]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/page_alloc.c
Memoryless nodes: Add N_CPU node state
[net-next-2.6.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
22#include <linux/bootmem.h>
23#include <linux/compiler.h>
9f158333 24#include <linux/kernel.h>
1da177e4
LT
25#include <linux/module.h>
26#include <linux/suspend.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/slab.h>
30#include <linux/notifier.h>
31#include <linux/topology.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/cpuset.h>
bdc8cb98 35#include <linux/memory_hotplug.h>
1da177e4
LT
36#include <linux/nodemask.h>
37#include <linux/vmalloc.h>
4be38e35 38#include <linux/mempolicy.h>
6811378e 39#include <linux/stop_machine.h>
c713216d
MG
40#include <linux/sort.h>
41#include <linux/pfn.h>
3fcfab16 42#include <linux/backing-dev.h>
933e312e 43#include <linux/fault-inject.h>
1da177e4
LT
44
45#include <asm/tlbflush.h>
ac924c60 46#include <asm/div64.h>
1da177e4
LT
47#include "internal.h"
48
49/*
13808910 50 * Array of node states.
1da177e4 51 */
13808910
CL
52nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
53 [N_POSSIBLE] = NODE_MASK_ALL,
54 [N_ONLINE] = { { [0] = 1UL } },
55#ifndef CONFIG_NUMA
56 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
57#ifdef CONFIG_HIGHMEM
58 [N_HIGH_MEMORY] = { { [0] = 1UL } },
59#endif
60 [N_CPU] = { { [0] = 1UL } },
61#endif /* NUMA */
62};
63EXPORT_SYMBOL(node_states);
64
6c231b7b 65unsigned long totalram_pages __read_mostly;
cb45b0e9 66unsigned long totalreserve_pages __read_mostly;
1da177e4 67long nr_swap_pages;
8ad4b1fb 68int percpu_pagelist_fraction;
1da177e4 69
d98c7a09 70static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 71
1da177e4
LT
72/*
73 * results with 256, 32 in the lowmem_reserve sysctl:
74 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
75 * 1G machine -> (16M dma, 784M normal, 224M high)
76 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
77 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
78 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
79 *
80 * TBD: should special case ZONE_DMA32 machines here - in those we normally
81 * don't need any ZONE_NORMAL reservation
1da177e4 82 */
2f1b6248 83int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 84#ifdef CONFIG_ZONE_DMA
2f1b6248 85 256,
4b51d669 86#endif
fb0e7942 87#ifdef CONFIG_ZONE_DMA32
2f1b6248 88 256,
fb0e7942 89#endif
e53ef38d 90#ifdef CONFIG_HIGHMEM
2a1e274a 91 32,
e53ef38d 92#endif
2a1e274a 93 32,
2f1b6248 94};
1da177e4
LT
95
96EXPORT_SYMBOL(totalram_pages);
1da177e4 97
15ad7cdc 98static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 99#ifdef CONFIG_ZONE_DMA
2f1b6248 100 "DMA",
4b51d669 101#endif
fb0e7942 102#ifdef CONFIG_ZONE_DMA32
2f1b6248 103 "DMA32",
fb0e7942 104#endif
2f1b6248 105 "Normal",
e53ef38d 106#ifdef CONFIG_HIGHMEM
2a1e274a 107 "HighMem",
e53ef38d 108#endif
2a1e274a 109 "Movable",
2f1b6248
CL
110};
111
1da177e4
LT
112int min_free_kbytes = 1024;
113
86356ab1
YG
114unsigned long __meminitdata nr_kernel_pages;
115unsigned long __meminitdata nr_all_pages;
a3142c8e 116static unsigned long __meminitdata dma_reserve;
1da177e4 117
c713216d
MG
118#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
119 /*
120 * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
121 * ranges of memory (RAM) that may be registered with add_active_range().
122 * Ranges passed to add_active_range() will be merged if possible
123 * so the number of times add_active_range() can be called is
124 * related to the number of nodes and the number of holes
125 */
126 #ifdef CONFIG_MAX_ACTIVE_REGIONS
127 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
128 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
129 #else
130 #if MAX_NUMNODES >= 32
131 /* If there can be many nodes, allow up to 50 holes per node */
132 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
133 #else
134 /* By default, allow up to 256 distinct regions */
135 #define MAX_ACTIVE_REGIONS 256
136 #endif
137 #endif
138
98011f56
JB
139 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
140 static int __meminitdata nr_nodemap_entries;
141 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
142 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
fb01439c 143#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
98011f56
JB
144 static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
145 static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
fb01439c 146#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
2a1e274a 147 unsigned long __initdata required_kernelcore;
7e63efef 148 unsigned long __initdata required_movablecore;
e228929b 149 unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
150
151 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
152 int movable_zone;
153 EXPORT_SYMBOL(movable_zone);
c713216d
MG
154#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
155
418508c1
MS
156#if MAX_NUMNODES > 1
157int nr_node_ids __read_mostly = MAX_NUMNODES;
158EXPORT_SYMBOL(nr_node_ids);
159#endif
160
13e7444b 161#ifdef CONFIG_DEBUG_VM
c6a57e19 162static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 163{
bdc8cb98
DH
164 int ret = 0;
165 unsigned seq;
166 unsigned long pfn = page_to_pfn(page);
c6a57e19 167
bdc8cb98
DH
168 do {
169 seq = zone_span_seqbegin(zone);
170 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
171 ret = 1;
172 else if (pfn < zone->zone_start_pfn)
173 ret = 1;
174 } while (zone_span_seqretry(zone, seq));
175
176 return ret;
c6a57e19
DH
177}
178
179static int page_is_consistent(struct zone *zone, struct page *page)
180{
14e07298 181 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 182 return 0;
1da177e4 183 if (zone != page_zone(page))
c6a57e19
DH
184 return 0;
185
186 return 1;
187}
188/*
189 * Temporary debugging check for pages not lying within a given zone.
190 */
191static int bad_range(struct zone *zone, struct page *page)
192{
193 if (page_outside_zone_boundaries(zone, page))
1da177e4 194 return 1;
c6a57e19
DH
195 if (!page_is_consistent(zone, page))
196 return 1;
197
1da177e4
LT
198 return 0;
199}
13e7444b
NP
200#else
201static inline int bad_range(struct zone *zone, struct page *page)
202{
203 return 0;
204}
205#endif
206
224abf92 207static void bad_page(struct page *page)
1da177e4 208{
224abf92 209 printk(KERN_EMERG "Bad page state in process '%s'\n"
7365f3d1
HD
210 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
211 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
212 KERN_EMERG "Backtrace:\n",
224abf92
NP
213 current->comm, page, (int)(2*sizeof(unsigned long)),
214 (unsigned long)page->flags, page->mapping,
215 page_mapcount(page), page_count(page));
1da177e4 216 dump_stack();
334795ec
HD
217 page->flags &= ~(1 << PG_lru |
218 1 << PG_private |
1da177e4 219 1 << PG_locked |
1da177e4
LT
220 1 << PG_active |
221 1 << PG_dirty |
334795ec
HD
222 1 << PG_reclaim |
223 1 << PG_slab |
1da177e4 224 1 << PG_swapcache |
676165a8
NP
225 1 << PG_writeback |
226 1 << PG_buddy );
1da177e4
LT
227 set_page_count(page, 0);
228 reset_page_mapcount(page);
229 page->mapping = NULL;
9f158333 230 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
231}
232
1da177e4
LT
233/*
234 * Higher-order pages are called "compound pages". They are structured thusly:
235 *
236 * The first PAGE_SIZE page is called the "head page".
237 *
238 * The remaining PAGE_SIZE pages are called "tail pages".
239 *
240 * All pages have PG_compound set. All pages have their ->private pointing at
241 * the head page (even the head page has this).
242 *
41d78ba5
HD
243 * The first tail page's ->lru.next holds the address of the compound page's
244 * put_page() function. Its ->lru.prev holds the order of allocation.
245 * This usage means that zero-order pages may not be compound.
1da177e4 246 */
d98c7a09
HD
247
248static void free_compound_page(struct page *page)
249{
d85f3385 250 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
251}
252
1da177e4
LT
253static void prep_compound_page(struct page *page, unsigned long order)
254{
255 int i;
256 int nr_pages = 1 << order;
257
33f2ef89 258 set_compound_page_dtor(page, free_compound_page);
d85f3385 259 set_compound_order(page, order);
6d777953 260 __SetPageHead(page);
d85f3385 261 for (i = 1; i < nr_pages; i++) {
1da177e4
LT
262 struct page *p = page + i;
263
d85f3385 264 __SetPageTail(p);
d85f3385 265 p->first_page = page;
1da177e4
LT
266 }
267}
268
269static void destroy_compound_page(struct page *page, unsigned long order)
270{
271 int i;
272 int nr_pages = 1 << order;
273
d85f3385 274 if (unlikely(compound_order(page) != order))
224abf92 275 bad_page(page);
1da177e4 276
6d777953 277 if (unlikely(!PageHead(page)))
d85f3385 278 bad_page(page);
6d777953 279 __ClearPageHead(page);
d85f3385 280 for (i = 1; i < nr_pages; i++) {
1da177e4
LT
281 struct page *p = page + i;
282
6d777953 283 if (unlikely(!PageTail(p) |
d85f3385 284 (p->first_page != page)))
224abf92 285 bad_page(page);
d85f3385 286 __ClearPageTail(p);
1da177e4
LT
287 }
288}
1da177e4 289
17cf4406
NP
290static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
291{
292 int i;
293
725d704e 294 VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
6626c5d5
AM
295 /*
296 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
297 * and __GFP_HIGHMEM from hard or soft interrupt context.
298 */
725d704e 299 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
300 for (i = 0; i < (1 << order); i++)
301 clear_highpage(page + i);
302}
303
1da177e4
LT
304/*
305 * function for dealing with page's order in buddy system.
306 * zone->lock is already acquired when we use these.
307 * So, we don't need atomic page->flags operations here.
308 */
6aa3001b
AM
309static inline unsigned long page_order(struct page *page)
310{
4c21e2f2 311 return page_private(page);
1da177e4
LT
312}
313
6aa3001b
AM
314static inline void set_page_order(struct page *page, int order)
315{
4c21e2f2 316 set_page_private(page, order);
676165a8 317 __SetPageBuddy(page);
1da177e4
LT
318}
319
320static inline void rmv_page_order(struct page *page)
321{
676165a8 322 __ClearPageBuddy(page);
4c21e2f2 323 set_page_private(page, 0);
1da177e4
LT
324}
325
326/*
327 * Locate the struct page for both the matching buddy in our
328 * pair (buddy1) and the combined O(n+1) page they form (page).
329 *
330 * 1) Any buddy B1 will have an order O twin B2 which satisfies
331 * the following equation:
332 * B2 = B1 ^ (1 << O)
333 * For example, if the starting buddy (buddy2) is #8 its order
334 * 1 buddy is #10:
335 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
336 *
337 * 2) Any buddy B will have an order O+1 parent P which
338 * satisfies the following equation:
339 * P = B & ~(1 << O)
340 *
d6e05edc 341 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
342 */
343static inline struct page *
344__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
345{
346 unsigned long buddy_idx = page_idx ^ (1 << order);
347
348 return page + (buddy_idx - page_idx);
349}
350
351static inline unsigned long
352__find_combined_index(unsigned long page_idx, unsigned int order)
353{
354 return (page_idx & ~(1 << order));
355}
356
357/*
358 * This function checks whether a page is free && is the buddy
359 * we can do coalesce a page and its buddy if
13e7444b 360 * (a) the buddy is not in a hole &&
676165a8 361 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
362 * (c) a page and its buddy have the same order &&
363 * (d) a page and its buddy are in the same zone.
676165a8
NP
364 *
365 * For recording whether a page is in the buddy system, we use PG_buddy.
366 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 367 *
676165a8 368 * For recording page's order, we use page_private(page).
1da177e4 369 */
cb2b95e1
AW
370static inline int page_is_buddy(struct page *page, struct page *buddy,
371 int order)
1da177e4 372{
14e07298 373 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 374 return 0;
13e7444b 375
cb2b95e1
AW
376 if (page_zone_id(page) != page_zone_id(buddy))
377 return 0;
378
379 if (PageBuddy(buddy) && page_order(buddy) == order) {
380 BUG_ON(page_count(buddy) != 0);
6aa3001b 381 return 1;
676165a8 382 }
6aa3001b 383 return 0;
1da177e4
LT
384}
385
386/*
387 * Freeing function for a buddy system allocator.
388 *
389 * The concept of a buddy system is to maintain direct-mapped table
390 * (containing bit values) for memory blocks of various "orders".
391 * The bottom level table contains the map for the smallest allocatable
392 * units of memory (here, pages), and each level above it describes
393 * pairs of units from the levels below, hence, "buddies".
394 * At a high level, all that happens here is marking the table entry
395 * at the bottom level available, and propagating the changes upward
396 * as necessary, plus some accounting needed to play nicely with other
397 * parts of the VM system.
398 * At each level, we keep a list of pages, which are heads of continuous
676165a8 399 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 400 * order is recorded in page_private(page) field.
1da177e4
LT
401 * So when we are allocating or freeing one, we can derive the state of the
402 * other. That is, if we allocate a small block, and both were
403 * free, the remainder of the region must be split into blocks.
404 * If a block is freed, and its buddy is also free, then this
405 * triggers coalescing into a block of larger size.
406 *
407 * -- wli
408 */
409
48db57f8 410static inline void __free_one_page(struct page *page,
1da177e4
LT
411 struct zone *zone, unsigned int order)
412{
413 unsigned long page_idx;
414 int order_size = 1 << order;
415
224abf92 416 if (unlikely(PageCompound(page)))
1da177e4
LT
417 destroy_compound_page(page, order);
418
419 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
420
725d704e
NP
421 VM_BUG_ON(page_idx & (order_size - 1));
422 VM_BUG_ON(bad_range(zone, page));
1da177e4 423
d23ad423 424 __mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
1da177e4
LT
425 while (order < MAX_ORDER-1) {
426 unsigned long combined_idx;
427 struct free_area *area;
428 struct page *buddy;
429
1da177e4 430 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 431 if (!page_is_buddy(page, buddy, order))
1da177e4 432 break; /* Move the buddy up one level. */
13e7444b 433
1da177e4
LT
434 list_del(&buddy->lru);
435 area = zone->free_area + order;
436 area->nr_free--;
437 rmv_page_order(buddy);
13e7444b 438 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
439 page = page + (combined_idx - page_idx);
440 page_idx = combined_idx;
441 order++;
442 }
443 set_page_order(page, order);
444 list_add(&page->lru, &zone->free_area[order].free_list);
445 zone->free_area[order].nr_free++;
446}
447
224abf92 448static inline int free_pages_check(struct page *page)
1da177e4 449{
92be2e33
NP
450 if (unlikely(page_mapcount(page) |
451 (page->mapping != NULL) |
452 (page_count(page) != 0) |
1da177e4
LT
453 (page->flags & (
454 1 << PG_lru |
455 1 << PG_private |
456 1 << PG_locked |
457 1 << PG_active |
1da177e4
LT
458 1 << PG_slab |
459 1 << PG_swapcache |
b5810039 460 1 << PG_writeback |
676165a8
NP
461 1 << PG_reserved |
462 1 << PG_buddy ))))
224abf92 463 bad_page(page);
1da177e4 464 if (PageDirty(page))
242e5468 465 __ClearPageDirty(page);
689bcebf
HD
466 /*
467 * For now, we report if PG_reserved was found set, but do not
468 * clear it, and do not free the page. But we shall soon need
469 * to do more, for when the ZERO_PAGE count wraps negative.
470 */
471 return PageReserved(page);
1da177e4
LT
472}
473
474/*
475 * Frees a list of pages.
476 * Assumes all pages on list are in same zone, and of same order.
207f36ee 477 * count is the number of pages to free.
1da177e4
LT
478 *
479 * If the zone was previously in an "all pages pinned" state then look to
480 * see if this freeing clears that state.
481 *
482 * And clear the zone's pages_scanned counter, to hold off the "all pages are
483 * pinned" detection logic.
