]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/stmmac/stmmac_main.c
stmmac: do not call fix_mac_speed if NULL
[net-next-2.6.git] / drivers / net / stmmac / stmmac_main.c
CommitLineData
47dd7a54
GC
1/*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
4
5 Copyright (C) 2007-2009 STMicroelectronics Ltd
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
22
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25 Documentation available at:
26 http://www.stlinux.com
27 Support available at:
28 https://bugzilla.stlinux.com/
29*******************************************************************************/
30
31#include <linux/module.h>
32#include <linux/init.h>
33#include <linux/kernel.h>
34#include <linux/interrupt.h>
35#include <linux/netdevice.h>
36#include <linux/etherdevice.h>
37#include <linux/platform_device.h>
38#include <linux/ip.h>
39#include <linux/tcp.h>
40#include <linux/skbuff.h>
41#include <linux/ethtool.h>
42#include <linux/if_ether.h>
43#include <linux/crc32.h>
44#include <linux/mii.h>
45#include <linux/phy.h>
46#include <linux/if_vlan.h>
47#include <linux/dma-mapping.h>
47dd7a54
GC
48#include "stmmac.h"
49
50#define STMMAC_RESOURCE_NAME "stmmaceth"
51#define PHY_RESOURCE_NAME "stmmacphy"
52
53#undef STMMAC_DEBUG
54/*#define STMMAC_DEBUG*/
55#ifdef STMMAC_DEBUG
56#define DBG(nlevel, klevel, fmt, args...) \
57 ((void)(netif_msg_##nlevel(priv) && \
58 printk(KERN_##klevel fmt, ## args)))
59#else
60#define DBG(nlevel, klevel, fmt, args...) do { } while (0)
61#endif
62
63#undef STMMAC_RX_DEBUG
64/*#define STMMAC_RX_DEBUG*/
65#ifdef STMMAC_RX_DEBUG
66#define RX_DBG(fmt, args...) printk(fmt, ## args)
67#else
68#define RX_DBG(fmt, args...) do { } while (0)
69#endif
70
71#undef STMMAC_XMIT_DEBUG
72/*#define STMMAC_XMIT_DEBUG*/
73#ifdef STMMAC_TX_DEBUG
74#define TX_DBG(fmt, args...) printk(fmt, ## args)
75#else
76#define TX_DBG(fmt, args...) do { } while (0)
77#endif
78
79#define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
80#define JUMBO_LEN 9000
81
82/* Module parameters */
83#define TX_TIMEO 5000 /* default 5 seconds */
84static int watchdog = TX_TIMEO;
85module_param(watchdog, int, S_IRUGO | S_IWUSR);
86MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");
87
88static int debug = -1; /* -1: default, 0: no output, 16: all */
89module_param(debug, int, S_IRUGO | S_IWUSR);
90MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");
91
92static int phyaddr = -1;
93module_param(phyaddr, int, S_IRUGO);
94MODULE_PARM_DESC(phyaddr, "Physical device address");
95
96#define DMA_TX_SIZE 256
97static int dma_txsize = DMA_TX_SIZE;
98module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
99MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
100
101#define DMA_RX_SIZE 256
102static int dma_rxsize = DMA_RX_SIZE;
103module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
104MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
105
106static int flow_ctrl = FLOW_OFF;
107module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
108MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
109
110static int pause = PAUSE_TIME;
111module_param(pause, int, S_IRUGO | S_IWUSR);
112MODULE_PARM_DESC(pause, "Flow Control Pause Time");
113
114#define TC_DEFAULT 64
115static int tc = TC_DEFAULT;
116module_param(tc, int, S_IRUGO | S_IWUSR);
117MODULE_PARM_DESC(tc, "DMA threshold control value");
118
119#define RX_NO_COALESCE 1 /* Always interrupt on completion */
120#define TX_NO_COALESCE -1 /* No moderation by default */
121
122/* Pay attention to tune this parameter; take care of both
123 * hardware capability and network stabitily/performance impact.
124 * Many tests showed that ~4ms latency seems to be good enough. */
125#ifdef CONFIG_STMMAC_TIMER
126#define DEFAULT_PERIODIC_RATE 256
127static int tmrate = DEFAULT_PERIODIC_RATE;
128module_param(tmrate, int, S_IRUGO | S_IWUSR);
129MODULE_PARM_DESC(tmrate, "External timer freq. (default: 256Hz)");
130#endif
131
132#define DMA_BUFFER_SIZE BUF_SIZE_2KiB
133static int buf_sz = DMA_BUFFER_SIZE;
134module_param(buf_sz, int, S_IRUGO | S_IWUSR);
135MODULE_PARM_DESC(buf_sz, "DMA buffer size");
136
137/* In case of Giga ETH, we can enable/disable the COE for the
138 * transmit HW checksum computation.
139 * Note that, if tx csum is off in HW, SG will be still supported. */
140static int tx_coe = HW_CSUM;
141module_param(tx_coe, int, S_IRUGO | S_IWUSR);
142MODULE_PARM_DESC(tx_coe, "GMAC COE type 2 [on/off]");
143
144static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
145 NETIF_MSG_LINK | NETIF_MSG_IFUP |
146 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
147
148static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
149static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev);
150
151/**
152 * stmmac_verify_args - verify the driver parameters.
153 * Description: it verifies if some wrong parameter is passed to the driver.
154 * Note that wrong parameters are replaced with the default values.
155 */
156static void stmmac_verify_args(void)
157{
158 if (unlikely(watchdog < 0))
159 watchdog = TX_TIMEO;
160 if (unlikely(dma_rxsize < 0))
161 dma_rxsize = DMA_RX_SIZE;
162 if (unlikely(dma_txsize < 0))
163 dma_txsize = DMA_TX_SIZE;
164 if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
165 buf_sz = DMA_BUFFER_SIZE;
166 if (unlikely(flow_ctrl > 1))
167 flow_ctrl = FLOW_AUTO;
168 else if (likely(flow_ctrl < 0))
169 flow_ctrl = FLOW_OFF;
170 if (unlikely((pause < 0) || (pause > 0xffff)))
171 pause = PAUSE_TIME;
172
173 return;
174}
175
176#if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
177static void print_pkt(unsigned char *buf, int len)
178{
179 int j;
180 pr_info("len = %d byte, buf addr: 0x%p", len, buf);
181 for (j = 0; j < len; j++) {
182 if ((j % 16) == 0)
183 pr_info("\n %03x:", j);
184 pr_info(" %02x", buf[j]);
185 }
186 pr_info("\n");
187 return;
188}
189#endif
190
191/* minimum number of free TX descriptors required to wake up TX process */
192#define STMMAC_TX_THRESH(x) (x->dma_tx_size/4)
193
194static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
195{
196 return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
197}
198
199/**
200 * stmmac_adjust_link
201 * @dev: net device structure
202 * Description: it adjusts the link parameters.
203 */
204static void stmmac_adjust_link(struct net_device *dev)
205{
206 struct stmmac_priv *priv = netdev_priv(dev);
207 struct phy_device *phydev = priv->phydev;
208 unsigned long ioaddr = dev->base_addr;
209 unsigned long flags;
210 int new_state = 0;
211 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
212
213 if (phydev == NULL)
214 return;
215
216 DBG(probe, DEBUG, "stmmac_adjust_link: called. address %d link %d\n",
217 phydev->addr, phydev->link);
218
219 spin_lock_irqsave(&priv->lock, flags);
220 if (phydev->link) {
221 u32 ctrl = readl(ioaddr + MAC_CTRL_REG);
222
223 /* Now we make sure that we can be in full duplex mode.
224 * If not, we operate in half-duplex mode. */
225 if (phydev->duplex != priv->oldduplex) {
226 new_state = 1;
227 if (!(phydev->duplex))
228 ctrl &= ~priv->mac_type->hw.link.duplex;
229 else
230 ctrl |= priv->mac_type->hw.link.duplex;
231 priv->oldduplex = phydev->duplex;
232 }
233 /* Flow Control operation */
234 if (phydev->pause)
235 priv->mac_type->ops->flow_ctrl(ioaddr, phydev->duplex,
236 fc, pause_time);
237
238 if (phydev->speed != priv->speed) {
239 new_state = 1;
240 switch (phydev->speed) {
241 case 1000:
242 if (likely(priv->is_gmac))
243 ctrl &= ~priv->mac_type->hw.link.port;
244 break;
245 case 100:
246 case 10:
247 if (priv->is_gmac) {
248 ctrl |= priv->mac_type->hw.link.port;
249 if (phydev->speed == SPEED_100) {
250 ctrl |=
251 priv->mac_type->hw.link.
252 speed;
253 } else {
254 ctrl &=
255 ~(priv->mac_type->hw.
256 link.speed);
257 }
258 } else {
259 ctrl &= ~priv->mac_type->hw.link.port;
260 }
65818fa7
GC
261 if (likely(priv->fix_mac_speed))
262 priv->fix_mac_speed(priv->bsp_priv,
263 phydev->speed);
47dd7a54
GC
264 break;
265 default:
266 if (netif_msg_link(priv))
267 pr_warning("%s: Speed (%d) is not 10"
268 " or 100!\n", dev->name, phydev->speed);
269 break;
270 }
271
272 priv->speed = phydev->speed;
273 }
274
275 writel(ctrl, ioaddr + MAC_CTRL_REG);
276
277 if (!priv->oldlink) {
278 new_state = 1;
279 priv->oldlink = 1;
280 }
281 } else if (priv->oldlink) {
282 new_state = 1;
283 priv->oldlink = 0;
284 priv->speed = 0;
285 priv->oldduplex = -1;
286 }
287
288 if (new_state && netif_msg_link(priv))
289 phy_print_status(phydev);
290
291 spin_unlock_irqrestore(&priv->lock, flags);
292
293 DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
294}
295
296/**
297 * stmmac_init_phy - PHY initialization
298 * @dev: net device structure
299 * Description: it initializes the driver's PHY state, and attaches the PHY
300 * to the mac driver.
