]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/page_alloc.c
[PATCH] remove set_page_count(page, 0) users (outside mm)
[net-next-2.6.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/config.h>
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
1da177e4
LT
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
31#include <linux/notifier.h>
32#include <linux/topology.h>
33#include <linux/sysctl.h>
34#include <linux/cpu.h>
35#include <linux/cpuset.h>
bdc8cb98 36#include <linux/memory_hotplug.h>
1da177e4
LT
37#include <linux/nodemask.h>
38#include <linux/vmalloc.h>
4be38e35 39#include <linux/mempolicy.h>
1da177e4
LT
40
41#include <asm/tlbflush.h>
42#include "internal.h"
43
44/*
45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
46 * initializer cleaner
47 */
c3d8c141 48nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
7223a93a 49EXPORT_SYMBOL(node_online_map);
c3d8c141 50nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
7223a93a 51EXPORT_SYMBOL(node_possible_map);
c3d8c141 52struct pglist_data *pgdat_list __read_mostly;
6c231b7b
RT
53unsigned long totalram_pages __read_mostly;
54unsigned long totalhigh_pages __read_mostly;
1da177e4 55long nr_swap_pages;
8ad4b1fb 56int percpu_pagelist_fraction;
1da177e4 57
d98c7a09 58static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 59
1da177e4
LT
60/*
61 * results with 256, 32 in the lowmem_reserve sysctl:
62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63 * 1G machine -> (16M dma, 784M normal, 224M high)
64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
67 *
68 * TBD: should special case ZONE_DMA32 machines here - in those we normally
69 * don't need any ZONE_NORMAL reservation
1da177e4 70 */
a2f1b424 71int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
1da177e4
LT
72
73EXPORT_SYMBOL(totalram_pages);
1da177e4
LT
74
75/*
76 * Used by page_zone() to look up the address of the struct zone whose
77 * id is encoded in the upper bits of page->flags
78 */
c3d8c141 79struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
1da177e4
LT
80EXPORT_SYMBOL(zone_table);
81
a2f1b424 82static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
1da177e4
LT
83int min_free_kbytes = 1024;
84
85unsigned long __initdata nr_kernel_pages;
86unsigned long __initdata nr_all_pages;
87
13e7444b 88#ifdef CONFIG_DEBUG_VM
c6a57e19 89static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 90{
bdc8cb98
DH
91 int ret = 0;
92 unsigned seq;
93 unsigned long pfn = page_to_pfn(page);
c6a57e19 94
bdc8cb98
DH
95 do {
96 seq = zone_span_seqbegin(zone);
97 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
98 ret = 1;
99 else if (pfn < zone->zone_start_pfn)
100 ret = 1;
101 } while (zone_span_seqretry(zone, seq));
102
103 return ret;
c6a57e19
DH
104}
105
106static int page_is_consistent(struct zone *zone, struct page *page)
107{
1da177e4
LT
108#ifdef CONFIG_HOLES_IN_ZONE
109 if (!pfn_valid(page_to_pfn(page)))
c6a57e19 110 return 0;
1da177e4
LT
111#endif
112 if (zone != page_zone(page))
c6a57e19
DH
113 return 0;
114
115 return 1;
116}
117/*
118 * Temporary debugging check for pages not lying within a given zone.
119 */
120static int bad_range(struct zone *zone, struct page *page)
121{
122 if (page_outside_zone_boundaries(zone, page))
1da177e4 123 return 1;
c6a57e19
DH
124 if (!page_is_consistent(zone, page))
125 return 1;
126
1da177e4
LT
127 return 0;
128}
129
13e7444b
NP
130#else
131static inline int bad_range(struct zone *zone, struct page *page)
132{
133 return 0;
134}
135#endif
136
224abf92 137static void bad_page(struct page *page)
1da177e4 138{
224abf92 139 printk(KERN_EMERG "Bad page state in process '%s'\n"
7365f3d1
HD
140 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
141 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
142 KERN_EMERG "Backtrace:\n",
224abf92
NP
143 current->comm, page, (int)(2*sizeof(unsigned long)),
144 (unsigned long)page->flags, page->mapping,
145 page_mapcount(page), page_count(page));
1da177e4 146 dump_stack();
334795ec
HD
147 page->flags &= ~(1 << PG_lru |
148 1 << PG_private |
1da177e4 149 1 << PG_locked |
1da177e4
LT
150 1 << PG_active |
151 1 << PG_dirty |
334795ec
HD
152 1 << PG_reclaim |
153 1 << PG_slab |
1da177e4 154 1 << PG_swapcache |
689bcebf 155 1 << PG_writeback );
1da177e4
LT
156 set_page_count(page, 0);
157 reset_page_mapcount(page);
158 page->mapping = NULL;
9f158333 159 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
160}
161
1da177e4
LT
162/*
163 * Higher-order pages are called "compound pages". They are structured thusly:
164 *
165 * The first PAGE_SIZE page is called the "head page".
166 *
167 * The remaining PAGE_SIZE pages are called "tail pages".
168 *
169 * All pages have PG_compound set. All pages have their ->private pointing at
170 * the head page (even the head page has this).
171 *
41d78ba5
HD
172 * The first tail page's ->lru.next holds the address of the compound page's
173 * put_page() function. Its ->lru.prev holds the order of allocation.
174 * This usage means that zero-order pages may not be compound.
1da177e4 175 */
d98c7a09
HD
176
177static void free_compound_page(struct page *page)
178{
179 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
180}
181
1da177e4
LT
182static void prep_compound_page(struct page *page, unsigned long order)
183{
184 int i;
185 int nr_pages = 1 << order;
186
d98c7a09 187 page[1].lru.next = (void *)free_compound_page; /* set dtor */
41d78ba5 188 page[1].lru.prev = (void *)order;
1da177e4
LT
189 for (i = 0; i < nr_pages; i++) {
190 struct page *p = page + i;
191
5e9dace8 192 __SetPageCompound(p);
4c21e2f2 193 set_page_private(p, (unsigned long)page);
1da177e4
LT
194 }
195}
196
197static void destroy_compound_page(struct page *page, unsigned long order)
198{
199 int i;
200 int nr_pages = 1 << order;
201
41d78ba5 202 if (unlikely((unsigned long)page[1].lru.prev != order))
224abf92 203 bad_page(page);
1da177e4
LT
204
205 for (i = 0; i < nr_pages; i++) {
206 struct page *p = page + i;
207
224abf92
NP
208 if (unlikely(!PageCompound(p) |
209 (page_private(p) != (unsigned long)page)))
210 bad_page(page);
5e9dace8 211 __ClearPageCompound(p);
1da177e4
LT
212 }
213}
1da177e4
LT
214
215/*
216 * function for dealing with page's order in buddy system.
217 * zone->lock is already acquired when we use these.
218 * So, we don't need atomic page->flags operations here.
219 */
220static inline unsigned long page_order(struct page *page) {
4c21e2f2 221 return page_private(page);
1da177e4
LT
222}
223
224static inline void set_page_order(struct page *page, int order) {
4c21e2f2 225 set_page_private(page, order);
1da177e4
LT
226 __SetPagePrivate(page);
227}
228
229static inline void rmv_page_order(struct page *page)
230{
231 __ClearPagePrivate(page);
4c21e2f2 232 set_page_private(page, 0);
1da177e4
LT
233}
234
235/*
236 * Locate the struct page for both the matching buddy in our
237 * pair (buddy1) and the combined O(n+1) page they form (page).
238 *
239 * 1) Any buddy B1 will have an order O twin B2 which satisfies
240 * the following equation:
241 * B2 = B1 ^ (1 << O)
242 * For example, if the starting buddy (buddy2) is #8 its order
243 * 1 buddy is #10:
244 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
245 *
246 * 2) Any buddy B will have an order O+1 parent P which
247 * satisfies the following equation:
248 * P = B & ~(1 << O)
249 *
250 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
251 */
252static inline struct page *
253__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
254{
255 unsigned long buddy_idx = page_idx ^ (1 << order);
256
257 return page + (buddy_idx - page_idx);
258}
259
260static inline unsigned long
261__find_combined_index(unsigned long page_idx, unsigned int order)
262{
263 return (page_idx & ~(1 << order));
264}
265
266/*
267 * This function checks whether a page is free && is the buddy
268 * we can do coalesce a page and its buddy if
13e7444b
NP
269 * (a) the buddy is not in a hole &&
270 * (b) the buddy is free &&
271 * (c) the buddy is on the buddy system &&
272 * (d) a page and its buddy have the same order.
4c21e2f2 273 * for recording page's order, we use page_private(page) and PG_private.
1da177e4
LT
274 *
275 */
276static inline int page_is_buddy(struct page *page, int order)
277{
13e7444b
NP
278#ifdef CONFIG_HOLES_IN_ZONE
279 if (!pfn_valid(page_to_pfn(page)))
280 return 0;
281#endif
282
1da177e4
LT
283 if (PagePrivate(page) &&
284 (page_order(page) == order) &&
1da177e4
LT
285 page_count(page) == 0)
286 return 1;
287 return 0;
288}
289
290/*
291 * Freeing function for a buddy system allocator.
292 *
293 * The concept of a buddy system is to maintain direct-mapped table
294 * (containing bit values) for memory blocks of various "orders".
295 * The bottom level table contains the map for the smallest allocatable
296 * units of memory (here, pages), and each level above it describes
297 * pairs of units from the levels below, hence, "buddies".
298 * At a high level, all that happens here is marking the table entry
299 * at the bottom level available, and propagating the changes upward
300 * as necessary, plus some accounting needed to play nicely with other
301 * parts of the VM system.
302 * At each level, we keep a list of pages, which are heads of continuous
303 * free pages of length of (1 << order) and marked with PG_Private.Page's
4c21e2f2 304 * order is recorded in page_private(page) field.
1da177e4
LT
305 * So when we are allocating or freeing one, we can derive the state of the
306 * other. That is, if we allocate a small block, and both were
307 * free, the remainder of the region must be split into blocks.
308 * If a block is freed, and its buddy is also free, then this
309 * triggers coalescing into a block of larger size.
