]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/page_alloc.c
x86, memblock: Use memblock_debug to control debug message print out
[net-next-2.6.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
5a3135c2 33#include <linux/oom.h>
1da177e4
LT
34#include <linux/notifier.h>
35#include <linux/topology.h>
36#include <linux/sysctl.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
bdc8cb98 39#include <linux/memory_hotplug.h>
1da177e4
LT
40#include <linux/nodemask.h>
41#include <linux/vmalloc.h>
4be38e35 42#include <linux/mempolicy.h>
6811378e 43#include <linux/stop_machine.h>
c713216d
MG
44#include <linux/sort.h>
45#include <linux/pfn.h>
3fcfab16 46#include <linux/backing-dev.h>
933e312e 47#include <linux/fault-inject.h>
a5d76b54 48#include <linux/page-isolation.h>
52d4b9ac 49#include <linux/page_cgroup.h>
3ac7fe5a 50#include <linux/debugobjects.h>
dbb1f81c 51#include <linux/kmemleak.h>
925cc71e 52#include <linux/memory.h>
56de7263 53#include <linux/compaction.h>
0d3d062a 54#include <trace/events/kmem.h>
718a3821 55#include <linux/ftrace_event.h>
1da177e4
LT
56
57#include <asm/tlbflush.h>
ac924c60 58#include <asm/div64.h>
1da177e4
LT
59#include "internal.h"
60
72812019
LS
61#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
62DEFINE_PER_CPU(int, numa_node);
63EXPORT_PER_CPU_SYMBOL(numa_node);
64#endif
65
7aac7898
LS
66#ifdef CONFIG_HAVE_MEMORYLESS_NODES
67/*
68 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
69 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
70 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
71 * defined in <linux/topology.h>.
72 */
73DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
74EXPORT_PER_CPU_SYMBOL(_numa_mem_);
75#endif
76
1da177e4 77/*
13808910 78 * Array of node states.
1da177e4 79 */
13808910
CL
80nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
81 [N_POSSIBLE] = NODE_MASK_ALL,
82 [N_ONLINE] = { { [0] = 1UL } },
83#ifndef CONFIG_NUMA
84 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
85#ifdef CONFIG_HIGHMEM
86 [N_HIGH_MEMORY] = { { [0] = 1UL } },
87#endif
88 [N_CPU] = { { [0] = 1UL } },
89#endif /* NUMA */
90};
91EXPORT_SYMBOL(node_states);
92
6c231b7b 93unsigned long totalram_pages __read_mostly;
cb45b0e9 94unsigned long totalreserve_pages __read_mostly;
8ad4b1fb 95int percpu_pagelist_fraction;
dcce284a 96gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 97
452aa699
RW
98#ifdef CONFIG_PM_SLEEP
99/*
100 * The following functions are used by the suspend/hibernate code to temporarily
101 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
102 * while devices are suspended. To avoid races with the suspend/hibernate code,
103 * they should always be called with pm_mutex held (gfp_allowed_mask also should
104 * only be modified with pm_mutex held, unless the suspend/hibernate code is
105 * guaranteed not to run in parallel with that modification).
106 */
107void set_gfp_allowed_mask(gfp_t mask)
108{
109 WARN_ON(!mutex_is_locked(&pm_mutex));
110 gfp_allowed_mask = mask;
111}
112
113gfp_t clear_gfp_allowed_mask(gfp_t mask)
114{
115 gfp_t ret = gfp_allowed_mask;
116
117 WARN_ON(!mutex_is_locked(&pm_mutex));
118 gfp_allowed_mask &= ~mask;
119 return ret;
120}
121#endif /* CONFIG_PM_SLEEP */
122
d9c23400
MG
123#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
124int pageblock_order __read_mostly;
125#endif
126
d98c7a09 127static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 128
1da177e4
LT
129/*
130 * results with 256, 32 in the lowmem_reserve sysctl:
131 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
132 * 1G machine -> (16M dma, 784M normal, 224M high)
133 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
134 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
135 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
136 *
137 * TBD: should special case ZONE_DMA32 machines here - in those we normally
138 * don't need any ZONE_NORMAL reservation
1da177e4 139 */
2f1b6248 140int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 141#ifdef CONFIG_ZONE_DMA
2f1b6248 142 256,
4b51d669 143#endif
fb0e7942 144#ifdef CONFIG_ZONE_DMA32
2f1b6248 145 256,
fb0e7942 146#endif
e53ef38d 147#ifdef CONFIG_HIGHMEM
2a1e274a 148 32,
e53ef38d 149#endif
2a1e274a 150 32,
2f1b6248 151};
1da177e4
LT
152
153EXPORT_SYMBOL(totalram_pages);
1da177e4 154
15ad7cdc 155static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 156#ifdef CONFIG_ZONE_DMA
2f1b6248 157 "DMA",
4b51d669 158#endif
fb0e7942 159#ifdef CONFIG_ZONE_DMA32
2f1b6248 160 "DMA32",
fb0e7942 161#endif
2f1b6248 162 "Normal",
e53ef38d 163#ifdef CONFIG_HIGHMEM
2a1e274a 164 "HighMem",
e53ef38d 165#endif
2a1e274a 166 "Movable",
2f1b6248
CL
167};
168
1da177e4
LT
169int min_free_kbytes = 1024;
170
2c85f51d
JB
171static unsigned long __meminitdata nr_kernel_pages;
172static unsigned long __meminitdata nr_all_pages;
a3142c8e 173static unsigned long __meminitdata dma_reserve;
1da177e4 174
c713216d
MG
175#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
176 /*
183ff22b 177 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
178 * ranges of memory (RAM) that may be registered with add_active_range().
179 * Ranges passed to add_active_range() will be merged if possible
180 * so the number of times add_active_range() can be called is
181 * related to the number of nodes and the number of holes
182 */
183 #ifdef CONFIG_MAX_ACTIVE_REGIONS
184 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
185 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
186 #else
187 #if MAX_NUMNODES >= 32
188 /* If there can be many nodes, allow up to 50 holes per node */
189 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
190 #else
191 /* By default, allow up to 256 distinct regions */
192 #define MAX_ACTIVE_REGIONS 256
193 #endif
194 #endif
195
98011f56
JB
196 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
197 static int __meminitdata nr_nodemap_entries;
198 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
199 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 200 static unsigned long __initdata required_kernelcore;
484f51f8 201 static unsigned long __initdata required_movablecore;
b69a7288 202 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
203
204 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
205 int movable_zone;
206 EXPORT_SYMBOL(movable_zone);
c713216d
MG
207#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
208
418508c1
MS
209#if MAX_NUMNODES > 1
210int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 211int nr_online_nodes __read_mostly = 1;
418508c1 212EXPORT_SYMBOL(nr_node_ids);
62bc62a8 213EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
214#endif
215
9ef9acb0
MG
216int page_group_by_mobility_disabled __read_mostly;
217
b2a0ac88
MG
218static void set_pageblock_migratetype(struct page *page, int migratetype)
219{
49255c61
MG
220
221 if (unlikely(page_group_by_mobility_disabled))
222 migratetype = MIGRATE_UNMOVABLE;
223
b2a0ac88
MG
224 set_pageblock_flags_group(page, (unsigned long)migratetype,
225 PB_migrate, PB_migrate_end);
226}
227
7f33d49a
RW
228bool oom_killer_disabled __read_mostly;
229
13e7444b 230#ifdef CONFIG_DEBUG_VM
c6a57e19 231static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 232{
bdc8cb98
DH
233 int ret = 0;
234 unsigned seq;
235 unsigned long pfn = page_to_pfn(page);
c6a57e19 236
bdc8cb98
DH
237 do {
238 seq = zone_span_seqbegin(zone);
239 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
240 ret = 1;
241 else if (pfn < zone->zone_start_pfn)
242 ret = 1;
243 } while (zone_span_seqretry(zone, seq));
244
245 return ret;
c6a57e19
DH
246}
247
248static int page_is_consistent(struct zone *zone, struct page *page)
249{
14e07298 250 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 251 return 0;
1da177e4 252 if (zone != page_zone(page))
c6a57e19
DH
253 return 0;
254
255 return 1;
256}
257/*
258 * Temporary debugging check for pages not lying within a given zone.
259 */
260static int bad_range(struct zone *zone, struct page *page)
261{
262 if (page_outside_zone_boundaries(zone, page))
1da177e4 263 return 1;
c6a57e19
DH
264 if (!page_is_consistent(zone, page))
265 return 1;
266
1da177e4
LT
267 return 0;
268}
13e7444b
NP
269#else
270static inline int bad_range(struct zone *zone, struct page *page)
271{
272 return 0;
273}
274#endif
275
224abf92 276static void bad_page(struct page *page)
1da177e4 277{
d936cf9b
HD
278 static unsigned long resume;
279 static unsigned long nr_shown;
280 static unsigned long nr_unshown;
281
2a7684a2
WF
282 /* Don't complain about poisoned pages */
283 if (PageHWPoison(page)) {
284 __ClearPageBuddy(page);
285 return;
286 }
287
d936cf9b
HD
288 /*
289 * Allow a burst of 60 reports, then keep quiet for that minute;
290 * or allow a steady drip of one report per second.
291 */
292 if (nr_shown == 60) {
293 if (time_before(jiffies, resume)) {
294 nr_unshown++;
295 goto out;
296 }
297 if (nr_unshown) {
1e9e6365
HD
298 printk(KERN_ALERT
299 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
300 nr_unshown);
301 nr_unshown = 0;
302 }
303 nr_shown = 0;
304 }
305 if (nr_shown++ == 0)
306 resume = jiffies + 60 * HZ;
307
1e9e6365 308 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 309 current->comm, page_to_pfn(page));
718a3821 310 dump_page(page);
3dc14741 311
1da177e4 312 dump_stack();
d936cf9b 313out:
8cc3b392
HD
314 /* Leave bad fields for debug, except PageBuddy could make trouble */
315 __ClearPageBuddy(page);
9f158333 316 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
317}
318
1da177e4
LT
319/*
320 * Higher-order pages are called "compound pages". They are structured thusly:
321 *
322 * The first PAGE_SIZE page is called the "head page".
323 *
324 * The remaining PAGE_SIZE pages are called "tail pages".
325 *
326 * All pages have PG_compound set. All pages have their ->private pointing at
327 * the head page (even the head page has this).
328 *
41d78ba5
HD
329 * The first tail page's ->lru.next holds the address of the compound page's
330 * put_page() function. Its ->lru.prev holds the order of allocation.
331 * This usage means that zero-order pages may not be compound.
1da177e4 332 */
d98c7a09
HD
333
334static void free_compound_page(struct page *page)
335{
d85f3385 336 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
337}
338
01ad1c08 339void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
340{
341 int i;
342 int nr_pages = 1 << order;
343
344 set_compound_page_dtor(page, free_compound_page);
345 set_compound_order(page, order);
346 __SetPageHead(page);
347 for (i = 1; i < nr_pages; i++) {
348 struct page *p = page + i;
349
350 __SetPageTail(p);
351 p->first_page = page;
352 }
353}
354
8cc3b392 355static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
356{
357 int i;
358 int nr_pages = 1 << order;
8cc3b392 359 int bad = 0;
1da177e4 360
8cc3b392
HD
361 if (unlikely(compound_order(page) != order) ||
362 unlikely(!PageHead(page))) {
224abf92 363 bad_page(page);
8cc3b392
HD
364 bad++;
365 }
1da177e4 366
6d777953 367 __ClearPageHead(page);
8cc3b392 368
18229df5
AW
369 for (i = 1; i < nr_pages; i++) {
370 struct page *p = page + i;
1da177e4 371
e713a21d 372 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 373 bad_page(page);
8cc3b392
HD
374 bad++;
375 }
d85f3385 376 __ClearPageTail(p);
1da177e4 377 }
8cc3b392
HD
378
379 return bad;
1da177e4 380}
1da177e4 381
17cf4406
NP
382static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
383{
384 int i;
385
6626c5d5
AM
386 /*
387 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
388 * and __GFP_HIGHMEM from hard or soft interrupt context.
389 */
725d704e 390 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
391 for (i = 0; i < (1 << order); i++)
392 clear_highpage(page + i);
393}
394
6aa3001b
AM
395static inline void set_page_order(struct page *page, int order)
396{
4c21e2f2 397 set_page_private(page, order);
676165a8 398 __SetPageBuddy(page);
1da177e4
LT
399}
400
401static inline void rmv_page_order(struct page *page)
402{
676165a8 403 __ClearPageBuddy(page);
4c21e2f2 404 set_page_private(page, 0);
1da177e4
LT
405}
406
407/*
408 * Locate the struct page for both the matching buddy in our
409 * pair (buddy1) and the combined O(n+1) page they form (page).
410 *
411 * 1) Any buddy B1 will have an order O twin B2 which satisfies
412 * the following equation:
413 * B2 = B1 ^ (1 << O)
414 * For example, if the starting buddy (buddy2) is #8 its order
415 * 1 buddy is #10:
416 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
417 *
418 * 2) Any buddy B will have an order O+1 parent P which
419 * satisfies the following equation:
420 * P = B & ~(1 << O)
421 *
d6e05edc 422 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
423 */
424static inline struct page *
425__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
426{
427 unsigned long buddy_idx = page_idx ^ (1 << order);
428
429 return page + (buddy_idx - page_idx);
430}
431
432static inline unsigned long
433__find_combined_index(unsigned long page_idx, unsigned int order)
434{
435 return (page_idx & ~(1 << order));
436}
437
438/*
439 * This function checks whether a page is free && is the buddy
440 * we can do coalesce a page and its buddy if
13e7444b 441 * (a) the buddy is not in a hole &&
676165a8 442 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
443 * (c) a page and its buddy have the same order &&
444 * (d) a page and its buddy are in the same zone.
676165a8
NP
445 *
446 * For recording whether a page is in the buddy system, we use PG_buddy.
447 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 448 *
676165a8 449 * For recording page's order, we use page_private(page).
1da177e4 450 */
cb2b95e1
AW
451static inline int page_is_buddy(struct page *page, struct page *buddy,
452 int order)
1da177e4 453{
14e07298 454 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 455 return 0;
13e7444b 456
cb2b95e1
AW
457 if (page_zone_id(page) != page_zone_id(buddy))
458 return 0;
459
460 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 461 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 462 return 1;
676165a8 463 }
6aa3001b 464 return 0;
1da177e4
LT
465}
466
467/*
468 * Freeing function for a buddy system allocator.
469 *
470 * The concept of a buddy system is to maintain direct-mapped table
471 * (containing bit values) for memory blocks of various "orders".
472 * The bottom level table contains the map for the smallest allocatable
473 * units of memory (here, pages), and each level above it describes
474 * pairs of units from the levels below, hence, "buddies".
475 * At a high level, all that happens here is marking the table entry
476 * at the bottom level available, and propagating the changes upward
477 * as necessary, plus some accounting needed to play nicely with other
478 * parts of the VM system.
479 * At each level, we keep a list of pages, which are heads of continuous
676165a8 480 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 481 * order is recorded in page_private(page) field.
1da177e4
LT
482 * So when we are allocating or freeing one, we can derive the state of the
483 * other. That is, if we allocate a small block, and both were
484 * free, the remainder of the region must be split into blocks.
485 * If a block is freed, and its buddy is also free, then this
486 * triggers coalescing into a block of larger size.
487 *
488 * -- wli
489 */
490
48db57f8 491static inline void __free_one_page(struct page *page,
ed0ae21d
MG
492 struct zone *zone, unsigned int order,
493 int migratetype)
1da177e4
LT
494{
495 unsigned long page_idx;
6dda9d55
CZ
496 unsigned long combined_idx;
497 struct page *buddy;
1da177e4 498
224abf92 499 if (unlikely(PageCompound(page)))
8cc3b392
HD
500 if (unlikely(destroy_compound_page(page, order)))
501 return;
1da177e4 502
ed0ae21d
MG
503 VM_BUG_ON(migratetype == -1);
504
1da177e4
LT
505 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
506
f2260e6b 507 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 508 VM_BUG_ON(bad_range(zone, page));
1da177e4 509
1da177e4 510 while (order < MAX_ORDER-1) {
1da177e4 511 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 512 if (!page_is_buddy(page, buddy, order))
3c82d0ce 513 break;
13e7444b 514
3c82d0ce 515 /* Our buddy is free, merge with it and move up one order. */
1da177e4 516 list_del(&buddy->lru);
b2a0ac88 517 zone->free_area[order].nr_free--;
1da177e4 518 rmv_page_order(buddy);
13e7444b 519 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
520 page = page + (combined_idx - page_idx);
521 page_idx = combined_idx;
522 order++;
523 }
524 set_page_order(page, order);
6dda9d55
CZ
525
526 /*
527 * If this is not the largest possible page, check if the buddy
528 * of the next-highest order is free. If it is, it's possible
529 * that pages are being freed that will coalesce soon. In case,
530 * that is happening, add the free page to the tail of the list
531 * so it's less likely to be used soon and more likely to be merged
532 * as a higher order page
533 */
534 if ((order < MAX_ORDER-1) && pfn_valid_within(page_to_pfn(buddy))) {
535 struct page *higher_page, *higher_buddy;
536 combined_idx = __find_combined_index(page_idx, order);
537 higher_page = page + combined_idx - page_idx;
538 higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
539 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
540 list_add_tail(&page->lru,
541 &zone->free_area[order].free_list[migratetype]);
542 goto out;
543 }
544 }
545
546 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
547out:
1da177e4
LT
548 zone->free_area[order].nr_free++;
549}
550
092cead6
KM
551/*
552 * free_page_mlock() -- clean up attempts to free and mlocked() page.
553 * Page should not be on lru, so no need to fix that up.
554 * free_pages_check() will verify...
555 */
556static inline void free_page_mlock(struct page *page)
557{
092cead6
KM
558 __dec_zone_page_state(page, NR_MLOCK);
559 __count_vm_event(UNEVICTABLE_MLOCKFREED);
560}
092cead6 561
224abf92 562static inline int free_pages_check(struct page *page)
1da177e4 563{
92be2e33
NP
564 if (unlikely(page_mapcount(page) |
565 (page->mapping != NULL) |
a3af9c38 566 (atomic_read(&page->_count) != 0) |
8cc3b392 567 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 568 bad_page(page);
79f4b7bf 569 return 1;
8cc3b392 570 }
79f4b7bf
HD
571 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
572 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
573 return 0;
1da177e4
LT
574}
575
576/*
5f8dcc21 577 * Frees a number of pages from the PCP lists
1da177e4 578 * Assumes all pages on list are in same zone, and of same order.
207f36ee 579 * count is the number of pages to free.
1da177e4
LT
580 *
581 * If the zone was previously in an "all pages pinned" state then look to
582 * see if this freeing clears that state.
583 *
584 * And clear the zone's pages_scanned counter, to hold off the "all pages are
585 * pinned" detection logic.
586 */
5f8dcc21
MG
587static void free_pcppages_bulk(struct zone *zone, int count,
588 struct per_cpu_pages *pcp)
1da177e4 589{
5f8dcc21 590 int migratetype = 0;
a6f9edd6 591 int batch_free = 0;
5f8dcc21 592
c54ad30c 593 spin_lock(&zone->lock);
93e4a89a 594 zone->all_unreclaimable = 0;
1da177e4 595 zone->pages_scanned = 0;
f2260e6b 596
5f8dcc21 597 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
a6f9edd6 598 while (count) {
48db57f8 599 struct page *page;
5f8dcc21
MG
600 struct list_head *list;
601
602 /*
a6f9edd6
MG
603 * Remove pages from lists in a round-robin fashion. A
604 * batch_free count is maintained that is incremented when an
605 * empty list is encountered. This is so more pages are freed
606 * off fuller lists instead of spinning excessively around empty
607 * lists
5f8dcc21
MG
608 */
609 do {
a6f9edd6 610 batch_free++;
5f8dcc21
MG
611 if (++migratetype == MIGRATE_PCPTYPES)
612 migratetype = 0;
613 list = &pcp->lists[migratetype];
614 } while (list_empty(list));
48db57f8 615
a6f9edd6
MG
616 do {
617 page = list_entry(list->prev, struct page, lru);
618 /* must delete as __free_one_page list manipulates */
619 list_del(&page->lru);
a7016235
HD
620 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
621 __free_one_page(page, zone, 0, page_private(page));
622 trace_mm_page_pcpu_drain(page, 0, page_private(page));
a6f9edd6 623 } while (--count && --batch_free && !list_empty(list));
1da177e4 624 }
c54ad30c 625 spin_unlock(&zone->lock);
1da177e4
LT
626}
627
ed0ae21d
MG
628static void free_one_page(struct zone *zone, struct page *page, int order,
629 int migratetype)
1da177e4 630{
006d22d9 631 spin_lock(&zone->lock);
93e4a89a 632 zone->all_unreclaimable = 0;
006d22d9 633 zone->pages_scanned = 0;
f2260e6b
MG
634
635 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
ed0ae21d 636 __free_one_page(page, zone, order, migratetype);
006d22d9 637 spin_unlock(&zone->lock);
48db57f8
NP
638}
639
ec95f53a 640static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 641{
1da177e4 642 int i;
8cc3b392 643 int bad = 0;
1da177e4 644
f650316c 645 trace_mm_page_free_direct(page, order);
b1eeab67
VN
646 kmemcheck_free_shadow(page, order);
647
ec95f53a
KM
648 for (i = 0; i < (1 << order); i++) {
649 struct page *pg = page + i;
650
651 if (PageAnon(pg))
652 pg->mapping = NULL;
653 bad += free_pages_check(pg);
654 }
8cc3b392 655 if (bad)
ec95f53a 656 return false;
689bcebf 657
3ac7fe5a 658 if (!PageHighMem(page)) {
9858db50 659 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
660 debug_check_no_obj_freed(page_address(page),
661 PAGE_SIZE << order);
662 }
dafb1367 663 arch_free_page(page, order);
48db57f8 664 kernel_map_pages(page, 1 << order, 0);
dafb1367 665
ec95f53a
KM
666 return true;
667}
668
669static void __free_pages_ok(struct page *page, unsigned int order)
670{
671 unsigned long flags;
672 int wasMlocked = __TestClearPageMlocked(page);
673
674 if (!free_pages_prepare(page, order))
675 return;
676
c54ad30c 677 local_irq_save(flags);
c277331d 678 if (unlikely(wasMlocked))
da456f14 679 free_page_mlock(page);
f8891e5e 680 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
681 free_one_page(page_zone(page), page, order,
682 get_pageblock_migratetype(page));
c54ad30c 683 local_irq_restore(flags);
1da177e4
LT
684}
685
a226f6c8
DH
686/*
687 * permit the bootmem allocator to evade page validation on high-order frees
688 */
af370fb8 689void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
690{
691 if (order == 0) {
692 __ClearPageReserved(page);
693 set_page_count(page, 0);
7835e98b 694 set_page_refcounted(page);
545b1ea9 695 __free_page(page);
a226f6c8 696 } else {
a226f6c8
DH
697 int loop;
698
545b1ea9 699 prefetchw(page);
a226f6c8
DH
700 for (loop = 0; loop < BITS_PER_LONG; loop++) {
701 struct page *p = &page[loop];
702
545b1ea9
NP
703 if (loop + 1 < BITS_PER_LONG)
704 prefetchw(p + 1);
a226f6c8
DH
705 __ClearPageReserved(p);
706 set_page_count(p, 0);
707 }
708
7835e98b 709 set_page_refcounted(page);
545b1ea9 710 __free_pages(page, order);
a226f6c8
DH
711 }
712}
713
1da177e4
LT
714
715/*
716 * The order of subdivision here is critical for the IO subsystem.
