMER
127#define DEFAULT_PERIODIC_RATE 256
128static int tmrate = DEFAULT_PERIODIC_RATE;
129module_param(tmrate, int, S_IRUGO | S_IWUSR);
130MODULE_PARM_DESC(tmrate, "External timer freq. (default: 256Hz)");
131#endif
132
133#define DMA_BUFFER_SIZE BUF_SIZE_2KiB
134static int buf_sz = DMA_BUFFER_SIZE;
135module_param(buf_sz, int, S_IRUGO | S_IWUSR);
136MODULE_PARM_DESC(buf_sz, "DMA buffer size");
137
138/* In case of Giga ETH, we can enable/disable the COE for the
139 * transmit HW checksum computation.
140 * Note that, if tx csum is off in HW, SG will be still supported. */
141static int tx_coe = HW_CSUM;
142module_param(tx_coe, int, S_IRUGO | S_IWUSR);
143MODULE_PARM_DESC(tx_coe, "GMAC COE type 2 [on/off]");
144
145static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
146 NETIF_MSG_LINK | NETIF_MSG_IFUP |
147 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
148
149static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
150static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev);
151
152/**
153 * stmmac_verify_args - verify the driver parameters.
154 * Description: it verifies if some wrong parameter is passed to the driver.
155 * Note that wrong parameters are replaced with the default values.
156 */
157static void stmmac_verify_args(void)
158{
159 if (unlikely(watchdog < 0))
160 watchdog = TX_TIMEO;
161 if (unlikely(dma_rxsize < 0))
162 dma_rxsize = DMA_RX_SIZE;
163 if (unlikely(dma_txsize < 0))
164 dma_txsize = DMA_TX_SIZE;
165 if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
166 buf_sz = DMA_BUFFER_SIZE;
167 if (unlikely(flow_ctrl > 1))
168 flow_ctrl = FLOW_AUTO;
169 else if (likely(flow_ctrl < 0))
170 flow_ctrl = FLOW_OFF;
171 if (unlikely((pause < 0) || (pause > 0xffff)))
172 pause = PAUSE_TIME;
173
174 return;
175}
176
177#if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
178static void print_pkt(unsigned char *buf, int len)
179{
180 int j;
181 pr_info("len = %d byte, buf addr: 0x%p", len, buf);
182 for (j = 0; j < len; j++) {
183 if ((j % 16) == 0)
184 pr_info("\n %03x:", j);
185 pr_info(" %02x", buf[j]);
186 }
187 pr_info("\n");
188 return;
189}
190#endif
191
192/* minimum number of free TX descriptors required to wake up TX process */
193#define STMMAC_TX_THRESH(x) (x->dma_tx_size/4)
194
195static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
196{
197 return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
198}
199
200/**
201 * stmmac_adjust_link
202 * @dev: net device structure
203 * Description: it adjusts the link parameters.
204 */
205static void stmmac_adjust_link(struct net_device *dev)
206{
207 struct stmmac_priv *priv = netdev_priv(dev);
208 struct phy_device *phydev = priv->phydev;
209 unsigned long ioaddr = dev->base_addr;
210 unsigned long flags;
211 int new_state = 0;
212 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
213
214 if (phydev == NULL)
215 return;
216
217 DBG(probe, DEBUG, "stmmac_adjust_link: called. address %d link %d\n",
218 phydev->addr, phydev->link);
219
220 spin_lock_irqsave(&priv->lock, flags);
221 if (phydev->link) {
222 u32 ctrl = readl(ioaddr + MAC_CTRL_REG);
223
224 /* Now we make sure that we can be in full duplex mode.
225 * If not, we operate in half-duplex mode. */
226 if (phydev->duplex != priv->oldduplex) {
227 new_state = 1;
228 if (!(phydev->duplex))
229 ctrl &= ~priv->mac_type->hw.link.duplex;
230 else
231 ctrl |= priv->mac_type->hw.link.duplex;
232 priv->oldduplex = phydev->duplex;
233 }
234 /* Flow Control operation */
235 if (phydev->pause)
236 priv->mac_type->ops->flow_ctrl(ioaddr, phydev->duplex,
237 fc, pause_time);
238
239 if (phydev->speed != priv->speed) {
240 new_state = 1;
241 switch (phydev->speed) {
242 case 1000:
243 if (likely(priv->is_gmac))
244 ctrl &= ~priv->mac_type->hw.link.port;
245 break;
246 case 100:
247 case 10:
248 if (priv->is_gmac) {
249 ctrl |= priv->mac_type->hw.link.port;
250 if (phydev->speed == SPEED_100) {
251 ctrl |=
252 priv->mac_type->hw.link.
253 speed;
254 } else {
255 ctrl &=
256 ~(priv->mac_type->hw.
257 link.speed);
258 }
259 } else {
260 ctrl &= ~priv->mac_type->hw.link.port;
261 }
262 priv->fix_mac_speed(priv->bsp_priv,
263 phydev->speed);
264 break;
265 default:
266 if (netif_msg_link(priv))
267 pr_warning("%s: Speed (%d) is not 10"
268 " or 100!\n", dev->name, phydev->speed);
269 break;
270 }
271
272 priv->speed = phydev->speed;
273 }
274
275 writel(ctrl, ioaddr + MAC_CTRL_REG);
276
277 if (!priv->oldlink) {
278 new_state = 1;
279 priv->oldlink = 1;
280 }
281 } else if (priv->oldlink) {
282 new_state = 1;
283 priv->oldlink = 0;
284 priv->speed = 0;
285 priv->oldduplex = -1;
286 }
287
288 if (new_state && netif_msg_link(priv))
289 phy_print_status(phydev);
290
291 spin_unlock_irqrestore(&priv->lock, flags);
292
293 DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
294}
295
296/**
297 * stmmac_init_phy - PHY initialization
298 * @dev: net device structure
299 * Description: it initializes the driver's PHY state, and attaches the PHY
300 * to the mac driver.
301 * Return value:
302 * 0 on success
303 */
304static int stmmac_init_phy(struct net_device *dev)
305{
306 struct stmmac_priv *priv = netdev_priv(dev);
307 struct phy_device *phydev;
308 char phy_id[BUS_ID_SIZE]; /* PHY to connect */
309 char bus_id[BUS_ID_SIZE];
310
311 priv->oldlink = 0;
312 priv->speed = 0;
313 priv->oldduplex = -1;
314
315 if (priv->phy_addr == -1) {
316 /* We don't have a PHY, so do nothing */
317 return 0;
318 }
319
320 snprintf(bus_id, MII_BUS_ID_SIZE, "%x", priv->bus_id);
321 snprintf(phy_id, BUS_ID_SIZE, PHY_ID_FMT, bus_id, priv->phy_addr);
322 pr_debug("stmmac_init_phy: trying to attach to %s\n", phy_id);
323
324 phydev = phy_connect(dev, phy_id, &stmmac_adjust_link, 0,
325 priv->phy_interface);
326
327 if (IS_ERR(phydev)) {
328 pr_err("%s: Could not attach to PHY\n", dev->name);
329 return PTR_ERR(phydev);
330 }
331
332 /*
333 * Broken HW is sometimes missing the pull-up resistor on the
334 * MDIO line, which results in reads to non-existent devices returning
335 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
336 * device as well.
337 * Note: phydev->phy_id is the result of reading the UID PHY registers.
338 */
339 if (phydev->phy_id == 0) {
340 phy_disconnect(phydev);
341 return -ENODEV;
342 }
343 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
344 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
345
346 priv->phydev = phydev;
347
348 return 0;
349}
350
351static inline void stmmac_mac_enable_rx(unsigned long ioaddr)
352{
353 u32 value = readl(ioaddr + MAC_CTRL_REG);
354 value |= MAC_RNABLE_RX;
355 /* Set the RE (receive enable bit into the MAC CTRL register). */
356 writel(value, ioaddr + MAC_CTRL_REG);
357}
358
359static inline void stmmac_mac_enable_tx(unsigned long ioaddr)
360{
361 u32 value = readl(ioaddr + MAC_CTRL_REG);
362 value |= MAC_ENABLE_TX;
363 /* Set the TE (transmit enable bit into the MAC CTRL register). */
364 writel(value, ioaddr + MAC_CTRL_REG);
365}
366
367static inline void stmmac_mac_disable_rx(unsigned long ioaddr)
368{
369 u32 value = readl(ioaddr + MAC_CTRL_REG);
370 value &= ~MAC_RNABLE_RX;
371 writel(value, ioaddr + MAC_CTRL_REG);
372}
373
374static inline void stmmac_mac_disable_tx(unsigned long ioaddr)
375{
376 u32 value = readl(ioaddr + MAC_CTRL_REG);
377 value &= ~MAC_ENABLE_TX;
378 writel(value, ioaddr + MAC_CTRL_REG);
379}
380
381/**
382 * display_ring
383 * @p: pointer to the ring.
384 * @size: size of the ring.
385 * Description: display all the descriptors within the ring.
386 */
387static void display_ring(struct dma_desc *p, int size)
388{
389 struct tmp_s {
390 u64 a;
391 unsigned int b;
392 unsigned int c;
393 };
394 int i;
395 for (i = 0; i < size; i++) {
396 struct tmp_s *x = (struct tmp_s *)(p + i);
397 pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
398 i, (unsigned int)virt_to_phys(&p[i]),
399 (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
400 x->b, x->c);
401 pr_info("\n");
402 }
403}
404
405/**
406 * init_dma_desc_rings - init the RX/TX descriptor rings
407 * @dev: net device structure
408 * Description: this function initializes the DMA RX/TX descriptors
409 * and allocates the socket buffers.
