]> bbs.cooldavid.org Git - net-next-2.6.git/blame - net/core/dev.c
[NET]: Support multiple network namespaces with netlink
[net-next-2.6.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <asm/system.h>
77#include <linux/bitops.h>
4fc268d2 78#include <linux/capability.h>
1da177e4
LT
79#include <linux/cpu.h>
80#include <linux/types.h>
81#include <linux/kernel.h>
82#include <linux/sched.h>
4a3e2f71 83#include <linux/mutex.h>
1da177e4
LT
84#include <linux/string.h>
85#include <linux/mm.h>
86#include <linux/socket.h>
87#include <linux/sockios.h>
88#include <linux/errno.h>
89#include <linux/interrupt.h>
90#include <linux/if_ether.h>
91#include <linux/netdevice.h>
92#include <linux/etherdevice.h>
93#include <linux/notifier.h>
94#include <linux/skbuff.h>
457c4cbc 95#include <net/net_namespace.h>
1da177e4
LT
96#include <net/sock.h>
97#include <linux/rtnetlink.h>
98#include <linux/proc_fs.h>
99#include <linux/seq_file.h>
100#include <linux/stat.h>
101#include <linux/if_bridge.h>
b863ceb7 102#include <linux/if_macvlan.h>
1da177e4
LT
103#include <net/dst.h>
104#include <net/pkt_sched.h>
105#include <net/checksum.h>
106#include <linux/highmem.h>
107#include <linux/init.h>
108#include <linux/kmod.h>
109#include <linux/module.h>
110#include <linux/kallsyms.h>
111#include <linux/netpoll.h>
112#include <linux/rcupdate.h>
113#include <linux/delay.h>
295f4a1f 114#include <net/wext.h>
1da177e4 115#include <net/iw_handler.h>
1da177e4 116#include <asm/current.h>
5bdb9886 117#include <linux/audit.h>
db217334 118#include <linux/dmaengine.h>
f6a78bfc 119#include <linux/err.h>
c7fa9d18 120#include <linux/ctype.h>
723e98b7 121#include <linux/if_arp.h>
1da177e4 122
1da177e4
LT
123/*
124 * The list of packet types we will receive (as opposed to discard)
125 * and the routines to invoke.
126 *
127 * Why 16. Because with 16 the only overlap we get on a hash of the
128 * low nibble of the protocol value is RARP/SNAP/X.25.
129 *
130 * NOTE: That is no longer true with the addition of VLAN tags. Not
131 * sure which should go first, but I bet it won't make much
132 * difference if we are running VLANs. The good news is that
133 * this protocol won't be in the list unless compiled in, so
3041a069 134 * the average user (w/out VLANs) will not be adversely affected.
1da177e4
LT
135 * --BLG
136 *
137 * 0800 IP
138 * 8100 802.1Q VLAN
139 * 0001 802.3
140 * 0002 AX.25
141 * 0004 802.2
142 * 8035 RARP
143 * 0005 SNAP
144 * 0805 X.25
145 * 0806 ARP
146 * 8137 IPX
147 * 0009 Localtalk
148 * 86DD IPv6
149 */
150
151static DEFINE_SPINLOCK(ptype_lock);
6b2bedc3
SH
152static struct list_head ptype_base[16] __read_mostly; /* 16 way hashed list */
153static struct list_head ptype_all __read_mostly; /* Taps */
1da177e4 154
db217334 155#ifdef CONFIG_NET_DMA
d379b01e
DW
156struct net_dma {
157 struct dma_client client;
158 spinlock_t lock;
159 cpumask_t channel_mask;
160 struct dma_chan *channels[NR_CPUS];
161};
162
163static enum dma_state_client
164netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
165 enum dma_state state);
166
167static struct net_dma net_dma = {
168 .client = {
169 .event_callback = netdev_dma_event,
170 },
171};
db217334
CL
172#endif
173
1da177e4 174/*
7562f876 175 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
176 * semaphore.
177 *
178 * Pure readers hold dev_base_lock for reading.
179 *
180 * Writers must hold the rtnl semaphore while they loop through the
7562f876 181 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
182 * actual updates. This allows pure readers to access the list even
183 * while a writer is preparing to update it.
184 *
185 * To put it another way, dev_base_lock is held for writing only to
186 * protect against pure readers; the rtnl semaphore provides the
187 * protection against other writers.
188 *
189 * See, for example usages, register_netdevice() and
190 * unregister_netdevice(), which must be called with the rtnl
191 * semaphore held.
192 */
7562f876 193LIST_HEAD(dev_base_head);
1da177e4
LT
194DEFINE_RWLOCK(dev_base_lock);
195
7562f876 196EXPORT_SYMBOL(dev_base_head);
1da177e4
LT
197EXPORT_SYMBOL(dev_base_lock);
198
199#define NETDEV_HASHBITS 8
200static struct hlist_head dev_name_head[1<<NETDEV_HASHBITS];
201static struct hlist_head dev_index_head[1<<NETDEV_HASHBITS];
202
203static inline struct hlist_head *dev_name_hash(const char *name)
204{
205 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
206 return &dev_name_head[hash & ((1<<NETDEV_HASHBITS)-1)];
207}
208
209static inline struct hlist_head *dev_index_hash(int ifindex)
210{
211 return &dev_index_head[ifindex & ((1<<NETDEV_HASHBITS)-1)];
212}
213
214/*
215 * Our notifier list
216 */
217
f07d5b94 218static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
219
220/*
221 * Device drivers call our routines to queue packets here. We empty the
222 * queue in the local softnet handler.
223 */
bea3348e
SH
224
225DEFINE_PER_CPU(struct softnet_data, softnet_data);
1da177e4
LT
226
227#ifdef CONFIG_SYSFS
228extern int netdev_sysfs_init(void);
229extern int netdev_register_sysfs(struct net_device *);
230extern void netdev_unregister_sysfs(struct net_device *);
231#else
232#define netdev_sysfs_init() (0)
233#define netdev_register_sysfs(dev) (0)
234#define netdev_unregister_sysfs(dev) do { } while(0)
235#endif
236
723e98b7
JP
237#ifdef CONFIG_DEBUG_LOCK_ALLOC
238/*
239 * register_netdevice() inits dev->_xmit_lock and sets lockdep class
240 * according to dev->type
241 */
242static const unsigned short netdev_lock_type[] =
243 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
244 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
245 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
246 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
247 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
248 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
249 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
250 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
251 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
252 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
253 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
254 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
255 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
256 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
257 ARPHRD_NONE};
258
259static const char *netdev_lock_name[] =
260 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
261 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
262 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
263 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
264 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
265 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
266 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
267 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
268 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
269 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
270 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
271 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
272 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
273 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
274 "_xmit_NONE"};
275
276static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
277
278static inline unsigned short netdev_lock_pos(unsigned short dev_type)
279{
280 int i;
281
282 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
283 if (netdev_lock_type[i] == dev_type)
284 return i;
285 /* the last key is used by default */
286 return ARRAY_SIZE(netdev_lock_type) - 1;
287}
288
289static inline void netdev_set_lockdep_class(spinlock_t *lock,
290 unsigned short dev_type)
291{
292 int i;
293
294 i = netdev_lock_pos(dev_type);
295 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
296 netdev_lock_name[i]);
297}
298#else
299static inline void netdev_set_lockdep_class(spinlock_t *lock,
300 unsigned short dev_type)
301{
302}
303#endif
1da177e4
LT
304
305/*******************************************************************************
306
307 Protocol management and registration routines
308
309*******************************************************************************/
310
1da177e4
LT
311/*
312 * Add a protocol ID to the list. Now that the input handler is
313 * smarter we can dispense with all the messy stuff that used to be
314 * here.
315 *
316 * BEWARE!!! Protocol handlers, mangling input packets,
317 * MUST BE last in hash buckets and checking protocol handlers
318 * MUST start from promiscuous ptype_all chain in net_bh.
319 * It is true now, do not change it.
320 * Explanation follows: if protocol handler, mangling packet, will
321 * be the first on list, it is not able to sense, that packet
322 * is cloned and should be copied-on-write, so that it will
323 * change it and subsequent readers will get broken packet.
324 * --ANK (980803)
325 */
326
327/**
328 * dev_add_pack - add packet handler
329 * @pt: packet type declaration
330 *
331 * Add a protocol handler to the networking stack. The passed &packet_type
332 * is linked into kernel lists and may not be freed until it has been
333 * removed from the kernel lists.
334 *
4ec93edb 335 * This call does not sleep therefore it can not
1da177e4
LT
336 * guarantee all CPU's that are in middle of receiving packets
337 * will see the new packet type (until the next received packet).
338 */
339
340void dev_add_pack(struct packet_type *pt)
341{
342 int hash;
343
344 spin_lock_bh(&ptype_lock);
9be9a6b9 345 if (pt->type == htons(ETH_P_ALL))
1da177e4 346 list_add_rcu(&pt->list, &ptype_all);
9be9a6b9 347 else {
1da177e4
LT
348 hash = ntohs(pt->type) & 15;
349 list_add_rcu(&pt->list, &ptype_base[hash]);
350 }
351 spin_unlock_bh(&ptype_lock);
352}
353
1da177e4
LT
354/**
355 * __dev_remove_pack - remove packet handler
356 * @pt: packet type declaration
357 *
358 * Remove a protocol handler that was previously added to the kernel
359 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
360 * from the kernel lists and can be freed or reused once this function
4ec93edb 361 * returns.
1da177e4
LT
362 *
363 * The packet type might still be in use by receivers
364 * and must not be freed until after all the CPU's have gone
365 * through a quiescent state.
366 */
367void __dev_remove_pack(struct packet_type *pt)
368{
369 struct list_head *head;
370 struct packet_type *pt1;
371
372 spin_lock_bh(&ptype_lock);
373
9be9a6b9 374 if (pt->type == htons(ETH_P_ALL))
1da177e4 375 head = &ptype_all;
9be9a6b9 376 else
1da177e4
LT
377 head = &ptype_base[ntohs(pt->type) & 15];
378
379 list_for_each_entry(pt1, head, list) {
380 if (pt == pt1) {
381 list_del_rcu(&pt->list);
382 goto out;
383 }
384 }
385
386 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
387out:
388 spin_unlock_bh(&ptype_lock);
389}
390/**
391 * dev_remove_pack - remove packet handler
392 * @pt: packet type declaration
393 *
394 * Remove a protocol handler that was previously added to the kernel
395 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
396 * from the kernel lists and can be freed or reused once this function
397 * returns.
398 *
399 * This call sleeps to guarantee that no CPU is looking at the packet
400 * type after return.
401 */
402void dev_remove_pack(struct packet_type *pt)
403{
404 __dev_remove_pack(pt);
4ec93edb 405
1da177e4
LT
406 synchronize_net();
407}
408
409/******************************************************************************
410
411 Device Boot-time Settings Routines
412
413*******************************************************************************/
414
415/* Boot time configuration table */
416static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
417
418/**
419 * netdev_boot_setup_add - add new setup entry
420 * @name: name of the device
421 * @map: configured settings for the device
422 *
423 * Adds new setup entry to the dev_boot_setup list. The function
424 * returns 0 on error and 1 on success. This is a generic routine to
425 * all netdevices.
426 */
427static int netdev_boot_setup_add(char *name, struct ifmap *map)
428{
429 struct netdev_boot_setup *s;
430 int i;
431
432 s = dev_boot_setup;
433 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
434 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
435 memset(s[i].name, 0, sizeof(s[i].name));
436 strcpy(s[i].name, name);
437 memcpy(&s[i].map, map, sizeof(s[i].map));
438 break;
439 }
440 }
441
442 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
443}
444
445/**
446 * netdev_boot_setup_check - check boot time settings
447 * @dev: the netdevice
448 *
449 * Check boot time settings for the device.
450 * The found settings are set for the device to be used
451 * later in the device probing.
452 * Returns 0 if no settings found, 1 if they are.
453 */
454int netdev_boot_setup_check(struct net_device *dev)
455{
456 struct netdev_boot_setup *s = dev_boot_setup;
457 int i;
458
459 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
460 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
461 !strncmp(dev->name, s[i].name, strlen(s[i].name))) {
462 dev->irq = s[i].map.irq;
463 dev->base_addr = s[i].map.base_addr;
464 dev->mem_start = s[i].map.mem_start;
465 dev->mem_end = s[i].map.mem_end;
466 return 1;
467 }
468 }
469 return 0;
470}
471
472
473/**
474 * netdev_boot_base - get address from boot time settings
475 * @prefix: prefix for network device
476 * @unit: id for network device
477 *
478 * Check boot time settings for the base address of device.
479 * The found settings are set for the device to be used
480 * later in the device probing.
481 * Returns 0 if no settings found.
482 */
483unsigned long netdev_boot_base(const char *prefix, int unit)
484{
485 const struct netdev_boot_setup *s = dev_boot_setup;
486 char name[IFNAMSIZ];
487 int i;
488
489 sprintf(name, "%s%d", prefix, unit);
490
491 /*
492 * If device already registered then return base of 1
493 * to indicate not to probe for this interface
494 */
495 if (__dev_get_by_name(name))
496 return 1;
497
498 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
499 if (!strcmp(name, s[i].name))
500 return s[i].map.base_addr;
501 return 0;
502}
503
504/*
505 * Saves at boot time configured settings for any netdevice.
506 */
507int __init netdev_boot_setup(char *str)
508{
509 int ints[5];
510 struct ifmap map;
511
512 str = get_options(str, ARRAY_SIZE(ints), ints);
513 if (!str || !*str)
514 return 0;
515
516 /* Save settings */
517 memset(&map, 0, sizeof(map));
518 if (ints[0] > 0)
519 map.irq = ints[1];
520 if (ints[0] > 1)
521 map.base_addr = ints[2];
522 if (ints[0] > 2)
523 map.mem_start = ints[3];
524 if (ints[0] > 3)
525 map.mem_end = ints[4];
526
527 /* Add new entry to the list */
528 return netdev_boot_setup_add(str, &map);
529}
530
531__setup("netdev=", netdev_boot_setup);
532
533/*******************************************************************************
534
535 Device Interface Subroutines
536
537*******************************************************************************/
538
539/**
540 * __dev_get_by_name - find a device by its name
541 * @name: name to find
542 *
543 * Find an interface by name. Must be called under RTNL semaphore
544 * or @dev_base_lock. If the name is found a pointer to the device
545 * is returned. If the name is not found then %NULL is returned. The
546 * reference counters are not incremented so the caller must be
547 * careful with locks.
548 */
549
550struct net_device *__dev_get_by_name(const char *name)
551{
552 struct hlist_node *p;
553
554 hlist_for_each(p, dev_name_hash(name)) {
555 struct net_device *dev
556 = hlist_entry(p, struct net_device, name_hlist);
557 if (!strncmp(dev->name, name, IFNAMSIZ))
558 return dev;
559 }
560 return NULL;
561}
562
563/**
564 * dev_get_by_name - find a device by its name
565 * @name: name to find
566 *
567 * Find an interface by name. This can be called from any
568 * context and does its own locking. The returned handle has
569 * the usage count incremented and the caller must use dev_put() to
570 * release it when it is no longer needed. %NULL is returned if no
571 * matching device is found.
572 */
573
574struct net_device *dev_get_by_name(const char *name)
575{
576 struct net_device *dev;
577
578 read_lock(&dev_base_lock);
579 dev = __dev_get_by_name(name);
580 if (dev)
581 dev_hold(dev);
582 read_unlock(&dev_base_lock);
583 return dev;
584}
585
586/**
587 * __dev_get_by_index - find a device by its ifindex
588 * @ifindex: index of device
589 *
590 * Search for an interface by index. Returns %NULL if the device
591 * is not found or a pointer to the device. The device has not
592 * had its reference counter increased so the caller must be careful
593 * about locking. The caller must hold either the RTNL semaphore
594 * or @dev_base_lock.
595 */
596
597struct net_device *__dev_get_by_index(int ifindex)
598{
599 struct hlist_node *p;
600
601 hlist_for_each(p, dev_index_hash(ifindex)) {
602 struct net_device *dev
603 = hlist_entry(p, struct net_device, index_hlist);
604 if (dev->ifindex == ifindex)
605 return dev;
606 }
607 return NULL;
608}
609
610
611/**
612 * dev_get_by_index - find a device by its ifindex
613 * @ifindex: index of device
614 *
615 * Search for an interface by index. Returns NULL if the device
616 * is not found or a pointer to the device. The device returned has
617 * had a reference added and the pointer is safe until the user calls
618 * dev_put to indicate they have finished with it.
