]> bbs.cooldavid.org Git - net-next-2.6.git/blame - net/core/dev.c
net: txq_trans_update() helper
[net-next-2.6.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <asm/system.h>
77#include <linux/bitops.h>
4fc268d2 78#include <linux/capability.h>
1da177e4
LT
79#include <linux/cpu.h>
80#include <linux/types.h>
81#include <linux/kernel.h>
82#include <linux/sched.h>
4a3e2f71 83#include <linux/mutex.h>
1da177e4
LT
84#include <linux/string.h>
85#include <linux/mm.h>
86#include <linux/socket.h>
87#include <linux/sockios.h>
88#include <linux/errno.h>
89#include <linux/interrupt.h>
90#include <linux/if_ether.h>
91#include <linux/netdevice.h>
92#include <linux/etherdevice.h>
0187bdfb 93#include <linux/ethtool.h>
1da177e4
LT
94#include <linux/notifier.h>
95#include <linux/skbuff.h>
457c4cbc 96#include <net/net_namespace.h>
1da177e4
LT
97#include <net/sock.h>
98#include <linux/rtnetlink.h>
99#include <linux/proc_fs.h>
100#include <linux/seq_file.h>
101#include <linux/stat.h>
102#include <linux/if_bridge.h>
b863ceb7 103#include <linux/if_macvlan.h>
1da177e4
LT
104#include <net/dst.h>
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
107#include <linux/highmem.h>
108#include <linux/init.h>
109#include <linux/kmod.h>
110#include <linux/module.h>
1da177e4
LT
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
295f4a1f 114#include <net/wext.h>
1da177e4 115#include <net/iw_handler.h>
1da177e4 116#include <asm/current.h>
5bdb9886 117#include <linux/audit.h>
db217334 118#include <linux/dmaengine.h>
f6a78bfc 119#include <linux/err.h>
c7fa9d18 120#include <linux/ctype.h>
723e98b7 121#include <linux/if_arp.h>
6de329e2 122#include <linux/if_vlan.h>
8f0f2223 123#include <linux/ip.h>
ad55dcaf 124#include <net/ip.h>
8f0f2223
DM
125#include <linux/ipv6.h>
126#include <linux/in.h>
b6b2fed1
DM
127#include <linux/jhash.h>
128#include <linux/random.h>
4ea7e386 129#include <trace/napi.h>
1da177e4 130
342709ef
PE
131#include "net-sysfs.h"
132
d565b0a1
HX
133/* Instead of increasing this, you should create a hash table. */
134#define MAX_GRO_SKBS 8
135
5d38a079
HX
136/* This should be increased if a protocol with a bigger head is added. */
137#define GRO_MAX_HEAD (MAX_HEADER + 128)
138
1da177e4
LT
139/*
140 * The list of packet types we will receive (as opposed to discard)
141 * and the routines to invoke.
142 *
143 * Why 16. Because with 16 the only overlap we get on a hash of the
144 * low nibble of the protocol value is RARP/SNAP/X.25.
145 *
146 * NOTE: That is no longer true with the addition of VLAN tags. Not
147 * sure which should go first, but I bet it won't make much
148 * difference if we are running VLANs. The good news is that
149 * this protocol won't be in the list unless compiled in, so
3041a069 150 * the average user (w/out VLANs) will not be adversely affected.
1da177e4
LT
151 * --BLG
152 *
153 * 0800 IP
154 * 8100 802.1Q VLAN
155 * 0001 802.3
156 * 0002 AX.25
157 * 0004 802.2
158 * 8035 RARP
159 * 0005 SNAP
160 * 0805 X.25
161 * 0806 ARP
162 * 8137 IPX
163 * 0009 Localtalk
164 * 86DD IPv6
165 */
166
82d8a867
PE
167#define PTYPE_HASH_SIZE (16)
168#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
169
1da177e4 170static DEFINE_SPINLOCK(ptype_lock);
82d8a867 171static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
6b2bedc3 172static struct list_head ptype_all __read_mostly; /* Taps */
1da177e4 173
1da177e4 174/*
7562f876 175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
176 * semaphore.
177 *
178 * Pure readers hold dev_base_lock for reading.
179 *
180 * Writers must hold the rtnl semaphore while they loop through the
7562f876 181 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
182 * actual updates. This allows pure readers to access the list even
183 * while a writer is preparing to update it.
184 *
185 * To put it another way, dev_base_lock is held for writing only to
186 * protect against pure readers; the rtnl semaphore provides the
187 * protection against other writers.
188 *
189 * See, for example usages, register_netdevice() and
190 * unregister_netdevice(), which must be called with the rtnl
191 * semaphore held.
192 */
1da177e4
LT
193DEFINE_RWLOCK(dev_base_lock);
194
1da177e4
LT
195EXPORT_SYMBOL(dev_base_lock);
196
197#define NETDEV_HASHBITS 8
881d966b 198#define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
1da177e4 199
881d966b 200static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4
LT
201{
202 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
881d966b 203 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
1da177e4
LT
204}
205
881d966b 206static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 207{
881d966b 208 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
1da177e4
LT
209}
210
ce286d32
EB
211/* Device list insertion */
212static int list_netdevice(struct net_device *dev)
213{
c346dca1 214 struct net *net = dev_net(dev);
ce286d32
EB
215
216 ASSERT_RTNL();
217
218 write_lock_bh(&dev_base_lock);
219 list_add_tail(&dev->dev_list, &net->dev_base_head);
220 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
221 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
222 write_unlock_bh(&dev_base_lock);
223 return 0;
224}
225
226/* Device list removal */
227static void unlist_netdevice(struct net_device *dev)
228{
229 ASSERT_RTNL();
230
231 /* Unlink dev from the device chain */
232 write_lock_bh(&dev_base_lock);
233 list_del(&dev->dev_list);
234 hlist_del(&dev->name_hlist);
235 hlist_del(&dev->index_hlist);
236 write_unlock_bh(&dev_base_lock);
237}
238
1da177e4
LT
239/*
240 * Our notifier list
241 */
242
f07d5b94 243static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
244
245/*
246 * Device drivers call our routines to queue packets here. We empty the
247 * queue in the local softnet handler.
248 */
bea3348e
SH
249
250DEFINE_PER_CPU(struct softnet_data, softnet_data);
1da177e4 251
cf508b12 252#ifdef CONFIG_LOCKDEP
723e98b7 253/*
c773e847 254 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
255 * according to dev->type
256 */
257static const unsigned short netdev_lock_type[] =
258 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
259 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
260 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
261 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
262 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
263 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
264 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
265 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
266 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
267 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
268 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
269 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
270 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
2d91d78b 271 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
57c81fff 272 ARPHRD_PHONET_PIPE, ARPHRD_VOID, ARPHRD_NONE};
723e98b7
JP
273
274static const char *netdev_lock_name[] =
275 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
276 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
277 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
278 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
279 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
280 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
281 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
282 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
283 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
284 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
285 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
286 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
287 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
2d91d78b 288 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
57c81fff 289 "_xmit_PHONET_PIPE", "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
290
291static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 292static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
293
294static inline unsigned short netdev_lock_pos(unsigned short dev_type)
295{
296 int i;
297
298 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
299 if (netdev_lock_type[i] == dev_type)
300 return i;
301 /* the last key is used by default */
302 return ARRAY_SIZE(netdev_lock_type) - 1;
303}
304
cf508b12
DM
305static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
306 unsigned short dev_type)
723e98b7
JP
307{
308 int i;
309
310 i = netdev_lock_pos(dev_type);
311 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
312 netdev_lock_name[i]);
313}
cf508b12
DM
314
315static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
316{
317 int i;
318
319 i = netdev_lock_pos(dev->type);
320 lockdep_set_class_and_name(&dev->addr_list_lock,
321 &netdev_addr_lock_key[i],
322 netdev_lock_name[i]);
323}
723e98b7 324#else
cf508b12
DM
325static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
326 unsigned short dev_type)
327{
328}
329static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
330{
331}
332#endif
1da177e4
LT
333
334/*******************************************************************************
335
336 Protocol management and registration routines
337
338*******************************************************************************/
339
1da177e4
LT
340/*
341 * Add a protocol ID to the list. Now that the input handler is
342 * smarter we can dispense with all the messy stuff that used to be
343 * here.
344 *
345 * BEWARE!!! Protocol handlers, mangling input packets,
346 * MUST BE last in hash buckets and checking protocol handlers
347 * MUST start from promiscuous ptype_all chain in net_bh.
348 * It is true now, do not change it.
349 * Explanation follows: if protocol handler, mangling packet, will
350 * be the first on list, it is not able to sense, that packet
351 * is cloned and should be copied-on-write, so that it will
352 * change it and subsequent readers will get broken packet.
353 * --ANK (980803)
354 */
355
356/**
357 * dev_add_pack - add packet handler
358 * @pt: packet type declaration
359 *
360 * Add a protocol handler to the networking stack. The passed &packet_type
361 * is linked into kernel lists and may not be freed until it has been
362 * removed from the kernel lists.
363 *
4ec93edb 364 * This call does not sleep therefore it can not
1da177e4
LT
365 * guarantee all CPU's that are in middle of receiving packets
366 * will see the new packet type (until the next received packet).
367 */
368
369void dev_add_pack(struct packet_type *pt)
370{
371 int hash;
372
373 spin_lock_bh(&ptype_lock);
9be9a6b9 374 if (pt->type == htons(ETH_P_ALL))
1da177e4 375 list_add_rcu(&pt->list, &ptype_all);
9be9a6b9 376 else {
82d8a867 377 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
1da177e4
LT
378 list_add_rcu(&pt->list, &ptype_base[hash]);
379 }
380 spin_unlock_bh(&ptype_lock);
381}
382
1da177e4
LT
383/**
384 * __dev_remove_pack - remove packet handler
385 * @pt: packet type declaration
386 *
387 * Remove a protocol handler that was previously added to the kernel
388 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
389 * from the kernel lists and can be freed or reused once this function
4ec93edb 390 * returns.
1da177e4
LT
391 *
392 * The packet type might still be in use by receivers
393 * and must not be freed until after all the CPU's have gone
394 * through a quiescent state.
395 */
396void __dev_remove_pack(struct packet_type *pt)
397{
398 struct list_head *head;
399 struct packet_type *pt1;
400
401 spin_lock_bh(&ptype_lock);
402
9be9a6b9 403 if (pt->type == htons(ETH_P_ALL))
1da177e4 404 head = &ptype_all;
9be9a6b9 405 else
82d8a867 406 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
1da177e4
LT
407
408 list_for_each_entry(pt1, head, list) {
409 if (pt == pt1) {
410 list_del_rcu(&pt->list);
411 goto out;
412 }
413 }
414
415 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
416out:
417 spin_unlock_bh(&ptype_lock);
418}
419/**
420 * dev_remove_pack - remove packet handler
421 * @pt: packet type declaration
422 *
423 * Remove a protocol handler that was previously added to the kernel
424 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
425 * from the kernel lists and can be freed or reused once this function
426 * returns.
427 *
428 * This call sleeps to guarantee that no CPU is looking at the packet
429 * type after return.
430 */
431void dev_remove_pack(struct packet_type *pt)
432{
433 __dev_remove_pack(pt);
4ec93edb 434
1da177e4
LT
435 synchronize_net();
436}
437
438/******************************************************************************
439
440 Device Boot-time Settings Routines
441
442*******************************************************************************/
443
444/* Boot time configuration table */
445static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
446
447/**
448 * netdev_boot_setup_add - add new setup entry
449 * @name: name of the device
450 * @map: configured settings for the device
451 *
452 * Adds new setup entry to the dev_boot_setup list. The function
453 * returns 0 on error and 1 on success. This is a generic routine to
454 * all netdevices.
455 */
456static int netdev_boot_setup_add(char *name, struct ifmap *map)
457{
458 struct netdev_boot_setup *s;
459 int i;
460
461 s = dev_boot_setup;
462 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
463 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
464 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 465 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
466 memcpy(&s[i].map, map, sizeof(s[i].map));
467 break;
468 }
469 }
470
471 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
472}
473
474/**
475 * netdev_boot_setup_check - check boot time settings
476 * @dev: the netdevice
477 *
478 * Check boot time settings for the device.
479 * The found settings are set for the device to be used
480 * later in the device probing.
481 * Returns 0 if no settings found, 1 if they are.
482 */
483int netdev_boot_setup_check(struct net_device *dev)
484{
485 struct netdev_boot_setup *s = dev_boot_setup;
486 int i;
487
488 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
489 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 490 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
491 dev->irq = s[i].map.irq;
492 dev->base_addr = s[i].map.base_addr;
493 dev->mem_start = s[i].map.mem_start;
494 dev->mem_end = s[i].map.mem_end;
495 return 1;
496 }
497 }
498 return 0;
499}
500
501
502/**
503 * netdev_boot_base - get address from boot time settings
504 * @prefix: prefix for network device
505 * @unit: id for network device
506 *
507 * Check boot time settings for the base address of device.
508 * The found settings are set for the device to be used
509 * later in the device probing.
510 * Returns 0 if no settings found.
511 */
512unsigned long netdev_boot_base(const char *prefix, int unit)
513{
514 const struct netdev_boot_setup *s = dev_boot_setup;
515 char name[IFNAMSIZ];
516 int i;
517
518 sprintf(name, "%s%d", prefix, unit);
519
520 /*
521 * If device already registered then return base of 1
522 * to indicate not to probe for this interface
523 */
881d966b 524 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
525 return 1;
526
527 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
528 if (!strcmp(name, s[i].name))
529 return s[i].map.base_addr;
530 return 0;
531}
532
533/*
534 * Saves at boot time configured settings for any netdevice.
535 */
536int __init netdev_boot_setup(char *str)
537{
538 int ints[5];
539 struct ifmap map;
540
541 str = get_options(str, ARRAY_SIZE(ints), ints);
542 if (!str || !*str)
543 return 0;
544
545 /* Save settings */
546 memset(&map, 0, sizeof(map));
547 if (ints[0] > 0)
548 map.irq = ints[1];
549 if (ints[0] > 1)
550 map.base_addr = ints[2];
551 if (ints[0] > 2)
552 map.mem_start = ints[3];
553 if (ints[0] > 3)
554 map.mem_end = ints[4];
555
556 /* Add new entry to the list */
557 return netdev_boot_setup_add(str, &map);
558}
559
560__setup("netdev=", netdev_boot_setup);
561
562/*******************************************************************************
563
564 Device Interface Subroutines
565
566*******************************************************************************/
567
568/**
569 * __dev_get_by_name - find a device by its name
c4ea43c5 570 * @net: the applicable net namespace
1da177e4
LT
571 * @name: name to find
572 *
573 * Find an interface by name. Must be called under RTNL semaphore
574 * or @dev_base_lock. If the name is found a pointer to the device
575 * is returned. If the name is not found then %NULL is returned. The
576 * reference counters are not incremented so the caller must be
577 * careful with locks.
578 */
579
881d966b 580struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
581{
582 struct hlist_node *p;
583
881d966b 584 hlist_for_each(p, dev_name_hash(net, name)) {
1da177e4
LT
585 struct net_device *dev
586 = hlist_entry(p, struct net_device, name_hlist);
587 if (!strncmp(dev->name, name, IFNAMSIZ))
588 return dev;
589 }
590 return NULL;
591}
592
593/**
594 * dev_get_by_name - find a device by its name
c4ea43c5 595 * @net: the applicable net namespace
1da177e4
LT
596 * @name: name to find
597 *
598 * Find an interface by name. This can be called from any
599 * context and does its own locking. The returned handle has
600 * the usage count incremented and the caller must use dev_put() to
601 * release it when it is no longer needed. %NULL is returned if no
602 * matching device is found.
603 */
604
881d966b 605struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
606{
607 struct net_device *dev;
608
609 read_lock(&dev_base_lock);
881d966b 610 dev = __dev_get_by_name(net, name);
1da177e4
LT
611 if (dev)
612 dev_hold(dev);
613 read_unlock(&dev_base_lock);
614 return dev;
615}
616
617/**
618 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 619 * @net: the applicable net namespace
1da177e4
LT
620 * @ifindex: index of device
621 *
622 * Search for an interface by index. Returns %NULL if the device
623 * is not found or a pointer to the device. The device has not
624 * had its reference counter increased so the caller must be careful
625 * about locking. The caller must hold either the RTNL semaphore
626 * or @dev_base_lock.
627 */
628
881d966b 629struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
630{
631 struct hlist_node *p;
632
881d966b 633 hlist_for_each(p, dev_index_hash(net, ifindex)) {
1da177e4
LT
634 struct net_device *dev
635 = hlist_entry(p, struct net_device, index_hlist);
636 if (dev->ifindex == ifindex)
637 return dev;
638 }
639 return NULL;
640}
641
642
643/**
644 * dev_get_by_index - find a device by its ifindex
c4ea43c5 645 * @net: the applicable net namespace
1da177e4
LT
646 * @ifindex: index of device
647 *
648 * Search for an interface by index. Returns NULL if the device
649 * is not found or a pointer to the device. The device returned has
650 * had a reference added and the pointer is safe until the user calls
651 * dev_put to indicate they have finished with it.
652 */
653
881d966b 654struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
655{
656 struct net_device *dev;
657
658 read_lock(&dev_base_lock);
881d966b 659 dev = __dev_get_by_index(net, ifindex);
1da177e4
LT
660 if (dev)
661 dev_hold(dev);
662 read_unlock(&dev_base_lock);
663 return dev;
664}
665
666/**
667 * dev_getbyhwaddr - find a device by its hardware address
c4ea43c5 668 * @net: the applicable net namespace
1da177e4
LT
669 * @type: media type of device
670 * @ha: hardware address
671 *
672 * Search for an interface by MAC address. Returns NULL if the device
673 * is not found or a pointer to the device. The caller must hold the
674 * rtnl semaphore. The returned device has not had its ref count increased
675 * and the caller must therefore be careful about locking
676 *
677 * BUGS:
678 * If the API was consistent this would be __dev_get_by_hwaddr
679 */
680
881d966b 681struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
1da177e4
LT
682{
683 struct net_device *dev;
684
685 ASSERT_RTNL();
686
81103a52 687 for_each_netdev(net, dev)
1da177e4
LT
688 if (dev->type == type &&
689 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
690 return dev;
691
692 return NULL;
1da177e4
LT
693}
694
cf309e3f
JF
695EXPORT_SYMBOL(dev_getbyhwaddr);
696
881d966b 697struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
698{
699 struct net_device *dev;
700
4e9cac2b 701 ASSERT_RTNL();
881d966b 702 for_each_netdev(net, dev)
4e9cac2b 703 if (dev->type == type)
7562f876
PE
704 return dev;
705
706 return NULL;
4e9cac2b
PM
707}
708
709EXPORT_SYMBOL(__dev_getfirstbyhwtype);
710
881d966b 711struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b
PM
712{
713 struct net_device *dev;
714
715 rtnl_lock();
881d966b 716 dev = __dev_getfirstbyhwtype(net, type);
4e9cac2b
PM
717 if (dev)
718 dev_hold(dev);
1da177e4
LT
719 rtnl_unlock();
720 return dev;
721}
722
723EXPORT_SYMBOL(dev_getfirstbyhwtype);
724
725/**
726 * dev_get_by_flags - find any device with given flags
c4ea43c5 727 * @net: the applicable net namespace
1da177e4
LT
728 * @if_flags: IFF_* values
729 * @mask: bitmask of bits in if_flags to check
730 *
731 * Search for any interface with the given flags. Returns NULL if a device
4ec93edb 732 * is not found or a pointer to the device. The device returned has
1da177e4
LT
733 * had a reference added and the pointer is safe until the user calls
734 * dev_put to indicate they have finished with it.
735 */
736
881d966b 737struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
1da177e4 738{
7562f876 739 struct net_device *dev, *ret;
1da177e4 740
7562f876 741 ret = NULL;
1da177e4 742 read_lock(&dev_base_lock);
881d966b 743 for_each_netdev(net, dev) {
1da177e4
LT
744 if (((dev->flags ^ if_flags) & mask) == 0) {
745 dev_hold(dev);
7562f876 746 ret = dev;
1da177e4
LT
747 break;
748 }
749 }
750 read_unlock(&dev_base_lock);
7562f876 751 return ret;
1da177e4
LT
752}
753
754/**
755 * dev_valid_name - check if name is okay for network device
756 * @name: name string
757 *
758 * Network device names need to be valid file names to
c7fa9d18
DM
759 * to allow sysfs to work. We also disallow any kind of
760 * whitespace.
1da177e4 761 */
c2373ee9 762int dev_valid_name(const char *name)
1da177e4 763{
c7fa9d18
DM
764 if (*name == '\0')
765 return 0;
b6fe17d6
SH
766 if (strlen(name) >= IFNAMSIZ)
767 return 0;
c7fa9d18
DM
768 if (!strcmp(name, ".") || !strcmp(name, ".."))
769 return 0;
770
771 while (*name) {
772 if (*name == '/' || isspace(*name))
773 return 0;
774 name++;
775 }
776 return 1;
1da177e4
LT
777}
778
779/**
b267b179
EB
780 * __dev_alloc_name - allocate a name for a device
781 * @net: network namespace to allocate the device name in
1da177e4 782 * @name: name format string
b267b179 783 * @buf: scratch buffer and result name string
1da177e4
LT
784 *
785 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
786 * id. It scans list of devices to build up a free map, then chooses
787 * the first empty slot. The caller must hold the dev_base or rtnl lock
788 * while allocating the name and adding the device in order to avoid
789 * duplicates.
790 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
791 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
792 */
793
b267b179 794static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
795{
796 int i = 0;
1da177e4
LT
797 const char *p;
798 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 799 unsigned long *inuse;
1da177e4
LT
800 struct net_device *d;
801
802 p = strnchr(name, IFNAMSIZ-1, '%');
803 if (p) {
804 /*
805 * Verify the string as this thing may have come from
806 * the user. There must be either one "%d" and no other "%"
807 * characters.
808 */
809 if (p[1] != 'd' || strchr(p + 2, '%'))
810 return -EINVAL;
811
812 /* Use one page as a bit array of possible slots */
cfcabdcc 813 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
814 if (!inuse)
815 return -ENOMEM;
816
881d966b 817 for_each_netdev(net, d) {
1da177e4
LT
818 if (!sscanf(d->name, name, &i))
819 continue;
820 if (i < 0 || i >= max_netdevices)
821 continue;
822
823 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 824 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
825 if (!strncmp(buf, d->name, IFNAMSIZ))
826 set_bit(i, inuse);
827 }
828
829 i = find_first_zero_bit(inuse, max_netdevices);
830 free_page((unsigned long) inuse);
831 }
832
b267b179
EB
833 snprintf(buf, IFNAMSIZ, name, i);
834 if (!__dev_get_by_name(net, buf))
1da177e4 835 return i;
1da177e4
LT
836
837 /* It is possible to run out of possible slots
838 * when the name is long and there isn't enough space left
839 * for the digits, or if all bits are used.