310 *
311 * -- wli
312 */
313
48db57f8 314static inline void __free_one_page(struct page *page,
1da177e4
LT
315 struct zone *zone, unsigned int order)
316{
317 unsigned long page_idx;
318 int order_size = 1 << order;
319
224abf92 320 if (unlikely(PageCompound(page)))
1da177e4
LT
321 destroy_compound_page(page, order);
322
323 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
324
325 BUG_ON(page_idx & (order_size - 1));
326 BUG_ON(bad_range(zone, page));
327
328 zone->free_pages += order_size;
329 while (order < MAX_ORDER-1) {
330 unsigned long combined_idx;
331 struct free_area *area;
332 struct page *buddy;
333
1da177e4 334 buddy = __page_find_buddy(page, page_idx, order);
1da177e4
LT
335 if (!page_is_buddy(buddy, order))
336 break; /* Move the buddy up one level. */
13e7444b 337
1da177e4
LT
338 list_del(&buddy->lru);
339 area = zone->free_area + order;
340 area->nr_free--;
341 rmv_page_order(buddy);
13e7444b 342 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
343 page = page + (combined_idx - page_idx);
344 page_idx = combined_idx;
345 order++;
346 }
347 set_page_order(page, order);
348 list_add(&page->lru, &zone->free_area[order].free_list);
349 zone->free_area[order].nr_free++;
350}
351
224abf92 352static inline int free_pages_check(struct page *page)
1da177e4 353{
92be2e33
NP
354 if (unlikely(page_mapcount(page) |
355 (page->mapping != NULL) |
356 (page_count(page) != 0) |
1da177e4
LT
357 (page->flags & (
358 1 << PG_lru |
359 1 << PG_private |
360 1 << PG_locked |
361 1 << PG_active |
362 1 << PG_reclaim |
363 1 << PG_slab |
364 1 << PG_swapcache |
b5810039 365 1 << PG_writeback |
92be2e33 366 1 << PG_reserved ))))
224abf92 367 bad_page(page);
1da177e4 368 if (PageDirty(page))
242e5468 369 __ClearPageDirty(page);
689bcebf
HD
370 /*
371 * For now, we report if PG_reserved was found set, but do not
372 * clear it, and do not free the page. But we shall soon need
373 * to do more, for when the ZERO_PAGE count wraps negative.
374 */
375 return PageReserved(page);
1da177e4
LT
376}
377
378/*
379 * Frees a list of pages.
380 * Assumes all pages on list are in same zone, and of same order.
207f36ee 381 * count is the number of pages to free.
1da177e4
LT
382 *
383 * If the zone was previously in an "all pages pinned" state then look to
384 * see if this freeing clears that state.
385 *
386 * And clear the zone's pages_scanned counter, to hold off the "all pages are
387 * pinned" detection logic.
388 */
48db57f8
NP
389static void free_pages_bulk(struct zone *zone, int count,
390 struct list_head *list, int order)
1da177e4 391{
c54ad30c 392 spin_lock(&zone->lock);
1da177e4
LT
393 zone->all_unreclaimable = 0;
394 zone->pages_scanned = 0;
48db57f8
NP
395 while (count--) {
396 struct page *page;
397
398 BUG_ON(list_empty(list));
1da177e4 399 page = list_entry(list->prev, struct page, lru);
48db57f8 400 /* have to delete it as __free_one_page list manipulates */
1da177e4 401 list_del(&page->lru);
48db57f8 402 __free_one_page(page, zone, order);
1da177e4 403 }
c54ad30c 404 spin_unlock(&zone->lock);
1da177e4
LT
405}
406
48db57f8 407static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4
LT
408{
409 LIST_HEAD(list);
48db57f8
NP
410 list_add(&page->lru, &list);
411 free_pages_bulk(zone, 1, &list, order);
412}
413
414static void __free_pages_ok(struct page *page, unsigned int order)
415{
416 unsigned long flags;
1da177e4 417 int i;
689bcebf 418 int reserved = 0;
1da177e4
LT
419
420 arch_free_page(page, order);
de5097c2
IM
421 if (!PageHighMem(page))
422 mutex_debug_check_no_locks_freed(page_address(page),
a4fc7ab1 423 PAGE_SIZE<<order);
1da177e4 424
1da177e4 425 for (i = 0 ; i < (1 << order) ; ++i)
224abf92 426 reserved += free_pages_check(page + i);
689bcebf
HD
427 if (reserved)
428 return;
429
48db57f8 430 kernel_map_pages(page, 1 << order, 0);
c54ad30c 431 local_irq_save(flags);
a74609fa 432 __mod_page_state(pgfree, 1 << order);
48db57f8 433 free_one_page(page_zone(page), page, order);
c54ad30c 434 local_irq_restore(flags);
1da177e4
LT
435}
436
a226f6c8
DH
437/*
438 * permit the bootmem allocator to evade page validation on high-order frees
439 */
440void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
441{
442 if (order == 0) {
443 __ClearPageReserved(page);
444 set_page_count(page, 0);
545b1ea9
NP
445 set_page_refs(page, 0);
446 __free_page(page);
a226f6c8 447 } else {
a226f6c8
DH
448 int loop;
449
545b1ea9 450 prefetchw(page);
a226f6c8
DH
451 for (loop = 0; loop < BITS_PER_LONG; loop++) {
452 struct page *p = &page[loop];
453
545b1ea9
NP
454 if (loop + 1 < BITS_PER_LONG)
455 prefetchw(p + 1);
a226f6c8
DH
456 __ClearPageReserved(p);
457 set_page_count(p, 0);
458 }
459
545b1ea9
NP
460 set_page_refs(page, order);
461 __free_pages(page, order);
a226f6c8
DH
462 }
463}
464
1da177e4
LT
465
466/*
467 * The order of subdivision here is critical for the IO subsystem.
468 * Please do not alter this order without good reasons and regression
469 * testing. Specifically, as large blocks of memory are subdivided,
470 * the order in which smaller blocks are delivered depends on the order
471 * they're subdivided in this function. This is the primary factor
472 * influencing the order in which pages are delivered to the IO
473 * subsystem according to empirical testing, and this is also justified
474 * by considering the behavior of a buddy system containing a single
475 * large block of memory acted on by a series of small allocations.
476 * This behavior is a critical factor in sglist merging's success.
477 *
478 * -- wli
479 */
085cc7d5 480static inline void expand(struct zone *zone, struct page *page,
1da177e4
LT
481 int low, int high, struct free_area *area)
482{
483 unsigned long size = 1 << high;
484
485 while (high > low) {
486 area--;
487 high--;
488 size >>= 1;
489 BUG_ON(bad_range(zone, &page[size]));
490 list_add(&page[size].lru, &area->free_list);
491 area->nr_free++;
492 set_page_order(&page[size], high);
493 }
1da177e4
LT
494}
495
1da177e4
LT
496/*
497 * This page is about to be returned from the page allocator
498 */
689bcebf 499static int prep_new_page(struct page *page, int order)
1da177e4 500{
92be2e33
NP
501 if (unlikely(page_mapcount(page) |
502 (page->mapping != NULL) |
503 (page_count(page) != 0) |
334795ec
HD
504 (page->flags & (
505 1 << PG_lru |
1da177e4
LT
506 1 << PG_private |
507 1 << PG_locked |
1da177e4
LT
508 1 << PG_active |
509 1 << PG_dirty |
510 1 << PG_reclaim |
334795ec 511 1 << PG_slab |
1da177e4 512 1 << PG_swapcache |
b5810039 513 1 << PG_writeback |
92be2e33 514 1 << PG_reserved ))))
224abf92 515 bad_page(page);
1da177e4 516
689bcebf
HD
517 /*
518 * For now, we report if PG_reserved was found set, but do not
519 * clear it, and do not allocate the page: as a safety net.
520 */
521 if (PageReserved(page))
522 return 1;
523
1da177e4
LT
524 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
525 1 << PG_referenced | 1 << PG_arch_1 |
526 1 << PG_checked | 1 << PG_mappedtodisk);
4c21e2f2 527 set_page_private(page, 0);
1da177e4
LT
528 set_page_refs(page, order);
529 kernel_map_pages(page, 1 << order, 1);
689bcebf 530 return 0;
1da177e4
LT
531}
532
533/*
534 * Do the hard work of removing an element from the buddy allocator.
535 * Call me with the zone->lock already held.
536 */
537static struct page *__rmqueue(struct zone *zone, unsigned int order)
538{
539 struct free_area * area;
540 unsigned int current_order;
541 struct page *page;
542
543 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
544 area = zone->free_area + current_order;
545 if (list_empty(&area->free_list))
546 continue;
547
548 page = list_entry(area->free_list.next, struct page, lru);
549 list_del(&page->lru);
550 rmv_page_order(page);
551 area->nr_free--;
552 zone->free_pages -= 1UL << order;
085cc7d5
NP
553 expand(zone, page, order, current_order, area);
554 return page;
1da177e4
LT
555 }
556
557 return NULL;
558}
559
560/*
561 * Obtain a specified number of elements from the buddy allocator, all under
562 * a single hold of the lock, for efficiency. Add them to the supplied list.
563 * Returns the number of new pages which were placed at *list.
564 */
565static int rmqueue_bulk(struct zone *zone, unsigned int order,
566 unsigned long count, struct list_head *list)
567{
1da177e4 568 int i;
1da177e4 569
c54ad30c 570 spin_lock(&zone->lock);
1da177e4 571 for (i = 0; i < count; ++i) {
085cc7d5
NP
572 struct page *page = __rmqueue(zone, order);
573 if (unlikely(page == NULL))
1da177e4 574 break;
1da177e4
LT
575 list_add_tail(&page->lru, list);
576 }
c54ad30c 577 spin_unlock(&zone->lock);
085cc7d5 578 return i;
1da177e4
LT
579}
580
4ae7c039 581#ifdef CONFIG_NUMA
8fce4d8e
CL
582/*
583 * Called from the slab reaper to drain pagesets on a particular node that
584 * belong to the currently executing processor.
