]> bbs.cooldavid.org Git - net-next-2.6.git/blame - drivers/net/stmmac/stmmac_main.c
stmmac: reorganise class operations.
[net-next-2.6.git] / drivers / net / stmmac / stmmac_main.c
CommitLineData
47dd7a54
GC
1/*******************************************************************************
2 This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
3 ST Ethernet IPs are built around a Synopsys IP Core.
4
5 Copyright (C) 2007-2009 STMicroelectronics Ltd
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
22
23 Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
24
25 Documentation available at:
26 http://www.stlinux.com
27 Support available at:
28 https://bugzilla.stlinux.com/
29*******************************************************************************/
30
31#include <linux/module.h>
32#include <linux/init.h>
33#include <linux/kernel.h>
34#include <linux/interrupt.h>
35#include <linux/netdevice.h>
36#include <linux/etherdevice.h>
37#include <linux/platform_device.h>
38#include <linux/ip.h>
39#include <linux/tcp.h>
40#include <linux/skbuff.h>
41#include <linux/ethtool.h>
42#include <linux/if_ether.h>
43#include <linux/crc32.h>
44#include <linux/mii.h>
45#include <linux/phy.h>
46#include <linux/if_vlan.h>
47#include <linux/dma-mapping.h>
47dd7a54
GC
48#include "stmmac.h"
49
50#define STMMAC_RESOURCE_NAME "stmmaceth"
51#define PHY_RESOURCE_NAME "stmmacphy"
52
53#undef STMMAC_DEBUG
54/*#define STMMAC_DEBUG*/
55#ifdef STMMAC_DEBUG
56#define DBG(nlevel, klevel, fmt, args...) \
57 ((void)(netif_msg_##nlevel(priv) && \
58 printk(KERN_##klevel fmt, ## args)))
59#else
60#define DBG(nlevel, klevel, fmt, args...) do { } while (0)
61#endif
62
63#undef STMMAC_RX_DEBUG
64/*#define STMMAC_RX_DEBUG*/
65#ifdef STMMAC_RX_DEBUG
66#define RX_DBG(fmt, args...) printk(fmt, ## args)
67#else
68#define RX_DBG(fmt, args...) do { } while (0)
69#endif
70
71#undef STMMAC_XMIT_DEBUG
72/*#define STMMAC_XMIT_DEBUG*/
73#ifdef STMMAC_TX_DEBUG
74#define TX_DBG(fmt, args...) printk(fmt, ## args)
75#else
76#define TX_DBG(fmt, args...) do { } while (0)
77#endif
78
79#define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
80#define JUMBO_LEN 9000
81
82/* Module parameters */
83#define TX_TIMEO 5000 /* default 5 seconds */
84static int watchdog = TX_TIMEO;
85module_param(watchdog, int, S_IRUGO | S_IWUSR);
86MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds");
87
88static int debug = -1; /* -1: default, 0: no output, 16: all */
89module_param(debug, int, S_IRUGO | S_IWUSR);
90MODULE_PARM_DESC(debug, "Message Level (0: no output, 16: all)");
91
92static int phyaddr = -1;
93module_param(phyaddr, int, S_IRUGO);
94MODULE_PARM_DESC(phyaddr, "Physical device address");
95
96#define DMA_TX_SIZE 256
97static int dma_txsize = DMA_TX_SIZE;
98module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
99MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
100
101#define DMA_RX_SIZE 256
102static int dma_rxsize = DMA_RX_SIZE;
103module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
104MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
105
106static int flow_ctrl = FLOW_OFF;
107module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
108MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
109
110static int pause = PAUSE_TIME;
111module_param(pause, int, S_IRUGO | S_IWUSR);
112MODULE_PARM_DESC(pause, "Flow Control Pause Time");
113
114#define TC_DEFAULT 64
115static int tc = TC_DEFAULT;
116module_param(tc, int, S_IRUGO | S_IWUSR);
117MODULE_PARM_DESC(tc, "DMA threshold control value");
118
119#define RX_NO_COALESCE 1 /* Always interrupt on completion */
120#define TX_NO_COALESCE -1 /* No moderation by default */
121
122/* Pay attention to tune this parameter; take care of both
123 * hardware capability and network stabitily/performance impact.
124 * Many tests showed that ~4ms latency seems to be good enough. */
125#ifdef CONFIG_STMMAC_TIMER
126#define DEFAULT_PERIODIC_RATE 256
127static int tmrate = DEFAULT_PERIODIC_RATE;
128module_param(tmrate, int, S_IRUGO | S_IWUSR);
129MODULE_PARM_DESC(tmrate, "External timer freq. (default: 256Hz)");
130#endif
131
132#define DMA_BUFFER_SIZE BUF_SIZE_2KiB
133static int buf_sz = DMA_BUFFER_SIZE;
134module_param(buf_sz, int, S_IRUGO | S_IWUSR);
135MODULE_PARM_DESC(buf_sz, "DMA buffer size");
136
137/* In case of Giga ETH, we can enable/disable the COE for the
138 * transmit HW checksum computation.
139 * Note that, if tx csum is off in HW, SG will be still supported. */
140static int tx_coe = HW_CSUM;
141module_param(tx_coe, int, S_IRUGO | S_IWUSR);
142MODULE_PARM_DESC(tx_coe, "GMAC COE type 2 [on/off]");
143
144static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
145 NETIF_MSG_LINK | NETIF_MSG_IFUP |
146 NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
147
148static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
149static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev);
150
151/**
152 * stmmac_verify_args - verify the driver parameters.
153 * Description: it verifies if some wrong parameter is passed to the driver.
154 * Note that wrong parameters are replaced with the default values.
155 */
156static void stmmac_verify_args(void)
157{
158 if (unlikely(watchdog < 0))
159 watchdog = TX_TIMEO;
160 if (unlikely(dma_rxsize < 0))
161 dma_rxsize = DMA_RX_SIZE;
162 if (unlikely(dma_txsize < 0))
163 dma_txsize = DMA_TX_SIZE;
164 if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
165 buf_sz = DMA_BUFFER_SIZE;
166 if (unlikely(flow_ctrl > 1))
167 flow_ctrl = FLOW_AUTO;
168 else if (likely(flow_ctrl < 0))
169 flow_ctrl = FLOW_OFF;
170 if (unlikely((pause < 0) || (pause > 0xffff)))
171 pause = PAUSE_TIME;
172
173 return;
174}
175
176#if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
177static void print_pkt(unsigned char *buf, int len)
178{
179 int j;
180 pr_info("len = %d byte, buf addr: 0x%p", len, buf);
181 for (j = 0; j < len; j++) {
182 if ((j % 16) == 0)
183 pr_info("\n %03x:", j);
184 pr_info(" %02x", buf[j]);
185 }
186 pr_info("\n");
187 return;
188}
189#endif
190
191/* minimum number of free TX descriptors required to wake up TX process */
192#define STMMAC_TX_THRESH(x) (x->dma_tx_size/4)
193
194static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
195{
196 return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
197}
198
199/**
200 * stmmac_adjust_link
201 * @dev: net device structure
202 * Description: it adjusts the link parameters.
203 */
204static void stmmac_adjust_link(struct net_device *dev)
205{
206 struct stmmac_priv *priv = netdev_priv(dev);
207 struct phy_device *phydev = priv->phydev;
208 unsigned long ioaddr = dev->base_addr;
209 unsigned long flags;
210 int new_state = 0;
211 unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
212
213 if (phydev == NULL)
214 return;
215
216 DBG(probe, DEBUG, "stmmac_adjust_link: called. address %d link %d\n",
217 phydev->addr, phydev->link);
218
219 spin_lock_irqsave(&priv->lock, flags);
220 if (phydev->link) {
221 u32 ctrl = readl(ioaddr + MAC_CTRL_REG);
222
223 /* Now we make sure that we can be in full duplex mode.
224 * If not, we operate in half-duplex mode. */
225 if (phydev->duplex != priv->oldduplex) {
226 new_state = 1;
227 if (!(phydev->duplex))
db98a0b0 228 ctrl &= ~priv->hw->link.duplex;
47dd7a54 229 else
db98a0b0 230 ctrl |= priv->hw->link.duplex;
47dd7a54
GC
231 priv->oldduplex = phydev->duplex;
232 }
233 /* Flow Control operation */
234 if (phydev->pause)
db98a0b0
GC
235 priv->hw->mac->flow_ctrl(ioaddr, phydev->duplex,
236 fc, pause_time);
47dd7a54
GC
237
238 if (phydev->speed != priv->speed) {
239 new_state = 1;
240 switch (phydev->speed) {
241 case 1000:
242 if (likely(priv->is_gmac))
db98a0b0 243 ctrl &= ~priv->hw->link.port;
47dd7a54
GC
244 break;
245 case 100:
246 case 10:
247 if (priv->is_gmac) {
db98a0b0 248 ctrl |= priv->hw->link.port;
47dd7a54 249 if (phydev->speed == SPEED_100) {
db98a0b0 250 ctrl |= priv->hw->link.speed;
47dd7a54 251 } else {
db98a0b0 252 ctrl &= ~(priv->hw->link.speed);
47dd7a54
GC
253 }
254 } else {
db98a0b0 255 ctrl &= ~priv->hw->link.port;
47dd7a54 256 }
65818fa7
GC
257 if (likely(priv->fix_mac_speed))
258 priv->fix_mac_speed(priv->bsp_priv,
259 phydev->speed);
47dd7a54
GC
260 break;
261 default:
262 if (netif_msg_link(priv))
263 pr_warning("%s: Speed (%d) is not 10"
264 " or 100!\n", dev->name, phydev->speed);
265 break;
266 }
267
268 priv->speed = phydev->speed;
269 }
270
271 writel(ctrl, ioaddr + MAC_CTRL_REG);
272
273 if (!priv->oldlink) {
274 new_state = 1;
275 priv->oldlink = 1;
276 }
277 } else if (priv->oldlink) {
278 new_state = 1;
279 priv->oldlink = 0;
280 priv->speed = 0;
281 priv->oldduplex = -1;
282 }
283
284 if (new_state && netif_msg_link(priv))
285 phy_print_status(phydev);
286
287 spin_unlock_irqrestore(&priv->lock, flags);
288
289 DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
290}
291
292/**
293 * stmmac_init_phy - PHY initialization
294 * @dev: net device structure
295 * Description: it initializes the driver's PHY state, and attaches the PHY
296 * to the mac driver.
