]> bbs.cooldavid.org Git - net-next-2.6.git/blame - net/core/dev.c
fib: suppress lockdep-RCU false positive in FIB trie.
[net-next-2.6.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <asm/system.h>
77#include <linux/bitops.h>
4fc268d2 78#include <linux/capability.h>
1da177e4
LT
79#include <linux/cpu.h>
80#include <linux/types.h>
81#include <linux/kernel.h>
08e9897d 82#include <linux/hash.h>
5a0e3ad6 83#include <linux/slab.h>
1da177e4 84#include <linux/sched.h>
4a3e2f71 85#include <linux/mutex.h>
1da177e4
LT
86#include <linux/string.h>
87#include <linux/mm.h>
88#include <linux/socket.h>
89#include <linux/sockios.h>
90#include <linux/errno.h>
91#include <linux/interrupt.h>
92#include <linux/if_ether.h>
93#include <linux/netdevice.h>
94#include <linux/etherdevice.h>
0187bdfb 95#include <linux/ethtool.h>
1da177e4
LT
96#include <linux/notifier.h>
97#include <linux/skbuff.h>
457c4cbc 98#include <net/net_namespace.h>
1da177e4
LT
99#include <net/sock.h>
100#include <linux/rtnetlink.h>
101#include <linux/proc_fs.h>
102#include <linux/seq_file.h>
103#include <linux/stat.h>
104#include <linux/if_bridge.h>
b863ceb7 105#include <linux/if_macvlan.h>
1da177e4
LT
106#include <net/dst.h>
107#include <net/pkt_sched.h>
108#include <net/checksum.h>
44540960 109#include <net/xfrm.h>
1da177e4
LT
110#include <linux/highmem.h>
111#include <linux/init.h>
112#include <linux/kmod.h>
113#include <linux/module.h>
1da177e4
LT
114#include <linux/netpoll.h>
115#include <linux/rcupdate.h>
116#include <linux/delay.h>
295f4a1f 117#include <net/wext.h>
1da177e4 118#include <net/iw_handler.h>
1da177e4 119#include <asm/current.h>
5bdb9886 120#include <linux/audit.h>
db217334 121#include <linux/dmaengine.h>
f6a78bfc 122#include <linux/err.h>
c7fa9d18 123#include <linux/ctype.h>
723e98b7 124#include <linux/if_arp.h>
6de329e2 125#include <linux/if_vlan.h>
8f0f2223 126#include <linux/ip.h>
ad55dcaf 127#include <net/ip.h>
8f0f2223
DM
128#include <linux/ipv6.h>
129#include <linux/in.h>
b6b2fed1
DM
130#include <linux/jhash.h>
131#include <linux/random.h>
9cbc1cb8 132#include <trace/events/napi.h>
1da177e4 133
342709ef
PE
134#include "net-sysfs.h"
135
d565b0a1
HX
136/* Instead of increasing this, you should create a hash table. */
137#define MAX_GRO_SKBS 8
138
5d38a079
HX
139/* This should be increased if a protocol with a bigger head is added. */
140#define GRO_MAX_HEAD (MAX_HEADER + 128)
141
1da177e4
LT
142/*
143 * The list of packet types we will receive (as opposed to discard)
144 * and the routines to invoke.
145 *
146 * Why 16. Because with 16 the only overlap we get on a hash of the
147 * low nibble of the protocol value is RARP/SNAP/X.25.
148 *
149 * NOTE: That is no longer true with the addition of VLAN tags. Not
150 * sure which should go first, but I bet it won't make much
151 * difference if we are running VLANs. The good news is that
152 * this protocol won't be in the list unless compiled in, so
3041a069 153 * the average user (w/out VLANs) will not be adversely affected.
1da177e4
LT
154 * --BLG
155 *
156 * 0800 IP
157 * 8100 802.1Q VLAN
158 * 0001 802.3
159 * 0002 AX.25
160 * 0004 802.2
161 * 8035 RARP
162 * 0005 SNAP
163 * 0805 X.25
164 * 0806 ARP
165 * 8137 IPX
166 * 0009 Localtalk
167 * 86DD IPv6
168 */
169
82d8a867
PE
170#define PTYPE_HASH_SIZE (16)
171#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
172
1da177e4 173static DEFINE_SPINLOCK(ptype_lock);
82d8a867 174static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
6b2bedc3 175static struct list_head ptype_all __read_mostly; /* Taps */
1da177e4 176
1da177e4 177/*
7562f876 178 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
179 * semaphore.
180 *
c6d14c84 181 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
182 *
183 * Writers must hold the rtnl semaphore while they loop through the
7562f876 184 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
185 * actual updates. This allows pure readers to access the list even
186 * while a writer is preparing to update it.
187 *
188 * To put it another way, dev_base_lock is held for writing only to
189 * protect against pure readers; the rtnl semaphore provides the
190 * protection against other writers.
191 *
192 * See, for example usages, register_netdevice() and
193 * unregister_netdevice(), which must be called with the rtnl
194 * semaphore held.
195 */
1da177e4 196DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
197EXPORT_SYMBOL(dev_base_lock);
198
881d966b 199static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4
LT
200{
201 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
08e9897d 202 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
203}
204
881d966b 205static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 206{
7c28bd0b 207 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
208}
209
ce286d32
EB
210/* Device list insertion */
211static int list_netdevice(struct net_device *dev)
212{
c346dca1 213 struct net *net = dev_net(dev);
ce286d32
EB
214
215 ASSERT_RTNL();
216
217 write_lock_bh(&dev_base_lock);
c6d14c84 218 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 219 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
220 hlist_add_head_rcu(&dev->index_hlist,
221 dev_index_hash(net, dev->ifindex));
ce286d32
EB
222 write_unlock_bh(&dev_base_lock);
223 return 0;
224}
225
fb699dfd
ED
226/* Device list removal
227 * caller must respect a RCU grace period before freeing/reusing dev
228 */
ce286d32
EB
229static void unlist_netdevice(struct net_device *dev)
230{
231 ASSERT_RTNL();
232
233 /* Unlink dev from the device chain */
234 write_lock_bh(&dev_base_lock);
c6d14c84 235 list_del_rcu(&dev->dev_list);
72c9528b 236 hlist_del_rcu(&dev->name_hlist);
fb699dfd 237 hlist_del_rcu(&dev->index_hlist);
ce286d32
EB
238 write_unlock_bh(&dev_base_lock);
239}
240
1da177e4
LT
241/*
242 * Our notifier list
243 */
244
f07d5b94 245static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
246
247/*
248 * Device drivers call our routines to queue packets here. We empty the
249 * queue in the local softnet handler.
250 */
bea3348e
SH
251
252DEFINE_PER_CPU(struct softnet_data, softnet_data);
d1b19dff 253EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 254
cf508b12 255#ifdef CONFIG_LOCKDEP
723e98b7 256/*
c773e847 257 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
258 * according to dev->type
259 */
260static const unsigned short netdev_lock_type[] =
261 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
262 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
263 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
264 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
265 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
266 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
267 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
268 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
269 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
270 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
271 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
272 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
273 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
2d91d78b 274 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
929122cd 275 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
fcb94e42 276 ARPHRD_VOID, ARPHRD_NONE};
723e98b7 277
36cbd3dc 278static const char *const netdev_lock_name[] =
723e98b7
JP
279 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
280 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
281 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
282 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
283 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
284 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
285 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
286 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
287 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
288 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
289 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
290 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
291 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
2d91d78b 292 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
929122cd 293 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
fcb94e42 294 "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
295
296static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 297static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
298
299static inline unsigned short netdev_lock_pos(unsigned short dev_type)
300{
301 int i;
302
303 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
304 if (netdev_lock_type[i] == dev_type)
305 return i;
306 /* the last key is used by default */
307 return ARRAY_SIZE(netdev_lock_type) - 1;
308}
309
cf508b12
DM
310static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
311 unsigned short dev_type)
723e98b7
JP
312{
313 int i;
314
315 i = netdev_lock_pos(dev_type);
316 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
317 netdev_lock_name[i]);
318}
cf508b12
DM
319
320static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
321{
322 int i;
323
324 i = netdev_lock_pos(dev->type);
325 lockdep_set_class_and_name(&dev->addr_list_lock,
326 &netdev_addr_lock_key[i],
327 netdev_lock_name[i]);
328}
723e98b7 329#else
cf508b12
DM
330static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
331 unsigned short dev_type)
332{
333}
334static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
335{
336}
337#endif
1da177e4
LT
338
339/*******************************************************************************
340
341 Protocol management and registration routines
342
343*******************************************************************************/
344
1da177e4
LT
345/*
346 * Add a protocol ID to the list. Now that the input handler is
347 * smarter we can dispense with all the messy stuff that used to be
348 * here.
349 *
350 * BEWARE!!! Protocol handlers, mangling input packets,
351 * MUST BE last in hash buckets and checking protocol handlers
352 * MUST start from promiscuous ptype_all chain in net_bh.
353 * It is true now, do not change it.
354 * Explanation follows: if protocol handler, mangling packet, will
355 * be the first on list, it is not able to sense, that packet
356 * is cloned and should be copied-on-write, so that it will
357 * change it and subsequent readers will get broken packet.
358 * --ANK (980803)
359 */
360
361/**
362 * dev_add_pack - add packet handler
363 * @pt: packet type declaration
364 *
365 * Add a protocol handler to the networking stack. The passed &packet_type
366 * is linked into kernel lists and may not be freed until it has been
367 * removed from the kernel lists.
368 *
4ec93edb 369 * This call does not sleep therefore it can not
1da177e4
LT
370 * guarantee all CPU's that are in middle of receiving packets
371 * will see the new packet type (until the next received packet).
372 */
373
374void dev_add_pack(struct packet_type *pt)
375{
376 int hash;
377
378 spin_lock_bh(&ptype_lock);
9be9a6b9 379 if (pt->type == htons(ETH_P_ALL))
1da177e4 380 list_add_rcu(&pt->list, &ptype_all);
9be9a6b9 381 else {
82d8a867 382 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
1da177e4
LT
383 list_add_rcu(&pt->list, &ptype_base[hash]);
384 }
385 spin_unlock_bh(&ptype_lock);
386}
d1b19dff 387EXPORT_SYMBOL(dev_add_pack);
1da177e4 388
1da177e4
LT
389/**
390 * __dev_remove_pack - remove packet handler
391 * @pt: packet type declaration
392 *
393 * Remove a protocol handler that was previously added to the kernel
394 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
395 * from the kernel lists and can be freed or reused once this function
4ec93edb 396 * returns.
1da177e4
LT
397 *
398 * The packet type might still be in use by receivers
399 * and must not be freed until after all the CPU's have gone
400 * through a quiescent state.
401 */
402void __dev_remove_pack(struct packet_type *pt)
403{
404 struct list_head *head;
405 struct packet_type *pt1;
406
407 spin_lock_bh(&ptype_lock);
408
9be9a6b9 409 if (pt->type == htons(ETH_P_ALL))
1da177e4 410 head = &ptype_all;
9be9a6b9 411 else
82d8a867 412 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
1da177e4
LT
413
414 list_for_each_entry(pt1, head, list) {
415 if (pt == pt1) {
416 list_del_rcu(&pt->list);
417 goto out;
418 }
419 }
420
421 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
422out:
423 spin_unlock_bh(&ptype_lock);
424}
d1b19dff
ED
425EXPORT_SYMBOL(__dev_remove_pack);
426
1da177e4
LT
427/**
428 * dev_remove_pack - remove packet handler
429 * @pt: packet type declaration
430 *
431 * Remove a protocol handler that was previously added to the kernel
432 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
433 * from the kernel lists and can be freed or reused once this function
434 * returns.
435 *
436 * This call sleeps to guarantee that no CPU is looking at the packet
437 * type after return.
438 */
439void dev_remove_pack(struct packet_type *pt)
440{
441 __dev_remove_pack(pt);
4ec93edb 442
1da177e4
LT
443 synchronize_net();
444}
d1b19dff 445EXPORT_SYMBOL(dev_remove_pack);
1da177e4
LT
446
447/******************************************************************************
448
449 Device Boot-time Settings Routines
450
451*******************************************************************************/
452
453/* Boot time configuration table */
454static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
455
456/**
457 * netdev_boot_setup_add - add new setup entry
458 * @name: name of the device
459 * @map: configured settings for the device
460 *
461 * Adds new setup entry to the dev_boot_setup list. The function
462 * returns 0 on error and 1 on success. This is a generic routine to
463 * all netdevices.
464 */
465static int netdev_boot_setup_add(char *name, struct ifmap *map)
466{
467 struct netdev_boot_setup *s;
468 int i;
469
470 s = dev_boot_setup;
471 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
472 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
473 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 474 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
475 memcpy(&s[i].map, map, sizeof(s[i].map));
476 break;
477 }
478 }
479
480 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
481}
482
483/**
484 * netdev_boot_setup_check - check boot time settings
485 * @dev: the netdevice
486 *
487 * Check boot time settings for the device.
488 * The found settings are set for the device to be used
489 * later in the device probing.
490 * Returns 0 if no settings found, 1 if they are.
491 */
492int netdev_boot_setup_check(struct net_device *dev)
493{
494 struct netdev_boot_setup *s = dev_boot_setup;
495 int i;
496
497 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
498 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 499 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
500 dev->irq = s[i].map.irq;
501 dev->base_addr = s[i].map.base_addr;
502 dev->mem_start = s[i].map.mem_start;
503 dev->mem_end = s[i].map.mem_end;
504 return 1;
505 }
506 }
507 return 0;
508}
d1b19dff 509EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
510
511
512/**
513 * netdev_boot_base - get address from boot time settings
514 * @prefix: prefix for network device
515 * @unit: id for network device
516 *
517 * Check boot time settings for the base address of device.
518 * The found settings are set for the device to be used
519 * later in the device probing.
520 * Returns 0 if no settings found.
521 */
522unsigned long netdev_boot_base(const char *prefix, int unit)
523{
524 const struct netdev_boot_setup *s = dev_boot_setup;
525 char name[IFNAMSIZ];
526 int i;
527
528 sprintf(name, "%s%d", prefix, unit);
529
530 /*
531 * If device already registered then return base of 1
532 * to indicate not to probe for this interface
533 */
881d966b 534 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
535 return 1;
536
537 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
538 if (!strcmp(name, s[i].name))
539 return s[i].map.base_addr;
540 return 0;
541}
542
543/*
544 * Saves at boot time configured settings for any netdevice.
545 */
546int __init netdev_boot_setup(char *str)
547{
548 int ints[5];
549 struct ifmap map;
550
551 str = get_options(str, ARRAY_SIZE(ints), ints);
552 if (!str || !*str)
553 return 0;
554
555 /* Save settings */
556 memset(&map, 0, sizeof(map));
557 if (ints[0] > 0)
558 map.irq = ints[1];
559 if (ints[0] > 1)
560 map.base_addr = ints[2];
561 if (ints[0] > 2)
562 map.mem_start = ints[3];
563 if (ints[0] > 3)
564 map.mem_end = ints[4];
565
566 /* Add new entry to the list */
567 return netdev_boot_setup_add(str, &map);
568}
569
570__setup("netdev=", netdev_boot_setup);
571
572/*******************************************************************************
573
574 Device Interface Subroutines
575
576*******************************************************************************/
577
578/**
579 * __dev_get_by_name - find a device by its name
c4ea43c5 580 * @net: the applicable net namespace
1da177e4
LT
581 * @name: name to find
582 *
583 * Find an interface by name. Must be called under RTNL semaphore
584 * or @dev_base_lock. If the name is found a pointer to the device
585 * is returned. If the name is not found then %NULL is returned. The
586 * reference counters are not incremented so the caller must be
587 * careful with locks.
588 */
589
881d966b 590struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
591{
592 struct hlist_node *p;
0bd8d536
ED
593 struct net_device *dev;
594 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 595
0bd8d536 596 hlist_for_each_entry(dev, p, head, name_hlist)
1da177e4
LT
597 if (!strncmp(dev->name, name, IFNAMSIZ))
598 return dev;
0bd8d536 599
1da177e4
LT
600 return NULL;
601}
d1b19dff 602EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 603
72c9528b
ED
604/**
605 * dev_get_by_name_rcu - find a device by its name
606 * @net: the applicable net namespace
607 * @name: name to find
608 *
609 * Find an interface by name.
610 * If the name is found a pointer to the device is returned.
611 * If the name is not found then %NULL is returned.
612 * The reference counters are not incremented so the caller must be
613 * careful with locks. The caller must hold RCU lock.
614 */
615
616struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
617{
618 struct hlist_node *p;
619 struct net_device *dev;
620 struct hlist_head *head = dev_name_hash(net, name);
621
622 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
623 if (!strncmp(dev->name, name, IFNAMSIZ))
624 return dev;
625
626 return NULL;
627}
628EXPORT_SYMBOL(dev_get_by_name_rcu);
629
1da177e4
LT
630/**
631 * dev_get_by_name - find a device by its name
c4ea43c5 632 * @net: the applicable net namespace
1da177e4
LT
633 * @name: name to find
634 *
635 * Find an interface by name. This can be called from any
636 * context and does its own locking. The returned handle has
637 * the usage count incremented and the caller must use dev_put() to
638 * release it when it is no longer needed. %NULL is returned if no
639 * matching device is found.
640 */
641
881d966b 642struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
643{
644 struct net_device *dev;
645
72c9528b
ED
646 rcu_read_lock();
647 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
648 if (dev)
649 dev_hold(dev);
72c9528b 650 rcu_read_unlock();
1da177e4
LT
651 return dev;
652}
d1b19dff 653EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
654
655/**
656 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 657 * @net: the applicable net namespace
1da177e4
LT
658 * @ifindex: index of device
659 *
660 * Search for an interface by index. Returns %NULL if the device
661 * is not found or a pointer to the device. The device has not
662 * had its reference counter increased so the caller must be careful
663 * about locking. The caller must hold either the RTNL semaphore
664 * or @dev_base_lock.
665 */
666
881d966b 667struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
668{
669 struct hlist_node *p;
0bd8d536
ED
670 struct net_device *dev;
671 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 672
0bd8d536 673 hlist_for_each_entry(dev, p, head, index_hlist)
1da177e4
LT
674 if (dev->ifindex == ifindex)
675 return dev;
0bd8d536 676
1da177e4
LT
677 return NULL;
678}
d1b19dff 679EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 680
fb699dfd
ED
681/**
682 * dev_get_by_index_rcu - find a device by its ifindex
683 * @net: the applicable net namespace
684 * @ifindex: index of device
685 *
686 * Search for an interface by index. Returns %NULL if the device
687 * is not found or a pointer to the device. The device has not
688 * had its reference counter increased so the caller must be careful
689 * about locking. The caller must hold RCU lock.
690 */
691
692struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
693{
694 struct hlist_node *p;
695 struct net_device *dev;
696 struct hlist_head *head = dev_index_hash(net, ifindex);
697
698 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
699 if (dev->ifindex == ifindex)
700 return dev;
701
702 return NULL;
703}
704EXPORT_SYMBOL(dev_get_by_index_rcu);
705
1da177e4
LT
706
707/**
708 * dev_get_by_index - find a device by its ifindex
c4ea43c5 709 * @net: the applicable net namespace
1da177e4
LT
710 * @ifindex: index of device
711 *
712 * Search for an interface by index. Returns NULL if the device
713 * is not found or a pointer to the device. The device returned has
714 * had a reference added and the pointer is safe until the user calls
715 * dev_put to indicate they have finished with it.
716 */
717
881d966b 718struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
719{
720 struct net_device *dev;
721
fb699dfd
ED
722 rcu_read_lock();
723 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
724 if (dev)
725 dev_hold(dev);
fb699dfd 726 rcu_read_unlock();
1da177e4
LT
727 return dev;
728}
d1b19dff 729EXPORT_SYMBOL(dev_get_by_index);
1da177e4
LT
730
731/**
732 * dev_getbyhwaddr - find a device by its hardware address
c4ea43c5 733 * @net: the applicable net namespace
1da177e4
LT
734 * @type: media type of device
735 * @ha: hardware address
736 *
737 * Search for an interface by MAC address. Returns NULL if the device
738 * is not found or a pointer to the device. The caller must hold the
739 * rtnl semaphore. The returned device has not had its ref count increased
740 * and the caller must therefore be careful about locking
741 *
742 * BUGS:
743 * If the API was consistent this would be __dev_get_by_hwaddr
744 */
745
881d966b 746struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
1da177e4
LT
747{
748 struct net_device *dev;
749
750 ASSERT_RTNL();
751
81103a52 752 for_each_netdev(net, dev)
1da177e4
LT
753 if (dev->type == type &&
754 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
755 return dev;
756
757 return NULL;
1da177e4 758}
cf309e3f
JF
759EXPORT_SYMBOL(dev_getbyhwaddr);
760
881d966b 761struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
762{
763 struct net_device *dev;
764
4e9cac2b 765 ASSERT_RTNL();
881d966b 766 for_each_netdev(net, dev)
4e9cac2b 767 if (dev->type == type)
7562f876
PE
768 return dev;
769
770 return NULL;
4e9cac2b 771}
4e9cac2b
PM
772EXPORT_SYMBOL(__dev_getfirstbyhwtype);
773
881d966b 774struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b
PM
775{
776 struct net_device *dev;
777
778 rtnl_lock();
881d966b 779 dev = __dev_getfirstbyhwtype(net, type);
4e9cac2b
PM
780 if (dev)
781 dev_hold(dev);
1da177e4
LT
782 rtnl_unlock();
783 return dev;
784}
1da177e4
LT
785EXPORT_SYMBOL(dev_getfirstbyhwtype);
786
787/**
788 * dev_get_by_flags - find any device with given flags
c4ea43c5 789 * @net: the applicable net namespace
1da177e4
LT
790 * @if_flags: IFF_* values
791 * @mask: bitmask of bits in if_flags to check
792 *
793 * Search for any interface with the given flags. Returns NULL if a device
4ec93edb 794 * is not found or a pointer to the device. The device returned has
1da177e4
LT
795 * had a reference added and the pointer is safe until the user calls
796 * dev_put to indicate they have finished with it.
797 */
798
d1b19dff
ED
799struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
800 unsigned short mask)
1da177e4 801{
7562f876 802 struct net_device *dev, *ret;
1da177e4 803
7562f876 804 ret = NULL;
c6d14c84
ED
805 rcu_read_lock();
806 for_each_netdev_rcu(net, dev) {
1da177e4
LT
807 if (((dev->flags ^ if_flags) & mask) == 0) {
808 dev_hold(dev);
7562f876 809 ret = dev;
1da177e4
LT
810 break;
811 }
812 }
c6d14c84 813 rcu_read_unlock();
7562f876 814 return ret;
1da177e4 815}
d1b19dff 816EXPORT_SYMBOL(dev_get_by_flags);
1da177e4
LT
817
818/**
819 * dev_valid_name - check if name is okay for network device
820 * @name: name string
821 *
822 * Network device names need to be valid file names to
c7fa9d18
DM
823 * to allow sysfs to work. We also disallow any kind of
824 * whitespace.
1da177e4 825 */
c2373ee9 826int dev_valid_name(const char *name)
1da177e4 827{
c7fa9d18
DM
828 if (*name == '\0')
829 return 0;
b6fe17d6
SH
830 if (strlen(name) >= IFNAMSIZ)
831 return 0;
c7fa9d18
DM
832 if (!strcmp(name, ".") || !strcmp(name, ".."))
833 return 0;
834
835 while (*name) {
836 if (*name == '/' || isspace(*name))
837 return 0;
838 name++;
839 }
840 return 1;
1da177e4 841}
d1b19dff 842EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
843
844/**
b267b179
EB
845 * __dev_alloc_name - allocate a name for a device
846 * @net: network namespace to allocate the device name in
1da177e4 847 * @name: name format string
b267b179 848 * @buf: scratch buffer and result name string
1da177e4
LT
849 *
850 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
851 * id. It scans list of devices to build up a free map, then chooses
852 * the first empty slot. The caller must hold the dev_base or rtnl lock
853 * while allocating the name and adding the device in order to avoid
854 * duplicates.
855 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
856 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
857 */
858
b267b179 859static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
860{
861 int i = 0;
1da177e4
LT
862 const char *p;
863 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 864 unsigned long *inuse;
1da177e4
LT
865 struct net_device *d;
866
867 p = strnchr(name, IFNAMSIZ-1, '%');
868 if (p) {
869 /*
870 * Verify the string as this thing may have come from
871 * the user. There must be either one "%d" and no other "%"
872 * characters.
873 */
874 if (p[1] != 'd' || strchr(p + 2, '%'))
875 return -EINVAL;
876
877 /* Use one page as a bit array of possible slots */
cfcabdcc 878 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
879 if (!inuse)
880 return -ENOMEM;
881
881d966b 882 for_each_netdev(net, d) {
1da177e4
LT
883 if (!sscanf(d->name, name, &i))
884 continue;
885 if (i < 0 || i >= max_netdevices)
886 continue;
887
888 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 889 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
890 if (!strncmp(buf, d->name, IFNAMSIZ))
891 set_bit(i, inuse);
892 }
893
894 i = find_first_zero_bit(inuse, max_netdevices);
895 free_page((unsigned long) inuse);
896 }
897
d9031024
OP
898 if (buf != name)
899 snprintf(buf, IFNAMSIZ, name, i);
b267b179 900 if (!__dev_get_by_name(net, buf))
1da177e4 901 return i;
1da177e4
LT
902
903 /* It is possible to run out of possible slots
904 * when the name is long and there isn't enough space left
905 * for the digits, or if all bits are used.