717 * Please do not alter this order without good reasons and regression
718 * testing. Specifically, as large blocks of memory are subdivided,
719 * the order in which smaller blocks are delivered depends on the order
720 * they're subdivided in this function. This is the primary factor
721 * influencing the order in which pages are delivered to the IO
722 * subsystem according to empirical testing, and this is also justified
723 * by considering the behavior of a buddy system containing a single
724 * large block of memory acted on by a series of small allocations.
725 * This behavior is a critical factor in sglist merging's success.
726 *
727 * -- wli
728 */
085cc7d5 729static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
730 int low, int high, struct free_area *area,
731 int migratetype)
1da177e4
LT
732{
733 unsigned long size = 1 << high;
734
735 while (high > low) {
736 area--;
737 high--;
738 size >>= 1;
725d704e 739 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 740 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
741 area->nr_free++;
742 set_page_order(&page[size], high);
743 }
1da177e4
LT
744}
745
1da177e4
LT
746/*
747 * This page is about to be returned from the page allocator
748 */
2a7684a2 749static inline int check_new_page(struct page *page)
1da177e4 750{
92be2e33
NP
751 if (unlikely(page_mapcount(page) |
752 (page->mapping != NULL) |
a3af9c38 753 (atomic_read(&page->_count) != 0) |
8cc3b392 754 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 755 bad_page(page);
689bcebf 756 return 1;
8cc3b392 757 }
2a7684a2
WF
758 return 0;
759}
760
761static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
762{
763 int i;
764
765 for (i = 0; i < (1 << order); i++) {
766 struct page *p = page + i;
767 if (unlikely(check_new_page(p)))
768 return 1;
769 }
689bcebf 770
4c21e2f2 771 set_page_private(page, 0);
7835e98b 772 set_page_refcounted(page);
cc102509
NP
773
774 arch_alloc_page(page, order);
1da177e4 775 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
776
777 if (gfp_flags & __GFP_ZERO)
778 prep_zero_page(page, order, gfp_flags);
779
780 if (order && (gfp_flags & __GFP_COMP))
781 prep_compound_page(page, order);
782
689bcebf 783 return 0;
1da177e4
LT
784}
785
56fd56b8
MG
786/*
787 * Go through the free lists for the given migratetype and remove
788 * the smallest available page from the freelists
789 */
728ec980
MG
790static inline
791struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
792 int migratetype)
793{
794 unsigned int current_order;
795 struct free_area * area;
796 struct page *page;
797
798 /* Find a page of the appropriate size in the preferred list */
799 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
800 area = &(zone->free_area[current_order]);
801 if (list_empty(&area->free_list[migratetype]))
802 continue;
803
804 page = list_entry(area->free_list[migratetype].next,
805 struct page, lru);
806 list_del(&page->lru);
807 rmv_page_order(page);
808 area->nr_free--;
56fd56b8
MG
809 expand(zone, page, order, current_order, area, migratetype);
810 return page;
811 }
812
813 return NULL;
814}
815
816
b2a0ac88
MG
817/*
818 * This array describes the order lists are fallen back to when
819 * the free lists for the desirable migrate type are depleted
820 */
821static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
822 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
823 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
824 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
825 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
826};
827
c361be55
MG
828/*
829 * Move the free pages in a range to the free lists of the requested type.
d9c23400 830 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
831 * boundary. If alignment is required, use move_freepages_block()
832 */
b69a7288
AB
833static int move_freepages(struct zone *zone,
834 struct page *start_page, struct page *end_page,
835 int migratetype)
c361be55
MG
836{
837 struct page *page;
838 unsigned long order;
d100313f 839 int pages_moved = 0;
c361be55
MG
840
841#ifndef CONFIG_HOLES_IN_ZONE
842 /*
843 * page_zone is not safe to call in this context when
844 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
845 * anyway as we check zone boundaries in move_freepages_block().
846 * Remove at a later date when no bug reports exist related to
ac0e5b7a 847 * grouping pages by mobility
c361be55
MG
848 */
849 BUG_ON(page_zone(start_page) != page_zone(end_page));
850#endif
851
852 for (page = start_page; page <= end_page;) {
344c790e
AL
853 /* Make sure we are not inadvertently changing nodes */
854 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
855
c361be55
MG
856 if (!pfn_valid_within(page_to_pfn(page))) {
857 page++;
858 continue;
859 }
860
861 if (!PageBuddy(page)) {
862 page++;
863 continue;
864 }
865
866 order = page_order(page);
867 list_del(&page->lru);
868 list_add(&page->lru,
869 &zone->free_area[order].free_list[migratetype]);
870 page += 1 << order;
d100313f 871 pages_moved += 1 << order;
c361be55
MG
872 }
873
d100313f 874 return pages_moved;
c361be55
MG
875}
876
b69a7288
AB
877static int move_freepages_block(struct zone *zone, struct page *page,
878 int migratetype)
c361be55
MG
879{
880 unsigned long start_pfn, end_pfn;
881 struct page *start_page, *end_page;
882
883 start_pfn = page_to_pfn(page);
d9c23400 884 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 885 start_page = pfn_to_page(start_pfn);
d9c23400
MG
886 end_page = start_page + pageblock_nr_pages - 1;
887 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
888
889 /* Do not cross zone boundaries */
890 if (start_pfn < zone->zone_start_pfn)
891 start_page = page;
892 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
893 return 0;
894
895 return move_freepages(zone, start_page, end_page, migratetype);
896}
897
2f66a68f
MG
898static void change_pageblock_range(struct page *pageblock_page,
899 int start_order, int migratetype)
900{
901 int nr_pageblocks = 1 << (start_order - pageblock_order);
902
903 while (nr_pageblocks--) {
904 set_pageblock_migratetype(pageblock_page, migratetype);
905 pageblock_page += pageblock_nr_pages;
906 }
907}
908
b2a0ac88 909/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
910static inline struct page *
911__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
912{
913 struct free_area * area;
914 int current_order;
915 struct page *page;
916 int migratetype, i;
917
918 /* Find the largest possible block of pages in the other list */
919 for (current_order = MAX_ORDER-1; current_order >= order;
920 --current_order) {
921 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
922 migratetype = fallbacks[start_migratetype][i];
923
56fd56b8
MG
924 /* MIGRATE_RESERVE handled later if necessary */
925 if (migratetype == MIGRATE_RESERVE)
926 continue;
e010487d 927
b2a0ac88
MG
928 area = &(zone->free_area[current_order]);
929 if (list_empty(&area->free_list[migratetype]))
930 continue;
931
932 page = list_entry(area->free_list[migratetype].next,
933 struct page, lru);
934 area->nr_free--;
935
936 /*
c361be55 937 * If breaking a large block of pages, move all free
46dafbca
MG
938 * pages to the preferred allocation list. If falling
939 * back for a reclaimable kernel allocation, be more
940 * agressive about taking ownership of free pages
b2a0ac88 941 */
d9c23400 942 if (unlikely(current_order >= (pageblock_order >> 1)) ||
dd5d241e
MG
943 start_migratetype == MIGRATE_RECLAIMABLE ||
944 page_group_by_mobility_disabled) {
46dafbca
MG
945 unsigned long pages;
946 pages = move_freepages_block(zone, page,
947 start_migratetype);
948
949 /* Claim the whole block if over half of it is free */
dd5d241e
MG
950 if (pages >= (1 << (pageblock_order-1)) ||
951 page_group_by_mobility_disabled)
46dafbca
MG
952 set_pageblock_migratetype(page,
953 start_migratetype);
954
b2a0ac88 955 migratetype = start_migratetype;
c361be55 956 }
b2a0ac88
MG
957
958 /* Remove the page from the freelists */
959 list_del(&page->lru);
960 rmv_page_order(page);
b2a0ac88 961
2f66a68f
MG
962 /* Take ownership for orders >= pageblock_order */
963 if (current_order >= pageblock_order)
964 change_pageblock_range(page, current_order,
b2a0ac88
MG
965 start_migratetype);
966
967 expand(zone, page, order, current_order, area, migratetype);
e0fff1bd
MG
968
969 trace_mm_page_alloc_extfrag(page, order, current_order,
970 start_migratetype, migratetype);
971
b2a0ac88
MG
972 return page;
973 }
974 }
975
728ec980 976 return NULL;
b2a0ac88
MG
977}
978
56fd56b8 979/*
1da177e4
LT
980 * Do the hard work of removing an element from the buddy allocator.
981 * Call me with the zone->lock already held.
982 */
b2a0ac88
MG
983static struct page *__rmqueue(struct zone *zone, unsigned int order,
984 int migratetype)
1da177e4 985{
1da177e4
LT
986 struct page *page;
987
728ec980 988retry_reserve:
56fd56b8 989 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 990
728ec980 991 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 992 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 993
728ec980
MG
994 /*
995 * Use MIGRATE_RESERVE rather than fail an allocation. goto
996 * is used because __rmqueue_smallest is an inline function
997 * and we want just one call site
998 */
999 if (!page) {
1000 migratetype = MIGRATE_RESERVE;
1001 goto retry_reserve;
1002 }
1003 }
1004
0d3d062a 1005 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1006 return page;
1da177e4
LT
1007}
1008
1009/*
1010 * Obtain a specified number of elements from the buddy allocator, all under
1011 * a single hold of the lock, for efficiency. Add them to the supplied list.
1012 * Returns the number of new pages which were placed at *list.
1013 */
1014static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1015 unsigned long count, struct list_head *list,
e084b2d9 1016 int migratetype, int cold)
1da177e4 1017{
1da177e4 1018 int i;
1da177e4 1019
c54ad30c 1020 spin_lock(&zone->lock);
1da177e4 1021 for (i = 0; i < count; ++i) {
b2a0ac88 1022 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1023 if (unlikely(page == NULL))
1da177e4 1024 break;
81eabcbe
MG
1025
1026 /*
1027 * Split buddy pages returned by expand() are received here
1028 * in physical page order. The page is added to the callers and
1029 * list and the list head then moves forward. From the callers
1030 * perspective, the linked list is ordered by page number in
1031 * some conditions. This is useful for IO devices that can
1032 * merge IO requests if the physical pages are ordered
1033 * properly.
1034 */
e084b2d9
MG
1035 if (likely(cold == 0))
1036 list_add(&page->lru, list);
1037 else
1038 list_add_tail(&page->lru, list);
535131e6 1039 set_page_private(page, migratetype);
81eabcbe 1040 list = &page->lru;
1da177e4 1041 }
f2260e6b 1042 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1043 spin_unlock(&zone->lock);
085cc7d5 1044 return i;
1da177e4
LT
1045}
1046
4ae7c039 1047#ifdef CONFIG_NUMA
8fce4d8e 1048/*
4037d452
CL
1049 * Called from the vmstat counter updater to drain pagesets of this
1050 * currently executing processor on remote nodes after they have
1051 * expired.
1052 *
879336c3
CL
1053 * Note that this function must be called with the thread pinned to
1054 * a single processor.
8fce4d8e 1055 */
4037d452 1056void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1057{
4ae7c039 1058 unsigned long flags;
4037d452 1059 int to_drain;
4ae7c039 1060
4037d452
CL
1061 local_irq_save(flags);
1062 if (pcp->count >= pcp->batch)
1063 to_drain = pcp->batch;
1064 else
1065 to_drain = pcp->count;
5f8dcc21 1066 free_pcppages_bulk(zone, to_drain, pcp);
4037d452
CL
1067 pcp->count -= to_drain;
1068 local_irq_restore(flags);
4ae7c039
CL
1069}
1070#endif
1071
9f8f2172
CL
1072/*
1073 * Drain pages of the indicated processor.
1074 *
1075 * The processor must either be the current processor and the
1076 * thread pinned to the current processor or a processor that
1077 * is not online.
1078 */
1079static void drain_pages(unsigned int cpu)
1da177e4 1080{
c54ad30c 1081 unsigned long flags;
1da177e4 1082 struct zone *zone;
1da177e4 1083
ee99c71c 1084 for_each_populated_zone(zone) {
1da177e4 1085 struct per_cpu_pageset *pset;
3dfa5721 1086 struct per_cpu_pages *pcp;
1da177e4 1087
99dcc3e5
CL
1088 local_irq_save(flags);
1089 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1090
1091 pcp = &pset->pcp;
5f8dcc21 1092 free_pcppages_bulk(zone, pcp->count, pcp);
3dfa5721
CL
1093 pcp->count = 0;
1094 local_irq_restore(flags);
1da177e4
LT
1095 }
1096}
1da177e4 1097
9f8f2172
CL
1098/*
1099 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1100 */
1101void drain_local_pages(void *arg)
1102{
1103 drain_pages(smp_processor_id());
1104}
1105
1106/*
1107 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1108 */
1109void drain_all_pages(void)
1110{
15c8b6c1 1111 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
1112}
1113
296699de 1114#ifdef CONFIG_HIBERNATION
1da177e4
LT
1115
1116void mark_free_pages(struct zone *zone)
1117{
f623f0db
RW
1118 unsigned long pfn, max_zone_pfn;
1119 unsigned long flags;
b2a0ac88 1120 int order, t;
1da177e4
LT
1121 struct list_head *curr;
1122
1123 if (!zone->spanned_pages)
1124 return;
1125
1126 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1127
1128 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1129 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1130 if (pfn_valid(pfn)) {
1131 struct page *page = pfn_to_page(pfn);
1132
7be98234
RW
1133 if (!swsusp_page_is_forbidden(page))
1134 swsusp_unset_page_free(page);
f623f0db 1135 }
1da177e4 1136
b2a0ac88
MG
1137 for_each_migratetype_order(order, t) {
1138 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1139 unsigned long i;
1da177e4 1140
f623f0db
RW
1141 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1142 for (i = 0; i < (1UL << order); i++)
7be98234 1143 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1144 }
b2a0ac88 1145 }
1da177e4
LT
1146 spin_unlock_irqrestore(&zone->lock, flags);
1147}
e2c55dc8 1148#endif /* CONFIG_PM */
1da177e4 1149
1da177e4
LT
1150/*
1151 * Free a 0-order page
fc91668e 1152 * cold == 1 ? free a cold page : free a hot page
1da177e4 1153 */
fc91668e 1154void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1155{
1156 struct zone *zone = page_zone(page);
1157 struct per_cpu_pages *pcp;
1158 unsigned long flags;
5f8dcc21 1159 int migratetype;
451ea25d 1160 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1161
ec95f53a 1162 if (!free_pages_prepare(page, 0))
689bcebf
HD
1163 return;
1164
5f8dcc21
MG
1165 migratetype = get_pageblock_migratetype(page);
1166 set_page_private(page, migratetype);
1da177e4 1167 local_irq_save(flags);
c277331d 1168 if (unlikely(wasMlocked))
da456f14 1169 free_page_mlock(page);
f8891e5e 1170 __count_vm_event(PGFREE);
da456f14 1171
5f8dcc21
MG
1172 /*
1173 * We only track unmovable, reclaimable and movable on pcp lists.
1174 * Free ISOLATE pages back to the allocator because they are being
1175 * offlined but treat RESERVE as movable pages so we can get those
1176 * areas back if necessary. Otherwise, we may have to free
1177 * excessively into the page allocator
1178 */
1179 if (migratetype >= MIGRATE_PCPTYPES) {
1180 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1181 free_one_page(zone, page, 0, migratetype);
1182 goto out;
1183 }
1184 migratetype = MIGRATE_MOVABLE;
1185 }
1186
99dcc3e5 1187 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1188 if (cold)
5f8dcc21 1189 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1190 else
5f8dcc21 1191 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1192 pcp->count++;
48db57f8 1193 if (pcp->count >= pcp->high) {
5f8dcc21 1194 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1195 pcp->count -= pcp->batch;
1196 }
5f8dcc21
MG
1197
1198out:
1da177e4 1199 local_irq_restore(flags);
1da177e4
LT
1200}
1201
8dfcc9ba
NP
1202/*
1203 * split_page takes a non-compound higher-order page, and splits it into
1204 * n (1<<order) sub-pages: page[0..n]
1205 * Each sub-page must be freed individually.
1206 *
1207 * Note: this is probably too low level an operation for use in drivers.
1208 * Please consult with lkml before using this in your driver.
1209 */
1210void split_page(struct page *page, unsigned int order)
1211{
1212 int i;
1213
725d704e
NP
1214 VM_BUG_ON(PageCompound(page));
1215 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1216
1217#ifdef CONFIG_KMEMCHECK
1218 /*
1219 * Split shadow pages too, because free(page[0]) would
1220 * otherwise free the whole shadow.
1221 */
1222 if (kmemcheck_page_is_tracked(page))
1223 split_page(virt_to_page(page[0].shadow), order);
1224#endif
1225
7835e98b
NP
1226 for (i = 1; i < (1 << order); i++)
1227 set_page_refcounted(page + i);
8dfcc9ba 1228}
8dfcc9ba 1229
748446bb
MG
1230/*
1231 * Similar to split_page except the page is already free. As this is only
1232 * being used for migration, the migratetype of the block also changes.
1233 * As this is called with interrupts disabled, the caller is responsible
1234 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1235 * are enabled.
1236 *
1237 * Note: this is probably too low level an operation for use in drivers.
1238 * Please consult with lkml before using this in your driver.
1239 */
1240int split_free_page(struct page *page)
1241{
1242 unsigned int order;
1243 unsigned long watermark;
1244 struct zone *zone;
1245
1246 BUG_ON(!PageBuddy(page));
1247
1248 zone = page_zone(page);
1249 order = page_order(page);
1250
1251 /* Obey watermarks as if the page was being allocated */
1252 watermark = low_wmark_pages(zone) + (1 << order);
1253 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1254 return 0;
1255
1256 /* Remove page from free list */
1257 list_del(&page->lru);
1258 zone->free_area[order].nr_free--;
1259 rmv_page_order(page);
1260 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1261
1262 /* Split into individual pages */
1263 set_page_refcounted(page);
1264 split_page(page, order);
1265
1266 if (order >= pageblock_order - 1) {
1267 struct page *endpage = page + (1 << order) - 1;
1268 for (; page < endpage; page += pageblock_nr_pages)
1269 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1270 }
1271
1272 return 1 << order;
1273}
1274
1da177e4
LT
1275/*
1276 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1277 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1278 * or two.
1279 */
0a15c3e9
MG
1280static inline
1281struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1282 struct zone *zone, int order, gfp_t gfp_flags,
1283 int migratetype)
1da177e4
LT
1284{
1285 unsigned long flags;
689bcebf 1286 struct page *page;
1da177e4
LT
1287 int cold = !!(gfp_flags & __GFP_COLD);
1288
689bcebf 1289again:
48db57f8 1290 if (likely(order == 0)) {
1da177e4 1291 struct per_cpu_pages *pcp;
5f8dcc21 1292 struct list_head *list;
1da177e4 1293
1da177e4 1294 local_irq_save(flags);
99dcc3e5
CL
1295 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1296 list = &pcp->lists[migratetype];
5f8dcc21 1297 if (list_empty(list)) {
535131e6 1298 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1299 pcp->batch, list,
e084b2d9 1300 migratetype, cold);
5f8dcc21 1301 if (unlikely(list_empty(list)))
6fb332fa 1302 goto failed;
535131e6 1303 }
b92a6edd 1304
5f8dcc21
MG
1305 if (cold)
1306 page = list_entry(list->prev, struct page, lru);
1307 else
1308 page = list_entry(list->next, struct page, lru);
1309
b92a6edd
MG
1310 list_del(&page->lru);
1311 pcp->count--;
7fb1d9fc 1312 } else {
dab48dab
AM
1313 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1314 /*
1315 * __GFP_NOFAIL is not to be used in new code.
1316 *
1317 * All __GFP_NOFAIL callers should be fixed so that they
1318 * properly detect and handle allocation failures.
1319 *
1320 * We most definitely don't want callers attempting to
4923abf9 1321 * allocate greater than order-1 page units with
dab48dab
AM
1322 * __GFP_NOFAIL.