585 */
586void drain_node_pages(int nodeid)
4ae7c039 587{
8fce4d8e 588 int i, z;
4ae7c039
CL
589 unsigned long flags;
590
591 local_irq_save(flags);
8fce4d8e
CL
592 for (z = 0; z < MAX_NR_ZONES; z++) {
593 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
4ae7c039
CL
594 struct per_cpu_pageset *pset;
595
23316bc8 596 pset = zone_pcp(zone, smp_processor_id());
4ae7c039
CL
597 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
598 struct per_cpu_pages *pcp;
599
600 pcp = &pset->pcp[i];
48db57f8
NP
601 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
602 pcp->count = 0;
4ae7c039
CL
603 }
604 }
605 local_irq_restore(flags);
606}
607#endif
608
1da177e4
LT
609#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
610static void __drain_pages(unsigned int cpu)
611{
c54ad30c 612 unsigned long flags;
1da177e4
LT
613 struct zone *zone;
614 int i;
615
616 for_each_zone(zone) {
617 struct per_cpu_pageset *pset;
618
e7c8d5c9 619 pset = zone_pcp(zone, cpu);
1da177e4
LT
620 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
621 struct per_cpu_pages *pcp;
622
623 pcp = &pset->pcp[i];
c54ad30c 624 local_irq_save(flags);
48db57f8
NP
625 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
626 pcp->count = 0;
c54ad30c 627 local_irq_restore(flags);
1da177e4
LT
628 }
629 }
630}
631#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
632
633#ifdef CONFIG_PM
634
635void mark_free_pages(struct zone *zone)
636{
637 unsigned long zone_pfn, flags;
638 int order;
639 struct list_head *curr;
640
641 if (!zone->spanned_pages)
642 return;
643
644 spin_lock_irqsave(&zone->lock, flags);
645 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
646 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
647
648 for (order = MAX_ORDER - 1; order >= 0; --order)
649 list_for_each(curr, &zone->free_area[order].free_list) {
650 unsigned long start_pfn, i;
651
652 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
653
654 for (i=0; i < (1<<order); i++)
655 SetPageNosaveFree(pfn_to_page(start_pfn+i));
656 }
657 spin_unlock_irqrestore(&zone->lock, flags);
658}
659
660/*
661 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
662 */
663void drain_local_pages(void)
664{
665 unsigned long flags;
666
667 local_irq_save(flags);
668 __drain_pages(smp_processor_id());
669 local_irq_restore(flags);
670}
671#endif /* CONFIG_PM */
672
a74609fa 673static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
1da177e4
LT
674{
675#ifdef CONFIG_NUMA
1da177e4
LT
676 pg_data_t *pg = z->zone_pgdat;
677 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
678 struct per_cpu_pageset *p;
679
a74609fa 680 p = zone_pcp(z, cpu);
1da177e4 681 if (pg == orig) {
e7c8d5c9 682 p->numa_hit++;
1da177e4
LT
683 } else {
684 p->numa_miss++;
e7c8d5c9 685 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
1da177e4
LT
686 }
687 if (pg == NODE_DATA(numa_node_id()))
688 p->local_node++;
689 else
690 p->other_node++;
1da177e4
LT
691#endif
692}
693
694/*
695 * Free a 0-order page
696 */
1da177e4
LT
697static void fastcall free_hot_cold_page(struct page *page, int cold)
698{
699 struct zone *zone = page_zone(page);
700 struct per_cpu_pages *pcp;
701 unsigned long flags;
702
703 arch_free_page(page, 0);
704
1da177e4
LT
705 if (PageAnon(page))
706 page->mapping = NULL;
224abf92 707 if (free_pages_check(page))
689bcebf
HD
708 return;
709
689bcebf
HD
710 kernel_map_pages(page, 1, 0);
711
e7c8d5c9 712 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 713 local_irq_save(flags);
a74609fa 714 __inc_page_state(pgfree);
1da177e4
LT
715 list_add(&page->lru, &pcp->list);
716 pcp->count++;
48db57f8
NP
717 if (pcp->count >= pcp->high) {
718 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
719 pcp->count -= pcp->batch;
720 }
1da177e4
LT
721 local_irq_restore(flags);
722 put_cpu();
723}
724
725void fastcall free_hot_page(struct page *page)
726{
727 free_hot_cold_page(page, 0);
728}
729
730void fastcall free_cold_page(struct page *page)
731{
732 free_hot_cold_page(page, 1);
733}
734
dd0fc66f 735static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4
LT
736{
737 int i;
738
739 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
740 for(i = 0; i < (1 << order); i++)
741 clear_highpage(page + i);
742}
743
8dfcc9ba
NP
744/*
745 * split_page takes a non-compound higher-order page, and splits it into
746 * n (1<<order) sub-pages: page[0..n]
747 * Each sub-page must be freed individually.
748 *
749 * Note: this is probably too low level an operation for use in drivers.
750 * Please consult with lkml before using this in your driver.
751 */
752void split_page(struct page *page, unsigned int order)
753{
754 int i;
755
756 BUG_ON(PageCompound(page));
757 BUG_ON(!page_count(page));
758 for (i = 1; i < (1 << order); i++) {
759 BUG_ON(page_count(page + i));
760 set_page_count(page + i, 1);
761 }
762}
8dfcc9ba 763
1da177e4
LT
764/*
765 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
766 * we cheat by calling it from here, in the order > 0 path. Saves a branch
767 * or two.
768 */
a74609fa
NP
769static struct page *buffered_rmqueue(struct zonelist *zonelist,
770 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
771{
772 unsigned long flags;
689bcebf 773 struct page *page;
1da177e4 774 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 775 int cpu;
1da177e4 776
689bcebf 777again:
a74609fa 778 cpu = get_cpu();
48db57f8 779 if (likely(order == 0)) {
1da177e4
LT
780 struct per_cpu_pages *pcp;
781
a74609fa 782 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1da177e4 783 local_irq_save(flags);
a74609fa 784 if (!pcp->count) {
1da177e4
LT
785 pcp->count += rmqueue_bulk(zone, 0,
786 pcp->batch, &pcp->list);
a74609fa
NP
787 if (unlikely(!pcp->count))
788 goto failed;
1da177e4 789 }
a74609fa
NP
790 page = list_entry(pcp->list.next, struct page, lru);
791 list_del(&page->lru);
792 pcp->count--;
7fb1d9fc 793 } else {
1da177e4
LT
794 spin_lock_irqsave(&zone->lock, flags);
795 page = __rmqueue(zone, order);
a74609fa
NP
796 spin_unlock(&zone->lock);
797 if (!page)
798 goto failed;
1da177e4
LT
799 }
800
a74609fa
NP
801 __mod_page_state_zone(zone, pgalloc, 1 << order);
802 zone_statistics(zonelist, zone, cpu);
803 local_irq_restore(flags);
804 put_cpu();
1da177e4 805
a74609fa
NP
806 BUG_ON(bad_range(zone, page));
807 if (prep_new_page(page, order))
808 goto again;
1da177e4 809
a74609fa
NP
810 if (gfp_flags & __GFP_ZERO)
811 prep_zero_page(page, order, gfp_flags);
812
813 if (order && (gfp_flags & __GFP_COMP))
814 prep_compound_page(page, order);
1da177e4 815 return page;
a74609fa
NP
816
817failed:
818 local_irq_restore(flags);
819 put_cpu();
820 return NULL;
1da177e4
LT
821}
822
7fb1d9fc 823#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
824#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
825#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
826#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
827#define ALLOC_HARDER 0x10 /* try to alloc harder */
828#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
829#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 830
1da177e4
LT
831/*
832 * Return 1 if free pages are above 'mark'. This takes into account the order
833 * of the allocation.
834 */
835int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 836 int classzone_idx, int alloc_flags)
1da177e4
LT
837{
838 /* free_pages my go negative - that's OK */
839 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
840 int o;
841
7fb1d9fc 842 if (alloc_flags & ALLOC_HIGH)
1da177e4 843 min -= min / 2;
7fb1d9fc 844 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
845 min -= min / 4;
846
847 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
848 return 0;
849 for (o = 0; o < order; o++) {
850 /* At the next order, this order's pages become unavailable */
851 free_pages -= z->free_area[o].nr_free << o;
852
853 /* Require fewer higher order pages to be free */
854 min >>= 1;
855
856 if (free_pages <= min)
857 return 0;
858 }
859 return 1;
860}
861
7fb1d9fc
RS
862/*
863 * get_page_from_freeliest goes through the zonelist trying to allocate
864 * a page.
865 */
866static struct page *
867get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
868 struct zonelist *zonelist, int alloc_flags)
753ee728 869{
7fb1d9fc
RS
870 struct zone **z = zonelist->zones;
871 struct page *page = NULL;
872 int classzone_idx = zone_idx(*z);
873
874 /*
875 * Go through the zonelist once, looking for a zone with enough free.
876 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
877 */
878 do {
879 if ((alloc_flags & ALLOC_CPUSET) &&
880 !cpuset_zone_allowed(*z, gfp_mask))
881 continue;
882
883 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
884 unsigned long mark;
885 if (alloc_flags & ALLOC_WMARK_MIN)
886 mark = (*z)->pages_min;
887 else if (alloc_flags & ALLOC_WMARK_LOW)
888 mark = (*z)->pages_low;
889 else
890 mark = (*z)->pages_high;
891 if (!zone_watermark_ok(*z, order, mark,
7fb1d9fc 892 classzone_idx, alloc_flags))
9eeff239
CL
893 if (!zone_reclaim_mode ||
894 !zone_reclaim(*z, gfp_mask, order))
895 continue;
7fb1d9fc
RS
896 }
897
a74609fa 898 page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
7fb1d9fc 899 if (page) {
7fb1d9fc
RS
900 break;
901 }
902 } while (*(++z) != NULL);
903 return page;
753ee728
MH
904}
905
1da177e4
LT
906/*
907 * This is the 'heart' of the zoned buddy allocator.
908 */
909struct page * fastcall
dd0fc66f 910__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
911 struct zonelist *zonelist)
912{
260b2367 913 const gfp_t wait = gfp_mask & __GFP_WAIT;
7fb1d9fc 914 struct zone **z;
1da177e4
LT
915 struct page *page;
916 struct reclaim_state reclaim_state;
917 struct task_struct *p = current;
1da177e4 918 int do_retry;
7fb1d9fc 919 int alloc_flags;
1da177e4
LT
920 int did_some_progress;
921
922 might_sleep_if(wait);
923
6b1de916 924restart:
7fb1d9fc 925 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 926
7fb1d9fc 927 if (unlikely(*z == NULL)) {
1da177e4
LT
928 /* Should this ever happen?? */
929 return NULL;
930 }
6b1de916 931
7fb1d9fc 932 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 933 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
934 if (page)
935 goto got_pg;
1da177e4 936
6b1de916 937 do {
7fb1d9fc 938 wakeup_kswapd(*z, order);
6b1de916 939 } while (*(++z));
1da177e4 940
9bf2229f 941 /*
7fb1d9fc
RS
942 * OK, we're below the kswapd watermark and have kicked background
943 * reclaim. Now things get more complex, so set up alloc_flags according
944 * to how we want to proceed.
945 *
946 * The caller may dip into page reserves a bit more if the caller
947 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
948 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
949 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 950 */
3148890b 951 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
952 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
953 alloc_flags |= ALLOC_HARDER;
954 if (gfp_mask & __GFP_HIGH)
955 alloc_flags |= ALLOC_HIGH;
47f3a867 956 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
957
958 /*
959 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 960 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
961 *
962 * This is the last chance, in general, before the goto nopage.
963 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 964 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 965 */
7fb1d9fc
RS
966 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
967 if (page)
968 goto got_pg;
1da177e4
LT
969
970 /* This allocation should allow future memory freeing. */
b84a35be
NP
971
972 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
973 && !in_interrupt()) {
974 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 975nofail_alloc:
b84a35be 976 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc 977 page = get_page_from_freelist(gfp_mask, order,
47f3a867 978 zonelist, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
979 if (page)
980 goto got_pg;
885036d3
KK
981 if (gfp_mask & __GFP_NOFAIL) {
982 blk_congestion_wait(WRITE, HZ/50);
983 goto nofail_alloc;
984 }
1da177e4
LT
985 }
986 goto nopage;
987 }
988
989 /* Atomic allocations - we can't balance anything */
990 if (!wait)
991 goto nopage;
992
993rebalance:
994 cond_resched();
995
996 /* We now go into synchronous reclaim */
3e0d98b9 997 cpuset_memory_pressure_bump();
1da177e4
LT
998 p->flags |= PF_MEMALLOC;
999 reclaim_state.reclaimed_slab = 0;
1000 p->reclaim_state = &reclaim_state;
1001
7fb1d9fc 1002 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1da177e4
LT
1003
1004 p->reclaim_state = NULL;
1005 p->flags &= ~PF_MEMALLOC;
1006
1007 cond_resched();
1008
1009 if (likely(did_some_progress)) {
7fb1d9fc
RS
1010 page = get_page_from_freelist(gfp_mask, order,
1011 zonelist, alloc_flags);
1012 if (page)
1013 goto got_pg;
1da177e4
LT
1014 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1015 /*
1016 * Go through the zonelist yet one more time, keep
1017 * very high watermark here, this is only to catch
1018 * a parallel oom killing, we must fail if we're still
1019 * under heavy pressure.