840 */
841 return -ENFILE;
842}
843
b267b179
EB
844/**
845 * dev_alloc_name - allocate a name for a device
846 * @dev: device
847 * @name: name format string
848 *
849 * Passed a format string - eg "lt%d" it will try and find a suitable
850 * id. It scans list of devices to build up a free map, then chooses
851 * the first empty slot. The caller must hold the dev_base or rtnl lock
852 * while allocating the name and adding the device in order to avoid
853 * duplicates.
854 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
855 * Returns the number of the unit assigned or a negative errno code.
856 */
857
858int dev_alloc_name(struct net_device *dev, const char *name)
859{
860 char buf[IFNAMSIZ];
861 struct net *net;
862 int ret;
863
c346dca1
YH
864 BUG_ON(!dev_net(dev));
865 net = dev_net(dev);
b267b179
EB
866 ret = __dev_alloc_name(net, name, buf);
867 if (ret >= 0)
868 strlcpy(dev->name, buf, IFNAMSIZ);
869 return ret;
870}
871
1da177e4
LT
872
873/**
874 * dev_change_name - change name of a device
875 * @dev: device
876 * @newname: name (or format string) must be at least IFNAMSIZ
877 *
878 * Change name of a device, can pass format strings "eth%d".
879 * for wildcarding.
880 */
cf04a4c7 881int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 882{
fcc5a03a 883 char oldname[IFNAMSIZ];
1da177e4 884 int err = 0;
fcc5a03a 885 int ret;
881d966b 886 struct net *net;
1da177e4
LT
887
888 ASSERT_RTNL();
c346dca1 889 BUG_ON(!dev_net(dev));
1da177e4 890
c346dca1 891 net = dev_net(dev);
1da177e4
LT
892 if (dev->flags & IFF_UP)
893 return -EBUSY;
894
895 if (!dev_valid_name(newname))
896 return -EINVAL;
897
c8d90dca
SH
898 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
899 return 0;
900
fcc5a03a
HX
901 memcpy(oldname, dev->name, IFNAMSIZ);
902
1da177e4
LT
903 if (strchr(newname, '%')) {
904 err = dev_alloc_name(dev, newname);
905 if (err < 0)
906 return err;
1da177e4 907 }
881d966b 908 else if (__dev_get_by_name(net, newname))
1da177e4
LT
909 return -EEXIST;
910 else
911 strlcpy(dev->name, newname, IFNAMSIZ);
912
fcc5a03a 913rollback:
3891845e
EB
914 /* For now only devices in the initial network namespace
915 * are in sysfs.
916 */
917 if (net == &init_net) {
918 ret = device_rename(&dev->dev, dev->name);
919 if (ret) {
920 memcpy(dev->name, oldname, IFNAMSIZ);
921 return ret;
922 }
dcc99773 923 }
7f988eab
HX
924
925 write_lock_bh(&dev_base_lock);
92749821 926 hlist_del(&dev->name_hlist);
881d966b 927 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
928 write_unlock_bh(&dev_base_lock);
929
056925ab 930 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
931 ret = notifier_to_errno(ret);
932
933 if (ret) {
934 if (err) {
935 printk(KERN_ERR
936 "%s: name change rollback failed: %d.\n",
937 dev->name, ret);
938 } else {
939 err = ret;
940 memcpy(dev->name, oldname, IFNAMSIZ);
941 goto rollback;
942 }
943 }
1da177e4
LT
944
945 return err;
946}
947
0b815a1a
SH
948/**
949 * dev_set_alias - change ifalias of a device
950 * @dev: device
951 * @alias: name up to IFALIASZ
f0db275a 952 * @len: limit of bytes to copy from info
0b815a1a
SH
953 *
954 * Set ifalias for a device,
955 */
956int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
957{
958 ASSERT_RTNL();
959
960 if (len >= IFALIASZ)
961 return -EINVAL;
962
96ca4a2c
OH
963 if (!len) {
964 if (dev->ifalias) {
965 kfree(dev->ifalias);
966 dev->ifalias = NULL;
967 }
968 return 0;
969 }
970
0b815a1a
SH
971 dev->ifalias = krealloc(dev->ifalias, len+1, GFP_KERNEL);
972 if (!dev->ifalias)
973 return -ENOMEM;
974
975 strlcpy(dev->ifalias, alias, len+1);
976 return len;
977}
978
979
d8a33ac4 980/**
3041a069 981 * netdev_features_change - device changes features
d8a33ac4
SH
982 * @dev: device to cause notification
983 *
984 * Called to indicate a device has changed features.
985 */
986void netdev_features_change(struct net_device *dev)
987{
056925ab 988 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
989}
990EXPORT_SYMBOL(netdev_features_change);
991
1da177e4
LT
992/**
993 * netdev_state_change - device changes state
994 * @dev: device to cause notification
995 *
996 * Called to indicate a device has changed state. This function calls
997 * the notifier chains for netdev_chain and sends a NEWLINK message
998 * to the routing socket.
999 */
1000void netdev_state_change(struct net_device *dev)
1001{
1002 if (dev->flags & IFF_UP) {
056925ab 1003 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1da177e4
LT
1004 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1005 }
1006}
1007
c1da4ac7
OG
1008void netdev_bonding_change(struct net_device *dev)
1009{
1010 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
1011}
1012EXPORT_SYMBOL(netdev_bonding_change);
1013
1da177e4
LT
1014/**
1015 * dev_load - load a network module
c4ea43c5 1016 * @net: the applicable net namespace
1da177e4
LT
1017 * @name: name of interface
1018 *
1019 * If a network interface is not present and the process has suitable
1020 * privileges this function loads the module. If module loading is not
1021 * available in this kernel then it becomes a nop.
1022 */
1023
881d966b 1024void dev_load(struct net *net, const char *name)
1da177e4 1025{
4ec93edb 1026 struct net_device *dev;
1da177e4
LT
1027
1028 read_lock(&dev_base_lock);
881d966b 1029 dev = __dev_get_by_name(net, name);
1da177e4
LT
1030 read_unlock(&dev_base_lock);
1031
1032 if (!dev && capable(CAP_SYS_MODULE))
1033 request_module("%s", name);
1034}
1035
1da177e4
LT
1036/**
1037 * dev_open - prepare an interface for use.
1038 * @dev: device to open
1039 *
1040 * Takes a device from down to up state. The device's private open
1041 * function is invoked and then the multicast lists are loaded. Finally
1042 * the device is moved into the up state and a %NETDEV_UP message is
1043 * sent to the netdev notifier chain.
1044 *
1045 * Calling this function on an active interface is a nop. On a failure
1046 * a negative errno code is returned.
1047 */
1048int dev_open(struct net_device *dev)
1049{
d314774c 1050 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
1051 int ret = 0;
1052
e46b66bc
BH
1053 ASSERT_RTNL();
1054
1da177e4
LT
1055 /*
1056 * Is it already up?
1057 */
1058
1059 if (dev->flags & IFF_UP)
1060 return 0;
1061
1062 /*
1063 * Is it even present?
1064 */
1065 if (!netif_device_present(dev))
1066 return -ENODEV;
1067
1068 /*
1069 * Call device private open method
1070 */
1071 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1072
d314774c
SH
1073 if (ops->ndo_validate_addr)
1074 ret = ops->ndo_validate_addr(dev);
bada339b 1075
d314774c
SH
1076 if (!ret && ops->ndo_open)
1077 ret = ops->ndo_open(dev);
1da177e4 1078
4ec93edb 1079 /*
1da177e4
LT
1080 * If it went open OK then:
1081 */
1082
bada339b
JG
1083 if (ret)
1084 clear_bit(__LINK_STATE_START, &dev->state);
1085 else {
1da177e4
LT
1086 /*
1087 * Set the flags.
1088 */
1089 dev->flags |= IFF_UP;
1090
649274d9
DW
1091 /*
1092 * Enable NET_DMA
1093 */
b4bd07c2 1094 net_dmaengine_get();
649274d9 1095
1da177e4
LT
1096 /*
1097 * Initialize multicasting status
1098 */
4417da66 1099 dev_set_rx_mode(dev);
1da177e4
LT
1100
1101 /*
1102 * Wakeup transmit queue engine
1103 */
1104 dev_activate(dev);
1105
1106 /*
1107 * ... and announce new interface.
1108 */
056925ab 1109 call_netdevice_notifiers(NETDEV_UP, dev);
1da177e4 1110 }
bada339b 1111
1da177e4
LT
1112 return ret;
1113}
1114
1115/**
1116 * dev_close - shutdown an interface.
1117 * @dev: device to shutdown
1118 *
1119 * This function moves an active device into down state. A
1120 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1121 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1122 * chain.
1123 */
1124int dev_close(struct net_device *dev)
1125{
d314774c 1126 const struct net_device_ops *ops = dev->netdev_ops;
e46b66bc
BH
1127 ASSERT_RTNL();
1128
9d5010db
DM
1129 might_sleep();
1130
1da177e4
LT
1131 if (!(dev->flags & IFF_UP))
1132 return 0;
1133
1134 /*
1135 * Tell people we are going down, so that they can
1136 * prepare to death, when device is still operating.
1137 */
056925ab 1138 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1139
1da177e4
LT
1140 clear_bit(__LINK_STATE_START, &dev->state);
1141
1142 /* Synchronize to scheduled poll. We cannot touch poll list,
bea3348e
SH
1143 * it can be even on different cpu. So just clear netif_running().
1144 *
1145 * dev->stop() will invoke napi_disable() on all of it's
1146 * napi_struct instances on this device.
1147 */
1da177e4 1148 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1da177e4 1149
d8b2a4d2
ML
1150 dev_deactivate(dev);
1151
1da177e4
LT
1152 /*
1153 * Call the device specific close. This cannot fail.
1154 * Only if device is UP
1155 *
1156 * We allow it to be called even after a DETACH hot-plug
1157 * event.
1158 */
d314774c
SH
1159 if (ops->ndo_stop)
1160 ops->ndo_stop(dev);
1da177e4
LT
1161
1162 /*
1163 * Device is now down.
1164 */
1165
1166 dev->flags &= ~IFF_UP;
1167
1168 /*
1169 * Tell people we are down
1170 */
056925ab 1171 call_netdevice_notifiers(NETDEV_DOWN, dev);
1da177e4 1172
649274d9
DW
1173 /*
1174 * Shutdown NET_DMA
1175 */
b4bd07c2 1176 net_dmaengine_put();
649274d9 1177
1da177e4
LT
1178 return 0;
1179}
1180
1181
0187bdfb
BH
1182/**
1183 * dev_disable_lro - disable Large Receive Offload on a device
1184 * @dev: device
1185 *
1186 * Disable Large Receive Offload (LRO) on a net device. Must be
1187 * called under RTNL. This is needed if received packets may be
1188 * forwarded to another interface.
1189 */
1190void dev_disable_lro(struct net_device *dev)
1191{
1192 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1193 dev->ethtool_ops->set_flags) {
1194 u32 flags = dev->ethtool_ops->get_flags(dev);
1195 if (flags & ETH_FLAG_LRO) {
1196 flags &= ~ETH_FLAG_LRO;
1197 dev->ethtool_ops->set_flags(dev, flags);
1198 }
1199 }
1200 WARN_ON(dev->features & NETIF_F_LRO);
1201}
1202EXPORT_SYMBOL(dev_disable_lro);
1203
1204
881d966b
EB
1205static int dev_boot_phase = 1;
1206
1da177e4
LT
1207/*
1208 * Device change register/unregister. These are not inline or static
1209 * as we export them to the world.
1210 */
1211
1212/**
1213 * register_netdevice_notifier - register a network notifier block
1214 * @nb: notifier
1215 *
1216 * Register a notifier to be called when network device events occur.
1217 * The notifier passed is linked into the kernel structures and must
1218 * not be reused until it has been unregistered. A negative errno code
1219 * is returned on a failure.
1220 *
1221 * When registered all registration and up events are replayed
4ec93edb 1222 * to the new notifier to allow device to have a race free
1da177e4
LT
1223 * view of the network device list.
1224 */
1225
1226int register_netdevice_notifier(struct notifier_block *nb)
1227{
1228 struct net_device *dev;
fcc5a03a 1229 struct net_device *last;
881d966b 1230 struct net *net;
1da177e4
LT
1231 int err;
1232
1233 rtnl_lock();
f07d5b94 1234 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1235 if (err)
1236 goto unlock;
881d966b
EB
1237 if (dev_boot_phase)
1238 goto unlock;
1239 for_each_net(net) {
1240 for_each_netdev(net, dev) {
1241 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1242 err = notifier_to_errno(err);
1243 if (err)
1244 goto rollback;
1245
1246 if (!(dev->flags & IFF_UP))
1247 continue;
1da177e4 1248
881d966b
EB
1249 nb->notifier_call(nb, NETDEV_UP, dev);
1250 }
1da177e4 1251 }
fcc5a03a
HX
1252
1253unlock:
1da177e4
LT
1254 rtnl_unlock();
1255 return err;
fcc5a03a
HX
1256
1257rollback:
1258 last = dev;
881d966b
EB
1259 for_each_net(net) {
1260 for_each_netdev(net, dev) {
1261 if (dev == last)
1262 break;
fcc5a03a 1263
881d966b
EB
1264 if (dev->flags & IFF_UP) {
1265 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1266 nb->notifier_call(nb, NETDEV_DOWN, dev);
1267 }
1268 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1269 }
fcc5a03a 1270 }
c67625a1
PE
1271
1272 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1273 goto unlock;
1da177e4
LT
1274}
1275
1276/**
1277 * unregister_netdevice_notifier - unregister a network notifier block
1278 * @nb: notifier
1279 *
1280 * Unregister a notifier previously registered by
1281 * register_netdevice_notifier(). The notifier is unlinked into the
1282 * kernel structures and may then be reused. A negative errno code
1283 * is returned on a failure.
1284 */
1285
1286int unregister_netdevice_notifier(struct notifier_block *nb)
1287{
9f514950
HX
1288 int err;
1289
1290 rtnl_lock();
f07d5b94 1291 err = raw_notifier_chain_unregister(&netdev_chain, nb);
9f514950
HX
1292 rtnl_unlock();
1293 return err;
1da177e4
LT
1294}
1295
1296/**
1297 * call_netdevice_notifiers - call all network notifier blocks
1298 * @val: value passed unmodified to notifier function
c4ea43c5 1299 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1300 *
1301 * Call all network notifier blocks. Parameters and return value
f07d5b94 1302 * are as for raw_notifier_call_chain().
1da177e4
LT
1303 */
1304
ad7379d4 1305int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1306{
ad7379d4 1307 return raw_notifier_call_chain(&netdev_chain, val, dev);
1da177e4
LT
1308}
1309
1310/* When > 0 there are consumers of rx skb time stamps */
1311static atomic_t netstamp_needed = ATOMIC_INIT(0);
1312
1313void net_enable_timestamp(void)
1314{
1315 atomic_inc(&netstamp_needed);
1316}
1317
1318void net_disable_timestamp(void)
1319{
1320 atomic_dec(&netstamp_needed);
1321}
1322
a61bbcf2 1323static inline void net_timestamp(struct sk_buff *skb)
1da177e4
LT
1324{
1325 if (atomic_read(&netstamp_needed))
a61bbcf2 1326 __net_timestamp(skb);
b7aa0bf7
ED
1327 else
1328 skb->tstamp.tv64 = 0;
1da177e4
LT
1329}
1330
1331/*
1332 * Support routine. Sends outgoing frames to any network
1333 * taps currently in use.
1334 */
1335
f6a78bfc 1336static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1337{
1338 struct packet_type *ptype;
a61bbcf2 1339
8caf1539
JP
1340#ifdef CONFIG_NET_CLS_ACT
1341 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1342 net_timestamp(skb);
1343#else
a61bbcf2 1344 net_timestamp(skb);
8caf1539 1345#endif
1da177e4
LT
1346
1347 rcu_read_lock();
1348 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1349 /* Never send packets back to the socket
1350 * they originated from - MvS (miquels@drinkel.ow.org)
1351 */
1352 if ((ptype->dev == dev || !ptype->dev) &&
1353 (ptype->af_packet_priv == NULL ||
1354 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1355 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1356 if (!skb2)
1357 break;
1358
1359 /* skb->nh should be correctly
1360 set by sender, so that the second statement is
1361 just protection against buggy protocols.
1362 */
459a98ed 1363 skb_reset_mac_header(skb2);
1da177e4 1364
d56f90a7 1365 if (skb_network_header(skb2) < skb2->data ||
27a884dc 1366 skb2->network_header > skb2->tail) {
1da177e4
LT
1367 if (net_ratelimit())
1368 printk(KERN_CRIT "protocol %04x is "
1369 "buggy, dev %s\n",
1370 skb2->protocol, dev->name);
c1d2bbe1 1371 skb_reset_network_header(skb2);
1da177e4
LT
1372 }
1373
b0e380b1 1374 skb2->transport_header = skb2->network_header;
1da177e4 1375 skb2->pkt_type = PACKET_OUTGOING;
f2ccd8fa 1376 ptype->func(skb2, skb->dev, ptype, skb->dev);
1da177e4
LT
1377 }
1378 }
1379 rcu_read_unlock();
1380}
1381
56079431 1382
def82a1d 1383static inline void __netif_reschedule(struct Qdisc *q)
56079431 1384{
def82a1d
JP
1385 struct softnet_data *sd;
1386 unsigned long flags;
56079431 1387
def82a1d
JP
1388 local_irq_save(flags);
1389 sd = &__get_cpu_var(softnet_data);
1390 q->next_sched = sd->output_queue;
1391 sd->output_queue = q;
1392 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1393 local_irq_restore(flags);
1394}
1395
1396void __netif_schedule(struct Qdisc *q)
1397{
1398 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1399 __netif_reschedule(q);
56079431
DV
1400}
1401EXPORT_SYMBOL(__netif_schedule);
1402
bea3348e 1403void dev_kfree_skb_irq(struct sk_buff *skb)
56079431 1404{
bea3348e
SH
1405 if (atomic_dec_and_test(&skb->users)) {
1406 struct softnet_data *sd;
1407 unsigned long flags;
56079431 1408
bea3348e
SH
1409 local_irq_save(flags);
1410 sd = &__get_cpu_var(softnet_data);
1411 skb->next = sd->completion_queue;
1412 sd->completion_queue = skb;
1413 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1414 local_irq_restore(flags);
1415 }
56079431 1416}
bea3348e 1417EXPORT_SYMBOL(dev_kfree_skb_irq);
56079431
DV
1418
1419void dev_kfree_skb_any(struct sk_buff *skb)
1420{
1421 if (in_irq() || irqs_disabled())
1422 dev_kfree_skb_irq(skb);
1423 else
1424 dev_kfree_skb(skb);
1425}
1426EXPORT_SYMBOL(dev_kfree_skb_any);
1427
1428
bea3348e
SH
1429/**
1430 * netif_device_detach - mark device as removed
1431 * @dev: network device
1432 *
1433 * Mark device as removed from system and therefore no longer available.
1434 */
56079431
DV
1435void netif_device_detach(struct net_device *dev)
1436{
1437 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1438 netif_running(dev)) {
d543103a 1439 netif_tx_stop_all_queues(dev);
56079431
DV
1440 }
1441}
1442EXPORT_SYMBOL(netif_device_detach);
1443
bea3348e
SH
1444/**
1445 * netif_device_attach - mark device as attached
1446 * @dev: network device
1447 *
1448 * Mark device as attached from system and restart if needed.
1449 */
56079431
DV
1450void netif_device_attach(struct net_device *dev)
1451{
1452 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1453 netif_running(dev)) {
d543103a 1454 netif_tx_wake_all_queues(dev);
4ec93edb 1455 __netdev_watchdog_up(dev);
56079431
DV
1456 }
1457}
1458EXPORT_SYMBOL(netif_device_attach);
1459
6de329e2
BH
1460static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1461{
1462 return ((features & NETIF_F_GEN_CSUM) ||
1463 ((features & NETIF_F_IP_CSUM) &&
1464 protocol == htons(ETH_P_IP)) ||
1465 ((features & NETIF_F_IPV6_CSUM) &&
1c8dbcf6
YZ
1466 protocol == htons(ETH_P_IPV6)) ||
1467 ((features & NETIF_F_FCOE_CRC) &&
1468 protocol == htons(ETH_P_FCOE)));
6de329e2
BH
1469}
1470
1471static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1472{
1473 if (can_checksum_protocol(dev->features, skb->protocol))
1474 return true;
1475
1476 if (skb->protocol == htons(ETH_P_8021Q)) {
1477 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1478 if (can_checksum_protocol(dev->features & dev->vlan_features,
1479 veh->h_vlan_encapsulated_proto))
1480 return true;
1481 }
1482
1483 return false;
1484}
56079431 1485
1da177e4
LT
1486/*
1487 * Invalidate hardware checksum when packet is to be mangled, and
1488 * complete checksum manually on outgoing path.
1489 */
84fa7933 1490int skb_checksum_help(struct sk_buff *skb)
1da177e4 1491{
d3bc23e7 1492 __wsum csum;
663ead3b 1493 int ret = 0, offset;
1da177e4 1494
84fa7933 1495 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
1496 goto out_set_summed;
1497
1498 if (unlikely(skb_shinfo(skb)->gso_size)) {
a430a43d
HX
1499 /* Let GSO fix up the checksum. */
1500 goto out_set_summed;
1da177e4
LT
1501 }
1502
a030847e
HX
1503 offset = skb->csum_start - skb_headroom(skb);
1504 BUG_ON(offset >= skb_headlen(skb));
1505 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1506
1507 offset += skb->csum_offset;
1508 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1509
1510 if (skb_cloned(skb) &&
1511 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
1512 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1513 if (ret)
1514 goto out;
1515 }
1516
a030847e 1517 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 1518out_set_summed:
1da177e4 1519 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 1520out:
1da177e4
LT
1521 return ret;
1522}
1523
f6a78bfc
HX
1524/**
1525 * skb_gso_segment - Perform segmentation on skb.
1526 * @skb: buffer to segment
576a30eb 1527 * @features: features for the output path (see dev->features)
f6a78bfc
HX
1528 *
1529 * This function segments the given skb and returns a list of segments.