297 * Return value:
298 * 0 on success
299 */
300static int stmmac_init_phy(struct net_device *dev)
301{
302 struct stmmac_priv *priv = netdev_priv(dev);
303 struct phy_device *phydev;
109cdd66
GC
304 char phy_id[MII_BUS_ID_SIZE + 3];
305 char bus_id[MII_BUS_ID_SIZE];
47dd7a54
GC
306
307 priv->oldlink = 0;
308 priv->speed = 0;
309 priv->oldduplex = -1;
310
311 if (priv->phy_addr == -1) {
312 /* We don't have a PHY, so do nothing */
313 return 0;
314 }
315
316 snprintf(bus_id, MII_BUS_ID_SIZE, "%x", priv->bus_id);
109cdd66
GC
317 snprintf(phy_id, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
318 priv->phy_addr);
47dd7a54
GC
319 pr_debug("stmmac_init_phy: trying to attach to %s\n", phy_id);
320
321 phydev = phy_connect(dev, phy_id, &stmmac_adjust_link, 0,
322 priv->phy_interface);
323
324 if (IS_ERR(phydev)) {
325 pr_err("%s: Could not attach to PHY\n", dev->name);
326 return PTR_ERR(phydev);
327 }
328
329 /*
330 * Broken HW is sometimes missing the pull-up resistor on the
331 * MDIO line, which results in reads to non-existent devices returning
332 * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
333 * device as well.
334 * Note: phydev->phy_id is the result of reading the UID PHY registers.
335 */
336 if (phydev->phy_id == 0) {
337 phy_disconnect(phydev);
338 return -ENODEV;
339 }
340 pr_debug("stmmac_init_phy: %s: attached to PHY (UID 0x%x)"
341 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
342
343 priv->phydev = phydev;
344
345 return 0;
346}
347
348static inline void stmmac_mac_enable_rx(unsigned long ioaddr)
349{
350 u32 value = readl(ioaddr + MAC_CTRL_REG);
351 value |= MAC_RNABLE_RX;
352 /* Set the RE (receive enable bit into the MAC CTRL register). */
353 writel(value, ioaddr + MAC_CTRL_REG);
354}
355
356static inline void stmmac_mac_enable_tx(unsigned long ioaddr)
357{
358 u32 value = readl(ioaddr + MAC_CTRL_REG);
359 value |= MAC_ENABLE_TX;
360 /* Set the TE (transmit enable bit into the MAC CTRL register). */
361 writel(value, ioaddr + MAC_CTRL_REG);
362}
363
364static inline void stmmac_mac_disable_rx(unsigned long ioaddr)
365{
366 u32 value = readl(ioaddr + MAC_CTRL_REG);
367 value &= ~MAC_RNABLE_RX;
368 writel(value, ioaddr + MAC_CTRL_REG);
369}
370
371static inline void stmmac_mac_disable_tx(unsigned long ioaddr)
372{
373 u32 value = readl(ioaddr + MAC_CTRL_REG);
374 value &= ~MAC_ENABLE_TX;
375 writel(value, ioaddr + MAC_CTRL_REG);
376}
377
378/**
379 * display_ring
380 * @p: pointer to the ring.
381 * @size: size of the ring.
382 * Description: display all the descriptors within the ring.
383 */
384static void display_ring(struct dma_desc *p, int size)
385{
386 struct tmp_s {
387 u64 a;
388 unsigned int b;
389 unsigned int c;
390 };
391 int i;
392 for (i = 0; i < size; i++) {
393 struct tmp_s *x = (struct tmp_s *)(p + i);
394 pr_info("\t%d [0x%x]: DES0=0x%x DES1=0x%x BUF1=0x%x BUF2=0x%x",
395 i, (unsigned int)virt_to_phys(&p[i]),
396 (unsigned int)(x->a), (unsigned int)((x->a) >> 32),
397 x->b, x->c);
398 pr_info("\n");
399 }
400}
401
402/**
403 * init_dma_desc_rings - init the RX/TX descriptor rings
404 * @dev: net device structure
405 * Description: this function initializes the DMA RX/TX descriptors
406 * and allocates the socket buffers.
407 */
408static void init_dma_desc_rings(struct net_device *dev)
409{
410 int i;
411 struct stmmac_priv *priv = netdev_priv(dev);
412 struct sk_buff *skb;
413 unsigned int txsize = priv->dma_tx_size;
414 unsigned int rxsize = priv->dma_rx_size;
415 unsigned int bfsize = priv->dma_buf_sz;
73cfe264 416 int buff2_needed = 0, dis_ic = 0;
47dd7a54 417
47dd7a54
GC
418 /* Set the Buffer size according to the MTU;
419 * indeed, in case of jumbo we need to bump-up the buffer sizes.
420 */
421 if (unlikely(dev->mtu >= BUF_SIZE_8KiB))
422 bfsize = BUF_SIZE_16KiB;
423 else if (unlikely(dev->mtu >= BUF_SIZE_4KiB))
424 bfsize = BUF_SIZE_8KiB;
425 else if (unlikely(dev->mtu >= BUF_SIZE_2KiB))
426 bfsize = BUF_SIZE_4KiB;
427 else if (unlikely(dev->mtu >= DMA_BUFFER_SIZE))
428 bfsize = BUF_SIZE_2KiB;
429 else
430 bfsize = DMA_BUFFER_SIZE;
431
73cfe264
GC
432#ifdef CONFIG_STMMAC_TIMER
433 /* Disable interrupts on completion for the reception if timer is on */
434 if (likely(priv->tm->enable))
435 dis_ic = 1;
436#endif
47dd7a54
GC
437 /* If the MTU exceeds 8k so use the second buffer in the chain */
438 if (bfsize >= BUF_SIZE_8KiB)
439 buff2_needed = 1;
440
441 DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
442 txsize, rxsize, bfsize);
443
444 priv->rx_skbuff_dma = kmalloc(rxsize * sizeof(dma_addr_t), GFP_KERNEL);
445 priv->rx_skbuff =
446 kmalloc(sizeof(struct sk_buff *) * rxsize, GFP_KERNEL);
447 priv->dma_rx =
448 (struct dma_desc *)dma_alloc_coherent(priv->device,
449 rxsize *
450 sizeof(struct dma_desc),
451 &priv->dma_rx_phy,
452 GFP_KERNEL);
453 priv->tx_skbuff = kmalloc(sizeof(struct sk_buff *) * txsize,
454 GFP_KERNEL);
455 priv->dma_tx =
456 (struct dma_desc *)dma_alloc_coherent(priv->device,
457 txsize *
458 sizeof(struct dma_desc),
459 &priv->dma_tx_phy,
460 GFP_KERNEL);
461
462 if ((priv->dma_rx == NULL) || (priv->dma_tx == NULL)) {
463 pr_err("%s:ERROR allocating the DMA Tx/Rx desc\n", __func__);
464 return;
465 }
466
467 DBG(probe, INFO, "stmmac (%s) DMA desc rings: virt addr (Rx %p, "
468 "Tx %p)\n\tDMA phy addr (Rx 0x%08x, Tx 0x%08x)\n",
469 dev->name, priv->dma_rx, priv->dma_tx,
470 (unsigned int)priv->dma_rx_phy, (unsigned int)priv->dma_tx_phy);
471
472 /* RX INITIALIZATION */
473 DBG(probe, INFO, "stmmac: SKB addresses:\n"
474 "skb\t\tskb data\tdma data\n");
475
476 for (i = 0; i < rxsize; i++) {
477 struct dma_desc *p = priv->dma_rx + i;
478
479 skb = netdev_alloc_skb_ip_align(dev, bfsize);
480 if (unlikely(skb == NULL)) {
481 pr_err("%s: Rx init fails; skb is NULL\n", __func__);
482 break;
483 }
484 priv->rx_skbuff[i] = skb;
485 priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
486 bfsize, DMA_FROM_DEVICE);
487
488 p->des2 = priv->rx_skbuff_dma[i];
489 if (unlikely(buff2_needed))
490 p->des3 = p->des2 + BUF_SIZE_8KiB;
491 DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
492 priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
493 }
494 priv->cur_rx = 0;
495 priv->dirty_rx = (unsigned int)(i - rxsize);
496 priv->dma_buf_sz = bfsize;
497 buf_sz = bfsize;
498
499 /* TX INITIALIZATION */
500 for (i = 0; i < txsize; i++) {
501 priv->tx_skbuff[i] = NULL;
502 priv->dma_tx[i].des2 = 0;
503 }
504 priv->dirty_tx = 0;
505 priv->cur_tx = 0;
506
507 /* Clear the Rx/Tx descriptors */
db98a0b0
GC
508 priv->hw->desc->init_rx_desc(priv->dma_rx, rxsize, dis_ic);
509 priv->hw->desc->init_tx_desc(priv->dma_tx, txsize);
47dd7a54
GC
510
511 if (netif_msg_hw(priv)) {
512 pr_info("RX descriptor ring:\n");
513 display_ring(priv->dma_rx, rxsize);
514 pr_info("TX descriptor ring:\n");
515 display_ring(priv->dma_tx, txsize);
516 }
517 return;
518}
519
520static void dma_free_rx_skbufs(struct stmmac_priv *priv)
521{
522 int i;
523
524 for (i = 0; i < priv->dma_rx_size; i++) {
525 if (priv->rx_skbuff[i]) {
526 dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
527 priv->dma_buf_sz, DMA_FROM_DEVICE);
528 dev_kfree_skb_any(priv->rx_skbuff[i]);
529 }
530 priv->rx_skbuff[i] = NULL;
531 }
532 return;
533}
534
535static void dma_free_tx_skbufs(struct stmmac_priv *priv)
536{
537 int i;
538
539 for (i = 0; i < priv->dma_tx_size; i++) {
540 if (priv->tx_skbuff[i] != NULL) {
541 struct dma_desc *p = priv->dma_tx + i;
542 if (p->des2)
543 dma_unmap_single(priv->device, p->des2,
db98a0b0
GC
544 priv->hw->desc->get_tx_len(p),
545 DMA_TO_DEVICE);
47dd7a54
GC
546 dev_kfree_skb_any(priv->tx_skbuff[i]);
547 priv->tx_skbuff[i] = NULL;
548 }
549 }
550 return;
551}
552
553static void free_dma_desc_resources(struct stmmac_priv *priv)
554{
555 /* Release the DMA TX/RX socket buffers */
556 dma_free_rx_skbufs(priv);
557 dma_free_tx_skbufs(priv);
558
559 /* Free the region of consistent memory previously allocated for
560 * the DMA */
561 dma_free_coherent(priv->device,
562 priv->dma_tx_size * sizeof(struct dma_desc),
563 priv->dma_tx, priv->dma_tx_phy);
564 dma_free_coherent(priv->device,
565 priv->dma_rx_size * sizeof(struct dma_desc),
566 priv->dma_rx, priv->dma_rx_phy);
567 kfree(priv->rx_skbuff_dma);
568 kfree(priv->rx_skbuff);
569 kfree(priv->tx_skbuff);
570
571 return;
572}
573
574/**
575 * stmmac_dma_start_tx
576 * @ioaddr: device I/O address
577 * Description: this function starts the DMA tx process.
