]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/page_alloc.c
[PATCH] for_each_online_pgdat: for_each_bootmem
[net-next-2.6.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17#include <linux/config.h>
18#include <linux/stddef.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/interrupt.h>
22#include <linux/pagemap.h>
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
1da177e4
LT
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
31#include <linux/notifier.h>
32#include <linux/topology.h>
33#include <linux/sysctl.h>
34#include <linux/cpu.h>
35#include <linux/cpuset.h>
bdc8cb98 36#include <linux/memory_hotplug.h>
1da177e4
LT
37#include <linux/nodemask.h>
38#include <linux/vmalloc.h>
4be38e35 39#include <linux/mempolicy.h>
1da177e4
LT
40
41#include <asm/tlbflush.h>
42#include "internal.h"
43
44/*
45 * MCD - HACK: Find somewhere to initialize this EARLY, or make this
46 * initializer cleaner
47 */
c3d8c141 48nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
7223a93a 49EXPORT_SYMBOL(node_online_map);
c3d8c141 50nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
7223a93a 51EXPORT_SYMBOL(node_possible_map);
c3d8c141 52struct pglist_data *pgdat_list __read_mostly;
6c231b7b
RT
53unsigned long totalram_pages __read_mostly;
54unsigned long totalhigh_pages __read_mostly;
1da177e4 55long nr_swap_pages;
8ad4b1fb 56int percpu_pagelist_fraction;
1da177e4 57
d98c7a09 58static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 59
1da177e4
LT
60/*
61 * results with 256, 32 in the lowmem_reserve sysctl:
62 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
63 * 1G machine -> (16M dma, 784M normal, 224M high)
64 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
65 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
66 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
67 *
68 * TBD: should special case ZONE_DMA32 machines here - in those we normally
69 * don't need any ZONE_NORMAL reservation
1da177e4 70 */
a2f1b424 71int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 };
1da177e4
LT
72
73EXPORT_SYMBOL(totalram_pages);
1da177e4
LT
74
75/*
76 * Used by page_zone() to look up the address of the struct zone whose
77 * id is encoded in the upper bits of page->flags
78 */
c3d8c141 79struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly;
1da177e4
LT
80EXPORT_SYMBOL(zone_table);
81
a2f1b424 82static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" };
1da177e4
LT
83int min_free_kbytes = 1024;
84
85unsigned long __initdata nr_kernel_pages;
86unsigned long __initdata nr_all_pages;
87
13e7444b 88#ifdef CONFIG_DEBUG_VM
c6a57e19 89static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 90{
bdc8cb98
DH
91 int ret = 0;
92 unsigned seq;
93 unsigned long pfn = page_to_pfn(page);
c6a57e19 94
bdc8cb98
DH
95 do {
96 seq = zone_span_seqbegin(zone);
97 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
98 ret = 1;
99 else if (pfn < zone->zone_start_pfn)
100 ret = 1;
101 } while (zone_span_seqretry(zone, seq));
102
103 return ret;
c6a57e19
DH
104}
105
106static int page_is_consistent(struct zone *zone, struct page *page)
107{
1da177e4
LT
108#ifdef CONFIG_HOLES_IN_ZONE
109 if (!pfn_valid(page_to_pfn(page)))
c6a57e19 110 return 0;
1da177e4
LT
111#endif
112 if (zone != page_zone(page))
c6a57e19
DH
113 return 0;
114
115 return 1;
116}
117/*
118 * Temporary debugging check for pages not lying within a given zone.
119 */
120static int bad_range(struct zone *zone, struct page *page)
121{
122 if (page_outside_zone_boundaries(zone, page))
1da177e4 123 return 1;
c6a57e19
DH
124 if (!page_is_consistent(zone, page))
125 return 1;
126
1da177e4
LT
127 return 0;
128}
129
13e7444b
NP
130#else
131static inline int bad_range(struct zone *zone, struct page *page)
132{
133 return 0;
134}
135#endif
136
224abf92 137static void bad_page(struct page *page)
1da177e4 138{
224abf92 139 printk(KERN_EMERG "Bad page state in process '%s'\n"
7365f3d1
HD
140 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
141 KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
142 KERN_EMERG "Backtrace:\n",
224abf92
NP
143 current->comm, page, (int)(2*sizeof(unsigned long)),
144 (unsigned long)page->flags, page->mapping,
145 page_mapcount(page), page_count(page));
1da177e4 146 dump_stack();
334795ec
HD
147 page->flags &= ~(1 << PG_lru |
148 1 << PG_private |
1da177e4 149 1 << PG_locked |
1da177e4
LT
150 1 << PG_active |
151 1 << PG_dirty |
334795ec
HD
152 1 << PG_reclaim |
153 1 << PG_slab |
1da177e4 154 1 << PG_swapcache |
689bcebf 155 1 << PG_writeback );
1da177e4
LT
156 set_page_count(page, 0);
157 reset_page_mapcount(page);
158 page->mapping = NULL;
9f158333 159 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
160}
161
1da177e4
LT
162/*
163 * Higher-order pages are called "compound pages". They are structured thusly:
164 *
165 * The first PAGE_SIZE page is called the "head page".
166 *
167 * The remaining PAGE_SIZE pages are called "tail pages".
168 *
169 * All pages have PG_compound set. All pages have their ->private pointing at
170 * the head page (even the head page has this).
171 *
41d78ba5
HD
172 * The first tail page's ->lru.next holds the address of the compound page's
173 * put_page() function. Its ->lru.prev holds the order of allocation.
174 * This usage means that zero-order pages may not be compound.
1da177e4 175 */
d98c7a09
HD
176
177static void free_compound_page(struct page *page)
178{
179 __free_pages_ok(page, (unsigned long)page[1].lru.prev);
180}
181
1da177e4
LT
182static void prep_compound_page(struct page *page, unsigned long order)
183{
184 int i;
185 int nr_pages = 1 << order;
186
d98c7a09 187 page[1].lru.next = (void *)free_compound_page; /* set dtor */
41d78ba5 188 page[1].lru.prev = (void *)order;
1da177e4
LT
189 for (i = 0; i < nr_pages; i++) {
190 struct page *p = page + i;
191
5e9dace8 192 __SetPageCompound(p);
4c21e2f2 193 set_page_private(p, (unsigned long)page);
1da177e4
LT
194 }
195}
196
197static void destroy_compound_page(struct page *page, unsigned long order)
198{
199 int i;
200 int nr_pages = 1 << order;
201
41d78ba5 202 if (unlikely((unsigned long)page[1].lru.prev != order))
224abf92 203 bad_page(page);
1da177e4
LT
204
205 for (i = 0; i < nr_pages; i++) {
206 struct page *p = page + i;
207
224abf92
NP
208 if (unlikely(!PageCompound(p) |
209 (page_private(p) != (unsigned long)page)))
210 bad_page(page);
5e9dace8 211 __ClearPageCompound(p);
1da177e4
LT
212 }
213}
1da177e4 214
17cf4406
NP
215static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
216{
217 int i;
218
219 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
6626c5d5
AM
220 /*
221 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
222 * and __GFP_HIGHMEM from hard or soft interrupt context.
223 */
224 BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
225 for (i = 0; i < (1 << order); i++)
226 clear_highpage(page + i);
227}
228
1da177e4
LT
229/*
230 * function for dealing with page's order in buddy system.
231 * zone->lock is already acquired when we use these.
232 * So, we don't need atomic page->flags operations here.
233 */
234static inline unsigned long page_order(struct page *page) {
4c21e2f2 235 return page_private(page);
1da177e4
LT
236}
237
238static inline void set_page_order(struct page *page, int order) {
4c21e2f2 239 set_page_private(page, order);
1da177e4
LT
240 __SetPagePrivate(page);
241}
242
243static inline void rmv_page_order(struct page *page)
244{
245 __ClearPagePrivate(page);
4c21e2f2 246 set_page_private(page, 0);
1da177e4
LT
247}
248
249/*
250 * Locate the struct page for both the matching buddy in our
251 * pair (buddy1) and the combined O(n+1) page they form (page).
252 *
253 * 1) Any buddy B1 will have an order O twin B2 which satisfies
254 * the following equation:
255 * B2 = B1 ^ (1 << O)
256 * For example, if the starting buddy (buddy2) is #8 its order
257 * 1 buddy is #10:
258 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
259 *
260 * 2) Any buddy B will have an order O+1 parent P which
261 * satisfies the following equation:
262 * P = B & ~(1 << O)
263 *
264 * Assumption: *_mem_map is contigious at least up to MAX_ORDER
265 */
266static inline struct page *
267__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
268{
269 unsigned long buddy_idx = page_idx ^ (1 << order);
270
271 return page + (buddy_idx - page_idx);
272}
273
274static inline unsigned long
275__find_combined_index(unsigned long page_idx, unsigned int order)
276{
277 return (page_idx & ~(1 << order));
278}
279
280/*
281 * This function checks whether a page is free && is the buddy
282 * we can do coalesce a page and its buddy if
13e7444b
NP
283 * (a) the buddy is not in a hole &&
284 * (b) the buddy is free &&
285 * (c) the buddy is on the buddy system &&
286 * (d) a page and its buddy have the same order.
4c21e2f2 287 * for recording page's order, we use page_private(page) and PG_private.
1da177e4
LT
288 *
289 */
290static inline int page_is_buddy(struct page *page, int order)
291{
13e7444b
NP
292#ifdef CONFIG_HOLES_IN_ZONE
293 if (!pfn_valid(page_to_pfn(page)))
294 return 0;
295#endif
296
1da177e4
LT
297 if (PagePrivate(page) &&
298 (page_order(page) == order) &&
1da177e4
LT
299 page_count(page) == 0)
300 return 1;
301 return 0;
302}
303
304/*
305 * Freeing function for a buddy system allocator.
306 *
307 * The concept of a buddy system is to maintain direct-mapped table
308 * (containing bit values) for memory blocks of various "orders".
309 * The bottom level table contains the map for the smallest allocatable
310 * units of memory (here, pages), and each level above it describes
311 * pairs of units from the levels below, hence, "buddies".
312 * At a high level, all that happens here is marking the table entry
313 * at the bottom level available, and propagating the changes upward
314 * as necessary, plus some accounting needed to play nicely with other
315 * parts of the VM system.
316 * At each level, we keep a list of pages, which are heads of continuous
317 * free pages of length of (1 << order) and marked with PG_Private.Page's
4c21e2f2 318 * order is recorded in page_private(page) field.
1da177e4
LT
319 * So when we are allocating or freeing one, we can derive the state of the
320 * other. That is, if we allocate a small block, and both were
321 * free, the remainder of the region must be split into blocks.
322 * If a block is freed, and its buddy is also free, then this
323 * triggers coalescing into a block of larger size.
324 *
325 * -- wli
326 */
327
48db57f8 328static inline void __free_one_page(struct page *page,
1da177e4
LT
329 struct zone *zone, unsigned int order)
330{
331 unsigned long page_idx;
332 int order_size = 1 << order;
333
224abf92 334 if (unlikely(PageCompound(page)))
1da177e4
LT
335 destroy_compound_page(page, order);
336
337 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
338
339 BUG_ON(page_idx & (order_size - 1));
340 BUG_ON(bad_range(zone, page));
341
342 zone->free_pages += order_size;
343 while (order < MAX_ORDER-1) {
344 unsigned long combined_idx;
345 struct free_area *area;
346 struct page *buddy;
347
1da177e4 348 buddy = __page_find_buddy(page, page_idx, order);
1da177e4
LT
349 if (!page_is_buddy(buddy, order))
350 break; /* Move the buddy up one level. */
13e7444b 351
1da177e4
LT
352 list_del(&buddy->lru);
353 area = zone->free_area + order;
354 area->nr_free--;
355 rmv_page_order(buddy);
13e7444b 356 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
357 page = page + (combined_idx - page_idx);
358 page_idx = combined_idx;
359 order++;
360 }
361 set_page_order(page, order);
362 list_add(&page->lru, &zone->free_area[order].free_list);
363 zone->free_area[order].nr_free++;
364}
365
224abf92 366static inline int free_pages_check(struct page *page)
1da177e4 367{
92be2e33
NP
368 if (unlikely(page_mapcount(page) |
369 (page->mapping != NULL) |
370 (page_count(page) != 0) |
1da177e4
LT
371 (page->flags & (
372 1 << PG_lru |
373 1 << PG_private |
374 1 << PG_locked |
375 1 << PG_active |
376 1 << PG_reclaim |
377 1 << PG_slab |
378 1 << PG_swapcache |
b5810039 379 1 << PG_writeback |
92be2e33 380 1 << PG_reserved ))))
224abf92 381 bad_page(page);
1da177e4 382 if (PageDirty(page))
242e5468 383 __ClearPageDirty(page);
689bcebf
HD
384 /*
385 * For now, we report if PG_reserved was found set, but do not
386 * clear it, and do not free the page. But we shall soon need
387 * to do more, for when the ZERO_PAGE count wraps negative.
