]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/page_alloc.c
vmscan: page_check_references(): check low order lumpy reclaim properly
[net-next-2.6.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4
LT
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
b1eeab67 26#include <linux/kmemcheck.h>
1da177e4
LT
27#include <linux/module.h>
28#include <linux/suspend.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/slab.h>
5a3135c2 32#include <linux/oom.h>
1da177e4
LT
33#include <linux/notifier.h>
34#include <linux/topology.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/cpuset.h>
bdc8cb98 38#include <linux/memory_hotplug.h>
1da177e4
LT
39#include <linux/nodemask.h>
40#include <linux/vmalloc.h>
4be38e35 41#include <linux/mempolicy.h>
6811378e 42#include <linux/stop_machine.h>
c713216d
MG
43#include <linux/sort.h>
44#include <linux/pfn.h>
3fcfab16 45#include <linux/backing-dev.h>
933e312e 46#include <linux/fault-inject.h>
a5d76b54 47#include <linux/page-isolation.h>
52d4b9ac 48#include <linux/page_cgroup.h>
3ac7fe5a 49#include <linux/debugobjects.h>
dbb1f81c 50#include <linux/kmemleak.h>
925cc71e 51#include <linux/memory.h>
56de7263 52#include <linux/compaction.h>
0d3d062a 53#include <trace/events/kmem.h>
718a3821 54#include <linux/ftrace_event.h>
1da177e4
LT
55
56#include <asm/tlbflush.h>
ac924c60 57#include <asm/div64.h>
1da177e4
LT
58#include "internal.h"
59
60/*
13808910 61 * Array of node states.
1da177e4 62 */
13808910
CL
63nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
64 [N_POSSIBLE] = NODE_MASK_ALL,
65 [N_ONLINE] = { { [0] = 1UL } },
66#ifndef CONFIG_NUMA
67 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
68#ifdef CONFIG_HIGHMEM
69 [N_HIGH_MEMORY] = { { [0] = 1UL } },
70#endif
71 [N_CPU] = { { [0] = 1UL } },
72#endif /* NUMA */
73};
74EXPORT_SYMBOL(node_states);
75
6c231b7b 76unsigned long totalram_pages __read_mostly;
cb45b0e9 77unsigned long totalreserve_pages __read_mostly;
8ad4b1fb 78int percpu_pagelist_fraction;
dcce284a 79gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 80
452aa699
RW
81#ifdef CONFIG_PM_SLEEP
82/*
83 * The following functions are used by the suspend/hibernate code to temporarily
84 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
85 * while devices are suspended. To avoid races with the suspend/hibernate code,
86 * they should always be called with pm_mutex held (gfp_allowed_mask also should
87 * only be modified with pm_mutex held, unless the suspend/hibernate code is
88 * guaranteed not to run in parallel with that modification).
89 */
90void set_gfp_allowed_mask(gfp_t mask)
91{
92 WARN_ON(!mutex_is_locked(&pm_mutex));
93 gfp_allowed_mask = mask;
94}
95
96gfp_t clear_gfp_allowed_mask(gfp_t mask)
97{
98 gfp_t ret = gfp_allowed_mask;
99
100 WARN_ON(!mutex_is_locked(&pm_mutex));
101 gfp_allowed_mask &= ~mask;
102 return ret;
103}
104#endif /* CONFIG_PM_SLEEP */
105
d9c23400
MG
106#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
107int pageblock_order __read_mostly;
108#endif
109
d98c7a09 110static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 111
1da177e4
LT
112/*
113 * results with 256, 32 in the lowmem_reserve sysctl:
114 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
115 * 1G machine -> (16M dma, 784M normal, 224M high)
116 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
117 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
118 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
119 *
120 * TBD: should special case ZONE_DMA32 machines here - in those we normally
121 * don't need any ZONE_NORMAL reservation
1da177e4 122 */
2f1b6248 123int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 124#ifdef CONFIG_ZONE_DMA
2f1b6248 125 256,
4b51d669 126#endif
fb0e7942 127#ifdef CONFIG_ZONE_DMA32
2f1b6248 128 256,
fb0e7942 129#endif
e53ef38d 130#ifdef CONFIG_HIGHMEM
2a1e274a 131 32,
e53ef38d 132#endif
2a1e274a 133 32,
2f1b6248 134};
1da177e4
LT
135
136EXPORT_SYMBOL(totalram_pages);
1da177e4 137
15ad7cdc 138static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 139#ifdef CONFIG_ZONE_DMA
2f1b6248 140 "DMA",
4b51d669 141#endif
fb0e7942 142#ifdef CONFIG_ZONE_DMA32
2f1b6248 143 "DMA32",
fb0e7942 144#endif
2f1b6248 145 "Normal",
e53ef38d 146#ifdef CONFIG_HIGHMEM
2a1e274a 147 "HighMem",
e53ef38d 148#endif
2a1e274a 149 "Movable",
2f1b6248
CL
150};
151
1da177e4
LT
152int min_free_kbytes = 1024;
153
2c85f51d
JB
154static unsigned long __meminitdata nr_kernel_pages;
155static unsigned long __meminitdata nr_all_pages;
a3142c8e 156static unsigned long __meminitdata dma_reserve;
1da177e4 157
c713216d
MG
158#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
159 /*
183ff22b 160 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
161 * ranges of memory (RAM) that may be registered with add_active_range().
162 * Ranges passed to add_active_range() will be merged if possible
163 * so the number of times add_active_range() can be called is
164 * related to the number of nodes and the number of holes
165 */
166 #ifdef CONFIG_MAX_ACTIVE_REGIONS
167 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
168 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
169 #else
170 #if MAX_NUMNODES >= 32
171 /* If there can be many nodes, allow up to 50 holes per node */
172 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
173 #else
174 /* By default, allow up to 256 distinct regions */
175 #define MAX_ACTIVE_REGIONS 256
176 #endif
177 #endif
178
98011f56
JB
179 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
180 static int __meminitdata nr_nodemap_entries;
181 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
182 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 183 static unsigned long __initdata required_kernelcore;
484f51f8 184 static unsigned long __initdata required_movablecore;
b69a7288 185 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
186
187 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
188 int movable_zone;
189 EXPORT_SYMBOL(movable_zone);
c713216d
MG
190#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
191
418508c1
MS
192#if MAX_NUMNODES > 1
193int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 194int nr_online_nodes __read_mostly = 1;
418508c1 195EXPORT_SYMBOL(nr_node_ids);
62bc62a8 196EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
197#endif
198
9ef9acb0
MG
199int page_group_by_mobility_disabled __read_mostly;
200
b2a0ac88
MG
201static void set_pageblock_migratetype(struct page *page, int migratetype)
202{
49255c61
MG
203
204 if (unlikely(page_group_by_mobility_disabled))
205 migratetype = MIGRATE_UNMOVABLE;
206
b2a0ac88
MG
207 set_pageblock_flags_group(page, (unsigned long)migratetype,
208 PB_migrate, PB_migrate_end);
209}
210
7f33d49a
RW
211bool oom_killer_disabled __read_mostly;
212
13e7444b 213#ifdef CONFIG_DEBUG_VM
c6a57e19 214static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 215{
bdc8cb98
DH
216 int ret = 0;
217 unsigned seq;
218 unsigned long pfn = page_to_pfn(page);
c6a57e19 219
bdc8cb98
DH
220 do {
221 seq = zone_span_seqbegin(zone);
222 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
223 ret = 1;
224 else if (pfn < zone->zone_start_pfn)
225 ret = 1;
226 } while (zone_span_seqretry(zone, seq));
227
228 return ret;
c6a57e19
DH
229}
230
231static int page_is_consistent(struct zone *zone, struct page *page)
232{
14e07298 233 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 234 return 0;
1da177e4 235 if (zone != page_zone(page))
c6a57e19
DH
236 return 0;
237
238 return 1;
239}
240/*
241 * Temporary debugging check for pages not lying within a given zone.
242 */
243static int bad_range(struct zone *zone, struct page *page)
244{
245 if (page_outside_zone_boundaries(zone, page))
1da177e4 246 return 1;
c6a57e19
DH
247 if (!page_is_consistent(zone, page))
248 return 1;
249
1da177e4
LT
250 return 0;
251}
13e7444b
NP
252#else
253static inline int bad_range(struct zone *zone, struct page *page)
254{
255 return 0;
256}
257#endif
258
224abf92 259static void bad_page(struct page *page)
1da177e4 260{
d936cf9b
HD
261 static unsigned long resume;
262 static unsigned long nr_shown;
263 static unsigned long nr_unshown;
264
2a7684a2
WF
265 /* Don't complain about poisoned pages */
266 if (PageHWPoison(page)) {
267 __ClearPageBuddy(page);
268 return;
269 }
270
d936cf9b
HD
271 /*
272 * Allow a burst of 60 reports, then keep quiet for that minute;
273 * or allow a steady drip of one report per second.
274 */
275 if (nr_shown == 60) {
276 if (time_before(jiffies, resume)) {
277 nr_unshown++;
278 goto out;
279 }
280 if (nr_unshown) {
1e9e6365
HD
281 printk(KERN_ALERT
282 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
283 nr_unshown);
284 nr_unshown = 0;
285 }
286 nr_shown = 0;
287 }
288 if (nr_shown++ == 0)
289 resume = jiffies + 60 * HZ;
290
1e9e6365 291 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 292 current->comm, page_to_pfn(page));
718a3821 293 dump_page(page);
3dc14741 294
1da177e4 295 dump_stack();
d936cf9b 296out:
8cc3b392
HD
297 /* Leave bad fields for debug, except PageBuddy could make trouble */
298 __ClearPageBuddy(page);
9f158333 299 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
300}
301
1da177e4
LT
302/*
303 * Higher-order pages are called "compound pages". They are structured thusly:
304 *
305 * The first PAGE_SIZE page is called the "head page".
306 *
307 * The remaining PAGE_SIZE pages are called "tail pages".
308 *
309 * All pages have PG_compound set. All pages have their ->private pointing at
310 * the head page (even the head page has this).
311 *
41d78ba5
HD
312 * The first tail page's ->lru.next holds the address of the compound page's
313 * put_page() function. Its ->lru.prev holds the order of allocation.
314 * This usage means that zero-order pages may not be compound.
1da177e4 315 */
d98c7a09
HD
316
317static void free_compound_page(struct page *page)
318{
d85f3385 319 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
320}
321
01ad1c08 322void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
323{
324 int i;
325 int nr_pages = 1 << order;
326
327 set_compound_page_dtor(page, free_compound_page);
328 set_compound_order(page, order);
329 __SetPageHead(page);
330 for (i = 1; i < nr_pages; i++) {
331 struct page *p = page + i;
332
333 __SetPageTail(p);
334 p->first_page = page;
335 }
336}
337
8cc3b392 338static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
339{
340 int i;
341 int nr_pages = 1 << order;
8cc3b392 342 int bad = 0;
1da177e4 343
8cc3b392
HD
344 if (unlikely(compound_order(page) != order) ||
345 unlikely(!PageHead(page))) {
224abf92 346 bad_page(page);
8cc3b392
HD
347 bad++;
348 }
1da177e4 349
6d777953 350 __ClearPageHead(page);
8cc3b392 351
18229df5
AW
352 for (i = 1; i < nr_pages; i++) {
353 struct page *p = page + i;
1da177e4 354
e713a21d 355 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 356 bad_page(page);
8cc3b392
HD
357 bad++;
358 }
d85f3385 359 __ClearPageTail(p);
1da177e4 360 }
8cc3b392
HD
361
362 return bad;
1da177e4 363}
1da177e4 364
17cf4406
NP
365static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
366{
367 int i;
368
6626c5d5
AM
369 /*
370 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
371 * and __GFP_HIGHMEM from hard or soft interrupt context.
372 */
725d704e 373 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
374 for (i = 0; i < (1 << order); i++)
375 clear_highpage(page + i);
376}
377
6aa3001b
AM
378static inline void set_page_order(struct page *page, int order)
379{
4c21e2f2 380 set_page_private(page, order);
676165a8 381 __SetPageBuddy(page);
1da177e4
LT
382}
383
384static inline void rmv_page_order(struct page *page)
385{
676165a8 386 __ClearPageBuddy(page);
4c21e2f2 387 set_page_private(page, 0);
1da177e4
LT
388}
389
390/*
391 * Locate the struct page for both the matching buddy in our
392 * pair (buddy1) and the combined O(n+1) page they form (page).
393 *
394 * 1) Any buddy B1 will have an order O twin B2 which satisfies
395 * the following equation:
396 * B2 = B1 ^ (1 << O)
397 * For example, if the starting buddy (buddy2) is #8 its order
398 * 1 buddy is #10:
399 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
400 *
401 * 2) Any buddy B will have an order O+1 parent P which
402 * satisfies the following equation:
403 * P = B & ~(1 << O)
404 *
d6e05edc 405 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
406 */
407static inline struct page *
408__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
409{
410 unsigned long buddy_idx = page_idx ^ (1 << order);
411
412 return page + (buddy_idx - page_idx);
413}
414
415static inline unsigned long
416__find_combined_index(unsigned long page_idx, unsigned int order)
417{
418 return (page_idx & ~(1 << order));
419}
420
421/*
422 * This function checks whether a page is free && is the buddy
423 * we can do coalesce a page and its buddy if
13e7444b 424 * (a) the buddy is not in a hole &&
676165a8 425 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
426 * (c) a page and its buddy have the same order &&
427 * (d) a page and its buddy are in the same zone.
676165a8
NP
428 *
429 * For recording whether a page is in the buddy system, we use PG_buddy.
430 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 431 *
676165a8 432 * For recording page's order, we use page_private(page).
1da177e4 433 */
cb2b95e1
AW
434static inline int page_is_buddy(struct page *page, struct page *buddy,
435 int order)
1da177e4 436{
14e07298 437 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 438 return 0;
13e7444b 439
cb2b95e1
AW
440 if (page_zone_id(page) != page_zone_id(buddy))
441 return 0;
442
443 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 444 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 445 return 1;
676165a8 446 }
6aa3001b 447 return 0;
1da177e4
LT
448}
449
450/*
451 * Freeing function for a buddy system allocator.
452 *
453 * The concept of a buddy system is to maintain direct-mapped table
454 * (containing bit values) for memory blocks of various "orders".
455 * The bottom level table contains the map for the smallest allocatable
456 * units of memory (here, pages), and each level above it describes
457 * pairs of units from the levels below, hence, "buddies".
458 * At a high level, all that happens here is marking the table entry
459 * at the bottom level available, and propagating the changes upward
460 * as necessary, plus some accounting needed to play nicely with other
461 * parts of the VM system.
462 * At each level, we keep a list of pages, which are heads of continuous
676165a8 463 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 464 * order is recorded in page_private(page) field.
1da177e4
LT
465 * So when we are allocating or freeing one, we can derive the state of the
466 * other. That is, if we allocate a small block, and both were
467 * free, the remainder of the region must be split into blocks.
468 * If a block is freed, and its buddy is also free, then this
469 * triggers coalescing into a block of larger size.
470 *
471 * -- wli
472 */
473
48db57f8 474static inline void __free_one_page(struct page *page,
ed0ae21d
MG
475 struct zone *zone, unsigned int order,
476 int migratetype)
1da177e4
LT
477{
478 unsigned long page_idx;
6dda9d55
CZ
479 unsigned long combined_idx;
480 struct page *buddy;
1da177e4 481
224abf92 482 if (unlikely(PageCompound(page)))
8cc3b392
HD
483 if (unlikely(destroy_compound_page(page, order)))
484 return;
1da177e4 485
ed0ae21d
MG
486 VM_BUG_ON(migratetype == -1);
487
1da177e4
LT
488 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
489
f2260e6b 490 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 491 VM_BUG_ON(bad_range(zone, page));
1da177e4 492
1da177e4 493 while (order < MAX_ORDER-1) {
1da177e4 494 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 495 if (!page_is_buddy(page, buddy, order))
3c82d0ce 496 break;
13e7444b 497
3c82d0ce 498 /* Our buddy is free, merge with it and move up one order. */
1da177e4 499 list_del(&buddy->lru);
b2a0ac88 500 zone->free_area[order].nr_free--;
1da177e4 501 rmv_page_order(buddy);
13e7444b 502 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
503 page = page + (combined_idx - page_idx);
504 page_idx = combined_idx;
505 order++;
506 }
507 set_page_order(page, order);
6dda9d55
CZ
508
509 /*
510 * If this is not the largest possible page, check if the buddy
511 * of the next-highest order is free. If it is, it's possible
512 * that pages are being freed that will coalesce soon. In case,
513 * that is happening, add the free page to the tail of the list
514 * so it's less likely to be used soon and more likely to be merged
515 * as a higher order page
516 */
517 if ((order < MAX_ORDER-1) && pfn_valid_within(page_to_pfn(buddy))) {
518 struct page *higher_page, *higher_buddy;
519 combined_idx = __find_combined_index(page_idx, order);
520 higher_page = page + combined_idx - page_idx;
521 higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
522 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
523 list_add_tail(&page->lru,
524 &zone->free_area[order].free_list[migratetype]);
525 goto out;
526 }
527 }
528
529 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
530out:
1da177e4
LT
531 zone->free_area[order].nr_free++;
532}
533
092cead6
KM
534/*
535 * free_page_mlock() -- clean up attempts to free and mlocked() page.
536 * Page should not be on lru, so no need to fix that up.
537 * free_pages_check() will verify...
538 */
539static inline void free_page_mlock(struct page *page)
540{
092cead6
KM
541 __dec_zone_page_state(page, NR_MLOCK);
542 __count_vm_event(UNEVICTABLE_MLOCKFREED);
543}
092cead6 544
224abf92 545static inline int free_pages_check(struct page *page)
1da177e4 546{
92be2e33
NP
547 if (unlikely(page_mapcount(page) |
548 (page->mapping != NULL) |
a3af9c38 549 (atomic_read(&page->_count) != 0) |
8cc3b392 550 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 551 bad_page(page);
79f4b7bf 552 return 1;
8cc3b392 553 }
79f4b7bf
HD
554 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
555 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
556 return 0;
1da177e4
LT
557}
558
559/*
5f8dcc21 560 * Frees a number of pages from the PCP lists
1da177e4 561 * Assumes all pages on list are in same zone, and of same order.
207f36ee 562 * count is the number of pages to free.
1da177e4
LT
563 *
564 * If the zone was previously in an "all pages pinned" state then look to
565 * see if this freeing clears that state.
566 *
567 * And clear the zone's pages_scanned counter, to hold off the "all pages are
568 * pinned" detection logic.
569 */
5f8dcc21
MG
570static void free_pcppages_bulk(struct zone *zone, int count,
571 struct per_cpu_pages *pcp)
1da177e4 572{
5f8dcc21 573 int migratetype = 0;
a6f9edd6 574 int batch_free = 0;
5f8dcc21 575
c54ad30c 576 spin_lock(&zone->lock);
93e4a89a 577 zone->all_unreclaimable = 0;
1da177e4 578 zone->pages_scanned = 0;
f2260e6b 579
5f8dcc21 580 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
a6f9edd6 581 while (count) {
48db57f8 582 struct page *page;
5f8dcc21
MG
583 struct list_head *list;
584
585 /*
a6f9edd6
MG
586 * Remove pages from lists in a round-robin fashion. A
587 * batch_free count is maintained that is incremented when an
588 * empty list is encountered. This is so more pages are freed
589 * off fuller lists instead of spinning excessively around empty
590 * lists
5f8dcc21
MG
591 */
592 do {
a6f9edd6 593 batch_free++;
5f8dcc21
MG
594 if (++migratetype == MIGRATE_PCPTYPES)
595 migratetype = 0;
596 list = &pcp->lists[migratetype];
597 } while (list_empty(list));
48db57f8 598
a6f9edd6
MG
599 do {
600 page = list_entry(list->prev, struct page, lru);
601 /* must delete as __free_one_page list manipulates */
602 list_del(&page->lru);
a7016235
HD
603 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
604 __free_one_page(page, zone, 0, page_private(page));
605 trace_mm_page_pcpu_drain(page, 0, page_private(page));
a6f9edd6 606 } while (--count && --batch_free && !list_empty(list));
1da177e4 607 }
c54ad30c 608 spin_unlock(&zone->lock);
1da177e4
LT
609}
610
ed0ae21d
MG
611static void free_one_page(struct zone *zone, struct page *page, int order,
612 int migratetype)
1da177e4 613{
006d22d9 614 spin_lock(&zone->lock);
93e4a89a 615 zone->all_unreclaimable = 0;
006d22d9 616 zone->pages_scanned = 0;
f2260e6b
MG
617
618 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
ed0ae21d 619 __free_one_page(page, zone, order, migratetype);
006d22d9 620 spin_unlock(&zone->lock);
48db57f8
NP
621}
622
623static void __free_pages_ok(struct page *page, unsigned int order)
624{
625 unsigned long flags;
1da177e4 626 int i;
8cc3b392 627 int bad = 0;
451ea25d 628 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 629
f650316c 630 trace_mm_page_free_direct(page, order);
b1eeab67
VN
631 kmemcheck_free_shadow(page, order);
632
1da177e4 633 for (i = 0 ; i < (1 << order) ; ++i)
8cc3b392
HD
634 bad += free_pages_check(page + i);
635 if (bad)
689bcebf
HD
636 return;
637
3ac7fe5a 638 if (!PageHighMem(page)) {
9858db50 639 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
640 debug_check_no_obj_freed(page_address(page),
641 PAGE_SIZE << order);
642 }
dafb1367 643 arch_free_page(page, order);
48db57f8 644 kernel_map_pages(page, 1 << order, 0);
dafb1367 645
c54ad30c 646 local_irq_save(flags);
c277331d 647 if (unlikely(wasMlocked))
da456f14 648 free_page_mlock(page);
f8891e5e 649 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
650 free_one_page(page_zone(page), page, order,
651 get_pageblock_migratetype(page));
c54ad30c 652 local_irq_restore(flags);
1da177e4
LT
653}
654
a226f6c8
DH
655/*
656 * permit the bootmem allocator to evade page validation on high-order frees
657 */
af370fb8 658void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
659{
660 if (order == 0) {
661 __ClearPageReserved(page);
662 set_page_count(page, 0);
7835e98b 663 set_page_refcounted(page);
545b1ea9 664 __free_page(page);
a226f6c8 665 } else {
a226f6c8
DH
666 int loop;
667
545b1ea9 668 prefetchw(page);
a226f6c8
DH
669 for (loop = 0; loop < BITS_PER_LONG; loop++) {
670 struct page *p = &page[loop];
671
545b1ea9
NP
672 if (loop + 1 < BITS_PER_LONG)
673 prefetchw(p + 1);
a226f6c8
DH
674 __ClearPageReserved(p);
675 set_page_count(p, 0);
676 }
677
7835e98b 678 set_page_refcounted(page);
545b1ea9 679 __free_pages(page, order);
a226f6c8
DH
680 }
681}
682
1da177e4
LT
683
684/*
685 * The order of subdivision here is critical for the IO subsystem.