484 */
48db57f8
NP
485static void free_pages_bulk(struct zone *zone, int count,
486 struct list_head *list, int order)
1da177e4 487{
c54ad30c 488 spin_lock(&zone->lock);
1da177e4
LT
489 zone->all_unreclaimable = 0;
490 zone->pages_scanned = 0;
48db57f8
NP
491 while (count--) {
492 struct page *page;
493
725d704e 494 VM_BUG_ON(list_empty(list));
1da177e4 495 page = list_entry(list->prev, struct page, lru);
48db57f8 496 /* have to delete it as __free_one_page list manipulates */
1da177e4 497 list_del(&page->lru);
48db57f8 498 __free_one_page(page, zone, order);
1da177e4 499 }
c54ad30c 500 spin_unlock(&zone->lock);
1da177e4
LT
501}
502
48db57f8 503static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4 504{
006d22d9
CL
505 spin_lock(&zone->lock);
506 zone->all_unreclaimable = 0;
507 zone->pages_scanned = 0;
0798e519 508 __free_one_page(page, zone, order);
006d22d9 509 spin_unlock(&zone->lock);
48db57f8
NP
510}
511
512static void __free_pages_ok(struct page *page, unsigned int order)
513{
514 unsigned long flags;
1da177e4 515 int i;
689bcebf 516 int reserved = 0;
1da177e4 517
1da177e4 518 for (i = 0 ; i < (1 << order) ; ++i)
224abf92 519 reserved += free_pages_check(page + i);
689bcebf
HD
520 if (reserved)
521 return;
522
9858db50
NP
523 if (!PageHighMem(page))
524 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
dafb1367 525 arch_free_page(page, order);
48db57f8 526 kernel_map_pages(page, 1 << order, 0);
dafb1367 527
c54ad30c 528 local_irq_save(flags);
f8891e5e 529 __count_vm_events(PGFREE, 1 << order);
48db57f8 530 free_one_page(page_zone(page), page, order);
c54ad30c 531 local_irq_restore(flags);
1da177e4
LT
532}
533
a226f6c8
DH
534/*
535 * permit the bootmem allocator to evade page validation on high-order frees
536 */
537void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
538{
539 if (order == 0) {
540 __ClearPageReserved(page);
541 set_page_count(page, 0);
7835e98b 542 set_page_refcounted(page);
545b1ea9 543 __free_page(page);
a226f6c8 544 } else {
a226f6c8
DH
545 int loop;
546
545b1ea9 547 prefetchw(page);
a226f6c8
DH
548 for (loop = 0; loop < BITS_PER_LONG; loop++) {
549 struct page *p = &page[loop];
550
545b1ea9
NP
551 if (loop + 1 < BITS_PER_LONG)
552 prefetchw(p + 1);
a226f6c8
DH
553 __ClearPageReserved(p);
554 set_page_count(p, 0);
555 }
556
7835e98b 557 set_page_refcounted(page);
545b1ea9 558 __free_pages(page, order);
a226f6c8
DH
559 }
560}
561
1da177e4
LT
562
563/*
564 * The order of subdivision here is critical for the IO subsystem.
565 * Please do not alter this order without good reasons and regression
566 * testing. Specifically, as large blocks of memory are subdivided,
567 * the order in which smaller blocks are delivered depends on the order
568 * they're subdivided in this function. This is the primary factor
569 * influencing the order in which pages are delivered to the IO
570 * subsystem according to empirical testing, and this is also justified
571 * by considering the behavior of a buddy system containing a single
572 * large block of memory acted on by a series of small allocations.
573 * This behavior is a critical factor in sglist merging's success.
574 *
575 * -- wli
576 */
085cc7d5 577static inline void expand(struct zone *zone, struct page *page,
1da177e4
LT
578 int low, int high, struct free_area *area)
579{
580 unsigned long size = 1 << high;
581
582 while (high > low) {
583 area--;
584 high--;
585 size >>= 1;
725d704e 586 VM_BUG_ON(bad_range(zone, &page[size]));
1da177e4
LT
587 list_add(&page[size].lru, &area->free_list);
588 area->nr_free++;
589 set_page_order(&page[size], high);
590 }
1da177e4
LT
591}
592
1da177e4
LT
593/*
594 * This page is about to be returned from the page allocator
595 */
17cf4406 596static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 597{
92be2e33
NP
598 if (unlikely(page_mapcount(page) |
599 (page->mapping != NULL) |
600 (page_count(page) != 0) |
334795ec
HD
601 (page->flags & (
602 1 << PG_lru |
1da177e4
LT
603 1 << PG_private |
604 1 << PG_locked |
1da177e4
LT
605 1 << PG_active |
606 1 << PG_dirty |
334795ec 607 1 << PG_slab |
1da177e4 608 1 << PG_swapcache |
b5810039 609 1 << PG_writeback |
676165a8
NP
610 1 << PG_reserved |
611 1 << PG_buddy ))))
224abf92 612 bad_page(page);
1da177e4 613
689bcebf
HD
614 /*
615 * For now, we report if PG_reserved was found set, but do not
616 * clear it, and do not allocate the page: as a safety net.
617 */
618 if (PageReserved(page))
619 return 1;
620
d77c2d7c 621 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_readahead |
1da177e4 622 1 << PG_referenced | 1 << PG_arch_1 |
5409bae0 623 1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
4c21e2f2 624 set_page_private(page, 0);
7835e98b 625 set_page_refcounted(page);
cc102509
NP
626
627 arch_alloc_page(page, order);
1da177e4 628 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
629
630 if (gfp_flags & __GFP_ZERO)
631 prep_zero_page(page, order, gfp_flags);
632
633 if (order && (gfp_flags & __GFP_COMP))
634 prep_compound_page(page, order);
635
689bcebf 636 return 0;
1da177e4
LT
637}
638
639/*
640 * Do the hard work of removing an element from the buddy allocator.
641 * Call me with the zone->lock already held.
642 */
643static struct page *__rmqueue(struct zone *zone, unsigned int order)
644{
645 struct free_area * area;
646 unsigned int current_order;
647 struct page *page;
648
649 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
650 area = zone->free_area + current_order;
651 if (list_empty(&area->free_list))
652 continue;
653
654 page = list_entry(area->free_list.next, struct page, lru);
655 list_del(&page->lru);
656 rmv_page_order(page);
657 area->nr_free--;
d23ad423 658 __mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
085cc7d5
NP
659 expand(zone, page, order, current_order, area);
660 return page;
1da177e4
LT
661 }
662
663 return NULL;
664}
665
666/*
667 * Obtain a specified number of elements from the buddy allocator, all under
668 * a single hold of the lock, for efficiency. Add them to the supplied list.
669 * Returns the number of new pages which were placed at *list.
670 */
671static int rmqueue_bulk(struct zone *zone, unsigned int order,
672 unsigned long count, struct list_head *list)
673{
1da177e4 674 int i;
1da177e4 675
c54ad30c 676 spin_lock(&zone->lock);
1da177e4 677 for (i = 0; i < count; ++i) {
085cc7d5
NP
678 struct page *page = __rmqueue(zone, order);
679 if (unlikely(page == NULL))
1da177e4 680 break;
1da177e4
LT
681 list_add_tail(&page->lru, list);
682 }
c54ad30c 683 spin_unlock(&zone->lock);
085cc7d5 684 return i;
1da177e4
LT
685}
686
4ae7c039 687#ifdef CONFIG_NUMA
8fce4d8e 688/*
4037d452
CL
689 * Called from the vmstat counter updater to drain pagesets of this
690 * currently executing processor on remote nodes after they have
691 * expired.
692 *
879336c3
CL
693 * Note that this function must be called with the thread pinned to
694 * a single processor.
8fce4d8e 695 */
4037d452 696void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 697{
4ae7c039 698 unsigned long flags;
4037d452 699 int to_drain;
4ae7c039 700
4037d452
CL
701 local_irq_save(flags);
702 if (pcp->count >= pcp->batch)
703 to_drain = pcp->batch;
704 else
705 to_drain = pcp->count;
706 free_pages_bulk(zone, to_drain, &pcp->list, 0);
707 pcp->count -= to_drain;
708 local_irq_restore(flags);
4ae7c039
CL
709}
710#endif
711
1da177e4
LT
712static void __drain_pages(unsigned int cpu)
713{
c54ad30c 714 unsigned long flags;
1da177e4
LT
715 struct zone *zone;
716 int i;
717
718 for_each_zone(zone) {
719 struct per_cpu_pageset *pset;
720
f2e12bb2
CL
721 if (!populated_zone(zone))
722 continue;
723
e7c8d5c9 724 pset = zone_pcp(zone, cpu);
1da177e4
LT
725 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
726 struct per_cpu_pages *pcp;
727
728 pcp = &pset->pcp[i];
c54ad30c 729 local_irq_save(flags);
48db57f8
NP
730 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
731 pcp->count = 0;
c54ad30c 732 local_irq_restore(flags);
1da177e4
LT
733 }
734 }
735}
1da177e4 736
296699de 737#ifdef CONFIG_HIBERNATION
1da177e4
LT
738
739void mark_free_pages(struct zone *zone)
740{
f623f0db
RW
741 unsigned long pfn, max_zone_pfn;
742 unsigned long flags;
1da177e4
LT
743 int order;
744 struct list_head *curr;
745
746 if (!zone->spanned_pages)
747 return;
748
749 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
750
751 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
752 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
753 if (pfn_valid(pfn)) {
754 struct page *page = pfn_to_page(pfn);
755
7be98234
RW
756 if (!swsusp_page_is_forbidden(page))
757 swsusp_unset_page_free(page);
f623f0db 758 }
1da177e4
LT
759
760 for (order = MAX_ORDER - 1; order >= 0; --order)
761 list_for_each(curr, &zone->free_area[order].free_list) {
f623f0db 762 unsigned long i;
1da177e4 763
f623f0db
RW
764 pfn = page_to_pfn(list_entry(curr, struct page, lru));
765 for (i = 0; i < (1UL << order); i++)
7be98234 766 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 767 }
1da177e4 768
1da177e4
LT
769 spin_unlock_irqrestore(&zone->lock, flags);
770}
771
772/*
773 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
774 */
775void drain_local_pages(void)
776{
777 unsigned long flags;
778
779 local_irq_save(flags);
780 __drain_pages(smp_processor_id());
781 local_irq_restore(flags);
782}
296699de 783#endif /* CONFIG_HIBERNATION */
1da177e4 784
1da177e4
LT
785/*
786 * Free a 0-order page
787 */
1da177e4
LT
788static void fastcall free_hot_cold_page(struct page *page, int cold)
789{
790 struct zone *zone = page_zone(page);
791 struct per_cpu_pages *pcp;
792 unsigned long flags;
793
1da177e4
LT
794 if (PageAnon(page))
795 page->mapping = NULL;
224abf92 796 if (free_pages_check(page))
689bcebf
HD
797 return;
798
9858db50
NP
799 if (!PageHighMem(page))
800 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
dafb1367 801 arch_free_page(page, 0);
689bcebf
HD
802 kernel_map_pages(page, 1, 0);
803
e7c8d5c9 804 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 805 local_irq_save(flags);
f8891e5e 806 __count_vm_event(PGFREE);
1da177e4
LT
807 list_add(&page->lru, &pcp->list);
808 pcp->count++;
48db57f8
NP
809 if (pcp->count >= pcp->high) {
810 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
811 pcp->count -= pcp->batch;
812 }
1da177e4
LT
813 local_irq_restore(flags);
814 put_cpu();
815}
816
817void fastcall free_hot_page(struct page *page)
818{
819 free_hot_cold_page(page, 0);
820}
821
822void fastcall free_cold_page(struct page *page)
823{
824 free_hot_cold_page(page, 1);
825}
826
8dfcc9ba
NP
827/*
828 * split_page takes a non-compound higher-order page, and splits it into
829 * n (1<<order) sub-pages: page[0..n]
830 * Each sub-page must be freed individually.
831 *
832 * Note: this is probably too low level an operation for use in drivers.
833 * Please consult with lkml before using this in your driver.
834 */
835void split_page(struct page *page, unsigned int order)
836{
837 int i;
838
725d704e
NP
839 VM_BUG_ON(PageCompound(page));
840 VM_BUG_ON(!page_count(page));
7835e98b
NP
841 for (i = 1; i < (1 << order); i++)
842 set_page_refcounted(page + i);
8dfcc9ba 843}
8dfcc9ba 844
1da177e4
LT
845/*
846 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
847 * we cheat by calling it from here, in the order > 0 path. Saves a branch
848 * or two.
849 */
a74609fa
NP
850static struct page *buffered_rmqueue(struct zonelist *zonelist,
851 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
852{
853 unsigned long flags;
689bcebf 854 struct page *page;
1da177e4 855 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 856 int cpu;
1da177e4 857
689bcebf 858again:
a74609fa 859 cpu = get_cpu();
48db57f8 860 if (likely(order == 0)) {
1da177e4
LT
861 struct per_cpu_pages *pcp;
862
a74609fa 863 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1da177e4 864 local_irq_save(flags);
a74609fa 865 if (!pcp->count) {
941c7105 866 pcp->count = rmqueue_bulk(zone, 0,
1da177e4 867 pcp->batch, &pcp->list);
a74609fa
NP
868 if (unlikely(!pcp->count))
869 goto failed;
1da177e4 870 }
a74609fa
NP
871 page = list_entry(pcp->list.next, struct page, lru);
872 list_del(&page->lru);
873 pcp->count--;
7fb1d9fc 874 } else {
1da177e4
LT
875 spin_lock_irqsave(&zone->lock, flags);
876 page = __rmqueue(zone, order);
a74609fa
NP
877 spin_unlock(&zone->lock);
878 if (!page)
879 goto failed;
1da177e4
LT
880 }
881
f8891e5e 882 __count_zone_vm_events(PGALLOC, zone, 1 << order);
ca889e6c 883 zone_statistics(zonelist, zone);
a74609fa
NP
884 local_irq_restore(flags);
885 put_cpu();
1da177e4 886
725d704e 887 VM_BUG_ON(bad_range(zone, page));
17cf4406 888 if (prep_new_page(page, order, gfp_flags))
a74609fa 889 goto again;
1da177e4 890 return page;
a74609fa
NP
891
892failed:
893 local_irq_restore(flags);
894 put_cpu();
895 return NULL;
1da177e4
LT
896}
897
7fb1d9fc 898#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
899#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
900#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
901#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
902#define ALLOC_HARDER 0x10 /* try to alloc harder */
903#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
904#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 905
933e312e
AM
906#ifdef CONFIG_FAIL_PAGE_ALLOC
907
908static struct fail_page_alloc_attr {
909 struct fault_attr attr;
910
911 u32 ignore_gfp_highmem;
912 u32 ignore_gfp_wait;
54114994 913 u32 min_order;
933e312e
AM
914
915#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
916
917 struct dentry *ignore_gfp_highmem_file;
918 struct dentry *ignore_gfp_wait_file;
54114994 919 struct dentry *min_order_file;
933e312e
AM
920
921#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
922
923} fail_page_alloc = {
924 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
925 .ignore_gfp_wait = 1,
926 .ignore_gfp_highmem = 1,
54114994 927 .min_order = 1,
933e312e
AM
928};
929
930static int __init setup_fail_page_alloc(char *str)
931{
932 return setup_fault_attr(&fail_page_alloc.attr, str);
933}
934__setup("fail_page_alloc=", setup_fail_page_alloc);
935
936static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
937{
54114994
AM
938 if (order < fail_page_alloc.min_order)
939 return 0;
933e312e
AM
940 if (gfp_mask & __GFP_NOFAIL)
941 return 0;
942 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
943 return 0;
944 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
945 return 0;
946
947 return should_fail(&fail_page_alloc.attr, 1 << order);
948}
949
950#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
951
952static int __init fail_page_alloc_debugfs(void)
953{
954 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
955 struct dentry *dir;
956 int err;
957
958 err = init_fault_attr_dentries(&fail_page_alloc.attr,
959 "fail_page_alloc");
960 if (err)
961 return err;
962 dir = fail_page_alloc.attr.dentries.dir;
963
964 fail_page_alloc.ignore_gfp_wait_file =
965 debugfs_create_bool("ignore-gfp-wait", mode, dir,
966 &fail_page_alloc.ignore_gfp_wait);
967
968 fail_page_alloc.ignore_gfp_highmem_file =
969 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
970 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
971 fail_page_alloc.min_order_file =
972 debugfs_create_u32("min-order", mode, dir,
973 &fail_page_alloc.min_order);
933e312e
AM
974
975 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
976 !fail_page_alloc.ignore_gfp_highmem_file ||
977 !fail_page_alloc.min_order_file) {
933e312e
AM
978 err = -ENOMEM;
979 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
980 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 981 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
982 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
983 }
984
985 return err;
986}
987
988late_initcall(fail_page_alloc_debugfs);
989
990#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
991
992#else /* CONFIG_FAIL_PAGE_ALLOC */
993
994static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
995{
996 return 0;
997}
998
999#endif /* CONFIG_FAIL_PAGE_ALLOC */
1000
1da177e4
LT
1001/*
1002 * Return 1 if free pages are above 'mark'. This takes into account the order
1003 * of the allocation.