1323 */
4923abf9 1324 WARN_ON_ONCE(order > 1);
dab48dab 1325 }
1da177e4 1326 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1327 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1328 spin_unlock(&zone->lock);
1329 if (!page)
1330 goto failed;
6ccf80eb 1331 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1da177e4
LT
1332 }
1333
f8891e5e 1334 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1335 zone_statistics(preferred_zone, zone);
a74609fa 1336 local_irq_restore(flags);
1da177e4 1337
725d704e 1338 VM_BUG_ON(bad_range(zone, page));
17cf4406 1339 if (prep_new_page(page, order, gfp_flags))
a74609fa 1340 goto again;
1da177e4 1341 return page;
a74609fa
NP
1342
1343failed:
1344 local_irq_restore(flags);
a74609fa 1345 return NULL;
1da177e4
LT
1346}
1347
41858966
MG
1348/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1349#define ALLOC_WMARK_MIN WMARK_MIN
1350#define ALLOC_WMARK_LOW WMARK_LOW
1351#define ALLOC_WMARK_HIGH WMARK_HIGH
1352#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1353
1354/* Mask to get the watermark bits */
1355#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1356
3148890b
NP
1357#define ALLOC_HARDER 0x10 /* try to alloc harder */
1358#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1359#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1360
933e312e
AM
1361#ifdef CONFIG_FAIL_PAGE_ALLOC
1362
1363static struct fail_page_alloc_attr {
1364 struct fault_attr attr;
1365
1366 u32 ignore_gfp_highmem;
1367 u32 ignore_gfp_wait;
54114994 1368 u32 min_order;
933e312e
AM
1369
1370#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1371
1372 struct dentry *ignore_gfp_highmem_file;
1373 struct dentry *ignore_gfp_wait_file;
54114994 1374 struct dentry *min_order_file;
933e312e
AM
1375
1376#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1377
1378} fail_page_alloc = {
1379 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1380 .ignore_gfp_wait = 1,
1381 .ignore_gfp_highmem = 1,
54114994 1382 .min_order = 1,
933e312e
AM
1383};
1384
1385static int __init setup_fail_page_alloc(char *str)
1386{
1387 return setup_fault_attr(&fail_page_alloc.attr, str);
1388}
1389__setup("fail_page_alloc=", setup_fail_page_alloc);
1390
1391static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1392{
54114994
AM
1393 if (order < fail_page_alloc.min_order)
1394 return 0;
933e312e
AM
1395 if (gfp_mask & __GFP_NOFAIL)
1396 return 0;
1397 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1398 return 0;
1399 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1400 return 0;
1401
1402 return should_fail(&fail_page_alloc.attr, 1 << order);
1403}
1404
1405#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1406
1407static int __init fail_page_alloc_debugfs(void)
1408{
1409 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1410 struct dentry *dir;
1411 int err;
1412
1413 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1414 "fail_page_alloc");
1415 if (err)
1416 return err;
1417 dir = fail_page_alloc.attr.dentries.dir;
1418
1419 fail_page_alloc.ignore_gfp_wait_file =
1420 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1421 &fail_page_alloc.ignore_gfp_wait);
1422
1423 fail_page_alloc.ignore_gfp_highmem_file =
1424 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1425 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1426 fail_page_alloc.min_order_file =
1427 debugfs_create_u32("min-order", mode, dir,
1428 &fail_page_alloc.min_order);
933e312e
AM
1429
1430 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1431 !fail_page_alloc.ignore_gfp_highmem_file ||
1432 !fail_page_alloc.min_order_file) {
933e312e
AM
1433 err = -ENOMEM;
1434 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1435 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1436 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1437 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1438 }
1439
1440 return err;
1441}
1442
1443late_initcall(fail_page_alloc_debugfs);
1444
1445#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1446
1447#else /* CONFIG_FAIL_PAGE_ALLOC */
1448
1449static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1450{
1451 return 0;
1452}
1453
1454#endif /* CONFIG_FAIL_PAGE_ALLOC */
1455
1da177e4
LT
1456/*
1457 * Return 1 if free pages are above 'mark'. This takes into account the order
1458 * of the allocation.
1459 */
1460int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1461 int classzone_idx, int alloc_flags)
1da177e4
LT
1462{
1463 /* free_pages my go negative - that's OK */
d23ad423
CL
1464 long min = mark;
1465 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1466 int o;
1467
7fb1d9fc 1468 if (alloc_flags & ALLOC_HIGH)
1da177e4 1469 min -= min / 2;
7fb1d9fc 1470 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1471 min -= min / 4;
1472
1473 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1474 return 0;
1475 for (o = 0; o < order; o++) {
1476 /* At the next order, this order's pages become unavailable */
1477 free_pages -= z->free_area[o].nr_free << o;
1478
1479 /* Require fewer higher order pages to be free */
1480 min >>= 1;
1481
1482 if (free_pages <= min)
1483 return 0;
1484 }
1485 return 1;
1486}
1487
9276b1bc
PJ
1488#ifdef CONFIG_NUMA
1489/*
1490 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1491 * skip over zones that are not allowed by the cpuset, or that have
1492 * been recently (in last second) found to be nearly full. See further
1493 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1494 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1495 *
1496 * If the zonelist cache is present in the passed in zonelist, then
1497 * returns a pointer to the allowed node mask (either the current
37b07e41 1498 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1499 *
1500 * If the zonelist cache is not available for this zonelist, does
1501 * nothing and returns NULL.
1502 *
1503 * If the fullzones BITMAP in the zonelist cache is stale (more than
1504 * a second since last zap'd) then we zap it out (clear its bits.)
1505 *
1506 * We hold off even calling zlc_setup, until after we've checked the
1507 * first zone in the zonelist, on the theory that most allocations will
1508 * be satisfied from that first zone, so best to examine that zone as
1509 * quickly as we can.
1510 */
1511static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1512{
1513 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1514 nodemask_t *allowednodes; /* zonelist_cache approximation */
1515
1516 zlc = zonelist->zlcache_ptr;
1517 if (!zlc)
1518 return NULL;
1519
f05111f5 1520 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1521 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1522 zlc->last_full_zap = jiffies;
1523 }
1524
1525 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1526 &cpuset_current_mems_allowed :
37b07e41 1527 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1528 return allowednodes;
1529}
1530
1531/*
1532 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1533 * if it is worth looking at further for free memory:
1534 * 1) Check that the zone isn't thought to be full (doesn't have its
1535 * bit set in the zonelist_cache fullzones BITMAP).
1536 * 2) Check that the zones node (obtained from the zonelist_cache
1537 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1538 * Return true (non-zero) if zone is worth looking at further, or
1539 * else return false (zero) if it is not.
1540 *
1541 * This check -ignores- the distinction between various watermarks,
1542 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1543 * found to be full for any variation of these watermarks, it will
1544 * be considered full for up to one second by all requests, unless
1545 * we are so low on memory on all allowed nodes that we are forced
1546 * into the second scan of the zonelist.
1547 *
1548 * In the second scan we ignore this zonelist cache and exactly
1549 * apply the watermarks to all zones, even it is slower to do so.
1550 * We are low on memory in the second scan, and should leave no stone
1551 * unturned looking for a free page.
1552 */
dd1a239f 1553static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1554 nodemask_t *allowednodes)
1555{
1556 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1557 int i; /* index of *z in zonelist zones */
1558 int n; /* node that zone *z is on */
1559
1560 zlc = zonelist->zlcache_ptr;
1561 if (!zlc)
1562 return 1;
1563
dd1a239f 1564 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1565 n = zlc->z_to_n[i];
1566
1567 /* This zone is worth trying if it is allowed but not full */
1568 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1569}
1570
1571/*
1572 * Given 'z' scanning a zonelist, set the corresponding bit in
1573 * zlc->fullzones, so that subsequent attempts to allocate a page
1574 * from that zone don't waste time re-examining it.
1575 */
dd1a239f 1576static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1577{
1578 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1579 int i; /* index of *z in zonelist zones */
1580
1581 zlc = zonelist->zlcache_ptr;
1582 if (!zlc)
1583 return;
1584
dd1a239f 1585 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1586
1587 set_bit(i, zlc->fullzones);
1588}
1589
1590#else /* CONFIG_NUMA */
1591
1592static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1593{
1594 return NULL;
1595}
1596
dd1a239f 1597static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1598 nodemask_t *allowednodes)
1599{
1600 return 1;
1601}
1602
dd1a239f 1603static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1604{
1605}
1606#endif /* CONFIG_NUMA */
1607
7fb1d9fc 1608/*
0798e519 1609 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1610 * a page.
1611 */
1612static struct page *
19770b32 1613get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1614 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1615 struct zone *preferred_zone, int migratetype)
753ee728 1616{
dd1a239f 1617 struct zoneref *z;
7fb1d9fc 1618 struct page *page = NULL;
54a6eb5c 1619 int classzone_idx;
5117f45d 1620 struct zone *zone;
9276b1bc
PJ
1621 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1622 int zlc_active = 0; /* set if using zonelist_cache */
1623 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1624
19770b32 1625 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1626zonelist_scan:
7fb1d9fc 1627 /*
9276b1bc 1628 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1629 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1630 */
19770b32
MG
1631 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1632 high_zoneidx, nodemask) {
9276b1bc
PJ
1633 if (NUMA_BUILD && zlc_active &&
1634 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1635 continue;
7fb1d9fc 1636 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1637 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1638 goto try_next_zone;
7fb1d9fc 1639
41858966 1640 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1641 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1642 unsigned long mark;
fa5e084e
MG
1643 int ret;
1644
41858966 1645 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1646 if (zone_watermark_ok(zone, order, mark,
1647 classzone_idx, alloc_flags))
1648 goto try_this_zone;
1649
1650 if (zone_reclaim_mode == 0)
1651 goto this_zone_full;
1652
1653 ret = zone_reclaim(zone, gfp_mask, order);
1654 switch (ret) {
1655 case ZONE_RECLAIM_NOSCAN:
1656 /* did not scan */
1657 goto try_next_zone;
1658 case ZONE_RECLAIM_FULL:
1659 /* scanned but unreclaimable */
1660 goto this_zone_full;
1661 default:
1662 /* did we reclaim enough */
1663 if (!zone_watermark_ok(zone, order, mark,
1664 classzone_idx, alloc_flags))
9276b1bc 1665 goto this_zone_full;
0798e519 1666 }
7fb1d9fc
RS
1667 }
1668
fa5e084e 1669try_this_zone:
3dd28266
MG
1670 page = buffered_rmqueue(preferred_zone, zone, order,
1671 gfp_mask, migratetype);
0798e519 1672 if (page)
7fb1d9fc 1673 break;
9276b1bc
PJ
1674this_zone_full:
1675 if (NUMA_BUILD)
1676 zlc_mark_zone_full(zonelist, z);
1677try_next_zone:
62bc62a8 1678 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
d395b734
MG
1679 /*
1680 * we do zlc_setup after the first zone is tried but only
1681 * if there are multiple nodes make it worthwhile
1682 */
9276b1bc
PJ
1683 allowednodes = zlc_setup(zonelist, alloc_flags);
1684 zlc_active = 1;
1685 did_zlc_setup = 1;
1686 }
54a6eb5c 1687 }
9276b1bc
PJ
1688
1689 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1690 /* Disable zlc cache for second zonelist scan */
1691 zlc_active = 0;
1692 goto zonelist_scan;
1693 }
7fb1d9fc 1694 return page;
753ee728
MH
1695}
1696
11e33f6a
MG
1697static inline int
1698should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1699 unsigned long pages_reclaimed)
1da177e4 1700{
11e33f6a
MG
1701 /* Do not loop if specifically requested */
1702 if (gfp_mask & __GFP_NORETRY)
1703 return 0;
1da177e4 1704
11e33f6a
MG
1705 /*
1706 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1707 * means __GFP_NOFAIL, but that may not be true in other
1708 * implementations.
1709 */
1710 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1711 return 1;
1712
1713 /*
1714 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1715 * specified, then we retry until we no longer reclaim any pages
1716 * (above), or we've reclaimed an order of pages at least as
1717 * large as the allocation's order. In both cases, if the
1718 * allocation still fails, we stop retrying.
1719 */
1720 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1721 return 1;
cf40bd16 1722
11e33f6a
MG
1723 /*
1724 * Don't let big-order allocations loop unless the caller
1725 * explicitly requests that.
1726 */
1727 if (gfp_mask & __GFP_NOFAIL)
1728 return 1;
1da177e4 1729
11e33f6a
MG
1730 return 0;
1731}
933e312e 1732
11e33f6a
MG
1733static inline struct page *
1734__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1735 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1736 nodemask_t *nodemask, struct zone *preferred_zone,
1737 int migratetype)
11e33f6a
MG
1738{
1739 struct page *page;
1740
1741 /* Acquire the OOM killer lock for the zones in zonelist */
1742 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1743 schedule_timeout_uninterruptible(1);
1da177e4
LT
1744 return NULL;
1745 }
6b1de916 1746
11e33f6a
MG
1747 /*
1748 * Go through the zonelist yet one more time, keep very high watermark
1749 * here, this is only to catch a parallel oom killing, we must fail if
1750 * we're still under heavy pressure.
1751 */
1752 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1753 order, zonelist, high_zoneidx,
5117f45d 1754 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1755 preferred_zone, migratetype);
7fb1d9fc 1756 if (page)
11e33f6a
MG
1757 goto out;
1758
4365a567
KH
1759 if (!(gfp_mask & __GFP_NOFAIL)) {
1760 /* The OOM killer will not help higher order allocs */
1761 if (order > PAGE_ALLOC_COSTLY_ORDER)
1762 goto out;
1763 /*
1764 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1765 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1766 * The caller should handle page allocation failure by itself if
1767 * it specifies __GFP_THISNODE.
1768 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1769 */
1770 if (gfp_mask & __GFP_THISNODE)
1771 goto out;
1772 }
11e33f6a 1773 /* Exhausted what can be done so it's blamo time */
4365a567 1774 out_of_memory(zonelist, gfp_mask, order, nodemask);
11e33f6a
MG
1775
1776out:
1777 clear_zonelist_oom(zonelist, gfp_mask);
1778 return page;
1779}
1780
56de7263
MG
1781#ifdef CONFIG_COMPACTION
1782/* Try memory compaction for high-order allocations before reclaim */
1783static struct page *
1784__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1785 struct zonelist *zonelist, enum zone_type high_zoneidx,
1786 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1787 int migratetype, unsigned long *did_some_progress)
1788{
1789 struct page *page;
1790
4f92e258 1791 if (!order || compaction_deferred(preferred_zone))
56de7263
MG
1792 return NULL;
1793
1794 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1795 nodemask);
1796 if (*did_some_progress != COMPACT_SKIPPED) {
1797
1798 /* Page migration frees to the PCP lists but we want merging */
1799 drain_pages(get_cpu());
1800 put_cpu();
1801
1802 page = get_page_from_freelist(gfp_mask, nodemask,
1803 order, zonelist, high_zoneidx,
1804 alloc_flags, preferred_zone,
1805 migratetype);
1806 if (page) {
4f92e258
MG
1807 preferred_zone->compact_considered = 0;
1808 preferred_zone->compact_defer_shift = 0;
56de7263
MG
1809 count_vm_event(COMPACTSUCCESS);
1810 return page;
1811 }
1812
1813 /*
1814 * It's bad if compaction run occurs and fails.
1815 * The most likely reason is that pages exist,
1816 * but not enough to satisfy watermarks.
1817 */
1818 count_vm_event(COMPACTFAIL);
4f92e258 1819 defer_compaction(preferred_zone);
56de7263
MG
1820
1821 cond_resched();
1822 }
1823
1824 return NULL;
1825}
1826#else
1827static inline struct page *
1828__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1829 struct zonelist *zonelist, enum zone_type high_zoneidx,
1830 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1831 int migratetype, unsigned long *did_some_progress)
1832{
1833 return NULL;
1834}
1835#endif /* CONFIG_COMPACTION */
1836
11e33f6a
MG
1837/* The really slow allocator path where we enter direct reclaim */
1838static inline struct page *
1839__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1840 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1841 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1842 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1843{
1844 struct page *page = NULL;
1845 struct reclaim_state reclaim_state;
1846 struct task_struct *p = current;
1847
1848 cond_resched();
1849
1850 /* We now go into synchronous reclaim */
1851 cpuset_memory_pressure_bump();
11e33f6a
MG
1852 p->flags |= PF_MEMALLOC;
1853 lockdep_set_current_reclaim_state(gfp_mask);
1854 reclaim_state.reclaimed_slab = 0;
1855 p->reclaim_state = &reclaim_state;
1856
1857 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1858
1859 p->reclaim_state = NULL;
1860 lockdep_clear_current_reclaim_state();
1861 p->flags &= ~PF_MEMALLOC;
1862
1863 cond_resched();
1864
1865 if (order != 0)
1866 drain_all_pages();
1867
1868 if (likely(*did_some_progress))
1869 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1870 zonelist, high_zoneidx,
3dd28266
MG
1871 alloc_flags, preferred_zone,
1872 migratetype);
11e33f6a
MG
1873 return page;
1874}
1875
1da177e4 1876/*
11e33f6a
MG
1877 * This is called in the allocator slow-path if the allocation request is of
1878 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 1879 */
11e33f6a
MG
1880static inline struct page *
1881__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1882 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1883 nodemask_t *nodemask, struct zone *preferred_zone,
1884 int migratetype)
11e33f6a
MG
1885{
1886 struct page *page;
1887
1888 do {
1889 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1890 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 1891 preferred_zone, migratetype);
11e33f6a
MG
1892
1893 if (!page && gfp_mask & __GFP_NOFAIL)
8aa7e847 1894 congestion_wait(BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
1895 } while (!page && (gfp_mask & __GFP_NOFAIL));
1896
1897 return page;
1898}
1899
1900static inline
1901void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1902 enum zone_type high_zoneidx)
1da177e4 1903{
dd1a239f
MG
1904 struct zoneref *z;
1905 struct zone *zone;
1da177e4 1906
11e33f6a
MG
1907 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1908 wakeup_kswapd(zone, order);
1909}
cf40bd16 1910
341ce06f
PZ
1911static inline int
1912gfp_to_alloc_flags(gfp_t gfp_mask)
1913{
1914 struct task_struct *p = current;
1915 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1916 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 1917
a56f57ff
MG
1918 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1919 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
933e312e 1920
341ce06f
PZ
1921 /*
1922 * The caller may dip into page reserves a bit more if the caller
1923 * cannot run direct reclaim, or if the caller has realtime scheduling
1924 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1925 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1926 */
a56f57ff 1927 alloc_flags |= (gfp_mask & __GFP_HIGH);
1da177e4 1928
341ce06f
PZ
1929 if (!wait) {
1930 alloc_flags |= ALLOC_HARDER;
523b9458 1931 /*
341ce06f
PZ
1932 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1933 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 1934 */
341ce06f 1935 alloc_flags &= ~ALLOC_CPUSET;
9d0ed60f 1936 } else if (unlikely(rt_task(p)) && !in_interrupt())
341ce06f
PZ
1937 alloc_flags |= ALLOC_HARDER;
1938
1939 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1940 if (!in_interrupt() &&
1941 ((p->flags & PF_MEMALLOC) ||
1942 unlikely(test_thread_flag(TIF_MEMDIE))))
1943 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 1944 }
6b1de916 1945
341ce06f
PZ
1946 return alloc_flags;
1947}
1948
11e33f6a
MG
1949static inline struct page *
1950__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1951 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1952 nodemask_t *nodemask, struct zone *preferred_zone,
1953 int migratetype)
11e33f6a
MG
1954{
1955 const gfp_t wait = gfp_mask & __GFP_WAIT;
1956 struct page *page = NULL;
1957 int alloc_flags;
1958 unsigned long pages_reclaimed = 0;
1959 unsigned long did_some_progress;
1960 struct task_struct *p = current;
1da177e4 1961
72807a74
MG
1962 /*
1963 * In the slowpath, we sanity check order to avoid ever trying to
1964 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1965 * be using allocators in order of preference for an area that is
1966 * too large.
1967 */
1fc28b70
MG
1968 if (order >= MAX_ORDER) {
1969 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 1970 return NULL;
1fc28b70 1971 }
1da177e4 1972
952f3b51
CL
1973 /*
1974 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1975 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1976 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1977 * using a larger set of nodes after it has established that the
1978 * allowed per node queues are empty and that nodes are
1979 * over allocated.
1980 */
1981 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1982 goto nopage;
1983
cc4a6851 1984restart:
11e33f6a 1985 wake_all_kswapd(order, zonelist, high_zoneidx);
1da177e4 1986
9bf2229f 1987 /*
7fb1d9fc
RS
1988 * OK, we're below the kswapd watermark and have kicked background
1989 * reclaim. Now things get more complex, so set up alloc_flags according
1990 * to how we want to proceed.
9bf2229f 1991 */
341ce06f 1992 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 1993
341ce06f 1994 /* This is the last chance, in general, before the goto nopage. */
19770b32 1995 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
1996 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1997 preferred_zone, migratetype);
7fb1d9fc
RS
1998 if (page)
1999 goto got_pg;
1da177e4 2000
b43a57bb 2001rebalance:
11e33f6a 2002 /* Allocate without watermarks if the context allows */
341ce06f
PZ
2003 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2004 page = __alloc_pages_high_priority(gfp_mask, order,
2005 zonelist, high_zoneidx, nodemask,
2006 preferred_zone, migratetype);
2007 if (page)
2008 goto got_pg;
1da177e4
LT
2009 }
2010
2011 /* Atomic allocations - we can't balance anything */
2012 if (!wait)
2013 goto nopage;
2014
341ce06f
PZ
2015 /* Avoid recursion of direct reclaim */
2016 if (p->flags & PF_MEMALLOC)
2017 goto nopage;
2018
6583bb64
DR
2019 /* Avoid allocations with no watermarks from looping endlessly */
2020 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2021 goto nopage;
2022
56de7263
MG
2023 /* Try direct compaction */
2024 page = __alloc_pages_direct_compact(gfp_mask, order,
2025 zonelist, high_zoneidx,
2026 nodemask,
2027 alloc_flags, preferred_zone,
2028 migratetype, &did_some_progress);
2029 if (page)
2030 goto got_pg;
2031
11e33f6a
MG
2032 /* Try direct reclaim and then allocating */
2033 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2034 zonelist, high_zoneidx,
2035 nodemask,
5117f45d 2036 alloc_flags, preferred_zone,
3dd28266 2037 migratetype, &did_some_progress);
11e33f6a
MG
2038 if (page)
2039 goto got_pg;
1da177e4 2040
e33c3b5e 2041 /*
11e33f6a
MG
2042 * If we failed to make any progress reclaiming, then we are
2043 * running out of options and have to consider going OOM
e33c3b5e 2044 */
11e33f6a
MG
2045 if (!did_some_progress) {
2046 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2047 if (oom_killer_disabled)
2048 goto nopage;
11e33f6a
MG
2049 page = __alloc_pages_may_oom(gfp_mask, order,
2050 zonelist, high_zoneidx,
3dd28266
MG
2051 nodemask, preferred_zone,
2052 migratetype);
11e33f6a
MG
2053 if (page)
2054 goto got_pg;
1da177e4 2055
11e33f6a 2056 /*
82553a93
DR
2057 * The OOM killer does not trigger for high-order
2058 * ~__GFP_NOFAIL allocations so if no progress is being
2059 * made, there are no other options and retrying is
2060 * unlikely to help.
11e33f6a 2061 */
82553a93
DR
2062 if (order > PAGE_ALLOC_COSTLY_ORDER &&
2063 !(gfp_mask & __GFP_NOFAIL))
11e33f6a 2064 goto nopage;
e2c55dc8 2065
ff0ceb9d
DR
2066 goto restart;
2067 }
1da177e4
LT
2068 }
2069
11e33f6a 2070 /* Check if we should retry the allocation */
a41f24ea 2071 pages_reclaimed += did_some_progress;
11e33f6a
MG
2072 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2073 /* Wait for some write requests to complete then retry */
8aa7e847 2074 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
2075 goto rebalance;
2076 }
2077
2078nopage:
2079 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2080 printk(KERN_WARNING "%s: page allocation failure."
2081 " order:%d, mode:0x%x\n",
2082 p->comm, order, gfp_mask);
2083 dump_stack();
578c2fd6 2084 show_mem();
1da177e4 2085 }
b1eeab67 2086 return page;
1da177e4 2087got_pg:
b1eeab67
VN
2088 if (kmemcheck_enabled)
2089 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 2090 return page;
11e33f6a 2091
1da177e4 2092}
11e33f6a
MG
2093
2094/*
2095 * This is the 'heart' of the zoned buddy allocator.