686 * Please do not alter this order without good reasons and regression
687 * testing. Specifically, as large blocks of memory are subdivided,
688 * the order in which smaller blocks are delivered depends on the order
689 * they're subdivided in this function. This is the primary factor
690 * influencing the order in which pages are delivered to the IO
691 * subsystem according to empirical testing, and this is also justified
692 * by considering the behavior of a buddy system containing a single
693 * large block of memory acted on by a series of small allocations.
694 * This behavior is a critical factor in sglist merging's success.
695 *
696 * -- wli
697 */
085cc7d5 698static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
699 int low, int high, struct free_area *area,
700 int migratetype)
1da177e4
LT
701{
702 unsigned long size = 1 << high;
703
704 while (high > low) {
705 area--;
706 high--;
707 size >>= 1;
725d704e 708 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 709 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
710 area->nr_free++;
711 set_page_order(&page[size], high);
712 }
1da177e4
LT
713}
714
1da177e4
LT
715/*
716 * This page is about to be returned from the page allocator
717 */
2a7684a2 718static inline int check_new_page(struct page *page)
1da177e4 719{
92be2e33
NP
720 if (unlikely(page_mapcount(page) |
721 (page->mapping != NULL) |
a3af9c38 722 (atomic_read(&page->_count) != 0) |
8cc3b392 723 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 724 bad_page(page);
689bcebf 725 return 1;
8cc3b392 726 }
2a7684a2
WF
727 return 0;
728}
729
730static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
731{
732 int i;
733
734 for (i = 0; i < (1 << order); i++) {
735 struct page *p = page + i;
736 if (unlikely(check_new_page(p)))
737 return 1;
738 }
689bcebf 739
4c21e2f2 740 set_page_private(page, 0);
7835e98b 741 set_page_refcounted(page);
cc102509
NP
742
743 arch_alloc_page(page, order);
1da177e4 744 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
745
746 if (gfp_flags & __GFP_ZERO)
747 prep_zero_page(page, order, gfp_flags);
748
749 if (order && (gfp_flags & __GFP_COMP))
750 prep_compound_page(page, order);
751
689bcebf 752 return 0;
1da177e4
LT
753}
754
56fd56b8
MG
755/*
756 * Go through the free lists for the given migratetype and remove
757 * the smallest available page from the freelists
758 */
728ec980
MG
759static inline
760struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
761 int migratetype)
762{
763 unsigned int current_order;
764 struct free_area * area;
765 struct page *page;
766
767 /* Find a page of the appropriate size in the preferred list */
768 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
769 area = &(zone->free_area[current_order]);
770 if (list_empty(&area->free_list[migratetype]))
771 continue;
772
773 page = list_entry(area->free_list[migratetype].next,
774 struct page, lru);
775 list_del(&page->lru);
776 rmv_page_order(page);
777 area->nr_free--;
56fd56b8
MG
778 expand(zone, page, order, current_order, area, migratetype);
779 return page;
780 }
781
782 return NULL;
783}
784
785
b2a0ac88
MG
786/*
787 * This array describes the order lists are fallen back to when
788 * the free lists for the desirable migrate type are depleted
789 */
790static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
791 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
792 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
793 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
794 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
795};
796
c361be55
MG
797/*
798 * Move the free pages in a range to the free lists of the requested type.
d9c23400 799 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
800 * boundary. If alignment is required, use move_freepages_block()
801 */
b69a7288
AB
802static int move_freepages(struct zone *zone,
803 struct page *start_page, struct page *end_page,
804 int migratetype)
c361be55
MG
805{
806 struct page *page;
807 unsigned long order;
d100313f 808 int pages_moved = 0;
c361be55
MG
809
810#ifndef CONFIG_HOLES_IN_ZONE
811 /*
812 * page_zone is not safe to call in this context when
813 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
814 * anyway as we check zone boundaries in move_freepages_block().
815 * Remove at a later date when no bug reports exist related to
ac0e5b7a 816 * grouping pages by mobility
c361be55
MG
817 */
818 BUG_ON(page_zone(start_page) != page_zone(end_page));
819#endif
820
821 for (page = start_page; page <= end_page;) {
344c790e
AL
822 /* Make sure we are not inadvertently changing nodes */
823 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
824
c361be55
MG
825 if (!pfn_valid_within(page_to_pfn(page))) {
826 page++;
827 continue;
828 }
829
830 if (!PageBuddy(page)) {
831 page++;
832 continue;
833 }
834
835 order = page_order(page);
836 list_del(&page->lru);
837 list_add(&page->lru,
838 &zone->free_area[order].free_list[migratetype]);
839 page += 1 << order;
d100313f 840 pages_moved += 1 << order;
c361be55
MG
841 }
842
d100313f 843 return pages_moved;
c361be55
MG
844}
845
b69a7288
AB
846static int move_freepages_block(struct zone *zone, struct page *page,
847 int migratetype)
c361be55
MG
848{
849 unsigned long start_pfn, end_pfn;
850 struct page *start_page, *end_page;
851
852 start_pfn = page_to_pfn(page);
d9c23400 853 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 854 start_page = pfn_to_page(start_pfn);
d9c23400
MG
855 end_page = start_page + pageblock_nr_pages - 1;
856 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
857
858 /* Do not cross zone boundaries */
859 if (start_pfn < zone->zone_start_pfn)
860 start_page = page;
861 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
862 return 0;
863
864 return move_freepages(zone, start_page, end_page, migratetype);
865}
866
2f66a68f
MG
867static void change_pageblock_range(struct page *pageblock_page,
868 int start_order, int migratetype)
869{
870 int nr_pageblocks = 1 << (start_order - pageblock_order);
871
872 while (nr_pageblocks--) {
873 set_pageblock_migratetype(pageblock_page, migratetype);
874 pageblock_page += pageblock_nr_pages;
875 }
876}
877
b2a0ac88 878/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
879static inline struct page *
880__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
881{
882 struct free_area * area;
883 int current_order;
884 struct page *page;
885 int migratetype, i;
886
887 /* Find the largest possible block of pages in the other list */
888 for (current_order = MAX_ORDER-1; current_order >= order;
889 --current_order) {
890 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
891 migratetype = fallbacks[start_migratetype][i];
892
56fd56b8
MG
893 /* MIGRATE_RESERVE handled later if necessary */
894 if (migratetype == MIGRATE_RESERVE)
895 continue;
e010487d 896
b2a0ac88
MG
897 area = &(zone->free_area[current_order]);
898 if (list_empty(&area->free_list[migratetype]))
899 continue;
900
901 page = list_entry(area->free_list[migratetype].next,
902 struct page, lru);
903 area->nr_free--;
904
905 /*
c361be55 906 * If breaking a large block of pages, move all free
46dafbca
MG
907 * pages to the preferred allocation list. If falling
908 * back for a reclaimable kernel allocation, be more
909 * agressive about taking ownership of free pages
b2a0ac88 910 */
d9c23400 911 if (unlikely(current_order >= (pageblock_order >> 1)) ||
dd5d241e
MG
912 start_migratetype == MIGRATE_RECLAIMABLE ||
913 page_group_by_mobility_disabled) {
46dafbca
MG
914 unsigned long pages;
915 pages = move_freepages_block(zone, page,
916 start_migratetype);
917
918 /* Claim the whole block if over half of it is free */
dd5d241e
MG
919 if (pages >= (1 << (pageblock_order-1)) ||
920 page_group_by_mobility_disabled)
46dafbca
MG
921 set_pageblock_migratetype(page,
922 start_migratetype);
923
b2a0ac88 924 migratetype = start_migratetype;
c361be55 925 }
b2a0ac88
MG
926
927 /* Remove the page from the freelists */
928 list_del(&page->lru);
929 rmv_page_order(page);
b2a0ac88 930
2f66a68f
MG
931 /* Take ownership for orders >= pageblock_order */
932 if (current_order >= pageblock_order)
933 change_pageblock_range(page, current_order,
b2a0ac88
MG
934 start_migratetype);
935
936 expand(zone, page, order, current_order, area, migratetype);
e0fff1bd
MG
937
938 trace_mm_page_alloc_extfrag(page, order, current_order,
939 start_migratetype, migratetype);
940
b2a0ac88
MG
941 return page;
942 }
943 }
944
728ec980 945 return NULL;
b2a0ac88
MG
946}
947
56fd56b8 948/*
1da177e4
LT
949 * Do the hard work of removing an element from the buddy allocator.
950 * Call me with the zone->lock already held.
951 */
b2a0ac88
MG
952static struct page *__rmqueue(struct zone *zone, unsigned int order,
953 int migratetype)
1da177e4 954{
1da177e4
LT
955 struct page *page;
956
728ec980 957retry_reserve:
56fd56b8 958 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 959
728ec980 960 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 961 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 962
728ec980
MG
963 /*
964 * Use MIGRATE_RESERVE rather than fail an allocation. goto
965 * is used because __rmqueue_smallest is an inline function
966 * and we want just one call site
967 */
968 if (!page) {
969 migratetype = MIGRATE_RESERVE;
970 goto retry_reserve;
971 }
972 }
973
0d3d062a 974 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 975 return page;
1da177e4
LT
976}
977
978/*
979 * Obtain a specified number of elements from the buddy allocator, all under
980 * a single hold of the lock, for efficiency. Add them to the supplied list.
981 * Returns the number of new pages which were placed at *list.
982 */
983static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 984 unsigned long count, struct list_head *list,
e084b2d9 985 int migratetype, int cold)
1da177e4 986{
1da177e4 987 int i;
1da177e4 988
c54ad30c 989 spin_lock(&zone->lock);
1da177e4 990 for (i = 0; i < count; ++i) {
b2a0ac88 991 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 992 if (unlikely(page == NULL))
1da177e4 993 break;
81eabcbe
MG
994
995 /*
996 * Split buddy pages returned by expand() are received here
997 * in physical page order. The page is added to the callers and
998 * list and the list head then moves forward. From the callers
999 * perspective, the linked list is ordered by page number in
1000 * some conditions. This is useful for IO devices that can
1001 * merge IO requests if the physical pages are ordered
1002 * properly.
1003 */
e084b2d9
MG
1004 if (likely(cold == 0))
1005 list_add(&page->lru, list);
1006 else
1007 list_add_tail(&page->lru, list);
535131e6 1008 set_page_private(page, migratetype);
81eabcbe 1009 list = &page->lru;
1da177e4 1010 }
f2260e6b 1011 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1012 spin_unlock(&zone->lock);
085cc7d5 1013 return i;
1da177e4
LT
1014}
1015
4ae7c039 1016#ifdef CONFIG_NUMA
8fce4d8e 1017/*
4037d452
CL
1018 * Called from the vmstat counter updater to drain pagesets of this
1019 * currently executing processor on remote nodes after they have
1020 * expired.
1021 *
879336c3
CL
1022 * Note that this function must be called with the thread pinned to
1023 * a single processor.
8fce4d8e 1024 */
4037d452 1025void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1026{
4ae7c039 1027 unsigned long flags;
4037d452 1028 int to_drain;
4ae7c039 1029
4037d452
CL
1030 local_irq_save(flags);
1031 if (pcp->count >= pcp->batch)
1032 to_drain = pcp->batch;
1033 else
1034 to_drain = pcp->count;
5f8dcc21 1035 free_pcppages_bulk(zone, to_drain, pcp);
4037d452
CL
1036 pcp->count -= to_drain;
1037 local_irq_restore(flags);
4ae7c039
CL
1038}
1039#endif
1040
9f8f2172
CL
1041/*
1042 * Drain pages of the indicated processor.
1043 *
1044 * The processor must either be the current processor and the
1045 * thread pinned to the current processor or a processor that
1046 * is not online.
1047 */
1048static void drain_pages(unsigned int cpu)
1da177e4 1049{
c54ad30c 1050 unsigned long flags;
1da177e4 1051 struct zone *zone;
1da177e4 1052
ee99c71c 1053 for_each_populated_zone(zone) {
1da177e4 1054 struct per_cpu_pageset *pset;
3dfa5721 1055 struct per_cpu_pages *pcp;
1da177e4 1056
99dcc3e5
CL
1057 local_irq_save(flags);
1058 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1059
1060 pcp = &pset->pcp;
5f8dcc21 1061 free_pcppages_bulk(zone, pcp->count, pcp);
3dfa5721
CL
1062 pcp->count = 0;
1063 local_irq_restore(flags);
1da177e4
LT
1064 }
1065}
1da177e4 1066
9f8f2172
CL
1067/*
1068 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1069 */
1070void drain_local_pages(void *arg)
1071{
1072 drain_pages(smp_processor_id());
1073}
1074
1075/*
1076 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1077 */
1078void drain_all_pages(void)
1079{
15c8b6c1 1080 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
1081}
1082
296699de 1083#ifdef CONFIG_HIBERNATION
1da177e4
LT
1084
1085void mark_free_pages(struct zone *zone)
1086{
f623f0db
RW
1087 unsigned long pfn, max_zone_pfn;
1088 unsigned long flags;
b2a0ac88 1089 int order, t;
1da177e4
LT
1090 struct list_head *curr;
1091
1092 if (!zone->spanned_pages)
1093 return;
1094
1095 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1096
1097 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1098 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1099 if (pfn_valid(pfn)) {
1100 struct page *page = pfn_to_page(pfn);
1101
7be98234
RW
1102 if (!swsusp_page_is_forbidden(page))
1103 swsusp_unset_page_free(page);
f623f0db 1104 }
1da177e4 1105
b2a0ac88
MG
1106 for_each_migratetype_order(order, t) {
1107 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1108 unsigned long i;
1da177e4 1109
f623f0db
RW
1110 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1111 for (i = 0; i < (1UL << order); i++)
7be98234 1112 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1113 }
b2a0ac88 1114 }
1da177e4
LT
1115 spin_unlock_irqrestore(&zone->lock, flags);
1116}
e2c55dc8 1117#endif /* CONFIG_PM */
1da177e4 1118
1da177e4
LT
1119/*
1120 * Free a 0-order page
fc91668e 1121 * cold == 1 ? free a cold page : free a hot page
1da177e4 1122 */
fc91668e 1123void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1124{
1125 struct zone *zone = page_zone(page);
1126 struct per_cpu_pages *pcp;
1127 unsigned long flags;
5f8dcc21 1128 int migratetype;
451ea25d 1129 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1130
c475dab6 1131 trace_mm_page_free_direct(page, 0);
b1eeab67
VN
1132 kmemcheck_free_shadow(page, 0);
1133
1da177e4
LT
1134 if (PageAnon(page))
1135 page->mapping = NULL;
224abf92 1136 if (free_pages_check(page))
689bcebf
HD
1137 return;
1138
3ac7fe5a 1139 if (!PageHighMem(page)) {
9858db50 1140 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
3ac7fe5a
TG
1141 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1142 }
dafb1367 1143 arch_free_page(page, 0);
689bcebf
HD
1144 kernel_map_pages(page, 1, 0);
1145
5f8dcc21
MG
1146 migratetype = get_pageblock_migratetype(page);
1147 set_page_private(page, migratetype);
1da177e4 1148 local_irq_save(flags);
c277331d 1149 if (unlikely(wasMlocked))
da456f14 1150 free_page_mlock(page);
f8891e5e 1151 __count_vm_event(PGFREE);
da456f14 1152
5f8dcc21
MG
1153 /*
1154 * We only track unmovable, reclaimable and movable on pcp lists.
1155 * Free ISOLATE pages back to the allocator because they are being
1156 * offlined but treat RESERVE as movable pages so we can get those
1157 * areas back if necessary. Otherwise, we may have to free
1158 * excessively into the page allocator
1159 */
1160 if (migratetype >= MIGRATE_PCPTYPES) {
1161 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1162 free_one_page(zone, page, 0, migratetype);
1163 goto out;
1164 }
1165 migratetype = MIGRATE_MOVABLE;
1166 }
1167
99dcc3e5 1168 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1169 if (cold)
5f8dcc21 1170 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1171 else
5f8dcc21 1172 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1173 pcp->count++;
48db57f8 1174 if (pcp->count >= pcp->high) {
5f8dcc21 1175 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1176 pcp->count -= pcp->batch;
1177 }
5f8dcc21
MG
1178
1179out:
1da177e4 1180 local_irq_restore(flags);
1da177e4
LT
1181}
1182
8dfcc9ba
NP
1183/*
1184 * split_page takes a non-compound higher-order page, and splits it into
1185 * n (1<<order) sub-pages: page[0..n]
1186 * Each sub-page must be freed individually.
1187 *
1188 * Note: this is probably too low level an operation for use in drivers.
1189 * Please consult with lkml before using this in your driver.
1190 */
1191void split_page(struct page *page, unsigned int order)
1192{
1193 int i;
1194
725d704e
NP
1195 VM_BUG_ON(PageCompound(page));
1196 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1197
1198#ifdef CONFIG_KMEMCHECK
1199 /*
1200 * Split shadow pages too, because free(page[0]) would
1201 * otherwise free the whole shadow.
1202 */
1203 if (kmemcheck_page_is_tracked(page))
1204 split_page(virt_to_page(page[0].shadow), order);
1205#endif
1206
7835e98b
NP
1207 for (i = 1; i < (1 << order); i++)
1208 set_page_refcounted(page + i);
8dfcc9ba 1209}
8dfcc9ba 1210
748446bb
MG
1211/*
1212 * Similar to split_page except the page is already free. As this is only
1213 * being used for migration, the migratetype of the block also changes.
1214 * As this is called with interrupts disabled, the caller is responsible
1215 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1216 * are enabled.
1217 *
1218 * Note: this is probably too low level an operation for use in drivers.
1219 * Please consult with lkml before using this in your driver.
1220 */
1221int split_free_page(struct page *page)
1222{
1223 unsigned int order;
1224 unsigned long watermark;
1225 struct zone *zone;
1226
1227 BUG_ON(!PageBuddy(page));
1228
1229 zone = page_zone(page);
1230 order = page_order(page);
1231
1232 /* Obey watermarks as if the page was being allocated */
1233 watermark = low_wmark_pages(zone) + (1 << order);
1234 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1235 return 0;
1236
1237 /* Remove page from free list */
1238 list_del(&page->lru);
1239 zone->free_area[order].nr_free--;
1240 rmv_page_order(page);
1241 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1242
1243 /* Split into individual pages */
1244 set_page_refcounted(page);
1245 split_page(page, order);
1246
1247 if (order >= pageblock_order - 1) {
1248 struct page *endpage = page + (1 << order) - 1;
1249 for (; page < endpage; page += pageblock_nr_pages)
1250 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1251 }
1252
1253 return 1 << order;
1254}
1255
1da177e4
LT
1256/*
1257 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1258 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1259 * or two.
1260 */
0a15c3e9
MG
1261static inline
1262struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1263 struct zone *zone, int order, gfp_t gfp_flags,
1264 int migratetype)
1da177e4
LT
1265{
1266 unsigned long flags;
689bcebf 1267 struct page *page;
1da177e4
LT
1268 int cold = !!(gfp_flags & __GFP_COLD);
1269
689bcebf 1270again:
48db57f8 1271 if (likely(order == 0)) {
1da177e4 1272 struct per_cpu_pages *pcp;
5f8dcc21 1273 struct list_head *list;
1da177e4 1274
1da177e4 1275 local_irq_save(flags);
99dcc3e5
CL
1276 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1277 list = &pcp->lists[migratetype];
5f8dcc21 1278 if (list_empty(list)) {
535131e6 1279 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1280 pcp->batch, list,
e084b2d9 1281 migratetype, cold);
5f8dcc21 1282 if (unlikely(list_empty(list)))
6fb332fa 1283 goto failed;
535131e6 1284 }
b92a6edd 1285
5f8dcc21
MG
1286 if (cold)
1287 page = list_entry(list->prev, struct page, lru);
1288 else
1289 page = list_entry(list->next, struct page, lru);
1290
b92a6edd
MG
1291 list_del(&page->lru);
1292 pcp->count--;
7fb1d9fc 1293 } else {
dab48dab
AM
1294 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1295 /*
1296 * __GFP_NOFAIL is not to be used in new code.
1297 *
1298 * All __GFP_NOFAIL callers should be fixed so that they
1299 * properly detect and handle allocation failures.
1300 *
1301 * We most definitely don't want callers attempting to
4923abf9 1302 * allocate greater than order-1 page units with
dab48dab
AM
1303 * __GFP_NOFAIL.