410 */
411static void init_dma_desc_rings(struct net_device *dev)
412{
413 int i;
414 struct stmmac_priv *priv = netdev_priv(dev);
415 struct sk_buff *skb;
416 unsigned int txsize = priv->dma_tx_size;
417 unsigned int rxsize = priv->dma_rx_size;
418 unsigned int bfsize = priv->dma_buf_sz;
73cfe264 419 int buff2_needed = 0, dis_ic = 0;
47dd7a54 420
47dd7a54
GC
421 /* Set the Buffer size according to the MTU;
422 * indeed, in case of jumbo we need to bump-up the buffer sizes.
423 */
424 if (unlikely(dev->mtu >= BUF_SIZE_8KiB))
425 bfsize = BUF_SIZE_16KiB;
426 else if (unlikely(dev->mtu >= BUF_SIZE_4KiB))
427 bfsize = BUF_SIZE_8KiB;
428 else if (unlikely(dev->mtu >= BUF_SIZE_2KiB))
429 bfsize = BUF_SIZE_4KiB;
430 else if (unlikely(dev->mtu >= DMA_BUFFER_SIZE))
431 bfsize = BUF_SIZE_2KiB;
432 else
433 bfsize = DMA_BUFFER_SIZE;
434
73cfe264
GC
435#ifdef CONFIG_STMMAC_TIMER
436 /* Disable interrupts on completion for the reception if timer is on */
437 if (likely(priv->tm->enable))
438 dis_ic = 1;
439#endif
47dd7a54
GC
440 /* If the MTU exceeds 8k so use the second buffer in the chain */
441 if (bfsize >= BUF_SIZE_8KiB)
442 buff2_needed = 1;
443
444 DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
445 txsize, rxsize, bfsize);
446
447 priv->rx_skbuff_dma = kmalloc(rxsize * sizeof(dma_addr_t), GFP_KERNEL);
448 priv->rx_skbuff =
449 kmalloc(sizeof(struct sk_buff *) * rxsize, GFP_KERNEL);
450 priv->dma_rx =
451 (struct dma_desc *)dma_alloc_coherent(priv->device,
452 rxsize *
453 sizeof(struct dma_desc),
454 &priv->dma_rx_phy,
455 GFP_KERNEL);
456 priv->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * txsize,
457 GFP_KERNEL);
458 priv->dma_tx =
459 (struct dma_desc *)dma_alloc_coherent(priv->device,
460 txsize *
461 sizeof(struct dma_desc),
462 &priv->dma_tx_phy,
463 GFP_KERNEL);
464
465 if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
466 pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
467 return;
468 }
469
470 DBG(probe, INFO, "stmmac (%s) DMA desc rings: virt addr (Rx %p, "
471 "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
472 dev->name, priv->dma_rx, priv->dma_tx,
473 (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);
474
475 /* RX INITIALIZATION */
476 DBG(probe, INFO, "stmmac: SKB addresses:\n"
477 "skb\t\tskb data\tdma data\n");
478
479 for (i = 0; i < rxsize; i++) {
480 struct dma_desc *p = priv->dma_rx + i;
481
482 skb = netdev_alloc_skb_ip_align(dev, bfsize);
483 if (unlikely(skb == NULL)) {
484 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
485 break;
486 }
487 priv->rx_skbuff[i] = skb;
488 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
489 bfsize, DMA_FROM_DEVICE);
490
491 p->des2 = priv->rx_skbuff_dma[i];
492 if (unlikely(buff2_needed))
493 p->des3 = p->des2 + BUF_SIZE_8KiB;
494 DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
495 priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
496 }
497 priv->cur_rx = 0;
498 priv->dirty_rx = (unsigned int)(i - rxsize);
499 priv->dma_buf_sz = bfsize;
500 buf_sz = bfsize;
501
502 /* TX INITIALIZATION */
503 for (i = 0; i < txsize; i++) {
504 priv->tx_skbuff[i] = NULL;
505 priv->dma_tx[i].des2 = 0;
506 }
507 priv->dirty_tx = 0;
508 priv->cur_tx = 0;
509
510 /* Clear the Rx/Tx descriptors */
511 priv->mac_type->ops->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
512 priv->mac_type->ops->init_tx_desc(priv->dma_tx, txsize);
513
514 if (netif_msg_hw(priv)) {
515 pr_info("RX descriptor ring:\n");
516 display_ring(priv->dma_rx, rxsize);
517 pr_info("TX descriptor ring:\n");
518 display_ring(priv->dma_tx, txsize);
519 }
520 return;
521}
522
523static void dma_free_rx_skbufs(struct stmmac_priv *priv)
524{
525 int i;
526
527 for (i = 0; i < priv->dma_rx_size; i++) {
528 if (priv->rx_skbuff[i]) {
529 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
530 priv->dma_buf_sz, DMA_FROM_DEVICE);
531 dev_kfree_skb_any(priv->rx_skbuff[i]);
532 }
533 priv->rx_skbuff[i] = NULL;
534 }
535 return;
536}
537
538static void dma_free_tx_skbufs(struct stmmac_priv *priv)
539{
540 int i;
541
542 for (i = 0; i < priv->dma_tx_size; i++) {
543 if (priv->tx_skbuff[i] != NULL) {
544 struct dma_desc *p = priv->dma_tx + i;
545 if (p->des2)
546 dma_unmap_single(priv->device, p->des2,
547 priv->mac_type->ops->get_tx_len(p),
548 DMA_TO_DEVICE);
549 dev_kfree_skb_any(priv->tx_skbuff[i]);
550 priv->tx_skbuff[i] = NULL;
551 }
552 }
553 return;
554}
555
556static void free_dma_desc_resources(struct stmmac_priv *priv)
557{
558 /* Release the DMA TX/RX socket buffers */
559 dma_free_rx_skbufs(priv);
560 dma_free_tx_skbufs(priv);
561
562 /* Free the region of consistent memory previously allocated for
563 * the DMA */
564 dma_free_coherent(priv->device,
565 priv->dma_tx_size * sizeof(struct dma_desc),
566 priv->dma_tx, priv->dma_tx_phy);
567 dma_free_coherent(priv->device,
568 priv->dma_rx_size * sizeof(struct dma_desc),
569 priv->dma_rx, priv->dma_rx_phy);
570 kfree(priv->rx_skbuff_dma);
571 kfree(priv->rx_skbuff);
572 kfree(priv->tx_skbuff);
573
574 return;
575}
576
577/**
578 * stmmac_dma_start_tx
579 * @ioaddr: device I/O address
580 * Description: this function starts the DMA tx process.
581 */
582static void stmmac_dma_start_tx(unsigned long ioaddr)
583{
584 u32 value = readl(ioaddr + DMA_CONTROL);
585 value |= DMA_CONTROL_ST;
586 writel(value, ioaddr + DMA_CONTROL);
587 return;
588}
589
590static void stmmac_dma_stop_tx(unsigned long ioaddr)
591{
592 u32 value = readl(ioaddr + DMA_CONTROL);
593 value &= ~DMA_CONTROL_ST;
594 writel(value, ioaddr + DMA_CONTROL);
595 return;
596}
597
598/**
599 * stmmac_dma_start_rx
600 * @ioaddr: device I/O address
601 * Description: this function starts the DMA rx process.
602 */
603static void stmmac_dma_start_rx(unsigned long ioaddr)
604{
605 u32 value = readl(ioaddr + DMA_CONTROL);
606 value |= DMA_CONTROL_SR;
607 writel(value, ioaddr + DMA_CONTROL);
608
609 return;
610}
611
612static void stmmac_dma_stop_rx(unsigned long ioaddr)
613{
614 u32 value = readl(ioaddr + DMA_CONTROL);
615 value &= ~DMA_CONTROL_SR;
616 writel(value, ioaddr + DMA_CONTROL);
617
618 return;
619}
620
621/**
622 * stmmac_dma_operation_mode - HW DMA operation mode
623 * @priv : pointer to the private device structure.
624 * Description: it sets the DMA operation mode: tx/rx DMA thresholds
625 * or Store-And-Forward capability. It also verifies the COE for the
626 * transmission in case of Giga ETH.