619 */
620
621struct net_device *dev_get_by_index(int ifindex)
622{
623 struct net_device *dev;
624
625 read_lock(&dev_base_lock);
626 dev = __dev_get_by_index(ifindex);
627 if (dev)
628 dev_hold(dev);
629 read_unlock(&dev_base_lock);
630 return dev;
631}
632
633/**
634 * dev_getbyhwaddr - find a device by its hardware address
635 * @type: media type of device
636 * @ha: hardware address
637 *
638 * Search for an interface by MAC address. Returns NULL if the device
639 * is not found or a pointer to the device. The caller must hold the
640 * rtnl semaphore. The returned device has not had its ref count increased
641 * and the caller must therefore be careful about locking
642 *
643 * BUGS:
644 * If the API was consistent this would be __dev_get_by_hwaddr
645 */
646
647struct net_device *dev_getbyhwaddr(unsigned short type, char *ha)
648{
649 struct net_device *dev;
650
651 ASSERT_RTNL();
652
7562f876 653 for_each_netdev(dev)
1da177e4
LT
654 if (dev->type == type &&
655 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
656 return dev;
657
658 return NULL;
1da177e4
LT
659}
660
cf309e3f
JF
661EXPORT_SYMBOL(dev_getbyhwaddr);
662
4e9cac2b 663struct net_device *__dev_getfirstbyhwtype(unsigned short type)
1da177e4
LT
664{
665 struct net_device *dev;
666
4e9cac2b 667 ASSERT_RTNL();
7562f876 668 for_each_netdev(dev)
4e9cac2b 669 if (dev->type == type)
7562f876
PE
670 return dev;
671
672 return NULL;
4e9cac2b
PM
673}
674
675EXPORT_SYMBOL(__dev_getfirstbyhwtype);
676
677struct net_device *dev_getfirstbyhwtype(unsigned short type)
678{
679 struct net_device *dev;
680
681 rtnl_lock();
682 dev = __dev_getfirstbyhwtype(type);
683 if (dev)
684 dev_hold(dev);
1da177e4
LT
685 rtnl_unlock();
686 return dev;
687}
688
689EXPORT_SYMBOL(dev_getfirstbyhwtype);
690
691/**
692 * dev_get_by_flags - find any device with given flags
693 * @if_flags: IFF_* values
694 * @mask: bitmask of bits in if_flags to check
695 *
696 * Search for any interface with the given flags. Returns NULL if a device
4ec93edb 697 * is not found or a pointer to the device. The device returned has
1da177e4
LT
698 * had a reference added and the pointer is safe until the user calls
699 * dev_put to indicate they have finished with it.
700 */
701
702struct net_device * dev_get_by_flags(unsigned short if_flags, unsigned short mask)
703{
7562f876 704 struct net_device *dev, *ret;
1da177e4 705
7562f876 706 ret = NULL;
1da177e4 707 read_lock(&dev_base_lock);
7562f876 708 for_each_netdev(dev) {
1da177e4
LT
709 if (((dev->flags ^ if_flags) & mask) == 0) {
710 dev_hold(dev);
7562f876 711 ret = dev;
1da177e4
LT
712 break;
713 }
714 }
715 read_unlock(&dev_base_lock);
7562f876 716 return ret;
1da177e4
LT
717}
718
719/**
720 * dev_valid_name - check if name is okay for network device
721 * @name: name string
722 *
723 * Network device names need to be valid file names to
c7fa9d18
DM
724 * to allow sysfs to work. We also disallow any kind of
725 * whitespace.
1da177e4 726 */
c2373ee9 727int dev_valid_name(const char *name)
1da177e4 728{
c7fa9d18
DM
729 if (*name == '\0')
730 return 0;
b6fe17d6
SH
731 if (strlen(name) >= IFNAMSIZ)
732 return 0;
c7fa9d18
DM
733 if (!strcmp(name, ".") || !strcmp(name, ".."))
734 return 0;
735
736 while (*name) {
737 if (*name == '/' || isspace(*name))
738 return 0;
739 name++;
740 }
741 return 1;
1da177e4
LT
742}
743
744/**
745 * dev_alloc_name - allocate a name for a device
746 * @dev: device
747 * @name: name format string
748 *
749 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
750 * id. It scans list of devices to build up a free map, then chooses
751 * the first empty slot. The caller must hold the dev_base or rtnl lock
752 * while allocating the name and adding the device in order to avoid
753 * duplicates.
754 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
755 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
756 */
757
758int dev_alloc_name(struct net_device *dev, const char *name)
759{
760 int i = 0;
761 char buf[IFNAMSIZ];
762 const char *p;
763 const int max_netdevices = 8*PAGE_SIZE;
764 long *inuse;
765 struct net_device *d;
766
767 p = strnchr(name, IFNAMSIZ-1, '%');
768 if (p) {
769 /*
770 * Verify the string as this thing may have come from
771 * the user. There must be either one "%d" and no other "%"
772 * characters.
773 */
774 if (p[1] != 'd' || strchr(p + 2, '%'))
775 return -EINVAL;
776
777 /* Use one page as a bit array of possible slots */
778 inuse = (long *) get_zeroed_page(GFP_ATOMIC);
779 if (!inuse)
780 return -ENOMEM;
781
7562f876 782 for_each_netdev(d) {
1da177e4
LT
783 if (!sscanf(d->name, name, &i))
784 continue;
785 if (i < 0 || i >= max_netdevices)
786 continue;
787
788 /* avoid cases where sscanf is not exact inverse of printf */
789 snprintf(buf, sizeof(buf), name, i);
790 if (!strncmp(buf, d->name, IFNAMSIZ))
791 set_bit(i, inuse);
792 }
793
794 i = find_first_zero_bit(inuse, max_netdevices);
795 free_page((unsigned long) inuse);
796 }
797
798 snprintf(buf, sizeof(buf), name, i);
799 if (!__dev_get_by_name(buf)) {
800 strlcpy(dev->name, buf, IFNAMSIZ);
801 return i;
802 }
803
804 /* It is possible to run out of possible slots
805 * when the name is long and there isn't enough space left
806 * for the digits, or if all bits are used.
807 */
808 return -ENFILE;
809}
810
811
812/**
813 * dev_change_name - change name of a device
814 * @dev: device
815 * @newname: name (or format string) must be at least IFNAMSIZ
816 *
817 * Change name of a device, can pass format strings "eth%d".
818 * for wildcarding.
819 */
820int dev_change_name(struct net_device *dev, char *newname)
821{
fcc5a03a 822 char oldname[IFNAMSIZ];
1da177e4 823 int err = 0;
fcc5a03a 824 int ret;
1da177e4
LT
825
826 ASSERT_RTNL();
827
828 if (dev->flags & IFF_UP)
829 return -EBUSY;
830
831 if (!dev_valid_name(newname))
832 return -EINVAL;
833
fcc5a03a
HX
834 memcpy(oldname, dev->name, IFNAMSIZ);
835
1da177e4
LT
836 if (strchr(newname, '%')) {
837 err = dev_alloc_name(dev, newname);
838 if (err < 0)
839 return err;
840 strcpy(newname, dev->name);
841 }
842 else if (__dev_get_by_name(newname))
843 return -EEXIST;
844 else
845 strlcpy(dev->name, newname, IFNAMSIZ);
846
fcc5a03a 847rollback:
92749821 848 device_rename(&dev->dev, dev->name);
7f988eab
HX
849
850 write_lock_bh(&dev_base_lock);
92749821
EB
851 hlist_del(&dev->name_hlist);
852 hlist_add_head(&dev->name_hlist, dev_name_hash(dev->name));
7f988eab
HX
853 write_unlock_bh(&dev_base_lock);
854
fcc5a03a
HX
855 ret = raw_notifier_call_chain(&netdev_chain, NETDEV_CHANGENAME, dev);
856 ret = notifier_to_errno(ret);
857
858 if (ret) {
859 if (err) {
860 printk(KERN_ERR
861 "%s: name change rollback failed: %d.\n",
862 dev->name, ret);
863 } else {
864 err = ret;
865 memcpy(dev->name, oldname, IFNAMSIZ);
866 goto rollback;
867 }
868 }
1da177e4
LT
869
870 return err;
871}
872
d8a33ac4 873/**
3041a069 874 * netdev_features_change - device changes features
d8a33ac4
SH
875 * @dev: device to cause notification
876 *
877 * Called to indicate a device has changed features.
878 */
879void netdev_features_change(struct net_device *dev)
880{
f07d5b94 881 raw_notifier_call_chain(&netdev_chain, NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
882}
883EXPORT_SYMBOL(netdev_features_change);
884
1da177e4
LT
885/**
886 * netdev_state_change - device changes state
887 * @dev: device to cause notification
888 *
889 * Called to indicate a device has changed state. This function calls
890 * the notifier chains for netdev_chain and sends a NEWLINK message
891 * to the routing socket.
892 */
893void netdev_state_change(struct net_device *dev)
894{
895 if (dev->flags & IFF_UP) {
f07d5b94 896 raw_notifier_call_chain(&netdev_chain,
e041c683 897 NETDEV_CHANGE, dev);
1da177e4
LT
898 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
899 }
900}
901
902/**
903 * dev_load - load a network module
904 * @name: name of interface
905 *
906 * If a network interface is not present and the process has suitable
907 * privileges this function loads the module. If module loading is not
908 * available in this kernel then it becomes a nop.
909 */
910
911void dev_load(const char *name)
912{
4ec93edb 913 struct net_device *dev;
1da177e4
LT
914
915 read_lock(&dev_base_lock);
916 dev = __dev_get_by_name(name);
917 read_unlock(&dev_base_lock);
918
919 if (!dev && capable(CAP_SYS_MODULE))
920 request_module("%s", name);
921}
922
923static int default_rebuild_header(struct sk_buff *skb)
924{
925 printk(KERN_DEBUG "%s: default_rebuild_header called -- BUG!\n",
926 skb->dev ? skb->dev->name : "NULL!!!");
927 kfree_skb(skb);
928 return 1;
929}
930
1da177e4
LT
931/**
932 * dev_open - prepare an interface for use.
933 * @dev: device to open
934 *
935 * Takes a device from down to up state. The device's private open
936 * function is invoked and then the multicast lists are loaded. Finally
937 * the device is moved into the up state and a %NETDEV_UP message is
938 * sent to the netdev notifier chain.
939 *
940 * Calling this function on an active interface is a nop. On a failure
941 * a negative errno code is returned.
942 */
943int dev_open(struct net_device *dev)
944{
945 int ret = 0;
946
947 /*
948 * Is it already up?
949 */
950
951 if (dev->flags & IFF_UP)
952 return 0;
953
954 /*
955 * Is it even present?
956 */
957 if (!netif_device_present(dev))
958 return -ENODEV;
959
960 /*
961 * Call device private open method
962 */
963 set_bit(__LINK_STATE_START, &dev->state);
964 if (dev->open) {
965 ret = dev->open(dev);
966 if (ret)
967 clear_bit(__LINK_STATE_START, &dev->state);
968 }
969
4ec93edb 970 /*
1da177e4
LT
971 * If it went open OK then:
972 */
973
974 if (!ret) {
975 /*
976 * Set the flags.
977 */
978 dev->flags |= IFF_UP;
979
980 /*
981 * Initialize multicasting status
982 */
4417da66 983 dev_set_rx_mode(dev);
1da177e4
LT
984
985 /*
986 * Wakeup transmit queue engine
987 */
988 dev_activate(dev);
989
990 /*
991 * ... and announce new interface.
992 */
f07d5b94 993 raw_notifier_call_chain(&netdev_chain, NETDEV_UP, dev);
1da177e4
LT
994 }
995 return ret;
996}
997
998/**
999 * dev_close - shutdown an interface.
1000 * @dev: device to shutdown
1001 *
1002 * This function moves an active device into down state. A
1003 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1004 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1005 * chain.
1006 */
1007int dev_close(struct net_device *dev)
1008{
1009 if (!(dev->flags & IFF_UP))
1010 return 0;
1011
1012 /*
1013 * Tell people we are going down, so that they can
1014 * prepare to death, when device is still operating.
1015 */
f07d5b94 1016 raw_notifier_call_chain(&netdev_chain, NETDEV_GOING_DOWN, dev);
1da177e4
LT
1017
1018 dev_deactivate(dev);
1019
1020 clear_bit(__LINK_STATE_START, &dev->state);
1021
1022 /* Synchronize to scheduled poll. We cannot touch poll list,
bea3348e
SH
1023 * it can be even on different cpu. So just clear netif_running().
1024 *
1025 * dev->stop() will invoke napi_disable() on all of it's
1026 * napi_struct instances on this device.
1027 */
1da177e4 1028 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1da177e4
LT
1029
1030 /*
1031 * Call the device specific close. This cannot fail.
1032 * Only if device is UP
1033 *
1034 * We allow it to be called even after a DETACH hot-plug
1035 * event.
1036 */
1037 if (dev->stop)
1038 dev->stop(dev);
1039
1040 /*
1041 * Device is now down.
1042 */
1043
1044 dev->flags &= ~IFF_UP;
1045
1046 /*
1047 * Tell people we are down
1048 */
f07d5b94 1049 raw_notifier_call_chain(&netdev_chain, NETDEV_DOWN, dev);
1da177e4
LT
1050
1051 return 0;
1052}
1053
1054
1055/*
1056 * Device change register/unregister. These are not inline or static
1057 * as we export them to the world.
1058 */
1059
1060/**
1061 * register_netdevice_notifier - register a network notifier block
1062 * @nb: notifier
1063 *
1064 * Register a notifier to be called when network device events occur.
1065 * The notifier passed is linked into the kernel structures and must
1066 * not be reused until it has been unregistered. A negative errno code
1067 * is returned on a failure.
1068 *
1069 * When registered all registration and up events are replayed
4ec93edb 1070 * to the new notifier to allow device to have a race free
1da177e4
LT
1071 * view of the network device list.
1072 */
1073
1074int register_netdevice_notifier(struct notifier_block *nb)
1075{
1076 struct net_device *dev;
fcc5a03a 1077 struct net_device *last;
1da177e4
LT
1078 int err;
1079
1080 rtnl_lock();
f07d5b94 1081 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1082 if (err)
1083 goto unlock;
1da177e4 1084
fcc5a03a
HX
1085 for_each_netdev(dev) {
1086 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1087 err = notifier_to_errno(err);
1088 if (err)
1089 goto rollback;
1090
1091 if (!(dev->flags & IFF_UP))
1092 continue;
1093
1094 nb->notifier_call(nb, NETDEV_UP, dev);
1da177e4 1095 }
fcc5a03a
HX
1096
1097unlock:
1da177e4
LT
1098 rtnl_unlock();
1099 return err;
fcc5a03a
HX
1100
1101rollback:
1102 last = dev;
1103 for_each_netdev(dev) {
1104 if (dev == last)
1105 break;
1106
1107 if (dev->flags & IFF_UP) {
1108 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1109 nb->notifier_call(nb, NETDEV_DOWN, dev);
1110 }
1111 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
1112 }
1113 goto unlock;
1da177e4
LT
1114}
1115
1116/**
1117 * unregister_netdevice_notifier - unregister a network notifier block
1118 * @nb: notifier
1119 *
1120 * Unregister a notifier previously registered by
1121 * register_netdevice_notifier(). The notifier is unlinked into the
1122 * kernel structures and may then be reused. A negative errno code
1123 * is returned on a failure.
1124 */
1125
1126int unregister_netdevice_notifier(struct notifier_block *nb)
1127{
9f514950
HX
1128 int err;
1129
1130 rtnl_lock();
f07d5b94 1131 err = raw_notifier_chain_unregister(&netdev_chain, nb);
9f514950
HX
1132 rtnl_unlock();
1133 return err;
1da177e4
LT
1134}
1135
1136/**
1137 * call_netdevice_notifiers - call all network notifier blocks
1138 * @val: value passed unmodified to notifier function
1139 * @v: pointer passed unmodified to notifier function
1140 *
1141 * Call all network notifier blocks. Parameters and return value
f07d5b94 1142 * are as for raw_notifier_call_chain().
1da177e4
LT
1143 */
1144
1145int call_netdevice_notifiers(unsigned long val, void *v)
1146{
f07d5b94 1147 return raw_notifier_call_chain(&netdev_chain, val, v);
1da177e4
LT
1148}
1149
1150/* When > 0 there are consumers of rx skb time stamps */
1151static atomic_t netstamp_needed = ATOMIC_INIT(0);
1152
1153void net_enable_timestamp(void)
1154{
1155 atomic_inc(&netstamp_needed);
1156}
1157
1158void net_disable_timestamp(void)
1159{
1160 atomic_dec(&netstamp_needed);
1161}
1162
a61bbcf2 1163static inline void net_timestamp(struct sk_buff *skb)
1da177e4
LT
1164{
1165 if (atomic_read(&netstamp_needed))
a61bbcf2 1166 __net_timestamp(skb);
b7aa0bf7
ED
1167 else
1168 skb->tstamp.tv64 = 0;
1da177e4
LT
1169}
1170
1171/*
1172 * Support routine. Sends outgoing frames to any network
1173 * taps currently in use.
1174 */
1175
f6a78bfc 1176static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1177{
1178 struct packet_type *ptype;
a61bbcf2
PM
1179
1180 net_timestamp(skb);
1da177e4
LT
1181
1182 rcu_read_lock();
1183 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1184 /* Never send packets back to the socket
1185 * they originated from - MvS (miquels@drinkel.ow.org)
1186 */
1187 if ((ptype->dev == dev || !ptype->dev) &&
1188 (ptype->af_packet_priv == NULL ||
1189 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1190 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1191 if (!skb2)
1192 break;
1193
1194 /* skb->nh should be correctly
1195 set by sender, so that the second statement is
1196 just protection against buggy protocols.