388 */
389 return PageReserved(page);
1da177e4
LT
390}
391
392/*
393 * Frees a list of pages.
394 * Assumes all pages on list are in same zone, and of same order.
207f36ee 395 * count is the number of pages to free.
1da177e4
LT
396 *
397 * If the zone was previously in an "all pages pinned" state then look to
398 * see if this freeing clears that state.
399 *
400 * And clear the zone's pages_scanned counter, to hold off the "all pages are
401 * pinned" detection logic.
402 */
48db57f8
NP
403static void free_pages_bulk(struct zone *zone, int count,
404 struct list_head *list, int order)
1da177e4 405{
c54ad30c 406 spin_lock(&zone->lock);
1da177e4
LT
407 zone->all_unreclaimable = 0;
408 zone->pages_scanned = 0;
48db57f8
NP
409 while (count--) {
410 struct page *page;
411
412 BUG_ON(list_empty(list));
1da177e4 413 page = list_entry(list->prev, struct page, lru);
48db57f8 414 /* have to delete it as __free_one_page list manipulates */
1da177e4 415 list_del(&page->lru);
48db57f8 416 __free_one_page(page, zone, order);
1da177e4 417 }
c54ad30c 418 spin_unlock(&zone->lock);
1da177e4
LT
419}
420
48db57f8 421static void free_one_page(struct zone *zone, struct page *page, int order)
1da177e4
LT
422{
423 LIST_HEAD(list);
48db57f8
NP
424 list_add(&page->lru, &list);
425 free_pages_bulk(zone, 1, &list, order);
426}
427
428static void __free_pages_ok(struct page *page, unsigned int order)
429{
430 unsigned long flags;
1da177e4 431 int i;
689bcebf 432 int reserved = 0;
1da177e4
LT
433
434 arch_free_page(page, order);
de5097c2
IM
435 if (!PageHighMem(page))
436 mutex_debug_check_no_locks_freed(page_address(page),
a4fc7ab1 437 PAGE_SIZE<<order);
1da177e4 438
1da177e4 439 for (i = 0 ; i < (1 << order) ; ++i)
224abf92 440 reserved += free_pages_check(page + i);
689bcebf
HD
441 if (reserved)
442 return;
443
48db57f8 444 kernel_map_pages(page, 1 << order, 0);
c54ad30c 445 local_irq_save(flags);
a74609fa 446 __mod_page_state(pgfree, 1 << order);
48db57f8 447 free_one_page(page_zone(page), page, order);
c54ad30c 448 local_irq_restore(flags);
1da177e4
LT
449}
450
a226f6c8
DH
451/*
452 * permit the bootmem allocator to evade page validation on high-order frees
453 */
454void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
455{
456 if (order == 0) {
457 __ClearPageReserved(page);
458 set_page_count(page, 0);
7835e98b 459 set_page_refcounted(page);
545b1ea9 460 __free_page(page);
a226f6c8 461 } else {
a226f6c8
DH
462 int loop;
463
545b1ea9 464 prefetchw(page);
a226f6c8
DH
465 for (loop = 0; loop < BITS_PER_LONG; loop++) {
466 struct page *p = &page[loop];
467
545b1ea9
NP
468 if (loop + 1 < BITS_PER_LONG)
469 prefetchw(p + 1);
a226f6c8
DH
470 __ClearPageReserved(p);
471 set_page_count(p, 0);
472 }
473
7835e98b 474 set_page_refcounted(page);
545b1ea9 475 __free_pages(page, order);
a226f6c8
DH
476 }
477}
478
1da177e4
LT
479
480/*
481 * The order of subdivision here is critical for the IO subsystem.
482 * Please do not alter this order without good reasons and regression
483 * testing. Specifically, as large blocks of memory are subdivided,
484 * the order in which smaller blocks are delivered depends on the order
485 * they're subdivided in this function. This is the primary factor
486 * influencing the order in which pages are delivered to the IO
487 * subsystem according to empirical testing, and this is also justified
488 * by considering the behavior of a buddy system containing a single
489 * large block of memory acted on by a series of small allocations.
490 * This behavior is a critical factor in sglist merging's success.
491 *
492 * -- wli
493 */
085cc7d5 494static inline void expand(struct zone *zone, struct page *page,
1da177e4
LT
495 int low, int high, struct free_area *area)
496{
497 unsigned long size = 1 << high;
498
499 while (high > low) {
500 area--;
501 high--;
502 size >>= 1;
503 BUG_ON(bad_range(zone, &page[size]));
504 list_add(&page[size].lru, &area->free_list);
505 area->nr_free++;
506 set_page_order(&page[size], high);
507 }
1da177e4
LT
508}
509
1da177e4
LT
510/*
511 * This page is about to be returned from the page allocator
512 */
17cf4406 513static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 514{
92be2e33
NP
515 if (unlikely(page_mapcount(page) |
516 (page->mapping != NULL) |
517 (page_count(page) != 0) |
334795ec
HD
518 (page->flags & (
519 1 << PG_lru |
1da177e4
LT
520 1 << PG_private |
521 1 << PG_locked |
1da177e4
LT
522 1 << PG_active |
523 1 << PG_dirty |
524 1 << PG_reclaim |
334795ec 525 1 << PG_slab |
1da177e4 526 1 << PG_swapcache |
b5810039 527 1 << PG_writeback |
92be2e33 528 1 << PG_reserved ))))
224abf92 529 bad_page(page);
1da177e4 530
689bcebf
HD
531 /*
532 * For now, we report if PG_reserved was found set, but do not
533 * clear it, and do not allocate the page: as a safety net.
534 */
535 if (PageReserved(page))
536 return 1;
537
1da177e4
LT
538 page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
539 1 << PG_referenced | 1 << PG_arch_1 |
540 1 << PG_checked | 1 << PG_mappedtodisk);
4c21e2f2 541 set_page_private(page, 0);
7835e98b 542 set_page_refcounted(page);
1da177e4 543 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
544
545 if (gfp_flags & __GFP_ZERO)
546 prep_zero_page(page, order, gfp_flags);
547
548 if (order && (gfp_flags & __GFP_COMP))
549 prep_compound_page(page, order);
550
689bcebf 551 return 0;
1da177e4
LT
552}
553
554/*
555 * Do the hard work of removing an element from the buddy allocator.
556 * Call me with the zone->lock already held.
557 */
558static struct page *__rmqueue(struct zone *zone, unsigned int order)
559{
560 struct free_area * area;
561 unsigned int current_order;
562 struct page *page;
563
564 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
565 area = zone->free_area + current_order;
566 if (list_empty(&area->free_list))
567 continue;
568
569 page = list_entry(area->free_list.next, struct page, lru);
570 list_del(&page->lru);
571 rmv_page_order(page);
572 area->nr_free--;
573 zone->free_pages -= 1UL << order;
085cc7d5
NP
574 expand(zone, page, order, current_order, area);
575 return page;
1da177e4
LT
576 }
577
578 return NULL;
579}
580
581/*
582 * Obtain a specified number of elements from the buddy allocator, all under
583 * a single hold of the lock, for efficiency. Add them to the supplied list.
584 * Returns the number of new pages which were placed at *list.
585 */
586static int rmqueue_bulk(struct zone *zone, unsigned int order,
587 unsigned long count, struct list_head *list)
588{
1da177e4 589 int i;
1da177e4 590
c54ad30c 591 spin_lock(&zone->lock);
1da177e4 592 for (i = 0; i < count; ++i) {
085cc7d5
NP
593 struct page *page = __rmqueue(zone, order);
594 if (unlikely(page == NULL))
1da177e4 595 break;
1da177e4
LT
596 list_add_tail(&page->lru, list);
597 }
c54ad30c 598 spin_unlock(&zone->lock);
085cc7d5 599 return i;
1da177e4
LT
600}
601
4ae7c039 602#ifdef CONFIG_NUMA
8fce4d8e
CL
603/*
604 * Called from the slab reaper to drain pagesets on a particular node that
605 * belong to the currently executing processor.
879336c3
CL
606 * Note that this function must be called with the thread pinned to
607 * a single processor.
8fce4d8e
CL
608 */
609void drain_node_pages(int nodeid)
4ae7c039 610{
8fce4d8e 611 int i, z;
4ae7c039
CL
612 unsigned long flags;
613
8fce4d8e
CL
614 for (z = 0; z < MAX_NR_ZONES; z++) {
615 struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
4ae7c039
CL
616 struct per_cpu_pageset *pset;
617
23316bc8 618 pset = zone_pcp(zone, smp_processor_id());
4ae7c039
CL
619 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
620 struct per_cpu_pages *pcp;
621
622 pcp = &pset->pcp[i];
879336c3
CL
623 if (pcp->count) {
624 local_irq_save(flags);
625 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
626 pcp->count = 0;
627 local_irq_restore(flags);
628 }
4ae7c039
CL
629 }
630 }
4ae7c039
CL
631}
632#endif
633
1da177e4
LT
634#if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU)
635static void __drain_pages(unsigned int cpu)
636{
c54ad30c 637 unsigned long flags;
1da177e4
LT
638 struct zone *zone;
639 int i;
640
641 for_each_zone(zone) {
642 struct per_cpu_pageset *pset;
643
e7c8d5c9 644 pset = zone_pcp(zone, cpu);
1da177e4
LT
645 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
646 struct per_cpu_pages *pcp;
647
648 pcp = &pset->pcp[i];
c54ad30c 649 local_irq_save(flags);
48db57f8
NP
650 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
651 pcp->count = 0;
c54ad30c 652 local_irq_restore(flags);
1da177e4
LT
653 }
654 }
655}
656#endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */
657
658#ifdef CONFIG_PM
659
660void mark_free_pages(struct zone *zone)
661{
662 unsigned long zone_pfn, flags;
663 int order;
664 struct list_head *curr;
665
666 if (!zone->spanned_pages)
667 return;
668
669 spin_lock_irqsave(&zone->lock, flags);
670 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn)
671 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn));
672
673 for (order = MAX_ORDER - 1; order >= 0; --order)
674 list_for_each(curr, &zone->free_area[order].free_list) {
675 unsigned long start_pfn, i;
676
677 start_pfn = page_to_pfn(list_entry(curr, struct page, lru));
678
679 for (i=0; i < (1<<order); i++)
680 SetPageNosaveFree(pfn_to_page(start_pfn+i));
681 }
682 spin_unlock_irqrestore(&zone->lock, flags);
683}
684
685/*
686 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
687 */
688void drain_local_pages(void)
689{
690 unsigned long flags;
691
692 local_irq_save(flags);
693 __drain_pages(smp_processor_id());
694 local_irq_restore(flags);
695}
696#endif /* CONFIG_PM */
697
a74609fa 698static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu)
1da177e4
LT
699{
700#ifdef CONFIG_NUMA
1da177e4
LT
701 pg_data_t *pg = z->zone_pgdat;
702 pg_data_t *orig = zonelist->zones[0]->zone_pgdat;
703 struct per_cpu_pageset *p;
704
a74609fa 705 p = zone_pcp(z, cpu);
1da177e4 706 if (pg == orig) {
e7c8d5c9 707 p->numa_hit++;
1da177e4
LT
708 } else {
709 p->numa_miss++;
e7c8d5c9 710 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++;
1da177e4
LT
711 }
712 if (pg == NODE_DATA(numa_node_id()))
713 p->local_node++;
714 else
715 p->other_node++;
1da177e4
LT
716#endif
717}
718
719/*
720 * Free a 0-order page
721 */
1da177e4
LT
722static void fastcall free_hot_cold_page(struct page *page, int cold)
723{
724 struct zone *zone = page_zone(page);
725 struct per_cpu_pages *pcp;
726 unsigned long flags;
727
728 arch_free_page(page, 0);
729
1da177e4
LT
730 if (PageAnon(page))
731 page->mapping = NULL;
224abf92 732 if (free_pages_check(page))
689bcebf
HD
733 return;
734
689bcebf
HD
735 kernel_map_pages(page, 1, 0);
736
e7c8d5c9 737 pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
1da177e4 738 local_irq_save(flags);
a74609fa 739 __inc_page_state(pgfree);
1da177e4
LT
740 list_add(&page->lru, &pcp->list);
741 pcp->count++;
48db57f8
NP
742 if (pcp->count >= pcp->high) {
743 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
744 pcp->count -= pcp->batch;
745 }
1da177e4
LT
746 local_irq_restore(flags);
747 put_cpu();
748}
749
750void fastcall free_hot_page(struct page *page)
751{
752 free_hot_cold_page(page, 0);
753}
754
755void fastcall free_cold_page(struct page *page)
756{
757 free_hot_cold_page(page, 1);
758}
759
8dfcc9ba
NP
760/*
761 * split_page takes a non-compound higher-order page, and splits it into
762 * n (1<<order) sub-pages: page[0..n]
763 * Each sub-page must be freed individually.