576a30eb
HX
1530 *
1531 * It may return NULL if the skb requires no segmentation. This is
1532 * only possible when GSO is used for verifying header integrity.
f6a78bfc 1533 */
576a30eb 1534struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
f6a78bfc
HX
1535{
1536 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1537 struct packet_type *ptype;
252e3346 1538 __be16 type = skb->protocol;
a430a43d 1539 int err;
f6a78bfc 1540
459a98ed 1541 skb_reset_mac_header(skb);
b0e380b1 1542 skb->mac_len = skb->network_header - skb->mac_header;
f6a78bfc
HX
1543 __skb_pull(skb, skb->mac_len);
1544
67fd1a73
HX
1545 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1546 struct net_device *dev = skb->dev;
1547 struct ethtool_drvinfo info = {};
1548
1549 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1550 dev->ethtool_ops->get_drvinfo(dev, &info);
1551
1552 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1553 "ip_summed=%d",
1554 info.driver, dev ? dev->features : 0L,
1555 skb->sk ? skb->sk->sk_route_caps : 0L,
1556 skb->len, skb->data_len, skb->ip_summed);
1557
a430a43d
HX
1558 if (skb_header_cloned(skb) &&
1559 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1560 return ERR_PTR(err);
1561 }
1562
f6a78bfc 1563 rcu_read_lock();
82d8a867
PE
1564 list_for_each_entry_rcu(ptype,
1565 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
f6a78bfc 1566 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
84fa7933 1567 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
a430a43d
HX
1568 err = ptype->gso_send_check(skb);
1569 segs = ERR_PTR(err);
1570 if (err || skb_gso_ok(skb, features))
1571 break;
d56f90a7
ACM
1572 __skb_push(skb, (skb->data -
1573 skb_network_header(skb)));
a430a43d 1574 }
576a30eb 1575 segs = ptype->gso_segment(skb, features);
f6a78bfc
HX
1576 break;
1577 }
1578 }
1579 rcu_read_unlock();
1580
98e399f8 1581 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 1582
f6a78bfc
HX
1583 return segs;
1584}
1585
1586EXPORT_SYMBOL(skb_gso_segment);
1587
fb286bb2
HX
1588/* Take action when hardware reception checksum errors are detected. */
1589#ifdef CONFIG_BUG
1590void netdev_rx_csum_fault(struct net_device *dev)
1591{
1592 if (net_ratelimit()) {
4ec93edb 1593 printk(KERN_ERR "%s: hw csum failure.\n",
246a4212 1594 dev ? dev->name : "<unknown>");
fb286bb2
HX
1595 dump_stack();
1596 }
1597}
1598EXPORT_SYMBOL(netdev_rx_csum_fault);
1599#endif
1600
1da177e4
LT
1601/* Actually, we should eliminate this check as soon as we know, that:
1602 * 1. IOMMU is present and allows to map all the memory.
1603 * 2. No high memory really exists on this machine.
1604 */
1605
1606static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1607{
3d3a8533 1608#ifdef CONFIG_HIGHMEM
1da177e4
LT
1609 int i;
1610
1611 if (dev->features & NETIF_F_HIGHDMA)
1612 return 0;
1613
1614 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1615 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1616 return 1;
1617
3d3a8533 1618#endif
1da177e4
LT
1619 return 0;
1620}
1da177e4 1621
f6a78bfc
HX
1622struct dev_gso_cb {
1623 void (*destructor)(struct sk_buff *skb);
1624};
1625
1626#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1627
1628static void dev_gso_skb_destructor(struct sk_buff *skb)
1629{
1630 struct dev_gso_cb *cb;
1631
1632 do {
1633 struct sk_buff *nskb = skb->next;
1634
1635 skb->next = nskb->next;
1636 nskb->next = NULL;
1637 kfree_skb(nskb);
1638 } while (skb->next);
1639
1640 cb = DEV_GSO_CB(skb);
1641 if (cb->destructor)
1642 cb->destructor(skb);
1643}
1644
1645/**
1646 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1647 * @skb: buffer to segment
1648 *
1649 * This function segments the given skb and stores the list of segments
1650 * in skb->next.
1651 */
1652static int dev_gso_segment(struct sk_buff *skb)
1653{
1654 struct net_device *dev = skb->dev;
1655 struct sk_buff *segs;
576a30eb
HX
1656 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1657 NETIF_F_SG : 0);
1658
1659 segs = skb_gso_segment(skb, features);
1660
1661 /* Verifying header integrity only. */
1662 if (!segs)
1663 return 0;
f6a78bfc 1664
801678c5 1665 if (IS_ERR(segs))
f6a78bfc
HX
1666 return PTR_ERR(segs);
1667
1668 skb->next = segs;
1669 DEV_GSO_CB(skb)->destructor = skb->destructor;
1670 skb->destructor = dev_gso_skb_destructor;
1671
1672 return 0;
1673}
1674
fd2ea0a7
DM
1675int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1676 struct netdev_queue *txq)
f6a78bfc 1677{
00829823 1678 const struct net_device_ops *ops = dev->netdev_ops;
ac45f602 1679 int rc;
00829823 1680
f6a78bfc 1681 if (likely(!skb->next)) {
9be9a6b9 1682 if (!list_empty(&ptype_all))
f6a78bfc
HX
1683 dev_queue_xmit_nit(skb, dev);
1684
576a30eb
HX
1685 if (netif_needs_gso(dev, skb)) {
1686 if (unlikely(dev_gso_segment(skb)))
1687 goto out_kfree_skb;
1688 if (skb->next)
1689 goto gso;
1690 }
f6a78bfc 1691
93f154b5
ED
1692 /*
1693 * If device doesnt need skb->dst, release it right now while
1694 * its hot in this cpu cache
1695 */
1696 if ((dev->priv_flags & IFF_XMIT_DST_RELEASE) && skb->dst) {
1697 dst_release(skb->dst);
1698 skb->dst = NULL;
1699 }
ac45f602 1700 rc = ops->ndo_start_xmit(skb, dev);
08baf561
ED
1701 if (rc == 0)
1702 txq_trans_update(txq);
ac45f602
PO
1703 /*
1704 * TODO: if skb_orphan() was called by
1705 * dev->hard_start_xmit() (for example, the unmodified
1706 * igb driver does that; bnx2 doesn't), then
1707 * skb_tx_software_timestamp() will be unable to send
1708 * back the time stamp.
1709 *
1710 * How can this be prevented? Always create another
1711 * reference to the socket before calling
1712 * dev->hard_start_xmit()? Prevent that skb_orphan()
1713 * does anything in dev->hard_start_xmit() by clearing
1714 * the skb destructor before the call and restoring it
1715 * afterwards, then doing the skb_orphan() ourselves?
1716 */
ac45f602 1717 return rc;
f6a78bfc
HX
1718 }
1719
576a30eb 1720gso:
f6a78bfc
HX
1721 do {
1722 struct sk_buff *nskb = skb->next;
f6a78bfc
HX
1723
1724 skb->next = nskb->next;
1725 nskb->next = NULL;
00829823 1726 rc = ops->ndo_start_xmit(nskb, dev);
f6a78bfc 1727 if (unlikely(rc)) {
f54d9e8d 1728 nskb->next = skb->next;
f6a78bfc
HX
1729 skb->next = nskb;
1730 return rc;
1731 }
08baf561 1732 txq_trans_update(txq);
fd2ea0a7 1733 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
f54d9e8d 1734 return NETDEV_TX_BUSY;
f6a78bfc 1735 } while (skb->next);
4ec93edb 1736
f6a78bfc
HX
1737 skb->destructor = DEV_GSO_CB(skb)->destructor;
1738
1739out_kfree_skb:
1740 kfree_skb(skb);
1741 return 0;
1742}
1743
7019298a 1744static u32 skb_tx_hashrnd;
b6b2fed1 1745
9247744e 1746u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
8f0f2223 1747{
7019298a 1748 u32 hash;
b6b2fed1 1749
513de11b
DM
1750 if (skb_rx_queue_recorded(skb)) {
1751 hash = skb_get_rx_queue(skb);
1752 while (unlikely (hash >= dev->real_num_tx_queues))
1753 hash -= dev->real_num_tx_queues;
1754 return hash;
1755 }
ec581f6a
ED
1756
1757 if (skb->sk && skb->sk->sk_hash)
7019298a 1758 hash = skb->sk->sk_hash;
ec581f6a 1759 else
7019298a 1760 hash = skb->protocol;
d5a9e24a 1761
7019298a 1762 hash = jhash_1word(hash, skb_tx_hashrnd);
b6b2fed1
DM
1763
1764 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
8f0f2223 1765}
9247744e 1766EXPORT_SYMBOL(skb_tx_hash);
8f0f2223 1767
e8a0464c
DM
1768static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1769 struct sk_buff *skb)
1770{
00829823 1771 const struct net_device_ops *ops = dev->netdev_ops;
fd2ea0a7
DM
1772 u16 queue_index = 0;
1773
00829823
SH
1774 if (ops->ndo_select_queue)
1775 queue_index = ops->ndo_select_queue(dev, skb);
8f0f2223 1776 else if (dev->real_num_tx_queues > 1)
7019298a 1777 queue_index = skb_tx_hash(dev, skb);
eae792b7 1778
fd2ea0a7
DM
1779 skb_set_queue_mapping(skb, queue_index);
1780 return netdev_get_tx_queue(dev, queue_index);
e8a0464c
DM
1781}
1782
d29f749e
DJ
1783/**
1784 * dev_queue_xmit - transmit a buffer
1785 * @skb: buffer to transmit
1786 *
1787 * Queue a buffer for transmission to a network device. The caller must
1788 * have set the device and priority and built the buffer before calling
1789 * this function. The function can be called from an interrupt.
1790 *
1791 * A negative errno code is returned on a failure. A success does not
1792 * guarantee the frame will be transmitted as it may be dropped due
1793 * to congestion or traffic shaping.
1794 *
1795 * -----------------------------------------------------------------------------------
1796 * I notice this method can also return errors from the queue disciplines,
1797 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1798 * be positive.
1799 *
1800 * Regardless of the return value, the skb is consumed, so it is currently
1801 * difficult to retry a send to this method. (You can bump the ref count
1802 * before sending to hold a reference for retry if you are careful.)
1803 *
1804 * When calling this method, interrupts MUST be enabled. This is because
1805 * the BH enable code must have IRQs enabled so that it will not deadlock.
1806 * --BLG
1807 */
1da177e4
LT
1808int dev_queue_xmit(struct sk_buff *skb)
1809{
1810 struct net_device *dev = skb->dev;
dc2b4847 1811 struct netdev_queue *txq;
1da177e4
LT
1812 struct Qdisc *q;
1813 int rc = -ENOMEM;
1814
f6a78bfc
HX
1815 /* GSO will handle the following emulations directly. */
1816 if (netif_needs_gso(dev, skb))
1817 goto gso;
1818
1da177e4
LT
1819 if (skb_shinfo(skb)->frag_list &&
1820 !(dev->features & NETIF_F_FRAGLIST) &&
364c6bad 1821 __skb_linearize(skb))
1da177e4
LT
1822 goto out_kfree_skb;
1823
1824 /* Fragmented skb is linearized if device does not support SG,
1825 * or if at least one of fragments is in highmem and device
1826 * does not support DMA from it.
1827 */
1828 if (skb_shinfo(skb)->nr_frags &&
1829 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
364c6bad 1830 __skb_linearize(skb))
1da177e4
LT
1831 goto out_kfree_skb;
1832
1833 /* If packet is not checksummed and device does not support
1834 * checksumming for this protocol, complete checksumming here.
1835 */
663ead3b
HX
1836 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1837 skb_set_transport_header(skb, skb->csum_start -
1838 skb_headroom(skb));
6de329e2
BH
1839 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1840 goto out_kfree_skb;
663ead3b 1841 }
1da177e4 1842
f6a78bfc 1843gso:
4ec93edb
YH
1844 /* Disable soft irqs for various locks below. Also
1845 * stops preemption for RCU.
1da177e4 1846 */
4ec93edb 1847 rcu_read_lock_bh();
1da177e4 1848
eae792b7 1849 txq = dev_pick_tx(dev, skb);
b0e1e646 1850 q = rcu_dereference(txq->qdisc);
37437bb2 1851
1da177e4
LT
1852#ifdef CONFIG_NET_CLS_ACT
1853 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1854#endif
1855 if (q->enqueue) {
5fb66229 1856 spinlock_t *root_lock = qdisc_lock(q);
37437bb2
DM
1857
1858 spin_lock(root_lock);
1859
a9312ae8 1860 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
96d20316 1861 kfree_skb(skb);
a9312ae8 1862 rc = NET_XMIT_DROP;
96d20316
DM
1863 } else {
1864 rc = qdisc_enqueue_root(skb, q);
1865 qdisc_run(q);
a9312ae8 1866 }
37437bb2
DM
1867 spin_unlock(root_lock);
1868
37437bb2 1869 goto out;
1da177e4
LT
1870 }
1871
1872 /* The device has no queue. Common case for software devices:
1873 loopback, all the sorts of tunnels...
1874
932ff279
HX
1875 Really, it is unlikely that netif_tx_lock protection is necessary
1876 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
1877 counters.)
1878 However, it is possible, that they rely on protection
1879 made by us here.
1880
1881 Check this and shot the lock. It is not prone from deadlocks.
1882 Either shot noqueue qdisc, it is even simpler 8)
1883 */
1884 if (dev->flags & IFF_UP) {
1885 int cpu = smp_processor_id(); /* ok because BHs are off */
1886
c773e847 1887 if (txq->xmit_lock_owner != cpu) {
1da177e4 1888
c773e847 1889 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 1890
fd2ea0a7 1891 if (!netif_tx_queue_stopped(txq)) {
1da177e4 1892 rc = 0;
fd2ea0a7 1893 if (!dev_hard_start_xmit(skb, dev, txq)) {
c773e847 1894 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
1895 goto out;
1896 }
1897 }
c773e847 1898 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
1899 if (net_ratelimit())
1900 printk(KERN_CRIT "Virtual device %s asks to "
1901 "queue packet!\n", dev->name);
1902 } else {
1903 /* Recursion is detected! It is possible,
1904 * unfortunately */
1905 if (net_ratelimit())
1906 printk(KERN_CRIT "Dead loop on virtual device "
1907 "%s, fix it urgently!\n", dev->name);
1908 }
1909 }
1910
1911 rc = -ENETDOWN;
d4828d85 1912 rcu_read_unlock_bh();
1da177e4
LT
1913
1914out_kfree_skb:
1915 kfree_skb(skb);
1916 return rc;
1917out:
d4828d85 1918 rcu_read_unlock_bh();
1da177e4
LT
1919 return rc;
1920}
1921
1922
1923/*=======================================================================
1924 Receiver routines
1925 =======================================================================*/
1926
6b2bedc3
SH
1927int netdev_max_backlog __read_mostly = 1000;
1928int netdev_budget __read_mostly = 300;
1929int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4
LT
1930
1931DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1932
1933
1da177e4
LT
1934/**
1935 * netif_rx - post buffer to the network code
1936 * @skb: buffer to post
1937 *
1938 * This function receives a packet from a device driver and queues it for
1939 * the upper (protocol) levels to process. It always succeeds. The buffer
1940 * may be dropped during processing for congestion control or by the
1941 * protocol layers.
1942 *
1943 * return values:
1944 * NET_RX_SUCCESS (no congestion)
1da177e4
LT
1945 * NET_RX_DROP (packet was dropped)
1946 *
1947 */
1948
1949int netif_rx(struct sk_buff *skb)
1950{
1da177e4
LT
1951 struct softnet_data *queue;
1952 unsigned long flags;
1953
1954 /* if netpoll wants it, pretend we never saw it */
1955 if (netpoll_rx(skb))
1956 return NET_RX_DROP;
1957
b7aa0bf7 1958 if (!skb->tstamp.tv64)
a61bbcf2 1959 net_timestamp(skb);
1da177e4
LT
1960
1961 /*
1962 * The code is rearranged so that the path is the most
1963 * short when CPU is congested, but is still operating.
1964 */
1965 local_irq_save(flags);
1da177e4
LT
1966 queue = &__get_cpu_var(softnet_data);
1967
1968 __get_cpu_var(netdev_rx_stat).total++;
1969 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1970 if (queue->input_pkt_queue.qlen) {
1da177e4 1971enqueue:
1da177e4 1972 __skb_queue_tail(&queue->input_pkt_queue, skb);
1da177e4 1973 local_irq_restore(flags);
34008d8c 1974 return NET_RX_SUCCESS;
1da177e4
LT
1975 }
1976
bea3348e 1977 napi_schedule(&queue->backlog);
1da177e4
LT
1978 goto enqueue;
1979 }
1980
1da177e4
LT
1981 __get_cpu_var(netdev_rx_stat).dropped++;
1982 local_irq_restore(flags);
1983
1984 kfree_skb(skb);
1985 return NET_RX_DROP;
1986}
1987
1988int netif_rx_ni(struct sk_buff *skb)
1989{
1990 int err;
1991
1992 preempt_disable();
1993 err = netif_rx(skb);
1994 if (local_softirq_pending())
1995 do_softirq();
1996 preempt_enable();
1997
1998 return err;
1999}
2000
2001EXPORT_SYMBOL(netif_rx_ni);
2002
1da177e4
LT
2003static void net_tx_action(struct softirq_action *h)
2004{
2005 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2006
2007 if (sd->completion_queue) {
2008 struct sk_buff *clist;
2009
2010 local_irq_disable();
2011 clist = sd->completion_queue;
2012 sd->completion_queue = NULL;
2013 local_irq_enable();
2014
2015 while (clist) {
2016 struct sk_buff *skb = clist;
2017 clist = clist->next;
2018
547b792c 2019 WARN_ON(atomic_read(&skb->users));
1da177e4
LT
2020 __kfree_skb(skb);
2021 }
2022 }
2023
2024 if (sd->output_queue) {
37437bb2 2025 struct Qdisc *head;
1da177e4
LT
2026
2027 local_irq_disable();
2028 head = sd->output_queue;
2029 sd->output_queue = NULL;
2030 local_irq_enable();
2031
2032 while (head) {
37437bb2
DM
2033 struct Qdisc *q = head;
2034 spinlock_t *root_lock;
2035
1da177e4
LT
2036 head = head->next_sched;
2037
5fb66229 2038 root_lock = qdisc_lock(q);
37437bb2 2039 if (spin_trylock(root_lock)) {
def82a1d
JP
2040 smp_mb__before_clear_bit();
2041 clear_bit(__QDISC_STATE_SCHED,
2042 &q->state);
37437bb2
DM
2043 qdisc_run(q);
2044 spin_unlock(root_lock);
1da177e4 2045 } else {
195648bb 2046 if (!test_bit(__QDISC_STATE_DEACTIVATED,
e8a83e10 2047 &q->state)) {
195648bb 2048 __netif_reschedule(q);
e8a83e10
JP
2049 } else {
2050 smp_mb__before_clear_bit();
2051 clear_bit(__QDISC_STATE_SCHED,
2052 &q->state);
2053 }
1da177e4
LT
2054 }
2055 }
2056 }
2057}
2058
6f05f629
SH
2059static inline int deliver_skb(struct sk_buff *skb,
2060 struct packet_type *pt_prev,
2061 struct net_device *orig_dev)
1da177e4
LT
2062{
2063 atomic_inc(&skb->users);
f2ccd8fa 2064 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4
LT
2065}
2066
2067#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
6229e362 2068/* These hooks defined here for ATM */
1da177e4
LT
2069struct net_bridge;
2070struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2071 unsigned char *addr);
6229e362 2072void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1da177e4 2073
6229e362
SH
2074/*
2075 * If bridge module is loaded call bridging hook.
2076 * returns NULL if packet was consumed.
2077 */
2078struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2079 struct sk_buff *skb) __read_mostly;
2080static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2081 struct packet_type **pt_prev, int *ret,
2082 struct net_device *orig_dev)
1da177e4
LT
2083{
2084 struct net_bridge_port *port;
2085
6229e362
SH
2086 if (skb->pkt_type == PACKET_LOOPBACK ||
2087 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2088 return skb;
1da177e4
LT
2089
2090 if (*pt_prev) {
6229e362 2091 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1da177e4 2092 *pt_prev = NULL;
4ec93edb
YH
2093 }
2094
6229e362 2095 return br_handle_frame_hook(port, skb);
1da177e4
LT
2096}
2097#else
6229e362 2098#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
1da177e4
LT
2099#endif
2100
b863ceb7
PM
2101#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2102struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2103EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2104
2105static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2106 struct packet_type **pt_prev,
2107 int *ret,
2108 struct net_device *orig_dev)
2109{
2110 if (skb->dev->macvlan_port == NULL)
2111 return skb;
2112
2113 if (*pt_prev) {
2114 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2115 *pt_prev = NULL;
2116 }
2117 return macvlan_handle_frame_hook(skb);
2118}
2119#else
2120#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2121#endif
2122
1da177e4
LT
2123#ifdef CONFIG_NET_CLS_ACT
2124/* TODO: Maybe we should just force sch_ingress to be compiled in
2125 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2126 * a compare and 2 stores extra right now if we dont have it on
2127 * but have CONFIG_NET_CLS_ACT
4ec93edb 2128 * NOTE: This doesnt stop any functionality; if you dont have
1da177e4
LT
2129 * the ingress scheduler, you just cant add policies on ingress.
2130 *
2131 */
4ec93edb 2132static int ing_filter(struct sk_buff *skb)
1da177e4 2133{
1da177e4 2134 struct net_device *dev = skb->dev;
f697c3e8 2135 u32 ttl = G_TC_RTTL(skb->tc_verd);
555353cf
DM
2136 struct netdev_queue *rxq;
2137 int result = TC_ACT_OK;
2138 struct Qdisc *q;
4ec93edb 2139
f697c3e8
HX
2140 if (MAX_RED_LOOP < ttl++) {
2141 printk(KERN_WARNING
2142 "Redir loop detected Dropping packet (%d->%d)\n",
2143 skb->iif, dev->ifindex);
2144 return TC_ACT_SHOT;
2145 }
1da177e4 2146
f697c3e8
HX
2147 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2148 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
1da177e4 2149
555353cf
DM
2150 rxq = &dev->rx_queue;
2151
83874000 2152 q = rxq->qdisc;
8d50b53d 2153 if (q != &noop_qdisc) {
83874000 2154 spin_lock(qdisc_lock(q));
a9312ae8
DM
2155 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2156 result = qdisc_enqueue_root(skb, q);
83874000
DM
2157 spin_unlock(qdisc_lock(q));
2158 }
f697c3e8
HX
2159
2160 return result;
2161}
86e65da9 2162
f697c3e8
HX
2163static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2164 struct packet_type **pt_prev,
2165 int *ret, struct net_device *orig_dev)
2166{
8d50b53d 2167 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
f697c3e8 2168 goto out;
1da177e4 2169
f697c3e8
HX
2170 if (*pt_prev) {
2171 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2172 *pt_prev = NULL;
2173 } else {
2174 /* Huh? Why does turning on AF_PACKET affect this? */
2175 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
1da177e4
LT
2176 }
2177
f697c3e8
HX
2178 switch (ing_filter(skb)) {
2179 case TC_ACT_SHOT:
2180 case TC_ACT_STOLEN:
2181 kfree_skb(skb);
2182 return NULL;
2183 }
2184
2185out:
2186 skb->tc_verd = 0;
2187 return skb;
1da177e4
LT
2188}
2189#endif
2190
bc1d0411
PM
2191/*
2192 * netif_nit_deliver - deliver received packets to network taps
2193 * @skb: buffer
2194 *
2195 * This function is used to deliver incoming packets to network
2196 * taps. It should be used when the normal netif_receive_skb path
2197 * is bypassed, for example because of VLAN acceleration.