906 */
907 return -ENFILE;
908}
909
b267b179
EB
910/**
911 * dev_alloc_name - allocate a name for a device
912 * @dev: device
913 * @name: name format string
914 *
915 * Passed a format string - eg "lt%d" it will try and find a suitable
916 * id. It scans list of devices to build up a free map, then chooses
917 * the first empty slot. The caller must hold the dev_base or rtnl lock
918 * while allocating the name and adding the device in order to avoid
919 * duplicates.
920 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
921 * Returns the number of the unit assigned or a negative errno code.
922 */
923
924int dev_alloc_name(struct net_device *dev, const char *name)
925{
926 char buf[IFNAMSIZ];
927 struct net *net;
928 int ret;
929
c346dca1
YH
930 BUG_ON(!dev_net(dev));
931 net = dev_net(dev);
b267b179
EB
932 ret = __dev_alloc_name(net, name, buf);
933 if (ret >= 0)
934 strlcpy(dev->name, buf, IFNAMSIZ);
935 return ret;
936}
d1b19dff 937EXPORT_SYMBOL(dev_alloc_name);
b267b179 938
d9031024
OP
939static int dev_get_valid_name(struct net *net, const char *name, char *buf,
940 bool fmt)
941{
942 if (!dev_valid_name(name))
943 return -EINVAL;
944
945 if (fmt && strchr(name, '%'))
946 return __dev_alloc_name(net, name, buf);
947 else if (__dev_get_by_name(net, name))
948 return -EEXIST;
949 else if (buf != name)
950 strlcpy(buf, name, IFNAMSIZ);
951
952 return 0;
953}
1da177e4
LT
954
955/**
956 * dev_change_name - change name of a device
957 * @dev: device
958 * @newname: name (or format string) must be at least IFNAMSIZ
959 *
960 * Change name of a device, can pass format strings "eth%d".
961 * for wildcarding.
962 */
cf04a4c7 963int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 964{
fcc5a03a 965 char oldname[IFNAMSIZ];
1da177e4 966 int err = 0;
fcc5a03a 967 int ret;
881d966b 968 struct net *net;
1da177e4
LT
969
970 ASSERT_RTNL();
c346dca1 971 BUG_ON(!dev_net(dev));
1da177e4 972
c346dca1 973 net = dev_net(dev);
1da177e4
LT
974 if (dev->flags & IFF_UP)
975 return -EBUSY;
976
c8d90dca
SH
977 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
978 return 0;
979
fcc5a03a
HX
980 memcpy(oldname, dev->name, IFNAMSIZ);
981
d9031024
OP
982 err = dev_get_valid_name(net, newname, dev->name, 1);
983 if (err < 0)
984 return err;
1da177e4 985
fcc5a03a 986rollback:
3891845e
EB
987 /* For now only devices in the initial network namespace
988 * are in sysfs.
989 */
09ad9bc7 990 if (net_eq(net, &init_net)) {
3891845e
EB
991 ret = device_rename(&dev->dev, dev->name);
992 if (ret) {
993 memcpy(dev->name, oldname, IFNAMSIZ);
994 return ret;
995 }
dcc99773 996 }
7f988eab
HX
997
998 write_lock_bh(&dev_base_lock);
92749821 999 hlist_del(&dev->name_hlist);
72c9528b
ED
1000 write_unlock_bh(&dev_base_lock);
1001
1002 synchronize_rcu();
1003
1004 write_lock_bh(&dev_base_lock);
1005 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1006 write_unlock_bh(&dev_base_lock);
1007
056925ab 1008 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1009 ret = notifier_to_errno(ret);
1010
1011 if (ret) {
91e9c07b
ED
1012 /* err >= 0 after dev_alloc_name() or stores the first errno */
1013 if (err >= 0) {
fcc5a03a
HX
1014 err = ret;
1015 memcpy(dev->name, oldname, IFNAMSIZ);
1016 goto rollback;
91e9c07b
ED
1017 } else {
1018 printk(KERN_ERR
1019 "%s: name change rollback failed: %d.\n",
1020 dev->name, ret);
fcc5a03a
HX
1021 }
1022 }
1da177e4
LT
1023
1024 return err;
1025}
1026
0b815a1a
SH
1027/**
1028 * dev_set_alias - change ifalias of a device
1029 * @dev: device
1030 * @alias: name up to IFALIASZ
f0db275a 1031 * @len: limit of bytes to copy from info
0b815a1a
SH
1032 *
1033 * Set ifalias for a device,
1034 */
1035int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1036{
1037 ASSERT_RTNL();
1038
1039 if (len >= IFALIASZ)
1040 return -EINVAL;
1041
96ca4a2c
OH
1042 if (!len) {
1043 if (dev->ifalias) {
1044 kfree(dev->ifalias);
1045 dev->ifalias = NULL;
1046 }
1047 return 0;
1048 }
1049
d1b19dff 1050 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
0b815a1a
SH
1051 if (!dev->ifalias)
1052 return -ENOMEM;
1053
1054 strlcpy(dev->ifalias, alias, len+1);
1055 return len;
1056}
1057
1058
d8a33ac4 1059/**
3041a069 1060 * netdev_features_change - device changes features
d8a33ac4
SH
1061 * @dev: device to cause notification
1062 *
1063 * Called to indicate a device has changed features.
1064 */
1065void netdev_features_change(struct net_device *dev)
1066{
056925ab 1067 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1068}
1069EXPORT_SYMBOL(netdev_features_change);
1070
1da177e4
LT
1071/**
1072 * netdev_state_change - device changes state
1073 * @dev: device to cause notification
1074 *
1075 * Called to indicate a device has changed state. This function calls
1076 * the notifier chains for netdev_chain and sends a NEWLINK message
1077 * to the routing socket.
1078 */
1079void netdev_state_change(struct net_device *dev)
1080{
1081 if (dev->flags & IFF_UP) {
056925ab 1082 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1da177e4
LT
1083 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1084 }
1085}
d1b19dff 1086EXPORT_SYMBOL(netdev_state_change);
1da177e4 1087
75c78500 1088void netdev_bonding_change(struct net_device *dev, unsigned long event)
c1da4ac7 1089{
75c78500 1090 call_netdevice_notifiers(event, dev);
c1da4ac7
OG
1091}
1092EXPORT_SYMBOL(netdev_bonding_change);
1093
1da177e4
LT
1094/**
1095 * dev_load - load a network module
c4ea43c5 1096 * @net: the applicable net namespace
1da177e4
LT
1097 * @name: name of interface
1098 *
1099 * If a network interface is not present and the process has suitable
1100 * privileges this function loads the module. If module loading is not
1101 * available in this kernel then it becomes a nop.
1102 */
1103
881d966b 1104void dev_load(struct net *net, const char *name)
1da177e4 1105{
4ec93edb 1106 struct net_device *dev;
1da177e4 1107
72c9528b
ED
1108 rcu_read_lock();
1109 dev = dev_get_by_name_rcu(net, name);
1110 rcu_read_unlock();
1da177e4 1111
a8f80e8f 1112 if (!dev && capable(CAP_NET_ADMIN))
1da177e4
LT
1113 request_module("%s", name);
1114}
d1b19dff 1115EXPORT_SYMBOL(dev_load);
1da177e4 1116
bd380811 1117static int __dev_open(struct net_device *dev)
1da177e4 1118{
d314774c 1119 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1120 int ret;
1da177e4 1121
e46b66bc
BH
1122 ASSERT_RTNL();
1123
1da177e4
LT
1124 /*
1125 * Is it even present?
1126 */
1127 if (!netif_device_present(dev))
1128 return -ENODEV;
1129
3b8bcfd5
JB
1130 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1131 ret = notifier_to_errno(ret);
1132 if (ret)
1133 return ret;
1134
1da177e4
LT
1135 /*
1136 * Call device private open method
1137 */
1138 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1139
d314774c
SH
1140 if (ops->ndo_validate_addr)
1141 ret = ops->ndo_validate_addr(dev);
bada339b 1142
d314774c
SH
1143 if (!ret && ops->ndo_open)
1144 ret = ops->ndo_open(dev);
1da177e4 1145
4ec93edb 1146 /*
1da177e4
LT
1147 * If it went open OK then:
1148 */
1149
bada339b
JG
1150 if (ret)
1151 clear_bit(__LINK_STATE_START, &dev->state);
1152 else {
1da177e4
LT
1153 /*
1154 * Set the flags.
1155 */
1156 dev->flags |= IFF_UP;
1157
649274d9
DW
1158 /*
1159 * Enable NET_DMA
1160 */
b4bd07c2 1161 net_dmaengine_get();
649274d9 1162
1da177e4
LT
1163 /*
1164 * Initialize multicasting status
1165 */
4417da66 1166 dev_set_rx_mode(dev);
1da177e4
LT
1167
1168 /*
1169 * Wakeup transmit queue engine
1170 */
1171 dev_activate(dev);
1da177e4 1172 }
bada339b 1173
1da177e4
LT
1174 return ret;
1175}
1176
1177/**
bd380811
PM
1178 * dev_open - prepare an interface for use.
1179 * @dev: device to open
1da177e4 1180 *
bd380811
PM
1181 * Takes a device from down to up state. The device's private open
1182 * function is invoked and then the multicast lists are loaded. Finally
1183 * the device is moved into the up state and a %NETDEV_UP message is
1184 * sent to the netdev notifier chain.
1185 *
1186 * Calling this function on an active interface is a nop. On a failure
1187 * a negative errno code is returned.
1da177e4 1188 */
bd380811
PM
1189int dev_open(struct net_device *dev)
1190{
1191 int ret;
1192
1193 /*
1194 * Is it already up?
1195 */
1196 if (dev->flags & IFF_UP)
1197 return 0;
1198
1199 /*
1200 * Open device
1201 */
1202 ret = __dev_open(dev);
1203 if (ret < 0)
1204 return ret;
1205
1206 /*
1207 * ... and announce new interface.
1208 */
1209 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1210 call_netdevice_notifiers(NETDEV_UP, dev);
1211
1212 return ret;
1213}
1214EXPORT_SYMBOL(dev_open);
1215
1216static int __dev_close(struct net_device *dev)
1da177e4 1217{
d314774c 1218 const struct net_device_ops *ops = dev->netdev_ops;
e46b66bc 1219
bd380811 1220 ASSERT_RTNL();
9d5010db
DM
1221 might_sleep();
1222
1da177e4
LT
1223 /*
1224 * Tell people we are going down, so that they can
1225 * prepare to death, when device is still operating.
1226 */
056925ab 1227 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1228
1da177e4
LT
1229 clear_bit(__LINK_STATE_START, &dev->state);
1230
1231 /* Synchronize to scheduled poll. We cannot touch poll list,
bea3348e
SH
1232 * it can be even on different cpu. So just clear netif_running().
1233 *
1234 * dev->stop() will invoke napi_disable() on all of it's
1235 * napi_struct instances on this device.
1236 */
1da177e4 1237 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1da177e4 1238
d8b2a4d2
ML
1239 dev_deactivate(dev);
1240
1da177e4
LT
1241 /*
1242 * Call the device specific close. This cannot fail.
1243 * Only if device is UP
1244 *
1245 * We allow it to be called even after a DETACH hot-plug
1246 * event.
1247 */
d314774c
SH
1248 if (ops->ndo_stop)
1249 ops->ndo_stop(dev);
1da177e4
LT
1250
1251 /*
1252 * Device is now down.
1253 */
1254
1255 dev->flags &= ~IFF_UP;
1256
1257 /*
bd380811 1258 * Shutdown NET_DMA
1da177e4 1259 */
bd380811
PM
1260 net_dmaengine_put();
1261
1262 return 0;
1263}
1264
1265/**
1266 * dev_close - shutdown an interface.
1267 * @dev: device to shutdown
1268 *
1269 * This function moves an active device into down state. A
1270 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1271 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1272 * chain.
1273 */
1274int dev_close(struct net_device *dev)
1275{
1276 if (!(dev->flags & IFF_UP))
1277 return 0;
1278
1279 __dev_close(dev);
1da177e4 1280
649274d9 1281 /*
bd380811 1282 * Tell people we are down
649274d9 1283 */
bd380811
PM
1284 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1285 call_netdevice_notifiers(NETDEV_DOWN, dev);
649274d9 1286
1da177e4
LT
1287 return 0;
1288}
d1b19dff 1289EXPORT_SYMBOL(dev_close);
1da177e4
LT
1290
1291
0187bdfb
BH
1292/**
1293 * dev_disable_lro - disable Large Receive Offload on a device
1294 * @dev: device
1295 *
1296 * Disable Large Receive Offload (LRO) on a net device. Must be
1297 * called under RTNL. This is needed if received packets may be
1298 * forwarded to another interface.
1299 */
1300void dev_disable_lro(struct net_device *dev)
1301{
1302 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1303 dev->ethtool_ops->set_flags) {
1304 u32 flags = dev->ethtool_ops->get_flags(dev);
1305 if (flags & ETH_FLAG_LRO) {
1306 flags &= ~ETH_FLAG_LRO;
1307 dev->ethtool_ops->set_flags(dev, flags);
1308 }
1309 }
1310 WARN_ON(dev->features & NETIF_F_LRO);
1311}
1312EXPORT_SYMBOL(dev_disable_lro);
1313
1314
881d966b
EB
1315static int dev_boot_phase = 1;
1316
1da177e4
LT
1317/*
1318 * Device change register/unregister. These are not inline or static
1319 * as we export them to the world.
1320 */
1321
1322/**
1323 * register_netdevice_notifier - register a network notifier block
1324 * @nb: notifier
1325 *
1326 * Register a notifier to be called when network device events occur.
1327 * The notifier passed is linked into the kernel structures and must
1328 * not be reused until it has been unregistered. A negative errno code
1329 * is returned on a failure.
1330 *
1331 * When registered all registration and up events are replayed
4ec93edb 1332 * to the new notifier to allow device to have a race free
1da177e4
LT
1333 * view of the network device list.
1334 */
1335
1336int register_netdevice_notifier(struct notifier_block *nb)
1337{
1338 struct net_device *dev;
fcc5a03a 1339 struct net_device *last;
881d966b 1340 struct net *net;
1da177e4
LT
1341 int err;
1342
1343 rtnl_lock();
f07d5b94 1344 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1345 if (err)
1346 goto unlock;
881d966b
EB
1347 if (dev_boot_phase)
1348 goto unlock;
1349 for_each_net(net) {
1350 for_each_netdev(net, dev) {
1351 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1352 err = notifier_to_errno(err);
1353 if (err)
1354 goto rollback;
1355
1356 if (!(dev->flags & IFF_UP))
1357 continue;
1da177e4 1358
881d966b
EB
1359 nb->notifier_call(nb, NETDEV_UP, dev);
1360 }
1da177e4 1361 }
fcc5a03a
HX
1362
1363unlock:
1da177e4
LT
1364 rtnl_unlock();
1365 return err;
fcc5a03a
HX
1366
1367rollback:
1368 last = dev;
881d966b
EB
1369 for_each_net(net) {
1370 for_each_netdev(net, dev) {
1371 if (dev == last)
1372 break;
fcc5a03a 1373
881d966b
EB
1374 if (dev->flags & IFF_UP) {
1375 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1376 nb->notifier_call(nb, NETDEV_DOWN, dev);
1377 }
1378 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
a5ee1551 1379 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
fcc5a03a 1380 }
fcc5a03a 1381 }
c67625a1
PE
1382
1383 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1384 goto unlock;
1da177e4 1385}
d1b19dff 1386EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1387
1388/**
1389 * unregister_netdevice_notifier - unregister a network notifier block
1390 * @nb: notifier
1391 *
1392 * Unregister a notifier previously registered by
1393 * register_netdevice_notifier(). The notifier is unlinked into the
1394 * kernel structures and may then be reused. A negative errno code
1395 * is returned on a failure.
1396 */
1397
1398int unregister_netdevice_notifier(struct notifier_block *nb)
1399{
9f514950
HX
1400 int err;
1401
1402 rtnl_lock();
f07d5b94 1403 err = raw_notifier_chain_unregister(&netdev_chain, nb);
9f514950
HX
1404 rtnl_unlock();
1405 return err;
1da177e4 1406}
d1b19dff 1407EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4
LT
1408
1409/**
1410 * call_netdevice_notifiers - call all network notifier blocks
1411 * @val: value passed unmodified to notifier function
c4ea43c5 1412 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1413 *
1414 * Call all network notifier blocks. Parameters and return value
f07d5b94 1415 * are as for raw_notifier_call_chain().
1da177e4
LT
1416 */
1417
ad7379d4 1418int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1419{
ad7379d4 1420 return raw_notifier_call_chain(&netdev_chain, val, dev);
1da177e4
LT
1421}
1422
1423/* When > 0 there are consumers of rx skb time stamps */
1424static atomic_t netstamp_needed = ATOMIC_INIT(0);
1425
1426void net_enable_timestamp(void)
1427{
1428 atomic_inc(&netstamp_needed);
1429}
d1b19dff 1430EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1431
1432void net_disable_timestamp(void)
1433{
1434 atomic_dec(&netstamp_needed);
1435}
d1b19dff 1436EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1437
a61bbcf2 1438static inline void net_timestamp(struct sk_buff *skb)
1da177e4
LT
1439{
1440 if (atomic_read(&netstamp_needed))
a61bbcf2 1441 __net_timestamp(skb);
b7aa0bf7
ED
1442 else
1443 skb->tstamp.tv64 = 0;
1da177e4
LT
1444}
1445
44540960
AB
1446/**
1447 * dev_forward_skb - loopback an skb to another netif
1448 *
1449 * @dev: destination network device
1450 * @skb: buffer to forward
1451 *
1452 * return values:
1453 * NET_RX_SUCCESS (no congestion)
1454 * NET_RX_DROP (packet was dropped)
1455 *
1456 * dev_forward_skb can be used for injecting an skb from the
1457 * start_xmit function of one device into the receive queue
1458 * of another device.
1459 *
1460 * The receiving device may be in another namespace, so
1461 * we have to clear all information in the skb that could
1462 * impact namespace isolation.
1463 */
1464int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1465{
1466 skb_orphan(skb);
1467
1468 if (!(dev->flags & IFF_UP))
1469 return NET_RX_DROP;
1470
1471 if (skb->len > (dev->mtu + dev->hard_header_len))
1472 return NET_RX_DROP;
1473
8a83a00b 1474 skb_set_dev(skb, dev);
44540960
AB
1475 skb->tstamp.tv64 = 0;
1476 skb->pkt_type = PACKET_HOST;
1477 skb->protocol = eth_type_trans(skb, dev);
44540960
AB
1478 return netif_rx(skb);
1479}
1480EXPORT_SYMBOL_GPL(dev_forward_skb);
1481
1da177e4
LT
1482/*
1483 * Support routine. Sends outgoing frames to any network
1484 * taps currently in use.
1485 */
1486
f6a78bfc 1487static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1488{
1489 struct packet_type *ptype;
a61bbcf2 1490
8caf1539
JP
1491#ifdef CONFIG_NET_CLS_ACT
1492 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1493 net_timestamp(skb);
1494#else
a61bbcf2 1495 net_timestamp(skb);
8caf1539 1496#endif
1da177e4
LT
1497
1498 rcu_read_lock();
1499 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1500 /* Never send packets back to the socket
1501 * they originated from - MvS (miquels@drinkel.ow.org)
1502 */
1503 if ((ptype->dev == dev || !ptype->dev) &&
1504 (ptype->af_packet_priv == NULL ||
1505 (struct sock *)ptype->af_packet_priv != skb->sk)) {
d1b19dff 1506 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1da177e4
LT
1507 if (!skb2)
1508 break;
1509
1510 /* skb->nh should be correctly
1511 set by sender, so that the second statement is
1512 just protection against buggy protocols.
1513 */
459a98ed 1514 skb_reset_mac_header(skb2);
1da177e4 1515
d56f90a7 1516 if (skb_network_header(skb2) < skb2->data ||
27a884dc 1517 skb2->network_header > skb2->tail) {
1da177e4
LT
1518 if (net_ratelimit())
1519 printk(KERN_CRIT "protocol %04x is "
1520 "buggy, dev %s\n",
1521 skb2->protocol, dev->name);
c1d2bbe1 1522 skb_reset_network_header(skb2);
1da177e4
LT
1523 }
1524
b0e380b1 1525 skb2->transport_header = skb2->network_header;
1da177e4 1526 skb2->pkt_type = PACKET_OUTGOING;
f2ccd8fa 1527 ptype->func(skb2, skb->dev, ptype, skb->dev);
1da177e4
LT
1528 }
1529 }
1530 rcu_read_unlock();
1531}
1532
56079431 1533
def82a1d 1534static inline void __netif_reschedule(struct Qdisc *q)
56079431 1535{
def82a1d
JP
1536 struct softnet_data *sd;
1537 unsigned long flags;
56079431 1538
def82a1d
JP
1539 local_irq_save(flags);
1540 sd = &__get_cpu_var(softnet_data);
1541 q->next_sched = sd->output_queue;
1542 sd->output_queue = q;
1543 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1544 local_irq_restore(flags);
1545}
1546
1547void __netif_schedule(struct Qdisc *q)
1548{
1549 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1550 __netif_reschedule(q);
56079431
DV
1551}
1552EXPORT_SYMBOL(__netif_schedule);
1553
bea3348e 1554void dev_kfree_skb_irq(struct sk_buff *skb)
56079431 1555{
bea3348e
SH
1556 if (atomic_dec_and_test(&skb->users)) {
1557 struct softnet_data *sd;
1558 unsigned long flags;
56079431 1559
bea3348e
SH
1560 local_irq_save(flags);
1561 sd = &__get_cpu_var(softnet_data);
1562 skb->next = sd->completion_queue;
1563 sd->completion_queue = skb;
1564 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1565 local_irq_restore(flags);
1566 }
56079431 1567}
bea3348e 1568EXPORT_SYMBOL(dev_kfree_skb_irq);
56079431
DV
1569
1570void dev_kfree_skb_any(struct sk_buff *skb)
1571{
1572 if (in_irq() || irqs_disabled())
1573 dev_kfree_skb_irq(skb);
1574 else
1575 dev_kfree_skb(skb);
1576}
1577EXPORT_SYMBOL(dev_kfree_skb_any);
1578
1579
bea3348e
SH
1580/**
1581 * netif_device_detach - mark device as removed
1582 * @dev: network device
1583 *
1584 * Mark device as removed from system and therefore no longer available.
1585 */
56079431
DV
1586void netif_device_detach(struct net_device *dev)
1587{
1588 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1589 netif_running(dev)) {
d543103a 1590 netif_tx_stop_all_queues(dev);
56079431
DV
1591 }
1592}
1593EXPORT_SYMBOL(netif_device_detach);
1594
bea3348e
SH
1595/**
1596 * netif_device_attach - mark device as attached
1597 * @dev: network device
1598 *
1599 * Mark device as attached from system and restart if needed.
1600 */
56079431
DV
1601void netif_device_attach(struct net_device *dev)
1602{
1603 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1604 netif_running(dev)) {
d543103a 1605 netif_tx_wake_all_queues(dev);
4ec93edb 1606 __netdev_watchdog_up(dev);
56079431
DV
1607 }
1608}
1609EXPORT_SYMBOL(netif_device_attach);
1610
6de329e2
BH
1611static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1612{
1613 return ((features & NETIF_F_GEN_CSUM) ||
1614 ((features & NETIF_F_IP_CSUM) &&
1615 protocol == htons(ETH_P_IP)) ||
1616 ((features & NETIF_F_IPV6_CSUM) &&
1c8dbcf6
YZ
1617 protocol == htons(ETH_P_IPV6)) ||
1618 ((features & NETIF_F_FCOE_CRC) &&
1619 protocol == htons(ETH_P_FCOE)));
6de329e2
BH
1620}
1621
1622static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1623{
1624 if (can_checksum_protocol(dev->features, skb->protocol))
1625 return true;
1626
1627 if (skb->protocol == htons(ETH_P_8021Q)) {
1628 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1629 if (can_checksum_protocol(dev->features & dev->vlan_features,
1630 veh->h_vlan_encapsulated_proto))
1631 return true;
1632 }
1633
1634 return false;
1635}
56079431 1636
8a83a00b
AB
1637/**
1638 * skb_dev_set -- assign a new device to a buffer
1639 * @skb: buffer for the new device
1640 * @dev: network device
1641 *
1642 * If an skb is owned by a device already, we have to reset
1643 * all data private to the namespace a device belongs to
1644 * before assigning it a new device.
1645 */
1646#ifdef CONFIG_NET_NS
1647void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1648{
1649 skb_dst_drop(skb);
1650 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1651 secpath_reset(skb);
1652 nf_reset(skb);
1653 skb_init_secmark(skb);
1654 skb->mark = 0;
1655 skb->priority = 0;
1656 skb->nf_trace = 0;
1657 skb->ipvs_property = 0;
1658#ifdef CONFIG_NET_SCHED
1659 skb->tc_index = 0;
1660#endif
1661 }
1662 skb->dev = dev;
1663}
1664EXPORT_SYMBOL(skb_set_dev);
1665#endif /* CONFIG_NET_NS */
1666
1da177e4
LT
1667/*
1668 * Invalidate hardware checksum when packet is to be mangled, and
1669 * complete checksum manually on outgoing path.