1004 */
1005int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1006 int classzone_idx, int alloc_flags)
1da177e4
LT
1007{
1008 /* free_pages my go negative - that's OK */
d23ad423
CL
1009 long min = mark;
1010 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1011 int o;
1012
7fb1d9fc 1013 if (alloc_flags & ALLOC_HIGH)
1da177e4 1014 min -= min / 2;
7fb1d9fc 1015 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1016 min -= min / 4;
1017
1018 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1019 return 0;
1020 for (o = 0; o < order; o++) {
1021 /* At the next order, this order's pages become unavailable */
1022 free_pages -= z->free_area[o].nr_free << o;
1023
1024 /* Require fewer higher order pages to be free */
1025 min >>= 1;
1026
1027 if (free_pages <= min)
1028 return 0;
1029 }
1030 return 1;
1031}
1032
9276b1bc
PJ
1033#ifdef CONFIG_NUMA
1034/*
1035 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1036 * skip over zones that are not allowed by the cpuset, or that have
1037 * been recently (in last second) found to be nearly full. See further
1038 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1039 * that have to skip over alot of full or unallowed zones.
1040 *
1041 * If the zonelist cache is present in the passed in zonelist, then
1042 * returns a pointer to the allowed node mask (either the current
1043 * tasks mems_allowed, or node_online_map.)
1044 *
1045 * If the zonelist cache is not available for this zonelist, does
1046 * nothing and returns NULL.
1047 *
1048 * If the fullzones BITMAP in the zonelist cache is stale (more than
1049 * a second since last zap'd) then we zap it out (clear its bits.)
1050 *
1051 * We hold off even calling zlc_setup, until after we've checked the
1052 * first zone in the zonelist, on the theory that most allocations will
1053 * be satisfied from that first zone, so best to examine that zone as
1054 * quickly as we can.
1055 */
1056static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1057{
1058 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1059 nodemask_t *allowednodes; /* zonelist_cache approximation */
1060
1061 zlc = zonelist->zlcache_ptr;
1062 if (!zlc)
1063 return NULL;
1064
1065 if (jiffies - zlc->last_full_zap > 1 * HZ) {
1066 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1067 zlc->last_full_zap = jiffies;
1068 }
1069
1070 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1071 &cpuset_current_mems_allowed :
1072 &node_online_map;
1073 return allowednodes;
1074}
1075
1076/*
1077 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1078 * if it is worth looking at further for free memory:
1079 * 1) Check that the zone isn't thought to be full (doesn't have its
1080 * bit set in the zonelist_cache fullzones BITMAP).
1081 * 2) Check that the zones node (obtained from the zonelist_cache
1082 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1083 * Return true (non-zero) if zone is worth looking at further, or
1084 * else return false (zero) if it is not.
1085 *
1086 * This check -ignores- the distinction between various watermarks,
1087 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1088 * found to be full for any variation of these watermarks, it will
1089 * be considered full for up to one second by all requests, unless
1090 * we are so low on memory on all allowed nodes that we are forced
1091 * into the second scan of the zonelist.
1092 *
1093 * In the second scan we ignore this zonelist cache and exactly
1094 * apply the watermarks to all zones, even it is slower to do so.
1095 * We are low on memory in the second scan, and should leave no stone
1096 * unturned looking for a free page.
1097 */
1098static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1099 nodemask_t *allowednodes)
1100{
1101 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1102 int i; /* index of *z in zonelist zones */
1103 int n; /* node that zone *z is on */
1104
1105 zlc = zonelist->zlcache_ptr;
1106 if (!zlc)
1107 return 1;
1108
1109 i = z - zonelist->zones;
1110 n = zlc->z_to_n[i];
1111
1112 /* This zone is worth trying if it is allowed but not full */
1113 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1114}
1115
1116/*
1117 * Given 'z' scanning a zonelist, set the corresponding bit in
1118 * zlc->fullzones, so that subsequent attempts to allocate a page
1119 * from that zone don't waste time re-examining it.
1120 */
1121static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1122{
1123 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1124 int i; /* index of *z in zonelist zones */
1125
1126 zlc = zonelist->zlcache_ptr;
1127 if (!zlc)
1128 return;
1129
1130 i = z - zonelist->zones;
1131
1132 set_bit(i, zlc->fullzones);
1133}
1134
1135#else /* CONFIG_NUMA */
1136
1137static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1138{
1139 return NULL;
1140}
1141
1142static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1143 nodemask_t *allowednodes)
1144{
1145 return 1;
1146}
1147
1148static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1149{
1150}
1151#endif /* CONFIG_NUMA */
1152
7fb1d9fc 1153/*
0798e519 1154 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1155 * a page.
1156 */
1157static struct page *
1158get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1159 struct zonelist *zonelist, int alloc_flags)
753ee728 1160{
9276b1bc 1161 struct zone **z;
7fb1d9fc 1162 struct page *page = NULL;
9276b1bc 1163 int classzone_idx = zone_idx(zonelist->zones[0]);
1192d526 1164 struct zone *zone;
9276b1bc
PJ
1165 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1166 int zlc_active = 0; /* set if using zonelist_cache */
1167 int did_zlc_setup = 0; /* just call zlc_setup() one time */
b377fd39 1168 enum zone_type highest_zoneidx = -1; /* Gets set for policy zonelists */
7fb1d9fc 1169
9276b1bc 1170zonelist_scan:
7fb1d9fc 1171 /*
9276b1bc 1172 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1173 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1174 */
9276b1bc
PJ
1175 z = zonelist->zones;
1176
7fb1d9fc 1177 do {
b377fd39
MG
1178 /*
1179 * In NUMA, this could be a policy zonelist which contains
1180 * zones that may not be allowed by the current gfp_mask.
1181 * Check the zone is allowed by the current flags
1182 */
1183 if (unlikely(alloc_should_filter_zonelist(zonelist))) {
1184 if (highest_zoneidx == -1)
1185 highest_zoneidx = gfp_zone(gfp_mask);
1186 if (zone_idx(*z) > highest_zoneidx)
1187 continue;
1188 }
1189
9276b1bc
PJ
1190 if (NUMA_BUILD && zlc_active &&
1191 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1192 continue;
1192d526 1193 zone = *z;
08e0f6a9 1194 if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1192d526 1195 zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
9b819d20 1196 break;
7fb1d9fc 1197 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1198 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1199 goto try_next_zone;
7fb1d9fc
RS
1200
1201 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
1202 unsigned long mark;
1203 if (alloc_flags & ALLOC_WMARK_MIN)
1192d526 1204 mark = zone->pages_min;
3148890b 1205 else if (alloc_flags & ALLOC_WMARK_LOW)
1192d526 1206 mark = zone->pages_low;
3148890b 1207 else
1192d526 1208 mark = zone->pages_high;
0798e519
PJ
1209 if (!zone_watermark_ok(zone, order, mark,
1210 classzone_idx, alloc_flags)) {
9eeff239 1211 if (!zone_reclaim_mode ||
1192d526 1212 !zone_reclaim(zone, gfp_mask, order))
9276b1bc 1213 goto this_zone_full;
0798e519 1214 }
7fb1d9fc
RS
1215 }
1216
1192d526 1217 page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
0798e519 1218 if (page)
7fb1d9fc 1219 break;
9276b1bc
PJ
1220this_zone_full:
1221 if (NUMA_BUILD)
1222 zlc_mark_zone_full(zonelist, z);
1223try_next_zone:
1224 if (NUMA_BUILD && !did_zlc_setup) {
1225 /* we do zlc_setup after the first zone is tried */
1226 allowednodes = zlc_setup(zonelist, alloc_flags);
1227 zlc_active = 1;
1228 did_zlc_setup = 1;
1229 }
7fb1d9fc 1230 } while (*(++z) != NULL);
9276b1bc
PJ
1231
1232 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1233 /* Disable zlc cache for second zonelist scan */
1234 zlc_active = 0;
1235 goto zonelist_scan;
1236 }
7fb1d9fc 1237 return page;
753ee728
MH
1238}
1239
1da177e4
LT
1240/*
1241 * This is the 'heart' of the zoned buddy allocator.
1242 */
1243struct page * fastcall
dd0fc66f 1244__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
1245 struct zonelist *zonelist)
1246{
260b2367 1247 const gfp_t wait = gfp_mask & __GFP_WAIT;
7fb1d9fc 1248 struct zone **z;
1da177e4
LT
1249 struct page *page;
1250 struct reclaim_state reclaim_state;
1251 struct task_struct *p = current;
1da177e4 1252 int do_retry;
7fb1d9fc 1253 int alloc_flags;
1da177e4
LT
1254 int did_some_progress;
1255
1256 might_sleep_if(wait);
1257
933e312e
AM
1258 if (should_fail_alloc_page(gfp_mask, order))
1259 return NULL;
1260
6b1de916 1261restart:
7fb1d9fc 1262 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 1263
7fb1d9fc 1264 if (unlikely(*z == NULL)) {
1da177e4
LT
1265 /* Should this ever happen?? */
1266 return NULL;
1267 }
6b1de916 1268
7fb1d9fc 1269 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1270 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
1271 if (page)
1272 goto got_pg;
1da177e4 1273
952f3b51
CL
1274 /*
1275 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1276 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1277 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1278 * using a larger set of nodes after it has established that the
1279 * allowed per node queues are empty and that nodes are
1280 * over allocated.
1281 */
1282 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1283 goto nopage;
1284
0798e519 1285 for (z = zonelist->zones; *z; z++)
43b0bc00 1286 wakeup_kswapd(*z, order);
1da177e4 1287
9bf2229f 1288 /*
7fb1d9fc
RS
1289 * OK, we're below the kswapd watermark and have kicked background
1290 * reclaim. Now things get more complex, so set up alloc_flags according
1291 * to how we want to proceed.
1292 *
1293 * The caller may dip into page reserves a bit more if the caller
1294 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
1295 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1296 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 1297 */
3148890b 1298 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
1299 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1300 alloc_flags |= ALLOC_HARDER;
1301 if (gfp_mask & __GFP_HIGH)
1302 alloc_flags |= ALLOC_HIGH;
bdd804f4
PJ
1303 if (wait)
1304 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
1305
1306 /*
1307 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 1308 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
1309 *
1310 * This is the last chance, in general, before the goto nopage.
1311 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 1312 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 1313 */
7fb1d9fc
RS
1314 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1315 if (page)
1316 goto got_pg;
1da177e4
LT
1317
1318 /* This allocation should allow future memory freeing. */
b84a35be 1319
b43a57bb 1320rebalance:
b84a35be
NP
1321 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1322 && !in_interrupt()) {
1323 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 1324nofail_alloc:
b84a35be 1325 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc 1326 page = get_page_from_freelist(gfp_mask, order,
47f3a867 1327 zonelist, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
1328 if (page)
1329 goto got_pg;
885036d3 1330 if (gfp_mask & __GFP_NOFAIL) {
3fcfab16 1331 congestion_wait(WRITE, HZ/50);
885036d3
KK
1332 goto nofail_alloc;
1333 }
1da177e4
LT
1334 }
1335 goto nopage;
1336 }
1337
1338 /* Atomic allocations - we can't balance anything */
1339 if (!wait)
1340 goto nopage;
1341
1da177e4
LT
1342 cond_resched();
1343
1344 /* We now go into synchronous reclaim */
3e0d98b9 1345 cpuset_memory_pressure_bump();
1da177e4
LT
1346 p->flags |= PF_MEMALLOC;
1347 reclaim_state.reclaimed_slab = 0;
1348 p->reclaim_state = &reclaim_state;
1349
5ad333eb 1350 did_some_progress = try_to_free_pages(zonelist->zones, order, gfp_mask);
1da177e4
LT
1351
1352 p->reclaim_state = NULL;
1353 p->flags &= ~PF_MEMALLOC;
1354
1355 cond_resched();
1356
1357 if (likely(did_some_progress)) {
7fb1d9fc
RS
1358 page = get_page_from_freelist(gfp_mask, order,
1359 zonelist, alloc_flags);
1360 if (page)
1361 goto got_pg;
1da177e4
LT
1362 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1363 /*
1364 * Go through the zonelist yet one more time, keep
1365 * very high watermark here, this is only to catch
1366 * a parallel oom killing, we must fail if we're still
1367 * under heavy pressure.
1368 */
7fb1d9fc 1369 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1370 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
7fb1d9fc
RS
1371 if (page)
1372 goto got_pg;
1da177e4 1373
a8bbf72a
MG
1374 /* The OOM killer will not help higher order allocs so fail */
1375 if (order > PAGE_ALLOC_COSTLY_ORDER)
1376 goto nopage;
1377
9b0f8b04 1378 out_of_memory(zonelist, gfp_mask, order);
1da177e4
LT
1379 goto restart;
1380 }
1381
1382 /*
1383 * Don't let big-order allocations loop unless the caller explicitly
1384 * requests that. Wait for some write requests to complete then retry.
1385 *
1386 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1387 * <= 3, but that may not be true in other implementations.
1388 */
1389 do_retry = 0;
1390 if (!(gfp_mask & __GFP_NORETRY)) {
5ad333eb
AW
1391 if ((order <= PAGE_ALLOC_COSTLY_ORDER) ||
1392 (gfp_mask & __GFP_REPEAT))
1da177e4
LT
1393 do_retry = 1;
1394 if (gfp_mask & __GFP_NOFAIL)
1395 do_retry = 1;
1396 }
1397 if (do_retry) {
3fcfab16 1398 congestion_wait(WRITE, HZ/50);
1da177e4
LT
1399 goto rebalance;
1400 }
1401
1402nopage:
1403 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1404 printk(KERN_WARNING "%s: page allocation failure."
1405 " order:%d, mode:0x%x\n",
1406 p->comm, order, gfp_mask);
1407 dump_stack();
578c2fd6 1408 show_mem();
1da177e4 1409 }
1da177e4 1410got_pg:
1da177e4
LT
1411 return page;
1412}
1413
1414EXPORT_SYMBOL(__alloc_pages);
1415
1416/*
1417 * Common helper functions.
1418 */
dd0fc66f 1419fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1420{
1421 struct page * page;
1422 page = alloc_pages(gfp_mask, order);
1423 if (!page)
1424 return 0;
1425 return (unsigned long) page_address(page);
1426}
1427
1428EXPORT_SYMBOL(__get_free_pages);
1429
dd0fc66f 1430fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1431{
1432 struct page * page;
1433
1434 /*
1435 * get_zeroed_page() returns a 32-bit address, which cannot represent
1436 * a highmem page
1437 */
725d704e 1438 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1439
1440 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1441 if (page)
1442 return (unsigned long) page_address(page);
1443 return 0;
1444}
1445
1446EXPORT_SYMBOL(get_zeroed_page);
1447
1448void __pagevec_free(struct pagevec *pvec)
1449{
1450 int i = pagevec_count(pvec);
1451
1452 while (--i >= 0)
1453 free_hot_cold_page(pvec->pages[i], pvec->cold);
1454}
1455
1456fastcall void __free_pages(struct page *page, unsigned int order)
1457{
b5810039 1458 if (put_page_testzero(page)) {
1da177e4
LT
1459 if (order == 0)
1460 free_hot_page(page);
1461 else
1462 __free_pages_ok(page, order);
1463 }
1464}
1465
1466EXPORT_SYMBOL(__free_pages);
1467
1468fastcall void free_pages(unsigned long addr, unsigned int order)
1469{
1470 if (addr != 0) {
725d704e 1471 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1472 __free_pages(virt_to_page((void *)addr), order);
1473 }
1474}
1475
1476EXPORT_SYMBOL(free_pages);
1477
1da177e4
LT
1478static unsigned int nr_free_zone_pages(int offset)
1479{
e310fd43
MB
1480 /* Just pick one node, since fallback list is circular */
1481 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1482 unsigned int sum = 0;
1483
e310fd43
MB
1484 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1485 struct zone **zonep = zonelist->zones;
1486 struct zone *zone;
1da177e4 1487
e310fd43
MB
1488 for (zone = *zonep++; zone; zone = *zonep++) {
1489 unsigned long size = zone->present_pages;
1490 unsigned long high = zone->pages_high;
1491 if (size > high)
1492 sum += size - high;
1da177e4
LT
1493 }
1494
1495 return sum;
1496}
1497
1498/*
1499 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1500 */
1501unsigned int nr_free_buffer_pages(void)
1502{
af4ca457 1503 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 1504}
c2f1a551 1505EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
1506
1507/*
1508 * Amount of free RAM allocatable within all zones
1509 */
1510unsigned int nr_free_pagecache_pages(void)
1511{
2a1e274a 1512 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 1513}
08e0f6a9
CL
1514
1515static inline void show_node(struct zone *zone)
1da177e4 1516{
08e0f6a9 1517 if (NUMA_BUILD)
25ba77c1 1518 printk("Node %d ", zone_to_nid(zone));
1da177e4 1519}
1da177e4 1520
1da177e4
LT
1521void si_meminfo(struct sysinfo *val)
1522{
1523 val->totalram = totalram_pages;
1524 val->sharedram = 0;
d23ad423 1525 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 1526 val->bufferram = nr_blockdev_pages();
1da177e4
LT
1527 val->totalhigh = totalhigh_pages;
1528 val->freehigh = nr_free_highpages();
1da177e4
LT
1529 val->mem_unit = PAGE_SIZE;
1530}
1531
1532EXPORT_SYMBOL(si_meminfo);
1533
1534#ifdef CONFIG_NUMA
1535void si_meminfo_node(struct sysinfo *val, int nid)
1536{
1537 pg_data_t *pgdat = NODE_DATA(nid);
1538
1539 val->totalram = pgdat->node_present_pages;
d23ad423 1540 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 1541#ifdef CONFIG_HIGHMEM
1da177e4 1542 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
1543 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1544 NR_FREE_PAGES);
98d2b0eb
CL
1545#else
1546 val->totalhigh = 0;
1547 val->freehigh = 0;
1548#endif
1da177e4
LT
1549 val->mem_unit = PAGE_SIZE;
1550}
1551#endif
1552
1553#define K(x) ((x) << (PAGE_SHIFT-10))
1554
1555/*
1556 * Show free area list (used inside shift_scroll-lock stuff)
1557 * We also calculate the percentage fragmentation. We do this by counting the
1558 * memory on each free list with the exception of the first item on the list.