2096 */
2097struct page *
2098__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2099 struct zonelist *zonelist, nodemask_t *nodemask)
2100{
2101 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2102 struct zone *preferred_zone;
11e33f6a 2103 struct page *page;
3dd28266 2104 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a 2105
dcce284a
BH
2106 gfp_mask &= gfp_allowed_mask;
2107
11e33f6a
MG
2108 lockdep_trace_alloc(gfp_mask);
2109
2110 might_sleep_if(gfp_mask & __GFP_WAIT);
2111
2112 if (should_fail_alloc_page(gfp_mask, order))
2113 return NULL;
2114
2115 /*
2116 * Check the zones suitable for the gfp_mask contain at least one
2117 * valid zone. It's possible to have an empty zonelist as a result
2118 * of GFP_THISNODE and a memoryless node
2119 */
2120 if (unlikely(!zonelist->_zonerefs->zone))
2121 return NULL;
2122
c0ff7453 2123 get_mems_allowed();
5117f45d
MG
2124 /* The preferred zone is used for statistics later */
2125 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
c0ff7453
MX
2126 if (!preferred_zone) {
2127 put_mems_allowed();
5117f45d 2128 return NULL;
c0ff7453 2129 }
5117f45d
MG
2130
2131 /* First allocation attempt */
11e33f6a 2132 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 2133 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 2134 preferred_zone, migratetype);
11e33f6a
MG
2135 if (unlikely(!page))
2136 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2137 zonelist, high_zoneidx, nodemask,
3dd28266 2138 preferred_zone, migratetype);
c0ff7453 2139 put_mems_allowed();
11e33f6a 2140
4b4f278c 2141 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
11e33f6a 2142 return page;
1da177e4 2143}
d239171e 2144EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2145
2146/*
2147 * Common helper functions.
2148 */
920c7a5d 2149unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2150{
945a1113
AM
2151 struct page *page;
2152
2153 /*
2154 * __get_free_pages() returns a 32-bit address, which cannot represent
2155 * a highmem page
2156 */
2157 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2158
1da177e4
LT
2159 page = alloc_pages(gfp_mask, order);
2160 if (!page)
2161 return 0;
2162 return (unsigned long) page_address(page);
2163}
1da177e4
LT
2164EXPORT_SYMBOL(__get_free_pages);
2165
920c7a5d 2166unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2167{
945a1113 2168 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2169}
1da177e4
LT
2170EXPORT_SYMBOL(get_zeroed_page);
2171
2172void __pagevec_free(struct pagevec *pvec)
2173{
2174 int i = pagevec_count(pvec);
2175
4b4f278c
MG
2176 while (--i >= 0) {
2177 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
1da177e4 2178 free_hot_cold_page(pvec->pages[i], pvec->cold);
4b4f278c 2179 }
1da177e4
LT
2180}
2181
920c7a5d 2182void __free_pages(struct page *page, unsigned int order)
1da177e4 2183{
b5810039 2184 if (put_page_testzero(page)) {
1da177e4 2185 if (order == 0)
fc91668e 2186 free_hot_cold_page(page, 0);
1da177e4
LT
2187 else
2188 __free_pages_ok(page, order);
2189 }
2190}
2191
2192EXPORT_SYMBOL(__free_pages);
2193
920c7a5d 2194void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2195{
2196 if (addr != 0) {
725d704e 2197 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2198 __free_pages(virt_to_page((void *)addr), order);
2199 }
2200}
2201
2202EXPORT_SYMBOL(free_pages);
2203
2be0ffe2
TT
2204/**
2205 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2206 * @size: the number of bytes to allocate
2207 * @gfp_mask: GFP flags for the allocation
2208 *
2209 * This function is similar to alloc_pages(), except that it allocates the
2210 * minimum number of pages to satisfy the request. alloc_pages() can only
2211 * allocate memory in power-of-two pages.
2212 *
2213 * This function is also limited by MAX_ORDER.
2214 *
2215 * Memory allocated by this function must be released by free_pages_exact().
2216 */
2217void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2218{
2219 unsigned int order = get_order(size);
2220 unsigned long addr;
2221
2222 addr = __get_free_pages(gfp_mask, order);
2223 if (addr) {
2224 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2225 unsigned long used = addr + PAGE_ALIGN(size);
2226
5bfd7560 2227 split_page(virt_to_page((void *)addr), order);
2be0ffe2
TT
2228 while (used < alloc_end) {
2229 free_page(used);
2230 used += PAGE_SIZE;
2231 }
2232 }
2233
2234 return (void *)addr;
2235}
2236EXPORT_SYMBOL(alloc_pages_exact);
2237
2238/**
2239 * free_pages_exact - release memory allocated via alloc_pages_exact()
2240 * @virt: the value returned by alloc_pages_exact.
2241 * @size: size of allocation, same value as passed to alloc_pages_exact().
2242 *
2243 * Release the memory allocated by a previous call to alloc_pages_exact.
2244 */
2245void free_pages_exact(void *virt, size_t size)
2246{
2247 unsigned long addr = (unsigned long)virt;
2248 unsigned long end = addr + PAGE_ALIGN(size);
2249
2250 while (addr < end) {
2251 free_page(addr);
2252 addr += PAGE_SIZE;
2253 }
2254}
2255EXPORT_SYMBOL(free_pages_exact);
2256
1da177e4
LT
2257static unsigned int nr_free_zone_pages(int offset)
2258{
dd1a239f 2259 struct zoneref *z;
54a6eb5c
MG
2260 struct zone *zone;
2261
e310fd43 2262 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2263 unsigned int sum = 0;
2264
0e88460d 2265 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2266
54a6eb5c 2267 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2268 unsigned long size = zone->present_pages;
41858966 2269 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2270 if (size > high)
2271 sum += size - high;
1da177e4
LT
2272 }
2273
2274 return sum;
2275}
2276
2277/*
2278 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2279 */
2280unsigned int nr_free_buffer_pages(void)
2281{
af4ca457 2282 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2283}
c2f1a551 2284EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2285
2286/*
2287 * Amount of free RAM allocatable within all zones
2288 */
2289unsigned int nr_free_pagecache_pages(void)
2290{
2a1e274a 2291 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2292}
08e0f6a9
CL
2293
2294static inline void show_node(struct zone *zone)
1da177e4 2295{
08e0f6a9 2296 if (NUMA_BUILD)
25ba77c1 2297 printk("Node %d ", zone_to_nid(zone));
1da177e4 2298}
1da177e4 2299
1da177e4
LT
2300void si_meminfo(struct sysinfo *val)
2301{
2302 val->totalram = totalram_pages;
2303 val->sharedram = 0;
d23ad423 2304 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2305 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2306 val->totalhigh = totalhigh_pages;
2307 val->freehigh = nr_free_highpages();
1da177e4
LT
2308 val->mem_unit = PAGE_SIZE;
2309}
2310
2311EXPORT_SYMBOL(si_meminfo);
2312
2313#ifdef CONFIG_NUMA
2314void si_meminfo_node(struct sysinfo *val, int nid)
2315{
2316 pg_data_t *pgdat = NODE_DATA(nid);
2317
2318 val->totalram = pgdat->node_present_pages;
d23ad423 2319 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2320#ifdef CONFIG_HIGHMEM
1da177e4 2321 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2322 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2323 NR_FREE_PAGES);
98d2b0eb
CL
2324#else
2325 val->totalhigh = 0;
2326 val->freehigh = 0;
2327#endif
1da177e4
LT
2328 val->mem_unit = PAGE_SIZE;
2329}
2330#endif
2331
2332#define K(x) ((x) << (PAGE_SHIFT-10))
2333
2334/*
2335 * Show free area list (used inside shift_scroll-lock stuff)
2336 * We also calculate the percentage fragmentation. We do this by counting the
2337 * memory on each free list with the exception of the first item on the list.
2338 */
2339void show_free_areas(void)
2340{
c7241913 2341 int cpu;
1da177e4
LT
2342 struct zone *zone;
2343
ee99c71c 2344 for_each_populated_zone(zone) {
c7241913
JS
2345 show_node(zone);
2346 printk("%s per-cpu:\n", zone->name);
1da177e4 2347
6b482c67 2348 for_each_online_cpu(cpu) {
1da177e4
LT
2349 struct per_cpu_pageset *pageset;
2350
99dcc3e5 2351 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2352
3dfa5721
CL
2353 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2354 cpu, pageset->pcp.high,
2355 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2356 }
2357 }
2358
a731286d
KM
2359 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2360 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2361 " unevictable:%lu"
b76146ed 2362 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2363 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2364 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2365 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2366 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2367 global_page_state(NR_ISOLATED_ANON),
2368 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2369 global_page_state(NR_INACTIVE_FILE),
a731286d 2370 global_page_state(NR_ISOLATED_FILE),
7b854121 2371 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2372 global_page_state(NR_FILE_DIRTY),
ce866b34 2373 global_page_state(NR_WRITEBACK),
fd39fc85 2374 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2375 global_page_state(NR_FREE_PAGES),
3701b033
KM
2376 global_page_state(NR_SLAB_RECLAIMABLE),
2377 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2378 global_page_state(NR_FILE_MAPPED),
4b02108a 2379 global_page_state(NR_SHMEM),
a25700a5
AM
2380 global_page_state(NR_PAGETABLE),
2381 global_page_state(NR_BOUNCE));
1da177e4 2382
ee99c71c 2383 for_each_populated_zone(zone) {
1da177e4
LT
2384 int i;
2385
2386 show_node(zone);
2387 printk("%s"
2388 " free:%lukB"
2389 " min:%lukB"
2390 " low:%lukB"
2391 " high:%lukB"
4f98a2fe
RR
2392 " active_anon:%lukB"
2393 " inactive_anon:%lukB"
2394 " active_file:%lukB"
2395 " inactive_file:%lukB"
7b854121 2396 " unevictable:%lukB"
a731286d
KM
2397 " isolated(anon):%lukB"
2398 " isolated(file):%lukB"
1da177e4 2399 " present:%lukB"
4a0aa73f
KM
2400 " mlocked:%lukB"
2401 " dirty:%lukB"
2402 " writeback:%lukB"
2403 " mapped:%lukB"
4b02108a 2404 " shmem:%lukB"
4a0aa73f
KM
2405 " slab_reclaimable:%lukB"
2406 " slab_unreclaimable:%lukB"
c6a7f572 2407 " kernel_stack:%lukB"
4a0aa73f
KM
2408 " pagetables:%lukB"
2409 " unstable:%lukB"
2410 " bounce:%lukB"
2411 " writeback_tmp:%lukB"
1da177e4
LT
2412 " pages_scanned:%lu"
2413 " all_unreclaimable? %s"
2414 "\n",
2415 zone->name,
d23ad423 2416 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2417 K(min_wmark_pages(zone)),
2418 K(low_wmark_pages(zone)),
2419 K(high_wmark_pages(zone)),
4f98a2fe
RR
2420 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2421 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2422 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2423 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2424 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2425 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2426 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2427 K(zone->present_pages),
4a0aa73f
KM
2428 K(zone_page_state(zone, NR_MLOCK)),
2429 K(zone_page_state(zone, NR_FILE_DIRTY)),
2430 K(zone_page_state(zone, NR_WRITEBACK)),
2431 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2432 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2433 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2434 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2435 zone_page_state(zone, NR_KERNEL_STACK) *
2436 THREAD_SIZE / 1024,
4a0aa73f
KM
2437 K(zone_page_state(zone, NR_PAGETABLE)),
2438 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2439 K(zone_page_state(zone, NR_BOUNCE)),
2440 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2441 zone->pages_scanned,
93e4a89a 2442 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2443 );
2444 printk("lowmem_reserve[]:");
2445 for (i = 0; i < MAX_NR_ZONES; i++)
2446 printk(" %lu", zone->lowmem_reserve[i]);
2447 printk("\n");
2448 }
2449
ee99c71c 2450 for_each_populated_zone(zone) {
8f9de51a 2451 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
2452
2453 show_node(zone);
2454 printk("%s: ", zone->name);
1da177e4
LT
2455
2456 spin_lock_irqsave(&zone->lock, flags);
2457 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2458 nr[order] = zone->free_area[order].nr_free;
2459 total += nr[order] << order;
1da177e4
LT
2460 }
2461 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2462 for (order = 0; order < MAX_ORDER; order++)
2463 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2464 printk("= %lukB\n", K(total));
2465 }
2466
e6f3602d
LW
2467 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2468
1da177e4
LT
2469 show_swap_cache_info();
2470}
2471
19770b32
MG
2472static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2473{
2474 zoneref->zone = zone;
2475 zoneref->zone_idx = zone_idx(zone);
2476}
2477
1da177e4
LT
2478/*
2479 * Builds allocation fallback zone lists.
1a93205b
CL
2480 *
2481 * Add all populated zones of a node to the zonelist.
1da177e4 2482 */
f0c0b2b8
KH
2483static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2484 int nr_zones, enum zone_type zone_type)
1da177e4 2485{
1a93205b
CL
2486 struct zone *zone;
2487
98d2b0eb 2488 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2489 zone_type++;
02a68a5e
CL
2490
2491 do {
2f6726e5 2492 zone_type--;
070f8032 2493 zone = pgdat->node_zones + zone_type;
1a93205b 2494 if (populated_zone(zone)) {
dd1a239f
MG
2495 zoneref_set_zone(zone,
2496 &zonelist->_zonerefs[nr_zones++]);
070f8032 2497 check_highest_zone(zone_type);
1da177e4 2498 }
02a68a5e 2499
2f6726e5 2500 } while (zone_type);
070f8032 2501 return nr_zones;
1da177e4
LT
2502}
2503
f0c0b2b8
KH
2504
2505/*
2506 * zonelist_order:
2507 * 0 = automatic detection of better ordering.
2508 * 1 = order by ([node] distance, -zonetype)
2509 * 2 = order by (-zonetype, [node] distance)
2510 *
2511 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2512 * the same zonelist. So only NUMA can configure this param.
2513 */
2514#define ZONELIST_ORDER_DEFAULT 0
2515#define ZONELIST_ORDER_NODE 1
2516#define ZONELIST_ORDER_ZONE 2
2517
2518/* zonelist order in the kernel.
2519 * set_zonelist_order() will set this to NODE or ZONE.
2520 */
2521static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2522static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2523
2524
1da177e4 2525#ifdef CONFIG_NUMA
f0c0b2b8
KH
2526/* The value user specified ....changed by config */
2527static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2528/* string for sysctl */
2529#define NUMA_ZONELIST_ORDER_LEN 16
2530char numa_zonelist_order[16] = "default";
2531
2532/*
2533 * interface for configure zonelist ordering.
2534 * command line option "numa_zonelist_order"
2535 * = "[dD]efault - default, automatic configuration.
2536 * = "[nN]ode - order by node locality, then by zone within node
2537 * = "[zZ]one - order by zone, then by locality within zone
2538 */
2539
2540static int __parse_numa_zonelist_order(char *s)
2541{
2542 if (*s == 'd' || *s == 'D') {
2543 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2544 } else if (*s == 'n' || *s == 'N') {
2545 user_zonelist_order = ZONELIST_ORDER_NODE;
2546 } else if (*s == 'z' || *s == 'Z') {
2547 user_zonelist_order = ZONELIST_ORDER_ZONE;
2548 } else {
2549 printk(KERN_WARNING
2550 "Ignoring invalid numa_zonelist_order value: "
2551 "%s\n", s);
2552 return -EINVAL;
2553 }
2554 return 0;
2555}
2556
2557static __init int setup_numa_zonelist_order(char *s)
2558{
2559 if (s)
2560 return __parse_numa_zonelist_order(s);
2561 return 0;
2562}
2563early_param("numa_zonelist_order", setup_numa_zonelist_order);
2564
2565/*
2566 * sysctl handler for numa_zonelist_order
2567 */
2568int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 2569 void __user *buffer, size_t *length,
f0c0b2b8
KH
2570 loff_t *ppos)
2571{
2572 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2573 int ret;
443c6f14 2574 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 2575
443c6f14 2576 mutex_lock(&zl_order_mutex);
f0c0b2b8 2577 if (write)
443c6f14 2578 strcpy(saved_string, (char*)table->data);
8d65af78 2579 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 2580 if (ret)
443c6f14 2581 goto out;
f0c0b2b8
KH
2582 if (write) {
2583 int oldval = user_zonelist_order;
2584 if (__parse_numa_zonelist_order((char*)table->data)) {
2585 /*
2586 * bogus value. restore saved string
2587 */
2588 strncpy((char*)table->data, saved_string,
2589 NUMA_ZONELIST_ORDER_LEN);
2590 user_zonelist_order = oldval;
4eaf3f64
HL
2591 } else if (oldval != user_zonelist_order) {
2592 mutex_lock(&zonelists_mutex);
1f522509 2593 build_all_zonelists(NULL);
4eaf3f64
HL
2594 mutex_unlock(&zonelists_mutex);
2595 }
f0c0b2b8 2596 }
443c6f14
AK
2597out:
2598 mutex_unlock(&zl_order_mutex);
2599 return ret;
f0c0b2b8
KH
2600}
2601
2602
62bc62a8 2603#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2604static int node_load[MAX_NUMNODES];
2605
1da177e4 2606/**
4dc3b16b 2607 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2608 * @node: node whose fallback list we're appending
2609 * @used_node_mask: nodemask_t of already used nodes
2610 *
2611 * We use a number of factors to determine which is the next node that should
2612 * appear on a given node's fallback list. The node should not have appeared
2613 * already in @node's fallback list, and it should be the next closest node
2614 * according to the distance array (which contains arbitrary distance values
2615 * from each node to each node in the system), and should also prefer nodes
2616 * with no CPUs, since presumably they'll have very little allocation pressure
2617 * on them otherwise.
2618 * It returns -1 if no node is found.
2619 */
f0c0b2b8 2620static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2621{
4cf808eb 2622 int n, val;
1da177e4
LT
2623 int min_val = INT_MAX;
2624 int best_node = -1;
a70f7302 2625 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2626
4cf808eb
LT
2627 /* Use the local node if we haven't already */
2628 if (!node_isset(node, *used_node_mask)) {
2629 node_set(node, *used_node_mask);
2630 return node;
2631 }
1da177e4 2632
37b07e41 2633 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2634
2635 /* Don't want a node to appear more than once */
2636 if (node_isset(n, *used_node_mask))
2637 continue;
2638
1da177e4
LT
2639 /* Use the distance array to find the distance */
2640 val = node_distance(node, n);
2641
4cf808eb
LT
2642 /* Penalize nodes under us ("prefer the next node") */
2643 val += (n < node);
2644
1da177e4 2645 /* Give preference to headless and unused nodes */
a70f7302
RR
2646 tmp = cpumask_of_node(n);
2647 if (!cpumask_empty(tmp))
1da177e4
LT
2648 val += PENALTY_FOR_NODE_WITH_CPUS;
2649
2650 /* Slight preference for less loaded node */
2651 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2652 val += node_load[n];
2653
2654 if (val < min_val) {
2655 min_val = val;
2656 best_node = n;
2657 }
2658 }
2659
2660 if (best_node >= 0)
2661 node_set(best_node, *used_node_mask);
2662
2663 return best_node;
2664}
2665
f0c0b2b8
KH
2666
2667/*
2668 * Build zonelists ordered by node and zones within node.
2669 * This results in maximum locality--normal zone overflows into local
2670 * DMA zone, if any--but risks exhausting DMA zone.
2671 */
2672static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2673{
f0c0b2b8 2674 int j;
1da177e4 2675 struct zonelist *zonelist;
f0c0b2b8 2676
54a6eb5c 2677 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2678 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2679 ;
2680 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2681 MAX_NR_ZONES - 1);
dd1a239f
MG
2682 zonelist->_zonerefs[j].zone = NULL;
2683 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2684}
2685
523b9458
CL
2686/*
2687 * Build gfp_thisnode zonelists
2688 */
2689static void build_thisnode_zonelists(pg_data_t *pgdat)
2690{
523b9458
CL
2691 int j;
2692 struct zonelist *zonelist;
2693
54a6eb5c
MG
2694 zonelist = &pgdat->node_zonelists[1];
2695 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2696 zonelist->_zonerefs[j].zone = NULL;
2697 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2698}
2699
f0c0b2b8
KH
2700/*
2701 * Build zonelists ordered by zone and nodes within zones.
2702 * This results in conserving DMA zone[s] until all Normal memory is
2703 * exhausted, but results in overflowing to remote node while memory
2704 * may still exist in local DMA zone.
2705 */
2706static int node_order[MAX_NUMNODES];
2707
2708static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2709{
f0c0b2b8
KH
2710 int pos, j, node;
2711 int zone_type; /* needs to be signed */
2712 struct zone *z;
2713 struct zonelist *zonelist;
2714
54a6eb5c
MG
2715 zonelist = &pgdat->node_zonelists[0];
2716 pos = 0;
2717 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2718 for (j = 0; j < nr_nodes; j++) {
2719 node = node_order[j];
2720 z = &NODE_DATA(node)->node_zones[zone_type];
2721 if (populated_zone(z)) {
dd1a239f
MG
2722 zoneref_set_zone(z,
2723 &zonelist->_zonerefs[pos++]);
54a6eb5c 2724 check_highest_zone(zone_type);
f0c0b2b8
KH
2725 }
2726 }
f0c0b2b8 2727 }
dd1a239f
MG
2728 zonelist->_zonerefs[pos].zone = NULL;
2729 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2730}
2731
2732static int default_zonelist_order(void)
2733{
2734 int nid, zone_type;
2735 unsigned long low_kmem_size,total_size;
2736 struct zone *z;
2737 int average_size;
2738 /*
88393161 2739 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
2740 * If they are really small and used heavily, the system can fall
2741 * into OOM very easily.
e325c90f 2742 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
2743 */
2744 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2745 low_kmem_size = 0;
2746 total_size = 0;
2747 for_each_online_node(nid) {
2748 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2749 z = &NODE_DATA(nid)->node_zones[zone_type];
2750 if (populated_zone(z)) {
2751 if (zone_type < ZONE_NORMAL)
2752 low_kmem_size += z->present_pages;
2753 total_size += z->present_pages;
e325c90f
DR
2754 } else if (zone_type == ZONE_NORMAL) {
2755 /*
2756 * If any node has only lowmem, then node order
2757 * is preferred to allow kernel allocations
2758 * locally; otherwise, they can easily infringe
2759 * on other nodes when there is an abundance of
2760 * lowmem available to allocate from.