1197 */
459a98ed 1198 skb_reset_mac_header(skb2);
1da177e4 1199
d56f90a7 1200 if (skb_network_header(skb2) < skb2->data ||
27a884dc 1201 skb2->network_header > skb2->tail) {
1da177e4
LT
1202 if (net_ratelimit())
1203 printk(KERN_CRIT "protocol %04x is "
1204 "buggy, dev %s\n",
1205 skb2->protocol, dev->name);
c1d2bbe1 1206 skb_reset_network_header(skb2);
1da177e4
LT
1207 }
1208
b0e380b1 1209 skb2->transport_header = skb2->network_header;
1da177e4 1210 skb2->pkt_type = PACKET_OUTGOING;
f2ccd8fa 1211 ptype->func(skb2, skb->dev, ptype, skb->dev);
1da177e4
LT
1212 }
1213 }
1214 rcu_read_unlock();
1215}
1216
56079431
DV
1217
1218void __netif_schedule(struct net_device *dev)
1219{
1220 if (!test_and_set_bit(__LINK_STATE_SCHED, &dev->state)) {
1221 unsigned long flags;
1222 struct softnet_data *sd;
1223
1224 local_irq_save(flags);
1225 sd = &__get_cpu_var(softnet_data);
1226 dev->next_sched = sd->output_queue;
1227 sd->output_queue = dev;
1228 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1229 local_irq_restore(flags);
1230 }
1231}
1232EXPORT_SYMBOL(__netif_schedule);
1233
bea3348e 1234void dev_kfree_skb_irq(struct sk_buff *skb)
56079431 1235{
bea3348e
SH
1236 if (atomic_dec_and_test(&skb->users)) {
1237 struct softnet_data *sd;
1238 unsigned long flags;
56079431 1239
bea3348e
SH
1240 local_irq_save(flags);
1241 sd = &__get_cpu_var(softnet_data);
1242 skb->next = sd->completion_queue;
1243 sd->completion_queue = skb;
1244 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1245 local_irq_restore(flags);
1246 }
56079431 1247}
bea3348e 1248EXPORT_SYMBOL(dev_kfree_skb_irq);
56079431
DV
1249
1250void dev_kfree_skb_any(struct sk_buff *skb)
1251{
1252 if (in_irq() || irqs_disabled())
1253 dev_kfree_skb_irq(skb);
1254 else
1255 dev_kfree_skb(skb);
1256}
1257EXPORT_SYMBOL(dev_kfree_skb_any);
1258
1259
bea3348e
SH
1260/**
1261 * netif_device_detach - mark device as removed
1262 * @dev: network device
1263 *
1264 * Mark device as removed from system and therefore no longer available.
1265 */
56079431
DV
1266void netif_device_detach(struct net_device *dev)
1267{
1268 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1269 netif_running(dev)) {
1270 netif_stop_queue(dev);
1271 }
1272}
1273EXPORT_SYMBOL(netif_device_detach);
1274
bea3348e
SH
1275/**
1276 * netif_device_attach - mark device as attached
1277 * @dev: network device
1278 *
1279 * Mark device as attached from system and restart if needed.
1280 */
56079431
DV
1281void netif_device_attach(struct net_device *dev)
1282{
1283 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1284 netif_running(dev)) {
1285 netif_wake_queue(dev);
4ec93edb 1286 __netdev_watchdog_up(dev);
56079431
DV
1287 }
1288}
1289EXPORT_SYMBOL(netif_device_attach);
1290
1291
1da177e4
LT
1292/*
1293 * Invalidate hardware checksum when packet is to be mangled, and
1294 * complete checksum manually on outgoing path.
1295 */
84fa7933 1296int skb_checksum_help(struct sk_buff *skb)
1da177e4 1297{
d3bc23e7 1298 __wsum csum;
663ead3b 1299 int ret = 0, offset;
1da177e4 1300
84fa7933 1301 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
1302 goto out_set_summed;
1303
1304 if (unlikely(skb_shinfo(skb)->gso_size)) {
a430a43d
HX
1305 /* Let GSO fix up the checksum. */
1306 goto out_set_summed;
1da177e4
LT
1307 }
1308
1309 if (skb_cloned(skb)) {
1310 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1311 if (ret)
1312 goto out;
1313 }
1314
663ead3b 1315 offset = skb->csum_start - skb_headroom(skb);
09a62660 1316 BUG_ON(offset > (int)skb->len);
1da177e4
LT
1317 csum = skb_checksum(skb, offset, skb->len-offset, 0);
1318
663ead3b 1319 offset = skb_headlen(skb) - offset;
09a62660 1320 BUG_ON(offset <= 0);
ff1dcadb 1321 BUG_ON(skb->csum_offset + 2 > offset);
1da177e4 1322
663ead3b
HX
1323 *(__sum16 *)(skb->head + skb->csum_start + skb->csum_offset) =
1324 csum_fold(csum);
a430a43d 1325out_set_summed:
1da177e4 1326 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 1327out:
1da177e4
LT
1328 return ret;
1329}
1330
f6a78bfc
HX
1331/**
1332 * skb_gso_segment - Perform segmentation on skb.
1333 * @skb: buffer to segment
576a30eb 1334 * @features: features for the output path (see dev->features)
f6a78bfc
HX
1335 *
1336 * This function segments the given skb and returns a list of segments.
576a30eb
HX
1337 *
1338 * It may return NULL if the skb requires no segmentation. This is
1339 * only possible when GSO is used for verifying header integrity.
f6a78bfc 1340 */
576a30eb 1341struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
f6a78bfc
HX
1342{
1343 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1344 struct packet_type *ptype;
252e3346 1345 __be16 type = skb->protocol;
a430a43d 1346 int err;
f6a78bfc
HX
1347
1348 BUG_ON(skb_shinfo(skb)->frag_list);
f6a78bfc 1349
459a98ed 1350 skb_reset_mac_header(skb);
b0e380b1 1351 skb->mac_len = skb->network_header - skb->mac_header;
f6a78bfc
HX
1352 __skb_pull(skb, skb->mac_len);
1353
f9d106a6 1354 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
a430a43d
HX
1355 if (skb_header_cloned(skb) &&
1356 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1357 return ERR_PTR(err);
1358 }
1359
f6a78bfc
HX
1360 rcu_read_lock();
1361 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type) & 15], list) {
1362 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
84fa7933 1363 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
a430a43d
HX
1364 err = ptype->gso_send_check(skb);
1365 segs = ERR_PTR(err);
1366 if (err || skb_gso_ok(skb, features))
1367 break;
d56f90a7
ACM
1368 __skb_push(skb, (skb->data -
1369 skb_network_header(skb)));
a430a43d 1370 }
576a30eb 1371 segs = ptype->gso_segment(skb, features);
f6a78bfc
HX
1372 break;
1373 }
1374 }
1375 rcu_read_unlock();
1376
98e399f8 1377 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 1378
f6a78bfc
HX
1379 return segs;
1380}
1381
1382EXPORT_SYMBOL(skb_gso_segment);
1383
fb286bb2
HX
1384/* Take action when hardware reception checksum errors are detected. */
1385#ifdef CONFIG_BUG
1386void netdev_rx_csum_fault(struct net_device *dev)
1387{
1388 if (net_ratelimit()) {
4ec93edb 1389 printk(KERN_ERR "%s: hw csum failure.\n",
246a4212 1390 dev ? dev->name : "<unknown>");
fb286bb2
HX
1391 dump_stack();
1392 }
1393}
1394EXPORT_SYMBOL(netdev_rx_csum_fault);
1395#endif
1396
1da177e4
LT
1397/* Actually, we should eliminate this check as soon as we know, that:
1398 * 1. IOMMU is present and allows to map all the memory.
1399 * 2. No high memory really exists on this machine.
1400 */
1401
1402static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1403{
3d3a8533 1404#ifdef CONFIG_HIGHMEM
1da177e4
LT
1405 int i;
1406
1407 if (dev->features & NETIF_F_HIGHDMA)
1408 return 0;
1409
1410 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1411 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1412 return 1;
1413
3d3a8533 1414#endif
1da177e4
LT
1415 return 0;
1416}
1da177e4 1417
f6a78bfc
HX
1418struct dev_gso_cb {
1419 void (*destructor)(struct sk_buff *skb);
1420};
1421
1422#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1423
1424static void dev_gso_skb_destructor(struct sk_buff *skb)
1425{
1426 struct dev_gso_cb *cb;
1427
1428 do {
1429 struct sk_buff *nskb = skb->next;
1430
1431 skb->next = nskb->next;
1432 nskb->next = NULL;
1433 kfree_skb(nskb);
1434 } while (skb->next);
1435
1436 cb = DEV_GSO_CB(skb);
1437 if (cb->destructor)
1438 cb->destructor(skb);
1439}
1440
1441/**
1442 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1443 * @skb: buffer to segment
1444 *
1445 * This function segments the given skb and stores the list of segments
1446 * in skb->next.
1447 */
1448static int dev_gso_segment(struct sk_buff *skb)
1449{
1450 struct net_device *dev = skb->dev;
1451 struct sk_buff *segs;
576a30eb
HX
1452 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1453 NETIF_F_SG : 0);
1454
1455 segs = skb_gso_segment(skb, features);
1456
1457 /* Verifying header integrity only. */
1458 if (!segs)
1459 return 0;
f6a78bfc 1460
f6a78bfc
HX
1461 if (unlikely(IS_ERR(segs)))
1462 return PTR_ERR(segs);
1463
1464 skb->next = segs;
1465 DEV_GSO_CB(skb)->destructor = skb->destructor;
1466 skb->destructor = dev_gso_skb_destructor;
1467
1468 return 0;
1469}
1470
1471int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1472{
1473 if (likely(!skb->next)) {
9be9a6b9 1474 if (!list_empty(&ptype_all))
f6a78bfc
HX
1475 dev_queue_xmit_nit(skb, dev);
1476
576a30eb
HX
1477 if (netif_needs_gso(dev, skb)) {
1478 if (unlikely(dev_gso_segment(skb)))
1479 goto out_kfree_skb;
1480 if (skb->next)
1481 goto gso;
1482 }
f6a78bfc 1483
576a30eb 1484 return dev->hard_start_xmit(skb, dev);
f6a78bfc
HX
1485 }
1486
576a30eb 1487gso:
f6a78bfc
HX
1488 do {
1489 struct sk_buff *nskb = skb->next;
1490 int rc;
1491
1492 skb->next = nskb->next;
1493 nskb->next = NULL;
1494 rc = dev->hard_start_xmit(nskb, dev);
1495 if (unlikely(rc)) {
f54d9e8d 1496 nskb->next = skb->next;
f6a78bfc
HX
1497 skb->next = nskb;
1498 return rc;
1499 }
f25f4e44
PWJ
1500 if (unlikely((netif_queue_stopped(dev) ||
1501 netif_subqueue_stopped(dev, skb->queue_mapping)) &&
1502 skb->next))
f54d9e8d 1503 return NETDEV_TX_BUSY;
f6a78bfc 1504 } while (skb->next);
4ec93edb 1505
f6a78bfc
HX
1506 skb->destructor = DEV_GSO_CB(skb)->destructor;
1507
1508out_kfree_skb:
1509 kfree_skb(skb);
1510 return 0;
1511}
1512
1da177e4
LT
1513#define HARD_TX_LOCK(dev, cpu) { \
1514 if ((dev->features & NETIF_F_LLTX) == 0) { \
932ff279 1515 netif_tx_lock(dev); \
1da177e4
LT
1516 } \
1517}
1518
1519#define HARD_TX_UNLOCK(dev) { \
1520 if ((dev->features & NETIF_F_LLTX) == 0) { \
932ff279 1521 netif_tx_unlock(dev); \
1da177e4
LT
1522 } \
1523}
1524
1525/**
1526 * dev_queue_xmit - transmit a buffer
1527 * @skb: buffer to transmit
1528 *
1529 * Queue a buffer for transmission to a network device. The caller must
1530 * have set the device and priority and built the buffer before calling
1531 * this function. The function can be called from an interrupt.
1532 *
1533 * A negative errno code is returned on a failure. A success does not
1534 * guarantee the frame will be transmitted as it may be dropped due
1535 * to congestion or traffic shaping.
af191367
BG
1536 *
1537 * -----------------------------------------------------------------------------------
1538 * I notice this method can also return errors from the queue disciplines,
1539 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1540 * be positive.
1541 *
1542 * Regardless of the return value, the skb is consumed, so it is currently
1543 * difficult to retry a send to this method. (You can bump the ref count
1544 * before sending to hold a reference for retry if you are careful.)
1545 *
1546 * When calling this method, interrupts MUST be enabled. This is because
1547 * the BH enable code must have IRQs enabled so that it will not deadlock.
1548 * --BLG
1da177e4
LT
1549 */
1550
1551int dev_queue_xmit(struct sk_buff *skb)
1552{
1553 struct net_device *dev = skb->dev;
1554 struct Qdisc *q;
1555 int rc = -ENOMEM;
1556
f6a78bfc
HX
1557 /* GSO will handle the following emulations directly. */
1558 if (netif_needs_gso(dev, skb))
1559 goto gso;
1560
1da177e4
LT
1561 if (skb_shinfo(skb)->frag_list &&
1562 !(dev->features & NETIF_F_FRAGLIST) &&
364c6bad 1563 __skb_linearize(skb))
1da177e4
LT
1564 goto out_kfree_skb;
1565
1566 /* Fragmented skb is linearized if device does not support SG,
1567 * or if at least one of fragments is in highmem and device
1568 * does not support DMA from it.
1569 */
1570 if (skb_shinfo(skb)->nr_frags &&
1571 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
364c6bad 1572 __skb_linearize(skb))
1da177e4
LT
1573 goto out_kfree_skb;
1574
1575 /* If packet is not checksummed and device does not support
1576 * checksumming for this protocol, complete checksumming here.
1577 */
663ead3b
HX
1578 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1579 skb_set_transport_header(skb, skb->csum_start -
1580 skb_headroom(skb));
1581
a298830c
HX
1582 if (!(dev->features & NETIF_F_GEN_CSUM) &&
1583 !((dev->features & NETIF_F_IP_CSUM) &&
1584 skb->protocol == htons(ETH_P_IP)) &&
1585 !((dev->features & NETIF_F_IPV6_CSUM) &&
1586 skb->protocol == htons(ETH_P_IPV6)))
663ead3b
HX
1587 if (skb_checksum_help(skb))
1588 goto out_kfree_skb;
1589 }
1da177e4 1590
f6a78bfc 1591gso:
2d7ceece
ED
1592 spin_lock_prefetch(&dev->queue_lock);
1593
4ec93edb
YH
1594 /* Disable soft irqs for various locks below. Also
1595 * stops preemption for RCU.
1da177e4 1596 */
4ec93edb 1597 rcu_read_lock_bh();
1da177e4 1598
4ec93edb
YH
1599 /* Updates of qdisc are serialized by queue_lock.
1600 * The struct Qdisc which is pointed to by qdisc is now a
1601 * rcu structure - it may be accessed without acquiring
1da177e4 1602 * a lock (but the structure may be stale.) The freeing of the
4ec93edb 1603 * qdisc will be deferred until it's known that there are no
1da177e4 1604 * more references to it.
4ec93edb
YH
1605 *
1606 * If the qdisc has an enqueue function, we still need to
1da177e4
LT
1607 * hold the queue_lock before calling it, since queue_lock
1608 * also serializes access to the device queue.
1609 */
1610
1611 q = rcu_dereference(dev->qdisc);
1612#ifdef CONFIG_NET_CLS_ACT
1613 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1614#endif
1615 if (q->enqueue) {
1616 /* Grab device queue */
1617 spin_lock(&dev->queue_lock);
85670cc1
PM
1618 q = dev->qdisc;
1619 if (q->enqueue) {
f25f4e44
PWJ
1620 /* reset queue_mapping to zero */
1621 skb->queue_mapping = 0;
85670cc1
PM
1622 rc = q->enqueue(skb, q);
1623 qdisc_run(dev);
1624 spin_unlock(&dev->queue_lock);
1da177e4 1625
85670cc1
PM
1626 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1627 goto out;
1628 }
1da177e4 1629 spin_unlock(&dev->queue_lock);
1da177e4
LT
1630 }
1631
1632 /* The device has no queue. Common case for software devices:
1633 loopback, all the sorts of tunnels...
1634
932ff279
HX
1635 Really, it is unlikely that netif_tx_lock protection is necessary
1636 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
1637 counters.)
1638 However, it is possible, that they rely on protection
1639 made by us here.