2198 */
2199void netif_nit_deliver(struct sk_buff *skb)
2200{
2201 struct packet_type *ptype;
2202
2203 if (list_empty(&ptype_all))
2204 return;
2205
2206 skb_reset_network_header(skb);
2207 skb_reset_transport_header(skb);
2208 skb->mac_len = skb->network_header - skb->mac_header;
2209
2210 rcu_read_lock();
2211 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2212 if (!ptype->dev || ptype->dev == skb->dev)
2213 deliver_skb(skb, ptype, skb->dev);
2214 }
2215 rcu_read_unlock();
2216}
2217
3b582cc1
SH
2218/**
2219 * netif_receive_skb - process receive buffer from network
2220 * @skb: buffer to process
2221 *
2222 * netif_receive_skb() is the main receive data processing function.
2223 * It always succeeds. The buffer may be dropped during processing
2224 * for congestion control or by the protocol layers.
2225 *
2226 * This function may only be called from softirq context and interrupts
2227 * should be enabled.
2228 *
2229 * Return values (usually ignored):
2230 * NET_RX_SUCCESS: no congestion
2231 * NET_RX_DROP: packet was dropped
2232 */
1da177e4
LT
2233int netif_receive_skb(struct sk_buff *skb)
2234{
2235 struct packet_type *ptype, *pt_prev;
f2ccd8fa 2236 struct net_device *orig_dev;
0d7a3681 2237 struct net_device *null_or_orig;
1da177e4 2238 int ret = NET_RX_DROP;
252e3346 2239 __be16 type;
1da177e4 2240
9b22ea56
PM
2241 if (skb->vlan_tci && vlan_hwaccel_do_receive(skb))
2242 return NET_RX_SUCCESS;
2243
1da177e4 2244 /* if we've gotten here through NAPI, check netpoll */
bea3348e 2245 if (netpoll_receive_skb(skb))
1da177e4
LT
2246 return NET_RX_DROP;
2247
b7aa0bf7 2248 if (!skb->tstamp.tv64)
a61bbcf2 2249 net_timestamp(skb);
1da177e4 2250
c01003c2
PM
2251 if (!skb->iif)
2252 skb->iif = skb->dev->ifindex;
86e65da9 2253
0d7a3681 2254 null_or_orig = NULL;
cc9bd5ce
JE
2255 orig_dev = skb->dev;
2256 if (orig_dev->master) {
0d7a3681
JE
2257 if (skb_bond_should_drop(skb))
2258 null_or_orig = orig_dev; /* deliver only exact match */
2259 else
2260 skb->dev = orig_dev->master;
cc9bd5ce 2261 }
8f903c70 2262
1da177e4
LT
2263 __get_cpu_var(netdev_rx_stat).total++;
2264
c1d2bbe1 2265 skb_reset_network_header(skb);
badff6d0 2266 skb_reset_transport_header(skb);
b0e380b1 2267 skb->mac_len = skb->network_header - skb->mac_header;
1da177e4
LT
2268
2269 pt_prev = NULL;
2270
2271 rcu_read_lock();
2272
2273#ifdef CONFIG_NET_CLS_ACT
2274 if (skb->tc_verd & TC_NCLS) {
2275 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2276 goto ncls;
2277 }
2278#endif
2279
2280 list_for_each_entry_rcu(ptype, &ptype_all, list) {
f982307f
JE
2281 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2282 ptype->dev == orig_dev) {
4ec93edb 2283 if (pt_prev)
f2ccd8fa 2284 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
2285 pt_prev = ptype;
2286 }
2287 }
2288
2289#ifdef CONFIG_NET_CLS_ACT
f697c3e8
HX
2290 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2291 if (!skb)
1da177e4 2292 goto out;
1da177e4
LT
2293ncls:
2294#endif
2295
6229e362 2296 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
b863ceb7
PM
2297 if (!skb)
2298 goto out;
2299 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
6229e362 2300 if (!skb)
1da177e4
LT
2301 goto out;
2302
9a279bcb
HX
2303 skb_orphan(skb);
2304
1da177e4 2305 type = skb->protocol;
82d8a867
PE
2306 list_for_each_entry_rcu(ptype,
2307 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1da177e4 2308 if (ptype->type == type &&
f982307f
JE
2309 (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2310 ptype->dev == orig_dev)) {
4ec93edb 2311 if (pt_prev)
f2ccd8fa 2312 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
2313 pt_prev = ptype;
2314 }
2315 }
2316
2317 if (pt_prev) {
f2ccd8fa 2318 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4
LT
2319 } else {
2320 kfree_skb(skb);
2321 /* Jamal, now you will not able to escape explaining
2322 * me how you were going to use this. :-)
2323 */
2324 ret = NET_RX_DROP;
2325 }
2326
2327out:
2328 rcu_read_unlock();
2329 return ret;
2330}
2331
6e583ce5
SH
2332/* Network device is going away, flush any packets still pending */
2333static void flush_backlog(void *arg)
2334{
2335 struct net_device *dev = arg;
2336 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2337 struct sk_buff *skb, *tmp;
2338
2339 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2340 if (skb->dev == dev) {
2341 __skb_unlink(skb, &queue->input_pkt_queue);
2342 kfree_skb(skb);
2343 }
2344}
2345
d565b0a1
HX
2346static int napi_gro_complete(struct sk_buff *skb)
2347{
2348 struct packet_type *ptype;
2349 __be16 type = skb->protocol;
2350 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2351 int err = -ENOENT;
2352
fc59f9a3
HX
2353 if (NAPI_GRO_CB(skb)->count == 1) {
2354 skb_shinfo(skb)->gso_size = 0;
d565b0a1 2355 goto out;
fc59f9a3 2356 }
d565b0a1
HX
2357
2358 rcu_read_lock();
2359 list_for_each_entry_rcu(ptype, head, list) {
2360 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2361 continue;
2362
2363 err = ptype->gro_complete(skb);
2364 break;
2365 }
2366 rcu_read_unlock();
2367
2368 if (err) {
2369 WARN_ON(&ptype->list == head);
2370 kfree_skb(skb);
2371 return NET_RX_SUCCESS;
2372 }
2373
2374out:
d565b0a1
HX
2375 return netif_receive_skb(skb);
2376}
2377
2378void napi_gro_flush(struct napi_struct *napi)
2379{
2380 struct sk_buff *skb, *next;
2381
2382 for (skb = napi->gro_list; skb; skb = next) {
2383 next = skb->next;
2384 skb->next = NULL;
2385 napi_gro_complete(skb);
2386 }
2387
4ae5544f 2388 napi->gro_count = 0;
d565b0a1
HX
2389 napi->gro_list = NULL;
2390}
2391EXPORT_SYMBOL(napi_gro_flush);
2392
86911732
HX
2393void *skb_gro_header(struct sk_buff *skb, unsigned int hlen)
2394{
2395 unsigned int offset = skb_gro_offset(skb);
2396
2397 hlen += offset;
edbd9e30
HX
2398 if (unlikely(skb_headlen(skb) ||
2399 skb_shinfo(skb)->frags[0].size < hlen ||
86911732
HX
2400 PageHighMem(skb_shinfo(skb)->frags[0].page)))
2401 return pskb_may_pull(skb, hlen) ? skb->data + offset : NULL;
2402
2403 return page_address(skb_shinfo(skb)->frags[0].page) +
edbd9e30 2404 skb_shinfo(skb)->frags[0].page_offset + offset;
86911732
HX
2405}
2406EXPORT_SYMBOL(skb_gro_header);
2407
96e93eab 2408int dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
2409{
2410 struct sk_buff **pp = NULL;
2411 struct packet_type *ptype;
2412 __be16 type = skb->protocol;
2413 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
0da2afd5 2414 int same_flow;
d565b0a1 2415 int mac_len;
5d0d9be8 2416 int ret;
d565b0a1
HX
2417
2418 if (!(skb->dev->features & NETIF_F_GRO))
2419 goto normal;
2420
f17f5c91
HX
2421 if (skb_is_gso(skb) || skb_shinfo(skb)->frag_list)
2422 goto normal;
2423
d565b0a1
HX
2424 rcu_read_lock();
2425 list_for_each_entry_rcu(ptype, head, list) {
d565b0a1
HX
2426 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2427 continue;
2428
86911732 2429 skb_set_network_header(skb, skb_gro_offset(skb));
d565b0a1
HX
2430 mac_len = skb->network_header - skb->mac_header;
2431 skb->mac_len = mac_len;
2432 NAPI_GRO_CB(skb)->same_flow = 0;
2433 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 2434 NAPI_GRO_CB(skb)->free = 0;
d565b0a1 2435
d565b0a1
HX
2436 pp = ptype->gro_receive(&napi->gro_list, skb);
2437 break;
2438 }
2439 rcu_read_unlock();
2440
2441 if (&ptype->list == head)
2442 goto normal;
2443
0da2afd5 2444 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 2445 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 2446
d565b0a1
HX
2447 if (pp) {
2448 struct sk_buff *nskb = *pp;
2449
2450 *pp = nskb->next;
2451 nskb->next = NULL;
2452 napi_gro_complete(nskb);
4ae5544f 2453 napi->gro_count--;
d565b0a1
HX
2454 }
2455
0da2afd5 2456 if (same_flow)
d565b0a1
HX
2457 goto ok;
2458
4ae5544f 2459 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
d565b0a1 2460 goto normal;
d565b0a1 2461
4ae5544f 2462 napi->gro_count++;
d565b0a1 2463 NAPI_GRO_CB(skb)->count = 1;
86911732 2464 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
2465 skb->next = napi->gro_list;
2466 napi->gro_list = skb;
5d0d9be8 2467 ret = GRO_HELD;
d565b0a1 2468
ad0f9904
HX
2469pull:
2470 if (unlikely(!pskb_may_pull(skb, skb_gro_offset(skb)))) {
2471 if (napi->gro_list == skb)
2472 napi->gro_list = skb->next;
2473 ret = GRO_DROP;
2474 }
2475
d565b0a1 2476ok:
5d0d9be8 2477 return ret;
d565b0a1
HX
2478
2479normal:
ad0f9904
HX
2480 ret = GRO_NORMAL;
2481 goto pull;
5d38a079 2482}
96e93eab
HX
2483EXPORT_SYMBOL(dev_gro_receive);
2484
2485static int __napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2486{
2487 struct sk_buff *p;
2488
d1c76af9
HX
2489 if (netpoll_rx_on(skb))
2490 return GRO_NORMAL;
2491
96e93eab 2492 for (p = napi->gro_list; p; p = p->next) {
f2bde732
SH
2493 NAPI_GRO_CB(p)->same_flow = (p->dev == skb->dev)
2494 && !compare_ether_header(skb_mac_header(p),
2495 skb_gro_mac_header(skb));
96e93eab
HX
2496 NAPI_GRO_CB(p)->flush = 0;
2497 }
2498
2499 return dev_gro_receive(napi, skb);
2500}
5d38a079 2501
5d0d9be8 2502int napi_skb_finish(int ret, struct sk_buff *skb)
5d38a079 2503{
5d0d9be8
HX
2504 int err = NET_RX_SUCCESS;
2505
2506 switch (ret) {
2507 case GRO_NORMAL:
5d38a079
HX
2508 return netif_receive_skb(skb);
2509
5d0d9be8
HX
2510 case GRO_DROP:
2511 err = NET_RX_DROP;
2512 /* fall through */
2513
2514 case GRO_MERGED_FREE:
5d38a079
HX
2515 kfree_skb(skb);
2516 break;
2517 }
2518
5d0d9be8
HX
2519 return err;
2520}
2521EXPORT_SYMBOL(napi_skb_finish);
2522
2523int napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
2524{
86911732
HX
2525 skb_gro_reset_offset(skb);
2526
5d0d9be8 2527 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
d565b0a1
HX
2528}
2529EXPORT_SYMBOL(napi_gro_receive);
2530
96e93eab
HX
2531void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2532{
96e93eab
HX
2533 __skb_pull(skb, skb_headlen(skb));
2534 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2535
2536 napi->skb = skb;
2537}
2538EXPORT_SYMBOL(napi_reuse_skb);
2539
76620aaf 2540struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079
HX
2541{
2542 struct net_device *dev = napi->dev;
2543 struct sk_buff *skb = napi->skb;
5d38a079
HX
2544
2545 if (!skb) {
2546 skb = netdev_alloc_skb(dev, GRO_MAX_HEAD + NET_IP_ALIGN);
2547 if (!skb)
2548 goto out;
2549
2550 skb_reserve(skb, NET_IP_ALIGN);
80595d59 2551
76620aaf 2552 napi->skb = skb;
80595d59 2553 }
5d38a079 2554
96e93eab
HX
2555out:
2556 return skb;
2557}
76620aaf 2558EXPORT_SYMBOL(napi_get_frags);
96e93eab 2559
5d0d9be8 2560int napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb, int ret)
96e93eab 2561{
5d0d9be8 2562 int err = NET_RX_SUCCESS;
96e93eab 2563
5d0d9be8
HX
2564 switch (ret) {
2565 case GRO_NORMAL:
86911732 2566 case GRO_HELD:
86911732
HX
2567 skb->protocol = eth_type_trans(skb, napi->dev);
2568
2569 if (ret == GRO_NORMAL)
2570 return netif_receive_skb(skb);
2571
2572 skb_gro_pull(skb, -ETH_HLEN);
2573 break;
5d38a079 2574
5d0d9be8
HX
2575 case GRO_DROP:
2576 err = NET_RX_DROP;
2577 /* fall through */
5d38a079 2578
5d0d9be8
HX
2579 case GRO_MERGED_FREE:
2580 napi_reuse_skb(napi, skb);
2581 break;
2582 }
5d38a079 2583
5d38a079
HX
2584 return err;
2585}
5d0d9be8
HX
2586EXPORT_SYMBOL(napi_frags_finish);
2587
76620aaf
HX
2588struct sk_buff *napi_frags_skb(struct napi_struct *napi)
2589{
2590 struct sk_buff *skb = napi->skb;
2591 struct ethhdr *eth;
2592
2593 napi->skb = NULL;
2594
2595 skb_reset_mac_header(skb);
2596 skb_gro_reset_offset(skb);
2597
2598 eth = skb_gro_header(skb, sizeof(*eth));
2599 if (!eth) {
2600 napi_reuse_skb(napi, skb);
2601 skb = NULL;
2602 goto out;
2603 }
2604
2605 skb_gro_pull(skb, sizeof(*eth));
2606
2607 /*
2608 * This works because the only protocols we care about don't require
2609 * special handling. We'll fix it up properly at the end.
2610 */
2611 skb->protocol = eth->h_proto;
2612
2613out:
2614 return skb;
2615}
2616EXPORT_SYMBOL(napi_frags_skb);
2617
2618int napi_gro_frags(struct napi_struct *napi)
5d0d9be8 2619{
76620aaf 2620 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
2621
2622 if (!skb)
2623 return NET_RX_DROP;
2624
2625 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2626}
5d38a079
HX
2627EXPORT_SYMBOL(napi_gro_frags);
2628
bea3348e 2629static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
2630{
2631 int work = 0;
1da177e4
LT
2632 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2633 unsigned long start_time = jiffies;
2634
bea3348e
SH
2635 napi->weight = weight_p;
2636 do {
1da177e4 2637 struct sk_buff *skb;
1da177e4
LT
2638
2639 local_irq_disable();
2640 skb = __skb_dequeue(&queue->input_pkt_queue);
bea3348e 2641 if (!skb) {
8f1ead2d 2642 __napi_complete(napi);
bea3348e 2643 local_irq_enable();
8f1ead2d 2644 break;
bea3348e 2645 }
1da177e4
LT
2646 local_irq_enable();
2647
8f1ead2d 2648 netif_receive_skb(skb);
bea3348e 2649 } while (++work < quota && jiffies == start_time);
1da177e4 2650
bea3348e
SH
2651 return work;
2652}
1da177e4 2653
bea3348e
SH
2654/**
2655 * __napi_schedule - schedule for receive
c4ea43c5 2656 * @n: entry to schedule
bea3348e
SH
2657 *
2658 * The entry's receive function will be scheduled to run
2659 */
b5606c2d 2660void __napi_schedule(struct napi_struct *n)
bea3348e
SH
2661{
2662 unsigned long flags;
1da177e4 2663
bea3348e
SH
2664 local_irq_save(flags);
2665 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2666 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2667 local_irq_restore(flags);
1da177e4 2668}
bea3348e
SH
2669EXPORT_SYMBOL(__napi_schedule);
2670
d565b0a1
HX
2671void __napi_complete(struct napi_struct *n)
2672{
2673 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2674 BUG_ON(n->gro_list);
2675
2676 list_del(&n->poll_list);
2677 smp_mb__before_clear_bit();
2678 clear_bit(NAPI_STATE_SCHED, &n->state);
2679}
2680EXPORT_SYMBOL(__napi_complete);
2681
2682void napi_complete(struct napi_struct *n)
2683{
2684 unsigned long flags;
2685
2686 /*
2687 * don't let napi dequeue from the cpu poll list
2688 * just in case its running on a different cpu
2689 */
2690 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2691 return;
2692
2693 napi_gro_flush(n);
2694 local_irq_save(flags);
2695 __napi_complete(n);
2696 local_irq_restore(flags);
2697}
2698EXPORT_SYMBOL(napi_complete);
2699
2700void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2701 int (*poll)(struct napi_struct *, int), int weight)
2702{
2703 INIT_LIST_HEAD(&napi->poll_list);
4ae5544f 2704 napi->gro_count = 0;
d565b0a1 2705 napi->gro_list = NULL;
5d38a079 2706 napi->skb = NULL;
d565b0a1
HX
2707 napi->poll = poll;
2708 napi->weight = weight;
2709 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 2710 napi->dev = dev;
5d38a079 2711#ifdef CONFIG_NETPOLL
d565b0a1
HX
2712 spin_lock_init(&napi->poll_lock);
2713 napi->poll_owner = -1;
2714#endif
2715 set_bit(NAPI_STATE_SCHED, &napi->state);
2716}
2717EXPORT_SYMBOL(netif_napi_add);
2718
2719void netif_napi_del(struct napi_struct *napi)
2720{
2721 struct sk_buff *skb, *next;
2722
d7b06636 2723 list_del_init(&napi->dev_list);
76620aaf 2724 napi_free_frags(napi);
d565b0a1
HX
2725
2726 for (skb = napi->gro_list; skb; skb = next) {
2727 next = skb->next;
2728 skb->next = NULL;
2729 kfree_skb(skb);
2730 }
2731
2732 napi->gro_list = NULL;
4ae5544f 2733 napi->gro_count = 0;
d565b0a1
HX
2734}
2735EXPORT_SYMBOL(netif_napi_del);
2736
1da177e4
LT
2737
2738static void net_rx_action(struct softirq_action *h)
2739{
bea3348e 2740 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
24f8b238 2741 unsigned long time_limit = jiffies + 2;
51b0bded 2742 int budget = netdev_budget;
53fb95d3
MM
2743 void *have;
2744
1da177e4
LT
2745 local_irq_disable();
2746
bea3348e
SH
2747 while (!list_empty(list)) {
2748 struct napi_struct *n;
2749 int work, weight;
1da177e4 2750
bea3348e 2751 /* If softirq window is exhuasted then punt.
24f8b238
SH
2752 * Allow this to run for 2 jiffies since which will allow
2753 * an average latency of 1.5/HZ.
bea3348e 2754 */
24f8b238 2755 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
1da177e4
LT
2756 goto softnet_break;
2757
2758 local_irq_enable();
2759
bea3348e
SH
2760 /* Even though interrupts have been re-enabled, this
2761 * access is safe because interrupts can only add new
2762 * entries to the tail of this list, and only ->poll()
2763 * calls can remove this head entry from the list.
2764 */
2765 n = list_entry(list->next, struct napi_struct, poll_list);
1da177e4 2766
bea3348e
SH
2767 have = netpoll_poll_lock(n);
2768
2769 weight = n->weight;
2770
0a7606c1
DM
2771 /* This NAPI_STATE_SCHED test is for avoiding a race
2772 * with netpoll's poll_napi(). Only the entity which
2773 * obtains the lock and sees NAPI_STATE_SCHED set will
2774 * actually make the ->poll() call. Therefore we avoid
2775 * accidently calling ->poll() when NAPI is not scheduled.
2776 */
2777 work = 0;
4ea7e386 2778 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
0a7606c1 2779 work = n->poll(n, weight);
4ea7e386
NH
2780 trace_napi_poll(n);
2781 }
bea3348e
SH
2782
2783 WARN_ON_ONCE(work > weight);
2784
2785 budget -= work;
2786
2787 local_irq_disable();
2788
2789 /* Drivers must not modify the NAPI state if they
2790 * consume the entire weight. In such cases this code
2791 * still "owns" the NAPI instance and therefore can
2792 * move the instance around on the list at-will.
2793 */
fed17f30
DM
2794 if (unlikely(work == weight)) {
2795 if (unlikely(napi_disable_pending(n)))
2796 __napi_complete(n);
2797 else
2798 list_move_tail(&n->poll_list, list);
2799 }
bea3348e
SH
2800
2801 netpoll_poll_unlock(have);
1da177e4
LT
2802 }
2803out:
515e06c4 2804 local_irq_enable();
bea3348e 2805
db217334
CL
2806#ifdef CONFIG_NET_DMA
2807 /*
2808 * There may not be any more sk_buffs coming right now, so push
2809 * any pending DMA copies to hardware
2810 */
2ba05622 2811 dma_issue_pending_all();
db217334 2812#endif
bea3348e 2813
1da177e4
LT
2814 return;
2815
2816softnet_break:
2817 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2818 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2819 goto out;
2820}
2821
2822static gifconf_func_t * gifconf_list [NPROTO];
2823
2824/**
2825 * register_gifconf - register a SIOCGIF handler
2826 * @family: Address family
2827 * @gifconf: Function handler
2828 *
2829 * Register protocol dependent address dumping routines. The handler
2830 * that is passed must not be freed or reused until it has been replaced
2831 * by another handler.
2832 */
2833int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2834{
2835 if (family >= NPROTO)
2836 return -EINVAL;
2837 gifconf_list[family] = gifconf;
2838 return 0;
2839}
2840
2841
2842/*
2843 * Map an interface index to its name (SIOCGIFNAME)
2844 */
2845
2846/*
2847 * We need this ioctl for efficient implementation of the
2848 * if_indextoname() function required by the IPv6 API. Without
2849 * it, we would have to search all the interfaces to find a
2850 * match. --pb
2851 */
2852
881d966b 2853static int dev_ifname(struct net *net, struct ifreq __user *arg)
1da177e4
LT
2854{
2855 struct net_device *dev;
2856 struct ifreq ifr;
2857
2858 /*
2859 * Fetch the caller's info block.
2860 */
2861
2862 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2863 return -EFAULT;
2864
2865 read_lock(&dev_base_lock);
881d966b 2866 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
1da177e4
LT
2867 if (!dev) {
2868 read_unlock(&dev_base_lock);
2869 return -ENODEV;
2870 }
2871
2872 strcpy(ifr.ifr_name, dev->name);
2873 read_unlock(&dev_base_lock);
2874
2875 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2876 return -EFAULT;
2877 return 0;
2878}
2879
2880/*
2881 * Perform a SIOCGIFCONF call. This structure will change
2882 * size eventually, and there is nothing I can do about it.