764 *
765 * Note: this is probably too low level an operation for use in drivers.
766 * Please consult with lkml before using this in your driver.
767 */
768void split_page(struct page *page, unsigned int order)
769{
770 int i;
771
772 BUG_ON(PageCompound(page));
773 BUG_ON(!page_count(page));
7835e98b
NP
774 for (i = 1; i < (1 << order); i++)
775 set_page_refcounted(page + i);
8dfcc9ba 776}
8dfcc9ba 777
1da177e4
LT
778/*
779 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
780 * we cheat by calling it from here, in the order > 0 path. Saves a branch
781 * or two.
782 */
a74609fa
NP
783static struct page *buffered_rmqueue(struct zonelist *zonelist,
784 struct zone *zone, int order, gfp_t gfp_flags)
1da177e4
LT
785{
786 unsigned long flags;
689bcebf 787 struct page *page;
1da177e4 788 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 789 int cpu;
1da177e4 790
689bcebf 791again:
a74609fa 792 cpu = get_cpu();
48db57f8 793 if (likely(order == 0)) {
1da177e4
LT
794 struct per_cpu_pages *pcp;
795
a74609fa 796 pcp = &zone_pcp(zone, cpu)->pcp[cold];
1da177e4 797 local_irq_save(flags);
a74609fa 798 if (!pcp->count) {
1da177e4
LT
799 pcp->count += rmqueue_bulk(zone, 0,
800 pcp->batch, &pcp->list);
a74609fa
NP
801 if (unlikely(!pcp->count))
802 goto failed;
1da177e4 803 }
a74609fa
NP
804 page = list_entry(pcp->list.next, struct page, lru);
805 list_del(&page->lru);
806 pcp->count--;
7fb1d9fc 807 } else {
1da177e4
LT
808 spin_lock_irqsave(&zone->lock, flags);
809 page = __rmqueue(zone, order);
a74609fa
NP
810 spin_unlock(&zone->lock);
811 if (!page)
812 goto failed;
1da177e4
LT
813 }
814
a74609fa
NP
815 __mod_page_state_zone(zone, pgalloc, 1 << order);
816 zone_statistics(zonelist, zone, cpu);
817 local_irq_restore(flags);
818 put_cpu();
1da177e4 819
a74609fa 820 BUG_ON(bad_range(zone, page));
17cf4406 821 if (prep_new_page(page, order, gfp_flags))
a74609fa 822 goto again;
1da177e4 823 return page;
a74609fa
NP
824
825failed:
826 local_irq_restore(flags);
827 put_cpu();
828 return NULL;
1da177e4
LT
829}
830
7fb1d9fc 831#define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */
3148890b
NP
832#define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */
833#define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */
834#define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */
835#define ALLOC_HARDER 0x10 /* try to alloc harder */
836#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
837#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 838
1da177e4
LT
839/*
840 * Return 1 if free pages are above 'mark'. This takes into account the order
841 * of the allocation.
842 */
843int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 844 int classzone_idx, int alloc_flags)
1da177e4
LT
845{
846 /* free_pages my go negative - that's OK */
847 long min = mark, free_pages = z->free_pages - (1 << order) + 1;
848 int o;
849
7fb1d9fc 850 if (alloc_flags & ALLOC_HIGH)
1da177e4 851 min -= min / 2;
7fb1d9fc 852 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
853 min -= min / 4;
854
855 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
856 return 0;
857 for (o = 0; o < order; o++) {
858 /* At the next order, this order's pages become unavailable */
859 free_pages -= z->free_area[o].nr_free << o;
860
861 /* Require fewer higher order pages to be free */
862 min >>= 1;
863
864 if (free_pages <= min)
865 return 0;
866 }
867 return 1;
868}
869
7fb1d9fc
RS
870/*
871 * get_page_from_freeliest goes through the zonelist trying to allocate
872 * a page.
873 */
874static struct page *
875get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
876 struct zonelist *zonelist, int alloc_flags)
753ee728 877{
7fb1d9fc
RS
878 struct zone **z = zonelist->zones;
879 struct page *page = NULL;
880 int classzone_idx = zone_idx(*z);
881
882 /*
883 * Go through the zonelist once, looking for a zone with enough free.
884 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
885 */
886 do {
887 if ((alloc_flags & ALLOC_CPUSET) &&
888 !cpuset_zone_allowed(*z, gfp_mask))
889 continue;
890
891 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b
NP
892 unsigned long mark;
893 if (alloc_flags & ALLOC_WMARK_MIN)
894 mark = (*z)->pages_min;
895 else if (alloc_flags & ALLOC_WMARK_LOW)
896 mark = (*z)->pages_low;
897 else
898 mark = (*z)->pages_high;
899 if (!zone_watermark_ok(*z, order, mark,
7fb1d9fc 900 classzone_idx, alloc_flags))
9eeff239
CL
901 if (!zone_reclaim_mode ||
902 !zone_reclaim(*z, gfp_mask, order))
903 continue;
7fb1d9fc
RS
904 }
905
a74609fa 906 page = buffered_rmqueue(zonelist, *z, order, gfp_mask);
7fb1d9fc 907 if (page) {
7fb1d9fc
RS
908 break;
909 }
910 } while (*(++z) != NULL);
911 return page;
753ee728
MH
912}
913
1da177e4
LT
914/*
915 * This is the 'heart' of the zoned buddy allocator.
916 */
917struct page * fastcall
dd0fc66f 918__alloc_pages(gfp_t gfp_mask, unsigned int order,
1da177e4
LT
919 struct zonelist *zonelist)
920{
260b2367 921 const gfp_t wait = gfp_mask & __GFP_WAIT;
7fb1d9fc 922 struct zone **z;
1da177e4
LT
923 struct page *page;
924 struct reclaim_state reclaim_state;
925 struct task_struct *p = current;
1da177e4 926 int do_retry;
7fb1d9fc 927 int alloc_flags;
1da177e4
LT
928 int did_some_progress;
929
930 might_sleep_if(wait);
931
6b1de916 932restart:
7fb1d9fc 933 z = zonelist->zones; /* the list of zones suitable for gfp_mask */
1da177e4 934
7fb1d9fc 935 if (unlikely(*z == NULL)) {
1da177e4
LT
936 /* Should this ever happen?? */
937 return NULL;
938 }
6b1de916 939
7fb1d9fc 940 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 941 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
7fb1d9fc
RS
942 if (page)
943 goto got_pg;
1da177e4 944
6b1de916 945 do {
0b1303fc
CL
946 if (cpuset_zone_allowed(*z, gfp_mask))
947 wakeup_kswapd(*z, order);
6b1de916 948 } while (*(++z));
1da177e4 949
9bf2229f 950 /*
7fb1d9fc
RS
951 * OK, we're below the kswapd watermark and have kicked background
952 * reclaim. Now things get more complex, so set up alloc_flags according
953 * to how we want to proceed.
954 *
955 * The caller may dip into page reserves a bit more if the caller
956 * cannot run direct reclaim, or if the caller has realtime scheduling
4eac915d
PJ
957 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
958 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
9bf2229f 959 */
3148890b 960 alloc_flags = ALLOC_WMARK_MIN;
7fb1d9fc
RS
961 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
962 alloc_flags |= ALLOC_HARDER;
963 if (gfp_mask & __GFP_HIGH)
964 alloc_flags |= ALLOC_HIGH;
47f3a867 965 alloc_flags |= ALLOC_CPUSET;
1da177e4
LT
966
967 /*
968 * Go through the zonelist again. Let __GFP_HIGH and allocations
7fb1d9fc 969 * coming from realtime tasks go deeper into reserves.
1da177e4
LT
970 *
971 * This is the last chance, in general, before the goto nopage.
972 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
9bf2229f 973 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1da177e4 974 */
7fb1d9fc
RS
975 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
976 if (page)
977 goto got_pg;
1da177e4
LT
978
979 /* This allocation should allow future memory freeing. */
b84a35be
NP
980
981 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
982 && !in_interrupt()) {
983 if (!(gfp_mask & __GFP_NOMEMALLOC)) {
885036d3 984nofail_alloc:
b84a35be 985 /* go through the zonelist yet again, ignoring mins */
7fb1d9fc 986 page = get_page_from_freelist(gfp_mask, order,
47f3a867 987 zonelist, ALLOC_NO_WATERMARKS);
7fb1d9fc
RS
988 if (page)
989 goto got_pg;
885036d3
KK
990 if (gfp_mask & __GFP_NOFAIL) {
991 blk_congestion_wait(WRITE, HZ/50);
992 goto nofail_alloc;
993 }
1da177e4
LT
994 }
995 goto nopage;
996 }
997
998 /* Atomic allocations - we can't balance anything */
999 if (!wait)
1000 goto nopage;
1001
1002rebalance:
1003 cond_resched();
1004
1005 /* We now go into synchronous reclaim */
3e0d98b9 1006 cpuset_memory_pressure_bump();
1da177e4
LT
1007 p->flags |= PF_MEMALLOC;
1008 reclaim_state.reclaimed_slab = 0;
1009 p->reclaim_state = &reclaim_state;
1010
7fb1d9fc 1011 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1da177e4
LT
1012
1013 p->reclaim_state = NULL;
1014 p->flags &= ~PF_MEMALLOC;
1015
1016 cond_resched();
1017
1018 if (likely(did_some_progress)) {
7fb1d9fc
RS
1019 page = get_page_from_freelist(gfp_mask, order,
1020 zonelist, alloc_flags);
1021 if (page)
1022 goto got_pg;
1da177e4
LT
1023 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1024 /*
1025 * Go through the zonelist yet one more time, keep
1026 * very high watermark here, this is only to catch
1027 * a parallel oom killing, we must fail if we're still
1028 * under heavy pressure.
1029 */
7fb1d9fc 1030 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
3148890b 1031 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
7fb1d9fc
RS
1032 if (page)
1033 goto got_pg;
1da177e4 1034
9b0f8b04 1035 out_of_memory(zonelist, gfp_mask, order);
1da177e4
LT
1036 goto restart;
1037 }
1038
1039 /*
1040 * Don't let big-order allocations loop unless the caller explicitly
1041 * requests that. Wait for some write requests to complete then retry.