1304 */
4923abf9 1305 WARN_ON_ONCE(order > 1);
dab48dab 1306 }
1da177e4 1307 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1308 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1309 spin_unlock(&zone->lock);
1310 if (!page)
1311 goto failed;
6ccf80eb 1312 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1da177e4
LT
1313 }
1314
f8891e5e 1315 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1316 zone_statistics(preferred_zone, zone);
a74609fa 1317 local_irq_restore(flags);
1da177e4 1318
725d704e 1319 VM_BUG_ON(bad_range(zone, page));
17cf4406 1320 if (prep_new_page(page, order, gfp_flags))
a74609fa 1321 goto again;
1da177e4 1322 return page;
a74609fa
NP
1323
1324failed:
1325 local_irq_restore(flags);
a74609fa 1326 return NULL;
1da177e4
LT
1327}
1328
41858966
MG
1329/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1330#define ALLOC_WMARK_MIN WMARK_MIN
1331#define ALLOC_WMARK_LOW WMARK_LOW
1332#define ALLOC_WMARK_HIGH WMARK_HIGH
1333#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1334
1335/* Mask to get the watermark bits */
1336#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1337
3148890b
NP
1338#define ALLOC_HARDER 0x10 /* try to alloc harder */
1339#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1340#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1341
933e312e
AM
1342#ifdef CONFIG_FAIL_PAGE_ALLOC
1343
1344static struct fail_page_alloc_attr {
1345 struct fault_attr attr;
1346
1347 u32 ignore_gfp_highmem;
1348 u32 ignore_gfp_wait;
54114994 1349 u32 min_order;
933e312e
AM
1350
1351#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1352
1353 struct dentry *ignore_gfp_highmem_file;
1354 struct dentry *ignore_gfp_wait_file;
54114994 1355 struct dentry *min_order_file;
933e312e
AM
1356
1357#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1358
1359} fail_page_alloc = {
1360 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1361 .ignore_gfp_wait = 1,
1362 .ignore_gfp_highmem = 1,
54114994 1363 .min_order = 1,
933e312e
AM
1364};
1365
1366static int __init setup_fail_page_alloc(char *str)
1367{
1368 return setup_fault_attr(&fail_page_alloc.attr, str);
1369}
1370__setup("fail_page_alloc=", setup_fail_page_alloc);
1371
1372static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1373{
54114994
AM
1374 if (order < fail_page_alloc.min_order)
1375 return 0;
933e312e
AM
1376 if (gfp_mask & __GFP_NOFAIL)
1377 return 0;
1378 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1379 return 0;
1380 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1381 return 0;
1382
1383 return should_fail(&fail_page_alloc.attr, 1 << order);
1384}
1385
1386#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1387
1388static int __init fail_page_alloc_debugfs(void)
1389{
1390 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1391 struct dentry *dir;
1392 int err;
1393
1394 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1395 "fail_page_alloc");
1396 if (err)
1397 return err;
1398 dir = fail_page_alloc.attr.dentries.dir;
1399
1400 fail_page_alloc.ignore_gfp_wait_file =
1401 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1402 &fail_page_alloc.ignore_gfp_wait);
1403
1404 fail_page_alloc.ignore_gfp_highmem_file =
1405 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1406 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1407 fail_page_alloc.min_order_file =
1408 debugfs_create_u32("min-order", mode, dir,
1409 &fail_page_alloc.min_order);
933e312e
AM
1410
1411 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1412 !fail_page_alloc.ignore_gfp_highmem_file ||
1413 !fail_page_alloc.min_order_file) {
933e312e
AM
1414 err = -ENOMEM;
1415 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1416 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1417 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1418 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1419 }
1420
1421 return err;
1422}
1423
1424late_initcall(fail_page_alloc_debugfs);
1425
1426#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1427
1428#else /* CONFIG_FAIL_PAGE_ALLOC */
1429
1430static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1431{
1432 return 0;
1433}
1434
1435#endif /* CONFIG_FAIL_PAGE_ALLOC */
1436
1da177e4
LT
1437/*
1438 * Return 1 if free pages are above 'mark'. This takes into account the order
1439 * of the allocation.
1440 */
1441int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1442 int classzone_idx, int alloc_flags)
1da177e4
LT
1443{
1444 /* free_pages my go negative - that's OK */
d23ad423
CL
1445 long min = mark;
1446 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1447 int o;
1448
7fb1d9fc 1449 if (alloc_flags & ALLOC_HIGH)
1da177e4 1450 min -= min / 2;
7fb1d9fc 1451 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1452 min -= min / 4;
1453
1454 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1455 return 0;
1456 for (o = 0; o < order; o++) {
1457 /* At the next order, this order's pages become unavailable */
1458 free_pages -= z->free_area[o].nr_free << o;
1459
1460 /* Require fewer higher order pages to be free */
1461 min >>= 1;
1462
1463 if (free_pages <= min)
1464 return 0;
1465 }
1466 return 1;
1467}
1468
9276b1bc
PJ
1469#ifdef CONFIG_NUMA
1470/*
1471 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1472 * skip over zones that are not allowed by the cpuset, or that have
1473 * been recently (in last second) found to be nearly full. See further
1474 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1475 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1476 *
1477 * If the zonelist cache is present in the passed in zonelist, then
1478 * returns a pointer to the allowed node mask (either the current
37b07e41 1479 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1480 *
1481 * If the zonelist cache is not available for this zonelist, does
1482 * nothing and returns NULL.
1483 *
1484 * If the fullzones BITMAP in the zonelist cache is stale (more than
1485 * a second since last zap'd) then we zap it out (clear its bits.)
1486 *
1487 * We hold off even calling zlc_setup, until after we've checked the
1488 * first zone in the zonelist, on the theory that most allocations will
1489 * be satisfied from that first zone, so best to examine that zone as
1490 * quickly as we can.
1491 */
1492static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1493{
1494 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1495 nodemask_t *allowednodes; /* zonelist_cache approximation */
1496
1497 zlc = zonelist->zlcache_ptr;
1498 if (!zlc)
1499 return NULL;
1500
f05111f5 1501 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1502 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1503 zlc->last_full_zap = jiffies;
1504 }
1505
1506 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1507 &cpuset_current_mems_allowed :
37b07e41 1508 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1509 return allowednodes;
1510}
1511
1512/*
1513 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1514 * if it is worth looking at further for free memory:
1515 * 1) Check that the zone isn't thought to be full (doesn't have its
1516 * bit set in the zonelist_cache fullzones BITMAP).
1517 * 2) Check that the zones node (obtained from the zonelist_cache
1518 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1519 * Return true (non-zero) if zone is worth looking at further, or
1520 * else return false (zero) if it is not.
1521 *
1522 * This check -ignores- the distinction between various watermarks,
1523 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1524 * found to be full for any variation of these watermarks, it will
1525 * be considered full for up to one second by all requests, unless
1526 * we are so low on memory on all allowed nodes that we are forced
1527 * into the second scan of the zonelist.
1528 *
1529 * In the second scan we ignore this zonelist cache and exactly
1530 * apply the watermarks to all zones, even it is slower to do so.
1531 * We are low on memory in the second scan, and should leave no stone
1532 * unturned looking for a free page.
1533 */
dd1a239f 1534static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1535 nodemask_t *allowednodes)
1536{
1537 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1538 int i; /* index of *z in zonelist zones */
1539 int n; /* node that zone *z is on */
1540
1541 zlc = zonelist->zlcache_ptr;
1542 if (!zlc)
1543 return 1;
1544
dd1a239f 1545 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1546 n = zlc->z_to_n[i];
1547
1548 /* This zone is worth trying if it is allowed but not full */
1549 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1550}
1551
1552/*
1553 * Given 'z' scanning a zonelist, set the corresponding bit in
1554 * zlc->fullzones, so that subsequent attempts to allocate a page
1555 * from that zone don't waste time re-examining it.
1556 */
dd1a239f 1557static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1558{
1559 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1560 int i; /* index of *z in zonelist zones */
1561
1562 zlc = zonelist->zlcache_ptr;
1563 if (!zlc)
1564 return;
1565
dd1a239f 1566 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1567
1568 set_bit(i, zlc->fullzones);
1569}
1570
1571#else /* CONFIG_NUMA */
1572
1573static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1574{
1575 return NULL;
1576}
1577
dd1a239f 1578static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1579 nodemask_t *allowednodes)
1580{
1581 return 1;
1582}
1583
dd1a239f 1584static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1585{
1586}
1587#endif /* CONFIG_NUMA */
1588
7fb1d9fc 1589/*
0798e519 1590 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1591 * a page.
1592 */
1593static struct page *
19770b32 1594get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1595 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1596 struct zone *preferred_zone, int migratetype)
753ee728 1597{
dd1a239f 1598 struct zoneref *z;
7fb1d9fc 1599 struct page *page = NULL;
54a6eb5c 1600 int classzone_idx;
5117f45d 1601 struct zone *zone;
9276b1bc
PJ
1602 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1603 int zlc_active = 0; /* set if using zonelist_cache */
1604 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1605
19770b32 1606 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1607zonelist_scan:
7fb1d9fc 1608 /*
9276b1bc 1609 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1610 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1611 */
19770b32
MG
1612 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1613 high_zoneidx, nodemask) {
9276b1bc
PJ
1614 if (NUMA_BUILD && zlc_active &&
1615 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1616 continue;
7fb1d9fc 1617 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1618 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1619 goto try_next_zone;
7fb1d9fc 1620
41858966 1621 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1622 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1623 unsigned long mark;
fa5e084e
MG
1624 int ret;
1625
41858966 1626 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1627 if (zone_watermark_ok(zone, order, mark,
1628 classzone_idx, alloc_flags))
1629 goto try_this_zone;
1630
1631 if (zone_reclaim_mode == 0)
1632 goto this_zone_full;
1633
1634 ret = zone_reclaim(zone, gfp_mask, order);
1635 switch (ret) {
1636 case ZONE_RECLAIM_NOSCAN:
1637 /* did not scan */
1638 goto try_next_zone;
1639 case ZONE_RECLAIM_FULL:
1640 /* scanned but unreclaimable */
1641 goto this_zone_full;
1642 default:
1643 /* did we reclaim enough */
1644 if (!zone_watermark_ok(zone, order, mark,
1645 classzone_idx, alloc_flags))
9276b1bc 1646 goto this_zone_full;
0798e519 1647 }
7fb1d9fc
RS
1648 }
1649
fa5e084e 1650try_this_zone:
3dd28266
MG
1651 page = buffered_rmqueue(preferred_zone, zone, order,
1652 gfp_mask, migratetype);
0798e519 1653 if (page)
7fb1d9fc 1654 break;
9276b1bc
PJ
1655this_zone_full:
1656 if (NUMA_BUILD)
1657 zlc_mark_zone_full(zonelist, z);
1658try_next_zone:
62bc62a8 1659 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
d395b734
MG
1660 /*
1661 * we do zlc_setup after the first zone is tried but only
1662 * if there are multiple nodes make it worthwhile
1663 */
9276b1bc
PJ
1664 allowednodes = zlc_setup(zonelist, alloc_flags);
1665 zlc_active = 1;
1666 did_zlc_setup = 1;
1667 }
54a6eb5c 1668 }
9276b1bc
PJ
1669
1670 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1671 /* Disable zlc cache for second zonelist scan */
1672 zlc_active = 0;
1673 goto zonelist_scan;
1674 }
7fb1d9fc 1675 return page;
753ee728
MH
1676}
1677
11e33f6a
MG
1678static inline int
1679should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1680 unsigned long pages_reclaimed)
1da177e4 1681{
11e33f6a
MG
1682 /* Do not loop if specifically requested */
1683 if (gfp_mask & __GFP_NORETRY)
1684 return 0;
1da177e4 1685
11e33f6a
MG
1686 /*
1687 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1688 * means __GFP_NOFAIL, but that may not be true in other
1689 * implementations.
1690 */
1691 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1692 return 1;
1693
1694 /*
1695 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1696 * specified, then we retry until we no longer reclaim any pages
1697 * (above), or we've reclaimed an order of pages at least as
1698 * large as the allocation's order. In both cases, if the
1699 * allocation still fails, we stop retrying.
1700 */
1701 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1702 return 1;
cf40bd16 1703
11e33f6a
MG
1704 /*
1705 * Don't let big-order allocations loop unless the caller
1706 * explicitly requests that.
1707 */
1708 if (gfp_mask & __GFP_NOFAIL)
1709 return 1;
1da177e4 1710
11e33f6a
MG
1711 return 0;
1712}
933e312e 1713
11e33f6a
MG
1714static inline struct page *
1715__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1716 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1717 nodemask_t *nodemask, struct zone *preferred_zone,
1718 int migratetype)
11e33f6a
MG
1719{
1720 struct page *page;
1721
1722 /* Acquire the OOM killer lock for the zones in zonelist */
1723 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1724 schedule_timeout_uninterruptible(1);
1da177e4
LT
1725 return NULL;
1726 }
6b1de916 1727
11e33f6a
MG
1728 /*
1729 * Go through the zonelist yet one more time, keep very high watermark
1730 * here, this is only to catch a parallel oom killing, we must fail if
1731 * we're still under heavy pressure.
1732 */
1733 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1734 order, zonelist, high_zoneidx,
5117f45d 1735 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1736 preferred_zone, migratetype);
7fb1d9fc 1737 if (page)
11e33f6a
MG
1738 goto out;
1739
4365a567
KH
1740 if (!(gfp_mask & __GFP_NOFAIL)) {
1741 /* The OOM killer will not help higher order allocs */
1742 if (order > PAGE_ALLOC_COSTLY_ORDER)
1743 goto out;
1744 /*
1745 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1746 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1747 * The caller should handle page allocation failure by itself if
1748 * it specifies __GFP_THISNODE.
1749 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1750 */
1751 if (gfp_mask & __GFP_THISNODE)
1752 goto out;
1753 }
11e33f6a 1754 /* Exhausted what can be done so it's blamo time */
4365a567 1755 out_of_memory(zonelist, gfp_mask, order, nodemask);
11e33f6a
MG
1756
1757out:
1758 clear_zonelist_oom(zonelist, gfp_mask);
1759 return page;
1760}
1761
56de7263
MG
1762#ifdef CONFIG_COMPACTION
1763/* Try memory compaction for high-order allocations before reclaim */
1764static struct page *
1765__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1766 struct zonelist *zonelist, enum zone_type high_zoneidx,
1767 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1768 int migratetype, unsigned long *did_some_progress)
1769{
1770 struct page *page;
1771
4f92e258 1772 if (!order || compaction_deferred(preferred_zone))
56de7263
MG
1773 return NULL;
1774
1775 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1776 nodemask);
1777 if (*did_some_progress != COMPACT_SKIPPED) {
1778
1779 /* Page migration frees to the PCP lists but we want merging */
1780 drain_pages(get_cpu());
1781 put_cpu();
1782
1783 page = get_page_from_freelist(gfp_mask, nodemask,
1784 order, zonelist, high_zoneidx,
1785 alloc_flags, preferred_zone,
1786 migratetype);
1787 if (page) {
4f92e258
MG
1788 preferred_zone->compact_considered = 0;
1789 preferred_zone->compact_defer_shift = 0;
56de7263
MG
1790 count_vm_event(COMPACTSUCCESS);
1791 return page;
1792 }
1793
1794 /*
1795 * It's bad if compaction run occurs and fails.
1796 * The most likely reason is that pages exist,
1797 * but not enough to satisfy watermarks.
1798 */
1799 count_vm_event(COMPACTFAIL);
4f92e258 1800 defer_compaction(preferred_zone);
56de7263
MG
1801
1802 cond_resched();
1803 }
1804
1805 return NULL;
1806}
1807#else
1808static inline struct page *
1809__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1810 struct zonelist *zonelist, enum zone_type high_zoneidx,
1811 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1812 int migratetype, unsigned long *did_some_progress)
1813{
1814 return NULL;
1815}
1816#endif /* CONFIG_COMPACTION */
1817
11e33f6a
MG
1818/* The really slow allocator path where we enter direct reclaim */
1819static inline struct page *
1820__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1821 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1822 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1823 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1824{
1825 struct page *page = NULL;
1826 struct reclaim_state reclaim_state;
1827 struct task_struct *p = current;
1828
1829 cond_resched();
1830
1831 /* We now go into synchronous reclaim */
1832 cpuset_memory_pressure_bump();
11e33f6a
MG
1833 p->flags |= PF_MEMALLOC;
1834 lockdep_set_current_reclaim_state(gfp_mask);
1835 reclaim_state.reclaimed_slab = 0;
1836 p->reclaim_state = &reclaim_state;
1837
1838 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1839
1840 p->reclaim_state = NULL;
1841 lockdep_clear_current_reclaim_state();
1842 p->flags &= ~PF_MEMALLOC;
1843
1844 cond_resched();
1845
1846 if (order != 0)
1847 drain_all_pages();
1848
1849 if (likely(*did_some_progress))
1850 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1851 zonelist, high_zoneidx,
3dd28266
MG
1852 alloc_flags, preferred_zone,
1853 migratetype);
11e33f6a
MG
1854 return page;
1855}
1856
1da177e4 1857/*
11e33f6a
MG
1858 * This is called in the allocator slow-path if the allocation request is of
1859 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 1860 */
11e33f6a
MG
1861static inline struct page *
1862__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1863 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1864 nodemask_t *nodemask, struct zone *preferred_zone,
1865 int migratetype)
11e33f6a
MG
1866{
1867 struct page *page;
1868
1869 do {
1870 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1871 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 1872 preferred_zone, migratetype);
11e33f6a
MG
1873
1874 if (!page && gfp_mask & __GFP_NOFAIL)
8aa7e847 1875 congestion_wait(BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
1876 } while (!page && (gfp_mask & __GFP_NOFAIL));
1877
1878 return page;
1879}
1880
1881static inline
1882void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1883 enum zone_type high_zoneidx)
1da177e4 1884{
dd1a239f
MG
1885 struct zoneref *z;
1886 struct zone *zone;
1da177e4 1887
11e33f6a
MG
1888 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1889 wakeup_kswapd(zone, order);
1890}
cf40bd16 1891
341ce06f
PZ
1892static inline int
1893gfp_to_alloc_flags(gfp_t gfp_mask)
1894{
1895 struct task_struct *p = current;
1896 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1897 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 1898
a56f57ff
MG
1899 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1900 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
933e312e 1901
341ce06f
PZ
1902 /*
1903 * The caller may dip into page reserves a bit more if the caller
1904 * cannot run direct reclaim, or if the caller has realtime scheduling
1905 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1906 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1907 */
a56f57ff 1908 alloc_flags |= (gfp_mask & __GFP_HIGH);
1da177e4 1909
341ce06f
PZ
1910 if (!wait) {
1911 alloc_flags |= ALLOC_HARDER;
523b9458 1912 /*
341ce06f
PZ
1913 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1914 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 1915 */
341ce06f 1916 alloc_flags &= ~ALLOC_CPUSET;
9d0ed60f 1917 } else if (unlikely(rt_task(p)) && !in_interrupt())
341ce06f
PZ
1918 alloc_flags |= ALLOC_HARDER;
1919
1920 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1921 if (!in_interrupt() &&
1922 ((p->flags & PF_MEMALLOC) ||
1923 unlikely(test_thread_flag(TIF_MEMDIE))))
1924 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 1925 }
6b1de916 1926
341ce06f
PZ
1927 return alloc_flags;
1928}
1929
11e33f6a
MG
1930static inline struct page *
1931__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1932 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1933 nodemask_t *nodemask, struct zone *preferred_zone,
1934 int migratetype)
11e33f6a
MG
1935{
1936 const gfp_t wait = gfp_mask & __GFP_WAIT;
1937 struct page *page = NULL;
1938 int alloc_flags;
1939 unsigned long pages_reclaimed = 0;
1940 unsigned long did_some_progress;
1941 struct task_struct *p = current;
1da177e4 1942
72807a74
MG
1943 /*
1944 * In the slowpath, we sanity check order to avoid ever trying to
1945 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1946 * be using allocators in order of preference for an area that is
1947 * too large.
1948 */
1fc28b70
MG
1949 if (order >= MAX_ORDER) {
1950 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 1951 return NULL;
1fc28b70 1952 }
1da177e4 1953
952f3b51
CL
1954 /*
1955 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1956 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1957 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1958 * using a larger set of nodes after it has established that the
1959 * allowed per node queues are empty and that nodes are
1960 * over allocated.
1961 */
1962 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1963 goto nopage;
1964
cc4a6851 1965restart:
11e33f6a 1966 wake_all_kswapd(order, zonelist, high_zoneidx);
1da177e4 1967
9bf2229f 1968 /*
7fb1d9fc
RS
1969 * OK, we're below the kswapd watermark and have kicked background
1970 * reclaim. Now things get more complex, so set up alloc_flags according
1971 * to how we want to proceed.
9bf2229f 1972 */
341ce06f 1973 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 1974
341ce06f 1975 /* This is the last chance, in general, before the goto nopage. */
19770b32 1976 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
1977 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1978 preferred_zone, migratetype);
7fb1d9fc
RS
1979 if (page)
1980 goto got_pg;
1da177e4 1981
b43a57bb 1982rebalance:
11e33f6a 1983 /* Allocate without watermarks if the context allows */
341ce06f
PZ
1984 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1985 page = __alloc_pages_high_priority(gfp_mask, order,
1986 zonelist, high_zoneidx, nodemask,
1987 preferred_zone, migratetype);
1988 if (page)
1989 goto got_pg;
1da177e4
LT
1990 }
1991
1992 /* Atomic allocations - we can't balance anything */
1993 if (!wait)
1994 goto nopage;
1995
341ce06f
PZ
1996 /* Avoid recursion of direct reclaim */
1997 if (p->flags & PF_MEMALLOC)
1998 goto nopage;
1999
6583bb64
DR
2000 /* Avoid allocations with no watermarks from looping endlessly */
2001 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2002 goto nopage;
2003
56de7263
MG
2004 /* Try direct compaction */
2005 page = __alloc_pages_direct_compact(gfp_mask, order,
2006 zonelist, high_zoneidx,
2007 nodemask,
2008 alloc_flags, preferred_zone,
2009 migratetype, &did_some_progress);
2010 if (page)
2011 goto got_pg;
2012
11e33f6a
MG
2013 /* Try direct reclaim and then allocating */
2014 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2015 zonelist, high_zoneidx,
2016 nodemask,
5117f45d 2017 alloc_flags, preferred_zone,
3dd28266 2018 migratetype, &did_some_progress);
11e33f6a
MG
2019 if (page)
2020 goto got_pg;
1da177e4 2021
e33c3b5e 2022 /*
11e33f6a
MG
2023 * If we failed to make any progress reclaiming, then we are
2024 * running out of options and have to consider going OOM
e33c3b5e 2025 */
11e33f6a
MG
2026 if (!did_some_progress) {
2027 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2028 if (oom_killer_disabled)
2029 goto nopage;
11e33f6a
MG
2030 page = __alloc_pages_may_oom(gfp_mask, order,
2031 zonelist, high_zoneidx,
3dd28266
MG
2032 nodemask, preferred_zone,
2033 migratetype);
11e33f6a
MG
2034 if (page)
2035 goto got_pg;
1da177e4 2036
11e33f6a 2037 /*
82553a93
DR
2038 * The OOM killer does not trigger for high-order
2039 * ~__GFP_NOFAIL allocations so if no progress is being
2040 * made, there are no other options and retrying is
2041 * unlikely to help.