1670 */
84fa7933 1671int skb_checksum_help(struct sk_buff *skb)
1da177e4 1672{
d3bc23e7 1673 __wsum csum;
663ead3b 1674 int ret = 0, offset;
1da177e4 1675
84fa7933 1676 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
1677 goto out_set_summed;
1678
1679 if (unlikely(skb_shinfo(skb)->gso_size)) {
a430a43d
HX
1680 /* Let GSO fix up the checksum. */
1681 goto out_set_summed;
1da177e4
LT
1682 }
1683
a030847e
HX
1684 offset = skb->csum_start - skb_headroom(skb);
1685 BUG_ON(offset >= skb_headlen(skb));
1686 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1687
1688 offset += skb->csum_offset;
1689 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1690
1691 if (skb_cloned(skb) &&
1692 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
1693 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1694 if (ret)
1695 goto out;
1696 }
1697
a030847e 1698 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 1699out_set_summed:
1da177e4 1700 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 1701out:
1da177e4
LT
1702 return ret;
1703}
d1b19dff 1704EXPORT_SYMBOL(skb_checksum_help);
1da177e4 1705
f6a78bfc
HX
1706/**
1707 * skb_gso_segment - Perform segmentation on skb.
1708 * @skb: buffer to segment
576a30eb 1709 * @features: features for the output path (see dev->features)
f6a78bfc
HX
1710 *
1711 * This function segments the given skb and returns a list of segments.
576a30eb
HX
1712 *
1713 * It may return NULL if the skb requires no segmentation. This is
1714 * only possible when GSO is used for verifying header integrity.
f6a78bfc 1715 */
576a30eb 1716struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
f6a78bfc
HX
1717{
1718 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1719 struct packet_type *ptype;
252e3346 1720 __be16 type = skb->protocol;
a430a43d 1721 int err;
f6a78bfc 1722
459a98ed 1723 skb_reset_mac_header(skb);
b0e380b1 1724 skb->mac_len = skb->network_header - skb->mac_header;
f6a78bfc
HX
1725 __skb_pull(skb, skb->mac_len);
1726
67fd1a73
HX
1727 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1728 struct net_device *dev = skb->dev;
1729 struct ethtool_drvinfo info = {};
1730
1731 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1732 dev->ethtool_ops->get_drvinfo(dev, &info);
1733
1734 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1735 "ip_summed=%d",
1736 info.driver, dev ? dev->features : 0L,
1737 skb->sk ? skb->sk->sk_route_caps : 0L,
1738 skb->len, skb->data_len, skb->ip_summed);
1739
a430a43d
HX
1740 if (skb_header_cloned(skb) &&
1741 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1742 return ERR_PTR(err);
1743 }
1744
f6a78bfc 1745 rcu_read_lock();
82d8a867
PE
1746 list_for_each_entry_rcu(ptype,
1747 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
f6a78bfc 1748 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
84fa7933 1749 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
a430a43d
HX
1750 err = ptype->gso_send_check(skb);
1751 segs = ERR_PTR(err);
1752 if (err || skb_gso_ok(skb, features))
1753 break;
d56f90a7
ACM
1754 __skb_push(skb, (skb->data -
1755 skb_network_header(skb)));
a430a43d 1756 }
576a30eb 1757 segs = ptype->gso_segment(skb, features);
f6a78bfc
HX
1758 break;
1759 }
1760 }
1761 rcu_read_unlock();
1762
98e399f8 1763 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 1764
f6a78bfc
HX
1765 return segs;
1766}
f6a78bfc
HX
1767EXPORT_SYMBOL(skb_gso_segment);
1768
fb286bb2
HX
1769/* Take action when hardware reception checksum errors are detected. */
1770#ifdef CONFIG_BUG
1771void netdev_rx_csum_fault(struct net_device *dev)
1772{
1773 if (net_ratelimit()) {
4ec93edb 1774 printk(KERN_ERR "%s: hw csum failure.\n",
246a4212 1775 dev ? dev->name : "<unknown>");
fb286bb2
HX
1776 dump_stack();
1777 }
1778}
1779EXPORT_SYMBOL(netdev_rx_csum_fault);
1780#endif
1781
1da177e4
LT
1782/* Actually, we should eliminate this check as soon as we know, that:
1783 * 1. IOMMU is present and allows to map all the memory.
1784 * 2. No high memory really exists on this machine.
1785 */
1786
1787static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1788{
3d3a8533 1789#ifdef CONFIG_HIGHMEM
1da177e4
LT
1790 int i;
1791
1792 if (dev->features & NETIF_F_HIGHDMA)
1793 return 0;
1794
1795 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1796 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1797 return 1;
1798
3d3a8533 1799#endif
1da177e4
LT
1800 return 0;
1801}
1da177e4 1802
f6a78bfc
HX
1803struct dev_gso_cb {
1804 void (*destructor)(struct sk_buff *skb);
1805};
1806
1807#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1808
1809static void dev_gso_skb_destructor(struct sk_buff *skb)
1810{
1811 struct dev_gso_cb *cb;
1812
1813 do {
1814 struct sk_buff *nskb = skb->next;
1815
1816 skb->next = nskb->next;
1817 nskb->next = NULL;
1818 kfree_skb(nskb);
1819 } while (skb->next);
1820
1821 cb = DEV_GSO_CB(skb);
1822 if (cb->destructor)
1823 cb->destructor(skb);
1824}
1825
1826/**
1827 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1828 * @skb: buffer to segment
1829 *
1830 * This function segments the given skb and stores the list of segments
1831 * in skb->next.
1832 */
1833static int dev_gso_segment(struct sk_buff *skb)
1834{
1835 struct net_device *dev = skb->dev;
1836 struct sk_buff *segs;
576a30eb
HX
1837 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1838 NETIF_F_SG : 0);
1839
1840 segs = skb_gso_segment(skb, features);
1841
1842 /* Verifying header integrity only. */
1843 if (!segs)
1844 return 0;
f6a78bfc 1845
801678c5 1846 if (IS_ERR(segs))
f6a78bfc
HX
1847 return PTR_ERR(segs);
1848
1849 skb->next = segs;
1850 DEV_GSO_CB(skb)->destructor = skb->destructor;
1851 skb->destructor = dev_gso_skb_destructor;
1852
1853 return 0;
1854}
1855
fd2ea0a7
DM
1856int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1857 struct netdev_queue *txq)
f6a78bfc 1858{
00829823 1859 const struct net_device_ops *ops = dev->netdev_ops;
572a9d7b 1860 int rc = NETDEV_TX_OK;
00829823 1861
f6a78bfc 1862 if (likely(!skb->next)) {
9be9a6b9 1863 if (!list_empty(&ptype_all))
f6a78bfc
HX
1864 dev_queue_xmit_nit(skb, dev);
1865
576a30eb
HX
1866 if (netif_needs_gso(dev, skb)) {
1867 if (unlikely(dev_gso_segment(skb)))
1868 goto out_kfree_skb;
1869 if (skb->next)
1870 goto gso;
1871 }
f6a78bfc 1872
93f154b5
ED
1873 /*
1874 * If device doesnt need skb->dst, release it right now while
1875 * its hot in this cpu cache
1876 */
adf30907
ED
1877 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1878 skb_dst_drop(skb);
1879
ac45f602 1880 rc = ops->ndo_start_xmit(skb, dev);
ec634fe3 1881 if (rc == NETDEV_TX_OK)
08baf561 1882 txq_trans_update(txq);
ac45f602
PO
1883 /*
1884 * TODO: if skb_orphan() was called by
1885 * dev->hard_start_xmit() (for example, the unmodified
1886 * igb driver does that; bnx2 doesn't), then
1887 * skb_tx_software_timestamp() will be unable to send
1888 * back the time stamp.
1889 *
1890 * How can this be prevented? Always create another
1891 * reference to the socket before calling
1892 * dev->hard_start_xmit()? Prevent that skb_orphan()
1893 * does anything in dev->hard_start_xmit() by clearing
1894 * the skb destructor before the call and restoring it
1895 * afterwards, then doing the skb_orphan() ourselves?
1896 */
ac45f602 1897 return rc;
f6a78bfc
HX
1898 }
1899
576a30eb 1900gso:
f6a78bfc
HX
1901 do {
1902 struct sk_buff *nskb = skb->next;
f6a78bfc
HX
1903
1904 skb->next = nskb->next;
1905 nskb->next = NULL;
068a2de5
KK
1906
1907 /*
1908 * If device doesnt need nskb->dst, release it right now while
1909 * its hot in this cpu cache
1910 */
1911 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1912 skb_dst_drop(nskb);
1913
00829823 1914 rc = ops->ndo_start_xmit(nskb, dev);
ec634fe3 1915 if (unlikely(rc != NETDEV_TX_OK)) {
572a9d7b
PM
1916 if (rc & ~NETDEV_TX_MASK)
1917 goto out_kfree_gso_skb;
f54d9e8d 1918 nskb->next = skb->next;
f6a78bfc
HX
1919 skb->next = nskb;
1920 return rc;
1921 }
08baf561 1922 txq_trans_update(txq);
fd2ea0a7 1923 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
f54d9e8d 1924 return NETDEV_TX_BUSY;
f6a78bfc 1925 } while (skb->next);
4ec93edb 1926
572a9d7b
PM
1927out_kfree_gso_skb:
1928 if (likely(skb->next == NULL))
1929 skb->destructor = DEV_GSO_CB(skb)->destructor;
f6a78bfc
HX
1930out_kfree_skb:
1931 kfree_skb(skb);
572a9d7b 1932 return rc;
f6a78bfc
HX
1933}
1934
7019298a 1935static u32 skb_tx_hashrnd;
b6b2fed1 1936
9247744e 1937u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
8f0f2223 1938{
7019298a 1939 u32 hash;
b6b2fed1 1940
513de11b
DM
1941 if (skb_rx_queue_recorded(skb)) {
1942 hash = skb_get_rx_queue(skb);
d1b19dff 1943 while (unlikely(hash >= dev->real_num_tx_queues))
513de11b
DM
1944 hash -= dev->real_num_tx_queues;
1945 return hash;
1946 }
ec581f6a
ED
1947
1948 if (skb->sk && skb->sk->sk_hash)
7019298a 1949 hash = skb->sk->sk_hash;
ec581f6a 1950 else
7019298a 1951 hash = skb->protocol;
d5a9e24a 1952
7019298a 1953 hash = jhash_1word(hash, skb_tx_hashrnd);
b6b2fed1
DM
1954
1955 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
8f0f2223 1956}
9247744e 1957EXPORT_SYMBOL(skb_tx_hash);
8f0f2223 1958
ed04642f
ED
1959static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1960{
1961 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1962 if (net_ratelimit()) {
1963 WARN(1, "%s selects TX queue %d, but "
1964 "real number of TX queues is %d\n",
1965 dev->name, queue_index,
1966 dev->real_num_tx_queues);
1967 }
1968 return 0;
1969 }
1970 return queue_index;
1971}
1972
e8a0464c
DM
1973static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1974 struct sk_buff *skb)
1975{
a4ee3ce3
KK
1976 u16 queue_index;
1977 struct sock *sk = skb->sk;
1978
1979 if (sk_tx_queue_recorded(sk)) {
1980 queue_index = sk_tx_queue_get(sk);
1981 } else {
1982 const struct net_device_ops *ops = dev->netdev_ops;
1983
1984 if (ops->ndo_select_queue) {
1985 queue_index = ops->ndo_select_queue(dev, skb);
ed04642f 1986 queue_index = dev_cap_txqueue(dev, queue_index);
a4ee3ce3
KK
1987 } else {
1988 queue_index = 0;
1989 if (dev->real_num_tx_queues > 1)
1990 queue_index = skb_tx_hash(dev, skb);
fd2ea0a7 1991
a4ee3ce3
KK
1992 if (sk && sk->sk_dst_cache)
1993 sk_tx_queue_set(sk, queue_index);
1994 }
1995 }
eae792b7 1996
fd2ea0a7
DM
1997 skb_set_queue_mapping(skb, queue_index);
1998 return netdev_get_tx_queue(dev, queue_index);
e8a0464c
DM
1999}
2000
bbd8a0d3
KK
2001static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2002 struct net_device *dev,
2003 struct netdev_queue *txq)
2004{
2005 spinlock_t *root_lock = qdisc_lock(q);
2006 int rc;
2007
2008 spin_lock(root_lock);
2009 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2010 kfree_skb(skb);
2011 rc = NET_XMIT_DROP;
2012 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2013 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
2014 /*
2015 * This is a work-conserving queue; there are no old skbs
2016 * waiting to be sent out; and the qdisc is not running -
2017 * xmit the skb directly.
2018 */
2019 __qdisc_update_bstats(q, skb->len);
2020 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
2021 __qdisc_run(q);
2022 else
2023 clear_bit(__QDISC_STATE_RUNNING, &q->state);
2024
2025 rc = NET_XMIT_SUCCESS;
2026 } else {
2027 rc = qdisc_enqueue_root(skb, q);
2028 qdisc_run(q);
2029 }
2030 spin_unlock(root_lock);
2031
2032 return rc;
2033}
2034
4b258461
KK
2035/*
2036 * Returns true if either:
2037 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2038 * 2. skb is fragmented and the device does not support SG, or if
2039 * at least one of fragments is in highmem and device does not
2040 * support DMA from it.
2041 */
2042static inline int skb_needs_linearize(struct sk_buff *skb,
2043 struct net_device *dev)
2044{
2045 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2046 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2047 illegal_highdma(dev, skb)));
2048}
2049
d29f749e
DJ
2050/**
2051 * dev_queue_xmit - transmit a buffer
2052 * @skb: buffer to transmit
2053 *
2054 * Queue a buffer for transmission to a network device. The caller must
2055 * have set the device and priority and built the buffer before calling
2056 * this function. The function can be called from an interrupt.
2057 *
2058 * A negative errno code is returned on a failure. A success does not
2059 * guarantee the frame will be transmitted as it may be dropped due
2060 * to congestion or traffic shaping.
2061 *
2062 * -----------------------------------------------------------------------------------
2063 * I notice this method can also return errors from the queue disciplines,
2064 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2065 * be positive.
2066 *
2067 * Regardless of the return value, the skb is consumed, so it is currently
2068 * difficult to retry a send to this method. (You can bump the ref count
2069 * before sending to hold a reference for retry if you are careful.)
2070 *
2071 * When calling this method, interrupts MUST be enabled. This is because
2072 * the BH enable code must have IRQs enabled so that it will not deadlock.
2073 * --BLG
2074 */
1da177e4
LT
2075int dev_queue_xmit(struct sk_buff *skb)
2076{
2077 struct net_device *dev = skb->dev;
dc2b4847 2078 struct netdev_queue *txq;
1da177e4
LT
2079 struct Qdisc *q;
2080 int rc = -ENOMEM;
2081
f6a78bfc
HX
2082 /* GSO will handle the following emulations directly. */
2083 if (netif_needs_gso(dev, skb))
2084 goto gso;
2085
4b258461
KK
2086 /* Convert a paged skb to linear, if required */
2087 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
1da177e4
LT
2088 goto out_kfree_skb;
2089
2090 /* If packet is not checksummed and device does not support
2091 * checksumming for this protocol, complete checksumming here.
2092 */
663ead3b
HX
2093 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2094 skb_set_transport_header(skb, skb->csum_start -
2095 skb_headroom(skb));
6de329e2
BH
2096 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2097 goto out_kfree_skb;
663ead3b 2098 }
1da177e4 2099
f6a78bfc 2100gso:
4ec93edb
YH
2101 /* Disable soft irqs for various locks below. Also
2102 * stops preemption for RCU.
1da177e4 2103 */
4ec93edb 2104 rcu_read_lock_bh();
1da177e4 2105
eae792b7 2106 txq = dev_pick_tx(dev, skb);
a898def2 2107 q = rcu_dereference_bh(txq->qdisc);
37437bb2 2108
1da177e4 2109#ifdef CONFIG_NET_CLS_ACT
d1b19dff 2110 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
1da177e4
LT
2111#endif
2112 if (q->enqueue) {
bbd8a0d3 2113 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 2114 goto out;
1da177e4
LT
2115 }
2116
2117 /* The device has no queue. Common case for software devices:
2118 loopback, all the sorts of tunnels...
2119
932ff279
HX
2120 Really, it is unlikely that netif_tx_lock protection is necessary
2121 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
2122 counters.)
2123 However, it is possible, that they rely on protection
2124 made by us here.
2125
2126 Check this and shot the lock. It is not prone from deadlocks.
2127 Either shot noqueue qdisc, it is even simpler 8)
2128 */
2129 if (dev->flags & IFF_UP) {
2130 int cpu = smp_processor_id(); /* ok because BHs are off */
2131
c773e847 2132 if (txq->xmit_lock_owner != cpu) {
1da177e4 2133
c773e847 2134 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 2135
fd2ea0a7 2136 if (!netif_tx_queue_stopped(txq)) {
572a9d7b
PM
2137 rc = dev_hard_start_xmit(skb, dev, txq);
2138 if (dev_xmit_complete(rc)) {
c773e847 2139 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
2140 goto out;
2141 }
2142 }
c773e847 2143 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
2144 if (net_ratelimit())
2145 printk(KERN_CRIT "Virtual device %s asks to "
2146 "queue packet!\n", dev->name);
2147 } else {
2148 /* Recursion is detected! It is possible,
2149 * unfortunately */
2150 if (net_ratelimit())
2151 printk(KERN_CRIT "Dead loop on virtual device "
2152 "%s, fix it urgently!\n", dev->name);
2153 }
2154 }
2155
2156 rc = -ENETDOWN;
d4828d85 2157 rcu_read_unlock_bh();
1da177e4
LT
2158
2159out_kfree_skb:
2160 kfree_skb(skb);
2161 return rc;
2162out:
d4828d85 2163 rcu_read_unlock_bh();
1da177e4
LT
2164 return rc;
2165}
d1b19dff 2166EXPORT_SYMBOL(dev_queue_xmit);
1da177e4
LT
2167
2168
2169/*=======================================================================
2170 Receiver routines
2171 =======================================================================*/
2172
6b2bedc3
SH
2173int netdev_max_backlog __read_mostly = 1000;
2174int netdev_budget __read_mostly = 300;
2175int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4
LT
2176
2177DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
2178
2179
1da177e4
LT
2180/**
2181 * netif_rx - post buffer to the network code
2182 * @skb: buffer to post
2183 *
2184 * This function receives a packet from a device driver and queues it for
2185 * the upper (protocol) levels to process. It always succeeds. The buffer
2186 * may be dropped during processing for congestion control or by the
2187 * protocol layers.
2188 *
2189 * return values:
2190 * NET_RX_SUCCESS (no congestion)
1da177e4
LT
2191 * NET_RX_DROP (packet was dropped)
2192 *
2193 */
2194
2195int netif_rx(struct sk_buff *skb)
2196{
1da177e4
LT
2197 struct softnet_data *queue;
2198 unsigned long flags;
2199
2200 /* if netpoll wants it, pretend we never saw it */
2201 if (netpoll_rx(skb))
2202 return NET_RX_DROP;
2203
b7aa0bf7 2204 if (!skb->tstamp.tv64)
a61bbcf2 2205 net_timestamp(skb);
1da177e4
LT
2206
2207 /*
2208 * The code is rearranged so that the path is the most
2209 * short when CPU is congested, but is still operating.
2210 */
2211 local_irq_save(flags);
1da177e4
LT
2212 queue = &__get_cpu_var(softnet_data);
2213
2214 __get_cpu_var(netdev_rx_stat).total++;
2215 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
2216 if (queue->input_pkt_queue.qlen) {
1da177e4 2217enqueue:
1da177e4 2218 __skb_queue_tail(&queue->input_pkt_queue, skb);
1da177e4 2219 local_irq_restore(flags);
34008d8c 2220 return NET_RX_SUCCESS;
1da177e4
LT
2221 }
2222
bea3348e 2223 napi_schedule(&queue->backlog);
1da177e4
LT
2224 goto enqueue;
2225 }
2226
1da177e4
LT
2227 __get_cpu_var(netdev_rx_stat).dropped++;
2228 local_irq_restore(flags);
2229
2230 kfree_skb(skb);
2231 return NET_RX_DROP;
2232}
d1b19dff 2233EXPORT_SYMBOL(netif_rx);
1da177e4
LT
2234
2235int netif_rx_ni(struct sk_buff *skb)
2236{
2237 int err;
2238
2239 preempt_disable();
2240 err = netif_rx(skb);
2241 if (local_softirq_pending())
2242 do_softirq();
2243 preempt_enable();
2244
2245 return err;
2246}
1da177e4
LT
2247EXPORT_SYMBOL(netif_rx_ni);
2248
1da177e4
LT
2249static void net_tx_action(struct softirq_action *h)
2250{
2251 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2252
2253 if (sd->completion_queue) {
2254 struct sk_buff *clist;
2255
2256 local_irq_disable();
2257 clist = sd->completion_queue;
2258 sd->completion_queue = NULL;
2259 local_irq_enable();
2260
2261 while (clist) {
2262 struct sk_buff *skb = clist;
2263 clist = clist->next;
2264
547b792c 2265 WARN_ON(atomic_read(&skb->users));
1da177e4
LT
2266 __kfree_skb(skb);
2267 }
2268 }
2269
2270 if (sd->output_queue) {
37437bb2 2271 struct Qdisc *head;
1da177e4
LT
2272
2273 local_irq_disable();
2274 head = sd->output_queue;
2275 sd->output_queue = NULL;
2276 local_irq_enable();
2277
2278 while (head) {
37437bb2
DM
2279 struct Qdisc *q = head;
2280 spinlock_t *root_lock;
2281
1da177e4
LT
2282 head = head->next_sched;
2283
5fb66229 2284 root_lock = qdisc_lock(q);
37437bb2 2285 if (spin_trylock(root_lock)) {
def82a1d
JP
2286 smp_mb__before_clear_bit();
2287 clear_bit(__QDISC_STATE_SCHED,
2288 &q->state);
37437bb2
DM
2289 qdisc_run(q);
2290 spin_unlock(root_lock);
1da177e4 2291 } else {
195648bb 2292 if (!test_bit(__QDISC_STATE_DEACTIVATED,
e8a83e10 2293 &q->state)) {
195648bb 2294 __netif_reschedule(q);
e8a83e10
JP
2295 } else {
2296 smp_mb__before_clear_bit();
2297 clear_bit(__QDISC_STATE_SCHED,
2298 &q->state);
2299 }
1da177e4
LT
2300 }
2301 }
2302 }
2303}
2304
6f05f629
SH
2305static inline int deliver_skb(struct sk_buff *skb,
2306 struct packet_type *pt_prev,
2307 struct net_device *orig_dev)
1da177e4
LT
2308{
2309 atomic_inc(&skb->users);
f2ccd8fa 2310 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4
LT
2311}
2312
2313#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
da678292
MM
2314
2315#if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2316/* This hook is defined here for ATM LANE */
2317int (*br_fdb_test_addr_hook)(struct net_device *dev,
2318 unsigned char *addr) __read_mostly;
4fb019a0 2319EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 2320#endif
1da177e4 2321
6229e362
SH
2322/*
2323 * If bridge module is loaded call bridging hook.
2324 * returns NULL if packet was consumed.
2325 */
2326struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2327 struct sk_buff *skb) __read_mostly;
4fb019a0 2328EXPORT_SYMBOL_GPL(br_handle_frame_hook);
da678292 2329
6229e362
SH
2330static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2331 struct packet_type **pt_prev, int *ret,
2332 struct net_device *orig_dev)
1da177e4
LT
2333{
2334 struct net_bridge_port *port;
2335
6229e362
SH
2336 if (skb->pkt_type == PACKET_LOOPBACK ||
2337 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2338 return skb;
1da177e4
LT
2339
2340 if (*pt_prev) {
6229e362 2341 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1da177e4 2342 *pt_prev = NULL;
4ec93edb
YH
2343 }
2344
6229e362 2345 return br_handle_frame_hook(port, skb);
1da177e4
LT
2346}
2347#else
6229e362 2348#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
1da177e4
LT
2349#endif
2350
b863ceb7
PM
2351#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2352struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2353EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2354
2355static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2356 struct packet_type **pt_prev,
2357 int *ret,
2358 struct net_device *orig_dev)
2359{
2360 if (skb->dev->macvlan_port == NULL)
2361 return skb;
2362
2363 if (*pt_prev) {
2364 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2365 *pt_prev = NULL;
2366 }
2367 return macvlan_handle_frame_hook(skb);
2368}
2369#else
2370#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2371#endif
2372
1da177e4
LT
2373#ifdef CONFIG_NET_CLS_ACT
2374/* TODO: Maybe we should just force sch_ingress to be compiled in
2375 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2376 * a compare and 2 stores extra right now if we dont have it on
2377 * but have CONFIG_NET_CLS_ACT
4ec93edb 2378 * NOTE: This doesnt stop any functionality; if you dont have
1da177e4
LT
2379 * the ingress scheduler, you just cant add policies on ingress.