1559 */
1560void show_free_areas(void)
1561{
c7241913 1562 int cpu;
1da177e4
LT
1563 struct zone *zone;
1564
1565 for_each_zone(zone) {
c7241913 1566 if (!populated_zone(zone))
1da177e4 1567 continue;
c7241913
JS
1568
1569 show_node(zone);
1570 printk("%s per-cpu:\n", zone->name);
1da177e4 1571
6b482c67 1572 for_each_online_cpu(cpu) {
1da177e4
LT
1573 struct per_cpu_pageset *pageset;
1574
e7c8d5c9 1575 pageset = zone_pcp(zone, cpu);
1da177e4 1576
c7241913
JS
1577 printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d "
1578 "Cold: hi:%5d, btch:%4d usd:%4d\n",
1579 cpu, pageset->pcp[0].high,
1580 pageset->pcp[0].batch, pageset->pcp[0].count,
1581 pageset->pcp[1].high, pageset->pcp[1].batch,
1582 pageset->pcp[1].count);
1da177e4
LT
1583 }
1584 }
1585
a25700a5 1586 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
d23ad423 1587 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
65e458d4
CL
1588 global_page_state(NR_ACTIVE),
1589 global_page_state(NR_INACTIVE),
b1e7a8fd 1590 global_page_state(NR_FILE_DIRTY),
ce866b34 1591 global_page_state(NR_WRITEBACK),
fd39fc85 1592 global_page_state(NR_UNSTABLE_NFS),
d23ad423 1593 global_page_state(NR_FREE_PAGES),
972d1a7b
CL
1594 global_page_state(NR_SLAB_RECLAIMABLE) +
1595 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 1596 global_page_state(NR_FILE_MAPPED),
a25700a5
AM
1597 global_page_state(NR_PAGETABLE),
1598 global_page_state(NR_BOUNCE));
1da177e4
LT
1599
1600 for_each_zone(zone) {
1601 int i;
1602
c7241913
JS
1603 if (!populated_zone(zone))
1604 continue;
1605
1da177e4
LT
1606 show_node(zone);
1607 printk("%s"
1608 " free:%lukB"
1609 " min:%lukB"
1610 " low:%lukB"
1611 " high:%lukB"
1612 " active:%lukB"
1613 " inactive:%lukB"
1614 " present:%lukB"
1615 " pages_scanned:%lu"
1616 " all_unreclaimable? %s"
1617 "\n",
1618 zone->name,
d23ad423 1619 K(zone_page_state(zone, NR_FREE_PAGES)),
1da177e4
LT
1620 K(zone->pages_min),
1621 K(zone->pages_low),
1622 K(zone->pages_high),
c8785385
CL
1623 K(zone_page_state(zone, NR_ACTIVE)),
1624 K(zone_page_state(zone, NR_INACTIVE)),
1da177e4
LT
1625 K(zone->present_pages),
1626 zone->pages_scanned,
1627 (zone->all_unreclaimable ? "yes" : "no")
1628 );
1629 printk("lowmem_reserve[]:");
1630 for (i = 0; i < MAX_NR_ZONES; i++)
1631 printk(" %lu", zone->lowmem_reserve[i]);
1632 printk("\n");
1633 }
1634
1635 for_each_zone(zone) {
8f9de51a 1636 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4 1637
c7241913
JS
1638 if (!populated_zone(zone))
1639 continue;
1640
1da177e4
LT
1641 show_node(zone);
1642 printk("%s: ", zone->name);
1da177e4
LT
1643
1644 spin_lock_irqsave(&zone->lock, flags);
1645 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
1646 nr[order] = zone->free_area[order].nr_free;
1647 total += nr[order] << order;
1da177e4
LT
1648 }
1649 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
1650 for (order = 0; order < MAX_ORDER; order++)
1651 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
1652 printk("= %lukB\n", K(total));
1653 }
1654
1655 show_swap_cache_info();
1656}
1657
1658/*
1659 * Builds allocation fallback zone lists.
1a93205b
CL
1660 *
1661 * Add all populated zones of a node to the zonelist.
1da177e4 1662 */
f0c0b2b8
KH
1663static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1664 int nr_zones, enum zone_type zone_type)
1da177e4 1665{
1a93205b
CL
1666 struct zone *zone;
1667
98d2b0eb 1668 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 1669 zone_type++;
02a68a5e
CL
1670
1671 do {
2f6726e5 1672 zone_type--;
070f8032 1673 zone = pgdat->node_zones + zone_type;
1a93205b 1674 if (populated_zone(zone)) {
070f8032
CL
1675 zonelist->zones[nr_zones++] = zone;
1676 check_highest_zone(zone_type);
1da177e4 1677 }
02a68a5e 1678
2f6726e5 1679 } while (zone_type);
070f8032 1680 return nr_zones;
1da177e4
LT
1681}
1682
f0c0b2b8
KH
1683
1684/*
1685 * zonelist_order:
1686 * 0 = automatic detection of better ordering.
1687 * 1 = order by ([node] distance, -zonetype)
1688 * 2 = order by (-zonetype, [node] distance)
1689 *
1690 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1691 * the same zonelist. So only NUMA can configure this param.
1692 */
1693#define ZONELIST_ORDER_DEFAULT 0
1694#define ZONELIST_ORDER_NODE 1
1695#define ZONELIST_ORDER_ZONE 2
1696
1697/* zonelist order in the kernel.
1698 * set_zonelist_order() will set this to NODE or ZONE.
1699 */
1700static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1701static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1702
1703
1da177e4 1704#ifdef CONFIG_NUMA
f0c0b2b8
KH
1705/* The value user specified ....changed by config */
1706static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1707/* string for sysctl */
1708#define NUMA_ZONELIST_ORDER_LEN 16
1709char numa_zonelist_order[16] = "default";
1710
1711/*
1712 * interface for configure zonelist ordering.
1713 * command line option "numa_zonelist_order"
1714 * = "[dD]efault - default, automatic configuration.
1715 * = "[nN]ode - order by node locality, then by zone within node
1716 * = "[zZ]one - order by zone, then by locality within zone
1717 */
1718
1719static int __parse_numa_zonelist_order(char *s)
1720{
1721 if (*s == 'd' || *s == 'D') {
1722 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1723 } else if (*s == 'n' || *s == 'N') {
1724 user_zonelist_order = ZONELIST_ORDER_NODE;
1725 } else if (*s == 'z' || *s == 'Z') {
1726 user_zonelist_order = ZONELIST_ORDER_ZONE;
1727 } else {
1728 printk(KERN_WARNING
1729 "Ignoring invalid numa_zonelist_order value: "
1730 "%s\n", s);
1731 return -EINVAL;
1732 }
1733 return 0;
1734}
1735
1736static __init int setup_numa_zonelist_order(char *s)
1737{
1738 if (s)
1739 return __parse_numa_zonelist_order(s);
1740 return 0;
1741}
1742early_param("numa_zonelist_order", setup_numa_zonelist_order);
1743
1744/*
1745 * sysctl handler for numa_zonelist_order
1746 */
1747int numa_zonelist_order_handler(ctl_table *table, int write,
1748 struct file *file, void __user *buffer, size_t *length,
1749 loff_t *ppos)
1750{
1751 char saved_string[NUMA_ZONELIST_ORDER_LEN];
1752 int ret;
1753
1754 if (write)
1755 strncpy(saved_string, (char*)table->data,
1756 NUMA_ZONELIST_ORDER_LEN);
1757 ret = proc_dostring(table, write, file, buffer, length, ppos);
1758 if (ret)
1759 return ret;
1760 if (write) {
1761 int oldval = user_zonelist_order;
1762 if (__parse_numa_zonelist_order((char*)table->data)) {
1763 /*
1764 * bogus value. restore saved string
1765 */
1766 strncpy((char*)table->data, saved_string,
1767 NUMA_ZONELIST_ORDER_LEN);
1768 user_zonelist_order = oldval;
1769 } else if (oldval != user_zonelist_order)
1770 build_all_zonelists();
1771 }
1772 return 0;
1773}
1774
1775
1da177e4 1776#define MAX_NODE_LOAD (num_online_nodes())
f0c0b2b8
KH
1777static int node_load[MAX_NUMNODES];
1778
1da177e4 1779/**
4dc3b16b 1780 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1781 * @node: node whose fallback list we're appending
1782 * @used_node_mask: nodemask_t of already used nodes
1783 *
1784 * We use a number of factors to determine which is the next node that should
1785 * appear on a given node's fallback list. The node should not have appeared
1786 * already in @node's fallback list, and it should be the next closest node
1787 * according to the distance array (which contains arbitrary distance values
1788 * from each node to each node in the system), and should also prefer nodes
1789 * with no CPUs, since presumably they'll have very little allocation pressure
1790 * on them otherwise.
1791 * It returns -1 if no node is found.
1792 */
f0c0b2b8 1793static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 1794{
4cf808eb 1795 int n, val;
1da177e4
LT
1796 int min_val = INT_MAX;
1797 int best_node = -1;
1798
4cf808eb
LT
1799 /* Use the local node if we haven't already */
1800 if (!node_isset(node, *used_node_mask)) {
1801 node_set(node, *used_node_mask);
1802 return node;
1803 }
1da177e4 1804
4cf808eb
LT
1805 for_each_online_node(n) {
1806 cpumask_t tmp;
1da177e4
LT
1807
1808 /* Don't want a node to appear more than once */
1809 if (node_isset(n, *used_node_mask))
1810 continue;
1811
1da177e4
LT
1812 /* Use the distance array to find the distance */
1813 val = node_distance(node, n);
1814
4cf808eb
LT
1815 /* Penalize nodes under us ("prefer the next node") */
1816 val += (n < node);
1817
1da177e4
LT
1818 /* Give preference to headless and unused nodes */
1819 tmp = node_to_cpumask(n);
1820 if (!cpus_empty(tmp))
1821 val += PENALTY_FOR_NODE_WITH_CPUS;
1822
1823 /* Slight preference for less loaded node */
1824 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1825 val += node_load[n];
1826
1827 if (val < min_val) {
1828 min_val = val;
1829 best_node = n;
1830 }
1831 }
1832
1833 if (best_node >= 0)
1834 node_set(best_node, *used_node_mask);
1835
1836 return best_node;
1837}
1838
f0c0b2b8
KH
1839
1840/*
1841 * Build zonelists ordered by node and zones within node.
1842 * This results in maximum locality--normal zone overflows into local
1843 * DMA zone, if any--but risks exhausting DMA zone.
1844 */
1845static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 1846{
19655d34 1847 enum zone_type i;
f0c0b2b8 1848 int j;
1da177e4 1849 struct zonelist *zonelist;
f0c0b2b8
KH
1850
1851 for (i = 0; i < MAX_NR_ZONES; i++) {
1852 zonelist = pgdat->node_zonelists + i;
1853 for (j = 0; zonelist->zones[j] != NULL; j++)
1854 ;
1855 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1856 zonelist->zones[j] = NULL;
1857 }
1858}
1859
1860/*
1861 * Build zonelists ordered by zone and nodes within zones.
1862 * This results in conserving DMA zone[s] until all Normal memory is
1863 * exhausted, but results in overflowing to remote node while memory
1864 * may still exist in local DMA zone.
1865 */
1866static int node_order[MAX_NUMNODES];
1867
1868static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
1869{
1870 enum zone_type i;
1871 int pos, j, node;
1872 int zone_type; /* needs to be signed */
1873 struct zone *z;
1874 struct zonelist *zonelist;
1875
1876 for (i = 0; i < MAX_NR_ZONES; i++) {
1877 zonelist = pgdat->node_zonelists + i;
1878 pos = 0;
1879 for (zone_type = i; zone_type >= 0; zone_type--) {
1880 for (j = 0; j < nr_nodes; j++) {
1881 node = node_order[j];
1882 z = &NODE_DATA(node)->node_zones[zone_type];
1883 if (populated_zone(z)) {
1884 zonelist->zones[pos++] = z;
1885 check_highest_zone(zone_type);
1886 }
1887 }
1888 }
1889 zonelist->zones[pos] = NULL;
1890 }
1891}
1892
1893static int default_zonelist_order(void)
1894{
1895 int nid, zone_type;
1896 unsigned long low_kmem_size,total_size;
1897 struct zone *z;
1898 int average_size;
1899 /*
1900 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
1901 * If they are really small and used heavily, the system can fall
1902 * into OOM very easily.
1903 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
1904 */
1905 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
1906 low_kmem_size = 0;
1907 total_size = 0;
1908 for_each_online_node(nid) {
1909 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
1910 z = &NODE_DATA(nid)->node_zones[zone_type];
1911 if (populated_zone(z)) {
1912 if (zone_type < ZONE_NORMAL)
1913 low_kmem_size += z->present_pages;
1914 total_size += z->present_pages;
1915 }
1916 }
1917 }
1918 if (!low_kmem_size || /* there are no DMA area. */
1919 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
1920 return ZONELIST_ORDER_NODE;
1921 /*
1922 * look into each node's config.
1923 * If there is a node whose DMA/DMA32 memory is very big area on
1924 * local memory, NODE_ORDER may be suitable.
1925 */
1926 average_size = total_size / (num_online_nodes() + 1);
1927 for_each_online_node(nid) {
1928 low_kmem_size = 0;
1929 total_size = 0;
1930 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
1931 z = &NODE_DATA(nid)->node_zones[zone_type];
1932 if (populated_zone(z)) {
1933 if (zone_type < ZONE_NORMAL)
1934 low_kmem_size += z->present_pages;
1935 total_size += z->present_pages;
1936 }
1937 }
1938 if (low_kmem_size &&
1939 total_size > average_size && /* ignore small node */
1940 low_kmem_size > total_size * 70/100)
1941 return ZONELIST_ORDER_NODE;
1942 }
1943 return ZONELIST_ORDER_ZONE;
1944}
1945
1946static void set_zonelist_order(void)
1947{
1948 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
1949 current_zonelist_order = default_zonelist_order();
1950 else
1951 current_zonelist_order = user_zonelist_order;
1952}
1953
1954static void build_zonelists(pg_data_t *pgdat)
1955{
1956 int j, node, load;
1957 enum zone_type i;
1da177e4 1958 nodemask_t used_mask;
f0c0b2b8
KH
1959 int local_node, prev_node;
1960 struct zonelist *zonelist;
1961 int order = current_zonelist_order;
1da177e4
LT
1962
1963 /* initialize zonelists */
19655d34 1964 for (i = 0; i < MAX_NR_ZONES; i++) {
1da177e4
LT
1965 zonelist = pgdat->node_zonelists + i;
1966 zonelist->zones[0] = NULL;
1967 }
1968
1969 /* NUMA-aware ordering of nodes */
1970 local_node = pgdat->node_id;
1971 load = num_online_nodes();
1972 prev_node = local_node;
1973 nodes_clear(used_mask);
f0c0b2b8
KH
1974
1975 memset(node_load, 0, sizeof(node_load));
1976 memset(node_order, 0, sizeof(node_order));
1977 j = 0;
1978
1da177e4 1979 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
1980 int distance = node_distance(local_node, node);
1981
1982 /*
1983 * If another node is sufficiently far away then it is better
1984 * to reclaim pages in a zone before going off node.