11e33f6a 2042 */
82553a93
DR
2043 if (order > PAGE_ALLOC_COSTLY_ORDER &&
2044 !(gfp_mask & __GFP_NOFAIL))
11e33f6a 2045 goto nopage;
e2c55dc8 2046
ff0ceb9d
DR
2047 goto restart;
2048 }
1da177e4
LT
2049 }
2050
11e33f6a 2051 /* Check if we should retry the allocation */
a41f24ea 2052 pages_reclaimed += did_some_progress;
11e33f6a
MG
2053 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2054 /* Wait for some write requests to complete then retry */
8aa7e847 2055 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
2056 goto rebalance;
2057 }
2058
2059nopage:
2060 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2061 printk(KERN_WARNING "%s: page allocation failure."
2062 " order:%d, mode:0x%x\n",
2063 p->comm, order, gfp_mask);
2064 dump_stack();
578c2fd6 2065 show_mem();
1da177e4 2066 }
b1eeab67 2067 return page;
1da177e4 2068got_pg:
b1eeab67
VN
2069 if (kmemcheck_enabled)
2070 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 2071 return page;
11e33f6a 2072
1da177e4 2073}
11e33f6a
MG
2074
2075/*
2076 * This is the 'heart' of the zoned buddy allocator.
2077 */
2078struct page *
2079__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2080 struct zonelist *zonelist, nodemask_t *nodemask)
2081{
2082 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2083 struct zone *preferred_zone;
11e33f6a 2084 struct page *page;
3dd28266 2085 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a 2086
dcce284a
BH
2087 gfp_mask &= gfp_allowed_mask;
2088
11e33f6a
MG
2089 lockdep_trace_alloc(gfp_mask);
2090
2091 might_sleep_if(gfp_mask & __GFP_WAIT);
2092
2093 if (should_fail_alloc_page(gfp_mask, order))
2094 return NULL;
2095
2096 /*
2097 * Check the zones suitable for the gfp_mask contain at least one
2098 * valid zone. It's possible to have an empty zonelist as a result
2099 * of GFP_THISNODE and a memoryless node
2100 */
2101 if (unlikely(!zonelist->_zonerefs->zone))
2102 return NULL;
2103
c0ff7453 2104 get_mems_allowed();
5117f45d
MG
2105 /* The preferred zone is used for statistics later */
2106 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
c0ff7453
MX
2107 if (!preferred_zone) {
2108 put_mems_allowed();
5117f45d 2109 return NULL;
c0ff7453 2110 }
5117f45d
MG
2111
2112 /* First allocation attempt */
11e33f6a 2113 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 2114 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 2115 preferred_zone, migratetype);
11e33f6a
MG
2116 if (unlikely(!page))
2117 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2118 zonelist, high_zoneidx, nodemask,
3dd28266 2119 preferred_zone, migratetype);
c0ff7453 2120 put_mems_allowed();
11e33f6a 2121
4b4f278c 2122 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
11e33f6a 2123 return page;
1da177e4 2124}
d239171e 2125EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2126
2127/*
2128 * Common helper functions.
2129 */
920c7a5d 2130unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2131{
945a1113
AM
2132 struct page *page;
2133
2134 /*
2135 * __get_free_pages() returns a 32-bit address, which cannot represent
2136 * a highmem page
2137 */
2138 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2139
1da177e4
LT
2140 page = alloc_pages(gfp_mask, order);
2141 if (!page)
2142 return 0;
2143 return (unsigned long) page_address(page);
2144}
1da177e4
LT
2145EXPORT_SYMBOL(__get_free_pages);
2146
920c7a5d 2147unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2148{
945a1113 2149 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2150}
1da177e4
LT
2151EXPORT_SYMBOL(get_zeroed_page);
2152
2153void __pagevec_free(struct pagevec *pvec)
2154{
2155 int i = pagevec_count(pvec);
2156
4b4f278c
MG
2157 while (--i >= 0) {
2158 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
1da177e4 2159 free_hot_cold_page(pvec->pages[i], pvec->cold);
4b4f278c 2160 }
1da177e4
LT
2161}
2162
920c7a5d 2163void __free_pages(struct page *page, unsigned int order)
1da177e4 2164{
b5810039 2165 if (put_page_testzero(page)) {
1da177e4 2166 if (order == 0)
fc91668e 2167 free_hot_cold_page(page, 0);
1da177e4
LT
2168 else
2169 __free_pages_ok(page, order);
2170 }
2171}
2172
2173EXPORT_SYMBOL(__free_pages);
2174
920c7a5d 2175void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2176{
2177 if (addr != 0) {
725d704e 2178 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2179 __free_pages(virt_to_page((void *)addr), order);
2180 }
2181}
2182
2183EXPORT_SYMBOL(free_pages);
2184
2be0ffe2
TT
2185/**
2186 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2187 * @size: the number of bytes to allocate
2188 * @gfp_mask: GFP flags for the allocation
2189 *
2190 * This function is similar to alloc_pages(), except that it allocates the
2191 * minimum number of pages to satisfy the request. alloc_pages() can only
2192 * allocate memory in power-of-two pages.
2193 *
2194 * This function is also limited by MAX_ORDER.
2195 *
2196 * Memory allocated by this function must be released by free_pages_exact().
2197 */
2198void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2199{
2200 unsigned int order = get_order(size);
2201 unsigned long addr;
2202
2203 addr = __get_free_pages(gfp_mask, order);
2204 if (addr) {
2205 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2206 unsigned long used = addr + PAGE_ALIGN(size);
2207
5bfd7560 2208 split_page(virt_to_page((void *)addr), order);
2be0ffe2
TT
2209 while (used < alloc_end) {
2210 free_page(used);
2211 used += PAGE_SIZE;
2212 }
2213 }
2214
2215 return (void *)addr;
2216}
2217EXPORT_SYMBOL(alloc_pages_exact);
2218
2219/**
2220 * free_pages_exact - release memory allocated via alloc_pages_exact()
2221 * @virt: the value returned by alloc_pages_exact.
2222 * @size: size of allocation, same value as passed to alloc_pages_exact().
2223 *
2224 * Release the memory allocated by a previous call to alloc_pages_exact.
2225 */
2226void free_pages_exact(void *virt, size_t size)
2227{
2228 unsigned long addr = (unsigned long)virt;
2229 unsigned long end = addr + PAGE_ALIGN(size);
2230
2231 while (addr < end) {
2232 free_page(addr);
2233 addr += PAGE_SIZE;
2234 }
2235}
2236EXPORT_SYMBOL(free_pages_exact);
2237
1da177e4
LT
2238static unsigned int nr_free_zone_pages(int offset)
2239{
dd1a239f 2240 struct zoneref *z;
54a6eb5c
MG
2241 struct zone *zone;
2242
e310fd43 2243 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2244 unsigned int sum = 0;
2245
0e88460d 2246 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2247
54a6eb5c 2248 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2249 unsigned long size = zone->present_pages;
41858966 2250 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2251 if (size > high)
2252 sum += size - high;
1da177e4
LT
2253 }
2254
2255 return sum;
2256}
2257
2258/*
2259 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2260 */
2261unsigned int nr_free_buffer_pages(void)
2262{
af4ca457 2263 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2264}
c2f1a551 2265EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2266
2267/*
2268 * Amount of free RAM allocatable within all zones
2269 */
2270unsigned int nr_free_pagecache_pages(void)
2271{
2a1e274a 2272 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2273}
08e0f6a9
CL
2274
2275static inline void show_node(struct zone *zone)
1da177e4 2276{
08e0f6a9 2277 if (NUMA_BUILD)
25ba77c1 2278 printk("Node %d ", zone_to_nid(zone));
1da177e4 2279}
1da177e4 2280
1da177e4
LT
2281void si_meminfo(struct sysinfo *val)
2282{
2283 val->totalram = totalram_pages;
2284 val->sharedram = 0;
d23ad423 2285 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2286 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2287 val->totalhigh = totalhigh_pages;
2288 val->freehigh = nr_free_highpages();
1da177e4
LT
2289 val->mem_unit = PAGE_SIZE;
2290}
2291
2292EXPORT_SYMBOL(si_meminfo);
2293
2294#ifdef CONFIG_NUMA
2295void si_meminfo_node(struct sysinfo *val, int nid)
2296{
2297 pg_data_t *pgdat = NODE_DATA(nid);
2298
2299 val->totalram = pgdat->node_present_pages;
d23ad423 2300 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2301#ifdef CONFIG_HIGHMEM
1da177e4 2302 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2303 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2304 NR_FREE_PAGES);
98d2b0eb
CL
2305#else
2306 val->totalhigh = 0;
2307 val->freehigh = 0;
2308#endif
1da177e4
LT
2309 val->mem_unit = PAGE_SIZE;
2310}
2311#endif
2312
2313#define K(x) ((x) << (PAGE_SHIFT-10))
2314
2315/*
2316 * Show free area list (used inside shift_scroll-lock stuff)
2317 * We also calculate the percentage fragmentation. We do this by counting the
2318 * memory on each free list with the exception of the first item on the list.
2319 */
2320void show_free_areas(void)
2321{
c7241913 2322 int cpu;
1da177e4
LT
2323 struct zone *zone;
2324
ee99c71c 2325 for_each_populated_zone(zone) {
c7241913
JS
2326 show_node(zone);
2327 printk("%s per-cpu:\n", zone->name);
1da177e4 2328
6b482c67 2329 for_each_online_cpu(cpu) {
1da177e4
LT
2330 struct per_cpu_pageset *pageset;
2331
99dcc3e5 2332 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2333
3dfa5721
CL
2334 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2335 cpu, pageset->pcp.high,
2336 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2337 }
2338 }
2339
a731286d
KM
2340 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2341 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2342 " unevictable:%lu"
b76146ed 2343 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2344 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2345 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2346 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2347 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2348 global_page_state(NR_ISOLATED_ANON),
2349 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2350 global_page_state(NR_INACTIVE_FILE),
a731286d 2351 global_page_state(NR_ISOLATED_FILE),
7b854121 2352 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2353 global_page_state(NR_FILE_DIRTY),
ce866b34 2354 global_page_state(NR_WRITEBACK),
fd39fc85 2355 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2356 global_page_state(NR_FREE_PAGES),
3701b033
KM
2357 global_page_state(NR_SLAB_RECLAIMABLE),
2358 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2359 global_page_state(NR_FILE_MAPPED),
4b02108a 2360 global_page_state(NR_SHMEM),
a25700a5
AM
2361 global_page_state(NR_PAGETABLE),
2362 global_page_state(NR_BOUNCE));
1da177e4 2363
ee99c71c 2364 for_each_populated_zone(zone) {
1da177e4
LT
2365 int i;
2366
2367 show_node(zone);
2368 printk("%s"
2369 " free:%lukB"
2370 " min:%lukB"
2371 " low:%lukB"
2372 " high:%lukB"
4f98a2fe
RR
2373 " active_anon:%lukB"
2374 " inactive_anon:%lukB"
2375 " active_file:%lukB"
2376 " inactive_file:%lukB"
7b854121 2377 " unevictable:%lukB"
a731286d
KM
2378 " isolated(anon):%lukB"
2379 " isolated(file):%lukB"
1da177e4 2380 " present:%lukB"
4a0aa73f
KM
2381 " mlocked:%lukB"
2382 " dirty:%lukB"
2383 " writeback:%lukB"
2384 " mapped:%lukB"
4b02108a 2385 " shmem:%lukB"
4a0aa73f
KM
2386 " slab_reclaimable:%lukB"
2387 " slab_unreclaimable:%lukB"
c6a7f572 2388 " kernel_stack:%lukB"
4a0aa73f
KM
2389 " pagetables:%lukB"
2390 " unstable:%lukB"
2391 " bounce:%lukB"
2392 " writeback_tmp:%lukB"
1da177e4
LT
2393 " pages_scanned:%lu"
2394 " all_unreclaimable? %s"
2395 "\n",
2396 zone->name,
d23ad423 2397 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2398 K(min_wmark_pages(zone)),
2399 K(low_wmark_pages(zone)),
2400 K(high_wmark_pages(zone)),
4f98a2fe
RR
2401 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2402 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2403 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2404 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2405 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2406 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2407 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2408 K(zone->present_pages),
4a0aa73f
KM
2409 K(zone_page_state(zone, NR_MLOCK)),
2410 K(zone_page_state(zone, NR_FILE_DIRTY)),
2411 K(zone_page_state(zone, NR_WRITEBACK)),
2412 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2413 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2414 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2415 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2416 zone_page_state(zone, NR_KERNEL_STACK) *
2417 THREAD_SIZE / 1024,
4a0aa73f
KM
2418 K(zone_page_state(zone, NR_PAGETABLE)),
2419 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2420 K(zone_page_state(zone, NR_BOUNCE)),
2421 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2422 zone->pages_scanned,
93e4a89a 2423 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2424 );
2425 printk("lowmem_reserve[]:");
2426 for (i = 0; i < MAX_NR_ZONES; i++)
2427 printk(" %lu", zone->lowmem_reserve[i]);
2428 printk("\n");
2429 }
2430
ee99c71c 2431 for_each_populated_zone(zone) {
8f9de51a 2432 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
2433
2434 show_node(zone);
2435 printk("%s: ", zone->name);
1da177e4
LT
2436
2437 spin_lock_irqsave(&zone->lock, flags);
2438 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2439 nr[order] = zone->free_area[order].nr_free;
2440 total += nr[order] << order;
1da177e4
LT
2441 }
2442 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2443 for (order = 0; order < MAX_ORDER; order++)
2444 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2445 printk("= %lukB\n", K(total));
2446 }
2447
e6f3602d
LW
2448 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2449
1da177e4
LT
2450 show_swap_cache_info();
2451}
2452
19770b32
MG
2453static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2454{
2455 zoneref->zone = zone;
2456 zoneref->zone_idx = zone_idx(zone);
2457}
2458
1da177e4
LT
2459/*
2460 * Builds allocation fallback zone lists.
1a93205b
CL
2461 *
2462 * Add all populated zones of a node to the zonelist.
1da177e4 2463 */
f0c0b2b8
KH
2464static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2465 int nr_zones, enum zone_type zone_type)
1da177e4 2466{
1a93205b
CL
2467 struct zone *zone;
2468
98d2b0eb 2469 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2470 zone_type++;
02a68a5e
CL
2471
2472 do {
2f6726e5 2473 zone_type--;
070f8032 2474 zone = pgdat->node_zones + zone_type;
1a93205b 2475 if (populated_zone(zone)) {
dd1a239f
MG
2476 zoneref_set_zone(zone,
2477 &zonelist->_zonerefs[nr_zones++]);
070f8032 2478 check_highest_zone(zone_type);
1da177e4 2479 }
02a68a5e 2480
2f6726e5 2481 } while (zone_type);
070f8032 2482 return nr_zones;
1da177e4
LT
2483}
2484
f0c0b2b8
KH
2485
2486/*
2487 * zonelist_order:
2488 * 0 = automatic detection of better ordering.
2489 * 1 = order by ([node] distance, -zonetype)
2490 * 2 = order by (-zonetype, [node] distance)
2491 *
2492 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2493 * the same zonelist. So only NUMA can configure this param.
2494 */
2495#define ZONELIST_ORDER_DEFAULT 0
2496#define ZONELIST_ORDER_NODE 1
2497#define ZONELIST_ORDER_ZONE 2
2498
2499/* zonelist order in the kernel.
2500 * set_zonelist_order() will set this to NODE or ZONE.
2501 */
2502static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2503static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2504
2505
1da177e4 2506#ifdef CONFIG_NUMA
f0c0b2b8
KH
2507/* The value user specified ....changed by config */
2508static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2509/* string for sysctl */
2510#define NUMA_ZONELIST_ORDER_LEN 16
2511char numa_zonelist_order[16] = "default";
2512
2513/*
2514 * interface for configure zonelist ordering.
2515 * command line option "numa_zonelist_order"
2516 * = "[dD]efault - default, automatic configuration.
2517 * = "[nN]ode - order by node locality, then by zone within node
2518 * = "[zZ]one - order by zone, then by locality within zone
2519 */
2520
2521static int __parse_numa_zonelist_order(char *s)
2522{
2523 if (*s == 'd' || *s == 'D') {
2524 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2525 } else if (*s == 'n' || *s == 'N') {
2526 user_zonelist_order = ZONELIST_ORDER_NODE;
2527 } else if (*s == 'z' || *s == 'Z') {
2528 user_zonelist_order = ZONELIST_ORDER_ZONE;
2529 } else {
2530 printk(KERN_WARNING
2531 "Ignoring invalid numa_zonelist_order value: "
2532 "%s\n", s);
2533 return -EINVAL;
2534 }
2535 return 0;
2536}
2537
2538static __init int setup_numa_zonelist_order(char *s)
2539{
2540 if (s)
2541 return __parse_numa_zonelist_order(s);
2542 return 0;
2543}
2544early_param("numa_zonelist_order", setup_numa_zonelist_order);
2545
2546/*
2547 * sysctl handler for numa_zonelist_order
2548 */
2549int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 2550 void __user *buffer, size_t *length,
f0c0b2b8
KH
2551 loff_t *ppos)
2552{
2553 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2554 int ret;
443c6f14 2555 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 2556
443c6f14 2557 mutex_lock(&zl_order_mutex);
f0c0b2b8 2558 if (write)
443c6f14 2559 strcpy(saved_string, (char*)table->data);
8d65af78 2560 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 2561 if (ret)
443c6f14 2562 goto out;
f0c0b2b8
KH
2563 if (write) {
2564 int oldval = user_zonelist_order;
2565 if (__parse_numa_zonelist_order((char*)table->data)) {
2566 /*
2567 * bogus value. restore saved string
2568 */
2569 strncpy((char*)table->data, saved_string,
2570 NUMA_ZONELIST_ORDER_LEN);
2571 user_zonelist_order = oldval;
2572 } else if (oldval != user_zonelist_order)
2573 build_all_zonelists();
2574 }
443c6f14
AK
2575out:
2576 mutex_unlock(&zl_order_mutex);
2577 return ret;
f0c0b2b8
KH
2578}
2579
2580
62bc62a8 2581#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2582static int node_load[MAX_NUMNODES];
2583
1da177e4 2584/**
4dc3b16b 2585 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2586 * @node: node whose fallback list we're appending
2587 * @used_node_mask: nodemask_t of already used nodes
2588 *
2589 * We use a number of factors to determine which is the next node that should
2590 * appear on a given node's fallback list. The node should not have appeared
2591 * already in @node's fallback list, and it should be the next closest node
2592 * according to the distance array (which contains arbitrary distance values
2593 * from each node to each node in the system), and should also prefer nodes
2594 * with no CPUs, since presumably they'll have very little allocation pressure
2595 * on them otherwise.
2596 * It returns -1 if no node is found.
2597 */
f0c0b2b8 2598static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2599{
4cf808eb 2600 int n, val;
1da177e4
LT
2601 int min_val = INT_MAX;
2602 int best_node = -1;
a70f7302 2603 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2604
4cf808eb
LT
2605 /* Use the local node if we haven't already */
2606 if (!node_isset(node, *used_node_mask)) {
2607 node_set(node, *used_node_mask);
2608 return node;
2609 }
1da177e4 2610
37b07e41 2611 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2612
2613 /* Don't want a node to appear more than once */
2614 if (node_isset(n, *used_node_mask))
2615 continue;
2616
1da177e4
LT
2617 /* Use the distance array to find the distance */
2618 val = node_distance(node, n);
2619
4cf808eb
LT
2620 /* Penalize nodes under us ("prefer the next node") */
2621 val += (n < node);
2622
1da177e4 2623 /* Give preference to headless and unused nodes */
a70f7302
RR
2624 tmp = cpumask_of_node(n);
2625 if (!cpumask_empty(tmp))
1da177e4
LT
2626 val += PENALTY_FOR_NODE_WITH_CPUS;
2627
2628 /* Slight preference for less loaded node */
2629 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2630 val += node_load[n];
2631
2632 if (val < min_val) {
2633 min_val = val;
2634 best_node = n;
2635 }
2636 }
2637
2638 if (best_node >= 0)
2639 node_set(best_node, *used_node_mask);
2640
2641 return best_node;
2642}
2643
f0c0b2b8
KH
2644
2645/*
2646 * Build zonelists ordered by node and zones within node.
2647 * This results in maximum locality--normal zone overflows into local
2648 * DMA zone, if any--but risks exhausting DMA zone.
2649 */
2650static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2651{
f0c0b2b8 2652 int j;
1da177e4 2653 struct zonelist *zonelist;
f0c0b2b8 2654
54a6eb5c 2655 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2656 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2657 ;
2658 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2659 MAX_NR_ZONES - 1);
dd1a239f
MG
2660 zonelist->_zonerefs[j].zone = NULL;
2661 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2662}
2663
523b9458
CL
2664/*
2665 * Build gfp_thisnode zonelists
2666 */
2667static void build_thisnode_zonelists(pg_data_t *pgdat)
2668{
523b9458
CL
2669 int j;
2670 struct zonelist *zonelist;
2671
54a6eb5c
MG
2672 zonelist = &pgdat->node_zonelists[1];
2673 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2674 zonelist->_zonerefs[j].zone = NULL;
2675 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2676}
2677
f0c0b2b8
KH
2678/*
2679 * Build zonelists ordered by zone and nodes within zones.
2680 * This results in conserving DMA zone[s] until all Normal memory is
2681 * exhausted, but results in overflowing to remote node while memory
2682 * may still exist in local DMA zone.