2380 *
2381 */
4ec93edb 2382static int ing_filter(struct sk_buff *skb)
1da177e4 2383{
1da177e4 2384 struct net_device *dev = skb->dev;
f697c3e8 2385 u32 ttl = G_TC_RTTL(skb->tc_verd);
555353cf
DM
2386 struct netdev_queue *rxq;
2387 int result = TC_ACT_OK;
2388 struct Qdisc *q;
4ec93edb 2389
f697c3e8
HX
2390 if (MAX_RED_LOOP < ttl++) {
2391 printk(KERN_WARNING
2392 "Redir loop detected Dropping packet (%d->%d)\n",
8964be4a 2393 skb->skb_iif, dev->ifindex);
f697c3e8
HX
2394 return TC_ACT_SHOT;
2395 }
1da177e4 2396
f697c3e8
HX
2397 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2398 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
1da177e4 2399
555353cf
DM
2400 rxq = &dev->rx_queue;
2401
83874000 2402 q = rxq->qdisc;
8d50b53d 2403 if (q != &noop_qdisc) {
83874000 2404 spin_lock(qdisc_lock(q));
a9312ae8
DM
2405 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2406 result = qdisc_enqueue_root(skb, q);
83874000
DM
2407 spin_unlock(qdisc_lock(q));
2408 }
f697c3e8
HX
2409
2410 return result;
2411}
86e65da9 2412
f697c3e8
HX
2413static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2414 struct packet_type **pt_prev,
2415 int *ret, struct net_device *orig_dev)
2416{
8d50b53d 2417 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
f697c3e8 2418 goto out;
1da177e4 2419
f697c3e8
HX
2420 if (*pt_prev) {
2421 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2422 *pt_prev = NULL;
2423 } else {
2424 /* Huh? Why does turning on AF_PACKET affect this? */
2425 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
1da177e4
LT
2426 }
2427
f697c3e8
HX
2428 switch (ing_filter(skb)) {
2429 case TC_ACT_SHOT:
2430 case TC_ACT_STOLEN:
2431 kfree_skb(skb);
2432 return NULL;
2433 }
2434
2435out:
2436 skb->tc_verd = 0;
2437 return skb;
1da177e4
LT
2438}
2439#endif
2440
bc1d0411
PM
2441/*
2442 * netif_nit_deliver - deliver received packets to network taps
2443 * @skb: buffer
2444 *
2445 * This function is used to deliver incoming packets to network
2446 * taps. It should be used when the normal netif_receive_skb path
2447 * is bypassed, for example because of VLAN acceleration.
2448 */
2449void netif_nit_deliver(struct sk_buff *skb)
2450{
2451 struct packet_type *ptype;
2452
2453 if (list_empty(&ptype_all))
2454 return;
2455
2456 skb_reset_network_header(skb);
2457 skb_reset_transport_header(skb);
2458 skb->mac_len = skb->network_header - skb->mac_header;
2459
2460 rcu_read_lock();
2461 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2462 if (!ptype->dev || ptype->dev == skb->dev)
2463 deliver_skb(skb, ptype, skb->dev);
2464 }
2465 rcu_read_unlock();
2466}
2467
3b582cc1
SH
2468/**
2469 * netif_receive_skb - process receive buffer from network
2470 * @skb: buffer to process
2471 *
2472 * netif_receive_skb() is the main receive data processing function.
2473 * It always succeeds. The buffer may be dropped during processing
2474 * for congestion control or by the protocol layers.
2475 *
2476 * This function may only be called from softirq context and interrupts
2477 * should be enabled.
2478 *
2479 * Return values (usually ignored):
2480 * NET_RX_SUCCESS: no congestion
2481 * NET_RX_DROP: packet was dropped
2482 */
1da177e4
LT
2483int netif_receive_skb(struct sk_buff *skb)
2484{
2485 struct packet_type *ptype, *pt_prev;
f2ccd8fa 2486 struct net_device *orig_dev;
0641e4fb 2487 struct net_device *master;
0d7a3681 2488 struct net_device *null_or_orig;
ca8d9ea3 2489 struct net_device *null_or_bond;
1da177e4 2490 int ret = NET_RX_DROP;
252e3346 2491 __be16 type;
1da177e4 2492
81bbb3d4
ED
2493 if (!skb->tstamp.tv64)
2494 net_timestamp(skb);
2495
05423b24 2496 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
9b22ea56
PM
2497 return NET_RX_SUCCESS;
2498
1da177e4 2499 /* if we've gotten here through NAPI, check netpoll */
bea3348e 2500 if (netpoll_receive_skb(skb))
1da177e4
LT
2501 return NET_RX_DROP;
2502
8964be4a
ED
2503 if (!skb->skb_iif)
2504 skb->skb_iif = skb->dev->ifindex;
86e65da9 2505
0d7a3681 2506 null_or_orig = NULL;
cc9bd5ce 2507 orig_dev = skb->dev;
0641e4fb
ED
2508 master = ACCESS_ONCE(orig_dev->master);
2509 if (master) {
2510 if (skb_bond_should_drop(skb, master))
0d7a3681
JE
2511 null_or_orig = orig_dev; /* deliver only exact match */
2512 else
0641e4fb 2513 skb->dev = master;
cc9bd5ce 2514 }
8f903c70 2515
1da177e4
LT
2516 __get_cpu_var(netdev_rx_stat).total++;
2517
c1d2bbe1 2518 skb_reset_network_header(skb);
badff6d0 2519 skb_reset_transport_header(skb);
b0e380b1 2520 skb->mac_len = skb->network_header - skb->mac_header;
1da177e4
LT
2521
2522 pt_prev = NULL;
2523
2524 rcu_read_lock();
2525
2526#ifdef CONFIG_NET_CLS_ACT
2527 if (skb->tc_verd & TC_NCLS) {
2528 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2529 goto ncls;
2530 }
2531#endif
2532
2533 list_for_each_entry_rcu(ptype, &ptype_all, list) {
f982307f
JE
2534 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2535 ptype->dev == orig_dev) {
4ec93edb 2536 if (pt_prev)
f2ccd8fa 2537 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
2538 pt_prev = ptype;
2539 }
2540 }
2541
2542#ifdef CONFIG_NET_CLS_ACT
f697c3e8
HX
2543 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2544 if (!skb)
1da177e4 2545 goto out;
1da177e4
LT
2546ncls:
2547#endif
2548
6229e362 2549 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
b863ceb7
PM
2550 if (!skb)
2551 goto out;
2552 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
6229e362 2553 if (!skb)
1da177e4
LT
2554 goto out;
2555
1f3c8804
AG
2556 /*
2557 * Make sure frames received on VLAN interfaces stacked on
2558 * bonding interfaces still make their way to any base bonding
2559 * device that may have registered for a specific ptype. The
2560 * handler may have to adjust skb->dev and orig_dev.
1f3c8804 2561 */
ca8d9ea3 2562 null_or_bond = NULL;
1f3c8804
AG
2563 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2564 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
ca8d9ea3 2565 null_or_bond = vlan_dev_real_dev(skb->dev);
1f3c8804
AG
2566 }
2567
1da177e4 2568 type = skb->protocol;
82d8a867
PE
2569 list_for_each_entry_rcu(ptype,
2570 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1f3c8804 2571 if (ptype->type == type && (ptype->dev == null_or_orig ||
ca8d9ea3
AG
2572 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2573 ptype->dev == null_or_bond)) {
4ec93edb 2574 if (pt_prev)
f2ccd8fa 2575 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
2576 pt_prev = ptype;
2577 }
2578 }
2579
2580 if (pt_prev) {
f2ccd8fa 2581 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4
LT
2582 } else {
2583 kfree_skb(skb);
2584 /* Jamal, now you will not able to escape explaining
2585 * me how you were going to use this. :-)
2586 */
2587 ret = NET_RX_DROP;
2588 }
2589
2590out:
2591 rcu_read_unlock();
2592 return ret;
2593}
d1b19dff 2594EXPORT_SYMBOL(netif_receive_skb);
1da177e4 2595
6e583ce5
SH
2596/* Network device is going away, flush any packets still pending */
2597static void flush_backlog(void *arg)
2598{
2599 struct net_device *dev = arg;
2600 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2601 struct sk_buff *skb, *tmp;
2602
2603 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2604 if (skb->dev == dev) {
2605 __skb_unlink(skb, &queue->input_pkt_queue);
2606 kfree_skb(skb);
2607 }
2608}
2609
d565b0a1
HX
2610static int napi_gro_complete(struct sk_buff *skb)
2611{
2612 struct packet_type *ptype;
2613 __be16 type = skb->protocol;
2614 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2615 int err = -ENOENT;
2616
fc59f9a3
HX
2617 if (NAPI_GRO_CB(skb)->count == 1) {
2618 skb_shinfo(skb)->gso_size = 0;
d565b0a1 2619 goto out;
fc59f9a3 2620 }
d565b0a1
HX
2621
2622 rcu_read_lock();
2623 list_for_each_entry_rcu(ptype, head, list) {
2624 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2625 continue;
2626
2627 err = ptype->gro_complete(skb);
2628 break;
2629 }
2630 rcu_read_unlock();
2631
2632 if (err) {
2633 WARN_ON(&ptype->list == head);
2634 kfree_skb(skb);
2635 return NET_RX_SUCCESS;
2636 }
2637
2638out:
d565b0a1
HX
2639 return netif_receive_skb(skb);
2640}
2641
11380a4b 2642static void napi_gro_flush(struct napi_struct *napi)
d565b0a1
HX
2643{
2644 struct sk_buff *skb, *next;
2645
2646 for (skb = napi->gro_list; skb; skb = next) {
2647 next = skb->next;
2648 skb->next = NULL;
2649 napi_gro_complete(skb);
2650 }
2651
4ae5544f 2652 napi->gro_count = 0;
d565b0a1
HX
2653 napi->gro_list = NULL;
2654}
d565b0a1 2655
5b252f0c 2656enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
2657{
2658 struct sk_buff **pp = NULL;
2659 struct packet_type *ptype;
2660 __be16 type = skb->protocol;
2661 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
0da2afd5 2662 int same_flow;
d565b0a1 2663 int mac_len;
5b252f0c 2664 enum gro_result ret;
d565b0a1
HX
2665
2666 if (!(skb->dev->features & NETIF_F_GRO))
2667 goto normal;
2668
4cf704fb 2669 if (skb_is_gso(skb) || skb_has_frags(skb))
f17f5c91
HX
2670 goto normal;
2671
d565b0a1
HX
2672 rcu_read_lock();
2673 list_for_each_entry_rcu(ptype, head, list) {
d565b0a1
HX
2674 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2675 continue;
2676
86911732 2677 skb_set_network_header(skb, skb_gro_offset(skb));
d565b0a1
HX
2678 mac_len = skb->network_header - skb->mac_header;
2679 skb->mac_len = mac_len;
2680 NAPI_GRO_CB(skb)->same_flow = 0;
2681 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 2682 NAPI_GRO_CB(skb)->free = 0;
d565b0a1 2683
d565b0a1
HX
2684 pp = ptype->gro_receive(&napi->gro_list, skb);
2685 break;
2686 }
2687 rcu_read_unlock();
2688
2689 if (&ptype->list == head)
2690 goto normal;
2691
0da2afd5 2692 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 2693 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 2694
d565b0a1
HX
2695 if (pp) {
2696 struct sk_buff *nskb = *pp;
2697
2698 *pp = nskb->next;
2699 nskb->next = NULL;
2700 napi_gro_complete(nskb);
4ae5544f 2701 napi->gro_count--;
d565b0a1
HX
2702 }
2703
0da2afd5 2704 if (same_flow)
d565b0a1
HX
2705 goto ok;
2706
4ae5544f 2707 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
d565b0a1 2708 goto normal;
d565b0a1 2709
4ae5544f 2710 napi->gro_count++;
d565b0a1 2711 NAPI_GRO_CB(skb)->count = 1;
86911732 2712 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
2713 skb->next = napi->gro_list;
2714 napi->gro_list = skb;
5d0d9be8 2715 ret = GRO_HELD;
d565b0a1 2716
ad0f9904 2717pull:
cb18978c
HX
2718 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2719 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2720
2721 BUG_ON(skb->end - skb->tail < grow);
2722
2723 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2724
2725 skb->tail += grow;
2726 skb->data_len -= grow;
2727
2728 skb_shinfo(skb)->frags[0].page_offset += grow;
2729 skb_shinfo(skb)->frags[0].size -= grow;
2730
2731 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2732 put_page(skb_shinfo(skb)->frags[0].page);
2733 memmove(skb_shinfo(skb)->frags,
2734 skb_shinfo(skb)->frags + 1,
2735 --skb_shinfo(skb)->nr_frags);
2736 }
ad0f9904
HX
2737 }
2738
d565b0a1 2739ok:
5d0d9be8 2740 return ret;
d565b0a1
HX
2741
2742normal:
ad0f9904
HX
2743 ret = GRO_NORMAL;
2744 goto pull;
5d38a079 2745}
96e93eab
HX
2746EXPORT_SYMBOL(dev_gro_receive);
2747
5b252f0c
BH
2748static gro_result_t
2749__napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
96e93eab
HX
2750{
2751 struct sk_buff *p;
2752
d1c76af9
HX
2753 if (netpoll_rx_on(skb))
2754 return GRO_NORMAL;
2755
96e93eab 2756 for (p = napi->gro_list; p; p = p->next) {
f64f9e71
JP
2757 NAPI_GRO_CB(p)->same_flow =
2758 (p->dev == skb->dev) &&
2759 !compare_ether_header(skb_mac_header(p),
2760 skb_gro_mac_header(skb));
96e93eab
HX
2761 NAPI_GRO_CB(p)->flush = 0;
2762 }
2763
2764 return dev_gro_receive(napi, skb);
2765}
5d38a079 2766
c7c4b3b6 2767gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 2768{
5d0d9be8
HX
2769 switch (ret) {
2770 case GRO_NORMAL:
c7c4b3b6
BH
2771 if (netif_receive_skb(skb))
2772 ret = GRO_DROP;
2773 break;
5d38a079 2774
5d0d9be8 2775 case GRO_DROP:
5d0d9be8 2776 case GRO_MERGED_FREE:
5d38a079
HX
2777 kfree_skb(skb);
2778 break;
5b252f0c
BH
2779
2780 case GRO_HELD:
2781 case GRO_MERGED:
2782 break;
5d38a079
HX
2783 }
2784
c7c4b3b6 2785 return ret;
5d0d9be8
HX
2786}
2787EXPORT_SYMBOL(napi_skb_finish);
2788
78a478d0
HX
2789void skb_gro_reset_offset(struct sk_buff *skb)
2790{
2791 NAPI_GRO_CB(skb)->data_offset = 0;
2792 NAPI_GRO_CB(skb)->frag0 = NULL;
7489594c 2793 NAPI_GRO_CB(skb)->frag0_len = 0;
78a478d0 2794
78d3fd0b 2795 if (skb->mac_header == skb->tail &&
7489594c 2796 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
78a478d0
HX
2797 NAPI_GRO_CB(skb)->frag0 =
2798 page_address(skb_shinfo(skb)->frags[0].page) +
2799 skb_shinfo(skb)->frags[0].page_offset;
7489594c
HX
2800 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2801 }
78a478d0
HX
2802}
2803EXPORT_SYMBOL(skb_gro_reset_offset);
2804
c7c4b3b6 2805gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 2806{
86911732
HX
2807 skb_gro_reset_offset(skb);
2808
5d0d9be8 2809 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
d565b0a1
HX
2810}
2811EXPORT_SYMBOL(napi_gro_receive);
2812
96e93eab
HX
2813void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2814{
96e93eab
HX
2815 __skb_pull(skb, skb_headlen(skb));
2816 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2817
2818 napi->skb = skb;
2819}
2820EXPORT_SYMBOL(napi_reuse_skb);
2821
76620aaf 2822struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 2823{
5d38a079 2824 struct sk_buff *skb = napi->skb;
5d38a079
HX
2825
2826 if (!skb) {
89d71a66
ED
2827 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
2828 if (skb)
2829 napi->skb = skb;
80595d59 2830 }
96e93eab
HX
2831 return skb;
2832}
76620aaf 2833EXPORT_SYMBOL(napi_get_frags);
96e93eab 2834
c7c4b3b6
BH
2835gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
2836 gro_result_t ret)
96e93eab 2837{
5d0d9be8
HX
2838 switch (ret) {
2839 case GRO_NORMAL:
86911732 2840 case GRO_HELD:
e76b69cc 2841 skb->protocol = eth_type_trans(skb, skb->dev);
86911732 2842
c7c4b3b6
BH
2843 if (ret == GRO_HELD)
2844 skb_gro_pull(skb, -ETH_HLEN);
2845 else if (netif_receive_skb(skb))
2846 ret = GRO_DROP;
86911732 2847 break;
5d38a079 2848
5d0d9be8 2849 case GRO_DROP:
5d0d9be8
HX
2850 case GRO_MERGED_FREE:
2851 napi_reuse_skb(napi, skb);
2852 break;
5b252f0c
BH
2853
2854 case GRO_MERGED:
2855 break;
5d0d9be8 2856 }
5d38a079 2857
c7c4b3b6 2858 return ret;
5d38a079 2859}
5d0d9be8
HX
2860EXPORT_SYMBOL(napi_frags_finish);
2861
76620aaf
HX
2862struct sk_buff *napi_frags_skb(struct napi_struct *napi)
2863{
2864 struct sk_buff *skb = napi->skb;
2865 struct ethhdr *eth;
a5b1cf28
HX
2866 unsigned int hlen;
2867 unsigned int off;
76620aaf
HX
2868
2869 napi->skb = NULL;
2870
2871 skb_reset_mac_header(skb);
2872 skb_gro_reset_offset(skb);
2873
a5b1cf28
HX
2874 off = skb_gro_offset(skb);
2875 hlen = off + sizeof(*eth);
2876 eth = skb_gro_header_fast(skb, off);
2877 if (skb_gro_header_hard(skb, hlen)) {
2878 eth = skb_gro_header_slow(skb, hlen, off);
2879 if (unlikely(!eth)) {
2880 napi_reuse_skb(napi, skb);
2881 skb = NULL;
2882 goto out;
2883 }
76620aaf
HX
2884 }
2885
2886 skb_gro_pull(skb, sizeof(*eth));
2887
2888 /*
2889 * This works because the only protocols we care about don't require
2890 * special handling. We'll fix it up properly at the end.
2891 */
2892 skb->protocol = eth->h_proto;
2893
2894out:
2895 return skb;
2896}
2897EXPORT_SYMBOL(napi_frags_skb);
2898
c7c4b3b6 2899gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 2900{
76620aaf 2901 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
2902
2903 if (!skb)
c7c4b3b6 2904 return GRO_DROP;
5d0d9be8
HX
2905
2906 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
2907}
5d38a079
HX
2908EXPORT_SYMBOL(napi_gro_frags);
2909
bea3348e 2910static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
2911{
2912 int work = 0;
1da177e4
LT
2913 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2914 unsigned long start_time = jiffies;
2915
bea3348e
SH
2916 napi->weight = weight_p;
2917 do {
1da177e4 2918 struct sk_buff *skb;
1da177e4
LT
2919
2920 local_irq_disable();
2921 skb = __skb_dequeue(&queue->input_pkt_queue);
bea3348e 2922 if (!skb) {
8f1ead2d 2923 __napi_complete(napi);
bea3348e 2924 local_irq_enable();
8f1ead2d 2925 break;
bea3348e 2926 }
1da177e4
LT
2927 local_irq_enable();
2928
8f1ead2d 2929 netif_receive_skb(skb);
bea3348e 2930 } while (++work < quota && jiffies == start_time);
1da177e4 2931
bea3348e
SH
2932 return work;
2933}
1da177e4 2934
bea3348e
SH
2935/**
2936 * __napi_schedule - schedule for receive
c4ea43c5 2937 * @n: entry to schedule
bea3348e
SH
2938 *
2939 * The entry's receive function will be scheduled to run
2940 */
b5606c2d 2941void __napi_schedule(struct napi_struct *n)
bea3348e
SH
2942{
2943 unsigned long flags;
1da177e4 2944
bea3348e
SH
2945 local_irq_save(flags);
2946 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2947 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2948 local_irq_restore(flags);
1da177e4 2949}
bea3348e
SH
2950EXPORT_SYMBOL(__napi_schedule);
2951
d565b0a1
HX
2952void __napi_complete(struct napi_struct *n)
2953{
2954 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
2955 BUG_ON(n->gro_list);
2956
2957 list_del(&n->poll_list);
2958 smp_mb__before_clear_bit();
2959 clear_bit(NAPI_STATE_SCHED, &n->state);
2960}
2961EXPORT_SYMBOL(__napi_complete);
2962
2963void napi_complete(struct napi_struct *n)
2964{
2965 unsigned long flags;
2966
2967 /*
2968 * don't let napi dequeue from the cpu poll list
2969 * just in case its running on a different cpu
2970 */
2971 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
2972 return;
2973
2974 napi_gro_flush(n);
2975 local_irq_save(flags);
2976 __napi_complete(n);
2977 local_irq_restore(flags);
2978}
2979EXPORT_SYMBOL(napi_complete);
2980
2981void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2982 int (*poll)(struct napi_struct *, int), int weight)
2983{
2984 INIT_LIST_HEAD(&napi->poll_list);
4ae5544f 2985 napi->gro_count = 0;
d565b0a1 2986 napi->gro_list = NULL;
5d38a079 2987 napi->skb = NULL;
d565b0a1
HX
2988 napi->poll = poll;
2989 napi->weight = weight;
2990 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 2991 napi->dev = dev;
5d38a079 2992#ifdef CONFIG_NETPOLL
d565b0a1
HX
2993 spin_lock_init(&napi->poll_lock);
2994 napi->poll_owner = -1;
2995#endif
2996 set_bit(NAPI_STATE_SCHED, &napi->state);
2997}
2998EXPORT_SYMBOL(netif_napi_add);
2999
3000void netif_napi_del(struct napi_struct *napi)
3001{
3002 struct sk_buff *skb, *next;
3003
d7b06636 3004 list_del_init(&napi->dev_list);
76620aaf 3005 napi_free_frags(napi);
d565b0a1
HX
3006
3007 for (skb = napi->gro_list; skb; skb = next) {
3008 next = skb->next;
3009 skb->next = NULL;
3010 kfree_skb(skb);
3011 }
3012
3013 napi->gro_list = NULL;
4ae5544f 3014 napi->gro_count = 0;
d565b0a1
HX
3015}
3016EXPORT_SYMBOL(netif_napi_del);
3017
1da177e4
LT
3018
3019static void net_rx_action(struct softirq_action *h)
3020{
bea3348e 3021 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
24f8b238 3022 unsigned long time_limit = jiffies + 2;
51b0bded 3023 int budget = netdev_budget;
53fb95d3
MM
3024 void *have;
3025
1da177e4
LT
3026 local_irq_disable();
3027
bea3348e
SH
3028 while (!list_empty(list)) {
3029 struct napi_struct *n;
3030 int work, weight;
1da177e4 3031
bea3348e 3032 /* If softirq window is exhuasted then punt.
24f8b238
SH
3033 * Allow this to run for 2 jiffies since which will allow
3034 * an average latency of 1.5/HZ.
bea3348e 3035 */
24f8b238 3036 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
1da177e4
LT
3037 goto softnet_break;
3038
3039 local_irq_enable();
3040
bea3348e
SH
3041 /* Even though interrupts have been re-enabled, this
3042 * access is safe because interrupts can only add new
3043 * entries to the tail of this list, and only ->poll()
3044 * calls can remove this head entry from the list.
3045 */
e5e26d75 3046 n = list_first_entry(list, struct napi_struct, poll_list);
1da177e4 3047
bea3348e
SH
3048 have = netpoll_poll_lock(n);
3049
3050 weight = n->weight;
3051
0a7606c1
DM
3052 /* This NAPI_STATE_SCHED test is for avoiding a race
3053 * with netpoll's poll_napi(). Only the entity which
3054 * obtains the lock and sees NAPI_STATE_SCHED set will
3055 * actually make the ->poll() call. Therefore we avoid
3056 * accidently calling ->poll() when NAPI is not scheduled.
3057 */
3058 work = 0;
4ea7e386 3059 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
0a7606c1 3060 work = n->poll(n, weight);
4ea7e386
NH
3061 trace_napi_poll(n);
3062 }
bea3348e
SH
3063
3064 WARN_ON_ONCE(work > weight);
3065
3066 budget -= work;
3067
3068 local_irq_disable();
3069
3070 /* Drivers must not modify the NAPI state if they
3071 * consume the entire weight. In such cases this code
3072 * still "owns" the NAPI instance and therefore can
3073 * move the instance around on the list at-will.
3074 */
fed17f30 3075 if (unlikely(work == weight)) {
ff780cd8
HX
3076 if (unlikely(napi_disable_pending(n))) {
3077 local_irq_enable();
3078 napi_complete(n);
3079 local_irq_disable();
3080 } else
fed17f30
DM
3081 list_move_tail(&n->poll_list, list);
3082 }
bea3348e
SH
3083
3084 netpoll_poll_unlock(have);
1da177e4
LT
3085 }
3086out:
515e06c4 3087 local_irq_enable();
bea3348e 3088
db217334
CL
3089#ifdef CONFIG_NET_DMA
3090 /*
3091 * There may not be any more sk_buffs coming right now, so push
3092 * any pending DMA copies to hardware
3093 */
2ba05622 3094 dma_issue_pending_all();
db217334 3095#endif
bea3348e 3096
1da177e4
LT
3097 return;
3098
3099softnet_break:
3100 __get_cpu_var(netdev_rx_stat).time_squeeze++;
3101 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3102 goto out;
3103}
3104
d1b19dff 3105static gifconf_func_t *gifconf_list[NPROTO];
1da177e4
LT
3106
3107/**
3108 * register_gifconf - register a SIOCGIF handler
3109 * @family: Address family
3110 * @gifconf: Function handler
3111 *
3112 * Register protocol dependent address dumping routines. The handler
3113 * that is passed must not be freed or reused until it has been replaced
3114 * by another handler.