578 */
579static void stmmac_dma_start_tx(unsigned long ioaddr)
580{
581 u32 value = readl(ioaddr + DMA_CONTROL);
582 value |= DMA_CONTROL_ST;
583 writel(value, ioaddr + DMA_CONTROL);
584 return;
585}
586
587static void stmmac_dma_stop_tx(unsigned long ioaddr)
588{
589 u32 value = readl(ioaddr + DMA_CONTROL);
590 value &= ~DMA_CONTROL_ST;
591 writel(value, ioaddr + DMA_CONTROL);
592 return;
593}
594
595/**
596 * stmmac_dma_start_rx
597 * @ioaddr: device I/O address
598 * Description: this function starts the DMA rx process.
599 */
600static void stmmac_dma_start_rx(unsigned long ioaddr)
601{
602 u32 value = readl(ioaddr + DMA_CONTROL);
603 value |= DMA_CONTROL_SR;
604 writel(value, ioaddr + DMA_CONTROL);
605
606 return;
607}
608
609static void stmmac_dma_stop_rx(unsigned long ioaddr)
610{
611 u32 value = readl(ioaddr + DMA_CONTROL);
612 value &= ~DMA_CONTROL_SR;
613 writel(value, ioaddr + DMA_CONTROL);
614
615 return;
616}
617
618/**
619 * stmmac_dma_operation_mode - HW DMA operation mode
620 * @priv : pointer to the private device structure.
621 * Description: it sets the DMA operation mode: tx/rx DMA thresholds
622 * or Store-And-Forward capability. It also verifies the COE for the
623 * transmission in case of Giga ETH.
624 */
625static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
626{
627 if (!priv->is_gmac) {
628 /* MAC 10/100 */
db98a0b0 629 priv->hw->dma->dma_mode(priv->dev->base_addr, tc, 0);
47dd7a54
GC
630 priv->tx_coe = NO_HW_CSUM;
631 } else {
632 if ((priv->dev->mtu <= ETH_DATA_LEN) && (tx_coe)) {
db98a0b0
GC
633 priv->hw->dma->dma_mode(priv->dev->base_addr,
634 SF_DMA_MODE, SF_DMA_MODE);
47dd7a54
GC
635 tc = SF_DMA_MODE;
636 priv->tx_coe = HW_CSUM;
637 } else {
638 /* Checksum computation is performed in software. */
db98a0b0
GC
639 priv->hw->dma->dma_mode(priv->dev->base_addr, tc,
640 SF_DMA_MODE);
47dd7a54
GC
641 priv->tx_coe = NO_HW_CSUM;
642 }
643 }
644 tx_coe = priv->tx_coe;
645
646 return;
647}
648
649#ifdef STMMAC_DEBUG
650/**
651 * show_tx_process_state
652 * @status: tx descriptor status field
653 * Description: it shows the Transmit Process State for CSR5[22:20]
654 */
655static void show_tx_process_state(unsigned int status)
656{
657 unsigned int state;
658 state = (status & DMA_STATUS_TS_MASK) >> DMA_STATUS_TS_SHIFT;
659
660 switch (state) {
661 case 0:
662 pr_info("- TX (Stopped): Reset or Stop command\n");
663 break;
664 case 1:
665 pr_info("- TX (Running):Fetching the Tx desc\n");
666 break;
667 case 2:
668 pr_info("- TX (Running): Waiting for end of tx\n");
669 break;
670 case 3:
671 pr_info("- TX (Running): Reading the data "
672 "and queuing the data into the Tx buf\n");
673 break;
674 case 6:
675 pr_info("- TX (Suspended): Tx Buff Underflow "
676 "or an unavailable Transmit descriptor\n");
677 break;
678 case 7:
679 pr_info("- TX (Running): Closing Tx descriptor\n");
680 break;
681 default:
682 break;
683 }
684 return;
685}
686
687/**
688 * show_rx_process_state
689 * @status: rx descriptor status field
690 * Description: it shows the Receive Process State for CSR5[19:17]
691 */
692static void show_rx_process_state(unsigned int status)
693{
694 unsigned int state;
695 state = (status & DMA_STATUS_RS_MASK) >> DMA_STATUS_RS_SHIFT;
696
697 switch (state) {
698 case 0:
699 pr_info("- RX (Stopped): Reset or Stop command\n");
700 break;
701 case 1:
702 pr_info("- RX (Running): Fetching the Rx desc\n");
703 break;
704 case 2:
705 pr_info("- RX (Running):Checking for end of pkt\n");
706 break;
707 case 3:
708 pr_info("- RX (Running): Waiting for Rx pkt\n");
709 break;
710 case 4:
711 pr_info("- RX (Suspended): Unavailable Rx buf\n");
712 break;
713 case 5:
714 pr_info("- RX (Running): Closing Rx descriptor\n");
715 break;
716 case 6:
717 pr_info("- RX(Running): Flushing the current frame"
718 " from the Rx buf\n");
719 break;
720 case 7:
721 pr_info("- RX (Running): Queuing the Rx frame"
722 " from the Rx buf into memory\n");
723 break;
724 default:
725 break;
726 }
727 return;
728}
729#endif
730
731/**
732 * stmmac_tx:
733 * @priv: private driver structure
734 * Description: it reclaims resources after transmission completes.
735 */
736static void stmmac_tx(struct stmmac_priv *priv)
737{
738 unsigned int txsize = priv->dma_tx_size;
739 unsigned long ioaddr = priv->dev->base_addr;
740
741 while (priv->dirty_tx != priv->cur_tx) {
742 int last;
743 unsigned int entry = priv->dirty_tx % txsize;
744 struct sk_buff *skb = priv->tx_skbuff[entry];
745 struct dma_desc *p = priv->dma_tx + entry;
746
747 /* Check if the descriptor is owned by the DMA. */
db98a0b0 748 if (priv->hw->desc->get_tx_owner(p))
47dd7a54
GC
749 break;
750
751 /* Verify tx error by looking at the last segment */
db98a0b0 752 last = priv->hw->desc->get_tx_ls(p);
47dd7a54
GC
753 if (likely(last)) {
754 int tx_error =
db98a0b0
GC
755 priv->hw->desc->tx_status(&priv->dev->stats,
756 &priv->xstats, p,
757 ioaddr);
47dd7a54
GC
758 if (likely(tx_error == 0)) {
759 priv->dev->stats.tx_packets++;
760 priv->xstats.tx_pkt_n++;
761 } else
762 priv->dev->stats.tx_errors++;
763 }
764 TX_DBG("%s: curr %d, dirty %d\n", __func__,
765 priv->cur_tx, priv->dirty_tx);
766
767 if (likely(p->des2))
768 dma_unmap_single(priv->device, p->des2,
db98a0b0 769 priv->hw->desc->get_tx_len(p),
47dd7a54
GC
770 DMA_TO_DEVICE);
771 if (unlikely(p->des3))
772 p->des3 = 0;
773
774 if (likely(skb != NULL)) {
775 /*
776 * If there's room in the queue (limit it to size)
777 * we add this skb back into the pool,
778 * if it's the right size.
779 */
780 if ((skb_queue_len(&priv->rx_recycle) <
781 priv->dma_rx_size) &&
782 skb_recycle_check(skb, priv->dma_buf_sz))
783 __skb_queue_head(&priv->rx_recycle, skb);
784 else
785 dev_kfree_skb(skb);
786
787 priv->tx_skbuff[entry] = NULL;
788 }
789
db98a0b0 790 priv->hw->desc->release_tx_desc(p);
47dd7a54
GC
791
792 entry = (++priv->dirty_tx) % txsize;
793 }
794 if (unlikely(netif_queue_stopped(priv->dev) &&
795 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
796 netif_tx_lock(priv->dev);
797 if (netif_queue_stopped(priv->dev) &&
798 stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
799 TX_DBG("%s: restart transmit\n", __func__);
800 netif_wake_queue(priv->dev);
801 }
802 netif_tx_unlock(priv->dev);
803 }
804 return;
805}
806
807static inline void stmmac_enable_irq(struct stmmac_priv *priv)
808{
73cfe264
GC
809#ifdef CONFIG_STMMAC_TIMER
810 if (likely(priv->tm->enable))
811 priv->tm->timer_start(tmrate);
812 else
47dd7a54 813#endif
73cfe264 814 writel(DMA_INTR_DEFAULT_MASK, priv->dev->base_addr + DMA_INTR_ENA);
47dd7a54
GC
815}
816
817static inline void stmmac_disable_irq(struct stmmac_priv *priv)
818{
73cfe264
GC
819#ifdef CONFIG_STMMAC_TIMER
820 if (likely(priv->tm->enable))
821 priv->tm->timer_stop();
822 else
47dd7a54 823#endif
73cfe264 824 writel(0, priv->dev->base_addr + DMA_INTR_ENA);
47dd7a54
GC
825}
826
827static int stmmac_has_work(struct stmmac_priv *priv)
828{
829 unsigned int has_work = 0;
830 int rxret, tx_work = 0;
831
db98a0b0 832 rxret = priv->hw->desc->get_rx_owner(priv->dma_rx +
47dd7a54
GC
833 (priv->cur_rx % priv->dma_rx_size));
834
835 if (priv->dirty_tx != priv->cur_tx)
836 tx_work = 1;
837
838 if (likely(!rxret || tx_work))
839 has_work = 1;
840
841 return has_work;
842}
843
844static inline void _stmmac_schedule(struct stmmac_priv *priv)
845{
846 if (likely(stmmac_has_work(priv))) {
847 stmmac_disable_irq(priv);
848 napi_schedule(&priv->napi);
849 }
850}
851
852#ifdef CONFIG_STMMAC_TIMER
853void stmmac_schedule(struct net_device *dev)
854{
855 struct stmmac_priv *priv = netdev_priv(dev);
856
857 priv->xstats.sched_timer_n++;
858
859 _stmmac_schedule(priv);
860
861 return;
862}
863
864static void stmmac_no_timer_started(unsigned int x)
865{;
866};
867
868static void stmmac_no_timer_stopped(void)
869{;
870};
871#endif
872
873/**
874 * stmmac_tx_err:
875 * @priv: pointer to the private device structure
876 * Description: it cleans the descriptors and restarts the transmission
877 * in case of errors.