1985 */
1986 if (distance > RECLAIM_DISTANCE)
1987 zone_reclaim_mode = 1;
1988
1da177e4
LT
1989 /*
1990 * We don't want to pressure a particular node.
1991 * So adding penalty to the first node in same
1992 * distance group to make it round-robin.
1993 */
9eeff239 1994 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
1995 node_load[node] = load;
1996
1da177e4
LT
1997 prev_node = node;
1998 load--;
f0c0b2b8
KH
1999 if (order == ZONELIST_ORDER_NODE)
2000 build_zonelists_in_node_order(pgdat, node);
2001 else
2002 node_order[j++] = node; /* remember order */
2003 }
1da177e4 2004
f0c0b2b8
KH
2005 if (order == ZONELIST_ORDER_ZONE) {
2006 /* calculate node order -- i.e., DMA last! */
2007 build_zonelists_in_zone_order(pgdat, j);
1da177e4
LT
2008 }
2009}
2010
9276b1bc 2011/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2012static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc
PJ
2013{
2014 int i;
2015
2016 for (i = 0; i < MAX_NR_ZONES; i++) {
2017 struct zonelist *zonelist;
2018 struct zonelist_cache *zlc;
2019 struct zone **z;
2020
2021 zonelist = pgdat->node_zonelists + i;
2022 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2023 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2024 for (z = zonelist->zones; *z; z++)
2025 zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
2026 }
2027}
2028
f0c0b2b8 2029
1da177e4
LT
2030#else /* CONFIG_NUMA */
2031
f0c0b2b8
KH
2032static void set_zonelist_order(void)
2033{
2034 current_zonelist_order = ZONELIST_ORDER_ZONE;
2035}
2036
2037static void build_zonelists(pg_data_t *pgdat)
1da177e4 2038{
19655d34
CL
2039 int node, local_node;
2040 enum zone_type i,j;
1da177e4
LT
2041
2042 local_node = pgdat->node_id;
19655d34 2043 for (i = 0; i < MAX_NR_ZONES; i++) {
1da177e4
LT
2044 struct zonelist *zonelist;
2045
2046 zonelist = pgdat->node_zonelists + i;
2047
19655d34 2048 j = build_zonelists_node(pgdat, zonelist, 0, i);
1da177e4
LT
2049 /*
2050 * Now we build the zonelist so that it contains the zones
2051 * of all the other nodes.
2052 * We don't want to pressure a particular node, so when
2053 * building the zones for node N, we make sure that the
2054 * zones coming right after the local ones are those from
2055 * node N+1 (modulo N)
2056 */
2057 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2058 if (!node_online(node))
2059 continue;
19655d34 2060 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
2061 }
2062 for (node = 0; node < local_node; node++) {
2063 if (!node_online(node))
2064 continue;
19655d34 2065 j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1da177e4
LT
2066 }
2067
2068 zonelist->zones[j] = NULL;
2069 }
2070}
2071
9276b1bc 2072/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2073static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc
PJ
2074{
2075 int i;
2076
2077 for (i = 0; i < MAX_NR_ZONES; i++)
2078 pgdat->node_zonelists[i].zlcache_ptr = NULL;
2079}
2080
1da177e4
LT
2081#endif /* CONFIG_NUMA */
2082
7ea1530a
CL
2083/* Any regular memory on that node ? */
2084static void check_for_regular_memory(pg_data_t *pgdat)
2085{
2086#ifdef CONFIG_HIGHMEM
2087 enum zone_type zone_type;
2088
2089 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
2090 struct zone *zone = &pgdat->node_zones[zone_type];
2091 if (zone->present_pages)
2092 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
2093 }
2094#endif
2095}
2096
6811378e 2097/* return values int ....just for stop_machine_run() */
f0c0b2b8 2098static int __build_all_zonelists(void *dummy)
1da177e4 2099{
6811378e 2100 int nid;
9276b1bc
PJ
2101
2102 for_each_online_node(nid) {
7ea1530a
CL
2103 pg_data_t *pgdat = NODE_DATA(nid);
2104
2105 build_zonelists(pgdat);
2106 build_zonelist_cache(pgdat);
2107
2108 /* Any memory on that node */
2109 if (pgdat->node_present_pages)
2110 node_set_state(nid, N_HIGH_MEMORY);
2111 check_for_regular_memory(pgdat);
9276b1bc 2112 }
6811378e
YG
2113 return 0;
2114}
2115
f0c0b2b8 2116void build_all_zonelists(void)
6811378e 2117{
f0c0b2b8
KH
2118 set_zonelist_order();
2119
6811378e 2120 if (system_state == SYSTEM_BOOTING) {
423b41d7 2121 __build_all_zonelists(NULL);
6811378e
YG
2122 cpuset_init_current_mems_allowed();
2123 } else {
2124 /* we have to stop all cpus to guaranntee there is no user
2125 of zonelist */
2126 stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2127 /* cpuset refresh routine should be here */
2128 }
bd1e22b8 2129 vm_total_pages = nr_free_pagecache_pages();
f0c0b2b8
KH
2130 printk("Built %i zonelists in %s order. Total pages: %ld\n",
2131 num_online_nodes(),
2132 zonelist_order_name[current_zonelist_order],
2133 vm_total_pages);
2134#ifdef CONFIG_NUMA
2135 printk("Policy zone: %s\n", zone_names[policy_zone]);
2136#endif
1da177e4
LT
2137}
2138
2139/*
2140 * Helper functions to size the waitqueue hash table.
2141 * Essentially these want to choose hash table sizes sufficiently
2142 * large so that collisions trying to wait on pages are rare.
2143 * But in fact, the number of active page waitqueues on typical
2144 * systems is ridiculously low, less than 200. So this is even
2145 * conservative, even though it seems large.
2146 *
2147 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2148 * waitqueues, i.e. the size of the waitq table given the number of pages.
2149 */
2150#define PAGES_PER_WAITQUEUE 256
2151
cca448fe 2152#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 2153static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
2154{
2155 unsigned long size = 1;
2156
2157 pages /= PAGES_PER_WAITQUEUE;
2158
2159 while (size < pages)
2160 size <<= 1;
2161
2162 /*
2163 * Once we have dozens or even hundreds of threads sleeping
2164 * on IO we've got bigger problems than wait queue collision.
2165 * Limit the size of the wait table to a reasonable size.
2166 */
2167 size = min(size, 4096UL);
2168
2169 return max(size, 4UL);
2170}
cca448fe
YG
2171#else
2172/*
2173 * A zone's size might be changed by hot-add, so it is not possible to determine
2174 * a suitable size for its wait_table. So we use the maximum size now.
2175 *
2176 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2177 *
2178 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2179 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2180 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2181 *
2182 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2183 * or more by the traditional way. (See above). It equals:
2184 *
2185 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2186 * ia64(16K page size) : = ( 8G + 4M)byte.
2187 * powerpc (64K page size) : = (32G +16M)byte.
2188 */
2189static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2190{
2191 return 4096UL;
2192}
2193#endif
1da177e4
LT
2194
2195/*
2196 * This is an integer logarithm so that shifts can be used later
2197 * to extract the more random high bits from the multiplicative
2198 * hash function before the remainder is taken.
2199 */
2200static inline unsigned long wait_table_bits(unsigned long size)
2201{
2202 return ffz(~size);
2203}
2204
2205#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2206
1da177e4
LT
2207/*
2208 * Initially all pages are reserved - free ones are freed
2209 * up by free_all_bootmem() once the early boot process is
2210 * done. Non-atomic initialization, single-pass.
2211 */
c09b4240 2212void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 2213 unsigned long start_pfn, enum memmap_context context)
1da177e4 2214{
1da177e4 2215 struct page *page;
29751f69
AW
2216 unsigned long end_pfn = start_pfn + size;
2217 unsigned long pfn;
1da177e4 2218
cbe8dd4a 2219 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
2220 /*
2221 * There can be holes in boot-time mem_map[]s
2222 * handed to this function. They do not
2223 * exist on hotplugged memory.
2224 */
2225 if (context == MEMMAP_EARLY) {
2226 if (!early_pfn_valid(pfn))
2227 continue;
2228 if (!early_pfn_in_nid(pfn, nid))
2229 continue;
2230 }
d41dee36
AW
2231 page = pfn_to_page(pfn);
2232 set_page_links(page, zone, nid, pfn);
7835e98b 2233 init_page_count(page);
1da177e4
LT
2234 reset_page_mapcount(page);
2235 SetPageReserved(page);
2236 INIT_LIST_HEAD(&page->lru);
2237#ifdef WANT_PAGE_VIRTUAL
2238 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2239 if (!is_highmem_idx(zone))
3212c6be 2240 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 2241#endif
1da177e4
LT
2242 }
2243}
2244
6ea6e688
PM
2245static void __meminit zone_init_free_lists(struct pglist_data *pgdat,
2246 struct zone *zone, unsigned long size)
1da177e4
LT
2247{
2248 int order;
2249 for (order = 0; order < MAX_ORDER ; order++) {
2250 INIT_LIST_HEAD(&zone->free_area[order].free_list);
2251 zone->free_area[order].nr_free = 0;
2252 }
2253}
2254
2255#ifndef __HAVE_ARCH_MEMMAP_INIT
2256#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 2257 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
2258#endif
2259
d09c6b80 2260static int __devinit zone_batchsize(struct zone *zone)
e7c8d5c9
CL
2261{
2262 int batch;
2263
2264 /*
2265 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 2266 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
2267 *
2268 * OK, so we don't know how big the cache is. So guess.
2269 */
2270 batch = zone->present_pages / 1024;
ba56e91c
SR
2271 if (batch * PAGE_SIZE > 512 * 1024)
2272 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
2273 batch /= 4; /* We effectively *= 4 below */
2274 if (batch < 1)
2275 batch = 1;
2276
2277 /*
0ceaacc9
NP
2278 * Clamp the batch to a 2^n - 1 value. Having a power
2279 * of 2 value was found to be more likely to have
2280 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 2281 *
0ceaacc9
NP
2282 * For example if 2 tasks are alternately allocating
2283 * batches of pages, one task can end up with a lot
2284 * of pages of one half of the possible page colors
2285 * and the other with pages of the other colors.
e7c8d5c9 2286 */
0ceaacc9 2287 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 2288
e7c8d5c9
CL
2289 return batch;
2290}
2291
2caaad41
CL
2292inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2293{
2294 struct per_cpu_pages *pcp;
2295
1c6fe946
MD
2296 memset(p, 0, sizeof(*p));
2297
2caaad41
CL
2298 pcp = &p->pcp[0]; /* hot */
2299 pcp->count = 0;
2caaad41
CL
2300 pcp->high = 6 * batch;
2301 pcp->batch = max(1UL, 1 * batch);
2302 INIT_LIST_HEAD(&pcp->list);
2303
2304 pcp = &p->pcp[1]; /* cold*/
2305 pcp->count = 0;
2caaad41 2306 pcp->high = 2 * batch;
e46a5e28 2307 pcp->batch = max(1UL, batch/2);
2caaad41
CL
2308 INIT_LIST_HEAD(&pcp->list);
2309}
2310
8ad4b1fb
RS
2311/*
2312 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2313 * to the value high for the pageset p.
2314 */
2315
2316static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2317 unsigned long high)
2318{
2319 struct per_cpu_pages *pcp;
2320
2321 pcp = &p->pcp[0]; /* hot list */
2322 pcp->high = high;
2323 pcp->batch = max(1UL, high/4);
2324 if ((high/4) > (PAGE_SHIFT * 8))
2325 pcp->batch = PAGE_SHIFT * 8;
2326}
2327
2328
e7c8d5c9
CL
2329#ifdef CONFIG_NUMA
2330/*
2caaad41
CL
2331 * Boot pageset table. One per cpu which is going to be used for all
2332 * zones and all nodes. The parameters will be set in such a way
2333 * that an item put on a list will immediately be handed over to
2334 * the buddy list. This is safe since pageset manipulation is done
2335 * with interrupts disabled.
2336 *
2337 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
2338 *
2339 * The boot_pagesets must be kept even after bootup is complete for
2340 * unused processors and/or zones. They do play a role for bootstrapping
2341 * hotplugged processors.
2342 *
2343 * zoneinfo_show() and maybe other functions do
2344 * not check if the processor is online before following the pageset pointer.
2345 * Other parts of the kernel may not check if the zone is available.
2caaad41 2346 */
88a2a4ac 2347static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
2348
2349/*
2350 * Dynamically allocate memory for the
e7c8d5c9
CL
2351 * per cpu pageset array in struct zone.
2352 */
6292d9aa 2353static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
2354{
2355 struct zone *zone, *dzone;
37c0708d
CL
2356 int node = cpu_to_node(cpu);
2357
2358 node_set_state(node, N_CPU); /* this node has a cpu */
e7c8d5c9
CL
2359
2360 for_each_zone(zone) {
e7c8d5c9 2361
66a55030
CL
2362 if (!populated_zone(zone))
2363 continue;
2364
23316bc8 2365 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
37c0708d 2366 GFP_KERNEL, node);
23316bc8 2367 if (!zone_pcp(zone, cpu))
e7c8d5c9 2368 goto bad;
e7c8d5c9 2369
23316bc8 2370 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
2371
2372 if (percpu_pagelist_fraction)
2373 setup_pagelist_highmark(zone_pcp(zone, cpu),
2374 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
2375 }
2376
2377 return 0;
2378bad:
2379 for_each_zone(dzone) {
64191688
AM
2380 if (!populated_zone(dzone))
2381 continue;
e7c8d5c9
CL
2382 if (dzone == zone)
2383 break;
23316bc8
NP
2384 kfree(zone_pcp(dzone, cpu));
2385 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
2386 }
2387 return -ENOMEM;
2388}
2389
2390static inline void free_zone_pagesets(int cpu)
2391{
e7c8d5c9
CL
2392 struct zone *zone;
2393
2394 for_each_zone(zone) {
2395 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2396
f3ef9ead
DR
2397 /* Free per_cpu_pageset if it is slab allocated */
2398 if (pset != &boot_pageset[cpu])
2399 kfree(pset);
e7c8d5c9 2400 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 2401 }
e7c8d5c9
CL
2402}
2403
9c7b216d 2404static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
2405 unsigned long action,
2406 void *hcpu)
2407{
2408 int cpu = (long)hcpu;
2409 int ret = NOTIFY_OK;
2410
2411 switch (action) {
ce421c79 2412 case CPU_UP_PREPARE:
8bb78442 2413 case CPU_UP_PREPARE_FROZEN:
ce421c79
AW
2414 if (process_zones(cpu))
2415 ret = NOTIFY_BAD;
2416 break;
2417 case CPU_UP_CANCELED:
8bb78442 2418 case CPU_UP_CANCELED_FROZEN:
ce421c79 2419 case CPU_DEAD:
8bb78442 2420 case CPU_DEAD_FROZEN:
ce421c79
AW
2421 free_zone_pagesets(cpu);
2422 break;
2423 default:
2424 break;
e7c8d5c9
CL
2425 }
2426 return ret;
2427}
2428
74b85f37 2429static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
2430 { &pageset_cpuup_callback, NULL, 0 };
2431
78d9955b 2432void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
2433{
2434 int err;
2435
2436 /* Initialize per_cpu_pageset for cpu 0.
2437 * A cpuup callback will do this for every cpu
2438 * as it comes online
2439 */
2440 err = process_zones(smp_processor_id());
2441 BUG_ON(err);
2442 register_cpu_notifier(&pageset_notifier);
2443}
2444
2445#endif
2446
577a32f6 2447static noinline __init_refok
cca448fe 2448int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
2449{
2450 int i;
2451 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 2452 size_t alloc_size;
ed8ece2e
DH
2453
2454 /*
2455 * The per-page waitqueue mechanism uses hashed waitqueues
2456 * per zone.
2457 */
02b694de
YG
2458 zone->wait_table_hash_nr_entries =
2459 wait_table_hash_nr_entries(zone_size_pages);
2460 zone->wait_table_bits =
2461 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
2462 alloc_size = zone->wait_table_hash_nr_entries
2463 * sizeof(wait_queue_head_t);
2464
2465 if (system_state == SYSTEM_BOOTING) {
2466 zone->wait_table = (wait_queue_head_t *)
2467 alloc_bootmem_node(pgdat, alloc_size);
2468 } else {
2469 /*
2470 * This case means that a zone whose size was 0 gets new memory
2471 * via memory hot-add.