2761 */
2762 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
2763 }
2764 }
2765 }
2766 if (!low_kmem_size || /* there are no DMA area. */
2767 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2768 return ZONELIST_ORDER_NODE;
2769 /*
2770 * look into each node's config.
2771 * If there is a node whose DMA/DMA32 memory is very big area on
2772 * local memory, NODE_ORDER may be suitable.
2773 */
37b07e41
LS
2774 average_size = total_size /
2775 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2776 for_each_online_node(nid) {
2777 low_kmem_size = 0;
2778 total_size = 0;
2779 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2780 z = &NODE_DATA(nid)->node_zones[zone_type];
2781 if (populated_zone(z)) {
2782 if (zone_type < ZONE_NORMAL)
2783 low_kmem_size += z->present_pages;
2784 total_size += z->present_pages;
2785 }
2786 }
2787 if (low_kmem_size &&
2788 total_size > average_size && /* ignore small node */
2789 low_kmem_size > total_size * 70/100)
2790 return ZONELIST_ORDER_NODE;
2791 }
2792 return ZONELIST_ORDER_ZONE;
2793}
2794
2795static void set_zonelist_order(void)
2796{
2797 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2798 current_zonelist_order = default_zonelist_order();
2799 else
2800 current_zonelist_order = user_zonelist_order;
2801}
2802
2803static void build_zonelists(pg_data_t *pgdat)
2804{
2805 int j, node, load;
2806 enum zone_type i;
1da177e4 2807 nodemask_t used_mask;
f0c0b2b8
KH
2808 int local_node, prev_node;
2809 struct zonelist *zonelist;
2810 int order = current_zonelist_order;
1da177e4
LT
2811
2812 /* initialize zonelists */
523b9458 2813 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2814 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2815 zonelist->_zonerefs[0].zone = NULL;
2816 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2817 }
2818
2819 /* NUMA-aware ordering of nodes */
2820 local_node = pgdat->node_id;
62bc62a8 2821 load = nr_online_nodes;
1da177e4
LT
2822 prev_node = local_node;
2823 nodes_clear(used_mask);
f0c0b2b8 2824
f0c0b2b8
KH
2825 memset(node_order, 0, sizeof(node_order));
2826 j = 0;
2827
1da177e4 2828 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2829 int distance = node_distance(local_node, node);
2830
2831 /*
2832 * If another node is sufficiently far away then it is better
2833 * to reclaim pages in a zone before going off node.
2834 */
2835 if (distance > RECLAIM_DISTANCE)
2836 zone_reclaim_mode = 1;
2837
1da177e4
LT
2838 /*
2839 * We don't want to pressure a particular node.
2840 * So adding penalty to the first node in same
2841 * distance group to make it round-robin.
2842 */
9eeff239 2843 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2844 node_load[node] = load;
2845
1da177e4
LT
2846 prev_node = node;
2847 load--;
f0c0b2b8
KH
2848 if (order == ZONELIST_ORDER_NODE)
2849 build_zonelists_in_node_order(pgdat, node);
2850 else
2851 node_order[j++] = node; /* remember order */
2852 }
1da177e4 2853
f0c0b2b8
KH
2854 if (order == ZONELIST_ORDER_ZONE) {
2855 /* calculate node order -- i.e., DMA last! */
2856 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2857 }
523b9458
CL
2858
2859 build_thisnode_zonelists(pgdat);
1da177e4
LT
2860}
2861
9276b1bc 2862/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2863static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2864{
54a6eb5c
MG
2865 struct zonelist *zonelist;
2866 struct zonelist_cache *zlc;
dd1a239f 2867 struct zoneref *z;
9276b1bc 2868
54a6eb5c
MG
2869 zonelist = &pgdat->node_zonelists[0];
2870 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2871 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2872 for (z = zonelist->_zonerefs; z->zone; z++)
2873 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2874}
2875
7aac7898
LS
2876#ifdef CONFIG_HAVE_MEMORYLESS_NODES
2877/*
2878 * Return node id of node used for "local" allocations.
2879 * I.e., first node id of first zone in arg node's generic zonelist.
2880 * Used for initializing percpu 'numa_mem', which is used primarily
2881 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2882 */
2883int local_memory_node(int node)
2884{
2885 struct zone *zone;
2886
2887 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
2888 gfp_zone(GFP_KERNEL),
2889 NULL,
2890 &zone);
2891 return zone->node;
2892}
2893#endif
f0c0b2b8 2894
1da177e4
LT
2895#else /* CONFIG_NUMA */
2896
f0c0b2b8
KH
2897static void set_zonelist_order(void)
2898{
2899 current_zonelist_order = ZONELIST_ORDER_ZONE;
2900}
2901
2902static void build_zonelists(pg_data_t *pgdat)
1da177e4 2903{
19655d34 2904 int node, local_node;
54a6eb5c
MG
2905 enum zone_type j;
2906 struct zonelist *zonelist;
1da177e4
LT
2907
2908 local_node = pgdat->node_id;
1da177e4 2909
54a6eb5c
MG
2910 zonelist = &pgdat->node_zonelists[0];
2911 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2912
54a6eb5c
MG
2913 /*
2914 * Now we build the zonelist so that it contains the zones
2915 * of all the other nodes.
2916 * We don't want to pressure a particular node, so when
2917 * building the zones for node N, we make sure that the
2918 * zones coming right after the local ones are those from
2919 * node N+1 (modulo N)
2920 */
2921 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2922 if (!node_online(node))
2923 continue;
2924 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2925 MAX_NR_ZONES - 1);
1da177e4 2926 }
54a6eb5c
MG
2927 for (node = 0; node < local_node; node++) {
2928 if (!node_online(node))
2929 continue;
2930 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2931 MAX_NR_ZONES - 1);
2932 }
2933
dd1a239f
MG
2934 zonelist->_zonerefs[j].zone = NULL;
2935 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
2936}
2937
9276b1bc 2938/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2939static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2940{
54a6eb5c 2941 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
2942}
2943
1da177e4
LT
2944#endif /* CONFIG_NUMA */
2945
99dcc3e5
CL
2946/*
2947 * Boot pageset table. One per cpu which is going to be used for all
2948 * zones and all nodes. The parameters will be set in such a way
2949 * that an item put on a list will immediately be handed over to
2950 * the buddy list. This is safe since pageset manipulation is done
2951 * with interrupts disabled.
2952 *
2953 * The boot_pagesets must be kept even after bootup is complete for
2954 * unused processors and/or zones. They do play a role for bootstrapping
2955 * hotplugged processors.
2956 *
2957 * zoneinfo_show() and maybe other functions do
2958 * not check if the processor is online before following the pageset pointer.
2959 * Other parts of the kernel may not check if the zone is available.
2960 */
2961static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
2962static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 2963static void setup_zone_pageset(struct zone *zone);
99dcc3e5 2964
4eaf3f64
HL
2965/*
2966 * Global mutex to protect against size modification of zonelists
2967 * as well as to serialize pageset setup for the new populated zone.
2968 */
2969DEFINE_MUTEX(zonelists_mutex);
2970
9b1a4d38 2971/* return values int ....just for stop_machine() */
1f522509 2972static __init_refok int __build_all_zonelists(void *data)
1da177e4 2973{
6811378e 2974 int nid;
99dcc3e5 2975 int cpu;
9276b1bc 2976
7f9cfb31
BL
2977#ifdef CONFIG_NUMA
2978 memset(node_load, 0, sizeof(node_load));
2979#endif
9276b1bc 2980 for_each_online_node(nid) {
7ea1530a
CL
2981 pg_data_t *pgdat = NODE_DATA(nid);
2982
2983 build_zonelists(pgdat);
2984 build_zonelist_cache(pgdat);
9276b1bc 2985 }
99dcc3e5 2986
1f522509
HL
2987#ifdef CONFIG_MEMORY_HOTPLUG
2988 /* Setup real pagesets for the new zone */
2989 if (data) {
2990 struct zone *zone = data;
2991 setup_zone_pageset(zone);
2992 }
2993#endif
2994
99dcc3e5
CL
2995 /*
2996 * Initialize the boot_pagesets that are going to be used
2997 * for bootstrapping processors. The real pagesets for
2998 * each zone will be allocated later when the per cpu
2999 * allocator is available.
3000 *
3001 * boot_pagesets are used also for bootstrapping offline
3002 * cpus if the system is already booted because the pagesets
3003 * are needed to initialize allocators on a specific cpu too.
3004 * F.e. the percpu allocator needs the page allocator which
3005 * needs the percpu allocator in order to allocate its pagesets
3006 * (a chicken-egg dilemma).
3007 */
7aac7898 3008 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3009 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3010
7aac7898
LS
3011#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3012 /*
3013 * We now know the "local memory node" for each node--
3014 * i.e., the node of the first zone in the generic zonelist.
3015 * Set up numa_mem percpu variable for on-line cpus. During
3016 * boot, only the boot cpu should be on-line; we'll init the
3017 * secondary cpus' numa_mem as they come on-line. During
3018 * node/memory hotplug, we'll fixup all on-line cpus.
3019 */
3020 if (cpu_online(cpu))
3021 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3022#endif
3023 }
3024
6811378e
YG
3025 return 0;
3026}
3027
4eaf3f64
HL
3028/*
3029 * Called with zonelists_mutex held always
3030 * unless system_state == SYSTEM_BOOTING.
3031 */
1f522509 3032void build_all_zonelists(void *data)
6811378e 3033{
f0c0b2b8
KH
3034 set_zonelist_order();
3035
6811378e 3036 if (system_state == SYSTEM_BOOTING) {
423b41d7 3037 __build_all_zonelists(NULL);
68ad8df4 3038 mminit_verify_zonelist();
6811378e
YG
3039 cpuset_init_current_mems_allowed();
3040 } else {
183ff22b 3041 /* we have to stop all cpus to guarantee there is no user
6811378e 3042 of zonelist */
1f522509 3043 stop_machine(__build_all_zonelists, data, NULL);
6811378e
YG
3044 /* cpuset refresh routine should be here */
3045 }
bd1e22b8 3046 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3047 /*
3048 * Disable grouping by mobility if the number of pages in the
3049 * system is too low to allow the mechanism to work. It would be
3050 * more accurate, but expensive to check per-zone. This check is
3051 * made on memory-hotadd so a system can start with mobility
3052 * disabled and enable it later
3053 */
d9c23400 3054 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3055 page_group_by_mobility_disabled = 1;
3056 else
3057 page_group_by_mobility_disabled = 0;
3058
3059 printk("Built %i zonelists in %s order, mobility grouping %s. "
3060 "Total pages: %ld\n",
62bc62a8 3061 nr_online_nodes,
f0c0b2b8 3062 zonelist_order_name[current_zonelist_order],
9ef9acb0 3063 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3064 vm_total_pages);
3065#ifdef CONFIG_NUMA
3066 printk("Policy zone: %s\n", zone_names[policy_zone]);
3067#endif
1da177e4
LT
3068}
3069
3070/*
3071 * Helper functions to size the waitqueue hash table.
3072 * Essentially these want to choose hash table sizes sufficiently
3073 * large so that collisions trying to wait on pages are rare.
3074 * But in fact, the number of active page waitqueues on typical
3075 * systems is ridiculously low, less than 200. So this is even
3076 * conservative, even though it seems large.
3077 *
3078 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3079 * waitqueues, i.e. the size of the waitq table given the number of pages.
3080 */
3081#define PAGES_PER_WAITQUEUE 256
3082
cca448fe 3083#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3084static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3085{
3086 unsigned long size = 1;
3087
3088 pages /= PAGES_PER_WAITQUEUE;
3089
3090 while (size < pages)
3091 size <<= 1;
3092
3093 /*
3094 * Once we have dozens or even hundreds of threads sleeping
3095 * on IO we've got bigger problems than wait queue collision.
3096 * Limit the size of the wait table to a reasonable size.
3097 */
3098 size = min(size, 4096UL);
3099
3100 return max(size, 4UL);
3101}
cca448fe
YG
3102#else
3103/*
3104 * A zone's size might be changed by hot-add, so it is not possible to determine
3105 * a suitable size for its wait_table. So we use the maximum size now.
3106 *
3107 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3108 *
3109 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3110 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3111 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3112 *
3113 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3114 * or more by the traditional way. (See above). It equals:
3115 *
3116 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3117 * ia64(16K page size) : = ( 8G + 4M)byte.
3118 * powerpc (64K page size) : = (32G +16M)byte.
3119 */
3120static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3121{
3122 return 4096UL;
3123}
3124#endif
1da177e4
LT
3125
3126/*
3127 * This is an integer logarithm so that shifts can be used later
3128 * to extract the more random high bits from the multiplicative
3129 * hash function before the remainder is taken.
3130 */
3131static inline unsigned long wait_table_bits(unsigned long size)
3132{
3133 return ffz(~size);
3134}
3135
3136#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3137
56fd56b8 3138/*
d9c23400 3139 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3140 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3141 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3142 * higher will lead to a bigger reserve which will get freed as contiguous
3143 * blocks as reclaim kicks in
3144 */
3145static void setup_zone_migrate_reserve(struct zone *zone)
3146{
3147 unsigned long start_pfn, pfn, end_pfn;
3148 struct page *page;
78986a67
MG
3149 unsigned long block_migratetype;
3150 int reserve;
56fd56b8
MG
3151
3152 /* Get the start pfn, end pfn and the number of blocks to reserve */
3153 start_pfn = zone->zone_start_pfn;
3154 end_pfn = start_pfn + zone->spanned_pages;
41858966 3155 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3156 pageblock_order;
56fd56b8 3157
78986a67
MG
3158 /*
3159 * Reserve blocks are generally in place to help high-order atomic
3160 * allocations that are short-lived. A min_free_kbytes value that
3161 * would result in more than 2 reserve blocks for atomic allocations
3162 * is assumed to be in place to help anti-fragmentation for the
3163 * future allocation of hugepages at runtime.
3164 */
3165 reserve = min(2, reserve);
3166
d9c23400 3167 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3168 if (!pfn_valid(pfn))
3169 continue;
3170 page = pfn_to_page(pfn);
3171
344c790e
AL
3172 /* Watch out for overlapping nodes */
3173 if (page_to_nid(page) != zone_to_nid(zone))
3174 continue;
3175
56fd56b8
MG
3176 /* Blocks with reserved pages will never free, skip them. */
3177 if (PageReserved(page))
3178 continue;
3179
3180 block_migratetype = get_pageblock_migratetype(page);
3181
3182 /* If this block is reserved, account for it */
3183 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3184 reserve--;
3185 continue;
3186 }
3187
3188 /* Suitable for reserving if this block is movable */
3189 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3190 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3191 move_freepages_block(zone, page, MIGRATE_RESERVE);
3192 reserve--;
3193 continue;
3194 }
3195
3196 /*
3197 * If the reserve is met and this is a previous reserved block,
3198 * take it back
3199 */
3200 if (block_migratetype == MIGRATE_RESERVE) {
3201 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3202 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3203 }
3204 }
3205}
ac0e5b7a 3206
1da177e4
LT
3207/*
3208 * Initially all pages are reserved - free ones are freed
3209 * up by free_all_bootmem() once the early boot process is
3210 * done. Non-atomic initialization, single-pass.
3211 */
c09b4240 3212void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3213 unsigned long start_pfn, enum memmap_context context)
1da177e4 3214{
1da177e4 3215 struct page *page;
29751f69
AW
3216 unsigned long end_pfn = start_pfn + size;
3217 unsigned long pfn;
86051ca5 3218 struct zone *z;
1da177e4 3219
22b31eec
HD
3220 if (highest_memmap_pfn < end_pfn - 1)
3221 highest_memmap_pfn = end_pfn - 1;
3222
86051ca5 3223 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3224 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3225 /*
3226 * There can be holes in boot-time mem_map[]s
3227 * handed to this function. They do not
3228 * exist on hotplugged memory.
3229 */
3230 if (context == MEMMAP_EARLY) {
3231 if (!early_pfn_valid(pfn))
3232 continue;
3233 if (!early_pfn_in_nid(pfn, nid))
3234 continue;
3235 }
d41dee36
AW
3236 page = pfn_to_page(pfn);
3237 set_page_links(page, zone, nid, pfn);
708614e6 3238 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3239 init_page_count(page);
1da177e4
LT
3240 reset_page_mapcount(page);
3241 SetPageReserved(page);
b2a0ac88
MG
3242 /*
3243 * Mark the block movable so that blocks are reserved for
3244 * movable at startup. This will force kernel allocations
3245 * to reserve their blocks rather than leaking throughout
3246 * the address space during boot when many long-lived
56fd56b8
MG
3247 * kernel allocations are made. Later some blocks near
3248 * the start are marked MIGRATE_RESERVE by
3249 * setup_zone_migrate_reserve()
86051ca5
KH
3250 *
3251 * bitmap is created for zone's valid pfn range. but memmap
3252 * can be created for invalid pages (for alignment)
3253 * check here not to call set_pageblock_migratetype() against
3254 * pfn out of zone.
b2a0ac88 3255 */
86051ca5
KH
3256 if ((z->zone_start_pfn <= pfn)
3257 && (pfn < z->zone_start_pfn + z->spanned_pages)
3258 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3259 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3260
1da177e4
LT
3261 INIT_LIST_HEAD(&page->lru);
3262#ifdef WANT_PAGE_VIRTUAL
3263 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3264 if (!is_highmem_idx(zone))
3212c6be 3265 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3266#endif
1da177e4
LT
3267 }
3268}
3269
1e548deb 3270static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3271{
b2a0ac88
MG
3272 int order, t;
3273 for_each_migratetype_order(order, t) {
3274 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3275 zone->free_area[order].nr_free = 0;
3276 }
3277}
3278
3279#ifndef __HAVE_ARCH_MEMMAP_INIT
3280#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3281 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3282#endif
3283
1d6f4e60 3284static int zone_batchsize(struct zone *zone)
e7c8d5c9 3285{
3a6be87f 3286#ifdef CONFIG_MMU
e7c8d5c9
CL
3287 int batch;
3288
3289 /*
3290 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3291 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3292 *
3293 * OK, so we don't know how big the cache is. So guess.
3294 */
3295 batch = zone->present_pages / 1024;
ba56e91c
SR
3296 if (batch * PAGE_SIZE > 512 * 1024)
3297 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3298 batch /= 4; /* We effectively *= 4 below */
3299 if (batch < 1)
3300 batch = 1;
3301
3302 /*
0ceaacc9
NP
3303 * Clamp the batch to a 2^n - 1 value. Having a power
3304 * of 2 value was found to be more likely to have
3305 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3306 *
0ceaacc9
NP
3307 * For example if 2 tasks are alternately allocating
3308 * batches of pages, one task can end up with a lot
3309 * of pages of one half of the possible page colors
3310 * and the other with pages of the other colors.
e7c8d5c9 3311 */
9155203a 3312 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3313
e7c8d5c9 3314 return batch;
3a6be87f
DH
3315
3316#else
3317 /* The deferral and batching of frees should be suppressed under NOMMU
3318 * conditions.
3319 *
3320 * The problem is that NOMMU needs to be able to allocate large chunks
3321 * of contiguous memory as there's no hardware page translation to
3322 * assemble apparent contiguous memory from discontiguous pages.
3323 *
3324 * Queueing large contiguous runs of pages for batching, however,
3325 * causes the pages to actually be freed in smaller chunks. As there
3326 * can be a significant delay between the individual batches being
3327 * recycled, this leads to the once large chunks of space being
3328 * fragmented and becoming unavailable for high-order allocations.
3329 */
3330 return 0;
3331#endif
e7c8d5c9
CL
3332}
3333
b69a7288 3334static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3335{
3336 struct per_cpu_pages *pcp;
5f8dcc21 3337 int migratetype;
2caaad41 3338
1c6fe946
MD
3339 memset(p, 0, sizeof(*p));
3340
3dfa5721 3341 pcp = &p->pcp;
2caaad41 3342 pcp->count = 0;
2caaad41
CL
3343 pcp->high = 6 * batch;
3344 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3345 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3346 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3347}
3348
8ad4b1fb
RS
3349/*
3350 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3351 * to the value high for the pageset p.
3352 */
3353
3354static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3355 unsigned long high)
3356{
3357 struct per_cpu_pages *pcp;
3358
3dfa5721 3359 pcp = &p->pcp;
8ad4b1fb
RS
3360 pcp->high = high;
3361 pcp->batch = max(1UL, high/4);
3362 if ((high/4) > (PAGE_SHIFT * 8))
3363 pcp->batch = PAGE_SHIFT * 8;
3364}
3365
319774e2
WF
3366static __meminit void setup_zone_pageset(struct zone *zone)
3367{
3368 int cpu;
3369
3370 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3371
3372 for_each_possible_cpu(cpu) {
3373 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3374
3375 setup_pageset(pcp, zone_batchsize(zone));
3376
3377 if (percpu_pagelist_fraction)
3378 setup_pagelist_highmark(pcp,
3379 (zone->present_pages /
3380 percpu_pagelist_fraction));
3381 }
3382}
3383
2caaad41 3384/*
99dcc3e5
CL
3385 * Allocate per cpu pagesets and initialize them.
3386 * Before this call only boot pagesets were available.
e7c8d5c9 3387 */
99dcc3e5 3388void __init setup_per_cpu_pageset(void)
e7c8d5c9 3389{
99dcc3e5 3390 struct zone *zone;
e7c8d5c9 3391
319774e2
WF
3392 for_each_populated_zone(zone)
3393 setup_zone_pageset(zone);
e7c8d5c9
CL
3394}
3395
577a32f6 3396static noinline __init_refok
cca448fe 3397int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3398{
3399 int i;
3400 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3401 size_t alloc_size;
ed8ece2e
DH
3402
3403 /*
3404 * The per-page waitqueue mechanism uses hashed waitqueues
3405 * per zone.
3406 */
02b694de
YG
3407 zone->wait_table_hash_nr_entries =
3408 wait_table_hash_nr_entries(zone_size_pages);
3409 zone->wait_table_bits =
3410 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3411 alloc_size = zone->wait_table_hash_nr_entries
3412 * sizeof(wait_queue_head_t);
3413
cd94b9db 3414 if (!slab_is_available()) {
cca448fe
YG
3415 zone->wait_table = (wait_queue_head_t *)
3416 alloc_bootmem_node(pgdat, alloc_size);
3417 } else {
3418 /*
3419 * This case means that a zone whose size was 0 gets new memory
3420 * via memory hot-add.
3421 * But it may be the case that a new node was hot-added. In
3422 * this case vmalloc() will not be able to use this new node's
3423 * memory - this wait_table must be initialized to use this new
3424 * node itself as well.
3425 * To use this new node's memory, further consideration will be
3426 * necessary.