3115 */
d1b19dff 3116int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
1da177e4
LT
3117{
3118 if (family >= NPROTO)
3119 return -EINVAL;
3120 gifconf_list[family] = gifconf;
3121 return 0;
3122}
d1b19dff 3123EXPORT_SYMBOL(register_gifconf);
1da177e4
LT
3124
3125
3126/*
3127 * Map an interface index to its name (SIOCGIFNAME)
3128 */
3129
3130/*
3131 * We need this ioctl for efficient implementation of the
3132 * if_indextoname() function required by the IPv6 API. Without
3133 * it, we would have to search all the interfaces to find a
3134 * match. --pb
3135 */
3136
881d966b 3137static int dev_ifname(struct net *net, struct ifreq __user *arg)
1da177e4
LT
3138{
3139 struct net_device *dev;
3140 struct ifreq ifr;
3141
3142 /*
3143 * Fetch the caller's info block.
3144 */
3145
3146 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3147 return -EFAULT;
3148
fb699dfd
ED
3149 rcu_read_lock();
3150 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
1da177e4 3151 if (!dev) {
fb699dfd 3152 rcu_read_unlock();
1da177e4
LT
3153 return -ENODEV;
3154 }
3155
3156 strcpy(ifr.ifr_name, dev->name);
fb699dfd 3157 rcu_read_unlock();
1da177e4
LT
3158
3159 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3160 return -EFAULT;
3161 return 0;
3162}
3163
3164/*
3165 * Perform a SIOCGIFCONF call. This structure will change
3166 * size eventually, and there is nothing I can do about it.
3167 * Thus we will need a 'compatibility mode'.
3168 */
3169
881d966b 3170static int dev_ifconf(struct net *net, char __user *arg)
1da177e4
LT
3171{
3172 struct ifconf ifc;
3173 struct net_device *dev;
3174 char __user *pos;
3175 int len;
3176 int total;
3177 int i;
3178
3179 /*
3180 * Fetch the caller's info block.
3181 */
3182
3183 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3184 return -EFAULT;
3185
3186 pos = ifc.ifc_buf;
3187 len = ifc.ifc_len;
3188
3189 /*
3190 * Loop over the interfaces, and write an info block for each.
3191 */
3192
3193 total = 0;
881d966b 3194 for_each_netdev(net, dev) {
1da177e4
LT
3195 for (i = 0; i < NPROTO; i++) {
3196 if (gifconf_list[i]) {
3197 int done;
3198 if (!pos)
3199 done = gifconf_list[i](dev, NULL, 0);
3200 else
3201 done = gifconf_list[i](dev, pos + total,
3202 len - total);
3203 if (done < 0)
3204 return -EFAULT;
3205 total += done;
3206 }
3207 }
4ec93edb 3208 }
1da177e4
LT
3209
3210 /*
3211 * All done. Write the updated control block back to the caller.
3212 */
3213 ifc.ifc_len = total;
3214
3215 /*
3216 * Both BSD and Solaris return 0 here, so we do too.
3217 */
3218 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3219}
3220
3221#ifdef CONFIG_PROC_FS
3222/*
3223 * This is invoked by the /proc filesystem handler to display a device
3224 * in detail.
3225 */
7562f876 3226void *dev_seq_start(struct seq_file *seq, loff_t *pos)
c6d14c84 3227 __acquires(RCU)
1da177e4 3228{
e372c414 3229 struct net *net = seq_file_net(seq);
7562f876 3230 loff_t off;
1da177e4 3231 struct net_device *dev;
1da177e4 3232
c6d14c84 3233 rcu_read_lock();
7562f876
PE
3234 if (!*pos)
3235 return SEQ_START_TOKEN;
1da177e4 3236
7562f876 3237 off = 1;
c6d14c84 3238 for_each_netdev_rcu(net, dev)
7562f876
PE
3239 if (off++ == *pos)
3240 return dev;
1da177e4 3241
7562f876 3242 return NULL;
1da177e4
LT
3243}
3244
3245void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3246{
c6d14c84
ED
3247 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3248 first_net_device(seq_file_net(seq)) :
3249 next_net_device((struct net_device *)v);
3250
1da177e4 3251 ++*pos;
c6d14c84 3252 return rcu_dereference(dev);
1da177e4
LT
3253}
3254
3255void dev_seq_stop(struct seq_file *seq, void *v)
c6d14c84 3256 __releases(RCU)
1da177e4 3257{
c6d14c84 3258 rcu_read_unlock();
1da177e4
LT
3259}
3260
3261static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3262{
eeda3fd6 3263 const struct net_device_stats *stats = dev_get_stats(dev);
1da177e4 3264
2d13bafe 3265 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
5a1b5898
RR
3266 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3267 dev->name, stats->rx_bytes, stats->rx_packets,
3268 stats->rx_errors,
3269 stats->rx_dropped + stats->rx_missed_errors,
3270 stats->rx_fifo_errors,
3271 stats->rx_length_errors + stats->rx_over_errors +
3272 stats->rx_crc_errors + stats->rx_frame_errors,
3273 stats->rx_compressed, stats->multicast,
3274 stats->tx_bytes, stats->tx_packets,
3275 stats->tx_errors, stats->tx_dropped,
3276 stats->tx_fifo_errors, stats->collisions,
3277 stats->tx_carrier_errors +
3278 stats->tx_aborted_errors +
3279 stats->tx_window_errors +
3280 stats->tx_heartbeat_errors,
3281 stats->tx_compressed);
1da177e4
LT
3282}
3283
3284/*
3285 * Called from the PROCfs module. This now uses the new arbitrary sized
3286 * /proc/net interface to create /proc/net/dev
3287 */
3288static int dev_seq_show(struct seq_file *seq, void *v)
3289{
3290 if (v == SEQ_START_TOKEN)
3291 seq_puts(seq, "Inter-| Receive "
3292 " | Transmit\n"
3293 " face |bytes packets errs drop fifo frame "
3294 "compressed multicast|bytes packets errs "
3295 "drop fifo colls carrier compressed\n");
3296 else
3297 dev_seq_printf_stats(seq, v);
3298 return 0;
3299}
3300
3301static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3302{
3303 struct netif_rx_stats *rc = NULL;
3304
0c0b0aca 3305 while (*pos < nr_cpu_ids)
4ec93edb 3306 if (cpu_online(*pos)) {
1da177e4
LT
3307 rc = &per_cpu(netdev_rx_stat, *pos);
3308 break;
3309 } else
3310 ++*pos;
3311 return rc;
3312}
3313
3314static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3315{
3316 return softnet_get_online(pos);
3317}
3318
3319static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3320{
3321 ++*pos;
3322 return softnet_get_online(pos);
3323}
3324
3325static void softnet_seq_stop(struct seq_file *seq, void *v)
3326{
3327}
3328
3329static int softnet_seq_show(struct seq_file *seq, void *v)
3330{
3331 struct netif_rx_stats *s = v;
3332
3333 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
31aa02c5 3334 s->total, s->dropped, s->time_squeeze, 0,
c1ebcdb8 3335 0, 0, 0, 0, /* was fastroute */
d1b19dff 3336 s->cpu_collision);
1da177e4
LT
3337 return 0;
3338}
3339
f690808e 3340static const struct seq_operations dev_seq_ops = {
1da177e4
LT
3341 .start = dev_seq_start,
3342 .next = dev_seq_next,
3343 .stop = dev_seq_stop,
3344 .show = dev_seq_show,
3345};
3346
3347static int dev_seq_open(struct inode *inode, struct file *file)
3348{
e372c414
DL
3349 return seq_open_net(inode, file, &dev_seq_ops,
3350 sizeof(struct seq_net_private));
1da177e4
LT
3351}
3352
9a32144e 3353static const struct file_operations dev_seq_fops = {
1da177e4
LT
3354 .owner = THIS_MODULE,
3355 .open = dev_seq_open,
3356 .read = seq_read,
3357 .llseek = seq_lseek,
e372c414 3358 .release = seq_release_net,
1da177e4
LT
3359};
3360
f690808e 3361static const struct seq_operations softnet_seq_ops = {
1da177e4
LT
3362 .start = softnet_seq_start,
3363 .next = softnet_seq_next,
3364 .stop = softnet_seq_stop,
3365 .show = softnet_seq_show,
3366};
3367
3368static int softnet_seq_open(struct inode *inode, struct file *file)
3369{
3370 return seq_open(file, &softnet_seq_ops);
3371}
3372
9a32144e 3373static const struct file_operations softnet_seq_fops = {
1da177e4
LT
3374 .owner = THIS_MODULE,
3375 .open = softnet_seq_open,
3376 .read = seq_read,
3377 .llseek = seq_lseek,
3378 .release = seq_release,
3379};
3380
0e1256ff
SH
3381static void *ptype_get_idx(loff_t pos)
3382{
3383 struct packet_type *pt = NULL;
3384 loff_t i = 0;
3385 int t;
3386
3387 list_for_each_entry_rcu(pt, &ptype_all, list) {
3388 if (i == pos)
3389 return pt;
3390 ++i;
3391 }
3392
82d8a867 3393 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
0e1256ff
SH
3394 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3395 if (i == pos)
3396 return pt;
3397 ++i;
3398 }
3399 }
3400 return NULL;
3401}
3402
3403static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
72348a42 3404 __acquires(RCU)
0e1256ff
SH
3405{
3406 rcu_read_lock();
3407 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3408}
3409
3410static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3411{
3412 struct packet_type *pt;
3413 struct list_head *nxt;
3414 int hash;
3415
3416 ++*pos;
3417 if (v == SEQ_START_TOKEN)
3418 return ptype_get_idx(0);
3419
3420 pt = v;
3421 nxt = pt->list.next;
3422 if (pt->type == htons(ETH_P_ALL)) {
3423 if (nxt != &ptype_all)
3424 goto found;
3425 hash = 0;
3426 nxt = ptype_base[0].next;
3427 } else
82d8a867 3428 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
0e1256ff
SH
3429
3430 while (nxt == &ptype_base[hash]) {
82d8a867 3431 if (++hash >= PTYPE_HASH_SIZE)
0e1256ff
SH
3432 return NULL;
3433 nxt = ptype_base[hash].next;
3434 }
3435found:
3436 return list_entry(nxt, struct packet_type, list);
3437}
3438
3439static void ptype_seq_stop(struct seq_file *seq, void *v)
72348a42 3440 __releases(RCU)
0e1256ff
SH
3441{
3442 rcu_read_unlock();
3443}
3444
0e1256ff
SH
3445static int ptype_seq_show(struct seq_file *seq, void *v)
3446{
3447 struct packet_type *pt = v;
3448
3449 if (v == SEQ_START_TOKEN)
3450 seq_puts(seq, "Type Device Function\n");
c346dca1 3451 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
0e1256ff
SH
3452 if (pt->type == htons(ETH_P_ALL))
3453 seq_puts(seq, "ALL ");
3454 else
3455 seq_printf(seq, "%04x", ntohs(pt->type));
3456
908cd2da
AD
3457 seq_printf(seq, " %-8s %pF\n",
3458 pt->dev ? pt->dev->name : "", pt->func);
0e1256ff
SH
3459 }
3460
3461 return 0;
3462}
3463
3464static const struct seq_operations ptype_seq_ops = {
3465 .start = ptype_seq_start,
3466 .next = ptype_seq_next,
3467 .stop = ptype_seq_stop,
3468 .show = ptype_seq_show,
3469};
3470
3471static int ptype_seq_open(struct inode *inode, struct file *file)
3472{
2feb27db
PE
3473 return seq_open_net(inode, file, &ptype_seq_ops,
3474 sizeof(struct seq_net_private));
0e1256ff
SH
3475}
3476
3477static const struct file_operations ptype_seq_fops = {
3478 .owner = THIS_MODULE,
3479 .open = ptype_seq_open,
3480 .read = seq_read,
3481 .llseek = seq_lseek,
2feb27db 3482 .release = seq_release_net,
0e1256ff
SH
3483};
3484
3485
4665079c 3486static int __net_init dev_proc_net_init(struct net *net)
1da177e4
LT
3487{
3488 int rc = -ENOMEM;
3489
881d966b 3490 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
1da177e4 3491 goto out;
881d966b 3492 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
1da177e4 3493 goto out_dev;
881d966b 3494 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
457c4cbc 3495 goto out_softnet;
0e1256ff 3496
881d966b 3497 if (wext_proc_init(net))
457c4cbc 3498 goto out_ptype;
1da177e4
LT
3499 rc = 0;
3500out:
3501 return rc;
457c4cbc 3502out_ptype:
881d966b 3503 proc_net_remove(net, "ptype");
1da177e4 3504out_softnet:
881d966b 3505 proc_net_remove(net, "softnet_stat");
1da177e4 3506out_dev:
881d966b 3507 proc_net_remove(net, "dev");
1da177e4
LT
3508 goto out;
3509}
881d966b 3510
4665079c 3511static void __net_exit dev_proc_net_exit(struct net *net)
881d966b
EB
3512{
3513 wext_proc_exit(net);
3514
3515 proc_net_remove(net, "ptype");
3516 proc_net_remove(net, "softnet_stat");
3517 proc_net_remove(net, "dev");
3518}
3519
022cbae6 3520static struct pernet_operations __net_initdata dev_proc_ops = {
881d966b
EB
3521 .init = dev_proc_net_init,
3522 .exit = dev_proc_net_exit,
3523};
3524
3525static int __init dev_proc_init(void)
3526{
3527 return register_pernet_subsys(&dev_proc_ops);
3528}
1da177e4
LT
3529#else
3530#define dev_proc_init() 0
3531#endif /* CONFIG_PROC_FS */
3532
3533
3534/**
3535 * netdev_set_master - set up master/slave pair
3536 * @slave: slave device
3537 * @master: new master device
3538 *
3539 * Changes the master device of the slave. Pass %NULL to break the
3540 * bonding. The caller must hold the RTNL semaphore. On a failure
3541 * a negative errno code is returned. On success the reference counts
3542 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3543 * function returns zero.
3544 */
3545int netdev_set_master(struct net_device *slave, struct net_device *master)
3546{
3547 struct net_device *old = slave->master;
3548
3549 ASSERT_RTNL();
3550
3551 if (master) {
3552 if (old)
3553 return -EBUSY;
3554 dev_hold(master);
3555 }
3556
3557 slave->master = master;
4ec93edb 3558
1da177e4
LT
3559 synchronize_net();
3560
3561 if (old)
3562 dev_put(old);
3563
3564 if (master)
3565 slave->flags |= IFF_SLAVE;
3566 else
3567 slave->flags &= ~IFF_SLAVE;
3568
3569 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3570 return 0;
3571}
d1b19dff 3572EXPORT_SYMBOL(netdev_set_master);
1da177e4 3573
b6c40d68
PM
3574static void dev_change_rx_flags(struct net_device *dev, int flags)
3575{
d314774c
SH
3576 const struct net_device_ops *ops = dev->netdev_ops;
3577
3578 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3579 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
3580}
3581
dad9b335 3582static int __dev_set_promiscuity(struct net_device *dev, int inc)
1da177e4
LT
3583{
3584 unsigned short old_flags = dev->flags;
8192b0c4
DH
3585 uid_t uid;
3586 gid_t gid;
1da177e4 3587
24023451
PM
3588 ASSERT_RTNL();
3589
dad9b335
WC
3590 dev->flags |= IFF_PROMISC;
3591 dev->promiscuity += inc;
3592 if (dev->promiscuity == 0) {
3593 /*
3594 * Avoid overflow.
3595 * If inc causes overflow, untouch promisc and return error.
3596 */
3597 if (inc < 0)
3598 dev->flags &= ~IFF_PROMISC;
3599 else {
3600 dev->promiscuity -= inc;
3601 printk(KERN_WARNING "%s: promiscuity touches roof, "
3602 "set promiscuity failed, promiscuity feature "
3603 "of device might be broken.\n", dev->name);
3604 return -EOVERFLOW;
3605 }
3606 }
52609c0b 3607 if (dev->flags != old_flags) {
1da177e4
LT
3608 printk(KERN_INFO "device %s %s promiscuous mode\n",
3609 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4ec93edb 3610 "left");
8192b0c4
DH
3611 if (audit_enabled) {
3612 current_uid_gid(&uid, &gid);
7759db82
KHK
3613 audit_log(current->audit_context, GFP_ATOMIC,
3614 AUDIT_ANOM_PROMISCUOUS,
3615 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3616 dev->name, (dev->flags & IFF_PROMISC),
3617 (old_flags & IFF_PROMISC),
3618 audit_get_loginuid(current),
8192b0c4 3619 uid, gid,
7759db82 3620 audit_get_sessionid(current));
8192b0c4 3621 }
24023451 3622
b6c40d68 3623 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 3624 }
dad9b335 3625 return 0;
1da177e4
LT
3626}
3627
4417da66
PM
3628/**
3629 * dev_set_promiscuity - update promiscuity count on a device
3630 * @dev: device
3631 * @inc: modifier
3632 *
3633 * Add or remove promiscuity from a device. While the count in the device
3634 * remains above zero the interface remains promiscuous. Once it hits zero
3635 * the device reverts back to normal filtering operation. A negative inc
3636 * value is used to drop promiscuity on the device.
dad9b335 3637 * Return 0 if successful or a negative errno code on error.
4417da66 3638 */
dad9b335 3639int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66
PM
3640{
3641 unsigned short old_flags = dev->flags;
dad9b335 3642 int err;
4417da66 3643
dad9b335 3644 err = __dev_set_promiscuity(dev, inc);
4b5a698e 3645 if (err < 0)
dad9b335 3646 return err;
4417da66
PM
3647 if (dev->flags != old_flags)
3648 dev_set_rx_mode(dev);
dad9b335 3649 return err;
4417da66 3650}
d1b19dff 3651EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 3652
1da177e4
LT
3653/**
3654 * dev_set_allmulti - update allmulti count on a device
3655 * @dev: device
3656 * @inc: modifier
3657 *
3658 * Add or remove reception of all multicast frames to a device. While the
3659 * count in the device remains above zero the interface remains listening
3660 * to all interfaces. Once it hits zero the device reverts back to normal
3661 * filtering operation. A negative @inc value is used to drop the counter
3662 * when releasing a resource needing all multicasts.
dad9b335 3663 * Return 0 if successful or a negative errno code on error.
1da177e4
LT
3664 */
3665
dad9b335 3666int dev_set_allmulti(struct net_device *dev, int inc)
1da177e4
LT
3667{
3668 unsigned short old_flags = dev->flags;
3669
24023451
PM
3670 ASSERT_RTNL();
3671
1da177e4 3672 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
3673 dev->allmulti += inc;
3674 if (dev->allmulti == 0) {
3675 /*
3676 * Avoid overflow.
3677 * If inc causes overflow, untouch allmulti and return error.
3678 */
3679 if (inc < 0)
3680 dev->flags &= ~IFF_ALLMULTI;
3681 else {
3682 dev->allmulti -= inc;
3683 printk(KERN_WARNING "%s: allmulti touches roof, "
3684 "set allmulti failed, allmulti feature of "
3685 "device might be broken.\n", dev->name);
3686 return -EOVERFLOW;
3687 }
3688 }
24023451 3689 if (dev->flags ^ old_flags) {
b6c40d68 3690 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 3691 dev_set_rx_mode(dev);
24023451 3692 }
dad9b335 3693 return 0;
4417da66 3694}
d1b19dff 3695EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
3696
3697/*
3698 * Upload unicast and multicast address lists to device and
3699 * configure RX filtering. When the device doesn't support unicast
53ccaae1 3700 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
3701 * are present.
3702 */
3703void __dev_set_rx_mode(struct net_device *dev)
3704{
d314774c
SH
3705 const struct net_device_ops *ops = dev->netdev_ops;
3706
4417da66
PM
3707 /* dev_open will call this function so the list will stay sane. */
3708 if (!(dev->flags&IFF_UP))
3709 return;
3710
3711 if (!netif_device_present(dev))
40b77c94 3712 return;
4417da66 3713
d314774c
SH
3714 if (ops->ndo_set_rx_mode)
3715 ops->ndo_set_rx_mode(dev);
4417da66
PM
3716 else {
3717 /* Unicast addresses changes may only happen under the rtnl,
3718 * therefore calling __dev_set_promiscuity here is safe.
3719 */
32e7bfc4 3720 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4417da66
PM
3721 __dev_set_promiscuity(dev, 1);
3722 dev->uc_promisc = 1;
32e7bfc4 3723 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4417da66
PM
3724 __dev_set_promiscuity(dev, -1);
3725 dev->uc_promisc = 0;
3726 }
3727
d314774c
SH
3728 if (ops->ndo_set_multicast_list)
3729 ops->ndo_set_multicast_list(dev);
4417da66
PM
3730 }
3731}
3732
3733void dev_set_rx_mode(struct net_device *dev)
3734{
b9e40857 3735 netif_addr_lock_bh(dev);
4417da66 3736 __dev_set_rx_mode(dev);
b9e40857 3737 netif_addr_unlock_bh(dev);
1da177e4
LT
3738}
3739
f001fde5
JP
3740/* hw addresses list handling functions */
3741
31278e71
JP
3742static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr,
3743 int addr_len, unsigned char addr_type)
f001fde5
JP
3744{
3745 struct netdev_hw_addr *ha;
3746 int alloc_size;
3747
3748 if (addr_len > MAX_ADDR_LEN)
3749 return -EINVAL;
3750
31278e71 3751 list_for_each_entry(ha, &list->list, list) {
ccffad25
JP
3752 if (!memcmp(ha->addr, addr, addr_len) &&
3753 ha->type == addr_type) {
3754 ha->refcount++;
3755 return 0;
3756 }
3757 }
3758
3759
f001fde5
JP
3760 alloc_size = sizeof(*ha);
3761 if (alloc_size < L1_CACHE_BYTES)
3762 alloc_size = L1_CACHE_BYTES;
3763 ha = kmalloc(alloc_size, GFP_ATOMIC);
3764 if (!ha)
3765 return -ENOMEM;
3766 memcpy(ha->addr, addr, addr_len);
3767 ha->type = addr_type;
ccffad25
JP
3768 ha->refcount = 1;
3769 ha->synced = false;
31278e71
JP
3770 list_add_tail_rcu(&ha->list, &list->list);
3771 list->count++;
f001fde5
JP
3772 return 0;
3773}
3774
3775static void ha_rcu_free(struct rcu_head *head)
3776{
3777 struct netdev_hw_addr *ha;
3778
3779 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3780 kfree(ha);
3781}
3782
31278e71
JP
3783static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr,
3784 int addr_len, unsigned char addr_type)
f001fde5
JP
3785{
3786 struct netdev_hw_addr *ha;
f001fde5 3787
31278e71 3788 list_for_each_entry(ha, &list->list, list) {
ccffad25 3789 if (!memcmp(ha->addr, addr, addr_len) &&
f001fde5 3790 (ha->type == addr_type || !addr_type)) {
ccffad25
JP
3791 if (--ha->refcount)
3792 return 0;
f001fde5
JP
3793 list_del_rcu(&ha->list);
3794 call_rcu(&ha->rcu_head, ha_rcu_free);
31278e71 3795 list->count--;
f001fde5
JP
3796 return 0;
3797 }
3798 }
3799 return -ENOENT;
3800}
3801
31278e71
JP
3802static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
3803 struct netdev_hw_addr_list *from_list,
3804 int addr_len,
ccffad25 3805 unsigned char addr_type)
f001fde5
JP
3806{
3807 int err;
3808 struct netdev_hw_addr *ha, *ha2;
3809 unsigned char type;
3810
31278e71 3811 list_for_each_entry(ha, &from_list->list, list) {
f001fde5 3812 type = addr_type ? addr_type : ha->type;
31278e71 3813 err = __hw_addr_add(to_list, ha->addr, addr_len, type);
f001fde5
JP
3814 if (err)
3815 goto unroll;
3816 }
3817 return 0;
3818
3819unroll:
31278e71 3820 list_for_each_entry(ha2, &from_list->list, list) {
f001fde5
JP
3821 if (ha2 == ha)
3822 break;
3823 type = addr_type ? addr_type : ha2->type;
31278e71 3824 __hw_addr_del(to_list, ha2->addr, addr_len, type);
f001fde5
JP
3825 }
3826 return err;
3827}
3828
31278e71
JP
3829static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
3830 struct netdev_hw_addr_list *from_list,
3831 int addr_len,
ccffad25 3832 unsigned char addr_type)
f001fde5
JP
3833{
3834 struct netdev_hw_addr *ha;
3835 unsigned char type;
3836
31278e71 3837 list_for_each_entry(ha, &from_list->list, list) {
f001fde5 3838 type = addr_type ? addr_type : ha->type;
31278e71 3839 __hw_addr_del(to_list, ha->addr, addr_len, addr_type);
ccffad25
JP
3840 }
3841}
3842
31278e71
JP
3843static int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
3844 struct netdev_hw_addr_list *from_list,
ccffad25
JP
3845 int addr_len)
3846{
3847 int err = 0;
3848 struct netdev_hw_addr *ha, *tmp;
3849
31278e71 3850 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
ccffad25 3851 if (!ha->synced) {
31278e71 3852 err = __hw_addr_add(to_list, ha->addr,
ccffad25
JP
3853 addr_len, ha->type);
3854 if (err)
3855 break;
3856 ha->synced = true;
3857 ha->refcount++;
3858 } else if (ha->refcount == 1) {
31278e71
JP
3859 __hw_addr_del(to_list, ha->addr, addr_len, ha->type);
3860 __hw_addr_del(from_list, ha->addr, addr_len, ha->type);
ccffad25 3861 }
f001fde5 3862 }
ccffad25 3863 return err;
f001fde5
JP
3864}
3865
31278e71
JP
3866static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
3867 struct netdev_hw_addr_list *from_list,
ccffad25
JP
3868 int addr_len)
3869{
3870 struct netdev_hw_addr *ha, *tmp;
3871
31278e71 3872 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
ccffad25 3873 if (ha->synced) {
31278e71 3874 __hw_addr_del(to_list, ha->addr,
ccffad25
JP
3875 addr_len, ha->type);
3876 ha->synced = false;
31278e71 3877 __hw_addr_del(from_list, ha->addr,
ccffad25
JP
3878 addr_len, ha->type);
3879 }
3880 }
3881}
3882
31278e71 3883static void __hw_addr_flush(struct netdev_hw_addr_list *list)
f001fde5
JP
3884{
3885 struct netdev_hw_addr *ha, *tmp;
3886
31278e71 3887 list_for_each_entry_safe(ha, tmp, &list->list, list) {
f001fde5
JP
3888 list_del_rcu(&ha->list);
3889 call_rcu(&ha->rcu_head, ha_rcu_free);
3890 }
31278e71
JP
3891 list->count = 0;
3892}
3893
3894static void __hw_addr_init(struct netdev_hw_addr_list *list)
3895{
3896 INIT_LIST_HEAD(&list->list);
3897 list->count = 0;
f001fde5
JP
3898}
3899
3900/* Device addresses handling functions */
3901
3902static void dev_addr_flush(struct net_device *dev)
3903{
3904 /* rtnl_mutex must be held here */
3905
31278e71 3906 __hw_addr_flush(&dev->dev_addrs);
f001fde5
JP
3907 dev->dev_addr = NULL;
3908}
3909
3910static int dev_addr_init(struct net_device *dev)
3911{
3912 unsigned char addr[MAX_ADDR_LEN];
3913 struct netdev_hw_addr *ha;
3914 int err;
3915
3916 /* rtnl_mutex must be held here */
3917
31278e71 3918 __hw_addr_init(&dev->dev_addrs);
0c27922e 3919 memset(addr, 0, sizeof(addr));
31278e71 3920 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr),
f001fde5
JP
3921 NETDEV_HW_ADDR_T_LAN);
3922 if (!err) {
3923 /*
3924 * Get the first (previously created) address from the list
3925 * and set dev_addr pointer to this location.