1042 *
1043 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1044 * <= 3, but that may not be true in other implementations.
1045 */
1046 do_retry = 0;
1047 if (!(gfp_mask & __GFP_NORETRY)) {
1048 if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1049 do_retry = 1;
1050 if (gfp_mask & __GFP_NOFAIL)
1051 do_retry = 1;
1052 }
1053 if (do_retry) {
1054 blk_congestion_wait(WRITE, HZ/50);
1055 goto rebalance;
1056 }
1057
1058nopage:
1059 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1060 printk(KERN_WARNING "%s: page allocation failure."
1061 " order:%d, mode:0x%x\n",
1062 p->comm, order, gfp_mask);
1063 dump_stack();
578c2fd6 1064 show_mem();
1da177e4 1065 }
1da177e4 1066got_pg:
1da177e4
LT
1067 return page;
1068}
1069
1070EXPORT_SYMBOL(__alloc_pages);
1071
1072/*
1073 * Common helper functions.
1074 */
dd0fc66f 1075fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1076{
1077 struct page * page;
1078 page = alloc_pages(gfp_mask, order);
1079 if (!page)
1080 return 0;
1081 return (unsigned long) page_address(page);
1082}
1083
1084EXPORT_SYMBOL(__get_free_pages);
1085
dd0fc66f 1086fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1087{
1088 struct page * page;
1089
1090 /*
1091 * get_zeroed_page() returns a 32-bit address, which cannot represent
1092 * a highmem page
1093 */
260b2367 1094 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1095
1096 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1097 if (page)
1098 return (unsigned long) page_address(page);
1099 return 0;
1100}
1101
1102EXPORT_SYMBOL(get_zeroed_page);
1103
1104void __pagevec_free(struct pagevec *pvec)
1105{
1106 int i = pagevec_count(pvec);
1107
1108 while (--i >= 0)
1109 free_hot_cold_page(pvec->pages[i], pvec->cold);
1110}
1111
1112fastcall void __free_pages(struct page *page, unsigned int order)
1113{
b5810039 1114 if (put_page_testzero(page)) {
1da177e4
LT
1115 if (order == 0)
1116 free_hot_page(page);
1117 else
1118 __free_pages_ok(page, order);
1119 }
1120}
1121
1122EXPORT_SYMBOL(__free_pages);
1123
1124fastcall void free_pages(unsigned long addr, unsigned int order)
1125{
1126 if (addr != 0) {
1127 BUG_ON(!virt_addr_valid((void *)addr));
1128 __free_pages(virt_to_page((void *)addr), order);
1129 }
1130}
1131
1132EXPORT_SYMBOL(free_pages);
1133
1134/*
1135 * Total amount of free (allocatable) RAM:
1136 */
1137unsigned int nr_free_pages(void)
1138{
1139 unsigned int sum = 0;
1140 struct zone *zone;
1141
1142 for_each_zone(zone)
1143 sum += zone->free_pages;
1144
1145 return sum;
1146}
1147
1148EXPORT_SYMBOL(nr_free_pages);
1149
1150#ifdef CONFIG_NUMA
1151unsigned int nr_free_pages_pgdat(pg_data_t *pgdat)
1152{
1153 unsigned int i, sum = 0;
1154
1155 for (i = 0; i < MAX_NR_ZONES; i++)
1156 sum += pgdat->node_zones[i].free_pages;
1157
1158 return sum;
1159}
1160#endif
1161
1162static unsigned int nr_free_zone_pages(int offset)
1163{
e310fd43
MB
1164 /* Just pick one node, since fallback list is circular */
1165 pg_data_t *pgdat = NODE_DATA(numa_node_id());
1da177e4
LT
1166 unsigned int sum = 0;
1167
e310fd43
MB
1168 struct zonelist *zonelist = pgdat->node_zonelists + offset;
1169 struct zone **zonep = zonelist->zones;
1170 struct zone *zone;
1da177e4 1171
e310fd43
MB
1172 for (zone = *zonep++; zone; zone = *zonep++) {
1173 unsigned long size = zone->present_pages;
1174 unsigned long high = zone->pages_high;
1175 if (size > high)
1176 sum += size - high;
1da177e4
LT
1177 }
1178
1179 return sum;
1180}
1181
1182/*
1183 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1184 */
1185unsigned int nr_free_buffer_pages(void)
1186{
af4ca457 1187 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4
LT
1188}
1189
1190/*
1191 * Amount of free RAM allocatable within all zones
1192 */
1193unsigned int nr_free_pagecache_pages(void)
1194{
af4ca457 1195 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1da177e4
LT
1196}
1197
1198#ifdef CONFIG_HIGHMEM
1199unsigned int nr_free_highpages (void)
1200{
1201 pg_data_t *pgdat;
1202 unsigned int pages = 0;
1203
1204 for_each_pgdat(pgdat)
1205 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1206
1207 return pages;
1208}
1209#endif
1210
1211#ifdef CONFIG_NUMA
1212static void show_node(struct zone *zone)
1213{
1214 printk("Node %d ", zone->zone_pgdat->node_id);
1215}
1216#else
1217#define show_node(zone) do { } while (0)
1218#endif
1219
1220/*
1221 * Accumulate the page_state information across all CPUs.
1222 * The result is unavoidably approximate - it can change
1223 * during and after execution of this function.
1224 */
1225static DEFINE_PER_CPU(struct page_state, page_states) = {0};
1226
1227atomic_t nr_pagecache = ATOMIC_INIT(0);
1228EXPORT_SYMBOL(nr_pagecache);
1229#ifdef CONFIG_SMP
1230DEFINE_PER_CPU(long, nr_pagecache_local) = 0;
1231#endif
1232
a86b1f53 1233static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask)
1da177e4 1234{
b40607fc 1235 unsigned cpu;
1da177e4 1236
88a2a4ac 1237 memset(ret, 0, nr * sizeof(unsigned long));
84c2008a 1238 cpus_and(*cpumask, *cpumask, cpu_online_map);
1da177e4 1239
b40607fc
AM
1240 for_each_cpu_mask(cpu, *cpumask) {
1241 unsigned long *in;
1242 unsigned long *out;
1243 unsigned off;
1244 unsigned next_cpu;
88a2a4ac 1245
1da177e4
LT
1246 in = (unsigned long *)&per_cpu(page_states, cpu);
1247
b40607fc
AM
1248 next_cpu = next_cpu(cpu, *cpumask);
1249 if (likely(next_cpu < NR_CPUS))
1250 prefetch(&per_cpu(page_states, next_cpu));
1da177e4
LT
1251
1252 out = (unsigned long *)ret;
1253 for (off = 0; off < nr; off++)
1254 *out++ += *in++;
1255 }
1256}
1257
c07e02db
MH
1258void get_page_state_node(struct page_state *ret, int node)
1259{
1260 int nr;
1261 cpumask_t mask = node_to_cpumask(node);
1262
1263 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1264 nr /= sizeof(unsigned long);
1265
1266 __get_page_state(ret, nr+1, &mask);
1267}
1268
1da177e4
LT
1269void get_page_state(struct page_state *ret)
1270{
1271 int nr;
c07e02db 1272 cpumask_t mask = CPU_MASK_ALL;
1da177e4
LT
1273
1274 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST);
1275 nr /= sizeof(unsigned long);
1276
c07e02db 1277 __get_page_state(ret, nr + 1, &mask);
1da177e4
LT
1278}
1279
1280void get_full_page_state(struct page_state *ret)
1281{
c07e02db
MH
1282 cpumask_t mask = CPU_MASK_ALL;
1283
1284 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask);
1da177e4
LT
1285}
1286
a74609fa 1287unsigned long read_page_state_offset(unsigned long offset)
1da177e4
LT
1288{
1289 unsigned long ret = 0;
1290 int cpu;
1291
84c2008a 1292 for_each_online_cpu(cpu) {
1da177e4
LT
1293 unsigned long in;
1294
1295 in = (unsigned long)&per_cpu(page_states, cpu) + offset;
1296 ret += *((unsigned long *)in);
1297 }
1298 return ret;
1299}
1300
a74609fa
NP
1301void __mod_page_state_offset(unsigned long offset, unsigned long delta)
1302{
1303 void *ptr;
1304
1305 ptr = &__get_cpu_var(page_states);
1306 *(unsigned long *)(ptr + offset) += delta;
1307}
1308EXPORT_SYMBOL(__mod_page_state_offset);
1309
1310void mod_page_state_offset(unsigned long offset, unsigned long delta)
1da177e4
LT
1311{
1312 unsigned long flags;
a74609fa 1313 void *ptr;
1da177e4
LT
1314
1315 local_irq_save(flags);
1316 ptr = &__get_cpu_var(page_states);
a74609fa 1317 *(unsigned long *)(ptr + offset) += delta;
1da177e4
LT
1318 local_irq_restore(flags);
1319}
a74609fa 1320EXPORT_SYMBOL(mod_page_state_offset);
1da177e4
LT
1321
1322void __get_zone_counts(unsigned long *active, unsigned long *inactive,
1323 unsigned long *free, struct pglist_data *pgdat)
1324{
1325 struct zone *zones = pgdat->node_zones;
1326 int i;
1327
1328 *active = 0;
1329 *inactive = 0;
1330 *free = 0;
1331 for (i = 0; i < MAX_NR_ZONES; i++) {
1332 *active += zones[i].nr_active;
1333 *inactive += zones[i].nr_inactive;
1334 *free += zones[i].free_pages;
1335 }
1336}
1337
1338void get_zone_counts(unsigned long *active,
1339 unsigned long *inactive, unsigned long *free)
1340{
1341 struct pglist_data *pgdat;
1342
1343 *active = 0;
1344 *inactive = 0;
1345 *free = 0;
1346 for_each_pgdat(pgdat) {
1347 unsigned long l, m, n;
1348 __get_zone_counts(&l, &m, &n, pgdat);
1349 *active += l;
1350 *inactive += m;
1351 *free += n;
1352 }
1353}
1354
1355void si_meminfo(struct sysinfo *val)
1356{
1357 val->totalram = totalram_pages;
1358 val->sharedram = 0;
1359 val->freeram = nr_free_pages();
1360 val->bufferram = nr_blockdev_pages();
1361#ifdef CONFIG_HIGHMEM
1362 val->totalhigh = totalhigh_pages;
1363 val->freehigh = nr_free_highpages();
1364#else
1365 val->totalhigh = 0;
1366 val->freehigh = 0;
1367#endif
1368 val->mem_unit = PAGE_SIZE;
1369}
1370
1371EXPORT_SYMBOL(si_meminfo);
1372
1373#ifdef CONFIG_NUMA
1374void si_meminfo_node(struct sysinfo *val, int nid)
1375{
1376 pg_data_t *pgdat = NODE_DATA(nid);
1377
1378 val->totalram = pgdat->node_present_pages;
1379 val->freeram = nr_free_pages_pgdat(pgdat);
1380 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1381 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages;
1382 val->mem_unit = PAGE_SIZE;
1383}
1384#endif
1385
1386#define K(x) ((x) << (PAGE_SHIFT-10))
1387
1388/*
1389 * Show free area list (used inside shift_scroll-lock stuff)
1390 * We also calculate the percentage fragmentation. We do this by counting the
1391 * memory on each free list with the exception of the first item on the list.