2683 */
2684static int node_order[MAX_NUMNODES];
2685
2686static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2687{
f0c0b2b8
KH
2688 int pos, j, node;
2689 int zone_type; /* needs to be signed */
2690 struct zone *z;
2691 struct zonelist *zonelist;
2692
54a6eb5c
MG
2693 zonelist = &pgdat->node_zonelists[0];
2694 pos = 0;
2695 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2696 for (j = 0; j < nr_nodes; j++) {
2697 node = node_order[j];
2698 z = &NODE_DATA(node)->node_zones[zone_type];
2699 if (populated_zone(z)) {
dd1a239f
MG
2700 zoneref_set_zone(z,
2701 &zonelist->_zonerefs[pos++]);
54a6eb5c 2702 check_highest_zone(zone_type);
f0c0b2b8
KH
2703 }
2704 }
f0c0b2b8 2705 }
dd1a239f
MG
2706 zonelist->_zonerefs[pos].zone = NULL;
2707 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2708}
2709
2710static int default_zonelist_order(void)
2711{
2712 int nid, zone_type;
2713 unsigned long low_kmem_size,total_size;
2714 struct zone *z;
2715 int average_size;
2716 /*
88393161 2717 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
2718 * If they are really small and used heavily, the system can fall
2719 * into OOM very easily.
e325c90f 2720 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
2721 */
2722 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2723 low_kmem_size = 0;
2724 total_size = 0;
2725 for_each_online_node(nid) {
2726 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2727 z = &NODE_DATA(nid)->node_zones[zone_type];
2728 if (populated_zone(z)) {
2729 if (zone_type < ZONE_NORMAL)
2730 low_kmem_size += z->present_pages;
2731 total_size += z->present_pages;
e325c90f
DR
2732 } else if (zone_type == ZONE_NORMAL) {
2733 /*
2734 * If any node has only lowmem, then node order
2735 * is preferred to allow kernel allocations
2736 * locally; otherwise, they can easily infringe
2737 * on other nodes when there is an abundance of
2738 * lowmem available to allocate from.
2739 */
2740 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
2741 }
2742 }
2743 }
2744 if (!low_kmem_size || /* there are no DMA area. */
2745 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2746 return ZONELIST_ORDER_NODE;
2747 /*
2748 * look into each node's config.
2749 * If there is a node whose DMA/DMA32 memory is very big area on
2750 * local memory, NODE_ORDER may be suitable.
2751 */
37b07e41
LS
2752 average_size = total_size /
2753 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2754 for_each_online_node(nid) {
2755 low_kmem_size = 0;
2756 total_size = 0;
2757 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2758 z = &NODE_DATA(nid)->node_zones[zone_type];
2759 if (populated_zone(z)) {
2760 if (zone_type < ZONE_NORMAL)
2761 low_kmem_size += z->present_pages;
2762 total_size += z->present_pages;
2763 }
2764 }
2765 if (low_kmem_size &&
2766 total_size > average_size && /* ignore small node */
2767 low_kmem_size > total_size * 70/100)
2768 return ZONELIST_ORDER_NODE;
2769 }
2770 return ZONELIST_ORDER_ZONE;
2771}
2772
2773static void set_zonelist_order(void)
2774{
2775 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2776 current_zonelist_order = default_zonelist_order();
2777 else
2778 current_zonelist_order = user_zonelist_order;
2779}
2780
2781static void build_zonelists(pg_data_t *pgdat)
2782{
2783 int j, node, load;
2784 enum zone_type i;
1da177e4 2785 nodemask_t used_mask;
f0c0b2b8
KH
2786 int local_node, prev_node;
2787 struct zonelist *zonelist;
2788 int order = current_zonelist_order;
1da177e4
LT
2789
2790 /* initialize zonelists */
523b9458 2791 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2792 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2793 zonelist->_zonerefs[0].zone = NULL;
2794 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2795 }
2796
2797 /* NUMA-aware ordering of nodes */
2798 local_node = pgdat->node_id;
62bc62a8 2799 load = nr_online_nodes;
1da177e4
LT
2800 prev_node = local_node;
2801 nodes_clear(used_mask);
f0c0b2b8 2802
f0c0b2b8
KH
2803 memset(node_order, 0, sizeof(node_order));
2804 j = 0;
2805
1da177e4 2806 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2807 int distance = node_distance(local_node, node);
2808
2809 /*
2810 * If another node is sufficiently far away then it is better
2811 * to reclaim pages in a zone before going off node.
2812 */
2813 if (distance > RECLAIM_DISTANCE)
2814 zone_reclaim_mode = 1;
2815
1da177e4
LT
2816 /*
2817 * We don't want to pressure a particular node.
2818 * So adding penalty to the first node in same
2819 * distance group to make it round-robin.
2820 */
9eeff239 2821 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2822 node_load[node] = load;
2823
1da177e4
LT
2824 prev_node = node;
2825 load--;
f0c0b2b8
KH
2826 if (order == ZONELIST_ORDER_NODE)
2827 build_zonelists_in_node_order(pgdat, node);
2828 else
2829 node_order[j++] = node; /* remember order */
2830 }
1da177e4 2831
f0c0b2b8
KH
2832 if (order == ZONELIST_ORDER_ZONE) {
2833 /* calculate node order -- i.e., DMA last! */
2834 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2835 }
523b9458
CL
2836
2837 build_thisnode_zonelists(pgdat);
1da177e4
LT
2838}
2839
9276b1bc 2840/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2841static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2842{
54a6eb5c
MG
2843 struct zonelist *zonelist;
2844 struct zonelist_cache *zlc;
dd1a239f 2845 struct zoneref *z;
9276b1bc 2846
54a6eb5c
MG
2847 zonelist = &pgdat->node_zonelists[0];
2848 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2849 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2850 for (z = zonelist->_zonerefs; z->zone; z++)
2851 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2852}
2853
f0c0b2b8 2854
1da177e4
LT
2855#else /* CONFIG_NUMA */
2856
f0c0b2b8
KH
2857static void set_zonelist_order(void)
2858{
2859 current_zonelist_order = ZONELIST_ORDER_ZONE;
2860}
2861
2862static void build_zonelists(pg_data_t *pgdat)
1da177e4 2863{
19655d34 2864 int node, local_node;
54a6eb5c
MG
2865 enum zone_type j;
2866 struct zonelist *zonelist;
1da177e4
LT
2867
2868 local_node = pgdat->node_id;
1da177e4 2869
54a6eb5c
MG
2870 zonelist = &pgdat->node_zonelists[0];
2871 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2872
54a6eb5c
MG
2873 /*
2874 * Now we build the zonelist so that it contains the zones
2875 * of all the other nodes.
2876 * We don't want to pressure a particular node, so when
2877 * building the zones for node N, we make sure that the
2878 * zones coming right after the local ones are those from
2879 * node N+1 (modulo N)
2880 */
2881 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2882 if (!node_online(node))
2883 continue;
2884 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2885 MAX_NR_ZONES - 1);
1da177e4 2886 }
54a6eb5c
MG
2887 for (node = 0; node < local_node; node++) {
2888 if (!node_online(node))
2889 continue;
2890 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2891 MAX_NR_ZONES - 1);
2892 }
2893
dd1a239f
MG
2894 zonelist->_zonerefs[j].zone = NULL;
2895 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
2896}
2897
9276b1bc 2898/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2899static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2900{
54a6eb5c 2901 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
2902}
2903
1da177e4
LT
2904#endif /* CONFIG_NUMA */
2905
99dcc3e5
CL
2906/*
2907 * Boot pageset table. One per cpu which is going to be used for all
2908 * zones and all nodes. The parameters will be set in such a way
2909 * that an item put on a list will immediately be handed over to
2910 * the buddy list. This is safe since pageset manipulation is done
2911 * with interrupts disabled.
2912 *
2913 * The boot_pagesets must be kept even after bootup is complete for
2914 * unused processors and/or zones. They do play a role for bootstrapping
2915 * hotplugged processors.
2916 *
2917 * zoneinfo_show() and maybe other functions do
2918 * not check if the processor is online before following the pageset pointer.
2919 * Other parts of the kernel may not check if the zone is available.
2920 */
2921static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
2922static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
2923
9b1a4d38 2924/* return values int ....just for stop_machine() */
f0c0b2b8 2925static int __build_all_zonelists(void *dummy)
1da177e4 2926{
6811378e 2927 int nid;
99dcc3e5 2928 int cpu;
9276b1bc 2929
7f9cfb31
BL
2930#ifdef CONFIG_NUMA
2931 memset(node_load, 0, sizeof(node_load));
2932#endif
9276b1bc 2933 for_each_online_node(nid) {
7ea1530a
CL
2934 pg_data_t *pgdat = NODE_DATA(nid);
2935
2936 build_zonelists(pgdat);
2937 build_zonelist_cache(pgdat);
9276b1bc 2938 }
99dcc3e5
CL
2939
2940 /*
2941 * Initialize the boot_pagesets that are going to be used
2942 * for bootstrapping processors. The real pagesets for
2943 * each zone will be allocated later when the per cpu
2944 * allocator is available.
2945 *
2946 * boot_pagesets are used also for bootstrapping offline
2947 * cpus if the system is already booted because the pagesets
2948 * are needed to initialize allocators on a specific cpu too.
2949 * F.e. the percpu allocator needs the page allocator which
2950 * needs the percpu allocator in order to allocate its pagesets
2951 * (a chicken-egg dilemma).
2952 */
2953 for_each_possible_cpu(cpu)
2954 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
2955
6811378e
YG
2956 return 0;
2957}
2958
f0c0b2b8 2959void build_all_zonelists(void)
6811378e 2960{
f0c0b2b8
KH
2961 set_zonelist_order();
2962
6811378e 2963 if (system_state == SYSTEM_BOOTING) {
423b41d7 2964 __build_all_zonelists(NULL);
68ad8df4 2965 mminit_verify_zonelist();
6811378e
YG
2966 cpuset_init_current_mems_allowed();
2967 } else {
183ff22b 2968 /* we have to stop all cpus to guarantee there is no user
6811378e 2969 of zonelist */
9b1a4d38 2970 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
2971 /* cpuset refresh routine should be here */
2972 }
bd1e22b8 2973 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
2974 /*
2975 * Disable grouping by mobility if the number of pages in the
2976 * system is too low to allow the mechanism to work. It would be
2977 * more accurate, but expensive to check per-zone. This check is
2978 * made on memory-hotadd so a system can start with mobility
2979 * disabled and enable it later
2980 */
d9c23400 2981 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
2982 page_group_by_mobility_disabled = 1;
2983 else
2984 page_group_by_mobility_disabled = 0;
2985
2986 printk("Built %i zonelists in %s order, mobility grouping %s. "
2987 "Total pages: %ld\n",
62bc62a8 2988 nr_online_nodes,
f0c0b2b8 2989 zonelist_order_name[current_zonelist_order],
9ef9acb0 2990 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
2991 vm_total_pages);
2992#ifdef CONFIG_NUMA
2993 printk("Policy zone: %s\n", zone_names[policy_zone]);
2994#endif
1da177e4
LT
2995}
2996
2997/*
2998 * Helper functions to size the waitqueue hash table.
2999 * Essentially these want to choose hash table sizes sufficiently
3000 * large so that collisions trying to wait on pages are rare.
3001 * But in fact, the number of active page waitqueues on typical
3002 * systems is ridiculously low, less than 200. So this is even
3003 * conservative, even though it seems large.
3004 *
3005 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3006 * waitqueues, i.e. the size of the waitq table given the number of pages.
3007 */
3008#define PAGES_PER_WAITQUEUE 256
3009
cca448fe 3010#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3011static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3012{
3013 unsigned long size = 1;
3014
3015 pages /= PAGES_PER_WAITQUEUE;
3016
3017 while (size < pages)
3018 size <<= 1;
3019
3020 /*
3021 * Once we have dozens or even hundreds of threads sleeping
3022 * on IO we've got bigger problems than wait queue collision.
3023 * Limit the size of the wait table to a reasonable size.
3024 */
3025 size = min(size, 4096UL);
3026
3027 return max(size, 4UL);
3028}
cca448fe
YG
3029#else
3030/*
3031 * A zone's size might be changed by hot-add, so it is not possible to determine
3032 * a suitable size for its wait_table. So we use the maximum size now.
3033 *
3034 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3035 *
3036 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3037 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3038 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3039 *
3040 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3041 * or more by the traditional way. (See above). It equals:
3042 *
3043 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3044 * ia64(16K page size) : = ( 8G + 4M)byte.
3045 * powerpc (64K page size) : = (32G +16M)byte.
3046 */
3047static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3048{
3049 return 4096UL;
3050}
3051#endif
1da177e4
LT
3052
3053/*
3054 * This is an integer logarithm so that shifts can be used later
3055 * to extract the more random high bits from the multiplicative
3056 * hash function before the remainder is taken.
3057 */
3058static inline unsigned long wait_table_bits(unsigned long size)
3059{
3060 return ffz(~size);
3061}
3062
3063#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3064
56fd56b8 3065/*
d9c23400 3066 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3067 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3068 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3069 * higher will lead to a bigger reserve which will get freed as contiguous
3070 * blocks as reclaim kicks in
3071 */
3072static void setup_zone_migrate_reserve(struct zone *zone)
3073{
3074 unsigned long start_pfn, pfn, end_pfn;
3075 struct page *page;
78986a67
MG
3076 unsigned long block_migratetype;
3077 int reserve;
56fd56b8
MG
3078
3079 /* Get the start pfn, end pfn and the number of blocks to reserve */
3080 start_pfn = zone->zone_start_pfn;
3081 end_pfn = start_pfn + zone->spanned_pages;
41858966 3082 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3083 pageblock_order;
56fd56b8 3084
78986a67
MG
3085 /*
3086 * Reserve blocks are generally in place to help high-order atomic
3087 * allocations that are short-lived. A min_free_kbytes value that
3088 * would result in more than 2 reserve blocks for atomic allocations
3089 * is assumed to be in place to help anti-fragmentation for the
3090 * future allocation of hugepages at runtime.
3091 */
3092 reserve = min(2, reserve);
3093
d9c23400 3094 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3095 if (!pfn_valid(pfn))
3096 continue;
3097 page = pfn_to_page(pfn);
3098
344c790e
AL
3099 /* Watch out for overlapping nodes */
3100 if (page_to_nid(page) != zone_to_nid(zone))
3101 continue;
3102
56fd56b8
MG
3103 /* Blocks with reserved pages will never free, skip them. */
3104 if (PageReserved(page))
3105 continue;
3106
3107 block_migratetype = get_pageblock_migratetype(page);
3108
3109 /* If this block is reserved, account for it */
3110 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3111 reserve--;
3112 continue;
3113 }
3114
3115 /* Suitable for reserving if this block is movable */
3116 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3117 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3118 move_freepages_block(zone, page, MIGRATE_RESERVE);
3119 reserve--;
3120 continue;
3121 }
3122
3123 /*
3124 * If the reserve is met and this is a previous reserved block,
3125 * take it back
3126 */
3127 if (block_migratetype == MIGRATE_RESERVE) {
3128 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3129 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3130 }
3131 }
3132}
ac0e5b7a 3133
1da177e4
LT
3134/*
3135 * Initially all pages are reserved - free ones are freed
3136 * up by free_all_bootmem() once the early boot process is
3137 * done. Non-atomic initialization, single-pass.
3138 */
c09b4240 3139void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3140 unsigned long start_pfn, enum memmap_context context)
1da177e4 3141{
1da177e4 3142 struct page *page;
29751f69
AW
3143 unsigned long end_pfn = start_pfn + size;
3144 unsigned long pfn;
86051ca5 3145 struct zone *z;
1da177e4 3146
22b31eec
HD
3147 if (highest_memmap_pfn < end_pfn - 1)
3148 highest_memmap_pfn = end_pfn - 1;
3149
86051ca5 3150 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3151 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3152 /*
3153 * There can be holes in boot-time mem_map[]s
3154 * handed to this function. They do not
3155 * exist on hotplugged memory.
3156 */
3157 if (context == MEMMAP_EARLY) {
3158 if (!early_pfn_valid(pfn))
3159 continue;
3160 if (!early_pfn_in_nid(pfn, nid))
3161 continue;
3162 }
d41dee36
AW
3163 page = pfn_to_page(pfn);
3164 set_page_links(page, zone, nid, pfn);
708614e6 3165 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3166 init_page_count(page);
1da177e4
LT
3167 reset_page_mapcount(page);
3168 SetPageReserved(page);
b2a0ac88
MG
3169 /*
3170 * Mark the block movable so that blocks are reserved for
3171 * movable at startup. This will force kernel allocations
3172 * to reserve their blocks rather than leaking throughout
3173 * the address space during boot when many long-lived
56fd56b8
MG
3174 * kernel allocations are made. Later some blocks near
3175 * the start are marked MIGRATE_RESERVE by
3176 * setup_zone_migrate_reserve()
86051ca5
KH
3177 *
3178 * bitmap is created for zone's valid pfn range. but memmap
3179 * can be created for invalid pages (for alignment)
3180 * check here not to call set_pageblock_migratetype() against
3181 * pfn out of zone.
b2a0ac88 3182 */
86051ca5
KH
3183 if ((z->zone_start_pfn <= pfn)
3184 && (pfn < z->zone_start_pfn + z->spanned_pages)
3185 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3186 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3187
1da177e4
LT
3188 INIT_LIST_HEAD(&page->lru);
3189#ifdef WANT_PAGE_VIRTUAL
3190 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3191 if (!is_highmem_idx(zone))
3212c6be 3192 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3193#endif
1da177e4
LT
3194 }
3195}
3196
1e548deb 3197static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3198{
b2a0ac88
MG
3199 int order, t;
3200 for_each_migratetype_order(order, t) {
3201 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3202 zone->free_area[order].nr_free = 0;
3203 }
3204}
3205
3206#ifndef __HAVE_ARCH_MEMMAP_INIT
3207#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3208 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3209#endif
3210
1d6f4e60 3211static int zone_batchsize(struct zone *zone)
e7c8d5c9 3212{
3a6be87f 3213#ifdef CONFIG_MMU
e7c8d5c9
CL
3214 int batch;
3215
3216 /*
3217 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3218 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3219 *
3220 * OK, so we don't know how big the cache is. So guess.
3221 */
3222 batch = zone->present_pages / 1024;
ba56e91c
SR
3223 if (batch * PAGE_SIZE > 512 * 1024)
3224 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3225 batch /= 4; /* We effectively *= 4 below */
3226 if (batch < 1)
3227 batch = 1;
3228
3229 /*
0ceaacc9
NP
3230 * Clamp the batch to a 2^n - 1 value. Having a power
3231 * of 2 value was found to be more likely to have
3232 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3233 *
0ceaacc9
NP
3234 * For example if 2 tasks are alternately allocating
3235 * batches of pages, one task can end up with a lot
3236 * of pages of one half of the possible page colors
3237 * and the other with pages of the other colors.
e7c8d5c9 3238 */
9155203a 3239 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3240
e7c8d5c9 3241 return batch;
3a6be87f
DH
3242
3243#else
3244 /* The deferral and batching of frees should be suppressed under NOMMU
3245 * conditions.
3246 *
3247 * The problem is that NOMMU needs to be able to allocate large chunks
3248 * of contiguous memory as there's no hardware page translation to
3249 * assemble apparent contiguous memory from discontiguous pages.
3250 *
3251 * Queueing large contiguous runs of pages for batching, however,
3252 * causes the pages to actually be freed in smaller chunks. As there
3253 * can be a significant delay between the individual batches being
3254 * recycled, this leads to the once large chunks of space being
3255 * fragmented and becoming unavailable for high-order allocations.
3256 */
3257 return 0;
3258#endif
e7c8d5c9
CL
3259}
3260
b69a7288 3261static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3262{
3263 struct per_cpu_pages *pcp;
5f8dcc21 3264 int migratetype;
2caaad41 3265
1c6fe946
MD
3266 memset(p, 0, sizeof(*p));
3267
3dfa5721 3268 pcp = &p->pcp;
2caaad41 3269 pcp->count = 0;
2caaad41
CL
3270 pcp->high = 6 * batch;
3271 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3272 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3273 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3274}
3275
8ad4b1fb
RS
3276/*
3277 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3278 * to the value high for the pageset p.
3279 */
3280
3281static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3282 unsigned long high)
3283{
3284 struct per_cpu_pages *pcp;
3285
3dfa5721 3286 pcp = &p->pcp;
8ad4b1fb
RS
3287 pcp->high = high;
3288 pcp->batch = max(1UL, high/4);
3289 if ((high/4) > (PAGE_SHIFT * 8))
3290 pcp->batch = PAGE_SHIFT * 8;
3291}
3292
2caaad41 3293/*
99dcc3e5
CL
3294 * Allocate per cpu pagesets and initialize them.
3295 * Before this call only boot pagesets were available.
3296 * Boot pagesets will no longer be used by this processorr
3297 * after setup_per_cpu_pageset().
e7c8d5c9 3298 */
99dcc3e5 3299void __init setup_per_cpu_pageset(void)
e7c8d5c9 3300{
99dcc3e5
CL
3301 struct zone *zone;
3302 int cpu;
e7c8d5c9 3303
ee99c71c 3304 for_each_populated_zone(zone) {
99dcc3e5 3305 zone->pageset = alloc_percpu(struct per_cpu_pageset);
e7c8d5c9 3306
99dcc3e5
CL
3307 for_each_possible_cpu(cpu) {
3308 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
e7c8d5c9 3309
99dcc3e5 3310 setup_pageset(pcp, zone_batchsize(zone));
e7c8d5c9 3311
99dcc3e5
CL
3312 if (percpu_pagelist_fraction)
3313 setup_pagelist_highmark(pcp,
3314 (zone->present_pages /
3315 percpu_pagelist_fraction));
3316 }
e7c8d5c9 3317 }
e7c8d5c9
CL
3318}
3319
577a32f6 3320static noinline __init_refok
cca448fe 3321int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3322{
3323 int i;
3324 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3325 size_t alloc_size;
ed8ece2e
DH
3326
3327 /*
3328 * The per-page waitqueue mechanism uses hashed waitqueues
3329 * per zone.
3330 */
02b694de
YG
3331 zone->wait_table_hash_nr_entries =
3332 wait_table_hash_nr_entries(zone_size_pages);
3333 zone->wait_table_bits =
3334 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3335 alloc_size = zone->wait_table_hash_nr_entries
3336 * sizeof(wait_queue_head_t);
3337
cd94b9db 3338 if (!slab_is_available()) {
cca448fe
YG
3339 zone->wait_table = (wait_queue_head_t *)
3340 alloc_bootmem_node(pgdat, alloc_size);
3341 } else {
3342 /*
3343 * This case means that a zone whose size was 0 gets new memory
3344 * via memory hot-add.
3345 * But it may be the case that a new node was hot-added. In
3346 * this case vmalloc() will not be able to use this new node's
3347 * memory - this wait_table must be initialized to use this new
3348 * node itself as well.
3349 * To use this new node's memory, further consideration will be
3350 * necessary.
