]> bbs.cooldavid.org Git - net-next-2.6.git/blame - net/core/dev.c
pkt_sched: Kill qdisc_lock_tree and qdisc_unlock_tree.
[net-next-2.6.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <asm/system.h>
77#include <linux/bitops.h>
4fc268d2 78#include <linux/capability.h>
1da177e4
LT
79#include <linux/cpu.h>
80#include <linux/types.h>
81#include <linux/kernel.h>
82#include <linux/sched.h>
4a3e2f71 83#include <linux/mutex.h>
1da177e4
LT
84#include <linux/string.h>
85#include <linux/mm.h>
86#include <linux/socket.h>
87#include <linux/sockios.h>
88#include <linux/errno.h>
89#include <linux/interrupt.h>
90#include <linux/if_ether.h>
91#include <linux/netdevice.h>
92#include <linux/etherdevice.h>
0187bdfb 93#include <linux/ethtool.h>
1da177e4
LT
94#include <linux/notifier.h>
95#include <linux/skbuff.h>
457c4cbc 96#include <net/net_namespace.h>
1da177e4
LT
97#include <net/sock.h>
98#include <linux/rtnetlink.h>
99#include <linux/proc_fs.h>
100#include <linux/seq_file.h>
101#include <linux/stat.h>
102#include <linux/if_bridge.h>
b863ceb7 103#include <linux/if_macvlan.h>
1da177e4
LT
104#include <net/dst.h>
105#include <net/pkt_sched.h>
106#include <net/checksum.h>
107#include <linux/highmem.h>
108#include <linux/init.h>
109#include <linux/kmod.h>
110#include <linux/module.h>
111#include <linux/kallsyms.h>
112#include <linux/netpoll.h>
113#include <linux/rcupdate.h>
114#include <linux/delay.h>
295f4a1f 115#include <net/wext.h>
1da177e4 116#include <net/iw_handler.h>
1da177e4 117#include <asm/current.h>
5bdb9886 118#include <linux/audit.h>
db217334 119#include <linux/dmaengine.h>
f6a78bfc 120#include <linux/err.h>
c7fa9d18 121#include <linux/ctype.h>
723e98b7 122#include <linux/if_arp.h>
6de329e2 123#include <linux/if_vlan.h>
8f0f2223
DM
124#include <linux/ip.h>
125#include <linux/ipv6.h>
126#include <linux/in.h>
1da177e4 127
342709ef
PE
128#include "net-sysfs.h"
129
1da177e4
LT
130/*
131 * The list of packet types we will receive (as opposed to discard)
132 * and the routines to invoke.
133 *
134 * Why 16. Because with 16 the only overlap we get on a hash of the
135 * low nibble of the protocol value is RARP/SNAP/X.25.
136 *
137 * NOTE: That is no longer true with the addition of VLAN tags. Not
138 * sure which should go first, but I bet it won't make much
139 * difference if we are running VLANs. The good news is that
140 * this protocol won't be in the list unless compiled in, so
3041a069 141 * the average user (w/out VLANs) will not be adversely affected.
1da177e4
LT
142 * --BLG
143 *
144 * 0800 IP
145 * 8100 802.1Q VLAN
146 * 0001 802.3
147 * 0002 AX.25
148 * 0004 802.2
149 * 8035 RARP
150 * 0005 SNAP
151 * 0805 X.25
152 * 0806 ARP
153 * 8137 IPX
154 * 0009 Localtalk
155 * 86DD IPv6
156 */
157
82d8a867
PE
158#define PTYPE_HASH_SIZE (16)
159#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
160
1da177e4 161static DEFINE_SPINLOCK(ptype_lock);
82d8a867 162static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
6b2bedc3 163static struct list_head ptype_all __read_mostly; /* Taps */
1da177e4 164
db217334 165#ifdef CONFIG_NET_DMA
d379b01e
DW
166struct net_dma {
167 struct dma_client client;
168 spinlock_t lock;
169 cpumask_t channel_mask;
0c0b0aca 170 struct dma_chan **channels;
d379b01e
DW
171};
172
173static enum dma_state_client
174netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
175 enum dma_state state);
176
177static struct net_dma net_dma = {
178 .client = {
179 .event_callback = netdev_dma_event,
180 },
181};
db217334
CL
182#endif
183
1da177e4 184/*
7562f876 185 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
186 * semaphore.
187 *
188 * Pure readers hold dev_base_lock for reading.
189 *
190 * Writers must hold the rtnl semaphore while they loop through the
7562f876 191 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
192 * actual updates. This allows pure readers to access the list even
193 * while a writer is preparing to update it.
194 *
195 * To put it another way, dev_base_lock is held for writing only to
196 * protect against pure readers; the rtnl semaphore provides the
197 * protection against other writers.
198 *
199 * See, for example usages, register_netdevice() and
200 * unregister_netdevice(), which must be called with the rtnl
201 * semaphore held.
202 */
1da177e4
LT
203DEFINE_RWLOCK(dev_base_lock);
204
1da177e4
LT
205EXPORT_SYMBOL(dev_base_lock);
206
207#define NETDEV_HASHBITS 8
881d966b 208#define NETDEV_HASHENTRIES (1 << NETDEV_HASHBITS)
1da177e4 209
881d966b 210static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4
LT
211{
212 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
881d966b 213 return &net->dev_name_head[hash & ((1 << NETDEV_HASHBITS) - 1)];
1da177e4
LT
214}
215
881d966b 216static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 217{
881d966b 218 return &net->dev_index_head[ifindex & ((1 << NETDEV_HASHBITS) - 1)];
1da177e4
LT
219}
220
ce286d32
EB
221/* Device list insertion */
222static int list_netdevice(struct net_device *dev)
223{
c346dca1 224 struct net *net = dev_net(dev);
ce286d32
EB
225
226 ASSERT_RTNL();
227
228 write_lock_bh(&dev_base_lock);
229 list_add_tail(&dev->dev_list, &net->dev_base_head);
230 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
231 hlist_add_head(&dev->index_hlist, dev_index_hash(net, dev->ifindex));
232 write_unlock_bh(&dev_base_lock);
233 return 0;
234}
235
236/* Device list removal */
237static void unlist_netdevice(struct net_device *dev)
238{
239 ASSERT_RTNL();
240
241 /* Unlink dev from the device chain */
242 write_lock_bh(&dev_base_lock);
243 list_del(&dev->dev_list);
244 hlist_del(&dev->name_hlist);
245 hlist_del(&dev->index_hlist);
246 write_unlock_bh(&dev_base_lock);
247}
248
1da177e4
LT
249/*
250 * Our notifier list
251 */
252
f07d5b94 253static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
254
255/*
256 * Device drivers call our routines to queue packets here. We empty the
257 * queue in the local softnet handler.
258 */
bea3348e
SH
259
260DEFINE_PER_CPU(struct softnet_data, softnet_data);
1da177e4 261
723e98b7
JP
262#ifdef CONFIG_DEBUG_LOCK_ALLOC
263/*
c773e847 264 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
265 * according to dev->type
266 */
267static const unsigned short netdev_lock_type[] =
268 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
269 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
270 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
271 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
272 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
273 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
274 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
275 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
276 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
277 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
278 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
279 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
280 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
281 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_VOID,
282 ARPHRD_NONE};
283
284static const char *netdev_lock_name[] =
285 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
286 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
287 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
288 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
289 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
290 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
291 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
292 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
293 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
294 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
295 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
296 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
297 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
298 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_VOID",
299 "_xmit_NONE"};
300
301static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
302
303static inline unsigned short netdev_lock_pos(unsigned short dev_type)
304{
305 int i;
306
307 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
308 if (netdev_lock_type[i] == dev_type)
309 return i;
310 /* the last key is used by default */
311 return ARRAY_SIZE(netdev_lock_type) - 1;
312}
313
314static inline void netdev_set_lockdep_class(spinlock_t *lock,
315 unsigned short dev_type)
316{
317 int i;
318
319 i = netdev_lock_pos(dev_type);
320 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
321 netdev_lock_name[i]);
322}
323#else
324static inline void netdev_set_lockdep_class(spinlock_t *lock,
325 unsigned short dev_type)
326{
327}
328#endif
1da177e4
LT
329
330/*******************************************************************************
331
332 Protocol management and registration routines
333
334*******************************************************************************/
335
1da177e4
LT
336/*
337 * Add a protocol ID to the list. Now that the input handler is
338 * smarter we can dispense with all the messy stuff that used to be
339 * here.
340 *
341 * BEWARE!!! Protocol handlers, mangling input packets,
342 * MUST BE last in hash buckets and checking protocol handlers
343 * MUST start from promiscuous ptype_all chain in net_bh.
344 * It is true now, do not change it.
345 * Explanation follows: if protocol handler, mangling packet, will
346 * be the first on list, it is not able to sense, that packet
347 * is cloned and should be copied-on-write, so that it will
348 * change it and subsequent readers will get broken packet.
349 * --ANK (980803)
350 */
351
352/**
353 * dev_add_pack - add packet handler
354 * @pt: packet type declaration
355 *
356 * Add a protocol handler to the networking stack. The passed &packet_type
357 * is linked into kernel lists and may not be freed until it has been
358 * removed from the kernel lists.
359 *
4ec93edb 360 * This call does not sleep therefore it can not
1da177e4
LT
361 * guarantee all CPU's that are in middle of receiving packets
362 * will see the new packet type (until the next received packet).
363 */
364
365void dev_add_pack(struct packet_type *pt)
366{
367 int hash;
368
369 spin_lock_bh(&ptype_lock);
9be9a6b9 370 if (pt->type == htons(ETH_P_ALL))
1da177e4 371 list_add_rcu(&pt->list, &ptype_all);
9be9a6b9 372 else {
82d8a867 373 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
1da177e4
LT
374 list_add_rcu(&pt->list, &ptype_base[hash]);
375 }
376 spin_unlock_bh(&ptype_lock);
377}
378
1da177e4
LT
379/**
380 * __dev_remove_pack - remove packet handler
381 * @pt: packet type declaration
382 *
383 * Remove a protocol handler that was previously added to the kernel
384 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
385 * from the kernel lists and can be freed or reused once this function
4ec93edb 386 * returns.
1da177e4
LT
387 *
388 * The packet type might still be in use by receivers
389 * and must not be freed until after all the CPU's have gone
390 * through a quiescent state.
391 */
392void __dev_remove_pack(struct packet_type *pt)
393{
394 struct list_head *head;
395 struct packet_type *pt1;
396
397 spin_lock_bh(&ptype_lock);
398
9be9a6b9 399 if (pt->type == htons(ETH_P_ALL))
1da177e4 400 head = &ptype_all;
9be9a6b9 401 else
82d8a867 402 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
1da177e4
LT
403
404 list_for_each_entry(pt1, head, list) {
405 if (pt == pt1) {
406 list_del_rcu(&pt->list);
407 goto out;
408 }
409 }
410
411 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
412out:
413 spin_unlock_bh(&ptype_lock);
414}
415/**
416 * dev_remove_pack - remove packet handler
417 * @pt: packet type declaration
418 *
419 * Remove a protocol handler that was previously added to the kernel
420 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
421 * from the kernel lists and can be freed or reused once this function
422 * returns.
423 *
424 * This call sleeps to guarantee that no CPU is looking at the packet
425 * type after return.
426 */
427void dev_remove_pack(struct packet_type *pt)
428{
429 __dev_remove_pack(pt);
4ec93edb 430
1da177e4
LT
431 synchronize_net();
432}
433
434/******************************************************************************
435
436 Device Boot-time Settings Routines
437
438*******************************************************************************/
439
440/* Boot time configuration table */
441static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
442
443/**
444 * netdev_boot_setup_add - add new setup entry
445 * @name: name of the device
446 * @map: configured settings for the device
447 *
448 * Adds new setup entry to the dev_boot_setup list. The function
449 * returns 0 on error and 1 on success. This is a generic routine to
450 * all netdevices.
451 */
452static int netdev_boot_setup_add(char *name, struct ifmap *map)
453{
454 struct netdev_boot_setup *s;
455 int i;
456
457 s = dev_boot_setup;
458 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
459 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
460 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 461 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
462 memcpy(&s[i].map, map, sizeof(s[i].map));
463 break;
464 }
465 }
466
467 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
468}
469
470/**
471 * netdev_boot_setup_check - check boot time settings
472 * @dev: the netdevice
473 *
474 * Check boot time settings for the device.
475 * The found settings are set for the device to be used
476 * later in the device probing.
477 * Returns 0 if no settings found, 1 if they are.
478 */
479int netdev_boot_setup_check(struct net_device *dev)
480{
481 struct netdev_boot_setup *s = dev_boot_setup;
482 int i;
483
484 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
485 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 486 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
487 dev->irq = s[i].map.irq;
488 dev->base_addr = s[i].map.base_addr;
489 dev->mem_start = s[i].map.mem_start;
490 dev->mem_end = s[i].map.mem_end;
491 return 1;
492 }
493 }
494 return 0;
495}
496
497
498/**
499 * netdev_boot_base - get address from boot time settings
500 * @prefix: prefix for network device
501 * @unit: id for network device
502 *
503 * Check boot time settings for the base address of device.
504 * The found settings are set for the device to be used
505 * later in the device probing.
506 * Returns 0 if no settings found.
507 */
508unsigned long netdev_boot_base(const char *prefix, int unit)
509{
510 const struct netdev_boot_setup *s = dev_boot_setup;
511 char name[IFNAMSIZ];
512 int i;
513
514 sprintf(name, "%s%d", prefix, unit);
515
516 /*
517 * If device already registered then return base of 1
518 * to indicate not to probe for this interface
519 */
881d966b 520 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
521 return 1;
522
523 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
524 if (!strcmp(name, s[i].name))
525 return s[i].map.base_addr;
526 return 0;
527}
528
529/*
530 * Saves at boot time configured settings for any netdevice.
531 */
532int __init netdev_boot_setup(char *str)
533{
534 int ints[5];
535 struct ifmap map;
536
537 str = get_options(str, ARRAY_SIZE(ints), ints);
538 if (!str || !*str)
539 return 0;
540
541 /* Save settings */
542 memset(&map, 0, sizeof(map));
543 if (ints[0] > 0)
544 map.irq = ints[1];
545 if (ints[0] > 1)
546 map.base_addr = ints[2];
547 if (ints[0] > 2)
548 map.mem_start = ints[3];
549 if (ints[0] > 3)
550 map.mem_end = ints[4];
551
552 /* Add new entry to the list */
553 return netdev_boot_setup_add(str, &map);
554}
555
556__setup("netdev=", netdev_boot_setup);
557
558/*******************************************************************************
559
560 Device Interface Subroutines
561
562*******************************************************************************/
563
564/**
565 * __dev_get_by_name - find a device by its name
c4ea43c5 566 * @net: the applicable net namespace
1da177e4
LT
567 * @name: name to find
568 *
569 * Find an interface by name. Must be called under RTNL semaphore
570 * or @dev_base_lock. If the name is found a pointer to the device
571 * is returned. If the name is not found then %NULL is returned. The
572 * reference counters are not incremented so the caller must be
573 * careful with locks.
574 */
575
881d966b 576struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
577{
578 struct hlist_node *p;
579
881d966b 580 hlist_for_each(p, dev_name_hash(net, name)) {
1da177e4
LT
581 struct net_device *dev
582 = hlist_entry(p, struct net_device, name_hlist);
583 if (!strncmp(dev->name, name, IFNAMSIZ))
584 return dev;
585 }
586 return NULL;
587}
588
589/**
590 * dev_get_by_name - find a device by its name
c4ea43c5 591 * @net: the applicable net namespace
1da177e4
LT
592 * @name: name to find
593 *
594 * Find an interface by name. This can be called from any
595 * context and does its own locking. The returned handle has
596 * the usage count incremented and the caller must use dev_put() to
597 * release it when it is no longer needed. %NULL is returned if no
598 * matching device is found.
599 */
600
881d966b 601struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
602{
603 struct net_device *dev;
604
605 read_lock(&dev_base_lock);
881d966b 606 dev = __dev_get_by_name(net, name);
1da177e4
LT
607 if (dev)
608 dev_hold(dev);
609 read_unlock(&dev_base_lock);
610 return dev;
611}
612
613/**
614 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 615 * @net: the applicable net namespace
1da177e4
LT
616 * @ifindex: index of device
617 *
618 * Search for an interface by index. Returns %NULL if the device
619 * is not found or a pointer to the device. The device has not
620 * had its reference counter increased so the caller must be careful
621 * about locking. The caller must hold either the RTNL semaphore
622 * or @dev_base_lock.
623 */
624
881d966b 625struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
626{
627 struct hlist_node *p;
628
881d966b 629 hlist_for_each(p, dev_index_hash(net, ifindex)) {
1da177e4
LT
630 struct net_device *dev
631 = hlist_entry(p, struct net_device, index_hlist);
632 if (dev->ifindex == ifindex)
633 return dev;
634 }
635 return NULL;
636}
637
638
639/**
640 * dev_get_by_index - find a device by its ifindex
c4ea43c5 641 * @net: the applicable net namespace
1da177e4
LT
642 * @ifindex: index of device
643 *
644 * Search for an interface by index. Returns NULL if the device
645 * is not found or a pointer to the device. The device returned has
646 * had a reference added and the pointer is safe until the user calls
647 * dev_put to indicate they have finished with it.
648 */
649
881d966b 650struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
651{
652 struct net_device *dev;
653
654 read_lock(&dev_base_lock);
881d966b 655 dev = __dev_get_by_index(net, ifindex);
1da177e4
LT
656 if (dev)
657 dev_hold(dev);
658 read_unlock(&dev_base_lock);
659 return dev;
660}
661
662/**
663 * dev_getbyhwaddr - find a device by its hardware address
c4ea43c5 664 * @net: the applicable net namespace
1da177e4
LT
665 * @type: media type of device
666 * @ha: hardware address
667 *
668 * Search for an interface by MAC address. Returns NULL if the device
669 * is not found or a pointer to the device. The caller must hold the
670 * rtnl semaphore. The returned device has not had its ref count increased
671 * and the caller must therefore be careful about locking
672 *
673 * BUGS:
674 * If the API was consistent this would be __dev_get_by_hwaddr
675 */
676
881d966b 677struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
1da177e4
LT
678{
679 struct net_device *dev;
680
681 ASSERT_RTNL();
682
81103a52 683 for_each_netdev(net, dev)
1da177e4
LT
684 if (dev->type == type &&
685 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
686 return dev;
687
688 return NULL;
1da177e4
LT
689}
690
cf309e3f
JF
691EXPORT_SYMBOL(dev_getbyhwaddr);
692
881d966b 693struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
694{
695 struct net_device *dev;
696
4e9cac2b 697 ASSERT_RTNL();
881d966b 698 for_each_netdev(net, dev)
4e9cac2b 699 if (dev->type == type)
7562f876
PE
700 return dev;
701
702 return NULL;
4e9cac2b
PM
703}
704
705EXPORT_SYMBOL(__dev_getfirstbyhwtype);
706
881d966b 707struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b
PM
708{
709 struct net_device *dev;
710
711 rtnl_lock();
881d966b 712 dev = __dev_getfirstbyhwtype(net, type);
4e9cac2b
PM
713 if (dev)
714 dev_hold(dev);
1da177e4
LT
715 rtnl_unlock();
716 return dev;
717}
718
719EXPORT_SYMBOL(dev_getfirstbyhwtype);
720
721/**
722 * dev_get_by_flags - find any device with given flags
c4ea43c5 723 * @net: the applicable net namespace
1da177e4
LT
724 * @if_flags: IFF_* values
725 * @mask: bitmask of bits in if_flags to check
726 *
727 * Search for any interface with the given flags. Returns NULL if a device
4ec93edb 728 * is not found or a pointer to the device. The device returned has
1da177e4
LT
729 * had a reference added and the pointer is safe until the user calls
730 * dev_put to indicate they have finished with it.