1640
1641 Check this and shot the lock. It is not prone from deadlocks.
1642 Either shot noqueue qdisc, it is even simpler 8)
1643 */
1644 if (dev->flags & IFF_UP) {
1645 int cpu = smp_processor_id(); /* ok because BHs are off */
1646
1647 if (dev->xmit_lock_owner != cpu) {
1648
1649 HARD_TX_LOCK(dev, cpu);
1650
f25f4e44
PWJ
1651 if (!netif_queue_stopped(dev) &&
1652 !netif_subqueue_stopped(dev, skb->queue_mapping)) {
1da177e4 1653 rc = 0;
f6a78bfc 1654 if (!dev_hard_start_xmit(skb, dev)) {
1da177e4
LT
1655 HARD_TX_UNLOCK(dev);
1656 goto out;
1657 }
1658 }
1659 HARD_TX_UNLOCK(dev);
1660 if (net_ratelimit())
1661 printk(KERN_CRIT "Virtual device %s asks to "
1662 "queue packet!\n", dev->name);
1663 } else {
1664 /* Recursion is detected! It is possible,
1665 * unfortunately */
1666 if (net_ratelimit())
1667 printk(KERN_CRIT "Dead loop on virtual device "
1668 "%s, fix it urgently!\n", dev->name);
1669 }
1670 }
1671
1672 rc = -ENETDOWN;
d4828d85 1673 rcu_read_unlock_bh();
1da177e4
LT
1674
1675out_kfree_skb:
1676 kfree_skb(skb);
1677 return rc;
1678out:
d4828d85 1679 rcu_read_unlock_bh();
1da177e4
LT
1680 return rc;
1681}
1682
1683
1684/*=======================================================================
1685 Receiver routines
1686 =======================================================================*/
1687
6b2bedc3
SH
1688int netdev_max_backlog __read_mostly = 1000;
1689int netdev_budget __read_mostly = 300;
1690int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4
LT
1691
1692DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1693
1694
1da177e4
LT
1695/**
1696 * netif_rx - post buffer to the network code
1697 * @skb: buffer to post
1698 *
1699 * This function receives a packet from a device driver and queues it for
1700 * the upper (protocol) levels to process. It always succeeds. The buffer
1701 * may be dropped during processing for congestion control or by the
1702 * protocol layers.
1703 *
1704 * return values:
1705 * NET_RX_SUCCESS (no congestion)
1706 * NET_RX_CN_LOW (low congestion)
1707 * NET_RX_CN_MOD (moderate congestion)
1708 * NET_RX_CN_HIGH (high congestion)
1709 * NET_RX_DROP (packet was dropped)
1710 *
1711 */
1712
1713int netif_rx(struct sk_buff *skb)
1714{
1da177e4
LT
1715 struct softnet_data *queue;
1716 unsigned long flags;
1717
1718 /* if netpoll wants it, pretend we never saw it */
1719 if (netpoll_rx(skb))
1720 return NET_RX_DROP;
1721
b7aa0bf7 1722 if (!skb->tstamp.tv64)
a61bbcf2 1723 net_timestamp(skb);
1da177e4
LT
1724
1725 /*
1726 * The code is rearranged so that the path is the most
1727 * short when CPU is congested, but is still operating.
1728 */
1729 local_irq_save(flags);
1da177e4
LT
1730 queue = &__get_cpu_var(softnet_data);
1731
1732 __get_cpu_var(netdev_rx_stat).total++;
1733 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1734 if (queue->input_pkt_queue.qlen) {
1da177e4
LT
1735enqueue:
1736 dev_hold(skb->dev);
1737 __skb_queue_tail(&queue->input_pkt_queue, skb);
1da177e4 1738 local_irq_restore(flags);
34008d8c 1739 return NET_RX_SUCCESS;
1da177e4
LT
1740 }
1741
bea3348e 1742 napi_schedule(&queue->backlog);
1da177e4
LT
1743 goto enqueue;
1744 }
1745
1da177e4
LT
1746 __get_cpu_var(netdev_rx_stat).dropped++;
1747 local_irq_restore(flags);
1748
1749 kfree_skb(skb);
1750 return NET_RX_DROP;
1751}
1752
1753int netif_rx_ni(struct sk_buff *skb)
1754{
1755 int err;
1756
1757 preempt_disable();
1758 err = netif_rx(skb);
1759 if (local_softirq_pending())
1760 do_softirq();
1761 preempt_enable();
1762
1763 return err;
1764}
1765
1766EXPORT_SYMBOL(netif_rx_ni);
1767
f2ccd8fa 1768static inline struct net_device *skb_bond(struct sk_buff *skb)
1da177e4
LT
1769{
1770 struct net_device *dev = skb->dev;
1771
8f903c70 1772 if (dev->master) {
7ea49ed7 1773 if (skb_bond_should_drop(skb)) {
8f903c70
JV
1774 kfree_skb(skb);
1775 return NULL;
1776 }
1da177e4 1777 skb->dev = dev->master;
8f903c70 1778 }
f2ccd8fa
DM
1779
1780 return dev;
1da177e4
LT
1781}
1782
bea3348e 1783
1da177e4
LT
1784static void net_tx_action(struct softirq_action *h)
1785{
1786 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1787
1788 if (sd->completion_queue) {
1789 struct sk_buff *clist;
1790
1791 local_irq_disable();
1792 clist = sd->completion_queue;
1793 sd->completion_queue = NULL;
1794 local_irq_enable();
1795
1796 while (clist) {
1797 struct sk_buff *skb = clist;
1798 clist = clist->next;
1799
1800 BUG_TRAP(!atomic_read(&skb->users));
1801 __kfree_skb(skb);
1802 }
1803 }
1804
1805 if (sd->output_queue) {
1806 struct net_device *head;
1807
1808 local_irq_disable();
1809 head = sd->output_queue;
1810 sd->output_queue = NULL;
1811 local_irq_enable();
1812
1813 while (head) {
1814 struct net_device *dev = head;
1815 head = head->next_sched;
1816
1817 smp_mb__before_clear_bit();
1818 clear_bit(__LINK_STATE_SCHED, &dev->state);
1819
1820 if (spin_trylock(&dev->queue_lock)) {
1821 qdisc_run(dev);
1822 spin_unlock(&dev->queue_lock);
1823 } else {
1824 netif_schedule(dev);
1825 }
1826 }
1827 }
1828}
1829
6f05f629
SH
1830static inline int deliver_skb(struct sk_buff *skb,
1831 struct packet_type *pt_prev,
1832 struct net_device *orig_dev)
1da177e4
LT
1833{
1834 atomic_inc(&skb->users);
f2ccd8fa 1835 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4
LT
1836}
1837
1838#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
6229e362 1839/* These hooks defined here for ATM */
1da177e4
LT
1840struct net_bridge;
1841struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
1842 unsigned char *addr);
6229e362 1843void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1da177e4 1844
6229e362
SH
1845/*
1846 * If bridge module is loaded call bridging hook.
1847 * returns NULL if packet was consumed.
1848 */
1849struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
1850 struct sk_buff *skb) __read_mostly;
1851static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
1852 struct packet_type **pt_prev, int *ret,
1853 struct net_device *orig_dev)
1da177e4
LT
1854{
1855 struct net_bridge_port *port;
1856
6229e362
SH
1857 if (skb->pkt_type == PACKET_LOOPBACK ||
1858 (port = rcu_dereference(skb->dev->br_port)) == NULL)
1859 return skb;
1da177e4
LT
1860
1861 if (*pt_prev) {
6229e362 1862 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1da177e4 1863 *pt_prev = NULL;
4ec93edb
YH
1864 }
1865
6229e362 1866 return br_handle_frame_hook(port, skb);
1da177e4
LT
1867}
1868#else
6229e362 1869#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
1da177e4
LT
1870#endif
1871
b863ceb7
PM
1872#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
1873struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
1874EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
1875
1876static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
1877 struct packet_type **pt_prev,
1878 int *ret,
1879 struct net_device *orig_dev)
1880{
1881 if (skb->dev->macvlan_port == NULL)
1882 return skb;
1883
1884 if (*pt_prev) {
1885 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1886 *pt_prev = NULL;
1887 }
1888 return macvlan_handle_frame_hook(skb);
1889}
1890#else
1891#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
1892#endif
1893
1da177e4
LT
1894#ifdef CONFIG_NET_CLS_ACT
1895/* TODO: Maybe we should just force sch_ingress to be compiled in
1896 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
1897 * a compare and 2 stores extra right now if we dont have it on
1898 * but have CONFIG_NET_CLS_ACT
4ec93edb 1899 * NOTE: This doesnt stop any functionality; if you dont have
1da177e4
LT
1900 * the ingress scheduler, you just cant add policies on ingress.
1901 *
1902 */
4ec93edb 1903static int ing_filter(struct sk_buff *skb)
1da177e4
LT
1904{
1905 struct Qdisc *q;
1906 struct net_device *dev = skb->dev;
1907 int result = TC_ACT_OK;
4ec93edb 1908
1da177e4
LT
1909 if (dev->qdisc_ingress) {
1910 __u32 ttl = (__u32) G_TC_RTTL(skb->tc_verd);
1911 if (MAX_RED_LOOP < ttl++) {
c01003c2
PM
1912 printk(KERN_WARNING "Redir loop detected Dropping packet (%d->%d)\n",
1913 skb->iif, skb->dev->ifindex);
1da177e4
LT
1914 return TC_ACT_SHOT;
1915 }
1916
1917 skb->tc_verd = SET_TC_RTTL(skb->tc_verd,ttl);
1918
1919 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_INGRESS);
86e65da9 1920
fd44de7c 1921 spin_lock(&dev->ingress_lock);
1da177e4
LT
1922 if ((q = dev->qdisc_ingress) != NULL)
1923 result = q->enqueue(skb, q);
fd44de7c 1924 spin_unlock(&dev->ingress_lock);
1da177e4
LT
1925
1926 }
1927
1928 return result;
1929}
1930#endif
1931
1932int netif_receive_skb(struct sk_buff *skb)
1933{
1934 struct packet_type *ptype, *pt_prev;
f2ccd8fa 1935 struct net_device *orig_dev;
1da177e4 1936 int ret = NET_RX_DROP;
252e3346 1937 __be16 type;
1da177e4
LT
1938
1939 /* if we've gotten here through NAPI, check netpoll */
bea3348e 1940 if (netpoll_receive_skb(skb))
1da177e4
LT
1941 return NET_RX_DROP;
1942
b7aa0bf7 1943 if (!skb->tstamp.tv64)
a61bbcf2 1944 net_timestamp(skb);
1da177e4 1945
c01003c2
PM
1946 if (!skb->iif)
1947 skb->iif = skb->dev->ifindex;
86e65da9 1948
f2ccd8fa 1949 orig_dev = skb_bond(skb);
1da177e4 1950
8f903c70
JV
1951 if (!orig_dev)
1952 return NET_RX_DROP;
1953
1da177e4
LT
1954 __get_cpu_var(netdev_rx_stat).total++;
1955
c1d2bbe1 1956 skb_reset_network_header(skb);
badff6d0 1957 skb_reset_transport_header(skb);
b0e380b1 1958 skb->mac_len = skb->network_header - skb->mac_header;
1da177e4
LT
1959
1960 pt_prev = NULL;
1961
1962 rcu_read_lock();
1963
1964#ifdef CONFIG_NET_CLS_ACT
1965 if (skb->tc_verd & TC_NCLS) {
1966 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
1967 goto ncls;
1968 }
1969#endif
1970
1971 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1972 if (!ptype->dev || ptype->dev == skb->dev) {
4ec93edb 1973 if (pt_prev)
f2ccd8fa 1974 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
1975 pt_prev = ptype;
1976 }
1977 }
1978
1979#ifdef CONFIG_NET_CLS_ACT
1980 if (pt_prev) {
f2ccd8fa 1981 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
1982 pt_prev = NULL; /* noone else should process this after*/
1983 } else {
1984 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
1985 }
1986
1987 ret = ing_filter(skb);
1988
1989 if (ret == TC_ACT_SHOT || (ret == TC_ACT_STOLEN)) {
1990 kfree_skb(skb);
1991 goto out;
1992 }
1993
1994 skb->tc_verd = 0;
1995ncls:
1996#endif
1997
6229e362 1998 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
b863ceb7
PM
1999 if (!skb)
2000 goto out;
2001 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
6229e362 2002 if (!skb)
1da177e4
LT
2003 goto out;
2004
2005 type = skb->protocol;
2006 list_for_each_entry_rcu(ptype, &ptype_base[ntohs(type)&15], list) {
2007 if (ptype->type == type &&
2008 (!ptype->dev || ptype->dev == skb->dev)) {
4ec93edb 2009 if (pt_prev)
f2ccd8fa 2010 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
2011 pt_prev = ptype;
2012 }
2013 }
2014
2015 if (pt_prev) {
f2ccd8fa 2016 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4
LT
2017 } else {
2018 kfree_skb(skb);
2019 /* Jamal, now you will not able to escape explaining
2020 * me how you were going to use this. :-)
2021 */
2022 ret = NET_RX_DROP;
2023 }
2024
2025out:
2026 rcu_read_unlock();
2027 return ret;
2028}
2029
bea3348e 2030static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
2031{
2032 int work = 0;
1da177e4
LT
2033 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2034 unsigned long start_time = jiffies;
2035
bea3348e
SH
2036 napi->weight = weight_p;
2037 do {
1da177e4
LT
2038 struct sk_buff *skb;
2039 struct net_device *dev;
2040
2041 local_irq_disable();
2042 skb = __skb_dequeue(&queue->input_pkt_queue);
bea3348e
SH
2043 if (!skb) {
2044 __napi_complete(napi);
2045 local_irq_enable();
2046 break;
2047 }
2048
1da177e4
LT
2049 local_irq_enable();
2050
2051 dev = skb->dev;
2052
2053 netif_receive_skb(skb);
2054
2055 dev_put(dev);
bea3348e 2056 } while (++work < quota && jiffies == start_time);
1da177e4 2057
bea3348e
SH
2058 return work;
2059}
1da177e4 2060
bea3348e
SH
2061/**
2062 * __napi_schedule - schedule for receive
2063 * @napi: entry to schedule
2064 *
2065 * The entry's receive function will be scheduled to run
2066 */
2067void fastcall __napi_schedule(struct napi_struct *n)
2068{
2069 unsigned long flags;
1da177e4 2070
bea3348e
SH
2071 local_irq_save(flags);
2072 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2073 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2074 local_irq_restore(flags);
1da177e4 2075}
bea3348e
SH
2076EXPORT_SYMBOL(__napi_schedule);
2077
1da177e4
LT
2078
2079static void net_rx_action(struct softirq_action *h)
2080{
bea3348e 2081 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
1da177e4 2082 unsigned long start_time = jiffies;
51b0bded 2083 int budget = netdev_budget;
53fb95d3
MM
2084 void *have;
2085
1da177e4
LT
2086 local_irq_disable();
2087
bea3348e
SH
2088 while (!list_empty(list)) {
2089 struct napi_struct *n;
2090 int work, weight;
1da177e4 2091
bea3348e
SH
2092 /* If softirq window is exhuasted then punt.
2093 *
2094 * Note that this is a slight policy change from the
2095 * previous NAPI code, which would allow up to 2
2096 * jiffies to pass before breaking out. The test
2097 * used to be "jiffies - start_time > 1".
2098 */
2099 if (unlikely(budget <= 0 || jiffies != start_time))
1da177e4
LT
2100 goto softnet_break;
2101
2102 local_irq_enable();
2103
bea3348e
SH
2104 /* Even though interrupts have been re-enabled, this
2105 * access is safe because interrupts can only add new
2106 * entries to the tail of this list, and only ->poll()
2107 * calls can remove this head entry from the list.
2108 */
2109 n = list_entry(list->next, struct napi_struct, poll_list);
1da177e4 2110
bea3348e
SH
2111 have = netpoll_poll_lock(n);
2112
2113 weight = n->weight;
2114
2115 work = n->poll(n, weight);
2116
2117 WARN_ON_ONCE(work > weight);
2118
2119 budget -= work;
2120
2121 local_irq_disable();
2122
2123 /* Drivers must not modify the NAPI state if they
2124 * consume the entire weight. In such cases this code
2125 * still "owns" the NAPI instance and therefore can
2126 * move the instance around on the list at-will.
2127 */
2128 if (unlikely(work == weight))
2129 list_move_tail(&n->poll_list, list);
2130
2131 netpoll_poll_unlock(have);
1da177e4
LT
2132 }
2133out:
515e06c4 2134 local_irq_enable();
bea3348e 2135
db217334
CL
2136#ifdef CONFIG_NET_DMA
2137 /*
2138 * There may not be any more sk_buffs coming right now, so push
2139 * any pending DMA copies to hardware
2140 */
d379b01e
DW
2141 if (!cpus_empty(net_dma.channel_mask)) {
2142 int chan_idx;
2143 for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2144 struct dma_chan *chan = net_dma.channels[chan_idx];
2145 if (chan)
2146 dma_async_memcpy_issue_pending(chan);
2147 }
db217334
CL
2148 }
2149#endif
bea3348e 2150
1da177e4
LT
2151 return;
2152
2153softnet_break:
2154 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2155 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2156 goto out;
2157}
2158
2159static gifconf_func_t * gifconf_list [NPROTO];
2160
2161/**
2162 * register_gifconf - register a SIOCGIF handler
2163 * @family: Address family
2164 * @gifconf: Function handler
2165 *
2166 * Register protocol dependent address dumping routines. The handler
2167 * that is passed must not be freed or reused until it has been replaced
2168 * by another handler.
2169 */
2170int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2171{
2172 if (family >= NPROTO)
2173 return -EINVAL;
2174 gifconf_list[family] = gifconf;
2175 return 0;
2176}
2177
2178
2179/*
2180 * Map an interface index to its name (SIOCGIFNAME)
2181 */
2182
2183/*
2184 * We need this ioctl for efficient implementation of the
2185 * if_indextoname() function required by the IPv6 API. Without
2186 * it, we would have to search all the interfaces to find a
2187 * match. --pb
2188 */
2189
2190static int dev_ifname(struct ifreq __user *arg)
2191{
2192 struct net_device *dev;
2193 struct ifreq ifr;
2194
2195 /*
2196 * Fetch the caller's info block.