3351 */
8691f3a7 3352 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3353 }
3354 if (!zone->wait_table)
3355 return -ENOMEM;
ed8ece2e 3356
02b694de 3357 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3358 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3359
3360 return 0;
ed8ece2e
DH
3361}
3362
112067f0
SL
3363static int __zone_pcp_update(void *data)
3364{
3365 struct zone *zone = data;
3366 int cpu;
3367 unsigned long batch = zone_batchsize(zone), flags;
3368
2d30a1f6 3369 for_each_possible_cpu(cpu) {
112067f0
SL
3370 struct per_cpu_pageset *pset;
3371 struct per_cpu_pages *pcp;
3372
99dcc3e5 3373 pset = per_cpu_ptr(zone->pageset, cpu);
112067f0
SL
3374 pcp = &pset->pcp;
3375
3376 local_irq_save(flags);
5f8dcc21 3377 free_pcppages_bulk(zone, pcp->count, pcp);
112067f0
SL
3378 setup_pageset(pset, batch);
3379 local_irq_restore(flags);
3380 }
3381 return 0;
3382}
3383
3384void zone_pcp_update(struct zone *zone)
3385{
3386 stop_machine(__zone_pcp_update, zone, NULL);
3387}
3388
c09b4240 3389static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 3390{
99dcc3e5
CL
3391 /*
3392 * per cpu subsystem is not up at this point. The following code
3393 * relies on the ability of the linker to provide the
3394 * offset of a (static) per cpu variable into the per cpu area.
3395 */
3396 zone->pageset = &boot_pageset;
ed8ece2e 3397
f5335c0f 3398 if (zone->present_pages)
99dcc3e5
CL
3399 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3400 zone->name, zone->present_pages,
3401 zone_batchsize(zone));
ed8ece2e
DH
3402}
3403
718127cc
YG
3404__meminit int init_currently_empty_zone(struct zone *zone,
3405 unsigned long zone_start_pfn,
a2f3aa02
DH
3406 unsigned long size,
3407 enum memmap_context context)
ed8ece2e
DH
3408{
3409 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3410 int ret;
3411 ret = zone_wait_table_init(zone, size);
3412 if (ret)
3413 return ret;
ed8ece2e
DH
3414 pgdat->nr_zones = zone_idx(zone) + 1;
3415
ed8ece2e
DH
3416 zone->zone_start_pfn = zone_start_pfn;
3417
708614e6
MG
3418 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3419 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3420 pgdat->node_id,
3421 (unsigned long)zone_idx(zone),
3422 zone_start_pfn, (zone_start_pfn + size));
3423
1e548deb 3424 zone_init_free_lists(zone);
718127cc
YG
3425
3426 return 0;
ed8ece2e
DH
3427}
3428
c713216d
MG
3429#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3430/*
3431 * Basic iterator support. Return the first range of PFNs for a node
3432 * Note: nid == MAX_NUMNODES returns first region regardless of node
3433 */
a3142c8e 3434static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3435{
3436 int i;
3437
3438 for (i = 0; i < nr_nodemap_entries; i++)
3439 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3440 return i;
3441
3442 return -1;
3443}
3444
3445/*
3446 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3447 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3448 */
a3142c8e 3449static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3450{
3451 for (index = index + 1; index < nr_nodemap_entries; index++)
3452 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3453 return index;
3454
3455 return -1;
3456}
3457
3458#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3459/*
3460 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3461 * Architectures may implement their own version but if add_active_range()
3462 * was used and there are no special requirements, this is a convenient
3463 * alternative
3464 */
f2dbcfa7 3465int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3466{
3467 int i;
3468
3469 for (i = 0; i < nr_nodemap_entries; i++) {
3470 unsigned long start_pfn = early_node_map[i].start_pfn;
3471 unsigned long end_pfn = early_node_map[i].end_pfn;
3472
3473 if (start_pfn <= pfn && pfn < end_pfn)
3474 return early_node_map[i].nid;
3475 }
cc2559bc
KH
3476 /* This is a memory hole */
3477 return -1;
c713216d
MG
3478}
3479#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3480
f2dbcfa7
KH
3481int __meminit early_pfn_to_nid(unsigned long pfn)
3482{
cc2559bc
KH
3483 int nid;
3484
3485 nid = __early_pfn_to_nid(pfn);
3486 if (nid >= 0)
3487 return nid;
3488 /* just returns 0 */
3489 return 0;
f2dbcfa7
KH
3490}
3491
cc2559bc
KH
3492#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3493bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3494{
3495 int nid;
3496
3497 nid = __early_pfn_to_nid(pfn);
3498 if (nid >= 0 && nid != node)
3499 return false;
3500 return true;
3501}
3502#endif
f2dbcfa7 3503
c713216d
MG
3504/* Basic iterator support to walk early_node_map[] */
3505#define for_each_active_range_index_in_nid(i, nid) \
3506 for (i = first_active_region_index_in_nid(nid); i != -1; \
3507 i = next_active_region_index_in_nid(i, nid))
3508
3509/**
3510 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3511 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3512 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3513 *
3514 * If an architecture guarantees that all ranges registered with
3515 * add_active_ranges() contain no holes and may be freed, this
3516 * this function may be used instead of calling free_bootmem() manually.
3517 */
3518void __init free_bootmem_with_active_regions(int nid,
3519 unsigned long max_low_pfn)
3520{
3521 int i;
3522
3523 for_each_active_range_index_in_nid(i, nid) {
3524 unsigned long size_pages = 0;
3525 unsigned long end_pfn = early_node_map[i].end_pfn;
3526
3527 if (early_node_map[i].start_pfn >= max_low_pfn)
3528 continue;
3529
3530 if (end_pfn > max_low_pfn)
3531 end_pfn = max_low_pfn;
3532
3533 size_pages = end_pfn - early_node_map[i].start_pfn;
3534 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3535 PFN_PHYS(early_node_map[i].start_pfn),
3536 size_pages << PAGE_SHIFT);
3537 }
3538}
3539
08677214
YL
3540int __init add_from_early_node_map(struct range *range, int az,
3541 int nr_range, int nid)
3542{
3543 int i;
3544 u64 start, end;
3545
3546 /* need to go over early_node_map to find out good range for node */
3547 for_each_active_range_index_in_nid(i, nid) {
3548 start = early_node_map[i].start_pfn;
3549 end = early_node_map[i].end_pfn;
3550 nr_range = add_range(range, az, nr_range, start, end);
3551 }
3552 return nr_range;
3553}
3554
2ee78f7b 3555#ifdef CONFIG_NO_BOOTMEM
08677214
YL
3556void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3557 u64 goal, u64 limit)
3558{
3559 int i;
3560 void *ptr;
3561
3562 /* need to go over early_node_map to find out good range for node */
3563 for_each_active_range_index_in_nid(i, nid) {
3564 u64 addr;
3565 u64 ei_start, ei_last;
3566
3567 ei_last = early_node_map[i].end_pfn;
3568 ei_last <<= PAGE_SHIFT;
3569 ei_start = early_node_map[i].start_pfn;
3570 ei_start <<= PAGE_SHIFT;
3571 addr = find_early_area(ei_start, ei_last,
3572 goal, limit, size, align);
3573
3574 if (addr == -1ULL)
3575 continue;
3576
3577#if 0
3578 printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
3579 nid,
3580 ei_start, ei_last, goal, limit, size,
3581 align, addr);
3582#endif
3583
3584 ptr = phys_to_virt(addr);
3585 memset(ptr, 0, size);
3586 reserve_early_without_check(addr, addr + size, "BOOTMEM");
3587 return ptr;
3588 }
3589
3590 return NULL;
3591}
2ee78f7b 3592#endif
08677214
YL
3593
3594
b5bc6c0e
YL
3595void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3596{
3597 int i;
d52d53b8 3598 int ret;
b5bc6c0e 3599
d52d53b8
YL
3600 for_each_active_range_index_in_nid(i, nid) {
3601 ret = work_fn(early_node_map[i].start_pfn,
3602 early_node_map[i].end_pfn, data);
3603 if (ret)
3604 break;
3605 }
b5bc6c0e 3606}
c713216d
MG
3607/**
3608 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3609 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3610 *
3611 * If an architecture guarantees that all ranges registered with
3612 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3613 * function may be used instead of calling memory_present() manually.
c713216d
MG
3614 */
3615void __init sparse_memory_present_with_active_regions(int nid)
3616{
3617 int i;
3618
3619 for_each_active_range_index_in_nid(i, nid)
3620 memory_present(early_node_map[i].nid,
3621 early_node_map[i].start_pfn,
3622 early_node_map[i].end_pfn);
3623}
3624
3625/**
3626 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3627 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3628 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3629 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3630 *
3631 * It returns the start and end page frame of a node based on information
3632 * provided by an arch calling add_active_range(). If called for a node
3633 * with no available memory, a warning is printed and the start and end
88ca3b94 3634 * PFNs will be 0.
c713216d 3635 */
a3142c8e 3636void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3637 unsigned long *start_pfn, unsigned long *end_pfn)
3638{
3639 int i;
3640 *start_pfn = -1UL;
3641 *end_pfn = 0;
3642
3643 for_each_active_range_index_in_nid(i, nid) {
3644 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3645 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3646 }
3647
633c0666 3648 if (*start_pfn == -1UL)
c713216d 3649 *start_pfn = 0;
c713216d
MG
3650}
3651
2a1e274a
MG
3652/*
3653 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3654 * assumption is made that zones within a node are ordered in monotonic
3655 * increasing memory addresses so that the "highest" populated zone is used
3656 */
b69a7288 3657static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3658{
3659 int zone_index;
3660 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3661 if (zone_index == ZONE_MOVABLE)
3662 continue;
3663
3664 if (arch_zone_highest_possible_pfn[zone_index] >
3665 arch_zone_lowest_possible_pfn[zone_index])
3666 break;
3667 }
3668
3669 VM_BUG_ON(zone_index == -1);
3670 movable_zone = zone_index;
3671}
3672
3673/*
3674 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3675 * because it is sized independant of architecture. Unlike the other zones,
3676 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3677 * in each node depending on the size of each node and how evenly kernelcore
3678 * is distributed. This helper function adjusts the zone ranges
3679 * provided by the architecture for a given node by using the end of the
3680 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3681 * zones within a node are in order of monotonic increases memory addresses
3682 */
b69a7288 3683static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3684 unsigned long zone_type,
3685 unsigned long node_start_pfn,
3686 unsigned long node_end_pfn,
3687 unsigned long *zone_start_pfn,
3688 unsigned long *zone_end_pfn)
3689{
3690 /* Only adjust if ZONE_MOVABLE is on this node */
3691 if (zone_movable_pfn[nid]) {
3692 /* Size ZONE_MOVABLE */
3693 if (zone_type == ZONE_MOVABLE) {
3694 *zone_start_pfn = zone_movable_pfn[nid];
3695 *zone_end_pfn = min(node_end_pfn,
3696 arch_zone_highest_possible_pfn[movable_zone]);
3697
3698 /* Adjust for ZONE_MOVABLE starting within this range */
3699 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3700 *zone_end_pfn > zone_movable_pfn[nid]) {
3701 *zone_end_pfn = zone_movable_pfn[nid];
3702
3703 /* Check if this whole range is within ZONE_MOVABLE */
3704 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3705 *zone_start_pfn = *zone_end_pfn;
3706 }
3707}
3708
c713216d
MG
3709/*
3710 * Return the number of pages a zone spans in a node, including holes
3711 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3712 */
6ea6e688 3713static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3714 unsigned long zone_type,
3715 unsigned long *ignored)
3716{
3717 unsigned long node_start_pfn, node_end_pfn;
3718 unsigned long zone_start_pfn, zone_end_pfn;
3719
3720 /* Get the start and end of the node and zone */
3721 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3722 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3723 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3724 adjust_zone_range_for_zone_movable(nid, zone_type,
3725 node_start_pfn, node_end_pfn,
3726 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3727
3728 /* Check that this node has pages within the zone's required range */
3729 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3730 return 0;
3731
3732 /* Move the zone boundaries inside the node if necessary */
3733 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3734 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3735
3736 /* Return the spanned pages */
3737 return zone_end_pfn - zone_start_pfn;
3738}
3739
3740/*
3741 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3742 * then all holes in the requested range will be accounted for.
c713216d 3743 */
32996250 3744unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3745 unsigned long range_start_pfn,
3746 unsigned long range_end_pfn)
3747{
3748 int i = 0;
3749 unsigned long prev_end_pfn = 0, hole_pages = 0;
3750 unsigned long start_pfn;
3751
3752 /* Find the end_pfn of the first active range of pfns in the node */
3753 i = first_active_region_index_in_nid(nid);
3754 if (i == -1)
3755 return 0;
3756
b5445f95
MG
3757 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3758
9c7cd687
MG
3759 /* Account for ranges before physical memory on this node */
3760 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3761 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3762
3763 /* Find all holes for the zone within the node */
3764 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3765
3766 /* No need to continue if prev_end_pfn is outside the zone */
3767 if (prev_end_pfn >= range_end_pfn)
3768 break;
3769
3770 /* Make sure the end of the zone is not within the hole */
3771 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3772 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3773
3774 /* Update the hole size cound and move on */
3775 if (start_pfn > range_start_pfn) {
3776 BUG_ON(prev_end_pfn > start_pfn);
3777 hole_pages += start_pfn - prev_end_pfn;
3778 }
3779 prev_end_pfn = early_node_map[i].end_pfn;
3780 }
3781
9c7cd687
MG
3782 /* Account for ranges past physical memory on this node */
3783 if (range_end_pfn > prev_end_pfn)
0c6cb974 3784 hole_pages += range_end_pfn -
9c7cd687
MG
3785 max(range_start_pfn, prev_end_pfn);
3786
c713216d
MG
3787 return hole_pages;
3788}
3789
3790/**
3791 * absent_pages_in_range - Return number of page frames in holes within a range
3792 * @start_pfn: The start PFN to start searching for holes
3793 * @end_pfn: The end PFN to stop searching for holes
3794 *
88ca3b94 3795 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3796 */
3797unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3798 unsigned long end_pfn)
3799{
3800 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3801}
3802
3803/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3804static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3805 unsigned long zone_type,
3806 unsigned long *ignored)
3807{
9c7cd687
MG
3808 unsigned long node_start_pfn, node_end_pfn;
3809 unsigned long zone_start_pfn, zone_end_pfn;
3810
3811 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3812 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3813 node_start_pfn);
3814 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3815 node_end_pfn);
3816
2a1e274a
MG
3817 adjust_zone_range_for_zone_movable(nid, zone_type,
3818 node_start_pfn, node_end_pfn,
3819 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3820 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3821}
0e0b864e 3822
c713216d 3823#else
6ea6e688 3824static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3825 unsigned long zone_type,
3826 unsigned long *zones_size)
3827{
3828 return zones_size[zone_type];
3829}
3830
6ea6e688 3831static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3832 unsigned long zone_type,
3833 unsigned long *zholes_size)
3834{
3835 if (!zholes_size)
3836 return 0;
3837
3838 return zholes_size[zone_type];
3839}
0e0b864e 3840
c713216d
MG
3841#endif
3842
a3142c8e 3843static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3844 unsigned long *zones_size, unsigned long *zholes_size)
3845{
3846 unsigned long realtotalpages, totalpages = 0;
3847 enum zone_type i;
3848
3849 for (i = 0; i < MAX_NR_ZONES; i++)
3850 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3851 zones_size);
3852 pgdat->node_spanned_pages = totalpages;
3853
3854 realtotalpages = totalpages;
3855 for (i = 0; i < MAX_NR_ZONES; i++)
3856 realtotalpages -=
3857 zone_absent_pages_in_node(pgdat->node_id, i,
3858 zholes_size);
3859 pgdat->node_present_pages = realtotalpages;
3860 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3861 realtotalpages);
3862}
3863
835c134e
MG
3864#ifndef CONFIG_SPARSEMEM
3865/*
3866 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
3867 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3868 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
3869 * round what is now in bits to nearest long in bits, then return it in
3870 * bytes.
3871 */
3872static unsigned long __init usemap_size(unsigned long zonesize)
3873{
3874 unsigned long usemapsize;
3875
d9c23400
MG
3876 usemapsize = roundup(zonesize, pageblock_nr_pages);
3877 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
3878 usemapsize *= NR_PAGEBLOCK_BITS;
3879 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3880
3881 return usemapsize / 8;
3882}
3883
3884static void __init setup_usemap(struct pglist_data *pgdat,
3885 struct zone *zone, unsigned long zonesize)
3886{
3887 unsigned long usemapsize = usemap_size(zonesize);
3888 zone->pageblock_flags = NULL;
58a01a45 3889 if (usemapsize)
835c134e 3890 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
3891}
3892#else
3893static void inline setup_usemap(struct pglist_data *pgdat,
3894 struct zone *zone, unsigned long zonesize) {}
3895#endif /* CONFIG_SPARSEMEM */
3896
d9c23400 3897#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
3898
3899/* Return a sensible default order for the pageblock size. */
3900static inline int pageblock_default_order(void)
3901{
3902 if (HPAGE_SHIFT > PAGE_SHIFT)
3903 return HUGETLB_PAGE_ORDER;
3904
3905 return MAX_ORDER-1;
3906}
3907
d9c23400
MG
3908/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3909static inline void __init set_pageblock_order(unsigned int order)
3910{
3911 /* Check that pageblock_nr_pages has not already been setup */
3912 if (pageblock_order)
3913 return;
3914
3915 /*
3916 * Assume the largest contiguous order of interest is a huge page.
3917 * This value may be variable depending on boot parameters on IA64
3918 */
3919 pageblock_order = order;
3920}
3921#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3922
ba72cb8c
MG
3923/*
3924 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3925 * and pageblock_default_order() are unused as pageblock_order is set
3926 * at compile-time. See include/linux/pageblock-flags.h for the values of
3927 * pageblock_order based on the kernel config
3928 */
3929static inline int pageblock_default_order(unsigned int order)
3930{
3931 return MAX_ORDER-1;
3932}
d9c23400
MG
3933#define set_pageblock_order(x) do {} while (0)
3934
3935#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3936
1da177e4
LT
3937/*
3938 * Set up the zone data structures:
3939 * - mark all pages reserved
3940 * - mark all memory queues empty
3941 * - clear the memory bitmaps
3942 */
b5a0e011 3943static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3944 unsigned long *zones_size, unsigned long *zholes_size)
3945{
2f1b6248 3946 enum zone_type j;
ed8ece2e 3947 int nid = pgdat->node_id;
1da177e4 3948 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3949 int ret;
1da177e4 3950
208d54e5 3951 pgdat_resize_init(pgdat);
1da177e4
LT
3952 pgdat->nr_zones = 0;
3953 init_waitqueue_head(&pgdat->kswapd_wait);
3954 pgdat->kswapd_max_order = 0;
52d4b9ac 3955 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
3956
3957 for (j = 0; j < MAX_NR_ZONES; j++) {
3958 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3959 unsigned long size, realsize, memmap_pages;
b69408e8 3960 enum lru_list l;
1da177e4 3961
c713216d
MG
3962 size = zone_spanned_pages_in_node(nid, j, zones_size);
3963 realsize = size - zone_absent_pages_in_node(nid, j,
3964 zholes_size);
1da177e4 3965
0e0b864e
MG
3966 /*
3967 * Adjust realsize so that it accounts for how much memory
3968 * is used by this zone for memmap. This affects the watermark
3969 * and per-cpu initialisations
3970 */
f7232154
JW
3971 memmap_pages =
3972 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
3973 if (realsize >= memmap_pages) {
3974 realsize -= memmap_pages;
5594c8c8
YL
3975 if (memmap_pages)
3976 printk(KERN_DEBUG
3977 " %s zone: %lu pages used for memmap\n",
3978 zone_names[j], memmap_pages);
0e0b864e
MG
3979 } else
3980 printk(KERN_WARNING
3981 " %s zone: %lu pages exceeds realsize %lu\n",
3982 zone_names[j], memmap_pages, realsize);
3983
6267276f
CL
3984 /* Account for reserved pages */
3985 if (j == 0 && realsize > dma_reserve) {
0e0b864e 3986 realsize -= dma_reserve;
d903ef9f 3987 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 3988 zone_names[0], dma_reserve);
0e0b864e
MG
3989 }
3990
98d2b0eb 3991 if (!is_highmem_idx(j))
1da177e4
LT
3992 nr_kernel_pages += realsize;
3993 nr_all_pages += realsize;
3994
3995 zone->spanned_pages = size;
3996 zone->present_pages = realsize;
9614634f 3997#ifdef CONFIG_NUMA
d5f541ed 3998 zone->node = nid;
8417bba4 3999 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4000 / 100;
0ff38490 4001 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4002#endif
1da177e4
LT
4003 zone->name = zone_names[j];
4004 spin_lock_init(&zone->lock);
4005 spin_lock_init(&zone->lru_lock);
bdc8cb98 4006 zone_seqlock_init(zone);
1da177e4 4007 zone->zone_pgdat = pgdat;
1da177e4 4008
3bb1a852 4009 zone->prev_priority = DEF_PRIORITY;
1da177e4 4010
ed8ece2e 4011 zone_pcp_init(zone);
b69408e8
CL
4012 for_each_lru(l) {
4013 INIT_LIST_HEAD(&zone->lru[l].list);
f8629631 4014 zone->reclaim_stat.nr_saved_scan[l] = 0;
b69408e8 4015 }
6e901571
KM
4016 zone->reclaim_stat.recent_rotated[0] = 0;
4017 zone->reclaim_stat.recent_rotated[1] = 0;
4018 zone->reclaim_stat.recent_scanned[0] = 0;
4019 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 4020 zap_zone_vm_stats(zone);
e815af95 4021 zone->flags = 0;
1da177e4
LT
4022 if (!size)
4023 continue;
4024
ba72cb8c 4025 set_pageblock_order(pageblock_default_order());
835c134e 4026 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4027 ret = init_currently_empty_zone(zone, zone_start_pfn,
4028 size, MEMMAP_EARLY);
718127cc 4029 BUG_ON(ret);
76cdd58e 4030 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4031 zone_start_pfn += size;
1da177e4
LT
4032 }
4033}
4034
577a32f6 4035static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4036{
1da177e4
LT
4037 /* Skip empty nodes */
4038 if (!pgdat->node_spanned_pages)
4039 return;
4040
d41dee36 4041#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4042 /* ia64 gets its own node_mem_map, before this, without bootmem */
4043 if (!pgdat->node_mem_map) {
e984bb43 4044 unsigned long size, start, end;
d41dee36
AW
4045 struct page *map;
4046
e984bb43
BP
4047 /*
4048 * The zone's endpoints aren't required to be MAX_ORDER
4049 * aligned but the node_mem_map endpoints must be in order
4050 * for the buddy allocator to function correctly.