878 */
879static void stmmac_tx_err(struct stmmac_priv *priv)
880{
881 netif_stop_queue(priv->dev);
882
883 stmmac_dma_stop_tx(priv->dev->base_addr);
884 dma_free_tx_skbufs(priv);
db98a0b0 885 priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
47dd7a54
GC
886 priv->dirty_tx = 0;
887 priv->cur_tx = 0;
888 stmmac_dma_start_tx(priv->dev->base_addr);
889
890 priv->dev->stats.tx_errors++;
891 netif_wake_queue(priv->dev);
892
893 return;
894}
895
896/**
897 * stmmac_dma_interrupt - Interrupt handler for the driver
898 * @dev: net device structure
899 * Description: Interrupt handler for the driver (DMA).
900 */
901static void stmmac_dma_interrupt(struct net_device *dev)
902{
903 unsigned long ioaddr = dev->base_addr;
904 struct stmmac_priv *priv = netdev_priv(dev);
905 /* read the status register (CSR5) */
906 u32 intr_status = readl(ioaddr + DMA_STATUS);
907
908 DBG(intr, INFO, "%s: [CSR5: 0x%08x]\n", __func__, intr_status);
909
910#ifdef STMMAC_DEBUG
911 /* It displays the DMA transmit process state (CSR5 register) */
912 if (netif_msg_tx_done(priv))
913 show_tx_process_state(intr_status);
914 if (netif_msg_rx_status(priv))
915 show_rx_process_state(intr_status);
916#endif
917 /* ABNORMAL interrupts */
918 if (unlikely(intr_status & DMA_STATUS_AIS)) {
919 DBG(intr, INFO, "CSR5[15] DMA ABNORMAL IRQ: ");
920 if (unlikely(intr_status & DMA_STATUS_UNF)) {
921 DBG(intr, INFO, "transmit underflow\n");
8e95a202 922 if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
47dd7a54
GC
923 /* Try to bump up the threshold */
924 tc += 64;
db98a0b0
GC
925 priv->hw->dma->dma_mode(ioaddr, tc,
926 SF_DMA_MODE);
47dd7a54
GC
927 priv->xstats.threshold = tc;
928 }
929 stmmac_tx_err(priv);
930 priv->xstats.tx_undeflow_irq++;
931 }
932 if (unlikely(intr_status & DMA_STATUS_TJT)) {
933 DBG(intr, INFO, "transmit jabber\n");
934 priv->xstats.tx_jabber_irq++;
935 }
936 if (unlikely(intr_status & DMA_STATUS_OVF)) {
937 DBG(intr, INFO, "recv overflow\n");
938 priv->xstats.rx_overflow_irq++;
939 }
940 if (unlikely(intr_status & DMA_STATUS_RU)) {
941 DBG(intr, INFO, "receive buffer unavailable\n");
942 priv->xstats.rx_buf_unav_irq++;
943 }
944 if (unlikely(intr_status & DMA_STATUS_RPS)) {
945 DBG(intr, INFO, "receive process stopped\n");
946 priv->xstats.rx_process_stopped_irq++;
947 }
948 if (unlikely(intr_status & DMA_STATUS_RWT)) {
949 DBG(intr, INFO, "receive watchdog\n");
950 priv->xstats.rx_watchdog_irq++;
951 }
952 if (unlikely(intr_status & DMA_STATUS_ETI)) {
953 DBG(intr, INFO, "transmit early interrupt\n");
954 priv->xstats.tx_early_irq++;
955 }
956 if (unlikely(intr_status & DMA_STATUS_TPS)) {
957 DBG(intr, INFO, "transmit process stopped\n");
958 priv->xstats.tx_process_stopped_irq++;
959 stmmac_tx_err(priv);
960 }
961 if (unlikely(intr_status & DMA_STATUS_FBI)) {
962 DBG(intr, INFO, "fatal bus error\n");
963 priv->xstats.fatal_bus_error_irq++;
964 stmmac_tx_err(priv);
965 }
966 }
967
968 /* TX/RX NORMAL interrupts */
969 if (intr_status & DMA_STATUS_NIS) {
970 priv->xstats.normal_irq_n++;
971 if (likely((intr_status & DMA_STATUS_RI) ||
972 (intr_status & (DMA_STATUS_TI))))
973 _stmmac_schedule(priv);
974 }
975
976 /* Optional hardware blocks, interrupts should be disabled */
977 if (unlikely(intr_status &
978 (DMA_STATUS_GPI | DMA_STATUS_GMI | DMA_STATUS_GLI)))
979 pr_info("%s: unexpected status %08x\n", __func__, intr_status);
980
981 /* Clear the interrupt by writing a logic 1 to the CSR5[15-0] */
982 writel((intr_status & 0x1ffff), ioaddr + DMA_STATUS);
983
984 DBG(intr, INFO, "\n\n");
985
986 return;
987}
988
989/**
990 * stmmac_open - open entry point of the driver
991 * @dev : pointer to the device structure.
992 * Description:
993 * This function is the open entry point of the driver.
994 * Return value:
995 * 0 on success and an appropriate (-)ve integer as defined in errno.h
996 * file on failure.
997 */
998static int stmmac_open(struct net_device *dev)
999{
1000 struct stmmac_priv *priv = netdev_priv(dev);
1001 unsigned long ioaddr = dev->base_addr;
1002 int ret;
1003
1004 /* Check that the MAC address is valid. If its not, refuse
1005 * to bring the device up. The user must specify an
1006 * address using the following linux command:
1007 * ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx */
1008 if (!is_valid_ether_addr(dev->dev_addr)) {
1009 random_ether_addr(dev->dev_addr);
1010 pr_warning("%s: generated random MAC address %pM\n", dev->name,
1011 dev->dev_addr);
1012 }
1013
1014 stmmac_verify_args();
1015
1016 ret = stmmac_init_phy(dev);
1017 if (unlikely(ret)) {
1018 pr_err("%s: Cannot attach to PHY (error: %d)\n", __func__, ret);
1019 return ret;
1020 }
1021
1022 /* Request the IRQ lines */
a0607fd3 1023 ret = request_irq(dev->irq, stmmac_interrupt,
47dd7a54
GC
1024 IRQF_SHARED, dev->name, dev);
1025 if (unlikely(ret < 0)) {
1026 pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1027 __func__, dev->irq, ret);
1028 return ret;
1029 }
1030
1031#ifdef CONFIG_STMMAC_TIMER
73cfe264 1032 priv->tm = kzalloc(sizeof(struct stmmac_timer *), GFP_KERNEL);
47dd7a54
GC
1033 if (unlikely(priv->tm == NULL)) {
1034 pr_err("%s: ERROR: timer memory alloc failed \n", __func__);
1035 return -ENOMEM;
1036 }
1037 priv->tm->freq = tmrate;
1038
73cfe264
GC
1039 /* Test if the external timer can be actually used.
1040 * In case of failure continue without timer. */
47dd7a54 1041 if (unlikely((stmmac_open_ext_timer(dev, priv->tm)) < 0)) {
73cfe264 1042 pr_warning("stmmaceth: cannot attach the external timer.\n");
47dd7a54
GC
1043 tmrate = 0;
1044 priv->tm->freq = 0;
1045 priv->tm->timer_start = stmmac_no_timer_started;
1046 priv->tm->timer_stop = stmmac_no_timer_stopped;
73cfe264
GC
1047 } else
1048 priv->tm->enable = 1;
47dd7a54
GC
1049#endif
1050
1051 /* Create and initialize the TX/RX descriptors chains. */
1052 priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1053 priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1054 priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1055 init_dma_desc_rings(dev);
1056
1057 /* DMA initialization and SW reset */
db98a0b0
GC
1058 if (unlikely(priv->hw->dma->init(ioaddr, priv->pbl, priv->dma_tx_phy,
1059 priv->dma_rx_phy) < 0)) {
47dd7a54
GC
1060
1061 pr_err("%s: DMA initialization failed\n", __func__);
1062 return -1;
1063 }
1064
1065 /* Copy the MAC addr into the HW */
db98a0b0 1066 priv->hw->mac->set_umac_addr(ioaddr, dev->dev_addr, 0);
ca5f12c1
GC
1067 /* If required, perform hw setup of the bus. */
1068 if (priv->bus_setup)
1069 priv->bus_setup(ioaddr);
47dd7a54 1070 /* Initialize the MAC Core */
db98a0b0 1071 priv->hw->mac->core_init(ioaddr);
47dd7a54
GC
1072
1073 priv->shutdown = 0;
1074
1075 /* Initialise the MMC (if present) to disable all interrupts. */
1076 writel(0xffffffff, ioaddr + MMC_HIGH_INTR_MASK);
1077 writel(0xffffffff, ioaddr + MMC_LOW_INTR_MASK);
1078
1079 /* Enable the MAC Rx/Tx */
1080 stmmac_mac_enable_rx(ioaddr);
1081 stmmac_mac_enable_tx(ioaddr);
1082
1083 /* Set the HW DMA mode and the COE */
1084 stmmac_dma_operation_mode(priv);
1085
1086 /* Extra statistics */
1087 memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1088 priv->xstats.threshold = tc;
1089
1090 /* Start the ball rolling... */
1091 DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
1092 stmmac_dma_start_tx(ioaddr);
1093 stmmac_dma_start_rx(ioaddr);
1094
1095#ifdef CONFIG_STMMAC_TIMER
1096 priv->tm->timer_start(tmrate);
1097#endif
1098 /* Dump DMA/MAC registers */
1099 if (netif_msg_hw(priv)) {
db98a0b0
GC
1100 priv->hw->mac->dump_regs(ioaddr);
1101 priv->hw->dma->dump_regs(ioaddr);
47dd7a54
GC
1102 }
1103
1104 if (priv->phydev)
1105 phy_start(priv->phydev);
1106
1107 napi_enable(&priv->napi);
1108 skb_queue_head_init(&priv->rx_recycle);
1109 netif_start_queue(dev);
1110 return 0;
1111}
1112
1113/**
1114 * stmmac_release - close entry point of the driver
1115 * @dev : device pointer.
1116 * Description:
1117 * This is the stop entry point of the driver.