3926 */
31278e71 3927 ha = list_first_entry(&dev->dev_addrs.list,
f001fde5
JP
3928 struct netdev_hw_addr, list);
3929 dev->dev_addr = ha->addr;
3930 }
3931 return err;
3932}
3933
3934/**
3935 * dev_addr_add - Add a device address
3936 * @dev: device
3937 * @addr: address to add
3938 * @addr_type: address type
3939 *
3940 * Add a device address to the device or increase the reference count if
3941 * it already exists.
3942 *
3943 * The caller must hold the rtnl_mutex.
3944 */
3945int dev_addr_add(struct net_device *dev, unsigned char *addr,
3946 unsigned char addr_type)
3947{
3948 int err;
3949
3950 ASSERT_RTNL();
3951
31278e71 3952 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type);
f001fde5
JP
3953 if (!err)
3954 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3955 return err;
3956}
3957EXPORT_SYMBOL(dev_addr_add);
3958
3959/**
3960 * dev_addr_del - Release a device address.
3961 * @dev: device
3962 * @addr: address to delete
3963 * @addr_type: address type
3964 *
3965 * Release reference to a device address and remove it from the device
3966 * if the reference count drops to zero.
3967 *
3968 * The caller must hold the rtnl_mutex.
3969 */
3970int dev_addr_del(struct net_device *dev, unsigned char *addr,
3971 unsigned char addr_type)
3972{
3973 int err;
ccffad25 3974 struct netdev_hw_addr *ha;
f001fde5
JP
3975
3976 ASSERT_RTNL();
3977
ccffad25
JP
3978 /*
3979 * We can not remove the first address from the list because
3980 * dev->dev_addr points to that.
3981 */
31278e71
JP
3982 ha = list_first_entry(&dev->dev_addrs.list,
3983 struct netdev_hw_addr, list);
ccffad25
JP
3984 if (ha->addr == dev->dev_addr && ha->refcount == 1)
3985 return -ENOENT;
3986
31278e71 3987 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len,
ccffad25 3988 addr_type);
f001fde5
JP
3989 if (!err)
3990 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
3991 return err;
3992}
3993EXPORT_SYMBOL(dev_addr_del);
3994
3995/**
3996 * dev_addr_add_multiple - Add device addresses from another device
3997 * @to_dev: device to which addresses will be added
3998 * @from_dev: device from which addresses will be added
3999 * @addr_type: address type - 0 means type will be used from from_dev
4000 *
4001 * Add device addresses of the one device to another.
4002 **
4003 * The caller must hold the rtnl_mutex.
4004 */
4005int dev_addr_add_multiple(struct net_device *to_dev,
4006 struct net_device *from_dev,
4007 unsigned char addr_type)
4008{
4009 int err;
4010
4011 ASSERT_RTNL();
4012
4013 if (from_dev->addr_len != to_dev->addr_len)
4014 return -EINVAL;
31278e71 4015 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
ccffad25 4016 to_dev->addr_len, addr_type);
f001fde5
JP
4017 if (!err)
4018 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
4019 return err;
4020}
4021EXPORT_SYMBOL(dev_addr_add_multiple);
4022
4023/**
4024 * dev_addr_del_multiple - Delete device addresses by another device
4025 * @to_dev: device where the addresses will be deleted
4026 * @from_dev: device by which addresses the addresses will be deleted
4027 * @addr_type: address type - 0 means type will used from from_dev
4028 *
4029 * Deletes addresses in to device by the list of addresses in from device.
4030 *
4031 * The caller must hold the rtnl_mutex.
4032 */
4033int dev_addr_del_multiple(struct net_device *to_dev,
4034 struct net_device *from_dev,
4035 unsigned char addr_type)
4036{
4037 ASSERT_RTNL();
4038
4039 if (from_dev->addr_len != to_dev->addr_len)
4040 return -EINVAL;
31278e71 4041 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
ccffad25 4042 to_dev->addr_len, addr_type);
f001fde5
JP
4043 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
4044 return 0;
4045}
4046EXPORT_SYMBOL(dev_addr_del_multiple);
4047
31278e71 4048/* multicast addresses handling functions */
f001fde5 4049
61cbc2fc
PM
4050int __dev_addr_delete(struct dev_addr_list **list, int *count,
4051 void *addr, int alen, int glbl)
bf742482
PM
4052{
4053 struct dev_addr_list *da;
4054
4055 for (; (da = *list) != NULL; list = &da->next) {
4056 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4057 alen == da->da_addrlen) {
4058 if (glbl) {
4059 int old_glbl = da->da_gusers;
4060 da->da_gusers = 0;
4061 if (old_glbl == 0)
4062 break;
4063 }
4064 if (--da->da_users)
4065 return 0;
4066
4067 *list = da->next;
4068 kfree(da);
61cbc2fc 4069 (*count)--;
bf742482
PM
4070 return 0;
4071 }
4072 }
4073 return -ENOENT;
4074}
4075
61cbc2fc
PM
4076int __dev_addr_add(struct dev_addr_list **list, int *count,
4077 void *addr, int alen, int glbl)
bf742482
PM
4078{
4079 struct dev_addr_list *da;
4080
4081 for (da = *list; da != NULL; da = da->next) {
4082 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4083 da->da_addrlen == alen) {
4084 if (glbl) {
4085 int old_glbl = da->da_gusers;
4086 da->da_gusers = 1;
4087 if (old_glbl)
4088 return 0;
4089 }
4090 da->da_users++;
4091 return 0;
4092 }
4093 }
4094
12aa343a 4095 da = kzalloc(sizeof(*da), GFP_ATOMIC);
bf742482
PM
4096 if (da == NULL)
4097 return -ENOMEM;
4098 memcpy(da->da_addr, addr, alen);
4099 da->da_addrlen = alen;
4100 da->da_users = 1;
4101 da->da_gusers = glbl ? 1 : 0;
4102 da->next = *list;
4103 *list = da;
61cbc2fc 4104 (*count)++;
bf742482
PM
4105 return 0;
4106}
4107
4417da66
PM
4108/**
4109 * dev_unicast_delete - Release secondary unicast address.
4110 * @dev: device
0ed72ec4 4111 * @addr: address to delete
4417da66
PM
4112 *
4113 * Release reference to a secondary unicast address and remove it
0ed72ec4 4114 * from the device if the reference count drops to zero.
4417da66
PM
4115 *
4116 * The caller must hold the rtnl_mutex.
4117 */
ccffad25 4118int dev_unicast_delete(struct net_device *dev, void *addr)
4417da66
PM
4119{
4120 int err;
4121
4122 ASSERT_RTNL();
4123
a6ac65db 4124 netif_addr_lock_bh(dev);
31278e71
JP
4125 err = __hw_addr_del(&dev->uc, addr, dev->addr_len,
4126 NETDEV_HW_ADDR_T_UNICAST);
61cbc2fc 4127 if (!err)
4417da66 4128 __dev_set_rx_mode(dev);
a6ac65db 4129 netif_addr_unlock_bh(dev);
4417da66
PM
4130 return err;
4131}
4132EXPORT_SYMBOL(dev_unicast_delete);
4133
4134/**
4135 * dev_unicast_add - add a secondary unicast address
4136 * @dev: device
5dbaec5d 4137 * @addr: address to add
4417da66
PM
4138 *
4139 * Add a secondary unicast address to the device or increase
4140 * the reference count if it already exists.
4141 *
4142 * The caller must hold the rtnl_mutex.
4143 */
ccffad25 4144int dev_unicast_add(struct net_device *dev, void *addr)
4417da66
PM
4145{
4146 int err;
4147
4148 ASSERT_RTNL();
4149
a6ac65db 4150 netif_addr_lock_bh(dev);
31278e71
JP
4151 err = __hw_addr_add(&dev->uc, addr, dev->addr_len,
4152 NETDEV_HW_ADDR_T_UNICAST);
61cbc2fc 4153 if (!err)
4417da66 4154 __dev_set_rx_mode(dev);
a6ac65db 4155 netif_addr_unlock_bh(dev);
4417da66
PM
4156 return err;
4157}
4158EXPORT_SYMBOL(dev_unicast_add);
4159
e83a2ea8
CL
4160int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
4161 struct dev_addr_list **from, int *from_count)
4162{
4163 struct dev_addr_list *da, *next;
4164 int err = 0;
4165
4166 da = *from;
4167 while (da != NULL) {
4168 next = da->next;
4169 if (!da->da_synced) {
4170 err = __dev_addr_add(to, to_count,
4171 da->da_addr, da->da_addrlen, 0);
4172 if (err < 0)
4173 break;
4174 da->da_synced = 1;
4175 da->da_users++;
4176 } else if (da->da_users == 1) {
4177 __dev_addr_delete(to, to_count,
4178 da->da_addr, da->da_addrlen, 0);
4179 __dev_addr_delete(from, from_count,
4180 da->da_addr, da->da_addrlen, 0);
4181 }
4182 da = next;
4183 }
4184 return err;
4185}
c4029083 4186EXPORT_SYMBOL_GPL(__dev_addr_sync);
e83a2ea8
CL
4187
4188void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
4189 struct dev_addr_list **from, int *from_count)
4190{
4191 struct dev_addr_list *da, *next;
4192
4193 da = *from;
4194 while (da != NULL) {
4195 next = da->next;
4196 if (da->da_synced) {
4197 __dev_addr_delete(to, to_count,
4198 da->da_addr, da->da_addrlen, 0);
4199 da->da_synced = 0;
4200 __dev_addr_delete(from, from_count,
4201 da->da_addr, da->da_addrlen, 0);
4202 }
4203 da = next;
4204 }
4205}
c4029083 4206EXPORT_SYMBOL_GPL(__dev_addr_unsync);
e83a2ea8
CL
4207
4208/**
4209 * dev_unicast_sync - Synchronize device's unicast list to another device
4210 * @to: destination device
4211 * @from: source device
4212 *
4213 * Add newly added addresses to the destination device and release
a6ac65db
JP
4214 * addresses that have no users left. The source device must be
4215 * locked by netif_tx_lock_bh.
e83a2ea8
CL
4216 *
4217 * This function is intended to be called from the dev->set_rx_mode
4218 * function of layered software devices.
4219 */
4220int dev_unicast_sync(struct net_device *to, struct net_device *from)
4221{
4222 int err = 0;
4223
ccffad25
JP
4224 if (to->addr_len != from->addr_len)
4225 return -EINVAL;
4226
a6ac65db 4227 netif_addr_lock_bh(to);
31278e71 4228 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len);
e83a2ea8
CL
4229 if (!err)
4230 __dev_set_rx_mode(to);
a6ac65db 4231 netif_addr_unlock_bh(to);
e83a2ea8
CL
4232 return err;
4233}
4234EXPORT_SYMBOL(dev_unicast_sync);
4235
4236/**
bc2cda1e 4237 * dev_unicast_unsync - Remove synchronized addresses from the destination device
e83a2ea8
CL
4238 * @to: destination device
4239 * @from: source device
4240 *
4241 * Remove all addresses that were added to the destination device by
4242 * dev_unicast_sync(). This function is intended to be called from the
4243 * dev->stop function of layered software devices.
4244 */
4245void dev_unicast_unsync(struct net_device *to, struct net_device *from)
4246{
ccffad25
JP
4247 if (to->addr_len != from->addr_len)
4248 return;
e83a2ea8 4249
a6ac65db
JP
4250 netif_addr_lock_bh(from);
4251 netif_addr_lock(to);
31278e71 4252 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len);
ccffad25 4253 __dev_set_rx_mode(to);
a6ac65db
JP
4254 netif_addr_unlock(to);
4255 netif_addr_unlock_bh(from);
e83a2ea8
CL
4256}
4257EXPORT_SYMBOL(dev_unicast_unsync);
4258
ccffad25
JP
4259static void dev_unicast_flush(struct net_device *dev)
4260{
a6ac65db 4261 netif_addr_lock_bh(dev);
31278e71 4262 __hw_addr_flush(&dev->uc);
a6ac65db 4263 netif_addr_unlock_bh(dev);
ccffad25
JP
4264}
4265
4266static void dev_unicast_init(struct net_device *dev)
4267{
31278e71 4268 __hw_addr_init(&dev->uc);
ccffad25
JP
4269}
4270
4271
12972621
DC
4272static void __dev_addr_discard(struct dev_addr_list **list)
4273{
4274 struct dev_addr_list *tmp;
4275
4276 while (*list != NULL) {
4277 tmp = *list;
4278 *list = tmp->next;
4279 if (tmp->da_users > tmp->da_gusers)
4280 printk("__dev_addr_discard: address leakage! "
4281 "da_users=%d\n", tmp->da_users);
4282 kfree(tmp);
4283 }
4284}
4285
26cc2522 4286static void dev_addr_discard(struct net_device *dev)
4417da66 4287{
b9e40857 4288 netif_addr_lock_bh(dev);
26cc2522 4289
456ad75c 4290 __dev_addr_discard(&dev->mc_list);
4cd24eaf 4291 netdev_mc_count(dev) = 0;
26cc2522 4292
b9e40857 4293 netif_addr_unlock_bh(dev);
456ad75c
DC
4294}
4295
f0db275a
SH
4296/**
4297 * dev_get_flags - get flags reported to userspace
4298 * @dev: device
4299 *
4300 * Get the combination of flag bits exported through APIs to userspace.
4301 */
1da177e4
LT
4302unsigned dev_get_flags(const struct net_device *dev)
4303{
4304 unsigned flags;
4305
4306 flags = (dev->flags & ~(IFF_PROMISC |
4307 IFF_ALLMULTI |
b00055aa
SR
4308 IFF_RUNNING |
4309 IFF_LOWER_UP |
4310 IFF_DORMANT)) |
1da177e4
LT
4311 (dev->gflags & (IFF_PROMISC |
4312 IFF_ALLMULTI));
4313
b00055aa
SR
4314 if (netif_running(dev)) {
4315 if (netif_oper_up(dev))
4316 flags |= IFF_RUNNING;
4317 if (netif_carrier_ok(dev))
4318 flags |= IFF_LOWER_UP;
4319 if (netif_dormant(dev))
4320 flags |= IFF_DORMANT;
4321 }
1da177e4
LT
4322
4323 return flags;
4324}
d1b19dff 4325EXPORT_SYMBOL(dev_get_flags);
1da177e4 4326
bd380811 4327int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 4328{
1da177e4 4329 int old_flags = dev->flags;
bd380811 4330 int ret;
1da177e4 4331
24023451
PM
4332 ASSERT_RTNL();
4333
1da177e4
LT
4334 /*
4335 * Set the flags on our device.
4336 */
4337
4338 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4339 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4340 IFF_AUTOMEDIA)) |
4341 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4342 IFF_ALLMULTI));
4343
4344 /*
4345 * Load in the correct multicast list now the flags have changed.
4346 */
4347
b6c40d68
PM
4348 if ((old_flags ^ flags) & IFF_MULTICAST)
4349 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 4350
4417da66 4351 dev_set_rx_mode(dev);
1da177e4
LT
4352
4353 /*
4354 * Have we downed the interface. We handle IFF_UP ourselves
4355 * according to user attempts to set it, rather than blindly
4356 * setting it.
4357 */
4358
4359 ret = 0;
4360 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
bd380811 4361 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4
LT
4362
4363 if (!ret)
4417da66 4364 dev_set_rx_mode(dev);
1da177e4
LT
4365 }
4366
1da177e4 4367 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff
ED
4368 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4369
1da177e4
LT
4370 dev->gflags ^= IFF_PROMISC;
4371 dev_set_promiscuity(dev, inc);
4372 }
4373
4374 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4375 is important. Some (broken) drivers set IFF_PROMISC, when
4376 IFF_ALLMULTI is requested not asking us and not reporting.
4377 */
4378 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
4379 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4380
1da177e4
LT
4381 dev->gflags ^= IFF_ALLMULTI;
4382 dev_set_allmulti(dev, inc);
4383 }
4384
bd380811
PM
4385 return ret;
4386}
4387
4388void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4389{
4390 unsigned int changes = dev->flags ^ old_flags;
4391
4392 if (changes & IFF_UP) {
4393 if (dev->flags & IFF_UP)
4394 call_netdevice_notifiers(NETDEV_UP, dev);
4395 else
4396 call_netdevice_notifiers(NETDEV_DOWN, dev);
4397 }
4398
4399 if (dev->flags & IFF_UP &&
4400 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4401 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4402}
4403
4404/**
4405 * dev_change_flags - change device settings
4406 * @dev: device
4407 * @flags: device state flags
4408 *
4409 * Change settings on device based state flags. The flags are
4410 * in the userspace exported format.
4411 */
4412int dev_change_flags(struct net_device *dev, unsigned flags)
4413{
4414 int ret, changes;
4415 int old_flags = dev->flags;
4416
4417 ret = __dev_change_flags(dev, flags);
4418 if (ret < 0)
4419 return ret;
4420
4421 changes = old_flags ^ dev->flags;
7c355f53
TG
4422 if (changes)
4423 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
1da177e4 4424
bd380811 4425 __dev_notify_flags(dev, old_flags);
1da177e4
LT
4426 return ret;
4427}
d1b19dff 4428EXPORT_SYMBOL(dev_change_flags);
1da177e4 4429
f0db275a
SH
4430/**
4431 * dev_set_mtu - Change maximum transfer unit
4432 * @dev: device
4433 * @new_mtu: new transfer unit
4434 *
4435 * Change the maximum transfer size of the network device.
4436 */
1da177e4
LT
4437int dev_set_mtu(struct net_device *dev, int new_mtu)
4438{
d314774c 4439 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
4440 int err;
4441
4442 if (new_mtu == dev->mtu)
4443 return 0;
4444
4445 /* MTU must be positive. */
4446 if (new_mtu < 0)
4447 return -EINVAL;
4448
4449 if (!netif_device_present(dev))
4450 return -ENODEV;
4451
4452 err = 0;
d314774c
SH
4453 if (ops->ndo_change_mtu)
4454 err = ops->ndo_change_mtu(dev, new_mtu);
1da177e4
LT
4455 else
4456 dev->mtu = new_mtu;
d314774c 4457
1da177e4 4458 if (!err && dev->flags & IFF_UP)
056925ab 4459 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
1da177e4
LT
4460 return err;
4461}
d1b19dff 4462EXPORT_SYMBOL(dev_set_mtu);
1da177e4 4463
f0db275a
SH
4464/**
4465 * dev_set_mac_address - Change Media Access Control Address
4466 * @dev: device
4467 * @sa: new address
4468 *
4469 * Change the hardware (MAC) address of the device
4470 */
1da177e4
LT
4471int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4472{
d314774c 4473 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
4474 int err;
4475
d314774c 4476 if (!ops->ndo_set_mac_address)
1da177e4
LT
4477 return -EOPNOTSUPP;
4478 if (sa->sa_family != dev->type)
4479 return -EINVAL;
4480 if (!netif_device_present(dev))
4481 return -ENODEV;
d314774c 4482 err = ops->ndo_set_mac_address(dev, sa);
1da177e4 4483 if (!err)
056925ab 4484 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
1da177e4
LT
4485 return err;
4486}
d1b19dff 4487EXPORT_SYMBOL(dev_set_mac_address);
1da177e4
LT
4488
4489/*
3710becf 4490 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
1da177e4 4491 */
14e3e079 4492static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
1da177e4
LT
4493{
4494 int err;
3710becf 4495 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
1da177e4
LT
4496
4497 if (!dev)
4498 return -ENODEV;
4499
4500 switch (cmd) {
d1b19dff
ED
4501 case SIOCGIFFLAGS: /* Get interface flags */
4502 ifr->ifr_flags = (short) dev_get_flags(dev);
4503 return 0;
1da177e4 4504
d1b19dff
ED
4505 case SIOCGIFMETRIC: /* Get the metric on the interface
4506 (currently unused) */
4507 ifr->ifr_metric = 0;
4508 return 0;
1da177e4 4509
d1b19dff
ED
4510 case SIOCGIFMTU: /* Get the MTU of a device */
4511 ifr->ifr_mtu = dev->mtu;
4512 return 0;
1da177e4 4513
d1b19dff
ED
4514 case SIOCGIFHWADDR:
4515 if (!dev->addr_len)
4516 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4517 else
4518 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4519 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4520 ifr->ifr_hwaddr.sa_family = dev->type;
4521 return 0;
1da177e4 4522
d1b19dff
ED
4523 case SIOCGIFSLAVE:
4524 err = -EINVAL;
4525 break;
14e3e079 4526
d1b19dff
ED
4527 case SIOCGIFMAP:
4528 ifr->ifr_map.mem_start = dev->mem_start;
4529 ifr->ifr_map.mem_end = dev->mem_end;
4530 ifr->ifr_map.base_addr = dev->base_addr;
4531 ifr->ifr_map.irq = dev->irq;
4532 ifr->ifr_map.dma = dev->dma;
4533 ifr->ifr_map.port = dev->if_port;
4534 return 0;
14e3e079 4535
d1b19dff
ED
4536 case SIOCGIFINDEX:
4537 ifr->ifr_ifindex = dev->ifindex;
4538 return 0;
14e3e079 4539
d1b19dff
ED
4540 case SIOCGIFTXQLEN:
4541 ifr->ifr_qlen = dev->tx_queue_len;
4542 return 0;
14e3e079 4543
d1b19dff
ED
4544 default:
4545 /* dev_ioctl() should ensure this case
4546 * is never reached
4547 */
4548 WARN_ON(1);
4549 err = -EINVAL;
4550 break;
14e3e079
JG
4551
4552 }
4553 return err;
4554}
4555
4556/*
4557 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4558 */
4559static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4560{
4561 int err;
4562 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
5f2f6da7 4563 const struct net_device_ops *ops;
14e3e079
JG
4564
4565 if (!dev)
4566 return -ENODEV;
4567
5f2f6da7
JP
4568 ops = dev->netdev_ops;
4569
14e3e079 4570 switch (cmd) {
d1b19dff
ED
4571 case SIOCSIFFLAGS: /* Set interface flags */
4572 return dev_change_flags(dev, ifr->ifr_flags);
14e3e079 4573
d1b19dff
ED
4574 case SIOCSIFMETRIC: /* Set the metric on the interface
4575 (currently unused) */
4576 return -EOPNOTSUPP;
14e3e079 4577
d1b19dff
ED
4578 case SIOCSIFMTU: /* Set the MTU of a device */
4579 return dev_set_mtu(dev, ifr->ifr_mtu);
1da177e4 4580
d1b19dff
ED
4581 case SIOCSIFHWADDR:
4582 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
1da177e4 4583
d1b19dff
ED
4584 case SIOCSIFHWBROADCAST:
4585 if (ifr->ifr_hwaddr.sa_family != dev->type)
4586 return -EINVAL;
4587 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4588 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4589 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4590 return 0;
1da177e4 4591
d1b19dff
ED
4592 case SIOCSIFMAP:
4593 if (ops->ndo_set_config) {
1da177e4
LT
4594 if (!netif_device_present(dev))
4595 return -ENODEV;
d1b19dff
ED
4596 return ops->ndo_set_config(dev, &ifr->ifr_map);
4597 }
4598 return -EOPNOTSUPP;
1da177e4 4599
d1b19dff
ED
4600 case SIOCADDMULTI:
4601 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4602 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4603 return -EINVAL;
4604 if (!netif_device_present(dev))
4605 return -ENODEV;
4606 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4607 dev->addr_len, 1);
4608
4609 case SIOCDELMULTI:
4610 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4611 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4612 return -EINVAL;
4613 if (!netif_device_present(dev))
4614 return -ENODEV;
4615 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4616 dev->addr_len, 1);
1da177e4 4617
d1b19dff
ED
4618 case SIOCSIFTXQLEN:
4619 if (ifr->ifr_qlen < 0)
4620 return -EINVAL;
4621 dev->tx_queue_len = ifr->ifr_qlen;
4622 return 0;
1da177e4 4623
d1b19dff
ED
4624 case SIOCSIFNAME:
4625 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4626 return dev_change_name(dev, ifr->ifr_newname);
1da177e4 4627
d1b19dff
ED
4628 /*
4629 * Unknown or private ioctl
4630 */
4631 default:
4632 if ((cmd >= SIOCDEVPRIVATE &&
4633 cmd <= SIOCDEVPRIVATE + 15) ||
4634 cmd == SIOCBONDENSLAVE ||
4635 cmd == SIOCBONDRELEASE ||
4636 cmd == SIOCBONDSETHWADDR ||
4637 cmd == SIOCBONDSLAVEINFOQUERY ||
4638 cmd == SIOCBONDINFOQUERY ||
4639 cmd == SIOCBONDCHANGEACTIVE ||
4640 cmd == SIOCGMIIPHY ||
4641 cmd == SIOCGMIIREG ||
4642 cmd == SIOCSMIIREG ||
4643 cmd == SIOCBRADDIF ||
4644 cmd == SIOCBRDELIF ||
4645 cmd == SIOCSHWTSTAMP ||
4646 cmd == SIOCWANDEV) {
4647 err = -EOPNOTSUPP;
4648 if (ops->ndo_do_ioctl) {
4649 if (netif_device_present(dev))
4650 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4651 else
4652 err = -ENODEV;
4653 }
4654 } else
4655 err = -EINVAL;
1da177e4
LT
4656
4657 }
4658 return err;
4659}
4660
4661/*
4662 * This function handles all "interface"-type I/O control requests. The actual
4663 * 'doing' part of this is dev_ifsioc above.