1020 */
7fb1d9fc 1021 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1022 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
7fb1d9fc
RS
1023 if (page)
1024 goto got_pg;
1da177e4 1025
9b0f8b04 1026 out_of_memory(zonelist, gfp_mask, order);
1da177e4
LT
1027 goto restart;
1028 }
1029
1030 /*
1031 * Don't let big-order allocations loop unless the caller explicitly
1032 * requests that. Wait for some write requests to complete then retry.
1033 *
1034 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1035 * <= 3, but that may not be true in other implementations.
1036 */
1037 do_retry = 0;
1038 if (!(gfp_mask & __GFP_NORETRY)) {
1039 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1040 do_retry = 1;
1041 if (gfp_mask & __GFP_NOFAIL)
1042 do_retry = 1;
1043 }
1044 if (do_retry) {
1045 blk_congestion_wait(WRITE, HZ/50);
1046 goto rebalance;
1047 }
1048
1049nopage:
1050 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1051 printk(KERN_WARNING "%s: page allocation failure."
1052 " order:%d, mode:0x%x\n",
1053 p->comm, order, gfp_mask);
1054 dump_stack();
578c2fd6 1055 show_mem();
1da177e4 1056 }
1da177e4 1057got_pg:
1da177e4
LT
1058 return page;
1059}
1060
1061EXPORT_SYMBOL(__alloc_pages);
1062
1063/*
1064 * Common helper functions.
1065 */
dd0fc66f 1066fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1067{
1068 struct page * page;
1069 page = alloc_pages(gfp_mask, order);
1070 if (!page)
1071 return 0;
1072 return (unsigned long) page_address(page);
1073}
1074
1075EXPORT_SYMBOL(__get_free_pages);
1076
dd0fc66f 1077fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1078{
1079 struct page * page;
1080
1081 /*
1082 * get_zeroed_page() returns a 32-bit address, which cannot represent
1083 * a highmem page
1084 */
260b2367 1085 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1086
1087 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1088 if (page)
1089 return (unsigned long) page_address(page);
1090 return 0;
1091}
1092
1093EXPORT_SYMBOL(get_zeroed_page);
1094
1095void __pagevec_free(struct pagevec *pvec)
1096{
1097 int i = pagevec_count(pvec);
1098
1099 while (--i >= 0)
1100 free_hot_cold_page(pvec->pages[i], pvec->cold);
1101}
1102
1103fastcall void __free_pages(struct page *page, unsigned int order)
1104{
b5810039 1105 if (put_page_testzero(page)) {
1da177e4
LT
1106 if (order == 0)
1107 free_hot_page(page);
1108 else
1109 __free_pages_ok(page, order);
1110 }
1111}
1112
1113EXPORT_SYMBOL(__free_pages);
1114
1115fastcall void free_pages(unsigned long addr, unsigned int order)
1116{
1117 if (addr != 0) {
1118 BUG_ON(!virt_addr_valid((void *)addr));
1119 __free_pages(virt_to_page((void *)addr), order);
1120 }
1121}
1122
1123EXPORT_SYMBOL(free_pages);
1124
1125/*
1126 * Total amount of free (allocatable) RAM:
1127 */
1128unsigned int nr_free_pages(void)
1129{
1130 unsigned int sum = 0;
1131 struct zone *zone;
1132
1133 for_each_zone(zone)
1134 sum += zone->free_pages;
1135
1136 return sum;
1137}
1138
1139EXPORT_SYMBOL(nr_free_pages);
1140
1141#ifdef CONFIG_NUMA
1142unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1143{
1144 unsigned int i, sum = 0;
1145
1146 for (i = 0; i < MAX_NR_ZONES; i++)
1147 sum += pgdat->node_zones[i].free_pages;
1148
1149 return sum;
1150}
1151#endif
1152
1153static unsigned int nr_free_zone_pages(int offset)
1154{
e310fd43
MB
1155 /* Just pick one node, since fallback list is circular */
1156 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1157 unsigned int sum = 0;
1158
e310fd43
MB
1159 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1160 struct zone **zonep = zonelist->zones;
1161 struct zone *zone;
1da177e4 1162
e310fd43
MB
1163 for (zone = *zonep++; zone; zone = *zonep++) {
1164 unsigned long size = zone->present_pages;
1165 unsigned long high = zone->pages_high;
1166 if (size > high)
1167 sum += size - high;
1da177e4
LT
1168 }
1169
1170 return sum;
1171}
1172
1173/*
1174 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1175 */
1176unsigned int nr_free_buffer_pages(void)
1177{
af4ca457 1178 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4
LT
1179}
1180
1181/*
1182 * Amount of free RAM allocatable within all zones
1183 */
1184unsigned int nr_free_pagecache_pages(void)
1185{
af4ca457 1186 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1da177e4
LT
1187}
1188
1189#ifdef CONFIG_HIGHMEM
1190unsigned int nr_free_highpages (void)
1191{
1192 pg_data_t *pgdat;
1193 unsigned int pages = 0;
1194
1195 for_each_pgdat(pgdat)
1196 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1197
1198 return pages;
1199}
1200#endif
1201
1202#ifdef CONFIG_NUMA
1203static void show_node(struct zone *zone)
1204{
1205 printk("Node %d ", zone->zone_pgdat->node_id);
1206}
1207#else
1208#define show_node(zone) do { } while (0)
1209#endif
1210
1211/*
1212 * Accumulate the page_state information across all CPUs.
1213 * The result is unavoidably approximate - it can change
1214 * during and after execution of this function.
1215 */
1216static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1217
1218atomic_t nr_pagecache = ATOMIC_INIT(0);
1219EXPORT_SYMBOL(nr_pagecache);
1220#ifdef CONFIG_SMP
1221DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1222#endif
1223
a86b1f53 1224static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1da177e4 1225{
b40607fc 1226 unsigned cpu;
1da177e4 1227
88a2a4ac 1228 memset(ret, 0, nr * sizeof(unsigned long));
84c2008a 1229 cpus_and(*cpumask, *cpumask, cpu_online_map);
1da177e4 1230
b40607fc
AM
1231 for_each_cpu_mask(cpu, *cpumask) {
1232 unsigned long *in;
1233 unsigned long *out;
1234 unsigned off;
1235 unsigned next_cpu;
88a2a4ac 1236
1da177e4
LT
1237 in = (unsigned long *)&per_cpu(page_states, cpu);
1238
b40607fc
AM
1239 next_cpu = next_cpu(cpu, *cpumask);
1240 if (likely(next_cpu < NR_CPUS))
1241 prefetch(&per_cpu(page_states, next_cpu));
1da177e4
LT
1242
1243 out = (unsigned long *)ret;
1244 for (off = 0; off < nr; off++)
1245 *out++ += *in++;
1246 }
1247}
1248
c07e02db
MH
1249void get_page_state_node(struct page_state *ret, int node)
1250{
1251 int nr;
1252 cpumask_t mask = node_to_cpumask(node);
1253
1254 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1255 nr /= sizeof(unsigned long);
1256
1257 __get_page_state(ret, nr+1, &mask);
1258}
1259
1da177e4
LT
1260void get_page_state(struct page_state *ret)
1261{
1262 int nr;
c07e02db 1263 cpumask_t mask = CPU_MASK_ALL;
1da177e4
LT
1264
1265 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1266 nr /= sizeof(unsigned long);
1267
c07e02db 1268 __get_page_state(ret, nr + 1, &mask);
1da177e4
LT
1269}
1270
1271void get_full_page_state(struct page_state *ret)
1272{
c07e02db
MH
1273 cpumask_t mask = CPU_MASK_ALL;
1274
1275 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1da177e4
LT
1276}
1277
a74609fa 1278unsigned long read_page_state_offset(unsigned long offset)
1da177e4
LT
1279{
1280 unsigned long ret = 0;
1281 int cpu;
1282
84c2008a 1283 for_each_online_cpu(cpu) {
1da177e4
LT
1284 unsigned long in;
1285
1286 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1287 ret += *((unsigned long *)in);
1288 }
1289 return ret;
1290}
1291
a74609fa
NP
1292void __mod_page_state_offset(unsigned long offset, unsigned long delta)
1293{
1294 void *ptr;
1295
1296 ptr = &__get_cpu_var(page_states);
1297 *(unsigned long *)(ptr + offset) += delta;
1298}
1299EXPORT_SYMBOL(__mod_page_state_offset);
1300
1301void mod_page_state_offset(unsigned long offset, unsigned long delta)
1da177e4
LT
1302{
1303 unsigned long flags;
a74609fa 1304 void *ptr;
1da177e4
LT
1305
1306 local_irq_save(flags);
1307 ptr = &__get_cpu_var(page_states);
a74609fa 1308 *(unsigned long *)(ptr + offset) += delta;
1da177e4
LT
1309 local_irq_restore(flags);
1310}
a74609fa 1311EXPORT_SYMBOL(mod_page_state_offset);
1da177e4
LT
1312
1313void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1314 unsigned long *free, struct pglist_data *pgdat)
1315{
1316 struct zone *zones = pgdat->node_zones;
1317 int i;
1318
1319 *active = 0;
1320 *inactive = 0;
1321 *free = 0;
1322 for (i = 0; i < MAX_NR_ZONES; i++) {
1323 *active += zones[i].nr_active;
1324 *inactive += zones[i].nr_inactive;
1325 *free += zones[i].free_pages;
1326 }
1327}
1328
1329void get_zone_counts(unsigned long *active,
1330 unsigned long *inactive, unsigned long *free)
1331{
1332 struct pglist_data *pgdat;
1333
1334 *active = 0;
1335 *inactive = 0;
1336 *free = 0;
1337 for_each_pgdat(pgdat) {
1338 unsigned long l, m, n;
1339 __get_zone_counts(&l, &m, &n, pgdat);
1340 *active += l;
1341 *inactive += m;
1342 *free += n;
1343 }
1344}
1345
1346void si_meminfo(struct sysinfo *val)
1347{
1348 val->totalram = totalram_pages;
1349 val->sharedram = 0;
1350 val->freeram = nr_free_pages();
1351 val->bufferram = nr_blockdev_pages();
1352#ifdef CONFIG_HIGHMEM
1353 val->totalhigh = totalhigh_pages;
1354 val->freehigh = nr_free_highpages();
1355#else
1356 val->totalhigh = 0;
1357 val->freehigh = 0;
1358#endif
1359 val->mem_unit = PAGE_SIZE;
1360}
1361
1362EXPORT_SYMBOL(si_meminfo);
1363
1364#ifdef CONFIG_NUMA
1365void si_meminfo_node(struct sysinfo *val, int nid)
1366{
1367 pg_data_t *pgdat = NODE_DATA(nid);
1368
1369 val->totalram = pgdat->node_present_pages;
1370 val->freeram = nr_free_pages_pgdat(pgdat);
1371 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1372 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1373 val->mem_unit = PAGE_SIZE;
1374}
1375#endif
1376
1377#define K(x) ((x) << (PAGE_SHIFT-10))
1378
1379/*
1380 * Show free area list (used inside shift_scroll-lock stuff)
1381 * We also calculate the percentage fragmentation. We do this by counting the
1382 * memory on each free list with the exception of the first item on the list.