4051 */
4052 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4053 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4054 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4055 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4056 map = alloc_remap(pgdat->node_id, size);
4057 if (!map)
4058 map = alloc_bootmem_node(pgdat, size);
e984bb43 4059 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4060 }
12d810c1 4061#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4062 /*
4063 * With no DISCONTIG, the global mem_map is just set as node 0's
4064 */
c713216d 4065 if (pgdat == NODE_DATA(0)) {
1da177e4 4066 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
4067#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4068 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4069 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
4070#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4071 }
1da177e4 4072#endif
d41dee36 4073#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4074}
4075
9109fb7b
JW
4076void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4077 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4078{
9109fb7b
JW
4079 pg_data_t *pgdat = NODE_DATA(nid);
4080
1da177e4
LT
4081 pgdat->node_id = nid;
4082 pgdat->node_start_pfn = node_start_pfn;
c713216d 4083 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4084
4085 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4086#ifdef CONFIG_FLAT_NODE_MEM_MAP
4087 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4088 nid, (unsigned long)pgdat,
4089 (unsigned long)pgdat->node_mem_map);
4090#endif
1da177e4
LT
4091
4092 free_area_init_core(pgdat, zones_size, zholes_size);
4093}
4094
c713216d 4095#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
4096
4097#if MAX_NUMNODES > 1
4098/*
4099 * Figure out the number of possible node ids.
4100 */
4101static void __init setup_nr_node_ids(void)
4102{
4103 unsigned int node;
4104 unsigned int highest = 0;
4105
4106 for_each_node_mask(node, node_possible_map)
4107 highest = node;
4108 nr_node_ids = highest + 1;
4109}
4110#else
4111static inline void setup_nr_node_ids(void)
4112{
4113}
4114#endif
4115
c713216d
MG
4116/**
4117 * add_active_range - Register a range of PFNs backed by physical memory
4118 * @nid: The node ID the range resides on
4119 * @start_pfn: The start PFN of the available physical memory
4120 * @end_pfn: The end PFN of the available physical memory
4121 *
4122 * These ranges are stored in an early_node_map[] and later used by
4123 * free_area_init_nodes() to calculate zone sizes and holes. If the
4124 * range spans a memory hole, it is up to the architecture to ensure
4125 * the memory is not freed by the bootmem allocator. If possible
4126 * the range being registered will be merged with existing ranges.
4127 */
4128void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4129 unsigned long end_pfn)
4130{
4131 int i;
4132
6b74ab97
MG
4133 mminit_dprintk(MMINIT_TRACE, "memory_register",
4134 "Entering add_active_range(%d, %#lx, %#lx) "
4135 "%d entries of %d used\n",
4136 nid, start_pfn, end_pfn,
4137 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 4138
2dbb51c4
MG
4139 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4140
c713216d
MG
4141 /* Merge with existing active regions if possible */
4142 for (i = 0; i < nr_nodemap_entries; i++) {
4143 if (early_node_map[i].nid != nid)
4144 continue;
4145
4146 /* Skip if an existing region covers this new one */
4147 if (start_pfn >= early_node_map[i].start_pfn &&
4148 end_pfn <= early_node_map[i].end_pfn)
4149 return;
4150
4151 /* Merge forward if suitable */
4152 if (start_pfn <= early_node_map[i].end_pfn &&
4153 end_pfn > early_node_map[i].end_pfn) {
4154 early_node_map[i].end_pfn = end_pfn;
4155 return;
4156 }
4157
4158 /* Merge backward if suitable */
d2dbe08d 4159 if (start_pfn < early_node_map[i].start_pfn &&
c713216d
MG
4160 end_pfn >= early_node_map[i].start_pfn) {
4161 early_node_map[i].start_pfn = start_pfn;
4162 return;
4163 }
4164 }
4165
4166 /* Check that early_node_map is large enough */
4167 if (i >= MAX_ACTIVE_REGIONS) {
4168 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4169 MAX_ACTIVE_REGIONS);
4170 return;
4171 }
4172
4173 early_node_map[i].nid = nid;
4174 early_node_map[i].start_pfn = start_pfn;
4175 early_node_map[i].end_pfn = end_pfn;
4176 nr_nodemap_entries = i + 1;
4177}
4178
4179/**
cc1050ba 4180 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 4181 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
4182 * @start_pfn: The new PFN of the range
4183 * @end_pfn: The new PFN of the range
c713216d
MG
4184 *
4185 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
4186 * The map is kept near the end physical page range that has already been
4187 * registered. This function allows an arch to shrink an existing registered
4188 * range.
c713216d 4189 */
cc1050ba
YL
4190void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4191 unsigned long end_pfn)
c713216d 4192{
cc1a9d86
YL
4193 int i, j;
4194 int removed = 0;
c713216d 4195
cc1050ba
YL
4196 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4197 nid, start_pfn, end_pfn);
4198
c713216d 4199 /* Find the old active region end and shrink */
cc1a9d86 4200 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
4201 if (early_node_map[i].start_pfn >= start_pfn &&
4202 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 4203 /* clear it */
cc1050ba 4204 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
4205 early_node_map[i].end_pfn = 0;
4206 removed = 1;
4207 continue;
4208 }
cc1050ba
YL
4209 if (early_node_map[i].start_pfn < start_pfn &&
4210 early_node_map[i].end_pfn > start_pfn) {
4211 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4212 early_node_map[i].end_pfn = start_pfn;
4213 if (temp_end_pfn > end_pfn)
4214 add_active_range(nid, end_pfn, temp_end_pfn);
4215 continue;
4216 }
4217 if (early_node_map[i].start_pfn >= start_pfn &&
4218 early_node_map[i].end_pfn > end_pfn &&
4219 early_node_map[i].start_pfn < end_pfn) {
4220 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 4221 continue;
c713216d 4222 }
cc1a9d86
YL
4223 }
4224
4225 if (!removed)
4226 return;
4227
4228 /* remove the blank ones */
4229 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4230 if (early_node_map[i].nid != nid)
4231 continue;
4232 if (early_node_map[i].end_pfn)
4233 continue;
4234 /* we found it, get rid of it */
4235 for (j = i; j < nr_nodemap_entries - 1; j++)
4236 memcpy(&early_node_map[j], &early_node_map[j+1],
4237 sizeof(early_node_map[j]));
4238 j = nr_nodemap_entries - 1;
4239 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4240 nr_nodemap_entries--;
4241 }
c713216d
MG
4242}
4243
4244/**
4245 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 4246 *
c713216d
MG
4247 * During discovery, it may be found that a table like SRAT is invalid
4248 * and an alternative discovery method must be used. This function removes
4249 * all currently registered regions.
4250 */
88ca3b94 4251void __init remove_all_active_ranges(void)
c713216d
MG
4252{
4253 memset(early_node_map, 0, sizeof(early_node_map));
4254 nr_nodemap_entries = 0;
4255}
4256
4257/* Compare two active node_active_regions */
4258static int __init cmp_node_active_region(const void *a, const void *b)
4259{
4260 struct node_active_region *arange = (struct node_active_region *)a;
4261 struct node_active_region *brange = (struct node_active_region *)b;
4262
4263 /* Done this way to avoid overflows */
4264 if (arange->start_pfn > brange->start_pfn)
4265 return 1;
4266 if (arange->start_pfn < brange->start_pfn)
4267 return -1;
4268
4269 return 0;
4270}
4271
4272/* sort the node_map by start_pfn */
32996250 4273void __init sort_node_map(void)
c713216d
MG
4274{
4275 sort(early_node_map, (size_t)nr_nodemap_entries,
4276 sizeof(struct node_active_region),
4277 cmp_node_active_region, NULL);
4278}
4279
a6af2bc3 4280/* Find the lowest pfn for a node */
b69a7288 4281static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
4282{
4283 int i;
a6af2bc3 4284 unsigned long min_pfn = ULONG_MAX;
1abbfb41 4285
c713216d
MG
4286 /* Assuming a sorted map, the first range found has the starting pfn */
4287 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 4288 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 4289
a6af2bc3
MG
4290 if (min_pfn == ULONG_MAX) {
4291 printk(KERN_WARNING
2bc0d261 4292 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4293 return 0;
4294 }
4295
4296 return min_pfn;
c713216d
MG
4297}
4298
4299/**
4300 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4301 *
4302 * It returns the minimum PFN based on information provided via
88ca3b94 4303 * add_active_range().
c713216d
MG
4304 */
4305unsigned long __init find_min_pfn_with_active_regions(void)
4306{
4307 return find_min_pfn_for_node(MAX_NUMNODES);
4308}
4309
37b07e41
LS
4310/*
4311 * early_calculate_totalpages()
4312 * Sum pages in active regions for movable zone.
4313 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4314 */
484f51f8 4315static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
4316{
4317 int i;
4318 unsigned long totalpages = 0;
4319
37b07e41
LS
4320 for (i = 0; i < nr_nodemap_entries; i++) {
4321 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 4322 early_node_map[i].start_pfn;
37b07e41
LS
4323 totalpages += pages;
4324 if (pages)
4325 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4326 }
4327 return totalpages;
7e63efef
MG
4328}
4329
2a1e274a
MG
4330/*
4331 * Find the PFN the Movable zone begins in each node. Kernel memory
4332 * is spread evenly between nodes as long as the nodes have enough
4333 * memory. When they don't, some nodes will have more kernelcore than
4334 * others
4335 */
b69a7288 4336static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
4337{
4338 int i, nid;
4339 unsigned long usable_startpfn;
4340 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4341 /* save the state before borrow the nodemask */
4342 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4343 unsigned long totalpages = early_calculate_totalpages();
4344 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4345
7e63efef
MG
4346 /*
4347 * If movablecore was specified, calculate what size of
4348 * kernelcore that corresponds so that memory usable for
4349 * any allocation type is evenly spread. If both kernelcore
4350 * and movablecore are specified, then the value of kernelcore
4351 * will be used for required_kernelcore if it's greater than
4352 * what movablecore would have allowed.
4353 */
4354 if (required_movablecore) {
7e63efef
MG
4355 unsigned long corepages;
4356
4357 /*
4358 * Round-up so that ZONE_MOVABLE is at least as large as what
4359 * was requested by the user
4360 */
4361 required_movablecore =
4362 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4363 corepages = totalpages - required_movablecore;
4364
4365 required_kernelcore = max(required_kernelcore, corepages);
4366 }
4367
2a1e274a
MG
4368 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4369 if (!required_kernelcore)
66918dcd 4370 goto out;
2a1e274a
MG
4371
4372 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4373 find_usable_zone_for_movable();
4374 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4375
4376restart:
4377 /* Spread kernelcore memory as evenly as possible throughout nodes */
4378 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4379 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
4380 /*
4381 * Recalculate kernelcore_node if the division per node
4382 * now exceeds what is necessary to satisfy the requested
4383 * amount of memory for the kernel
4384 */
4385 if (required_kernelcore < kernelcore_node)
4386 kernelcore_node = required_kernelcore / usable_nodes;
4387
4388 /*
4389 * As the map is walked, we track how much memory is usable
4390 * by the kernel using kernelcore_remaining. When it is
4391 * 0, the rest of the node is usable by ZONE_MOVABLE
4392 */
4393 kernelcore_remaining = kernelcore_node;
4394
4395 /* Go through each range of PFNs within this node */
4396 for_each_active_range_index_in_nid(i, nid) {
4397 unsigned long start_pfn, end_pfn;
4398 unsigned long size_pages;
4399
4400 start_pfn = max(early_node_map[i].start_pfn,
4401 zone_movable_pfn[nid]);
4402 end_pfn = early_node_map[i].end_pfn;
4403 if (start_pfn >= end_pfn)
4404 continue;
4405
4406 /* Account for what is only usable for kernelcore */
4407 if (start_pfn < usable_startpfn) {
4408 unsigned long kernel_pages;
4409 kernel_pages = min(end_pfn, usable_startpfn)
4410 - start_pfn;
4411
4412 kernelcore_remaining -= min(kernel_pages,
4413 kernelcore_remaining);
4414 required_kernelcore -= min(kernel_pages,
4415 required_kernelcore);
4416
4417 /* Continue if range is now fully accounted */
4418 if (end_pfn <= usable_startpfn) {
4419
4420 /*
4421 * Push zone_movable_pfn to the end so
4422 * that if we have to rebalance
4423 * kernelcore across nodes, we will
4424 * not double account here
4425 */
4426 zone_movable_pfn[nid] = end_pfn;
4427 continue;
4428 }
4429 start_pfn = usable_startpfn;
4430 }
4431
4432 /*
4433 * The usable PFN range for ZONE_MOVABLE is from
4434 * start_pfn->end_pfn. Calculate size_pages as the
4435 * number of pages used as kernelcore
4436 */
4437 size_pages = end_pfn - start_pfn;
4438 if (size_pages > kernelcore_remaining)
4439 size_pages = kernelcore_remaining;
4440 zone_movable_pfn[nid] = start_pfn + size_pages;
4441
4442 /*
4443 * Some kernelcore has been met, update counts and
4444 * break if the kernelcore for this node has been
4445 * satisified
4446 */
4447 required_kernelcore -= min(required_kernelcore,
4448 size_pages);
4449 kernelcore_remaining -= size_pages;
4450 if (!kernelcore_remaining)
4451 break;
4452 }
4453 }
4454
4455 /*
4456 * If there is still required_kernelcore, we do another pass with one
4457 * less node in the count. This will push zone_movable_pfn[nid] further
4458 * along on the nodes that still have memory until kernelcore is
4459 * satisified
4460 */
4461 usable_nodes--;
4462 if (usable_nodes && required_kernelcore > usable_nodes)
4463 goto restart;
4464
4465 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4466 for (nid = 0; nid < MAX_NUMNODES; nid++)
4467 zone_movable_pfn[nid] =
4468 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4469
4470out:
4471 /* restore the node_state */
4472 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4473}
4474
37b07e41
LS
4475/* Any regular memory on that node ? */
4476static void check_for_regular_memory(pg_data_t *pgdat)
4477{
4478#ifdef CONFIG_HIGHMEM
4479 enum zone_type zone_type;
4480
4481 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4482 struct zone *zone = &pgdat->node_zones[zone_type];
4483 if (zone->present_pages)
4484 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4485 }
4486#endif
4487}
4488
c713216d
MG
4489/**
4490 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4491 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4492 *
4493 * This will call free_area_init_node() for each active node in the system.
4494 * Using the page ranges provided by add_active_range(), the size of each
4495 * zone in each node and their holes is calculated. If the maximum PFN
4496 * between two adjacent zones match, it is assumed that the zone is empty.
4497 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4498 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4499 * starts where the previous one ended. For example, ZONE_DMA32 starts
4500 * at arch_max_dma_pfn.
4501 */
4502void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4503{
4504 unsigned long nid;
db99100d 4505 int i;
c713216d 4506
a6af2bc3
MG
4507 /* Sort early_node_map as initialisation assumes it is sorted */
4508 sort_node_map();
4509
c713216d
MG
4510 /* Record where the zone boundaries are */
4511 memset(arch_zone_lowest_possible_pfn, 0,
4512 sizeof(arch_zone_lowest_possible_pfn));
4513 memset(arch_zone_highest_possible_pfn, 0,
4514 sizeof(arch_zone_highest_possible_pfn));
4515 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4516 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4517 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4518 if (i == ZONE_MOVABLE)
4519 continue;
c713216d
MG
4520 arch_zone_lowest_possible_pfn[i] =
4521 arch_zone_highest_possible_pfn[i-1];
4522 arch_zone_highest_possible_pfn[i] =
4523 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4524 }
2a1e274a
MG
4525 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4526 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4527
4528 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4529 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4530 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4531
c713216d
MG
4532 /* Print out the zone ranges */
4533 printk("Zone PFN ranges:\n");
2a1e274a
MG
4534 for (i = 0; i < MAX_NR_ZONES; i++) {
4535 if (i == ZONE_MOVABLE)
4536 continue;
72f0ba02
DR
4537 printk(" %-8s ", zone_names[i]);
4538 if (arch_zone_lowest_possible_pfn[i] ==
4539 arch_zone_highest_possible_pfn[i])
4540 printk("empty\n");
4541 else
4542 printk("%0#10lx -> %0#10lx\n",
c713216d
MG
4543 arch_zone_lowest_possible_pfn[i],
4544 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4545 }
4546
4547 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4548 printk("Movable zone start PFN for each node\n");
4549 for (i = 0; i < MAX_NUMNODES; i++) {
4550 if (zone_movable_pfn[i])
4551 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4552 }
c713216d
MG
4553
4554 /* Print out the early_node_map[] */
4555 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4556 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4557 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4558 early_node_map[i].start_pfn,
4559 early_node_map[i].end_pfn);
4560
4561 /* Initialise every node */
708614e6 4562 mminit_verify_pageflags_layout();
8ef82866 4563 setup_nr_node_ids();
c713216d
MG
4564 for_each_online_node(nid) {
4565 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4566 free_area_init_node(nid, NULL,
c713216d 4567 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4568
4569 /* Any memory on that node */
4570 if (pgdat->node_present_pages)
4571 node_set_state(nid, N_HIGH_MEMORY);
4572 check_for_regular_memory(pgdat);
c713216d
MG
4573 }
4574}
2a1e274a 4575
7e63efef 4576static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4577{
4578 unsigned long long coremem;
4579 if (!p)
4580 return -EINVAL;
4581
4582 coremem = memparse(p, &p);
7e63efef 4583 *core = coremem >> PAGE_SHIFT;
2a1e274a 4584
7e63efef 4585 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4586 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4587
4588 return 0;
4589}
ed7ed365 4590
7e63efef
MG
4591/*
4592 * kernelcore=size sets the amount of memory for use for allocations that
4593 * cannot be reclaimed or migrated.
4594 */
4595static int __init cmdline_parse_kernelcore(char *p)
4596{
4597 return cmdline_parse_core(p, &required_kernelcore);
4598}
4599
4600/*
4601 * movablecore=size sets the amount of memory for use for allocations that
4602 * can be reclaimed or migrated.
4603 */
4604static int __init cmdline_parse_movablecore(char *p)
4605{
4606 return cmdline_parse_core(p, &required_movablecore);
4607}
4608
ed7ed365 4609early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4610early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4611
c713216d
MG
4612#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4613
0e0b864e 4614/**
88ca3b94
RD
4615 * set_dma_reserve - set the specified number of pages reserved in the first zone
4616 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4617 *
4618 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4619 * In the DMA zone, a significant percentage may be consumed by kernel image
4620 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4621 * function may optionally be used to account for unfreeable pages in the
4622 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4623 * smaller per-cpu batchsize.
0e0b864e
MG
4624 */
4625void __init set_dma_reserve(unsigned long new_dma_reserve)
4626{
4627 dma_reserve = new_dma_reserve;
4628}
4629
93b7504e 4630#ifndef CONFIG_NEED_MULTIPLE_NODES
08677214
YL
4631struct pglist_data __refdata contig_page_data = {
4632#ifndef CONFIG_NO_BOOTMEM
4633 .bdata = &bootmem_node_data[0]
4634#endif
4635 };
1da177e4 4636EXPORT_SYMBOL(contig_page_data);
93b7504e 4637#endif
1da177e4
LT
4638
4639void __init free_area_init(unsigned long *zones_size)
4640{
9109fb7b 4641 free_area_init_node(0, zones_size,
1da177e4
LT
4642 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4643}
1da177e4 4644
1da177e4
LT
4645static int page_alloc_cpu_notify(struct notifier_block *self,
4646 unsigned long action, void *hcpu)
4647{
4648 int cpu = (unsigned long)hcpu;
1da177e4 4649
8bb78442 4650 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4651 drain_pages(cpu);
4652
4653 /*
4654 * Spill the event counters of the dead processor
4655 * into the current processors event counters.
4656 * This artificially elevates the count of the current
4657 * processor.
4658 */
f8891e5e 4659 vm_events_fold_cpu(cpu);
9f8f2172
CL
4660
4661 /*
4662 * Zero the differential counters of the dead processor
4663 * so that the vm statistics are consistent.
4664 *
4665 * This is only okay since the processor is dead and cannot
4666 * race with what we are doing.
4667 */
2244b95a 4668 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4669 }
4670 return NOTIFY_OK;
4671}
1da177e4
LT
4672
4673void __init page_alloc_init(void)
4674{
4675 hotcpu_notifier(page_alloc_cpu_notify, 0);
4676}
4677
cb45b0e9
HA
4678/*
4679 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4680 * or min_free_kbytes changes.
4681 */
4682static void calculate_totalreserve_pages(void)
4683{
4684 struct pglist_data *pgdat;
4685 unsigned long reserve_pages = 0;
2f6726e5 4686 enum zone_type i, j;
cb45b0e9
HA
4687
4688 for_each_online_pgdat(pgdat) {
4689 for (i = 0; i < MAX_NR_ZONES; i++) {
4690 struct zone *zone = pgdat->node_zones + i;
4691 unsigned long max = 0;
4692
4693 /* Find valid and maximum lowmem_reserve in the zone */
4694 for (j = i; j < MAX_NR_ZONES; j++) {
4695 if (zone->lowmem_reserve[j] > max)
4696 max = zone->lowmem_reserve[j];
4697 }
4698
41858966
MG
4699 /* we treat the high watermark as reserved pages. */
4700 max += high_wmark_pages(zone);
cb45b0e9
HA
4701
4702 if (max > zone->present_pages)
4703 max = zone->present_pages;
4704 reserve_pages += max;
4705 }
4706 }
4707 totalreserve_pages = reserve_pages;
4708}
4709
1da177e4
LT
4710/*
4711 * setup_per_zone_lowmem_reserve - called whenever
4712 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4713 * has a correct pages reserved value, so an adequate number of
4714 * pages are left in the zone after a successful __alloc_pages().