2472 * But it may be the case that a new node was hot-added. In
2473 * this case vmalloc() will not be able to use this new node's
2474 * memory - this wait_table must be initialized to use this new
2475 * node itself as well.
2476 * To use this new node's memory, further consideration will be
2477 * necessary.
2478 */
8691f3a7 2479 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
2480 }
2481 if (!zone->wait_table)
2482 return -ENOMEM;
ed8ece2e 2483
02b694de 2484 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 2485 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
2486
2487 return 0;
ed8ece2e
DH
2488}
2489
c09b4240 2490static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
2491{
2492 int cpu;
2493 unsigned long batch = zone_batchsize(zone);
2494
2495 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2496#ifdef CONFIG_NUMA
2497 /* Early boot. Slab allocator not functional yet */
23316bc8 2498 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
2499 setup_pageset(&boot_pageset[cpu],0);
2500#else
2501 setup_pageset(zone_pcp(zone,cpu), batch);
2502#endif
2503 }
f5335c0f
AB
2504 if (zone->present_pages)
2505 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2506 zone->name, zone->present_pages, batch);
ed8ece2e
DH
2507}
2508
718127cc
YG
2509__meminit int init_currently_empty_zone(struct zone *zone,
2510 unsigned long zone_start_pfn,
a2f3aa02
DH
2511 unsigned long size,
2512 enum memmap_context context)
ed8ece2e
DH
2513{
2514 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
2515 int ret;
2516 ret = zone_wait_table_init(zone, size);
2517 if (ret)
2518 return ret;
ed8ece2e
DH
2519 pgdat->nr_zones = zone_idx(zone) + 1;
2520
ed8ece2e
DH
2521 zone->zone_start_pfn = zone_start_pfn;
2522
2523 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2524
2525 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
718127cc
YG
2526
2527 return 0;
ed8ece2e
DH
2528}
2529
c713216d
MG
2530#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2531/*
2532 * Basic iterator support. Return the first range of PFNs for a node
2533 * Note: nid == MAX_NUMNODES returns first region regardless of node
2534 */
a3142c8e 2535static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
2536{
2537 int i;
2538
2539 for (i = 0; i < nr_nodemap_entries; i++)
2540 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2541 return i;
2542
2543 return -1;
2544}
2545
2546/*
2547 * Basic iterator support. Return the next active range of PFNs for a node
2548 * Note: nid == MAX_NUMNODES returns next region regardles of node
2549 */
a3142c8e 2550static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
2551{
2552 for (index = index + 1; index < nr_nodemap_entries; index++)
2553 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2554 return index;
2555
2556 return -1;
2557}
2558
2559#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2560/*
2561 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2562 * Architectures may implement their own version but if add_active_range()
2563 * was used and there are no special requirements, this is a convenient
2564 * alternative
2565 */
6f076f5d 2566int __meminit early_pfn_to_nid(unsigned long pfn)
c713216d
MG
2567{
2568 int i;
2569
2570 for (i = 0; i < nr_nodemap_entries; i++) {
2571 unsigned long start_pfn = early_node_map[i].start_pfn;
2572 unsigned long end_pfn = early_node_map[i].end_pfn;
2573
2574 if (start_pfn <= pfn && pfn < end_pfn)
2575 return early_node_map[i].nid;
2576 }
2577
2578 return 0;
2579}
2580#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2581
2582/* Basic iterator support to walk early_node_map[] */
2583#define for_each_active_range_index_in_nid(i, nid) \
2584 for (i = first_active_region_index_in_nid(nid); i != -1; \
2585 i = next_active_region_index_in_nid(i, nid))
2586
2587/**
2588 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
2589 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2590 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
2591 *
2592 * If an architecture guarantees that all ranges registered with
2593 * add_active_ranges() contain no holes and may be freed, this
2594 * this function may be used instead of calling free_bootmem() manually.
2595 */
2596void __init free_bootmem_with_active_regions(int nid,
2597 unsigned long max_low_pfn)
2598{
2599 int i;
2600
2601 for_each_active_range_index_in_nid(i, nid) {
2602 unsigned long size_pages = 0;
2603 unsigned long end_pfn = early_node_map[i].end_pfn;
2604
2605 if (early_node_map[i].start_pfn >= max_low_pfn)
2606 continue;
2607
2608 if (end_pfn > max_low_pfn)
2609 end_pfn = max_low_pfn;
2610
2611 size_pages = end_pfn - early_node_map[i].start_pfn;
2612 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2613 PFN_PHYS(early_node_map[i].start_pfn),
2614 size_pages << PAGE_SHIFT);
2615 }
2616}
2617
2618/**
2619 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 2620 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
2621 *
2622 * If an architecture guarantees that all ranges registered with
2623 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 2624 * function may be used instead of calling memory_present() manually.
c713216d
MG
2625 */
2626void __init sparse_memory_present_with_active_regions(int nid)
2627{
2628 int i;
2629
2630 for_each_active_range_index_in_nid(i, nid)
2631 memory_present(early_node_map[i].nid,
2632 early_node_map[i].start_pfn,
2633 early_node_map[i].end_pfn);
2634}
2635
fb01439c
MG
2636/**
2637 * push_node_boundaries - Push node boundaries to at least the requested boundary
2638 * @nid: The nid of the node to push the boundary for
2639 * @start_pfn: The start pfn of the node
2640 * @end_pfn: The end pfn of the node
2641 *
2642 * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2643 * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2644 * be hotplugged even though no physical memory exists. This function allows
2645 * an arch to push out the node boundaries so mem_map is allocated that can
2646 * be used later.
2647 */
2648#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2649void __init push_node_boundaries(unsigned int nid,
2650 unsigned long start_pfn, unsigned long end_pfn)
2651{
2652 printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2653 nid, start_pfn, end_pfn);
2654
2655 /* Initialise the boundary for this node if necessary */
2656 if (node_boundary_end_pfn[nid] == 0)
2657 node_boundary_start_pfn[nid] = -1UL;
2658
2659 /* Update the boundaries */
2660 if (node_boundary_start_pfn[nid] > start_pfn)
2661 node_boundary_start_pfn[nid] = start_pfn;
2662 if (node_boundary_end_pfn[nid] < end_pfn)
2663 node_boundary_end_pfn[nid] = end_pfn;
2664}
2665
2666/* If necessary, push the node boundary out for reserve hotadd */
98011f56 2667static void __meminit account_node_boundary(unsigned int nid,
fb01439c
MG
2668 unsigned long *start_pfn, unsigned long *end_pfn)
2669{
2670 printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2671 nid, *start_pfn, *end_pfn);
2672
2673 /* Return if boundary information has not been provided */
2674 if (node_boundary_end_pfn[nid] == 0)
2675 return;
2676
2677 /* Check the boundaries and update if necessary */
2678 if (node_boundary_start_pfn[nid] < *start_pfn)
2679 *start_pfn = node_boundary_start_pfn[nid];
2680 if (node_boundary_end_pfn[nid] > *end_pfn)
2681 *end_pfn = node_boundary_end_pfn[nid];
2682}
2683#else
2684void __init push_node_boundaries(unsigned int nid,
2685 unsigned long start_pfn, unsigned long end_pfn) {}
2686
98011f56 2687static void __meminit account_node_boundary(unsigned int nid,
fb01439c
MG
2688 unsigned long *start_pfn, unsigned long *end_pfn) {}
2689#endif
2690
2691
c713216d
MG
2692/**
2693 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
2694 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2695 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2696 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
2697 *
2698 * It returns the start and end page frame of a node based on information
2699 * provided by an arch calling add_active_range(). If called for a node
2700 * with no available memory, a warning is printed and the start and end
88ca3b94 2701 * PFNs will be 0.
c713216d 2702 */
a3142c8e 2703void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
2704 unsigned long *start_pfn, unsigned long *end_pfn)
2705{
2706 int i;
2707 *start_pfn = -1UL;
2708 *end_pfn = 0;
2709
2710 for_each_active_range_index_in_nid(i, nid) {
2711 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2712 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2713 }
2714
2715 if (*start_pfn == -1UL) {
2716 printk(KERN_WARNING "Node %u active with no memory\n", nid);
2717 *start_pfn = 0;
2718 }
fb01439c
MG
2719
2720 /* Push the node boundaries out if requested */
2721 account_node_boundary(nid, start_pfn, end_pfn);
c713216d
MG
2722}
2723
2a1e274a
MG
2724/*
2725 * This finds a zone that can be used for ZONE_MOVABLE pages. The
2726 * assumption is made that zones within a node are ordered in monotonic
2727 * increasing memory addresses so that the "highest" populated zone is used
2728 */
2729void __init find_usable_zone_for_movable(void)
2730{
2731 int zone_index;
2732 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
2733 if (zone_index == ZONE_MOVABLE)
2734 continue;
2735
2736 if (arch_zone_highest_possible_pfn[zone_index] >
2737 arch_zone_lowest_possible_pfn[zone_index])
2738 break;
2739 }
2740
2741 VM_BUG_ON(zone_index == -1);
2742 movable_zone = zone_index;
2743}
2744
2745/*
2746 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
2747 * because it is sized independant of architecture. Unlike the other zones,
2748 * the starting point for ZONE_MOVABLE is not fixed. It may be different
2749 * in each node depending on the size of each node and how evenly kernelcore
2750 * is distributed. This helper function adjusts the zone ranges
2751 * provided by the architecture for a given node by using the end of the
2752 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
2753 * zones within a node are in order of monotonic increases memory addresses
2754 */
2755void __meminit adjust_zone_range_for_zone_movable(int nid,
2756 unsigned long zone_type,
2757 unsigned long node_start_pfn,
2758 unsigned long node_end_pfn,
2759 unsigned long *zone_start_pfn,
2760 unsigned long *zone_end_pfn)
2761{
2762 /* Only adjust if ZONE_MOVABLE is on this node */
2763 if (zone_movable_pfn[nid]) {
2764 /* Size ZONE_MOVABLE */
2765 if (zone_type == ZONE_MOVABLE) {
2766 *zone_start_pfn = zone_movable_pfn[nid];
2767 *zone_end_pfn = min(node_end_pfn,
2768 arch_zone_highest_possible_pfn[movable_zone]);
2769
2770 /* Adjust for ZONE_MOVABLE starting within this range */
2771 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
2772 *zone_end_pfn > zone_movable_pfn[nid]) {
2773 *zone_end_pfn = zone_movable_pfn[nid];
2774
2775 /* Check if this whole range is within ZONE_MOVABLE */
2776 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
2777 *zone_start_pfn = *zone_end_pfn;
2778 }
2779}
2780
c713216d
MG
2781/*
2782 * Return the number of pages a zone spans in a node, including holes
2783 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2784 */
6ea6e688 2785static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
2786 unsigned long zone_type,
2787 unsigned long *ignored)
2788{
2789 unsigned long node_start_pfn, node_end_pfn;
2790 unsigned long zone_start_pfn, zone_end_pfn;
2791
2792 /* Get the start and end of the node and zone */
2793 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2794 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2795 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
2796 adjust_zone_range_for_zone_movable(nid, zone_type,
2797 node_start_pfn, node_end_pfn,
2798 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
2799
2800 /* Check that this node has pages within the zone's required range */
2801 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2802 return 0;
2803
2804 /* Move the zone boundaries inside the node if necessary */
2805 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2806 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2807
2808 /* Return the spanned pages */
2809 return zone_end_pfn - zone_start_pfn;
2810}
2811
2812/*
2813 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 2814 * then all holes in the requested range will be accounted for.
c713216d 2815 */
a3142c8e 2816unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
2817 unsigned long range_start_pfn,
2818 unsigned long range_end_pfn)
2819{
2820 int i = 0;
2821 unsigned long prev_end_pfn = 0, hole_pages = 0;
2822 unsigned long start_pfn;
2823
2824 /* Find the end_pfn of the first active range of pfns in the node */
2825 i = first_active_region_index_in_nid(nid);
2826 if (i == -1)
2827 return 0;
2828
b5445f95
MG
2829 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2830
9c7cd687
MG
2831 /* Account for ranges before physical memory on this node */
2832 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 2833 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
2834
2835 /* Find all holes for the zone within the node */
2836 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2837
2838 /* No need to continue if prev_end_pfn is outside the zone */
2839 if (prev_end_pfn >= range_end_pfn)
2840 break;
2841
2842 /* Make sure the end of the zone is not within the hole */
2843 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2844 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2845
2846 /* Update the hole size cound and move on */
2847 if (start_pfn > range_start_pfn) {
2848 BUG_ON(prev_end_pfn > start_pfn);
2849 hole_pages += start_pfn - prev_end_pfn;
2850 }
2851 prev_end_pfn = early_node_map[i].end_pfn;
2852 }
2853
9c7cd687
MG
2854 /* Account for ranges past physical memory on this node */
2855 if (range_end_pfn > prev_end_pfn)
0c6cb974 2856 hole_pages += range_end_pfn -
9c7cd687
MG
2857 max(range_start_pfn, prev_end_pfn);
2858
c713216d
MG
2859 return hole_pages;
2860}
2861
2862/**
2863 * absent_pages_in_range - Return number of page frames in holes within a range
2864 * @start_pfn: The start PFN to start searching for holes
2865 * @end_pfn: The end PFN to stop searching for holes
2866 *
88ca3b94 2867 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
2868 */
2869unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2870 unsigned long end_pfn)
2871{
2872 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2873}
2874
2875/* Return the number of page frames in holes in a zone on a node */
6ea6e688 2876static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
2877 unsigned long zone_type,
2878 unsigned long *ignored)
2879{
9c7cd687
MG
2880 unsigned long node_start_pfn, node_end_pfn;
2881 unsigned long zone_start_pfn, zone_end_pfn;
2882
2883 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2884 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2885 node_start_pfn);
2886 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2887 node_end_pfn);
2888
2a1e274a
MG
2889 adjust_zone_range_for_zone_movable(nid, zone_type,
2890 node_start_pfn, node_end_pfn,
2891 &zone_start_pfn, &zone_end_pfn);
9c7cd687 2892 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 2893}
0e0b864e 2894
c713216d 2895#else
6ea6e688 2896static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
2897 unsigned long zone_type,
2898 unsigned long *zones_size)
2899{
2900 return zones_size[zone_type];
2901}
2902
6ea6e688 2903static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
2904 unsigned long zone_type,
2905 unsigned long *zholes_size)
2906{
2907 if (!zholes_size)
2908 return 0;
2909
2910 return zholes_size[zone_type];
2911}
0e0b864e 2912
c713216d
MG
2913#endif
2914
a3142c8e 2915static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
2916 unsigned long *zones_size, unsigned long *zholes_size)
2917{
2918 unsigned long realtotalpages, totalpages = 0;
2919 enum zone_type i;
2920
2921 for (i = 0; i < MAX_NR_ZONES; i++)
2922 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2923 zones_size);
2924 pgdat->node_spanned_pages = totalpages;
2925
2926 realtotalpages = totalpages;
2927 for (i = 0; i < MAX_NR_ZONES; i++)
2928 realtotalpages -=
2929 zone_absent_pages_in_node(pgdat->node_id, i,
2930 zholes_size);
2931 pgdat->node_present_pages = realtotalpages;
2932 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2933 realtotalpages);
2934}
2935
1da177e4
LT
2936/*
2937 * Set up the zone data structures:
2938 * - mark all pages reserved
2939 * - mark all memory queues empty
2940 * - clear the memory bitmaps
2941 */
86356ab1 2942static void __meminit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
2943 unsigned long *zones_size, unsigned long *zholes_size)
2944{
2f1b6248 2945 enum zone_type j;
ed8ece2e 2946 int nid = pgdat->node_id;
1da177e4 2947 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 2948 int ret;
1da177e4 2949
208d54e5 2950 pgdat_resize_init(pgdat);
1da177e4
LT
2951 pgdat->nr_zones = 0;
2952 init_waitqueue_head(&pgdat->kswapd_wait);
2953 pgdat->kswapd_max_order = 0;
2954
2955 for (j = 0; j < MAX_NR_ZONES; j++) {
2956 struct zone *zone = pgdat->node_zones + j;
0e0b864e 2957 unsigned long size, realsize, memmap_pages;
1da177e4 2958
c713216d
MG
2959 size = zone_spanned_pages_in_node(nid, j, zones_size);
2960 realsize = size - zone_absent_pages_in_node(nid, j,
2961 zholes_size);
1da177e4 2962
0e0b864e
MG
2963 /*
2964 * Adjust realsize so that it accounts for how much memory
2965 * is used by this zone for memmap. This affects the watermark
2966 * and per-cpu initialisations
2967 */
2968 memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2969 if (realsize >= memmap_pages) {
2970 realsize -= memmap_pages;
2971 printk(KERN_DEBUG
2972 " %s zone: %lu pages used for memmap\n",
2973 zone_names[j], memmap_pages);
2974 } else
2975 printk(KERN_WARNING
2976 " %s zone: %lu pages exceeds realsize %lu\n",
2977 zone_names[j], memmap_pages, realsize);
2978
6267276f
CL
2979 /* Account for reserved pages */
2980 if (j == 0 && realsize > dma_reserve) {
0e0b864e 2981 realsize -= dma_reserve;
6267276f
CL
2982 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
2983 zone_names[0], dma_reserve);
0e0b864e
MG
2984 }
2985
98d2b0eb 2986 if (!is_highmem_idx(j))
1da177e4
LT
2987 nr_kernel_pages += realsize;
2988 nr_all_pages += realsize;
2989
2990 zone->spanned_pages = size;
2991 zone->present_pages = realsize;
9614634f 2992#ifdef CONFIG_NUMA
d5f541ed 2993 zone->node = nid;
8417bba4 2994 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 2995 / 100;
0ff38490 2996 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 2997#endif
1da177e4
LT
2998 zone->name = zone_names[j];
2999 spin_lock_init(&zone->lock);
3000 spin_lock_init(&zone->lru_lock);
bdc8cb98 3001 zone_seqlock_init(zone);
1da177e4 3002 zone->zone_pgdat = pgdat;
1da177e4 3003
3bb1a852 3004 zone->prev_priority = DEF_PRIORITY;
1da177e4 3005
ed8ece2e 3006 zone_pcp_init(zone);
1da177e4
LT
3007 INIT_LIST_HEAD(&zone->active_list);
3008 INIT_LIST_HEAD(&zone->inactive_list);
3009 zone->nr_scan_active = 0;
3010 zone->nr_scan_inactive = 0;
2244b95a 3011 zap_zone_vm_stats(zone);
53e9a615 3012 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
3013 if (!size)
3014 continue;
3015
a2f3aa02
DH
3016 ret = init_currently_empty_zone(zone, zone_start_pfn,
3017 size, MEMMAP_EARLY);
718127cc 3018 BUG_ON(ret);
1da177e4 3019 zone_start_pfn += size;
1da177e4
LT
3020 }
3021}
3022
577a32f6 3023static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 3024{
1da177e4
LT
3025 /* Skip empty nodes */
3026 if (!pgdat->node_spanned_pages)
3027 return;
3028
d41dee36 3029#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
3030 /* ia64 gets its own node_mem_map, before this, without bootmem */
3031 if (!pgdat->node_mem_map) {
e984bb43 3032 unsigned long size, start, end;
d41dee36
AW
3033 struct page *map;
3034
e984bb43
BP
3035 /*
3036 * The zone's endpoints aren't required to be MAX_ORDER
3037 * aligned but the node_mem_map endpoints must be in order
3038 * for the buddy allocator to function correctly.