1383 */
1384void show_free_areas(void)
1385{
1386 struct page_state ps;
1387 int cpu, temperature;
1388 unsigned long active;
1389 unsigned long inactive;
1390 unsigned long free;
1391 struct zone *zone;
1392
1393 for_each_zone(zone) {
1394 show_node(zone);
1395 printk("%s per-cpu:", zone->name);
1396
f3fe6512 1397 if (!populated_zone(zone)) {
1da177e4
LT
1398 printk(" empty\n");
1399 continue;
1400 } else
1401 printk("\n");
1402
6b482c67 1403 for_each_online_cpu(cpu) {
1da177e4
LT
1404 struct per_cpu_pageset *pageset;
1405
e7c8d5c9 1406 pageset = zone_pcp(zone, cpu);
1da177e4
LT
1407
1408 for (temperature = 0; temperature < 2; temperature++)
2d92c5c9 1409 printk("cpu %d %s: high %d, batch %d used:%d\n",
1da177e4
LT
1410 cpu,
1411 temperature ? "cold" : "hot",
1da177e4 1412 pageset->pcp[temperature].high,
4ae7c039
CL
1413 pageset->pcp[temperature].batch,
1414 pageset->pcp[temperature].count);
1da177e4
LT
1415 }
1416 }
1417
1418 get_page_state(&ps);
1419 get_zone_counts(&active, &inactive, &free);
1420
c0d62219 1421 printk("Free pages: %11ukB (%ukB HighMem)\n",
1da177e4
LT
1422 K(nr_free_pages()),
1423 K(nr_free_highpages()));
1424
1425 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1426 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1427 active,
1428 inactive,
1429 ps.nr_dirty,
1430 ps.nr_writeback,
1431 ps.nr_unstable,
1432 nr_free_pages(),
1433 ps.nr_slab,
1434 ps.nr_mapped,
1435 ps.nr_page_table_pages);
1436
1437 for_each_zone(zone) {
1438 int i;
1439
1440 show_node(zone);
1441 printk("%s"
1442 " free:%lukB"
1443 " min:%lukB"
1444 " low:%lukB"
1445 " high:%lukB"
1446 " active:%lukB"
1447 " inactive:%lukB"
1448 " present:%lukB"
1449 " pages_scanned:%lu"
1450 " all_unreclaimable? %s"
1451 "\n",
1452 zone->name,
1453 K(zone->free_pages),
1454 K(zone->pages_min),
1455 K(zone->pages_low),
1456 K(zone->pages_high),
1457 K(zone->nr_active),
1458 K(zone->nr_inactive),
1459 K(zone->present_pages),
1460 zone->pages_scanned,
1461 (zone->all_unreclaimable ? "yes" : "no")
1462 );
1463 printk("lowmem_reserve[]:");
1464 for (i = 0; i < MAX_NR_ZONES; i++)
1465 printk(" %lu", zone->lowmem_reserve[i]);
1466 printk("\n");
1467 }
1468
1469 for_each_zone(zone) {
1470 unsigned long nr, flags, order, total = 0;
1471
1472 show_node(zone);
1473 printk("%s: ", zone->name);
f3fe6512 1474 if (!populated_zone(zone)) {
1da177e4
LT
1475 printk("empty\n");
1476 continue;
1477 }
1478
1479 spin_lock_irqsave(&zone->lock, flags);
1480 for (order = 0; order < MAX_ORDER; order++) {
1481 nr = zone->free_area[order].nr_free;
1482 total += nr << order;
1483 printk("%lu*%lukB ", nr, K(1UL) << order);
1484 }
1485 spin_unlock_irqrestore(&zone->lock, flags);
1486 printk("= %lukB\n", K(total));
1487 }
1488
1489 show_swap_cache_info();
1490}
1491
1492/*
1493 * Builds allocation fallback zone lists.
1a93205b
CL
1494 *
1495 * Add all populated zones of a node to the zonelist.
1da177e4 1496 */
1a93205b 1497static int __init build_zonelists_node(pg_data_t *pgdat,
070f8032 1498 struct zonelist *zonelist, int nr_zones, int zone_type)
1da177e4 1499{
1a93205b
CL
1500 struct zone *zone;
1501
070f8032 1502 BUG_ON(zone_type > ZONE_HIGHMEM);
02a68a5e
CL
1503
1504 do {
070f8032 1505 zone = pgdat->node_zones + zone_type;
1a93205b 1506 if (populated_zone(zone)) {
1da177e4 1507#ifndef CONFIG_HIGHMEM
070f8032 1508 BUG_ON(zone_type > ZONE_NORMAL);
1da177e4 1509#endif
070f8032
CL
1510 zonelist->zones[nr_zones++] = zone;
1511 check_highest_zone(zone_type);
1da177e4 1512 }
070f8032 1513 zone_type--;
02a68a5e 1514
070f8032
CL
1515 } while (zone_type >= 0);
1516 return nr_zones;
1da177e4
LT
1517}
1518
260b2367
AV
1519static inline int highest_zone(int zone_bits)
1520{
1521 int res = ZONE_NORMAL;
1522 if (zone_bits & (__force int)__GFP_HIGHMEM)
1523 res = ZONE_HIGHMEM;
a2f1b424
AK
1524 if (zone_bits & (__force int)__GFP_DMA32)
1525 res = ZONE_DMA32;
260b2367
AV
1526 if (zone_bits & (__force int)__GFP_DMA)
1527 res = ZONE_DMA;
1528 return res;
1529}
1530
1da177e4
LT
1531#ifdef CONFIG_NUMA
1532#define MAX_NODE_LOAD (num_online_nodes())
1533static int __initdata node_load[MAX_NUMNODES];
1534/**
4dc3b16b 1535 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1536 * @node: node whose fallback list we're appending
1537 * @used_node_mask: nodemask_t of already used nodes
1538 *
1539 * We use a number of factors to determine which is the next node that should
1540 * appear on a given node's fallback list. The node should not have appeared
1541 * already in @node's fallback list, and it should be the next closest node
1542 * according to the distance array (which contains arbitrary distance values
1543 * from each node to each node in the system), and should also prefer nodes
1544 * with no CPUs, since presumably they'll have very little allocation pressure
1545 * on them otherwise.
1546 * It returns -1 if no node is found.
1547 */
1548static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1549{
4cf808eb 1550 int n, val;
1da177e4
LT
1551 int min_val = INT_MAX;
1552 int best_node = -1;
1553
4cf808eb
LT
1554 /* Use the local node if we haven't already */
1555 if (!node_isset(node, *used_node_mask)) {
1556 node_set(node, *used_node_mask);
1557 return node;
1558 }
1da177e4 1559
4cf808eb
LT
1560 for_each_online_node(n) {
1561 cpumask_t tmp;
1da177e4
LT
1562
1563 /* Don't want a node to appear more than once */
1564 if (node_isset(n, *used_node_mask))
1565 continue;
1566
1da177e4
LT
1567 /* Use the distance array to find the distance */
1568 val = node_distance(node, n);
1569
4cf808eb
LT
1570 /* Penalize nodes under us ("prefer the next node") */
1571 val += (n < node);
1572
1da177e4
LT
1573 /* Give preference to headless and unused nodes */
1574 tmp = node_to_cpumask(n);
1575 if (!cpus_empty(tmp))
1576 val += PENALTY_FOR_NODE_WITH_CPUS;
1577
1578 /* Slight preference for less loaded node */
1579 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1580 val += node_load[n];
1581
1582 if (val < min_val) {
1583 min_val = val;
1584 best_node = n;
1585 }
1586 }
1587
1588 if (best_node >= 0)
1589 node_set(best_node, *used_node_mask);
1590
1591 return best_node;
1592}
1593
1594static void __init build_zonelists(pg_data_t *pgdat)
1595{
1596 int i, j, k, node, local_node;
1597 int prev_node, load;
1598 struct zonelist *zonelist;
1599 nodemask_t used_mask;
1600
1601 /* initialize zonelists */
1602 for (i = 0; i < GFP_ZONETYPES; i++) {
1603 zonelist = pgdat->node_zonelists + i;
1604 zonelist->zones[0] = NULL;
1605 }
1606
1607 /* NUMA-aware ordering of nodes */
1608 local_node = pgdat->node_id;
1609 load = num_online_nodes();
1610 prev_node = local_node;
1611 nodes_clear(used_mask);
1612 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
1613 int distance = node_distance(local_node, node);
1614
1615 /*
1616 * If another node is sufficiently far away then it is better
1617 * to reclaim pages in a zone before going off node.
1618 */
1619 if (distance > RECLAIM_DISTANCE)
1620 zone_reclaim_mode = 1;
1621
1da177e4
LT
1622 /*
1623 * We don't want to pressure a particular node.
1624 * So adding penalty to the first node in same
1625 * distance group to make it round-robin.
1626 */
9eeff239
CL
1627
1628 if (distance != node_distance(local_node, prev_node))
1da177e4
LT
1629 node_load[node] += load;
1630 prev_node = node;
1631 load--;
1632 for (i = 0; i < GFP_ZONETYPES; i++) {
1633 zonelist = pgdat->node_zonelists + i;
1634 for (j = 0; zonelist->zones[j] != NULL; j++);
1635
260b2367 1636 k = highest_zone(i);
1da177e4
LT
1637
1638 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1639 zonelist->zones[j] = NULL;
1640 }
1641 }
1642}
1643
1644#else /* CONFIG_NUMA */
1645
1646static void __init build_zonelists(pg_data_t *pgdat)
1647{
1648 int i, j, k, node, local_node;
1649
1650 local_node = pgdat->node_id;
1651 for (i = 0; i < GFP_ZONETYPES; i++) {
1652 struct zonelist *zonelist;
1653
1654 zonelist = pgdat->node_zonelists + i;
1655
1656 j = 0;
260b2367 1657 k = highest_zone(i);
1da177e4
LT
1658 j = build_zonelists_node(pgdat, zonelist, j, k);
1659 /*
1660 * Now we build the zonelist so that it contains the zones
1661 * of all the other nodes.
1662 * We don't want to pressure a particular node, so when
1663 * building the zones for node N, we make sure that the
1664 * zones coming right after the local ones are those from
1665 * node N+1 (modulo N)
1666 */
1667 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1668 if (!node_online(node))
1669 continue;
1670 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1671 }
1672 for (node = 0; node < local_node; node++) {
1673 if (!node_online(node))
1674 continue;
1675 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1676 }
1677
1678 zonelist->zones[j] = NULL;
1679 }
1680}
1681
1682#endif /* CONFIG_NUMA */
1683
1684void __init build_all_zonelists(void)
1685{
1686 int i;
1687
1688 for_each_online_node(i)
1689 build_zonelists(NODE_DATA(i));
1690 printk("Built %i zonelists\n", num_online_nodes());
1691 cpuset_init_current_mems_allowed();
1692}
1693
1694/*
1695 * Helper functions to size the waitqueue hash table.
1696 * Essentially these want to choose hash table sizes sufficiently
1697 * large so that collisions trying to wait on pages are rare.
1698 * But in fact, the number of active page waitqueues on typical
1699 * systems is ridiculously low, less than 200. So this is even
1700 * conservative, even though it seems large.