3427 */
8691f3a7 3428 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3429 }
3430 if (!zone->wait_table)
3431 return -ENOMEM;
ed8ece2e 3432
02b694de 3433 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3434 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3435
3436 return 0;
ed8ece2e
DH
3437}
3438
112067f0
SL
3439static int __zone_pcp_update(void *data)
3440{
3441 struct zone *zone = data;
3442 int cpu;
3443 unsigned long batch = zone_batchsize(zone), flags;
3444
2d30a1f6 3445 for_each_possible_cpu(cpu) {
112067f0
SL
3446 struct per_cpu_pageset *pset;
3447 struct per_cpu_pages *pcp;
3448
99dcc3e5 3449 pset = per_cpu_ptr(zone->pageset, cpu);
112067f0
SL
3450 pcp = &pset->pcp;
3451
3452 local_irq_save(flags);
5f8dcc21 3453 free_pcppages_bulk(zone, pcp->count, pcp);
112067f0
SL
3454 setup_pageset(pset, batch);
3455 local_irq_restore(flags);
3456 }
3457 return 0;
3458}
3459
3460void zone_pcp_update(struct zone *zone)
3461{
3462 stop_machine(__zone_pcp_update, zone, NULL);
3463}
3464
c09b4240 3465static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 3466{
99dcc3e5
CL
3467 /*
3468 * per cpu subsystem is not up at this point. The following code
3469 * relies on the ability of the linker to provide the
3470 * offset of a (static) per cpu variable into the per cpu area.
3471 */
3472 zone->pageset = &boot_pageset;
ed8ece2e 3473
f5335c0f 3474 if (zone->present_pages)
99dcc3e5
CL
3475 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3476 zone->name, zone->present_pages,
3477 zone_batchsize(zone));
ed8ece2e
DH
3478}
3479
718127cc
YG
3480__meminit int init_currently_empty_zone(struct zone *zone,
3481 unsigned long zone_start_pfn,
a2f3aa02
DH
3482 unsigned long size,
3483 enum memmap_context context)
ed8ece2e
DH
3484{
3485 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3486 int ret;
3487 ret = zone_wait_table_init(zone, size);
3488 if (ret)
3489 return ret;
ed8ece2e
DH
3490 pgdat->nr_zones = zone_idx(zone) + 1;
3491
ed8ece2e
DH
3492 zone->zone_start_pfn = zone_start_pfn;
3493
708614e6
MG
3494 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3495 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3496 pgdat->node_id,
3497 (unsigned long)zone_idx(zone),
3498 zone_start_pfn, (zone_start_pfn + size));
3499
1e548deb 3500 zone_init_free_lists(zone);
718127cc
YG
3501
3502 return 0;
ed8ece2e
DH
3503}
3504
c713216d
MG
3505#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3506/*
3507 * Basic iterator support. Return the first range of PFNs for a node
3508 * Note: nid == MAX_NUMNODES returns first region regardless of node
3509 */
a3142c8e 3510static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3511{
3512 int i;
3513
3514 for (i = 0; i < nr_nodemap_entries; i++)
3515 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3516 return i;
3517
3518 return -1;
3519}
3520
3521/*
3522 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3523 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3524 */
a3142c8e 3525static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3526{
3527 for (index = index + 1; index < nr_nodemap_entries; index++)
3528 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3529 return index;
3530
3531 return -1;
3532}
3533
3534#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3535/*
3536 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3537 * Architectures may implement their own version but if add_active_range()
3538 * was used and there are no special requirements, this is a convenient
3539 * alternative
3540 */
f2dbcfa7 3541int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3542{
3543 int i;
3544
3545 for (i = 0; i < nr_nodemap_entries; i++) {
3546 unsigned long start_pfn = early_node_map[i].start_pfn;
3547 unsigned long end_pfn = early_node_map[i].end_pfn;
3548
3549 if (start_pfn <= pfn && pfn < end_pfn)
3550 return early_node_map[i].nid;
3551 }
cc2559bc
KH
3552 /* This is a memory hole */
3553 return -1;
c713216d
MG
3554}
3555#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3556
f2dbcfa7
KH
3557int __meminit early_pfn_to_nid(unsigned long pfn)
3558{
cc2559bc
KH
3559 int nid;
3560
3561 nid = __early_pfn_to_nid(pfn);
3562 if (nid >= 0)
3563 return nid;
3564 /* just returns 0 */
3565 return 0;
f2dbcfa7
KH
3566}
3567
cc2559bc
KH
3568#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3569bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3570{
3571 int nid;
3572
3573 nid = __early_pfn_to_nid(pfn);
3574 if (nid >= 0 && nid != node)
3575 return false;
3576 return true;
3577}
3578#endif
f2dbcfa7 3579
c713216d
MG
3580/* Basic iterator support to walk early_node_map[] */
3581#define for_each_active_range_index_in_nid(i, nid) \
3582 for (i = first_active_region_index_in_nid(nid); i != -1; \
3583 i = next_active_region_index_in_nid(i, nid))
3584
3585/**
3586 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3587 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3588 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3589 *
3590 * If an architecture guarantees that all ranges registered with
3591 * add_active_ranges() contain no holes and may be freed, this
3592 * this function may be used instead of calling free_bootmem() manually.
3593 */
3594void __init free_bootmem_with_active_regions(int nid,
3595 unsigned long max_low_pfn)
3596{
3597 int i;
3598
3599 for_each_active_range_index_in_nid(i, nid) {
3600 unsigned long size_pages = 0;
3601 unsigned long end_pfn = early_node_map[i].end_pfn;
3602
3603 if (early_node_map[i].start_pfn >= max_low_pfn)
3604 continue;
3605
3606 if (end_pfn > max_low_pfn)
3607 end_pfn = max_low_pfn;
3608
3609 size_pages = end_pfn - early_node_map[i].start_pfn;
3610 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3611 PFN_PHYS(early_node_map[i].start_pfn),
3612 size_pages << PAGE_SHIFT);
3613 }
3614}
3615
edbe7d23
YL
3616#ifdef CONFIG_HAVE_MEMBLOCK
3617u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3618 u64 goal, u64 limit)
3619{
3620 int i;
3621
3622 /* Need to go over early_node_map to find out good range for node */
3623 for_each_active_range_index_in_nid(i, nid) {
3624 u64 addr;
3625 u64 ei_start, ei_last;
3626 u64 final_start, final_end;
3627
3628 ei_last = early_node_map[i].end_pfn;
3629 ei_last <<= PAGE_SHIFT;
3630 ei_start = early_node_map[i].start_pfn;
3631 ei_start <<= PAGE_SHIFT;
3632
3633 final_start = max(ei_start, goal);
3634 final_end = min(ei_last, limit);
3635
3636 if (final_start >= final_end)
3637 continue;
3638
3639 addr = memblock_find_in_range(final_start, final_end, size, align);
3640
3641 if (addr == MEMBLOCK_ERROR)
3642 continue;
3643
3644 return addr;
3645 }
3646
3647 return MEMBLOCK_ERROR;
3648}
3649#endif
3650
08677214
YL
3651int __init add_from_early_node_map(struct range *range, int az,
3652 int nr_range, int nid)
3653{
3654 int i;
3655 u64 start, end;
3656
3657 /* need to go over early_node_map to find out good range for node */
3658 for_each_active_range_index_in_nid(i, nid) {
3659 start = early_node_map[i].start_pfn;
3660 end = early_node_map[i].end_pfn;
3661 nr_range = add_range(range, az, nr_range, start, end);
3662 }
3663 return nr_range;
3664}
3665
2ee78f7b 3666#ifdef CONFIG_NO_BOOTMEM
08677214
YL
3667void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3668 u64 goal, u64 limit)
3669{
3670 int i;
3671 void *ptr;
3672
b8ab9f82
YL
3673 if (limit > get_max_mapped())
3674 limit = get_max_mapped();
3675
08677214
YL
3676 /* need to go over early_node_map to find out good range for node */
3677 for_each_active_range_index_in_nid(i, nid) {
3678 u64 addr;
3679 u64 ei_start, ei_last;
3680
3681 ei_last = early_node_map[i].end_pfn;
3682 ei_last <<= PAGE_SHIFT;
3683 ei_start = early_node_map[i].start_pfn;
3684 ei_start <<= PAGE_SHIFT;
3685 addr = find_early_area(ei_start, ei_last,
3686 goal, limit, size, align);
3687
3688 if (addr == -1ULL)
3689 continue;
3690
3691#if 0
3692 printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
3693 nid,
3694 ei_start, ei_last, goal, limit, size,
3695 align, addr);
3696#endif
3697
3698 ptr = phys_to_virt(addr);
3699 memset(ptr, 0, size);
3700 reserve_early_without_check(addr, addr + size, "BOOTMEM");
9078370c
CM
3701 /*
3702 * The min_count is set to 0 so that bootmem allocated blocks
3703 * are never reported as leaks.
3704 */
3705 kmemleak_alloc(ptr, size, 0, 0);
08677214
YL
3706 return ptr;
3707 }
3708
3709 return NULL;
3710}
2ee78f7b 3711#endif
08677214
YL
3712
3713
b5bc6c0e
YL
3714void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3715{
3716 int i;
d52d53b8 3717 int ret;
b5bc6c0e 3718
d52d53b8
YL
3719 for_each_active_range_index_in_nid(i, nid) {
3720 ret = work_fn(early_node_map[i].start_pfn,
3721 early_node_map[i].end_pfn, data);
3722 if (ret)
3723 break;
3724 }
b5bc6c0e 3725}
c713216d
MG
3726/**
3727 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3728 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3729 *
3730 * If an architecture guarantees that all ranges registered with
3731 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3732 * function may be used instead of calling memory_present() manually.
c713216d
MG
3733 */
3734void __init sparse_memory_present_with_active_regions(int nid)
3735{
3736 int i;
3737
3738 for_each_active_range_index_in_nid(i, nid)
3739 memory_present(early_node_map[i].nid,
3740 early_node_map[i].start_pfn,
3741 early_node_map[i].end_pfn);
3742}
3743
3744/**
3745 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3746 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3747 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3748 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3749 *
3750 * It returns the start and end page frame of a node based on information
3751 * provided by an arch calling add_active_range(). If called for a node
3752 * with no available memory, a warning is printed and the start and end
88ca3b94 3753 * PFNs will be 0.
c713216d 3754 */
a3142c8e 3755void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3756 unsigned long *start_pfn, unsigned long *end_pfn)
3757{
3758 int i;
3759 *start_pfn = -1UL;
3760 *end_pfn = 0;
3761
3762 for_each_active_range_index_in_nid(i, nid) {
3763 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3764 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3765 }
3766
633c0666 3767 if (*start_pfn == -1UL)
c713216d 3768 *start_pfn = 0;
c713216d
MG
3769}
3770
2a1e274a
MG
3771/*
3772 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3773 * assumption is made that zones within a node are ordered in monotonic
3774 * increasing memory addresses so that the "highest" populated zone is used
3775 */
b69a7288 3776static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3777{
3778 int zone_index;
3779 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3780 if (zone_index == ZONE_MOVABLE)
3781 continue;
3782
3783 if (arch_zone_highest_possible_pfn[zone_index] >
3784 arch_zone_lowest_possible_pfn[zone_index])
3785 break;
3786 }
3787
3788 VM_BUG_ON(zone_index == -1);
3789 movable_zone = zone_index;
3790}
3791
3792/*
3793 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3794 * because it is sized independant of architecture. Unlike the other zones,
3795 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3796 * in each node depending on the size of each node and how evenly kernelcore
3797 * is distributed. This helper function adjusts the zone ranges
3798 * provided by the architecture for a given node by using the end of the
3799 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3800 * zones within a node are in order of monotonic increases memory addresses
3801 */
b69a7288 3802static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3803 unsigned long zone_type,
3804 unsigned long node_start_pfn,
3805 unsigned long node_end_pfn,
3806 unsigned long *zone_start_pfn,
3807 unsigned long *zone_end_pfn)
3808{
3809 /* Only adjust if ZONE_MOVABLE is on this node */
3810 if (zone_movable_pfn[nid]) {
3811 /* Size ZONE_MOVABLE */
3812 if (zone_type == ZONE_MOVABLE) {
3813 *zone_start_pfn = zone_movable_pfn[nid];
3814 *zone_end_pfn = min(node_end_pfn,
3815 arch_zone_highest_possible_pfn[movable_zone]);
3816
3817 /* Adjust for ZONE_MOVABLE starting within this range */
3818 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3819 *zone_end_pfn > zone_movable_pfn[nid]) {
3820 *zone_end_pfn = zone_movable_pfn[nid];
3821
3822 /* Check if this whole range is within ZONE_MOVABLE */
3823 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3824 *zone_start_pfn = *zone_end_pfn;
3825 }
3826}
3827
c713216d
MG
3828/*
3829 * Return the number of pages a zone spans in a node, including holes
3830 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3831 */
6ea6e688 3832static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3833 unsigned long zone_type,
3834 unsigned long *ignored)
3835{
3836 unsigned long node_start_pfn, node_end_pfn;
3837 unsigned long zone_start_pfn, zone_end_pfn;
3838
3839 /* Get the start and end of the node and zone */
3840 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3841 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3842 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3843 adjust_zone_range_for_zone_movable(nid, zone_type,
3844 node_start_pfn, node_end_pfn,
3845 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3846
3847 /* Check that this node has pages within the zone's required range */
3848 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3849 return 0;
3850
3851 /* Move the zone boundaries inside the node if necessary */
3852 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3853 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3854
3855 /* Return the spanned pages */
3856 return zone_end_pfn - zone_start_pfn;
3857}
3858
3859/*
3860 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3861 * then all holes in the requested range will be accounted for.
c713216d 3862 */
32996250 3863unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3864 unsigned long range_start_pfn,
3865 unsigned long range_end_pfn)
3866{
3867 int i = 0;
3868 unsigned long prev_end_pfn = 0, hole_pages = 0;
3869 unsigned long start_pfn;
3870
3871 /* Find the end_pfn of the first active range of pfns in the node */
3872 i = first_active_region_index_in_nid(nid);
3873 if (i == -1)
3874 return 0;
3875
b5445f95
MG
3876 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3877
9c7cd687
MG
3878 /* Account for ranges before physical memory on this node */
3879 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3880 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3881
3882 /* Find all holes for the zone within the node */
3883 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3884
3885 /* No need to continue if prev_end_pfn is outside the zone */
3886 if (prev_end_pfn >= range_end_pfn)
3887 break;
3888
3889 /* Make sure the end of the zone is not within the hole */
3890 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3891 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3892
3893 /* Update the hole size cound and move on */
3894 if (start_pfn > range_start_pfn) {
3895 BUG_ON(prev_end_pfn > start_pfn);
3896 hole_pages += start_pfn - prev_end_pfn;
3897 }
3898 prev_end_pfn = early_node_map[i].end_pfn;
3899 }
3900
9c7cd687
MG
3901 /* Account for ranges past physical memory on this node */
3902 if (range_end_pfn > prev_end_pfn)
0c6cb974 3903 hole_pages += range_end_pfn -
9c7cd687
MG
3904 max(range_start_pfn, prev_end_pfn);
3905
c713216d
MG
3906 return hole_pages;
3907}
3908
3909/**
3910 * absent_pages_in_range - Return number of page frames in holes within a range
3911 * @start_pfn: The start PFN to start searching for holes
3912 * @end_pfn: The end PFN to stop searching for holes
3913 *
88ca3b94 3914 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3915 */
3916unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3917 unsigned long end_pfn)
3918{
3919 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3920}
3921
3922/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3923static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3924 unsigned long zone_type,
3925 unsigned long *ignored)
3926{
9c7cd687
MG
3927 unsigned long node_start_pfn, node_end_pfn;
3928 unsigned long zone_start_pfn, zone_end_pfn;
3929
3930 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3931 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3932 node_start_pfn);
3933 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3934 node_end_pfn);
3935
2a1e274a
MG
3936 adjust_zone_range_for_zone_movable(nid, zone_type,
3937 node_start_pfn, node_end_pfn,
3938 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3939 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3940}
0e0b864e 3941
c713216d 3942#else
6ea6e688 3943static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3944 unsigned long zone_type,
3945 unsigned long *zones_size)
3946{
3947 return zones_size[zone_type];
3948}
3949
6ea6e688 3950static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3951 unsigned long zone_type,
3952 unsigned long *zholes_size)
3953{
3954 if (!zholes_size)
3955 return 0;
3956
3957 return zholes_size[zone_type];
3958}
0e0b864e 3959
c713216d
MG
3960#endif
3961
a3142c8e 3962static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3963 unsigned long *zones_size, unsigned long *zholes_size)
3964{
3965 unsigned long realtotalpages, totalpages = 0;
3966 enum zone_type i;
3967
3968 for (i = 0; i < MAX_NR_ZONES; i++)
3969 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3970 zones_size);
3971 pgdat->node_spanned_pages = totalpages;
3972
3973 realtotalpages = totalpages;
3974 for (i = 0; i < MAX_NR_ZONES; i++)
3975 realtotalpages -=
3976 zone_absent_pages_in_node(pgdat->node_id, i,
3977 zholes_size);
3978 pgdat->node_present_pages = realtotalpages;
3979 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3980 realtotalpages);
3981}
3982
835c134e
MG
3983#ifndef CONFIG_SPARSEMEM
3984/*
3985 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
3986 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3987 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
3988 * round what is now in bits to nearest long in bits, then return it in
3989 * bytes.
3990 */
3991static unsigned long __init usemap_size(unsigned long zonesize)
3992{
3993 unsigned long usemapsize;
3994
d9c23400
MG
3995 usemapsize = roundup(zonesize, pageblock_nr_pages);
3996 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
3997 usemapsize *= NR_PAGEBLOCK_BITS;
3998 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3999
4000 return usemapsize / 8;
4001}
4002
4003static void __init setup_usemap(struct pglist_data *pgdat,
4004 struct zone *zone, unsigned long zonesize)
4005{
4006 unsigned long usemapsize = usemap_size(zonesize);
4007 zone->pageblock_flags = NULL;
58a01a45 4008 if (usemapsize)
835c134e 4009 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
4010}
4011#else
4012static void inline setup_usemap(struct pglist_data *pgdat,
4013 struct zone *zone, unsigned long zonesize) {}
4014#endif /* CONFIG_SPARSEMEM */
4015
d9c23400 4016#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
4017
4018/* Return a sensible default order for the pageblock size. */
4019static inline int pageblock_default_order(void)
4020{
4021 if (HPAGE_SHIFT > PAGE_SHIFT)
4022 return HUGETLB_PAGE_ORDER;
4023
4024 return MAX_ORDER-1;
4025}
4026
d9c23400
MG
4027/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4028static inline void __init set_pageblock_order(unsigned int order)
4029{
4030 /* Check that pageblock_nr_pages has not already been setup */
4031 if (pageblock_order)
4032 return;
4033
4034 /*
4035 * Assume the largest contiguous order of interest is a huge page.
4036 * This value may be variable depending on boot parameters on IA64
4037 */
4038 pageblock_order = order;
4039}
4040#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4041
ba72cb8c
MG
4042/*
4043 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4044 * and pageblock_default_order() are unused as pageblock_order is set
4045 * at compile-time. See include/linux/pageblock-flags.h for the values of
4046 * pageblock_order based on the kernel config
4047 */
4048static inline int pageblock_default_order(unsigned int order)
4049{
4050 return MAX_ORDER-1;
4051}
d9c23400
MG
4052#define set_pageblock_order(x) do {} while (0)
4053
4054#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4055
1da177e4
LT
4056/*
4057 * Set up the zone data structures:
4058 * - mark all pages reserved
4059 * - mark all memory queues empty
4060 * - clear the memory bitmaps
4061 */
b5a0e011 4062static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4063 unsigned long *zones_size, unsigned long *zholes_size)
4064{
2f1b6248 4065 enum zone_type j;
ed8ece2e 4066 int nid = pgdat->node_id;
1da177e4 4067 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4068 int ret;
1da177e4 4069
208d54e5 4070 pgdat_resize_init(pgdat);
1da177e4
LT
4071 pgdat->nr_zones = 0;
4072 init_waitqueue_head(&pgdat->kswapd_wait);
4073 pgdat->kswapd_max_order = 0;
52d4b9ac 4074 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
4075
4076 for (j = 0; j < MAX_NR_ZONES; j++) {
4077 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4078 unsigned long size, realsize, memmap_pages;
b69408e8 4079 enum lru_list l;
1da177e4 4080
c713216d
MG
4081 size = zone_spanned_pages_in_node(nid, j, zones_size);
4082 realsize = size - zone_absent_pages_in_node(nid, j,
4083 zholes_size);
1da177e4 4084
0e0b864e
MG
4085 /*
4086 * Adjust realsize so that it accounts for how much memory
4087 * is used by this zone for memmap. This affects the watermark
4088 * and per-cpu initialisations
4089 */
f7232154
JW
4090 memmap_pages =
4091 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4092 if (realsize >= memmap_pages) {
4093 realsize -= memmap_pages;
5594c8c8
YL
4094 if (memmap_pages)
4095 printk(KERN_DEBUG
4096 " %s zone: %lu pages used for memmap\n",
4097 zone_names[j], memmap_pages);
0e0b864e
MG
4098 } else
4099 printk(KERN_WARNING
4100 " %s zone: %lu pages exceeds realsize %lu\n",
4101 zone_names[j], memmap_pages, realsize);
4102
6267276f
CL
4103 /* Account for reserved pages */
4104 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4105 realsize -= dma_reserve;
d903ef9f 4106 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4107 zone_names[0], dma_reserve);
0e0b864e
MG
4108 }
4109
98d2b0eb 4110 if (!is_highmem_idx(j))
1da177e4
LT
4111 nr_kernel_pages += realsize;
4112 nr_all_pages += realsize;
4113
4114 zone->spanned_pages = size;
4115 zone->present_pages = realsize;
9614634f 4116#ifdef CONFIG_NUMA
d5f541ed 4117 zone->node = nid;
8417bba4 4118 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4119 / 100;
0ff38490 4120 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4121#endif
1da177e4
LT
4122 zone->name = zone_names[j];
4123 spin_lock_init(&zone->lock);
4124 spin_lock_init(&zone->lru_lock);
bdc8cb98 4125 zone_seqlock_init(zone);
1da177e4 4126 zone->zone_pgdat = pgdat;
1da177e4 4127
3bb1a852 4128 zone->prev_priority = DEF_PRIORITY;
1da177e4 4129
ed8ece2e 4130 zone_pcp_init(zone);
b69408e8
CL
4131 for_each_lru(l) {
4132 INIT_LIST_HEAD(&zone->lru[l].list);
f8629631 4133 zone->reclaim_stat.nr_saved_scan[l] = 0;
b69408e8 4134 }
6e901571
KM
4135 zone->reclaim_stat.recent_rotated[0] = 0;
4136 zone->reclaim_stat.recent_rotated[1] = 0;
4137 zone->reclaim_stat.recent_scanned[0] = 0;
4138 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 4139 zap_zone_vm_stats(zone);
e815af95 4140 zone->flags = 0;
1da177e4
LT
4141 if (!size)
4142 continue;
4143
ba72cb8c 4144 set_pageblock_order(pageblock_default_order());
835c134e 4145 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4146 ret = init_currently_empty_zone(zone, zone_start_pfn,
4147 size, MEMMAP_EARLY);
718127cc 4148 BUG_ON(ret);
76cdd58e 4149 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4150 zone_start_pfn += size;
1da177e4
LT
4151 }
4152}
4153
577a32f6 4154static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4155{
1da177e4
LT
4156 /* Skip empty nodes */
4157 if (!pgdat->node_spanned_pages)
4158 return;
4159
d41dee36 4160#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4161 /* ia64 gets its own node_mem_map, before this, without bootmem */
4162 if (!pgdat->node_mem_map) {
e984bb43 4163 unsigned long size, start, end;
d41dee36
AW
4164 struct page *map;
4165
e984bb43
BP
4166 /*
4167 * The zone's endpoints aren't required to be MAX_ORDER
4168 * aligned but the node_mem_map endpoints must be in order
4169 * for the buddy allocator to function correctly.