1118 */
1119static int stmmac_release(struct net_device *dev)
1120{
1121 struct stmmac_priv *priv = netdev_priv(dev);
1122
1123 /* Stop and disconnect the PHY */
1124 if (priv->phydev) {
1125 phy_stop(priv->phydev);
1126 phy_disconnect(priv->phydev);
1127 priv->phydev = NULL;
1128 }
1129
1130 netif_stop_queue(dev);
1131
1132#ifdef CONFIG_STMMAC_TIMER
1133 /* Stop and release the timer */
1134 stmmac_close_ext_timer();
1135 if (priv->tm != NULL)
1136 kfree(priv->tm);
1137#endif
1138 napi_disable(&priv->napi);
1139 skb_queue_purge(&priv->rx_recycle);
1140
1141 /* Free the IRQ lines */
1142 free_irq(dev->irq, dev);
1143
1144 /* Stop TX/RX DMA and clear the descriptors */
1145 stmmac_dma_stop_tx(dev->base_addr);
1146 stmmac_dma_stop_rx(dev->base_addr);
1147
1148 /* Release and free the Rx/Tx resources */
1149 free_dma_desc_resources(priv);
1150
1151 /* Disable the MAC core */
1152 stmmac_mac_disable_tx(dev->base_addr);
1153 stmmac_mac_disable_rx(dev->base_addr);
1154
1155 netif_carrier_off(dev);
1156
1157 return 0;
1158}
1159
1160/*
1161 * To perform emulated hardware segmentation on skb.
1162 */
1163static int stmmac_sw_tso(struct stmmac_priv *priv, struct sk_buff *skb)
1164{
1165 struct sk_buff *segs, *curr_skb;
1166 int gso_segs = skb_shinfo(skb)->gso_segs;
1167
1168 /* Estimate the number of fragments in the worst case */
1169 if (unlikely(stmmac_tx_avail(priv) < gso_segs)) {
1170 netif_stop_queue(priv->dev);
1171 TX_DBG(KERN_ERR "%s: TSO BUG! Tx Ring full when queue awake\n",
1172 __func__);
1173 if (stmmac_tx_avail(priv) < gso_segs)
1174 return NETDEV_TX_BUSY;
1175
1176 netif_wake_queue(priv->dev);
1177 }
1178 TX_DBG("\tstmmac_sw_tso: segmenting: skb %p (len %d)\n",
1179 skb, skb->len);
1180
1181 segs = skb_gso_segment(skb, priv->dev->features & ~NETIF_F_TSO);
1182 if (unlikely(IS_ERR(segs)))
1183 goto sw_tso_end;
1184
1185 do {
1186 curr_skb = segs;
1187 segs = segs->next;
1188 TX_DBG("\t\tcurrent skb->len: %d, *curr %p,"
1189 "*next %p\n", curr_skb->len, curr_skb, segs);
1190 curr_skb->next = NULL;
1191 stmmac_xmit(curr_skb, priv->dev);
1192 } while (segs);
1193
1194sw_tso_end:
1195 dev_kfree_skb(skb);
1196
1197 return NETDEV_TX_OK;
1198}
1199
1200static unsigned int stmmac_handle_jumbo_frames(struct sk_buff *skb,
1201 struct net_device *dev,
1202 int csum_insertion)
1203{
1204 struct stmmac_priv *priv = netdev_priv(dev);
1205 unsigned int nopaged_len = skb_headlen(skb);
1206 unsigned int txsize = priv->dma_tx_size;
1207 unsigned int entry = priv->cur_tx % txsize;
1208 struct dma_desc *desc = priv->dma_tx + entry;
1209
1210 if (nopaged_len > BUF_SIZE_8KiB) {
1211
1212 int buf2_size = nopaged_len - BUF_SIZE_8KiB;
1213
1214 desc->des2 = dma_map_single(priv->device, skb->data,
1215 BUF_SIZE_8KiB, DMA_TO_DEVICE);
1216 desc->des3 = desc->des2 + BUF_SIZE_4KiB;
db98a0b0
GC
1217 priv->hw->desc->prepare_tx_desc(desc, 1, BUF_SIZE_8KiB,
1218 csum_insertion);
47dd7a54
GC
1219
1220 entry = (++priv->cur_tx) % txsize;
1221 desc = priv->dma_tx + entry;
1222
1223 desc->des2 = dma_map_single(priv->device,
1224 skb->data + BUF_SIZE_8KiB,
1225 buf2_size, DMA_TO_DEVICE);
1226 desc->des3 = desc->des2 + BUF_SIZE_4KiB;
db98a0b0
GC
1227 priv->hw->desc->prepare_tx_desc(desc, 0, buf2_size,
1228 csum_insertion);
1229 priv->hw->desc->set_tx_owner(desc);
1230
47dd7a54
GC
1231 priv->tx_skbuff[entry] = NULL;
1232 } else {
1233 desc->des2 = dma_map_single(priv->device, skb->data,
1234 nopaged_len, DMA_TO_DEVICE);
1235 desc->des3 = desc->des2 + BUF_SIZE_4KiB;
db98a0b0
GC
1236 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1237 csum_insertion);
47dd7a54
GC
1238 }
1239 return entry;
1240}
1241
1242/**
1243 * stmmac_xmit:
1244 * @skb : the socket buffer
1245 * @dev : device pointer
1246 * Description : Tx entry point of the driver.
1247 */
1248static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1249{
1250 struct stmmac_priv *priv = netdev_priv(dev);
1251 unsigned int txsize = priv->dma_tx_size;
1252 unsigned int entry;
1253 int i, csum_insertion = 0;
1254 int nfrags = skb_shinfo(skb)->nr_frags;
1255 struct dma_desc *desc, *first;
1256
1257 if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1258 if (!netif_queue_stopped(dev)) {
1259 netif_stop_queue(dev);
1260 /* This is a hard error, log it. */
1261 pr_err("%s: BUG! Tx Ring full when queue awake\n",
1262 __func__);
1263 }
1264 return NETDEV_TX_BUSY;
1265 }
1266
1267 entry = priv->cur_tx % txsize;
1268
1269#ifdef STMMAC_XMIT_DEBUG
1270 if ((skb->len > ETH_FRAME_LEN) || nfrags)
1271 pr_info("stmmac xmit:\n"
1272 "\tskb addr %p - len: %d - nopaged_len: %d\n"
1273 "\tn_frags: %d - ip_summed: %d - %s gso\n",
1274 skb, skb->len, skb_headlen(skb), nfrags, skb->ip_summed,
1275 !skb_is_gso(skb) ? "isn't" : "is");
1276#endif
1277
1278 if (unlikely(skb_is_gso(skb)))
1279 return stmmac_sw_tso(priv, skb);
1280
1281 if (likely((skb->ip_summed == CHECKSUM_PARTIAL))) {
1282 if (likely(priv->tx_coe == NO_HW_CSUM))
1283 skb_checksum_help(skb);
1284 else
1285 csum_insertion = 1;
1286 }
1287
1288 desc = priv->dma_tx + entry;
1289 first = desc;
1290
1291#ifdef STMMAC_XMIT_DEBUG
1292 if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1293 pr_debug("stmmac xmit: skb len: %d, nopaged_len: %d,\n"
1294 "\t\tn_frags: %d, ip_summed: %d\n",
1295 skb->len, skb_headlen(skb), nfrags, skb->ip_summed);
1296#endif
1297 priv->tx_skbuff[entry] = skb;
1298 if (unlikely(skb->len >= BUF_SIZE_4KiB)) {
1299 entry = stmmac_handle_jumbo_frames(skb, dev, csum_insertion);
1300 desc = priv->dma_tx + entry;
1301 } else {
1302 unsigned int nopaged_len = skb_headlen(skb);
1303 desc->des2 = dma_map_single(priv->device, skb->data,
1304 nopaged_len, DMA_TO_DEVICE);
db98a0b0
GC
1305 priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1306 csum_insertion);
47dd7a54
GC
1307 }
1308
1309 for (i = 0; i < nfrags; i++) {
1310 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1311 int len = frag->size;
1312
1313 entry = (++priv->cur_tx) % txsize;
1314 desc = priv->dma_tx + entry;
1315
1316 TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1317 desc->des2 = dma_map_page(priv->device, frag->page,
1318 frag->page_offset,
1319 len, DMA_TO_DEVICE);
1320 priv->tx_skbuff[entry] = NULL;
db98a0b0
GC
1321 priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion);
1322 priv->hw->desc->set_tx_owner(desc);
47dd7a54
GC
1323 }
1324
1325 /* Interrupt on completition only for the latest segment */
db98a0b0 1326 priv->hw->desc->close_tx_desc(desc);
73cfe264 1327
47dd7a54 1328#ifdef CONFIG_STMMAC_TIMER
73cfe264
GC
1329 /* Clean IC while using timer */
1330 if (likely(priv->tm->enable))
db98a0b0 1331 priv->hw->desc->clear_tx_ic(desc);
47dd7a54
GC
1332#endif
1333 /* To avoid raise condition */
db98a0b0 1334 priv->hw->desc->set_tx_owner(first);
47dd7a54
GC
1335
1336 priv->cur_tx++;
1337
1338#ifdef STMMAC_XMIT_DEBUG
1339 if (netif_msg_pktdata(priv)) {
1340 pr_info("stmmac xmit: current=%d, dirty=%d, entry=%d, "
1341 "first=%p, nfrags=%d\n",
1342 (priv->cur_tx % txsize), (priv->dirty_tx % txsize),
1343 entry, first, nfrags);
1344 display_ring(priv->dma_tx, txsize);
1345 pr_info(">>> frame to be transmitted: ");
1346 print_pkt(skb->data, skb->len);
1347 }
1348#endif
1349 if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1350 TX_DBG("%s: stop transmitted packets\n", __func__);
1351 netif_stop_queue(dev);
1352 }
1353
1354 dev->stats.tx_bytes += skb->len;
1355
1356 /* CSR1 enables the transmit DMA to check for new descriptor */
1357 writel(1, dev->base_addr + DMA_XMT_POLL_DEMAND);
1358
1359 return NETDEV_TX_OK;
1360}
1361
1362static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1363{
1364 unsigned int rxsize = priv->dma_rx_size;
1365 int bfsize = priv->dma_buf_sz;
1366 struct dma_desc *p = priv->dma_rx;
1367
1368 for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1369 unsigned int entry = priv->dirty_rx % rxsize;
1370 if (likely(priv->rx_skbuff[entry] == NULL)) {
1371 struct sk_buff *skb;
1372
1373 skb = __skb_dequeue(&priv->rx_recycle);
1374 if (skb == NULL)
1375 skb = netdev_alloc_skb_ip_align(priv->dev,
1376 bfsize);
1377
1378 if (unlikely(skb == NULL))
1379 break;
1380