301 * Return value:
302 * 0 on success
303 */
304static int stmmac_init_phy(struct net_device *dev)
305{
306 struct stmmac_priv *priv = netdev_priv(dev);
307 struct phy_device *phydev;
109cdd66
GC
308 char phy_id[MII_BUS_ID_SIZE + 3];
309 char bus_id[MII_BUS_ID_SIZE];
47dd7a54
GC
310
311 priv->oldlink = 0;
312 priv->speed = 0;
313 priv->oldduplex = -1;
314
315 if (priv->phy_addr == -1) {
316 /* We don't have a PHY, so do nothing */
317 return 0;
318 }
319
320 snprintf(bus_id, MII_BUS_ID_SIZE, "%x", priv->bus_id);
109cdd66
GC
321 snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
322 priv->phy_addr);
47dd7a54
GC
323 pr_debug("stmmac_init_phy: trying to attach to %s\n", phy_id);
324
325 phydev = phy_connect(dev, phy_id, &stmmac_adjust_link, 0,
326 priv->phy_interface);
327
328 if (IS_ERR(phydev)) {
329 pr_err("%s: Could not attach to PHY\n", dev->name);
330 return PTR_ERR(phydev);
331 }
332
333 /*
334 * Broken HW is sometimes missing the pull-up resistor on the
335 * MDIO line, which results in reads to non-existent devices returning
336 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
337 * device as well.
338 * Note: phydev->phy_id is the result of reading the UID PHY registers.
339 */
340 if (phydev->phy_id == 0) {
341 phy_disconnect(phydev);
342 return -ENODEV;
343 }
344 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
345 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
346
347 priv->phydev = phydev;
348
349 return 0;
350}
351
352static inline void stmmac_mac_enable_rx(unsigned long ioaddr)
353{
354 u32 value = readl(ioaddr + MAC_CTRL_REG);
355 value |= MAC_RNABLE_RX;
356 /* Set the RE (receive enable bit into the MAC CTRL register). */
357 writel(value, ioaddr + MAC_CTRL_REG);
358}
359
360static inline void stmmac_mac_enable_tx(unsigned long ioaddr)
361{
362 u32 value = readl(ioaddr + MAC_CTRL_REG);
363 value |= MAC_ENABLE_TX;
364 /* Set the TE (transmit enable bit into the MAC CTRL register). */
365 writel(value, ioaddr + MAC_CTRL_REG);
366}
367
368static inline void stmmac_mac_disable_rx(unsigned long ioaddr)
369{
370 u32 value = readl(ioaddr + MAC_CTRL_REG);
371 value &= ~MAC_RNABLE_RX;
372 writel(value, ioaddr + MAC_CTRL_REG);
373}
374
375static inline void stmmac_mac_disable_tx(unsigned long ioaddr)
376{
377 u32 value = readl(ioaddr + MAC_CTRL_REG);
378 value &= ~MAC_ENABLE_TX;
379 writel(value, ioaddr + MAC_CTRL_REG);
380}
381
382/**
383 * display_ring
384 * @p: pointer to the ring.
385 * @size: size of the ring.
386 * Description: display all the descriptors within the ring.
387 */
388static void display_ring(struct dma_desc *p, int size)
389{
390 struct tmp_s {
391 u64 a;
392 unsigned int b;
393 unsigned int c;
394 };
395 int i;
396 for (i = 0; i < size; i++) {
397 struct tmp_s *x = (struct tmp_s *)(p + i);
398 pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
399 i, (unsigned int)virt_to_phys(&p[i]),
400 (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
401 x->b, x->c);
402 pr_info("\n");
403 }
404}
405
406/**
407 * init_dma_desc_rings - init the RX/TX descriptor rings
408 * @dev: net device structure
409 * Description: this function initializes the DMA RX/TX descriptors
410 * and allocates the socket buffers.
411 */
412static void init_dma_desc_rings(struct net_device *dev)
413{
414 int i;
415 struct stmmac_priv *priv = netdev_priv(dev);
416 struct sk_buff *skb;
417 unsigned int txsize = priv->dma_tx_size;
418 unsigned int rxsize = priv->dma_rx_size;
419 unsigned int bfsize = priv->dma_buf_sz;
73cfe264 420 int buff2_needed = 0, dis_ic = 0;
47dd7a54 421
47dd7a54
GC
422 /* Set the Buffer size according to the MTU;
423 * indeed, in case of jumbo we need to bump-up the buffer sizes.
424 */
425 if (unlikely(dev->mtu >= BUF_SIZE_8KiB))
426 bfsize = BUF_SIZE_16KiB;
427 else if (unlikely(dev->mtu >= BUF_SIZE_4KiB))
428 bfsize = BUF_SIZE_8KiB;
429 else if (unlikely(dev->mtu >= BUF_SIZE_2KiB))
430 bfsize = BUF_SIZE_4KiB;
431 else if (unlikely(dev->mtu >= DMA_BUFFER_SIZE))
432 bfsize = BUF_SIZE_2KiB;
433 else
434 bfsize = DMA_BUFFER_SIZE;
435
73cfe264
GC
436#ifdef CONFIG_STMMAC_TIMER
437 /* Disable interrupts on completion for the reception if timer is on */
438 if (likely(priv->tm->enable))
439 dis_ic = 1;
440#endif
47dd7a54
GC
441 /* If the MTU exceeds 8k so use the second buffer in the chain */
442 if (bfsize >= BUF_SIZE_8KiB)
443 buff2_needed = 1;
444
445 DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
446 txsize, rxsize, bfsize);
447
448 priv->rx_skbuff_dma = kmalloc(rxsize * sizeof(dma_addr_t), GFP_KERNEL);
449 priv->rx_skbuff =
450 kmalloc(sizeof(struct sk_buff *) * rxsize, GFP_KERNEL);
451 priv->dma_rx =
452 (struct dma_desc *)dma_alloc_coherent(priv->device,
453 rxsize *
454 sizeof(struct dma_desc),
455 &priv->dma_rx_phy,
456 GFP_KERNEL);
457 priv->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * txsize,
458 GFP_KERNEL);
459 priv->dma_tx =
460 (struct dma_desc *)dma_alloc_coherent(priv->device,
461 txsize *
462 sizeof(struct dma_desc),
463 &priv->dma_tx_phy,
464 GFP_KERNEL);
465
466 if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
467 pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
468 return;
469 }
470
471 DBG(probe, INFO, "stmmac (%s) DMA desc rings: virt addr (Rx %p, "
472 "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
473 dev->name, priv->dma_rx, priv->dma_tx,
474 (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);
475
476 /* RX INITIALIZATION */
477 DBG(probe, INFO, "stmmac: SKB addresses:\n"
478 "skb\t\tskb data\tdma data\n");
479
480 for (i = 0; i < rxsize; i++) {
481 struct dma_desc *p = priv->dma_rx + i;
482
483 skb = netdev_alloc_skb_ip_align(dev, bfsize);
484 if (unlikely(skb == NULL)) {
485 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
486 break;
487 }
488 priv->rx_skbuff[i] = skb;
489 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
490 bfsize, DMA_FROM_DEVICE);
491
492 p->des2 = priv->rx_skbuff_dma[i];
493 if (unlikely(buff2_needed))
494 p->des3 = p->des2 + BUF_SIZE_8KiB;
495 DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
496 priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
497 }
498 priv->cur_rx = 0;
499 priv->dirty_rx = (unsigned int)(i - rxsize);
500 priv->dma_buf_sz = bfsize;
501 buf_sz = bfsize;
502
503 /* TX INITIALIZATION */
504 for (i = 0; i < txsize; i++) {
505 priv->tx_skbuff[i] = NULL;
506 priv->dma_tx[i].des2 = 0;
507 }
508 priv->dirty_tx = 0;
509 priv->cur_tx = 0;
510
511 /* Clear the Rx/Tx descriptors */
512 priv->mac_type->ops->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
513 priv->mac_type->ops->init_tx_desc(priv->dma_tx, txsize);
514
515 if (netif_msg_hw(priv)) {
516 pr_info("RX descriptor ring:\n");
517 display_ring(priv->dma_rx, rxsize);
518 pr_info("TX descriptor ring:\n");
519 display_ring(priv->dma_tx, txsize);
520 }
521 return;
522}
523
524static void dma_free_rx_skbufs(struct stmmac_priv *priv)
525{
526 int i;
527
528 for (i = 0; i < priv->dma_rx_size; i++) {
529 if (priv->rx_skbuff[i]) {
530 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
531 priv->dma_buf_sz, DMA_FROM_DEVICE);
532 dev_kfree_skb_any(priv->rx_skbuff[i]);
533 }
534 priv->rx_skbuff[i] = NULL;
535 }
536 return;
537}
538
539static void dma_free_tx_skbufs(struct stmmac_priv *priv)
540{
541 int i;
542
543 for (i = 0; i < priv->dma_tx_size; i++) {
544 if (priv->tx_skbuff[i] != NULL) {
545 struct dma_desc *p = priv->dma_tx + i;
546 if (p->des2)
547 dma_unmap_single(priv->device, p->des2,
548 priv->mac_type->ops->get_tx_len(p),
549 DMA_TO_DEVICE);
550 dev_kfree_skb_any(priv->tx_skbuff[i]);
551 priv->tx_skbuff[i] = NULL;
552 }
553 }
554 return;
555}
556
557static void free_dma_desc_resources(struct stmmac_priv *priv)
558{
559 /* Release the DMA TX/RX socket buffers */
560 dma_free_rx_skbufs(priv);
561 dma_free_tx_skbufs(priv);
562
563 /* Free the region of consistent memory previously allocated for
564 * the DMA */
565 dma_free_coherent(priv->device,
566 priv->dma_tx_size * sizeof(struct dma_desc),
567 priv->dma_tx, priv->dma_tx_phy);
568 dma_free_coherent(priv->device,
569 priv->dma_rx_size * sizeof(struct dma_desc),
570 priv->dma_rx, priv->dma_rx_phy);
571 kfree(priv->rx_skbuff_dma);
572 kfree(priv->rx_skbuff);
573 kfree(priv->tx_skbuff);
574
575 return;
576}
577
578/**
579 * stmmac_dma_start_tx
580 * @ioaddr: device I/O address
581 * Description: this function starts the DMA tx process.