3039 */
3040 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3041 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3042 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3043 size = (end - start) * sizeof(struct page);
6f167ec7
DH
3044 map = alloc_remap(pgdat->node_id, size);
3045 if (!map)
3046 map = alloc_bootmem_node(pgdat, size);
e984bb43 3047 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 3048 }
12d810c1 3049#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3050 /*
3051 * With no DISCONTIG, the global mem_map is just set as node 0's
3052 */
c713216d 3053 if (pgdat == NODE_DATA(0)) {
1da177e4 3054 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
3055#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3056 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3057 mem_map -= pgdat->node_start_pfn;
3058#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3059 }
1da177e4 3060#endif
d41dee36 3061#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
3062}
3063
86356ab1 3064void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
1da177e4
LT
3065 unsigned long *zones_size, unsigned long node_start_pfn,
3066 unsigned long *zholes_size)
3067{
3068 pgdat->node_id = nid;
3069 pgdat->node_start_pfn = node_start_pfn;
c713216d 3070 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
3071
3072 alloc_node_mem_map(pgdat);
3073
3074 free_area_init_core(pgdat, zones_size, zholes_size);
3075}
3076
c713216d 3077#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
3078
3079#if MAX_NUMNODES > 1
3080/*
3081 * Figure out the number of possible node ids.
3082 */
3083static void __init setup_nr_node_ids(void)
3084{
3085 unsigned int node;
3086 unsigned int highest = 0;
3087
3088 for_each_node_mask(node, node_possible_map)
3089 highest = node;
3090 nr_node_ids = highest + 1;
3091}
3092#else
3093static inline void setup_nr_node_ids(void)
3094{
3095}
3096#endif
3097
c713216d
MG
3098/**
3099 * add_active_range - Register a range of PFNs backed by physical memory
3100 * @nid: The node ID the range resides on
3101 * @start_pfn: The start PFN of the available physical memory
3102 * @end_pfn: The end PFN of the available physical memory
3103 *
3104 * These ranges are stored in an early_node_map[] and later used by
3105 * free_area_init_nodes() to calculate zone sizes and holes. If the
3106 * range spans a memory hole, it is up to the architecture to ensure
3107 * the memory is not freed by the bootmem allocator. If possible
3108 * the range being registered will be merged with existing ranges.
3109 */
3110void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3111 unsigned long end_pfn)
3112{
3113 int i;
3114
3115 printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3116 "%d entries of %d used\n",
3117 nid, start_pfn, end_pfn,
3118 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3119
3120 /* Merge with existing active regions if possible */
3121 for (i = 0; i < nr_nodemap_entries; i++) {
3122 if (early_node_map[i].nid != nid)
3123 continue;
3124
3125 /* Skip if an existing region covers this new one */
3126 if (start_pfn >= early_node_map[i].start_pfn &&
3127 end_pfn <= early_node_map[i].end_pfn)
3128 return;
3129
3130 /* Merge forward if suitable */
3131 if (start_pfn <= early_node_map[i].end_pfn &&
3132 end_pfn > early_node_map[i].end_pfn) {
3133 early_node_map[i].end_pfn = end_pfn;
3134 return;
3135 }
3136
3137 /* Merge backward if suitable */
3138 if (start_pfn < early_node_map[i].end_pfn &&
3139 end_pfn >= early_node_map[i].start_pfn) {
3140 early_node_map[i].start_pfn = start_pfn;
3141 return;
3142 }
3143 }
3144
3145 /* Check that early_node_map is large enough */
3146 if (i >= MAX_ACTIVE_REGIONS) {
3147 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3148 MAX_ACTIVE_REGIONS);
3149 return;
3150 }
3151
3152 early_node_map[i].nid = nid;
3153 early_node_map[i].start_pfn = start_pfn;
3154 early_node_map[i].end_pfn = end_pfn;
3155 nr_nodemap_entries = i + 1;
3156}
3157
3158/**
3159 * shrink_active_range - Shrink an existing registered range of PFNs
3160 * @nid: The node id the range is on that should be shrunk
3161 * @old_end_pfn: The old end PFN of the range
3162 * @new_end_pfn: The new PFN of the range
3163 *
3164 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3165 * The map is kept at the end physical page range that has already been
3166 * registered with add_active_range(). This function allows an arch to shrink
3167 * an existing registered range.
3168 */
3169void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3170 unsigned long new_end_pfn)
3171{
3172 int i;
3173
3174 /* Find the old active region end and shrink */
3175 for_each_active_range_index_in_nid(i, nid)
3176 if (early_node_map[i].end_pfn == old_end_pfn) {
3177 early_node_map[i].end_pfn = new_end_pfn;
3178 break;
3179 }
3180}
3181
3182/**
3183 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 3184 *
c713216d
MG
3185 * During discovery, it may be found that a table like SRAT is invalid
3186 * and an alternative discovery method must be used. This function removes
3187 * all currently registered regions.
3188 */
88ca3b94 3189void __init remove_all_active_ranges(void)
c713216d
MG
3190{
3191 memset(early_node_map, 0, sizeof(early_node_map));
3192 nr_nodemap_entries = 0;
fb01439c
MG
3193#ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3194 memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3195 memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3196#endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
c713216d
MG
3197}
3198
3199/* Compare two active node_active_regions */
3200static int __init cmp_node_active_region(const void *a, const void *b)
3201{
3202 struct node_active_region *arange = (struct node_active_region *)a;
3203 struct node_active_region *brange = (struct node_active_region *)b;
3204
3205 /* Done this way to avoid overflows */
3206 if (arange->start_pfn > brange->start_pfn)
3207 return 1;
3208 if (arange->start_pfn < brange->start_pfn)
3209 return -1;
3210
3211 return 0;
3212}
3213
3214/* sort the node_map by start_pfn */
3215static void __init sort_node_map(void)
3216{
3217 sort(early_node_map, (size_t)nr_nodemap_entries,
3218 sizeof(struct node_active_region),
3219 cmp_node_active_region, NULL);
3220}
3221
a6af2bc3 3222/* Find the lowest pfn for a node */
c713216d
MG
3223unsigned long __init find_min_pfn_for_node(unsigned long nid)
3224{
3225 int i;
a6af2bc3 3226 unsigned long min_pfn = ULONG_MAX;
1abbfb41 3227
c713216d
MG
3228 /* Assuming a sorted map, the first range found has the starting pfn */
3229 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 3230 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 3231
a6af2bc3
MG
3232 if (min_pfn == ULONG_MAX) {
3233 printk(KERN_WARNING
3234 "Could not find start_pfn for node %lu\n", nid);
3235 return 0;
3236 }
3237
3238 return min_pfn;
c713216d
MG
3239}
3240
3241/**
3242 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3243 *
3244 * It returns the minimum PFN based on information provided via
88ca3b94 3245 * add_active_range().
c713216d
MG
3246 */
3247unsigned long __init find_min_pfn_with_active_regions(void)
3248{
3249 return find_min_pfn_for_node(MAX_NUMNODES);
3250}
3251
3252/**
3253 * find_max_pfn_with_active_regions - Find the maximum PFN registered
3254 *
3255 * It returns the maximum PFN based on information provided via
88ca3b94 3256 * add_active_range().
c713216d
MG
3257 */
3258unsigned long __init find_max_pfn_with_active_regions(void)
3259{
3260 int i;
3261 unsigned long max_pfn = 0;
3262
3263 for (i = 0; i < nr_nodemap_entries; i++)
3264 max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3265
3266 return max_pfn;
3267}
3268
7e63efef
MG
3269unsigned long __init early_calculate_totalpages(void)
3270{
3271 int i;
3272 unsigned long totalpages = 0;
3273
3274 for (i = 0; i < nr_nodemap_entries; i++)
3275 totalpages += early_node_map[i].end_pfn -
3276 early_node_map[i].start_pfn;
3277
3278 return totalpages;
3279}
3280
2a1e274a
MG
3281/*
3282 * Find the PFN the Movable zone begins in each node. Kernel memory
3283 * is spread evenly between nodes as long as the nodes have enough
3284 * memory. When they don't, some nodes will have more kernelcore than
3285 * others
3286 */
3287void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3288{
3289 int i, nid;
3290 unsigned long usable_startpfn;
3291 unsigned long kernelcore_node, kernelcore_remaining;
3292 int usable_nodes = num_online_nodes();
3293
7e63efef
MG
3294 /*
3295 * If movablecore was specified, calculate what size of
3296 * kernelcore that corresponds so that memory usable for
3297 * any allocation type is evenly spread. If both kernelcore
3298 * and movablecore are specified, then the value of kernelcore
3299 * will be used for required_kernelcore if it's greater than
3300 * what movablecore would have allowed.
3301 */
3302 if (required_movablecore) {
3303 unsigned long totalpages = early_calculate_totalpages();
3304 unsigned long corepages;
3305
3306 /*
3307 * Round-up so that ZONE_MOVABLE is at least as large as what
3308 * was requested by the user
3309 */
3310 required_movablecore =
3311 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3312 corepages = totalpages - required_movablecore;
3313
3314 required_kernelcore = max(required_kernelcore, corepages);
3315 }
3316
2a1e274a
MG
3317 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
3318 if (!required_kernelcore)
3319 return;
3320
3321 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3322 find_usable_zone_for_movable();
3323 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3324
3325restart:
3326 /* Spread kernelcore memory as evenly as possible throughout nodes */
3327 kernelcore_node = required_kernelcore / usable_nodes;
3328 for_each_online_node(nid) {
3329 /*
3330 * Recalculate kernelcore_node if the division per node
3331 * now exceeds what is necessary to satisfy the requested
3332 * amount of memory for the kernel
3333 */
3334 if (required_kernelcore < kernelcore_node)
3335 kernelcore_node = required_kernelcore / usable_nodes;
3336
3337 /*
3338 * As the map is walked, we track how much memory is usable
3339 * by the kernel using kernelcore_remaining. When it is
3340 * 0, the rest of the node is usable by ZONE_MOVABLE
3341 */
3342 kernelcore_remaining = kernelcore_node;
3343
3344 /* Go through each range of PFNs within this node */
3345 for_each_active_range_index_in_nid(i, nid) {
3346 unsigned long start_pfn, end_pfn;
3347 unsigned long size_pages;
3348
3349 start_pfn = max(early_node_map[i].start_pfn,
3350 zone_movable_pfn[nid]);
3351 end_pfn = early_node_map[i].end_pfn;
3352 if (start_pfn >= end_pfn)
3353 continue;
3354
3355 /* Account for what is only usable for kernelcore */
3356 if (start_pfn < usable_startpfn) {
3357 unsigned long kernel_pages;
3358 kernel_pages = min(end_pfn, usable_startpfn)
3359 - start_pfn;
3360
3361 kernelcore_remaining -= min(kernel_pages,
3362 kernelcore_remaining);
3363 required_kernelcore -= min(kernel_pages,
3364 required_kernelcore);
3365
3366 /* Continue if range is now fully accounted */
3367 if (end_pfn <= usable_startpfn) {
3368
3369 /*
3370 * Push zone_movable_pfn to the end so
3371 * that if we have to rebalance
3372 * kernelcore across nodes, we will
3373 * not double account here
3374 */
3375 zone_movable_pfn[nid] = end_pfn;
3376 continue;
3377 }
3378 start_pfn = usable_startpfn;
3379 }
3380
3381 /*
3382 * The usable PFN range for ZONE_MOVABLE is from
3383 * start_pfn->end_pfn. Calculate size_pages as the
3384 * number of pages used as kernelcore
3385 */
3386 size_pages = end_pfn - start_pfn;
3387 if (size_pages > kernelcore_remaining)
3388 size_pages = kernelcore_remaining;
3389 zone_movable_pfn[nid] = start_pfn + size_pages;
3390
3391 /*
3392 * Some kernelcore has been met, update counts and
3393 * break if the kernelcore for this node has been
3394 * satisified
3395 */
3396 required_kernelcore -= min(required_kernelcore,
3397 size_pages);
3398 kernelcore_remaining -= size_pages;
3399 if (!kernelcore_remaining)
3400 break;
3401 }
3402 }
3403
3404 /*
3405 * If there is still required_kernelcore, we do another pass with one
3406 * less node in the count. This will push zone_movable_pfn[nid] further
3407 * along on the nodes that still have memory until kernelcore is
3408 * satisified
3409 */
3410 usable_nodes--;
3411 if (usable_nodes && required_kernelcore > usable_nodes)
3412 goto restart;
3413
3414 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3415 for (nid = 0; nid < MAX_NUMNODES; nid++)
3416 zone_movable_pfn[nid] =
3417 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3418}
3419
c713216d
MG
3420/**
3421 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 3422 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
3423 *
3424 * This will call free_area_init_node() for each active node in the system.
3425 * Using the page ranges provided by add_active_range(), the size of each
3426 * zone in each node and their holes is calculated. If the maximum PFN
3427 * between two adjacent zones match, it is assumed that the zone is empty.
3428 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3429 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3430 * starts where the previous one ended. For example, ZONE_DMA32 starts
3431 * at arch_max_dma_pfn.