2883 * Thus we will need a 'compatibility mode'.
2884 */
2885
881d966b 2886static int dev_ifconf(struct net *net, char __user *arg)
1da177e4
LT
2887{
2888 struct ifconf ifc;
2889 struct net_device *dev;
2890 char __user *pos;
2891 int len;
2892 int total;
2893 int i;
2894
2895 /*
2896 * Fetch the caller's info block.
2897 */
2898
2899 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2900 return -EFAULT;
2901
2902 pos = ifc.ifc_buf;
2903 len = ifc.ifc_len;
2904
2905 /*
2906 * Loop over the interfaces, and write an info block for each.
2907 */
2908
2909 total = 0;
881d966b 2910 for_each_netdev(net, dev) {
1da177e4
LT
2911 for (i = 0; i < NPROTO; i++) {
2912 if (gifconf_list[i]) {
2913 int done;
2914 if (!pos)
2915 done = gifconf_list[i](dev, NULL, 0);
2916 else
2917 done = gifconf_list[i](dev, pos + total,
2918 len - total);
2919 if (done < 0)
2920 return -EFAULT;
2921 total += done;
2922 }
2923 }
4ec93edb 2924 }
1da177e4
LT
2925
2926 /*
2927 * All done. Write the updated control block back to the caller.
2928 */
2929 ifc.ifc_len = total;
2930
2931 /*
2932 * Both BSD and Solaris return 0 here, so we do too.
2933 */
2934 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2935}
2936
2937#ifdef CONFIG_PROC_FS
2938/*
2939 * This is invoked by the /proc filesystem handler to display a device
2940 * in detail.
2941 */
7562f876 2942void *dev_seq_start(struct seq_file *seq, loff_t *pos)
9a429c49 2943 __acquires(dev_base_lock)
1da177e4 2944{
e372c414 2945 struct net *net = seq_file_net(seq);
7562f876 2946 loff_t off;
1da177e4 2947 struct net_device *dev;
1da177e4 2948
7562f876
PE
2949 read_lock(&dev_base_lock);
2950 if (!*pos)
2951 return SEQ_START_TOKEN;
1da177e4 2952
7562f876 2953 off = 1;
881d966b 2954 for_each_netdev(net, dev)
7562f876
PE
2955 if (off++ == *pos)
2956 return dev;
1da177e4 2957
7562f876 2958 return NULL;
1da177e4
LT
2959}
2960
2961void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2962{
e372c414 2963 struct net *net = seq_file_net(seq);
1da177e4 2964 ++*pos;
7562f876 2965 return v == SEQ_START_TOKEN ?
881d966b 2966 first_net_device(net) : next_net_device((struct net_device *)v);
1da177e4
LT
2967}
2968
2969void dev_seq_stop(struct seq_file *seq, void *v)
9a429c49 2970 __releases(dev_base_lock)
1da177e4
LT
2971{
2972 read_unlock(&dev_base_lock);
2973}
2974
2975static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2976{
eeda3fd6 2977 const struct net_device_stats *stats = dev_get_stats(dev);
1da177e4 2978
5a1b5898
RR
2979 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2980 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2981 dev->name, stats->rx_bytes, stats->rx_packets,
2982 stats->rx_errors,
2983 stats->rx_dropped + stats->rx_missed_errors,
2984 stats->rx_fifo_errors,
2985 stats->rx_length_errors + stats->rx_over_errors +
2986 stats->rx_crc_errors + stats->rx_frame_errors,
2987 stats->rx_compressed, stats->multicast,
2988 stats->tx_bytes, stats->tx_packets,
2989 stats->tx_errors, stats->tx_dropped,
2990 stats->tx_fifo_errors, stats->collisions,
2991 stats->tx_carrier_errors +
2992 stats->tx_aborted_errors +
2993 stats->tx_window_errors +
2994 stats->tx_heartbeat_errors,
2995 stats->tx_compressed);
1da177e4
LT
2996}
2997
2998/*
2999 * Called from the PROCfs module. This now uses the new arbitrary sized
3000 * /proc/net interface to create /proc/net/dev
3001 */
3002static int dev_seq_show(struct seq_file *seq, void *v)
3003{
3004 if (v == SEQ_START_TOKEN)
3005 seq_puts(seq, "Inter-| Receive "
3006 " | Transmit\n"
3007 " face |bytes packets errs drop fifo frame "
3008 "compressed multicast|bytes packets errs "
3009 "drop fifo colls carrier compressed\n");
3010 else
3011 dev_seq_printf_stats(seq, v);
3012 return 0;
3013}
3014
3015static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3016{
3017 struct netif_rx_stats *rc = NULL;
3018
0c0b0aca 3019 while (*pos < nr_cpu_ids)
4ec93edb 3020 if (cpu_online(*pos)) {
1da177e4
LT
3021 rc = &per_cpu(netdev_rx_stat, *pos);
3022 break;
3023 } else
3024 ++*pos;
3025 return rc;
3026}
3027
3028static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3029{
3030 return softnet_get_online(pos);
3031}
3032
3033static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3034{
3035 ++*pos;
3036 return softnet_get_online(pos);
3037}
3038
3039static void softnet_seq_stop(struct seq_file *seq, void *v)
3040{
3041}
3042
3043static int softnet_seq_show(struct seq_file *seq, void *v)
3044{
3045 struct netif_rx_stats *s = v;
3046
3047 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
31aa02c5 3048 s->total, s->dropped, s->time_squeeze, 0,
c1ebcdb8
SH
3049 0, 0, 0, 0, /* was fastroute */
3050 s->cpu_collision );
1da177e4
LT
3051 return 0;
3052}
3053
f690808e 3054static const struct seq_operations dev_seq_ops = {
1da177e4
LT
3055 .start = dev_seq_start,
3056 .next = dev_seq_next,
3057 .stop = dev_seq_stop,
3058 .show = dev_seq_show,
3059};
3060
3061static int dev_seq_open(struct inode *inode, struct file *file)
3062{
e372c414
DL
3063 return seq_open_net(inode, file, &dev_seq_ops,
3064 sizeof(struct seq_net_private));
1da177e4
LT
3065}
3066
9a32144e 3067static const struct file_operations dev_seq_fops = {
1da177e4
LT
3068 .owner = THIS_MODULE,
3069 .open = dev_seq_open,
3070 .read = seq_read,
3071 .llseek = seq_lseek,
e372c414 3072 .release = seq_release_net,
1da177e4
LT
3073};
3074
f690808e 3075static const struct seq_operations softnet_seq_ops = {
1da177e4
LT
3076 .start = softnet_seq_start,
3077 .next = softnet_seq_next,
3078 .stop = softnet_seq_stop,
3079 .show = softnet_seq_show,
3080};
3081
3082static int softnet_seq_open(struct inode *inode, struct file *file)
3083{
3084 return seq_open(file, &softnet_seq_ops);
3085}
3086
9a32144e 3087static const struct file_operations softnet_seq_fops = {
1da177e4
LT
3088 .owner = THIS_MODULE,
3089 .open = softnet_seq_open,
3090 .read = seq_read,
3091 .llseek = seq_lseek,
3092 .release = seq_release,
3093};
3094
0e1256ff
SH
3095static void *ptype_get_idx(loff_t pos)
3096{
3097 struct packet_type *pt = NULL;
3098 loff_t i = 0;
3099 int t;
3100
3101 list_for_each_entry_rcu(pt, &ptype_all, list) {
3102 if (i == pos)
3103 return pt;
3104 ++i;
3105 }
3106
82d8a867 3107 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
0e1256ff
SH
3108 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3109 if (i == pos)
3110 return pt;
3111 ++i;
3112 }
3113 }
3114 return NULL;
3115}
3116
3117static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
72348a42 3118 __acquires(RCU)
0e1256ff
SH
3119{
3120 rcu_read_lock();
3121 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3122}
3123
3124static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3125{
3126 struct packet_type *pt;
3127 struct list_head *nxt;
3128 int hash;
3129
3130 ++*pos;
3131 if (v == SEQ_START_TOKEN)
3132 return ptype_get_idx(0);
3133
3134 pt = v;
3135 nxt = pt->list.next;
3136 if (pt->type == htons(ETH_P_ALL)) {
3137 if (nxt != &ptype_all)
3138 goto found;
3139 hash = 0;
3140 nxt = ptype_base[0].next;
3141 } else
82d8a867 3142 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
0e1256ff
SH
3143
3144 while (nxt == &ptype_base[hash]) {
82d8a867 3145 if (++hash >= PTYPE_HASH_SIZE)
0e1256ff
SH
3146 return NULL;
3147 nxt = ptype_base[hash].next;
3148 }
3149found:
3150 return list_entry(nxt, struct packet_type, list);
3151}
3152
3153static void ptype_seq_stop(struct seq_file *seq, void *v)
72348a42 3154 __releases(RCU)
0e1256ff
SH
3155{
3156 rcu_read_unlock();
3157}
3158
0e1256ff
SH
3159static int ptype_seq_show(struct seq_file *seq, void *v)
3160{
3161 struct packet_type *pt = v;
3162
3163 if (v == SEQ_START_TOKEN)
3164 seq_puts(seq, "Type Device Function\n");
c346dca1 3165 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
0e1256ff
SH
3166 if (pt->type == htons(ETH_P_ALL))
3167 seq_puts(seq, "ALL ");
3168 else
3169 seq_printf(seq, "%04x", ntohs(pt->type));
3170
908cd2da
AD
3171 seq_printf(seq, " %-8s %pF\n",
3172 pt->dev ? pt->dev->name : "", pt->func);
0e1256ff
SH
3173 }
3174
3175 return 0;
3176}
3177
3178static const struct seq_operations ptype_seq_ops = {
3179 .start = ptype_seq_start,
3180 .next = ptype_seq_next,
3181 .stop = ptype_seq_stop,
3182 .show = ptype_seq_show,
3183};
3184
3185static int ptype_seq_open(struct inode *inode, struct file *file)
3186{
2feb27db
PE
3187 return seq_open_net(inode, file, &ptype_seq_ops,
3188 sizeof(struct seq_net_private));
0e1256ff
SH
3189}
3190
3191static const struct file_operations ptype_seq_fops = {
3192 .owner = THIS_MODULE,
3193 .open = ptype_seq_open,
3194 .read = seq_read,
3195 .llseek = seq_lseek,
2feb27db 3196 .release = seq_release_net,
0e1256ff
SH
3197};
3198
3199
4665079c 3200static int __net_init dev_proc_net_init(struct net *net)
1da177e4
LT
3201{
3202 int rc = -ENOMEM;
3203
881d966b 3204 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
1da177e4 3205 goto out;
881d966b 3206 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
1da177e4 3207 goto out_dev;
881d966b 3208 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
457c4cbc 3209 goto out_softnet;
0e1256ff 3210
881d966b 3211 if (wext_proc_init(net))
457c4cbc 3212 goto out_ptype;
1da177e4
LT
3213 rc = 0;
3214out:
3215 return rc;
457c4cbc 3216out_ptype:
881d966b 3217 proc_net_remove(net, "ptype");
1da177e4 3218out_softnet:
881d966b 3219 proc_net_remove(net, "softnet_stat");
1da177e4 3220out_dev:
881d966b 3221 proc_net_remove(net, "dev");
1da177e4
LT
3222 goto out;
3223}
881d966b 3224
4665079c 3225static void __net_exit dev_proc_net_exit(struct net *net)
881d966b
EB
3226{
3227 wext_proc_exit(net);
3228
3229 proc_net_remove(net, "ptype");
3230 proc_net_remove(net, "softnet_stat");
3231 proc_net_remove(net, "dev");
3232}
3233
022cbae6 3234static struct pernet_operations __net_initdata dev_proc_ops = {
881d966b
EB
3235 .init = dev_proc_net_init,
3236 .exit = dev_proc_net_exit,
3237};
3238
3239static int __init dev_proc_init(void)
3240{
3241 return register_pernet_subsys(&dev_proc_ops);
3242}
1da177e4
LT
3243#else
3244#define dev_proc_init() 0
3245#endif /* CONFIG_PROC_FS */
3246
3247
3248/**
3249 * netdev_set_master - set up master/slave pair
3250 * @slave: slave device
3251 * @master: new master device
3252 *
3253 * Changes the master device of the slave. Pass %NULL to break the
3254 * bonding. The caller must hold the RTNL semaphore. On a failure
3255 * a negative errno code is returned. On success the reference counts
3256 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3257 * function returns zero.
3258 */
3259int netdev_set_master(struct net_device *slave, struct net_device *master)
3260{
3261 struct net_device *old = slave->master;
3262
3263 ASSERT_RTNL();
3264
3265 if (master) {
3266 if (old)
3267 return -EBUSY;
3268 dev_hold(master);
3269 }
3270
3271 slave->master = master;
4ec93edb 3272
1da177e4
LT
3273 synchronize_net();
3274
3275 if (old)
3276 dev_put(old);
3277
3278 if (master)
3279 slave->flags |= IFF_SLAVE;
3280 else
3281 slave->flags &= ~IFF_SLAVE;
3282
3283 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3284 return 0;
3285}
3286
b6c40d68
PM
3287static void dev_change_rx_flags(struct net_device *dev, int flags)
3288{
d314774c
SH
3289 const struct net_device_ops *ops = dev->netdev_ops;
3290
3291 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3292 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
3293}
3294
dad9b335 3295static int __dev_set_promiscuity(struct net_device *dev, int inc)
1da177e4
LT
3296{
3297 unsigned short old_flags = dev->flags;
8192b0c4
DH
3298 uid_t uid;
3299 gid_t gid;
1da177e4 3300
24023451
PM
3301 ASSERT_RTNL();
3302
dad9b335
WC
3303 dev->flags |= IFF_PROMISC;
3304 dev->promiscuity += inc;
3305 if (dev->promiscuity == 0) {
3306 /*
3307 * Avoid overflow.
3308 * If inc causes overflow, untouch promisc and return error.
3309 */
3310 if (inc < 0)
3311 dev->flags &= ~IFF_PROMISC;
3312 else {
3313 dev->promiscuity -= inc;
3314 printk(KERN_WARNING "%s: promiscuity touches roof, "
3315 "set promiscuity failed, promiscuity feature "
3316 "of device might be broken.\n", dev->name);
3317 return -EOVERFLOW;
3318 }
3319 }
52609c0b 3320 if (dev->flags != old_flags) {
1da177e4
LT
3321 printk(KERN_INFO "device %s %s promiscuous mode\n",
3322 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4ec93edb 3323 "left");
8192b0c4
DH
3324 if (audit_enabled) {
3325 current_uid_gid(&uid, &gid);
7759db82
KHK
3326 audit_log(current->audit_context, GFP_ATOMIC,
3327 AUDIT_ANOM_PROMISCUOUS,
3328 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3329 dev->name, (dev->flags & IFF_PROMISC),
3330 (old_flags & IFF_PROMISC),
3331 audit_get_loginuid(current),
8192b0c4 3332 uid, gid,
7759db82 3333 audit_get_sessionid(current));
8192b0c4 3334 }
24023451 3335
b6c40d68 3336 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 3337 }
dad9b335 3338 return 0;
1da177e4
LT
3339}
3340
4417da66
PM
3341/**
3342 * dev_set_promiscuity - update promiscuity count on a device
3343 * @dev: device
3344 * @inc: modifier
3345 *
3346 * Add or remove promiscuity from a device. While the count in the device
3347 * remains above zero the interface remains promiscuous. Once it hits zero
3348 * the device reverts back to normal filtering operation. A negative inc
3349 * value is used to drop promiscuity on the device.
dad9b335 3350 * Return 0 if successful or a negative errno code on error.
4417da66 3351 */
dad9b335 3352int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66
PM
3353{
3354 unsigned short old_flags = dev->flags;
dad9b335 3355 int err;
4417da66 3356
dad9b335 3357 err = __dev_set_promiscuity(dev, inc);
4b5a698e 3358 if (err < 0)
dad9b335 3359 return err;
4417da66
PM
3360 if (dev->flags != old_flags)
3361 dev_set_rx_mode(dev);
dad9b335 3362 return err;
4417da66
PM
3363}
3364
1da177e4
LT
3365/**
3366 * dev_set_allmulti - update allmulti count on a device
3367 * @dev: device
3368 * @inc: modifier
3369 *
3370 * Add or remove reception of all multicast frames to a device. While the
3371 * count in the device remains above zero the interface remains listening
3372 * to all interfaces. Once it hits zero the device reverts back to normal
3373 * filtering operation. A negative @inc value is used to drop the counter
3374 * when releasing a resource needing all multicasts.
dad9b335 3375 * Return 0 if successful or a negative errno code on error.
1da177e4
LT
3376 */
3377
dad9b335 3378int dev_set_allmulti(struct net_device *dev, int inc)
1da177e4
LT
3379{
3380 unsigned short old_flags = dev->flags;
3381
24023451
PM
3382 ASSERT_RTNL();
3383
1da177e4 3384 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
3385 dev->allmulti += inc;
3386 if (dev->allmulti == 0) {
3387 /*
3388 * Avoid overflow.
3389 * If inc causes overflow, untouch allmulti and return error.
3390 */
3391 if (inc < 0)
3392 dev->flags &= ~IFF_ALLMULTI;
3393 else {
3394 dev->allmulti -= inc;
3395 printk(KERN_WARNING "%s: allmulti touches roof, "
3396 "set allmulti failed, allmulti feature of "
3397 "device might be broken.\n", dev->name);
3398 return -EOVERFLOW;
3399 }
3400 }
24023451 3401 if (dev->flags ^ old_flags) {
b6c40d68 3402 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 3403 dev_set_rx_mode(dev);
24023451 3404 }
dad9b335 3405 return 0;
4417da66
PM
3406}
3407
3408/*
3409 * Upload unicast and multicast address lists to device and
3410 * configure RX filtering. When the device doesn't support unicast
53ccaae1 3411 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
3412 * are present.
3413 */
3414void __dev_set_rx_mode(struct net_device *dev)
3415{
d314774c
SH
3416 const struct net_device_ops *ops = dev->netdev_ops;
3417
4417da66
PM
3418 /* dev_open will call this function so the list will stay sane. */
3419 if (!(dev->flags&IFF_UP))
3420 return;
3421
3422 if (!netif_device_present(dev))
40b77c94 3423 return;
4417da66 3424
d314774c
SH
3425 if (ops->ndo_set_rx_mode)
3426 ops->ndo_set_rx_mode(dev);
4417da66
PM
3427 else {
3428 /* Unicast addresses changes may only happen under the rtnl,
3429 * therefore calling __dev_set_promiscuity here is safe.
3430 */
3431 if (dev->uc_count > 0 && !dev->uc_promisc) {
3432 __dev_set_promiscuity(dev, 1);
3433 dev->uc_promisc = 1;
3434 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3435 __dev_set_promiscuity(dev, -1);
3436 dev->uc_promisc = 0;
3437 }
3438
d314774c
SH
3439 if (ops->ndo_set_multicast_list)
3440 ops->ndo_set_multicast_list(dev);
4417da66
PM
3441 }
3442}
3443
3444void dev_set_rx_mode(struct net_device *dev)
3445{
b9e40857 3446 netif_addr_lock_bh(dev);
4417da66 3447 __dev_set_rx_mode(dev);
b9e40857 3448 netif_addr_unlock_bh(dev);
1da177e4
LT
3449}
3450
f001fde5
JP
3451/* hw addresses list handling functions */
3452
3453static int __hw_addr_add(struct list_head *list, unsigned char *addr,
3454 int addr_len, unsigned char addr_type)
3455{
3456 struct netdev_hw_addr *ha;
3457 int alloc_size;
3458
3459 if (addr_len > MAX_ADDR_LEN)
3460 return -EINVAL;
3461
3462 alloc_size = sizeof(*ha);
3463 if (alloc_size < L1_CACHE_BYTES)
3464 alloc_size = L1_CACHE_BYTES;
3465 ha = kmalloc(alloc_size, GFP_ATOMIC);
3466 if (!ha)
3467 return -ENOMEM;
3468 memcpy(ha->addr, addr, addr_len);
3469 ha->type = addr_type;
3470 list_add_tail_rcu(&ha->list, list);
3471 return 0;
3472}
3473
3474static void ha_rcu_free(struct rcu_head *head)
3475{
3476 struct netdev_hw_addr *ha;
3477
3478 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3479 kfree(ha);
3480}
3481
3482static int __hw_addr_del_ii(struct list_head *list, unsigned char *addr,
3483 int addr_len, unsigned char addr_type,
3484 int ignore_index)
3485{
3486 struct netdev_hw_addr *ha;
3487 int i = 0;
3488
3489 list_for_each_entry(ha, list, list) {
3490 if (i++ != ignore_index &&
3491 !memcmp(ha->addr, addr, addr_len) &&
3492 (ha->type == addr_type || !addr_type)) {
3493 list_del_rcu(&ha->list);
3494 call_rcu(&ha->rcu_head, ha_rcu_free);
3495 return 0;
3496 }
3497 }
3498 return -ENOENT;
3499}
3500
3501static int __hw_addr_add_multiple_ii(struct list_head *to_list,
3502 struct list_head *from_list,
3503 int addr_len, unsigned char addr_type,
3504 int ignore_index)
3505{
3506 int err;
3507 struct netdev_hw_addr *ha, *ha2;
3508 unsigned char type;
3509
3510 list_for_each_entry(ha, from_list, list) {
3511 type = addr_type ? addr_type : ha->type;
3512 err = __hw_addr_add(to_list, ha->addr, addr_len, type);
3513 if (err)
3514 goto unroll;
3515 }
3516 return 0;
3517
3518unroll:
3519 list_for_each_entry(ha2, from_list, list) {
3520 if (ha2 == ha)
3521 break;
3522 type = addr_type ? addr_type : ha2->type;
3523 __hw_addr_del_ii(to_list, ha2->addr, addr_len, type,
3524 ignore_index);
3525 }
3526 return err;
3527}
3528
3529static void __hw_addr_del_multiple_ii(struct list_head *to_list,
3530 struct list_head *from_list,
3531 int addr_len, unsigned char addr_type,
3532 int ignore_index)
3533{
3534 struct netdev_hw_addr *ha;
3535 unsigned char type;
3536
3537 list_for_each_entry(ha, from_list, list) {
3538 type = addr_type ? addr_type : ha->type;
3539 __hw_addr_del_ii(to_list, ha->addr, addr_len, addr_type,
3540 ignore_index);
3541 }
3542}
3543
3544static void __hw_addr_flush(struct list_head *list)
3545{
3546 struct netdev_hw_addr *ha, *tmp;
3547
3548 list_for_each_entry_safe(ha, tmp, list, list) {
3549 list_del_rcu(&ha->list);
3550 call_rcu(&ha->rcu_head, ha_rcu_free);
3551 }
3552}
3553
3554/* Device addresses handling functions */
3555
3556static void dev_addr_flush(struct net_device *dev)
3557{
3558 /* rtnl_mutex must be held here */
3559
3560 __hw_addr_flush(&dev->dev_addr_list);
3561 dev->dev_addr = NULL;
3562}
3563
3564static int dev_addr_init(struct net_device *dev)
3565{
3566 unsigned char addr[MAX_ADDR_LEN];
3567 struct netdev_hw_addr *ha;
3568 int err;
3569
3570 /* rtnl_mutex must be held here */
3571
3572 INIT_LIST_HEAD(&dev->dev_addr_list);
3573 memset(addr, 0, sizeof(*addr));
3574 err = __hw_addr_add(&dev->dev_addr_list, addr, sizeof(*addr),
3575 NETDEV_HW_ADDR_T_LAN);
3576 if (!err) {
3577 /*
3578 * Get the first (previously created) address from the list
3579 * and set dev_addr pointer to this location.