627 */
628static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
629{
630 if (!priv->is_gmac) {
631 /* MAC 10/100 */
632 priv->mac_type->ops->dma_mode(priv->dev->base_addr, tc, 0);
633 priv->tx_coe = NO_HW_CSUM;
634 } else {
635 if ((priv->dev->mtu <= ETH_DATA_LEN) && (tx_coe)) {
636 priv->mac_type->ops->dma_mode(priv->dev->base_addr,
637 SF_DMA_MODE, SF_DMA_MODE);
638 tc = SF_DMA_MODE;
639 priv->tx_coe = HW_CSUM;
640 } else {
641 /* Checksum computation is performed in software. */
642 priv->mac_type->ops->dma_mode(priv->dev->base_addr, tc,
643 SF_DMA_MODE);
644 priv->tx_coe = NO_HW_CSUM;
645 }
646 }
647 tx_coe = priv->tx_coe;
648
649 return;
650}
651
652#ifdef STMMAC_DEBUG
653/**
654 * show_tx_process_state
655 * @status: tx descriptor status field
656 * Description: it shows the Transmit Process State for CSR5[22:20]
657 */
658static void show_tx_process_state(unsigned int status)
659{
660 unsigned int state;
661 state = (status & DMA_STATUS_TS_MASK) >> DMA_STATUS_TS_SHIFT;
662
663 switch (state) {
664 case 0:
665 pr_info("- TX (Stopped): Reset or Stop command\n");
666 break;
667 case 1:
668 pr_info("- TX (Running):Fetching the Tx desc\n");
669 break;
670 case 2:
671 pr_info("- TX (Running): Waiting for end of tx\n");
672 break;
673 case 3:
674 pr_info("- TX (Running): Reading the data "
675 "and queuing the data into the Tx buf\n");
676 break;
677 case 6:
678 pr_info("- TX (Suspended): Tx Buff Underflow "
679 "or an unavailable Transmit descriptor\n");
680 break;
681 case 7:
682 pr_info("- TX (Running): Closing Tx descriptor\n");
683 break;
684 default:
685 break;
686 }
687 return;
688}
689
690/**
691 * show_rx_process_state
692 * @status: rx descriptor status field
693 * Description: it shows the Receive Process State for CSR5[19:17]
694 */
695static void show_rx_process_state(unsigned int status)
696{
697 unsigned int state;
698 state = (status & DMA_STATUS_RS_MASK) >> DMA_STATUS_RS_SHIFT;
699
700 switch (state) {
701 case 0:
702 pr_info("- RX (Stopped): Reset or Stop command\n");
703 break;
704 case 1:
705 pr_info("- RX (Running): Fetching the Rx desc\n");
706 break;
707 case 2:
708 pr_info("- RX (Running):Checking for end of pkt\n");
709 break;
710 case 3:
711 pr_info("- RX (Running): Waiting for Rx pkt\n");
712 break;
713 case 4:
714 pr_info("- RX (Suspended): Unavailable Rx buf\n");
715 break;
716 case 5:
717 pr_info("- RX (Running): Closing Rx descriptor\n");
718 break;
719 case 6:
720 pr_info("- RX(Running): Flushing the current frame"
721 " from the Rx buf\n");
722 break;
723 case 7:
724 pr_info("- RX (Running): Queuing the Rx frame"
725 " from the Rx buf into memory\n");
726 break;
727 default:
728 break;
729 }
730 return;
731}
732#endif
733
734/**
735 * stmmac_tx:
736 * @priv: private driver structure
737 * Description: it reclaims resources after transmission completes.
738 */
739static void stmmac_tx(struct stmmac_priv *priv)
740{
741 unsigned int txsize = priv->dma_tx_size;
742 unsigned long ioaddr = priv->dev->base_addr;
743
744 while (priv->dirty_tx != priv->cur_tx) {
745 int last;
746 unsigned int entry = priv->dirty_tx % txsize;
747 struct sk_buff *skb = priv->tx_skbuff[entry];
748 struct dma_desc *p = priv->dma_tx + entry;
749
750 /* Check if the descriptor is owned by the DMA. */
751 if (priv->mac_type->ops->get_tx_owner(p))
752 break;
753
754 /* Verify tx error by looking at the last segment */
755 last = priv->mac_type->ops->get_tx_ls(p);
756 if (likely(last)) {
757 int tx_error =
758 priv->mac_type->ops->tx_status(&priv->dev->stats,
759 &priv->xstats,
760 p, ioaddr);
761 if (likely(tx_error == 0)) {
762 priv->dev->stats.tx_packets++;
763 priv->xstats.tx_pkt_n++;
764 } else
765 priv->dev->stats.tx_errors++;
766 }
767 TX_DBG("%s: curr %d, dirty %d\n", __func__,
768 priv->cur_tx, priv->dirty_tx);
769
770 if (likely(p->des2))
771 dma_unmap_single(priv->device, p->des2,
772 priv->mac_type->ops->get_tx_len(p),
773 DMA_TO_DEVICE);
774 if (unlikely(p->des3))
775 p->des3 = 0;
776
777 if (likely(skb != NULL)) {
778 /*
779 * If there's room in the queue (limit it to size)
780 * we add this skb back into the pool,
781 * if it's the right size.
782 */
783 if ((skb_queue_len(&priv->rx_recycle) <
784 priv->dma_rx_size) &&
785 skb_recycle_check(skb, priv->dma_buf_sz))
786 __skb_queue_head(&priv->rx_recycle, skb);
787 else
788 dev_kfree_skb(skb);
789
790 priv->tx_skbuff[entry] = NULL;
791 }
792
793 priv->mac_type->ops->release_tx_desc(p);
794
795 entry = (++priv->dirty_tx) % txsize;
796 }
797 if (unlikely(netif_queue_stopped(priv->dev) &&
798 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
799 netif_tx_lock(priv->dev);
800 if (netif_queue_stopped(priv->dev) &&
801 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
802 TX_DBG("%s: restart transmit\n", __func__);
803 netif_wake_queue(priv->dev);
804 }
805 netif_tx_unlock(priv->dev);
806 }
807 return;
808}
809
810static inline void stmmac_enable_irq(struct stmmac_priv *priv)
811{
73cfe264
GC
812#ifdef CONFIG_STMMAC_TIMER
813 if (likely(priv->tm->enable))
814 priv->tm->timer_start(tmrate);
815 else
47dd7a54 816#endif
73cfe264 817 writel(DMA_INTR_DEFAULT_MASK, priv->dev->base_addr + DMA_INTR_ENA);
47dd7a54
GC
818}
819
820static inline void stmmac_disable_irq(struct stmmac_priv *priv)
821{
73cfe264
GC
822#ifdef CONFIG_STMMAC_TIMER
823 if (likely(priv->tm->enable))
824 priv->tm->timer_stop();
825 else
47dd7a54 826#endif
73cfe264 827 writel(0, priv->dev->base_addr + DMA_INTR_ENA);
47dd7a54
GC
828}
829
830static int stmmac_has_work(struct stmmac_priv *priv)
831{
832 unsigned int has_work = 0;
833 int rxret, tx_work = 0;
834
835 rxret = priv->mac_type->ops->get_rx_owner(priv->dma_rx +
836 (priv->cur_rx % priv->dma_rx_size));
837
838 if (priv->dirty_tx != priv->cur_tx)
839 tx_work = 1;
840
841 if (likely(!rxret || tx_work))
842 has_work = 1;
843
844 return has_work;
845}
846
847static inline void _stmmac_schedule(struct stmmac_priv *priv)
848{
849 if (likely(stmmac_has_work(priv))) {
850 stmmac_disable_irq(priv);
851 napi_schedule(&priv->napi);
852 }
853}
854
855#ifdef CONFIG_STMMAC_TIMER
856void stmmac_schedule(struct net_device *dev)
857{
858 struct stmmac_priv *priv = netdev_priv(dev);
859
860 priv->xstats.sched_timer_n++;
861
862 _stmmac_schedule(priv);
863
864 return;
865}
866
867static void stmmac_no_timer_started(unsigned int x)
868{;
869};
870
871static void stmmac_no_timer_stopped(void)
872{;
873};
874#endif
875
876/**
877 * stmmac_tx_err:
878 * @priv: pointer to the private device structure
879 * Description: it cleans the descriptors and restarts the transmission
880 * in case of errors.
881 */
882static void stmmac_tx_err(struct stmmac_priv *priv)
883{
884 netif_stop_queue(priv->dev);
885
886 stmmac_dma_stop_tx(priv->dev->base_addr);
887 dma_free_tx_skbufs(priv);
888 priv->mac_type->ops->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
889 priv->dirty_tx = 0;
890 priv->cur_tx = 0;
891 stmmac_dma_start_tx(priv->dev->base_addr);
892
893 priv->dev->stats.tx_errors++;
894 netif_wake_queue(priv->dev);
895
896 return;
897}
898
899/**
900 * stmmac_dma_interrupt - Interrupt handler for the driver
901 * @dev: net device structure
902 * Description: Interrupt handler for the driver (DMA).
903 */
904static void stmmac_dma_interrupt(struct net_device *dev)
905{
906 unsigned long ioaddr = dev->base_addr;
907 struct stmmac_priv *priv = netdev_priv(dev);
908 /* read the status register (CSR5) */
909 u32 intr_status = readl(ioaddr + DMA_STATUS);
910
911 DBG(intr, INFO, "%s: [CSR5: 0x%08x]\n", __func__, intr_status);
912
913#ifdef STMMAC_DEBUG
914 /* It displays the DMA transmit process state (CSR5 register) */
915 if (netif_msg_tx_done(priv))
916 show_tx_process_state(intr_status);
917 if (netif_msg_rx_status(priv))
918 show_rx_process_state(intr_status);
919#endif
920 /* ABNORMAL interrupts */
921 if (unlikely(intr_status & DMA_STATUS_AIS)) {
922 DBG(intr, INFO, "CSR5[15] DMA ABNORMAL IRQ: ");
923 if (unlikely(intr_status & DMA_STATUS_UNF)) {
924 DBG(intr, INFO, "transmit underflow\n");
8e95a202 925 if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
47dd7a54
GC
926 /* Try to bump up the threshold */
927 tc += 64;
928 priv->mac_type->ops->dma_mode(ioaddr, tc,
929 SF_DMA_MODE);
930 priv->xstats.threshold = tc;
931 }
932 stmmac_tx_err(priv);
933 priv->xstats.tx_undeflow_irq++;
934 }
935 if (unlikely(intr_status & DMA_STATUS_TJT)) {
936 DBG(intr, INFO, "transmit jabber\n");
937 priv->xstats.tx_jabber_irq++;
938 }
939 if (unlikely(intr_status & DMA_STATUS_OVF)) {
940 DBG(intr, INFO, "recv overflow\n");
941 priv->xstats.rx_overflow_irq++;
942 }
943 if (unlikely(intr_status & DMA_STATUS_RU)) {
944 DBG(intr, INFO, "receive buffer unavailable\n");
945 priv->xstats.rx_buf_unav_irq++;
946 }
947 if (unlikely(intr_status & DMA_STATUS_RPS)) {
948 DBG(intr, INFO, "receive process stopped\n");
949 priv->xstats.rx_process_stopped_irq++;
950 }
951 if (unlikely(intr_status & DMA_STATUS_RWT)) {
952 DBG(intr, INFO, "receive watchdog\n");
953 priv->xstats.rx_watchdog_irq++;
954 }
955 if (unlikely(intr_status & DMA_STATUS_ETI)) {
956 DBG(intr, INFO, "transmit early interrupt\n");
957 priv->xstats.tx_early_irq++;
958 }
959 if (unlikely(intr_status & DMA_STATUS_TPS)) {
960 DBG(intr, INFO, "transmit process stopped\n");
961 priv->xstats.tx_process_stopped_irq++;
962 stmmac_tx_err(priv);
963 }
964 if (unlikely(intr_status & DMA_STATUS_FBI)) {
965 DBG(intr, INFO, "fatal bus error\n");
966 priv->xstats.fatal_bus_error_irq++;
967 stmmac_tx_err(priv);
968 }
969 }
970
971 /* TX/RX NORMAL interrupts */
972 if (intr_status & DMA_STATUS_NIS) {
973 priv->xstats.normal_irq_n++;
974 if (likely((intr_status & DMA_STATUS_RI) ||
975 (intr_status & (DMA_STATUS_TI))))
976 _stmmac_schedule(priv);
977 }
978
979 /* Optional hardware blocks, interrupts should be disabled */
980 if (unlikely(intr_status &
981 (DMA_STATUS_GPI | DMA_STATUS_GMI | DMA_STATUS_GLI)))
982 pr_info("%s: unexpected status %08x\n", __func__, intr_status);
983
984 /* Clear the interrupt by writing a logic 1 to the CSR5[15-0] */
985 writel((intr_status & 0x1ffff), ioaddr + DMA_STATUS);
986
987 DBG(intr, INFO, "\n\n");
988
989 return;
990}
991
992/**
993 * stmmac_open - open entry point of the driver
994 * @dev : pointer to the device structure.