4170 */
4171 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4172 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4173 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4174 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4175 map = alloc_remap(pgdat->node_id, size);
4176 if (!map)
4177 map = alloc_bootmem_node(pgdat, size);
e984bb43 4178 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4179 }
12d810c1 4180#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4181 /*
4182 * With no DISCONTIG, the global mem_map is just set as node 0's
4183 */
c713216d 4184 if (pgdat == NODE_DATA(0)) {
1da177e4 4185 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
4186#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4187 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4188 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
4189#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4190 }
1da177e4 4191#endif
d41dee36 4192#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4193}
4194
9109fb7b
JW
4195void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4196 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4197{
9109fb7b
JW
4198 pg_data_t *pgdat = NODE_DATA(nid);
4199
1da177e4
LT
4200 pgdat->node_id = nid;
4201 pgdat->node_start_pfn = node_start_pfn;
c713216d 4202 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4203
4204 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4205#ifdef CONFIG_FLAT_NODE_MEM_MAP
4206 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4207 nid, (unsigned long)pgdat,
4208 (unsigned long)pgdat->node_mem_map);
4209#endif
1da177e4
LT
4210
4211 free_area_init_core(pgdat, zones_size, zholes_size);
4212}
4213
c713216d 4214#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
4215
4216#if MAX_NUMNODES > 1
4217/*
4218 * Figure out the number of possible node ids.
4219 */
4220static void __init setup_nr_node_ids(void)
4221{
4222 unsigned int node;
4223 unsigned int highest = 0;
4224
4225 for_each_node_mask(node, node_possible_map)
4226 highest = node;
4227 nr_node_ids = highest + 1;
4228}
4229#else
4230static inline void setup_nr_node_ids(void)
4231{
4232}
4233#endif
4234
c713216d
MG
4235/**
4236 * add_active_range - Register a range of PFNs backed by physical memory
4237 * @nid: The node ID the range resides on
4238 * @start_pfn: The start PFN of the available physical memory
4239 * @end_pfn: The end PFN of the available physical memory
4240 *
4241 * These ranges are stored in an early_node_map[] and later used by
4242 * free_area_init_nodes() to calculate zone sizes and holes. If the
4243 * range spans a memory hole, it is up to the architecture to ensure
4244 * the memory is not freed by the bootmem allocator. If possible
4245 * the range being registered will be merged with existing ranges.
4246 */
4247void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4248 unsigned long end_pfn)
4249{
4250 int i;
4251
6b74ab97
MG
4252 mminit_dprintk(MMINIT_TRACE, "memory_register",
4253 "Entering add_active_range(%d, %#lx, %#lx) "
4254 "%d entries of %d used\n",
4255 nid, start_pfn, end_pfn,
4256 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 4257
2dbb51c4
MG
4258 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4259
c713216d
MG
4260 /* Merge with existing active regions if possible */
4261 for (i = 0; i < nr_nodemap_entries; i++) {
4262 if (early_node_map[i].nid != nid)
4263 continue;
4264
4265 /* Skip if an existing region covers this new one */
4266 if (start_pfn >= early_node_map[i].start_pfn &&
4267 end_pfn <= early_node_map[i].end_pfn)
4268 return;
4269
4270 /* Merge forward if suitable */
4271 if (start_pfn <= early_node_map[i].end_pfn &&
4272 end_pfn > early_node_map[i].end_pfn) {
4273 early_node_map[i].end_pfn = end_pfn;
4274 return;
4275 }
4276
4277 /* Merge backward if suitable */
d2dbe08d 4278 if (start_pfn < early_node_map[i].start_pfn &&
c713216d
MG
4279 end_pfn >= early_node_map[i].start_pfn) {
4280 early_node_map[i].start_pfn = start_pfn;
4281 return;
4282 }
4283 }
4284
4285 /* Check that early_node_map is large enough */
4286 if (i >= MAX_ACTIVE_REGIONS) {
4287 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4288 MAX_ACTIVE_REGIONS);
4289 return;
4290 }
4291
4292 early_node_map[i].nid = nid;
4293 early_node_map[i].start_pfn = start_pfn;
4294 early_node_map[i].end_pfn = end_pfn;
4295 nr_nodemap_entries = i + 1;
4296}
4297
4298/**
cc1050ba 4299 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 4300 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
4301 * @start_pfn: The new PFN of the range
4302 * @end_pfn: The new PFN of the range
c713216d
MG
4303 *
4304 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
4305 * The map is kept near the end physical page range that has already been
4306 * registered. This function allows an arch to shrink an existing registered
4307 * range.
c713216d 4308 */
cc1050ba
YL
4309void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4310 unsigned long end_pfn)
c713216d 4311{
cc1a9d86
YL
4312 int i, j;
4313 int removed = 0;
c713216d 4314
cc1050ba
YL
4315 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4316 nid, start_pfn, end_pfn);
4317
c713216d 4318 /* Find the old active region end and shrink */
cc1a9d86 4319 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
4320 if (early_node_map[i].start_pfn >= start_pfn &&
4321 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 4322 /* clear it */
cc1050ba 4323 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
4324 early_node_map[i].end_pfn = 0;
4325 removed = 1;
4326 continue;
4327 }
cc1050ba
YL
4328 if (early_node_map[i].start_pfn < start_pfn &&
4329 early_node_map[i].end_pfn > start_pfn) {
4330 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4331 early_node_map[i].end_pfn = start_pfn;
4332 if (temp_end_pfn > end_pfn)
4333 add_active_range(nid, end_pfn, temp_end_pfn);
4334 continue;
4335 }
4336 if (early_node_map[i].start_pfn >= start_pfn &&
4337 early_node_map[i].end_pfn > end_pfn &&
4338 early_node_map[i].start_pfn < end_pfn) {
4339 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 4340 continue;
c713216d 4341 }
cc1a9d86
YL
4342 }
4343
4344 if (!removed)
4345 return;
4346
4347 /* remove the blank ones */
4348 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4349 if (early_node_map[i].nid != nid)
4350 continue;
4351 if (early_node_map[i].end_pfn)
4352 continue;
4353 /* we found it, get rid of it */
4354 for (j = i; j < nr_nodemap_entries - 1; j++)
4355 memcpy(&early_node_map[j], &early_node_map[j+1],
4356 sizeof(early_node_map[j]));
4357 j = nr_nodemap_entries - 1;
4358 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4359 nr_nodemap_entries--;
4360 }
c713216d
MG
4361}
4362
4363/**
4364 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 4365 *
c713216d
MG
4366 * During discovery, it may be found that a table like SRAT is invalid
4367 * and an alternative discovery method must be used. This function removes
4368 * all currently registered regions.
4369 */
88ca3b94 4370void __init remove_all_active_ranges(void)
c713216d
MG
4371{
4372 memset(early_node_map, 0, sizeof(early_node_map));
4373 nr_nodemap_entries = 0;
4374}
4375
4376/* Compare two active node_active_regions */
4377static int __init cmp_node_active_region(const void *a, const void *b)
4378{
4379 struct node_active_region *arange = (struct node_active_region *)a;
4380 struct node_active_region *brange = (struct node_active_region *)b;
4381
4382 /* Done this way to avoid overflows */
4383 if (arange->start_pfn > brange->start_pfn)
4384 return 1;
4385 if (arange->start_pfn < brange->start_pfn)
4386 return -1;
4387
4388 return 0;
4389}
4390
4391/* sort the node_map by start_pfn */
32996250 4392void __init sort_node_map(void)
c713216d
MG
4393{
4394 sort(early_node_map, (size_t)nr_nodemap_entries,
4395 sizeof(struct node_active_region),
4396 cmp_node_active_region, NULL);
4397}
4398
a6af2bc3 4399/* Find the lowest pfn for a node */
b69a7288 4400static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
4401{
4402 int i;
a6af2bc3 4403 unsigned long min_pfn = ULONG_MAX;
1abbfb41 4404
c713216d
MG
4405 /* Assuming a sorted map, the first range found has the starting pfn */
4406 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 4407 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 4408
a6af2bc3
MG
4409 if (min_pfn == ULONG_MAX) {
4410 printk(KERN_WARNING
2bc0d261 4411 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4412 return 0;
4413 }
4414
4415 return min_pfn;
c713216d
MG
4416}
4417
4418/**
4419 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4420 *
4421 * It returns the minimum PFN based on information provided via
88ca3b94 4422 * add_active_range().
c713216d
MG
4423 */
4424unsigned long __init find_min_pfn_with_active_regions(void)
4425{
4426 return find_min_pfn_for_node(MAX_NUMNODES);
4427}
4428
37b07e41
LS
4429/*
4430 * early_calculate_totalpages()
4431 * Sum pages in active regions for movable zone.
4432 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4433 */
484f51f8 4434static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
4435{
4436 int i;
4437 unsigned long totalpages = 0;
4438
37b07e41
LS
4439 for (i = 0; i < nr_nodemap_entries; i++) {
4440 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 4441 early_node_map[i].start_pfn;
37b07e41
LS
4442 totalpages += pages;
4443 if (pages)
4444 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4445 }
4446 return totalpages;
7e63efef
MG
4447}
4448
2a1e274a
MG
4449/*
4450 * Find the PFN the Movable zone begins in each node. Kernel memory
4451 * is spread evenly between nodes as long as the nodes have enough
4452 * memory. When they don't, some nodes will have more kernelcore than
4453 * others
4454 */
b69a7288 4455static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
4456{
4457 int i, nid;
4458 unsigned long usable_startpfn;
4459 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4460 /* save the state before borrow the nodemask */
4461 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4462 unsigned long totalpages = early_calculate_totalpages();
4463 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4464
7e63efef
MG
4465 /*
4466 * If movablecore was specified, calculate what size of
4467 * kernelcore that corresponds so that memory usable for
4468 * any allocation type is evenly spread. If both kernelcore
4469 * and movablecore are specified, then the value of kernelcore
4470 * will be used for required_kernelcore if it's greater than
4471 * what movablecore would have allowed.
4472 */
4473 if (required_movablecore) {
7e63efef
MG
4474 unsigned long corepages;
4475
4476 /*
4477 * Round-up so that ZONE_MOVABLE is at least as large as what
4478 * was requested by the user
4479 */
4480 required_movablecore =
4481 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4482 corepages = totalpages - required_movablecore;
4483
4484 required_kernelcore = max(required_kernelcore, corepages);
4485 }
4486
2a1e274a
MG
4487 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4488 if (!required_kernelcore)
66918dcd 4489 goto out;
2a1e274a
MG
4490
4491 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4492 find_usable_zone_for_movable();
4493 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4494
4495restart:
4496 /* Spread kernelcore memory as evenly as possible throughout nodes */
4497 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4498 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
4499 /*
4500 * Recalculate kernelcore_node if the division per node
4501 * now exceeds what is necessary to satisfy the requested
4502 * amount of memory for the kernel
4503 */
4504 if (required_kernelcore < kernelcore_node)
4505 kernelcore_node = required_kernelcore / usable_nodes;
4506
4507 /*
4508 * As the map is walked, we track how much memory is usable
4509 * by the kernel using kernelcore_remaining. When it is
4510 * 0, the rest of the node is usable by ZONE_MOVABLE
4511 */
4512 kernelcore_remaining = kernelcore_node;
4513
4514 /* Go through each range of PFNs within this node */
4515 for_each_active_range_index_in_nid(i, nid) {
4516 unsigned long start_pfn, end_pfn;
4517 unsigned long size_pages;
4518
4519 start_pfn = max(early_node_map[i].start_pfn,
4520 zone_movable_pfn[nid]);
4521 end_pfn = early_node_map[i].end_pfn;
4522 if (start_pfn >= end_pfn)
4523 continue;
4524
4525 /* Account for what is only usable for kernelcore */
4526 if (start_pfn < usable_startpfn) {
4527 unsigned long kernel_pages;
4528 kernel_pages = min(end_pfn, usable_startpfn)
4529 - start_pfn;
4530
4531 kernelcore_remaining -= min(kernel_pages,
4532 kernelcore_remaining);
4533 required_kernelcore -= min(kernel_pages,
4534 required_kernelcore);
4535
4536 /* Continue if range is now fully accounted */
4537 if (end_pfn <= usable_startpfn) {
4538
4539 /*
4540 * Push zone_movable_pfn to the end so
4541 * that if we have to rebalance
4542 * kernelcore across nodes, we will
4543 * not double account here
4544 */
4545 zone_movable_pfn[nid] = end_pfn;
4546 continue;
4547 }
4548 start_pfn = usable_startpfn;
4549 }
4550
4551 /*
4552 * The usable PFN range for ZONE_MOVABLE is from
4553 * start_pfn->end_pfn. Calculate size_pages as the
4554 * number of pages used as kernelcore
4555 */
4556 size_pages = end_pfn - start_pfn;
4557 if (size_pages > kernelcore_remaining)
4558 size_pages = kernelcore_remaining;
4559 zone_movable_pfn[nid] = start_pfn + size_pages;
4560
4561 /*
4562 * Some kernelcore has been met, update counts and
4563 * break if the kernelcore for this node has been
4564 * satisified
4565 */
4566 required_kernelcore -= min(required_kernelcore,
4567 size_pages);
4568 kernelcore_remaining -= size_pages;
4569 if (!kernelcore_remaining)
4570 break;
4571 }
4572 }
4573
4574 /*
4575 * If there is still required_kernelcore, we do another pass with one
4576 * less node in the count. This will push zone_movable_pfn[nid] further
4577 * along on the nodes that still have memory until kernelcore is
4578 * satisified
4579 */
4580 usable_nodes--;
4581 if (usable_nodes && required_kernelcore > usable_nodes)
4582 goto restart;
4583
4584 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4585 for (nid = 0; nid < MAX_NUMNODES; nid++)
4586 zone_movable_pfn[nid] =
4587 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4588
4589out:
4590 /* restore the node_state */
4591 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4592}
4593
37b07e41
LS
4594/* Any regular memory on that node ? */
4595static void check_for_regular_memory(pg_data_t *pgdat)
4596{
4597#ifdef CONFIG_HIGHMEM
4598 enum zone_type zone_type;
4599
4600 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4601 struct zone *zone = &pgdat->node_zones[zone_type];
4602 if (zone->present_pages)
4603 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4604 }
4605#endif
4606}
4607
c713216d
MG
4608/**
4609 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4610 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4611 *
4612 * This will call free_area_init_node() for each active node in the system.
4613 * Using the page ranges provided by add_active_range(), the size of each
4614 * zone in each node and their holes is calculated. If the maximum PFN
4615 * between two adjacent zones match, it is assumed that the zone is empty.
4616 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4617 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4618 * starts where the previous one ended. For example, ZONE_DMA32 starts
4619 * at arch_max_dma_pfn.
4620 */
4621void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4622{
4623 unsigned long nid;
db99100d 4624 int i;
c713216d 4625
a6af2bc3
MG
4626 /* Sort early_node_map as initialisation assumes it is sorted */
4627 sort_node_map();
4628
c713216d
MG
4629 /* Record where the zone boundaries are */
4630 memset(arch_zone_lowest_possible_pfn, 0,
4631 sizeof(arch_zone_lowest_possible_pfn));
4632 memset(arch_zone_highest_possible_pfn, 0,
4633 sizeof(arch_zone_highest_possible_pfn));
4634 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4635 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4636 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4637 if (i == ZONE_MOVABLE)
4638 continue;
c713216d
MG
4639 arch_zone_lowest_possible_pfn[i] =
4640 arch_zone_highest_possible_pfn[i-1];
4641 arch_zone_highest_possible_pfn[i] =
4642 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4643 }
2a1e274a
MG
4644 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4645 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4646
4647 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4648 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4649 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4650
c713216d
MG
4651 /* Print out the zone ranges */
4652 printk("Zone PFN ranges:\n");
2a1e274a
MG
4653 for (i = 0; i < MAX_NR_ZONES; i++) {
4654 if (i == ZONE_MOVABLE)
4655 continue;
72f0ba02
DR
4656 printk(" %-8s ", zone_names[i]);
4657 if (arch_zone_lowest_possible_pfn[i] ==
4658 arch_zone_highest_possible_pfn[i])
4659 printk("empty\n");
4660 else
4661 printk("%0#10lx -> %0#10lx\n",
c713216d
MG
4662 arch_zone_lowest_possible_pfn[i],
4663 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4664 }
4665
4666 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4667 printk("Movable zone start PFN for each node\n");
4668 for (i = 0; i < MAX_NUMNODES; i++) {
4669 if (zone_movable_pfn[i])
4670 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4671 }
c713216d
MG
4672
4673 /* Print out the early_node_map[] */
4674 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4675 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4676 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4677 early_node_map[i].start_pfn,
4678 early_node_map[i].end_pfn);
4679
4680 /* Initialise every node */
708614e6 4681 mminit_verify_pageflags_layout();
8ef82866 4682 setup_nr_node_ids();
c713216d
MG
4683 for_each_online_node(nid) {
4684 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4685 free_area_init_node(nid, NULL,
c713216d 4686 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4687
4688 /* Any memory on that node */
4689 if (pgdat->node_present_pages)
4690 node_set_state(nid, N_HIGH_MEMORY);
4691 check_for_regular_memory(pgdat);
c713216d
MG
4692 }
4693}
2a1e274a 4694
7e63efef 4695static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4696{
4697 unsigned long long coremem;
4698 if (!p)
4699 return -EINVAL;
4700
4701 coremem = memparse(p, &p);
7e63efef 4702 *core = coremem >> PAGE_SHIFT;
2a1e274a 4703
7e63efef 4704 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4705 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4706
4707 return 0;
4708}
ed7ed365 4709
7e63efef
MG
4710/*
4711 * kernelcore=size sets the amount of memory for use for allocations that
4712 * cannot be reclaimed or migrated.
4713 */
4714static int __init cmdline_parse_kernelcore(char *p)
4715{
4716 return cmdline_parse_core(p, &required_kernelcore);
4717}
4718
4719/*
4720 * movablecore=size sets the amount of memory for use for allocations that
4721 * can be reclaimed or migrated.
4722 */
4723static int __init cmdline_parse_movablecore(char *p)
4724{
4725 return cmdline_parse_core(p, &required_movablecore);
4726}
4727
ed7ed365 4728early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4729early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4730
c713216d
MG
4731#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4732
0e0b864e 4733/**
88ca3b94
RD
4734 * set_dma_reserve - set the specified number of pages reserved in the first zone
4735 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4736 *
4737 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4738 * In the DMA zone, a significant percentage may be consumed by kernel image
4739 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4740 * function may optionally be used to account for unfreeable pages in the
4741 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4742 * smaller per-cpu batchsize.
0e0b864e
MG
4743 */
4744void __init set_dma_reserve(unsigned long new_dma_reserve)
4745{
4746 dma_reserve = new_dma_reserve;
4747}
4748
93b7504e 4749#ifndef CONFIG_NEED_MULTIPLE_NODES
08677214
YL
4750struct pglist_data __refdata contig_page_data = {
4751#ifndef CONFIG_NO_BOOTMEM
4752 .bdata = &bootmem_node_data[0]
4753#endif
4754 };
1da177e4 4755EXPORT_SYMBOL(contig_page_data);
93b7504e 4756#endif
1da177e4
LT
4757
4758void __init free_area_init(unsigned long *zones_size)
4759{
9109fb7b 4760 free_area_init_node(0, zones_size,
1da177e4
LT
4761 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4762}
1da177e4 4763
1da177e4
LT
4764static int page_alloc_cpu_notify(struct notifier_block *self,
4765 unsigned long action, void *hcpu)
4766{
4767 int cpu = (unsigned long)hcpu;
1da177e4 4768
8bb78442 4769 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4770 drain_pages(cpu);
4771
4772 /*
4773 * Spill the event counters of the dead processor
4774 * into the current processors event counters.
4775 * This artificially elevates the count of the current
4776 * processor.
4777 */
f8891e5e 4778 vm_events_fold_cpu(cpu);
9f8f2172
CL
4779
4780 /*
4781 * Zero the differential counters of the dead processor
4782 * so that the vm statistics are consistent.
4783 *
4784 * This is only okay since the processor is dead and cannot
4785 * race with what we are doing.
4786 */
2244b95a 4787 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4788 }
4789 return NOTIFY_OK;
4790}
1da177e4
LT
4791
4792void __init page_alloc_init(void)
4793{
4794 hotcpu_notifier(page_alloc_cpu_notify, 0);
4795}
4796
cb45b0e9
HA
4797/*
4798 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4799 * or min_free_kbytes changes.
4800 */
4801static void calculate_totalreserve_pages(void)
4802{
4803 struct pglist_data *pgdat;
4804 unsigned long reserve_pages = 0;
2f6726e5 4805 enum zone_type i, j;
cb45b0e9
HA
4806
4807 for_each_online_pgdat(pgdat) {
4808 for (i = 0; i < MAX_NR_ZONES; i++) {
4809 struct zone *zone = pgdat->node_zones + i;
4810 unsigned long max = 0;
4811
4812 /* Find valid and maximum lowmem_reserve in the zone */
4813 for (j = i; j < MAX_NR_ZONES; j++) {
4814 if (zone->lowmem_reserve[j] > max)
4815 max = zone->lowmem_reserve[j];
4816 }
4817
41858966
MG
4818 /* we treat the high watermark as reserved pages. */
4819 max += high_wmark_pages(zone);
cb45b0e9
HA
4820
4821 if (max > zone->present_pages)
4822 max = zone->present_pages;
4823 reserve_pages += max;
4824 }
4825 }
4826 totalreserve_pages = reserve_pages;
4827}
4828
1da177e4
LT
4829/*
4830 * setup_per_zone_lowmem_reserve - called whenever
4831 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4832 * has a correct pages reserved value, so an adequate number of
4833 * pages are left in the zone after a successful __alloc_pages().