3580 */
3581 ha = list_first_entry(&dev->dev_addr_list,
3582 struct netdev_hw_addr, list);
3583 dev->dev_addr = ha->addr;
3584 }
3585 return err;
3586}
3587
3588/**
3589 * dev_addr_add - Add a device address
3590 * @dev: device
3591 * @addr: address to add
3592 * @addr_type: address type
3593 *
3594 * Add a device address to the device or increase the reference count if
3595 * it already exists.
3596 *
3597 * The caller must hold the rtnl_mutex.
3598 */
3599int dev_addr_add(struct net_device *dev, unsigned char *addr,
3600 unsigned char addr_type)
3601{
3602 int err;
3603
3604 ASSERT_RTNL();
3605
3606 err = __hw_addr_add(&dev->dev_addr_list, addr, dev->addr_len,
3607 addr_type);
3608 if (!err)
3609 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3610 return err;
3611}
3612EXPORT_SYMBOL(dev_addr_add);
3613
3614/**
3615 * dev_addr_del - Release a device address.
3616 * @dev: device
3617 * @addr: address to delete
3618 * @addr_type: address type
3619 *
3620 * Release reference to a device address and remove it from the device
3621 * if the reference count drops to zero.
3622 *
3623 * The caller must hold the rtnl_mutex.
3624 */
3625int dev_addr_del(struct net_device *dev, unsigned char *addr,
3626 unsigned char addr_type)
3627{
3628 int err;
3629
3630 ASSERT_RTNL();
3631
3632 err = __hw_addr_del_ii(&dev->dev_addr_list, addr, dev->addr_len,
3633 addr_type, 0);
3634 if (!err)
3635 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3636 return err;
3637}
3638EXPORT_SYMBOL(dev_addr_del);
3639
3640/**
3641 * dev_addr_add_multiple - Add device addresses from another device
3642 * @to_dev: device to which addresses will be added
3643 * @from_dev: device from which addresses will be added
3644 * @addr_type: address type - 0 means type will be used from from_dev
3645 *
3646 * Add device addresses of the one device to another.
3647 **
3648 * The caller must hold the rtnl_mutex.
3649 */
3650int dev_addr_add_multiple(struct net_device *to_dev,
3651 struct net_device *from_dev,
3652 unsigned char addr_type)
3653{
3654 int err;
3655
3656 ASSERT_RTNL();
3657
3658 if (from_dev->addr_len != to_dev->addr_len)
3659 return -EINVAL;
3660 err = __hw_addr_add_multiple_ii(&to_dev->dev_addr_list,
3661 &from_dev->dev_addr_list,
3662 to_dev->addr_len, addr_type, 0);
3663 if (!err)
3664 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3665 return err;
3666}
3667EXPORT_SYMBOL(dev_addr_add_multiple);
3668
3669/**
3670 * dev_addr_del_multiple - Delete device addresses by another device
3671 * @to_dev: device where the addresses will be deleted
3672 * @from_dev: device by which addresses the addresses will be deleted
3673 * @addr_type: address type - 0 means type will used from from_dev
3674 *
3675 * Deletes addresses in to device by the list of addresses in from device.
3676 *
3677 * The caller must hold the rtnl_mutex.
3678 */
3679int dev_addr_del_multiple(struct net_device *to_dev,
3680 struct net_device *from_dev,
3681 unsigned char addr_type)
3682{
3683 ASSERT_RTNL();
3684
3685 if (from_dev->addr_len != to_dev->addr_len)
3686 return -EINVAL;
3687 __hw_addr_del_multiple_ii(&to_dev->dev_addr_list,
3688 &from_dev->dev_addr_list,
3689 to_dev->addr_len, addr_type, 0);
3690 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
3691 return 0;
3692}
3693EXPORT_SYMBOL(dev_addr_del_multiple);
3694
3695/* unicast and multicast addresses handling functions */
3696
61cbc2fc
PM
3697int __dev_addr_delete(struct dev_addr_list **list, int *count,
3698 void *addr, int alen, int glbl)
bf742482
PM
3699{
3700 struct dev_addr_list *da;
3701
3702 for (; (da = *list) != NULL; list = &da->next) {
3703 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3704 alen == da->da_addrlen) {
3705 if (glbl) {
3706 int old_glbl = da->da_gusers;
3707 da->da_gusers = 0;
3708 if (old_glbl == 0)
3709 break;
3710 }
3711 if (--da->da_users)
3712 return 0;
3713
3714 *list = da->next;
3715 kfree(da);
61cbc2fc 3716 (*count)--;
bf742482
PM
3717 return 0;
3718 }
3719 }
3720 return -ENOENT;
3721}
3722
61cbc2fc
PM
3723int __dev_addr_add(struct dev_addr_list **list, int *count,
3724 void *addr, int alen, int glbl)
bf742482
PM
3725{
3726 struct dev_addr_list *da;
3727
3728 for (da = *list; da != NULL; da = da->next) {
3729 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3730 da->da_addrlen == alen) {
3731 if (glbl) {
3732 int old_glbl = da->da_gusers;
3733 da->da_gusers = 1;
3734 if (old_glbl)
3735 return 0;
3736 }
3737 da->da_users++;
3738 return 0;
3739 }
3740 }
3741
12aa343a 3742 da = kzalloc(sizeof(*da), GFP_ATOMIC);
bf742482
PM
3743 if (da == NULL)
3744 return -ENOMEM;
3745 memcpy(da->da_addr, addr, alen);
3746 da->da_addrlen = alen;
3747 da->da_users = 1;
3748 da->da_gusers = glbl ? 1 : 0;
3749 da->next = *list;
3750 *list = da;
61cbc2fc 3751 (*count)++;
bf742482
PM
3752 return 0;
3753}
3754
4417da66
PM
3755/**
3756 * dev_unicast_delete - Release secondary unicast address.
3757 * @dev: device
0ed72ec4
RD
3758 * @addr: address to delete
3759 * @alen: length of @addr
4417da66
PM
3760 *
3761 * Release reference to a secondary unicast address and remove it
0ed72ec4 3762 * from the device if the reference count drops to zero.
4417da66
PM
3763 *
3764 * The caller must hold the rtnl_mutex.
3765 */
3766int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3767{
3768 int err;
3769
3770 ASSERT_RTNL();
3771
b9e40857 3772 netif_addr_lock_bh(dev);
61cbc2fc
PM
3773 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3774 if (!err)
4417da66 3775 __dev_set_rx_mode(dev);
b9e40857 3776 netif_addr_unlock_bh(dev);
4417da66
PM
3777 return err;
3778}
3779EXPORT_SYMBOL(dev_unicast_delete);
3780
3781/**
3782 * dev_unicast_add - add a secondary unicast address
3783 * @dev: device
5dbaec5d 3784 * @addr: address to add
0ed72ec4 3785 * @alen: length of @addr
4417da66
PM
3786 *
3787 * Add a secondary unicast address to the device or increase
3788 * the reference count if it already exists.
3789 *
3790 * The caller must hold the rtnl_mutex.
3791 */
3792int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3793{
3794 int err;
3795
3796 ASSERT_RTNL();
3797
b9e40857 3798 netif_addr_lock_bh(dev);
61cbc2fc
PM
3799 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3800 if (!err)
4417da66 3801 __dev_set_rx_mode(dev);
b9e40857 3802 netif_addr_unlock_bh(dev);
4417da66
PM
3803 return err;
3804}
3805EXPORT_SYMBOL(dev_unicast_add);
3806
e83a2ea8
CL
3807int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3808 struct dev_addr_list **from, int *from_count)
3809{
3810 struct dev_addr_list *da, *next;
3811 int err = 0;
3812
3813 da = *from;
3814 while (da != NULL) {
3815 next = da->next;
3816 if (!da->da_synced) {
3817 err = __dev_addr_add(to, to_count,
3818 da->da_addr, da->da_addrlen, 0);
3819 if (err < 0)
3820 break;
3821 da->da_synced = 1;
3822 da->da_users++;
3823 } else if (da->da_users == 1) {
3824 __dev_addr_delete(to, to_count,
3825 da->da_addr, da->da_addrlen, 0);
3826 __dev_addr_delete(from, from_count,
3827 da->da_addr, da->da_addrlen, 0);
3828 }
3829 da = next;
3830 }
3831 return err;
3832}
3833
3834void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3835 struct dev_addr_list **from, int *from_count)
3836{
3837 struct dev_addr_list *da, *next;
3838
3839 da = *from;
3840 while (da != NULL) {
3841 next = da->next;
3842 if (da->da_synced) {
3843 __dev_addr_delete(to, to_count,
3844 da->da_addr, da->da_addrlen, 0);
3845 da->da_synced = 0;
3846 __dev_addr_delete(from, from_count,
3847 da->da_addr, da->da_addrlen, 0);
3848 }
3849 da = next;
3850 }
3851}
3852
3853/**
3854 * dev_unicast_sync - Synchronize device's unicast list to another device
3855 * @to: destination device
3856 * @from: source device
3857 *
3858 * Add newly added addresses to the destination device and release
3859 * addresses that have no users left. The source device must be
3860 * locked by netif_tx_lock_bh.
3861 *
3862 * This function is intended to be called from the dev->set_rx_mode
3863 * function of layered software devices.
3864 */
3865int dev_unicast_sync(struct net_device *to, struct net_device *from)
3866{
3867 int err = 0;
3868
b9e40857 3869 netif_addr_lock_bh(to);
e83a2ea8
CL
3870 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3871 &from->uc_list, &from->uc_count);
3872 if (!err)
3873 __dev_set_rx_mode(to);
b9e40857 3874 netif_addr_unlock_bh(to);
e83a2ea8
CL
3875 return err;
3876}
3877EXPORT_SYMBOL(dev_unicast_sync);
3878
3879/**
bc2cda1e 3880 * dev_unicast_unsync - Remove synchronized addresses from the destination device
e83a2ea8
CL
3881 * @to: destination device
3882 * @from: source device
3883 *
3884 * Remove all addresses that were added to the destination device by
3885 * dev_unicast_sync(). This function is intended to be called from the
3886 * dev->stop function of layered software devices.
3887 */
3888void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3889{
b9e40857 3890 netif_addr_lock_bh(from);
e308a5d8 3891 netif_addr_lock(to);
e83a2ea8
CL
3892
3893 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3894 &from->uc_list, &from->uc_count);
3895 __dev_set_rx_mode(to);
3896
e308a5d8 3897 netif_addr_unlock(to);
b9e40857 3898 netif_addr_unlock_bh(from);
e83a2ea8
CL
3899}
3900EXPORT_SYMBOL(dev_unicast_unsync);
3901
12972621
DC
3902static void __dev_addr_discard(struct dev_addr_list **list)
3903{
3904 struct dev_addr_list *tmp;
3905
3906 while (*list != NULL) {
3907 tmp = *list;
3908 *list = tmp->next;
3909 if (tmp->da_users > tmp->da_gusers)
3910 printk("__dev_addr_discard: address leakage! "
3911 "da_users=%d\n", tmp->da_users);
3912 kfree(tmp);
3913 }
3914}
3915
26cc2522 3916static void dev_addr_discard(struct net_device *dev)
4417da66 3917{
b9e40857 3918 netif_addr_lock_bh(dev);
26cc2522 3919
4417da66
PM
3920 __dev_addr_discard(&dev->uc_list);
3921 dev->uc_count = 0;
4417da66 3922
456ad75c
DC
3923 __dev_addr_discard(&dev->mc_list);
3924 dev->mc_count = 0;
26cc2522 3925
b9e40857 3926 netif_addr_unlock_bh(dev);
456ad75c
DC
3927}
3928
f0db275a
SH
3929/**
3930 * dev_get_flags - get flags reported to userspace
3931 * @dev: device
3932 *
3933 * Get the combination of flag bits exported through APIs to userspace.
3934 */
1da177e4
LT
3935unsigned dev_get_flags(const struct net_device *dev)
3936{
3937 unsigned flags;
3938
3939 flags = (dev->flags & ~(IFF_PROMISC |
3940 IFF_ALLMULTI |
b00055aa
SR
3941 IFF_RUNNING |
3942 IFF_LOWER_UP |
3943 IFF_DORMANT)) |
1da177e4
LT
3944 (dev->gflags & (IFF_PROMISC |
3945 IFF_ALLMULTI));
3946
b00055aa
SR
3947 if (netif_running(dev)) {
3948 if (netif_oper_up(dev))
3949 flags |= IFF_RUNNING;
3950 if (netif_carrier_ok(dev))
3951 flags |= IFF_LOWER_UP;
3952 if (netif_dormant(dev))
3953 flags |= IFF_DORMANT;
3954 }
1da177e4
LT
3955
3956 return flags;
3957}
3958
f0db275a
SH
3959/**
3960 * dev_change_flags - change device settings
3961 * @dev: device
3962 * @flags: device state flags
3963 *
3964 * Change settings on device based state flags. The flags are
3965 * in the userspace exported format.
3966 */
1da177e4
LT
3967int dev_change_flags(struct net_device *dev, unsigned flags)
3968{
7c355f53 3969 int ret, changes;
1da177e4
LT
3970 int old_flags = dev->flags;
3971
24023451
PM
3972 ASSERT_RTNL();
3973
1da177e4
LT
3974 /*
3975 * Set the flags on our device.
3976 */
3977
3978 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3979 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3980 IFF_AUTOMEDIA)) |
3981 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3982 IFF_ALLMULTI));
3983
3984 /*
3985 * Load in the correct multicast list now the flags have changed.
3986 */
3987
b6c40d68
PM
3988 if ((old_flags ^ flags) & IFF_MULTICAST)
3989 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 3990
4417da66 3991 dev_set_rx_mode(dev);
1da177e4
LT
3992
3993 /*
3994 * Have we downed the interface. We handle IFF_UP ourselves
3995 * according to user attempts to set it, rather than blindly
3996 * setting it.
3997 */
3998
3999 ret = 0;
4000 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
4001 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
4002
4003 if (!ret)
4417da66 4004 dev_set_rx_mode(dev);
1da177e4
LT
4005 }
4006
4007 if (dev->flags & IFF_UP &&
4008 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
4009 IFF_VOLATILE)))
056925ab 4010 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1da177e4
LT
4011
4012 if ((flags ^ dev->gflags) & IFF_PROMISC) {
4013 int inc = (flags & IFF_PROMISC) ? +1 : -1;
4014 dev->gflags ^= IFF_PROMISC;
4015 dev_set_promiscuity(dev, inc);
4016 }
4017
4018 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4019 is important. Some (broken) drivers set IFF_PROMISC, when
4020 IFF_ALLMULTI is requested not asking us and not reporting.
4021 */
4022 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
4023 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
4024 dev->gflags ^= IFF_ALLMULTI;
4025 dev_set_allmulti(dev, inc);
4026 }
4027
7c355f53
TG
4028 /* Exclude state transition flags, already notified */
4029 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
4030 if (changes)
4031 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
1da177e4
LT
4032
4033 return ret;
4034}
4035
f0db275a
SH
4036/**
4037 * dev_set_mtu - Change maximum transfer unit
4038 * @dev: device
4039 * @new_mtu: new transfer unit
4040 *
4041 * Change the maximum transfer size of the network device.
4042 */
1da177e4
LT
4043int dev_set_mtu(struct net_device *dev, int new_mtu)
4044{
d314774c 4045 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
4046 int err;
4047
4048 if (new_mtu == dev->mtu)
4049 return 0;
4050
4051 /* MTU must be positive. */
4052 if (new_mtu < 0)
4053 return -EINVAL;
4054
4055 if (!netif_device_present(dev))
4056 return -ENODEV;
4057
4058 err = 0;
d314774c
SH
4059 if (ops->ndo_change_mtu)
4060 err = ops->ndo_change_mtu(dev, new_mtu);
1da177e4
LT
4061 else
4062 dev->mtu = new_mtu;
d314774c 4063
1da177e4 4064 if (!err && dev->flags & IFF_UP)
056925ab 4065 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
1da177e4
LT
4066 return err;
4067}
4068
f0db275a
SH
4069/**
4070 * dev_set_mac_address - Change Media Access Control Address
4071 * @dev: device
4072 * @sa: new address
4073 *
4074 * Change the hardware (MAC) address of the device
4075 */
1da177e4
LT
4076int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4077{
d314774c 4078 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
4079 int err;
4080
d314774c 4081 if (!ops->ndo_set_mac_address)
1da177e4
LT
4082 return -EOPNOTSUPP;
4083 if (sa->sa_family != dev->type)
4084 return -EINVAL;
4085 if (!netif_device_present(dev))
4086 return -ENODEV;
d314774c 4087 err = ops->ndo_set_mac_address(dev, sa);
1da177e4 4088 if (!err)
056925ab 4089 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
1da177e4
LT
4090 return err;
4091}
4092
4093/*
14e3e079 4094 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
1da177e4 4095 */
14e3e079 4096static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
1da177e4
LT
4097{
4098 int err;
881d966b 4099 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
1da177e4
LT
4100
4101 if (!dev)
4102 return -ENODEV;
4103
4104 switch (cmd) {
4105 case SIOCGIFFLAGS: /* Get interface flags */
4106 ifr->ifr_flags = dev_get_flags(dev);
4107 return 0;
4108
1da177e4
LT
4109 case SIOCGIFMETRIC: /* Get the metric on the interface
4110 (currently unused) */
4111 ifr->ifr_metric = 0;
4112 return 0;
4113
1da177e4
LT
4114 case SIOCGIFMTU: /* Get the MTU of a device */
4115 ifr->ifr_mtu = dev->mtu;
4116 return 0;
4117
1da177e4
LT
4118 case SIOCGIFHWADDR:
4119 if (!dev->addr_len)
4120 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4121 else
4122 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4123 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4124 ifr->ifr_hwaddr.sa_family = dev->type;
4125 return 0;
4126
14e3e079
JG
4127 case SIOCGIFSLAVE:
4128 err = -EINVAL;
4129 break;
4130
4131 case SIOCGIFMAP:
4132 ifr->ifr_map.mem_start = dev->mem_start;
4133 ifr->ifr_map.mem_end = dev->mem_end;
4134 ifr->ifr_map.base_addr = dev->base_addr;
4135 ifr->ifr_map.irq = dev->irq;
4136 ifr->ifr_map.dma = dev->dma;
4137 ifr->ifr_map.port = dev->if_port;
4138 return 0;
4139
4140 case SIOCGIFINDEX:
4141 ifr->ifr_ifindex = dev->ifindex;
4142 return 0;
4143
4144 case SIOCGIFTXQLEN:
4145 ifr->ifr_qlen = dev->tx_queue_len;
4146 return 0;
4147
4148 default:
4149 /* dev_ioctl() should ensure this case
4150 * is never reached
4151 */
4152 WARN_ON(1);
4153 err = -EINVAL;
4154 break;
4155
4156 }
4157 return err;
4158}
4159
4160/*
4161 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4162 */
4163static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4164{
4165 int err;
4166 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
5f2f6da7 4167 const struct net_device_ops *ops;
14e3e079
JG
4168
4169 if (!dev)
4170 return -ENODEV;
4171
5f2f6da7
JP
4172 ops = dev->netdev_ops;
4173
14e3e079
JG
4174 switch (cmd) {
4175 case SIOCSIFFLAGS: /* Set interface flags */
4176 return dev_change_flags(dev, ifr->ifr_flags);
4177
4178 case SIOCSIFMETRIC: /* Set the metric on the interface
4179 (currently unused) */
4180 return -EOPNOTSUPP;
4181
4182 case SIOCSIFMTU: /* Set the MTU of a device */
4183 return dev_set_mtu(dev, ifr->ifr_mtu);
4184
1da177e4
LT
4185 case SIOCSIFHWADDR:
4186 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
4187
4188 case SIOCSIFHWBROADCAST:
4189 if (ifr->ifr_hwaddr.sa_family != dev->type)
4190 return -EINVAL;
4191 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4192 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
056925ab 4193 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
1da177e4
LT
4194 return 0;
4195
1da177e4 4196 case SIOCSIFMAP:
d314774c 4197 if (ops->ndo_set_config) {
1da177e4
LT
4198 if (!netif_device_present(dev))
4199 return -ENODEV;
d314774c 4200 return ops->ndo_set_config(dev, &ifr->ifr_map);
1da177e4
LT
4201 }
4202 return -EOPNOTSUPP;
4203
4204 case SIOCADDMULTI:
d314774c 4205 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
1da177e4
LT
4206 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4207 return -EINVAL;
4208 if (!netif_device_present(dev))
4209 return -ENODEV;
4210 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4211 dev->addr_len, 1);
4212
4213 case SIOCDELMULTI:
d314774c 4214 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
1da177e4
LT
4215 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4216 return -EINVAL;
4217 if (!netif_device_present(dev))
4218 return -ENODEV;
4219 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4220 dev->addr_len, 1);
4221
1da177e4
LT
4222 case SIOCSIFTXQLEN:
4223 if (ifr->ifr_qlen < 0)
4224 return -EINVAL;
4225 dev->tx_queue_len = ifr->ifr_qlen;
4226 return 0;
4227
4228 case SIOCSIFNAME:
4229 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4230 return dev_change_name(dev, ifr->ifr_newname);
4231
4232 /*
4233 * Unknown or private ioctl
4234 */
4235
4236 default:
4237 if ((cmd >= SIOCDEVPRIVATE &&
4238 cmd <= SIOCDEVPRIVATE + 15) ||
4239 cmd == SIOCBONDENSLAVE ||
4240 cmd == SIOCBONDRELEASE ||
4241 cmd == SIOCBONDSETHWADDR ||
4242 cmd == SIOCBONDSLAVEINFOQUERY ||
4243 cmd == SIOCBONDINFOQUERY ||
4244 cmd == SIOCBONDCHANGEACTIVE ||
4245 cmd == SIOCGMIIPHY ||
4246 cmd == SIOCGMIIREG ||
4247 cmd == SIOCSMIIREG ||
4248 cmd == SIOCBRADDIF ||
4249 cmd == SIOCBRDELIF ||
d24fff22 4250 cmd == SIOCSHWTSTAMP ||
1da177e4
LT
4251 cmd == SIOCWANDEV) {
4252 err = -EOPNOTSUPP;
d314774c 4253 if (ops->ndo_do_ioctl) {
1da177e4 4254 if (netif_device_present(dev))
d314774c 4255 err = ops->ndo_do_ioctl(dev, ifr, cmd);
1da177e4
LT
4256 else
4257 err = -ENODEV;
4258 }
4259 } else
4260 err = -EINVAL;
4261
4262 }
4263 return err;
4264}
4265
4266/*
4267 * This function handles all "interface"-type I/O control requests. The actual
4268 * 'doing' part of this is dev_ifsioc above.