1701 *
1702 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1703 * waitqueues, i.e. the size of the waitq table given the number of pages.
1704 */
1705#define PAGES_PER_WAITQUEUE 256
1706
1707static inline unsigned long wait_table_size(unsigned long pages)
1708{
1709 unsigned long size = 1;
1710
1711 pages /= PAGES_PER_WAITQUEUE;
1712
1713 while (size < pages)
1714 size <<= 1;
1715
1716 /*
1717 * Once we have dozens or even hundreds of threads sleeping
1718 * on IO we've got bigger problems than wait queue collision.
1719 * Limit the size of the wait table to a reasonable size.
1720 */
1721 size = min(size, 4096UL);
1722
1723 return max(size, 4UL);
1724}
1725
1726/*
1727 * This is an integer logarithm so that shifts can be used later
1728 * to extract the more random high bits from the multiplicative
1729 * hash function before the remainder is taken.
1730 */
1731static inline unsigned long wait_table_bits(unsigned long size)
1732{
1733 return ffz(~size);
1734}
1735
1736#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1737
1738static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1739 unsigned long *zones_size, unsigned long *zholes_size)
1740{
1741 unsigned long realtotalpages, totalpages = 0;
1742 int i;
1743
1744 for (i = 0; i < MAX_NR_ZONES; i++)
1745 totalpages += zones_size[i];
1746 pgdat->node_spanned_pages = totalpages;
1747
1748 realtotalpages = totalpages;
1749 if (zholes_size)
1750 for (i = 0; i < MAX_NR_ZONES; i++)
1751 realtotalpages -= zholes_size[i];
1752 pgdat->node_present_pages = realtotalpages;
1753 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1754}
1755
1756
1757/*
1758 * Initially all pages are reserved - free ones are freed
1759 * up by free_all_bootmem() once the early boot process is
1760 * done. Non-atomic initialization, single-pass.
1761 */
c09b4240 1762void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1da177e4
LT
1763 unsigned long start_pfn)
1764{
1da177e4 1765 struct page *page;
29751f69
AW
1766 unsigned long end_pfn = start_pfn + size;
1767 unsigned long pfn;
1da177e4 1768
cbe8dd4a 1769 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
d41dee36
AW
1770 if (!early_pfn_valid(pfn))
1771 continue;
1772 page = pfn_to_page(pfn);
1773 set_page_links(page, zone, nid, pfn);
b5810039 1774 set_page_count(page, 1);
1da177e4
LT
1775 reset_page_mapcount(page);
1776 SetPageReserved(page);
1777 INIT_LIST_HEAD(&page->lru);
1778#ifdef WANT_PAGE_VIRTUAL
1779 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1780 if (!is_highmem_idx(zone))
3212c6be 1781 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 1782#endif
1da177e4
LT
1783 }
1784}
1785
1786void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1787 unsigned long size)
1788{
1789 int order;
1790 for (order = 0; order < MAX_ORDER ; order++) {
1791 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1792 zone->free_area[order].nr_free = 0;
1793 }
1794}
1795
d41dee36
AW
1796#define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1797void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1798 unsigned long size)
1799{
1800 unsigned long snum = pfn_to_section_nr(pfn);
1801 unsigned long end = pfn_to_section_nr(pfn + size);
1802
1803 if (FLAGS_HAS_NODE)
1804 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1805 else
1806 for (; snum <= end; snum++)
1807 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1808}
1809
1da177e4
LT
1810#ifndef __HAVE_ARCH_MEMMAP_INIT
1811#define memmap_init(size, nid, zone, start_pfn) \
1812 memmap_init_zone((size), (nid), (zone), (start_pfn))
1813#endif
1814
6292d9aa 1815static int __cpuinit zone_batchsize(struct zone *zone)
e7c8d5c9
CL
1816{
1817 int batch;
1818
1819 /*
1820 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 1821 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
1822 *
1823 * OK, so we don't know how big the cache is. So guess.
1824 */
1825 batch = zone->present_pages / 1024;
ba56e91c
SR
1826 if (batch * PAGE_SIZE > 512 * 1024)
1827 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
1828 batch /= 4; /* We effectively *= 4 below */
1829 if (batch < 1)
1830 batch = 1;
1831
1832 /*
0ceaacc9
NP
1833 * Clamp the batch to a 2^n - 1 value. Having a power
1834 * of 2 value was found to be more likely to have
1835 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 1836 *
0ceaacc9
NP
1837 * For example if 2 tasks are alternately allocating
1838 * batches of pages, one task can end up with a lot
1839 * of pages of one half of the possible page colors
1840 * and the other with pages of the other colors.
e7c8d5c9 1841 */
0ceaacc9 1842 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 1843
e7c8d5c9
CL
1844 return batch;
1845}
1846
2caaad41
CL
1847inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1848{
1849 struct per_cpu_pages *pcp;
1850
1c6fe946
MD
1851 memset(p, 0, sizeof(*p));
1852
2caaad41
CL
1853 pcp = &p->pcp[0]; /* hot */
1854 pcp->count = 0;
2caaad41
CL
1855 pcp->high = 6 * batch;
1856 pcp->batch = max(1UL, 1 * batch);
1857 INIT_LIST_HEAD(&pcp->list);
1858
1859 pcp = &p->pcp[1]; /* cold*/
1860 pcp->count = 0;
2caaad41 1861 pcp->high = 2 * batch;
e46a5e28 1862 pcp->batch = max(1UL, batch/2);
2caaad41
CL
1863 INIT_LIST_HEAD(&pcp->list);
1864}
1865
8ad4b1fb
RS
1866/*
1867 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1868 * to the value high for the pageset p.
1869 */
1870
1871static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1872 unsigned long high)
1873{
1874 struct per_cpu_pages *pcp;
1875
1876 pcp = &p->pcp[0]; /* hot list */
1877 pcp->high = high;
1878 pcp->batch = max(1UL, high/4);
1879 if ((high/4) > (PAGE_SHIFT * 8))
1880 pcp->batch = PAGE_SHIFT * 8;
1881}
1882
1883
e7c8d5c9
CL
1884#ifdef CONFIG_NUMA
1885/*
2caaad41
CL
1886 * Boot pageset table. One per cpu which is going to be used for all
1887 * zones and all nodes. The parameters will be set in such a way
1888 * that an item put on a list will immediately be handed over to
1889 * the buddy list. This is safe since pageset manipulation is done
1890 * with interrupts disabled.
1891 *
1892 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
1893 *
1894 * The boot_pagesets must be kept even after bootup is complete for
1895 * unused processors and/or zones. They do play a role for bootstrapping
1896 * hotplugged processors.
1897 *
1898 * zoneinfo_show() and maybe other functions do
1899 * not check if the processor is online before following the pageset pointer.
1900 * Other parts of the kernel may not check if the zone is available.
2caaad41 1901 */
88a2a4ac 1902static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
1903
1904/*
1905 * Dynamically allocate memory for the
e7c8d5c9
CL
1906 * per cpu pageset array in struct zone.
1907 */
6292d9aa 1908static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
1909{
1910 struct zone *zone, *dzone;
e7c8d5c9
CL
1911
1912 for_each_zone(zone) {
e7c8d5c9 1913
23316bc8 1914 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
e7c8d5c9 1915 GFP_KERNEL, cpu_to_node(cpu));
23316bc8 1916 if (!zone_pcp(zone, cpu))
e7c8d5c9 1917 goto bad;
e7c8d5c9 1918
23316bc8 1919 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
1920
1921 if (percpu_pagelist_fraction)
1922 setup_pagelist_highmark(zone_pcp(zone, cpu),
1923 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
1924 }
1925
1926 return 0;
1927bad:
1928 for_each_zone(dzone) {
1929 if (dzone == zone)
1930 break;
23316bc8
NP
1931 kfree(zone_pcp(dzone, cpu));
1932 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
1933 }
1934 return -ENOMEM;
1935}
1936
1937static inline void free_zone_pagesets(int cpu)
1938{
e7c8d5c9
CL
1939 struct zone *zone;
1940
1941 for_each_zone(zone) {
1942 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1943
1944 zone_pcp(zone, cpu) = NULL;
1945 kfree(pset);
1946 }
e7c8d5c9
CL
1947}
1948
6292d9aa 1949static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
1950 unsigned long action,
1951 void *hcpu)
1952{
1953 int cpu = (long)hcpu;
1954 int ret = NOTIFY_OK;
1955
1956 switch (action) {
1957 case CPU_UP_PREPARE:
1958 if (process_zones(cpu))
1959 ret = NOTIFY_BAD;
1960 break;
b0d41693 1961 case CPU_UP_CANCELED:
e7c8d5c9
CL
1962 case CPU_DEAD:
1963 free_zone_pagesets(cpu);
1964 break;
e7c8d5c9
CL
1965 default:
1966 break;
1967 }
1968 return ret;
1969}
1970
1971static struct notifier_block pageset_notifier =
1972 { &pageset_cpuup_callback, NULL, 0 };
1973
78d9955b 1974void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
1975{
1976 int err;
1977
1978 /* Initialize per_cpu_pageset for cpu 0.
1979 * A cpuup callback will do this for every cpu
1980 * as it comes online
1981 */
1982 err = process_zones(smp_processor_id());
1983 BUG_ON(err);
1984 register_cpu_notifier(&pageset_notifier);
1985}
1986
1987#endif
1988
c09b4240 1989static __meminit
ed8ece2e
DH
1990void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
1991{
1992 int i;
1993 struct pglist_data *pgdat = zone->zone_pgdat;
1994
1995 /*
1996 * The per-page waitqueue mechanism uses hashed waitqueues
1997 * per zone.