2197 */
2198
2199 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2200 return -EFAULT;
2201
2202 read_lock(&dev_base_lock);
2203 dev = __dev_get_by_index(ifr.ifr_ifindex);
2204 if (!dev) {
2205 read_unlock(&dev_base_lock);
2206 return -ENODEV;
2207 }
2208
2209 strcpy(ifr.ifr_name, dev->name);
2210 read_unlock(&dev_base_lock);
2211
2212 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2213 return -EFAULT;
2214 return 0;
2215}
2216
2217/*
2218 * Perform a SIOCGIFCONF call. This structure will change
2219 * size eventually, and there is nothing I can do about it.
2220 * Thus we will need a 'compatibility mode'.
2221 */
2222
2223static int dev_ifconf(char __user *arg)
2224{
2225 struct ifconf ifc;
2226 struct net_device *dev;
2227 char __user *pos;
2228 int len;
2229 int total;
2230 int i;
2231
2232 /*
2233 * Fetch the caller's info block.
2234 */
2235
2236 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2237 return -EFAULT;
2238
2239 pos = ifc.ifc_buf;
2240 len = ifc.ifc_len;
2241
2242 /*
2243 * Loop over the interfaces, and write an info block for each.
2244 */
2245
2246 total = 0;
7562f876 2247 for_each_netdev(dev) {
1da177e4
LT
2248 for (i = 0; i < NPROTO; i++) {
2249 if (gifconf_list[i]) {
2250 int done;
2251 if (!pos)
2252 done = gifconf_list[i](dev, NULL, 0);
2253 else
2254 done = gifconf_list[i](dev, pos + total,
2255 len - total);
2256 if (done < 0)
2257 return -EFAULT;
2258 total += done;
2259 }
2260 }
4ec93edb 2261 }
1da177e4
LT
2262
2263 /*
2264 * All done. Write the updated control block back to the caller.
2265 */
2266 ifc.ifc_len = total;
2267
2268 /*
2269 * Both BSD and Solaris return 0 here, so we do too.
2270 */
2271 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2272}
2273
2274#ifdef CONFIG_PROC_FS
2275/*
2276 * This is invoked by the /proc filesystem handler to display a device
2277 * in detail.
2278 */
7562f876 2279void *dev_seq_start(struct seq_file *seq, loff_t *pos)
1da177e4 2280{
7562f876 2281 loff_t off;
1da177e4 2282 struct net_device *dev;
1da177e4 2283
7562f876
PE
2284 read_lock(&dev_base_lock);
2285 if (!*pos)
2286 return SEQ_START_TOKEN;
1da177e4 2287
7562f876
PE
2288 off = 1;
2289 for_each_netdev(dev)
2290 if (off++ == *pos)
2291 return dev;
1da177e4 2292
7562f876 2293 return NULL;
1da177e4
LT
2294}
2295
2296void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2297{
2298 ++*pos;
7562f876
PE
2299 return v == SEQ_START_TOKEN ?
2300 first_net_device() : next_net_device((struct net_device *)v);
1da177e4
LT
2301}
2302
2303void dev_seq_stop(struct seq_file *seq, void *v)
2304{
2305 read_unlock(&dev_base_lock);
2306}
2307
2308static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2309{
c45d286e 2310 struct net_device_stats *stats = dev->get_stats(dev);
1da177e4 2311
5a1b5898
RR
2312 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2313 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2314 dev->name, stats->rx_bytes, stats->rx_packets,
2315 stats->rx_errors,
2316 stats->rx_dropped + stats->rx_missed_errors,
2317 stats->rx_fifo_errors,
2318 stats->rx_length_errors + stats->rx_over_errors +
2319 stats->rx_crc_errors + stats->rx_frame_errors,
2320 stats->rx_compressed, stats->multicast,
2321 stats->tx_bytes, stats->tx_packets,
2322 stats->tx_errors, stats->tx_dropped,
2323 stats->tx_fifo_errors, stats->collisions,
2324 stats->tx_carrier_errors +
2325 stats->tx_aborted_errors +
2326 stats->tx_window_errors +
2327 stats->tx_heartbeat_errors,
2328 stats->tx_compressed);
1da177e4
LT
2329}
2330
2331/*
2332 * Called from the PROCfs module. This now uses the new arbitrary sized
2333 * /proc/net interface to create /proc/net/dev
2334 */
2335static int dev_seq_show(struct seq_file *seq, void *v)
2336{
2337 if (v == SEQ_START_TOKEN)
2338 seq_puts(seq, "Inter-| Receive "
2339 " | Transmit\n"
2340 " face |bytes packets errs drop fifo frame "
2341 "compressed multicast|bytes packets errs "
2342 "drop fifo colls carrier compressed\n");
2343 else
2344 dev_seq_printf_stats(seq, v);
2345 return 0;
2346}
2347
2348static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2349{
2350 struct netif_rx_stats *rc = NULL;
2351
2352 while (*pos < NR_CPUS)
4ec93edb 2353 if (cpu_online(*pos)) {
1da177e4
LT
2354 rc = &per_cpu(netdev_rx_stat, *pos);
2355 break;
2356 } else
2357 ++*pos;
2358 return rc;
2359}
2360
2361static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2362{
2363 return softnet_get_online(pos);
2364}
2365
2366static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2367{
2368 ++*pos;
2369 return softnet_get_online(pos);
2370}
2371
2372static void softnet_seq_stop(struct seq_file *seq, void *v)
2373{
2374}
2375
2376static int softnet_seq_show(struct seq_file *seq, void *v)
2377{
2378 struct netif_rx_stats *s = v;
2379
2380 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
31aa02c5 2381 s->total, s->dropped, s->time_squeeze, 0,
c1ebcdb8
SH
2382 0, 0, 0, 0, /* was fastroute */
2383 s->cpu_collision );
1da177e4
LT
2384 return 0;
2385}
2386
f690808e 2387static const struct seq_operations dev_seq_ops = {
1da177e4
LT
2388 .start = dev_seq_start,
2389 .next = dev_seq_next,
2390 .stop = dev_seq_stop,
2391 .show = dev_seq_show,
2392};
2393
2394static int dev_seq_open(struct inode *inode, struct file *file)
2395{
2396 return seq_open(file, &dev_seq_ops);
2397}
2398
9a32144e 2399static const struct file_operations dev_seq_fops = {
1da177e4
LT
2400 .owner = THIS_MODULE,
2401 .open = dev_seq_open,
2402 .read = seq_read,
2403 .llseek = seq_lseek,
2404 .release = seq_release,
2405};
2406
f690808e 2407static const struct seq_operations softnet_seq_ops = {
1da177e4
LT
2408 .start = softnet_seq_start,
2409 .next = softnet_seq_next,
2410 .stop = softnet_seq_stop,
2411 .show = softnet_seq_show,
2412};
2413
2414static int softnet_seq_open(struct inode *inode, struct file *file)
2415{
2416 return seq_open(file, &softnet_seq_ops);
2417}
2418
9a32144e 2419static const struct file_operations softnet_seq_fops = {
1da177e4
LT
2420 .owner = THIS_MODULE,
2421 .open = softnet_seq_open,
2422 .read = seq_read,
2423 .llseek = seq_lseek,
2424 .release = seq_release,
2425};
2426
0e1256ff
SH
2427static void *ptype_get_idx(loff_t pos)
2428{
2429 struct packet_type *pt = NULL;
2430 loff_t i = 0;
2431 int t;
2432
2433 list_for_each_entry_rcu(pt, &ptype_all, list) {
2434 if (i == pos)
2435 return pt;
2436 ++i;
2437 }
2438
2439 for (t = 0; t < 16; t++) {
2440 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2441 if (i == pos)
2442 return pt;
2443 ++i;
2444 }
2445 }
2446 return NULL;
2447}
2448
2449static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
2450{
2451 rcu_read_lock();
2452 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2453}
2454
2455static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2456{
2457 struct packet_type *pt;
2458 struct list_head *nxt;
2459 int hash;
2460
2461 ++*pos;
2462 if (v == SEQ_START_TOKEN)
2463 return ptype_get_idx(0);
2464
2465 pt = v;
2466 nxt = pt->list.next;
2467 if (pt->type == htons(ETH_P_ALL)) {
2468 if (nxt != &ptype_all)
2469 goto found;
2470 hash = 0;
2471 nxt = ptype_base[0].next;
2472 } else
2473 hash = ntohs(pt->type) & 15;
2474
2475 while (nxt == &ptype_base[hash]) {
2476 if (++hash >= 16)
2477 return NULL;
2478 nxt = ptype_base[hash].next;
2479 }
2480found:
2481 return list_entry(nxt, struct packet_type, list);
2482}
2483
2484static void ptype_seq_stop(struct seq_file *seq, void *v)
2485{
2486 rcu_read_unlock();
2487}
2488
2489static void ptype_seq_decode(struct seq_file *seq, void *sym)
2490{
2491#ifdef CONFIG_KALLSYMS
2492 unsigned long offset = 0, symsize;
2493 const char *symname;
2494 char *modname;
2495 char namebuf[128];
2496
2497 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2498 &modname, namebuf);
2499
2500 if (symname) {
2501 char *delim = ":";
2502
2503 if (!modname)
2504 modname = delim = "";
2505 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2506 symname, offset);
2507 return;
2508 }
2509#endif
2510
2511 seq_printf(seq, "[%p]", sym);
2512}
2513
2514static int ptype_seq_show(struct seq_file *seq, void *v)
2515{
2516 struct packet_type *pt = v;
2517
2518 if (v == SEQ_START_TOKEN)
2519 seq_puts(seq, "Type Device Function\n");
2520 else {
2521 if (pt->type == htons(ETH_P_ALL))
2522 seq_puts(seq, "ALL ");
2523 else
2524 seq_printf(seq, "%04x", ntohs(pt->type));
2525
2526 seq_printf(seq, " %-8s ",
2527 pt->dev ? pt->dev->name : "");
2528 ptype_seq_decode(seq, pt->func);
2529 seq_putc(seq, '\n');
2530 }
2531
2532 return 0;
2533}
2534
2535static const struct seq_operations ptype_seq_ops = {
2536 .start = ptype_seq_start,
2537 .next = ptype_seq_next,
2538 .stop = ptype_seq_stop,
2539 .show = ptype_seq_show,
2540};
2541
2542static int ptype_seq_open(struct inode *inode, struct file *file)
2543{
2544 return seq_open(file, &ptype_seq_ops);
2545}
2546
2547static const struct file_operations ptype_seq_fops = {
2548 .owner = THIS_MODULE,
2549 .open = ptype_seq_open,
2550 .read = seq_read,
2551 .llseek = seq_lseek,
2552 .release = seq_release,
2553};
2554
2555
1da177e4
LT
2556static int __init dev_proc_init(void)
2557{
2558 int rc = -ENOMEM;
2559
457c4cbc 2560 if (!proc_net_fops_create(&init_net, "dev", S_IRUGO, &dev_seq_fops))
1da177e4 2561 goto out;
457c4cbc 2562 if (!proc_net_fops_create(&init_net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
1da177e4 2563 goto out_dev;
457c4cbc
EB
2564 if (!proc_net_fops_create(&init_net, "ptype", S_IRUGO, &ptype_seq_fops))
2565 goto out_softnet;
0e1256ff 2566
295f4a1f 2567 if (wext_proc_init())
457c4cbc 2568 goto out_ptype;
1da177e4
LT
2569 rc = 0;
2570out:
2571 return rc;
457c4cbc
EB
2572out_ptype:
2573 proc_net_remove(&init_net, "ptype");
1da177e4 2574out_softnet:
457c4cbc 2575 proc_net_remove(&init_net, "softnet_stat");
1da177e4 2576out_dev:
457c4cbc 2577 proc_net_remove(&init_net, "dev");
1da177e4
LT
2578 goto out;
2579}
2580#else
2581#define dev_proc_init() 0
2582#endif /* CONFIG_PROC_FS */
2583
2584
2585/**
2586 * netdev_set_master - set up master/slave pair
2587 * @slave: slave device
2588 * @master: new master device
2589 *
2590 * Changes the master device of the slave. Pass %NULL to break the
2591 * bonding. The caller must hold the RTNL semaphore. On a failure
2592 * a negative errno code is returned. On success the reference counts
2593 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2594 * function returns zero.
2595 */
2596int netdev_set_master(struct net_device *slave, struct net_device *master)
2597{
2598 struct net_device *old = slave->master;
2599
2600 ASSERT_RTNL();
2601
2602 if (master) {
2603 if (old)
2604 return -EBUSY;
2605 dev_hold(master);
2606 }
2607
2608 slave->master = master;
4ec93edb 2609
1da177e4
LT
2610 synchronize_net();
2611
2612 if (old)
2613 dev_put(old);
2614
2615 if (master)
2616 slave->flags |= IFF_SLAVE;
2617 else
2618 slave->flags &= ~IFF_SLAVE;
2619
2620 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2621 return 0;
2622}
2623
4417da66 2624static void __dev_set_promiscuity(struct net_device *dev, int inc)
1da177e4
LT
2625{
2626 unsigned short old_flags = dev->flags;
2627
24023451
PM
2628 ASSERT_RTNL();
2629
1da177e4
LT
2630 if ((dev->promiscuity += inc) == 0)
2631 dev->flags &= ~IFF_PROMISC;
52609c0b
DC
2632 else
2633 dev->flags |= IFF_PROMISC;
2634 if (dev->flags != old_flags) {
1da177e4
LT
2635 printk(KERN_INFO "device %s %s promiscuous mode\n",
2636 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4ec93edb 2637 "left");
5bdb9886
SG
2638 audit_log(current->audit_context, GFP_ATOMIC,
2639 AUDIT_ANOM_PROMISCUOUS,
2640 "dev=%s prom=%d old_prom=%d auid=%u",
2641 dev->name, (dev->flags & IFF_PROMISC),
2642 (old_flags & IFF_PROMISC),
4ec93edb 2643 audit_get_loginuid(current->audit_context));
24023451
PM
2644
2645 if (dev->change_rx_flags)
2646 dev->change_rx_flags(dev, IFF_PROMISC);
1da177e4
LT
2647 }
2648}
2649
4417da66
PM
2650/**
2651 * dev_set_promiscuity - update promiscuity count on a device
2652 * @dev: device
2653 * @inc: modifier
2654 *
2655 * Add or remove promiscuity from a device. While the count in the device
2656 * remains above zero the interface remains promiscuous. Once it hits zero
2657 * the device reverts back to normal filtering operation. A negative inc
2658 * value is used to drop promiscuity on the device.
2659 */
2660void dev_set_promiscuity(struct net_device *dev, int inc)
2661{
2662 unsigned short old_flags = dev->flags;
2663
2664 __dev_set_promiscuity(dev, inc);
2665 if (dev->flags != old_flags)
2666 dev_set_rx_mode(dev);
2667}
2668
1da177e4
LT
2669/**
2670 * dev_set_allmulti - update allmulti count on a device
2671 * @dev: device
2672 * @inc: modifier
2673 *
2674 * Add or remove reception of all multicast frames to a device. While the
2675 * count in the device remains above zero the interface remains listening
2676 * to all interfaces. Once it hits zero the device reverts back to normal
2677 * filtering operation. A negative @inc value is used to drop the counter
2678 * when releasing a resource needing all multicasts.
2679 */
2680
2681void dev_set_allmulti(struct net_device *dev, int inc)
2682{
2683 unsigned short old_flags = dev->flags;
2684
24023451
PM
2685 ASSERT_RTNL();
2686
1da177e4
LT
2687 dev->flags |= IFF_ALLMULTI;
2688 if ((dev->allmulti += inc) == 0)
2689 dev->flags &= ~IFF_ALLMULTI;
24023451
PM
2690 if (dev->flags ^ old_flags) {
2691 if (dev->change_rx_flags)
2692 dev->change_rx_flags(dev, IFF_ALLMULTI);
4417da66 2693 dev_set_rx_mode(dev);
24023451 2694 }
4417da66
PM
2695}
2696
2697/*
2698 * Upload unicast and multicast address lists to device and
2699 * configure RX filtering. When the device doesn't support unicast
2700 * filtering it is put in promiscous mode while unicast addresses
2701 * are present.
2702 */
2703void __dev_set_rx_mode(struct net_device *dev)
2704{
2705 /* dev_open will call this function so the list will stay sane. */
2706 if (!(dev->flags&IFF_UP))
2707 return;
2708
2709 if (!netif_device_present(dev))
40b77c94 2710 return;
4417da66
PM
2711
2712 if (dev->set_rx_mode)
2713 dev->set_rx_mode(dev);
2714 else {
2715 /* Unicast addresses changes may only happen under the rtnl,
2716 * therefore calling __dev_set_promiscuity here is safe.