1381 priv->rx_skbuff[entry] = skb;
1382 priv->rx_skbuff_dma[entry] =
1383 dma_map_single(priv->device, skb->data, bfsize,
1384 DMA_FROM_DEVICE);
1385
1386 (p + entry)->des2 = priv->rx_skbuff_dma[entry];
1387 if (unlikely(priv->is_gmac)) {
1388 if (bfsize >= BUF_SIZE_8KiB)
1389 (p + entry)->des3 =
1390 (p + entry)->des2 + BUF_SIZE_8KiB;
1391 }
1392 RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
1393 }
db98a0b0 1394 priv->hw->desc->set_rx_owner(p + entry);
47dd7a54
GC
1395 }
1396 return;
1397}
1398
1399static int stmmac_rx(struct stmmac_priv *priv, int limit)
1400{
1401 unsigned int rxsize = priv->dma_rx_size;
1402 unsigned int entry = priv->cur_rx % rxsize;
1403 unsigned int next_entry;
1404 unsigned int count = 0;
1405 struct dma_desc *p = priv->dma_rx + entry;
1406 struct dma_desc *p_next;
1407
1408#ifdef STMMAC_RX_DEBUG
1409 if (netif_msg_hw(priv)) {
1410 pr_debug(">>> stmmac_rx: descriptor ring:\n");
1411 display_ring(priv->dma_rx, rxsize);
1412 }
1413#endif
1414 count = 0;
db98a0b0 1415 while (!priv->hw->desc->get_rx_owner(p)) {
47dd7a54
GC
1416 int status;
1417
1418 if (count >= limit)
1419 break;
1420
1421 count++;
1422
1423 next_entry = (++priv->cur_rx) % rxsize;
1424 p_next = priv->dma_rx + next_entry;
1425 prefetch(p_next);
1426
1427 /* read the status of the incoming frame */
db98a0b0
GC
1428 status = (priv->hw->desc->rx_status(&priv->dev->stats,
1429 &priv->xstats, p));
47dd7a54
GC
1430 if (unlikely(status == discard_frame))
1431 priv->dev->stats.rx_errors++;
1432 else {
1433 struct sk_buff *skb;
1434 /* Length should omit the CRC */
db98a0b0 1435 int frame_len = priv->hw->desc->get_rx_frame_len(p) - 4;
47dd7a54
GC
1436
1437#ifdef STMMAC_RX_DEBUG
1438 if (frame_len > ETH_FRAME_LEN)
1439 pr_debug("\tRX frame size %d, COE status: %d\n",
1440 frame_len, status);
1441
1442 if (netif_msg_hw(priv))
1443 pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
1444 p, entry, p->des2);
1445#endif
1446 skb = priv->rx_skbuff[entry];
1447 if (unlikely(!skb)) {
1448 pr_err("%s: Inconsistent Rx descriptor chain\n",
1449 priv->dev->name);
1450 priv->dev->stats.rx_dropped++;
1451 break;
1452 }
1453 prefetch(skb->data - NET_IP_ALIGN);
1454 priv->rx_skbuff[entry] = NULL;
1455
1456 skb_put(skb, frame_len);
1457 dma_unmap_single(priv->device,
1458 priv->rx_skbuff_dma[entry],
1459 priv->dma_buf_sz, DMA_FROM_DEVICE);
1460#ifdef STMMAC_RX_DEBUG
1461 if (netif_msg_pktdata(priv)) {
1462 pr_info(" frame received (%dbytes)", frame_len);
1463 print_pkt(skb->data, frame_len);
1464 }
1465#endif
1466 skb->protocol = eth_type_trans(skb, priv->dev);
1467
1468 if (unlikely(status == csum_none)) {
1469 /* always for the old mac 10/100 */
1470 skb->ip_summed = CHECKSUM_NONE;
1471 netif_receive_skb(skb);
1472 } else {
1473 skb->ip_summed = CHECKSUM_UNNECESSARY;
1474 napi_gro_receive(&priv->napi, skb);
1475 }
1476
1477 priv->dev->stats.rx_packets++;
1478 priv->dev->stats.rx_bytes += frame_len;
1479 priv->dev->last_rx = jiffies;
1480 }
1481 entry = next_entry;
1482 p = p_next; /* use prefetched values */
1483 }
1484
1485 stmmac_rx_refill(priv);
1486
1487 priv->xstats.rx_pkt_n += count;
1488
1489 return count;
1490}
1491
1492/**
1493 * stmmac_poll - stmmac poll method (NAPI)
1494 * @napi : pointer to the napi structure.
1495 * @budget : maximum number of packets that the current CPU can receive from
1496 * all interfaces.
1497 * Description :
1498 * This function implements the the reception process.
1499 * Also it runs the TX completion thread
1500 */
1501static int stmmac_poll(struct napi_struct *napi, int budget)
1502{
1503 struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
1504 int work_done = 0;
1505
1506 priv->xstats.poll_n++;
1507 stmmac_tx(priv);
1508 work_done = stmmac_rx(priv, budget);
1509
1510 if (work_done < budget) {
1511 napi_complete(napi);
1512 stmmac_enable_irq(priv);
1513 }
1514 return work_done;
1515}
1516
1517/**
1518 * stmmac_tx_timeout
1519 * @dev : Pointer to net device structure
1520 * Description: this function is called when a packet transmission fails to
1521 * complete within a reasonable tmrate. The driver will mark the error in the
1522 * netdev structure and arrange for the device to be reset to a sane state
1523 * in order to transmit a new packet.
1524 */
1525static void stmmac_tx_timeout(struct net_device *dev)
1526{
1527 struct stmmac_priv *priv = netdev_priv(dev);
1528
1529 /* Clear Tx resources and restart transmitting again */
1530 stmmac_tx_err(priv);
1531 return;
1532}
1533
1534/* Configuration changes (passed on by ifconfig) */
1535static int stmmac_config(struct net_device *dev, struct ifmap *map)
1536{
1537 if (dev->flags & IFF_UP) /* can't act on a running interface */
1538 return -EBUSY;
1539
1540 /* Don't allow changing the I/O address */
1541 if (map->base_addr != dev->base_addr) {
1542 pr_warning("%s: can't change I/O address\n", dev->name);
1543 return -EOPNOTSUPP;
1544 }
1545
1546 /* Don't allow changing the IRQ */
1547 if (map->irq != dev->irq) {
1548 pr_warning("%s: can't change IRQ number %d\n",
1549 dev->name, dev->irq);
1550 return -EOPNOTSUPP;
1551 }
1552
1553 /* ignore other fields */
1554 return 0;
1555}
1556
1557/**
1558 * stmmac_multicast_list - entry point for multicast addressing
1559 * @dev : pointer to the device structure
1560 * Description:
1561 * This function is a driver entry point which gets called by the kernel
1562 * whenever multicast addresses must be enabled/disabled.
1563 * Return value:
1564 * void.
1565 */
1566static void stmmac_multicast_list(struct net_device *dev)
1567{
1568 struct stmmac_priv *priv = netdev_priv(dev);
1569
1570 spin_lock(&priv->lock);
db98a0b0 1571 priv->hw->mac->set_filter(dev);
47dd7a54
GC
1572 spin_unlock(&priv->lock);
1573 return;
1574}
1575
1576/**
1577 * stmmac_change_mtu - entry point to change MTU size for the device.
1578 * @dev : device pointer.
1579 * @new_mtu : the new MTU size for the device.
1580 * Description: the Maximum Transfer Unit (MTU) is used by the network layer
1581 * to drive packet transmission. Ethernet has an MTU of 1500 octets
1582 * (ETH_DATA_LEN). This value can be changed with ifconfig.
1583 * Return value:
1584 * 0 on success and an appropriate (-)ve integer as defined in errno.h
1585 * file on failure.
1586 */
1587static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
1588{
1589 struct stmmac_priv *priv = netdev_priv(dev);
1590 int max_mtu;
1591
1592 if (netif_running(dev)) {
1593 pr_err("%s: must be stopped to change its MTU\n", dev->name);
1594 return -EBUSY;
1595 }
1596
1597 if (priv->is_gmac)
1598 max_mtu = JUMBO_LEN;
1599 else
1600 max_mtu = ETH_DATA_LEN;
1601
1602 if ((new_mtu < 46) || (new_mtu > max_mtu)) {
1603 pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
1604 return -EINVAL;
1605 }
1606
1607 dev->mtu = new_mtu;
1608
1609 return 0;
1610}
1611
1612static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
1613{
1614 struct net_device *dev = (struct net_device *)dev_id;
1615 struct stmmac_priv *priv = netdev_priv(dev);
1616
1617 if (unlikely(!dev)) {
1618 pr_err("%s: invalid dev pointer\n", __func__);
1619 return IRQ_NONE;
1620 }
1621
1622 if (priv->is_gmac) {
1623 unsigned long ioaddr = dev->base_addr;
1624 /* To handle GMAC own interrupts */
db98a0b0 1625 priv->hw->mac->host_irq_status(ioaddr);
47dd7a54
GC
1626 }
1627 stmmac_dma_interrupt(dev);
1628
1629 return IRQ_HANDLED;
1630}
1631
1632#ifdef CONFIG_NET_POLL_CONTROLLER
1633/* Polling receive - used by NETCONSOLE and other diagnostic tools
1634 * to allow network I/O with interrupts disabled. */
1635static void stmmac_poll_controller(struct net_device *dev)
1636{
1637 disable_irq(dev->irq);
1638 stmmac_interrupt(dev->irq, dev);
1639 enable_irq(dev->irq);
1640}
1641#endif
1642
1643/**
1644 * stmmac_ioctl - Entry point for the Ioctl
1645 * @dev: Device pointer.
1646 * @rq: An IOCTL specefic structure, that can contain a pointer to
1647 * a proprietary structure used to pass information to the driver.
1648 * @cmd: IOCTL command
1649 * Description:
1650 * Currently there are no special functionality supported in IOCTL, just the
1651 * phy_mii_ioctl(...) can be invoked.