995 * Description:
996 * This function is the open entry point of the driver.
997 * Return value:
998 * 0 on success and an appropriate (-)ve integer as defined in errno.h
999 * file on failure.
1000 */
1001static int stmmac_open(struct net_device *dev)
1002{
1003 struct stmmac_priv *priv = netdev_priv(dev);
1004 unsigned long ioaddr = dev->base_addr;
1005 int ret;
1006
1007 /* Check that the MAC address is valid. If its not, refuse
1008 * to bring the device up. The user must specify an
1009 * address using the following linux command:
1010 * ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx */
1011 if (!is_valid_ether_addr(dev->dev_addr)) {
1012 random_ether_addr(dev->dev_addr);
1013 pr_warning("%s: generated random MAC address %pM\n", dev->name,
1014 dev->dev_addr);
1015 }
1016
1017 stmmac_verify_args();
1018
1019 ret = stmmac_init_phy(dev);
1020 if (unlikely(ret)) {
1021 pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
1022 return ret;
1023 }
1024
1025 /* Request the IRQ lines */
a0607fd3 1026 ret = request_irq(dev->irq, stmmac_interrupt,
47dd7a54
GC
1027 IRQF_SHARED, dev->name, dev);
1028 if (unlikely(ret < 0)) {
1029 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1030 __func__, dev->irq, ret);
1031 return ret;
1032 }
1033
1034#ifdef CONFIG_STMMAC_TIMER
73cfe264 1035 priv->tm = kzalloc(sizeof(struct stmmac_timer *), GFP_KERNEL);
47dd7a54
GC
1036 if (unlikely(priv->tm == NULL)) {
1037 pr_err("%s: ERROR: timer memory alloc failed \n", __func__);
1038 return -ENOMEM;
1039 }
1040 priv->tm->freq = tmrate;
1041
73cfe264
GC
1042 /* Test if the external timer can be actually used.
1043 * In case of failure continue without timer. */
47dd7a54 1044 if (unlikely((stmmac_open_ext_timer(dev, priv->tm)) < 0)) {
73cfe264 1045 pr_warning("stmmaceth: cannot attach the external timer.\n");
47dd7a54
GC
1046 tmrate = 0;
1047 priv->tm->freq = 0;
1048 priv->tm->timer_start = stmmac_no_timer_started;
1049 priv->tm->timer_stop = stmmac_no_timer_stopped;
73cfe264
GC
1050 } else
1051 priv->tm->enable = 1;
47dd7a54
GC
1052#endif
1053
1054 /* Create and initialize the TX/RX descriptors chains. */
1055 priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1056 priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1057 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1058 init_dma_desc_rings(dev);
1059
1060 /* DMA initialization and SW reset */
1061 if (unlikely(priv->mac_type->ops->dma_init(ioaddr,
1062 priv->pbl, priv->dma_tx_phy, priv->dma_rx_phy) < 0)) {
1063
1064 pr_err("%s: DMA initialization failed\n", __func__);
1065 return -1;
1066 }
1067
1068 /* Copy the MAC addr into the HW */
1069 priv->mac_type->ops->set_umac_addr(ioaddr, dev->dev_addr, 0);
1070 /* Initialize the MAC Core */
1071 priv->mac_type->ops->core_init(ioaddr);
1072
1073 priv->shutdown = 0;
1074
1075 /* Initialise the MMC (if present) to disable all interrupts. */
1076 writel(0xffffffff, ioaddr + MMC_HIGH_INTR_MASK);
1077 writel(0xffffffff, ioaddr + MMC_LOW_INTR_MASK);
1078
1079 /* Enable the MAC Rx/Tx */
1080 stmmac_mac_enable_rx(ioaddr);
1081 stmmac_mac_enable_tx(ioaddr);
1082
1083 /* Set the HW DMA mode and the COE */
1084 stmmac_dma_operation_mode(priv);
1085
1086 /* Extra statistics */
1087 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1088 priv->xstats.threshold = tc;
1089
1090 /* Start the ball rolling... */
1091 DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
1092 stmmac_dma_start_tx(ioaddr);
1093 stmmac_dma_start_rx(ioaddr);
1094
1095#ifdef CONFIG_STMMAC_TIMER
1096 priv->tm->timer_start(tmrate);
1097#endif
1098 /* Dump DMA/MAC registers */
1099 if (netif_msg_hw(priv)) {
1100 priv->mac_type->ops->dump_mac_regs(ioaddr);
1101 priv->mac_type->ops->dump_dma_regs(ioaddr);
1102 }
1103
1104 if (priv->phydev)
1105 phy_start(priv->phydev);
1106
1107 napi_enable(&priv->napi);
1108 skb_queue_head_init(&priv->rx_recycle);
1109 netif_start_queue(dev);
1110 return 0;
1111}
1112
1113/**
1114 * stmmac_release - close entry point of the driver
1115 * @dev : device pointer.
1116 * Description:
1117 * This is the stop entry point of the driver.
1118 */
1119static int stmmac_release(struct net_device *dev)
1120{
1121 struct stmmac_priv *priv = netdev_priv(dev);
1122
1123 /* Stop and disconnect the PHY */
1124 if (priv->phydev) {
1125 phy_stop(priv->phydev);
1126 phy_disconnect(priv->phydev);
1127 priv->phydev = NULL;
1128 }
1129
1130 netif_stop_queue(dev);
1131
1132#ifdef CONFIG_STMMAC_TIMER
1133 /* Stop and release the timer */
1134 stmmac_close_ext_timer();
1135 if (priv->tm != NULL)
1136 kfree(priv->tm);
1137#endif
1138 napi_disable(&priv->napi);
1139 skb_queue_purge(&priv->rx_recycle);
1140
1141 /* Free the IRQ lines */
1142 free_irq(dev->irq, dev);
1143
1144 /* Stop TX/RX DMA and clear the descriptors */
1145 stmmac_dma_stop_tx(dev->base_addr);
1146 stmmac_dma_stop_rx(dev->base_addr);
1147
1148 /* Release and free the Rx/Tx resources */
1149 free_dma_desc_resources(priv);
1150
1151 /* Disable the MAC core */
1152 stmmac_mac_disable_tx(dev->base_addr);
1153 stmmac_mac_disable_rx(dev->base_addr);
1154
1155 netif_carrier_off(dev);
1156
1157 return 0;
1158}
1159
1160/*
1161 * To perform emulated hardware segmentation on skb.