1392 */
1393void show_free_areas(void)
1394{
1395 struct page_state ps;
1396 int cpu, temperature;
1397 unsigned long active;
1398 unsigned long inactive;
1399 unsigned long free;
1400 struct zone *zone;
1401
1402 for_each_zone(zone) {
1403 show_node(zone);
1404 printk("%s per-cpu:", zone->name);
1405
f3fe6512 1406 if (!populated_zone(zone)) {
1da177e4
LT
1407 printk(" empty\n");
1408 continue;
1409 } else
1410 printk("\n");
1411
6b482c67 1412 for_each_online_cpu(cpu) {
1da177e4
LT
1413 struct per_cpu_pageset *pageset;
1414
e7c8d5c9 1415 pageset = zone_pcp(zone, cpu);
1da177e4
LT
1416
1417 for (temperature = 0; temperature < 2; temperature++)
2d92c5c9 1418 printk("cpu %d %s: high %d, batch %d used:%d\n",
1da177e4
LT
1419 cpu,
1420 temperature ? "cold" : "hot",
1da177e4 1421 pageset->pcp[temperature].high,
4ae7c039
CL
1422 pageset->pcp[temperature].batch,
1423 pageset->pcp[temperature].count);
1da177e4
LT
1424 }
1425 }
1426
1427 get_page_state(&ps);
1428 get_zone_counts(&active, &inactive, &free);
1429
c0d62219 1430 printk("Free pages: %11ukB (%ukB HighMem)\n",
1da177e4
LT
1431 K(nr_free_pages()),
1432 K(nr_free_highpages()));
1433
1434 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu "
1435 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n",
1436 active,
1437 inactive,
1438 ps.nr_dirty,
1439 ps.nr_writeback,
1440 ps.nr_unstable,
1441 nr_free_pages(),
1442 ps.nr_slab,
1443 ps.nr_mapped,
1444 ps.nr_page_table_pages);
1445
1446 for_each_zone(zone) {
1447 int i;
1448
1449 show_node(zone);
1450 printk("%s"
1451 " free:%lukB"
1452 " min:%lukB"
1453 " low:%lukB"
1454 " high:%lukB"
1455 " active:%lukB"
1456 " inactive:%lukB"
1457 " present:%lukB"
1458 " pages_scanned:%lu"
1459 " all_unreclaimable? %s"
1460 "\n",
1461 zone->name,
1462 K(zone->free_pages),
1463 K(zone->pages_min),
1464 K(zone->pages_low),
1465 K(zone->pages_high),
1466 K(zone->nr_active),
1467 K(zone->nr_inactive),
1468 K(zone->present_pages),
1469 zone->pages_scanned,
1470 (zone->all_unreclaimable ? "yes" : "no")
1471 );
1472 printk("lowmem_reserve[]:");
1473 for (i = 0; i < MAX_NR_ZONES; i++)
1474 printk(" %lu", zone->lowmem_reserve[i]);
1475 printk("\n");
1476 }
1477
1478 for_each_zone(zone) {
1479 unsigned long nr, flags, order, total = 0;
1480
1481 show_node(zone);
1482 printk("%s: ", zone->name);
f3fe6512 1483 if (!populated_zone(zone)) {
1da177e4
LT
1484 printk("empty\n");
1485 continue;
1486 }
1487
1488 spin_lock_irqsave(&zone->lock, flags);
1489 for (order = 0; order < MAX_ORDER; order++) {
1490 nr = zone->free_area[order].nr_free;
1491 total += nr << order;
1492 printk("%lu*%lukB ", nr, K(1UL) << order);
1493 }
1494 spin_unlock_irqrestore(&zone->lock, flags);
1495 printk("= %lukB\n", K(total));
1496 }
1497
1498 show_swap_cache_info();
1499}
1500
1501/*
1502 * Builds allocation fallback zone lists.
1a93205b
CL
1503 *
1504 * Add all populated zones of a node to the zonelist.
1da177e4 1505 */
1a93205b 1506static int __init build_zonelists_node(pg_data_t *pgdat,
070f8032 1507 struct zonelist *zonelist, int nr_zones, int zone_type)
1da177e4 1508{
1a93205b
CL
1509 struct zone *zone;
1510
070f8032 1511 BUG_ON(zone_type > ZONE_HIGHMEM);
02a68a5e
CL
1512
1513 do {
070f8032 1514 zone = pgdat->node_zones + zone_type;
1a93205b 1515 if (populated_zone(zone)) {
1da177e4 1516#ifndef CONFIG_HIGHMEM
070f8032 1517 BUG_ON(zone_type > ZONE_NORMAL);
1da177e4 1518#endif
070f8032
CL
1519 zonelist->zones[nr_zones++] = zone;
1520 check_highest_zone(zone_type);
1da177e4 1521 }
070f8032 1522 zone_type--;
02a68a5e 1523
070f8032
CL
1524 } while (zone_type >= 0);
1525 return nr_zones;
1da177e4
LT
1526}
1527
260b2367
AV
1528static inline int highest_zone(int zone_bits)
1529{
1530 int res = ZONE_NORMAL;
1531 if (zone_bits & (__force int)__GFP_HIGHMEM)
1532 res = ZONE_HIGHMEM;
a2f1b424
AK
1533 if (zone_bits & (__force int)__GFP_DMA32)
1534 res = ZONE_DMA32;
260b2367
AV
1535 if (zone_bits & (__force int)__GFP_DMA)
1536 res = ZONE_DMA;
1537 return res;
1538}
1539
1da177e4
LT
1540#ifdef CONFIG_NUMA
1541#define MAX_NODE_LOAD (num_online_nodes())
1542static int __initdata node_load[MAX_NUMNODES];
1543/**
4dc3b16b 1544 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
1545 * @node: node whose fallback list we're appending
1546 * @used_node_mask: nodemask_t of already used nodes
1547 *
1548 * We use a number of factors to determine which is the next node that should
1549 * appear on a given node's fallback list. The node should not have appeared
1550 * already in @node's fallback list, and it should be the next closest node
1551 * according to the distance array (which contains arbitrary distance values
1552 * from each node to each node in the system), and should also prefer nodes
1553 * with no CPUs, since presumably they'll have very little allocation pressure
1554 * on them otherwise.
1555 * It returns -1 if no node is found.
1556 */
1557static int __init find_next_best_node(int node, nodemask_t *used_node_mask)
1558{
4cf808eb 1559 int n, val;
1da177e4
LT
1560 int min_val = INT_MAX;
1561 int best_node = -1;
1562
4cf808eb
LT
1563 /* Use the local node if we haven't already */
1564 if (!node_isset(node, *used_node_mask)) {
1565 node_set(node, *used_node_mask);
1566 return node;
1567 }
1da177e4 1568
4cf808eb
LT
1569 for_each_online_node(n) {
1570 cpumask_t tmp;
1da177e4
LT
1571
1572 /* Don't want a node to appear more than once */
1573 if (node_isset(n, *used_node_mask))
1574 continue;
1575
1da177e4
LT
1576 /* Use the distance array to find the distance */
1577 val = node_distance(node, n);
1578
4cf808eb
LT
1579 /* Penalize nodes under us ("prefer the next node") */
1580 val += (n < node);
1581
1da177e4
LT
1582 /* Give preference to headless and unused nodes */
1583 tmp = node_to_cpumask(n);
1584 if (!cpus_empty(tmp))
1585 val += PENALTY_FOR_NODE_WITH_CPUS;
1586
1587 /* Slight preference for less loaded node */
1588 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1589 val += node_load[n];
1590
1591 if (val < min_val) {
1592 min_val = val;
1593 best_node = n;
1594 }
1595 }
1596
1597 if (best_node >= 0)
1598 node_set(best_node, *used_node_mask);
1599
1600 return best_node;
1601}
1602
1603static void __init build_zonelists(pg_data_t *pgdat)
1604{
1605 int i, j, k, node, local_node;
1606 int prev_node, load;
1607 struct zonelist *zonelist;
1608 nodemask_t used_mask;
1609
1610 /* initialize zonelists */
1611 for (i = 0; i < GFP_ZONETYPES; i++) {
1612 zonelist = pgdat->node_zonelists + i;
1613 zonelist->zones[0] = NULL;
1614 }
1615
1616 /* NUMA-aware ordering of nodes */
1617 local_node = pgdat->node_id;
1618 load = num_online_nodes();
1619 prev_node = local_node;
1620 nodes_clear(used_mask);
1621 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
1622 int distance = node_distance(local_node, node);
1623
1624 /*
1625 * If another node is sufficiently far away then it is better
1626 * to reclaim pages in a zone before going off node.
1627 */
1628 if (distance > RECLAIM_DISTANCE)
1629 zone_reclaim_mode = 1;
1630
1da177e4
LT
1631 /*
1632 * We don't want to pressure a particular node.
1633 * So adding penalty to the first node in same
1634 * distance group to make it round-robin.
1635 */
9eeff239
CL
1636
1637 if (distance != node_distance(local_node, prev_node))
1da177e4
LT
1638 node_load[node] += load;
1639 prev_node = node;
1640 load--;
1641 for (i = 0; i < GFP_ZONETYPES; i++) {
1642 zonelist = pgdat->node_zonelists + i;
1643 for (j = 0; zonelist->zones[j] != NULL; j++);
1644
260b2367 1645 k = highest_zone(i);
1da177e4
LT
1646
1647 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1648 zonelist->zones[j] = NULL;
1649 }
1650 }
1651}
1652
1653#else /* CONFIG_NUMA */
1654
1655static void __init build_zonelists(pg_data_t *pgdat)
1656{
1657 int i, j, k, node, local_node;
1658
1659 local_node = pgdat->node_id;
1660 for (i = 0; i < GFP_ZONETYPES; i++) {
1661 struct zonelist *zonelist;
1662
1663 zonelist = pgdat->node_zonelists + i;
1664
1665 j = 0;
260b2367 1666 k = highest_zone(i);
1da177e4
LT
1667 j = build_zonelists_node(pgdat, zonelist, j, k);
1668 /*
1669 * Now we build the zonelist so that it contains the zones
1670 * of all the other nodes.
1671 * We don't want to pressure a particular node, so when
1672 * building the zones for node N, we make sure that the
1673 * zones coming right after the local ones are those from
1674 * node N+1 (modulo N)
1675 */
1676 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1677 if (!node_online(node))
1678 continue;
1679 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1680 }
1681 for (node = 0; node < local_node; node++) {
1682 if (!node_online(node))
1683 continue;
1684 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k);
1685 }
1686
1687 zonelist->zones[j] = NULL;
1688 }
1689}
1690
1691#endif /* CONFIG_NUMA */
1692
1693void __init build_all_zonelists(void)
1694{
1695 int i;
1696
1697 for_each_online_node(i)
1698 build_zonelists(NODE_DATA(i));
1699 printk("Built %i zonelists\n", num_online_nodes());
1700 cpuset_init_current_mems_allowed();
1701}
1702
1703/*
1704 * Helper functions to size the waitqueue hash table.
1705 * Essentially these want to choose hash table sizes sufficiently
1706 * large so that collisions trying to wait on pages are rare.
1707 * But in fact, the number of active page waitqueues on typical
1708 * systems is ridiculously low, less than 200. So this is even
1709 * conservative, even though it seems large.
1710 *
1711 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1712 * waitqueues, i.e. the size of the waitq table given the number of pages.
1713 */
1714#define PAGES_PER_WAITQUEUE 256
1715
1716static inline unsigned long wait_table_size(unsigned long pages)
1717{
1718 unsigned long size = 1;
1719
1720 pages /= PAGES_PER_WAITQUEUE;
1721
1722 while (size < pages)
1723 size <<= 1;
1724
1725 /*
1726 * Once we have dozens or even hundreds of threads sleeping
1727 * on IO we've got bigger problems than wait queue collision.
1728 * Limit the size of the wait table to a reasonable size.
1729 */
1730 size = min(size, 4096UL);
1731
1732 return max(size, 4UL);
1733}
1734
1735/*
1736 * This is an integer logarithm so that shifts can be used later
1737 * to extract the more random high bits from the multiplicative
1738 * hash function before the remainder is taken.