2717 */
2718 if (dev->uc_count > 0 && !dev->uc_promisc) {
2719 __dev_set_promiscuity(dev, 1);
2720 dev->uc_promisc = 1;
2721 } else if (dev->uc_count == 0 && dev->uc_promisc) {
2722 __dev_set_promiscuity(dev, -1);
2723 dev->uc_promisc = 0;
2724 }
2725
2726 if (dev->set_multicast_list)
2727 dev->set_multicast_list(dev);
2728 }
2729}
2730
2731void dev_set_rx_mode(struct net_device *dev)
2732{
2733 netif_tx_lock_bh(dev);
2734 __dev_set_rx_mode(dev);
2735 netif_tx_unlock_bh(dev);
1da177e4
LT
2736}
2737
61cbc2fc
PM
2738int __dev_addr_delete(struct dev_addr_list **list, int *count,
2739 void *addr, int alen, int glbl)
bf742482
PM
2740{
2741 struct dev_addr_list *da;
2742
2743 for (; (da = *list) != NULL; list = &da->next) {
2744 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2745 alen == da->da_addrlen) {
2746 if (glbl) {
2747 int old_glbl = da->da_gusers;
2748 da->da_gusers = 0;
2749 if (old_glbl == 0)
2750 break;
2751 }
2752 if (--da->da_users)
2753 return 0;
2754
2755 *list = da->next;
2756 kfree(da);
61cbc2fc 2757 (*count)--;
bf742482
PM
2758 return 0;
2759 }
2760 }
2761 return -ENOENT;
2762}
2763
61cbc2fc
PM
2764int __dev_addr_add(struct dev_addr_list **list, int *count,
2765 void *addr, int alen, int glbl)
bf742482
PM
2766{
2767 struct dev_addr_list *da;
2768
2769 for (da = *list; da != NULL; da = da->next) {
2770 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
2771 da->da_addrlen == alen) {
2772 if (glbl) {
2773 int old_glbl = da->da_gusers;
2774 da->da_gusers = 1;
2775 if (old_glbl)
2776 return 0;
2777 }
2778 da->da_users++;
2779 return 0;
2780 }
2781 }
2782
2783 da = kmalloc(sizeof(*da), GFP_ATOMIC);
2784 if (da == NULL)
2785 return -ENOMEM;
2786 memcpy(da->da_addr, addr, alen);
2787 da->da_addrlen = alen;
2788 da->da_users = 1;
2789 da->da_gusers = glbl ? 1 : 0;
2790 da->next = *list;
2791 *list = da;
61cbc2fc 2792 (*count)++;
bf742482
PM
2793 return 0;
2794}
2795
4417da66
PM
2796/**
2797 * dev_unicast_delete - Release secondary unicast address.
2798 * @dev: device
0ed72ec4
RD
2799 * @addr: address to delete
2800 * @alen: length of @addr
4417da66
PM
2801 *
2802 * Release reference to a secondary unicast address and remove it
0ed72ec4 2803 * from the device if the reference count drops to zero.
4417da66
PM
2804 *
2805 * The caller must hold the rtnl_mutex.
2806 */
2807int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
2808{
2809 int err;
2810
2811 ASSERT_RTNL();
2812
2813 netif_tx_lock_bh(dev);
61cbc2fc
PM
2814 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2815 if (!err)
4417da66 2816 __dev_set_rx_mode(dev);
4417da66
PM
2817 netif_tx_unlock_bh(dev);
2818 return err;
2819}
2820EXPORT_SYMBOL(dev_unicast_delete);
2821
2822/**
2823 * dev_unicast_add - add a secondary unicast address
2824 * @dev: device
0ed72ec4
RD
2825 * @addr: address to delete
2826 * @alen: length of @addr
4417da66
PM
2827 *
2828 * Add a secondary unicast address to the device or increase
2829 * the reference count if it already exists.
2830 *
2831 * The caller must hold the rtnl_mutex.
2832 */
2833int dev_unicast_add(struct net_device *dev, void *addr, int alen)
2834{
2835 int err;
2836
2837 ASSERT_RTNL();
2838
2839 netif_tx_lock_bh(dev);
61cbc2fc
PM
2840 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
2841 if (!err)
4417da66 2842 __dev_set_rx_mode(dev);
4417da66
PM
2843 netif_tx_unlock_bh(dev);
2844 return err;
2845}
2846EXPORT_SYMBOL(dev_unicast_add);
2847
12972621
DC
2848static void __dev_addr_discard(struct dev_addr_list **list)
2849{
2850 struct dev_addr_list *tmp;
2851
2852 while (*list != NULL) {
2853 tmp = *list;
2854 *list = tmp->next;
2855 if (tmp->da_users > tmp->da_gusers)
2856 printk("__dev_addr_discard: address leakage! "
2857 "da_users=%d\n", tmp->da_users);
2858 kfree(tmp);
2859 }
2860}
2861
26cc2522 2862static void dev_addr_discard(struct net_device *dev)
4417da66
PM
2863{
2864 netif_tx_lock_bh(dev);
26cc2522 2865
4417da66
PM
2866 __dev_addr_discard(&dev->uc_list);
2867 dev->uc_count = 0;
4417da66 2868
456ad75c
DC
2869 __dev_addr_discard(&dev->mc_list);
2870 dev->mc_count = 0;
26cc2522 2871
456ad75c
DC
2872 netif_tx_unlock_bh(dev);
2873}
2874
1da177e4
LT
2875unsigned dev_get_flags(const struct net_device *dev)
2876{
2877 unsigned flags;
2878
2879 flags = (dev->flags & ~(IFF_PROMISC |
2880 IFF_ALLMULTI |
b00055aa
SR
2881 IFF_RUNNING |
2882 IFF_LOWER_UP |
2883 IFF_DORMANT)) |
1da177e4
LT
2884 (dev->gflags & (IFF_PROMISC |
2885 IFF_ALLMULTI));
2886
b00055aa
SR
2887 if (netif_running(dev)) {
2888 if (netif_oper_up(dev))
2889 flags |= IFF_RUNNING;
2890 if (netif_carrier_ok(dev))
2891 flags |= IFF_LOWER_UP;
2892 if (netif_dormant(dev))
2893 flags |= IFF_DORMANT;
2894 }
1da177e4
LT
2895
2896 return flags;
2897}
2898
2899int dev_change_flags(struct net_device *dev, unsigned flags)
2900{
7c355f53 2901 int ret, changes;
1da177e4
LT
2902 int old_flags = dev->flags;
2903
24023451
PM
2904 ASSERT_RTNL();
2905
1da177e4
LT
2906 /*
2907 * Set the flags on our device.
2908 */
2909
2910 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
2911 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
2912 IFF_AUTOMEDIA)) |
2913 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
2914 IFF_ALLMULTI));
2915
2916 /*
2917 * Load in the correct multicast list now the flags have changed.
2918 */
2919
24023451
PM
2920 if (dev->change_rx_flags && (dev->flags ^ flags) & IFF_MULTICAST)
2921 dev->change_rx_flags(dev, IFF_MULTICAST);
2922
4417da66 2923 dev_set_rx_mode(dev);
1da177e4
LT
2924
2925 /*
2926 * Have we downed the interface. We handle IFF_UP ourselves
2927 * according to user attempts to set it, rather than blindly
2928 * setting it.
2929 */
2930
2931 ret = 0;
2932 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
2933 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
2934
2935 if (!ret)
4417da66 2936 dev_set_rx_mode(dev);
1da177e4
LT
2937 }
2938
2939 if (dev->flags & IFF_UP &&
2940 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
2941 IFF_VOLATILE)))
f07d5b94 2942 raw_notifier_call_chain(&netdev_chain,
e041c683 2943 NETDEV_CHANGE, dev);
1da177e4
LT
2944
2945 if ((flags ^ dev->gflags) & IFF_PROMISC) {
2946 int inc = (flags & IFF_PROMISC) ? +1 : -1;
2947 dev->gflags ^= IFF_PROMISC;
2948 dev_set_promiscuity(dev, inc);
2949 }
2950
2951 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
2952 is important. Some (broken) drivers set IFF_PROMISC, when
2953 IFF_ALLMULTI is requested not asking us and not reporting.
2954 */
2955 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
2956 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
2957 dev->gflags ^= IFF_ALLMULTI;
2958 dev_set_allmulti(dev, inc);
2959 }
2960
7c355f53
TG
2961 /* Exclude state transition flags, already notified */
2962 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
2963 if (changes)
2964 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
1da177e4
LT
2965
2966 return ret;
2967}
2968
2969int dev_set_mtu(struct net_device *dev, int new_mtu)
2970{
2971 int err;
2972
2973 if (new_mtu == dev->mtu)
2974 return 0;
2975
2976 /* MTU must be positive. */
2977 if (new_mtu < 0)
2978 return -EINVAL;
2979
2980 if (!netif_device_present(dev))
2981 return -ENODEV;
2982
2983 err = 0;
2984 if (dev->change_mtu)
2985 err = dev->change_mtu(dev, new_mtu);
2986 else
2987 dev->mtu = new_mtu;
2988 if (!err && dev->flags & IFF_UP)
f07d5b94 2989 raw_notifier_call_chain(&netdev_chain,
e041c683 2990 NETDEV_CHANGEMTU, dev);
1da177e4
LT
2991 return err;
2992}
2993
2994int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
2995{
2996 int err;
2997
2998 if (!dev->set_mac_address)
2999 return -EOPNOTSUPP;
3000 if (sa->sa_family != dev->type)
3001 return -EINVAL;
3002 if (!netif_device_present(dev))
3003 return -ENODEV;
3004 err = dev->set_mac_address(dev, sa);
3005 if (!err)
f07d5b94 3006 raw_notifier_call_chain(&netdev_chain,
e041c683 3007 NETDEV_CHANGEADDR, dev);
1da177e4
LT
3008 return err;
3009}
3010
3011/*
3012 * Perform the SIOCxIFxxx calls.
3013 */
3014static int dev_ifsioc(struct ifreq *ifr, unsigned int cmd)
3015{
3016 int err;
3017 struct net_device *dev = __dev_get_by_name(ifr->ifr_name);
3018
3019 if (!dev)
3020 return -ENODEV;
3021
3022 switch (cmd) {
3023 case SIOCGIFFLAGS: /* Get interface flags */
3024 ifr->ifr_flags = dev_get_flags(dev);
3025 return 0;
3026
3027 case SIOCSIFFLAGS: /* Set interface flags */
3028 return dev_change_flags(dev, ifr->ifr_flags);
3029
3030 case SIOCGIFMETRIC: /* Get the metric on the interface
3031 (currently unused) */
3032 ifr->ifr_metric = 0;
3033 return 0;
3034
3035 case SIOCSIFMETRIC: /* Set the metric on the interface
3036 (currently unused) */
3037 return -EOPNOTSUPP;
3038
3039 case SIOCGIFMTU: /* Get the MTU of a device */
3040 ifr->ifr_mtu = dev->mtu;
3041 return 0;
3042
3043 case SIOCSIFMTU: /* Set the MTU of a device */
3044 return dev_set_mtu(dev, ifr->ifr_mtu);
3045
3046 case SIOCGIFHWADDR:
3047 if (!dev->addr_len)
3048 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3049 else
3050 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3051 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3052 ifr->ifr_hwaddr.sa_family = dev->type;
3053 return 0;
3054
3055 case SIOCSIFHWADDR:
3056 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3057
3058 case SIOCSIFHWBROADCAST:
3059 if (ifr->ifr_hwaddr.sa_family != dev->type)
3060 return -EINVAL;
3061 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3062 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
f07d5b94 3063 raw_notifier_call_chain(&netdev_chain,
1da177e4
LT
3064 NETDEV_CHANGEADDR, dev);
3065 return 0;
3066
3067 case SIOCGIFMAP:
3068 ifr->ifr_map.mem_start = dev->mem_start;
3069 ifr->ifr_map.mem_end = dev->mem_end;
3070 ifr->ifr_map.base_addr = dev->base_addr;
3071 ifr->ifr_map.irq = dev->irq;
3072 ifr->ifr_map.dma = dev->dma;
3073 ifr->ifr_map.port = dev->if_port;
3074 return 0;
3075
3076 case SIOCSIFMAP:
3077 if (dev->set_config) {
3078 if (!netif_device_present(dev))
3079 return -ENODEV;
3080 return dev->set_config(dev, &ifr->ifr_map);
3081 }
3082 return -EOPNOTSUPP;
3083
3084 case SIOCADDMULTI:
3085 if (!dev->set_multicast_list ||
3086 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3087 return -EINVAL;
3088 if (!netif_device_present(dev))
3089 return -ENODEV;
3090 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3091 dev->addr_len, 1);
3092
3093 case SIOCDELMULTI:
3094 if (!dev->set_multicast_list ||
3095 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3096 return -EINVAL;
3097 if (!netif_device_present(dev))
3098 return -ENODEV;
3099 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3100 dev->addr_len, 1);
3101
3102 case SIOCGIFINDEX:
3103 ifr->ifr_ifindex = dev->ifindex;
3104 return 0;
3105
3106 case SIOCGIFTXQLEN:
3107 ifr->ifr_qlen = dev->tx_queue_len;
3108 return 0;
3109
3110 case SIOCSIFTXQLEN:
3111 if (ifr->ifr_qlen < 0)
3112 return -EINVAL;
3113 dev->tx_queue_len = ifr->ifr_qlen;
3114 return 0;
3115
3116 case SIOCSIFNAME:
3117 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3118 return dev_change_name(dev, ifr->ifr_newname);
3119
3120 /*
3121 * Unknown or private ioctl
3122 */
3123
3124 default:
3125 if ((cmd >= SIOCDEVPRIVATE &&
3126 cmd <= SIOCDEVPRIVATE + 15) ||
3127 cmd == SIOCBONDENSLAVE ||
3128 cmd == SIOCBONDRELEASE ||
3129 cmd == SIOCBONDSETHWADDR ||
3130 cmd == SIOCBONDSLAVEINFOQUERY ||
3131 cmd == SIOCBONDINFOQUERY ||
3132 cmd == SIOCBONDCHANGEACTIVE ||
3133 cmd == SIOCGMIIPHY ||
3134 cmd == SIOCGMIIREG ||
3135 cmd == SIOCSMIIREG ||
3136 cmd == SIOCBRADDIF ||
3137 cmd == SIOCBRDELIF ||
3138 cmd == SIOCWANDEV) {
3139 err = -EOPNOTSUPP;
3140 if (dev->do_ioctl) {
3141 if (netif_device_present(dev))
3142 err = dev->do_ioctl(dev, ifr,
3143 cmd);
3144 else
3145 err = -ENODEV;
3146 }
3147 } else
3148 err = -EINVAL;
3149
3150 }
3151 return err;
3152}
3153
3154/*
3155 * This function handles all "interface"-type I/O control requests. The actual
3156 * 'doing' part of this is dev_ifsioc above.
3157 */
3158
3159/**
3160 * dev_ioctl - network device ioctl
3161 * @cmd: command to issue
3162 * @arg: pointer to a struct ifreq in user space
3163 *
3164 * Issue ioctl functions to devices. This is normally called by the
3165 * user space syscall interfaces but can sometimes be useful for
3166 * other purposes. The return value is the return from the syscall if
3167 * positive or a negative errno code on error.
3168 */
3169
3170int dev_ioctl(unsigned int cmd, void __user *arg)
3171{
3172 struct ifreq ifr;
3173 int ret;
3174 char *colon;
3175
3176 /* One special case: SIOCGIFCONF takes ifconf argument
3177 and requires shared lock, because it sleeps writing
3178 to user space.
3179 */
3180
3181 if (cmd == SIOCGIFCONF) {
6756ae4b 3182 rtnl_lock();
1da177e4 3183 ret = dev_ifconf((char __user *) arg);
6756ae4b 3184 rtnl_unlock();
1da177e4
LT
3185 return ret;
3186 }
3187 if (cmd == SIOCGIFNAME)
3188 return dev_ifname((struct ifreq __user *)arg);
3189
3190 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3191 return -EFAULT;
3192
3193 ifr.ifr_name[IFNAMSIZ-1] = 0;
3194
3195 colon = strchr(ifr.ifr_name, ':');
3196 if (colon)
3197 *colon = 0;
3198
3199 /*
3200 * See which interface the caller is talking about.
3201 */
3202
3203 switch (cmd) {
3204 /*
3205 * These ioctl calls:
3206 * - can be done by all.
3207 * - atomic and do not require locking.
3208 * - return a value
3209 */
3210 case SIOCGIFFLAGS:
3211 case SIOCGIFMETRIC:
3212 case SIOCGIFMTU:
3213 case SIOCGIFHWADDR:
3214 case SIOCGIFSLAVE:
3215 case SIOCGIFMAP:
3216 case SIOCGIFINDEX:
3217 case SIOCGIFTXQLEN:
3218 dev_load(ifr.ifr_name);
3219 read_lock(&dev_base_lock);
3220 ret = dev_ifsioc(&ifr, cmd);
3221 read_unlock(&dev_base_lock);
3222 if (!ret) {
3223 if (colon)
3224 *colon = ':';
3225 if (copy_to_user(arg, &ifr,
3226 sizeof(struct ifreq)))
3227 ret = -EFAULT;
3228 }
3229 return ret;
3230
3231 case SIOCETHTOOL:
3232 dev_load(ifr.ifr_name);
3233 rtnl_lock();
3234 ret = dev_ethtool(&ifr);
3235 rtnl_unlock();
3236 if (!ret) {
3237 if (colon)
3238 *colon = ':';
3239 if (copy_to_user(arg, &ifr,
3240 sizeof(struct ifreq)))
3241 ret = -EFAULT;
3242 }
3243 return ret;
3244
3245 /*
3246 * These ioctl calls:
3247 * - require superuser power.