731 */
732
881d966b 733struct net_device * dev_get_by_flags(struct net *net, unsigned short if_flags, unsigned short mask)
1da177e4 734{
7562f876 735 struct net_device *dev, *ret;
1da177e4 736
7562f876 737 ret = NULL;
1da177e4 738 read_lock(&dev_base_lock);
881d966b 739 for_each_netdev(net, dev) {
1da177e4
LT
740 if (((dev->flags ^ if_flags) & mask) == 0) {
741 dev_hold(dev);
7562f876 742 ret = dev;
1da177e4
LT
743 break;
744 }
745 }
746 read_unlock(&dev_base_lock);
7562f876 747 return ret;
1da177e4
LT
748}
749
750/**
751 * dev_valid_name - check if name is okay for network device
752 * @name: name string
753 *
754 * Network device names need to be valid file names to
c7fa9d18
DM
755 * to allow sysfs to work. We also disallow any kind of
756 * whitespace.
1da177e4 757 */
c2373ee9 758int dev_valid_name(const char *name)
1da177e4 759{
c7fa9d18
DM
760 if (*name == '\0')
761 return 0;
b6fe17d6
SH
762 if (strlen(name) >= IFNAMSIZ)
763 return 0;
c7fa9d18
DM
764 if (!strcmp(name, ".") || !strcmp(name, ".."))
765 return 0;
766
767 while (*name) {
768 if (*name == '/' || isspace(*name))
769 return 0;
770 name++;
771 }
772 return 1;
1da177e4
LT
773}
774
775/**
b267b179
EB
776 * __dev_alloc_name - allocate a name for a device
777 * @net: network namespace to allocate the device name in
1da177e4 778 * @name: name format string
b267b179 779 * @buf: scratch buffer and result name string
1da177e4
LT
780 *
781 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
782 * id. It scans list of devices to build up a free map, then chooses
783 * the first empty slot. The caller must hold the dev_base or rtnl lock
784 * while allocating the name and adding the device in order to avoid
785 * duplicates.
786 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
787 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
788 */
789
b267b179 790static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
791{
792 int i = 0;
1da177e4
LT
793 const char *p;
794 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 795 unsigned long *inuse;
1da177e4
LT
796 struct net_device *d;
797
798 p = strnchr(name, IFNAMSIZ-1, '%');
799 if (p) {
800 /*
801 * Verify the string as this thing may have come from
802 * the user. There must be either one "%d" and no other "%"
803 * characters.
804 */
805 if (p[1] != 'd' || strchr(p + 2, '%'))
806 return -EINVAL;
807
808 /* Use one page as a bit array of possible slots */
cfcabdcc 809 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
810 if (!inuse)
811 return -ENOMEM;
812
881d966b 813 for_each_netdev(net, d) {
1da177e4
LT
814 if (!sscanf(d->name, name, &i))
815 continue;
816 if (i < 0 || i >= max_netdevices)
817 continue;
818
819 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 820 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
821 if (!strncmp(buf, d->name, IFNAMSIZ))
822 set_bit(i, inuse);
823 }
824
825 i = find_first_zero_bit(inuse, max_netdevices);
826 free_page((unsigned long) inuse);
827 }
828
b267b179
EB
829 snprintf(buf, IFNAMSIZ, name, i);
830 if (!__dev_get_by_name(net, buf))
1da177e4 831 return i;
1da177e4
LT
832
833 /* It is possible to run out of possible slots
834 * when the name is long and there isn't enough space left
835 * for the digits, or if all bits are used.
836 */
837 return -ENFILE;
838}
839
b267b179
EB
840/**
841 * dev_alloc_name - allocate a name for a device
842 * @dev: device
843 * @name: name format string
844 *
845 * Passed a format string - eg "lt%d" it will try and find a suitable
846 * id. It scans list of devices to build up a free map, then chooses
847 * the first empty slot. The caller must hold the dev_base or rtnl lock
848 * while allocating the name and adding the device in order to avoid
849 * duplicates.
850 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
851 * Returns the number of the unit assigned or a negative errno code.
852 */
853
854int dev_alloc_name(struct net_device *dev, const char *name)
855{
856 char buf[IFNAMSIZ];
857 struct net *net;
858 int ret;
859
c346dca1
YH
860 BUG_ON(!dev_net(dev));
861 net = dev_net(dev);
b267b179
EB
862 ret = __dev_alloc_name(net, name, buf);
863 if (ret >= 0)
864 strlcpy(dev->name, buf, IFNAMSIZ);
865 return ret;
866}
867
1da177e4
LT
868
869/**
870 * dev_change_name - change name of a device
871 * @dev: device
872 * @newname: name (or format string) must be at least IFNAMSIZ
873 *
874 * Change name of a device, can pass format strings "eth%d".
875 * for wildcarding.
876 */
877int dev_change_name(struct net_device *dev, char *newname)
878{
fcc5a03a 879 char oldname[IFNAMSIZ];
1da177e4 880 int err = 0;
fcc5a03a 881 int ret;
881d966b 882 struct net *net;
1da177e4
LT
883
884 ASSERT_RTNL();
c346dca1 885 BUG_ON(!dev_net(dev));
1da177e4 886
c346dca1 887 net = dev_net(dev);
1da177e4
LT
888 if (dev->flags & IFF_UP)
889 return -EBUSY;
890
891 if (!dev_valid_name(newname))
892 return -EINVAL;
893
c8d90dca
SH
894 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
895 return 0;
896
fcc5a03a
HX
897 memcpy(oldname, dev->name, IFNAMSIZ);
898
1da177e4
LT
899 if (strchr(newname, '%')) {
900 err = dev_alloc_name(dev, newname);
901 if (err < 0)
902 return err;
903 strcpy(newname, dev->name);
904 }
881d966b 905 else if (__dev_get_by_name(net, newname))
1da177e4
LT
906 return -EEXIST;
907 else
908 strlcpy(dev->name, newname, IFNAMSIZ);
909
fcc5a03a 910rollback:
dcc99773
SH
911 err = device_rename(&dev->dev, dev->name);
912 if (err) {
913 memcpy(dev->name, oldname, IFNAMSIZ);
914 return err;
915 }
7f988eab
HX
916
917 write_lock_bh(&dev_base_lock);
92749821 918 hlist_del(&dev->name_hlist);
881d966b 919 hlist_add_head(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
920 write_unlock_bh(&dev_base_lock);
921
056925ab 922 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
923 ret = notifier_to_errno(ret);
924
925 if (ret) {
926 if (err) {
927 printk(KERN_ERR
928 "%s: name change rollback failed: %d.\n",
929 dev->name, ret);
930 } else {
931 err = ret;
932 memcpy(dev->name, oldname, IFNAMSIZ);
933 goto rollback;
934 }
935 }
1da177e4
LT
936
937 return err;
938}
939
d8a33ac4 940/**
3041a069 941 * netdev_features_change - device changes features
d8a33ac4
SH
942 * @dev: device to cause notification
943 *
944 * Called to indicate a device has changed features.
945 */
946void netdev_features_change(struct net_device *dev)
947{
056925ab 948 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
949}
950EXPORT_SYMBOL(netdev_features_change);
951
1da177e4
LT
952/**
953 * netdev_state_change - device changes state
954 * @dev: device to cause notification
955 *
956 * Called to indicate a device has changed state. This function calls
957 * the notifier chains for netdev_chain and sends a NEWLINK message
958 * to the routing socket.
959 */
960void netdev_state_change(struct net_device *dev)
961{
962 if (dev->flags & IFF_UP) {
056925ab 963 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1da177e4
LT
964 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
965 }
966}
967
c1da4ac7
OG
968void netdev_bonding_change(struct net_device *dev)
969{
970 call_netdevice_notifiers(NETDEV_BONDING_FAILOVER, dev);
971}
972EXPORT_SYMBOL(netdev_bonding_change);
973
1da177e4
LT
974/**
975 * dev_load - load a network module
c4ea43c5 976 * @net: the applicable net namespace
1da177e4
LT
977 * @name: name of interface
978 *
979 * If a network interface is not present and the process has suitable
980 * privileges this function loads the module. If module loading is not
981 * available in this kernel then it becomes a nop.
982 */
983
881d966b 984void dev_load(struct net *net, const char *name)
1da177e4 985{
4ec93edb 986 struct net_device *dev;
1da177e4
LT
987
988 read_lock(&dev_base_lock);
881d966b 989 dev = __dev_get_by_name(net, name);
1da177e4
LT
990 read_unlock(&dev_base_lock);
991
992 if (!dev && capable(CAP_SYS_MODULE))
993 request_module("%s", name);
994}
995
1da177e4
LT
996/**
997 * dev_open - prepare an interface for use.
998 * @dev: device to open
999 *
1000 * Takes a device from down to up state. The device's private open
1001 * function is invoked and then the multicast lists are loaded. Finally
1002 * the device is moved into the up state and a %NETDEV_UP message is
1003 * sent to the netdev notifier chain.
1004 *
1005 * Calling this function on an active interface is a nop. On a failure
1006 * a negative errno code is returned.
1007 */
1008int dev_open(struct net_device *dev)
1009{
1010 int ret = 0;
1011
e46b66bc
BH
1012 ASSERT_RTNL();
1013
1da177e4
LT
1014 /*
1015 * Is it already up?
1016 */
1017
1018 if (dev->flags & IFF_UP)
1019 return 0;
1020
1021 /*
1022 * Is it even present?
1023 */
1024 if (!netif_device_present(dev))
1025 return -ENODEV;
1026
1027 /*
1028 * Call device private open method
1029 */
1030 set_bit(__LINK_STATE_START, &dev->state);
bada339b
JG
1031
1032 if (dev->validate_addr)
1033 ret = dev->validate_addr(dev);
1034
1035 if (!ret && dev->open)
1da177e4 1036 ret = dev->open(dev);
1da177e4 1037
4ec93edb 1038 /*
1da177e4
LT
1039 * If it went open OK then:
1040 */
1041
bada339b
JG
1042 if (ret)
1043 clear_bit(__LINK_STATE_START, &dev->state);
1044 else {
1da177e4
LT
1045 /*
1046 * Set the flags.
1047 */
1048 dev->flags |= IFF_UP;
1049
1050 /*
1051 * Initialize multicasting status
1052 */
4417da66 1053 dev_set_rx_mode(dev);
1da177e4
LT
1054
1055 /*
1056 * Wakeup transmit queue engine
1057 */
1058 dev_activate(dev);
1059
1060 /*
1061 * ... and announce new interface.
1062 */
056925ab 1063 call_netdevice_notifiers(NETDEV_UP, dev);
1da177e4 1064 }
bada339b 1065
1da177e4
LT
1066 return ret;
1067}
1068
1069/**
1070 * dev_close - shutdown an interface.
1071 * @dev: device to shutdown
1072 *
1073 * This function moves an active device into down state. A
1074 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1075 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1076 * chain.
1077 */
1078int dev_close(struct net_device *dev)
1079{
e46b66bc
BH
1080 ASSERT_RTNL();
1081
9d5010db
DM
1082 might_sleep();
1083
1da177e4
LT
1084 if (!(dev->flags & IFF_UP))
1085 return 0;
1086
1087 /*
1088 * Tell people we are going down, so that they can
1089 * prepare to death, when device is still operating.
1090 */
056925ab 1091 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1092
1da177e4
LT
1093 clear_bit(__LINK_STATE_START, &dev->state);
1094
1095 /* Synchronize to scheduled poll. We cannot touch poll list,
bea3348e
SH
1096 * it can be even on different cpu. So just clear netif_running().
1097 *
1098 * dev->stop() will invoke napi_disable() on all of it's
1099 * napi_struct instances on this device.
1100 */
1da177e4 1101 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1da177e4 1102
d8b2a4d2
ML
1103 dev_deactivate(dev);
1104
1da177e4
LT
1105 /*
1106 * Call the device specific close. This cannot fail.
1107 * Only if device is UP
1108 *
1109 * We allow it to be called even after a DETACH hot-plug
1110 * event.
1111 */
1112 if (dev->stop)
1113 dev->stop(dev);
1114
1115 /*
1116 * Device is now down.
1117 */
1118
1119 dev->flags &= ~IFF_UP;
1120
1121 /*
1122 * Tell people we are down
1123 */
056925ab 1124 call_netdevice_notifiers(NETDEV_DOWN, dev);
1da177e4
LT
1125
1126 return 0;
1127}
1128
1129
0187bdfb
BH
1130/**
1131 * dev_disable_lro - disable Large Receive Offload on a device
1132 * @dev: device
1133 *
1134 * Disable Large Receive Offload (LRO) on a net device. Must be
1135 * called under RTNL. This is needed if received packets may be
1136 * forwarded to another interface.
1137 */
1138void dev_disable_lro(struct net_device *dev)
1139{
1140 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1141 dev->ethtool_ops->set_flags) {
1142 u32 flags = dev->ethtool_ops->get_flags(dev);
1143 if (flags & ETH_FLAG_LRO) {
1144 flags &= ~ETH_FLAG_LRO;
1145 dev->ethtool_ops->set_flags(dev, flags);
1146 }
1147 }
1148 WARN_ON(dev->features & NETIF_F_LRO);
1149}
1150EXPORT_SYMBOL(dev_disable_lro);
1151
1152
881d966b
EB
1153static int dev_boot_phase = 1;
1154
1da177e4
LT
1155/*
1156 * Device change register/unregister. These are not inline or static
1157 * as we export them to the world.
1158 */
1159
1160/**
1161 * register_netdevice_notifier - register a network notifier block
1162 * @nb: notifier
1163 *
1164 * Register a notifier to be called when network device events occur.
1165 * The notifier passed is linked into the kernel structures and must
1166 * not be reused until it has been unregistered. A negative errno code
1167 * is returned on a failure.
1168 *
1169 * When registered all registration and up events are replayed
4ec93edb 1170 * to the new notifier to allow device to have a race free
1da177e4
LT
1171 * view of the network device list.
1172 */
1173
1174int register_netdevice_notifier(struct notifier_block *nb)
1175{
1176 struct net_device *dev;
fcc5a03a 1177 struct net_device *last;
881d966b 1178 struct net *net;
1da177e4
LT
1179 int err;
1180
1181 rtnl_lock();
f07d5b94 1182 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1183 if (err)
1184 goto unlock;
881d966b
EB
1185 if (dev_boot_phase)
1186 goto unlock;
1187 for_each_net(net) {
1188 for_each_netdev(net, dev) {
1189 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1190 err = notifier_to_errno(err);
1191 if (err)
1192 goto rollback;
1193
1194 if (!(dev->flags & IFF_UP))
1195 continue;
1da177e4 1196
881d966b
EB
1197 nb->notifier_call(nb, NETDEV_UP, dev);
1198 }
1da177e4 1199 }
fcc5a03a
HX
1200
1201unlock:
1da177e4
LT
1202 rtnl_unlock();
1203 return err;
fcc5a03a
HX
1204
1205rollback:
1206 last = dev;
881d966b
EB
1207 for_each_net(net) {
1208 for_each_netdev(net, dev) {
1209 if (dev == last)
1210 break;
fcc5a03a 1211
881d966b
EB
1212 if (dev->flags & IFF_UP) {
1213 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1214 nb->notifier_call(nb, NETDEV_DOWN, dev);
1215 }
1216 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
fcc5a03a 1217 }
fcc5a03a 1218 }
c67625a1
PE
1219
1220 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1221 goto unlock;
1da177e4
LT
1222}
1223
1224/**
1225 * unregister_netdevice_notifier - unregister a network notifier block
1226 * @nb: notifier
1227 *
1228 * Unregister a notifier previously registered by
1229 * register_netdevice_notifier(). The notifier is unlinked into the
1230 * kernel structures and may then be reused. A negative errno code
1231 * is returned on a failure.
1232 */
1233
1234int unregister_netdevice_notifier(struct notifier_block *nb)
1235{
9f514950
HX
1236 int err;
1237
1238 rtnl_lock();
f07d5b94 1239 err = raw_notifier_chain_unregister(&netdev_chain, nb);
9f514950
HX
1240 rtnl_unlock();
1241 return err;
1da177e4
LT
1242}
1243
1244/**
1245 * call_netdevice_notifiers - call all network notifier blocks
1246 * @val: value passed unmodified to notifier function
c4ea43c5 1247 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1248 *
1249 * Call all network notifier blocks. Parameters and return value
f07d5b94 1250 * are as for raw_notifier_call_chain().
1da177e4
LT
1251 */
1252
ad7379d4 1253int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1254{
ad7379d4 1255 return raw_notifier_call_chain(&netdev_chain, val, dev);
1da177e4
LT
1256}
1257
1258/* When > 0 there are consumers of rx skb time stamps */
1259static atomic_t netstamp_needed = ATOMIC_INIT(0);
1260
1261void net_enable_timestamp(void)
1262{
1263 atomic_inc(&netstamp_needed);
1264}
1265
1266void net_disable_timestamp(void)
1267{
1268 atomic_dec(&netstamp_needed);
1269}
1270
a61bbcf2 1271static inline void net_timestamp(struct sk_buff *skb)
1da177e4
LT
1272{
1273 if (atomic_read(&netstamp_needed))
a61bbcf2 1274 __net_timestamp(skb);
b7aa0bf7
ED
1275 else
1276 skb->tstamp.tv64 = 0;
1da177e4
LT
1277}
1278
1279/*
1280 * Support routine. Sends outgoing frames to any network
1281 * taps currently in use.
1282 */
1283
f6a78bfc 1284static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1285{
1286 struct packet_type *ptype;
a61bbcf2
PM
1287
1288 net_timestamp(skb);
1da177e4
LT
1289
1290 rcu_read_lock();
1291 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1292 /* Never send packets back to the socket
1293 * they originated from - MvS (miquels@drinkel.ow.org)
1294 */
1295 if ((ptype->dev == dev || !ptype->dev) &&
1296 (ptype->af_packet_priv == NULL ||
1297 (struct sock *)ptype->af_packet_priv != skb->sk)) {
1298 struct sk_buff *skb2= skb_clone(skb, GFP_ATOMIC);
1299 if (!skb2)
1300 break;
1301
1302 /* skb->nh should be correctly
1303 set by sender, so that the second statement is
1304 just protection against buggy protocols.
1305 */
459a98ed 1306 skb_reset_mac_header(skb2);
1da177e4 1307
d56f90a7 1308 if (skb_network_header(skb2) < skb2->data ||
27a884dc 1309 skb2->network_header > skb2->tail) {
1da177e4
LT
1310 if (net_ratelimit())
1311 printk(KERN_CRIT "protocol %04x is "
1312 "buggy, dev %s\n",
1313 skb2->protocol, dev->name);
c1d2bbe1 1314 skb_reset_network_header(skb2);
1da177e4
LT
1315 }
1316
b0e380b1 1317 skb2->transport_header = skb2->network_header;
1da177e4 1318 skb2->pkt_type = PACKET_OUTGOING;
f2ccd8fa 1319 ptype->func(skb2, skb->dev, ptype, skb->dev);
1da177e4
LT
1320 }
1321 }
1322 rcu_read_unlock();
1323}
1324
56079431 1325
37437bb2 1326void __netif_schedule(struct Qdisc *q)
56079431 1327{
37437bb2 1328 BUG_ON(q == &noop_qdisc);
86d804e1 1329
37437bb2 1330 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state)) {
56079431 1331 struct softnet_data *sd;
86d804e1 1332 unsigned long flags;
56079431
DV
1333
1334 local_irq_save(flags);
1335 sd = &__get_cpu_var(softnet_data);
37437bb2
DM
1336 q->next_sched = sd->output_queue;
1337 sd->output_queue = q;
56079431
DV
1338 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1339 local_irq_restore(flags);
1340 }
1341}
1342EXPORT_SYMBOL(__netif_schedule);
1343
bea3348e 1344void dev_kfree_skb_irq(struct sk_buff *skb)
56079431 1345{
bea3348e
SH
1346 if (atomic_dec_and_test(&skb->users)) {
1347 struct softnet_data *sd;
1348 unsigned long flags;
56079431 1349
bea3348e
SH
1350 local_irq_save(flags);
1351 sd = &__get_cpu_var(softnet_data);
1352 skb->next = sd->completion_queue;
1353 sd->completion_queue = skb;
1354 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1355 local_irq_restore(flags);
1356 }
56079431 1357}
bea3348e 1358EXPORT_SYMBOL(dev_kfree_skb_irq);
56079431
DV
1359
1360void dev_kfree_skb_any(struct sk_buff *skb)
1361{
1362 if (in_irq() || irqs_disabled())
1363 dev_kfree_skb_irq(skb);
1364 else
1365 dev_kfree_skb(skb);
1366}
1367EXPORT_SYMBOL(dev_kfree_skb_any);
1368
1369
bea3348e
SH
1370/**
1371 * netif_device_detach - mark device as removed
1372 * @dev: network device
1373 *
1374 * Mark device as removed from system and therefore no longer available.