4834 */
4835static void setup_per_zone_lowmem_reserve(void)
4836{
4837 struct pglist_data *pgdat;
2f6726e5 4838 enum zone_type j, idx;
1da177e4 4839
ec936fc5 4840 for_each_online_pgdat(pgdat) {
1da177e4
LT
4841 for (j = 0; j < MAX_NR_ZONES; j++) {
4842 struct zone *zone = pgdat->node_zones + j;
4843 unsigned long present_pages = zone->present_pages;
4844
4845 zone->lowmem_reserve[j] = 0;
4846
2f6726e5
CL
4847 idx = j;
4848 while (idx) {
1da177e4
LT
4849 struct zone *lower_zone;
4850
2f6726e5
CL
4851 idx--;
4852
1da177e4
LT
4853 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4854 sysctl_lowmem_reserve_ratio[idx] = 1;
4855
4856 lower_zone = pgdat->node_zones + idx;
4857 lower_zone->lowmem_reserve[j] = present_pages /
4858 sysctl_lowmem_reserve_ratio[idx];
4859 present_pages += lower_zone->present_pages;
4860 }
4861 }
4862 }
cb45b0e9
HA
4863
4864 /* update totalreserve_pages */
4865 calculate_totalreserve_pages();
1da177e4
LT
4866}
4867
88ca3b94 4868/**
bc75d33f 4869 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 4870 * or when memory is hot-{added|removed}
88ca3b94 4871 *
bc75d33f
MK
4872 * Ensures that the watermark[min,low,high] values for each zone are set
4873 * correctly with respect to min_free_kbytes.
1da177e4 4874 */
bc75d33f 4875void setup_per_zone_wmarks(void)
1da177e4
LT
4876{
4877 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4878 unsigned long lowmem_pages = 0;
4879 struct zone *zone;
4880 unsigned long flags;
4881
4882 /* Calculate total number of !ZONE_HIGHMEM pages */
4883 for_each_zone(zone) {
4884 if (!is_highmem(zone))
4885 lowmem_pages += zone->present_pages;
4886 }
4887
4888 for_each_zone(zone) {
ac924c60
AM
4889 u64 tmp;
4890
1125b4e3 4891 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4892 tmp = (u64)pages_min * zone->present_pages;
4893 do_div(tmp, lowmem_pages);
1da177e4
LT
4894 if (is_highmem(zone)) {
4895 /*
669ed175
NP
4896 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4897 * need highmem pages, so cap pages_min to a small
4898 * value here.
4899 *
41858966 4900 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
4901 * deltas controls asynch page reclaim, and so should
4902 * not be capped for highmem.
1da177e4
LT
4903 */
4904 int min_pages;
4905
4906 min_pages = zone->present_pages / 1024;
4907 if (min_pages < SWAP_CLUSTER_MAX)
4908 min_pages = SWAP_CLUSTER_MAX;
4909 if (min_pages > 128)
4910 min_pages = 128;
41858966 4911 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 4912 } else {
669ed175
NP
4913 /*
4914 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4915 * proportionate to the zone's size.
4916 */
41858966 4917 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
4918 }
4919
41858966
MG
4920 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4921 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 4922 setup_zone_migrate_reserve(zone);
1125b4e3 4923 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4924 }
cb45b0e9
HA
4925
4926 /* update totalreserve_pages */
4927 calculate_totalreserve_pages();
1da177e4
LT
4928}
4929
55a4462a 4930/*
556adecb
RR
4931 * The inactive anon list should be small enough that the VM never has to
4932 * do too much work, but large enough that each inactive page has a chance
4933 * to be referenced again before it is swapped out.
4934 *
4935 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4936 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4937 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4938 * the anonymous pages are kept on the inactive list.
4939 *
4940 * total target max
4941 * memory ratio inactive anon
4942 * -------------------------------------
4943 * 10MB 1 5MB
4944 * 100MB 1 50MB
4945 * 1GB 3 250MB
4946 * 10GB 10 0.9GB
4947 * 100GB 31 3GB
4948 * 1TB 101 10GB
4949 * 10TB 320 32GB
4950 */
96cb4df5 4951void calculate_zone_inactive_ratio(struct zone *zone)
556adecb 4952{
96cb4df5 4953 unsigned int gb, ratio;
556adecb 4954
96cb4df5
MK
4955 /* Zone size in gigabytes */
4956 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4957 if (gb)
556adecb 4958 ratio = int_sqrt(10 * gb);
96cb4df5
MK
4959 else
4960 ratio = 1;
556adecb 4961
96cb4df5
MK
4962 zone->inactive_ratio = ratio;
4963}
556adecb 4964
96cb4df5
MK
4965static void __init setup_per_zone_inactive_ratio(void)
4966{
4967 struct zone *zone;
4968
4969 for_each_zone(zone)
4970 calculate_zone_inactive_ratio(zone);
556adecb
RR
4971}
4972
1da177e4
LT
4973/*
4974 * Initialise min_free_kbytes.
4975 *
4976 * For small machines we want it small (128k min). For large machines
4977 * we want it large (64MB max). But it is not linear, because network
4978 * bandwidth does not increase linearly with machine size. We use
4979 *
4980 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4981 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4982 *
4983 * which yields
4984 *
4985 * 16MB: 512k
4986 * 32MB: 724k
4987 * 64MB: 1024k
4988 * 128MB: 1448k
4989 * 256MB: 2048k
4990 * 512MB: 2896k
4991 * 1024MB: 4096k
4992 * 2048MB: 5792k
4993 * 4096MB: 8192k
4994 * 8192MB: 11584k
4995 * 16384MB: 16384k
4996 */
bc75d33f 4997static int __init init_per_zone_wmark_min(void)
1da177e4
LT
4998{
4999 unsigned long lowmem_kbytes;
5000
5001 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5002
5003 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5004 if (min_free_kbytes < 128)
5005 min_free_kbytes = 128;
5006 if (min_free_kbytes > 65536)
5007 min_free_kbytes = 65536;
bc75d33f 5008 setup_per_zone_wmarks();
1da177e4 5009 setup_per_zone_lowmem_reserve();
556adecb 5010 setup_per_zone_inactive_ratio();
1da177e4
LT
5011 return 0;
5012}
bc75d33f 5013module_init(init_per_zone_wmark_min)
1da177e4
LT
5014
5015/*
5016 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5017 * that we can call two helper functions whenever min_free_kbytes
5018 * changes.
5019 */
5020int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5021 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5022{
8d65af78 5023 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5024 if (write)
bc75d33f 5025 setup_per_zone_wmarks();
1da177e4
LT
5026 return 0;
5027}
5028
9614634f
CL
5029#ifdef CONFIG_NUMA
5030int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5031 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5032{
5033 struct zone *zone;
5034 int rc;
5035
8d65af78 5036 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5037 if (rc)
5038 return rc;
5039
5040 for_each_zone(zone)
8417bba4 5041 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5042 sysctl_min_unmapped_ratio) / 100;
5043 return 0;
5044}
0ff38490
CL
5045
5046int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5047 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5048{
5049 struct zone *zone;
5050 int rc;
5051
8d65af78 5052 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5053 if (rc)
5054 return rc;
5055
5056 for_each_zone(zone)
5057 zone->min_slab_pages = (zone->present_pages *
5058 sysctl_min_slab_ratio) / 100;
5059 return 0;
5060}
9614634f
CL
5061#endif
5062
1da177e4
LT
5063/*
5064 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5065 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5066 * whenever sysctl_lowmem_reserve_ratio changes.
5067 *
5068 * The reserve ratio obviously has absolutely no relation with the
41858966 5069 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5070 * if in function of the boot time zone sizes.
5071 */
5072int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5073 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5074{
8d65af78 5075 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5076 setup_per_zone_lowmem_reserve();
5077 return 0;
5078}
5079
8ad4b1fb
RS
5080/*
5081 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5082 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5083 * can have before it gets flushed back to buddy allocator.
5084 */
5085
5086int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5087 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5088{
5089 struct zone *zone;
5090 unsigned int cpu;
5091 int ret;
5092
8d65af78 5093 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8ad4b1fb
RS
5094 if (!write || (ret == -EINVAL))
5095 return ret;
364df0eb 5096 for_each_populated_zone(zone) {
99dcc3e5 5097 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5098 unsigned long high;
5099 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5100 setup_pagelist_highmark(
5101 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5102 }
5103 }
5104 return 0;
5105}
5106
f034b5d4 5107int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5108
5109#ifdef CONFIG_NUMA
5110static int __init set_hashdist(char *str)
5111{
5112 if (!str)
5113 return 0;
5114 hashdist = simple_strtoul(str, &str, 0);
5115 return 1;
5116}
5117__setup("hashdist=", set_hashdist);
5118#endif
5119
5120/*
5121 * allocate a large system hash table from bootmem
5122 * - it is assumed that the hash table must contain an exact power-of-2
5123 * quantity of entries
5124 * - limit is the number of hash buckets, not the total allocation size
5125 */
5126void *__init alloc_large_system_hash(const char *tablename,
5127 unsigned long bucketsize,
5128 unsigned long numentries,
5129 int scale,
5130 int flags,
5131 unsigned int *_hash_shift,
5132 unsigned int *_hash_mask,
5133 unsigned long limit)
5134{
5135 unsigned long long max = limit;
5136 unsigned long log2qty, size;
5137 void *table = NULL;
5138
5139 /* allow the kernel cmdline to have a say */
5140 if (!numentries) {
5141 /* round applicable memory size up to nearest megabyte */
04903664 5142 numentries = nr_kernel_pages;
1da177e4
LT
5143 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5144 numentries >>= 20 - PAGE_SHIFT;
5145 numentries <<= 20 - PAGE_SHIFT;
5146
5147 /* limit to 1 bucket per 2^scale bytes of low memory */
5148 if (scale > PAGE_SHIFT)
5149 numentries >>= (scale - PAGE_SHIFT);
5150 else
5151 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5152
5153 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5154 if (unlikely(flags & HASH_SMALL)) {
5155 /* Makes no sense without HASH_EARLY */
5156 WARN_ON(!(flags & HASH_EARLY));
5157 if (!(numentries >> *_hash_shift)) {
5158 numentries = 1UL << *_hash_shift;
5159 BUG_ON(!numentries);
5160 }
5161 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5162 numentries = PAGE_SIZE / bucketsize;
1da177e4 5163 }
6e692ed3 5164 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5165
5166 /* limit allocation size to 1/16 total memory by default */
5167 if (max == 0) {
5168 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5169 do_div(max, bucketsize);
5170 }
5171
5172 if (numentries > max)
5173 numentries = max;
5174
f0d1b0b3 5175 log2qty = ilog2(numentries);
1da177e4
LT
5176
5177 do {
5178 size = bucketsize << log2qty;
5179 if (flags & HASH_EARLY)
74768ed8 5180 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5181 else if (hashdist)
5182 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5183 else {
1037b83b
ED
5184 /*
5185 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5186 * some pages at the end of hash table which
5187 * alloc_pages_exact() automatically does
1037b83b 5188 */
264ef8a9 5189 if (get_order(size) < MAX_ORDER) {
a1dd268c 5190 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5191 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5192 }
1da177e4
LT
5193 }
5194 } while (!table && size > PAGE_SIZE && --log2qty);
5195
5196 if (!table)
5197 panic("Failed to allocate %s hash table\n", tablename);
5198
b49ad484 5199 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
5200 tablename,
5201 (1U << log2qty),
f0d1b0b3 5202 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5203 size);
5204
5205 if (_hash_shift)
5206 *_hash_shift = log2qty;
5207 if (_hash_mask)
5208 *_hash_mask = (1 << log2qty) - 1;
5209
5210 return table;
5211}
a117e66e 5212
835c134e
MG
5213/* Return a pointer to the bitmap storing bits affecting a block of pages */
5214static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5215 unsigned long pfn)
5216{
5217#ifdef CONFIG_SPARSEMEM
5218 return __pfn_to_section(pfn)->pageblock_flags;
5219#else
5220 return zone->pageblock_flags;
5221#endif /* CONFIG_SPARSEMEM */
5222}
5223
5224static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5225{
5226#ifdef CONFIG_SPARSEMEM
5227 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5228 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5229#else
5230 pfn = pfn - zone->zone_start_pfn;
d9c23400 5231 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5232#endif /* CONFIG_SPARSEMEM */
5233}
5234
5235/**
d9c23400 5236 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5237 * @page: The page within the block of interest
5238 * @start_bitidx: The first bit of interest to retrieve
5239 * @end_bitidx: The last bit of interest
5240 * returns pageblock_bits flags
5241 */
5242unsigned long get_pageblock_flags_group(struct page *page,
5243 int start_bitidx, int end_bitidx)
5244{
5245 struct zone *zone;
5246 unsigned long *bitmap;
5247 unsigned long pfn, bitidx;
5248 unsigned long flags = 0;
5249 unsigned long value = 1;
5250
5251 zone = page_zone(page);
5252 pfn = page_to_pfn(page);
5253 bitmap = get_pageblock_bitmap(zone, pfn);
5254 bitidx = pfn_to_bitidx(zone, pfn);
5255
5256 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5257 if (test_bit(bitidx + start_bitidx, bitmap))
5258 flags |= value;
6220ec78 5259
835c134e
MG
5260 return flags;
5261}
5262
5263/**
d9c23400 5264 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5265 * @page: The page within the block of interest
5266 * @start_bitidx: The first bit of interest
5267 * @end_bitidx: The last bit of interest
5268 * @flags: The flags to set
5269 */
5270void set_pageblock_flags_group(struct page *page, unsigned long flags,
5271 int start_bitidx, int end_bitidx)
5272{
5273 struct zone *zone;
5274 unsigned long *bitmap;
5275 unsigned long pfn, bitidx;
5276 unsigned long value = 1;
5277
5278 zone = page_zone(page);
5279 pfn = page_to_pfn(page);
5280 bitmap = get_pageblock_bitmap(zone, pfn);
5281 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5282 VM_BUG_ON(pfn < zone->zone_start_pfn);
5283 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5284
5285 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5286 if (flags & value)
5287 __set_bit(bitidx + start_bitidx, bitmap);
5288 else
5289 __clear_bit(bitidx + start_bitidx, bitmap);
5290}
a5d76b54
KH
5291
5292/*
5293 * This is designed as sub function...plz see page_isolation.c also.
5294 * set/clear page block's type to be ISOLATE.
5295 * page allocater never alloc memory from ISOLATE block.
5296 */
5297
5298int set_migratetype_isolate(struct page *page)
5299{
5300 struct zone *zone;
925cc71e
RJ
5301 struct page *curr_page;
5302 unsigned long flags, pfn, iter;
5303 unsigned long immobile = 0;
5304 struct memory_isolate_notify arg;
5305 int notifier_ret;
a5d76b54 5306 int ret = -EBUSY;
8e7e40d9 5307 int zone_idx;
a5d76b54
KH
5308
5309 zone = page_zone(page);
8e7e40d9 5310 zone_idx = zone_idx(zone);
925cc71e 5311
a5d76b54 5312 spin_lock_irqsave(&zone->lock, flags);
925cc71e
RJ
5313 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
5314 zone_idx == ZONE_MOVABLE) {
5315 ret = 0;
5316 goto out;
5317 }
5318
5319 pfn = page_to_pfn(page);
5320 arg.start_pfn = pfn;
5321 arg.nr_pages = pageblock_nr_pages;
5322 arg.pages_found = 0;
5323
a5d76b54 5324 /*
925cc71e
RJ
5325 * It may be possible to isolate a pageblock even if the
5326 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5327 * notifier chain is used by balloon drivers to return the
5328 * number of pages in a range that are held by the balloon
5329 * driver to shrink memory. If all the pages are accounted for
5330 * by balloons, are free, or on the LRU, isolation can continue.
5331 * Later, for example, when memory hotplug notifier runs, these
5332 * pages reported as "can be isolated" should be isolated(freed)
5333 * by the balloon driver through the memory notifier chain.
a5d76b54 5334 */
925cc71e
RJ
5335 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5336 notifier_ret = notifier_to_errno(notifier_ret);
5337 if (notifier_ret || !arg.pages_found)
a5d76b54 5338 goto out;
925cc71e
RJ
5339
5340 for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
5341 if (!pfn_valid_within(pfn))
5342 continue;
5343
5344 curr_page = pfn_to_page(iter);
5345 if (!page_count(curr_page) || PageLRU(curr_page))
5346 continue;
5347
5348 immobile++;
5349 }
5350
5351 if (arg.pages_found == immobile)
5352 ret = 0;
5353
a5d76b54 5354out:
925cc71e
RJ
5355 if (!ret) {
5356 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5357 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5358 }
5359
a5d76b54
KH
5360 spin_unlock_irqrestore(&zone->lock, flags);
5361 if (!ret)
9f8f2172 5362 drain_all_pages();
a5d76b54
KH
5363 return ret;
5364}
5365
5366void unset_migratetype_isolate(struct page *page)
5367{
5368 struct zone *zone;
5369 unsigned long flags;
5370 zone = page_zone(page);
5371 spin_lock_irqsave(&zone->lock, flags);
5372 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5373 goto out;
5374 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5375 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5376out:
5377 spin_unlock_irqrestore(&zone->lock, flags);
5378}
0c0e6195
KH
5379
5380#ifdef CONFIG_MEMORY_HOTREMOVE
5381/*
5382 * All pages in the range must be isolated before calling this.
5383 */
5384void
5385__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5386{
5387 struct page *page;
5388 struct zone *zone;
5389 int order, i;
5390 unsigned long pfn;
5391 unsigned long flags;
5392 /* find the first valid pfn */
5393 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5394 if (pfn_valid(pfn))
5395 break;
5396 if (pfn == end_pfn)
5397 return;
5398 zone = page_zone(pfn_to_page(pfn));
5399 spin_lock_irqsave(&zone->lock, flags);
5400 pfn = start_pfn;
5401 while (pfn < end_pfn) {
5402 if (!pfn_valid(pfn)) {
5403 pfn++;
5404 continue;
5405 }
5406 page = pfn_to_page(pfn);
5407 BUG_ON(page_count(page));
5408 BUG_ON(!PageBuddy(page));
5409 order = page_order(page);
5410#ifdef CONFIG_DEBUG_VM
5411 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5412 pfn, 1 << order, end_pfn);
5413#endif
5414 list_del(&page->lru);
5415 rmv_page_order(page);
5416 zone->free_area[order].nr_free--;
5417 __mod_zone_page_state(zone, NR_FREE_PAGES,
5418 - (1UL << order));
5419 for (i = 0; i < (1 << order); i++)
5420 SetPageReserved((page+i));
5421 pfn += (1 << order);
5422 }
5423 spin_unlock_irqrestore(&zone->lock, flags);
5424}
5425#endif
8d22ba1b
WF
5426
5427#ifdef CONFIG_MEMORY_FAILURE
5428bool is_free_buddy_page(struct page *page)
5429{
5430 struct zone *zone = page_zone(page);
5431 unsigned long pfn = page_to_pfn(page);
5432 unsigned long flags;
5433 int order;
5434
5435 spin_lock_irqsave(&zone->lock, flags);
5436 for (order = 0; order < MAX_ORDER; order++) {
5437 struct page *page_head = page - (pfn & ((1 << order) - 1));
5438
5439 if (PageBuddy(page_head) && page_order(page_head) >= order)
5440 break;
5441 }
5442 spin_unlock_irqrestore(&zone->lock, flags);
5443
5444 return order < MAX_ORDER;
5445}
5446#endif
718a3821
WF
5447
5448static struct trace_print_flags pageflag_names[] = {
5449 {1UL << PG_locked, "locked" },
5450 {1UL << PG_error, "error" },
5451 {1UL << PG_referenced, "referenced" },
5452 {1UL << PG_uptodate, "uptodate" },
5453 {1UL << PG_dirty, "dirty" },
5454 {1UL << PG_lru, "lru" },
5455 {1UL << PG_active, "active" },
5456 {1UL << PG_slab, "slab" },
5457 {1UL << PG_owner_priv_1, "owner_priv_1" },
5458 {1UL << PG_arch_1, "arch_1" },
5459 {1UL << PG_reserved, "reserved" },
5460 {1UL << PG_private, "private" },
5461 {1UL << PG_private_2, "private_2" },
5462 {1UL << PG_writeback, "writeback" },
5463#ifdef CONFIG_PAGEFLAGS_EXTENDED
5464 {1UL << PG_head, "head" },
5465 {1UL << PG_tail, "tail" },
5466#else
5467 {1UL << PG_compound, "compound" },
5468#endif
5469 {1UL << PG_swapcache, "swapcache" },
5470 {1UL << PG_mappedtodisk, "mappedtodisk" },
5471 {1UL << PG_reclaim, "reclaim" },
5472 {1UL << PG_buddy, "buddy" },
5473 {1UL << PG_swapbacked, "swapbacked" },
5474 {1UL << PG_unevictable, "unevictable" },
5475#ifdef CONFIG_MMU
5476 {1UL << PG_mlocked, "mlocked" },
5477#endif
5478#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5479 {1UL << PG_uncached, "uncached" },
5480#endif
5481#ifdef CONFIG_MEMORY_FAILURE
5482 {1UL << PG_hwpoison, "hwpoison" },
5483#endif
5484 {-1UL, NULL },
5485};
5486
5487static void dump_page_flags(unsigned long flags)
5488{
5489 const char *delim = "";
5490 unsigned long mask;
5491 int i;
5492
5493 printk(KERN_ALERT "page flags: %#lx(", flags);
5494
5495 /* remove zone id */
5496 flags &= (1UL << NR_PAGEFLAGS) - 1;
5497
5498 for (i = 0; pageflag_names[i].name && flags; i++) {
5499
5500 mask = pageflag_names[i].mask;
5501 if ((flags & mask) != mask)
5502 continue;
5503
5504 flags &= ~mask;
5505 printk("%s%s", delim, pageflag_names[i].name);
5506 delim = "|";
5507 }
5508
5509 /* check for left over flags */
5510 if (flags)
5511 printk("%s%#lx", delim, flags);
5512
5513 printk(")\n");
5514}
5515
5516void dump_page(struct page *page)
5517{
5518 printk(KERN_ALERT
5519 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5520 page, page_count(page), page_mapcount(page),
5521 page->mapping, page->index);
5522 dump_page_flags(page->flags);
5523}