3248 * - require strict serialization.
3249 * - return a value
3250 */
3251 case SIOCGMIIPHY:
3252 case SIOCGMIIREG:
3253 case SIOCSIFNAME:
3254 if (!capable(CAP_NET_ADMIN))
3255 return -EPERM;
3256 dev_load(ifr.ifr_name);
3257 rtnl_lock();
3258 ret = dev_ifsioc(&ifr, cmd);
3259 rtnl_unlock();
3260 if (!ret) {
3261 if (colon)
3262 *colon = ':';
3263 if (copy_to_user(arg, &ifr,
3264 sizeof(struct ifreq)))
3265 ret = -EFAULT;
3266 }
3267 return ret;
3268
3269 /*
3270 * These ioctl calls:
3271 * - require superuser power.
3272 * - require strict serialization.
3273 * - do not return a value
3274 */
3275 case SIOCSIFFLAGS:
3276 case SIOCSIFMETRIC:
3277 case SIOCSIFMTU:
3278 case SIOCSIFMAP:
3279 case SIOCSIFHWADDR:
3280 case SIOCSIFSLAVE:
3281 case SIOCADDMULTI:
3282 case SIOCDELMULTI:
3283 case SIOCSIFHWBROADCAST:
3284 case SIOCSIFTXQLEN:
3285 case SIOCSMIIREG:
3286 case SIOCBONDENSLAVE:
3287 case SIOCBONDRELEASE:
3288 case SIOCBONDSETHWADDR:
1da177e4
LT
3289 case SIOCBONDCHANGEACTIVE:
3290 case SIOCBRADDIF:
3291 case SIOCBRDELIF:
3292 if (!capable(CAP_NET_ADMIN))
3293 return -EPERM;
cabcac0b
TG
3294 /* fall through */
3295 case SIOCBONDSLAVEINFOQUERY:
3296 case SIOCBONDINFOQUERY:
1da177e4
LT
3297 dev_load(ifr.ifr_name);
3298 rtnl_lock();
3299 ret = dev_ifsioc(&ifr, cmd);
3300 rtnl_unlock();
3301 return ret;
3302
3303 case SIOCGIFMEM:
3304 /* Get the per device memory space. We can add this but
3305 * currently do not support it */
3306 case SIOCSIFMEM:
3307 /* Set the per device memory buffer space.
3308 * Not applicable in our case */
3309 case SIOCSIFLINK:
3310 return -EINVAL;
3311
3312 /*
3313 * Unknown or private ioctl.
3314 */
3315 default:
3316 if (cmd == SIOCWANDEV ||
3317 (cmd >= SIOCDEVPRIVATE &&
3318 cmd <= SIOCDEVPRIVATE + 15)) {
3319 dev_load(ifr.ifr_name);
3320 rtnl_lock();
3321 ret = dev_ifsioc(&ifr, cmd);
3322 rtnl_unlock();
3323 if (!ret && copy_to_user(arg, &ifr,
3324 sizeof(struct ifreq)))
3325 ret = -EFAULT;
3326 return ret;
3327 }
1da177e4 3328 /* Take care of Wireless Extensions */
295f4a1f
JB
3329 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
3330 return wext_handle_ioctl(&ifr, cmd, arg);
1da177e4
LT
3331 return -EINVAL;
3332 }
3333}
3334
3335
3336/**
3337 * dev_new_index - allocate an ifindex
3338 *
3339 * Returns a suitable unique value for a new device interface
3340 * number. The caller must hold the rtnl semaphore or the
3341 * dev_base_lock to be sure it remains unique.
3342 */
3343static int dev_new_index(void)
3344{
3345 static int ifindex;
3346 for (;;) {
3347 if (++ifindex <= 0)
3348 ifindex = 1;
3349 if (!__dev_get_by_index(ifindex))
3350 return ifindex;
3351 }
3352}
3353
3354static int dev_boot_phase = 1;
3355
3356/* Delayed registration/unregisteration */
3357static DEFINE_SPINLOCK(net_todo_list_lock);
3358static struct list_head net_todo_list = LIST_HEAD_INIT(net_todo_list);
3359
6f05f629 3360static void net_set_todo(struct net_device *dev)
1da177e4
LT
3361{
3362 spin_lock(&net_todo_list_lock);
3363 list_add_tail(&dev->todo_list, &net_todo_list);
3364 spin_unlock(&net_todo_list_lock);
3365}
3366
3367/**
3368 * register_netdevice - register a network device
3369 * @dev: device to register
3370 *
3371 * Take a completed network device structure and add it to the kernel
3372 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3373 * chain. 0 is returned on success. A negative errno code is returned
3374 * on a failure to set up the device, or if the name is a duplicate.
3375 *
3376 * Callers must hold the rtnl semaphore. You may want
3377 * register_netdev() instead of this.
3378 *
3379 * BUGS:
3380 * The locking appears insufficient to guarantee two parallel registers
3381 * will not get the same name.
3382 */
3383
3384int register_netdevice(struct net_device *dev)
3385{
3386 struct hlist_head *head;
3387 struct hlist_node *p;
3388 int ret;
3389
3390 BUG_ON(dev_boot_phase);
3391 ASSERT_RTNL();
3392
b17a7c17
SH
3393 might_sleep();
3394
1da177e4
LT
3395 /* When net_device's are persistent, this will be fatal. */
3396 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
3397
3398 spin_lock_init(&dev->queue_lock);
932ff279 3399 spin_lock_init(&dev->_xmit_lock);
723e98b7 3400 netdev_set_lockdep_class(&dev->_xmit_lock, dev->type);
1da177e4 3401 dev->xmit_lock_owner = -1;
1da177e4 3402 spin_lock_init(&dev->ingress_lock);
1da177e4 3403
1da177e4
LT
3404 dev->iflink = -1;
3405
3406 /* Init, if this function is available */
3407 if (dev->init) {
3408 ret = dev->init(dev);
3409 if (ret) {
3410 if (ret > 0)
3411 ret = -EIO;
90833aa4 3412 goto out;
1da177e4
LT
3413 }
3414 }
4ec93edb 3415
1da177e4
LT
3416 if (!dev_valid_name(dev->name)) {
3417 ret = -EINVAL;
7ce1b0ed 3418 goto err_uninit;
1da177e4
LT
3419 }
3420
3421 dev->ifindex = dev_new_index();
3422 if (dev->iflink == -1)
3423 dev->iflink = dev->ifindex;
3424
3425 /* Check for existence of name */
3426 head = dev_name_hash(dev->name);
3427 hlist_for_each(p, head) {
3428 struct net_device *d
3429 = hlist_entry(p, struct net_device, name_hlist);
3430 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3431 ret = -EEXIST;
7ce1b0ed 3432 goto err_uninit;
1da177e4 3433 }
4ec93edb 3434 }
1da177e4 3435
d212f87b
SH
3436 /* Fix illegal checksum combinations */
3437 if ((dev->features & NETIF_F_HW_CSUM) &&
3438 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3439 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3440 dev->name);
3441 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3442 }
3443
3444 if ((dev->features & NETIF_F_NO_CSUM) &&
3445 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3446 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3447 dev->name);
3448 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3449 }
3450
3451
1da177e4
LT
3452 /* Fix illegal SG+CSUM combinations. */
3453 if ((dev->features & NETIF_F_SG) &&
8648b305 3454 !(dev->features & NETIF_F_ALL_CSUM)) {
5a8da02b 3455 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
1da177e4
LT
3456 dev->name);
3457 dev->features &= ~NETIF_F_SG;
3458 }
3459
3460 /* TSO requires that SG is present as well. */
3461 if ((dev->features & NETIF_F_TSO) &&
3462 !(dev->features & NETIF_F_SG)) {
5a8da02b 3463 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
1da177e4
LT
3464 dev->name);
3465 dev->features &= ~NETIF_F_TSO;
3466 }
e89e9cf5
AR
3467 if (dev->features & NETIF_F_UFO) {
3468 if (!(dev->features & NETIF_F_HW_CSUM)) {
3469 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3470 "NETIF_F_HW_CSUM feature.\n",
3471 dev->name);
3472 dev->features &= ~NETIF_F_UFO;
3473 }
3474 if (!(dev->features & NETIF_F_SG)) {
3475 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3476 "NETIF_F_SG feature.\n",
3477 dev->name);
3478 dev->features &= ~NETIF_F_UFO;
3479 }
3480 }
1da177e4
LT
3481
3482 /*
3483 * nil rebuild_header routine,
3484 * that should be never called and used as just bug trap.
3485 */
3486
3487 if (!dev->rebuild_header)
3488 dev->rebuild_header = default_rebuild_header;
3489
b17a7c17
SH
3490 ret = netdev_register_sysfs(dev);
3491 if (ret)
7ce1b0ed 3492 goto err_uninit;
b17a7c17
SH
3493 dev->reg_state = NETREG_REGISTERED;
3494
1da177e4
LT
3495 /*
3496 * Default initial state at registry is that the
3497 * device is present.
3498 */
3499
3500 set_bit(__LINK_STATE_PRESENT, &dev->state);
3501
1da177e4
LT
3502 dev_init_scheduler(dev);
3503 write_lock_bh(&dev_base_lock);
7562f876 3504 list_add_tail(&dev->dev_list, &dev_base_head);
1da177e4
LT
3505 hlist_add_head(&dev->name_hlist, head);
3506 hlist_add_head(&dev->index_hlist, dev_index_hash(dev->ifindex));
3507 dev_hold(dev);
1da177e4
LT
3508 write_unlock_bh(&dev_base_lock);
3509
3510 /* Notify protocols, that a new device appeared. */
fcc5a03a
HX
3511 ret = raw_notifier_call_chain(&netdev_chain, NETDEV_REGISTER, dev);
3512 ret = notifier_to_errno(ret);
3513 if (ret)
3514 unregister_netdevice(dev);
1da177e4
LT
3515
3516out:
3517 return ret;
7ce1b0ed
HX
3518
3519err_uninit:
3520 if (dev->uninit)
3521 dev->uninit(dev);
3522 goto out;
1da177e4
LT
3523}
3524
3525/**
3526 * register_netdev - register a network device
3527 * @dev: device to register
3528 *
3529 * Take a completed network device structure and add it to the kernel
3530 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3531 * chain. 0 is returned on success. A negative errno code is returned
3532 * on a failure to set up the device, or if the name is a duplicate.
3533 *
38b4da38 3534 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
3535 * and expands the device name if you passed a format string to
3536 * alloc_netdev.
3537 */
3538int register_netdev(struct net_device *dev)
3539{
3540 int err;
3541
3542 rtnl_lock();
3543
3544 /*
3545 * If the name is a format string the caller wants us to do a
3546 * name allocation.
3547 */
3548 if (strchr(dev->name, '%')) {
3549 err = dev_alloc_name(dev, dev->name);
3550 if (err < 0)
3551 goto out;
3552 }
4ec93edb 3553
1da177e4
LT
3554 err = register_netdevice(dev);
3555out:
3556 rtnl_unlock();
3557 return err;
3558}
3559EXPORT_SYMBOL(register_netdev);
3560
3561/*
3562 * netdev_wait_allrefs - wait until all references are gone.
3563 *
3564 * This is called when unregistering network devices.
3565 *
3566 * Any protocol or device that holds a reference should register
3567 * for netdevice notification, and cleanup and put back the
3568 * reference if they receive an UNREGISTER event.
3569 * We can get stuck here if buggy protocols don't correctly
4ec93edb 3570 * call dev_put.
1da177e4
LT
3571 */
3572static void netdev_wait_allrefs(struct net_device *dev)
3573{
3574 unsigned long rebroadcast_time, warning_time;
3575
3576 rebroadcast_time = warning_time = jiffies;
3577 while (atomic_read(&dev->refcnt) != 0) {
3578 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 3579 rtnl_lock();
1da177e4
LT
3580
3581 /* Rebroadcast unregister notification */
f07d5b94 3582 raw_notifier_call_chain(&netdev_chain,
1da177e4
LT
3583 NETDEV_UNREGISTER, dev);
3584
3585 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
3586 &dev->state)) {
3587 /* We must not have linkwatch events
3588 * pending on unregister. If this
3589 * happens, we simply run the queue
3590 * unscheduled, resulting in a noop
3591 * for this device.
3592 */
3593 linkwatch_run_queue();
3594 }
3595
6756ae4b 3596 __rtnl_unlock();
1da177e4
LT
3597
3598 rebroadcast_time = jiffies;
3599 }
3600
3601 msleep(250);
3602
3603 if (time_after(jiffies, warning_time + 10 * HZ)) {
3604 printk(KERN_EMERG "unregister_netdevice: "
3605 "waiting for %s to become free. Usage "
3606 "count = %d\n",
3607 dev->name, atomic_read(&dev->refcnt));
3608 warning_time = jiffies;
3609 }
3610 }
3611}
3612
3613/* The sequence is:
3614 *
3615 * rtnl_lock();
3616 * ...
3617 * register_netdevice(x1);
3618 * register_netdevice(x2);
3619 * ...
3620 * unregister_netdevice(y1);
3621 * unregister_netdevice(y2);
3622 * ...
3623 * rtnl_unlock();
3624 * free_netdev(y1);
3625 * free_netdev(y2);
3626 *
3627 * We are invoked by rtnl_unlock() after it drops the semaphore.
3628 * This allows us to deal with problems:
b17a7c17 3629 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
3630 * without deadlocking with linkwatch via keventd.
3631 * 2) Since we run with the RTNL semaphore not held, we can sleep
3632 * safely in order to wait for the netdev refcnt to drop to zero.
3633 */
4a3e2f71 3634static DEFINE_MUTEX(net_todo_run_mutex);
1da177e4
LT
3635void netdev_run_todo(void)
3636{
626ab0e6 3637 struct list_head list;
1da177e4
LT
3638
3639 /* Need to guard against multiple cpu's getting out of order. */
4a3e2f71 3640 mutex_lock(&net_todo_run_mutex);
1da177e4
LT
3641
3642 /* Not safe to do outside the semaphore. We must not return
3643 * until all unregister events invoked by the local processor
3644 * have been completed (either by this todo run, or one on
3645 * another cpu).
3646 */
3647 if (list_empty(&net_todo_list))
3648 goto out;
3649
3650 /* Snapshot list, allow later requests */
3651 spin_lock(&net_todo_list_lock);
626ab0e6 3652 list_replace_init(&net_todo_list, &list);
1da177e4 3653 spin_unlock(&net_todo_list_lock);
626ab0e6 3654
1da177e4
LT
3655 while (!list_empty(&list)) {
3656 struct net_device *dev
3657 = list_entry(list.next, struct net_device, todo_list);
3658 list_del(&dev->todo_list);
3659
b17a7c17
SH
3660 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
3661 printk(KERN_ERR "network todo '%s' but state %d\n",
3662 dev->name, dev->reg_state);
3663 dump_stack();
3664 continue;
3665 }
1da177e4 3666
b17a7c17 3667 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 3668
b17a7c17 3669 netdev_wait_allrefs(dev);
1da177e4 3670
b17a7c17
SH
3671 /* paranoia */
3672 BUG_ON(atomic_read(&dev->refcnt));
3673 BUG_TRAP(!dev->ip_ptr);
3674 BUG_TRAP(!dev->ip6_ptr);
3675 BUG_TRAP(!dev->dn_ptr);
1da177e4 3676
b17a7c17
SH
3677 if (dev->destructor)
3678 dev->destructor(dev);
9093bbb2
SH
3679
3680 /* Free network device */
3681 kobject_put(&dev->dev.kobj);
1da177e4
LT
3682 }
3683
3684out:
4a3e2f71 3685 mutex_unlock(&net_todo_run_mutex);
1da177e4
LT
3686}
3687
5a1b5898 3688static struct net_device_stats *internal_stats(struct net_device *dev)
c45d286e 3689{
5a1b5898 3690 return &dev->stats;
c45d286e
RR
3691}
3692
1da177e4 3693/**
f25f4e44 3694 * alloc_netdev_mq - allocate network device
1da177e4
LT
3695 * @sizeof_priv: size of private data to allocate space for
3696 * @name: device name format string
3697 * @setup: callback to initialize device
f25f4e44 3698 * @queue_count: the number of subqueues to allocate
1da177e4
LT
3699 *
3700 * Allocates a struct net_device with private data area for driver use
f25f4e44
PWJ
3701 * and performs basic initialization. Also allocates subquue structs
3702 * for each queue on the device at the end of the netdevice.