1998 */
1999 zone->wait_table_size = wait_table_size(zone_size_pages);
2000 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
2001 zone->wait_table = (wait_queue_head_t *)
2002 alloc_bootmem_node(pgdat, zone->wait_table_size
2003 * sizeof(wait_queue_head_t));
2004
2005 for(i = 0; i < zone->wait_table_size; ++i)
2006 init_waitqueue_head(zone->wait_table + i);
2007}
2008
c09b4240 2009static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
2010{
2011 int cpu;
2012 unsigned long batch = zone_batchsize(zone);
2013
2014 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2015#ifdef CONFIG_NUMA
2016 /* Early boot. Slab allocator not functional yet */
23316bc8 2017 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
2018 setup_pageset(&boot_pageset[cpu],0);
2019#else
2020 setup_pageset(zone_pcp(zone,cpu), batch);
2021#endif
2022 }
2023 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2024 zone->name, zone->present_pages, batch);
2025}
2026
c09b4240 2027static __meminit void init_currently_empty_zone(struct zone *zone,
ed8ece2e
DH
2028 unsigned long zone_start_pfn, unsigned long size)
2029{
2030 struct pglist_data *pgdat = zone->zone_pgdat;
2031
2032 zone_wait_table_init(zone, size);
2033 pgdat->nr_zones = zone_idx(zone) + 1;
2034
2035 zone->zone_mem_map = pfn_to_page(zone_start_pfn);
2036 zone->zone_start_pfn = zone_start_pfn;
2037
2038 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2039
2040 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2041}
2042
1da177e4
LT
2043/*
2044 * Set up the zone data structures:
2045 * - mark all pages reserved
2046 * - mark all memory queues empty
2047 * - clear the memory bitmaps
2048 */
2049static void __init free_area_init_core(struct pglist_data *pgdat,
2050 unsigned long *zones_size, unsigned long *zholes_size)
2051{
ed8ece2e
DH
2052 unsigned long j;
2053 int nid = pgdat->node_id;
1da177e4
LT
2054 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2055
208d54e5 2056 pgdat_resize_init(pgdat);
1da177e4
LT
2057 pgdat->nr_zones = 0;
2058 init_waitqueue_head(&pgdat->kswapd_wait);
2059 pgdat->kswapd_max_order = 0;
2060
2061 for (j = 0; j < MAX_NR_ZONES; j++) {
2062 struct zone *zone = pgdat->node_zones + j;
2063 unsigned long size, realsize;
1da177e4 2064
1da177e4
LT
2065 realsize = size = zones_size[j];
2066 if (zholes_size)
2067 realsize -= zholes_size[j];
2068
a2f1b424 2069 if (j < ZONE_HIGHMEM)
1da177e4
LT
2070 nr_kernel_pages += realsize;
2071 nr_all_pages += realsize;
2072
2073 zone->spanned_pages = size;
2074 zone->present_pages = realsize;
2075 zone->name = zone_names[j];
2076 spin_lock_init(&zone->lock);
2077 spin_lock_init(&zone->lru_lock);
bdc8cb98 2078 zone_seqlock_init(zone);
1da177e4
LT
2079 zone->zone_pgdat = pgdat;
2080 zone->free_pages = 0;
2081
2082 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2083
ed8ece2e 2084 zone_pcp_init(zone);
1da177e4
LT
2085 INIT_LIST_HEAD(&zone->active_list);
2086 INIT_LIST_HEAD(&zone->inactive_list);
2087 zone->nr_scan_active = 0;
2088 zone->nr_scan_inactive = 0;
2089 zone->nr_active = 0;
2090 zone->nr_inactive = 0;
53e9a615 2091 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
2092 if (!size)
2093 continue;
2094
d41dee36 2095 zonetable_add(zone, nid, j, zone_start_pfn, size);
ed8ece2e 2096 init_currently_empty_zone(zone, zone_start_pfn, size);
1da177e4 2097 zone_start_pfn += size;
1da177e4
LT
2098 }
2099}
2100
2101static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2102{
1da177e4
LT
2103 /* Skip empty nodes */
2104 if (!pgdat->node_spanned_pages)
2105 return;
2106
d41dee36 2107#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
2108 /* ia64 gets its own node_mem_map, before this, without bootmem */
2109 if (!pgdat->node_mem_map) {
d41dee36
AW
2110 unsigned long size;
2111 struct page *map;
2112
1da177e4 2113 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
6f167ec7
DH
2114 map = alloc_remap(pgdat->node_id, size);
2115 if (!map)
2116 map = alloc_bootmem_node(pgdat, size);
2117 pgdat->node_mem_map = map;
1da177e4 2118 }
d41dee36 2119#ifdef CONFIG_FLATMEM
1da177e4
LT
2120 /*
2121 * With no DISCONTIG, the global mem_map is just set as node 0's
2122 */
2123 if (pgdat == NODE_DATA(0))
2124 mem_map = NODE_DATA(0)->node_mem_map;
2125#endif
d41dee36 2126#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
2127}
2128
2129void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2130 unsigned long *zones_size, unsigned long node_start_pfn,
2131 unsigned long *zholes_size)
2132{
2133 pgdat->node_id = nid;
2134 pgdat->node_start_pfn = node_start_pfn;
2135 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2136
2137 alloc_node_mem_map(pgdat);
2138
2139 free_area_init_core(pgdat, zones_size, zholes_size);
2140}
2141
93b7504e 2142#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
2143static bootmem_data_t contig_bootmem_data;
2144struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2145
2146EXPORT_SYMBOL(contig_page_data);
93b7504e 2147#endif
1da177e4
LT
2148
2149void __init free_area_init(unsigned long *zones_size)
2150{
93b7504e 2151 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
2152 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2153}
1da177e4
LT
2154
2155#ifdef CONFIG_PROC_FS
2156
2157#include <linux/seq_file.h>
2158
2159static void *frag_start(struct seq_file *m, loff_t *pos)
2160{
2161 pg_data_t *pgdat;
2162 loff_t node = *pos;
2163
2164 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2165 --node;
2166
2167 return pgdat;
2168}
2169
2170static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2171{
2172 pg_data_t *pgdat = (pg_data_t *)arg;
2173
2174 (*pos)++;
2175 return pgdat->pgdat_next;
2176}
2177
2178static void frag_stop(struct seq_file *m, void *arg)
2179{
2180}
2181
2182/*
2183 * This walks the free areas for each zone.
2184 */
2185static int frag_show(struct seq_file *m, void *arg)
2186{
2187 pg_data_t *pgdat = (pg_data_t *)arg;
2188 struct zone *zone;
2189 struct zone *node_zones = pgdat->node_zones;
2190 unsigned long flags;
2191 int order;
2192
2193 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
f3fe6512 2194 if (!populated_zone(zone))
1da177e4
LT
2195 continue;
2196
2197 spin_lock_irqsave(&zone->lock, flags);
2198 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2199 for (order = 0; order < MAX_ORDER; ++order)
2200 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2201 spin_unlock_irqrestore(&zone->lock, flags);
2202 seq_putc(m, '\n');
2203 }
2204 return 0;
2205}
2206
2207struct seq_operations fragmentation_op = {
2208 .start = frag_start,
2209 .next = frag_next,
2210 .stop = frag_stop,
2211 .show = frag_show,
2212};
2213
295ab934
ND
2214/*
2215 * Output information about zones in @pgdat.
2216 */
2217static int zoneinfo_show(struct seq_file *m, void *arg)
2218{
2219 pg_data_t *pgdat = arg;
2220 struct zone *zone;
2221 struct zone *node_zones = pgdat->node_zones;
2222 unsigned long flags;
2223
2224 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2225 int i;
2226
f3fe6512 2227 if (!populated_zone(zone))
295ab934
ND
2228 continue;
2229
2230 spin_lock_irqsave(&zone->lock, flags);
2231 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2232 seq_printf(m,
2233 "\n pages free %lu"
2234 "\n min %lu"
2235 "\n low %lu"
2236 "\n high %lu"
2237 "\n active %lu"
2238 "\n inactive %lu"
2239 "\n scanned %lu (a: %lu i: %lu)"
2240 "\n spanned %lu"
2241 "\n present %lu",
2242 zone->free_pages,
2243 zone->pages_min,
2244 zone->pages_low,
2245 zone->pages_high,
2246 zone->nr_active,
2247 zone->nr_inactive,
2248 zone->pages_scanned,
2249 zone->nr_scan_active, zone->nr_scan_inactive,
2250 zone->spanned_pages,
2251 zone->present_pages);
2252 seq_printf(m,
2253 "\n protection: (%lu",
2254 zone->lowmem_reserve[0]);
2255 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2256 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2257 seq_printf(m,
2258 ")"
2259 "\n pagesets");
23316bc8 2260 for_each_online_cpu(i) {
295ab934
ND
2261 struct per_cpu_pageset *pageset;
2262 int j;
2263
e7c8d5c9 2264 pageset = zone_pcp(zone, i);
295ab934
ND
2265 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2266 if (pageset->pcp[j].count)
2267 break;
2268 }
2269 if (j == ARRAY_SIZE(pageset->pcp))
2270 continue;
2271 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2272 seq_printf(m,
2273 "\n cpu: %i pcp: %i"
2274 "\n count: %i"
295ab934
ND
2275 "\n high: %i"
2276 "\n batch: %i",
2277 i, j,
2278 pageset->pcp[j].count,
295ab934
ND
2279 pageset->pcp[j].high,
2280 pageset->pcp[j].batch);
2281 }
2282#ifdef CONFIG_NUMA
2283 seq_printf(m,
2284 "\n numa_hit: %lu"
2285 "\n numa_miss: %lu"
2286 "\n numa_foreign: %lu"
2287 "\n interleave_hit: %lu"
2288 "\n local_node: %lu"
2289 "\n other_node: %lu",
2290 pageset->numa_hit,
2291 pageset->numa_miss,
2292 pageset->numa_foreign,
2293 pageset->interleave_hit,
2294 pageset->local_node,
2295 pageset->other_node);
2296#endif
2297 }
2298 seq_printf(m,
2299 "\n all_unreclaimable: %u"
2300 "\n prev_priority: %i"
2301 "\n temp_priority: %i"
2302 "\n start_pfn: %lu",
2303 zone->all_unreclaimable,
2304 zone->prev_priority,
2305 zone->temp_priority,
2306 zone->zone_start_pfn);
2307 spin_unlock_irqrestore(&zone->lock, flags);
2308 seq_putc(m, '\n');
2309 }
2310 return 0;
2311}
2312
2313struct seq_operations zoneinfo_op = {
2314 .start = frag_start, /* iterate over all zones. The same as in
2315 * fragmentation. */
2316 .next = frag_next,
2317 .stop = frag_stop,
2318 .show = zoneinfo_show,
2319};
2320
1da177e4
LT
2321static char *vmstat_text[] = {
2322 "nr_dirty",
2323 "nr_writeback",
2324 "nr_unstable",
2325 "nr_page_table_pages",
2326 "nr_mapped",
2327 "nr_slab",
2328
2329 "pgpgin",
2330 "pgpgout",
2331 "pswpin",
2332 "pswpout",
1da177e4 2333
9328b8fa 2334 "pgalloc_high",
1da177e4 2335 "pgalloc_normal",
9328b8fa 2336 "pgalloc_dma32",
1da177e4 2337 "pgalloc_dma",
9328b8fa 2338
1da177e4
LT
2339 "pgfree",
2340 "pgactivate",
2341 "pgdeactivate",
2342
2343 "pgfault",
2344 "pgmajfault",
9328b8fa 2345
1da177e4
LT
2346 "pgrefill_high",
2347 "pgrefill_normal",
9328b8fa 2348 "pgrefill_dma32",
1da177e4
LT
2349 "pgrefill_dma",
2350
2351 "pgsteal_high",
2352 "pgsteal_normal",
9328b8fa 2353 "pgsteal_dma32",
1da177e4 2354 "pgsteal_dma",
9328b8fa 2355
1da177e4
LT
2356 "pgscan_kswapd_high",
2357 "pgscan_kswapd_normal",
9328b8fa 2358 "pgscan_kswapd_dma32",
1da177e4 2359 "pgscan_kswapd_dma",
9328b8fa 2360
1da177e4
LT
2361 "pgscan_direct_high",
2362 "pgscan_direct_normal",
9328b8fa 2363 "pgscan_direct_dma32",
1da177e4 2364 "pgscan_direct_dma",
1da177e4 2365
9328b8fa 2366 "pginodesteal",
1da177e4
LT
2367 "slabs_scanned",
2368 "kswapd_steal",
2369 "kswapd_inodesteal",
2370 "pageoutrun",
2371 "allocstall",
2372
2373 "pgrotated",
edfbe2b0 2374 "nr_bounce",
1da177e4
LT
2375};
2376
2377static void *vmstat_start(struct seq_file *m, loff_t *pos)
2378{
2379 struct page_state *ps;
2380
2381 if (*pos >= ARRAY_SIZE(vmstat_text))
2382 return NULL;
2383
2384 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2385 m->private = ps;
2386 if (!ps)
2387 return ERR_PTR(-ENOMEM);
2388 get_full_page_state(ps);
2389 ps->pgpgin /= 2; /* sectors -> kbytes */
2390 ps->pgpgout /= 2;
2391 return (unsigned long *)ps + *pos;
2392}
2393
2394static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2395{
2396 (*pos)++;
2397 if (*pos >= ARRAY_SIZE(vmstat_text))
2398 return NULL;
2399 return (unsigned long *)m->private + *pos;
2400}
2401
2402static int vmstat_show(struct seq_file *m, void *arg)
2403{
2404 unsigned long *l = arg;
2405 unsigned long off = l - (unsigned long *)m->private;
2406
2407 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2408 return 0;
2409}
2410
2411static void vmstat_stop(struct seq_file *m, void *arg)
2412{
2413 kfree(m->private);
2414 m->private = NULL;
2415}
2416
2417struct seq_operations vmstat_op = {
2418 .start = vmstat_start,
2419 .next = vmstat_next,
2420 .stop = vmstat_stop,
2421 .show = vmstat_show,
2422};
2423
2424#endif /* CONFIG_PROC_FS */
2425
2426#ifdef CONFIG_HOTPLUG_CPU
2427static int page_alloc_cpu_notify(struct notifier_block *self,
2428 unsigned long action, void *hcpu)
2429{
2430 int cpu = (unsigned long)hcpu;
2431 long *count;
2432 unsigned long *src, *dest;
2433
2434 if (action == CPU_DEAD) {
2435 int i;
2436
2437 /* Drain local pagecache count. */
2438 count = &per_cpu(nr_pagecache_local, cpu);
2439 atomic_add(*count, &nr_pagecache);
2440 *count = 0;
2441 local_irq_disable();
2442 __drain_pages(cpu);
2443
2444 /* Add dead cpu's page_states to our own. */
2445 dest = (unsigned long *)&__get_cpu_var(page_states);
2446 src = (unsigned long *)&per_cpu(page_states, cpu);
2447
2448 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2449 i++) {
2450 dest[i] += src[i];
2451 src[i] = 0;
2452 }
2453
2454 local_irq_enable();
2455 }
2456 return NOTIFY_OK;
2457}
2458#endif /* CONFIG_HOTPLUG_CPU */
2459
2460void __init page_alloc_init(void)
2461{
2462 hotcpu_notifier(page_alloc_cpu_notify, 0);
2463}
2464
2465/*
2466 * setup_per_zone_lowmem_reserve - called whenever
2467 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2468 * has a correct pages reserved value, so an adequate number of
2469 * pages are left in the zone after a successful __alloc_pages().