4664 */
4665
4666/**
4667 * dev_ioctl - network device ioctl
c4ea43c5 4668 * @net: the applicable net namespace
1da177e4
LT
4669 * @cmd: command to issue
4670 * @arg: pointer to a struct ifreq in user space
4671 *
4672 * Issue ioctl functions to devices. This is normally called by the
4673 * user space syscall interfaces but can sometimes be useful for
4674 * other purposes. The return value is the return from the syscall if
4675 * positive or a negative errno code on error.
4676 */
4677
881d966b 4678int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1da177e4
LT
4679{
4680 struct ifreq ifr;
4681 int ret;
4682 char *colon;
4683
4684 /* One special case: SIOCGIFCONF takes ifconf argument
4685 and requires shared lock, because it sleeps writing
4686 to user space.
4687 */
4688
4689 if (cmd == SIOCGIFCONF) {
6756ae4b 4690 rtnl_lock();
881d966b 4691 ret = dev_ifconf(net, (char __user *) arg);
6756ae4b 4692 rtnl_unlock();
1da177e4
LT
4693 return ret;
4694 }
4695 if (cmd == SIOCGIFNAME)
881d966b 4696 return dev_ifname(net, (struct ifreq __user *)arg);
1da177e4
LT
4697
4698 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4699 return -EFAULT;
4700
4701 ifr.ifr_name[IFNAMSIZ-1] = 0;
4702
4703 colon = strchr(ifr.ifr_name, ':');
4704 if (colon)
4705 *colon = 0;
4706
4707 /*
4708 * See which interface the caller is talking about.
4709 */
4710
4711 switch (cmd) {
d1b19dff
ED
4712 /*
4713 * These ioctl calls:
4714 * - can be done by all.
4715 * - atomic and do not require locking.
4716 * - return a value
4717 */
4718 case SIOCGIFFLAGS:
4719 case SIOCGIFMETRIC:
4720 case SIOCGIFMTU:
4721 case SIOCGIFHWADDR:
4722 case SIOCGIFSLAVE:
4723 case SIOCGIFMAP:
4724 case SIOCGIFINDEX:
4725 case SIOCGIFTXQLEN:
4726 dev_load(net, ifr.ifr_name);
3710becf 4727 rcu_read_lock();
d1b19dff 4728 ret = dev_ifsioc_locked(net, &ifr, cmd);
3710becf 4729 rcu_read_unlock();
d1b19dff
ED
4730 if (!ret) {
4731 if (colon)
4732 *colon = ':';
4733 if (copy_to_user(arg, &ifr,
4734 sizeof(struct ifreq)))
4735 ret = -EFAULT;
4736 }
4737 return ret;
1da177e4 4738
d1b19dff
ED
4739 case SIOCETHTOOL:
4740 dev_load(net, ifr.ifr_name);
4741 rtnl_lock();
4742 ret = dev_ethtool(net, &ifr);
4743 rtnl_unlock();
4744 if (!ret) {
4745 if (colon)
4746 *colon = ':';
4747 if (copy_to_user(arg, &ifr,
4748 sizeof(struct ifreq)))
4749 ret = -EFAULT;
4750 }
4751 return ret;
1da177e4 4752
d1b19dff
ED
4753 /*
4754 * These ioctl calls:
4755 * - require superuser power.
4756 * - require strict serialization.
4757 * - return a value
4758 */
4759 case SIOCGMIIPHY:
4760 case SIOCGMIIREG:
4761 case SIOCSIFNAME:
4762 if (!capable(CAP_NET_ADMIN))
4763 return -EPERM;
4764 dev_load(net, ifr.ifr_name);
4765 rtnl_lock();
4766 ret = dev_ifsioc(net, &ifr, cmd);
4767 rtnl_unlock();
4768 if (!ret) {
4769 if (colon)
4770 *colon = ':';
4771 if (copy_to_user(arg, &ifr,
4772 sizeof(struct ifreq)))
4773 ret = -EFAULT;
4774 }
4775 return ret;
1da177e4 4776
d1b19dff
ED
4777 /*
4778 * These ioctl calls:
4779 * - require superuser power.
4780 * - require strict serialization.
4781 * - do not return a value
4782 */
4783 case SIOCSIFFLAGS:
4784 case SIOCSIFMETRIC:
4785 case SIOCSIFMTU:
4786 case SIOCSIFMAP:
4787 case SIOCSIFHWADDR:
4788 case SIOCSIFSLAVE:
4789 case SIOCADDMULTI:
4790 case SIOCDELMULTI:
4791 case SIOCSIFHWBROADCAST:
4792 case SIOCSIFTXQLEN:
4793 case SIOCSMIIREG:
4794 case SIOCBONDENSLAVE:
4795 case SIOCBONDRELEASE:
4796 case SIOCBONDSETHWADDR:
4797 case SIOCBONDCHANGEACTIVE:
4798 case SIOCBRADDIF:
4799 case SIOCBRDELIF:
4800 case SIOCSHWTSTAMP:
4801 if (!capable(CAP_NET_ADMIN))
4802 return -EPERM;
4803 /* fall through */
4804 case SIOCBONDSLAVEINFOQUERY:
4805 case SIOCBONDINFOQUERY:
4806 dev_load(net, ifr.ifr_name);
4807 rtnl_lock();
4808 ret = dev_ifsioc(net, &ifr, cmd);
4809 rtnl_unlock();
4810 return ret;
4811
4812 case SIOCGIFMEM:
4813 /* Get the per device memory space. We can add this but
4814 * currently do not support it */
4815 case SIOCSIFMEM:
4816 /* Set the per device memory buffer space.
4817 * Not applicable in our case */
4818 case SIOCSIFLINK:
4819 return -EINVAL;
4820
4821 /*
4822 * Unknown or private ioctl.
4823 */
4824 default:
4825 if (cmd == SIOCWANDEV ||
4826 (cmd >= SIOCDEVPRIVATE &&
4827 cmd <= SIOCDEVPRIVATE + 15)) {
881d966b 4828 dev_load(net, ifr.ifr_name);
1da177e4 4829 rtnl_lock();
881d966b 4830 ret = dev_ifsioc(net, &ifr, cmd);
1da177e4 4831 rtnl_unlock();
d1b19dff
ED
4832 if (!ret && copy_to_user(arg, &ifr,
4833 sizeof(struct ifreq)))
4834 ret = -EFAULT;
1da177e4 4835 return ret;
d1b19dff
ED
4836 }
4837 /* Take care of Wireless Extensions */
4838 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
4839 return wext_handle_ioctl(net, &ifr, cmd, arg);
4840 return -EINVAL;
1da177e4
LT
4841 }
4842}
4843
4844
4845/**
4846 * dev_new_index - allocate an ifindex
c4ea43c5 4847 * @net: the applicable net namespace
1da177e4
LT
4848 *
4849 * Returns a suitable unique value for a new device interface
4850 * number. The caller must hold the rtnl semaphore or the
4851 * dev_base_lock to be sure it remains unique.
4852 */
881d966b 4853static int dev_new_index(struct net *net)
1da177e4
LT
4854{
4855 static int ifindex;
4856 for (;;) {
4857 if (++ifindex <= 0)
4858 ifindex = 1;
881d966b 4859 if (!__dev_get_by_index(net, ifindex))
1da177e4
LT
4860 return ifindex;
4861 }
4862}
4863
1da177e4 4864/* Delayed registration/unregisteration */
3b5b34fd 4865static LIST_HEAD(net_todo_list);
1da177e4 4866
6f05f629 4867static void net_set_todo(struct net_device *dev)
1da177e4 4868{
1da177e4 4869 list_add_tail(&dev->todo_list, &net_todo_list);
1da177e4
LT
4870}
4871
9b5e383c 4872static void rollback_registered_many(struct list_head *head)
93ee31f1 4873{
e93737b0 4874 struct net_device *dev, *tmp;
9b5e383c 4875
93ee31f1
DL
4876 BUG_ON(dev_boot_phase);
4877 ASSERT_RTNL();
4878
e93737b0 4879 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 4880 /* Some devices call without registering
e93737b0
KK
4881 * for initialization unwind. Remove those
4882 * devices and proceed with the remaining.
9b5e383c
ED
4883 */
4884 if (dev->reg_state == NETREG_UNINITIALIZED) {
4885 pr_debug("unregister_netdevice: device %s/%p never "
4886 "was registered\n", dev->name, dev);
93ee31f1 4887
9b5e383c 4888 WARN_ON(1);
e93737b0
KK
4889 list_del(&dev->unreg_list);
4890 continue;
9b5e383c 4891 }
93ee31f1 4892
9b5e383c 4893 BUG_ON(dev->reg_state != NETREG_REGISTERED);
93ee31f1 4894
9b5e383c
ED
4895 /* If device is running, close it first. */
4896 dev_close(dev);
93ee31f1 4897
9b5e383c
ED
4898 /* And unlink it from device chain. */
4899 unlist_netdevice(dev);
93ee31f1 4900
9b5e383c
ED
4901 dev->reg_state = NETREG_UNREGISTERING;
4902 }
93ee31f1
DL
4903
4904 synchronize_net();
4905
9b5e383c
ED
4906 list_for_each_entry(dev, head, unreg_list) {
4907 /* Shutdown queueing discipline. */
4908 dev_shutdown(dev);
93ee31f1
DL
4909
4910
9b5e383c
ED
4911 /* Notify protocols, that we are about to destroy
4912 this device. They should clean all the things.
4913 */
4914 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 4915
a2835763
PM
4916 if (!dev->rtnl_link_ops ||
4917 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
4918 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
4919
9b5e383c
ED
4920 /*
4921 * Flush the unicast and multicast chains
4922 */
4923 dev_unicast_flush(dev);
4924 dev_addr_discard(dev);
93ee31f1 4925
9b5e383c
ED
4926 if (dev->netdev_ops->ndo_uninit)
4927 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 4928
9b5e383c
ED
4929 /* Notifier chain MUST detach us from master device. */
4930 WARN_ON(dev->master);
93ee31f1 4931
9b5e383c
ED
4932 /* Remove entries from kobject tree */
4933 netdev_unregister_kobject(dev);
4934 }
93ee31f1 4935
a5ee1551 4936 /* Process any work delayed until the end of the batch */
e5e26d75 4937 dev = list_first_entry(head, struct net_device, unreg_list);
a5ee1551 4938 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
93ee31f1 4939
a5ee1551 4940 synchronize_net();
395264d5 4941
a5ee1551 4942 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
4943 dev_put(dev);
4944}
4945
4946static void rollback_registered(struct net_device *dev)
4947{
4948 LIST_HEAD(single);
4949
4950 list_add(&dev->unreg_list, &single);
4951 rollback_registered_many(&single);
93ee31f1
DL
4952}
4953
e8a0464c
DM
4954static void __netdev_init_queue_locks_one(struct net_device *dev,
4955 struct netdev_queue *dev_queue,
4956 void *_unused)
c773e847
DM
4957{
4958 spin_lock_init(&dev_queue->_xmit_lock);
cf508b12 4959 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
c773e847
DM
4960 dev_queue->xmit_lock_owner = -1;
4961}
4962
4963static void netdev_init_queue_locks(struct net_device *dev)
4964{
e8a0464c
DM
4965 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
4966 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
c773e847
DM
4967}
4968
b63365a2
HX
4969unsigned long netdev_fix_features(unsigned long features, const char *name)
4970{
4971 /* Fix illegal SG+CSUM combinations. */
4972 if ((features & NETIF_F_SG) &&
4973 !(features & NETIF_F_ALL_CSUM)) {
4974 if (name)
4975 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
4976 "checksum feature.\n", name);
4977 features &= ~NETIF_F_SG;
4978 }
4979
4980 /* TSO requires that SG is present as well. */
4981 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
4982 if (name)
4983 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
4984 "SG feature.\n", name);
4985 features &= ~NETIF_F_TSO;
4986 }
4987
4988 if (features & NETIF_F_UFO) {
4989 if (!(features & NETIF_F_GEN_CSUM)) {
4990 if (name)
4991 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
4992 "since no NETIF_F_HW_CSUM feature.\n",
4993 name);
4994 features &= ~NETIF_F_UFO;
4995 }
4996
4997 if (!(features & NETIF_F_SG)) {
4998 if (name)
4999 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5000 "since no NETIF_F_SG feature.\n", name);
5001 features &= ~NETIF_F_UFO;
5002 }
5003 }
5004
5005 return features;
5006}
5007EXPORT_SYMBOL(netdev_fix_features);
5008
fc4a7489
PM
5009/**
5010 * netif_stacked_transfer_operstate - transfer operstate
5011 * @rootdev: the root or lower level device to transfer state from
5012 * @dev: the device to transfer operstate to
5013 *
5014 * Transfer operational state from root to device. This is normally
5015 * called when a stacking relationship exists between the root
5016 * device and the device(a leaf device).
5017 */
5018void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5019 struct net_device *dev)
5020{
5021 if (rootdev->operstate == IF_OPER_DORMANT)
5022 netif_dormant_on(dev);
5023 else
5024 netif_dormant_off(dev);
5025
5026 if (netif_carrier_ok(rootdev)) {
5027 if (!netif_carrier_ok(dev))
5028 netif_carrier_on(dev);
5029 } else {
5030 if (netif_carrier_ok(dev))
5031 netif_carrier_off(dev);
5032 }
5033}
5034EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5035
1da177e4
LT
5036/**
5037 * register_netdevice - register a network device
5038 * @dev: device to register
5039 *
5040 * Take a completed network device structure and add it to the kernel
5041 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5042 * chain. 0 is returned on success. A negative errno code is returned
5043 * on a failure to set up the device, or if the name is a duplicate.
5044 *
5045 * Callers must hold the rtnl semaphore. You may want
5046 * register_netdev() instead of this.
5047 *
5048 * BUGS:
5049 * The locking appears insufficient to guarantee two parallel registers
5050 * will not get the same name.
5051 */
5052
5053int register_netdevice(struct net_device *dev)
5054{
1da177e4 5055 int ret;
d314774c 5056 struct net *net = dev_net(dev);
1da177e4
LT
5057
5058 BUG_ON(dev_boot_phase);
5059 ASSERT_RTNL();
5060
b17a7c17
SH
5061 might_sleep();
5062
1da177e4
LT
5063 /* When net_device's are persistent, this will be fatal. */
5064 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 5065 BUG_ON(!net);
1da177e4 5066
f1f28aa3 5067 spin_lock_init(&dev->addr_list_lock);
cf508b12 5068 netdev_set_addr_lockdep_class(dev);
c773e847 5069 netdev_init_queue_locks(dev);
1da177e4 5070
1da177e4
LT
5071 dev->iflink = -1;
5072
5073 /* Init, if this function is available */
d314774c
SH
5074 if (dev->netdev_ops->ndo_init) {
5075 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
5076 if (ret) {
5077 if (ret > 0)
5078 ret = -EIO;
90833aa4 5079 goto out;
1da177e4
LT
5080 }
5081 }
4ec93edb 5082
d9031024
OP
5083 ret = dev_get_valid_name(net, dev->name, dev->name, 0);
5084 if (ret)
7ce1b0ed 5085 goto err_uninit;
1da177e4 5086
881d966b 5087 dev->ifindex = dev_new_index(net);
1da177e4
LT
5088 if (dev->iflink == -1)
5089 dev->iflink = dev->ifindex;
5090
d212f87b
SH
5091 /* Fix illegal checksum combinations */
5092 if ((dev->features & NETIF_F_HW_CSUM) &&
5093 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5094 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5095 dev->name);
5096 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5097 }
5098
5099 if ((dev->features & NETIF_F_NO_CSUM) &&
5100 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5101 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5102 dev->name);
5103 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5104 }
5105
b63365a2 5106 dev->features = netdev_fix_features(dev->features, dev->name);
1da177e4 5107
e5a4a72d
LB
5108 /* Enable software GSO if SG is supported. */
5109 if (dev->features & NETIF_F_SG)
5110 dev->features |= NETIF_F_GSO;
5111
aaf8cdc3 5112 netdev_initialize_kobject(dev);
7ffbe3fd
JB
5113
5114 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5115 ret = notifier_to_errno(ret);
5116 if (ret)
5117 goto err_uninit;
5118
8b41d188 5119 ret = netdev_register_kobject(dev);
b17a7c17 5120 if (ret)
7ce1b0ed 5121 goto err_uninit;
b17a7c17
SH
5122 dev->reg_state = NETREG_REGISTERED;
5123
1da177e4
LT
5124 /*
5125 * Default initial state at registry is that the
5126 * device is present.
5127 */
5128
5129 set_bit(__LINK_STATE_PRESENT, &dev->state);
5130
1da177e4 5131 dev_init_scheduler(dev);
1da177e4 5132 dev_hold(dev);
ce286d32 5133 list_netdevice(dev);
1da177e4
LT
5134
5135 /* Notify protocols, that a new device appeared. */
056925ab 5136 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 5137 ret = notifier_to_errno(ret);
93ee31f1
DL
5138 if (ret) {
5139 rollback_registered(dev);
5140 dev->reg_state = NETREG_UNREGISTERED;
5141 }
d90a909e
EB
5142 /*
5143 * Prevent userspace races by waiting until the network
5144 * device is fully setup before sending notifications.
5145 */
a2835763
PM
5146 if (!dev->rtnl_link_ops ||
5147 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5148 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
1da177e4
LT
5149
5150out:
5151 return ret;
7ce1b0ed
HX
5152
5153err_uninit:
d314774c
SH
5154 if (dev->netdev_ops->ndo_uninit)
5155 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 5156 goto out;
1da177e4 5157}
d1b19dff 5158EXPORT_SYMBOL(register_netdevice);
1da177e4 5159
937f1ba5
BH
5160/**
5161 * init_dummy_netdev - init a dummy network device for NAPI
5162 * @dev: device to init
5163 *
5164 * This takes a network device structure and initialize the minimum
5165 * amount of fields so it can be used to schedule NAPI polls without
5166 * registering a full blown interface. This is to be used by drivers
5167 * that need to tie several hardware interfaces to a single NAPI
5168 * poll scheduler due to HW limitations.
5169 */
5170int init_dummy_netdev(struct net_device *dev)
5171{
5172 /* Clear everything. Note we don't initialize spinlocks
5173 * are they aren't supposed to be taken by any of the
5174 * NAPI code and this dummy netdev is supposed to be
5175 * only ever used for NAPI polls
5176 */
5177 memset(dev, 0, sizeof(struct net_device));
5178
5179 /* make sure we BUG if trying to hit standard
5180 * register/unregister code path
5181 */
5182 dev->reg_state = NETREG_DUMMY;
5183
5184 /* initialize the ref count */
5185 atomic_set(&dev->refcnt, 1);
5186
5187 /* NAPI wants this */
5188 INIT_LIST_HEAD(&dev->napi_list);
5189
5190 /* a dummy interface is started by default */
5191 set_bit(__LINK_STATE_PRESENT, &dev->state);
5192 set_bit(__LINK_STATE_START, &dev->state);
5193
5194 return 0;
5195}
5196EXPORT_SYMBOL_GPL(init_dummy_netdev);
5197
5198
1da177e4
LT
5199/**
5200 * register_netdev - register a network device
5201 * @dev: device to register
5202 *
5203 * Take a completed network device structure and add it to the kernel
5204 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5205 * chain. 0 is returned on success. A negative errno code is returned
5206 * on a failure to set up the device, or if the name is a duplicate.
5207 *
38b4da38 5208 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
5209 * and expands the device name if you passed a format string to
5210 * alloc_netdev.
5211 */
5212int register_netdev(struct net_device *dev)
5213{
5214 int err;
5215
5216 rtnl_lock();
5217
5218 /*
5219 * If the name is a format string the caller wants us to do a
5220 * name allocation.
5221 */
5222 if (strchr(dev->name, '%')) {
5223 err = dev_alloc_name(dev, dev->name);
5224 if (err < 0)
5225 goto out;
5226 }
4ec93edb 5227
1da177e4
LT
5228 err = register_netdevice(dev);
5229out:
5230 rtnl_unlock();
5231 return err;
5232}
5233EXPORT_SYMBOL(register_netdev);
5234
5235/*
5236 * netdev_wait_allrefs - wait until all references are gone.
5237 *
5238 * This is called when unregistering network devices.
5239 *
5240 * Any protocol or device that holds a reference should register
5241 * for netdevice notification, and cleanup and put back the
5242 * reference if they receive an UNREGISTER event.
5243 * We can get stuck here if buggy protocols don't correctly
4ec93edb 5244 * call dev_put.
1da177e4
LT
5245 */
5246static void netdev_wait_allrefs(struct net_device *dev)
5247{
5248 unsigned long rebroadcast_time, warning_time;
5249
e014debe
ED
5250 linkwatch_forget_dev(dev);
5251
1da177e4
LT
5252 rebroadcast_time = warning_time = jiffies;
5253 while (atomic_read(&dev->refcnt) != 0) {
5254 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 5255 rtnl_lock();
1da177e4
LT
5256
5257 /* Rebroadcast unregister notification */
056925ab 5258 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
a5ee1551 5259 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
395264d5 5260 * should have already handle it the first time */
1da177e4
LT
5261
5262 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5263 &dev->state)) {
5264 /* We must not have linkwatch events
5265 * pending on unregister. If this
5266 * happens, we simply run the queue
5267 * unscheduled, resulting in a noop
5268 * for this device.
5269 */
5270 linkwatch_run_queue();
5271 }
5272
6756ae4b 5273 __rtnl_unlock();
1da177e4
LT
5274
5275 rebroadcast_time = jiffies;
5276 }
5277
5278 msleep(250);
5279
5280 if (time_after(jiffies, warning_time + 10 * HZ)) {
5281 printk(KERN_EMERG "unregister_netdevice: "
5282 "waiting for %s to become free. Usage "
5283 "count = %d\n",
5284 dev->name, atomic_read(&dev->refcnt));
5285 warning_time = jiffies;
5286 }
5287 }
5288}
5289
5290/* The sequence is:
5291 *
5292 * rtnl_lock();
5293 * ...
5294 * register_netdevice(x1);
5295 * register_netdevice(x2);
5296 * ...
5297 * unregister_netdevice(y1);
5298 * unregister_netdevice(y2);
5299 * ...
5300 * rtnl_unlock();
5301 * free_netdev(y1);
5302 * free_netdev(y2);
5303 *
58ec3b4d 5304 * We are invoked by rtnl_unlock().
1da177e4 5305 * This allows us to deal with problems:
b17a7c17 5306 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
5307 * without deadlocking with linkwatch via keventd.
5308 * 2) Since we run with the RTNL semaphore not held, we can sleep
5309 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
5310 *
5311 * We must not return until all unregister events added during
5312 * the interval the lock was held have been completed.