1da177e4 3703 */
f25f4e44
PWJ
3704struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
3705 void (*setup)(struct net_device *), unsigned int queue_count)
1da177e4
LT
3706{
3707 void *p;
3708 struct net_device *dev;
3709 int alloc_size;
3710
b6fe17d6
SH
3711 BUG_ON(strlen(name) >= sizeof(dev->name));
3712
1da177e4 3713 /* ensure 32-byte alignment of both the device and private area */
f25f4e44 3714 alloc_size = (sizeof(*dev) + NETDEV_ALIGN_CONST +
31ce72a6 3715 (sizeof(struct net_device_subqueue) * (queue_count - 1))) &
f25f4e44 3716 ~NETDEV_ALIGN_CONST;
1da177e4
LT
3717 alloc_size += sizeof_priv + NETDEV_ALIGN_CONST;
3718
31380de9 3719 p = kzalloc(alloc_size, GFP_KERNEL);
1da177e4 3720 if (!p) {
b6fe17d6 3721 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
1da177e4
LT
3722 return NULL;
3723 }
1da177e4
LT
3724
3725 dev = (struct net_device *)
3726 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
3727 dev->padded = (char *)dev - (char *)p;
6d34b1c2 3728 dev->nd_net = &init_net;
1da177e4 3729
f25f4e44
PWJ
3730 if (sizeof_priv) {
3731 dev->priv = ((char *)dev +
3732 ((sizeof(struct net_device) +
3733 (sizeof(struct net_device_subqueue) *
31ce72a6 3734 (queue_count - 1)) + NETDEV_ALIGN_CONST)
f25f4e44
PWJ
3735 & ~NETDEV_ALIGN_CONST));
3736 }
3737
3738 dev->egress_subqueue_count = queue_count;
1da177e4 3739
5a1b5898 3740 dev->get_stats = internal_stats;
bea3348e 3741 netpoll_netdev_init(dev);
1da177e4
LT
3742 setup(dev);
3743 strcpy(dev->name, name);
3744 return dev;
3745}
f25f4e44 3746EXPORT_SYMBOL(alloc_netdev_mq);
1da177e4
LT
3747
3748/**
3749 * free_netdev - free network device
3750 * @dev: device
3751 *
4ec93edb
YH
3752 * This function does the last stage of destroying an allocated device
3753 * interface. The reference to the device object is released.
1da177e4
LT
3754 * If this is the last reference then it will be freed.
3755 */
3756void free_netdev(struct net_device *dev)
3757{
3758#ifdef CONFIG_SYSFS
3041a069 3759 /* Compatibility with error handling in drivers */
1da177e4
LT
3760 if (dev->reg_state == NETREG_UNINITIALIZED) {
3761 kfree((char *)dev - dev->padded);
3762 return;
3763 }
3764
3765 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
3766 dev->reg_state = NETREG_RELEASED;
3767
43cb76d9
GKH
3768 /* will free via device release */
3769 put_device(&dev->dev);
1da177e4
LT
3770#else
3771 kfree((char *)dev - dev->padded);
3772#endif
3773}
4ec93edb 3774
1da177e4 3775/* Synchronize with packet receive processing. */
4ec93edb 3776void synchronize_net(void)
1da177e4
LT
3777{
3778 might_sleep();
fbd568a3 3779 synchronize_rcu();
1da177e4
LT
3780}
3781
3782/**
3783 * unregister_netdevice - remove device from the kernel
3784 * @dev: device
3785 *
3786 * This function shuts down a device interface and removes it
3787 * from the kernel tables. On success 0 is returned, on a failure
3788 * a negative errno code is returned.
3789 *
3790 * Callers must hold the rtnl semaphore. You may want
3791 * unregister_netdev() instead of this.
3792 */
3793
22f8cde5 3794void unregister_netdevice(struct net_device *dev)
1da177e4 3795{
1da177e4
LT
3796 BUG_ON(dev_boot_phase);
3797 ASSERT_RTNL();
3798
3799 /* Some devices call without registering for initialization unwind. */
3800 if (dev->reg_state == NETREG_UNINITIALIZED) {
3801 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3802 "was registered\n", dev->name, dev);
22f8cde5
SH
3803
3804 WARN_ON(1);
3805 return;
1da177e4
LT
3806 }
3807
3808 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3809
3810 /* If device is running, close it first. */
3811 if (dev->flags & IFF_UP)
3812 dev_close(dev);
3813
3814 /* And unlink it from device chain. */
7562f876
PE
3815 write_lock_bh(&dev_base_lock);
3816 list_del(&dev->dev_list);
3817 hlist_del(&dev->name_hlist);
3818 hlist_del(&dev->index_hlist);
3819 write_unlock_bh(&dev_base_lock);
1da177e4
LT
3820
3821 dev->reg_state = NETREG_UNREGISTERING;
3822
3823 synchronize_net();
3824
3825 /* Shutdown queueing discipline. */
3826 dev_shutdown(dev);
3827
4ec93edb 3828
1da177e4
LT
3829 /* Notify protocols, that we are about to destroy
3830 this device. They should clean all the things.
3831 */
f07d5b94 3832 raw_notifier_call_chain(&netdev_chain, NETDEV_UNREGISTER, dev);
4ec93edb 3833
1da177e4 3834 /*
4417da66 3835 * Flush the unicast and multicast chains
1da177e4 3836 */
26cc2522 3837 dev_addr_discard(dev);
1da177e4
LT
3838
3839 if (dev->uninit)
3840 dev->uninit(dev);
3841
3842 /* Notifier chain MUST detach us from master device. */
3843 BUG_TRAP(!dev->master);
3844
9093bbb2
SH
3845 /* Remove entries from sysfs */
3846 netdev_unregister_sysfs(dev);
3847
1da177e4
LT
3848 /* Finish processing unregister after unlock */
3849 net_set_todo(dev);
3850
3851 synchronize_net();
3852
3853 dev_put(dev);
1da177e4
LT
3854}
3855
3856/**
3857 * unregister_netdev - remove device from the kernel
3858 * @dev: device
3859 *
3860 * This function shuts down a device interface and removes it
3861 * from the kernel tables. On success 0 is returned, on a failure
3862 * a negative errno code is returned.
3863 *
3864 * This is just a wrapper for unregister_netdevice that takes
3865 * the rtnl semaphore. In general you want to use this and not
3866 * unregister_netdevice.
3867 */
3868void unregister_netdev(struct net_device *dev)
3869{
3870 rtnl_lock();
3871 unregister_netdevice(dev);
3872 rtnl_unlock();
3873}
3874
3875EXPORT_SYMBOL(unregister_netdev);
3876
1da177e4
LT
3877static int dev_cpu_callback(struct notifier_block *nfb,
3878 unsigned long action,
3879 void *ocpu)
3880{
3881 struct sk_buff **list_skb;
3882 struct net_device **list_net;
3883 struct sk_buff *skb;
3884 unsigned int cpu, oldcpu = (unsigned long)ocpu;
3885 struct softnet_data *sd, *oldsd;
3886
8bb78442 3887 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
3888 return NOTIFY_OK;
3889
3890 local_irq_disable();
3891 cpu = smp_processor_id();
3892 sd = &per_cpu(softnet_data, cpu);
3893 oldsd = &per_cpu(softnet_data, oldcpu);
3894
3895 /* Find end of our completion_queue. */
3896 list_skb = &sd->completion_queue;
3897 while (*list_skb)
3898 list_skb = &(*list_skb)->next;
3899 /* Append completion queue from offline CPU. */
3900 *list_skb = oldsd->completion_queue;
3901 oldsd->completion_queue = NULL;
3902
3903 /* Find end of our output_queue. */
3904 list_net = &sd->output_queue;
3905 while (*list_net)
3906 list_net = &(*list_net)->next_sched;
3907 /* Append output queue from offline CPU. */
3908 *list_net = oldsd->output_queue;
3909 oldsd->output_queue = NULL;
3910
3911 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3912 local_irq_enable();
3913
3914 /* Process offline CPU's input_pkt_queue */
3915 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
3916 netif_rx(skb);
3917
3918 return NOTIFY_OK;
3919}
1da177e4 3920
db217334
CL
3921#ifdef CONFIG_NET_DMA
3922/**
0ed72ec4
RD
3923 * net_dma_rebalance - try to maintain one DMA channel per CPU
3924 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
3925 *
3926 * This is called when the number of channels allocated to the net_dma client
3927 * changes. The net_dma client tries to have one DMA channel per CPU.
db217334 3928 */
d379b01e
DW
3929
3930static void net_dma_rebalance(struct net_dma *net_dma)
db217334 3931{
d379b01e 3932 unsigned int cpu, i, n, chan_idx;
db217334
CL
3933 struct dma_chan *chan;
3934
d379b01e 3935 if (cpus_empty(net_dma->channel_mask)) {
db217334 3936 for_each_online_cpu(cpu)
29bbd72d 3937 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
db217334
CL
3938 return;
3939 }
3940
3941 i = 0;
3942 cpu = first_cpu(cpu_online_map);
3943
d379b01e
DW
3944 for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
3945 chan = net_dma->channels[chan_idx];
3946
3947 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
3948 + (i < (num_online_cpus() %
3949 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
db217334
CL
3950
3951 while(n) {
29bbd72d 3952 per_cpu(softnet_data, cpu).net_dma = chan;
db217334
CL
3953 cpu = next_cpu(cpu, cpu_online_map);
3954 n--;
3955 }
3956 i++;
3957 }
db217334
CL
3958}
3959
3960/**
3961 * netdev_dma_event - event callback for the net_dma_client
3962 * @client: should always be net_dma_client
f4b8ea78 3963 * @chan: DMA channel for the event
0ed72ec4 3964 * @state: DMA state to be handled
db217334 3965 */
d379b01e
DW
3966static enum dma_state_client
3967netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
3968 enum dma_state state)
3969{
3970 int i, found = 0, pos = -1;
3971 struct net_dma *net_dma =
3972 container_of(client, struct net_dma, client);
3973 enum dma_state_client ack = DMA_DUP; /* default: take no action */
3974
3975 spin_lock(&net_dma->lock);
3976 switch (state) {
3977 case DMA_RESOURCE_AVAILABLE:
3978 for (i = 0; i < NR_CPUS; i++)
3979 if (net_dma->channels[i] == chan) {
3980 found = 1;
3981 break;
3982 } else if (net_dma->channels[i] == NULL && pos < 0)
3983 pos = i;
3984
3985 if (!found && pos >= 0) {
3986 ack = DMA_ACK;
3987 net_dma->channels[pos] = chan;
3988 cpu_set(pos, net_dma->channel_mask);
3989 net_dma_rebalance(net_dma);
3990 }
db217334
CL
3991 break;
3992 case DMA_RESOURCE_REMOVED:
d379b01e
DW
3993 for (i = 0; i < NR_CPUS; i++)
3994 if (net_dma->channels[i] == chan) {
3995 found = 1;
3996 pos = i;
3997 break;
3998 }
3999
4000 if (found) {
4001 ack = DMA_ACK;
4002 cpu_clear(pos, net_dma->channel_mask);
4003 net_dma->channels[i] = NULL;
4004 net_dma_rebalance(net_dma);
4005 }
db217334
CL
4006 break;
4007 default:
4008 break;
4009 }
d379b01e
DW
4010 spin_unlock(&net_dma->lock);
4011
4012 return ack;
db217334
CL
4013}
4014
4015/**
4016 * netdev_dma_regiser - register the networking subsystem as a DMA client
4017 */
4018static int __init netdev_dma_register(void)
4019{
d379b01e
DW
4020 spin_lock_init(&net_dma.lock);
4021 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4022 dma_async_client_register(&net_dma.client);
4023 dma_async_client_chan_request(&net_dma.client);
db217334
CL
4024 return 0;
4025}
4026
4027#else
4028static int __init netdev_dma_register(void) { return -ENODEV; }
4029#endif /* CONFIG_NET_DMA */
1da177e4 4030
7f353bf2
HX
4031/**
4032 * netdev_compute_feature - compute conjunction of two feature sets
4033 * @all: first feature set
4034 * @one: second feature set
4035 *
4036 * Computes a new feature set after adding a device with feature set
4037 * @one to the master device with current feature set @all. Returns
4038 * the new feature set.
4039 */
4040int netdev_compute_features(unsigned long all, unsigned long one)
4041{
4042 /* if device needs checksumming, downgrade to hw checksumming */
4043 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4044 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4045
4046 /* if device can't do all checksum, downgrade to ipv4/ipv6 */
4047 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4048 all ^= NETIF_F_HW_CSUM
4049 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4050
4051 if (one & NETIF_F_GSO)
4052 one |= NETIF_F_GSO_SOFTWARE;
4053 one |= NETIF_F_GSO;
4054
4055 /* If even one device supports robust GSO, enable it for all. */
4056 if (one & NETIF_F_GSO_ROBUST)
4057 all |= NETIF_F_GSO_ROBUST;
4058
4059 all &= one | NETIF_F_LLTX;
4060
4061 if (!(all & NETIF_F_ALL_CSUM))
4062 all &= ~NETIF_F_SG;
4063 if (!(all & NETIF_F_SG))
4064 all &= ~NETIF_F_GSO_MASK;
4065
4066 return all;
4067}
4068EXPORT_SYMBOL(netdev_compute_features);
4069
1da177e4
LT
4070/*
4071 * Initialize the DEV module. At boot time this walks the device list and
4072 * unhooks any devices that fail to initialise (normally hardware not
4073 * present) and leaves us with a valid list of present and active devices.
4074 *
4075 */
4076
4077/*
4078 * This is called single threaded during boot, so no need
4079 * to take the rtnl semaphore.
4080 */
4081static int __init net_dev_init(void)
4082{
4083 int i, rc = -ENOMEM;
4084
4085 BUG_ON(!dev_boot_phase);
4086
1da177e4
LT
4087 if (dev_proc_init())
4088 goto out;
4089
4090 if (netdev_sysfs_init())
4091 goto out;
4092
4093 INIT_LIST_HEAD(&ptype_all);
4ec93edb 4094 for (i = 0; i < 16; i++)
1da177e4
LT
4095 INIT_LIST_HEAD(&ptype_base[i]);
4096
4097 for (i = 0; i < ARRAY_SIZE(dev_name_head); i++)
4098 INIT_HLIST_HEAD(&dev_name_head[i]);
4099
4100 for (i = 0; i < ARRAY_SIZE(dev_index_head); i++)
4101 INIT_HLIST_HEAD(&dev_index_head[i]);
4102
4103 /*
4104 * Initialise the packet receive queues.
4105 */
4106
6f912042 4107 for_each_possible_cpu(i) {
1da177e4
LT
4108 struct softnet_data *queue;
4109
4110 queue = &per_cpu(softnet_data, i);
4111 skb_queue_head_init(&queue->input_pkt_queue);
1da177e4
LT
4112 queue->completion_queue = NULL;
4113 INIT_LIST_HEAD(&queue->poll_list);
bea3348e
SH
4114
4115 queue->backlog.poll = process_backlog;
4116 queue->backlog.weight = weight_p;
1da177e4
LT
4117 }
4118
db217334
CL
4119 netdev_dma_register();
4120
1da177e4
LT
4121 dev_boot_phase = 0;
4122
4123 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
4124 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
4125
4126 hotcpu_notifier(dev_cpu_callback, 0);
4127 dst_init();
4128 dev_mcast_init();
4129 rc = 0;
4130out:
4131 return rc;
4132}
4133
4134subsys_initcall(net_dev_init);
4135
4136EXPORT_SYMBOL(__dev_get_by_index);
4137EXPORT_SYMBOL(__dev_get_by_name);
4138EXPORT_SYMBOL(__dev_remove_pack);
c2373ee9 4139EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
4140EXPORT_SYMBOL(dev_add_pack);
4141EXPORT_SYMBOL(dev_alloc_name);
4142EXPORT_SYMBOL(dev_close);
4143EXPORT_SYMBOL(dev_get_by_flags);
4144EXPORT_SYMBOL(dev_get_by_index);
4145EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
4146EXPORT_SYMBOL(dev_open);
4147EXPORT_SYMBOL(dev_queue_xmit);
4148EXPORT_SYMBOL(dev_remove_pack);
4149EXPORT_SYMBOL(dev_set_allmulti);
4150EXPORT_SYMBOL(dev_set_promiscuity);
4151EXPORT_SYMBOL(dev_change_flags);
4152EXPORT_SYMBOL(dev_set_mtu);
4153EXPORT_SYMBOL(dev_set_mac_address);
4154EXPORT_SYMBOL(free_netdev);
4155EXPORT_SYMBOL(netdev_boot_setup_check);
4156EXPORT_SYMBOL(netdev_set_master);
4157EXPORT_SYMBOL(netdev_state_change);
4158EXPORT_SYMBOL(netif_receive_skb);
4159EXPORT_SYMBOL(netif_rx);
4160EXPORT_SYMBOL(register_gifconf);
4161EXPORT_SYMBOL(register_netdevice);
4162EXPORT_SYMBOL(register_netdevice_notifier);
4163EXPORT_SYMBOL(skb_checksum_help);
4164EXPORT_SYMBOL(synchronize_net);
4165EXPORT_SYMBOL(unregister_netdevice);
4166EXPORT_SYMBOL(unregister_netdevice_notifier);
4167EXPORT_SYMBOL(net_enable_timestamp);
4168EXPORT_SYMBOL(net_disable_timestamp);
4169EXPORT_SYMBOL(dev_get_flags);
4170
4171#if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4172EXPORT_SYMBOL(br_handle_frame_hook);
4173EXPORT_SYMBOL(br_fdb_get_hook);
4174EXPORT_SYMBOL(br_fdb_put_hook);
4175#endif
4176
4177#ifdef CONFIG_KMOD
4178EXPORT_SYMBOL(dev_load);
4179#endif
4180
4181EXPORT_PER_CPU_SYMBOL(softnet_data);