1375 */
56079431
DV
1376void netif_device_detach(struct net_device *dev)
1377{
1378 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1379 netif_running(dev)) {
1380 netif_stop_queue(dev);
1381 }
1382}
1383EXPORT_SYMBOL(netif_device_detach);
1384
bea3348e
SH
1385/**
1386 * netif_device_attach - mark device as attached
1387 * @dev: network device
1388 *
1389 * Mark device as attached from system and restart if needed.
1390 */
56079431
DV
1391void netif_device_attach(struct net_device *dev)
1392{
1393 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1394 netif_running(dev)) {
1395 netif_wake_queue(dev);
4ec93edb 1396 __netdev_watchdog_up(dev);
56079431
DV
1397 }
1398}
1399EXPORT_SYMBOL(netif_device_attach);
1400
6de329e2
BH
1401static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1402{
1403 return ((features & NETIF_F_GEN_CSUM) ||
1404 ((features & NETIF_F_IP_CSUM) &&
1405 protocol == htons(ETH_P_IP)) ||
1406 ((features & NETIF_F_IPV6_CSUM) &&
1407 protocol == htons(ETH_P_IPV6)));
1408}
1409
1410static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1411{
1412 if (can_checksum_protocol(dev->features, skb->protocol))
1413 return true;
1414
1415 if (skb->protocol == htons(ETH_P_8021Q)) {
1416 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1417 if (can_checksum_protocol(dev->features & dev->vlan_features,
1418 veh->h_vlan_encapsulated_proto))
1419 return true;
1420 }
1421
1422 return false;
1423}
56079431 1424
1da177e4
LT
1425/*
1426 * Invalidate hardware checksum when packet is to be mangled, and
1427 * complete checksum manually on outgoing path.
1428 */
84fa7933 1429int skb_checksum_help(struct sk_buff *skb)
1da177e4 1430{
d3bc23e7 1431 __wsum csum;
663ead3b 1432 int ret = 0, offset;
1da177e4 1433
84fa7933 1434 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
1435 goto out_set_summed;
1436
1437 if (unlikely(skb_shinfo(skb)->gso_size)) {
a430a43d
HX
1438 /* Let GSO fix up the checksum. */
1439 goto out_set_summed;
1da177e4
LT
1440 }
1441
a030847e
HX
1442 offset = skb->csum_start - skb_headroom(skb);
1443 BUG_ON(offset >= skb_headlen(skb));
1444 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1445
1446 offset += skb->csum_offset;
1447 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1448
1449 if (skb_cloned(skb) &&
1450 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
1451 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1452 if (ret)
1453 goto out;
1454 }
1455
a030847e 1456 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 1457out_set_summed:
1da177e4 1458 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 1459out:
1da177e4
LT
1460 return ret;
1461}
1462
f6a78bfc
HX
1463/**
1464 * skb_gso_segment - Perform segmentation on skb.
1465 * @skb: buffer to segment
576a30eb 1466 * @features: features for the output path (see dev->features)
f6a78bfc
HX
1467 *
1468 * This function segments the given skb and returns a list of segments.
576a30eb
HX
1469 *
1470 * It may return NULL if the skb requires no segmentation. This is
1471 * only possible when GSO is used for verifying header integrity.
f6a78bfc 1472 */
576a30eb 1473struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
f6a78bfc
HX
1474{
1475 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1476 struct packet_type *ptype;
252e3346 1477 __be16 type = skb->protocol;
a430a43d 1478 int err;
f6a78bfc
HX
1479
1480 BUG_ON(skb_shinfo(skb)->frag_list);
f6a78bfc 1481
459a98ed 1482 skb_reset_mac_header(skb);
b0e380b1 1483 skb->mac_len = skb->network_header - skb->mac_header;
f6a78bfc
HX
1484 __skb_pull(skb, skb->mac_len);
1485
f9d106a6 1486 if (WARN_ON(skb->ip_summed != CHECKSUM_PARTIAL)) {
a430a43d
HX
1487 if (skb_header_cloned(skb) &&
1488 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1489 return ERR_PTR(err);
1490 }
1491
f6a78bfc 1492 rcu_read_lock();
82d8a867
PE
1493 list_for_each_entry_rcu(ptype,
1494 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
f6a78bfc 1495 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
84fa7933 1496 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
a430a43d
HX
1497 err = ptype->gso_send_check(skb);
1498 segs = ERR_PTR(err);
1499 if (err || skb_gso_ok(skb, features))
1500 break;
d56f90a7
ACM
1501 __skb_push(skb, (skb->data -
1502 skb_network_header(skb)));
a430a43d 1503 }
576a30eb 1504 segs = ptype->gso_segment(skb, features);
f6a78bfc
HX
1505 break;
1506 }
1507 }
1508 rcu_read_unlock();
1509
98e399f8 1510 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 1511
f6a78bfc
HX
1512 return segs;
1513}
1514
1515EXPORT_SYMBOL(skb_gso_segment);
1516
fb286bb2
HX
1517/* Take action when hardware reception checksum errors are detected. */
1518#ifdef CONFIG_BUG
1519void netdev_rx_csum_fault(struct net_device *dev)
1520{
1521 if (net_ratelimit()) {
4ec93edb 1522 printk(KERN_ERR "%s: hw csum failure.\n",
246a4212 1523 dev ? dev->name : "<unknown>");
fb286bb2
HX
1524 dump_stack();
1525 }
1526}
1527EXPORT_SYMBOL(netdev_rx_csum_fault);
1528#endif
1529
1da177e4
LT
1530/* Actually, we should eliminate this check as soon as we know, that:
1531 * 1. IOMMU is present and allows to map all the memory.
1532 * 2. No high memory really exists on this machine.
1533 */
1534
1535static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1536{
3d3a8533 1537#ifdef CONFIG_HIGHMEM
1da177e4
LT
1538 int i;
1539
1540 if (dev->features & NETIF_F_HIGHDMA)
1541 return 0;
1542
1543 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1544 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1545 return 1;
1546
3d3a8533 1547#endif
1da177e4
LT
1548 return 0;
1549}
1da177e4 1550
f6a78bfc
HX
1551struct dev_gso_cb {
1552 void (*destructor)(struct sk_buff *skb);
1553};
1554
1555#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1556
1557static void dev_gso_skb_destructor(struct sk_buff *skb)
1558{
1559 struct dev_gso_cb *cb;
1560
1561 do {
1562 struct sk_buff *nskb = skb->next;
1563
1564 skb->next = nskb->next;
1565 nskb->next = NULL;
1566 kfree_skb(nskb);
1567 } while (skb->next);
1568
1569 cb = DEV_GSO_CB(skb);
1570 if (cb->destructor)
1571 cb->destructor(skb);
1572}
1573
1574/**
1575 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1576 * @skb: buffer to segment
1577 *
1578 * This function segments the given skb and stores the list of segments
1579 * in skb->next.
1580 */
1581static int dev_gso_segment(struct sk_buff *skb)
1582{
1583 struct net_device *dev = skb->dev;
1584 struct sk_buff *segs;
576a30eb
HX
1585 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1586 NETIF_F_SG : 0);
1587
1588 segs = skb_gso_segment(skb, features);
1589
1590 /* Verifying header integrity only. */
1591 if (!segs)
1592 return 0;
f6a78bfc 1593
801678c5 1594 if (IS_ERR(segs))
f6a78bfc
HX
1595 return PTR_ERR(segs);
1596
1597 skb->next = segs;
1598 DEV_GSO_CB(skb)->destructor = skb->destructor;
1599 skb->destructor = dev_gso_skb_destructor;
1600
1601 return 0;
1602}
1603
fd2ea0a7
DM
1604int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1605 struct netdev_queue *txq)
f6a78bfc
HX
1606{
1607 if (likely(!skb->next)) {
9be9a6b9 1608 if (!list_empty(&ptype_all))
f6a78bfc
HX
1609 dev_queue_xmit_nit(skb, dev);
1610
576a30eb
HX
1611 if (netif_needs_gso(dev, skb)) {
1612 if (unlikely(dev_gso_segment(skb)))
1613 goto out_kfree_skb;
1614 if (skb->next)
1615 goto gso;
1616 }
f6a78bfc 1617
576a30eb 1618 return dev->hard_start_xmit(skb, dev);
f6a78bfc
HX
1619 }
1620
576a30eb 1621gso:
f6a78bfc
HX
1622 do {
1623 struct sk_buff *nskb = skb->next;
1624 int rc;
1625
1626 skb->next = nskb->next;
1627 nskb->next = NULL;
1628 rc = dev->hard_start_xmit(nskb, dev);
1629 if (unlikely(rc)) {
f54d9e8d 1630 nskb->next = skb->next;
f6a78bfc
HX
1631 skb->next = nskb;
1632 return rc;
1633 }
fd2ea0a7 1634 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
f54d9e8d 1635 return NETDEV_TX_BUSY;
f6a78bfc 1636 } while (skb->next);
4ec93edb 1637
f6a78bfc
HX
1638 skb->destructor = DEV_GSO_CB(skb)->destructor;
1639
1640out_kfree_skb:
1641 kfree_skb(skb);
1642 return 0;
1643}
1644
1da177e4
LT
1645/**
1646 * dev_queue_xmit - transmit a buffer
1647 * @skb: buffer to transmit
1648 *
1649 * Queue a buffer for transmission to a network device. The caller must
1650 * have set the device and priority and built the buffer before calling
1651 * this function. The function can be called from an interrupt.
1652 *
1653 * A negative errno code is returned on a failure. A success does not
1654 * guarantee the frame will be transmitted as it may be dropped due
1655 * to congestion or traffic shaping.
af191367
BG
1656 *
1657 * -----------------------------------------------------------------------------------
1658 * I notice this method can also return errors from the queue disciplines,
1659 * including NET_XMIT_DROP, which is a positive value. So, errors can also
1660 * be positive.
1661 *
1662 * Regardless of the return value, the skb is consumed, so it is currently
1663 * difficult to retry a send to this method. (You can bump the ref count
1664 * before sending to hold a reference for retry if you are careful.)
1665 *
1666 * When calling this method, interrupts MUST be enabled. This is because
1667 * the BH enable code must have IRQs enabled so that it will not deadlock.
1668 * --BLG
1da177e4
LT
1669 */
1670
8f0f2223
DM
1671static u16 simple_tx_hash(struct net_device *dev, struct sk_buff *skb)
1672{
1673 u32 *addr, *ports, hash, ihl;
1674 u8 ip_proto;
1675 int alen;
1676
1677 switch (skb->protocol) {
1678 case __constant_htons(ETH_P_IP):
1679 ip_proto = ip_hdr(skb)->protocol;
1680 addr = &ip_hdr(skb)->saddr;
1681 ihl = ip_hdr(skb)->ihl;
1682 alen = 2;
1683 break;
1684 case __constant_htons(ETH_P_IPV6):
1685 ip_proto = ipv6_hdr(skb)->nexthdr;
1686 addr = &ipv6_hdr(skb)->saddr.s6_addr32[0];
1687 ihl = (40 >> 2);
1688 alen = 8;
1689 break;
1690 default:
1691 return 0;
1692 }
1693
1694 ports = (u32 *) (skb_network_header(skb) + (ihl * 4));
1695
1696 hash = 0;
1697 while (alen--)
1698 hash ^= *addr++;
1699
1700 switch (ip_proto) {
1701 case IPPROTO_TCP:
1702 case IPPROTO_UDP:
1703 case IPPROTO_DCCP:
1704 case IPPROTO_ESP:
1705 case IPPROTO_AH:
1706 case IPPROTO_SCTP:
1707 case IPPROTO_UDPLITE:
1708 hash ^= *ports;
1709 break;
1710
1711 default:
1712 break;
1713 }
1714
1715 return hash % dev->real_num_tx_queues;
1716}
1717
e8a0464c
DM
1718static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1719 struct sk_buff *skb)
1720{
fd2ea0a7
DM
1721 u16 queue_index = 0;
1722
eae792b7
DM
1723 if (dev->select_queue)
1724 queue_index = dev->select_queue(dev, skb);
8f0f2223
DM
1725 else if (dev->real_num_tx_queues > 1)
1726 queue_index = simple_tx_hash(dev, skb);
eae792b7 1727
fd2ea0a7
DM
1728 skb_set_queue_mapping(skb, queue_index);
1729 return netdev_get_tx_queue(dev, queue_index);
e8a0464c
DM
1730}
1731
1da177e4
LT
1732int dev_queue_xmit(struct sk_buff *skb)
1733{
1734 struct net_device *dev = skb->dev;
dc2b4847 1735 struct netdev_queue *txq;
1da177e4
LT
1736 struct Qdisc *q;
1737 int rc = -ENOMEM;
1738
f6a78bfc
HX
1739 /* GSO will handle the following emulations directly. */
1740 if (netif_needs_gso(dev, skb))
1741 goto gso;
1742
1da177e4
LT
1743 if (skb_shinfo(skb)->frag_list &&
1744 !(dev->features & NETIF_F_FRAGLIST) &&
364c6bad 1745 __skb_linearize(skb))
1da177e4
LT
1746 goto out_kfree_skb;
1747
1748 /* Fragmented skb is linearized if device does not support SG,
1749 * or if at least one of fragments is in highmem and device
1750 * does not support DMA from it.
1751 */
1752 if (skb_shinfo(skb)->nr_frags &&
1753 (!(dev->features & NETIF_F_SG) || illegal_highdma(dev, skb)) &&
364c6bad 1754 __skb_linearize(skb))
1da177e4
LT
1755 goto out_kfree_skb;
1756
1757 /* If packet is not checksummed and device does not support
1758 * checksumming for this protocol, complete checksumming here.
1759 */
663ead3b
HX
1760 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1761 skb_set_transport_header(skb, skb->csum_start -
1762 skb_headroom(skb));
6de329e2
BH
1763 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
1764 goto out_kfree_skb;
663ead3b 1765 }
1da177e4 1766
f6a78bfc 1767gso:
4ec93edb
YH
1768 /* Disable soft irqs for various locks below. Also
1769 * stops preemption for RCU.
1da177e4 1770 */
4ec93edb 1771 rcu_read_lock_bh();
1da177e4 1772
eae792b7 1773 txq = dev_pick_tx(dev, skb);
b0e1e646 1774 q = rcu_dereference(txq->qdisc);
37437bb2 1775
1da177e4
LT
1776#ifdef CONFIG_NET_CLS_ACT
1777 skb->tc_verd = SET_TC_AT(skb->tc_verd,AT_EGRESS);
1778#endif
1779 if (q->enqueue) {
37437bb2
DM
1780 spinlock_t *root_lock = qdisc_root_lock(q);
1781
1782 spin_lock(root_lock);
1783
1784 rc = q->enqueue(skb, q);
1785 qdisc_run(q);
1786
1787 spin_unlock(root_lock);
1788
1789 rc = rc == NET_XMIT_BYPASS ? NET_XMIT_SUCCESS : rc;
1790 goto out;
1da177e4
LT
1791 }
1792
1793 /* The device has no queue. Common case for software devices:
1794 loopback, all the sorts of tunnels...
1795
932ff279
HX
1796 Really, it is unlikely that netif_tx_lock protection is necessary
1797 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
1798 counters.)
1799 However, it is possible, that they rely on protection
1800 made by us here.
1801
1802 Check this and shot the lock. It is not prone from deadlocks.
1803 Either shot noqueue qdisc, it is even simpler 8)
1804 */
1805 if (dev->flags & IFF_UP) {
1806 int cpu = smp_processor_id(); /* ok because BHs are off */
1807
c773e847 1808 if (txq->xmit_lock_owner != cpu) {
1da177e4 1809
c773e847 1810 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 1811
fd2ea0a7 1812 if (!netif_tx_queue_stopped(txq)) {
1da177e4 1813 rc = 0;
fd2ea0a7 1814 if (!dev_hard_start_xmit(skb, dev, txq)) {
c773e847 1815 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
1816 goto out;
1817 }
1818 }
c773e847 1819 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
1820 if (net_ratelimit())
1821 printk(KERN_CRIT "Virtual device %s asks to "
1822 "queue packet!\n", dev->name);
1823 } else {
1824 /* Recursion is detected! It is possible,
1825 * unfortunately */
1826 if (net_ratelimit())
1827 printk(KERN_CRIT "Dead loop on virtual device "
1828 "%s, fix it urgently!\n", dev->name);
1829 }
1830 }
1831
1832 rc = -ENETDOWN;
d4828d85 1833 rcu_read_unlock_bh();
1da177e4
LT
1834
1835out_kfree_skb:
1836 kfree_skb(skb);
1837 return rc;
1838out:
d4828d85 1839 rcu_read_unlock_bh();
1da177e4
LT
1840 return rc;
1841}
1842
1843
1844/*=======================================================================
1845 Receiver routines
1846 =======================================================================*/
1847
6b2bedc3
SH
1848int netdev_max_backlog __read_mostly = 1000;
1849int netdev_budget __read_mostly = 300;
1850int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4
LT
1851
1852DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
1853
1854
1da177e4
LT
1855/**
1856 * netif_rx - post buffer to the network code
1857 * @skb: buffer to post
1858 *
1859 * This function receives a packet from a device driver and queues it for
1860 * the upper (protocol) levels to process. It always succeeds. The buffer
1861 * may be dropped during processing for congestion control or by the
1862 * protocol layers.
1863 *
1864 * return values:
1865 * NET_RX_SUCCESS (no congestion)
1da177e4
LT
1866 * NET_RX_DROP (packet was dropped)
1867 *
1868 */
1869
1870int netif_rx(struct sk_buff *skb)
1871{
1da177e4
LT
1872 struct softnet_data *queue;
1873 unsigned long flags;
1874
1875 /* if netpoll wants it, pretend we never saw it */
1876 if (netpoll_rx(skb))
1877 return NET_RX_DROP;
1878
b7aa0bf7 1879 if (!skb->tstamp.tv64)
a61bbcf2 1880 net_timestamp(skb);
1da177e4
LT
1881
1882 /*
1883 * The code is rearranged so that the path is the most
1884 * short when CPU is congested, but is still operating.
1885 */
1886 local_irq_save(flags);
1da177e4
LT
1887 queue = &__get_cpu_var(softnet_data);
1888
1889 __get_cpu_var(netdev_rx_stat).total++;
1890 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
1891 if (queue->input_pkt_queue.qlen) {
1da177e4
LT
1892enqueue:
1893 dev_hold(skb->dev);
1894 __skb_queue_tail(&queue->input_pkt_queue, skb);
1da177e4 1895 local_irq_restore(flags);
34008d8c 1896 return NET_RX_SUCCESS;
1da177e4
LT
1897 }
1898
bea3348e 1899 napi_schedule(&queue->backlog);
1da177e4
LT
1900 goto enqueue;
1901 }
1902
1da177e4
LT
1903 __get_cpu_var(netdev_rx_stat).dropped++;
1904 local_irq_restore(flags);
1905
1906 kfree_skb(skb);
1907 return NET_RX_DROP;
1908}
1909
1910int netif_rx_ni(struct sk_buff *skb)
1911{
1912 int err;
1913
1914 preempt_disable();
1915 err = netif_rx(skb);
1916 if (local_softirq_pending())
1917 do_softirq();
1918 preempt_enable();
1919
1920 return err;
1921}
1922
1923EXPORT_SYMBOL(netif_rx_ni);
1924
f2ccd8fa 1925static inline struct net_device *skb_bond(struct sk_buff *skb)
1da177e4
LT
1926{
1927 struct net_device *dev = skb->dev;
1928
8f903c70 1929 if (dev->master) {
7ea49ed7 1930 if (skb_bond_should_drop(skb)) {
8f903c70
JV
1931 kfree_skb(skb);
1932 return NULL;
1933 }
1da177e4 1934 skb->dev = dev->master;
8f903c70 1935 }
f2ccd8fa
DM
1936
1937 return dev;
1da177e4
LT
1938}
1939
bea3348e 1940
1da177e4
LT
1941static void net_tx_action(struct softirq_action *h)
1942{
1943 struct softnet_data *sd = &__get_cpu_var(softnet_data);
1944
1945 if (sd->completion_queue) {
1946 struct sk_buff *clist;
1947
1948 local_irq_disable();
1949 clist = sd->completion_queue;
1950 sd->completion_queue = NULL;
1951 local_irq_enable();
1952
1953 while (clist) {
1954 struct sk_buff *skb = clist;
1955 clist = clist->next;
1956
1957 BUG_TRAP(!atomic_read(&skb->users));
1958 __kfree_skb(skb);
1959 }
1960 }
1961
1962 if (sd->output_queue) {
37437bb2 1963 struct Qdisc *head;
1da177e4
LT
1964
1965 local_irq_disable();
1966 head = sd->output_queue;
1967 sd->output_queue = NULL;
1968 local_irq_enable();
1969
1970 while (head) {
37437bb2
DM
1971 struct Qdisc *q = head;
1972 spinlock_t *root_lock;
1973
1da177e4
LT
1974 head = head->next_sched;
1975
1976 smp_mb__before_clear_bit();
37437bb2 1977 clear_bit(__QDISC_STATE_SCHED, &q->state);
1da177e4 1978
37437bb2
DM
1979 root_lock = qdisc_root_lock(q);
1980 if (spin_trylock(root_lock)) {
1981 qdisc_run(q);
1982 spin_unlock(root_lock);
1da177e4 1983 } else {
37437bb2 1984 __netif_schedule(q);
1da177e4
LT
1985 }
1986 }
1987 }
1988}
1989
6f05f629
SH
1990static inline int deliver_skb(struct sk_buff *skb,
1991 struct packet_type *pt_prev,
1992 struct net_device *orig_dev)
1da177e4
LT
1993{
1994 atomic_inc(&skb->users);
f2ccd8fa 1995 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4
LT
1996}
1997
1998#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
6229e362 1999/* These hooks defined here for ATM */
1da177e4
LT
2000struct net_bridge;
2001struct net_bridge_fdb_entry *(*br_fdb_get_hook)(struct net_bridge *br,
2002 unsigned char *addr);
6229e362 2003void (*br_fdb_put_hook)(struct net_bridge_fdb_entry *ent) __read_mostly;
1da177e4 2004
6229e362
SH
2005/*
2006 * If bridge module is loaded call bridging hook.
2007 * returns NULL if packet was consumed.
2008 */
2009struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2010 struct sk_buff *skb) __read_mostly;
2011static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2012 struct packet_type **pt_prev, int *ret,
2013 struct net_device *orig_dev)
1da177e4
LT
2014{
2015 struct net_bridge_port *port;
2016
6229e362
SH
2017 if (skb->pkt_type == PACKET_LOOPBACK ||
2018 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2019 return skb;
1da177e4
LT
2020
2021 if (*pt_prev) {
6229e362 2022 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1da177e4 2023 *pt_prev = NULL;
4ec93edb
YH
2024 }
2025
6229e362 2026 return br_handle_frame_hook(port, skb);
1da177e4
LT
2027}
2028#else
6229e362 2029#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
1da177e4
LT
2030#endif
2031
b863ceb7
PM
2032#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2033struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2034EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2035
2036static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2037 struct packet_type **pt_prev,
2038 int *ret,
2039 struct net_device *orig_dev)
2040{
2041 if (skb->dev->macvlan_port == NULL)
2042 return skb;
2043
2044 if (*pt_prev) {
2045 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2046 *pt_prev = NULL;
2047 }
2048 return macvlan_handle_frame_hook(skb);
2049}
2050#else
2051#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2052#endif
2053
1da177e4
LT
2054#ifdef CONFIG_NET_CLS_ACT
2055/* TODO: Maybe we should just force sch_ingress to be compiled in
2056 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2057 * a compare and 2 stores extra right now if we dont have it on
2058 * but have CONFIG_NET_CLS_ACT
4ec93edb 2059 * NOTE: This doesnt stop any functionality; if you dont have
1da177e4
LT
2060 * the ingress scheduler, you just cant add policies on ingress.
2061 *
2062 */
4ec93edb 2063static int ing_filter(struct sk_buff *skb)
1da177e4 2064{
1da177e4 2065 struct net_device *dev = skb->dev;
f697c3e8 2066 u32 ttl = G_TC_RTTL(skb->tc_verd);
555353cf
DM
2067 struct netdev_queue *rxq;
2068 int result = TC_ACT_OK;
2069 struct Qdisc *q;
4ec93edb 2070
f697c3e8
HX
2071 if (MAX_RED_LOOP < ttl++) {
2072 printk(KERN_WARNING
2073 "Redir loop detected Dropping packet (%d->%d)\n",
2074 skb->iif, dev->ifindex);
2075 return TC_ACT_SHOT;
2076 }
1da177e4 2077
f697c3e8
HX
2078 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2079 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
1da177e4 2080
555353cf
DM
2081 rxq = &dev->rx_queue;
2082
2083 spin_lock(&rxq->lock);
816f3258 2084 if ((q = rxq->qdisc) != NULL)
f697c3e8 2085 result = q->enqueue(skb, q);
555353cf 2086 spin_unlock(&rxq->lock);
f697c3e8
HX
2087
2088 return result;
2089}
86e65da9 2090
f697c3e8
HX
2091static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2092 struct packet_type **pt_prev,
2093 int *ret, struct net_device *orig_dev)
2094{
816f3258 2095 if (!skb->dev->rx_queue.qdisc)
f697c3e8 2096 goto out;
1da177e4 2097
f697c3e8
HX
2098 if (*pt_prev) {
2099 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2100 *pt_prev = NULL;
2101 } else {
2102 /* Huh? Why does turning on AF_PACKET affect this? */
2103 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
1da177e4
LT
2104 }
2105
f697c3e8
HX
2106 switch (ing_filter(skb)) {
2107 case TC_ACT_SHOT:
2108 case TC_ACT_STOLEN:
2109 kfree_skb(skb);
2110 return NULL;
2111 }
2112
2113out:
2114 skb->tc_verd = 0;
2115 return skb;
1da177e4
LT
2116}
2117#endif
2118
bc1d0411
PM
2119/*
2120 * netif_nit_deliver - deliver received packets to network taps
2121 * @skb: buffer
2122 *
2123 * This function is used to deliver incoming packets to network
2124 * taps. It should be used when the normal netif_receive_skb path
2125 * is bypassed, for example because of VLAN acceleration.
2126 */
2127void netif_nit_deliver(struct sk_buff *skb)
2128{
2129 struct packet_type *ptype;
2130
2131 if (list_empty(&ptype_all))
2132 return;
2133
2134 skb_reset_network_header(skb);
2135 skb_reset_transport_header(skb);
2136 skb->mac_len = skb->network_header - skb->mac_header;
2137
2138 rcu_read_lock();
2139 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2140 if (!ptype->dev || ptype->dev == skb->dev)
2141 deliver_skb(skb, ptype, skb->dev);
2142 }
2143 rcu_read_unlock();
2144}
2145
3b582cc1
SH
2146/**
2147 * netif_receive_skb - process receive buffer from network
2148 * @skb: buffer to process
2149 *
2150 * netif_receive_skb() is the main receive data processing function.
2151 * It always succeeds. The buffer may be dropped during processing
2152 * for congestion control or by the protocol layers.
2153 *
2154 * This function may only be called from softirq context and interrupts
2155 * should be enabled.
2156 *
2157 * Return values (usually ignored):
2158 * NET_RX_SUCCESS: no congestion
2159 * NET_RX_DROP: packet was dropped
2160 */
1da177e4
LT
2161int netif_receive_skb(struct sk_buff *skb)
2162{
2163 struct packet_type *ptype, *pt_prev;
f2ccd8fa 2164 struct net_device *orig_dev;
1da177e4 2165 int ret = NET_RX_DROP;
252e3346 2166 __be16 type;
1da177e4
LT
2167
2168 /* if we've gotten here through NAPI, check netpoll */
bea3348e 2169 if (netpoll_receive_skb(skb))
1da177e4
LT
2170 return NET_RX_DROP;
2171
b7aa0bf7 2172 if (!skb->tstamp.tv64)
a61bbcf2 2173 net_timestamp(skb);
1da177e4 2174
c01003c2
PM
2175 if (!skb->iif)
2176 skb->iif = skb->dev->ifindex;
86e65da9 2177
f2ccd8fa 2178 orig_dev = skb_bond(skb);
1da177e4 2179
8f903c70
JV
2180 if (!orig_dev)
2181 return NET_RX_DROP;
2182
1da177e4
LT
2183 __get_cpu_var(netdev_rx_stat).total++;
2184
c1d2bbe1 2185 skb_reset_network_header(skb);
badff6d0 2186 skb_reset_transport_header(skb);
b0e380b1 2187 skb->mac_len = skb->network_header - skb->mac_header;
1da177e4
LT
2188
2189 pt_prev = NULL;
2190
2191 rcu_read_lock();
2192
b9f75f45
EB
2193 /* Don't receive packets in an exiting network namespace */
2194 if (!net_alive(dev_net(skb->dev)))
2195 goto out;
2196
1da177e4
LT
2197#ifdef CONFIG_NET_CLS_ACT
2198 if (skb->tc_verd & TC_NCLS) {
2199 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2200 goto ncls;
2201 }
2202#endif
2203
2204 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2205 if (!ptype->dev || ptype->dev == skb->dev) {
4ec93edb 2206 if (pt_prev)
f2ccd8fa 2207 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
2208 pt_prev = ptype;
2209 }
2210 }
2211
2212#ifdef CONFIG_NET_CLS_ACT
f697c3e8
HX
2213 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2214 if (!skb)
1da177e4 2215 goto out;
1da177e4
LT
2216ncls:
2217#endif
2218
6229e362 2219 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
b863ceb7
PM
2220 if (!skb)
2221 goto out;
2222 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
6229e362 2223 if (!skb)
1da177e4
LT
2224 goto out;
2225
2226 type = skb->protocol;
82d8a867
PE
2227 list_for_each_entry_rcu(ptype,
2228 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1da177e4
LT
2229 if (ptype->type == type &&
2230 (!ptype->dev || ptype->dev == skb->dev)) {
4ec93edb 2231 if (pt_prev)
f2ccd8fa 2232 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
2233 pt_prev = ptype;
2234 }
2235 }
2236
2237 if (pt_prev) {
f2ccd8fa 2238 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4
LT
2239 } else {
2240 kfree_skb(skb);
2241 /* Jamal, now you will not able to escape explaining
2242 * me how you were going to use this. :-)
2243 */
2244 ret = NET_RX_DROP;
2245 }
2246
2247out:
2248 rcu_read_unlock();
2249 return ret;
2250}
2251
bea3348e 2252static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
2253{
2254 int work = 0;
1da177e4
LT
2255 struct softnet_data *queue = &__get_cpu_var(softnet_data);
2256 unsigned long start_time = jiffies;
2257
bea3348e
SH
2258 napi->weight = weight_p;
2259 do {
1da177e4
LT
2260 struct sk_buff *skb;
2261 struct net_device *dev;
2262
2263 local_irq_disable();
2264 skb = __skb_dequeue(&queue->input_pkt_queue);
bea3348e
SH
2265 if (!skb) {
2266 __napi_complete(napi);
2267 local_irq_enable();
2268 break;
2269 }
2270
1da177e4
LT
2271 local_irq_enable();
2272
2273 dev = skb->dev;
2274
2275 netif_receive_skb(skb);
2276
2277 dev_put(dev);
bea3348e 2278 } while (++work < quota && jiffies == start_time);
1da177e4 2279
bea3348e
SH
2280 return work;
2281}
1da177e4 2282
bea3348e
SH
2283/**
2284 * __napi_schedule - schedule for receive
c4ea43c5 2285 * @n: entry to schedule
bea3348e
SH
2286 *
2287 * The entry's receive function will be scheduled to run
2288 */
b5606c2d 2289void __napi_schedule(struct napi_struct *n)
bea3348e
SH
2290{
2291 unsigned long flags;
1da177e4 2292
bea3348e
SH
2293 local_irq_save(flags);
2294 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
2295 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2296 local_irq_restore(flags);
1da177e4 2297}
bea3348e
SH
2298EXPORT_SYMBOL(__napi_schedule);
2299
1da177e4
LT
2300
2301static void net_rx_action(struct softirq_action *h)
2302{
bea3348e 2303 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
1da177e4 2304 unsigned long start_time = jiffies;
51b0bded 2305 int budget = netdev_budget;
53fb95d3
MM
2306 void *have;
2307
1da177e4
LT
2308 local_irq_disable();
2309
bea3348e
SH
2310 while (!list_empty(list)) {
2311 struct napi_struct *n;
2312 int work, weight;
1da177e4 2313
bea3348e
SH
2314 /* If softirq window is exhuasted then punt.
2315 *
2316 * Note that this is a slight policy change from the
2317 * previous NAPI code, which would allow up to 2
2318 * jiffies to pass before breaking out. The test
2319 * used to be "jiffies - start_time > 1".
2320 */
2321 if (unlikely(budget <= 0 || jiffies != start_time))
1da177e4
LT
2322 goto softnet_break;
2323
2324 local_irq_enable();
2325
bea3348e
SH
2326 /* Even though interrupts have been re-enabled, this
2327 * access is safe because interrupts can only add new
2328 * entries to the tail of this list, and only ->poll()
2329 * calls can remove this head entry from the list.
2330 */
2331 n = list_entry(list->next, struct napi_struct, poll_list);
1da177e4 2332
bea3348e
SH
2333 have = netpoll_poll_lock(n);
2334
2335 weight = n->weight;
2336
0a7606c1
DM
2337 /* This NAPI_STATE_SCHED test is for avoiding a race
2338 * with netpoll's poll_napi(). Only the entity which
2339 * obtains the lock and sees NAPI_STATE_SCHED set will
2340 * actually make the ->poll() call. Therefore we avoid
2341 * accidently calling ->poll() when NAPI is not scheduled.
2342 */
2343 work = 0;
2344 if (test_bit(NAPI_STATE_SCHED, &n->state))
2345 work = n->poll(n, weight);
bea3348e
SH
2346
2347 WARN_ON_ONCE(work > weight);
2348
2349 budget -= work;
2350
2351 local_irq_disable();
2352
2353 /* Drivers must not modify the NAPI state if they
2354 * consume the entire weight. In such cases this code
2355 * still "owns" the NAPI instance and therefore can
2356 * move the instance around on the list at-will.
2357 */
fed17f30
DM
2358 if (unlikely(work == weight)) {
2359 if (unlikely(napi_disable_pending(n)))
2360 __napi_complete(n);
2361 else
2362 list_move_tail(&n->poll_list, list);
2363 }
bea3348e
SH
2364
2365 netpoll_poll_unlock(have);
1da177e4
LT
2366 }
2367out:
515e06c4 2368 local_irq_enable();
bea3348e 2369
db217334
CL
2370#ifdef CONFIG_NET_DMA
2371 /*
2372 * There may not be any more sk_buffs coming right now, so push
2373 * any pending DMA copies to hardware
2374 */
d379b01e
DW
2375 if (!cpus_empty(net_dma.channel_mask)) {
2376 int chan_idx;
2377 for_each_cpu_mask(chan_idx, net_dma.channel_mask) {
2378 struct dma_chan *chan = net_dma.channels[chan_idx];
2379 if (chan)
2380 dma_async_memcpy_issue_pending(chan);
2381 }
db217334
CL
2382 }
2383#endif
bea3348e 2384
1da177e4
LT
2385 return;
2386
2387softnet_break:
2388 __get_cpu_var(netdev_rx_stat).time_squeeze++;
2389 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2390 goto out;
2391}
2392
2393static gifconf_func_t * gifconf_list [NPROTO];
2394
2395/**
2396 * register_gifconf - register a SIOCGIF handler
2397 * @family: Address family
2398 * @gifconf: Function handler
2399 *
2400 * Register protocol dependent address dumping routines. The handler
2401 * that is passed must not be freed or reused until it has been replaced
2402 * by another handler.
2403 */
2404int register_gifconf(unsigned int family, gifconf_func_t * gifconf)
2405{
2406 if (family >= NPROTO)
2407 return -EINVAL;
2408 gifconf_list[family] = gifconf;
2409 return 0;
2410}
2411
2412
2413/*
2414 * Map an interface index to its name (SIOCGIFNAME)
2415 */
2416
2417/*
2418 * We need this ioctl for efficient implementation of the
2419 * if_indextoname() function required by the IPv6 API. Without
2420 * it, we would have to search all the interfaces to find a
2421 * match. --pb
2422 */
2423
881d966b 2424static int dev_ifname(struct net *net, struct ifreq __user *arg)
1da177e4
LT
2425{
2426 struct net_device *dev;
2427 struct ifreq ifr;
2428
2429 /*
2430 * Fetch the caller's info block.
2431 */
2432
2433 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
2434 return -EFAULT;
2435
2436 read_lock(&dev_base_lock);
881d966b 2437 dev = __dev_get_by_index(net, ifr.ifr_ifindex);
1da177e4
LT
2438 if (!dev) {
2439 read_unlock(&dev_base_lock);
2440 return -ENODEV;
2441 }
2442
2443 strcpy(ifr.ifr_name, dev->name);
2444 read_unlock(&dev_base_lock);
2445
2446 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
2447 return -EFAULT;
2448 return 0;
2449}
2450
2451/*
2452 * Perform a SIOCGIFCONF call. This structure will change
2453 * size eventually, and there is nothing I can do about it.
2454 * Thus we will need a 'compatibility mode'.
2455 */
2456
881d966b 2457static int dev_ifconf(struct net *net, char __user *arg)
1da177e4
LT
2458{
2459 struct ifconf ifc;
2460 struct net_device *dev;
2461 char __user *pos;
2462 int len;
2463 int total;
2464 int i;
2465
2466 /*
2467 * Fetch the caller's info block.
2468 */
2469
2470 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
2471 return -EFAULT;
2472
2473 pos = ifc.ifc_buf;
2474 len = ifc.ifc_len;
2475
2476 /*
2477 * Loop over the interfaces, and write an info block for each.
2478 */
2479
2480 total = 0;
881d966b 2481 for_each_netdev(net, dev) {
1da177e4
LT
2482 for (i = 0; i < NPROTO; i++) {
2483 if (gifconf_list[i]) {
2484 int done;
2485 if (!pos)
2486 done = gifconf_list[i](dev, NULL, 0);
2487 else
2488 done = gifconf_list[i](dev, pos + total,
2489 len - total);
2490 if (done < 0)
2491 return -EFAULT;
2492 total += done;
2493 }
2494 }
4ec93edb 2495 }
1da177e4
LT
2496
2497 /*
2498 * All done. Write the updated control block back to the caller.
2499 */
2500 ifc.ifc_len = total;
2501
2502 /*
2503 * Both BSD and Solaris return 0 here, so we do too.
2504 */
2505 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
2506}
2507
2508#ifdef CONFIG_PROC_FS
2509/*
2510 * This is invoked by the /proc filesystem handler to display a device
2511 * in detail.
2512 */
7562f876 2513void *dev_seq_start(struct seq_file *seq, loff_t *pos)
9a429c49 2514 __acquires(dev_base_lock)
1da177e4 2515{
e372c414 2516 struct net *net = seq_file_net(seq);
7562f876 2517 loff_t off;
1da177e4 2518 struct net_device *dev;
1da177e4 2519
7562f876
PE
2520 read_lock(&dev_base_lock);
2521 if (!*pos)
2522 return SEQ_START_TOKEN;
1da177e4 2523
7562f876 2524 off = 1;
881d966b 2525 for_each_netdev(net, dev)
7562f876
PE
2526 if (off++ == *pos)
2527 return dev;
1da177e4 2528
7562f876 2529 return NULL;
1da177e4
LT
2530}
2531
2532void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2533{
e372c414 2534 struct net *net = seq_file_net(seq);
1da177e4 2535 ++*pos;
7562f876 2536 return v == SEQ_START_TOKEN ?
881d966b 2537 first_net_device(net) : next_net_device((struct net_device *)v);
1da177e4
LT
2538}
2539
2540void dev_seq_stop(struct seq_file *seq, void *v)
9a429c49 2541 __releases(dev_base_lock)
1da177e4
LT
2542{
2543 read_unlock(&dev_base_lock);
2544}
2545
2546static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
2547{
c45d286e 2548 struct net_device_stats *stats = dev->get_stats(dev);
1da177e4 2549
5a1b5898
RR
2550 seq_printf(seq, "%6s:%8lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
2551 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
2552 dev->name, stats->rx_bytes, stats->rx_packets,
2553 stats->rx_errors,
2554 stats->rx_dropped + stats->rx_missed_errors,
2555 stats->rx_fifo_errors,
2556 stats->rx_length_errors + stats->rx_over_errors +
2557 stats->rx_crc_errors + stats->rx_frame_errors,
2558 stats->rx_compressed, stats->multicast,
2559 stats->tx_bytes, stats->tx_packets,
2560 stats->tx_errors, stats->tx_dropped,
2561 stats->tx_fifo_errors, stats->collisions,
2562 stats->tx_carrier_errors +
2563 stats->tx_aborted_errors +
2564 stats->tx_window_errors +
2565 stats->tx_heartbeat_errors,
2566 stats->tx_compressed);
1da177e4
LT
2567}
2568
2569/*
2570 * Called from the PROCfs module. This now uses the new arbitrary sized
2571 * /proc/net interface to create /proc/net/dev
2572 */
2573static int dev_seq_show(struct seq_file *seq, void *v)
2574{
2575 if (v == SEQ_START_TOKEN)
2576 seq_puts(seq, "Inter-| Receive "
2577 " | Transmit\n"
2578 " face |bytes packets errs drop fifo frame "
2579 "compressed multicast|bytes packets errs "
2580 "drop fifo colls carrier compressed\n");
2581 else
2582 dev_seq_printf_stats(seq, v);
2583 return 0;
2584}
2585
2586static struct netif_rx_stats *softnet_get_online(loff_t *pos)
2587{
2588 struct netif_rx_stats *rc = NULL;
2589
0c0b0aca 2590 while (*pos < nr_cpu_ids)
4ec93edb 2591 if (cpu_online(*pos)) {
1da177e4
LT
2592 rc = &per_cpu(netdev_rx_stat, *pos);
2593 break;
2594 } else
2595 ++*pos;
2596 return rc;
2597}
2598
2599static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
2600{
2601 return softnet_get_online(pos);
2602}
2603
2604static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2605{
2606 ++*pos;
2607 return softnet_get_online(pos);
2608}
2609
2610static void softnet_seq_stop(struct seq_file *seq, void *v)
2611{
2612}
2613
2614static int softnet_seq_show(struct seq_file *seq, void *v)
2615{
2616 struct netif_rx_stats *s = v;
2617
2618 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
31aa02c5 2619 s->total, s->dropped, s->time_squeeze, 0,
c1ebcdb8
SH
2620 0, 0, 0, 0, /* was fastroute */
2621 s->cpu_collision );
1da177e4
LT
2622 return 0;
2623}
2624
f690808e 2625static const struct seq_operations dev_seq_ops = {
1da177e4
LT
2626 .start = dev_seq_start,
2627 .next = dev_seq_next,
2628 .stop = dev_seq_stop,
2629 .show = dev_seq_show,
2630};
2631
2632static int dev_seq_open(struct inode *inode, struct file *file)
2633{
e372c414
DL
2634 return seq_open_net(inode, file, &dev_seq_ops,
2635 sizeof(struct seq_net_private));
1da177e4
LT
2636}
2637
9a32144e 2638static const struct file_operations dev_seq_fops = {
1da177e4
LT
2639 .owner = THIS_MODULE,
2640 .open = dev_seq_open,
2641 .read = seq_read,
2642 .llseek = seq_lseek,
e372c414 2643 .release = seq_release_net,
1da177e4
LT
2644};
2645
f690808e 2646static const struct seq_operations softnet_seq_ops = {
1da177e4
LT
2647 .start = softnet_seq_start,
2648 .next = softnet_seq_next,
2649 .stop = softnet_seq_stop,
2650 .show = softnet_seq_show,
2651};
2652
2653static int softnet_seq_open(struct inode *inode, struct file *file)
2654{
2655 return seq_open(file, &softnet_seq_ops);
2656}
2657
9a32144e 2658static const struct file_operations softnet_seq_fops = {
1da177e4
LT
2659 .owner = THIS_MODULE,
2660 .open = softnet_seq_open,
2661 .read = seq_read,
2662 .llseek = seq_lseek,
2663 .release = seq_release,
2664};
2665
0e1256ff
SH
2666static void *ptype_get_idx(loff_t pos)
2667{
2668 struct packet_type *pt = NULL;
2669 loff_t i = 0;
2670 int t;
2671
2672 list_for_each_entry_rcu(pt, &ptype_all, list) {
2673 if (i == pos)
2674 return pt;
2675 ++i;
2676 }
2677
82d8a867 2678 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
0e1256ff
SH
2679 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
2680 if (i == pos)
2681 return pt;
2682 ++i;
2683 }
2684 }
2685 return NULL;
2686}
2687
2688static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
72348a42 2689 __acquires(RCU)
0e1256ff
SH
2690{
2691 rcu_read_lock();
2692 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
2693}
2694
2695static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2696{
2697 struct packet_type *pt;
2698 struct list_head *nxt;
2699 int hash;
2700
2701 ++*pos;
2702 if (v == SEQ_START_TOKEN)
2703 return ptype_get_idx(0);
2704
2705 pt = v;
2706 nxt = pt->list.next;
2707 if (pt->type == htons(ETH_P_ALL)) {
2708 if (nxt != &ptype_all)
2709 goto found;
2710 hash = 0;
2711 nxt = ptype_base[0].next;
2712 } else
82d8a867 2713 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
0e1256ff
SH
2714
2715 while (nxt == &ptype_base[hash]) {
82d8a867 2716 if (++hash >= PTYPE_HASH_SIZE)
0e1256ff
SH
2717 return NULL;
2718 nxt = ptype_base[hash].next;
2719 }
2720found:
2721 return list_entry(nxt, struct packet_type, list);
2722}
2723
2724static void ptype_seq_stop(struct seq_file *seq, void *v)
72348a42 2725 __releases(RCU)
0e1256ff
SH
2726{
2727 rcu_read_unlock();
2728}
2729
2730static void ptype_seq_decode(struct seq_file *seq, void *sym)
2731{
2732#ifdef CONFIG_KALLSYMS
2733 unsigned long offset = 0, symsize;
2734 const char *symname;
2735 char *modname;
2736 char namebuf[128];
2737
2738 symname = kallsyms_lookup((unsigned long)sym, &symsize, &offset,
2739 &modname, namebuf);
2740
2741 if (symname) {
2742 char *delim = ":";
2743
2744 if (!modname)
2745 modname = delim = "";
2746 seq_printf(seq, "%s%s%s%s+0x%lx", delim, modname, delim,
2747 symname, offset);
2748 return;
2749 }
2750#endif
2751
2752 seq_printf(seq, "[%p]", sym);
2753}
2754
2755static int ptype_seq_show(struct seq_file *seq, void *v)
2756{
2757 struct packet_type *pt = v;
2758
2759 if (v == SEQ_START_TOKEN)
2760 seq_puts(seq, "Type Device Function\n");
c346dca1 2761 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
0e1256ff
SH
2762 if (pt->type == htons(ETH_P_ALL))
2763 seq_puts(seq, "ALL ");
2764 else
2765 seq_printf(seq, "%04x", ntohs(pt->type));
2766
2767 seq_printf(seq, " %-8s ",
2768 pt->dev ? pt->dev->name : "");
2769 ptype_seq_decode(seq, pt->func);
2770 seq_putc(seq, '\n');
2771 }
2772
2773 return 0;
2774}
2775
2776static const struct seq_operations ptype_seq_ops = {
2777 .start = ptype_seq_start,
2778 .next = ptype_seq_next,
2779 .stop = ptype_seq_stop,
2780 .show = ptype_seq_show,
2781};
2782
2783static int ptype_seq_open(struct inode *inode, struct file *file)
2784{
2feb27db
PE
2785 return seq_open_net(inode, file, &ptype_seq_ops,
2786 sizeof(struct seq_net_private));
0e1256ff
SH
2787}
2788
2789static const struct file_operations ptype_seq_fops = {
2790 .owner = THIS_MODULE,
2791 .open = ptype_seq_open,
2792 .read = seq_read,
2793 .llseek = seq_lseek,
2feb27db 2794 .release = seq_release_net,
0e1256ff
SH
2795};
2796
2797
4665079c 2798static int __net_init dev_proc_net_init(struct net *net)
1da177e4
LT
2799{
2800 int rc = -ENOMEM;
2801
881d966b 2802 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
1da177e4 2803 goto out;
881d966b 2804 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
1da177e4 2805 goto out_dev;
881d966b 2806 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
457c4cbc 2807 goto out_softnet;
0e1256ff 2808
881d966b 2809 if (wext_proc_init(net))
457c4cbc 2810 goto out_ptype;
1da177e4
LT
2811 rc = 0;
2812out:
2813 return rc;
457c4cbc 2814out_ptype:
881d966b 2815 proc_net_remove(net, "ptype");
1da177e4 2816out_softnet:
881d966b 2817 proc_net_remove(net, "softnet_stat");
1da177e4 2818out_dev:
881d966b 2819 proc_net_remove(net, "dev");
1da177e4
LT
2820 goto out;
2821}
881d966b 2822
4665079c 2823static void __net_exit dev_proc_net_exit(struct net *net)
881d966b
EB
2824{
2825 wext_proc_exit(net);
2826
2827 proc_net_remove(net, "ptype");
2828 proc_net_remove(net, "softnet_stat");
2829 proc_net_remove(net, "dev");
2830}
2831
022cbae6 2832static struct pernet_operations __net_initdata dev_proc_ops = {
881d966b
EB
2833 .init = dev_proc_net_init,
2834 .exit = dev_proc_net_exit,
2835};
2836
2837static int __init dev_proc_init(void)
2838{
2839 return register_pernet_subsys(&dev_proc_ops);
2840}
1da177e4
LT
2841#else
2842#define dev_proc_init() 0
2843#endif /* CONFIG_PROC_FS */
2844
2845
2846/**
2847 * netdev_set_master - set up master/slave pair
2848 * @slave: slave device
2849 * @master: new master device
2850 *
2851 * Changes the master device of the slave. Pass %NULL to break the
2852 * bonding. The caller must hold the RTNL semaphore. On a failure
2853 * a negative errno code is returned. On success the reference counts
2854 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
2855 * function returns zero.
2856 */
2857int netdev_set_master(struct net_device *slave, struct net_device *master)
2858{
2859 struct net_device *old = slave->master;
2860
2861 ASSERT_RTNL();
2862
2863 if (master) {
2864 if (old)
2865 return -EBUSY;
2866 dev_hold(master);
2867 }
2868
2869 slave->master = master;
4ec93edb 2870
1da177e4
LT
2871 synchronize_net();
2872
2873 if (old)
2874 dev_put(old);
2875
2876 if (master)
2877 slave->flags |= IFF_SLAVE;
2878 else
2879 slave->flags &= ~IFF_SLAVE;
2880
2881 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
2882 return 0;
2883}
2884
dad9b335 2885static int __dev_set_promiscuity(struct net_device *dev, int inc)
1da177e4
LT
2886{
2887 unsigned short old_flags = dev->flags;
2888
24023451
PM
2889 ASSERT_RTNL();
2890
dad9b335
WC
2891 dev->flags |= IFF_PROMISC;
2892 dev->promiscuity += inc;
2893 if (dev->promiscuity == 0) {
2894 /*
2895 * Avoid overflow.
2896 * If inc causes overflow, untouch promisc and return error.
2897 */
2898 if (inc < 0)
2899 dev->flags &= ~IFF_PROMISC;
2900 else {
2901 dev->promiscuity -= inc;
2902 printk(KERN_WARNING "%s: promiscuity touches roof, "
2903 "set promiscuity failed, promiscuity feature "
2904 "of device might be broken.\n", dev->name);
2905 return -EOVERFLOW;
2906 }
2907 }
52609c0b 2908 if (dev->flags != old_flags) {
1da177e4
LT
2909 printk(KERN_INFO "device %s %s promiscuous mode\n",
2910 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4ec93edb 2911 "left");
7759db82
KHK
2912 if (audit_enabled)
2913 audit_log(current->audit_context, GFP_ATOMIC,
2914 AUDIT_ANOM_PROMISCUOUS,
2915 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
2916 dev->name, (dev->flags & IFF_PROMISC),
2917 (old_flags & IFF_PROMISC),
2918 audit_get_loginuid(current),
2919 current->uid, current->gid,
2920 audit_get_sessionid(current));
24023451
PM
2921
2922 if (dev->change_rx_flags)
2923 dev->change_rx_flags(dev, IFF_PROMISC);
1da177e4 2924 }
dad9b335 2925 return 0;
1da177e4
LT
2926}
2927
4417da66
PM
2928/**
2929 * dev_set_promiscuity - update promiscuity count on a device
2930 * @dev: device
2931 * @inc: modifier
2932 *
2933 * Add or remove promiscuity from a device. While the count in the device
2934 * remains above zero the interface remains promiscuous. Once it hits zero
2935 * the device reverts back to normal filtering operation. A negative inc
2936 * value is used to drop promiscuity on the device.
dad9b335 2937 * Return 0 if successful or a negative errno code on error.
4417da66 2938 */
dad9b335 2939int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66
PM
2940{
2941 unsigned short old_flags = dev->flags;
dad9b335 2942 int err;
4417da66 2943
dad9b335 2944 err = __dev_set_promiscuity(dev, inc);
4b5a698e 2945 if (err < 0)
dad9b335 2946 return err;
4417da66
PM
2947 if (dev->flags != old_flags)
2948 dev_set_rx_mode(dev);
dad9b335 2949 return err;
4417da66
PM
2950}
2951
1da177e4
LT
2952/**
2953 * dev_set_allmulti - update allmulti count on a device
2954 * @dev: device
2955 * @inc: modifier
2956 *
2957 * Add or remove reception of all multicast frames to a device. While the
2958 * count in the device remains above zero the interface remains listening
2959 * to all interfaces. Once it hits zero the device reverts back to normal
2960 * filtering operation. A negative @inc value is used to drop the counter
2961 * when releasing a resource needing all multicasts.
dad9b335 2962 * Return 0 if successful or a negative errno code on error.
1da177e4
LT
2963 */
2964
dad9b335 2965int dev_set_allmulti(struct net_device *dev, int inc)
1da177e4
LT
2966{
2967 unsigned short old_flags = dev->flags;
2968
24023451
PM
2969 ASSERT_RTNL();
2970
1da177e4 2971 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
2972 dev->allmulti += inc;
2973 if (dev->allmulti == 0) {
2974 /*
2975 * Avoid overflow.
2976 * If inc causes overflow, untouch allmulti and return error.
2977 */
2978 if (inc < 0)
2979 dev->flags &= ~IFF_ALLMULTI;
2980 else {
2981 dev->allmulti -= inc;
2982 printk(KERN_WARNING "%s: allmulti touches roof, "
2983 "set allmulti failed, allmulti feature of "
2984 "device might be broken.\n", dev->name);
2985 return -EOVERFLOW;
2986 }
2987 }
24023451
PM
2988 if (dev->flags ^ old_flags) {
2989 if (dev->change_rx_flags)
2990 dev->change_rx_flags(dev, IFF_ALLMULTI);
4417da66 2991 dev_set_rx_mode(dev);
24023451 2992 }
dad9b335 2993 return 0;
4417da66
PM
2994}
2995
2996/*
2997 * Upload unicast and multicast address lists to device and
2998 * configure RX filtering. When the device doesn't support unicast
53ccaae1 2999 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
3000 * are present.
3001 */
3002void __dev_set_rx_mode(struct net_device *dev)
3003{
3004 /* dev_open will call this function so the list will stay sane. */
3005 if (!(dev->flags&IFF_UP))
3006 return;
3007
3008 if (!netif_device_present(dev))
40b77c94 3009 return;
4417da66
PM
3010
3011 if (dev->set_rx_mode)
3012 dev->set_rx_mode(dev);
3013 else {
3014 /* Unicast addresses changes may only happen under the rtnl,
3015 * therefore calling __dev_set_promiscuity here is safe.
3016 */
3017 if (dev->uc_count > 0 && !dev->uc_promisc) {
3018 __dev_set_promiscuity(dev, 1);
3019 dev->uc_promisc = 1;
3020 } else if (dev->uc_count == 0 && dev->uc_promisc) {
3021 __dev_set_promiscuity(dev, -1);
3022 dev->uc_promisc = 0;
3023 }
3024
3025 if (dev->set_multicast_list)
3026 dev->set_multicast_list(dev);
3027 }
3028}
3029
3030void dev_set_rx_mode(struct net_device *dev)
3031{
b9e40857 3032 netif_addr_lock_bh(dev);
4417da66 3033 __dev_set_rx_mode(dev);
b9e40857 3034 netif_addr_unlock_bh(dev);
1da177e4
LT
3035}
3036
61cbc2fc
PM
3037int __dev_addr_delete(struct dev_addr_list **list, int *count,
3038 void *addr, int alen, int glbl)
bf742482
PM
3039{
3040 struct dev_addr_list *da;
3041
3042 for (; (da = *list) != NULL; list = &da->next) {
3043 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3044 alen == da->da_addrlen) {
3045 if (glbl) {
3046 int old_glbl = da->da_gusers;
3047 da->da_gusers = 0;
3048 if (old_glbl == 0)
3049 break;
3050 }
3051 if (--da->da_users)
3052 return 0;
3053
3054 *list = da->next;
3055 kfree(da);
61cbc2fc 3056 (*count)--;
bf742482
PM
3057 return 0;
3058 }
3059 }
3060 return -ENOENT;
3061}
3062
61cbc2fc
PM
3063int __dev_addr_add(struct dev_addr_list **list, int *count,
3064 void *addr, int alen, int glbl)
bf742482
PM
3065{
3066 struct dev_addr_list *da;
3067
3068 for (da = *list; da != NULL; da = da->next) {
3069 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
3070 da->da_addrlen == alen) {
3071 if (glbl) {
3072 int old_glbl = da->da_gusers;
3073 da->da_gusers = 1;
3074 if (old_glbl)
3075 return 0;
3076 }
3077 da->da_users++;
3078 return 0;
3079 }
3080 }
3081
12aa343a 3082 da = kzalloc(sizeof(*da), GFP_ATOMIC);
bf742482
PM
3083 if (da == NULL)
3084 return -ENOMEM;
3085 memcpy(da->da_addr, addr, alen);
3086 da->da_addrlen = alen;
3087 da->da_users = 1;
3088 da->da_gusers = glbl ? 1 : 0;
3089 da->next = *list;
3090 *list = da;
61cbc2fc 3091 (*count)++;
bf742482
PM
3092 return 0;
3093}
3094
4417da66
PM
3095/**
3096 * dev_unicast_delete - Release secondary unicast address.
3097 * @dev: device
0ed72ec4
RD
3098 * @addr: address to delete
3099 * @alen: length of @addr
4417da66
PM
3100 *
3101 * Release reference to a secondary unicast address and remove it
0ed72ec4 3102 * from the device if the reference count drops to zero.
4417da66
PM
3103 *
3104 * The caller must hold the rtnl_mutex.
3105 */
3106int dev_unicast_delete(struct net_device *dev, void *addr, int alen)
3107{
3108 int err;
3109
3110 ASSERT_RTNL();
3111
b9e40857 3112 netif_addr_lock_bh(dev);
61cbc2fc
PM
3113 err = __dev_addr_delete(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3114 if (!err)
4417da66 3115 __dev_set_rx_mode(dev);
b9e40857 3116 netif_addr_unlock_bh(dev);
4417da66
PM
3117 return err;
3118}
3119EXPORT_SYMBOL(dev_unicast_delete);
3120
3121/**
3122 * dev_unicast_add - add a secondary unicast address
3123 * @dev: device
5dbaec5d 3124 * @addr: address to add
0ed72ec4 3125 * @alen: length of @addr
4417da66
PM
3126 *
3127 * Add a secondary unicast address to the device or increase
3128 * the reference count if it already exists.
3129 *
3130 * The caller must hold the rtnl_mutex.
3131 */
3132int dev_unicast_add(struct net_device *dev, void *addr, int alen)
3133{
3134 int err;
3135
3136 ASSERT_RTNL();
3137
b9e40857 3138 netif_addr_lock_bh(dev);
61cbc2fc
PM
3139 err = __dev_addr_add(&dev->uc_list, &dev->uc_count, addr, alen, 0);
3140 if (!err)
4417da66 3141 __dev_set_rx_mode(dev);
b9e40857 3142 netif_addr_unlock_bh(dev);
4417da66
PM
3143 return err;
3144}
3145EXPORT_SYMBOL(dev_unicast_add);
3146
e83a2ea8
CL
3147int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
3148 struct dev_addr_list **from, int *from_count)
3149{
3150 struct dev_addr_list *da, *next;
3151 int err = 0;
3152
3153 da = *from;
3154 while (da != NULL) {
3155 next = da->next;
3156 if (!da->da_synced) {
3157 err = __dev_addr_add(to, to_count,
3158 da->da_addr, da->da_addrlen, 0);
3159 if (err < 0)
3160 break;
3161 da->da_synced = 1;
3162 da->da_users++;
3163 } else if (da->da_users == 1) {
3164 __dev_addr_delete(to, to_count,
3165 da->da_addr, da->da_addrlen, 0);
3166 __dev_addr_delete(from, from_count,
3167 da->da_addr, da->da_addrlen, 0);
3168 }
3169 da = next;
3170 }
3171 return err;
3172}
3173
3174void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
3175 struct dev_addr_list **from, int *from_count)
3176{
3177 struct dev_addr_list *da, *next;
3178
3179 da = *from;
3180 while (da != NULL) {
3181 next = da->next;
3182 if (da->da_synced) {
3183 __dev_addr_delete(to, to_count,
3184 da->da_addr, da->da_addrlen, 0);
3185 da->da_synced = 0;
3186 __dev_addr_delete(from, from_count,
3187 da->da_addr, da->da_addrlen, 0);
3188 }
3189 da = next;
3190 }
3191}
3192
3193/**
3194 * dev_unicast_sync - Synchronize device's unicast list to another device
3195 * @to: destination device
3196 * @from: source device
3197 *
3198 * Add newly added addresses to the destination device and release
3199 * addresses that have no users left. The source device must be
3200 * locked by netif_tx_lock_bh.
3201 *
3202 * This function is intended to be called from the dev->set_rx_mode
3203 * function of layered software devices.
3204 */
3205int dev_unicast_sync(struct net_device *to, struct net_device *from)
3206{
3207 int err = 0;
3208
b9e40857 3209 netif_addr_lock_bh(to);
e83a2ea8
CL
3210 err = __dev_addr_sync(&to->uc_list, &to->uc_count,
3211 &from->uc_list, &from->uc_count);
3212 if (!err)
3213 __dev_set_rx_mode(to);
b9e40857 3214 netif_addr_unlock_bh(to);
e83a2ea8
CL
3215 return err;
3216}
3217EXPORT_SYMBOL(dev_unicast_sync);
3218
3219/**
bc2cda1e 3220 * dev_unicast_unsync - Remove synchronized addresses from the destination device
e83a2ea8
CL
3221 * @to: destination device
3222 * @from: source device
3223 *
3224 * Remove all addresses that were added to the destination device by
3225 * dev_unicast_sync(). This function is intended to be called from the
3226 * dev->stop function of layered software devices.
3227 */
3228void dev_unicast_unsync(struct net_device *to, struct net_device *from)
3229{
b9e40857 3230 netif_addr_lock_bh(from);
e308a5d8 3231 netif_addr_lock(to);
e83a2ea8
CL
3232
3233 __dev_addr_unsync(&to->uc_list, &to->uc_count,
3234 &from->uc_list, &from->uc_count);
3235 __dev_set_rx_mode(to);
3236
e308a5d8 3237 netif_addr_unlock(to);
b9e40857 3238 netif_addr_unlock_bh(from);
e83a2ea8
CL
3239}
3240EXPORT_SYMBOL(dev_unicast_unsync);
3241
12972621
DC
3242static void __dev_addr_discard(struct dev_addr_list **list)
3243{
3244 struct dev_addr_list *tmp;
3245
3246 while (*list != NULL) {
3247 tmp = *list;
3248 *list = tmp->next;
3249 if (tmp->da_users > tmp->da_gusers)
3250 printk("__dev_addr_discard: address leakage! "
3251 "da_users=%d\n", tmp->da_users);
3252 kfree(tmp);
3253 }
3254}
3255
26cc2522 3256static void dev_addr_discard(struct net_device *dev)
4417da66 3257{
b9e40857 3258 netif_addr_lock_bh(dev);
26cc2522 3259
4417da66
PM
3260 __dev_addr_discard(&dev->uc_list);
3261 dev->uc_count = 0;
4417da66 3262
456ad75c
DC
3263 __dev_addr_discard(&dev->mc_list);
3264 dev->mc_count = 0;
26cc2522 3265
b9e40857 3266 netif_addr_unlock_bh(dev);
456ad75c
DC
3267}
3268
1da177e4
LT
3269unsigned dev_get_flags(const struct net_device *dev)
3270{
3271 unsigned flags;
3272
3273 flags = (dev->flags & ~(IFF_PROMISC |
3274 IFF_ALLMULTI |
b00055aa
SR
3275 IFF_RUNNING |
3276 IFF_LOWER_UP |
3277 IFF_DORMANT)) |
1da177e4
LT
3278 (dev->gflags & (IFF_PROMISC |
3279 IFF_ALLMULTI));
3280
b00055aa
SR
3281 if (netif_running(dev)) {
3282 if (netif_oper_up(dev))
3283 flags |= IFF_RUNNING;
3284 if (netif_carrier_ok(dev))
3285 flags |= IFF_LOWER_UP;
3286 if (netif_dormant(dev))
3287 flags |= IFF_DORMANT;
3288 }
1da177e4
LT
3289
3290 return flags;
3291}
3292
3293int dev_change_flags(struct net_device *dev, unsigned flags)
3294{
7c355f53 3295 int ret, changes;
1da177e4
LT
3296 int old_flags = dev->flags;
3297
24023451
PM
3298 ASSERT_RTNL();
3299
1da177e4
LT
3300 /*
3301 * Set the flags on our device.
3302 */
3303
3304 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
3305 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
3306 IFF_AUTOMEDIA)) |
3307 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
3308 IFF_ALLMULTI));
3309
3310 /*
3311 * Load in the correct multicast list now the flags have changed.
3312 */
3313
0e91796e 3314 if (dev->change_rx_flags && (old_flags ^ flags) & IFF_MULTICAST)
24023451
PM
3315 dev->change_rx_flags(dev, IFF_MULTICAST);
3316
4417da66 3317 dev_set_rx_mode(dev);
1da177e4
LT
3318
3319 /*
3320 * Have we downed the interface. We handle IFF_UP ourselves
3321 * according to user attempts to set it, rather than blindly
3322 * setting it.
3323 */
3324
3325 ret = 0;
3326 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
3327 ret = ((old_flags & IFF_UP) ? dev_close : dev_open)(dev);
3328
3329 if (!ret)
4417da66 3330 dev_set_rx_mode(dev);
1da177e4
LT
3331 }
3332
3333 if (dev->flags & IFF_UP &&
3334 ((old_flags ^ dev->flags) &~ (IFF_UP | IFF_PROMISC | IFF_ALLMULTI |
3335 IFF_VOLATILE)))
056925ab 3336 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1da177e4
LT
3337
3338 if ((flags ^ dev->gflags) & IFF_PROMISC) {
3339 int inc = (flags & IFF_PROMISC) ? +1 : -1;
3340 dev->gflags ^= IFF_PROMISC;
3341 dev_set_promiscuity(dev, inc);
3342 }
3343
3344 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
3345 is important. Some (broken) drivers set IFF_PROMISC, when
3346 IFF_ALLMULTI is requested not asking us and not reporting.
3347 */
3348 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
3349 int inc = (flags & IFF_ALLMULTI) ? +1 : -1;
3350 dev->gflags ^= IFF_ALLMULTI;
3351 dev_set_allmulti(dev, inc);
3352 }
3353
7c355f53
TG
3354 /* Exclude state transition flags, already notified */
3355 changes = (old_flags ^ dev->flags) & ~(IFF_UP | IFF_RUNNING);
3356 if (changes)
3357 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
1da177e4
LT
3358
3359 return ret;
3360}
3361
3362int dev_set_mtu(struct net_device *dev, int new_mtu)
3363{
3364 int err;
3365
3366 if (new_mtu == dev->mtu)
3367 return 0;
3368
3369 /* MTU must be positive. */
3370 if (new_mtu < 0)
3371 return -EINVAL;
3372
3373 if (!netif_device_present(dev))
3374 return -ENODEV;
3375
3376 err = 0;
3377 if (dev->change_mtu)
3378 err = dev->change_mtu(dev, new_mtu);
3379 else
3380 dev->mtu = new_mtu;
3381 if (!err && dev->flags & IFF_UP)
056925ab 3382 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
1da177e4
LT
3383 return err;
3384}
3385
3386int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
3387{
3388 int err;
3389
3390 if (!dev->set_mac_address)
3391 return -EOPNOTSUPP;
3392 if (sa->sa_family != dev->type)
3393 return -EINVAL;
3394 if (!netif_device_present(dev))
3395 return -ENODEV;
3396 err = dev->set_mac_address(dev, sa);
3397 if (!err)
056925ab 3398 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
1da177e4
LT
3399 return err;
3400}
3401
3402/*
14e3e079 3403 * Perform the SIOCxIFxxx calls, inside read_lock(dev_base_lock)
1da177e4 3404 */
14e3e079 3405static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
1da177e4
LT
3406{
3407 int err;
881d966b 3408 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
1da177e4
LT
3409
3410 if (!dev)
3411 return -ENODEV;
3412
3413 switch (cmd) {
3414 case SIOCGIFFLAGS: /* Get interface flags */
3415 ifr->ifr_flags = dev_get_flags(dev);
3416 return 0;
3417
1da177e4
LT
3418 case SIOCGIFMETRIC: /* Get the metric on the interface
3419 (currently unused) */
3420 ifr->ifr_metric = 0;
3421 return 0;
3422
1da177e4
LT
3423 case SIOCGIFMTU: /* Get the MTU of a device */
3424 ifr->ifr_mtu = dev->mtu;
3425 return 0;
3426
1da177e4
LT
3427 case SIOCGIFHWADDR:
3428 if (!dev->addr_len)
3429 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
3430 else
3431 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
3432 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
3433 ifr->ifr_hwaddr.sa_family = dev->type;
3434 return 0;
3435
14e3e079
JG
3436 case SIOCGIFSLAVE:
3437 err = -EINVAL;
3438 break;
3439
3440 case SIOCGIFMAP:
3441 ifr->ifr_map.mem_start = dev->mem_start;
3442 ifr->ifr_map.mem_end = dev->mem_end;
3443 ifr->ifr_map.base_addr = dev->base_addr;
3444 ifr->ifr_map.irq = dev->irq;
3445 ifr->ifr_map.dma = dev->dma;
3446 ifr->ifr_map.port = dev->if_port;
3447 return 0;
3448
3449 case SIOCGIFINDEX:
3450 ifr->ifr_ifindex = dev->ifindex;
3451 return 0;
3452
3453 case SIOCGIFTXQLEN:
3454 ifr->ifr_qlen = dev->tx_queue_len;
3455 return 0;
3456
3457 default:
3458 /* dev_ioctl() should ensure this case
3459 * is never reached
3460 */
3461 WARN_ON(1);
3462 err = -EINVAL;
3463 break;
3464
3465 }
3466 return err;
3467}
3468
3469/*
3470 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
3471 */
3472static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
3473{
3474 int err;
3475 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
3476
3477 if (!dev)
3478 return -ENODEV;
3479
3480 switch (cmd) {
3481 case SIOCSIFFLAGS: /* Set interface flags */
3482 return dev_change_flags(dev, ifr->ifr_flags);
3483
3484 case SIOCSIFMETRIC: /* Set the metric on the interface
3485 (currently unused) */
3486 return -EOPNOTSUPP;
3487
3488 case SIOCSIFMTU: /* Set the MTU of a device */
3489 return dev_set_mtu(dev, ifr->ifr_mtu);
3490
1da177e4
LT
3491 case SIOCSIFHWADDR:
3492 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
3493
3494 case SIOCSIFHWBROADCAST:
3495 if (ifr->ifr_hwaddr.sa_family != dev->type)
3496 return -EINVAL;
3497 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
3498 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
056925ab 3499 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
1da177e4
LT
3500 return 0;
3501
1da177e4
LT
3502 case SIOCSIFMAP:
3503 if (dev->set_config) {
3504 if (!netif_device_present(dev))
3505 return -ENODEV;
3506 return dev->set_config(dev, &ifr->ifr_map);
3507 }
3508 return -EOPNOTSUPP;
3509
3510 case SIOCADDMULTI:
61ee6bd4 3511 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
1da177e4
LT
3512 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3513 return -EINVAL;
3514 if (!netif_device_present(dev))
3515 return -ENODEV;
3516 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
3517 dev->addr_len, 1);
3518
3519 case SIOCDELMULTI:
61ee6bd4 3520 if ((!dev->set_multicast_list && !dev->set_rx_mode) ||
1da177e4
LT
3521 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
3522 return -EINVAL;
3523 if (!netif_device_present(dev))
3524 return -ENODEV;
3525 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
3526 dev->addr_len, 1);
3527
1da177e4
LT
3528 case SIOCSIFTXQLEN:
3529 if (ifr->ifr_qlen < 0)
3530 return -EINVAL;
3531 dev->tx_queue_len = ifr->ifr_qlen;
3532 return 0;
3533
3534 case SIOCSIFNAME:
3535 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
3536 return dev_change_name(dev, ifr->ifr_newname);
3537
3538 /*
3539 * Unknown or private ioctl
3540 */
3541
3542 default:
3543 if ((cmd >= SIOCDEVPRIVATE &&
3544 cmd <= SIOCDEVPRIVATE + 15) ||
3545 cmd == SIOCBONDENSLAVE ||
3546 cmd == SIOCBONDRELEASE ||
3547 cmd == SIOCBONDSETHWADDR ||
3548 cmd == SIOCBONDSLAVEINFOQUERY ||
3549 cmd == SIOCBONDINFOQUERY ||
3550 cmd == SIOCBONDCHANGEACTIVE ||
3551 cmd == SIOCGMIIPHY ||
3552 cmd == SIOCGMIIREG ||
3553 cmd == SIOCSMIIREG ||
3554 cmd == SIOCBRADDIF ||
3555 cmd == SIOCBRDELIF ||
3556 cmd == SIOCWANDEV) {
3557 err = -EOPNOTSUPP;
3558 if (dev->do_ioctl) {
3559 if (netif_device_present(dev))
3560 err = dev->do_ioctl(dev, ifr,
3561 cmd);
3562 else
3563 err = -ENODEV;
3564 }
3565 } else
3566 err = -EINVAL;
3567
3568 }
3569 return err;
3570}
3571
3572/*
3573 * This function handles all "interface"-type I/O control requests. The actual
3574 * 'doing' part of this is dev_ifsioc above.
3575 */
3576
3577/**
3578 * dev_ioctl - network device ioctl
c4ea43c5 3579 * @net: the applicable net namespace
1da177e4
LT
3580 * @cmd: command to issue
3581 * @arg: pointer to a struct ifreq in user space
3582 *
3583 * Issue ioctl functions to devices. This is normally called by the
3584 * user space syscall interfaces but can sometimes be useful for
3585 * other purposes. The return value is the return from the syscall if
3586 * positive or a negative errno code on error.
3587 */
3588
881d966b 3589int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1da177e4
LT
3590{
3591 struct ifreq ifr;
3592 int ret;
3593 char *colon;
3594
3595 /* One special case: SIOCGIFCONF takes ifconf argument
3596 and requires shared lock, because it sleeps writing
3597 to user space.
3598 */
3599
3600 if (cmd == SIOCGIFCONF) {
6756ae4b 3601 rtnl_lock();
881d966b 3602 ret = dev_ifconf(net, (char __user *) arg);
6756ae4b 3603 rtnl_unlock();
1da177e4
LT
3604 return ret;
3605 }
3606 if (cmd == SIOCGIFNAME)
881d966b 3607 return dev_ifname(net, (struct ifreq __user *)arg);
1da177e4
LT
3608
3609 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3610 return -EFAULT;
3611
3612 ifr.ifr_name[IFNAMSIZ-1] = 0;
3613
3614 colon = strchr(ifr.ifr_name, ':');
3615 if (colon)
3616 *colon = 0;
3617
3618 /*
3619 * See which interface the caller is talking about.
3620 */
3621
3622 switch (cmd) {
3623 /*
3624 * These ioctl calls:
3625 * - can be done by all.
3626 * - atomic and do not require locking.
3627 * - return a value
3628 */
3629 case SIOCGIFFLAGS:
3630 case SIOCGIFMETRIC:
3631 case SIOCGIFMTU:
3632 case SIOCGIFHWADDR:
3633 case SIOCGIFSLAVE:
3634 case SIOCGIFMAP:
3635 case SIOCGIFINDEX:
3636 case SIOCGIFTXQLEN:
881d966b 3637 dev_load(net, ifr.ifr_name);
1da177e4 3638 read_lock(&dev_base_lock);
14e3e079 3639 ret = dev_ifsioc_locked(net, &ifr, cmd);
1da177e4
LT
3640 read_unlock(&dev_base_lock);
3641 if (!ret) {
3642 if (colon)
3643 *colon = ':';
3644 if (copy_to_user(arg, &ifr,
3645 sizeof(struct ifreq)))
3646 ret = -EFAULT;
3647 }
3648 return ret;
3649
3650 case SIOCETHTOOL:
881d966b 3651 dev_load(net, ifr.ifr_name);
1da177e4 3652 rtnl_lock();
881d966b 3653 ret = dev_ethtool(net, &ifr);
1da177e4
LT
3654 rtnl_unlock();
3655 if (!ret) {
3656 if (colon)
3657 *colon = ':';
3658 if (copy_to_user(arg, &ifr,
3659 sizeof(struct ifreq)))
3660 ret = -EFAULT;
3661 }
3662 return ret;
3663
3664 /*
3665 * These ioctl calls:
3666 * - require superuser power.
3667 * - require strict serialization.
3668 * - return a value
3669 */
3670 case SIOCGMIIPHY:
3671 case SIOCGMIIREG:
3672 case SIOCSIFNAME:
3673 if (!capable(CAP_NET_ADMIN))
3674 return -EPERM;
881d966b 3675 dev_load(net, ifr.ifr_name);
1da177e4 3676 rtnl_lock();
881d966b 3677 ret = dev_ifsioc(net, &ifr, cmd);
1da177e4
LT
3678 rtnl_unlock();
3679 if (!ret) {
3680 if (colon)
3681 *colon = ':';
3682 if (copy_to_user(arg, &ifr,
3683 sizeof(struct ifreq)))
3684 ret = -EFAULT;
3685 }
3686 return ret;
3687
3688 /*
3689 * These ioctl calls:
3690 * - require superuser power.
3691 * - require strict serialization.
3692 * - do not return a value
3693 */
3694 case SIOCSIFFLAGS:
3695 case SIOCSIFMETRIC:
3696 case SIOCSIFMTU:
3697 case SIOCSIFMAP:
3698 case SIOCSIFHWADDR:
3699 case SIOCSIFSLAVE:
3700 case SIOCADDMULTI:
3701 case SIOCDELMULTI:
3702 case SIOCSIFHWBROADCAST:
3703 case SIOCSIFTXQLEN:
3704 case SIOCSMIIREG:
3705 case SIOCBONDENSLAVE:
3706 case SIOCBONDRELEASE:
3707 case SIOCBONDSETHWADDR:
1da177e4
LT
3708 case SIOCBONDCHANGEACTIVE:
3709 case SIOCBRADDIF:
3710 case SIOCBRDELIF:
3711 if (!capable(CAP_NET_ADMIN))
3712 return -EPERM;
cabcac0b
TG
3713 /* fall through */
3714 case SIOCBONDSLAVEINFOQUERY:
3715 case SIOCBONDINFOQUERY:
881d966b 3716 dev_load(net, ifr.ifr_name);
1da177e4 3717 rtnl_lock();
881d966b 3718 ret = dev_ifsioc(net, &ifr, cmd);
1da177e4
LT
3719 rtnl_unlock();
3720 return ret;
3721
3722 case SIOCGIFMEM:
3723 /* Get the per device memory space. We can add this but
3724 * currently do not support it */
3725 case SIOCSIFMEM:
3726 /* Set the per device memory buffer space.
3727 * Not applicable in our case */
3728 case SIOCSIFLINK:
3729 return -EINVAL;
3730
3731 /*
3732 * Unknown or private ioctl.
3733 */
3734 default:
3735 if (cmd == SIOCWANDEV ||
3736 (cmd >= SIOCDEVPRIVATE &&
3737 cmd <= SIOCDEVPRIVATE + 15)) {
881d966b 3738 dev_load(net, ifr.ifr_name);
1da177e4 3739 rtnl_lock();
881d966b 3740 ret = dev_ifsioc(net, &ifr, cmd);
1da177e4
LT
3741 rtnl_unlock();
3742 if (!ret && copy_to_user(arg, &ifr,
3743 sizeof(struct ifreq)))
3744 ret = -EFAULT;
3745 return ret;
3746 }
1da177e4 3747 /* Take care of Wireless Extensions */
295f4a1f 3748 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
881d966b 3749 return wext_handle_ioctl(net, &ifr, cmd, arg);
1da177e4
LT
3750 return -EINVAL;
3751 }
3752}
3753
3754
3755/**
3756 * dev_new_index - allocate an ifindex
c4ea43c5 3757 * @net: the applicable net namespace
1da177e4
LT
3758 *
3759 * Returns a suitable unique value for a new device interface
3760 * number. The caller must hold the rtnl semaphore or the
3761 * dev_base_lock to be sure it remains unique.
3762 */
881d966b 3763static int dev_new_index(struct net *net)
1da177e4
LT
3764{
3765 static int ifindex;
3766 for (;;) {
3767 if (++ifindex <= 0)
3768 ifindex = 1;
881d966b 3769 if (!__dev_get_by_index(net, ifindex))
1da177e4
LT
3770 return ifindex;
3771 }
3772}
3773
1da177e4
LT
3774/* Delayed registration/unregisteration */
3775static DEFINE_SPINLOCK(net_todo_list_lock);
3b5b34fd 3776static LIST_HEAD(net_todo_list);
1da177e4 3777
6f05f629 3778static void net_set_todo(struct net_device *dev)
1da177e4
LT
3779{
3780 spin_lock(&net_todo_list_lock);
3781 list_add_tail(&dev->todo_list, &net_todo_list);
3782 spin_unlock(&net_todo_list_lock);
3783}
3784
93ee31f1
DL
3785static void rollback_registered(struct net_device *dev)
3786{
3787 BUG_ON(dev_boot_phase);
3788 ASSERT_RTNL();
3789
3790 /* Some devices call without registering for initialization unwind. */
3791 if (dev->reg_state == NETREG_UNINITIALIZED) {
3792 printk(KERN_DEBUG "unregister_netdevice: device %s/%p never "
3793 "was registered\n", dev->name, dev);
3794
3795 WARN_ON(1);
3796 return;
3797 }
3798
3799 BUG_ON(dev->reg_state != NETREG_REGISTERED);
3800
3801 /* If device is running, close it first. */
3802 dev_close(dev);
3803
3804 /* And unlink it from device chain. */
3805 unlist_netdevice(dev);
3806
3807 dev->reg_state = NETREG_UNREGISTERING;
3808
3809 synchronize_net();
3810
3811 /* Shutdown queueing discipline. */
3812 dev_shutdown(dev);
3813
3814
3815 /* Notify protocols, that we are about to destroy
3816 this device. They should clean all the things.
3817 */
3818 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
3819
3820 /*
3821 * Flush the unicast and multicast chains
3822 */
3823 dev_addr_discard(dev);
3824
3825 if (dev->uninit)
3826 dev->uninit(dev);
3827
3828 /* Notifier chain MUST detach us from master device. */
3829 BUG_TRAP(!dev->master);
3830
3831 /* Remove entries from kobject tree */
3832 netdev_unregister_kobject(dev);
3833
3834 synchronize_net();
3835
3836 dev_put(dev);
3837}
3838
e8a0464c
DM
3839static void __netdev_init_queue_locks_one(struct net_device *dev,
3840 struct netdev_queue *dev_queue,
3841 void *_unused)
c773e847
DM
3842{
3843 spin_lock_init(&dev_queue->_xmit_lock);
3844 netdev_set_lockdep_class(&dev_queue->_xmit_lock, dev->type);
3845 dev_queue->xmit_lock_owner = -1;
3846}
3847
3848static void netdev_init_queue_locks(struct net_device *dev)
3849{
e8a0464c
DM
3850 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
3851 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
c773e847
DM
3852}
3853
1da177e4
LT
3854/**
3855 * register_netdevice - register a network device
3856 * @dev: device to register
3857 *
3858 * Take a completed network device structure and add it to the kernel
3859 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
3860 * chain. 0 is returned on success. A negative errno code is returned
3861 * on a failure to set up the device, or if the name is a duplicate.
3862 *
3863 * Callers must hold the rtnl semaphore. You may want
3864 * register_netdev() instead of this.
3865 *
3866 * BUGS:
3867 * The locking appears insufficient to guarantee two parallel registers
3868 * will not get the same name.
3869 */
3870
3871int register_netdevice(struct net_device *dev)
3872{
3873 struct hlist_head *head;
3874 struct hlist_node *p;
3875 int ret;
881d966b 3876 struct net *net;
1da177e4
LT
3877
3878 BUG_ON(dev_boot_phase);
3879 ASSERT_RTNL();
3880
b17a7c17
SH
3881 might_sleep();
3882
1da177e4
LT
3883 /* When net_device's are persistent, this will be fatal. */
3884 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
c346dca1
YH
3885 BUG_ON(!dev_net(dev));
3886 net = dev_net(dev);
1da177e4 3887
f1f28aa3 3888 spin_lock_init(&dev->addr_list_lock);
ead81cc5
DM
3889 spin_lock_init(&dev->qdisc_list_lock);
3890 INIT_LIST_HEAD(&dev->qdisc_list);
c773e847 3891 netdev_init_queue_locks(dev);
1da177e4 3892
1da177e4
LT
3893 dev->iflink = -1;
3894
3895 /* Init, if this function is available */
3896 if (dev->init) {
3897 ret = dev->init(dev);
3898 if (ret) {
3899 if (ret > 0)
3900 ret = -EIO;
90833aa4 3901 goto out;
1da177e4
LT
3902 }
3903 }
4ec93edb 3904
1da177e4
LT
3905 if (!dev_valid_name(dev->name)) {
3906 ret = -EINVAL;
7ce1b0ed 3907 goto err_uninit;
1da177e4
LT
3908 }
3909
881d966b 3910 dev->ifindex = dev_new_index(net);
1da177e4
LT
3911 if (dev->iflink == -1)
3912 dev->iflink = dev->ifindex;
3913
3914 /* Check for existence of name */
881d966b 3915 head = dev_name_hash(net, dev->name);
1da177e4
LT
3916 hlist_for_each(p, head) {
3917 struct net_device *d
3918 = hlist_entry(p, struct net_device, name_hlist);
3919 if (!strncmp(d->name, dev->name, IFNAMSIZ)) {
3920 ret = -EEXIST;
7ce1b0ed 3921 goto err_uninit;
1da177e4 3922 }
4ec93edb 3923 }
1da177e4 3924
d212f87b
SH
3925 /* Fix illegal checksum combinations */
3926 if ((dev->features & NETIF_F_HW_CSUM) &&
3927 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3928 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
3929 dev->name);
3930 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
3931 }
3932
3933 if ((dev->features & NETIF_F_NO_CSUM) &&
3934 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
3935 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
3936 dev->name);
3937 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
3938 }
3939
3940
1da177e4
LT
3941 /* Fix illegal SG+CSUM combinations. */
3942 if ((dev->features & NETIF_F_SG) &&
8648b305 3943 !(dev->features & NETIF_F_ALL_CSUM)) {
5a8da02b 3944 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no checksum feature.\n",
1da177e4
LT
3945 dev->name);
3946 dev->features &= ~NETIF_F_SG;
3947 }
3948
3949 /* TSO requires that SG is present as well. */
3950 if ((dev->features & NETIF_F_TSO) &&
3951 !(dev->features & NETIF_F_SG)) {
5a8da02b 3952 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no SG feature.\n",
1da177e4
LT
3953 dev->name);
3954 dev->features &= ~NETIF_F_TSO;
3955 }
e89e9cf5
AR
3956 if (dev->features & NETIF_F_UFO) {
3957 if (!(dev->features & NETIF_F_HW_CSUM)) {
3958 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3959 "NETIF_F_HW_CSUM feature.\n",
3960 dev->name);
3961 dev->features &= ~NETIF_F_UFO;
3962 }
3963 if (!(dev->features & NETIF_F_SG)) {
3964 printk(KERN_ERR "%s: Dropping NETIF_F_UFO since no "
3965 "NETIF_F_SG feature.\n",
3966 dev->name);
3967 dev->features &= ~NETIF_F_UFO;
3968 }
3969 }
1da177e4 3970
aaf8cdc3 3971 netdev_initialize_kobject(dev);
8b41d188 3972 ret = netdev_register_kobject(dev);
b17a7c17 3973 if (ret)
7ce1b0ed 3974 goto err_uninit;
b17a7c17
SH
3975 dev->reg_state = NETREG_REGISTERED;
3976
1da177e4
LT
3977 /*
3978 * Default initial state at registry is that the
3979 * device is present.
3980 */
3981
3982 set_bit(__LINK_STATE_PRESENT, &dev->state);
3983
1da177e4 3984 dev_init_scheduler(dev);
1da177e4 3985 dev_hold(dev);
ce286d32 3986 list_netdevice(dev);
1da177e4
LT
3987
3988 /* Notify protocols, that a new device appeared. */
056925ab 3989 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 3990 ret = notifier_to_errno(ret);
93ee31f1
DL
3991 if (ret) {
3992 rollback_registered(dev);
3993 dev->reg_state = NETREG_UNREGISTERED;
3994 }
1da177e4
LT
3995
3996out:
3997 return ret;
7ce1b0ed
HX
3998
3999err_uninit:
4000 if (dev->uninit)
4001 dev->uninit(dev);
4002 goto out;
1da177e4
LT
4003}
4004
4005/**
4006 * register_netdev - register a network device
4007 * @dev: device to register
4008 *
4009 * Take a completed network device structure and add it to the kernel
4010 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
4011 * chain. 0 is returned on success. A negative errno code is returned
4012 * on a failure to set up the device, or if the name is a duplicate.
4013 *
38b4da38 4014 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
4015 * and expands the device name if you passed a format string to
4016 * alloc_netdev.
4017 */
4018int register_netdev(struct net_device *dev)
4019{
4020 int err;
4021
4022 rtnl_lock();
4023
4024 /*
4025 * If the name is a format string the caller wants us to do a
4026 * name allocation.
4027 */
4028 if (strchr(dev->name, '%')) {
4029 err = dev_alloc_name(dev, dev->name);
4030 if (err < 0)
4031 goto out;
4032 }
4ec93edb 4033
1da177e4
LT
4034 err = register_netdevice(dev);
4035out:
4036 rtnl_unlock();
4037 return err;
4038}
4039EXPORT_SYMBOL(register_netdev);
4040
4041/*
4042 * netdev_wait_allrefs - wait until all references are gone.
4043 *
4044 * This is called when unregistering network devices.
4045 *
4046 * Any protocol or device that holds a reference should register
4047 * for netdevice notification, and cleanup and put back the
4048 * reference if they receive an UNREGISTER event.
4049 * We can get stuck here if buggy protocols don't correctly
4ec93edb 4050 * call dev_put.
1da177e4
LT
4051 */
4052static void netdev_wait_allrefs(struct net_device *dev)
4053{
4054 unsigned long rebroadcast_time, warning_time;
4055
4056 rebroadcast_time = warning_time = jiffies;
4057 while (atomic_read(&dev->refcnt) != 0) {
4058 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 4059 rtnl_lock();
1da177e4
LT
4060
4061 /* Rebroadcast unregister notification */
056925ab 4062 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
1da177e4
LT
4063
4064 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
4065 &dev->state)) {
4066 /* We must not have linkwatch events
4067 * pending on unregister. If this
4068 * happens, we simply run the queue
4069 * unscheduled, resulting in a noop
4070 * for this device.
4071 */
4072 linkwatch_run_queue();
4073 }
4074
6756ae4b 4075 __rtnl_unlock();
1da177e4
LT
4076
4077 rebroadcast_time = jiffies;
4078 }
4079
4080 msleep(250);
4081
4082 if (time_after(jiffies, warning_time + 10 * HZ)) {
4083 printk(KERN_EMERG "unregister_netdevice: "
4084 "waiting for %s to become free. Usage "
4085 "count = %d\n",
4086 dev->name, atomic_read(&dev->refcnt));
4087 warning_time = jiffies;
4088 }
4089 }
4090}
4091
4092/* The sequence is:
4093 *
4094 * rtnl_lock();
4095 * ...
4096 * register_netdevice(x1);
4097 * register_netdevice(x2);
4098 * ...
4099 * unregister_netdevice(y1);
4100 * unregister_netdevice(y2);
4101 * ...
4102 * rtnl_unlock();
4103 * free_netdev(y1);
4104 * free_netdev(y2);
4105 *
4106 * We are invoked by rtnl_unlock() after it drops the semaphore.
4107 * This allows us to deal with problems:
b17a7c17 4108 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
4109 * without deadlocking with linkwatch via keventd.
4110 * 2) Since we run with the RTNL semaphore not held, we can sleep
4111 * safely in order to wait for the netdev refcnt to drop to zero.
4112 */
4a3e2f71 4113static DEFINE_MUTEX(net_todo_run_mutex);
1da177e4
LT
4114void netdev_run_todo(void)
4115{
626ab0e6 4116 struct list_head list;
1da177e4
LT
4117
4118 /* Need to guard against multiple cpu's getting out of order. */
4a3e2f71 4119 mutex_lock(&net_todo_run_mutex);
1da177e4
LT
4120
4121 /* Not safe to do outside the semaphore. We must not return
4122 * until all unregister events invoked by the local processor
4123 * have been completed (either by this todo run, or one on
4124 * another cpu).
4125 */
4126 if (list_empty(&net_todo_list))
4127 goto out;
4128
4129 /* Snapshot list, allow later requests */
4130 spin_lock(&net_todo_list_lock);
626ab0e6 4131 list_replace_init(&net_todo_list, &list);
1da177e4 4132 spin_unlock(&net_todo_list_lock);
626ab0e6 4133
1da177e4
LT
4134 while (!list_empty(&list)) {
4135 struct net_device *dev
4136 = list_entry(list.next, struct net_device, todo_list);
4137 list_del(&dev->todo_list);
4138
b17a7c17
SH
4139 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
4140 printk(KERN_ERR "network todo '%s' but state %d\n",
4141 dev->name, dev->reg_state);
4142 dump_stack();
4143 continue;
4144 }
1da177e4 4145
b17a7c17 4146 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 4147
b17a7c17 4148 netdev_wait_allrefs(dev);
1da177e4 4149
b17a7c17
SH
4150 /* paranoia */
4151 BUG_ON(atomic_read(&dev->refcnt));
4152 BUG_TRAP(!dev->ip_ptr);
4153 BUG_TRAP(!dev->ip6_ptr);
4154 BUG_TRAP(!dev->dn_ptr);
1da177e4 4155
b17a7c17
SH
4156 if (dev->destructor)
4157 dev->destructor(dev);
9093bbb2
SH
4158
4159 /* Free network device */
4160 kobject_put(&dev->dev.kobj);
1da177e4
LT
4161 }
4162
4163out:
4a3e2f71 4164 mutex_unlock(&net_todo_run_mutex);
1da177e4
LT
4165}
4166
5a1b5898 4167static struct net_device_stats *internal_stats(struct net_device *dev)
c45d286e 4168{
5a1b5898 4169 return &dev->stats;
c45d286e
RR
4170}
4171
dc2b4847 4172static void netdev_init_one_queue(struct net_device *dev,
e8a0464c
DM
4173 struct netdev_queue *queue,
4174 void *_unused)
dc2b4847
DM
4175{
4176 spin_lock_init(&queue->lock);
4177 queue->dev = dev;
4178}
4179
bb949fbd
DM
4180static void netdev_init_queues(struct net_device *dev)
4181{
e8a0464c
DM
4182 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
4183 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
bb949fbd
DM
4184}
4185
1da177e4 4186/**
f25f4e44 4187 * alloc_netdev_mq - allocate network device
1da177e4
LT
4188 * @sizeof_priv: size of private data to allocate space for
4189 * @name: device name format string
4190 * @setup: callback to initialize device
f25f4e44 4191 * @queue_count: the number of subqueues to allocate
1da177e4
LT
4192 *
4193 * Allocates a struct net_device with private data area for driver use
f25f4e44
PWJ
4194 * and performs basic initialization. Also allocates subquue structs
4195 * for each queue on the device at the end of the netdevice.
1da177e4 4196 */
f25f4e44
PWJ
4197struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
4198 void (*setup)(struct net_device *), unsigned int queue_count)
1da177e4 4199{
e8a0464c 4200 struct netdev_queue *tx;
1da177e4
LT
4201 struct net_device *dev;
4202 int alloc_size;
e8a0464c 4203 void *p;
1da177e4 4204
b6fe17d6
SH
4205 BUG_ON(strlen(name) >= sizeof(dev->name));
4206
fd2ea0a7 4207 alloc_size = sizeof(struct net_device);
d1643d24
AD
4208 if (sizeof_priv) {
4209 /* ensure 32-byte alignment of private area */
4210 alloc_size = (alloc_size + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST;
4211 alloc_size += sizeof_priv;
4212 }
4213 /* ensure 32-byte alignment of whole construct */
4214 alloc_size += NETDEV_ALIGN_CONST;
1da177e4 4215
31380de9 4216 p = kzalloc(alloc_size, GFP_KERNEL);
1da177e4 4217 if (!p) {
b6fe17d6 4218 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
1da177e4
LT
4219 return NULL;
4220 }
1da177e4 4221
e8a0464c
DM
4222 tx = kzalloc(sizeof(struct netdev_queue) * queue_count, GFP_KERNEL);
4223 if (!tx) {
4224 printk(KERN_ERR "alloc_netdev: Unable to allocate "
4225 "tx qdiscs.\n");
4226 kfree(p);
4227 return NULL;
4228 }
4229
1da177e4
LT
4230 dev = (struct net_device *)
4231 (((long)p + NETDEV_ALIGN_CONST) & ~NETDEV_ALIGN_CONST);
4232 dev->padded = (char *)dev - (char *)p;
c346dca1 4233 dev_net_set(dev, &init_net);
1da177e4 4234
e8a0464c
DM
4235 dev->_tx = tx;
4236 dev->num_tx_queues = queue_count;
fd2ea0a7 4237 dev->real_num_tx_queues = queue_count;
e8a0464c 4238
f25f4e44
PWJ
4239 if (sizeof_priv) {
4240 dev->priv = ((char *)dev +
fd2ea0a7 4241 ((sizeof(struct net_device) + NETDEV_ALIGN_CONST)
f25f4e44
PWJ
4242 & ~NETDEV_ALIGN_CONST));
4243 }
4244
82cc1a7a 4245 dev->gso_max_size = GSO_MAX_SIZE;
1da177e4 4246
bb949fbd
DM
4247 netdev_init_queues(dev);
4248
5a1b5898 4249 dev->get_stats = internal_stats;
bea3348e 4250 netpoll_netdev_init(dev);
1da177e4
LT
4251 setup(dev);
4252 strcpy(dev->name, name);
4253 return dev;
4254}
f25f4e44 4255EXPORT_SYMBOL(alloc_netdev_mq);
1da177e4
LT
4256
4257/**
4258 * free_netdev - free network device
4259 * @dev: device
4260 *
4ec93edb
YH
4261 * This function does the last stage of destroying an allocated device
4262 * interface. The reference to the device object is released.
1da177e4
LT
4263 * If this is the last reference then it will be freed.
4264 */
4265void free_netdev(struct net_device *dev)
4266{
f3005d7f
DL
4267 release_net(dev_net(dev));
4268
e8a0464c
DM
4269 kfree(dev->_tx);
4270
3041a069 4271 /* Compatibility with error handling in drivers */
1da177e4
LT
4272 if (dev->reg_state == NETREG_UNINITIALIZED) {
4273 kfree((char *)dev - dev->padded);
4274 return;
4275 }
4276
4277 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
4278 dev->reg_state = NETREG_RELEASED;
4279
43cb76d9
GKH
4280 /* will free via device release */
4281 put_device(&dev->dev);
1da177e4 4282}
4ec93edb 4283
1da177e4 4284/* Synchronize with packet receive processing. */
4ec93edb 4285void synchronize_net(void)
1da177e4
LT
4286{
4287 might_sleep();
fbd568a3 4288 synchronize_rcu();
1da177e4
LT
4289}
4290
4291/**
4292 * unregister_netdevice - remove device from the kernel
4293 * @dev: device
4294 *
4295 * This function shuts down a device interface and removes it
d59b54b1 4296 * from the kernel tables.
1da177e4
LT
4297 *
4298 * Callers must hold the rtnl semaphore. You may want
4299 * unregister_netdev() instead of this.
4300 */
4301
22f8cde5 4302void unregister_netdevice(struct net_device *dev)
1da177e4 4303{
a6620712
HX
4304 ASSERT_RTNL();
4305
93ee31f1 4306 rollback_registered(dev);
1da177e4
LT
4307 /* Finish processing unregister after unlock */
4308 net_set_todo(dev);
1da177e4
LT
4309}
4310
4311/**
4312 * unregister_netdev - remove device from the kernel
4313 * @dev: device
4314 *
4315 * This function shuts down a device interface and removes it
d59b54b1 4316 * from the kernel tables.
1da177e4
LT
4317 *
4318 * This is just a wrapper for unregister_netdevice that takes
4319 * the rtnl semaphore. In general you want to use this and not
4320 * unregister_netdevice.
4321 */
4322void unregister_netdev(struct net_device *dev)
4323{
4324 rtnl_lock();
4325 unregister_netdevice(dev);
4326 rtnl_unlock();
4327}
4328
4329EXPORT_SYMBOL(unregister_netdev);
4330
ce286d32
EB
4331/**
4332 * dev_change_net_namespace - move device to different nethost namespace
4333 * @dev: device
4334 * @net: network namespace
4335 * @pat: If not NULL name pattern to try if the current device name
4336 * is already taken in the destination network namespace.
4337 *
4338 * This function shuts down a device interface and moves it
4339 * to a new network namespace. On success 0 is returned, on
4340 * a failure a netagive errno code is returned.
4341 *
4342 * Callers must hold the rtnl semaphore.
4343 */
4344
4345int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
4346{
4347 char buf[IFNAMSIZ];
4348 const char *destname;
4349 int err;
4350
4351 ASSERT_RTNL();
4352
4353 /* Don't allow namespace local devices to be moved. */
4354 err = -EINVAL;
4355 if (dev->features & NETIF_F_NETNS_LOCAL)
4356 goto out;
4357
4358 /* Ensure the device has been registrered */
4359 err = -EINVAL;
4360 if (dev->reg_state != NETREG_REGISTERED)
4361 goto out;
4362
4363 /* Get out if there is nothing todo */
4364 err = 0;
878628fb 4365 if (net_eq(dev_net(dev), net))
ce286d32
EB
4366 goto out;
4367
4368 /* Pick the destination device name, and ensure
4369 * we can use it in the destination network namespace.
4370 */
4371 err = -EEXIST;
4372 destname = dev->name;
4373 if (__dev_get_by_name(net, destname)) {
4374 /* We get here if we can't use the current device name */
4375 if (!pat)
4376 goto out;
4377 if (!dev_valid_name(pat))
4378 goto out;
4379 if (strchr(pat, '%')) {
4380 if (__dev_alloc_name(net, pat, buf) < 0)
4381 goto out;
4382 destname = buf;
4383 } else
4384 destname = pat;
4385 if (__dev_get_by_name(net, destname))
4386 goto out;
4387 }
4388
4389 /*
4390 * And now a mini version of register_netdevice unregister_netdevice.
4391 */
4392
4393 /* If device is running close it first. */
9b772652 4394 dev_close(dev);
ce286d32
EB
4395
4396 /* And unlink it from device chain */
4397 err = -ENODEV;
4398 unlist_netdevice(dev);
4399
4400 synchronize_net();
4401
4402 /* Shutdown queueing discipline. */
4403 dev_shutdown(dev);
4404
4405 /* Notify protocols, that we are about to destroy
4406 this device. They should clean all the things.
4407 */
4408 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
4409
4410 /*
4411 * Flush the unicast and multicast chains
4412 */
4413 dev_addr_discard(dev);
4414
4415 /* Actually switch the network namespace */
c346dca1 4416 dev_net_set(dev, net);
ce286d32
EB
4417
4418 /* Assign the new device name */
4419 if (destname != dev->name)
4420 strcpy(dev->name, destname);
4421
4422 /* If there is an ifindex conflict assign a new one */
4423 if (__dev_get_by_index(net, dev->ifindex)) {
4424 int iflink = (dev->iflink == dev->ifindex);
4425 dev->ifindex = dev_new_index(net);
4426 if (iflink)
4427 dev->iflink = dev->ifindex;
4428 }
4429
8b41d188 4430 /* Fixup kobjects */
aaf8cdc3
DL
4431 netdev_unregister_kobject(dev);
4432 err = netdev_register_kobject(dev);
8b41d188 4433 WARN_ON(err);
ce286d32
EB
4434
4435 /* Add the device back in the hashes */
4436 list_netdevice(dev);
4437
4438 /* Notify protocols, that a new device appeared. */
4439 call_netdevice_notifiers(NETDEV_REGISTER, dev);
4440
4441 synchronize_net();
4442 err = 0;
4443out:
4444 return err;
4445}
4446
1da177e4
LT
4447static int dev_cpu_callback(struct notifier_block *nfb,
4448 unsigned long action,
4449 void *ocpu)
4450{
4451 struct sk_buff **list_skb;
37437bb2 4452 struct Qdisc **list_net;
1da177e4
LT
4453 struct sk_buff *skb;
4454 unsigned int cpu, oldcpu = (unsigned long)ocpu;
4455 struct softnet_data *sd, *oldsd;
4456
8bb78442 4457 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
4458 return NOTIFY_OK;
4459
4460 local_irq_disable();
4461 cpu = smp_processor_id();
4462 sd = &per_cpu(softnet_data, cpu);
4463 oldsd = &per_cpu(softnet_data, oldcpu);
4464
4465 /* Find end of our completion_queue. */
4466 list_skb = &sd->completion_queue;
4467 while (*list_skb)
4468 list_skb = &(*list_skb)->next;
4469 /* Append completion queue from offline CPU. */
4470 *list_skb = oldsd->completion_queue;
4471 oldsd->completion_queue = NULL;
4472
4473 /* Find end of our output_queue. */
4474 list_net = &sd->output_queue;
4475 while (*list_net)
4476 list_net = &(*list_net)->next_sched;
4477 /* Append output queue from offline CPU. */
4478 *list_net = oldsd->output_queue;
4479 oldsd->output_queue = NULL;
4480
4481 raise_softirq_irqoff(NET_TX_SOFTIRQ);
4482 local_irq_enable();
4483
4484 /* Process offline CPU's input_pkt_queue */
4485 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
4486 netif_rx(skb);
4487
4488 return NOTIFY_OK;
4489}
1da177e4 4490
db217334
CL
4491#ifdef CONFIG_NET_DMA
4492/**
0ed72ec4
RD
4493 * net_dma_rebalance - try to maintain one DMA channel per CPU
4494 * @net_dma: DMA client and associated data (lock, channels, channel_mask)
4495 *
4496 * This is called when the number of channels allocated to the net_dma client
4497 * changes. The net_dma client tries to have one DMA channel per CPU.
db217334 4498 */
d379b01e
DW
4499
4500static void net_dma_rebalance(struct net_dma *net_dma)
db217334 4501{
d379b01e 4502 unsigned int cpu, i, n, chan_idx;
db217334
CL
4503 struct dma_chan *chan;
4504
d379b01e 4505 if (cpus_empty(net_dma->channel_mask)) {
db217334 4506 for_each_online_cpu(cpu)
29bbd72d 4507 rcu_assign_pointer(per_cpu(softnet_data, cpu).net_dma, NULL);
db217334
CL
4508 return;
4509 }
4510
4511 i = 0;
4512 cpu = first_cpu(cpu_online_map);
4513
d379b01e
DW
4514 for_each_cpu_mask(chan_idx, net_dma->channel_mask) {
4515 chan = net_dma->channels[chan_idx];
4516
4517 n = ((num_online_cpus() / cpus_weight(net_dma->channel_mask))
4518 + (i < (num_online_cpus() %
4519 cpus_weight(net_dma->channel_mask)) ? 1 : 0));
db217334
CL
4520
4521 while(n) {
29bbd72d 4522 per_cpu(softnet_data, cpu).net_dma = chan;
db217334
CL
4523 cpu = next_cpu(cpu, cpu_online_map);
4524 n--;
4525 }
4526 i++;
4527 }
db217334
CL
4528}
4529
4530/**
4531 * netdev_dma_event - event callback for the net_dma_client
4532 * @client: should always be net_dma_client
f4b8ea78 4533 * @chan: DMA channel for the event
0ed72ec4 4534 * @state: DMA state to be handled
db217334 4535 */
d379b01e
DW
4536static enum dma_state_client
4537netdev_dma_event(struct dma_client *client, struct dma_chan *chan,
4538 enum dma_state state)
4539{
4540 int i, found = 0, pos = -1;
4541 struct net_dma *net_dma =
4542 container_of(client, struct net_dma, client);
4543 enum dma_state_client ack = DMA_DUP; /* default: take no action */
4544
4545 spin_lock(&net_dma->lock);
4546 switch (state) {
4547 case DMA_RESOURCE_AVAILABLE:
0c0b0aca 4548 for (i = 0; i < nr_cpu_ids; i++)
d379b01e
DW
4549 if (net_dma->channels[i] == chan) {
4550 found = 1;
4551 break;
4552 } else if (net_dma->channels[i] == NULL && pos < 0)
4553 pos = i;
4554
4555 if (!found && pos >= 0) {
4556 ack = DMA_ACK;
4557 net_dma->channels[pos] = chan;
4558 cpu_set(pos, net_dma->channel_mask);
4559 net_dma_rebalance(net_dma);
4560 }
db217334
CL
4561 break;
4562 case DMA_RESOURCE_REMOVED:
0c0b0aca 4563 for (i = 0; i < nr_cpu_ids; i++)
d379b01e
DW
4564 if (net_dma->channels[i] == chan) {
4565 found = 1;
4566 pos = i;
4567 break;
4568 }
4569
4570 if (found) {
4571 ack = DMA_ACK;
4572 cpu_clear(pos, net_dma->channel_mask);
4573 net_dma->channels[i] = NULL;
4574 net_dma_rebalance(net_dma);
4575 }
db217334
CL
4576 break;
4577 default:
4578 break;
4579 }
d379b01e
DW
4580 spin_unlock(&net_dma->lock);
4581
4582 return ack;
db217334
CL
4583}
4584
4585/**
4586 * netdev_dma_regiser - register the networking subsystem as a DMA client
4587 */
4588static int __init netdev_dma_register(void)
4589{
0c0b0aca
MT
4590 net_dma.channels = kzalloc(nr_cpu_ids * sizeof(struct net_dma),
4591 GFP_KERNEL);
4592 if (unlikely(!net_dma.channels)) {
4593 printk(KERN_NOTICE
4594 "netdev_dma: no memory for net_dma.channels\n");
4595 return -ENOMEM;
4596 }
d379b01e
DW
4597 spin_lock_init(&net_dma.lock);
4598 dma_cap_set(DMA_MEMCPY, net_dma.client.cap_mask);
4599 dma_async_client_register(&net_dma.client);
4600 dma_async_client_chan_request(&net_dma.client);
db217334
CL
4601 return 0;
4602}
4603
4604#else
4605static int __init netdev_dma_register(void) { return -ENODEV; }
4606#endif /* CONFIG_NET_DMA */
1da177e4 4607
7f353bf2
HX
4608/**
4609 * netdev_compute_feature - compute conjunction of two feature sets
4610 * @all: first feature set
4611 * @one: second feature set
4612 *
4613 * Computes a new feature set after adding a device with feature set
4614 * @one to the master device with current feature set @all. Returns
4615 * the new feature set.
4616 */
4617int netdev_compute_features(unsigned long all, unsigned long one)
4618{
4619 /* if device needs checksumming, downgrade to hw checksumming */
4620 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
4621 all ^= NETIF_F_NO_CSUM | NETIF_F_HW_CSUM;
4622
4623 /* if device can't do all checksum, downgrade to ipv4/ipv6 */
4624 if (all & NETIF_F_HW_CSUM && !(one & NETIF_F_HW_CSUM))
4625 all ^= NETIF_F_HW_CSUM
4626 | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
4627
4628 if (one & NETIF_F_GSO)
4629 one |= NETIF_F_GSO_SOFTWARE;
4630 one |= NETIF_F_GSO;
4631
4632 /* If even one device supports robust GSO, enable it for all. */
4633 if (one & NETIF_F_GSO_ROBUST)
4634 all |= NETIF_F_GSO_ROBUST;
4635
4636 all &= one | NETIF_F_LLTX;
4637
4638 if (!(all & NETIF_F_ALL_CSUM))
4639 all &= ~NETIF_F_SG;
4640 if (!(all & NETIF_F_SG))
4641 all &= ~NETIF_F_GSO_MASK;
4642
4643 return all;
4644}
4645EXPORT_SYMBOL(netdev_compute_features);
4646
30d97d35
PE
4647static struct hlist_head *netdev_create_hash(void)
4648{
4649 int i;
4650 struct hlist_head *hash;
4651
4652 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
4653 if (hash != NULL)
4654 for (i = 0; i < NETDEV_HASHENTRIES; i++)
4655 INIT_HLIST_HEAD(&hash[i]);
4656
4657 return hash;
4658}
4659
881d966b 4660/* Initialize per network namespace state */
4665079c 4661static int __net_init netdev_init(struct net *net)
881d966b 4662{
881d966b 4663 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 4664
30d97d35
PE
4665 net->dev_name_head = netdev_create_hash();
4666 if (net->dev_name_head == NULL)
4667 goto err_name;
881d966b 4668
30d97d35
PE
4669 net->dev_index_head = netdev_create_hash();
4670 if (net->dev_index_head == NULL)
4671 goto err_idx;
881d966b
EB
4672
4673 return 0;
30d97d35
PE
4674
4675err_idx:
4676 kfree(net->dev_name_head);
4677err_name:
4678 return -ENOMEM;
881d966b
EB
4679}
4680
4665079c 4681static void __net_exit netdev_exit(struct net *net)
881d966b
EB
4682{
4683 kfree(net->dev_name_head);
4684 kfree(net->dev_index_head);
4685}
4686
022cbae6 4687static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
4688 .init = netdev_init,
4689 .exit = netdev_exit,
4690};
4691
4665079c 4692static void __net_exit default_device_exit(struct net *net)
ce286d32
EB
4693{
4694 struct net_device *dev, *next;
4695 /*
4696 * Push all migratable of the network devices back to the
4697 * initial network namespace
4698 */
4699 rtnl_lock();
4700 for_each_netdev_safe(net, dev, next) {
4701 int err;
aca51397 4702 char fb_name[IFNAMSIZ];
ce286d32
EB
4703
4704 /* Ignore unmoveable devices (i.e. loopback) */
4705 if (dev->features & NETIF_F_NETNS_LOCAL)
4706 continue;
4707
4708 /* Push remaing network devices to init_net */
aca51397
PE
4709 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
4710 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 4711 if (err) {
aca51397 4712 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
ce286d32 4713 __func__, dev->name, err);
aca51397 4714 BUG();
ce286d32
EB
4715 }
4716 }
4717 rtnl_unlock();
4718}
4719
022cbae6 4720static struct pernet_operations __net_initdata default_device_ops = {
ce286d32
EB
4721 .exit = default_device_exit,
4722};
4723
1da177e4
LT
4724/*
4725 * Initialize the DEV module. At boot time this walks the device list and
4726 * unhooks any devices that fail to initialise (normally hardware not
4727 * present) and leaves us with a valid list of present and active devices.
4728 *
4729 */
4730
4731/*
4732 * This is called single threaded during boot, so no need
4733 * to take the rtnl semaphore.
4734 */
4735static int __init net_dev_init(void)
4736{
4737 int i, rc = -ENOMEM;
4738
4739 BUG_ON(!dev_boot_phase);
4740
1da177e4
LT
4741 if (dev_proc_init())
4742 goto out;
4743
8b41d188 4744 if (netdev_kobject_init())
1da177e4
LT
4745 goto out;
4746
4747 INIT_LIST_HEAD(&ptype_all);
82d8a867 4748 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
4749 INIT_LIST_HEAD(&ptype_base[i]);
4750
881d966b
EB
4751 if (register_pernet_subsys(&netdev_net_ops))
4752 goto out;
1da177e4 4753
ce286d32
EB
4754 if (register_pernet_device(&default_device_ops))
4755 goto out;
4756
1da177e4
LT
4757 /*
4758 * Initialise the packet receive queues.
4759 */
4760
6f912042 4761 for_each_possible_cpu(i) {
1da177e4
LT
4762 struct softnet_data *queue;
4763
4764 queue = &per_cpu(softnet_data, i);
4765 skb_queue_head_init(&queue->input_pkt_queue);
1da177e4
LT
4766 queue->completion_queue = NULL;
4767 INIT_LIST_HEAD(&queue->poll_list);
bea3348e
SH
4768
4769 queue->backlog.poll = process_backlog;
4770 queue->backlog.weight = weight_p;
1da177e4
LT
4771 }
4772
db217334
CL
4773 netdev_dma_register();
4774
1da177e4
LT
4775 dev_boot_phase = 0;
4776
4777 open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);
4778 open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);
4779
4780 hotcpu_notifier(dev_cpu_callback, 0);
4781 dst_init();
4782 dev_mcast_init();
4783 rc = 0;
4784out:
4785 return rc;
4786}
4787
4788subsys_initcall(net_dev_init);
4789
4790EXPORT_SYMBOL(__dev_get_by_index);
4791EXPORT_SYMBOL(__dev_get_by_name);
4792EXPORT_SYMBOL(__dev_remove_pack);
c2373ee9 4793EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
4794EXPORT_SYMBOL(dev_add_pack);
4795EXPORT_SYMBOL(dev_alloc_name);
4796EXPORT_SYMBOL(dev_close);
4797EXPORT_SYMBOL(dev_get_by_flags);
4798EXPORT_SYMBOL(dev_get_by_index);
4799EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
4800EXPORT_SYMBOL(dev_open);
4801EXPORT_SYMBOL(dev_queue_xmit);
4802EXPORT_SYMBOL(dev_remove_pack);
4803EXPORT_SYMBOL(dev_set_allmulti);
4804EXPORT_SYMBOL(dev_set_promiscuity);
4805EXPORT_SYMBOL(dev_change_flags);
4806EXPORT_SYMBOL(dev_set_mtu);
4807EXPORT_SYMBOL(dev_set_mac_address);
4808EXPORT_SYMBOL(free_netdev);
4809EXPORT_SYMBOL(netdev_boot_setup_check);
4810EXPORT_SYMBOL(netdev_set_master);
4811EXPORT_SYMBOL(netdev_state_change);
4812EXPORT_SYMBOL(netif_receive_skb);
4813EXPORT_SYMBOL(netif_rx);
4814EXPORT_SYMBOL(register_gifconf);
4815EXPORT_SYMBOL(register_netdevice);
4816EXPORT_SYMBOL(register_netdevice_notifier);
4817EXPORT_SYMBOL(skb_checksum_help);
4818EXPORT_SYMBOL(synchronize_net);
4819EXPORT_SYMBOL(unregister_netdevice);
4820EXPORT_SYMBOL(unregister_netdevice_notifier);
4821EXPORT_SYMBOL(net_enable_timestamp);
4822EXPORT_SYMBOL(net_disable_timestamp);
4823EXPORT_SYMBOL(dev_get_flags);
4824
4825#if defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)
4826EXPORT_SYMBOL(br_handle_frame_hook);
4827EXPORT_SYMBOL(br_fdb_get_hook);
4828EXPORT_SYMBOL(br_fdb_put_hook);
4829#endif
4830
4831#ifdef CONFIG_KMOD
4832EXPORT_SYMBOL(dev_load);
4833#endif
4834
4835EXPORT_PER_CPU_SYMBOL(softnet_data);