1da177e4 5313 */
1da177e4
LT
5314void netdev_run_todo(void)
5315{
626ab0e6 5316 struct list_head list;
1da177e4 5317
1da177e4 5318 /* Snapshot list, allow later requests */
626ab0e6 5319 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
5320
5321 __rtnl_unlock();
626ab0e6 5322
1da177e4
LT
5323 while (!list_empty(&list)) {
5324 struct net_device *dev
e5e26d75 5325 = list_first_entry(&list, struct net_device, todo_list);
1da177e4
LT
5326 list_del(&dev->todo_list);
5327
b17a7c17
SH
5328 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5329 printk(KERN_ERR "network todo '%s' but state %d\n",
5330 dev->name, dev->reg_state);
5331 dump_stack();
5332 continue;
5333 }
1da177e4 5334
b17a7c17 5335 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 5336
6e583ce5
SH
5337 on_each_cpu(flush_backlog, dev, 1);
5338
b17a7c17 5339 netdev_wait_allrefs(dev);
1da177e4 5340
b17a7c17
SH
5341 /* paranoia */
5342 BUG_ON(atomic_read(&dev->refcnt));
547b792c
IJ
5343 WARN_ON(dev->ip_ptr);
5344 WARN_ON(dev->ip6_ptr);
5345 WARN_ON(dev->dn_ptr);
1da177e4 5346
b17a7c17
SH
5347 if (dev->destructor)
5348 dev->destructor(dev);
9093bbb2
SH
5349
5350 /* Free network device */
5351 kobject_put(&dev->dev.kobj);
1da177e4 5352 }
1da177e4
LT
5353}
5354
d83345ad
ED
5355/**
5356 * dev_txq_stats_fold - fold tx_queues stats
5357 * @dev: device to get statistics from
5358 * @stats: struct net_device_stats to hold results
5359 */
5360void dev_txq_stats_fold(const struct net_device *dev,
5361 struct net_device_stats *stats)
5362{
5363 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5364 unsigned int i;
5365 struct netdev_queue *txq;
5366
5367 for (i = 0; i < dev->num_tx_queues; i++) {
5368 txq = netdev_get_tx_queue(dev, i);
5369 tx_bytes += txq->tx_bytes;
5370 tx_packets += txq->tx_packets;
5371 tx_dropped += txq->tx_dropped;
5372 }
5373 if (tx_bytes || tx_packets || tx_dropped) {
5374 stats->tx_bytes = tx_bytes;
5375 stats->tx_packets = tx_packets;
5376 stats->tx_dropped = tx_dropped;
5377 }
5378}
5379EXPORT_SYMBOL(dev_txq_stats_fold);
5380
eeda3fd6
SH
5381/**
5382 * dev_get_stats - get network device statistics
5383 * @dev: device to get statistics from
5384 *
5385 * Get network statistics from device. The device driver may provide
5386 * its own method by setting dev->netdev_ops->get_stats; otherwise
5387 * the internal statistics structure is used.
5388 */
5389const struct net_device_stats *dev_get_stats(struct net_device *dev)
7004bf25 5390{
eeda3fd6
SH
5391 const struct net_device_ops *ops = dev->netdev_ops;
5392
5393 if (ops->ndo_get_stats)
5394 return ops->ndo_get_stats(dev);
d83345ad
ED
5395
5396 dev_txq_stats_fold(dev, &dev->stats);
5397 return &dev->stats;
c45d286e 5398}
eeda3fd6 5399EXPORT_SYMBOL(dev_get_stats);
c45d286e 5400
dc2b4847 5401static void netdev_init_one_queue(struct net_device *dev,
e8a0464c
DM
5402 struct netdev_queue *queue,
5403 void *_unused)
dc2b4847 5404{
dc2b4847
DM
5405 queue->dev = dev;
5406}
5407
bb949fbd
DM
5408static void netdev_init_queues(struct net_device *dev)
5409{
e8a0464c
DM
5410 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5411 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
c3f26a26 5412 spin_lock_init(&dev->tx_global_lock);
bb949fbd
DM
5413}
5414
1da177e4 5415/**
f25f4e44 5416 * alloc_netdev_mq - allocate network device
1da177e4
LT
5417 * @sizeof_priv: size of private data to allocate space for
5418 * @name: device name format string
5419 * @setup: callback to initialize device
f25f4e44 5420 * @queue_count: the number of subqueues to allocate
1da177e4
LT
5421 *
5422 * Allocates a struct net_device with private data area for driver use
f25f4e44
PWJ
5423 * and performs basic initialization. Also allocates subquue structs
5424 * for each queue on the device at the end of the netdevice.
1da177e4 5425 */
f25f4e44
PWJ
5426struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5427 void (*setup)(struct net_device *), unsigned int queue_count)
1da177e4 5428{
e8a0464c 5429 struct netdev_queue *tx;
1da177e4 5430 struct net_device *dev;
7943986c 5431 size_t alloc_size;
1ce8e7b5 5432 struct net_device *p;
1da177e4 5433
b6fe17d6
SH
5434 BUG_ON(strlen(name) >= sizeof(dev->name));
5435
fd2ea0a7 5436 alloc_size = sizeof(struct net_device);
d1643d24
AD
5437 if (sizeof_priv) {
5438 /* ensure 32-byte alignment of private area */
1ce8e7b5 5439 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
5440 alloc_size += sizeof_priv;
5441 }
5442 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 5443 alloc_size += NETDEV_ALIGN - 1;
1da177e4 5444
31380de9 5445 p = kzalloc(alloc_size, GFP_KERNEL);
1da177e4 5446 if (!p) {
b6fe17d6 5447 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
1da177e4
LT
5448 return NULL;
5449 }
1da177e4 5450
7943986c 5451 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
e8a0464c
DM
5452 if (!tx) {
5453 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5454 "tx qdiscs.\n");
ab9c73cc 5455 goto free_p;
e8a0464c
DM
5456 }
5457
1ce8e7b5 5458 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 5459 dev->padded = (char *)dev - (char *)p;
ab9c73cc
JP
5460
5461 if (dev_addr_init(dev))
5462 goto free_tx;
5463
ccffad25
JP
5464 dev_unicast_init(dev);
5465
c346dca1 5466 dev_net_set(dev, &init_net);
1da177e4 5467
e8a0464c
DM
5468 dev->_tx = tx;
5469 dev->num_tx_queues = queue_count;
fd2ea0a7 5470 dev->real_num_tx_queues = queue_count;
e8a0464c 5471
82cc1a7a 5472 dev->gso_max_size = GSO_MAX_SIZE;
1da177e4 5473
bb949fbd
DM
5474 netdev_init_queues(dev);
5475
15682bc4
PWJ
5476 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5477 dev->ethtool_ntuple_list.count = 0;
d565b0a1 5478 INIT_LIST_HEAD(&dev->napi_list);
9fdce099 5479 INIT_LIST_HEAD(&dev->unreg_list);
e014debe 5480 INIT_LIST_HEAD(&dev->link_watch_list);
93f154b5 5481 dev->priv_flags = IFF_XMIT_DST_RELEASE;
1da177e4
LT
5482 setup(dev);
5483 strcpy(dev->name, name);
5484 return dev;
ab9c73cc
JP
5485
5486free_tx:
5487 kfree(tx);
5488
5489free_p:
5490 kfree(p);
5491 return NULL;
1da177e4 5492}
f25f4e44 5493EXPORT_SYMBOL(alloc_netdev_mq);
1da177e4
LT
5494
5495/**
5496 * free_netdev - free network device
5497 * @dev: device
5498 *
4ec93edb
YH
5499 * This function does the last stage of destroying an allocated device
5500 * interface. The reference to the device object is released.
1da177e4
LT
5501 * If this is the last reference then it will be freed.
5502 */
5503void free_netdev(struct net_device *dev)
5504{
d565b0a1
HX
5505 struct napi_struct *p, *n;
5506
f3005d7f
DL
5507 release_net(dev_net(dev));
5508
e8a0464c
DM
5509 kfree(dev->_tx);
5510
f001fde5
JP
5511 /* Flush device addresses */
5512 dev_addr_flush(dev);
5513
15682bc4
PWJ
5514 /* Clear ethtool n-tuple list */
5515 ethtool_ntuple_flush(dev);
5516
d565b0a1
HX
5517 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5518 netif_napi_del(p);
5519
3041a069 5520 /* Compatibility with error handling in drivers */
1da177e4
LT
5521 if (dev->reg_state == NETREG_UNINITIALIZED) {
5522 kfree((char *)dev - dev->padded);
5523 return;
5524 }
5525
5526 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5527 dev->reg_state = NETREG_RELEASED;
5528
43cb76d9
GKH
5529 /* will free via device release */
5530 put_device(&dev->dev);
1da177e4 5531}
d1b19dff 5532EXPORT_SYMBOL(free_netdev);
4ec93edb 5533
f0db275a
SH
5534/**
5535 * synchronize_net - Synchronize with packet receive processing
5536 *
5537 * Wait for packets currently being received to be done.
5538 * Does not block later packets from starting.
5539 */
4ec93edb 5540void synchronize_net(void)
1da177e4
LT
5541{
5542 might_sleep();
fbd568a3 5543 synchronize_rcu();
1da177e4 5544}
d1b19dff 5545EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
5546
5547/**
44a0873d 5548 * unregister_netdevice_queue - remove device from the kernel
1da177e4 5549 * @dev: device
44a0873d 5550 * @head: list
6ebfbc06 5551 *
1da177e4 5552 * This function shuts down a device interface and removes it
d59b54b1 5553 * from the kernel tables.
44a0873d 5554 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
5555 *
5556 * Callers must hold the rtnl semaphore. You may want
5557 * unregister_netdev() instead of this.
5558 */
5559
44a0873d 5560void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 5561{
a6620712
HX
5562 ASSERT_RTNL();
5563
44a0873d 5564 if (head) {
9fdce099 5565 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
5566 } else {
5567 rollback_registered(dev);
5568 /* Finish processing unregister after unlock */
5569 net_set_todo(dev);
5570 }
1da177e4 5571}
44a0873d 5572EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 5573
9b5e383c
ED
5574/**
5575 * unregister_netdevice_many - unregister many devices
5576 * @head: list of devices
9b5e383c
ED
5577 */
5578void unregister_netdevice_many(struct list_head *head)
5579{
5580 struct net_device *dev;
5581
5582 if (!list_empty(head)) {
5583 rollback_registered_many(head);
5584 list_for_each_entry(dev, head, unreg_list)
5585 net_set_todo(dev);
5586 }
5587}
63c8099d 5588EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 5589
1da177e4
LT
5590/**
5591 * unregister_netdev - remove device from the kernel
5592 * @dev: device
5593 *
5594 * This function shuts down a device interface and removes it
d59b54b1 5595 * from the kernel tables.
1da177e4
LT
5596 *
5597 * This is just a wrapper for unregister_netdevice that takes
5598 * the rtnl semaphore. In general you want to use this and not
5599 * unregister_netdevice.
5600 */
5601void unregister_netdev(struct net_device *dev)
5602{
5603 rtnl_lock();
5604 unregister_netdevice(dev);
5605 rtnl_unlock();
5606}
1da177e4
LT
5607EXPORT_SYMBOL(unregister_netdev);
5608
ce286d32
EB
5609/**
5610 * dev_change_net_namespace - move device to different nethost namespace
5611 * @dev: device
5612 * @net: network namespace
5613 * @pat: If not NULL name pattern to try if the current device name
5614 * is already taken in the destination network namespace.
5615 *
5616 * This function shuts down a device interface and moves it
5617 * to a new network namespace. On success 0 is returned, on
5618 * a failure a netagive errno code is returned.
5619 *
5620 * Callers must hold the rtnl semaphore.
5621 */
5622
5623int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5624{
ce286d32
EB
5625 int err;
5626
5627 ASSERT_RTNL();
5628
5629 /* Don't allow namespace local devices to be moved. */
5630 err = -EINVAL;
5631 if (dev->features & NETIF_F_NETNS_LOCAL)
5632 goto out;
5633
3891845e
EB
5634#ifdef CONFIG_SYSFS
5635 /* Don't allow real devices to be moved when sysfs
5636 * is enabled.
5637 */
5638 err = -EINVAL;
5639 if (dev->dev.parent)
5640 goto out;
5641#endif
5642
ce286d32
EB
5643 /* Ensure the device has been registrered */
5644 err = -EINVAL;
5645 if (dev->reg_state != NETREG_REGISTERED)
5646 goto out;
5647
5648 /* Get out if there is nothing todo */
5649 err = 0;
878628fb 5650 if (net_eq(dev_net(dev), net))
ce286d32
EB
5651 goto out;
5652
5653 /* Pick the destination device name, and ensure
5654 * we can use it in the destination network namespace.
5655 */
5656 err = -EEXIST;
d9031024 5657 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
5658 /* We get here if we can't use the current device name */
5659 if (!pat)
5660 goto out;
d9031024 5661 if (dev_get_valid_name(net, pat, dev->name, 1))
ce286d32
EB
5662 goto out;
5663 }
5664
5665 /*
5666 * And now a mini version of register_netdevice unregister_netdevice.
5667 */
5668
5669 /* If device is running close it first. */
9b772652 5670 dev_close(dev);
ce286d32
EB
5671
5672 /* And unlink it from device chain */
5673 err = -ENODEV;
5674 unlist_netdevice(dev);
5675
5676 synchronize_net();
5677
5678 /* Shutdown queueing discipline. */
5679 dev_shutdown(dev);
5680
5681 /* Notify protocols, that we are about to destroy
5682 this device. They should clean all the things.
5683 */
5684 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
a5ee1551 5685 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
ce286d32
EB
5686
5687 /*
5688 * Flush the unicast and multicast chains
5689 */
ccffad25 5690 dev_unicast_flush(dev);
ce286d32
EB
5691 dev_addr_discard(dev);
5692
3891845e
EB
5693 netdev_unregister_kobject(dev);
5694
ce286d32 5695 /* Actually switch the network namespace */
c346dca1 5696 dev_net_set(dev, net);
ce286d32 5697
ce286d32
EB
5698 /* If there is an ifindex conflict assign a new one */
5699 if (__dev_get_by_index(net, dev->ifindex)) {
5700 int iflink = (dev->iflink == dev->ifindex);
5701 dev->ifindex = dev_new_index(net);
5702 if (iflink)
5703 dev->iflink = dev->ifindex;
5704 }
5705
8b41d188 5706 /* Fixup kobjects */
aaf8cdc3 5707 err = netdev_register_kobject(dev);
8b41d188 5708 WARN_ON(err);
ce286d32
EB
5709
5710 /* Add the device back in the hashes */
5711 list_netdevice(dev);
5712
5713 /* Notify protocols, that a new device appeared. */
5714 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5715
d90a909e
EB
5716 /*
5717 * Prevent userspace races by waiting until the network
5718 * device is fully setup before sending notifications.
5719 */
5720 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5721
ce286d32
EB
5722 synchronize_net();
5723 err = 0;
5724out:
5725 return err;
5726}
463d0183 5727EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 5728
1da177e4
LT
5729static int dev_cpu_callback(struct notifier_block *nfb,
5730 unsigned long action,
5731 void *ocpu)
5732{
5733 struct sk_buff **list_skb;
37437bb2 5734 struct Qdisc **list_net;
1da177e4
LT
5735 struct sk_buff *skb;
5736 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5737 struct softnet_data *sd, *oldsd;
5738
8bb78442 5739 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
5740 return NOTIFY_OK;
5741
5742 local_irq_disable();
5743 cpu = smp_processor_id();
5744 sd = &per_cpu(softnet_data, cpu);
5745 oldsd = &per_cpu(softnet_data, oldcpu);
5746
5747 /* Find end of our completion_queue. */
5748 list_skb = &sd->completion_queue;
5749 while (*list_skb)
5750 list_skb = &(*list_skb)->next;
5751 /* Append completion queue from offline CPU. */
5752 *list_skb = oldsd->completion_queue;
5753 oldsd->completion_queue = NULL;
5754
5755 /* Find end of our output_queue. */
5756 list_net = &sd->output_queue;
5757 while (*list_net)
5758 list_net = &(*list_net)->next_sched;
5759 /* Append output queue from offline CPU. */
5760 *list_net = oldsd->output_queue;
5761 oldsd->output_queue = NULL;
5762
5763 raise_softirq_irqoff(NET_TX_SOFTIRQ);
5764 local_irq_enable();
5765
5766 /* Process offline CPU's input_pkt_queue */
5767 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
5768 netif_rx(skb);
5769
5770 return NOTIFY_OK;
5771}
1da177e4
LT
5772
5773
7f353bf2 5774/**
b63365a2
HX
5775 * netdev_increment_features - increment feature set by one
5776 * @all: current feature set
5777 * @one: new feature set
5778 * @mask: mask feature set
7f353bf2
HX
5779 *
5780 * Computes a new feature set after adding a device with feature set
b63365a2
HX
5781 * @one to the master device with current feature set @all. Will not
5782 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 5783 */
b63365a2
HX
5784unsigned long netdev_increment_features(unsigned long all, unsigned long one,
5785 unsigned long mask)
5786{
5787 /* If device needs checksumming, downgrade to it. */
d1b19dff 5788 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
b63365a2
HX
5789 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
5790 else if (mask & NETIF_F_ALL_CSUM) {
5791 /* If one device supports v4/v6 checksumming, set for all. */
5792 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
5793 !(all & NETIF_F_GEN_CSUM)) {
5794 all &= ~NETIF_F_ALL_CSUM;
5795 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
5796 }
e2a6b852 5797
b63365a2
HX
5798 /* If one device supports hw checksumming, set for all. */
5799 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
5800 all &= ~NETIF_F_ALL_CSUM;
5801 all |= NETIF_F_HW_CSUM;
5802 }
5803 }
7f353bf2 5804
b63365a2 5805 one |= NETIF_F_ALL_CSUM;
7f353bf2 5806
b63365a2 5807 one |= all & NETIF_F_ONE_FOR_ALL;
d9f5950f 5808 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
b63365a2 5809 all |= one & mask & NETIF_F_ONE_FOR_ALL;
7f353bf2
HX
5810
5811 return all;
5812}
b63365a2 5813EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 5814
30d97d35
PE
5815static struct hlist_head *netdev_create_hash(void)
5816{
5817 int i;
5818 struct hlist_head *hash;
5819
5820 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
5821 if (hash != NULL)
5822 for (i = 0; i < NETDEV_HASHENTRIES; i++)
5823 INIT_HLIST_HEAD(&hash[i]);
5824
5825 return hash;
5826}
5827
881d966b 5828/* Initialize per network namespace state */
4665079c 5829static int __net_init netdev_init(struct net *net)
881d966b 5830{
881d966b 5831 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 5832
30d97d35
PE
5833 net->dev_name_head = netdev_create_hash();
5834 if (net->dev_name_head == NULL)
5835 goto err_name;
881d966b 5836
30d97d35
PE
5837 net->dev_index_head = netdev_create_hash();
5838 if (net->dev_index_head == NULL)
5839 goto err_idx;
881d966b
EB
5840
5841 return 0;
30d97d35
PE
5842
5843err_idx:
5844 kfree(net->dev_name_head);
5845err_name:
5846 return -ENOMEM;
881d966b
EB
5847}
5848
f0db275a
SH
5849/**
5850 * netdev_drivername - network driver for the device
5851 * @dev: network device
5852 * @buffer: buffer for resulting name
5853 * @len: size of buffer
5854 *
5855 * Determine network driver for device.
5856 */
cf04a4c7 5857char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6579e57b 5858{
cf04a4c7
SH
5859 const struct device_driver *driver;
5860 const struct device *parent;
6579e57b
AV
5861
5862 if (len <= 0 || !buffer)
5863 return buffer;
5864 buffer[0] = 0;
5865
5866 parent = dev->dev.parent;
5867
5868 if (!parent)
5869 return buffer;
5870
5871 driver = parent->driver;
5872 if (driver && driver->name)
5873 strlcpy(buffer, driver->name, len);
5874 return buffer;
5875}
5876
4665079c 5877static void __net_exit netdev_exit(struct net *net)
881d966b
EB
5878{
5879 kfree(net->dev_name_head);
5880 kfree(net->dev_index_head);
5881}
5882
022cbae6 5883static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
5884 .init = netdev_init,
5885 .exit = netdev_exit,
5886};
5887
4665079c 5888static void __net_exit default_device_exit(struct net *net)
ce286d32 5889{
e008b5fc 5890 struct net_device *dev, *aux;
ce286d32 5891 /*
e008b5fc 5892 * Push all migratable network devices back to the
ce286d32
EB
5893 * initial network namespace
5894 */
5895 rtnl_lock();
e008b5fc 5896 for_each_netdev_safe(net, dev, aux) {
ce286d32 5897 int err;
aca51397 5898 char fb_name[IFNAMSIZ];
ce286d32
EB
5899
5900 /* Ignore unmoveable devices (i.e. loopback) */
5901 if (dev->features & NETIF_F_NETNS_LOCAL)
5902 continue;
5903
e008b5fc
EB
5904 /* Leave virtual devices for the generic cleanup */
5905 if (dev->rtnl_link_ops)
5906 continue;
d0c082ce 5907
ce286d32 5908 /* Push remaing network devices to init_net */
aca51397
PE
5909 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
5910 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 5911 if (err) {
aca51397 5912 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
ce286d32 5913 __func__, dev->name, err);
aca51397 5914 BUG();
ce286d32
EB
5915 }
5916 }
5917 rtnl_unlock();
5918}
5919
04dc7f6b
EB
5920static void __net_exit default_device_exit_batch(struct list_head *net_list)
5921{
5922 /* At exit all network devices most be removed from a network
5923 * namespace. Do this in the reverse order of registeration.
5924 * Do this across as many network namespaces as possible to
5925 * improve batching efficiency.
5926 */
5927 struct net_device *dev;
5928 struct net *net;
5929 LIST_HEAD(dev_kill_list);
5930
5931 rtnl_lock();
5932 list_for_each_entry(net, net_list, exit_list) {
5933 for_each_netdev_reverse(net, dev) {
5934 if (dev->rtnl_link_ops)
5935 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
5936 else
5937 unregister_netdevice_queue(dev, &dev_kill_list);
5938 }
5939 }
5940 unregister_netdevice_many(&dev_kill_list);
5941 rtnl_unlock();
5942}
5943
022cbae6 5944static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 5945 .exit = default_device_exit,
04dc7f6b 5946 .exit_batch = default_device_exit_batch,
ce286d32
EB
5947};
5948
1da177e4
LT
5949/*
5950 * Initialize the DEV module. At boot time this walks the device list and
5951 * unhooks any devices that fail to initialise (normally hardware not
5952 * present) and leaves us with a valid list of present and active devices.
5953 *
5954 */
5955
5956/*
5957 * This is called single threaded during boot, so no need
5958 * to take the rtnl semaphore.
5959 */
5960static int __init net_dev_init(void)
5961{
5962 int i, rc = -ENOMEM;
5963
5964 BUG_ON(!dev_boot_phase);
5965
1da177e4
LT
5966 if (dev_proc_init())
5967 goto out;
5968
8b41d188 5969 if (netdev_kobject_init())
1da177e4
LT
5970 goto out;
5971
5972 INIT_LIST_HEAD(&ptype_all);
82d8a867 5973 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
5974 INIT_LIST_HEAD(&ptype_base[i]);
5975
881d966b
EB
5976 if (register_pernet_subsys(&netdev_net_ops))
5977 goto out;
1da177e4
LT
5978
5979 /*
5980 * Initialise the packet receive queues.
5981 */
5982
6f912042 5983 for_each_possible_cpu(i) {
1da177e4
LT
5984 struct softnet_data *queue;
5985
5986 queue = &per_cpu(softnet_data, i);
5987 skb_queue_head_init(&queue->input_pkt_queue);
1da177e4
LT
5988 queue->completion_queue = NULL;
5989 INIT_LIST_HEAD(&queue->poll_list);
bea3348e
SH
5990
5991 queue->backlog.poll = process_backlog;
5992 queue->backlog.weight = weight_p;
d565b0a1 5993 queue->backlog.gro_list = NULL;
4ae5544f 5994 queue->backlog.gro_count = 0;
1da177e4
LT
5995 }
5996
1da177e4
LT
5997 dev_boot_phase = 0;
5998
505d4f73
EB
5999 /* The loopback device is special if any other network devices
6000 * is present in a network namespace the loopback device must
6001 * be present. Since we now dynamically allocate and free the
6002 * loopback device ensure this invariant is maintained by
6003 * keeping the loopback device as the first device on the
6004 * list of network devices. Ensuring the loopback devices
6005 * is the first device that appears and the last network device
6006 * that disappears.
6007 */
6008 if (register_pernet_device(&loopback_net_ops))
6009 goto out;
6010
6011 if (register_pernet_device(&default_device_ops))
6012 goto out;
6013
962cf36c
CM
6014 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6015 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
6016
6017 hotcpu_notifier(dev_cpu_callback, 0);
6018 dst_init();
6019 dev_mcast_init();
6020 rc = 0;
6021out:
6022 return rc;
6023}
6024
6025subsys_initcall(net_dev_init);
6026
e88721f8
KK
6027static int __init initialize_hashrnd(void)
6028{
6029 get_random_bytes(&skb_tx_hashrnd, sizeof(skb_tx_hashrnd));
6030 return 0;
6031}
6032
6033late_initcall_sync(initialize_hashrnd);
6034