582 */
583static void stmmac_dma_start_tx(unsigned long ioaddr)
584{
585 u32 value = readl(ioaddr + DMA_CONTROL);
586 value |= DMA_CONTROL_ST;
587 writel(value, ioaddr + DMA_CONTROL);
588 return;
589}
590
591static void stmmac_dma_stop_tx(unsigned long ioaddr)
592{
593 u32 value = readl(ioaddr + DMA_CONTROL);
594 value &= ~DMA_CONTROL_ST;
595 writel(value, ioaddr + DMA_CONTROL);
596 return;
597}
598
599/**
600 * stmmac_dma_start_rx
601 * @ioaddr: device I/O address
602 * Description: this function starts the DMA rx process.
603 */
604static void stmmac_dma_start_rx(unsigned long ioaddr)
605{
606 u32 value = readl(ioaddr + DMA_CONTROL);
607 value |= DMA_CONTROL_SR;
608 writel(value, ioaddr + DMA_CONTROL);
609
610 return;
611}
612
613static void stmmac_dma_stop_rx(unsigned long ioaddr)
614{
615 u32 value = readl(ioaddr + DMA_CONTROL);
616 value &= ~DMA_CONTROL_SR;
617 writel(value, ioaddr + DMA_CONTROL);
618
619 return;
620}
621
622/**
623 * stmmac_dma_operation_mode - HW DMA operation mode
624 * @priv : pointer to the private device structure.
625 * Description: it sets the DMA operation mode: tx/rx DMA thresholds
626 * or Store-And-Forward capability. It also verifies the COE for the
627 * transmission in case of Giga ETH.
628 */
629static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
630{
631 if (!priv->is_gmac) {
632 /* MAC 10/100 */
633 priv->mac_type->ops->dma_mode(priv->dev->base_addr, tc, 0);
634 priv->tx_coe = NO_HW_CSUM;
635 } else {
636 if ((priv->dev->mtu <= ETH_DATA_LEN) && (tx_coe)) {
637 priv->mac_type->ops->dma_mode(priv->dev->base_addr,
638 SF_DMA_MODE, SF_DMA_MODE);
639 tc = SF_DMA_MODE;
640 priv->tx_coe = HW_CSUM;
641 } else {
642 /* Checksum computation is performed in software. */
643 priv->mac_type->ops->dma_mode(priv->dev->base_addr, tc,
644 SF_DMA_MODE);
645 priv->tx_coe = NO_HW_CSUM;
646 }
647 }
648 tx_coe = priv->tx_coe;
649
650 return;
651}
652
653#ifdef STMMAC_DEBUG
654/**
655 * show_tx_process_state
656 * @status: tx descriptor status field
657 * Description: it shows the Transmit Process State for CSR5[22:20]
658 */
659static void show_tx_process_state(unsigned int status)
660{
661 unsigned int state;
662 state = (status & DMA_STATUS_TS_MASK) >> DMA_STATUS_TS_SHIFT;
663
664 switch (state) {
665 case 0:
666 pr_info("- TX (Stopped): Reset or Stop command\n");
667 break;
668 case 1:
669 pr_info("- TX (Running):Fetching the Tx desc\n");
670 break;
671 case 2:
672 pr_info("- TX (Running): Waiting for end of tx\n");
673 break;
674 case 3:
675 pr_info("- TX (Running): Reading the data "
676 "and queuing the data into the Tx buf\n");
677 break;
678 case 6:
679 pr_info("- TX (Suspended): Tx Buff Underflow "
680 "or an unavailable Transmit descriptor\n");
681 break;
682 case 7:
683 pr_info("- TX (Running): Closing Tx descriptor\n");
684 break;
685 default:
686 break;
687 }
688 return;
689}
690
691/**
692 * show_rx_process_state
693 * @status: rx descriptor status field
694 * Description: it shows the Receive Process State for CSR5[19:17]
695 */
696static void show_rx_process_state(unsigned int status)
697{
698 unsigned int state;
699 state = (status & DMA_STATUS_RS_MASK) >> DMA_STATUS_RS_SHIFT;
700
701 switch (state) {
702 case 0:
703 pr_info("- RX (Stopped): Reset or Stop command\n");
704 break;
705 case 1:
706 pr_info("- RX (Running): Fetching the Rx desc\n");
707 break;
708 case 2:
709 pr_info("- RX (Running):Checking for end of pkt\n");
710 break;
711 case 3:
712 pr_info("- RX (Running): Waiting for Rx pkt\n");
713 break;
714 case 4:
715 pr_info("- RX (Suspended): Unavailable Rx buf\n");
716 break;
717 case 5:
718 pr_info("- RX (Running): Closing Rx descriptor\n");
719 break;
720 case 6:
721 pr_info("- RX(Running): Flushing the current frame"
722 " from the Rx buf\n");
723 break;
724 case 7:
725 pr_info("- RX (Running): Queuing the Rx frame"
726 " from the Rx buf into memory\n");
727 break;
728 default:
729 break;
730 }
731 return;
732}
733#endif
734
735/**
736 * stmmac_tx:
737 * @priv: private driver structure
738 * Description: it reclaims resources after transmission completes.
739 */
740static void stmmac_tx(struct stmmac_priv *priv)
741{
742 unsigned int txsize = priv->dma_tx_size;
743 unsigned long ioaddr = priv->dev->base_addr;
744
745 while (priv->dirty_tx != priv->cur_tx) {
746 int last;
747 unsigned int entry = priv->dirty_tx % txsize;
748 struct sk_buff *skb = priv->tx_skbuff[entry];
749 struct dma_desc *p = priv->dma_tx + entry;
750
751 /* Check if the descriptor is owned by the DMA. */
752 if (priv->mac_type->ops->get_tx_owner(p))
753 break;
754
755 /* Verify tx error by looking at the last segment */
756 last = priv->mac_type->ops->get_tx_ls(p);
757 if (likely(last)) {
758 int tx_error =
759 priv->mac_type->ops->tx_status(&priv->dev->stats,
760 &priv->xstats,
761 p, ioaddr);
762 if (likely(tx_error == 0)) {
763 priv->dev->stats.tx_packets++;
764 priv->xstats.tx_pkt_n++;
765 } else
766 priv->dev->stats.tx_errors++;
767 }
768 TX_DBG("%s: curr %d, dirty %d\n", __func__,
769 priv->cur_tx, priv->dirty_tx);
770
771 if (likely(p->des2))
772 dma_unmap_single(priv->device, p->des2,
773 priv->mac_type->ops->get_tx_len(p),
774 DMA_TO_DEVICE);
775 if (unlikely(p->des3))
776 p->des3 = 0;
777
778 if (likely(skb != NULL)) {
779 /*
780 * If there's room in the queue (limit it to size)
781 * we add this skb back into the pool,
782 * if it's the right size.
783 */
784 if ((skb_queue_len(&priv->rx_recycle) <
785 priv->dma_rx_size) &&
786 skb_recycle_check(skb, priv->dma_buf_sz))
787 __skb_queue_head(&priv->rx_recycle, skb);
788 else
789 dev_kfree_skb(skb);
790
791 priv->tx_skbuff[entry] = NULL;
792 }
793
794 priv->mac_type->ops->release_tx_desc(p);
795
796 entry = (++priv->dirty_tx) % txsize;
797 }
798 if (unlikely(netif_queue_stopped(priv->dev) &&
799 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
800 netif_tx_lock(priv->dev);
801 if (netif_queue_stopped(priv->dev) &&
802 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
803 TX_DBG("%s: restart transmit\n", __func__);
804 netif_wake_queue(priv->dev);
805 }
806 netif_tx_unlock(priv->dev);
807 }
808 return;
809}
810
811static inline void stmmac_enable_irq(struct stmmac_priv *priv)
812{
73cfe264
GC
813#ifdef CONFIG_STMMAC_TIMER
814 if (likely(priv->tm->enable))
815 priv->tm->timer_start(tmrate);
816 else
47dd7a54 817#endif
73cfe264 818 writel(DMA_INTR_DEFAULT_MASK, priv->dev->base_addr + DMA_INTR_ENA);
47dd7a54
GC
819}
820
821static inline void stmmac_disable_irq(struct stmmac_priv *priv)
822{
73cfe264
GC
823#ifdef CONFIG_STMMAC_TIMER
824 if (likely(priv->tm->enable))
825 priv->tm->timer_stop();
826 else
47dd7a54 827#endif
73cfe264 828 writel(0, priv->dev->base_addr + DMA_INTR_ENA);
47dd7a54
GC
829}
830
831static int stmmac_has_work(struct stmmac_priv *priv)
832{
833 unsigned int has_work = 0;
834 int rxret, tx_work = 0;
835
836 rxret = priv->mac_type->ops->get_rx_owner(priv->dma_rx +
837 (priv->cur_rx % priv->dma_rx_size));
838
839 if (priv->dirty_tx != priv->cur_tx)
840 tx_work = 1;
841
842 if (likely(!rxret || tx_work))
843 has_work = 1;
844
845 return has_work;
846}
847
848static inline void _stmmac_schedule(struct stmmac_priv *priv)
849{
850 if (likely(stmmac_has_work(priv))) {
851 stmmac_disable_irq(priv);
852 napi_schedule(&priv->napi);
853 }
854}
855
856#ifdef CONFIG_STMMAC_TIMER
857void stmmac_schedule(struct net_device *dev)
858{
859 struct stmmac_priv *priv = netdev_priv(dev);
860
861 priv->xstats.sched_timer_n++;
862
863 _stmmac_schedule(priv);
864
865 return;
866}
867
868static void stmmac_no_timer_started(unsigned int x)
869{;
870};
871
872static void stmmac_no_timer_stopped(void)
873{;
874};
875#endif
876
877/**
878 * stmmac_tx_err:
879 * @priv: pointer to the private device structure
880 * Description: it cleans the descriptors and restarts the transmission
881 * in case of errors.
882 */
883static void stmmac_tx_err(struct stmmac_priv *priv)
884{
885 netif_stop_queue(priv->dev);
886
887 stmmac_dma_stop_tx(priv->dev->base_addr);
888 dma_free_tx_skbufs(priv);
889 priv->mac_type->ops->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
890 priv->dirty_tx = 0;
891 priv->cur_tx = 0;
892 stmmac_dma_start_tx(priv->dev->base_addr);
893
894 priv->dev->stats.tx_errors++;
895 netif_wake_queue(priv->dev);
896
897 return;
898}
899
900/**
901 * stmmac_dma_interrupt - Interrupt handler for the driver
902 * @dev: net device structure
903 * Description: Interrupt handler for the driver (DMA).