4269 */
4270
4271/**
4272 * dev_ioctl - network device ioctl
c4ea43c5 4273 * @net: the applicable net namespace
1da177e4
LT
4274 * @cmd: command to issue
4275 * @arg: pointer to a struct ifreq in user space
4276 *
4277 * Issue ioctl functions to devices. This is normally called by the
4278 * user space syscall interfaces but can sometimes be useful for
4279 * other purposes. The return value is the return from the syscall if
4280 * positive or a negative errno code on error.
4281 */
4282
881d966b 4283int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1da177e4
LT
4284{
4285 struct ifreq ifr;
4286 int ret;
4287 char *colon;
4288
4289 /* One special case: SIOCGIFCONF takes ifconf argument
4290 and requires shared lock, because it sleeps writing
4291 to user space.
4292 */
4293
4294 if (cmd == SIOCGIFCONF) {
6756ae4b 4295 rtnl_lock();
881d966b 4296 ret = dev_ifconf(net, (char __user *) arg);
6756ae4b 4297 rtnl_unlock();
1da177e4
LT
4298 return ret;
4299 }
4300 if (cmd == SIOCGIFNAME)
881d966b 4301 return dev_ifname(net, (struct ifreq __user *)arg);
1da177e4
LT
4302
4303 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4304 return -EFAULT;
4305
4306 ifr.ifr_name[IFNAMSIZ-1] = 0;
4307
4308 colon = strchr(ifr.ifr_name, ':');
4309 if (colon)
4310 *colon = 0;
4311
4312 /*
4313 * See which interface the caller is talking about.
4314 */
4315
4316 switch (cmd) {
4317 /*
4318 * These ioctl calls:
4319 * - can be done by all.
4320 * - atomic and do not require locking.
4321 * - return a value
4322 */
4323 case SIOCGIFFLAGS:
4324 case SIOCGIFMETRIC:
4325 case SIOCGIFMTU:
4326 case SIOCGIFHWADDR:
4327 case SIOCGIFSLAVE:
4328 case SIOCGIFMAP:
4329 case SIOCGIFINDEX:
4330 case SIOCGIFTXQLEN:
881d966b 4331 dev_load(net, ifr.ifr_name);
1da177e4 4332 read_lock(&dev_base_lock);
14e3e079 4333 ret = dev_ifsioc_locked(net, &ifr, cmd);
1da177e4
LT
4334 read_unlock(&dev_base_lock);
4335 if (!ret) {
4336 if (colon)
4337 *colon = ':';
4338 if (copy_to_user(arg, &ifr,
4339 sizeof(struct ifreq)))
4340 ret = -EFAULT;
4341 }
4342 return ret;
4343
4344 case SIOCETHTOOL:
881d966b 4345 dev_load(net, ifr.ifr_name);
1da177e4 4346 rtnl_lock();
881d966b 4347 ret = dev_ethtool(net, &ifr);
1da177e4
LT
4348 rtnl_unlock();
4349 if (!ret) {
4350 if (colon)
4351 *colon = ':';
4352 if (copy_to_user(arg, &ifr,
4353 sizeof(struct ifreq)))
4354 ret = -EFAULT;
4355 }
4356 return ret;
4357
4358 /*
4359 * These ioctl calls:
4360 * - require superuser power.
4361 * - require strict serialization.
4362 * - return a value
4363 */
4364 case SIOCGMIIPHY:
4365 case SIOCGMIIREG:
4366 case SIOCSIFNAME:
4367 if (!capable(CAP_NET_ADMIN))
4368 return -EPERM;
881d966b 4369 dev_load(net, ifr.ifr_name);
1da177e4 4370 rtnl_lock();
881d966b 4371 ret = dev_ifsioc(net, &ifr, cmd);
1da177e4
LT
4372 rtnl_unlock();
4373 if (!ret) {
4374 if (colon)
4375 *colon = ':';
4376 if (copy_to_user(arg, &ifr,
4377 sizeof(struct ifreq)))
4378 ret = -EFAULT;
4379 }
4380 return ret;
4381
4382 /*
4383 * These ioctl calls:
4384 * - require superuser power.
4385 * - require strict serialization.
4386 * - do not return a value
4387 */
4388 case SIOCSIFFLAGS:
4389 case SIOCSIFMETRIC:
4390 case SIOCSIFMTU:
4391 case SIOCSIFMAP:
4392 case SIOCSIFHWADDR:
4393 case SIOCSIFSLAVE:
4394 case SIOCADDMULTI:
4395 case SIOCDELMULTI:
4396 case SIOCSIFHWBROADCAST:
4397 case SIOCSIFTXQLEN:
4398 case SIOCSMIIREG:
4399 case SIOCBONDENSLAVE:
4400 case SIOCBONDRELEASE:
4401 case SIOCBONDSETHWADDR:
1da177e4
LT
4402 case SIOCBONDCHANGEACTIVE:
4403 case SIOCBRADDIF:
4404 case SIOCBRDELIF:
d24fff22 4405 case SIOCSHWTSTAMP:
1da177e4
LT
4406 if (!capable(CAP_NET_ADMIN))
4407 return -EPERM;
cabcac0b
TG
4408 /* fall through */
4409 case SIOCBONDSLAVEINFOQUERY:
4410 case SIOCBONDINFOQUERY:
881d966b 4411 dev_load(net, ifr.ifr_name);
1da177e4 4412 rtnl_lock();
881d966b 4413 ret = dev_ifsioc(net, &ifr, cmd);
1da177e4
LT
4414 rtnl_unlock();
4415 return ret;
4416
4417 case SIOCGIFMEM:
4418 /* Get the per device memory space. We can add this but
4419 * currently do not support it */
4420 case SIOCSIFMEM:
4421 /* Set the per device memory buffer space.
4422 * Not applicable in our case */
4423 case SIOCSIFLINK:
4424 return -EINVAL;
4425
4426 /*
4427 * Unknown or private ioctl.
4428 */
4429 default:
4430 if (cmd == SIOCWANDEV ||
4431 (cmd >= SIOCDEVPRIVATE &&
4432 cmd <= SIOCDEVPRIVATE + 15)) {
881d966b 4433 dev_load(net, ifr.ifr_name);
1da177e4 4434 rtnl_lock();
881d966b 4435 ret = dev_ifsioc(net, &ifr, cmd);
1da177e4
LT
4436 rtnl_unlock();
4437 if (!ret && copy_to_user(arg, &ifr,
4438 sizeof(struct ifreq)))
4439 ret = -EFAULT;
4440 return ret;
4441 }
1da177e4 4442 /* Take care of Wireless Extensions */
295f4a1f 4443 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
881d966b 4444 return wext_handle_ioctl(net, &ifr, cmd, arg);
1da177e4
LT
4445 return -EINVAL;
4446 }
4447}
4448
4449
4450/**
4451 * dev_new_index - allocate an ifindex
c4ea43c5 4452 * @net: the applicable net namespace
1da177e4
LT
4453 *
4454 * Returns a suitable unique value for a new device interface
4455 * number. The caller must hold the rtnl semaphore or the
4456 * dev_base_lock to be sure it remains unique.
4457 */
881d966b 4458static int dev_new_index(struct net *net)
1da177e4
LT
4459{
4460 static int ifindex;
4461 for (;;) {
4462 if (++ifindex <= 0)
4463 ifindex = 1;
881d966b 4464 if (!__dev_get_by_index(net, ifindex))
1da177e4
LT
4465 return ifindex;
4466 }
4467}
4468
1da177e4 4469/* Delayed registration/unregisteration */
3b5b34fd 4470static LIST_HEAD(net_todo_list);
1da177e4 4471
6f05f629 4472static void net_set_todo(struct net_device *dev)
1da177e4 4473{
1da177e4 4474 list_add_tail(&dev->todo_list, &net_todo_list);
1da177e4
LT
4475}
4476
93ee31f1
DL
4477static void rollback_registered(struct net_device *dev)
4478{
4479 BUG_ON(dev_boot_phase);
4480 ASSERT_RTNL();
4481
4482 /* Some devices call without registering for initialization unwind. */
4483 if (dev->reg_state == NETREG_UNINITIALIZED) {
4484 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
4485 "was registered\n", dev->name, dev);
4486
4487 WARN_ON(1);
4488 return;
4489 }
4490
4491 BUG_ON(dev->reg_state != NETREG_REGISTERED);
4492
4493 /* If device is running, close it first. */
4494 dev_close(dev);
4495
4496 /* And unlink it from device chain. */
4497 unlist_netdevice(dev);
4498
4499 dev->reg_state = NETREG_UNREGISTERING;
4500
4501 synchronize_net();
4502
4503 /* Shutdown queueing discipline. */
4504 dev_shutdown(dev);
4505
4506
4507 /* Notify protocols, that we are about to destroy
4508 this device. They should clean all the things.
4509 */
4510 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4511
4512 /*
4513 * Flush the unicast and multicast chains
4514 */
4515 dev_addr_discard(dev);
4516
d314774c
SH
4517 if (dev->netdev_ops->ndo_uninit)
4518 dev->netdev_ops->ndo_uninit(dev);
93ee31f1
DL
4519
4520 /* Notifier chain MUST detach us from master device. */
547b792c 4521 WARN_ON(dev->master);
93ee31f1
DL
4522
4523 /* Remove entries from kobject tree */
4524 netdev_unregister_kobject(dev);
4525
4526 synchronize_net();
4527
4528 dev_put(dev);
4529}
4530
e8a0464c
DM
4531static void __netdev_init_queue_locks_one(struct net_device *dev,
4532 struct netdev_queue *dev_queue,
4533 void *_unused)
c773e847
DM
4534{
4535 spin_lock_init(&dev_queue->_xmit_lock);
cf508b12 4536 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
c773e847
DM
4537 dev_queue->xmit_lock_owner = -1;
4538}
4539
4540static void netdev_init_queue_locks(struct net_device *dev)
4541{
e8a0464c
DM
4542 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4543 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
c773e847
DM
4544}
4545
b63365a2
HX
4546unsigned long netdev_fix_features(unsigned long features, const char *name)
4547{
4548 /* Fix illegal SG+CSUM combinations. */
4549 if ((features & NETIF_F_SG) &&
4550 !(features & NETIF_F_ALL_CSUM)) {
4551 if (name)
4552 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4553 "checksum feature.\n", name);
4554 features &= ~NETIF_F_SG;
4555 }
4556
4557 /* TSO requires that SG is present as well. */
4558 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4559 if (name)
4560 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4561 "SG feature.\n", name);
4562 features &= ~NETIF_F_TSO;
4563 }
4564
4565 if (features & NETIF_F_UFO) {
4566 if (!(features & NETIF_F_GEN_CSUM)) {
4567 if (name)
4568 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4569 "since no NETIF_F_HW_CSUM feature.\n",
4570 name);
4571 features &= ~NETIF_F_UFO;
4572 }
4573
4574 if (!(features & NETIF_F_SG)) {
4575 if (name)
4576 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4577 "since no NETIF_F_SG feature.\n", name);
4578 features &= ~NETIF_F_UFO;
4579 }
4580 }
4581
4582 return features;
4583}
4584EXPORT_SYMBOL(netdev_fix_features);
4585
1da177e4
LT
4586/**
4587 * register_netdevice - register a network device
4588 * @dev: device to register
4589 *
4590 * Take a completed network device structure and add it to the kernel
4591 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4592 * chain. 0 is returned on success. A negative errno code is returned
4593 * on a failure to set up the device, or if the name is a duplicate.
4594 *
4595 * Callers must hold the rtnl semaphore. You may want
4596 * register_netdev() instead of this.
4597 *
4598 * BUGS:
4599 * The locking appears insufficient to guarantee two parallel registers
4600 * will not get the same name.
4601 */
4602
4603int register_netdevice(struct net_device *dev)
4604{
4605 struct hlist_head *head;
4606 struct hlist_node *p;
4607 int ret;
d314774c 4608 struct net *net = dev_net(dev);
1da177e4
LT
4609
4610 BUG_ON(dev_boot_phase);
4611 ASSERT_RTNL();
4612
b17a7c17
SH
4613 might_sleep();
4614
1da177e4
LT
4615 /* When net_device's are persistent, this will be fatal. */
4616 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 4617 BUG_ON(!net);
1da177e4 4618
f1f28aa3 4619 spin_lock_init(&dev->addr_list_lock);
cf508b12 4620 netdev_set_addr_lockdep_class(dev);
c773e847 4621 netdev_init_queue_locks(dev);
1da177e4 4622
1da177e4
LT
4623 dev->iflink = -1;
4624
4625 /* Init, if this function is available */
d314774c
SH
4626 if (dev->netdev_ops->ndo_init) {
4627 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
4628 if (ret) {
4629 if (ret > 0)
4630 ret = -EIO;
90833aa4 4631 goto out;
1da177e4
LT
4632 }
4633 }
4ec93edb 4634
1da177e4
LT
4635 if (!dev_valid_name(dev->name)) {
4636 ret = -EINVAL;
7ce1b0ed 4637 goto err_uninit;
1da177e4
LT
4638 }
4639
881d966b 4640 dev->ifindex = dev_new_index(net);
1da177e4
LT
4641 if (dev->iflink == -1)
4642 dev->iflink = dev->ifindex;
4643
4644 /* Check for existence of name */
881d966b 4645 head = dev_name_hash(net, dev->name);
1da177e4
LT
4646 hlist_for_each(p, head) {
4647 struct net_device *d
4648 = hlist_entry(p, struct net_device, name_hlist);
4649 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
4650 ret = -EEXIST;
7ce1b0ed 4651 goto err_uninit;
1da177e4 4652 }
4ec93edb 4653 }
1da177e4 4654
d212f87b
SH
4655 /* Fix illegal checksum combinations */
4656 if ((dev->features & NETIF_F_HW_CSUM) &&
4657 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4658 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
4659 dev->name);
4660 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4661 }
4662
4663 if ((dev->features & NETIF_F_NO_CSUM) &&
4664 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
4665 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
4666 dev->name);
4667 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
4668 }
4669
b63365a2 4670 dev->features = netdev_fix_features(dev->features, dev->name);
1da177e4 4671
e5a4a72d
LB
4672 /* Enable software GSO if SG is supported. */
4673 if (dev->features & NETIF_F_SG)
4674 dev->features |= NETIF_F_GSO;
4675
aaf8cdc3 4676 netdev_initialize_kobject(dev);
8b41d188 4677 ret = netdev_register_kobject(dev);
b17a7c17 4678 if (ret)
7ce1b0ed 4679 goto err_uninit;
b17a7c17
SH
4680 dev->reg_state = NETREG_REGISTERED;
4681
1da177e4
LT
4682 /*
4683 * Default initial state at registry is that the
4684 * device is present.
4685 */
4686
4687 set_bit(__LINK_STATE_PRESENT, &dev->state);
4688
1da177e4 4689 dev_init_scheduler(dev);
1da177e4 4690 dev_hold(dev);
ce286d32 4691 list_netdevice(dev);
1da177e4
LT
4692
4693 /* Notify protocols, that a new device appeared. */
056925ab 4694 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 4695 ret = notifier_to_errno(ret);
93ee31f1
DL
4696 if (ret) {
4697 rollback_registered(dev);
4698 dev->reg_state = NETREG_UNREGISTERED;
4699 }
1da177e4
LT
4700
4701out:
4702 return ret;
7ce1b0ed
HX
4703
4704err_uninit:
d314774c
SH
4705 if (dev->netdev_ops->ndo_uninit)
4706 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 4707 goto out;
1da177e4
LT
4708}
4709
937f1ba5
BH
4710/**
4711 * init_dummy_netdev - init a dummy network device for NAPI
4712 * @dev: device to init
4713 *
4714 * This takes a network device structure and initialize the minimum
4715 * amount of fields so it can be used to schedule NAPI polls without
4716 * registering a full blown interface. This is to be used by drivers
4717 * that need to tie several hardware interfaces to a single NAPI
4718 * poll scheduler due to HW limitations.
4719 */
4720int init_dummy_netdev(struct net_device *dev)
4721{
4722 /* Clear everything. Note we don't initialize spinlocks
4723 * are they aren't supposed to be taken by any of the
4724 * NAPI code and this dummy netdev is supposed to be
4725 * only ever used for NAPI polls
4726 */
4727 memset(dev, 0, sizeof(struct net_device));
4728
4729 /* make sure we BUG if trying to hit standard
4730 * register/unregister code path
4731 */
4732 dev->reg_state = NETREG_DUMMY;
4733
4734 /* initialize the ref count */
4735 atomic_set(&dev->refcnt, 1);
4736
4737 /* NAPI wants this */
4738 INIT_LIST_HEAD(&dev->napi_list);
4739
4740 /* a dummy interface is started by default */
4741 set_bit(__LINK_STATE_PRESENT, &dev->state);
4742 set_bit(__LINK_STATE_START, &dev->state);
4743
4744 return 0;
4745}
4746EXPORT_SYMBOL_GPL(init_dummy_netdev);
4747
4748
1da177e4
LT
4749/**
4750 * register_netdev - register a network device
4751 * @dev: device to register
4752 *
4753 * Take a completed network device structure and add it to the kernel
4754 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4755 * chain. 0 is returned on success. A negative errno code is returned
4756 * on a failure to set up the device, or if the name is a duplicate.
4757 *
38b4da38 4758 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
4759 * and expands the device name if you passed a format string to
4760 * alloc_netdev.
4761 */
4762int register_netdev(struct net_device *dev)
4763{
4764 int err;
4765
4766 rtnl_lock();
4767
4768 /*
4769 * If the name is a format string the caller wants us to do a
4770 * name allocation.
4771 */
4772 if (strchr(dev->name, '%')) {
4773 err = dev_alloc_name(dev, dev->name);
4774 if (err < 0)
4775 goto out;
4776 }
4ec93edb 4777
1da177e4
LT
4778 err = register_netdevice(dev);
4779out:
4780 rtnl_unlock();
4781 return err;
4782}
4783EXPORT_SYMBOL(register_netdev);
4784
4785/*
4786 * netdev_wait_allrefs - wait until all references are gone.
4787 *
4788 * This is called when unregistering network devices.
4789 *
4790 * Any protocol or device that holds a reference should register
4791 * for netdevice notification, and cleanup and put back the
4792 * reference if they receive an UNREGISTER event.
4793 * We can get stuck here if buggy protocols don't correctly
4ec93edb 4794 * call dev_put.
1da177e4
LT
4795 */
4796static void netdev_wait_allrefs(struct net_device *dev)
4797{
4798 unsigned long rebroadcast_time, warning_time;
4799
4800 rebroadcast_time = warning_time = jiffies;
4801 while (atomic_read(&dev->refcnt) != 0) {
4802 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 4803 rtnl_lock();
1da177e4
LT
4804
4805 /* Rebroadcast unregister notification */
056925ab 4806 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4
LT
4807
4808 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4809 &dev->state)) {
4810 /* We must not have linkwatch events
4811 * pending on unregister. If this
4812 * happens, we simply run the queue
4813 * unscheduled, resulting in a noop
4814 * for this device.
4815 */
4816 linkwatch_run_queue();
4817 }
4818
6756ae4b 4819 __rtnl_unlock();
1da177e4
LT
4820
4821 rebroadcast_time = jiffies;
4822 }
4823
4824 msleep(250);
4825
4826 if (time_after(jiffies, warning_time + 10 * HZ)) {
4827 printk(KERN_EMERG "unregister_netdevice: "
4828 "waiting for %s to become free. Usage "
4829 "count = %d\n",
4830 dev->name, atomic_read(&dev->refcnt));
4831 warning_time = jiffies;
4832 }
4833 }
4834}
4835
4836/* The sequence is:
4837 *
4838 * rtnl_lock();
4839 * ...
4840 * register_netdevice(x1);
4841 * register_netdevice(x2);
4842 * ...
4843 * unregister_netdevice(y1);
4844 * unregister_netdevice(y2);
4845 * ...
4846 * rtnl_unlock();
4847 * free_netdev(y1);
4848 * free_netdev(y2);
4849 *
58ec3b4d 4850 * We are invoked by rtnl_unlock().
1da177e4 4851 * This allows us to deal with problems:
b17a7c17 4852 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
4853 * without deadlocking with linkwatch via keventd.
4854 * 2) Since we run with the RTNL semaphore not held, we can sleep
4855 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
4856 *
4857 * We must not return until all unregister events added during
4858 * the interval the lock was held have been completed.
1da177e4 4859 */
1da177e4
LT
4860void netdev_run_todo(void)
4861{
626ab0e6 4862 struct list_head list;
1da177e4 4863
1da177e4 4864 /* Snapshot list, allow later requests */
626ab0e6 4865 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
4866
4867 __rtnl_unlock();
626ab0e6 4868
1da177e4
LT
4869 while (!list_empty(&list)) {
4870 struct net_device *dev
4871 = list_entry(list.next, struct net_device, todo_list);
4872 list_del(&dev->todo_list);
4873
b17a7c17
SH
4874 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4875 printk(KERN_ERR "network todo '%s' but state %d\n",
4876 dev->name, dev->reg_state);
4877 dump_stack();
4878 continue;
4879 }
1da177e4 4880
b17a7c17 4881 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 4882
6e583ce5
SH
4883 on_each_cpu(flush_backlog, dev, 1);
4884
b17a7c17 4885 netdev_wait_allrefs(dev);
1da177e4 4886
b17a7c17
SH
4887 /* paranoia */
4888 BUG_ON(atomic_read(&dev->refcnt));
547b792c
IJ
4889 WARN_ON(dev->ip_ptr);
4890 WARN_ON(dev->ip6_ptr);
4891 WARN_ON(dev->dn_ptr);
1da177e4 4892
b17a7c17
SH
4893 if (dev->destructor)
4894 dev->destructor(dev);
9093bbb2
SH
4895
4896 /* Free network device */
4897 kobject_put(&dev->dev.kobj);
1da177e4 4898 }
1da177e4
LT
4899}
4900
eeda3fd6
SH
4901/**
4902 * dev_get_stats - get network device statistics
4903 * @dev: device to get statistics from
4904 *
4905 * Get network statistics from device. The device driver may provide
4906 * its own method by setting dev->netdev_ops->get_stats; otherwise
4907 * the internal statistics structure is used.