1652 */
1653static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1654{
1655 struct stmmac_priv *priv = netdev_priv(dev);
1656 int ret = -EOPNOTSUPP;
1657
1658 if (!netif_running(dev))
1659 return -EINVAL;
1660
1661 switch (cmd) {
1662 case SIOCGMIIPHY:
1663 case SIOCGMIIREG:
1664 case SIOCSMIIREG:
1665 if (!priv->phydev)
1666 return -EINVAL;
1667
1668 spin_lock(&priv->lock);
1669 ret = phy_mii_ioctl(priv->phydev, if_mii(rq), cmd);
1670 spin_unlock(&priv->lock);
1671 default:
1672 break;
1673 }
1674 return ret;
1675}
1676
1677#ifdef STMMAC_VLAN_TAG_USED
1678static void stmmac_vlan_rx_register(struct net_device *dev,
1679 struct vlan_group *grp)
1680{
1681 struct stmmac_priv *priv = netdev_priv(dev);
1682
1683 DBG(probe, INFO, "%s: Setting vlgrp to %p\n", dev->name, grp);
1684
1685 spin_lock(&priv->lock);
1686 priv->vlgrp = grp;
1687 spin_unlock(&priv->lock);
1688
1689 return;
1690}
1691#endif
1692
1693static const struct net_device_ops stmmac_netdev_ops = {
1694 .ndo_open = stmmac_open,
1695 .ndo_start_xmit = stmmac_xmit,
1696 .ndo_stop = stmmac_release,
1697 .ndo_change_mtu = stmmac_change_mtu,
1698 .ndo_set_multicast_list = stmmac_multicast_list,
1699 .ndo_tx_timeout = stmmac_tx_timeout,
1700 .ndo_do_ioctl = stmmac_ioctl,
1701 .ndo_set_config = stmmac_config,
1702#ifdef STMMAC_VLAN_TAG_USED
1703 .ndo_vlan_rx_register = stmmac_vlan_rx_register,
1704#endif
1705#ifdef CONFIG_NET_POLL_CONTROLLER
1706 .ndo_poll_controller = stmmac_poll_controller,
1707#endif
1708 .ndo_set_mac_address = eth_mac_addr,
1709};
1710
1711/**
1712 * stmmac_probe - Initialization of the adapter .
1713 * @dev : device pointer
1714 * Description: The function initializes the network device structure for
1715 * the STMMAC driver. It also calls the low level routines
1716 * in order to init the HW (i.e. the DMA engine)
1717 */
1718static int stmmac_probe(struct net_device *dev)
1719{
1720 int ret = 0;
1721 struct stmmac_priv *priv = netdev_priv(dev);
1722
1723 ether_setup(dev);
1724
1725 dev->netdev_ops = &stmmac_netdev_ops;
1726 stmmac_set_ethtool_ops(dev);
1727
1728 dev->features |= (NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_HIGHDMA);
1729 dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1730#ifdef STMMAC_VLAN_TAG_USED
1731 /* Both mac100 and gmac support receive VLAN tag detection */
1732 dev->features |= NETIF_F_HW_VLAN_RX;
1733#endif
1734 priv->msg_enable = netif_msg_init(debug, default_msg_level);
1735
1736 if (priv->is_gmac)
1737 priv->rx_csum = 1;
1738
1739 if (flow_ctrl)
1740 priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
1741
1742 priv->pause = pause;
1743 netif_napi_add(dev, &priv->napi, stmmac_poll, 64);
1744
1745 /* Get the MAC address */
db98a0b0 1746 priv->hw->mac->get_umac_addr(dev->base_addr, dev->dev_addr, 0);
47dd7a54
GC
1747
1748 if (!is_valid_ether_addr(dev->dev_addr))
1749 pr_warning("\tno valid MAC address;"
1750 "please, use ifconfig or nwhwconfig!\n");
1751
1752 ret = register_netdev(dev);
1753 if (ret) {
1754 pr_err("%s: ERROR %i registering the device\n",
1755 __func__, ret);
1756 return -ENODEV;
1757 }
1758
1759 DBG(probe, DEBUG, "%s: Scatter/Gather: %s - HW checksums: %s\n",
1760 dev->name, (dev->features & NETIF_F_SG) ? "on" : "off",
1761 (dev->features & NETIF_F_HW_CSUM) ? "on" : "off");
1762
1763 spin_lock_init(&priv->lock);
1764
1765 return ret;
1766}
1767
1768/**
1769 * stmmac_mac_device_setup
1770 * @dev : device pointer
1771 * Description: select and initialise the mac device (mac100 or Gmac).
1772 */
1773static int stmmac_mac_device_setup(struct net_device *dev)
1774{
1775 struct stmmac_priv *priv = netdev_priv(dev);
1776 unsigned long ioaddr = dev->base_addr;
1777
1778 struct mac_device_info *device;
1779
1780 if (priv->is_gmac)
1781 device = gmac_setup(ioaddr);
1782 else
1783 device = mac100_setup(ioaddr);
1784
1785 if (!device)
1786 return -ENOMEM;
1787
db98a0b0 1788 priv->hw = device;
47dd7a54 1789
db98a0b0 1790 priv->wolenabled = priv->hw->pmt; /* PMT supported */
47dd7a54
GC
1791 if (priv->wolenabled == PMT_SUPPORTED)
1792 priv->wolopts = WAKE_MAGIC; /* Magic Frame */
1793
1794 return 0;
1795}
1796
1797static int stmmacphy_dvr_probe(struct platform_device *pdev)
1798{
ee7946a7 1799 struct plat_stmmacphy_data *plat_dat = pdev->dev.platform_data;
47dd7a54
GC
1800
1801 pr_debug("stmmacphy_dvr_probe: added phy for bus %d\n",
1802 plat_dat->bus_id);
1803
1804 return 0;
1805}
1806
1807static int stmmacphy_dvr_remove(struct platform_device *pdev)
1808{
1809 return 0;
1810}
1811
1812static struct platform_driver stmmacphy_driver = {
1813 .driver = {
1814 .name = PHY_RESOURCE_NAME,
1815 },
1816 .probe = stmmacphy_dvr_probe,
1817 .remove = stmmacphy_dvr_remove,
1818};
1819
1820/**
1821 * stmmac_associate_phy
1822 * @dev: pointer to device structure
1823 * @data: points to the private structure.
1824 * Description: Scans through all the PHYs we have registered and checks if
1825 * any are associated with our MAC. If so, then just fill in
1826 * the blanks in our local context structure
1827 */
1828static int stmmac_associate_phy(struct device *dev, void *data)
1829{
1830 struct stmmac_priv *priv = (struct stmmac_priv *)data;
ee7946a7 1831 struct plat_stmmacphy_data *plat_dat = dev->platform_data;
47dd7a54
GC
1832
1833 DBG(probe, DEBUG, "%s: checking phy for bus %d\n", __func__,
1834 plat_dat->bus_id);
1835
1836 /* Check that this phy is for the MAC being initialised */
1837 if (priv->bus_id != plat_dat->bus_id)
1838 return 0;
1839
1840 /* OK, this PHY is connected to the MAC.
1841 Go ahead and get the parameters */
1842 DBG(probe, DEBUG, "%s: OK. Found PHY config\n", __func__);
1843 priv->phy_irq =
1844 platform_get_irq_byname(to_platform_device(dev), "phyirq");
1845 DBG(probe, DEBUG, "%s: PHY irq on bus %d is %d\n", __func__,
1846 plat_dat->bus_id, priv->phy_irq);
1847
1848 /* Override with kernel parameters if supplied XXX CRS XXX
1849 * this needs to have multiple instances */
1850 if ((phyaddr >= 0) && (phyaddr <= 31))
1851 plat_dat->phy_addr = phyaddr;
1852
1853 priv->phy_addr = plat_dat->phy_addr;
1854 priv->phy_mask = plat_dat->phy_mask;
1855 priv->phy_interface = plat_dat->interface;
1856 priv->phy_reset = plat_dat->phy_reset;
1857
1858 DBG(probe, DEBUG, "%s: exiting\n", __func__);
1859 return 1; /* forces exit of driver_for_each_device() */
1860}
1861
1862/**
1863 * stmmac_dvr_probe
1864 * @pdev: platform device pointer
1865 * Description: the driver is initialized through platform_device.
1866 */
1867static int stmmac_dvr_probe(struct platform_device *pdev)
1868{
1869 int ret = 0;
1870 struct resource *res;
1871 unsigned int *addr = NULL;
1872 struct net_device *ndev = NULL;
1873 struct stmmac_priv *priv;
1874 struct plat_stmmacenet_data *plat_dat;
1875
1876 pr_info("STMMAC driver:\n\tplatform registration... ");
1877 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1878 if (!res) {
1879 ret = -ENODEV;
1880 goto out;
1881 }
1882 pr_info("done!\n");
1883
1884 if (!request_mem_region(res->start, (res->end - res->start),
1885 pdev->name)) {
1886 pr_err("%s: ERROR: memory allocation failed"
1887 "cannot get the I/O addr 0x%x\n",
1888 __func__, (unsigned int)res->start);
1889 ret = -EBUSY;
1890 goto out;
1891 }
1892
1893 addr = ioremap(res->start, (res->end - res->start));
1894 if (!addr) {
1895 pr_err("%s: ERROR: memory mapping failed \n", __func__);
1896 ret = -ENOMEM;
1897 goto out;
1898 }
1899
1900 ndev = alloc_etherdev(sizeof(struct stmmac_priv));
1901 if (!ndev) {
1902 pr_err("%s: ERROR: allocating the device\n", __func__);
1903 ret = -ENOMEM;
1904 goto out;
1905 }
1906
1907 SET_NETDEV_DEV(ndev, &pdev->dev);
1908
1909 /* Get the MAC information */
1910 ndev->irq = platform_get_irq_byname(pdev, "macirq");
1911 if (ndev->irq == -ENXIO) {
1912 pr_err("%s: ERROR: MAC IRQ configuration "
1913 "information not found\n", __func__);
1914 ret = -ENODEV;
1915 goto out;
1916 }
1917
1918 priv = netdev_priv(ndev);
1919 priv->device = &(pdev->dev);
1920 priv->dev = ndev;
ee7946a7 1921 plat_dat = pdev->dev.platform_data;
47dd7a54
GC
1922 priv->bus_id = plat_dat->bus_id;
1923 priv->pbl = plat_dat->pbl; /* TLI */
1924 priv->is_gmac = plat_dat->has_gmac; /* GMAC is on board */
1925
1926 platform_set_drvdata(pdev, ndev);
1927
1928 /* Set the I/O base addr */
1929 ndev->base_addr = (unsigned long)addr;
1930
ee7946a7
GC
1931 /* Verify embedded resource for the platform */
1932 ret = stmmac_claim_resource(pdev);
1933 if (ret < 0)
1934 goto out;
1935
47dd7a54
GC
1936 /* MAC HW revice detection */
1937 ret = stmmac_mac_device_setup(ndev);
1938 if (ret < 0)
1939 goto out;
1940
1941 /* Network Device Registration */
1942 ret = stmmac_probe(ndev);
1943 if (ret < 0)
1944 goto out;
1945
1946 /* associate a PHY - it is provided by another platform bus */
1947 if (!driver_for_each_device
1948 (&(stmmacphy_driver.driver), NULL, (void *)priv,
1949 stmmac_associate_phy)) {
1950 pr_err("No PHY device is associated with this MAC!\n");
1951 ret = -ENODEV;
1952 goto out;
1953 }
1954
1955 priv->fix_mac_speed = plat_dat->fix_mac_speed;
ee7946a7 1956 priv->bus_setup = plat_dat->bus_setup;
47dd7a54
GC
1957 priv->bsp_priv = plat_dat->bsp_priv;
1958
1959 pr_info("\t%s - (dev. name: %s - id: %d, IRQ #%d\n"
1960 "\tIO base addr: 0x%08x)\n", ndev->name, pdev->name,
1961 pdev->id, ndev->irq, (unsigned int)addr);
1962
1963 /* MDIO bus Registration */
1964 pr_debug("\tMDIO bus (id: %d)...", priv->bus_id);
1965 ret = stmmac_mdio_register(ndev);
1966 if (ret < 0)
1967 goto out;
1968 pr_debug("registered!\n");
1969
1970out:
1971 if (ret < 0) {
1972 platform_set_drvdata(pdev, NULL);
1973 release_mem_region(res->start, (res->end - res->start));
1974 if (addr != NULL)
1975 iounmap(addr);
1976 }
1977
1978 return ret;
1979}
1980
1981/**
1982 * stmmac_dvr_remove
1983 * @pdev: platform device pointer
1984 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
1985 * changes the link status, releases the DMA descriptor rings,
1986 * unregisters the MDIO bus and unmaps the allocated memory.