1739 */
1740static inline unsigned long wait_table_bits(unsigned long size)
1741{
1742 return ffz(~size);
1743}
1744
1745#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1746
1747static void __init calculate_zone_totalpages(struct pglist_data *pgdat,
1748 unsigned long *zones_size, unsigned long *zholes_size)
1749{
1750 unsigned long realtotalpages, totalpages = 0;
1751 int i;
1752
1753 for (i = 0; i < MAX_NR_ZONES; i++)
1754 totalpages += zones_size[i];
1755 pgdat->node_spanned_pages = totalpages;
1756
1757 realtotalpages = totalpages;
1758 if (zholes_size)
1759 for (i = 0; i < MAX_NR_ZONES; i++)
1760 realtotalpages -= zholes_size[i];
1761 pgdat->node_present_pages = realtotalpages;
1762 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
1763}
1764
1765
1766/*
1767 * Initially all pages are reserved - free ones are freed
1768 * up by free_all_bootmem() once the early boot process is
1769 * done. Non-atomic initialization, single-pass.
1770 */
c09b4240 1771void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1da177e4
LT
1772 unsigned long start_pfn)
1773{
1da177e4 1774 struct page *page;
29751f69
AW
1775 unsigned long end_pfn = start_pfn + size;
1776 unsigned long pfn;
1da177e4 1777
cbe8dd4a 1778 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
d41dee36
AW
1779 if (!early_pfn_valid(pfn))
1780 continue;
1781 page = pfn_to_page(pfn);
1782 set_page_links(page, zone, nid, pfn);
7835e98b 1783 init_page_count(page);
1da177e4
LT
1784 reset_page_mapcount(page);
1785 SetPageReserved(page);
1786 INIT_LIST_HEAD(&page->lru);
1787#ifdef WANT_PAGE_VIRTUAL
1788 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1789 if (!is_highmem_idx(zone))
3212c6be 1790 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 1791#endif
1da177e4
LT
1792 }
1793}
1794
1795void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1796 unsigned long size)
1797{
1798 int order;
1799 for (order = 0; order < MAX_ORDER ; order++) {
1800 INIT_LIST_HEAD(&zone->free_area[order].free_list);
1801 zone->free_area[order].nr_free = 0;
1802 }
1803}
1804
d41dee36
AW
1805#define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr)
1806void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn,
1807 unsigned long size)
1808{
1809 unsigned long snum = pfn_to_section_nr(pfn);
1810 unsigned long end = pfn_to_section_nr(pfn + size);
1811
1812 if (FLAGS_HAS_NODE)
1813 zone_table[ZONETABLE_INDEX(nid, zid)] = zone;
1814 else
1815 for (; snum <= end; snum++)
1816 zone_table[ZONETABLE_INDEX(snum, zid)] = zone;
1817}
1818
1da177e4
LT
1819#ifndef __HAVE_ARCH_MEMMAP_INIT
1820#define memmap_init(size, nid, zone, start_pfn) \
1821 memmap_init_zone((size), (nid), (zone), (start_pfn))
1822#endif
1823
6292d9aa 1824static int __cpuinit zone_batchsize(struct zone *zone)
e7c8d5c9
CL
1825{
1826 int batch;
1827
1828 /*
1829 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 1830 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
1831 *
1832 * OK, so we don't know how big the cache is. So guess.
1833 */
1834 batch = zone->present_pages / 1024;
ba56e91c
SR
1835 if (batch * PAGE_SIZE > 512 * 1024)
1836 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
1837 batch /= 4; /* We effectively *= 4 below */
1838 if (batch < 1)
1839 batch = 1;
1840
1841 /*
0ceaacc9
NP
1842 * Clamp the batch to a 2^n - 1 value. Having a power
1843 * of 2 value was found to be more likely to have
1844 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 1845 *
0ceaacc9
NP
1846 * For example if 2 tasks are alternately allocating
1847 * batches of pages, one task can end up with a lot
1848 * of pages of one half of the possible page colors
1849 * and the other with pages of the other colors.
e7c8d5c9 1850 */
0ceaacc9 1851 batch = (1 << (fls(batch + batch/2)-1)) - 1;
ba56e91c 1852
e7c8d5c9
CL
1853 return batch;
1854}
1855
2caaad41
CL
1856inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
1857{
1858 struct per_cpu_pages *pcp;
1859
1c6fe946
MD
1860 memset(p, 0, sizeof(*p));
1861
2caaad41
CL
1862 pcp = &p->pcp[0]; /* hot */
1863 pcp->count = 0;
2caaad41
CL
1864 pcp->high = 6 * batch;
1865 pcp->batch = max(1UL, 1 * batch);
1866 INIT_LIST_HEAD(&pcp->list);
1867
1868 pcp = &p->pcp[1]; /* cold*/
1869 pcp->count = 0;
2caaad41 1870 pcp->high = 2 * batch;
e46a5e28 1871 pcp->batch = max(1UL, batch/2);
2caaad41
CL
1872 INIT_LIST_HEAD(&pcp->list);
1873}
1874
8ad4b1fb
RS
1875/*
1876 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
1877 * to the value high for the pageset p.
1878 */
1879
1880static void setup_pagelist_highmark(struct per_cpu_pageset *p,
1881 unsigned long high)
1882{
1883 struct per_cpu_pages *pcp;
1884
1885 pcp = &p->pcp[0]; /* hot list */
1886 pcp->high = high;
1887 pcp->batch = max(1UL, high/4);
1888 if ((high/4) > (PAGE_SHIFT * 8))
1889 pcp->batch = PAGE_SHIFT * 8;
1890}
1891
1892
e7c8d5c9
CL
1893#ifdef CONFIG_NUMA
1894/*
2caaad41
CL
1895 * Boot pageset table. One per cpu which is going to be used for all
1896 * zones and all nodes. The parameters will be set in such a way
1897 * that an item put on a list will immediately be handed over to
1898 * the buddy list. This is safe since pageset manipulation is done
1899 * with interrupts disabled.
1900 *
1901 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
1902 *
1903 * The boot_pagesets must be kept even after bootup is complete for
1904 * unused processors and/or zones. They do play a role for bootstrapping
1905 * hotplugged processors.
1906 *
1907 * zoneinfo_show() and maybe other functions do
1908 * not check if the processor is online before following the pageset pointer.
1909 * Other parts of the kernel may not check if the zone is available.
2caaad41 1910 */
88a2a4ac 1911static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
1912
1913/*
1914 * Dynamically allocate memory for the
e7c8d5c9
CL
1915 * per cpu pageset array in struct zone.
1916 */
6292d9aa 1917static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
1918{
1919 struct zone *zone, *dzone;
e7c8d5c9
CL
1920
1921 for_each_zone(zone) {
e7c8d5c9 1922
23316bc8 1923 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
e7c8d5c9 1924 GFP_KERNEL, cpu_to_node(cpu));
23316bc8 1925 if (!zone_pcp(zone, cpu))
e7c8d5c9 1926 goto bad;
e7c8d5c9 1927
23316bc8 1928 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
1929
1930 if (percpu_pagelist_fraction)
1931 setup_pagelist_highmark(zone_pcp(zone, cpu),
1932 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
1933 }
1934
1935 return 0;
1936bad:
1937 for_each_zone(dzone) {
1938 if (dzone == zone)
1939 break;
23316bc8
NP
1940 kfree(zone_pcp(dzone, cpu));
1941 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
1942 }
1943 return -ENOMEM;
1944}
1945
1946static inline void free_zone_pagesets(int cpu)
1947{
e7c8d5c9
CL
1948 struct zone *zone;
1949
1950 for_each_zone(zone) {
1951 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
1952
1953 zone_pcp(zone, cpu) = NULL;
1954 kfree(pset);
1955 }
e7c8d5c9
CL
1956}
1957
6292d9aa 1958static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
1959 unsigned long action,
1960 void *hcpu)
1961{
1962 int cpu = (long)hcpu;
1963 int ret = NOTIFY_OK;
1964
1965 switch (action) {
1966 case CPU_UP_PREPARE:
1967 if (process_zones(cpu))
1968 ret = NOTIFY_BAD;
1969 break;
b0d41693 1970 case CPU_UP_CANCELED:
e7c8d5c9
CL
1971 case CPU_DEAD:
1972 free_zone_pagesets(cpu);
1973 break;
e7c8d5c9
CL
1974 default:
1975 break;
1976 }
1977 return ret;
1978}
1979
1980static struct notifier_block pageset_notifier =
1981 { &pageset_cpuup_callback, NULL, 0 };
1982
78d9955b 1983void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
1984{
1985 int err;
1986
1987 /* Initialize per_cpu_pageset for cpu 0.
1988 * A cpuup callback will do this for every cpu
1989 * as it comes online
1990 */
1991 err = process_zones(smp_processor_id());
1992 BUG_ON(err);
1993 register_cpu_notifier(&pageset_notifier);
1994}
1995
1996#endif
1997
c09b4240 1998static __meminit
ed8ece2e
DH
1999void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2000{
2001 int i;
2002 struct pglist_data *pgdat = zone->zone_pgdat;
2003
2004 /*
2005 * The per-page waitqueue mechanism uses hashed waitqueues
2006 * per zone.