4908 */
4909const struct net_device_stats *dev_get_stats(struct net_device *dev)
7004bf25 4910{
eeda3fd6
SH
4911 const struct net_device_ops *ops = dev->netdev_ops;
4912
4913 if (ops->ndo_get_stats)
4914 return ops->ndo_get_stats(dev);
7004bf25
ED
4915 else {
4916 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
4917 struct net_device_stats *stats = &dev->stats;
4918 unsigned int i;
4919 struct netdev_queue *txq;
4920
4921 for (i = 0; i < dev->num_tx_queues; i++) {
4922 txq = netdev_get_tx_queue(dev, i);
4923 tx_bytes += txq->tx_bytes;
4924 tx_packets += txq->tx_packets;
4925 tx_dropped += txq->tx_dropped;
4926 }
4927 if (tx_bytes || tx_packets || tx_dropped) {
4928 stats->tx_bytes = tx_bytes;
4929 stats->tx_packets = tx_packets;
4930 stats->tx_dropped = tx_dropped;
4931 }
4932 return stats;
4933 }
c45d286e 4934}
eeda3fd6 4935EXPORT_SYMBOL(dev_get_stats);
c45d286e 4936
dc2b4847 4937static void netdev_init_one_queue(struct net_device *dev,
e8a0464c
DM
4938 struct netdev_queue *queue,
4939 void *_unused)
dc2b4847 4940{
dc2b4847
DM
4941 queue->dev = dev;
4942}
4943
bb949fbd
DM
4944static void netdev_init_queues(struct net_device *dev)
4945{
e8a0464c
DM
4946 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4947 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
c3f26a26 4948 spin_lock_init(&dev->tx_global_lock);
bb949fbd
DM
4949}
4950
1da177e4 4951/**
f25f4e44 4952 * alloc_netdev_mq - allocate network device
1da177e4
LT
4953 * @sizeof_priv: size of private data to allocate space for
4954 * @name: device name format string
4955 * @setup: callback to initialize device
f25f4e44 4956 * @queue_count: the number of subqueues to allocate
1da177e4
LT
4957 *
4958 * Allocates a struct net_device with private data area for driver use
f25f4e44
PWJ
4959 * and performs basic initialization. Also allocates subquue structs
4960 * for each queue on the device at the end of the netdevice.
1da177e4 4961 */
f25f4e44
PWJ
4962struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4963 void (*setup)(struct net_device *), unsigned int queue_count)
1da177e4 4964{
e8a0464c 4965 struct netdev_queue *tx;
1da177e4 4966 struct net_device *dev;
7943986c 4967 size_t alloc_size;
e8a0464c 4968 void *p;
1da177e4 4969
b6fe17d6
SH
4970 BUG_ON(strlen(name) >= sizeof(dev->name));
4971
fd2ea0a7 4972 alloc_size = sizeof(struct net_device);
d1643d24
AD
4973 if (sizeof_priv) {
4974 /* ensure 32-byte alignment of private area */
4975 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4976 alloc_size += sizeof_priv;
4977 }
4978 /* ensure 32-byte alignment of whole construct */
4979 alloc_size += NETDEV_ALIGN_CONST;
1da177e4 4980
31380de9 4981 p = kzalloc(alloc_size, GFP_KERNEL);
1da177e4 4982 if (!p) {
b6fe17d6 4983 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
1da177e4
LT
4984 return NULL;
4985 }
1da177e4 4986
7943986c 4987 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
e8a0464c
DM
4988 if (!tx) {
4989 printk(KERN_ERR "alloc_netdev: Unable to allocate "
4990 "tx qdiscs.\n");
ab9c73cc 4991 goto free_p;
e8a0464c
DM
4992 }
4993
1da177e4
LT
4994 dev = (struct net_device *)
4995 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4996 dev->padded = (char *)dev - (char *)p;
ab9c73cc
JP
4997
4998 if (dev_addr_init(dev))
4999 goto free_tx;
5000
c346dca1 5001 dev_net_set(dev, &init_net);
1da177e4 5002
e8a0464c
DM
5003 dev->_tx = tx;
5004 dev->num_tx_queues = queue_count;
fd2ea0a7 5005 dev->real_num_tx_queues = queue_count;
e8a0464c 5006
82cc1a7a 5007 dev->gso_max_size = GSO_MAX_SIZE;
1da177e4 5008
bb949fbd
DM
5009 netdev_init_queues(dev);
5010
d565b0a1 5011 INIT_LIST_HEAD(&dev->napi_list);
93f154b5 5012 dev->priv_flags = IFF_XMIT_DST_RELEASE;
1da177e4
LT
5013 setup(dev);
5014 strcpy(dev->name, name);
5015 return dev;
ab9c73cc
JP
5016
5017free_tx:
5018 kfree(tx);
5019
5020free_p:
5021 kfree(p);
5022 return NULL;
1da177e4 5023}
f25f4e44 5024EXPORT_SYMBOL(alloc_netdev_mq);
1da177e4
LT
5025
5026/**
5027 * free_netdev - free network device
5028 * @dev: device
5029 *
4ec93edb
YH
5030 * This function does the last stage of destroying an allocated device
5031 * interface. The reference to the device object is released.
1da177e4
LT
5032 * If this is the last reference then it will be freed.
5033 */
5034void free_netdev(struct net_device *dev)
5035{
d565b0a1
HX
5036 struct napi_struct *p, *n;
5037
f3005d7f
DL
5038 release_net(dev_net(dev));
5039
e8a0464c
DM
5040 kfree(dev->_tx);
5041
f001fde5
JP
5042 /* Flush device addresses */
5043 dev_addr_flush(dev);
5044
d565b0a1
HX
5045 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5046 netif_napi_del(p);
5047
3041a069 5048 /* Compatibility with error handling in drivers */
1da177e4
LT
5049 if (dev->reg_state == NETREG_UNINITIALIZED) {
5050 kfree((char *)dev - dev->padded);
5051 return;
5052 }
5053
5054 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5055 dev->reg_state = NETREG_RELEASED;
5056
43cb76d9
GKH
5057 /* will free via device release */
5058 put_device(&dev->dev);
1da177e4 5059}
4ec93edb 5060
f0db275a
SH
5061/**
5062 * synchronize_net - Synchronize with packet receive processing
5063 *
5064 * Wait for packets currently being received to be done.
5065 * Does not block later packets from starting.
5066 */
4ec93edb 5067void synchronize_net(void)
1da177e4
LT
5068{
5069 might_sleep();
fbd568a3 5070 synchronize_rcu();
1da177e4
LT
5071}
5072
5073/**
5074 * unregister_netdevice - remove device from the kernel
5075 * @dev: device
5076 *
5077 * This function shuts down a device interface and removes it
d59b54b1 5078 * from the kernel tables.
1da177e4
LT
5079 *
5080 * Callers must hold the rtnl semaphore. You may want
5081 * unregister_netdev() instead of this.
5082 */
5083
22f8cde5 5084void unregister_netdevice(struct net_device *dev)
1da177e4 5085{
a6620712
HX
5086 ASSERT_RTNL();
5087
93ee31f1 5088 rollback_registered(dev);
1da177e4
LT
5089 /* Finish processing unregister after unlock */
5090 net_set_todo(dev);
1da177e4
LT
5091}
5092
5093/**
5094 * unregister_netdev - remove device from the kernel
5095 * @dev: device
5096 *
5097 * This function shuts down a device interface and removes it
d59b54b1 5098 * from the kernel tables.
1da177e4
LT
5099 *
5100 * This is just a wrapper for unregister_netdevice that takes
5101 * the rtnl semaphore. In general you want to use this and not
5102 * unregister_netdevice.
5103 */
5104void unregister_netdev(struct net_device *dev)
5105{
5106 rtnl_lock();
5107 unregister_netdevice(dev);
5108 rtnl_unlock();
5109}
5110
5111EXPORT_SYMBOL(unregister_netdev);
5112
ce286d32
EB
5113/**
5114 * dev_change_net_namespace - move device to different nethost namespace
5115 * @dev: device
5116 * @net: network namespace
5117 * @pat: If not NULL name pattern to try if the current device name
5118 * is already taken in the destination network namespace.
5119 *
5120 * This function shuts down a device interface and moves it
5121 * to a new network namespace. On success 0 is returned, on
5122 * a failure a netagive errno code is returned.
5123 *
5124 * Callers must hold the rtnl semaphore.
5125 */
5126
5127int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5128{
5129 char buf[IFNAMSIZ];
5130 const char *destname;
5131 int err;
5132
5133 ASSERT_RTNL();
5134
5135 /* Don't allow namespace local devices to be moved. */
5136 err = -EINVAL;
5137 if (dev->features & NETIF_F_NETNS_LOCAL)
5138 goto out;
5139
3891845e
EB
5140#ifdef CONFIG_SYSFS
5141 /* Don't allow real devices to be moved when sysfs
5142 * is enabled.
5143 */
5144 err = -EINVAL;
5145 if (dev->dev.parent)
5146 goto out;
5147#endif
5148
ce286d32
EB
5149 /* Ensure the device has been registrered */
5150 err = -EINVAL;
5151 if (dev->reg_state != NETREG_REGISTERED)
5152 goto out;
5153
5154 /* Get out if there is nothing todo */
5155 err = 0;
878628fb 5156 if (net_eq(dev_net(dev), net))
ce286d32
EB
5157 goto out;
5158
5159 /* Pick the destination device name, and ensure
5160 * we can use it in the destination network namespace.
5161 */
5162 err = -EEXIST;
5163 destname = dev->name;
5164 if (__dev_get_by_name(net, destname)) {
5165 /* We get here if we can't use the current device name */
5166 if (!pat)
5167 goto out;
5168 if (!dev_valid_name(pat))
5169 goto out;
5170 if (strchr(pat, '%')) {
5171 if (__dev_alloc_name(net, pat, buf) < 0)
5172 goto out;
5173 destname = buf;
5174 } else
5175 destname = pat;
5176 if (__dev_get_by_name(net, destname))
5177 goto out;
5178 }
5179
5180 /*
5181 * And now a mini version of register_netdevice unregister_netdevice.
5182 */
5183
5184 /* If device is running close it first. */
9b772652 5185 dev_close(dev);
ce286d32
EB
5186
5187 /* And unlink it from device chain */
5188 err = -ENODEV;
5189 unlist_netdevice(dev);
5190
5191 synchronize_net();
5192
5193 /* Shutdown queueing discipline. */
5194 dev_shutdown(dev);
5195
5196 /* Notify protocols, that we are about to destroy
5197 this device. They should clean all the things.
5198 */
5199 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
5200
5201 /*
5202 * Flush the unicast and multicast chains
5203 */
5204 dev_addr_discard(dev);
5205
3891845e
EB
5206 netdev_unregister_kobject(dev);
5207
ce286d32 5208 /* Actually switch the network namespace */
c346dca1 5209 dev_net_set(dev, net);
ce286d32
EB
5210
5211 /* Assign the new device name */
5212 if (destname != dev->name)
5213 strcpy(dev->name, destname);
5214
5215 /* If there is an ifindex conflict assign a new one */
5216 if (__dev_get_by_index(net, dev->ifindex)) {
5217 int iflink = (dev->iflink == dev->ifindex);
5218 dev->ifindex = dev_new_index(net);
5219 if (iflink)
5220 dev->iflink = dev->ifindex;
5221 }
5222
8b41d188 5223 /* Fixup kobjects */
aaf8cdc3 5224 err = netdev_register_kobject(dev);
8b41d188 5225 WARN_ON(err);
ce286d32
EB
5226
5227 /* Add the device back in the hashes */
5228 list_netdevice(dev);
5229
5230 /* Notify protocols, that a new device appeared. */
5231 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5232
5233 synchronize_net();
5234 err = 0;
5235out:
5236 return err;
5237}
5238
1da177e4
LT
5239static int dev_cpu_callback(struct notifier_block *nfb,
5240 unsigned long action,
5241 void *ocpu)
5242{
5243 struct sk_buff **list_skb;
37437bb2 5244 struct Qdisc **list_net;
1da177e4
LT
5245 struct sk_buff *skb;
5246 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5247 struct softnet_data *sd, *oldsd;
5248
8bb78442 5249 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
5250 return NOTIFY_OK;
5251
5252 local_irq_disable();
5253 cpu = smp_processor_id();
5254 sd = &per_cpu(softnet_data, cpu);
5255 oldsd = &per_cpu(softnet_data, oldcpu);
5256
5257 /* Find end of our completion_queue. */
5258 list_skb = &sd->completion_queue;
5259 while (*list_skb)
5260 list_skb = &(*list_skb)->next;
5261 /* Append completion queue from offline CPU. */
5262 *list_skb = oldsd->completion_queue;
5263 oldsd->completion_queue = NULL;
5264
5265 /* Find end of our output_queue. */
5266 list_net = &sd->output_queue;
5267 while (*list_net)
5268 list_net = &(*list_net)->next_sched;
5269 /* Append output queue from offline CPU. */
5270 *list_net = oldsd->output_queue;
5271 oldsd->output_queue = NULL;
5272
5273 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5274 local_irq_enable();
5275
5276 /* Process offline CPU's input_pkt_queue */
5277 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5278 netif_rx(skb);
5279
5280 return NOTIFY_OK;
5281}
1da177e4
LT
5282
5283
7f353bf2 5284/**
b63365a2
HX
5285 * netdev_increment_features - increment feature set by one
5286 * @all: current feature set
5287 * @one: new feature set
5288 * @mask: mask feature set
7f353bf2
HX
5289 *
5290 * Computes a new feature set after adding a device with feature set
b63365a2
HX
5291 * @one to the master device with current feature set @all. Will not
5292 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 5293 */
b63365a2
HX
5294unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5295 unsigned long mask)
5296{
5297 /* If device needs checksumming, downgrade to it. */
5298 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
5299 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5300 else if (mask & NETIF_F_ALL_CSUM) {
5301 /* If one device supports v4/v6 checksumming, set for all. */
5302 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5303 !(all & NETIF_F_GEN_CSUM)) {
5304 all &= ~NETIF_F_ALL_CSUM;
5305 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5306 }
e2a6b852 5307
b63365a2
HX
5308 /* If one device supports hw checksumming, set for all. */
5309 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5310 all &= ~NETIF_F_ALL_CSUM;
5311 all |= NETIF_F_HW_CSUM;
5312 }
5313 }
7f353bf2 5314
b63365a2 5315 one |= NETIF_F_ALL_CSUM;
7f353bf2 5316
b63365a2
HX
5317 one |= all & NETIF_F_ONE_FOR_ALL;
5318 all &= one | NETIF_F_LLTX | NETIF_F_GSO;
5319 all |= one & mask & NETIF_F_ONE_FOR_ALL;
7f353bf2
HX
5320
5321 return all;
5322}
b63365a2 5323EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 5324
30d97d35
PE
5325static struct hlist_head *netdev_create_hash(void)
5326{
5327 int i;
5328 struct hlist_head *hash;
5329
5330 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5331 if (hash != NULL)
5332 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5333 INIT_HLIST_HEAD(&hash[i]);
5334
5335 return hash;
5336}
5337
881d966b 5338/* Initialize per network namespace state */
4665079c 5339static int __net_init netdev_init(struct net *net)
881d966b 5340{
881d966b 5341 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 5342
30d97d35
PE
5343 net->dev_name_head = netdev_create_hash();
5344 if (net->dev_name_head == NULL)
5345 goto err_name;
881d966b 5346
30d97d35
PE
5347 net->dev_index_head = netdev_create_hash();
5348 if (net->dev_index_head == NULL)
5349 goto err_idx;
881d966b
EB
5350
5351 return 0;
30d97d35
PE
5352
5353err_idx:
5354 kfree(net->dev_name_head);
5355err_name:
5356 return -ENOMEM;
881d966b
EB
5357}
5358
f0db275a
SH
5359/**
5360 * netdev_drivername - network driver for the device
5361 * @dev: network device
5362 * @buffer: buffer for resulting name
5363 * @len: size of buffer
5364 *
5365 * Determine network driver for device.
5366 */
cf04a4c7 5367char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6579e57b 5368{
cf04a4c7
SH
5369 const struct device_driver *driver;
5370 const struct device *parent;
6579e57b
AV
5371
5372 if (len <= 0 || !buffer)
5373 return buffer;
5374 buffer[0] = 0;
5375
5376 parent = dev->dev.parent;
5377
5378 if (!parent)
5379 return buffer;
5380
5381 driver = parent->driver;
5382 if (driver && driver->name)
5383 strlcpy(buffer, driver->name, len);
5384 return buffer;
5385}
5386
4665079c 5387static void __net_exit netdev_exit(struct net *net)
881d966b
EB
5388{
5389 kfree(net->dev_name_head);
5390 kfree(net->dev_index_head);
5391}
5392
022cbae6 5393static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
5394 .init = netdev_init,
5395 .exit = netdev_exit,
5396};
5397
4665079c 5398static void __net_exit default_device_exit(struct net *net)
ce286d32 5399{
8eb79863 5400 struct net_device *dev;
ce286d32
EB
5401 /*
5402 * Push all migratable of the network devices back to the
5403 * initial network namespace
5404 */
5405 rtnl_lock();
8eb79863
EB
5406restart:
5407 for_each_netdev(net, dev) {
ce286d32 5408 int err;
aca51397 5409 char fb_name[IFNAMSIZ];
ce286d32
EB
5410
5411 /* Ignore unmoveable devices (i.e. loopback) */
5412 if (dev->features & NETIF_F_NETNS_LOCAL)
5413 continue;
5414
d0c082ce
EB
5415 /* Delete virtual devices */
5416 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink) {
5417 dev->rtnl_link_ops->dellink(dev);
8eb79863 5418 goto restart;
d0c082ce
EB
5419 }
5420
ce286d32 5421 /* Push remaing network devices to init_net */
aca51397
PE
5422 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5423 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 5424 if (err) {
aca51397 5425 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
ce286d32 5426 __func__, dev->name, err);
aca51397 5427 BUG();
ce286d32 5428 }
8eb79863 5429 goto restart;
ce286d32
EB
5430 }
5431 rtnl_unlock();
5432}
5433
022cbae6 5434static struct pernet_operations __net_initdata default_device_ops = {
ce286d32
EB
5435 .exit = default_device_exit,
5436};
5437
1da177e4
LT
5438/*
5439 * Initialize the DEV module. At boot time this walks the device list and
5440 * unhooks any devices that fail to initialise (normally hardware not
5441 * present) and leaves us with a valid list of present and active devices.
5442 *
5443 */
5444
5445/*
5446 * This is called single threaded during boot, so no need
5447 * to take the rtnl semaphore.
5448 */
5449static int __init net_dev_init(void)
5450{
5451 int i, rc = -ENOMEM;
5452
5453 BUG_ON(!dev_boot_phase);
5454
1da177e4
LT
5455 if (dev_proc_init())
5456 goto out;
5457
8b41d188 5458 if (netdev_kobject_init())
1da177e4
LT
5459 goto out;
5460
5461 INIT_LIST_HEAD(&ptype_all);
82d8a867 5462 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
5463 INIT_LIST_HEAD(&ptype_base[i]);
5464
881d966b
EB
5465 if (register_pernet_subsys(&netdev_net_ops))
5466 goto out;
1da177e4
LT
5467
5468 /*
5469 * Initialise the packet receive queues.
5470 */
5471
6f912042 5472 for_each_possible_cpu(i) {
1da177e4
LT
5473 struct softnet_data *queue;
5474
5475 queue = &per_cpu(softnet_data, i);
5476 skb_queue_head_init(&queue->input_pkt_queue);
1da177e4
LT
5477 queue->completion_queue = NULL;
5478 INIT_LIST_HEAD(&queue->poll_list);
bea3348e
SH
5479
5480 queue->backlog.poll = process_backlog;
5481 queue->backlog.weight = weight_p;
d565b0a1 5482 queue->backlog.gro_list = NULL;
4ae5544f 5483 queue->backlog.gro_count = 0;
1da177e4
LT
5484 }
5485
1da177e4
LT
5486 dev_boot_phase = 0;
5487
505d4f73
EB
5488 /* The loopback device is special if any other network devices
5489 * is present in a network namespace the loopback device must
5490 * be present. Since we now dynamically allocate and free the
5491 * loopback device ensure this invariant is maintained by
5492 * keeping the loopback device as the first device on the
5493 * list of network devices. Ensuring the loopback devices
5494 * is the first device that appears and the last network device
5495 * that disappears.
5496 */
5497 if (register_pernet_device(&loopback_net_ops))
5498 goto out;
5499
5500 if (register_pernet_device(&default_device_ops))
5501 goto out;
5502
962cf36c
CM
5503 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
5504 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
5505
5506 hotcpu_notifier(dev_cpu_callback, 0);
5507 dst_init();
5508 dev_mcast_init();
5509 rc = 0;
5510out:
5511 return rc;
5512}
5513
5514subsys_initcall(net_dev_init);
5515
e88721f8
KK
5516static int __init initialize_hashrnd(void)
5517{
5518 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
5519 return 0;
5520}
5521
5522late_initcall_sync(initialize_hashrnd);
5523
1da177e4
LT
5524EXPORT_SYMBOL(__dev_get_by_index);
5525EXPORT_SYMBOL(__dev_get_by_name);
5526EXPORT_SYMBOL(__dev_remove_pack);
c2373ee9 5527EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
5528EXPORT_SYMBOL(dev_add_pack);
5529EXPORT_SYMBOL(dev_alloc_name);
5530EXPORT_SYMBOL(dev_close);
5531EXPORT_SYMBOL(dev_get_by_flags);
5532EXPORT_SYMBOL(dev_get_by_index);
5533EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
5534EXPORT_SYMBOL(dev_open);
5535EXPORT_SYMBOL(dev_queue_xmit);
5536EXPORT_SYMBOL(dev_remove_pack);
5537EXPORT_SYMBOL(dev_set_allmulti);
5538EXPORT_SYMBOL(dev_set_promiscuity);
5539EXPORT_SYMBOL(dev_change_flags);
5540EXPORT_SYMBOL(dev_set_mtu);
5541EXPORT_SYMBOL(dev_set_mac_address);
5542EXPORT_SYMBOL(free_netdev);
5543EXPORT_SYMBOL(netdev_boot_setup_check);
5544EXPORT_SYMBOL(netdev_set_master);
5545EXPORT_SYMBOL(netdev_state_change);
5546EXPORT_SYMBOL(netif_receive_skb);
5547EXPORT_SYMBOL(netif_rx);
5548EXPORT_SYMBOL(register_gifconf);
5549EXPORT_SYMBOL(register_netdevice);
5550EXPORT_SYMBOL(register_netdevice_notifier);
5551EXPORT_SYMBOL(skb_checksum_help);
5552EXPORT_SYMBOL(synchronize_net);
5553EXPORT_SYMBOL(unregister_netdevice);
5554EXPORT_SYMBOL(unregister_netdevice_notifier);
5555EXPORT_SYMBOL(net_enable_timestamp);
5556EXPORT_SYMBOL(net_disable_timestamp);
5557EXPORT_SYMBOL(dev_get_flags);
5558
5559#if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
5560EXPORT_SYMBOL(br_handle_frame_hook);
5561EXPORT_SYMBOL(br_fdb_get_hook);
5562EXPORT_SYMBOL(br_fdb_put_hook);
5563#endif
5564
1da177e4 5565EXPORT_SYMBOL(dev_load);
1da177e4
LT
5566
5567EXPORT_PER_CPU_SYMBOL(softnet_data);