3432 */
3433void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3434{
3435 unsigned long nid;
3436 enum zone_type i;
3437
a6af2bc3
MG
3438 /* Sort early_node_map as initialisation assumes it is sorted */
3439 sort_node_map();
3440
c713216d
MG
3441 /* Record where the zone boundaries are */
3442 memset(arch_zone_lowest_possible_pfn, 0,
3443 sizeof(arch_zone_lowest_possible_pfn));
3444 memset(arch_zone_highest_possible_pfn, 0,
3445 sizeof(arch_zone_highest_possible_pfn));
3446 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3447 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3448 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
3449 if (i == ZONE_MOVABLE)
3450 continue;
c713216d
MG
3451 arch_zone_lowest_possible_pfn[i] =
3452 arch_zone_highest_possible_pfn[i-1];
3453 arch_zone_highest_possible_pfn[i] =
3454 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3455 }
2a1e274a
MG
3456 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3457 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3458
3459 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
3460 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3461 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 3462
c713216d
MG
3463 /* Print out the zone ranges */
3464 printk("Zone PFN ranges:\n");
2a1e274a
MG
3465 for (i = 0; i < MAX_NR_ZONES; i++) {
3466 if (i == ZONE_MOVABLE)
3467 continue;
c713216d
MG
3468 printk(" %-8s %8lu -> %8lu\n",
3469 zone_names[i],
3470 arch_zone_lowest_possible_pfn[i],
3471 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
3472 }
3473
3474 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
3475 printk("Movable zone start PFN for each node\n");
3476 for (i = 0; i < MAX_NUMNODES; i++) {
3477 if (zone_movable_pfn[i])
3478 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
3479 }
c713216d
MG
3480
3481 /* Print out the early_node_map[] */
3482 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3483 for (i = 0; i < nr_nodemap_entries; i++)
3484 printk(" %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3485 early_node_map[i].start_pfn,
3486 early_node_map[i].end_pfn);
3487
3488 /* Initialise every node */
8ef82866 3489 setup_nr_node_ids();
c713216d
MG
3490 for_each_online_node(nid) {
3491 pg_data_t *pgdat = NODE_DATA(nid);
3492 free_area_init_node(nid, pgdat, NULL,
3493 find_min_pfn_for_node(nid), NULL);
3494 }
3495}
2a1e274a 3496
7e63efef 3497static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
3498{
3499 unsigned long long coremem;
3500 if (!p)
3501 return -EINVAL;
3502
3503 coremem = memparse(p, &p);
7e63efef 3504 *core = coremem >> PAGE_SHIFT;
2a1e274a 3505
7e63efef 3506 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
3507 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3508
3509 return 0;
3510}
ed7ed365 3511
7e63efef
MG
3512/*
3513 * kernelcore=size sets the amount of memory for use for allocations that
3514 * cannot be reclaimed or migrated.
3515 */
3516static int __init cmdline_parse_kernelcore(char *p)
3517{
3518 return cmdline_parse_core(p, &required_kernelcore);
3519}
3520
3521/*
3522 * movablecore=size sets the amount of memory for use for allocations that
3523 * can be reclaimed or migrated.
3524 */
3525static int __init cmdline_parse_movablecore(char *p)
3526{
3527 return cmdline_parse_core(p, &required_movablecore);
3528}
3529
ed7ed365 3530early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 3531early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 3532
c713216d
MG
3533#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3534
0e0b864e 3535/**
88ca3b94
RD
3536 * set_dma_reserve - set the specified number of pages reserved in the first zone
3537 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
3538 *
3539 * The per-cpu batchsize and zone watermarks are determined by present_pages.
3540 * In the DMA zone, a significant percentage may be consumed by kernel image
3541 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
3542 * function may optionally be used to account for unfreeable pages in the
3543 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3544 * smaller per-cpu batchsize.
0e0b864e
MG
3545 */
3546void __init set_dma_reserve(unsigned long new_dma_reserve)
3547{
3548 dma_reserve = new_dma_reserve;
3549}
3550
93b7504e 3551#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3552static bootmem_data_t contig_bootmem_data;
3553struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3554
3555EXPORT_SYMBOL(contig_page_data);
93b7504e 3556#endif
1da177e4
LT
3557
3558void __init free_area_init(unsigned long *zones_size)
3559{
93b7504e 3560 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
3561 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3562}
1da177e4 3563
1da177e4
LT
3564static int page_alloc_cpu_notify(struct notifier_block *self,
3565 unsigned long action, void *hcpu)
3566{
3567 int cpu = (unsigned long)hcpu;
1da177e4 3568
8bb78442 3569 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1da177e4
LT
3570 local_irq_disable();
3571 __drain_pages(cpu);
f8891e5e 3572 vm_events_fold_cpu(cpu);
1da177e4 3573 local_irq_enable();
2244b95a 3574 refresh_cpu_vm_stats(cpu);
1da177e4
LT
3575 }
3576 return NOTIFY_OK;
3577}
1da177e4
LT
3578
3579void __init page_alloc_init(void)
3580{
3581 hotcpu_notifier(page_alloc_cpu_notify, 0);
3582}
3583
cb45b0e9
HA
3584/*
3585 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3586 * or min_free_kbytes changes.
3587 */
3588static void calculate_totalreserve_pages(void)
3589{
3590 struct pglist_data *pgdat;
3591 unsigned long reserve_pages = 0;
2f6726e5 3592 enum zone_type i, j;
cb45b0e9
HA
3593
3594 for_each_online_pgdat(pgdat) {
3595 for (i = 0; i < MAX_NR_ZONES; i++) {
3596 struct zone *zone = pgdat->node_zones + i;
3597 unsigned long max = 0;
3598
3599 /* Find valid and maximum lowmem_reserve in the zone */
3600 for (j = i; j < MAX_NR_ZONES; j++) {
3601 if (zone->lowmem_reserve[j] > max)
3602 max = zone->lowmem_reserve[j];
3603 }
3604
3605 /* we treat pages_high as reserved pages. */
3606 max += zone->pages_high;
3607
3608 if (max > zone->present_pages)
3609 max = zone->present_pages;
3610 reserve_pages += max;
3611 }
3612 }
3613 totalreserve_pages = reserve_pages;
3614}
3615
1da177e4
LT
3616/*
3617 * setup_per_zone_lowmem_reserve - called whenever
3618 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
3619 * has a correct pages reserved value, so an adequate number of
3620 * pages are left in the zone after a successful __alloc_pages().
3621 */
3622static void setup_per_zone_lowmem_reserve(void)
3623{
3624 struct pglist_data *pgdat;
2f6726e5 3625 enum zone_type j, idx;
1da177e4 3626
ec936fc5 3627 for_each_online_pgdat(pgdat) {
1da177e4
LT
3628 for (j = 0; j < MAX_NR_ZONES; j++) {
3629 struct zone *zone = pgdat->node_zones + j;
3630 unsigned long present_pages = zone->present_pages;
3631
3632 zone->lowmem_reserve[j] = 0;
3633
2f6726e5
CL
3634 idx = j;
3635 while (idx) {
1da177e4
LT
3636 struct zone *lower_zone;
3637
2f6726e5
CL
3638 idx--;
3639
1da177e4
LT
3640 if (sysctl_lowmem_reserve_ratio[idx] < 1)
3641 sysctl_lowmem_reserve_ratio[idx] = 1;
3642
3643 lower_zone = pgdat->node_zones + idx;
3644 lower_zone->lowmem_reserve[j] = present_pages /
3645 sysctl_lowmem_reserve_ratio[idx];
3646 present_pages += lower_zone->present_pages;
3647 }
3648 }
3649 }
cb45b0e9
HA
3650
3651 /* update totalreserve_pages */
3652 calculate_totalreserve_pages();
1da177e4
LT
3653}
3654
88ca3b94
RD
3655/**
3656 * setup_per_zone_pages_min - called when min_free_kbytes changes.
3657 *
3658 * Ensures that the pages_{min,low,high} values for each zone are set correctly
3659 * with respect to min_free_kbytes.
1da177e4 3660 */
3947be19 3661void setup_per_zone_pages_min(void)
1da177e4
LT
3662{
3663 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3664 unsigned long lowmem_pages = 0;
3665 struct zone *zone;
3666 unsigned long flags;
3667
3668 /* Calculate total number of !ZONE_HIGHMEM pages */
3669 for_each_zone(zone) {
3670 if (!is_highmem(zone))
3671 lowmem_pages += zone->present_pages;
3672 }
3673
3674 for_each_zone(zone) {
ac924c60
AM
3675 u64 tmp;
3676
1da177e4 3677 spin_lock_irqsave(&zone->lru_lock, flags);
ac924c60
AM
3678 tmp = (u64)pages_min * zone->present_pages;
3679 do_div(tmp, lowmem_pages);
1da177e4
LT
3680 if (is_highmem(zone)) {
3681 /*
669ed175
NP
3682 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3683 * need highmem pages, so cap pages_min to a small
3684 * value here.
3685 *
3686 * The (pages_high-pages_low) and (pages_low-pages_min)
3687 * deltas controls asynch page reclaim, and so should
3688 * not be capped for highmem.
1da177e4
LT
3689 */
3690 int min_pages;
3691
3692 min_pages = zone->present_pages / 1024;
3693 if (min_pages < SWAP_CLUSTER_MAX)
3694 min_pages = SWAP_CLUSTER_MAX;
3695 if (min_pages > 128)
3696 min_pages = 128;
3697 zone->pages_min = min_pages;
3698 } else {
669ed175
NP
3699 /*
3700 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
3701 * proportionate to the zone's size.
3702 */
669ed175 3703 zone->pages_min = tmp;
1da177e4
LT
3704 }
3705
ac924c60
AM
3706 zone->pages_low = zone->pages_min + (tmp >> 2);
3707 zone->pages_high = zone->pages_min + (tmp >> 1);
1da177e4
LT
3708 spin_unlock_irqrestore(&zone->lru_lock, flags);
3709 }
cb45b0e9
HA
3710
3711 /* update totalreserve_pages */
3712 calculate_totalreserve_pages();
1da177e4
LT
3713}
3714
3715/*
3716 * Initialise min_free_kbytes.
3717 *
3718 * For small machines we want it small (128k min). For large machines
3719 * we want it large (64MB max). But it is not linear, because network
3720 * bandwidth does not increase linearly with machine size. We use
3721 *
3722 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3723 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
3724 *
3725 * which yields
3726 *
3727 * 16MB: 512k
3728 * 32MB: 724k
3729 * 64MB: 1024k
3730 * 128MB: 1448k
3731 * 256MB: 2048k
3732 * 512MB: 2896k
3733 * 1024MB: 4096k
3734 * 2048MB: 5792k
3735 * 4096MB: 8192k
3736 * 8192MB: 11584k
3737 * 16384MB: 16384k
3738 */
3739static int __init init_per_zone_pages_min(void)
3740{
3741 unsigned long lowmem_kbytes;
3742
3743 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3744
3745 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3746 if (min_free_kbytes < 128)
3747 min_free_kbytes = 128;
3748 if (min_free_kbytes > 65536)
3749 min_free_kbytes = 65536;
3750 setup_per_zone_pages_min();
3751 setup_per_zone_lowmem_reserve();
3752 return 0;
3753}
3754module_init(init_per_zone_pages_min)
3755
3756/*
3757 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3758 * that we can call two helper functions whenever min_free_kbytes
3759 * changes.
3760 */
3761int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3762 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3763{
3764 proc_dointvec(table, write, file, buffer, length, ppos);
3b1d92c5
MG
3765 if (write)
3766 setup_per_zone_pages_min();
1da177e4
LT
3767 return 0;
3768}
3769
9614634f
CL
3770#ifdef CONFIG_NUMA
3771int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3772 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3773{
3774 struct zone *zone;
3775 int rc;
3776
3777 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3778 if (rc)
3779 return rc;
3780
3781 for_each_zone(zone)
8417bba4 3782 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
3783 sysctl_min_unmapped_ratio) / 100;
3784 return 0;
3785}
0ff38490
CL
3786
3787int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3788 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3789{
3790 struct zone *zone;
3791 int rc;
3792
3793 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3794 if (rc)
3795 return rc;
3796
3797 for_each_zone(zone)
3798 zone->min_slab_pages = (zone->present_pages *
3799 sysctl_min_slab_ratio) / 100;
3800 return 0;
3801}
9614634f
CL
3802#endif
3803
1da177e4
LT
3804/*
3805 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3806 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3807 * whenever sysctl_lowmem_reserve_ratio changes.
3808 *
3809 * The reserve ratio obviously has absolutely no relation with the
3810 * pages_min watermarks. The lowmem reserve ratio can only make sense
3811 * if in function of the boot time zone sizes.
3812 */
3813int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3814 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3815{
3816 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3817 setup_per_zone_lowmem_reserve();
3818 return 0;
3819}
3820
8ad4b1fb
RS
3821/*
3822 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3823 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
3824 * can have before it gets flushed back to buddy allocator.
3825 */
3826
3827int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3828 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3829{
3830 struct zone *zone;
3831 unsigned int cpu;
3832 int ret;
3833
3834 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3835 if (!write || (ret == -EINVAL))
3836 return ret;
3837 for_each_zone(zone) {
3838 for_each_online_cpu(cpu) {
3839 unsigned long high;
3840 high = zone->present_pages / percpu_pagelist_fraction;
3841 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3842 }
3843 }
3844 return 0;
3845}
3846
f034b5d4 3847int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
3848
3849#ifdef CONFIG_NUMA
3850static int __init set_hashdist(char *str)
3851{
3852 if (!str)
3853 return 0;
3854 hashdist = simple_strtoul(str, &str, 0);
3855 return 1;
3856}
3857__setup("hashdist=", set_hashdist);
3858#endif
3859
3860/*
3861 * allocate a large system hash table from bootmem
3862 * - it is assumed that the hash table must contain an exact power-of-2
3863 * quantity of entries
3864 * - limit is the number of hash buckets, not the total allocation size
3865 */
3866void *__init alloc_large_system_hash(const char *tablename,
3867 unsigned long bucketsize,
3868 unsigned long numentries,
3869 int scale,
3870 int flags,
3871 unsigned int *_hash_shift,
3872 unsigned int *_hash_mask,
3873 unsigned long limit)
3874{
3875 unsigned long long max = limit;
3876 unsigned long log2qty, size;
3877 void *table = NULL;
3878
3879 /* allow the kernel cmdline to have a say */
3880 if (!numentries) {
3881 /* round applicable memory size up to nearest megabyte */
04903664 3882 numentries = nr_kernel_pages;
1da177e4
LT
3883 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3884 numentries >>= 20 - PAGE_SHIFT;
3885 numentries <<= 20 - PAGE_SHIFT;
3886
3887 /* limit to 1 bucket per 2^scale bytes of low memory */
3888 if (scale > PAGE_SHIFT)
3889 numentries >>= (scale - PAGE_SHIFT);
3890 else
3891 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
3892
3893 /* Make sure we've got at least a 0-order allocation.. */
3894 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
3895 numentries = PAGE_SIZE / bucketsize;
1da177e4 3896 }
6e692ed3 3897 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
3898
3899 /* limit allocation size to 1/16 total memory by default */
3900 if (max == 0) {
3901 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3902 do_div(max, bucketsize);
3903 }
3904
3905 if (numentries > max)
3906 numentries = max;
3907
f0d1b0b3 3908 log2qty = ilog2(numentries);
1da177e4
LT
3909
3910 do {
3911 size = bucketsize << log2qty;
3912 if (flags & HASH_EARLY)
3913 table = alloc_bootmem(size);
3914 else if (hashdist)
3915 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3916 else {
3917 unsigned long order;
3918 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3919 ;
3920 table = (void*) __get_free_pages(GFP_ATOMIC, order);
1037b83b
ED
3921 /*
3922 * If bucketsize is not a power-of-two, we may free
3923 * some pages at the end of hash table.
3924 */
3925 if (table) {
3926 unsigned long alloc_end = (unsigned long)table +
3927 (PAGE_SIZE << order);
3928 unsigned long used = (unsigned long)table +
3929 PAGE_ALIGN(size);
3930 split_page(virt_to_page(table), order);
3931 while (used < alloc_end) {
3932 free_page(used);
3933 used += PAGE_SIZE;
3934 }
3935 }
1da177e4
LT
3936 }
3937 } while (!table && size > PAGE_SIZE && --log2qty);
3938
3939 if (!table)
3940 panic("Failed to allocate %s hash table\n", tablename);
3941
b49ad484 3942 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
3943 tablename,
3944 (1U << log2qty),
f0d1b0b3 3945 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
3946 size);
3947
3948 if (_hash_shift)
3949 *_hash_shift = log2qty;
3950 if (_hash_mask)
3951 *_hash_mask = (1 << log2qty) - 1;
3952
3953 return table;
3954}
a117e66e
KH
3955
3956#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
a117e66e
KH
3957struct page *pfn_to_page(unsigned long pfn)
3958{
67de6482 3959 return __pfn_to_page(pfn);
a117e66e
KH
3960}
3961unsigned long page_to_pfn(struct page *page)
3962{
67de6482 3963 return __page_to_pfn(page);
a117e66e 3964}
a117e66e
KH
3965EXPORT_SYMBOL(pfn_to_page);
3966EXPORT_SYMBOL(page_to_pfn);
3967#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
6220ec78 3968
6220ec78 3969