2007 */
2008 zone->wait_table_size = wait_table_size(zone_size_pages);
2009 zone->wait_table_bits = wait_table_bits(zone->wait_table_size);
2010 zone->wait_table = (wait_queue_head_t *)
2011 alloc_bootmem_node(pgdat, zone->wait_table_size
2012 * sizeof(wait_queue_head_t));
2013
2014 for(i = 0; i < zone->wait_table_size; ++i)
2015 init_waitqueue_head(zone->wait_table + i);
2016}
2017
c09b4240 2018static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
2019{
2020 int cpu;
2021 unsigned long batch = zone_batchsize(zone);
2022
2023 for (cpu = 0; cpu < NR_CPUS; cpu++) {
2024#ifdef CONFIG_NUMA
2025 /* Early boot. Slab allocator not functional yet */
23316bc8 2026 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
2027 setup_pageset(&boot_pageset[cpu],0);
2028#else
2029 setup_pageset(zone_pcp(zone,cpu), batch);
2030#endif
2031 }
f5335c0f
AB
2032 if (zone->present_pages)
2033 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
2034 zone->name, zone->present_pages, batch);
ed8ece2e
DH
2035}
2036
c09b4240 2037static __meminit void init_currently_empty_zone(struct zone *zone,
ed8ece2e
DH
2038 unsigned long zone_start_pfn, unsigned long size)
2039{
2040 struct pglist_data *pgdat = zone->zone_pgdat;
2041
2042 zone_wait_table_init(zone, size);
2043 pgdat->nr_zones = zone_idx(zone) + 1;
2044
ed8ece2e
DH
2045 zone->zone_start_pfn = zone_start_pfn;
2046
2047 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2048
2049 zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2050}
2051
1da177e4
LT
2052/*
2053 * Set up the zone data structures:
2054 * - mark all pages reserved
2055 * - mark all memory queues empty
2056 * - clear the memory bitmaps
2057 */
2058static void __init free_area_init_core(struct pglist_data *pgdat,
2059 unsigned long *zones_size, unsigned long *zholes_size)
2060{
ed8ece2e
DH
2061 unsigned long j;
2062 int nid = pgdat->node_id;
1da177e4
LT
2063 unsigned long zone_start_pfn = pgdat->node_start_pfn;
2064
208d54e5 2065 pgdat_resize_init(pgdat);
1da177e4
LT
2066 pgdat->nr_zones = 0;
2067 init_waitqueue_head(&pgdat->kswapd_wait);
2068 pgdat->kswapd_max_order = 0;
2069
2070 for (j = 0; j < MAX_NR_ZONES; j++) {
2071 struct zone *zone = pgdat->node_zones + j;
2072 unsigned long size, realsize;
1da177e4 2073
1da177e4
LT
2074 realsize = size = zones_size[j];
2075 if (zholes_size)
2076 realsize -= zholes_size[j];
2077
a2f1b424 2078 if (j < ZONE_HIGHMEM)
1da177e4
LT
2079 nr_kernel_pages += realsize;
2080 nr_all_pages += realsize;
2081
2082 zone->spanned_pages = size;
2083 zone->present_pages = realsize;
2084 zone->name = zone_names[j];
2085 spin_lock_init(&zone->lock);
2086 spin_lock_init(&zone->lru_lock);
bdc8cb98 2087 zone_seqlock_init(zone);
1da177e4
LT
2088 zone->zone_pgdat = pgdat;
2089 zone->free_pages = 0;
2090
2091 zone->temp_priority = zone->prev_priority = DEF_PRIORITY;
2092
ed8ece2e 2093 zone_pcp_init(zone);
1da177e4
LT
2094 INIT_LIST_HEAD(&zone->active_list);
2095 INIT_LIST_HEAD(&zone->inactive_list);
2096 zone->nr_scan_active = 0;
2097 zone->nr_scan_inactive = 0;
2098 zone->nr_active = 0;
2099 zone->nr_inactive = 0;
53e9a615 2100 atomic_set(&zone->reclaim_in_progress, 0);
1da177e4
LT
2101 if (!size)
2102 continue;
2103
d41dee36 2104 zonetable_add(zone, nid, j, zone_start_pfn, size);
ed8ece2e 2105 init_currently_empty_zone(zone, zone_start_pfn, size);
1da177e4 2106 zone_start_pfn += size;
1da177e4
LT
2107 }
2108}
2109
2110static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2111{
1da177e4
LT
2112 /* Skip empty nodes */
2113 if (!pgdat->node_spanned_pages)
2114 return;
2115
d41dee36 2116#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
2117 /* ia64 gets its own node_mem_map, before this, without bootmem */
2118 if (!pgdat->node_mem_map) {
d41dee36
AW
2119 unsigned long size;
2120 struct page *map;
2121
1da177e4 2122 size = (pgdat->node_spanned_pages + 1) * sizeof(struct page);
6f167ec7
DH
2123 map = alloc_remap(pgdat->node_id, size);
2124 if (!map)
2125 map = alloc_bootmem_node(pgdat, size);
2126 pgdat->node_mem_map = map;
1da177e4 2127 }
d41dee36 2128#ifdef CONFIG_FLATMEM
1da177e4
LT
2129 /*
2130 * With no DISCONTIG, the global mem_map is just set as node 0's
2131 */
2132 if (pgdat == NODE_DATA(0))
2133 mem_map = NODE_DATA(0)->node_mem_map;
2134#endif
d41dee36 2135#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
2136}
2137
2138void __init free_area_init_node(int nid, struct pglist_data *pgdat,
2139 unsigned long *zones_size, unsigned long node_start_pfn,
2140 unsigned long *zholes_size)
2141{
2142 pgdat->node_id = nid;
2143 pgdat->node_start_pfn = node_start_pfn;
2144 calculate_zone_totalpages(pgdat, zones_size, zholes_size);
2145
2146 alloc_node_mem_map(pgdat);
2147
2148 free_area_init_core(pgdat, zones_size, zholes_size);
2149}
2150
93b7504e 2151#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
2152static bootmem_data_t contig_bootmem_data;
2153struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
2154
2155EXPORT_SYMBOL(contig_page_data);
93b7504e 2156#endif
1da177e4
LT
2157
2158void __init free_area_init(unsigned long *zones_size)
2159{
93b7504e 2160 free_area_init_node(0, NODE_DATA(0), zones_size,
1da177e4
LT
2161 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
2162}
1da177e4
LT
2163
2164#ifdef CONFIG_PROC_FS
2165
2166#include <linux/seq_file.h>
2167
2168static void *frag_start(struct seq_file *m, loff_t *pos)
2169{
2170 pg_data_t *pgdat;
2171 loff_t node = *pos;
2172
2173 for (pgdat = pgdat_list; pgdat && node; pgdat = pgdat->pgdat_next)
2174 --node;
2175
2176 return pgdat;
2177}
2178
2179static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
2180{
2181 pg_data_t *pgdat = (pg_data_t *)arg;
2182
2183 (*pos)++;
2184 return pgdat->pgdat_next;
2185}
2186
2187static void frag_stop(struct seq_file *m, void *arg)
2188{
2189}
2190
2191/*
2192 * This walks the free areas for each zone.
2193 */
2194static int frag_show(struct seq_file *m, void *arg)
2195{
2196 pg_data_t *pgdat = (pg_data_t *)arg;
2197 struct zone *zone;
2198 struct zone *node_zones = pgdat->node_zones;
2199 unsigned long flags;
2200 int order;
2201
2202 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
f3fe6512 2203 if (!populated_zone(zone))
1da177e4
LT
2204 continue;
2205
2206 spin_lock_irqsave(&zone->lock, flags);
2207 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
2208 for (order = 0; order < MAX_ORDER; ++order)
2209 seq_printf(m, "%6lu ", zone->free_area[order].nr_free);
2210 spin_unlock_irqrestore(&zone->lock, flags);
2211 seq_putc(m, '\n');
2212 }
2213 return 0;
2214}
2215
2216struct seq_operations fragmentation_op = {
2217 .start = frag_start,
2218 .next = frag_next,
2219 .stop = frag_stop,
2220 .show = frag_show,
2221};
2222
295ab934
ND
2223/*
2224 * Output information about zones in @pgdat.
2225 */
2226static int zoneinfo_show(struct seq_file *m, void *arg)
2227{
2228 pg_data_t *pgdat = arg;
2229 struct zone *zone;
2230 struct zone *node_zones = pgdat->node_zones;
2231 unsigned long flags;
2232
2233 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) {
2234 int i;
2235
f3fe6512 2236 if (!populated_zone(zone))
295ab934
ND
2237 continue;
2238
2239 spin_lock_irqsave(&zone->lock, flags);
2240 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
2241 seq_printf(m,
2242 "\n pages free %lu"
2243 "\n min %lu"
2244 "\n low %lu"
2245 "\n high %lu"
2246 "\n active %lu"
2247 "\n inactive %lu"
2248 "\n scanned %lu (a: %lu i: %lu)"
2249 "\n spanned %lu"
2250 "\n present %lu",
2251 zone->free_pages,
2252 zone->pages_min,
2253 zone->pages_low,
2254 zone->pages_high,
2255 zone->nr_active,
2256 zone->nr_inactive,
2257 zone->pages_scanned,
2258 zone->nr_scan_active, zone->nr_scan_inactive,
2259 zone->spanned_pages,
2260 zone->present_pages);
2261 seq_printf(m,
2262 "\n protection: (%lu",
2263 zone->lowmem_reserve[0]);
2264 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
2265 seq_printf(m, ", %lu", zone->lowmem_reserve[i]);
2266 seq_printf(m,
2267 ")"
2268 "\n pagesets");
23316bc8 2269 for_each_online_cpu(i) {
295ab934
ND
2270 struct per_cpu_pageset *pageset;
2271 int j;
2272
e7c8d5c9 2273 pageset = zone_pcp(zone, i);
295ab934
ND
2274 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2275 if (pageset->pcp[j].count)
2276 break;
2277 }
2278 if (j == ARRAY_SIZE(pageset->pcp))
2279 continue;
2280 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) {
2281 seq_printf(m,
2282 "\n cpu: %i pcp: %i"
2283 "\n count: %i"
295ab934
ND
2284 "\n high: %i"
2285 "\n batch: %i",
2286 i, j,
2287 pageset->pcp[j].count,
295ab934
ND
2288 pageset->pcp[j].high,
2289 pageset->pcp[j].batch);
2290 }
2291#ifdef CONFIG_NUMA
2292 seq_printf(m,
2293 "\n numa_hit: %lu"
2294 "\n numa_miss: %lu"
2295 "\n numa_foreign: %lu"
2296 "\n interleave_hit: %lu"
2297 "\n local_node: %lu"
2298 "\n other_node: %lu",
2299 pageset->numa_hit,
2300 pageset->numa_miss,
2301 pageset->numa_foreign,
2302 pageset->interleave_hit,
2303 pageset->local_node,
2304 pageset->other_node);
2305#endif
2306 }
2307 seq_printf(m,
2308 "\n all_unreclaimable: %u"
2309 "\n prev_priority: %i"
2310 "\n temp_priority: %i"
2311 "\n start_pfn: %lu",
2312 zone->all_unreclaimable,
2313 zone->prev_priority,
2314 zone->temp_priority,
2315 zone->zone_start_pfn);
2316 spin_unlock_irqrestore(&zone->lock, flags);
2317 seq_putc(m, '\n');
2318 }
2319 return 0;
2320}
2321
2322struct seq_operations zoneinfo_op = {
2323 .start = frag_start, /* iterate over all zones. The same as in
2324 * fragmentation. */
2325 .next = frag_next,
2326 .stop = frag_stop,
2327 .show = zoneinfo_show,
2328};
2329
1da177e4
LT
2330static char *vmstat_text[] = {
2331 "nr_dirty",
2332 "nr_writeback",
2333 "nr_unstable",
2334 "nr_page_table_pages",
2335 "nr_mapped",
2336 "nr_slab",
2337
2338 "pgpgin",
2339 "pgpgout",
2340 "pswpin",
2341 "pswpout",
1da177e4 2342
9328b8fa 2343 "pgalloc_high",
1da177e4 2344 "pgalloc_normal",
9328b8fa 2345 "pgalloc_dma32",
1da177e4 2346 "pgalloc_dma",
9328b8fa 2347
1da177e4
LT
2348 "pgfree",
2349 "pgactivate",
2350 "pgdeactivate",
2351
2352 "pgfault",
2353 "pgmajfault",
9328b8fa 2354
1da177e4
LT
2355 "pgrefill_high",
2356 "pgrefill_normal",
9328b8fa 2357 "pgrefill_dma32",
1da177e4
LT
2358 "pgrefill_dma",
2359
2360 "pgsteal_high",
2361 "pgsteal_normal",
9328b8fa 2362 "pgsteal_dma32",
1da177e4 2363 "pgsteal_dma",
9328b8fa 2364
1da177e4
LT
2365 "pgscan_kswapd_high",
2366 "pgscan_kswapd_normal",
9328b8fa 2367 "pgscan_kswapd_dma32",
1da177e4 2368 "pgscan_kswapd_dma",
9328b8fa 2369
1da177e4
LT
2370 "pgscan_direct_high",
2371 "pgscan_direct_normal",
9328b8fa 2372 "pgscan_direct_dma32",
1da177e4 2373 "pgscan_direct_dma",
1da177e4 2374
9328b8fa 2375 "pginodesteal",
1da177e4
LT
2376 "slabs_scanned",
2377 "kswapd_steal",
2378 "kswapd_inodesteal",
2379 "pageoutrun",
2380 "allocstall",
2381
2382 "pgrotated",
edfbe2b0 2383 "nr_bounce",
1da177e4
LT
2384};
2385
2386static void *vmstat_start(struct seq_file *m, loff_t *pos)
2387{
2388 struct page_state *ps;
2389
2390 if (*pos >= ARRAY_SIZE(vmstat_text))
2391 return NULL;
2392
2393 ps = kmalloc(sizeof(*ps), GFP_KERNEL);
2394 m->private = ps;
2395 if (!ps)
2396 return ERR_PTR(-ENOMEM);
2397 get_full_page_state(ps);
2398 ps->pgpgin /= 2; /* sectors -> kbytes */
2399 ps->pgpgout /= 2;
2400 return (unsigned long *)ps + *pos;
2401}
2402
2403static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
2404{
2405 (*pos)++;
2406 if (*pos >= ARRAY_SIZE(vmstat_text))
2407 return NULL;
2408 return (unsigned long *)m->private + *pos;
2409}
2410
2411static int vmstat_show(struct seq_file *m, void *arg)
2412{
2413 unsigned long *l = arg;
2414 unsigned long off = l - (unsigned long *)m->private;
2415
2416 seq_printf(m, "%s %lu\n", vmstat_text[off], *l);
2417 return 0;
2418}
2419
2420static void vmstat_stop(struct seq_file *m, void *arg)
2421{
2422 kfree(m->private);
2423 m->private = NULL;
2424}
2425
2426struct seq_operations vmstat_op = {
2427 .start = vmstat_start,
2428 .next = vmstat_next,
2429 .stop = vmstat_stop,
2430 .show = vmstat_show,
2431};
2432
2433#endif /* CONFIG_PROC_FS */
2434
2435#ifdef CONFIG_HOTPLUG_CPU
2436static int page_alloc_cpu_notify(struct notifier_block *self,
2437 unsigned long action, void *hcpu)
2438{
2439 int cpu = (unsigned long)hcpu;
2440 long *count;
2441 unsigned long *src, *dest;
2442
2443 if (action == CPU_DEAD) {
2444 int i;
2445
2446 /* Drain local pagecache count. */
2447 count = &per_cpu(nr_pagecache_local, cpu);
2448 atomic_add(*count, &nr_pagecache);
2449 *count = 0;
2450 local_irq_disable();
2451 __drain_pages(cpu);
2452
2453 /* Add dead cpu's page_states to our own. */
2454 dest = (unsigned long *)&__get_cpu_var(page_states);
2455 src = (unsigned long *)&per_cpu(page_states, cpu);
2456
2457 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long);
2458 i++) {
2459 dest[i] += src[i];
2460 src[i] = 0;
2461 }
2462
2463 local_irq_enable();
2464 }
2465 return NOTIFY_OK;
2466}
2467#endif /* CONFIG_HOTPLUG_CPU */
2468
2469void __init page_alloc_init(void)
2470{
2471 hotcpu_notifier(page_alloc_cpu_notify, 0);
2472}
2473
2474/*
2475 * setup_per_zone_lowmem_reserve - called whenever
2476 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
2477 * has a correct pages reserved value, so an adequate number of
2478 * pages are left in the zone after a successful __alloc_pages().