4715 */
4716static void setup_per_zone_lowmem_reserve(void)
4717{
4718 struct pglist_data *pgdat;
2f6726e5 4719 enum zone_type j, idx;
1da177e4 4720
ec936fc5 4721 for_each_online_pgdat(pgdat) {
1da177e4
LT
4722 for (j = 0; j < MAX_NR_ZONES; j++) {
4723 struct zone *zone = pgdat->node_zones + j;
4724 unsigned long present_pages = zone->present_pages;
4725
4726 zone->lowmem_reserve[j] = 0;
4727
2f6726e5
CL
4728 idx = j;
4729 while (idx) {
1da177e4
LT
4730 struct zone *lower_zone;
4731
2f6726e5
CL
4732 idx--;
4733
1da177e4
LT
4734 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4735 sysctl_lowmem_reserve_ratio[idx] = 1;
4736
4737 lower_zone = pgdat->node_zones + idx;
4738 lower_zone->lowmem_reserve[j] = present_pages /
4739 sysctl_lowmem_reserve_ratio[idx];
4740 present_pages += lower_zone->present_pages;
4741 }
4742 }
4743 }
cb45b0e9
HA
4744
4745 /* update totalreserve_pages */
4746 calculate_totalreserve_pages();
1da177e4
LT
4747}
4748
88ca3b94 4749/**
bc75d33f 4750 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 4751 * or when memory is hot-{added|removed}
88ca3b94 4752 *
bc75d33f
MK
4753 * Ensures that the watermark[min,low,high] values for each zone are set
4754 * correctly with respect to min_free_kbytes.
1da177e4 4755 */
bc75d33f 4756void setup_per_zone_wmarks(void)
1da177e4
LT
4757{
4758 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4759 unsigned long lowmem_pages = 0;
4760 struct zone *zone;
4761 unsigned long flags;
4762
4763 /* Calculate total number of !ZONE_HIGHMEM pages */
4764 for_each_zone(zone) {
4765 if (!is_highmem(zone))
4766 lowmem_pages += zone->present_pages;
4767 }
4768
4769 for_each_zone(zone) {
ac924c60
AM
4770 u64 tmp;
4771
1125b4e3 4772 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4773 tmp = (u64)pages_min * zone->present_pages;
4774 do_div(tmp, lowmem_pages);
1da177e4
LT
4775 if (is_highmem(zone)) {
4776 /*
669ed175
NP
4777 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4778 * need highmem pages, so cap pages_min to a small
4779 * value here.
4780 *
41858966 4781 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
4782 * deltas controls asynch page reclaim, and so should
4783 * not be capped for highmem.
1da177e4
LT
4784 */
4785 int min_pages;
4786
4787 min_pages = zone->present_pages / 1024;
4788 if (min_pages < SWAP_CLUSTER_MAX)
4789 min_pages = SWAP_CLUSTER_MAX;
4790 if (min_pages > 128)
4791 min_pages = 128;
41858966 4792 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 4793 } else {
669ed175
NP
4794 /*
4795 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4796 * proportionate to the zone's size.
4797 */
41858966 4798 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
4799 }
4800
41858966
MG
4801 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4802 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 4803 setup_zone_migrate_reserve(zone);
1125b4e3 4804 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4805 }
cb45b0e9
HA
4806
4807 /* update totalreserve_pages */
4808 calculate_totalreserve_pages();
1da177e4
LT
4809}
4810
55a4462a 4811/*
556adecb
RR
4812 * The inactive anon list should be small enough that the VM never has to
4813 * do too much work, but large enough that each inactive page has a chance
4814 * to be referenced again before it is swapped out.
4815 *
4816 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4817 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4818 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4819 * the anonymous pages are kept on the inactive list.
4820 *
4821 * total target max
4822 * memory ratio inactive anon
4823 * -------------------------------------
4824 * 10MB 1 5MB
4825 * 100MB 1 50MB
4826 * 1GB 3 250MB
4827 * 10GB 10 0.9GB
4828 * 100GB 31 3GB
4829 * 1TB 101 10GB
4830 * 10TB 320 32GB
4831 */
96cb4df5 4832void calculate_zone_inactive_ratio(struct zone *zone)
556adecb 4833{
96cb4df5 4834 unsigned int gb, ratio;
556adecb 4835
96cb4df5
MK
4836 /* Zone size in gigabytes */
4837 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4838 if (gb)
556adecb 4839 ratio = int_sqrt(10 * gb);
96cb4df5
MK
4840 else
4841 ratio = 1;
556adecb 4842
96cb4df5
MK
4843 zone->inactive_ratio = ratio;
4844}
556adecb 4845
96cb4df5
MK
4846static void __init setup_per_zone_inactive_ratio(void)
4847{
4848 struct zone *zone;
4849
4850 for_each_zone(zone)
4851 calculate_zone_inactive_ratio(zone);
556adecb
RR
4852}
4853
1da177e4
LT
4854/*
4855 * Initialise min_free_kbytes.
4856 *
4857 * For small machines we want it small (128k min). For large machines
4858 * we want it large (64MB max). But it is not linear, because network
4859 * bandwidth does not increase linearly with machine size. We use
4860 *
4861 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4862 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4863 *
4864 * which yields
4865 *
4866 * 16MB: 512k
4867 * 32MB: 724k
4868 * 64MB: 1024k
4869 * 128MB: 1448k
4870 * 256MB: 2048k
4871 * 512MB: 2896k
4872 * 1024MB: 4096k
4873 * 2048MB: 5792k
4874 * 4096MB: 8192k
4875 * 8192MB: 11584k
4876 * 16384MB: 16384k
4877 */
bc75d33f 4878static int __init init_per_zone_wmark_min(void)
1da177e4
LT
4879{
4880 unsigned long lowmem_kbytes;
4881
4882 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4883
4884 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4885 if (min_free_kbytes < 128)
4886 min_free_kbytes = 128;
4887 if (min_free_kbytes > 65536)
4888 min_free_kbytes = 65536;
bc75d33f 4889 setup_per_zone_wmarks();
1da177e4 4890 setup_per_zone_lowmem_reserve();
556adecb 4891 setup_per_zone_inactive_ratio();
1da177e4
LT
4892 return 0;
4893}
bc75d33f 4894module_init(init_per_zone_wmark_min)
1da177e4
LT
4895
4896/*
4897 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4898 * that we can call two helper functions whenever min_free_kbytes
4899 * changes.
4900 */
4901int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 4902 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 4903{
8d65af78 4904 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 4905 if (write)
bc75d33f 4906 setup_per_zone_wmarks();
1da177e4
LT
4907 return 0;
4908}
4909
9614634f
CL
4910#ifdef CONFIG_NUMA
4911int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 4912 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
4913{
4914 struct zone *zone;
4915 int rc;
4916
8d65af78 4917 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
4918 if (rc)
4919 return rc;
4920
4921 for_each_zone(zone)
8417bba4 4922 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4923 sysctl_min_unmapped_ratio) / 100;
4924 return 0;
4925}
0ff38490
CL
4926
4927int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 4928 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
4929{
4930 struct zone *zone;
4931 int rc;
4932
8d65af78 4933 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
4934 if (rc)
4935 return rc;
4936
4937 for_each_zone(zone)
4938 zone->min_slab_pages = (zone->present_pages *
4939 sysctl_min_slab_ratio) / 100;
4940 return 0;
4941}
9614634f
CL
4942#endif
4943
1da177e4
LT
4944/*
4945 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4946 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4947 * whenever sysctl_lowmem_reserve_ratio changes.
4948 *
4949 * The reserve ratio obviously has absolutely no relation with the
41858966 4950 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
4951 * if in function of the boot time zone sizes.
4952 */
4953int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 4954 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 4955{
8d65af78 4956 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
4957 setup_per_zone_lowmem_reserve();
4958 return 0;
4959}
4960
8ad4b1fb
RS
4961/*
4962 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4963 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4964 * can have before it gets flushed back to buddy allocator.
4965 */
4966
4967int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 4968 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
4969{
4970 struct zone *zone;
4971 unsigned int cpu;
4972 int ret;
4973
8d65af78 4974 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8ad4b1fb
RS
4975 if (!write || (ret == -EINVAL))
4976 return ret;
364df0eb 4977 for_each_populated_zone(zone) {
99dcc3e5 4978 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
4979 unsigned long high;
4980 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
4981 setup_pagelist_highmark(
4982 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
4983 }
4984 }
4985 return 0;
4986}
4987
f034b5d4 4988int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
4989
4990#ifdef CONFIG_NUMA
4991static int __init set_hashdist(char *str)
4992{
4993 if (!str)
4994 return 0;
4995 hashdist = simple_strtoul(str, &str, 0);
4996 return 1;
4997}
4998__setup("hashdist=", set_hashdist);
4999#endif
5000
5001/*
5002 * allocate a large system hash table from bootmem
5003 * - it is assumed that the hash table must contain an exact power-of-2
5004 * quantity of entries
5005 * - limit is the number of hash buckets, not the total allocation size
5006 */
5007void *__init alloc_large_system_hash(const char *tablename,
5008 unsigned long bucketsize,
5009 unsigned long numentries,
5010 int scale,
5011 int flags,
5012 unsigned int *_hash_shift,
5013 unsigned int *_hash_mask,
5014 unsigned long limit)
5015{
5016 unsigned long long max = limit;
5017 unsigned long log2qty, size;
5018 void *table = NULL;
5019
5020 /* allow the kernel cmdline to have a say */
5021 if (!numentries) {
5022 /* round applicable memory size up to nearest megabyte */
04903664 5023 numentries = nr_kernel_pages;
1da177e4
LT
5024 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5025 numentries >>= 20 - PAGE_SHIFT;
5026 numentries <<= 20 - PAGE_SHIFT;
5027
5028 /* limit to 1 bucket per 2^scale bytes of low memory */
5029 if (scale > PAGE_SHIFT)
5030 numentries >>= (scale - PAGE_SHIFT);
5031 else
5032 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5033
5034 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5035 if (unlikely(flags & HASH_SMALL)) {
5036 /* Makes no sense without HASH_EARLY */
5037 WARN_ON(!(flags & HASH_EARLY));
5038 if (!(numentries >> *_hash_shift)) {
5039 numentries = 1UL << *_hash_shift;
5040 BUG_ON(!numentries);
5041 }
5042 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5043 numentries = PAGE_SIZE / bucketsize;
1da177e4 5044 }
6e692ed3 5045 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5046
5047 /* limit allocation size to 1/16 total memory by default */
5048 if (max == 0) {
5049 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5050 do_div(max, bucketsize);
5051 }
5052
5053 if (numentries > max)
5054 numentries = max;
5055
f0d1b0b3 5056 log2qty = ilog2(numentries);
1da177e4
LT
5057
5058 do {
5059 size = bucketsize << log2qty;
5060 if (flags & HASH_EARLY)
74768ed8 5061 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5062 else if (hashdist)
5063 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5064 else {
1037b83b
ED
5065 /*
5066 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5067 * some pages at the end of hash table which
5068 * alloc_pages_exact() automatically does
1037b83b 5069 */
264ef8a9 5070 if (get_order(size) < MAX_ORDER) {
a1dd268c 5071 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5072 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5073 }
1da177e4
LT
5074 }
5075 } while (!table && size > PAGE_SIZE && --log2qty);
5076
5077 if (!table)
5078 panic("Failed to allocate %s hash table\n", tablename);
5079
b49ad484 5080 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
5081 tablename,
5082 (1U << log2qty),
f0d1b0b3 5083 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5084 size);
5085
5086 if (_hash_shift)
5087 *_hash_shift = log2qty;
5088 if (_hash_mask)
5089 *_hash_mask = (1 << log2qty) - 1;
5090
5091 return table;
5092}
a117e66e 5093
835c134e
MG
5094/* Return a pointer to the bitmap storing bits affecting a block of pages */
5095static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5096 unsigned long pfn)
5097{
5098#ifdef CONFIG_SPARSEMEM
5099 return __pfn_to_section(pfn)->pageblock_flags;
5100#else
5101 return zone->pageblock_flags;
5102#endif /* CONFIG_SPARSEMEM */
5103}
5104
5105static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5106{
5107#ifdef CONFIG_SPARSEMEM
5108 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5109 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5110#else
5111 pfn = pfn - zone->zone_start_pfn;
d9c23400 5112 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5113#endif /* CONFIG_SPARSEMEM */
5114}
5115
5116/**
d9c23400 5117 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5118 * @page: The page within the block of interest
5119 * @start_bitidx: The first bit of interest to retrieve
5120 * @end_bitidx: The last bit of interest
5121 * returns pageblock_bits flags
5122 */
5123unsigned long get_pageblock_flags_group(struct page *page,
5124 int start_bitidx, int end_bitidx)
5125{
5126 struct zone *zone;
5127 unsigned long *bitmap;
5128 unsigned long pfn, bitidx;
5129 unsigned long flags = 0;
5130 unsigned long value = 1;
5131
5132 zone = page_zone(page);
5133 pfn = page_to_pfn(page);
5134 bitmap = get_pageblock_bitmap(zone, pfn);
5135 bitidx = pfn_to_bitidx(zone, pfn);
5136
5137 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5138 if (test_bit(bitidx + start_bitidx, bitmap))
5139 flags |= value;
6220ec78 5140
835c134e
MG
5141 return flags;
5142}
5143
5144/**
d9c23400 5145 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5146 * @page: The page within the block of interest
5147 * @start_bitidx: The first bit of interest
5148 * @end_bitidx: The last bit of interest
5149 * @flags: The flags to set
5150 */
5151void set_pageblock_flags_group(struct page *page, unsigned long flags,
5152 int start_bitidx, int end_bitidx)
5153{
5154 struct zone *zone;
5155 unsigned long *bitmap;
5156 unsigned long pfn, bitidx;
5157 unsigned long value = 1;
5158
5159 zone = page_zone(page);
5160 pfn = page_to_pfn(page);
5161 bitmap = get_pageblock_bitmap(zone, pfn);
5162 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5163 VM_BUG_ON(pfn < zone->zone_start_pfn);
5164 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5165
5166 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5167 if (flags & value)
5168 __set_bit(bitidx + start_bitidx, bitmap);
5169 else
5170 __clear_bit(bitidx + start_bitidx, bitmap);
5171}
a5d76b54
KH
5172
5173/*
5174 * This is designed as sub function...plz see page_isolation.c also.
5175 * set/clear page block's type to be ISOLATE.
5176 * page allocater never alloc memory from ISOLATE block.
5177 */
5178
5179int set_migratetype_isolate(struct page *page)
5180{
5181 struct zone *zone;
925cc71e
RJ
5182 struct page *curr_page;
5183 unsigned long flags, pfn, iter;
5184 unsigned long immobile = 0;
5185 struct memory_isolate_notify arg;
5186 int notifier_ret;
a5d76b54 5187 int ret = -EBUSY;
8e7e40d9 5188 int zone_idx;
a5d76b54
KH
5189
5190 zone = page_zone(page);
8e7e40d9 5191 zone_idx = zone_idx(zone);
925cc71e 5192
a5d76b54 5193 spin_lock_irqsave(&zone->lock, flags);
925cc71e
RJ
5194 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
5195 zone_idx == ZONE_MOVABLE) {
5196 ret = 0;
5197 goto out;
5198 }
5199
5200 pfn = page_to_pfn(page);
5201 arg.start_pfn = pfn;
5202 arg.nr_pages = pageblock_nr_pages;
5203 arg.pages_found = 0;
5204
a5d76b54 5205 /*
925cc71e
RJ
5206 * It may be possible to isolate a pageblock even if the
5207 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5208 * notifier chain is used by balloon drivers to return the
5209 * number of pages in a range that are held by the balloon
5210 * driver to shrink memory. If all the pages are accounted for
5211 * by balloons, are free, or on the LRU, isolation can continue.
5212 * Later, for example, when memory hotplug notifier runs, these
5213 * pages reported as "can be isolated" should be isolated(freed)
5214 * by the balloon driver through the memory notifier chain.
a5d76b54 5215 */
925cc71e
RJ
5216 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5217 notifier_ret = notifier_to_errno(notifier_ret);
5218 if (notifier_ret || !arg.pages_found)
a5d76b54 5219 goto out;
925cc71e
RJ
5220
5221 for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
5222 if (!pfn_valid_within(pfn))
5223 continue;
5224
5225 curr_page = pfn_to_page(iter);
5226 if (!page_count(curr_page) || PageLRU(curr_page))
5227 continue;
5228
5229 immobile++;
5230 }
5231
5232 if (arg.pages_found == immobile)
5233 ret = 0;
5234
a5d76b54 5235out:
925cc71e
RJ
5236 if (!ret) {
5237 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5238 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5239 }
5240
a5d76b54
KH
5241 spin_unlock_irqrestore(&zone->lock, flags);
5242 if (!ret)
9f8f2172 5243 drain_all_pages();
a5d76b54
KH
5244 return ret;
5245}
5246
5247void unset_migratetype_isolate(struct page *page)
5248{
5249 struct zone *zone;
5250 unsigned long flags;
5251 zone = page_zone(page);
5252 spin_lock_irqsave(&zone->lock, flags);
5253 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5254 goto out;
5255 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5256 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5257out:
5258 spin_unlock_irqrestore(&zone->lock, flags);
5259}
0c0e6195
KH
5260
5261#ifdef CONFIG_MEMORY_HOTREMOVE
5262/*
5263 * All pages in the range must be isolated before calling this.
5264 */
5265void
5266__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5267{
5268 struct page *page;
5269 struct zone *zone;
5270 int order, i;
5271 unsigned long pfn;
5272 unsigned long flags;
5273 /* find the first valid pfn */
5274 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5275 if (pfn_valid(pfn))
5276 break;
5277 if (pfn == end_pfn)
5278 return;
5279 zone = page_zone(pfn_to_page(pfn));
5280 spin_lock_irqsave(&zone->lock, flags);
5281 pfn = start_pfn;
5282 while (pfn < end_pfn) {
5283 if (!pfn_valid(pfn)) {
5284 pfn++;
5285 continue;
5286 }
5287 page = pfn_to_page(pfn);
5288 BUG_ON(page_count(page));
5289 BUG_ON(!PageBuddy(page));
5290 order = page_order(page);
5291#ifdef CONFIG_DEBUG_VM
5292 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5293 pfn, 1 << order, end_pfn);
5294#endif
5295 list_del(&page->lru);
5296 rmv_page_order(page);
5297 zone->free_area[order].nr_free--;
5298 __mod_zone_page_state(zone, NR_FREE_PAGES,
5299 - (1UL << order));
5300 for (i = 0; i < (1 << order); i++)
5301 SetPageReserved((page+i));
5302 pfn += (1 << order);
5303 }
5304 spin_unlock_irqrestore(&zone->lock, flags);
5305}
5306#endif
8d22ba1b
WF
5307
5308#ifdef CONFIG_MEMORY_FAILURE
5309bool is_free_buddy_page(struct page *page)
5310{
5311 struct zone *zone = page_zone(page);
5312 unsigned long pfn = page_to_pfn(page);
5313 unsigned long flags;
5314 int order;
5315
5316 spin_lock_irqsave(&zone->lock, flags);
5317 for (order = 0; order < MAX_ORDER; order++) {
5318 struct page *page_head = page - (pfn & ((1 << order) - 1));
5319
5320 if (PageBuddy(page_head) && page_order(page_head) >= order)
5321 break;
5322 }
5323 spin_unlock_irqrestore(&zone->lock, flags);
5324
5325 return order < MAX_ORDER;
5326}
5327#endif
718a3821
WF
5328
5329static struct trace_print_flags pageflag_names[] = {
5330 {1UL << PG_locked, "locked" },
5331 {1UL << PG_error, "error" },
5332 {1UL << PG_referenced, "referenced" },
5333 {1UL << PG_uptodate, "uptodate" },
5334 {1UL << PG_dirty, "dirty" },
5335 {1UL << PG_lru, "lru" },
5336 {1UL << PG_active, "active" },
5337 {1UL << PG_slab, "slab" },
5338 {1UL << PG_owner_priv_1, "owner_priv_1" },
5339 {1UL << PG_arch_1, "arch_1" },
5340 {1UL << PG_reserved, "reserved" },
5341 {1UL << PG_private, "private" },
5342 {1UL << PG_private_2, "private_2" },
5343 {1UL << PG_writeback, "writeback" },
5344#ifdef CONFIG_PAGEFLAGS_EXTENDED
5345 {1UL << PG_head, "head" },
5346 {1UL << PG_tail, "tail" },
5347#else
5348 {1UL << PG_compound, "compound" },
5349#endif
5350 {1UL << PG_swapcache, "swapcache" },
5351 {1UL << PG_mappedtodisk, "mappedtodisk" },
5352 {1UL << PG_reclaim, "reclaim" },
5353 {1UL << PG_buddy, "buddy" },
5354 {1UL << PG_swapbacked, "swapbacked" },
5355 {1UL << PG_unevictable, "unevictable" },
5356#ifdef CONFIG_MMU
5357 {1UL << PG_mlocked, "mlocked" },
5358#endif
5359#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5360 {1UL << PG_uncached, "uncached" },
5361#endif
5362#ifdef CONFIG_MEMORY_FAILURE
5363 {1UL << PG_hwpoison, "hwpoison" },
5364#endif
5365 {-1UL, NULL },
5366};
5367
5368static void dump_page_flags(unsigned long flags)
5369{
5370 const char *delim = "";
5371 unsigned long mask;
5372 int i;
5373
5374 printk(KERN_ALERT "page flags: %#lx(", flags);
5375
5376 /* remove zone id */
5377 flags &= (1UL << NR_PAGEFLAGS) - 1;
5378
5379 for (i = 0; pageflag_names[i].name && flags; i++) {
5380
5381 mask = pageflag_names[i].mask;
5382 if ((flags & mask) != mask)
5383 continue;
5384
5385 flags &= ~mask;
5386 printk("%s%s", delim, pageflag_names[i].name);
5387 delim = "|";
5388 }
5389
5390 /* check for left over flags */
5391 if (flags)
5392 printk("%s%#lx", delim, flags);
5393
5394 printk(")\n");
5395}
5396
5397void dump_page(struct page *page)
5398{
5399 printk(KERN_ALERT
5400 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5401 page, page_count(page), page_mapcount(page),
5402 page->mapping, page->index);
5403 dump_page_flags(page->flags);
5404}