2470 */
2471static void setup_per_zone_lowmem_reserve(void)
2472{
2473 struct pglist_data *pgdat;
2474 int j, idx;
2475
2476 for_each_pgdat(pgdat) {
2477 for (j = 0; j < MAX_NR_ZONES; j++) {
2478 struct zone *zone = pgdat->node_zones + j;
2479 unsigned long present_pages = zone->present_pages;
2480
2481 zone->lowmem_reserve[j] = 0;
2482
2483 for (idx = j-1; idx >= 0; idx--) {
2484 struct zone *lower_zone;
2485
2486 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2487 sysctl_lowmem_reserve_ratio[idx] = 1;
2488
2489 lower_zone = pgdat->node_zones + idx;
2490 lower_zone->lowmem_reserve[j] = present_pages /
2491 sysctl_lowmem_reserve_ratio[idx];
2492 present_pages += lower_zone->present_pages;
2493 }
2494 }
2495 }
2496}
2497
2498/*
2499 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2500 * that the pages_{min,low,high} values for each zone are set correctly
2501 * with respect to min_free_kbytes.
2502 */
3947be19 2503void setup_per_zone_pages_min(void)
1da177e4
LT
2504{
2505 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2506 unsigned long lowmem_pages = 0;
2507 struct zone *zone;
2508 unsigned long flags;
2509
2510 /* Calculate total number of !ZONE_HIGHMEM pages */
2511 for_each_zone(zone) {
2512 if (!is_highmem(zone))
2513 lowmem_pages += zone->present_pages;
2514 }
2515
2516 for_each_zone(zone) {
669ed175 2517 unsigned long tmp;
1da177e4 2518 spin_lock_irqsave(&zone->lru_lock, flags);
669ed175 2519 tmp = (pages_min * zone->present_pages) / lowmem_pages;
1da177e4
LT
2520 if (is_highmem(zone)) {
2521 /*
669ed175
NP
2522 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2523 * need highmem pages, so cap pages_min to a small
2524 * value here.
2525 *
2526 * The (pages_high-pages_low) and (pages_low-pages_min)
2527 * deltas controls asynch page reclaim, and so should
2528 * not be capped for highmem.
1da177e4
LT
2529 */
2530 int min_pages;
2531
2532 min_pages = zone->present_pages / 1024;
2533 if (min_pages < SWAP_CLUSTER_MAX)
2534 min_pages = SWAP_CLUSTER_MAX;
2535 if (min_pages > 128)
2536 min_pages = 128;
2537 zone->pages_min = min_pages;
2538 } else {
669ed175
NP
2539 /*
2540 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
2541 * proportionate to the zone's size.
2542 */
669ed175 2543 zone->pages_min = tmp;
1da177e4
LT
2544 }
2545
669ed175
NP
2546 zone->pages_low = zone->pages_min + tmp / 4;
2547 zone->pages_high = zone->pages_min + tmp / 2;
1da177e4
LT
2548 spin_unlock_irqrestore(&zone->lru_lock, flags);
2549 }
2550}
2551
2552/*
2553 * Initialise min_free_kbytes.
2554 *
2555 * For small machines we want it small (128k min). For large machines
2556 * we want it large (64MB max). But it is not linear, because network
2557 * bandwidth does not increase linearly with machine size. We use
2558 *
2559 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2560 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2561 *
2562 * which yields
2563 *
2564 * 16MB: 512k
2565 * 32MB: 724k
2566 * 64MB: 1024k
2567 * 128MB: 1448k
2568 * 256MB: 2048k
2569 * 512MB: 2896k
2570 * 1024MB: 4096k
2571 * 2048MB: 5792k
2572 * 4096MB: 8192k
2573 * 8192MB: 11584k
2574 * 16384MB: 16384k
2575 */
2576static int __init init_per_zone_pages_min(void)
2577{
2578 unsigned long lowmem_kbytes;
2579
2580 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2581
2582 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2583 if (min_free_kbytes < 128)
2584 min_free_kbytes = 128;
2585 if (min_free_kbytes > 65536)
2586 min_free_kbytes = 65536;
2587 setup_per_zone_pages_min();
2588 setup_per_zone_lowmem_reserve();
2589 return 0;
2590}
2591module_init(init_per_zone_pages_min)
2592
2593/*
2594 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2595 * that we can call two helper functions whenever min_free_kbytes
2596 * changes.
2597 */
2598int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2599 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2600{
2601 proc_dointvec(table, write, file, buffer, length, ppos);
2602 setup_per_zone_pages_min();
2603 return 0;
2604}
2605
2606/*
2607 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2608 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2609 * whenever sysctl_lowmem_reserve_ratio changes.
2610 *
2611 * The reserve ratio obviously has absolutely no relation with the
2612 * pages_min watermarks. The lowmem reserve ratio can only make sense
2613 * if in function of the boot time zone sizes.
2614 */
2615int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2616 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2617{
2618 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2619 setup_per_zone_lowmem_reserve();
2620 return 0;
2621}
2622
8ad4b1fb
RS
2623/*
2624 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2625 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2626 * can have before it gets flushed back to buddy allocator.
2627 */
2628
2629int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2630 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2631{
2632 struct zone *zone;
2633 unsigned int cpu;
2634 int ret;
2635
2636 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2637 if (!write || (ret == -EINVAL))
2638 return ret;
2639 for_each_zone(zone) {
2640 for_each_online_cpu(cpu) {
2641 unsigned long high;
2642 high = zone->present_pages / percpu_pagelist_fraction;
2643 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2644 }
2645 }
2646 return 0;
2647}
2648
1da177e4
LT
2649__initdata int hashdist = HASHDIST_DEFAULT;
2650
2651#ifdef CONFIG_NUMA
2652static int __init set_hashdist(char *str)
2653{
2654 if (!str)
2655 return 0;
2656 hashdist = simple_strtoul(str, &str, 0);
2657 return 1;
2658}
2659__setup("hashdist=", set_hashdist);
2660#endif
2661
2662/*
2663 * allocate a large system hash table from bootmem
2664 * - it is assumed that the hash table must contain an exact power-of-2
2665 * quantity of entries
2666 * - limit is the number of hash buckets, not the total allocation size
2667 */
2668void *__init alloc_large_system_hash(const char *tablename,
2669 unsigned long bucketsize,
2670 unsigned long numentries,
2671 int scale,
2672 int flags,
2673 unsigned int *_hash_shift,
2674 unsigned int *_hash_mask,
2675 unsigned long limit)
2676{
2677 unsigned long long max = limit;
2678 unsigned long log2qty, size;
2679 void *table = NULL;
2680
2681 /* allow the kernel cmdline to have a say */
2682 if (!numentries) {
2683 /* round applicable memory size up to nearest megabyte */
2684 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2685 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2686 numentries >>= 20 - PAGE_SHIFT;
2687 numentries <<= 20 - PAGE_SHIFT;
2688
2689 /* limit to 1 bucket per 2^scale bytes of low memory */
2690 if (scale > PAGE_SHIFT)
2691 numentries >>= (scale - PAGE_SHIFT);
2692 else
2693 numentries <<= (PAGE_SHIFT - scale);
2694 }
2695 /* rounded up to nearest power of 2 in size */
2696 numentries = 1UL << (long_log2(numentries) + 1);
2697
2698 /* limit allocation size to 1/16 total memory by default */
2699 if (max == 0) {
2700 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2701 do_div(max, bucketsize);
2702 }
2703
2704 if (numentries > max)
2705 numentries = max;
2706
2707 log2qty = long_log2(numentries);
2708
2709 do {
2710 size = bucketsize << log2qty;
2711 if (flags & HASH_EARLY)
2712 table = alloc_bootmem(size);
2713 else if (hashdist)
2714 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2715 else {
2716 unsigned long order;
2717 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2718 ;
2719 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2720 }
2721 } while (!table && size > PAGE_SIZE && --log2qty);
2722
2723 if (!table)
2724 panic("Failed to allocate %s hash table\n", tablename);
2725
2726 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2727 tablename,
2728 (1U << log2qty),
2729 long_log2(size) - PAGE_SHIFT,
2730 size);
2731
2732 if (_hash_shift)
2733 *_hash_shift = log2qty;
2734 if (_hash_mask)
2735 *_hash_mask = (1 << log2qty) - 1;
2736
2737 return table;
2738}