904 */
905static void stmmac_dma_interrupt(struct net_device *dev)
906{
907 unsigned long ioaddr = dev->base_addr;
908 struct stmmac_priv *priv = netdev_priv(dev);
909 /* read the status register (CSR5) */
910 u32 intr_status = readl(ioaddr + DMA_STATUS);
911
912 DBG(intr, INFO, "%s: [CSR5: 0x%08x]\n", __func__, intr_status);
913
914#ifdef STMMAC_DEBUG
915 /* It displays the DMA transmit process state (CSR5 register) */
916 if (netif_msg_tx_done(priv))
917 show_tx_process_state(intr_status);
918 if (netif_msg_rx_status(priv))
919 show_rx_process_state(intr_status);
920#endif
921 /* ABNORMAL interrupts */
922 if (unlikely(intr_status & DMA_STATUS_AIS)) {
923 DBG(intr, INFO, "CSR5[15] DMA ABNORMAL IRQ: ");
924 if (unlikely(intr_status & DMA_STATUS_UNF)) {
925 DBG(intr, INFO, "transmit underflow\n");
8e95a202 926 if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
47dd7a54
GC
927 /* Try to bump up the threshold */
928 tc += 64;
929 priv->mac_type->ops->dma_mode(ioaddr, tc,
930 SF_DMA_MODE);
931 priv->xstats.threshold = tc;
932 }
933 stmmac_tx_err(priv);
934 priv->xstats.tx_undeflow_irq++;
935 }
936 if (unlikely(intr_status & DMA_STATUS_TJT)) {
937 DBG(intr, INFO, "transmit jabber\n");
938 priv->xstats.tx_jabber_irq++;
939 }
940 if (unlikely(intr_status & DMA_STATUS_OVF)) {
941 DBG(intr, INFO, "recv overflow\n");
942 priv->xstats.rx_overflow_irq++;
943 }
944 if (unlikely(intr_status & DMA_STATUS_RU)) {
945 DBG(intr, INFO, "receive buffer unavailable\n");
946 priv->xstats.rx_buf_unav_irq++;
947 }
948 if (unlikely(intr_status & DMA_STATUS_RPS)) {
949 DBG(intr, INFO, "receive process stopped\n");
950 priv->xstats.rx_process_stopped_irq++;
951 }
952 if (unlikely(intr_status & DMA_STATUS_RWT)) {
953 DBG(intr, INFO, "receive watchdog\n");
954 priv->xstats.rx_watchdog_irq++;
955 }
956 if (unlikely(intr_status & DMA_STATUS_ETI)) {
957 DBG(intr, INFO, "transmit early interrupt\n");
958 priv->xstats.tx_early_irq++;
959 }
960 if (unlikely(intr_status & DMA_STATUS_TPS)) {
961 DBG(intr, INFO, "transmit process stopped\n");
962 priv->xstats.tx_process_stopped_irq++;
963 stmmac_tx_err(priv);
964 }
965 if (unlikely(intr_status & DMA_STATUS_FBI)) {
966 DBG(intr, INFO, "fatal bus error\n");
967 priv->xstats.fatal_bus_error_irq++;
968 stmmac_tx_err(priv);
969 }
970 }
971
972 /* TX/RX NORMAL interrupts */
973 if (intr_status & DMA_STATUS_NIS) {
974 priv->xstats.normal_irq_n++;
975 if (likely((intr_status & DMA_STATUS_RI) ||
976 (intr_status & (DMA_STATUS_TI))))
977 _stmmac_schedule(priv);
978 }
979
980 /* Optional hardware blocks, interrupts should be disabled */
981 if (unlikely(intr_status &
982 (DMA_STATUS_GPI | DMA_STATUS_GMI | DMA_STATUS_GLI)))
983 pr_info("%s: unexpected status %08x\n", __func__, intr_status);
984
985 /* Clear the interrupt by writing a logic 1 to the CSR5[15-0] */
986 writel((intr_status & 0x1ffff), ioaddr + DMA_STATUS);
987
988 DBG(intr, INFO, "\n\n");
989
990 return;
991}
992
993/**
994 * stmmac_open - open entry point of the driver
995 * @dev : pointer to the device structure.
996 * Description:
997 * This function is the open entry point of the driver.
998 * Return value:
999 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1000 * file on failure.
1001 */
1002static int stmmac_open(struct net_device *dev)
1003{
1004 struct stmmac_priv *priv = netdev_priv(dev);
1005 unsigned long ioaddr = dev->base_addr;
1006 int ret;
1007
1008 /* Check that the MAC address is valid. If its not, refuse
1009 * to bring the device up. The user must specify an
1010 * address using the following linux command:
1011 * ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx */
1012 if (!is_valid_ether_addr(dev->dev_addr)) {
1013 random_ether_addr(dev->dev_addr);
1014 pr_warning("%s: generated random MAC address %pM\n", dev->name,
1015 dev->dev_addr);
1016 }
1017
1018 stmmac_verify_args();
1019
1020 ret = stmmac_init_phy(dev);
1021 if (unlikely(ret)) {
1022 pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
1023 return ret;
1024 }
1025
1026 /* Request the IRQ lines */
a0607fd3 1027 ret = request_irq(dev->irq, stmmac_interrupt,
47dd7a54
GC
1028 IRQF_SHARED, dev->name, dev);
1029 if (unlikely(ret < 0)) {
1030 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1031 __func__, dev->irq, ret);
1032 return ret;
1033 }
1034
1035#ifdef CONFIG_STMMAC_TIMER
73cfe264 1036 priv->tm = kzalloc(sizeof(struct stmmac_timer *), GFP_KERNEL);
47dd7a54
GC
1037 if (unlikely(priv->tm == NULL)) {
1038 pr_err("%s: ERROR: timer memory alloc failed \n", __func__);
1039 return -ENOMEM;
1040 }
1041 priv->tm->freq = tmrate;
1042
73cfe264
GC
1043 /* Test if the external timer can be actually used.
1044 * In case of failure continue without timer. */
47dd7a54 1045 if (unlikely((stmmac_open_ext_timer(dev, priv->tm)) < 0)) {
73cfe264 1046 pr_warning("stmmaceth: cannot attach the external timer.\n");
47dd7a54
GC
1047 tmrate = 0;
1048 priv->tm->freq = 0;
1049 priv->tm->timer_start = stmmac_no_timer_started;
1050 priv->tm->timer_stop = stmmac_no_timer_stopped;
73cfe264
GC
1051 } else
1052 priv->tm->enable = 1;
47dd7a54
GC
1053#endif
1054
1055 /* Create and initialize the TX/RX descriptors chains. */
1056 priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1057 priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1058 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1059 init_dma_desc_rings(dev);
1060
1061 /* DMA initialization and SW reset */
1062 if (unlikely(priv->mac_type->ops->dma_init(ioaddr,
1063 priv->pbl, priv->dma_tx_phy, priv->dma_rx_phy) < 0)) {
1064
1065 pr_err("%s: DMA initialization failed\n", __func__);
1066 return -1;
1067 }
1068
1069 /* Copy the MAC addr into the HW */
1070 priv->mac_type->ops->set_umac_addr(ioaddr, dev->dev_addr, 0);
ca5f12c1
GC
1071 /* If required, perform hw setup of the bus. */
1072 if (priv->bus_setup)
1073 priv->bus_setup(ioaddr);
47dd7a54
GC
1074 /* Initialize the MAC Core */
1075 priv->mac_type->ops->core_init(ioaddr);
1076
1077 priv->shutdown = 0;
1078
1079 /* Initialise the MMC (if present) to disable all interrupts. */
1080 writel(0xffffffff, ioaddr + MMC_HIGH_INTR_MASK);
1081 writel(0xffffffff, ioaddr + MMC_LOW_INTR_MASK);
1082
1083 /* Enable the MAC Rx/Tx */
1084 stmmac_mac_enable_rx(ioaddr);
1085 stmmac_mac_enable_tx(ioaddr);
1086
1087 /* Set the HW DMA mode and the COE */
1088 stmmac_dma_operation_mode(priv);
1089
1090 /* Extra statistics */
1091 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1092 priv->xstats.threshold = tc;
1093
1094 /* Start the ball rolling... */
1095 DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
1096 stmmac_dma_start_tx(ioaddr);
1097 stmmac_dma_start_rx(ioaddr);
1098
1099#ifdef CONFIG_STMMAC_TIMER
1100 priv->tm->timer_start(tmrate);
1101#endif
1102 /* Dump DMA/MAC registers */
1103 if (netif_msg_hw(priv)) {
1104 priv->mac_type->ops->dump_mac_regs(ioaddr);
1105 priv->mac_type->ops->dump_dma_regs(ioaddr);
1106 }
1107
1108 if (priv->phydev)
1109 phy_start(priv->phydev);
1110
1111 napi_enable(&priv->napi);
1112 skb_queue_head_init(&priv->rx_recycle);
1113 netif_start_queue(dev);
1114 return 0;
1115}
1116
1117/**
1118 * stmmac_release - close entry point of the driver
1119 * @dev : device pointer.
1120 * Description:
1121 * This is the stop entry point of the driver.
1122 */
1123static int stmmac_release(struct net_device *dev)
1124{
1125 struct stmmac_priv *priv = netdev_priv(dev);
1126
1127 /* Stop and disconnect the PHY */
1128 if (priv->phydev) {
1129 phy_stop(priv->phydev);
1130 phy_disconnect(priv->phydev);
1131 priv->phydev = NULL;
1132 }
1133
1134 netif_stop_queue(dev);
1135
1136#ifdef CONFIG_STMMAC_TIMER
1137 /* Stop and release the timer */
1138 stmmac_close_ext_timer();
1139 if (priv->tm != NULL)
1140 kfree(priv->tm);
1141#endif
1142 napi_disable(&priv->napi);
1143 skb_queue_purge(&priv->rx_recycle);
1144
1145 /* Free the IRQ lines */
1146 free_irq(dev->irq, dev);
1147
1148 /* Stop TX/RX DMA and clear the descriptors */
1149 stmmac_dma_stop_tx(dev->base_addr);
1150 stmmac_dma_stop_rx(dev->base_addr);
1151
1152 /* Release and free the Rx/Tx resources */
1153 free_dma_desc_resources(priv);
1154
1155 /* Disable the MAC core */
1156 stmmac_mac_disable_tx(dev->base_addr);
1157 stmmac_mac_disable_rx(dev->base_addr);
1158
1159 netif_carrier_off(dev);
1160
1161 return 0;
1162}
1163
1164/*
1165 * To perform emulated hardware segmentation on skb.
1166 */
1167static int stmmac_sw_tso(struct stmmac_priv *priv, struct sk_buff *skb)
1168{
1169 struct sk_buff *segs, *curr_skb;
1170 int gso_segs = skb_shinfo(skb)->gso_segs;
1171
1172 /* Estimate the number of fragments in the worst case */
1173 if (unlikely(stmmac_tx_avail(priv) < gso_segs)) {
1174 netif_stop_queue(priv->dev);
1175 TX_DBG(KERN_ERR "%s: TSO BUG! Tx Ring full when queue awake\n",
1176 __func__);
1177 if (stmmac_tx_avail(priv) < gso_segs)
1178 return NETDEV_TX_BUSY;
1179
1180 netif_wake_queue(priv->dev);
1181 }
1182 TX_DBG("\tstmmac_sw_tso: segmenting: skb %p (len %d)\n",
1183 skb, skb->len);
1184
1185 segs = skb_gso_segment(skb, priv->dev->features & ~NETIF_F_TSO);
1186 if (unlikely(IS_ERR(segs)))
1187 goto sw_tso_end;
1188
1189 do {
1190 curr_skb = segs;
1191 segs = segs->next;
1192 TX_DBG("\t\tcurrent skb->len: %d, *curr %p,"
1193 "*next %p\n", curr_skb->len, curr_skb, segs);
1194 curr_skb->next = NULL;
1195 stmmac_xmit(curr_skb, priv->dev);
1196 } while (segs);
1197
1198sw_tso_end:
1199 dev_kfree_skb(skb);
1200
1201 return NETDEV_TX_OK;
1202}
1203
1204static unsigned int stmmac_handle_jumbo_frames(struct sk_buff *skb,
1205 struct net_device *dev,
1206 int csum_insertion)
1207{
1208 struct stmmac_priv *priv = netdev_priv(dev);
1209 unsigned int nopaged_len = skb_headlen(skb);
1210 unsigned int txsize = priv->dma_tx_size;
1211 unsigned int entry = priv->cur_tx % txsize;
1212 struct dma_desc *desc = priv->dma_tx + entry;
1213
1214 if (nopaged_len > BUF_SIZE_8KiB) {
1215
1216 int buf2_size = nopaged_len - BUF_SIZE_8KiB;
1217
1218 desc->des2 = dma_map_single(priv->device, skb->data,
1219 BUF_SIZE_8KiB, DMA_TO_DEVICE);
1220 desc->des3 = desc->des2 + BUF_SIZE_4KiB;
1221 priv->mac_type->ops->prepare_tx_desc(desc, 1, BUF_SIZE_8KiB,
1222 csum_insertion);
1223
1224 entry = (++priv->cur_tx) % txsize;
1225 desc = priv->dma_tx + entry;
1226
1227 desc->des2 = dma_map_single(priv->device,
1228 skb->data + BUF_SIZE_8KiB,
1229 buf2_size, DMA_TO_DEVICE);
1230 desc->des3 = desc->des2 + BUF_SIZE_4KiB;
1231 priv->mac_type->ops->prepare_tx_desc(desc, 0,
1232 buf2_size, csum_insertion);
1233 priv->mac_type->ops->set_tx_owner(desc);
1234 priv->tx_skbuff[entry] = NULL;
1235 } else {
1236 desc->des2 = dma_map_single(priv->device, skb->data,
1237 nopaged_len, DMA_TO_DEVICE);
1238 desc->des3 = desc->des2 + BUF_SIZE_4KiB;
1239 priv->mac_type->ops->prepare_tx_desc(desc, 1, nopaged_len,
1240 csum_insertion);
1241 }
1242 return entry;
1243}
1244
1245/**
1246 * stmmac_xmit:
1247 * @skb : the socket buffer
1248 * @dev : device pointer
1249 * Description : Tx entry point of the driver.
1250 */
1251static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1252{
1253 struct stmmac_priv *priv = netdev_priv(dev);
1254 unsigned int txsize = priv->dma_tx_size;
1255 unsigned int entry;
1256 int i, csum_insertion = 0;
1257 int nfrags = skb_shinfo(skb)->nr_frags;
1258 struct dma_desc *desc, *first;
1259
1260 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1261 if (!netif_queue_stopped(dev)) {
1262 netif_stop_queue(dev);
1263 /* This is a hard error, log it. */
1264 pr_err("%s: BUG! Tx Ring full when queue awake\n",
1265 __func__);
1266 }
1267 return NETDEV_TX_BUSY;
1268 }
1269
1270 entry = priv->cur_tx % txsize;
1271
1272#ifdef STMMAC_XMIT_DEBUG
1273 if ((skb->len > ETH_FRAME_LEN) || nfrags)
1274 pr_info("stmmac xmit:\n"
1275 "\tskb addr %p - len: %d - nopaged_len: %d\n"
1276 "\tn_frags: %d - ip_summed: %d - %s gso\n",
1277 skb, skb->len, skb_headlen(skb), nfrags, skb->ip_summed,
1278 !skb_is_gso(skb) ? "isn't" : "is");
1279#endif
1280
1281 if (unlikely(skb_is_gso(skb)))
1282 return stmmac_sw_tso(priv, skb);
1283
1284 if (likely((skb->ip_summed == CHECKSUM_PARTIAL))) {
1285 if (likely(priv->tx_coe == NO_HW_CSUM))
1286 skb_checksum_help(skb);
1287 else
1288 csum_insertion = 1;
1289 }
1290
1291 desc = priv->dma_tx + entry;
1292 first = desc;
1293
1294#ifdef STMMAC_XMIT_DEBUG
1295 if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1296 pr_debug("stmmac xmit: skb len: %d, nopaged_len: %d,\n"
1297 "\t\tn_frags: %d, ip_summed: %d\n",
1298 skb->len, skb_headlen(skb), nfrags, skb->ip_summed);
1299#endif
1300 priv->tx_skbuff[entry] = skb;
1301 if (unlikely(skb->len >= BUF_SIZE_4KiB)) {
1302 entry = stmmac_handle_jumbo_frames(skb, dev, csum_insertion);
1303 desc = priv->dma_tx + entry;
1304 } else {
1305 unsigned int nopaged_len = skb_headlen(skb);
1306 desc->des2 = dma_map_single(priv->device, skb->data,
1307 nopaged_len, DMA_TO_DEVICE);
1308 priv->mac_type->ops->prepare_tx_desc(desc, 1, nopaged_len,
1309 csum_insertion);
1310 }
1311
1312 for (i = 0; i < nfrags; i++) {
1313 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1314 int len = frag->size;
1315
1316 entry = (++priv->cur_tx) % txsize;
1317 desc = priv->dma_tx + entry;
1318
1319 TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1320 desc->des2 = dma_map_page(priv->device, frag->page,
1321 frag->page_offset,
1322 len, DMA_TO_DEVICE);
1323 priv->tx_skbuff[entry] = NULL;
1324 priv->mac_type->ops->prepare_tx_desc(desc, 0, len,
1325 csum_insertion);
1326 priv->mac_type->ops->set_tx_owner(desc);
1327 }
1328
1329 /* Interrupt on completition only for the latest segment */
1330 priv->mac_type->ops->close_tx_desc(desc);
73cfe264 1331
47dd7a54 1332#ifdef CONFIG_STMMAC_TIMER
73cfe264
GC
1333 /* Clean IC while using timer */
1334 if (likely(priv->tm->enable))
1335 priv->mac_type->ops->clear_tx_ic(desc);
47dd7a54
GC
1336#endif
1337 /* To avoid raise condition */
1338 priv->mac_type->ops->set_tx_owner(first);
1339
1340 priv->cur_tx++;
1341
1342#ifdef STMMAC_XMIT_DEBUG
1343 if (netif_msg_pktdata(priv)) {
1344 pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
1345 "first=%p, nfrags=%d\n",
1346 (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
1347 entry, first, nfrags);
1348 display_ring(priv->dma_tx, txsize);
1349 pr_info(">>> frame to be transmitted: ");
1350 print_pkt(skb->data, skb->len);
1351 }
1352#endif
1353 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1354 TX_DBG("%s: stop transmitted packets\n", __func__);
1355 netif_stop_queue(dev);
1356 }
1357
1358 dev->stats.tx_bytes += skb->len;
1359
1360 /* CSR1 enables the transmit DMA to check for new descriptor */
1361 writel(1, dev->base_addr + DMA_XMT_POLL_DEMAND);
1362
1363 return NETDEV_TX_OK;
1364}
1365
1366static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1367{
1368 unsigned int rxsize = priv->dma_rx_size;
1369 int bfsize = priv->dma_buf_sz;
1370 struct dma_desc *p = priv->dma_rx;
1371
1372 for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1373 unsigned int entry = priv->dirty_rx % rxsize;
1374 if (likely(priv->rx_skbuff[entry] == NULL)) {
1375 struct sk_buff *skb;
1376
1377 skb = __skb_dequeue(&priv->rx_recycle);
1378 if (skb == NULL)
1379 skb = netdev_alloc_skb_ip_align(priv->dev,
1380 bfsize);
1381
1382 if (unlikely(skb == NULL))
1383 break;
1384
1385 priv->rx_skbuff[entry] = skb;
1386 priv->rx_skbuff_dma[entry] =
1387 dma_map_single(priv->device, skb->data, bfsize,
1388 DMA_FROM_DEVICE);
1389
1390 (p + entry)->des2 = priv->rx_skbuff_dma[entry];
1391 if (unlikely(priv->is_gmac)) {
1392 if (bfsize >= BUF_SIZE_8KiB)
1393 (p + entry)->des3 =
1394 (p + entry)->des2 + BUF_SIZE_8KiB;
1395 }
1396 RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
1397 }
1398 priv->mac_type->ops->set_rx_owner(p + entry);
1399 }
1400 return;
1401}
1402
1403static int stmmac_rx(struct stmmac_priv *priv, int limit)
1404{
1405 unsigned int rxsize = priv->dma_rx_size;
1406 unsigned int entry = priv->cur_rx % rxsize;
1407 unsigned int next_entry;
1408 unsigned int count = 0;
1409 struct dma_desc *p = priv->dma_rx + entry;
1410 struct dma_desc *p_next;
1411
1412#ifdef STMMAC_RX_DEBUG
1413 if (netif_msg_hw(priv)) {
1414 pr_debug(">>> stmmac_rx: descriptor ring:\n");
1415 display_ring(priv->dma_rx, rxsize);
1416 }
1417#endif
1418 count = 0;
1419 while (!priv->mac_type->ops->get_rx_owner(p)) {
1420 int status;
1421
1422 if (count >= limit)
1423 break;
1424
1425 count++;
1426
1427 next_entry = (++priv->cur_rx) % rxsize;
1428 p_next = priv->dma_rx + next_entry;
1429 prefetch(p_next);
1430
1431 /* read the status of the incoming frame */
1432 status = (priv->mac_type->ops->rx_status(&priv->dev->stats,
1433 &priv->xstats, p));
1434 if (unlikely(status == discard_frame))
1435 priv->dev->stats.rx_errors++;
1436 else {
1437 struct sk_buff *skb;
1438 /* Length should omit the CRC */
1439 int frame_len =
1440 priv->mac_type->ops->get_rx_frame_len(p) - 4;
1441
1442#ifdef STMMAC_RX_DEBUG
1443 if (frame_len > ETH_FRAME_LEN)
1444 pr_debug("\tRX frame size %d, COE status: %d\n",
1445 frame_len, status);
1446
1447 if (netif_msg_hw(priv))
1448 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
1449 p, entry, p->des2);
1450#endif
1451 skb = priv->rx_skbuff[entry];
1452 if (unlikely(!skb)) {
1453 pr_err("%s: Inconsistent Rx descriptor chain\n",
1454 priv->dev->name);
1455 priv->dev->stats.rx_dropped++;
1456 break;
1457 }
1458 prefetch(skb->data - NET_IP_ALIGN);
1459 priv->rx_skbuff[entry] = NULL;
1460
1461 skb_put(skb, frame_len);
1462 dma_unmap_single(priv->device,
1463 priv->rx_skbuff_dma[entry],
1464 priv->dma_buf_sz, DMA_FROM_DEVICE);
1465#ifdef STMMAC_RX_DEBUG
1466 if (netif_msg_pktdata(priv)) {
1467 pr_info(" frame received (%dbytes)", frame_len);
1468 print_pkt(skb->data, frame_len);
1469 }
1470#endif
1471 skb->protocol = eth_type_trans(skb, priv->dev);
1472
1473 if (unlikely(status == csum_none)) {
1474 /* always for the old mac 10/100 */
1475 skb->ip_summed = CHECKSUM_NONE;
1476 netif_receive_skb(skb);
1477 } else {
1478 skb->ip_summed = CHECKSUM_UNNECESSARY;
1479 napi_gro_receive(&priv->napi, skb);
1480 }
1481
1482 priv->dev->stats.rx_packets++;
1483 priv->dev->stats.rx_bytes += frame_len;
1484 priv->dev->last_rx = jiffies;
1485 }
1486 entry = next_entry;
1487 p = p_next; /* use prefetched values */
1488 }
1489
1490 stmmac_rx_refill(priv);
1491
1492 priv->xstats.rx_pkt_n += count;
1493
1494 return count;
1495}
1496
1497/**
1498 * stmmac_poll - stmmac poll method (NAPI)
1499 * @napi : pointer to the napi structure.
1500 * @budget : maximum number of packets that the current CPU can receive from
1501 * all interfaces.
1502 * Description :
1503 * This function implements the the reception process.
1504 * Also it runs the TX completion thread
1505 */
1506static int stmmac_poll(struct napi_struct *napi, int budget)
1507{
1508 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
1509 int work_done = 0;
1510
1511 priv->xstats.poll_n++;
1512 stmmac_tx(priv);
1513 work_done = stmmac_rx(priv, budget);
1514
1515 if (work_done < budget) {
1516 napi_complete(napi);
1517 stmmac_enable_irq(priv);
1518 }
1519 return work_done;
1520}
1521
1522/**
1523 * stmmac_tx_timeout
1524 * @dev : Pointer to net device structure
1525 * Description: this function is called when a packet transmission fails to
1526 * complete within a reasonable tmrate. The driver will mark the error in the
1527 * netdev structure and arrange for the device to be reset to a sane state
1528 * in order to transmit a new packet.
1529 */
1530static void stmmac_tx_timeout(struct net_device *dev)
1531{
1532 struct stmmac_priv *priv = netdev_priv(dev);
1533
1534 /* Clear Tx resources and restart transmitting again */
1535 stmmac_tx_err(priv);
1536 return;
1537}
1538
1539/* Configuration changes (passed on by ifconfig) */
1540static int stmmac_config(struct net_device *dev, struct ifmap *map)
1541{
1542 if (dev->flags & IFF_UP) /* can't act on a running interface */
1543 return -EBUSY;
1544
1545 /* Don't allow changing the I/O address */
1546 if (map->base_addr != dev->base_addr) {
1547 pr_warning("%s: can't change I/O address\n", dev->name);
1548 return -EOPNOTSUPP;
1549 }
1550
1551 /* Don't allow changing the IRQ */
1552 if (map->irq != dev->irq) {
1553 pr_warning("%s: can't change IRQ number %d\n",
1554 dev->name, dev->irq);
1555 return -EOPNOTSUPP;
1556 }
1557
1558 /* ignore other fields */
1559 return 0;
1560}
1561
1562/**
1563 * stmmac_multicast_list - entry point for multicast addressing
1564 * @dev : pointer to the device structure
1565 * Description:
1566 * This function is a driver entry point which gets called by the kernel
1567 * whenever multicast addresses must be enabled/disabled.
1568 * Return value:
1569 * void.
1570 */
1571static void stmmac_multicast_list(struct net_device *dev)
1572{
1573 struct stmmac_priv *priv = netdev_priv(dev);
1574
1575 spin_lock(&priv->lock);
1576 priv->mac_type->ops->set_filter(dev);
1577 spin_unlock(&priv->lock);
1578 return;
1579}
1580
1581/**
1582 * stmmac_change_mtu - entry point to change MTU size for the device.
1583 * @dev : device pointer.
1584 * @new_mtu : the new MTU size for the device.
1585 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
1586 * to drive packet transmission. Ethernet has an MTU of 1500 octets
1587 * (ETH_DATA_LEN). This value can be changed with ifconfig.
1588 * Return value:
1589 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1590 * file on failure.
1591 */
1592static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
1593{
1594 struct stmmac_priv *priv = netdev_priv(dev);
1595 int max_mtu;
1596
1597 if (netif_running(dev)) {
1598 pr_err("%s: must be stopped to change its MTU\n", dev->name);
1599 return -EBUSY;
1600 }
1601
1602 if (priv->is_gmac)
1603 max_mtu = JUMBO_LEN;
1604 else
1605 max_mtu = ETH_DATA_LEN;
1606
1607 if ((new_mtu < 46) || (new_mtu > max_mtu)) {
1608 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
1609 return -EINVAL;
1610 }
1611
1612 dev->mtu = new_mtu;
1613
1614 return 0;
1615}
1616
1617static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
1618{
1619 struct net_device *dev = (struct net_device *)dev_id;
1620 struct stmmac_priv *priv = netdev_priv(dev);
1621
1622 if (unlikely(!dev)) {
1623 pr_err("%s: invalid dev pointer\n", __func__);
1624 return IRQ_NONE;
1625 }
1626
1627 if (priv->is_gmac) {
1628 unsigned long ioaddr = dev->base_addr;
1629 /* To handle GMAC own interrupts */
1630 priv->mac_type->ops->host_irq_status(ioaddr);
1631 }
1632 stmmac_dma_interrupt(dev);
1633
1634 return IRQ_HANDLED;
1635}
1636
1637#ifdef CONFIG_NET_POLL_CONTROLLER
1638/* Polling receive - used by NETCONSOLE and other diagnostic tools
1639 * to allow network I/O with interrupts disabled. */
1640static void stmmac_poll_controller(struct net_device *dev)
1641{
1642 disable_irq(dev->irq);
1643 stmmac_interrupt(dev->irq, dev);
1644 enable_irq(dev->irq);
1645}
1646#endif
1647
1648/**
1649 * stmmac_ioctl - Entry point for the Ioctl
1650 * @dev: Device pointer.
1651 * @rq: An IOCTL specefic structure, that can contain a pointer to
1652 * a proprietary structure used to pass information to the driver.
1653 * @cmd: IOCTL command
1654 * Description:
1655 * Currently there are no special functionality supported in IOCTL, just the
1656 * phy_mii_ioctl(...) can be invoked.
1657 */
1658static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1659{
1660 struct stmmac_priv *priv = netdev_priv(dev);
1661 int ret = -EOPNOTSUPP;
1662
1663 if (!netif_running(dev))
1664 return -EINVAL;
1665
1666 switch (cmd) {
1667 case SIOCGMIIPHY:
1668 case SIOCGMIIREG:
1669 case SIOCSMIIREG:
1670 if (!priv->phydev)
1671 return -EINVAL;
1672
1673 spin_lock(&priv->lock);
1674 ret = phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
1675 spin_unlock(&priv->lock);
1676 default:
1677 break;
1678 }
1679 return ret;
1680}
1681
1682#ifdef STMMAC_VLAN_TAG_USED
1683static void stmmac_vlan_rx_register(struct net_device *dev,
1684 struct vlan_group *grp)
1685{
1686 struct stmmac_priv *priv = netdev_priv(dev);
1687
1688 DBG(probe, INFO, "%s: Setting vlgrp to %p\n", dev->name, grp);
1689
1690 spin_lock(&priv->lock);
1691 priv->vlgrp = grp;
1692 spin_unlock(&priv->lock);
1693
1694 return;
1695}
1696#endif
1697
1698static const struct net_device_ops stmmac_netdev_ops = {
1699 .ndo_open = stmmac_open,
1700 .ndo_start_xmit = stmmac_xmit,
1701 .ndo_stop = stmmac_release,
1702 .ndo_change_mtu = stmmac_change_mtu,
1703 .ndo_set_multicast_list = stmmac_multicast_list,
1704 .ndo_tx_timeout = stmmac_tx_timeout,
1705 .ndo_do_ioctl = stmmac_ioctl,
1706 .ndo_set_config = stmmac_config,
1707#ifdef STMMAC_VLAN_TAG_USED
1708 .ndo_vlan_rx_register = stmmac_vlan_rx_register,
1709#endif
1710#ifdef CONFIG_NET_POLL_CONTROLLER
1711 .ndo_poll_controller = stmmac_poll_controller,
1712#endif
1713 .ndo_set_mac_address = eth_mac_addr,
1714};
1715
1716/**
1717 * stmmac_probe - Initialization of the adapter .
1718 * @dev : device pointer
1719 * Description: The function initializes the network device structure for
1720 * the STMMAC driver. It also calls the low level routines
1721 * in order to init the HW (i.e. the DMA engine)
1722 */
1723static int stmmac_probe(struct net_device *dev)
1724{
1725 int ret = 0;
1726 struct stmmac_priv *priv = netdev_priv(dev);
1727
1728 ether_setup(dev);
1729
1730 dev->netdev_ops = &stmmac_netdev_ops;
1731 stmmac_set_ethtool_ops(dev);
1732
1733 dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_HIGHDMA);
1734 dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1735#ifdef STMMAC_VLAN_TAG_USED
1736 /* Both mac100 and gmac support receive VLAN tag detection */
1737 dev->features |= NETIF_F_HW_VLAN_RX;
1738#endif
1739 priv->msg_enable = netif_msg_init(debug, default_msg_level);
1740
1741 if (priv->is_gmac)
1742 priv->rx_csum = 1;
1743
1744 if (flow_ctrl)
1745 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
1746
1747 priv->pause = pause;
1748 netif_napi_add(dev, &priv->napi, stmmac_poll, 64);
1749
1750 /* Get the MAC address */
1751 priv->mac_type->ops->get_umac_addr(dev->base_addr, dev->dev_addr, 0);
1752
1753 if (!is_valid_ether_addr(dev->dev_addr))
1754 pr_warning("\tno valid MAC address;"
1755 "please, use ifconfig or nwhwconfig!\n");
1756
1757 ret = register_netdev(dev);
1758 if (ret) {
1759 pr_err("%s: ERROR %i registering the device\n",
1760 __func__, ret);
1761 return -ENODEV;
1762 }
1763
1764 DBG(probe, DEBUG, "%s: Scatter/Gather: %s - HW checksums: %s\n",
1765 dev->name, (dev->features & NETIF_F_SG) ? "on" : "off",
1766 (dev->features & NETIF_F_HW_CSUM) ? "on" : "off");
1767
1768 spin_lock_init(&priv->lock);
1769
1770 return ret;
1771}
1772
1773/**
1774 * stmmac_mac_device_setup
1775 * @dev : device pointer
1776 * Description: select and initialise the mac device (mac100 or Gmac).
1777 */
1778static int stmmac_mac_device_setup(struct net_device *dev)
1779{
1780 struct stmmac_priv *priv = netdev_priv(dev);
1781 unsigned long ioaddr = dev->base_addr;
1782
1783 struct mac_device_info *device;
1784
1785 if (priv->is_gmac)
1786 device = gmac_setup(ioaddr);
1787 else
1788 device = mac100_setup(ioaddr);
1789
1790 if (!device)
1791 return -ENOMEM;
1792
1793 priv->mac_type = device;
1794
1795 priv->wolenabled = priv->mac_type->hw.pmt; /* PMT supported */
1796 if (priv->wolenabled == PMT_SUPPORTED)
1797 priv->wolopts = WAKE_MAGIC; /* Magic Frame */
1798
1799 return 0;
1800}
1801
1802static int stmmacphy_dvr_probe(struct platform_device *pdev)
1803{
ee7946a7 1804 struct plat_stmmacphy_data *plat_dat = pdev->dev.platform_data;
47dd7a54
GC
1805
1806 pr_debug("stmmacphy_dvr_probe: added phy for bus %d\n",
1807 plat_dat->bus_id);
1808
1809 return 0;
1810}
1811
1812static int stmmacphy_dvr_remove(struct platform_device *pdev)
1813{
1814 return 0;
1815}
1816
1817static struct platform_driver stmmacphy_driver = {
1818 .driver = {
1819 .name = PHY_RESOURCE_NAME,
1820 },
1821 .probe = stmmacphy_dvr_probe,
1822 .remove = stmmacphy_dvr_remove,
1823};
1824
1825/**
1826 * stmmac_associate_phy
1827 * @dev: pointer to device structure
1828 * @data: points to the private structure.
1829 * Description: Scans through all the PHYs we have registered and checks if
1830 * any are associated with our MAC. If so, then just fill in
1831 * the blanks in our local context structure
1832 */
1833static int stmmac_associate_phy(struct device *dev, void *data)
1834{
1835 struct stmmac_priv *priv = (struct stmmac_priv *)data;
ee7946a7 1836 struct plat_stmmacphy_data *plat_dat = dev->platform_data;
47dd7a54
GC
1837
1838 DBG(probe, DEBUG, "%s: checking phy for bus %d\n", __func__,
1839 plat_dat->bus_id);
1840
1841 /* Check that this phy is for the MAC being initialised */
1842 if (priv->bus_id != plat_dat->bus_id)
1843 return 0;
1844
1845 /* OK, this PHY is connected to the MAC.
1846 Go ahead and get the parameters */
1847 DBG(probe, DEBUG, "%s: OK. Found PHY config\n", __func__);
1848 priv->phy_irq =
1849 platform_get_irq_byname(to_platform_device(dev), "phyirq");
1850 DBG(probe, DEBUG, "%s: PHY irq on bus %d is %d\n", __func__,
1851 plat_dat->bus_id, priv->phy_irq);
1852
1853 /* Override with kernel parameters if supplied XXX CRS XXX
1854 * this needs to have multiple instances */
1855 if ((phyaddr >= 0) && (phyaddr <= 31))
1856 plat_dat->phy_addr = phyaddr;
1857
1858 priv->phy_addr = plat_dat->phy_addr;
1859 priv->phy_mask = plat_dat->phy_mask;
1860 priv->phy_interface = plat_dat->interface;
1861 priv->phy_reset = plat_dat->phy_reset;
1862
1863 DBG(probe, DEBUG, "%s: exiting\n", __func__);
1864 return 1; /* forces exit of driver_for_each_device() */
1865}
1866
1867/**
1868 * stmmac_dvr_probe
1869 * @pdev: platform device pointer
1870 * Description: the driver is initialized through platform_device.
1871 */
1872static int stmmac_dvr_probe(struct platform_device *pdev)
1873{
1874 int ret = 0;
1875 struct resource *res;
1876 unsigned int *addr = NULL;
1877 struct net_device *ndev = NULL;
1878 struct stmmac_priv *priv;
1879 struct plat_stmmacenet_data *plat_dat;
1880
1881 pr_info("STMMAC driver:\n\tplatform registration... ");
1882 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1883 if (!res) {
1884 ret = -ENODEV;
1885 goto out;
1886 }
1887 pr_info("done!\n");
1888
1889 if (!request_mem_region(res->start, (res->end - res->start),
1890 pdev->name)) {
1891 pr_err("%s: ERROR: memory allocation failed"
1892 "cannot get the I/O addr 0x%x\n",
1893 __func__, (unsigned int)res->start);
1894 ret = -EBUSY;
1895 goto out;
1896 }
1897
1898 addr = ioremap(res->start, (res->end - res->start));
1899 if (!addr) {
1900 pr_err("%s: ERROR: memory mapping failed \n", __func__);
1901 ret = -ENOMEM;
1902 goto out;
1903 }
1904
1905 ndev = alloc_etherdev(sizeof(struct stmmac_priv));
1906 if (!ndev) {
1907 pr_err("%s: ERROR: allocating the device\n", __func__);
1908 ret = -ENOMEM;
1909 goto out;
1910 }
1911
1912 SET_NETDEV_DEV(ndev, &pdev->dev);
1913
1914 /* Get the MAC information */
1915 ndev->irq = platform_get_irq_byname(pdev, "macirq");
1916 if (ndev->irq == -ENXIO) {
1917 pr_err("%s: ERROR: MAC IRQ configuration "
1918 "information not found\n", __func__);
1919 ret = -ENODEV;
1920 goto out;
1921 }
1922
1923 priv = netdev_priv(ndev);
1924 priv->device = &(pdev->dev);
1925 priv->dev = ndev;
ee7946a7 1926 plat_dat = pdev->dev.platform_data;
47dd7a54
GC
1927 priv->bus_id = plat_dat->bus_id;
1928 priv->pbl = plat_dat->pbl; /* TLI */
1929 priv->is_gmac = plat_dat->has_gmac; /* GMAC is on board */
1930
1931 platform_set_drvdata(pdev, ndev);
1932
1933 /* Set the I/O base addr */
1934 ndev->base_addr = (unsigned long)addr;
1935
ee7946a7
GC
1936 /* Verify embedded resource for the platform */
1937 ret = stmmac_claim_resource(pdev);
1938 if (ret < 0)
1939 goto out;
1940
47dd7a54
GC
1941 /* MAC HW revice detection */
1942 ret = stmmac_mac_device_setup(ndev);
1943 if (ret < 0)
1944 goto out;
1945
1946 /* Network Device Registration */
1947 ret = stmmac_probe(ndev);
1948 if (ret < 0)
1949 goto out;
1950
1951 /* associate a PHY - it is provided by another platform bus */
1952 if (!driver_for_each_device
1953 (&(stmmacphy_driver.driver), NULL, (void *)priv,
1954 stmmac_associate_phy)) {
1955 pr_err("No PHY device is associated with this MAC!\n");
1956 ret = -ENODEV;
1957 goto out;
1958 }
1959
1960 priv->fix_mac_speed = plat_dat->fix_mac_speed;
ee7946a7 1961 priv->bus_setup = plat_dat->bus_setup;
47dd7a54
GC
1962 priv->bsp_priv = plat_dat->bsp_priv;
1963
1964 pr_info("\t%s - (dev. name: %s - id: %d, IRQ #%d\n"
1965 "\tIO base addr: 0x%08x)\n", ndev->name, pdev->name,
1966 pdev->id, ndev->irq, (unsigned int)addr);
1967
1968 /* MDIO bus Registration */
1969 pr_debug("\tMDIO bus (id: %d)...", priv->bus_id);
1970 ret = stmmac_mdio_register(ndev);
1971 if (ret < 0)
1972 goto out;
1973 pr_debug("registered!\n");
1974
1975out:
1976 if (ret < 0) {
1977 platform_set_drvdata(pdev, NULL);
1978 release_mem_region(res->start, (res->end - res->start));
1979 if (addr != NULL)
1980 iounmap(addr);
1981 }
1982
1983 return ret;
1984}
1985
1986/**
1987 * stmmac_dvr_remove
1988 * @pdev: platform device pointer
1989 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
1990 * changes the link status, releases the DMA descriptor rings,
1991 * unregisters the MDIO bus and unmaps the allocated memory.
1992 */
1993static int stmmac_dvr_remove(struct platform_device *pdev)
1994{
1995 struct net_device *ndev = platform_get_drvdata(pdev);
1996 struct resource *res;
1997
1998 pr_info("%s:\n\tremoving driver", __func__);
1999
2000 stmmac_dma_stop_rx(ndev->base_addr);
2001 stmmac_dma_stop_tx(ndev->base_addr);
2002
2003 stmmac_mac_disable_rx(ndev->base_addr);
2004 stmmac_mac_disable_tx(ndev->base_addr);
2005
2006 netif_carrier_off(ndev);
2007
2008 stmmac_mdio_unregister(ndev);
2009
2010 platform_set_drvdata(pdev, NULL);
2011 unregister_netdev(ndev);
2012
2013 iounmap((void *)ndev->base_addr);
2014 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2015 release_mem_region(res->start, (res->end - res->start));
2016
2017 free_netdev(ndev);
2018
2019 return 0;
2020}
2021
2022#ifdef CONFIG_PM
2023static int stmmac_suspend(struct platform_device *pdev, pm_message_t state)
2024{
2025 struct net_device *dev = platform_get_drvdata(pdev);
2026 struct stmmac_priv *priv = netdev_priv(dev);
2027 int dis_ic = 0;
2028
2029 if (!dev || !netif_running(dev))
2030 return 0;
2031
2032 spin_lock(&priv->lock);
2033
2034 if (state.event == PM_EVENT_SUSPEND) {
2035 netif_device_detach(dev);
2036 netif_stop_queue(dev);
2037 if (priv->phydev)
2038 phy_stop(priv->phydev);
2039
2040#ifdef CONFIG_STMMAC_TIMER
2041 priv->tm->timer_stop();
73cfe264
GC
2042 if (likely(priv->tm->enable))
2043 dis_ic = 1;
47dd7a54
GC
2044#endif
2045 napi_disable(&priv->napi);
2046
2047 /* Stop TX/RX DMA */
2048 stmmac_dma_stop_tx(dev->base_addr);
2049 stmmac_dma_stop_rx(dev->base_addr);
2050 /* Clear the Rx/Tx descriptors */
2051 priv->mac_type->ops->init_rx_desc(priv->dma_rx,
2052 priv->dma_rx_size, dis_ic);
2053 priv->mac_type->ops->init_tx_desc(priv->dma_tx,
2054 priv->dma_tx_size);
2055
2056 stmmac_mac_disable_tx(dev->base_addr);
2057
2058 if (device_may_wakeup(&(pdev->dev))) {
2059 /* Enable Power down mode by programming the PMT regs */
2060 if (priv->wolenabled == PMT_SUPPORTED)
2061 priv->mac_type->ops->pmt(dev->base_addr,
2062 priv->wolopts);
2063 } else {
2064 stmmac_mac_disable_rx(dev->base_addr);
2065 }
2066 } else {
2067 priv->shutdown = 1;
2068 /* Although this can appear slightly redundant it actually
2069 * makes fast the standby operation and guarantees the driver
2070 * working if hibernation is on media. */
2071 stmmac_release(dev);
2072 }
2073
2074 spin_unlock(&priv->lock);
2075 return 0;
2076}
2077
2078static int stmmac_resume(struct platform_device *pdev)
2079{
2080 struct net_device *dev = platform_get_drvdata(pdev);
2081 struct stmmac_priv *priv = netdev_priv(dev);
2082 unsigned long ioaddr = dev->base_addr;
2083
2084 if (!netif_running(dev))
2085 return 0;
2086
2087 spin_lock(&priv->lock);
2088
2089 if (priv->shutdown) {
2090 /* Re-open the interface and re-init the MAC/DMA
2091 and the rings. */
2092 stmmac_open(dev);
2093 goto out_resume;
2094 }
2095
2096 /* Power Down bit, into the PM register, is cleared
2097 * automatically as soon as a magic packet or a Wake-up frame
2098 * is received. Anyway, it's better to manually clear
2099 * this bit because it can generate problems while resuming
2100 * from another devices (e.g. serial console). */
2101 if (device_may_wakeup(&(pdev->dev)))
2102 if (priv->wolenabled == PMT_SUPPORTED)
2103 priv->mac_type->ops->pmt(dev->base_addr, 0);
2104
2105 netif_device_attach(dev);
2106
2107 /* Enable the MAC and DMA */
2108 stmmac_mac_enable_rx(ioaddr);
2109 stmmac_mac_enable_tx(ioaddr);
2110 stmmac_dma_start_tx(ioaddr);
2111 stmmac_dma_start_rx(ioaddr);
2112
2113#ifdef CONFIG_STMMAC_TIMER
2114 priv->tm->timer_start(tmrate);
2115#endif
2116 napi_enable(&priv->napi);
2117
2118 if (priv->phydev)
2119 phy_start(priv->phydev);
2120
2121 netif_start_queue(dev);
2122
2123out_resume:
2124 spin_unlock(&priv->lock);
2125 return 0;
2126}
2127#endif
2128
2129static struct platform_driver stmmac_driver = {
2130 .driver = {
2131 .name = STMMAC_RESOURCE_NAME,
2132 },
2133 .probe = stmmac_dvr_probe,
2134 .remove = stmmac_dvr_remove,
2135#ifdef CONFIG_PM
2136 .suspend = stmmac_suspend,
2137 .resume = stmmac_resume,
2138#endif
2139
2140};
2141
2142/**
2143 * stmmac_init_module - Entry point for the driver
2144 * Description: This function is the entry point for the driver.
2145 */
2146static int __init stmmac_init_module(void)
2147{
2148 int ret;
2149
2150 if (platform_driver_register(&stmmacphy_driver)) {
2151 pr_err("No PHY devices registered!\n");
2152 return -ENODEV;
2153 }
2154
2155 ret = platform_driver_register(&stmmac_driver);
2156 return ret;
2157}
2158
2159/**
2160 * stmmac_cleanup_module - Cleanup routine for the driver
2161 * Description: This function is the cleanup routine for the driver.
2162 */
2163static void __exit stmmac_cleanup_module(void)
2164{
2165 platform_driver_unregister(&stmmacphy_driver);
2166 platform_driver_unregister(&stmmac_driver);
2167}
2168
2169#ifndef MODULE
2170static int __init stmmac_cmdline_opt(char *str)
2171{
2172 char *opt;
2173
2174 if (!str || !*str)
2175 return -EINVAL;
2176 while ((opt = strsep(&str, ",")) != NULL) {
2177 if (!strncmp(opt, "debug:", 6))
2178 strict_strtoul(opt + 6, 0, (unsigned long *)&debug);
2179 else if (!strncmp(opt, "phyaddr:", 8))
2180 strict_strtoul(opt + 8, 0, (unsigned long *)&phyaddr);
2181 else if (!strncmp(opt, "dma_txsize:", 11))
2182 strict_strtoul(opt + 11, 0,
2183 (unsigned long *)&dma_txsize);
2184 else if (!strncmp(opt, "dma_rxsize:", 11))
2185 strict_strtoul(opt + 11, 0,
2186 (unsigned long *)&dma_rxsize);
2187 else if (!strncmp(opt, "buf_sz:", 7))
2188 strict_strtoul(opt + 7, 0, (unsigned long *)&buf_sz);
2189 else if (!strncmp(opt, "tc:", 3))
2190 strict_strtoul(opt + 3, 0, (unsigned long *)&tc);
2191 else if (!strncmp(opt, "tx_coe:", 7))
2192 strict_strtoul(opt + 7, 0, (unsigned long *)&tx_coe);
2193 else if (!strncmp(opt, "watchdog:", 9))
2194 strict_strtoul(opt + 9, 0, (unsigned long *)&watchdog);
2195 else if (!strncmp(opt, "flow_ctrl:", 10))
2196 strict_strtoul(opt + 10, 0,
2197 (unsigned long *)&flow_ctrl);
2198 else if (!strncmp(opt, "pause:", 6))
2199 strict_strtoul(opt + 6, 0, (unsigned long *)&pause);
2200#ifdef CONFIG_STMMAC_TIMER
2201 else if (!strncmp(opt, "tmrate:", 7))
2202 strict_strtoul(opt + 7, 0, (unsigned long *)&tmrate);
2203#endif
2204 }
2205 return 0;
2206}
2207
2208__setup("stmmaceth=", stmmac_cmdline_opt);
2209#endif
2210
2211module_init(stmmac_init_module);
2212module_exit(stmmac_cleanup_module);
2213
2214MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet driver");
2215MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
2216MODULE_LICENSE("GPL");