1987 */
1988static int stmmac_dvr_remove(struct platform_device *pdev)
1989{
1990 struct net_device *ndev = platform_get_drvdata(pdev);
1991 struct resource *res;
1992
1993 pr_info("%s:\n\tremoving driver", __func__);
1994
1995 stmmac_dma_stop_rx(ndev->base_addr);
1996 stmmac_dma_stop_tx(ndev->base_addr);
1997
1998 stmmac_mac_disable_rx(ndev->base_addr);
1999 stmmac_mac_disable_tx(ndev->base_addr);
2000
2001 netif_carrier_off(ndev);
2002
2003 stmmac_mdio_unregister(ndev);
2004
2005 platform_set_drvdata(pdev, NULL);
2006 unregister_netdev(ndev);
2007
2008 iounmap((void *)ndev->base_addr);
2009 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2010 release_mem_region(res->start, (res->end - res->start));
2011
2012 free_netdev(ndev);
2013
2014 return 0;
2015}
2016
2017#ifdef CONFIG_PM
2018static int stmmac_suspend(struct platform_device *pdev, pm_message_t state)
2019{
2020 struct net_device *dev = platform_get_drvdata(pdev);
2021 struct stmmac_priv *priv = netdev_priv(dev);
2022 int dis_ic = 0;
2023
2024 if (!dev || !netif_running(dev))
2025 return 0;
2026
2027 spin_lock(&priv->lock);
2028
2029 if (state.event == PM_EVENT_SUSPEND) {
2030 netif_device_detach(dev);
2031 netif_stop_queue(dev);
2032 if (priv->phydev)
2033 phy_stop(priv->phydev);
2034
2035#ifdef CONFIG_STMMAC_TIMER
2036 priv->tm->timer_stop();
73cfe264
GC
2037 if (likely(priv->tm->enable))
2038 dis_ic = 1;
47dd7a54
GC
2039#endif
2040 napi_disable(&priv->napi);
2041
2042 /* Stop TX/RX DMA */
2043 stmmac_dma_stop_tx(dev->base_addr);
2044 stmmac_dma_stop_rx(dev->base_addr);
2045 /* Clear the Rx/Tx descriptors */
db98a0b0
GC
2046 priv->hw->desc->init_rx_desc(priv->dma_rx, priv->dma_rx_size,
2047 dis_ic);
2048 priv->hw->desc->init_tx_desc(priv->dma_tx, priv->dma_tx_size);
47dd7a54
GC
2049
2050 stmmac_mac_disable_tx(dev->base_addr);
2051
2052 if (device_may_wakeup(&(pdev->dev))) {
2053 /* Enable Power down mode by programming the PMT regs */
2054 if (priv->wolenabled == PMT_SUPPORTED)
db98a0b0
GC
2055 priv->hw->mac->pmt(dev->base_addr,
2056 priv->wolopts);
47dd7a54
GC
2057 } else {
2058 stmmac_mac_disable_rx(dev->base_addr);
2059 }
2060 } else {
2061 priv->shutdown = 1;
2062 /* Although this can appear slightly redundant it actually
2063 * makes fast the standby operation and guarantees the driver
2064 * working if hibernation is on media. */
2065 stmmac_release(dev);
2066 }
2067
2068 spin_unlock(&priv->lock);
2069 return 0;
2070}
2071
2072static int stmmac_resume(struct platform_device *pdev)
2073{
2074 struct net_device *dev = platform_get_drvdata(pdev);
2075 struct stmmac_priv *priv = netdev_priv(dev);
2076 unsigned long ioaddr = dev->base_addr;
2077
2078 if (!netif_running(dev))
2079 return 0;
2080
2081 spin_lock(&priv->lock);
2082
2083 if (priv->shutdown) {
2084 /* Re-open the interface and re-init the MAC/DMA
2085 and the rings. */
2086 stmmac_open(dev);
2087 goto out_resume;
2088 }
2089
2090 /* Power Down bit, into the PM register, is cleared
2091 * automatically as soon as a magic packet or a Wake-up frame
2092 * is received. Anyway, it's better to manually clear
2093 * this bit because it can generate problems while resuming
2094 * from another devices (e.g. serial console). */
2095 if (device_may_wakeup(&(pdev->dev)))
2096 if (priv->wolenabled == PMT_SUPPORTED)
db98a0b0 2097 priv->hw->mac->pmt(dev->base_addr, 0);
47dd7a54
GC
2098
2099 netif_device_attach(dev);
2100
2101 /* Enable the MAC and DMA */
2102 stmmac_mac_enable_rx(ioaddr);
2103 stmmac_mac_enable_tx(ioaddr);
2104 stmmac_dma_start_tx(ioaddr);
2105 stmmac_dma_start_rx(ioaddr);
2106
2107#ifdef CONFIG_STMMAC_TIMER
2108 priv->tm->timer_start(tmrate);
2109#endif
2110 napi_enable(&priv->napi);
2111
2112 if (priv->phydev)
2113 phy_start(priv->phydev);
2114
2115 netif_start_queue(dev);
2116
2117out_resume:
2118 spin_unlock(&priv->lock);
2119 return 0;
2120}
2121#endif
2122
2123static struct platform_driver stmmac_driver = {
2124 .driver = {
2125 .name = STMMAC_RESOURCE_NAME,
2126 },
2127 .probe = stmmac_dvr_probe,
2128 .remove = stmmac_dvr_remove,
2129#ifdef CONFIG_PM
2130 .suspend = stmmac_suspend,
2131 .resume = stmmac_resume,
2132#endif
2133
2134};
2135
2136/**
2137 * stmmac_init_module - Entry point for the driver
2138 * Description: This function is the entry point for the driver.
2139 */
2140static int __init stmmac_init_module(void)
2141{
2142 int ret;
2143
2144 if (platform_driver_register(&stmmacphy_driver)) {
2145 pr_err("No PHY devices registered!\n");
2146 return -ENODEV;
2147 }
2148
2149 ret = platform_driver_register(&stmmac_driver);
2150 return ret;
2151}
2152
2153/**
2154 * stmmac_cleanup_module - Cleanup routine for the driver
2155 * Description: This function is the cleanup routine for the driver.
2156 */
2157static void __exit stmmac_cleanup_module(void)
2158{
2159 platform_driver_unregister(&stmmacphy_driver);
2160 platform_driver_unregister(&stmmac_driver);
2161}
2162
2163#ifndef MODULE
2164static int __init stmmac_cmdline_opt(char *str)
2165{
2166 char *opt;
2167
2168 if (!str || !*str)
2169 return -EINVAL;
2170 while ((opt = strsep(&str, ",")) != NULL) {
2171 if (!strncmp(opt, "debug:", 6))
2172 strict_strtoul(opt + 6, 0, (unsigned long *)&debug);
2173 else if (!strncmp(opt, "phyaddr:", 8))
2174 strict_strtoul(opt + 8, 0, (unsigned long *)&phyaddr);
2175 else if (!strncmp(opt, "dma_txsize:", 11))
2176 strict_strtoul(opt + 11, 0,
2177 (unsigned long *)&dma_txsize);
2178 else if (!strncmp(opt, "dma_rxsize:", 11))
2179 strict_strtoul(opt + 11, 0,
2180 (unsigned long *)&dma_rxsize);
2181 else if (!strncmp(opt, "buf_sz:", 7))
2182 strict_strtoul(opt + 7, 0, (unsigned long *)&buf_sz);
2183 else if (!strncmp(opt, "tc:", 3))
2184 strict_strtoul(opt + 3, 0, (unsigned long *)&tc);
2185 else if (!strncmp(opt, "tx_coe:", 7))
2186 strict_strtoul(opt + 7, 0, (unsigned long *)&tx_coe);
2187 else if (!strncmp(opt, "watchdog:", 9))
2188 strict_strtoul(opt + 9, 0, (unsigned long *)&watchdog);
2189 else if (!strncmp(opt, "flow_ctrl:", 10))
2190 strict_strtoul(opt + 10, 0,
2191 (unsigned long *)&flow_ctrl);
2192 else if (!strncmp(opt, "pause:", 6))
2193 strict_strtoul(opt + 6, 0, (unsigned long *)&pause);
2194#ifdef CONFIG_STMMAC_TIMER
2195 else if (!strncmp(opt, "tmrate:", 7))
2196 strict_strtoul(opt + 7, 0, (unsigned long *)&tmrate);
2197#endif
2198 }
2199 return 0;
2200}
2201
2202__setup("stmmaceth=", stmmac_cmdline_opt);
2203#endif
2204
2205module_init(stmmac_init_module);
2206module_exit(stmmac_cleanup_module);
2207
2208MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet driver");
2209MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
2210MODULE_LICENSE("GPL");