1162 */
1163static int stmmac_sw_tso(struct stmmac_priv *priv, struct sk_buff *skb)
1164{
1165 struct sk_buff *segs, *curr_skb;
1166 int gso_segs = skb_shinfo(skb)->gso_segs;
1167
1168 /* Estimate the number of fragments in the worst case */
1169 if (unlikely(stmmac_tx_avail(priv) < gso_segs)) {
1170 netif_stop_queue(priv->dev);
1171 TX_DBG(KERN_ERR "%s: TSO BUG! Tx Ring full when queue awake\n",
1172 __func__);
1173 if (stmmac_tx_avail(priv) < gso_segs)
1174 return NETDEV_TX_BUSY;
1175
1176 netif_wake_queue(priv->dev);
1177 }
1178 TX_DBG("\tstmmac_sw_tso: segmenting: skb %p (len %d)\n",
1179 skb, skb->len);
1180
1181 segs = skb_gso_segment(skb, priv->dev->features & ~NETIF_F_TSO);
1182 if (unlikely(IS_ERR(segs)))
1183 goto sw_tso_end;
1184
1185 do {
1186 curr_skb = segs;
1187 segs = segs->next;
1188 TX_DBG("\t\tcurrent skb->len: %d, *curr %p,"
1189 "*next %p\n", curr_skb->len, curr_skb, segs);
1190 curr_skb->next = NULL;
1191 stmmac_xmit(curr_skb, priv->dev);
1192 } while (segs);
1193
1194sw_tso_end:
1195 dev_kfree_skb(skb);
1196
1197 return NETDEV_TX_OK;
1198}
1199
1200static unsigned int stmmac_handle_jumbo_frames(struct sk_buff *skb,
1201 struct net_device *dev,
1202 int csum_insertion)
1203{
1204 struct stmmac_priv *priv = netdev_priv(dev);
1205 unsigned int nopaged_len = skb_headlen(skb);
1206 unsigned int txsize = priv->dma_tx_size;
1207 unsigned int entry = priv->cur_tx % txsize;
1208 struct dma_desc *desc = priv->dma_tx + entry;
1209
1210 if (nopaged_len > BUF_SIZE_8KiB) {
1211
1212 int buf2_size = nopaged_len - BUF_SIZE_8KiB;
1213
1214 desc->des2 = dma_map_single(priv->device, skb->data,
1215 BUF_SIZE_8KiB, DMA_TO_DEVICE);
1216 desc->des3 = desc->des2 + BUF_SIZE_4KiB;
1217 priv->mac_type->ops->prepare_tx_desc(desc, 1, BUF_SIZE_8KiB,
1218 csum_insertion);
1219
1220 entry = (++priv->cur_tx) % txsize;
1221 desc = priv->dma_tx + entry;
1222
1223 desc->des2 = dma_map_single(priv->device,
1224 skb->data + BUF_SIZE_8KiB,
1225 buf2_size, DMA_TO_DEVICE);
1226 desc->des3 = desc->des2 + BUF_SIZE_4KiB;
1227 priv->mac_type->ops->prepare_tx_desc(desc, 0,
1228 buf2_size, csum_insertion);
1229 priv->mac_type->ops->set_tx_owner(desc);
1230 priv->tx_skbuff[entry] = NULL;
1231 } else {
1232 desc->des2 = dma_map_single(priv->device, skb->data,
1233 nopaged_len, DMA_TO_DEVICE);
1234 desc->des3 = desc->des2 + BUF_SIZE_4KiB;
1235 priv->mac_type->ops->prepare_tx_desc(desc, 1, nopaged_len,
1236 csum_insertion);
1237 }
1238 return entry;
1239}
1240
1241/**
1242 * stmmac_xmit:
1243 * @skb : the socket buffer
1244 * @dev : device pointer
1245 * Description : Tx entry point of the driver.
1246 */
1247static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1248{
1249 struct stmmac_priv *priv = netdev_priv(dev);
1250 unsigned int txsize = priv->dma_tx_size;
1251 unsigned int entry;
1252 int i, csum_insertion = 0;
1253 int nfrags = skb_shinfo(skb)->nr_frags;
1254 struct dma_desc *desc, *first;
1255
1256 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1257 if (!netif_queue_stopped(dev)) {
1258 netif_stop_queue(dev);
1259 /* This is a hard error, log it. */
1260 pr_err("%s: BUG! Tx Ring full when queue awake\n",
1261 __func__);
1262 }
1263 return NETDEV_TX_BUSY;
1264 }
1265
1266 entry = priv->cur_tx % txsize;
1267
1268#ifdef STMMAC_XMIT_DEBUG
1269 if ((skb->len > ETH_FRAME_LEN) || nfrags)
1270 pr_info("stmmac xmit:\n"
1271 "\tskb addr %p - len: %d - nopaged_len: %d\n"
1272 "\tn_frags: %d - ip_summed: %d - %s gso\n",
1273 skb, skb->len, skb_headlen(skb), nfrags, skb->ip_summed,
1274 !skb_is_gso(skb) ? "isn't" : "is");
1275#endif
1276
1277 if (unlikely(skb_is_gso(skb)))
1278 return stmmac_sw_tso(priv, skb);
1279
1280 if (likely((skb->ip_summed == CHECKSUM_PARTIAL))) {
1281 if (likely(priv->tx_coe == NO_HW_CSUM))
1282 skb_checksum_help(skb);
1283 else
1284 csum_insertion = 1;
1285 }
1286
1287 desc = priv->dma_tx + entry;
1288 first = desc;
1289
1290#ifdef STMMAC_XMIT_DEBUG
1291 if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1292 pr_debug("stmmac xmit: skb len: %d, nopaged_len: %d,\n"
1293 "\t\tn_frags: %d, ip_summed: %d\n",
1294 skb->len, skb_headlen(skb), nfrags, skb->ip_summed);
1295#endif
1296 priv->tx_skbuff[entry] = skb;
1297 if (unlikely(skb->len >= BUF_SIZE_4KiB)) {
1298 entry = stmmac_handle_jumbo_frames(skb, dev, csum_insertion);
1299 desc = priv->dma_tx + entry;
1300 } else {
1301 unsigned int nopaged_len = skb_headlen(skb);
1302 desc->des2 = dma_map_single(priv->device, skb->data,
1303 nopaged_len, DMA_TO_DEVICE);
1304 priv->mac_type->ops->prepare_tx_desc(desc, 1, nopaged_len,
1305 csum_insertion);
1306 }
1307
1308 for (i = 0; i < nfrags; i++) {
1309 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1310 int len = frag->size;
1311
1312 entry = (++priv->cur_tx) % txsize;
1313 desc = priv->dma_tx + entry;
1314
1315 TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1316 desc->des2 = dma_map_page(priv->device, frag->page,
1317 frag->page_offset,
1318 len, DMA_TO_DEVICE);
1319 priv->tx_skbuff[entry] = NULL;
1320 priv->mac_type->ops->prepare_tx_desc(desc, 0, len,
1321 csum_insertion);
1322 priv->mac_type->ops->set_tx_owner(desc);
1323 }
1324
1325 /* Interrupt on completition only for the latest segment */
1326 priv->mac_type->ops->close_tx_desc(desc);
73cfe264 1327
47dd7a54 1328#ifdef CONFIG_STMMAC_TIMER
73cfe264
GC
1329 /* Clean IC while using timer */
1330 if (likely(priv->tm->enable))
1331 priv->mac_type->ops->clear_tx_ic(desc);
47dd7a54
GC
1332#endif
1333 /* To avoid raise condition */
1334 priv->mac_type->ops->set_tx_owner(first);
1335
1336 priv->cur_tx++;
1337
1338#ifdef STMMAC_XMIT_DEBUG
1339 if (netif_msg_pktdata(priv)) {
1340 pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
1341 "first=%p, nfrags=%d\n",
1342 (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
1343 entry, first, nfrags);
1344 display_ring(priv->dma_tx, txsize);
1345 pr_info(">>> frame to be transmitted: ");
1346 print_pkt(skb->data, skb->len);
1347 }
1348#endif
1349 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1350 TX_DBG("%s: stop transmitted packets\n", __func__);
1351 netif_stop_queue(dev);
1352 }
1353
1354 dev->stats.tx_bytes += skb->len;
1355
1356 /* CSR1 enables the transmit DMA to check for new descriptor */
1357 writel(1, dev->base_addr + DMA_XMT_POLL_DEMAND);
1358
1359 return NETDEV_TX_OK;
1360}
1361
1362static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1363{
1364 unsigned int rxsize = priv->dma_rx_size;
1365 int bfsize = priv->dma_buf_sz;
1366 struct dma_desc *p = priv->dma_rx;
1367
1368 for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1369 unsigned int entry = priv->dirty_rx % rxsize;
1370 if (likely(priv->rx_skbuff[entry] == NULL)) {
1371 struct sk_buff *skb;
1372
1373 skb = __skb_dequeue(&priv->rx_recycle);
1374 if (skb == NULL)
1375 skb = netdev_alloc_skb_ip_align(priv->dev,
1376 bfsize);
1377
1378 if (unlikely(skb == NULL))
1379 break;
1380
1381 priv->rx_skbuff[entry] = skb;
1382 priv->rx_skbuff_dma[entry] =
1383 dma_map_single(priv->device, skb->data, bfsize,
1384 DMA_FROM_DEVICE);
1385
1386 (p + entry)->des2 = priv->rx_skbuff_dma[entry];
1387 if (unlikely(priv->is_gmac)) {
1388 if (bfsize >= BUF_SIZE_8KiB)
1389 (p + entry)->des3 =
1390 (p + entry)->des2 + BUF_SIZE_8KiB;
1391 }
1392 RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
1393 }
1394 priv->mac_type->ops->set_rx_owner(p + entry);
1395 }
1396 return;
1397}
1398
1399static int stmmac_rx(struct stmmac_priv *priv, int limit)
1400{
1401 unsigned int rxsize = priv->dma_rx_size;
1402 unsigned int entry = priv->cur_rx % rxsize;
1403 unsigned int next_entry;
1404 unsigned int count = 0;
1405 struct dma_desc *p = priv->dma_rx + entry;
1406 struct dma_desc *p_next;
1407
1408#ifdef STMMAC_RX_DEBUG
1409 if (netif_msg_hw(priv)) {
1410 pr_debug(">>> stmmac_rx: descriptor ring:\n");
1411 display_ring(priv->dma_rx, rxsize);
1412 }
1413#endif
1414 count = 0;
1415 while (!priv->mac_type->ops->get_rx_owner(p)) {
1416 int status;
1417
1418 if (count >= limit)
1419 break;
1420
1421 count++;
1422
1423 next_entry = (++priv->cur_rx) % rxsize;
1424 p_next = priv->dma_rx + next_entry;
1425 prefetch(p_next);
1426
1427 /* read the status of the incoming frame */
1428 status = (priv->mac_type->ops->rx_status(&priv->dev->stats,
1429 &priv->xstats, p));
1430 if (unlikely(status == discard_frame))
1431 priv->dev->stats.rx_errors++;
1432 else {
1433 struct sk_buff *skb;
1434 /* Length should omit the CRC */
1435 int frame_len =
1436 priv->mac_type->ops->get_rx_frame_len(p) - 4;
1437
1438#ifdef STMMAC_RX_DEBUG
1439 if (frame_len > ETH_FRAME_LEN)
1440 pr_debug("\tRX frame size %d, COE status: %d\n",
1441 frame_len, status);
1442
1443 if (netif_msg_hw(priv))
1444 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
1445 p, entry, p->des2);
1446#endif
1447 skb = priv->rx_skbuff[entry];
1448 if (unlikely(!skb)) {
1449 pr_err("%s: Inconsistent Rx descriptor chain\n",
1450 priv->dev->name);
1451 priv->dev->stats.rx_dropped++;
1452 break;
1453 }
1454 prefetch(skb->data - NET_IP_ALIGN);
1455 priv->rx_skbuff[entry] = NULL;
1456
1457 skb_put(skb, frame_len);
1458 dma_unmap_single(priv->device,
1459 priv->rx_skbuff_dma[entry],
1460 priv->dma_buf_sz, DMA_FROM_DEVICE);
1461#ifdef STMMAC_RX_DEBUG
1462 if (netif_msg_pktdata(priv)) {
1463 pr_info(" frame received (%dbytes)", frame_len);
1464 print_pkt(skb->data, frame_len);
1465 }
1466#endif
1467 skb->protocol = eth_type_trans(skb, priv->dev);
1468
1469 if (unlikely(status == csum_none)) {
1470 /* always for the old mac 10/100 */
1471 skb->ip_summed = CHECKSUM_NONE;
1472 netif_receive_skb(skb);
1473 } else {
1474 skb->ip_summed = CHECKSUM_UNNECESSARY;
1475 napi_gro_receive(&priv->napi, skb);
1476 }
1477
1478 priv->dev->stats.rx_packets++;
1479 priv->dev->stats.rx_bytes += frame_len;
1480 priv->dev->last_rx = jiffies;
1481 }
1482 entry = next_entry;
1483 p = p_next; /* use prefetched values */
1484 }
1485
1486 stmmac_rx_refill(priv);
1487
1488 priv->xstats.rx_pkt_n += count;
1489
1490 return count;
1491}
1492
1493/**
1494 * stmmac_poll - stmmac poll method (NAPI)
1495 * @napi : pointer to the napi structure.
1496 * @budget : maximum number of packets that the current CPU can receive from
1497 * all interfaces.
1498 * Description :
1499 * This function implements the the reception process.
1500 * Also it runs the TX completion thread
1501 */
1502static int stmmac_poll(struct napi_struct *napi, int budget)
1503{
1504 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
1505 int work_done = 0;
1506
1507 priv->xstats.poll_n++;
1508 stmmac_tx(priv);
1509 work_done = stmmac_rx(priv, budget);
1510
1511 if (work_done < budget) {
1512 napi_complete(napi);
1513 stmmac_enable_irq(priv);
1514 }
1515 return work_done;
1516}
1517
1518/**
1519 * stmmac_tx_timeout
1520 * @dev : Pointer to net device structure
1521 * Description: this function is called when a packet transmission fails to
1522 * complete within a reasonable tmrate. The driver will mark the error in the
1523 * netdev structure and arrange for the device to be reset to a sane state
1524 * in order to transmit a new packet.
1525 */
1526static void stmmac_tx_timeout(struct net_device *dev)
1527{
1528 struct stmmac_priv *priv = netdev_priv(dev);
1529
1530 /* Clear Tx resources and restart transmitting again */
1531 stmmac_tx_err(priv);
1532 return;
1533}
1534
1535/* Configuration changes (passed on by ifconfig) */
1536static int stmmac_config(struct net_device *dev, struct ifmap *map)
1537{
1538 if (dev->flags & IFF_UP) /* can't act on a running interface */
1539 return -EBUSY;
1540
1541 /* Don't allow changing the I/O address */
1542 if (map->base_addr != dev->base_addr) {
1543 pr_warning("%s: can't change I/O address\n", dev->name);
1544 return -EOPNOTSUPP;
1545 }
1546
1547 /* Don't allow changing the IRQ */
1548 if (map->irq != dev->irq) {
1549 pr_warning("%s: can't change IRQ number %d\n",
1550 dev->name, dev->irq);
1551 return -EOPNOTSUPP;
1552 }
1553
1554 /* ignore other fields */
1555 return 0;
1556}
1557
1558/**
1559 * stmmac_multicast_list - entry point for multicast addressing
1560 * @dev : pointer to the device structure
1561 * Description:
1562 * This function is a driver entry point which gets called by the kernel
1563 * whenever multicast addresses must be enabled/disabled.
1564 * Return value:
1565 * void.
1566 */
1567static void stmmac_multicast_list(struct net_device *dev)
1568{
1569 struct stmmac_priv *priv = netdev_priv(dev);
1570
1571 spin_lock(&priv->lock);
1572 priv->mac_type->ops->set_filter(dev);
1573 spin_unlock(&priv->lock);
1574 return;
1575}
1576
1577/**
1578 * stmmac_change_mtu - entry point to change MTU size for the device.
1579 * @dev : device pointer.
1580 * @new_mtu : the new MTU size for the device.
1581 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
1582 * to drive packet transmission. Ethernet has an MTU of 1500 octets
1583 * (ETH_DATA_LEN). This value can be changed with ifconfig.
1584 * Return value:
1585 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1586 * file on failure.
1587 */
1588static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
1589{
1590 struct stmmac_priv *priv = netdev_priv(dev);
1591 int max_mtu;
1592
1593 if (netif_running(dev)) {
1594 pr_err("%s: must be stopped to change its MTU\n", dev->name);
1595 return -EBUSY;
1596 }
1597
1598 if (priv->is_gmac)
1599 max_mtu = JUMBO_LEN;
1600 else
1601 max_mtu = ETH_DATA_LEN;
1602
1603 if ((new_mtu < 46) || (new_mtu > max_mtu)) {
1604 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
1605 return -EINVAL;
1606 }
1607
1608 dev->mtu = new_mtu;
1609
1610 return 0;
1611}
1612
1613static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
1614{
1615 struct net_device *dev = (struct net_device *)dev_id;
1616 struct stmmac_priv *priv = netdev_priv(dev);
1617
1618 if (unlikely(!dev)) {
1619 pr_err("%s: invalid dev pointer\n", __func__);
1620 return IRQ_NONE;
1621 }
1622
1623 if (priv->is_gmac) {
1624 unsigned long ioaddr = dev->base_addr;
1625 /* To handle GMAC own interrupts */
1626 priv->mac_type->ops->host_irq_status(ioaddr);
1627 }
1628 stmmac_dma_interrupt(dev);
1629
1630 return IRQ_HANDLED;
1631}
1632
1633#ifdef CONFIG_NET_POLL_CONTROLLER
1634/* Polling receive - used by NETCONSOLE and other diagnostic tools
1635 * to allow network I/O with interrupts disabled. */
1636static void stmmac_poll_controller(struct net_device *dev)
1637{
1638 disable_irq(dev->irq);
1639 stmmac_interrupt(dev->irq, dev);
1640 enable_irq(dev->irq);
1641}
1642#endif
1643
1644/**
1645 * stmmac_ioctl - Entry point for the Ioctl
1646 * @dev: Device pointer.
1647 * @rq: An IOCTL specefic structure, that can contain a pointer to
1648 * a proprietary structure used to pass information to the driver.
1649 * @cmd: IOCTL command
1650 * Description:
1651 * Currently there are no special functionality supported in IOCTL, just the
1652 * phy_mii_ioctl(...) can be invoked.
1653 */
1654static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1655{
1656 struct stmmac_priv *priv = netdev_priv(dev);
1657 int ret = -EOPNOTSUPP;
1658
1659 if (!netif_running(dev))
1660 return -EINVAL;
1661
1662 switch (cmd) {
1663 case SIOCGMIIPHY:
1664 case SIOCGMIIREG:
1665 case SIOCSMIIREG:
1666 if (!priv->phydev)
1667 return -EINVAL;
1668
1669 spin_lock(&priv->lock);
1670 ret = phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
1671 spin_unlock(&priv->lock);
1672 default:
1673 break;
1674 }
1675 return ret;
1676}
1677
1678#ifdef STMMAC_VLAN_TAG_USED
1679static void stmmac_vlan_rx_register(struct net_device *dev,
1680 struct vlan_group *grp)
1681{
1682 struct stmmac_priv *priv = netdev_priv(dev);
1683
1684 DBG(probe, INFO, "%s: Setting vlgrp to %p\n", dev->name, grp);
1685
1686 spin_lock(&priv->lock);
1687 priv->vlgrp = grp;
1688 spin_unlock(&priv->lock);
1689
1690 return;
1691}
1692#endif
1693
1694static const struct net_device_ops stmmac_netdev_ops = {
1695 .ndo_open = stmmac_open,
1696 .ndo_start_xmit = stmmac_xmit,
1697 .ndo_stop = stmmac_release,
1698 .ndo_change_mtu = stmmac_change_mtu,
1699 .ndo_set_multicast_list = stmmac_multicast_list,
1700 .ndo_tx_timeout = stmmac_tx_timeout,
1701 .ndo_do_ioctl = stmmac_ioctl,
1702 .ndo_set_config = stmmac_config,
1703#ifdef STMMAC_VLAN_TAG_USED
1704 .ndo_vlan_rx_register = stmmac_vlan_rx_register,
1705#endif
1706#ifdef CONFIG_NET_POLL_CONTROLLER
1707 .ndo_poll_controller = stmmac_poll_controller,
1708#endif
1709 .ndo_set_mac_address = eth_mac_addr,
1710};
1711
1712/**
1713 * stmmac_probe - Initialization of the adapter .
1714 * @dev : device pointer
1715 * Description: The function initializes the network device structure for
1716 * the STMMAC driver. It also calls the low level routines
1717 * in order to init the HW (i.e. the DMA engine)
1718 */
1719static int stmmac_probe(struct net_device *dev)
1720{
1721 int ret = 0;
1722 struct stmmac_priv *priv = netdev_priv(dev);
1723
1724 ether_setup(dev);
1725
1726 dev->netdev_ops = &stmmac_netdev_ops;
1727 stmmac_set_ethtool_ops(dev);
1728
1729 dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_HIGHDMA);
1730 dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1731#ifdef STMMAC_VLAN_TAG_USED
1732 /* Both mac100 and gmac support receive VLAN tag detection */
1733 dev->features |= NETIF_F_HW_VLAN_RX;
1734#endif
1735 priv->msg_enable = netif_msg_init(debug, default_msg_level);
1736
1737 if (priv->is_gmac)
1738 priv->rx_csum = 1;
1739
1740 if (flow_ctrl)
1741 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
1742
1743 priv->pause = pause;
1744 netif_napi_add(dev, &priv->napi, stmmac_poll, 64);
1745
1746 /* Get the MAC address */
1747 priv->mac_type->ops->get_umac_addr(dev->base_addr, dev->dev_addr, 0);
1748
1749 if (!is_valid_ether_addr(dev->dev_addr))
1750 pr_warning("\tno valid MAC address;"
1751 "please, use ifconfig or nwhwconfig!\n");
1752
1753 ret = register_netdev(dev);
1754 if (ret) {
1755 pr_err("%s: ERROR %i registering the device\n",
1756 __func__, ret);
1757 return -ENODEV;
1758 }
1759
1760 DBG(probe, DEBUG, "%s: Scatter/Gather: %s - HW checksums: %s\n",
1761 dev->name, (dev->features & NETIF_F_SG) ? "on" : "off",
1762 (dev->features & NETIF_F_HW_CSUM) ? "on" : "off");
1763
1764 spin_lock_init(&priv->lock);
1765
1766 return ret;
1767}
1768
1769/**
1770 * stmmac_mac_device_setup
1771 * @dev : device pointer
1772 * Description: select and initialise the mac device (mac100 or Gmac).
1773 */
1774static int stmmac_mac_device_setup(struct net_device *dev)
1775{
1776 struct stmmac_priv *priv = netdev_priv(dev);
1777 unsigned long ioaddr = dev->base_addr;
1778
1779 struct mac_device_info *device;
1780
1781 if (priv->is_gmac)
1782 device = gmac_setup(ioaddr);
1783 else
1784 device = mac100_setup(ioaddr);
1785
1786 if (!device)
1787 return -ENOMEM;
1788
1789 priv->mac_type = device;
1790
1791 priv->wolenabled = priv->mac_type->hw.pmt; /* PMT supported */
1792 if (priv->wolenabled == PMT_SUPPORTED)
1793 priv->wolopts = WAKE_MAGIC; /* Magic Frame */
1794
1795 return 0;
1796}
1797
1798static int stmmacphy_dvr_probe(struct platform_device *pdev)
1799{
1800 struct plat_stmmacphy_data *plat_dat;
1801 plat_dat = (struct plat_stmmacphy_data *)((pdev->dev).platform_data);
1802
1803 pr_debug("stmmacphy_dvr_probe: added phy for bus %d\n",
1804 plat_dat->bus_id);
1805
1806 return 0;
1807}
1808
1809static int stmmacphy_dvr_remove(struct platform_device *pdev)
1810{
1811 return 0;
1812}
1813
1814static struct platform_driver stmmacphy_driver = {
1815 .driver = {
1816 .name = PHY_RESOURCE_NAME,
1817 },
1818 .probe = stmmacphy_dvr_probe,
1819 .remove = stmmacphy_dvr_remove,
1820};
1821
1822/**
1823 * stmmac_associate_phy
1824 * @dev: pointer to device structure
1825 * @data: points to the private structure.
1826 * Description: Scans through all the PHYs we have registered and checks if
1827 * any are associated with our MAC. If so, then just fill in
1828 * the blanks in our local context structure
1829 */
1830static int stmmac_associate_phy(struct device *dev, void *data)
1831{
1832 struct stmmac_priv *priv = (struct stmmac_priv *)data;
1833 struct plat_stmmacphy_data *plat_dat;
1834
1835 plat_dat = (struct plat_stmmacphy_data *)(dev->platform_data);
1836
1837 DBG(probe, DEBUG, "%s: checking phy for bus %d\n", __func__,
1838 plat_dat->bus_id);
1839
1840 /* Check that this phy is for the MAC being initialised */
1841 if (priv->bus_id != plat_dat->bus_id)
1842 return 0;
1843
1844 /* OK, this PHY is connected to the MAC.
1845 Go ahead and get the parameters */
1846 DBG(probe, DEBUG, "%s: OK. Found PHY config\n", __func__);
1847 priv->phy_irq =
1848 platform_get_irq_byname(to_platform_device(dev), "phyirq");
1849 DBG(probe, DEBUG, "%s: PHY irq on bus %d is %d\n", __func__,
1850 plat_dat->bus_id, priv->phy_irq);
1851
1852 /* Override with kernel parameters if supplied XXX CRS XXX
1853 * this needs to have multiple instances */
1854 if ((phyaddr >= 0) && (phyaddr <= 31))
1855 plat_dat->phy_addr = phyaddr;
1856
1857 priv->phy_addr = plat_dat->phy_addr;
1858 priv->phy_mask = plat_dat->phy_mask;
1859 priv->phy_interface = plat_dat->interface;
1860 priv->phy_reset = plat_dat->phy_reset;
1861
1862 DBG(probe, DEBUG, "%s: exiting\n", __func__);
1863 return 1; /* forces exit of driver_for_each_device() */
1864}
1865
1866/**
1867 * stmmac_dvr_probe
1868 * @pdev: platform device pointer
1869 * Description: the driver is initialized through platform_device.
1870 */
1871static int stmmac_dvr_probe(struct platform_device *pdev)
1872{
1873 int ret = 0;
1874 struct resource *res;
1875 unsigned int *addr = NULL;
1876 struct net_device *ndev = NULL;
1877 struct stmmac_priv *priv;
1878 struct plat_stmmacenet_data *plat_dat;
1879
1880 pr_info("STMMAC driver:\n\tplatform registration... ");
1881 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1882 if (!res) {
1883 ret = -ENODEV;
1884 goto out;
1885 }
1886 pr_info("done!\n");
1887
1888 if (!request_mem_region(res->start, (res->end - res->start),
1889 pdev->name)) {
1890 pr_err("%s: ERROR: memory allocation failed"
1891 "cannot get the I/O addr 0x%x\n",
1892 __func__, (unsigned int)res->start);
1893 ret = -EBUSY;
1894 goto out;
1895 }
1896
1897 addr = ioremap(res->start, (res->end - res->start));
1898 if (!addr) {
1899 pr_err("%s: ERROR: memory mapping failed \n", __func__);
1900 ret = -ENOMEM;
1901 goto out;
1902 }
1903
1904 ndev = alloc_etherdev(sizeof(struct stmmac_priv));
1905 if (!ndev) {
1906 pr_err("%s: ERROR: allocating the device\n", __func__);
1907 ret = -ENOMEM;
1908 goto out;
1909 }
1910
1911 SET_NETDEV_DEV(ndev, &pdev->dev);
1912
1913 /* Get the MAC information */
1914 ndev->irq = platform_get_irq_byname(pdev, "macirq");
1915 if (ndev->irq == -ENXIO) {
1916 pr_err("%s: ERROR: MAC IRQ configuration "
1917 "information not found\n", __func__);
1918 ret = -ENODEV;
1919 goto out;
1920 }
1921
1922 priv = netdev_priv(ndev);
1923 priv->device = &(pdev->dev);
1924 priv->dev = ndev;
1925 plat_dat = (struct plat_stmmacenet_data *)((pdev->dev).platform_data);
1926 priv->bus_id = plat_dat->bus_id;
1927 priv->pbl = plat_dat->pbl; /* TLI */
1928 priv->is_gmac = plat_dat->has_gmac; /* GMAC is on board */
1929
1930 platform_set_drvdata(pdev, ndev);
1931
1932 /* Set the I/O base addr */
1933 ndev->base_addr = (unsigned long)addr;
1934
1935 /* MAC HW revice detection */
1936 ret = stmmac_mac_device_setup(ndev);
1937 if (ret < 0)
1938 goto out;
1939
1940 /* Network Device Registration */
1941 ret = stmmac_probe(ndev);
1942 if (ret < 0)
1943 goto out;
1944
1945 /* associate a PHY - it is provided by another platform bus */
1946 if (!driver_for_each_device
1947 (&(stmmacphy_driver.driver), NULL, (void *)priv,
1948 stmmac_associate_phy)) {
1949 pr_err("No PHY device is associated with this MAC!\n");
1950 ret = -ENODEV;
1951 goto out;
1952 }
1953
1954 priv->fix_mac_speed = plat_dat->fix_mac_speed;
1955 priv->bsp_priv = plat_dat->bsp_priv;
1956
1957 pr_info("\t%s - (dev. name: %s - id: %d, IRQ #%d\n"
1958 "\tIO base addr: 0x%08x)\n", ndev->name, pdev->name,
1959 pdev->id, ndev->irq, (unsigned int)addr);
1960
1961 /* MDIO bus Registration */
1962 pr_debug("\tMDIO bus (id: %d)...", priv->bus_id);
1963 ret = stmmac_mdio_register(ndev);
1964 if (ret < 0)
1965 goto out;
1966 pr_debug("registered!\n");
1967
1968out:
1969 if (ret < 0) {
1970 platform_set_drvdata(pdev, NULL);
1971 release_mem_region(res->start, (res->end - res->start));
1972 if (addr != NULL)
1973 iounmap(addr);
1974 }
1975
1976 return ret;
1977}
1978
1979/**
1980 * stmmac_dvr_remove
1981 * @pdev: platform device pointer
1982 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
1983 * changes the link status, releases the DMA descriptor rings,
1984 * unregisters the MDIO bus and unmaps the allocated memory.
1985 */
1986static int stmmac_dvr_remove(struct platform_device *pdev)
1987{
1988 struct net_device *ndev = platform_get_drvdata(pdev);
1989 struct resource *res;
1990
1991 pr_info("%s:\n\tremoving driver", __func__);
1992
1993 stmmac_dma_stop_rx(ndev->base_addr);
1994 stmmac_dma_stop_tx(ndev->base_addr);
1995
1996 stmmac_mac_disable_rx(ndev->base_addr);
1997 stmmac_mac_disable_tx(ndev->base_addr);
1998
1999 netif_carrier_off(ndev);
2000
2001 stmmac_mdio_unregister(ndev);
2002
2003 platform_set_drvdata(pdev, NULL);
2004 unregister_netdev(ndev);
2005
2006 iounmap((void *)ndev->base_addr);
2007 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2008 release_mem_region(res->start, (res->end - res->start));
2009
2010 free_netdev(ndev);
2011
2012 return 0;
2013}
2014
2015#ifdef CONFIG_PM
2016static int stmmac_suspend(struct platform_device *pdev, pm_message_t state)
2017{
2018 struct net_device *dev = platform_get_drvdata(pdev);
2019 struct stmmac_priv *priv = netdev_priv(dev);
2020 int dis_ic = 0;
2021
2022 if (!dev || !netif_running(dev))
2023 return 0;
2024
2025 spin_lock(&priv->lock);
2026
2027 if (state.event == PM_EVENT_SUSPEND) {
2028 netif_device_detach(dev);
2029 netif_stop_queue(dev);
2030 if (priv->phydev)
2031 phy_stop(priv->phydev);
2032
2033#ifdef CONFIG_STMMAC_TIMER
2034 priv->tm->timer_stop();
73cfe264
GC
2035 if (likely(priv->tm->enable))
2036 dis_ic = 1;
47dd7a54
GC
2037#endif
2038 napi_disable(&priv->napi);
2039
2040 /* Stop TX/RX DMA */
2041 stmmac_dma_stop_tx(dev->base_addr);
2042 stmmac_dma_stop_rx(dev->base_addr);
2043 /* Clear the Rx/Tx descriptors */
2044 priv->mac_type->ops->init_rx_desc(priv->dma_rx,
2045 priv->dma_rx_size, dis_ic);
2046 priv->mac_type->ops->init_tx_desc(priv->dma_tx,
2047 priv->dma_tx_size);
2048
2049 stmmac_mac_disable_tx(dev->base_addr);
2050
2051 if (device_may_wakeup(&(pdev->dev))) {
2052 /* Enable Power down mode by programming the PMT regs */
2053 if (priv->wolenabled == PMT_SUPPORTED)
2054 priv->mac_type->ops->pmt(dev->base_addr,
2055 priv->wolopts);
2056 } else {
2057 stmmac_mac_disable_rx(dev->base_addr);
2058 }
2059 } else {
2060 priv->shutdown = 1;
2061 /* Although this can appear slightly redundant it actually
2062 * makes fast the standby operation and guarantees the driver
2063 * working if hibernation is on media. */
2064 stmmac_release(dev);
2065 }
2066
2067 spin_unlock(&priv->lock);
2068 return 0;
2069}
2070
2071static int stmmac_resume(struct platform_device *pdev)
2072{
2073 struct net_device *dev = platform_get_drvdata(pdev);
2074 struct stmmac_priv *priv = netdev_priv(dev);
2075 unsigned long ioaddr = dev->base_addr;
2076
2077 if (!netif_running(dev))
2078 return 0;
2079
2080 spin_lock(&priv->lock);
2081
2082 if (priv->shutdown) {
2083 /* Re-open the interface and re-init the MAC/DMA
2084 and the rings. */
2085 stmmac_open(dev);
2086 goto out_resume;
2087 }
2088
2089 /* Power Down bit, into the PM register, is cleared
2090 * automatically as soon as a magic packet or a Wake-up frame
2091 * is received. Anyway, it's better to manually clear
2092 * this bit because it can generate problems while resuming
2093 * from another devices (e.g. serial console). */
2094 if (device_may_wakeup(&(pdev->dev)))
2095 if (priv->wolenabled == PMT_SUPPORTED)
2096 priv->mac_type->ops->pmt(dev->base_addr, 0);
2097
2098 netif_device_attach(dev);
2099
2100 /* Enable the MAC and DMA */
2101 stmmac_mac_enable_rx(ioaddr);
2102 stmmac_mac_enable_tx(ioaddr);
2103 stmmac_dma_start_tx(ioaddr);
2104 stmmac_dma_start_rx(ioaddr);
2105
2106#ifdef CONFIG_STMMAC_TIMER
2107 priv->tm->timer_start(tmrate);
2108#endif
2109 napi_enable(&priv->napi);
2110
2111 if (priv->phydev)
2112 phy_start(priv->phydev);
2113
2114 netif_start_queue(dev);
2115
2116out_resume:
2117 spin_unlock(&priv->lock);
2118 return 0;
2119}
2120#endif
2121
2122static struct platform_driver stmmac_driver = {
2123 .driver = {
2124 .name = STMMAC_RESOURCE_NAME,
2125 },
2126 .probe = stmmac_dvr_probe,
2127 .remove = stmmac_dvr_remove,
2128#ifdef CONFIG_PM
2129 .suspend = stmmac_suspend,
2130 .resume = stmmac_resume,
2131#endif
2132
2133};
2134
2135/**
2136 * stmmac_init_module - Entry point for the driver
2137 * Description: This function is the entry point for the driver.
2138 */
2139static int __init stmmac_init_module(void)
2140{
2141 int ret;
2142
2143 if (platform_driver_register(&stmmacphy_driver)) {
2144 pr_err("No PHY devices registered!\n");
2145 return -ENODEV;
2146 }
2147
2148 ret = platform_driver_register(&stmmac_driver);
2149 return ret;
2150}
2151
2152/**
2153 * stmmac_cleanup_module - Cleanup routine for the driver
2154 * Description: This function is the cleanup routine for the driver.
2155 */
2156static void __exit stmmac_cleanup_module(void)
2157{
2158 platform_driver_unregister(&stmmacphy_driver);
2159 platform_driver_unregister(&stmmac_driver);
2160}
2161
2162#ifndef MODULE
2163static int __init stmmac_cmdline_opt(char *str)
2164{
2165 char *opt;
2166
2167 if (!str || !*str)
2168 return -EINVAL;
2169 while ((opt = strsep(&str, ",")) != NULL) {
2170 if (!strncmp(opt, "debug:", 6))
2171 strict_strtoul(opt + 6, 0, (unsigned long *)&debug);
2172 else if (!strncmp(opt, "phyaddr:", 8))
2173 strict_strtoul(opt + 8, 0, (unsigned long *)&phyaddr);
2174 else if (!strncmp(opt, "dma_txsize:", 11))
2175 strict_strtoul(opt + 11, 0,
2176 (unsigned long *)&dma_txsize);
2177 else if (!strncmp(opt, "dma_rxsize:", 11))
2178 strict_strtoul(opt + 11, 0,
2179 (unsigned long *)&dma_rxsize);
2180 else if (!strncmp(opt, "buf_sz:", 7))
2181 strict_strtoul(opt + 7, 0, (unsigned long *)&buf_sz);
2182 else if (!strncmp(opt, "tc:", 3))
2183 strict_strtoul(opt + 3, 0, (unsigned long *)&tc);
2184 else if (!strncmp(opt, "tx_coe:", 7))
2185 strict_strtoul(opt + 7, 0, (unsigned long *)&tx_coe);
2186 else if (!strncmp(opt, "watchdog:", 9))
2187 strict_strtoul(opt + 9, 0, (unsigned long *)&watchdog);
2188 else if (!strncmp(opt, "flow_ctrl:", 10))
2189 strict_strtoul(opt + 10, 0,
2190 (unsigned long *)&flow_ctrl);
2191 else if (!strncmp(opt, "pause:", 6))
2192 strict_strtoul(opt + 6, 0, (unsigned long *)&pause);
2193#ifdef CONFIG_STMMAC_TIMER
2194 else if (!strncmp(opt, "tmrate:", 7))
2195 strict_strtoul(opt + 7, 0, (unsigned long *)&tmrate);
2196#endif
2197 }
2198 return 0;
2199}
2200
2201__setup("stmmaceth=", stmmac_cmdline_opt);
2202#endif
2203
2204module_init(stmmac_init_module);
2205module_exit(stmmac_cleanup_module);
2206
2207MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet driver");
2208MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
2209MODULE_LICENSE("GPL");