2479 */
2480static void setup_per_zone_lowmem_reserve(void)
2481{
2482 struct pglist_data *pgdat;
2483 int j, idx;
2484
2485 for_each_pgdat(pgdat) {
2486 for (j = 0; j < MAX_NR_ZONES; j++) {
2487 struct zone *zone = pgdat->node_zones + j;
2488 unsigned long present_pages = zone->present_pages;
2489
2490 zone->lowmem_reserve[j] = 0;
2491
2492 for (idx = j-1; idx >= 0; idx--) {
2493 struct zone *lower_zone;
2494
2495 if (sysctl_lowmem_reserve_ratio[idx] < 1)
2496 sysctl_lowmem_reserve_ratio[idx] = 1;
2497
2498 lower_zone = pgdat->node_zones + idx;
2499 lower_zone->lowmem_reserve[j] = present_pages /
2500 sysctl_lowmem_reserve_ratio[idx];
2501 present_pages += lower_zone->present_pages;
2502 }
2503 }
2504 }
2505}
2506
2507/*
2508 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures
2509 * that the pages_{min,low,high} values for each zone are set correctly
2510 * with respect to min_free_kbytes.
2511 */
3947be19 2512void setup_per_zone_pages_min(void)
1da177e4
LT
2513{
2514 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
2515 unsigned long lowmem_pages = 0;
2516 struct zone *zone;
2517 unsigned long flags;
2518
2519 /* Calculate total number of !ZONE_HIGHMEM pages */
2520 for_each_zone(zone) {
2521 if (!is_highmem(zone))
2522 lowmem_pages += zone->present_pages;
2523 }
2524
2525 for_each_zone(zone) {
669ed175 2526 unsigned long tmp;
1da177e4 2527 spin_lock_irqsave(&zone->lru_lock, flags);
669ed175 2528 tmp = (pages_min * zone->present_pages) / lowmem_pages;
1da177e4
LT
2529 if (is_highmem(zone)) {
2530 /*
669ed175
NP
2531 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
2532 * need highmem pages, so cap pages_min to a small
2533 * value here.
2534 *
2535 * The (pages_high-pages_low) and (pages_low-pages_min)
2536 * deltas controls asynch page reclaim, and so should
2537 * not be capped for highmem.
1da177e4
LT
2538 */
2539 int min_pages;
2540
2541 min_pages = zone->present_pages / 1024;
2542 if (min_pages < SWAP_CLUSTER_MAX)
2543 min_pages = SWAP_CLUSTER_MAX;
2544 if (min_pages > 128)
2545 min_pages = 128;
2546 zone->pages_min = min_pages;
2547 } else {
669ed175
NP
2548 /*
2549 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
2550 * proportionate to the zone's size.
2551 */
669ed175 2552 zone->pages_min = tmp;
1da177e4
LT
2553 }
2554
669ed175
NP
2555 zone->pages_low = zone->pages_min + tmp / 4;
2556 zone->pages_high = zone->pages_min + tmp / 2;
1da177e4
LT
2557 spin_unlock_irqrestore(&zone->lru_lock, flags);
2558 }
2559}
2560
2561/*
2562 * Initialise min_free_kbytes.
2563 *
2564 * For small machines we want it small (128k min). For large machines
2565 * we want it large (64MB max). But it is not linear, because network
2566 * bandwidth does not increase linearly with machine size. We use
2567 *
2568 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
2569 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
2570 *
2571 * which yields
2572 *
2573 * 16MB: 512k
2574 * 32MB: 724k
2575 * 64MB: 1024k
2576 * 128MB: 1448k
2577 * 256MB: 2048k
2578 * 512MB: 2896k
2579 * 1024MB: 4096k
2580 * 2048MB: 5792k
2581 * 4096MB: 8192k
2582 * 8192MB: 11584k
2583 * 16384MB: 16384k
2584 */
2585static int __init init_per_zone_pages_min(void)
2586{
2587 unsigned long lowmem_kbytes;
2588
2589 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
2590
2591 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
2592 if (min_free_kbytes < 128)
2593 min_free_kbytes = 128;
2594 if (min_free_kbytes > 65536)
2595 min_free_kbytes = 65536;
2596 setup_per_zone_pages_min();
2597 setup_per_zone_lowmem_reserve();
2598 return 0;
2599}
2600module_init(init_per_zone_pages_min)
2601
2602/*
2603 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
2604 * that we can call two helper functions whenever min_free_kbytes
2605 * changes.
2606 */
2607int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
2608 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2609{
2610 proc_dointvec(table, write, file, buffer, length, ppos);
2611 setup_per_zone_pages_min();
2612 return 0;
2613}
2614
2615/*
2616 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
2617 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
2618 * whenever sysctl_lowmem_reserve_ratio changes.
2619 *
2620 * The reserve ratio obviously has absolutely no relation with the
2621 * pages_min watermarks. The lowmem reserve ratio can only make sense
2622 * if in function of the boot time zone sizes.
2623 */
2624int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
2625 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2626{
2627 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2628 setup_per_zone_lowmem_reserve();
2629 return 0;
2630}
2631
8ad4b1fb
RS
2632/*
2633 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
2634 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
2635 * can have before it gets flushed back to buddy allocator.
2636 */
2637
2638int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
2639 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
2640{
2641 struct zone *zone;
2642 unsigned int cpu;
2643 int ret;
2644
2645 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
2646 if (!write || (ret == -EINVAL))
2647 return ret;
2648 for_each_zone(zone) {
2649 for_each_online_cpu(cpu) {
2650 unsigned long high;
2651 high = zone->present_pages / percpu_pagelist_fraction;
2652 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
2653 }
2654 }
2655 return 0;
2656}
2657
1da177e4
LT
2658__initdata int hashdist = HASHDIST_DEFAULT;
2659
2660#ifdef CONFIG_NUMA
2661static int __init set_hashdist(char *str)
2662{
2663 if (!str)
2664 return 0;
2665 hashdist = simple_strtoul(str, &str, 0);
2666 return 1;
2667}
2668__setup("hashdist=", set_hashdist);
2669#endif
2670
2671/*
2672 * allocate a large system hash table from bootmem
2673 * - it is assumed that the hash table must contain an exact power-of-2
2674 * quantity of entries
2675 * - limit is the number of hash buckets, not the total allocation size
2676 */
2677void *__init alloc_large_system_hash(const char *tablename,
2678 unsigned long bucketsize,
2679 unsigned long numentries,
2680 int scale,
2681 int flags,
2682 unsigned int *_hash_shift,
2683 unsigned int *_hash_mask,
2684 unsigned long limit)
2685{
2686 unsigned long long max = limit;
2687 unsigned long log2qty, size;
2688 void *table = NULL;
2689
2690 /* allow the kernel cmdline to have a say */
2691 if (!numentries) {
2692 /* round applicable memory size up to nearest megabyte */
2693 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages;
2694 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
2695 numentries >>= 20 - PAGE_SHIFT;
2696 numentries <<= 20 - PAGE_SHIFT;
2697
2698 /* limit to 1 bucket per 2^scale bytes of low memory */
2699 if (scale > PAGE_SHIFT)
2700 numentries >>= (scale - PAGE_SHIFT);
2701 else
2702 numentries <<= (PAGE_SHIFT - scale);
2703 }
6e692ed3 2704 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
2705
2706 /* limit allocation size to 1/16 total memory by default */
2707 if (max == 0) {
2708 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
2709 do_div(max, bucketsize);
2710 }
2711
2712 if (numentries > max)
2713 numentries = max;
2714
2715 log2qty = long_log2(numentries);
2716
2717 do {
2718 size = bucketsize << log2qty;
2719 if (flags & HASH_EARLY)
2720 table = alloc_bootmem(size);
2721 else if (hashdist)
2722 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
2723 else {
2724 unsigned long order;
2725 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
2726 ;
2727 table = (void*) __get_free_pages(GFP_ATOMIC, order);
2728 }
2729 } while (!table && size > PAGE_SIZE && --log2qty);
2730
2731 if (!table)
2732 panic("Failed to allocate %s hash table\n", tablename);
2733
2734 printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
2735 tablename,
2736 (1U << log2qty),
2737 long_log2(size) - PAGE_SHIFT,
2738 size);
2739
2740 if (_hash_shift)
2741 *_hash_shift = log2qty;
2742 if (_hash_mask)
2743 *_hash_mask = (1 << log2qty) - 1;
2744
2745 return table;
2746}
a117e66e
KH
2747
2748#ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
2749/*
2750 * pfn <-> page translation. out-of-line version.
2751 * (see asm-generic/memory_model.h)
2752 */
2753#if defined(CONFIG_FLATMEM)
2754struct page *pfn_to_page(unsigned long pfn)
2755{
2756 return mem_map + (pfn - ARCH_PFN_OFFSET);
2757}
2758unsigned long page_to_pfn(struct page *page)
2759{
2760 return (page - mem_map) + ARCH_PFN_OFFSET;
2761}
2762#elif defined(CONFIG_DISCONTIGMEM)
2763struct page *pfn_to_page(unsigned long pfn)
2764{
2765 int nid = arch_pfn_to_nid(pfn);
2766 return NODE_DATA(nid)->node_mem_map + arch_local_page_offset(pfn,nid);
2767}
2768unsigned long page_to_pfn(struct page *page)
2769{
a0140c1d
KH
2770 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
2771 return (page - pgdat->node_mem_map) + pgdat->node_start_pfn;
a117e66e
KH
2772}
2773#elif defined(CONFIG_SPARSEMEM)
2774struct page *pfn_to_page(unsigned long pfn)
2775{
2776 return __section_mem_map_addr(__pfn_to_section(pfn)) + pfn;
2777}
2778
2779unsigned long page_to_pfn(struct page *page)
2780{
2781 long section_id = page_to_section(page);
2782 return page - __section_mem_map_addr(__nr_to_section(section_id));
2783}
2784#endif /* CONFIG_FLATMEM/DISCONTIGMME/SPARSEMEM */
2785EXPORT_SYMBOL(pfn_to_page);
2786EXPORT_SYMBOL(page_to_pfn);
2787#endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */