]> bbs.cooldavid.org Git - net-next-2.6.git/blame - net/core/dev.c
decnet: Remove unused FIB metric macros.
[net-next-2.6.git] / net / core / dev.c
CommitLineData
1da177e4
LT
1/*
2 * NET3 Protocol independent device support routines.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * Derived from the non IP parts of dev.c 1.0.19
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 *
14 * Additional Authors:
15 * Florian la Roche <rzsfl@rz.uni-sb.de>
16 * Alan Cox <gw4pts@gw4pts.ampr.org>
17 * David Hinds <dahinds@users.sourceforge.net>
18 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
19 * Adam Sulmicki <adam@cfar.umd.edu>
20 * Pekka Riikonen <priikone@poesidon.pspt.fi>
21 *
22 * Changes:
23 * D.J. Barrow : Fixed bug where dev->refcnt gets set
24 * to 2 if register_netdev gets called
25 * before net_dev_init & also removed a
26 * few lines of code in the process.
27 * Alan Cox : device private ioctl copies fields back.
28 * Alan Cox : Transmit queue code does relevant
29 * stunts to keep the queue safe.
30 * Alan Cox : Fixed double lock.
31 * Alan Cox : Fixed promisc NULL pointer trap
32 * ???????? : Support the full private ioctl range
33 * Alan Cox : Moved ioctl permission check into
34 * drivers
35 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
36 * Alan Cox : 100 backlog just doesn't cut it when
37 * you start doing multicast video 8)
38 * Alan Cox : Rewrote net_bh and list manager.
39 * Alan Cox : Fix ETH_P_ALL echoback lengths.
40 * Alan Cox : Took out transmit every packet pass
41 * Saved a few bytes in the ioctl handler
42 * Alan Cox : Network driver sets packet type before
43 * calling netif_rx. Saves a function
44 * call a packet.
45 * Alan Cox : Hashed net_bh()
46 * Richard Kooijman: Timestamp fixes.
47 * Alan Cox : Wrong field in SIOCGIFDSTADDR
48 * Alan Cox : Device lock protection.
49 * Alan Cox : Fixed nasty side effect of device close
50 * changes.
51 * Rudi Cilibrasi : Pass the right thing to
52 * set_mac_address()
53 * Dave Miller : 32bit quantity for the device lock to
54 * make it work out on a Sparc.
55 * Bjorn Ekwall : Added KERNELD hack.
56 * Alan Cox : Cleaned up the backlog initialise.
57 * Craig Metz : SIOCGIFCONF fix if space for under
58 * 1 device.
59 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
60 * is no device open function.
61 * Andi Kleen : Fix error reporting for SIOCGIFCONF
62 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
63 * Cyrus Durgin : Cleaned for KMOD
64 * Adam Sulmicki : Bug Fix : Network Device Unload
65 * A network device unload needs to purge
66 * the backlog queue.
67 * Paul Rusty Russell : SIOCSIFNAME
68 * Pekka Riikonen : Netdev boot-time settings code
69 * Andrew Morton : Make unregister_netdevice wait
70 * indefinitely on dev->refcnt
71 * J Hadi Salim : - Backlog queue sampling
72 * - netif_rx() feedback
73 */
74
75#include <asm/uaccess.h>
76#include <asm/system.h>
77#include <linux/bitops.h>
4fc268d2 78#include <linux/capability.h>
1da177e4
LT
79#include <linux/cpu.h>
80#include <linux/types.h>
81#include <linux/kernel.h>
08e9897d 82#include <linux/hash.h>
1da177e4 83#include <linux/sched.h>
4a3e2f71 84#include <linux/mutex.h>
1da177e4
LT
85#include <linux/string.h>
86#include <linux/mm.h>
87#include <linux/socket.h>
88#include <linux/sockios.h>
89#include <linux/errno.h>
90#include <linux/interrupt.h>
91#include <linux/if_ether.h>
92#include <linux/netdevice.h>
93#include <linux/etherdevice.h>
0187bdfb 94#include <linux/ethtool.h>
1da177e4
LT
95#include <linux/notifier.h>
96#include <linux/skbuff.h>
457c4cbc 97#include <net/net_namespace.h>
1da177e4
LT
98#include <net/sock.h>
99#include <linux/rtnetlink.h>
100#include <linux/proc_fs.h>
101#include <linux/seq_file.h>
102#include <linux/stat.h>
103#include <linux/if_bridge.h>
b863ceb7 104#include <linux/if_macvlan.h>
1da177e4
LT
105#include <net/dst.h>
106#include <net/pkt_sched.h>
107#include <net/checksum.h>
44540960 108#include <net/xfrm.h>
1da177e4
LT
109#include <linux/highmem.h>
110#include <linux/init.h>
111#include <linux/kmod.h>
112#include <linux/module.h>
1da177e4
LT
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
295f4a1f 116#include <net/wext.h>
1da177e4 117#include <net/iw_handler.h>
1da177e4 118#include <asm/current.h>
5bdb9886 119#include <linux/audit.h>
db217334 120#include <linux/dmaengine.h>
f6a78bfc 121#include <linux/err.h>
c7fa9d18 122#include <linux/ctype.h>
723e98b7 123#include <linux/if_arp.h>
6de329e2 124#include <linux/if_vlan.h>
8f0f2223 125#include <linux/ip.h>
ad55dcaf 126#include <net/ip.h>
8f0f2223
DM
127#include <linux/ipv6.h>
128#include <linux/in.h>
b6b2fed1
DM
129#include <linux/jhash.h>
130#include <linux/random.h>
9cbc1cb8 131#include <trace/events/napi.h>
1da177e4 132
342709ef
PE
133#include "net-sysfs.h"
134
d565b0a1
HX
135/* Instead of increasing this, you should create a hash table. */
136#define MAX_GRO_SKBS 8
137
5d38a079
HX
138/* This should be increased if a protocol with a bigger head is added. */
139#define GRO_MAX_HEAD (MAX_HEADER + 128)
140
1da177e4
LT
141/*
142 * The list of packet types we will receive (as opposed to discard)
143 * and the routines to invoke.
144 *
145 * Why 16. Because with 16 the only overlap we get on a hash of the
146 * low nibble of the protocol value is RARP/SNAP/X.25.
147 *
148 * NOTE: That is no longer true with the addition of VLAN tags. Not
149 * sure which should go first, but I bet it won't make much
150 * difference if we are running VLANs. The good news is that
151 * this protocol won't be in the list unless compiled in, so
3041a069 152 * the average user (w/out VLANs) will not be adversely affected.
1da177e4
LT
153 * --BLG
154 *
155 * 0800 IP
156 * 8100 802.1Q VLAN
157 * 0001 802.3
158 * 0002 AX.25
159 * 0004 802.2
160 * 8035 RARP
161 * 0005 SNAP
162 * 0805 X.25
163 * 0806 ARP
164 * 8137 IPX
165 * 0009 Localtalk
166 * 86DD IPv6
167 */
168
82d8a867
PE
169#define PTYPE_HASH_SIZE (16)
170#define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
171
1da177e4 172static DEFINE_SPINLOCK(ptype_lock);
82d8a867 173static struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
6b2bedc3 174static struct list_head ptype_all __read_mostly; /* Taps */
1da177e4 175
1da177e4 176/*
7562f876 177 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
1da177e4
LT
178 * semaphore.
179 *
c6d14c84 180 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
1da177e4
LT
181 *
182 * Writers must hold the rtnl semaphore while they loop through the
7562f876 183 * dev_base_head list, and hold dev_base_lock for writing when they do the
1da177e4
LT
184 * actual updates. This allows pure readers to access the list even
185 * while a writer is preparing to update it.
186 *
187 * To put it another way, dev_base_lock is held for writing only to
188 * protect against pure readers; the rtnl semaphore provides the
189 * protection against other writers.
190 *
191 * See, for example usages, register_netdevice() and
192 * unregister_netdevice(), which must be called with the rtnl
193 * semaphore held.
194 */
1da177e4 195DEFINE_RWLOCK(dev_base_lock);
1da177e4
LT
196EXPORT_SYMBOL(dev_base_lock);
197
881d966b 198static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
1da177e4
LT
199{
200 unsigned hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
08e9897d 201 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
1da177e4
LT
202}
203
881d966b 204static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
1da177e4 205{
7c28bd0b 206 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
1da177e4
LT
207}
208
ce286d32
EB
209/* Device list insertion */
210static int list_netdevice(struct net_device *dev)
211{
c346dca1 212 struct net *net = dev_net(dev);
ce286d32
EB
213
214 ASSERT_RTNL();
215
216 write_lock_bh(&dev_base_lock);
c6d14c84 217 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
72c9528b 218 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
fb699dfd
ED
219 hlist_add_head_rcu(&dev->index_hlist,
220 dev_index_hash(net, dev->ifindex));
ce286d32
EB
221 write_unlock_bh(&dev_base_lock);
222 return 0;
223}
224
fb699dfd
ED
225/* Device list removal
226 * caller must respect a RCU grace period before freeing/reusing dev
227 */
ce286d32
EB
228static void unlist_netdevice(struct net_device *dev)
229{
230 ASSERT_RTNL();
231
232 /* Unlink dev from the device chain */
233 write_lock_bh(&dev_base_lock);
c6d14c84 234 list_del_rcu(&dev->dev_list);
72c9528b 235 hlist_del_rcu(&dev->name_hlist);
fb699dfd 236 hlist_del_rcu(&dev->index_hlist);
ce286d32
EB
237 write_unlock_bh(&dev_base_lock);
238}
239
1da177e4
LT
240/*
241 * Our notifier list
242 */
243
f07d5b94 244static RAW_NOTIFIER_HEAD(netdev_chain);
1da177e4
LT
245
246/*
247 * Device drivers call our routines to queue packets here. We empty the
248 * queue in the local softnet handler.
249 */
bea3348e
SH
250
251DEFINE_PER_CPU(struct softnet_data, softnet_data);
d1b19dff 252EXPORT_PER_CPU_SYMBOL(softnet_data);
1da177e4 253
cf508b12 254#ifdef CONFIG_LOCKDEP
723e98b7 255/*
c773e847 256 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
723e98b7
JP
257 * according to dev->type
258 */
259static const unsigned short netdev_lock_type[] =
260 {ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
261 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
262 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
263 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
264 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
265 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
266 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
267 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
268 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
269 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
270 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
271 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
272 ARPHRD_FCFABRIC, ARPHRD_IEEE802_TR, ARPHRD_IEEE80211,
2d91d78b 273 ARPHRD_IEEE80211_PRISM, ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET,
929122cd 274 ARPHRD_PHONET_PIPE, ARPHRD_IEEE802154,
fcb94e42 275 ARPHRD_VOID, ARPHRD_NONE};
723e98b7 276
36cbd3dc 277static const char *const netdev_lock_name[] =
723e98b7
JP
278 {"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
279 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
280 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
281 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
282 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
283 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
284 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
285 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
286 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
287 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
288 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
289 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
290 "_xmit_FCFABRIC", "_xmit_IEEE802_TR", "_xmit_IEEE80211",
2d91d78b 291 "_xmit_IEEE80211_PRISM", "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET",
929122cd 292 "_xmit_PHONET_PIPE", "_xmit_IEEE802154",
fcb94e42 293 "_xmit_VOID", "_xmit_NONE"};
723e98b7
JP
294
295static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
cf508b12 296static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
723e98b7
JP
297
298static inline unsigned short netdev_lock_pos(unsigned short dev_type)
299{
300 int i;
301
302 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
303 if (netdev_lock_type[i] == dev_type)
304 return i;
305 /* the last key is used by default */
306 return ARRAY_SIZE(netdev_lock_type) - 1;
307}
308
cf508b12
DM
309static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
310 unsigned short dev_type)
723e98b7
JP
311{
312 int i;
313
314 i = netdev_lock_pos(dev_type);
315 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
316 netdev_lock_name[i]);
317}
cf508b12
DM
318
319static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
320{
321 int i;
322
323 i = netdev_lock_pos(dev->type);
324 lockdep_set_class_and_name(&dev->addr_list_lock,
325 &netdev_addr_lock_key[i],
326 netdev_lock_name[i]);
327}
723e98b7 328#else
cf508b12
DM
329static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
330 unsigned short dev_type)
331{
332}
333static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
723e98b7
JP
334{
335}
336#endif
1da177e4
LT
337
338/*******************************************************************************
339
340 Protocol management and registration routines
341
342*******************************************************************************/
343
1da177e4
LT
344/*
345 * Add a protocol ID to the list. Now that the input handler is
346 * smarter we can dispense with all the messy stuff that used to be
347 * here.
348 *
349 * BEWARE!!! Protocol handlers, mangling input packets,
350 * MUST BE last in hash buckets and checking protocol handlers
351 * MUST start from promiscuous ptype_all chain in net_bh.
352 * It is true now, do not change it.
353 * Explanation follows: if protocol handler, mangling packet, will
354 * be the first on list, it is not able to sense, that packet
355 * is cloned and should be copied-on-write, so that it will
356 * change it and subsequent readers will get broken packet.
357 * --ANK (980803)
358 */
359
360/**
361 * dev_add_pack - add packet handler
362 * @pt: packet type declaration
363 *
364 * Add a protocol handler to the networking stack. The passed &packet_type
365 * is linked into kernel lists and may not be freed until it has been
366 * removed from the kernel lists.
367 *
4ec93edb 368 * This call does not sleep therefore it can not
1da177e4
LT
369 * guarantee all CPU's that are in middle of receiving packets
370 * will see the new packet type (until the next received packet).
371 */
372
373void dev_add_pack(struct packet_type *pt)
374{
375 int hash;
376
377 spin_lock_bh(&ptype_lock);
9be9a6b9 378 if (pt->type == htons(ETH_P_ALL))
1da177e4 379 list_add_rcu(&pt->list, &ptype_all);
9be9a6b9 380 else {
82d8a867 381 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
1da177e4
LT
382 list_add_rcu(&pt->list, &ptype_base[hash]);
383 }
384 spin_unlock_bh(&ptype_lock);
385}
d1b19dff 386EXPORT_SYMBOL(dev_add_pack);
1da177e4 387
1da177e4
LT
388/**
389 * __dev_remove_pack - remove packet handler
390 * @pt: packet type declaration
391 *
392 * Remove a protocol handler that was previously added to the kernel
393 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
394 * from the kernel lists and can be freed or reused once this function
4ec93edb 395 * returns.
1da177e4
LT
396 *
397 * The packet type might still be in use by receivers
398 * and must not be freed until after all the CPU's have gone
399 * through a quiescent state.
400 */
401void __dev_remove_pack(struct packet_type *pt)
402{
403 struct list_head *head;
404 struct packet_type *pt1;
405
406 spin_lock_bh(&ptype_lock);
407
9be9a6b9 408 if (pt->type == htons(ETH_P_ALL))
1da177e4 409 head = &ptype_all;
9be9a6b9 410 else
82d8a867 411 head = &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
1da177e4
LT
412
413 list_for_each_entry(pt1, head, list) {
414 if (pt == pt1) {
415 list_del_rcu(&pt->list);
416 goto out;
417 }
418 }
419
420 printk(KERN_WARNING "dev_remove_pack: %p not found.\n", pt);
421out:
422 spin_unlock_bh(&ptype_lock);
423}
d1b19dff
ED
424EXPORT_SYMBOL(__dev_remove_pack);
425
1da177e4
LT
426/**
427 * dev_remove_pack - remove packet handler
428 * @pt: packet type declaration
429 *
430 * Remove a protocol handler that was previously added to the kernel
431 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
432 * from the kernel lists and can be freed or reused once this function
433 * returns.
434 *
435 * This call sleeps to guarantee that no CPU is looking at the packet
436 * type after return.
437 */
438void dev_remove_pack(struct packet_type *pt)
439{
440 __dev_remove_pack(pt);
4ec93edb 441
1da177e4
LT
442 synchronize_net();
443}
d1b19dff 444EXPORT_SYMBOL(dev_remove_pack);
1da177e4
LT
445
446/******************************************************************************
447
448 Device Boot-time Settings Routines
449
450*******************************************************************************/
451
452/* Boot time configuration table */
453static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
454
455/**
456 * netdev_boot_setup_add - add new setup entry
457 * @name: name of the device
458 * @map: configured settings for the device
459 *
460 * Adds new setup entry to the dev_boot_setup list. The function
461 * returns 0 on error and 1 on success. This is a generic routine to
462 * all netdevices.
463 */
464static int netdev_boot_setup_add(char *name, struct ifmap *map)
465{
466 struct netdev_boot_setup *s;
467 int i;
468
469 s = dev_boot_setup;
470 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
471 if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
472 memset(s[i].name, 0, sizeof(s[i].name));
93b3cff9 473 strlcpy(s[i].name, name, IFNAMSIZ);
1da177e4
LT
474 memcpy(&s[i].map, map, sizeof(s[i].map));
475 break;
476 }
477 }
478
479 return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
480}
481
482/**
483 * netdev_boot_setup_check - check boot time settings
484 * @dev: the netdevice
485 *
486 * Check boot time settings for the device.
487 * The found settings are set for the device to be used
488 * later in the device probing.
489 * Returns 0 if no settings found, 1 if they are.
490 */
491int netdev_boot_setup_check(struct net_device *dev)
492{
493 struct netdev_boot_setup *s = dev_boot_setup;
494 int i;
495
496 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
497 if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
93b3cff9 498 !strcmp(dev->name, s[i].name)) {
1da177e4
LT
499 dev->irq = s[i].map.irq;
500 dev->base_addr = s[i].map.base_addr;
501 dev->mem_start = s[i].map.mem_start;
502 dev->mem_end = s[i].map.mem_end;
503 return 1;
504 }
505 }
506 return 0;
507}
d1b19dff 508EXPORT_SYMBOL(netdev_boot_setup_check);
1da177e4
LT
509
510
511/**
512 * netdev_boot_base - get address from boot time settings
513 * @prefix: prefix for network device
514 * @unit: id for network device
515 *
516 * Check boot time settings for the base address of device.
517 * The found settings are set for the device to be used
518 * later in the device probing.
519 * Returns 0 if no settings found.
520 */
521unsigned long netdev_boot_base(const char *prefix, int unit)
522{
523 const struct netdev_boot_setup *s = dev_boot_setup;
524 char name[IFNAMSIZ];
525 int i;
526
527 sprintf(name, "%s%d", prefix, unit);
528
529 /*
530 * If device already registered then return base of 1
531 * to indicate not to probe for this interface
532 */
881d966b 533 if (__dev_get_by_name(&init_net, name))
1da177e4
LT
534 return 1;
535
536 for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
537 if (!strcmp(name, s[i].name))
538 return s[i].map.base_addr;
539 return 0;
540}
541
542/*
543 * Saves at boot time configured settings for any netdevice.
544 */
545int __init netdev_boot_setup(char *str)
546{
547 int ints[5];
548 struct ifmap map;
549
550 str = get_options(str, ARRAY_SIZE(ints), ints);
551 if (!str || !*str)
552 return 0;
553
554 /* Save settings */
555 memset(&map, 0, sizeof(map));
556 if (ints[0] > 0)
557 map.irq = ints[1];
558 if (ints[0] > 1)
559 map.base_addr = ints[2];
560 if (ints[0] > 2)
561 map.mem_start = ints[3];
562 if (ints[0] > 3)
563 map.mem_end = ints[4];
564
565 /* Add new entry to the list */
566 return netdev_boot_setup_add(str, &map);
567}
568
569__setup("netdev=", netdev_boot_setup);
570
571/*******************************************************************************
572
573 Device Interface Subroutines
574
575*******************************************************************************/
576
577/**
578 * __dev_get_by_name - find a device by its name
c4ea43c5 579 * @net: the applicable net namespace
1da177e4
LT
580 * @name: name to find
581 *
582 * Find an interface by name. Must be called under RTNL semaphore
583 * or @dev_base_lock. If the name is found a pointer to the device
584 * is returned. If the name is not found then %NULL is returned. The
585 * reference counters are not incremented so the caller must be
586 * careful with locks.
587 */
588
881d966b 589struct net_device *__dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
590{
591 struct hlist_node *p;
0bd8d536
ED
592 struct net_device *dev;
593 struct hlist_head *head = dev_name_hash(net, name);
1da177e4 594
0bd8d536 595 hlist_for_each_entry(dev, p, head, name_hlist)
1da177e4
LT
596 if (!strncmp(dev->name, name, IFNAMSIZ))
597 return dev;
0bd8d536 598
1da177e4
LT
599 return NULL;
600}
d1b19dff 601EXPORT_SYMBOL(__dev_get_by_name);
1da177e4 602
72c9528b
ED
603/**
604 * dev_get_by_name_rcu - find a device by its name
605 * @net: the applicable net namespace
606 * @name: name to find
607 *
608 * Find an interface by name.
609 * If the name is found a pointer to the device is returned.
610 * If the name is not found then %NULL is returned.
611 * The reference counters are not incremented so the caller must be
612 * careful with locks. The caller must hold RCU lock.
613 */
614
615struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
616{
617 struct hlist_node *p;
618 struct net_device *dev;
619 struct hlist_head *head = dev_name_hash(net, name);
620
621 hlist_for_each_entry_rcu(dev, p, head, name_hlist)
622 if (!strncmp(dev->name, name, IFNAMSIZ))
623 return dev;
624
625 return NULL;
626}
627EXPORT_SYMBOL(dev_get_by_name_rcu);
628
1da177e4
LT
629/**
630 * dev_get_by_name - find a device by its name
c4ea43c5 631 * @net: the applicable net namespace
1da177e4
LT
632 * @name: name to find
633 *
634 * Find an interface by name. This can be called from any
635 * context and does its own locking. The returned handle has
636 * the usage count incremented and the caller must use dev_put() to
637 * release it when it is no longer needed. %NULL is returned if no
638 * matching device is found.
639 */
640
881d966b 641struct net_device *dev_get_by_name(struct net *net, const char *name)
1da177e4
LT
642{
643 struct net_device *dev;
644
72c9528b
ED
645 rcu_read_lock();
646 dev = dev_get_by_name_rcu(net, name);
1da177e4
LT
647 if (dev)
648 dev_hold(dev);
72c9528b 649 rcu_read_unlock();
1da177e4
LT
650 return dev;
651}
d1b19dff 652EXPORT_SYMBOL(dev_get_by_name);
1da177e4
LT
653
654/**
655 * __dev_get_by_index - find a device by its ifindex
c4ea43c5 656 * @net: the applicable net namespace
1da177e4
LT
657 * @ifindex: index of device
658 *
659 * Search for an interface by index. Returns %NULL if the device
660 * is not found or a pointer to the device. The device has not
661 * had its reference counter increased so the caller must be careful
662 * about locking. The caller must hold either the RTNL semaphore
663 * or @dev_base_lock.
664 */
665
881d966b 666struct net_device *__dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
667{
668 struct hlist_node *p;
0bd8d536
ED
669 struct net_device *dev;
670 struct hlist_head *head = dev_index_hash(net, ifindex);
1da177e4 671
0bd8d536 672 hlist_for_each_entry(dev, p, head, index_hlist)
1da177e4
LT
673 if (dev->ifindex == ifindex)
674 return dev;
0bd8d536 675
1da177e4
LT
676 return NULL;
677}
d1b19dff 678EXPORT_SYMBOL(__dev_get_by_index);
1da177e4 679
fb699dfd
ED
680/**
681 * dev_get_by_index_rcu - find a device by its ifindex
682 * @net: the applicable net namespace
683 * @ifindex: index of device
684 *
685 * Search for an interface by index. Returns %NULL if the device
686 * is not found or a pointer to the device. The device has not
687 * had its reference counter increased so the caller must be careful
688 * about locking. The caller must hold RCU lock.
689 */
690
691struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
692{
693 struct hlist_node *p;
694 struct net_device *dev;
695 struct hlist_head *head = dev_index_hash(net, ifindex);
696
697 hlist_for_each_entry_rcu(dev, p, head, index_hlist)
698 if (dev->ifindex == ifindex)
699 return dev;
700
701 return NULL;
702}
703EXPORT_SYMBOL(dev_get_by_index_rcu);
704
1da177e4
LT
705
706/**
707 * dev_get_by_index - find a device by its ifindex
c4ea43c5 708 * @net: the applicable net namespace
1da177e4
LT
709 * @ifindex: index of device
710 *
711 * Search for an interface by index. Returns NULL if the device
712 * is not found or a pointer to the device. The device returned has
713 * had a reference added and the pointer is safe until the user calls
714 * dev_put to indicate they have finished with it.
715 */
716
881d966b 717struct net_device *dev_get_by_index(struct net *net, int ifindex)
1da177e4
LT
718{
719 struct net_device *dev;
720
fb699dfd
ED
721 rcu_read_lock();
722 dev = dev_get_by_index_rcu(net, ifindex);
1da177e4
LT
723 if (dev)
724 dev_hold(dev);
fb699dfd 725 rcu_read_unlock();
1da177e4
LT
726 return dev;
727}
d1b19dff 728EXPORT_SYMBOL(dev_get_by_index);
1da177e4
LT
729
730/**
731 * dev_getbyhwaddr - find a device by its hardware address
c4ea43c5 732 * @net: the applicable net namespace
1da177e4
LT
733 * @type: media type of device
734 * @ha: hardware address
735 *
736 * Search for an interface by MAC address. Returns NULL if the device
737 * is not found or a pointer to the device. The caller must hold the
738 * rtnl semaphore. The returned device has not had its ref count increased
739 * and the caller must therefore be careful about locking
740 *
741 * BUGS:
742 * If the API was consistent this would be __dev_get_by_hwaddr
743 */
744
881d966b 745struct net_device *dev_getbyhwaddr(struct net *net, unsigned short type, char *ha)
1da177e4
LT
746{
747 struct net_device *dev;
748
749 ASSERT_RTNL();
750
81103a52 751 for_each_netdev(net, dev)
1da177e4
LT
752 if (dev->type == type &&
753 !memcmp(dev->dev_addr, ha, dev->addr_len))
7562f876
PE
754 return dev;
755
756 return NULL;
1da177e4 757}
cf309e3f
JF
758EXPORT_SYMBOL(dev_getbyhwaddr);
759
881d966b 760struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
1da177e4
LT
761{
762 struct net_device *dev;
763
4e9cac2b 764 ASSERT_RTNL();
881d966b 765 for_each_netdev(net, dev)
4e9cac2b 766 if (dev->type == type)
7562f876
PE
767 return dev;
768
769 return NULL;
4e9cac2b 770}
4e9cac2b
PM
771EXPORT_SYMBOL(__dev_getfirstbyhwtype);
772
881d966b 773struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
4e9cac2b 774{
99fe3c39 775 struct net_device *dev, *ret = NULL;
4e9cac2b 776
99fe3c39
ED
777 rcu_read_lock();
778 for_each_netdev_rcu(net, dev)
779 if (dev->type == type) {
780 dev_hold(dev);
781 ret = dev;
782 break;
783 }
784 rcu_read_unlock();
785 return ret;
1da177e4 786}
1da177e4
LT
787EXPORT_SYMBOL(dev_getfirstbyhwtype);
788
789/**
790 * dev_get_by_flags - find any device with given flags
c4ea43c5 791 * @net: the applicable net namespace
1da177e4
LT
792 * @if_flags: IFF_* values
793 * @mask: bitmask of bits in if_flags to check
794 *
795 * Search for any interface with the given flags. Returns NULL if a device
4ec93edb 796 * is not found or a pointer to the device. The device returned has
1da177e4
LT
797 * had a reference added and the pointer is safe until the user calls
798 * dev_put to indicate they have finished with it.
799 */
800
d1b19dff
ED
801struct net_device *dev_get_by_flags(struct net *net, unsigned short if_flags,
802 unsigned short mask)
1da177e4 803{
7562f876 804 struct net_device *dev, *ret;
1da177e4 805
7562f876 806 ret = NULL;
c6d14c84
ED
807 rcu_read_lock();
808 for_each_netdev_rcu(net, dev) {
1da177e4
LT
809 if (((dev->flags ^ if_flags) & mask) == 0) {
810 dev_hold(dev);
7562f876 811 ret = dev;
1da177e4
LT
812 break;
813 }
814 }
c6d14c84 815 rcu_read_unlock();
7562f876 816 return ret;
1da177e4 817}
d1b19dff 818EXPORT_SYMBOL(dev_get_by_flags);
1da177e4
LT
819
820/**
821 * dev_valid_name - check if name is okay for network device
822 * @name: name string
823 *
824 * Network device names need to be valid file names to
c7fa9d18
DM
825 * to allow sysfs to work. We also disallow any kind of
826 * whitespace.
1da177e4 827 */
c2373ee9 828int dev_valid_name(const char *name)
1da177e4 829{
c7fa9d18
DM
830 if (*name == '\0')
831 return 0;
b6fe17d6
SH
832 if (strlen(name) >= IFNAMSIZ)
833 return 0;
c7fa9d18
DM
834 if (!strcmp(name, ".") || !strcmp(name, ".."))
835 return 0;
836
837 while (*name) {
838 if (*name == '/' || isspace(*name))
839 return 0;
840 name++;
841 }
842 return 1;
1da177e4 843}
d1b19dff 844EXPORT_SYMBOL(dev_valid_name);
1da177e4
LT
845
846/**
b267b179
EB
847 * __dev_alloc_name - allocate a name for a device
848 * @net: network namespace to allocate the device name in
1da177e4 849 * @name: name format string
b267b179 850 * @buf: scratch buffer and result name string
1da177e4
LT
851 *
852 * Passed a format string - eg "lt%d" it will try and find a suitable
3041a069
SH
853 * id. It scans list of devices to build up a free map, then chooses
854 * the first empty slot. The caller must hold the dev_base or rtnl lock
855 * while allocating the name and adding the device in order to avoid
856 * duplicates.
857 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
858 * Returns the number of the unit assigned or a negative errno code.
1da177e4
LT
859 */
860
b267b179 861static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1da177e4
LT
862{
863 int i = 0;
1da177e4
LT
864 const char *p;
865 const int max_netdevices = 8*PAGE_SIZE;
cfcabdcc 866 unsigned long *inuse;
1da177e4
LT
867 struct net_device *d;
868
869 p = strnchr(name, IFNAMSIZ-1, '%');
870 if (p) {
871 /*
872 * Verify the string as this thing may have come from
873 * the user. There must be either one "%d" and no other "%"
874 * characters.
875 */
876 if (p[1] != 'd' || strchr(p + 2, '%'))
877 return -EINVAL;
878
879 /* Use one page as a bit array of possible slots */
cfcabdcc 880 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1da177e4
LT
881 if (!inuse)
882 return -ENOMEM;
883
881d966b 884 for_each_netdev(net, d) {
1da177e4
LT
885 if (!sscanf(d->name, name, &i))
886 continue;
887 if (i < 0 || i >= max_netdevices)
888 continue;
889
890 /* avoid cases where sscanf is not exact inverse of printf */
b267b179 891 snprintf(buf, IFNAMSIZ, name, i);
1da177e4
LT
892 if (!strncmp(buf, d->name, IFNAMSIZ))
893 set_bit(i, inuse);
894 }
895
896 i = find_first_zero_bit(inuse, max_netdevices);
897 free_page((unsigned long) inuse);
898 }
899
d9031024
OP
900 if (buf != name)
901 snprintf(buf, IFNAMSIZ, name, i);
b267b179 902 if (!__dev_get_by_name(net, buf))
1da177e4 903 return i;
1da177e4
LT
904
905 /* It is possible to run out of possible slots
906 * when the name is long and there isn't enough space left
907 * for the digits, or if all bits are used.
908 */
909 return -ENFILE;
910}
911
b267b179
EB
912/**
913 * dev_alloc_name - allocate a name for a device
914 * @dev: device
915 * @name: name format string
916 *
917 * Passed a format string - eg "lt%d" it will try and find a suitable
918 * id. It scans list of devices to build up a free map, then chooses
919 * the first empty slot. The caller must hold the dev_base or rtnl lock
920 * while allocating the name and adding the device in order to avoid
921 * duplicates.
922 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
923 * Returns the number of the unit assigned or a negative errno code.
924 */
925
926int dev_alloc_name(struct net_device *dev, const char *name)
927{
928 char buf[IFNAMSIZ];
929 struct net *net;
930 int ret;
931
c346dca1
YH
932 BUG_ON(!dev_net(dev));
933 net = dev_net(dev);
b267b179
EB
934 ret = __dev_alloc_name(net, name, buf);
935 if (ret >= 0)
936 strlcpy(dev->name, buf, IFNAMSIZ);
937 return ret;
938}
d1b19dff 939EXPORT_SYMBOL(dev_alloc_name);
b267b179 940
d9031024
OP
941static int dev_get_valid_name(struct net *net, const char *name, char *buf,
942 bool fmt)
943{
944 if (!dev_valid_name(name))
945 return -EINVAL;
946
947 if (fmt && strchr(name, '%'))
948 return __dev_alloc_name(net, name, buf);
949 else if (__dev_get_by_name(net, name))
950 return -EEXIST;
951 else if (buf != name)
952 strlcpy(buf, name, IFNAMSIZ);
953
954 return 0;
955}
1da177e4
LT
956
957/**
958 * dev_change_name - change name of a device
959 * @dev: device
960 * @newname: name (or format string) must be at least IFNAMSIZ
961 *
962 * Change name of a device, can pass format strings "eth%d".
963 * for wildcarding.
964 */
cf04a4c7 965int dev_change_name(struct net_device *dev, const char *newname)
1da177e4 966{
fcc5a03a 967 char oldname[IFNAMSIZ];
1da177e4 968 int err = 0;
fcc5a03a 969 int ret;
881d966b 970 struct net *net;
1da177e4
LT
971
972 ASSERT_RTNL();
c346dca1 973 BUG_ON(!dev_net(dev));
1da177e4 974
c346dca1 975 net = dev_net(dev);
1da177e4
LT
976 if (dev->flags & IFF_UP)
977 return -EBUSY;
978
c8d90dca
SH
979 if (strncmp(newname, dev->name, IFNAMSIZ) == 0)
980 return 0;
981
fcc5a03a
HX
982 memcpy(oldname, dev->name, IFNAMSIZ);
983
d9031024
OP
984 err = dev_get_valid_name(net, newname, dev->name, 1);
985 if (err < 0)
986 return err;
1da177e4 987
fcc5a03a 988rollback:
3891845e
EB
989 /* For now only devices in the initial network namespace
990 * are in sysfs.
991 */
09ad9bc7 992 if (net_eq(net, &init_net)) {
3891845e
EB
993 ret = device_rename(&dev->dev, dev->name);
994 if (ret) {
995 memcpy(dev->name, oldname, IFNAMSIZ);
996 return ret;
997 }
dcc99773 998 }
7f988eab
HX
999
1000 write_lock_bh(&dev_base_lock);
92749821 1001 hlist_del(&dev->name_hlist);
72c9528b
ED
1002 write_unlock_bh(&dev_base_lock);
1003
1004 synchronize_rcu();
1005
1006 write_lock_bh(&dev_base_lock);
1007 hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
7f988eab
HX
1008 write_unlock_bh(&dev_base_lock);
1009
056925ab 1010 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
fcc5a03a
HX
1011 ret = notifier_to_errno(ret);
1012
1013 if (ret) {
91e9c07b
ED
1014 /* err >= 0 after dev_alloc_name() or stores the first errno */
1015 if (err >= 0) {
fcc5a03a
HX
1016 err = ret;
1017 memcpy(dev->name, oldname, IFNAMSIZ);
1018 goto rollback;
91e9c07b
ED
1019 } else {
1020 printk(KERN_ERR
1021 "%s: name change rollback failed: %d.\n",
1022 dev->name, ret);
fcc5a03a
HX
1023 }
1024 }
1da177e4
LT
1025
1026 return err;
1027}
1028
0b815a1a
SH
1029/**
1030 * dev_set_alias - change ifalias of a device
1031 * @dev: device
1032 * @alias: name up to IFALIASZ
f0db275a 1033 * @len: limit of bytes to copy from info
0b815a1a
SH
1034 *
1035 * Set ifalias for a device,
1036 */
1037int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1038{
1039 ASSERT_RTNL();
1040
1041 if (len >= IFALIASZ)
1042 return -EINVAL;
1043
96ca4a2c
OH
1044 if (!len) {
1045 if (dev->ifalias) {
1046 kfree(dev->ifalias);
1047 dev->ifalias = NULL;
1048 }
1049 return 0;
1050 }
1051
d1b19dff 1052 dev->ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
0b815a1a
SH
1053 if (!dev->ifalias)
1054 return -ENOMEM;
1055
1056 strlcpy(dev->ifalias, alias, len+1);
1057 return len;
1058}
1059
1060
d8a33ac4 1061/**
3041a069 1062 * netdev_features_change - device changes features
d8a33ac4
SH
1063 * @dev: device to cause notification
1064 *
1065 * Called to indicate a device has changed features.
1066 */
1067void netdev_features_change(struct net_device *dev)
1068{
056925ab 1069 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
d8a33ac4
SH
1070}
1071EXPORT_SYMBOL(netdev_features_change);
1072
1da177e4
LT
1073/**
1074 * netdev_state_change - device changes state
1075 * @dev: device to cause notification
1076 *
1077 * Called to indicate a device has changed state. This function calls
1078 * the notifier chains for netdev_chain and sends a NEWLINK message
1079 * to the routing socket.
1080 */
1081void netdev_state_change(struct net_device *dev)
1082{
1083 if (dev->flags & IFF_UP) {
056925ab 1084 call_netdevice_notifiers(NETDEV_CHANGE, dev);
1da177e4
LT
1085 rtmsg_ifinfo(RTM_NEWLINK, dev, 0);
1086 }
1087}
d1b19dff 1088EXPORT_SYMBOL(netdev_state_change);
1da177e4 1089
3ca5b404 1090int netdev_bonding_change(struct net_device *dev, unsigned long event)
c1da4ac7 1091{
3ca5b404 1092 return call_netdevice_notifiers(event, dev);
c1da4ac7
OG
1093}
1094EXPORT_SYMBOL(netdev_bonding_change);
1095
1da177e4
LT
1096/**
1097 * dev_load - load a network module
c4ea43c5 1098 * @net: the applicable net namespace
1da177e4
LT
1099 * @name: name of interface
1100 *
1101 * If a network interface is not present and the process has suitable
1102 * privileges this function loads the module. If module loading is not
1103 * available in this kernel then it becomes a nop.
1104 */
1105
881d966b 1106void dev_load(struct net *net, const char *name)
1da177e4 1107{
4ec93edb 1108 struct net_device *dev;
1da177e4 1109
72c9528b
ED
1110 rcu_read_lock();
1111 dev = dev_get_by_name_rcu(net, name);
1112 rcu_read_unlock();
1da177e4 1113
a8f80e8f 1114 if (!dev && capable(CAP_NET_ADMIN))
1da177e4
LT
1115 request_module("%s", name);
1116}
d1b19dff 1117EXPORT_SYMBOL(dev_load);
1da177e4 1118
bd380811 1119static int __dev_open(struct net_device *dev)
1da177e4 1120{
d314774c 1121 const struct net_device_ops *ops = dev->netdev_ops;
3b8bcfd5 1122 int ret;
1da177e4 1123
e46b66bc
BH
1124 ASSERT_RTNL();
1125
1da177e4
LT
1126 /*
1127 * Is it even present?
1128 */
1129 if (!netif_device_present(dev))
1130 return -ENODEV;
1131
3b8bcfd5
JB
1132 ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1133 ret = notifier_to_errno(ret);
1134 if (ret)
1135 return ret;
1136
1da177e4
LT
1137 /*
1138 * Call device private open method
1139 */
1140 set_bit(__LINK_STATE_START, &dev->state);
bada339b 1141
d314774c
SH
1142 if (ops->ndo_validate_addr)
1143 ret = ops->ndo_validate_addr(dev);
bada339b 1144
d314774c
SH
1145 if (!ret && ops->ndo_open)
1146 ret = ops->ndo_open(dev);
1da177e4 1147
4ec93edb 1148 /*
1da177e4
LT
1149 * If it went open OK then:
1150 */
1151
bada339b
JG
1152 if (ret)
1153 clear_bit(__LINK_STATE_START, &dev->state);
1154 else {
1da177e4
LT
1155 /*
1156 * Set the flags.
1157 */
1158 dev->flags |= IFF_UP;
1159
649274d9
DW
1160 /*
1161 * Enable NET_DMA
1162 */
b4bd07c2 1163 net_dmaengine_get();
649274d9 1164
1da177e4
LT
1165 /*
1166 * Initialize multicasting status
1167 */
4417da66 1168 dev_set_rx_mode(dev);
1da177e4
LT
1169
1170 /*
1171 * Wakeup transmit queue engine
1172 */
1173 dev_activate(dev);
1da177e4 1174 }
bada339b 1175
1da177e4
LT
1176 return ret;
1177}
1178
1179/**
bd380811
PM
1180 * dev_open - prepare an interface for use.
1181 * @dev: device to open
1da177e4 1182 *
bd380811
PM
1183 * Takes a device from down to up state. The device's private open
1184 * function is invoked and then the multicast lists are loaded. Finally
1185 * the device is moved into the up state and a %NETDEV_UP message is
1186 * sent to the netdev notifier chain.
1187 *
1188 * Calling this function on an active interface is a nop. On a failure
1189 * a negative errno code is returned.
1da177e4 1190 */
bd380811
PM
1191int dev_open(struct net_device *dev)
1192{
1193 int ret;
1194
1195 /*
1196 * Is it already up?
1197 */
1198 if (dev->flags & IFF_UP)
1199 return 0;
1200
1201 /*
1202 * Open device
1203 */
1204 ret = __dev_open(dev);
1205 if (ret < 0)
1206 return ret;
1207
1208 /*
1209 * ... and announce new interface.
1210 */
1211 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1212 call_netdevice_notifiers(NETDEV_UP, dev);
1213
1214 return ret;
1215}
1216EXPORT_SYMBOL(dev_open);
1217
1218static int __dev_close(struct net_device *dev)
1da177e4 1219{
d314774c 1220 const struct net_device_ops *ops = dev->netdev_ops;
e46b66bc 1221
bd380811 1222 ASSERT_RTNL();
9d5010db
DM
1223 might_sleep();
1224
1da177e4
LT
1225 /*
1226 * Tell people we are going down, so that they can
1227 * prepare to death, when device is still operating.
1228 */
056925ab 1229 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1da177e4 1230
1da177e4
LT
1231 clear_bit(__LINK_STATE_START, &dev->state);
1232
1233 /* Synchronize to scheduled poll. We cannot touch poll list,
bea3348e
SH
1234 * it can be even on different cpu. So just clear netif_running().
1235 *
1236 * dev->stop() will invoke napi_disable() on all of it's
1237 * napi_struct instances on this device.
1238 */
1da177e4 1239 smp_mb__after_clear_bit(); /* Commit netif_running(). */
1da177e4 1240
d8b2a4d2
ML
1241 dev_deactivate(dev);
1242
1da177e4
LT
1243 /*
1244 * Call the device specific close. This cannot fail.
1245 * Only if device is UP
1246 *
1247 * We allow it to be called even after a DETACH hot-plug
1248 * event.
1249 */
d314774c
SH
1250 if (ops->ndo_stop)
1251 ops->ndo_stop(dev);
1da177e4
LT
1252
1253 /*
1254 * Device is now down.
1255 */
1256
1257 dev->flags &= ~IFF_UP;
1258
1259 /*
bd380811 1260 * Shutdown NET_DMA
1da177e4 1261 */
bd380811
PM
1262 net_dmaengine_put();
1263
1264 return 0;
1265}
1266
1267/**
1268 * dev_close - shutdown an interface.
1269 * @dev: device to shutdown
1270 *
1271 * This function moves an active device into down state. A
1272 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1273 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1274 * chain.
1275 */
1276int dev_close(struct net_device *dev)
1277{
1278 if (!(dev->flags & IFF_UP))
1279 return 0;
1280
1281 __dev_close(dev);
1da177e4 1282
649274d9 1283 /*
bd380811 1284 * Tell people we are down
649274d9 1285 */
bd380811
PM
1286 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING);
1287 call_netdevice_notifiers(NETDEV_DOWN, dev);
649274d9 1288
1da177e4
LT
1289 return 0;
1290}
d1b19dff 1291EXPORT_SYMBOL(dev_close);
1da177e4
LT
1292
1293
0187bdfb
BH
1294/**
1295 * dev_disable_lro - disable Large Receive Offload on a device
1296 * @dev: device
1297 *
1298 * Disable Large Receive Offload (LRO) on a net device. Must be
1299 * called under RTNL. This is needed if received packets may be
1300 * forwarded to another interface.
1301 */
1302void dev_disable_lro(struct net_device *dev)
1303{
1304 if (dev->ethtool_ops && dev->ethtool_ops->get_flags &&
1305 dev->ethtool_ops->set_flags) {
1306 u32 flags = dev->ethtool_ops->get_flags(dev);
1307 if (flags & ETH_FLAG_LRO) {
1308 flags &= ~ETH_FLAG_LRO;
1309 dev->ethtool_ops->set_flags(dev, flags);
1310 }
1311 }
1312 WARN_ON(dev->features & NETIF_F_LRO);
1313}
1314EXPORT_SYMBOL(dev_disable_lro);
1315
1316
881d966b
EB
1317static int dev_boot_phase = 1;
1318
1da177e4
LT
1319/*
1320 * Device change register/unregister. These are not inline or static
1321 * as we export them to the world.
1322 */
1323
1324/**
1325 * register_netdevice_notifier - register a network notifier block
1326 * @nb: notifier
1327 *
1328 * Register a notifier to be called when network device events occur.
1329 * The notifier passed is linked into the kernel structures and must
1330 * not be reused until it has been unregistered. A negative errno code
1331 * is returned on a failure.
1332 *
1333 * When registered all registration and up events are replayed
4ec93edb 1334 * to the new notifier to allow device to have a race free
1da177e4
LT
1335 * view of the network device list.
1336 */
1337
1338int register_netdevice_notifier(struct notifier_block *nb)
1339{
1340 struct net_device *dev;
fcc5a03a 1341 struct net_device *last;
881d966b 1342 struct net *net;
1da177e4
LT
1343 int err;
1344
1345 rtnl_lock();
f07d5b94 1346 err = raw_notifier_chain_register(&netdev_chain, nb);
fcc5a03a
HX
1347 if (err)
1348 goto unlock;
881d966b
EB
1349 if (dev_boot_phase)
1350 goto unlock;
1351 for_each_net(net) {
1352 for_each_netdev(net, dev) {
1353 err = nb->notifier_call(nb, NETDEV_REGISTER, dev);
1354 err = notifier_to_errno(err);
1355 if (err)
1356 goto rollback;
1357
1358 if (!(dev->flags & IFF_UP))
1359 continue;
1da177e4 1360
881d966b
EB
1361 nb->notifier_call(nb, NETDEV_UP, dev);
1362 }
1da177e4 1363 }
fcc5a03a
HX
1364
1365unlock:
1da177e4
LT
1366 rtnl_unlock();
1367 return err;
fcc5a03a
HX
1368
1369rollback:
1370 last = dev;
881d966b
EB
1371 for_each_net(net) {
1372 for_each_netdev(net, dev) {
1373 if (dev == last)
1374 break;
fcc5a03a 1375
881d966b
EB
1376 if (dev->flags & IFF_UP) {
1377 nb->notifier_call(nb, NETDEV_GOING_DOWN, dev);
1378 nb->notifier_call(nb, NETDEV_DOWN, dev);
1379 }
1380 nb->notifier_call(nb, NETDEV_UNREGISTER, dev);
a5ee1551 1381 nb->notifier_call(nb, NETDEV_UNREGISTER_BATCH, dev);
fcc5a03a 1382 }
fcc5a03a 1383 }
c67625a1
PE
1384
1385 raw_notifier_chain_unregister(&netdev_chain, nb);
fcc5a03a 1386 goto unlock;
1da177e4 1387}
d1b19dff 1388EXPORT_SYMBOL(register_netdevice_notifier);
1da177e4
LT
1389
1390/**
1391 * unregister_netdevice_notifier - unregister a network notifier block
1392 * @nb: notifier
1393 *
1394 * Unregister a notifier previously registered by
1395 * register_netdevice_notifier(). The notifier is unlinked into the
1396 * kernel structures and may then be reused. A negative errno code
1397 * is returned on a failure.
1398 */
1399
1400int unregister_netdevice_notifier(struct notifier_block *nb)
1401{
9f514950
HX
1402 int err;
1403
1404 rtnl_lock();
f07d5b94 1405 err = raw_notifier_chain_unregister(&netdev_chain, nb);
9f514950
HX
1406 rtnl_unlock();
1407 return err;
1da177e4 1408}
d1b19dff 1409EXPORT_SYMBOL(unregister_netdevice_notifier);
1da177e4
LT
1410
1411/**
1412 * call_netdevice_notifiers - call all network notifier blocks
1413 * @val: value passed unmodified to notifier function
c4ea43c5 1414 * @dev: net_device pointer passed unmodified to notifier function
1da177e4
LT
1415 *
1416 * Call all network notifier blocks. Parameters and return value
f07d5b94 1417 * are as for raw_notifier_call_chain().
1da177e4
LT
1418 */
1419
ad7379d4 1420int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1da177e4 1421{
ad7379d4 1422 return raw_notifier_call_chain(&netdev_chain, val, dev);
1da177e4
LT
1423}
1424
1425/* When > 0 there are consumers of rx skb time stamps */
1426static atomic_t netstamp_needed = ATOMIC_INIT(0);
1427
1428void net_enable_timestamp(void)
1429{
1430 atomic_inc(&netstamp_needed);
1431}
d1b19dff 1432EXPORT_SYMBOL(net_enable_timestamp);
1da177e4
LT
1433
1434void net_disable_timestamp(void)
1435{
1436 atomic_dec(&netstamp_needed);
1437}
d1b19dff 1438EXPORT_SYMBOL(net_disable_timestamp);
1da177e4 1439
a61bbcf2 1440static inline void net_timestamp(struct sk_buff *skb)
1da177e4
LT
1441{
1442 if (atomic_read(&netstamp_needed))
a61bbcf2 1443 __net_timestamp(skb);
b7aa0bf7
ED
1444 else
1445 skb->tstamp.tv64 = 0;
1da177e4
LT
1446}
1447
44540960
AB
1448/**
1449 * dev_forward_skb - loopback an skb to another netif
1450 *
1451 * @dev: destination network device
1452 * @skb: buffer to forward
1453 *
1454 * return values:
1455 * NET_RX_SUCCESS (no congestion)
1456 * NET_RX_DROP (packet was dropped)
1457 *
1458 * dev_forward_skb can be used for injecting an skb from the
1459 * start_xmit function of one device into the receive queue
1460 * of another device.
1461 *
1462 * The receiving device may be in another namespace, so
1463 * we have to clear all information in the skb that could
1464 * impact namespace isolation.
1465 */
1466int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1467{
1468 skb_orphan(skb);
1469
1470 if (!(dev->flags & IFF_UP))
1471 return NET_RX_DROP;
1472
1473 if (skb->len > (dev->mtu + dev->hard_header_len))
1474 return NET_RX_DROP;
1475
8a83a00b 1476 skb_set_dev(skb, dev);
44540960
AB
1477 skb->tstamp.tv64 = 0;
1478 skb->pkt_type = PACKET_HOST;
1479 skb->protocol = eth_type_trans(skb, dev);
44540960
AB
1480 return netif_rx(skb);
1481}
1482EXPORT_SYMBOL_GPL(dev_forward_skb);
1483
1da177e4
LT
1484/*
1485 * Support routine. Sends outgoing frames to any network
1486 * taps currently in use.
1487 */
1488
f6a78bfc 1489static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1da177e4
LT
1490{
1491 struct packet_type *ptype;
a61bbcf2 1492
8caf1539
JP
1493#ifdef CONFIG_NET_CLS_ACT
1494 if (!(skb->tstamp.tv64 && (G_TC_FROM(skb->tc_verd) & AT_INGRESS)))
1495 net_timestamp(skb);
1496#else
a61bbcf2 1497 net_timestamp(skb);
8caf1539 1498#endif
1da177e4
LT
1499
1500 rcu_read_lock();
1501 list_for_each_entry_rcu(ptype, &ptype_all, list) {
1502 /* Never send packets back to the socket
1503 * they originated from - MvS (miquels@drinkel.ow.org)
1504 */
1505 if ((ptype->dev == dev || !ptype->dev) &&
1506 (ptype->af_packet_priv == NULL ||
1507 (struct sock *)ptype->af_packet_priv != skb->sk)) {
d1b19dff 1508 struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
1da177e4
LT
1509 if (!skb2)
1510 break;
1511
1512 /* skb->nh should be correctly
1513 set by sender, so that the second statement is
1514 just protection against buggy protocols.
1515 */
459a98ed 1516 skb_reset_mac_header(skb2);
1da177e4 1517
d56f90a7 1518 if (skb_network_header(skb2) < skb2->data ||
27a884dc 1519 skb2->network_header > skb2->tail) {
1da177e4
LT
1520 if (net_ratelimit())
1521 printk(KERN_CRIT "protocol %04x is "
1522 "buggy, dev %s\n",
1523 skb2->protocol, dev->name);
c1d2bbe1 1524 skb_reset_network_header(skb2);
1da177e4
LT
1525 }
1526
b0e380b1 1527 skb2->transport_header = skb2->network_header;
1da177e4 1528 skb2->pkt_type = PACKET_OUTGOING;
f2ccd8fa 1529 ptype->func(skb2, skb->dev, ptype, skb->dev);
1da177e4
LT
1530 }
1531 }
1532 rcu_read_unlock();
1533}
1534
56079431 1535
def82a1d 1536static inline void __netif_reschedule(struct Qdisc *q)
56079431 1537{
def82a1d
JP
1538 struct softnet_data *sd;
1539 unsigned long flags;
56079431 1540
def82a1d
JP
1541 local_irq_save(flags);
1542 sd = &__get_cpu_var(softnet_data);
1543 q->next_sched = sd->output_queue;
1544 sd->output_queue = q;
1545 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1546 local_irq_restore(flags);
1547}
1548
1549void __netif_schedule(struct Qdisc *q)
1550{
1551 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
1552 __netif_reschedule(q);
56079431
DV
1553}
1554EXPORT_SYMBOL(__netif_schedule);
1555
bea3348e 1556void dev_kfree_skb_irq(struct sk_buff *skb)
56079431 1557{
bea3348e
SH
1558 if (atomic_dec_and_test(&skb->users)) {
1559 struct softnet_data *sd;
1560 unsigned long flags;
56079431 1561
bea3348e
SH
1562 local_irq_save(flags);
1563 sd = &__get_cpu_var(softnet_data);
1564 skb->next = sd->completion_queue;
1565 sd->completion_queue = skb;
1566 raise_softirq_irqoff(NET_TX_SOFTIRQ);
1567 local_irq_restore(flags);
1568 }
56079431 1569}
bea3348e 1570EXPORT_SYMBOL(dev_kfree_skb_irq);
56079431
DV
1571
1572void dev_kfree_skb_any(struct sk_buff *skb)
1573{
1574 if (in_irq() || irqs_disabled())
1575 dev_kfree_skb_irq(skb);
1576 else
1577 dev_kfree_skb(skb);
1578}
1579EXPORT_SYMBOL(dev_kfree_skb_any);
1580
1581
bea3348e
SH
1582/**
1583 * netif_device_detach - mark device as removed
1584 * @dev: network device
1585 *
1586 * Mark device as removed from system and therefore no longer available.
1587 */
56079431
DV
1588void netif_device_detach(struct net_device *dev)
1589{
1590 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
1591 netif_running(dev)) {
d543103a 1592 netif_tx_stop_all_queues(dev);
56079431
DV
1593 }
1594}
1595EXPORT_SYMBOL(netif_device_detach);
1596
bea3348e
SH
1597/**
1598 * netif_device_attach - mark device as attached
1599 * @dev: network device
1600 *
1601 * Mark device as attached from system and restart if needed.
1602 */
56079431
DV
1603void netif_device_attach(struct net_device *dev)
1604{
1605 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
1606 netif_running(dev)) {
d543103a 1607 netif_tx_wake_all_queues(dev);
4ec93edb 1608 __netdev_watchdog_up(dev);
56079431
DV
1609 }
1610}
1611EXPORT_SYMBOL(netif_device_attach);
1612
6de329e2
BH
1613static bool can_checksum_protocol(unsigned long features, __be16 protocol)
1614{
1615 return ((features & NETIF_F_GEN_CSUM) ||
1616 ((features & NETIF_F_IP_CSUM) &&
1617 protocol == htons(ETH_P_IP)) ||
1618 ((features & NETIF_F_IPV6_CSUM) &&
1c8dbcf6
YZ
1619 protocol == htons(ETH_P_IPV6)) ||
1620 ((features & NETIF_F_FCOE_CRC) &&
1621 protocol == htons(ETH_P_FCOE)));
6de329e2
BH
1622}
1623
1624static bool dev_can_checksum(struct net_device *dev, struct sk_buff *skb)
1625{
1626 if (can_checksum_protocol(dev->features, skb->protocol))
1627 return true;
1628
1629 if (skb->protocol == htons(ETH_P_8021Q)) {
1630 struct vlan_ethhdr *veh = (struct vlan_ethhdr *)skb->data;
1631 if (can_checksum_protocol(dev->features & dev->vlan_features,
1632 veh->h_vlan_encapsulated_proto))
1633 return true;
1634 }
1635
1636 return false;
1637}
56079431 1638
8a83a00b
AB
1639/**
1640 * skb_dev_set -- assign a new device to a buffer
1641 * @skb: buffer for the new device
1642 * @dev: network device
1643 *
1644 * If an skb is owned by a device already, we have to reset
1645 * all data private to the namespace a device belongs to
1646 * before assigning it a new device.
1647 */
1648#ifdef CONFIG_NET_NS
1649void skb_set_dev(struct sk_buff *skb, struct net_device *dev)
1650{
1651 skb_dst_drop(skb);
1652 if (skb->dev && !net_eq(dev_net(skb->dev), dev_net(dev))) {
1653 secpath_reset(skb);
1654 nf_reset(skb);
1655 skb_init_secmark(skb);
1656 skb->mark = 0;
1657 skb->priority = 0;
1658 skb->nf_trace = 0;
1659 skb->ipvs_property = 0;
1660#ifdef CONFIG_NET_SCHED
1661 skb->tc_index = 0;
1662#endif
1663 }
1664 skb->dev = dev;
1665}
1666EXPORT_SYMBOL(skb_set_dev);
1667#endif /* CONFIG_NET_NS */
1668
1da177e4
LT
1669/*
1670 * Invalidate hardware checksum when packet is to be mangled, and
1671 * complete checksum manually on outgoing path.
1672 */
84fa7933 1673int skb_checksum_help(struct sk_buff *skb)
1da177e4 1674{
d3bc23e7 1675 __wsum csum;
663ead3b 1676 int ret = 0, offset;
1da177e4 1677
84fa7933 1678 if (skb->ip_summed == CHECKSUM_COMPLETE)
a430a43d
HX
1679 goto out_set_summed;
1680
1681 if (unlikely(skb_shinfo(skb)->gso_size)) {
a430a43d
HX
1682 /* Let GSO fix up the checksum. */
1683 goto out_set_summed;
1da177e4
LT
1684 }
1685
a030847e
HX
1686 offset = skb->csum_start - skb_headroom(skb);
1687 BUG_ON(offset >= skb_headlen(skb));
1688 csum = skb_checksum(skb, offset, skb->len - offset, 0);
1689
1690 offset += skb->csum_offset;
1691 BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
1692
1693 if (skb_cloned(skb) &&
1694 !skb_clone_writable(skb, offset + sizeof(__sum16))) {
1da177e4
LT
1695 ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1696 if (ret)
1697 goto out;
1698 }
1699
a030847e 1700 *(__sum16 *)(skb->data + offset) = csum_fold(csum);
a430a43d 1701out_set_summed:
1da177e4 1702 skb->ip_summed = CHECKSUM_NONE;
4ec93edb 1703out:
1da177e4
LT
1704 return ret;
1705}
d1b19dff 1706EXPORT_SYMBOL(skb_checksum_help);
1da177e4 1707
f6a78bfc
HX
1708/**
1709 * skb_gso_segment - Perform segmentation on skb.
1710 * @skb: buffer to segment
576a30eb 1711 * @features: features for the output path (see dev->features)
f6a78bfc
HX
1712 *
1713 * This function segments the given skb and returns a list of segments.
576a30eb
HX
1714 *
1715 * It may return NULL if the skb requires no segmentation. This is
1716 * only possible when GSO is used for verifying header integrity.
f6a78bfc 1717 */
576a30eb 1718struct sk_buff *skb_gso_segment(struct sk_buff *skb, int features)
f6a78bfc
HX
1719{
1720 struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
1721 struct packet_type *ptype;
252e3346 1722 __be16 type = skb->protocol;
a430a43d 1723 int err;
f6a78bfc 1724
459a98ed 1725 skb_reset_mac_header(skb);
b0e380b1 1726 skb->mac_len = skb->network_header - skb->mac_header;
f6a78bfc
HX
1727 __skb_pull(skb, skb->mac_len);
1728
67fd1a73
HX
1729 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
1730 struct net_device *dev = skb->dev;
1731 struct ethtool_drvinfo info = {};
1732
1733 if (dev && dev->ethtool_ops && dev->ethtool_ops->get_drvinfo)
1734 dev->ethtool_ops->get_drvinfo(dev, &info);
1735
1736 WARN(1, "%s: caps=(0x%lx, 0x%lx) len=%d data_len=%d "
1737 "ip_summed=%d",
1738 info.driver, dev ? dev->features : 0L,
1739 skb->sk ? skb->sk->sk_route_caps : 0L,
1740 skb->len, skb->data_len, skb->ip_summed);
1741
a430a43d
HX
1742 if (skb_header_cloned(skb) &&
1743 (err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC)))
1744 return ERR_PTR(err);
1745 }
1746
f6a78bfc 1747 rcu_read_lock();
82d8a867
PE
1748 list_for_each_entry_rcu(ptype,
1749 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
f6a78bfc 1750 if (ptype->type == type && !ptype->dev && ptype->gso_segment) {
84fa7933 1751 if (unlikely(skb->ip_summed != CHECKSUM_PARTIAL)) {
a430a43d
HX
1752 err = ptype->gso_send_check(skb);
1753 segs = ERR_PTR(err);
1754 if (err || skb_gso_ok(skb, features))
1755 break;
d56f90a7
ACM
1756 __skb_push(skb, (skb->data -
1757 skb_network_header(skb)));
a430a43d 1758 }
576a30eb 1759 segs = ptype->gso_segment(skb, features);
f6a78bfc
HX
1760 break;
1761 }
1762 }
1763 rcu_read_unlock();
1764
98e399f8 1765 __skb_push(skb, skb->data - skb_mac_header(skb));
576a30eb 1766
f6a78bfc
HX
1767 return segs;
1768}
f6a78bfc
HX
1769EXPORT_SYMBOL(skb_gso_segment);
1770
fb286bb2
HX
1771/* Take action when hardware reception checksum errors are detected. */
1772#ifdef CONFIG_BUG
1773void netdev_rx_csum_fault(struct net_device *dev)
1774{
1775 if (net_ratelimit()) {
4ec93edb 1776 printk(KERN_ERR "%s: hw csum failure.\n",
246a4212 1777 dev ? dev->name : "<unknown>");
fb286bb2
HX
1778 dump_stack();
1779 }
1780}
1781EXPORT_SYMBOL(netdev_rx_csum_fault);
1782#endif
1783
1da177e4
LT
1784/* Actually, we should eliminate this check as soon as we know, that:
1785 * 1. IOMMU is present and allows to map all the memory.
1786 * 2. No high memory really exists on this machine.
1787 */
1788
1789static inline int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
1790{
3d3a8533 1791#ifdef CONFIG_HIGHMEM
1da177e4
LT
1792 int i;
1793
1794 if (dev->features & NETIF_F_HIGHDMA)
1795 return 0;
1796
1797 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1798 if (PageHighMem(skb_shinfo(skb)->frags[i].page))
1799 return 1;
1800
3d3a8533 1801#endif
1da177e4
LT
1802 return 0;
1803}
1da177e4 1804
f6a78bfc
HX
1805struct dev_gso_cb {
1806 void (*destructor)(struct sk_buff *skb);
1807};
1808
1809#define DEV_GSO_CB(skb) ((struct dev_gso_cb *)(skb)->cb)
1810
1811static void dev_gso_skb_destructor(struct sk_buff *skb)
1812{
1813 struct dev_gso_cb *cb;
1814
1815 do {
1816 struct sk_buff *nskb = skb->next;
1817
1818 skb->next = nskb->next;
1819 nskb->next = NULL;
1820 kfree_skb(nskb);
1821 } while (skb->next);
1822
1823 cb = DEV_GSO_CB(skb);
1824 if (cb->destructor)
1825 cb->destructor(skb);
1826}
1827
1828/**
1829 * dev_gso_segment - Perform emulated hardware segmentation on skb.
1830 * @skb: buffer to segment
1831 *
1832 * This function segments the given skb and stores the list of segments
1833 * in skb->next.
1834 */
1835static int dev_gso_segment(struct sk_buff *skb)
1836{
1837 struct net_device *dev = skb->dev;
1838 struct sk_buff *segs;
576a30eb
HX
1839 int features = dev->features & ~(illegal_highdma(dev, skb) ?
1840 NETIF_F_SG : 0);
1841
1842 segs = skb_gso_segment(skb, features);
1843
1844 /* Verifying header integrity only. */
1845 if (!segs)
1846 return 0;
f6a78bfc 1847
801678c5 1848 if (IS_ERR(segs))
f6a78bfc
HX
1849 return PTR_ERR(segs);
1850
1851 skb->next = segs;
1852 DEV_GSO_CB(skb)->destructor = skb->destructor;
1853 skb->destructor = dev_gso_skb_destructor;
1854
1855 return 0;
1856}
1857
fd2ea0a7
DM
1858int dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
1859 struct netdev_queue *txq)
f6a78bfc 1860{
00829823 1861 const struct net_device_ops *ops = dev->netdev_ops;
572a9d7b 1862 int rc = NETDEV_TX_OK;
00829823 1863
f6a78bfc 1864 if (likely(!skb->next)) {
9be9a6b9 1865 if (!list_empty(&ptype_all))
f6a78bfc
HX
1866 dev_queue_xmit_nit(skb, dev);
1867
576a30eb
HX
1868 if (netif_needs_gso(dev, skb)) {
1869 if (unlikely(dev_gso_segment(skb)))
1870 goto out_kfree_skb;
1871 if (skb->next)
1872 goto gso;
1873 }
f6a78bfc 1874
93f154b5
ED
1875 /*
1876 * If device doesnt need skb->dst, release it right now while
1877 * its hot in this cpu cache
1878 */
adf30907
ED
1879 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1880 skb_dst_drop(skb);
1881
ac45f602 1882 rc = ops->ndo_start_xmit(skb, dev);
ec634fe3 1883 if (rc == NETDEV_TX_OK)
08baf561 1884 txq_trans_update(txq);
ac45f602
PO
1885 /*
1886 * TODO: if skb_orphan() was called by
1887 * dev->hard_start_xmit() (for example, the unmodified
1888 * igb driver does that; bnx2 doesn't), then
1889 * skb_tx_software_timestamp() will be unable to send
1890 * back the time stamp.
1891 *
1892 * How can this be prevented? Always create another
1893 * reference to the socket before calling
1894 * dev->hard_start_xmit()? Prevent that skb_orphan()
1895 * does anything in dev->hard_start_xmit() by clearing
1896 * the skb destructor before the call and restoring it
1897 * afterwards, then doing the skb_orphan() ourselves?
1898 */
ac45f602 1899 return rc;
f6a78bfc
HX
1900 }
1901
576a30eb 1902gso:
f6a78bfc
HX
1903 do {
1904 struct sk_buff *nskb = skb->next;
f6a78bfc
HX
1905
1906 skb->next = nskb->next;
1907 nskb->next = NULL;
068a2de5
KK
1908
1909 /*
1910 * If device doesnt need nskb->dst, release it right now while
1911 * its hot in this cpu cache
1912 */
1913 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
1914 skb_dst_drop(nskb);
1915
00829823 1916 rc = ops->ndo_start_xmit(nskb, dev);
ec634fe3 1917 if (unlikely(rc != NETDEV_TX_OK)) {
572a9d7b
PM
1918 if (rc & ~NETDEV_TX_MASK)
1919 goto out_kfree_gso_skb;
f54d9e8d 1920 nskb->next = skb->next;
f6a78bfc
HX
1921 skb->next = nskb;
1922 return rc;
1923 }
08baf561 1924 txq_trans_update(txq);
fd2ea0a7 1925 if (unlikely(netif_tx_queue_stopped(txq) && skb->next))
f54d9e8d 1926 return NETDEV_TX_BUSY;
f6a78bfc 1927 } while (skb->next);
4ec93edb 1928
572a9d7b
PM
1929out_kfree_gso_skb:
1930 if (likely(skb->next == NULL))
1931 skb->destructor = DEV_GSO_CB(skb)->destructor;
f6a78bfc
HX
1932out_kfree_skb:
1933 kfree_skb(skb);
572a9d7b 1934 return rc;
f6a78bfc
HX
1935}
1936
0a9627f2 1937static u32 hashrnd __read_mostly;
b6b2fed1 1938
9247744e 1939u16 skb_tx_hash(const struct net_device *dev, const struct sk_buff *skb)
8f0f2223 1940{
7019298a 1941 u32 hash;
b6b2fed1 1942
513de11b
DM
1943 if (skb_rx_queue_recorded(skb)) {
1944 hash = skb_get_rx_queue(skb);
d1b19dff 1945 while (unlikely(hash >= dev->real_num_tx_queues))
513de11b
DM
1946 hash -= dev->real_num_tx_queues;
1947 return hash;
1948 }
ec581f6a
ED
1949
1950 if (skb->sk && skb->sk->sk_hash)
7019298a 1951 hash = skb->sk->sk_hash;
ec581f6a 1952 else
7019298a 1953 hash = skb->protocol;
d5a9e24a 1954
0a9627f2 1955 hash = jhash_1word(hash, hashrnd);
b6b2fed1
DM
1956
1957 return (u16) (((u64) hash * dev->real_num_tx_queues) >> 32);
8f0f2223 1958}
9247744e 1959EXPORT_SYMBOL(skb_tx_hash);
8f0f2223 1960
ed04642f
ED
1961static inline u16 dev_cap_txqueue(struct net_device *dev, u16 queue_index)
1962{
1963 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
1964 if (net_ratelimit()) {
0a9627f2 1965 netdev_warn(dev, "selects TX queue %d, but "
ed04642f 1966 "real number of TX queues is %d\n",
0a9627f2 1967 queue_index, dev->real_num_tx_queues);
ed04642f
ED
1968 }
1969 return 0;
1970 }
1971 return queue_index;
1972}
1973
e8a0464c
DM
1974static struct netdev_queue *dev_pick_tx(struct net_device *dev,
1975 struct sk_buff *skb)
1976{
a4ee3ce3
KK
1977 u16 queue_index;
1978 struct sock *sk = skb->sk;
1979
1980 if (sk_tx_queue_recorded(sk)) {
1981 queue_index = sk_tx_queue_get(sk);
1982 } else {
1983 const struct net_device_ops *ops = dev->netdev_ops;
1984
1985 if (ops->ndo_select_queue) {
1986 queue_index = ops->ndo_select_queue(dev, skb);
ed04642f 1987 queue_index = dev_cap_txqueue(dev, queue_index);
a4ee3ce3
KK
1988 } else {
1989 queue_index = 0;
1990 if (dev->real_num_tx_queues > 1)
1991 queue_index = skb_tx_hash(dev, skb);
fd2ea0a7 1992
a4ee3ce3
KK
1993 if (sk && sk->sk_dst_cache)
1994 sk_tx_queue_set(sk, queue_index);
1995 }
1996 }
eae792b7 1997
fd2ea0a7
DM
1998 skb_set_queue_mapping(skb, queue_index);
1999 return netdev_get_tx_queue(dev, queue_index);
e8a0464c
DM
2000}
2001
bbd8a0d3
KK
2002static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
2003 struct net_device *dev,
2004 struct netdev_queue *txq)
2005{
2006 spinlock_t *root_lock = qdisc_lock(q);
2007 int rc;
2008
2009 spin_lock(root_lock);
2010 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
2011 kfree_skb(skb);
2012 rc = NET_XMIT_DROP;
2013 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
2014 !test_and_set_bit(__QDISC_STATE_RUNNING, &q->state)) {
2015 /*
2016 * This is a work-conserving queue; there are no old skbs
2017 * waiting to be sent out; and the qdisc is not running -
2018 * xmit the skb directly.
2019 */
2020 __qdisc_update_bstats(q, skb->len);
2021 if (sch_direct_xmit(skb, q, dev, txq, root_lock))
2022 __qdisc_run(q);
2023 else
2024 clear_bit(__QDISC_STATE_RUNNING, &q->state);
2025
2026 rc = NET_XMIT_SUCCESS;
2027 } else {
2028 rc = qdisc_enqueue_root(skb, q);
2029 qdisc_run(q);
2030 }
2031 spin_unlock(root_lock);
2032
2033 return rc;
2034}
2035
4b258461
KK
2036/*
2037 * Returns true if either:
2038 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
2039 * 2. skb is fragmented and the device does not support SG, or if
2040 * at least one of fragments is in highmem and device does not
2041 * support DMA from it.
2042 */
2043static inline int skb_needs_linearize(struct sk_buff *skb,
2044 struct net_device *dev)
2045{
2046 return (skb_has_frags(skb) && !(dev->features & NETIF_F_FRAGLIST)) ||
2047 (skb_shinfo(skb)->nr_frags && (!(dev->features & NETIF_F_SG) ||
2048 illegal_highdma(dev, skb)));
2049}
2050
d29f749e
DJ
2051/**
2052 * dev_queue_xmit - transmit a buffer
2053 * @skb: buffer to transmit
2054 *
2055 * Queue a buffer for transmission to a network device. The caller must
2056 * have set the device and priority and built the buffer before calling
2057 * this function. The function can be called from an interrupt.
2058 *
2059 * A negative errno code is returned on a failure. A success does not
2060 * guarantee the frame will be transmitted as it may be dropped due
2061 * to congestion or traffic shaping.
2062 *
2063 * -----------------------------------------------------------------------------------
2064 * I notice this method can also return errors from the queue disciplines,
2065 * including NET_XMIT_DROP, which is a positive value. So, errors can also
2066 * be positive.
2067 *
2068 * Regardless of the return value, the skb is consumed, so it is currently
2069 * difficult to retry a send to this method. (You can bump the ref count
2070 * before sending to hold a reference for retry if you are careful.)
2071 *
2072 * When calling this method, interrupts MUST be enabled. This is because
2073 * the BH enable code must have IRQs enabled so that it will not deadlock.
2074 * --BLG
2075 */
1da177e4
LT
2076int dev_queue_xmit(struct sk_buff *skb)
2077{
2078 struct net_device *dev = skb->dev;
dc2b4847 2079 struct netdev_queue *txq;
1da177e4
LT
2080 struct Qdisc *q;
2081 int rc = -ENOMEM;
2082
f6a78bfc
HX
2083 /* GSO will handle the following emulations directly. */
2084 if (netif_needs_gso(dev, skb))
2085 goto gso;
2086
4b258461
KK
2087 /* Convert a paged skb to linear, if required */
2088 if (skb_needs_linearize(skb, dev) && __skb_linearize(skb))
1da177e4
LT
2089 goto out_kfree_skb;
2090
2091 /* If packet is not checksummed and device does not support
2092 * checksumming for this protocol, complete checksumming here.
2093 */
663ead3b
HX
2094 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2095 skb_set_transport_header(skb, skb->csum_start -
2096 skb_headroom(skb));
6de329e2
BH
2097 if (!dev_can_checksum(dev, skb) && skb_checksum_help(skb))
2098 goto out_kfree_skb;
663ead3b 2099 }
1da177e4 2100
f6a78bfc 2101gso:
4ec93edb
YH
2102 /* Disable soft irqs for various locks below. Also
2103 * stops preemption for RCU.
1da177e4 2104 */
4ec93edb 2105 rcu_read_lock_bh();
1da177e4 2106
eae792b7 2107 txq = dev_pick_tx(dev, skb);
a898def2 2108 q = rcu_dereference_bh(txq->qdisc);
37437bb2 2109
1da177e4 2110#ifdef CONFIG_NET_CLS_ACT
d1b19dff 2111 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
1da177e4
LT
2112#endif
2113 if (q->enqueue) {
bbd8a0d3 2114 rc = __dev_xmit_skb(skb, q, dev, txq);
37437bb2 2115 goto out;
1da177e4
LT
2116 }
2117
2118 /* The device has no queue. Common case for software devices:
2119 loopback, all the sorts of tunnels...
2120
932ff279
HX
2121 Really, it is unlikely that netif_tx_lock protection is necessary
2122 here. (f.e. loopback and IP tunnels are clean ignoring statistics
1da177e4
LT
2123 counters.)
2124 However, it is possible, that they rely on protection
2125 made by us here.
2126
2127 Check this and shot the lock. It is not prone from deadlocks.
2128 Either shot noqueue qdisc, it is even simpler 8)
2129 */
2130 if (dev->flags & IFF_UP) {
2131 int cpu = smp_processor_id(); /* ok because BHs are off */
2132
c773e847 2133 if (txq->xmit_lock_owner != cpu) {
1da177e4 2134
c773e847 2135 HARD_TX_LOCK(dev, txq, cpu);
1da177e4 2136
fd2ea0a7 2137 if (!netif_tx_queue_stopped(txq)) {
572a9d7b
PM
2138 rc = dev_hard_start_xmit(skb, dev, txq);
2139 if (dev_xmit_complete(rc)) {
c773e847 2140 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
2141 goto out;
2142 }
2143 }
c773e847 2144 HARD_TX_UNLOCK(dev, txq);
1da177e4
LT
2145 if (net_ratelimit())
2146 printk(KERN_CRIT "Virtual device %s asks to "
2147 "queue packet!\n", dev->name);
2148 } else {
2149 /* Recursion is detected! It is possible,
2150 * unfortunately */
2151 if (net_ratelimit())
2152 printk(KERN_CRIT "Dead loop on virtual device "
2153 "%s, fix it urgently!\n", dev->name);
2154 }
2155 }
2156
2157 rc = -ENETDOWN;
d4828d85 2158 rcu_read_unlock_bh();
1da177e4
LT
2159
2160out_kfree_skb:
2161 kfree_skb(skb);
2162 return rc;
2163out:
d4828d85 2164 rcu_read_unlock_bh();
1da177e4
LT
2165 return rc;
2166}
d1b19dff 2167EXPORT_SYMBOL(dev_queue_xmit);
1da177e4
LT
2168
2169
2170/*=======================================================================
2171 Receiver routines
2172 =======================================================================*/
2173
6b2bedc3
SH
2174int netdev_max_backlog __read_mostly = 1000;
2175int netdev_budget __read_mostly = 300;
2176int weight_p __read_mostly = 64; /* old backlog weight */
1da177e4
LT
2177
2178DEFINE_PER_CPU(struct netif_rx_stats, netdev_rx_stat) = { 0, };
2179
df334545 2180#ifdef CONFIG_RPS
0a9627f2
TH
2181/*
2182 * get_rps_cpu is called from netif_receive_skb and returns the target
2183 * CPU from the RPS map of the receiving queue for a given skb.
2184 */
2185static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb)
2186{
2187 struct ipv6hdr *ip6;
2188 struct iphdr *ip;
2189 struct netdev_rx_queue *rxqueue;
2190 struct rps_map *map;
2191 int cpu = -1;
2192 u8 ip_proto;
2193 u32 addr1, addr2, ports, ihl;
2194
2195 rcu_read_lock();
2196
2197 if (skb_rx_queue_recorded(skb)) {
2198 u16 index = skb_get_rx_queue(skb);
2199 if (unlikely(index >= dev->num_rx_queues)) {
2200 if (net_ratelimit()) {
2201 netdev_warn(dev, "received packet on queue "
2202 "%u, but number of RX queues is %u\n",
2203 index, dev->num_rx_queues);
2204 }
2205 goto done;
2206 }
2207 rxqueue = dev->_rx + index;
2208 } else
2209 rxqueue = dev->_rx;
2210
2211 if (!rxqueue->rps_map)
2212 goto done;
2213
2214 if (skb->rxhash)
2215 goto got_hash; /* Skip hash computation on packet header */
2216
2217 switch (skb->protocol) {
2218 case __constant_htons(ETH_P_IP):
2219 if (!pskb_may_pull(skb, sizeof(*ip)))
2220 goto done;
2221
2222 ip = (struct iphdr *) skb->data;
2223 ip_proto = ip->protocol;
2224 addr1 = ip->saddr;
2225 addr2 = ip->daddr;
2226 ihl = ip->ihl;
2227 break;
2228 case __constant_htons(ETH_P_IPV6):
2229 if (!pskb_may_pull(skb, sizeof(*ip6)))
2230 goto done;
2231
2232 ip6 = (struct ipv6hdr *) skb->data;
2233 ip_proto = ip6->nexthdr;
2234 addr1 = ip6->saddr.s6_addr32[3];
2235 addr2 = ip6->daddr.s6_addr32[3];
2236 ihl = (40 >> 2);
2237 break;
2238 default:
2239 goto done;
2240 }
2241 ports = 0;
2242 switch (ip_proto) {
2243 case IPPROTO_TCP:
2244 case IPPROTO_UDP:
2245 case IPPROTO_DCCP:
2246 case IPPROTO_ESP:
2247 case IPPROTO_AH:
2248 case IPPROTO_SCTP:
2249 case IPPROTO_UDPLITE:
2250 if (pskb_may_pull(skb, (ihl * 4) + 4))
2251 ports = *((u32 *) (skb->data + (ihl * 4)));
2252 break;
2253
2254 default:
2255 break;
2256 }
2257
2258 skb->rxhash = jhash_3words(addr1, addr2, ports, hashrnd);
2259 if (!skb->rxhash)
2260 skb->rxhash = 1;
2261
2262got_hash:
2263 map = rcu_dereference(rxqueue->rps_map);
2264 if (map) {
2265 u16 tcpu = map->cpus[((u64) skb->rxhash * map->len) >> 32];
2266
2267 if (cpu_online(tcpu)) {
2268 cpu = tcpu;
2269 goto done;
2270 }
2271 }
2272
2273done:
2274 rcu_read_unlock();
2275 return cpu;
2276}
2277
2278/*
2279 * This structure holds the per-CPU mask of CPUs for which IPIs are scheduled
2280 * to be sent to kick remote softirq processing. There are two masks since
2281 * the sending of IPIs must be done with interrupts enabled. The select field
2282 * indicates the current mask that enqueue_backlog uses to schedule IPIs.
2283 * select is flipped before net_rps_action is called while still under lock,
2284 * net_rps_action then uses the non-selected mask to send the IPIs and clears
2285 * it without conflicting with enqueue_backlog operation.
2286 */
2287struct rps_remote_softirq_cpus {
2288 cpumask_t mask[2];
2289 int select;
2290};
2291static DEFINE_PER_CPU(struct rps_remote_softirq_cpus, rps_remote_softirq_cpus);
2292
2293/* Called from hardirq (IPI) context */
2294static void trigger_softirq(void *data)
2295{
2296 struct softnet_data *queue = data;
2297 __napi_schedule(&queue->backlog);
2298 __get_cpu_var(netdev_rx_stat).received_rps++;
2299}
1e94d72f 2300#endif /* CONFIG_SMP */
0a9627f2
TH
2301
2302/*
2303 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
2304 * queue (may be a remote CPU queue).
2305 */
2306static int enqueue_to_backlog(struct sk_buff *skb, int cpu)
2307{
2308 struct softnet_data *queue;
2309 unsigned long flags;
2310
2311 queue = &per_cpu(softnet_data, cpu);
2312
2313 local_irq_save(flags);
2314 __get_cpu_var(netdev_rx_stat).total++;
2315
2316 spin_lock(&queue->input_pkt_queue.lock);
2317 if (queue->input_pkt_queue.qlen <= netdev_max_backlog) {
2318 if (queue->input_pkt_queue.qlen) {
2319enqueue:
2320 __skb_queue_tail(&queue->input_pkt_queue, skb);
2321 spin_unlock_irqrestore(&queue->input_pkt_queue.lock,
2322 flags);
2323 return NET_RX_SUCCESS;
2324 }
2325
2326 /* Schedule NAPI for backlog device */
2327 if (napi_schedule_prep(&queue->backlog)) {
df334545 2328#ifdef CONFIG_RPS
0a9627f2
TH
2329 if (cpu != smp_processor_id()) {
2330 struct rps_remote_softirq_cpus *rcpus =
2331 &__get_cpu_var(rps_remote_softirq_cpus);
2332
2333 cpu_set(cpu, rcpus->mask[rcpus->select]);
2334 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
2335 } else
2336 __napi_schedule(&queue->backlog);
1e94d72f
TH
2337#else
2338 __napi_schedule(&queue->backlog);
2339#endif
0a9627f2
TH
2340 }
2341 goto enqueue;
2342 }
2343
2344 spin_unlock(&queue->input_pkt_queue.lock);
2345
2346 __get_cpu_var(netdev_rx_stat).dropped++;
2347 local_irq_restore(flags);
2348
2349 kfree_skb(skb);
2350 return NET_RX_DROP;
2351}
1da177e4 2352
1da177e4
LT
2353/**
2354 * netif_rx - post buffer to the network code
2355 * @skb: buffer to post
2356 *
2357 * This function receives a packet from a device driver and queues it for
2358 * the upper (protocol) levels to process. It always succeeds. The buffer
2359 * may be dropped during processing for congestion control or by the
2360 * protocol layers.
2361 *
2362 * return values:
2363 * NET_RX_SUCCESS (no congestion)
1da177e4
LT
2364 * NET_RX_DROP (packet was dropped)
2365 *
2366 */
2367
2368int netif_rx(struct sk_buff *skb)
2369{
0a9627f2 2370 int cpu;
1da177e4
LT
2371
2372 /* if netpoll wants it, pretend we never saw it */
2373 if (netpoll_rx(skb))
2374 return NET_RX_DROP;
2375
b7aa0bf7 2376 if (!skb->tstamp.tv64)
a61bbcf2 2377 net_timestamp(skb);
1da177e4 2378
df334545 2379#ifdef CONFIG_RPS
0a9627f2
TH
2380 cpu = get_rps_cpu(skb->dev, skb);
2381 if (cpu < 0)
2382 cpu = smp_processor_id();
1e94d72f
TH
2383#else
2384 cpu = smp_processor_id();
2385#endif
1da177e4 2386
0a9627f2 2387 return enqueue_to_backlog(skb, cpu);
1da177e4 2388}
d1b19dff 2389EXPORT_SYMBOL(netif_rx);
1da177e4
LT
2390
2391int netif_rx_ni(struct sk_buff *skb)
2392{
2393 int err;
2394
2395 preempt_disable();
2396 err = netif_rx(skb);
2397 if (local_softirq_pending())
2398 do_softirq();
2399 preempt_enable();
2400
2401 return err;
2402}
1da177e4
LT
2403EXPORT_SYMBOL(netif_rx_ni);
2404
1da177e4
LT
2405static void net_tx_action(struct softirq_action *h)
2406{
2407 struct softnet_data *sd = &__get_cpu_var(softnet_data);
2408
2409 if (sd->completion_queue) {
2410 struct sk_buff *clist;
2411
2412 local_irq_disable();
2413 clist = sd->completion_queue;
2414 sd->completion_queue = NULL;
2415 local_irq_enable();
2416
2417 while (clist) {
2418 struct sk_buff *skb = clist;
2419 clist = clist->next;
2420
547b792c 2421 WARN_ON(atomic_read(&skb->users));
1da177e4
LT
2422 __kfree_skb(skb);
2423 }
2424 }
2425
2426 if (sd->output_queue) {
37437bb2 2427 struct Qdisc *head;
1da177e4
LT
2428
2429 local_irq_disable();
2430 head = sd->output_queue;
2431 sd->output_queue = NULL;
2432 local_irq_enable();
2433
2434 while (head) {
37437bb2
DM
2435 struct Qdisc *q = head;
2436 spinlock_t *root_lock;
2437
1da177e4
LT
2438 head = head->next_sched;
2439
5fb66229 2440 root_lock = qdisc_lock(q);
37437bb2 2441 if (spin_trylock(root_lock)) {
def82a1d
JP
2442 smp_mb__before_clear_bit();
2443 clear_bit(__QDISC_STATE_SCHED,
2444 &q->state);
37437bb2
DM
2445 qdisc_run(q);
2446 spin_unlock(root_lock);
1da177e4 2447 } else {
195648bb 2448 if (!test_bit(__QDISC_STATE_DEACTIVATED,
e8a83e10 2449 &q->state)) {
195648bb 2450 __netif_reschedule(q);
e8a83e10
JP
2451 } else {
2452 smp_mb__before_clear_bit();
2453 clear_bit(__QDISC_STATE_SCHED,
2454 &q->state);
2455 }
1da177e4
LT
2456 }
2457 }
2458 }
2459}
2460
6f05f629
SH
2461static inline int deliver_skb(struct sk_buff *skb,
2462 struct packet_type *pt_prev,
2463 struct net_device *orig_dev)
1da177e4
LT
2464{
2465 atomic_inc(&skb->users);
f2ccd8fa 2466 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4
LT
2467}
2468
2469#if defined(CONFIG_BRIDGE) || defined (CONFIG_BRIDGE_MODULE)
da678292
MM
2470
2471#if defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE)
2472/* This hook is defined here for ATM LANE */
2473int (*br_fdb_test_addr_hook)(struct net_device *dev,
2474 unsigned char *addr) __read_mostly;
4fb019a0 2475EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
da678292 2476#endif
1da177e4 2477
6229e362
SH
2478/*
2479 * If bridge module is loaded call bridging hook.
2480 * returns NULL if packet was consumed.
2481 */
2482struct sk_buff *(*br_handle_frame_hook)(struct net_bridge_port *p,
2483 struct sk_buff *skb) __read_mostly;
4fb019a0 2484EXPORT_SYMBOL_GPL(br_handle_frame_hook);
da678292 2485
6229e362
SH
2486static inline struct sk_buff *handle_bridge(struct sk_buff *skb,
2487 struct packet_type **pt_prev, int *ret,
2488 struct net_device *orig_dev)
1da177e4
LT
2489{
2490 struct net_bridge_port *port;
2491
6229e362
SH
2492 if (skb->pkt_type == PACKET_LOOPBACK ||
2493 (port = rcu_dereference(skb->dev->br_port)) == NULL)
2494 return skb;
1da177e4
LT
2495
2496 if (*pt_prev) {
6229e362 2497 *ret = deliver_skb(skb, *pt_prev, orig_dev);
1da177e4 2498 *pt_prev = NULL;
4ec93edb
YH
2499 }
2500
6229e362 2501 return br_handle_frame_hook(port, skb);
1da177e4
LT
2502}
2503#else
6229e362 2504#define handle_bridge(skb, pt_prev, ret, orig_dev) (skb)
1da177e4
LT
2505#endif
2506
b863ceb7
PM
2507#if defined(CONFIG_MACVLAN) || defined(CONFIG_MACVLAN_MODULE)
2508struct sk_buff *(*macvlan_handle_frame_hook)(struct sk_buff *skb) __read_mostly;
2509EXPORT_SYMBOL_GPL(macvlan_handle_frame_hook);
2510
2511static inline struct sk_buff *handle_macvlan(struct sk_buff *skb,
2512 struct packet_type **pt_prev,
2513 int *ret,
2514 struct net_device *orig_dev)
2515{
2516 if (skb->dev->macvlan_port == NULL)
2517 return skb;
2518
2519 if (*pt_prev) {
2520 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2521 *pt_prev = NULL;
2522 }
2523 return macvlan_handle_frame_hook(skb);
2524}
2525#else
2526#define handle_macvlan(skb, pt_prev, ret, orig_dev) (skb)
2527#endif
2528
1da177e4
LT
2529#ifdef CONFIG_NET_CLS_ACT
2530/* TODO: Maybe we should just force sch_ingress to be compiled in
2531 * when CONFIG_NET_CLS_ACT is? otherwise some useless instructions
2532 * a compare and 2 stores extra right now if we dont have it on
2533 * but have CONFIG_NET_CLS_ACT
4ec93edb 2534 * NOTE: This doesnt stop any functionality; if you dont have
1da177e4
LT
2535 * the ingress scheduler, you just cant add policies on ingress.
2536 *
2537 */
4ec93edb 2538static int ing_filter(struct sk_buff *skb)
1da177e4 2539{
1da177e4 2540 struct net_device *dev = skb->dev;
f697c3e8 2541 u32 ttl = G_TC_RTTL(skb->tc_verd);
555353cf
DM
2542 struct netdev_queue *rxq;
2543 int result = TC_ACT_OK;
2544 struct Qdisc *q;
4ec93edb 2545
f697c3e8
HX
2546 if (MAX_RED_LOOP < ttl++) {
2547 printk(KERN_WARNING
2548 "Redir loop detected Dropping packet (%d->%d)\n",
8964be4a 2549 skb->skb_iif, dev->ifindex);
f697c3e8
HX
2550 return TC_ACT_SHOT;
2551 }
1da177e4 2552
f697c3e8
HX
2553 skb->tc_verd = SET_TC_RTTL(skb->tc_verd, ttl);
2554 skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
1da177e4 2555
555353cf
DM
2556 rxq = &dev->rx_queue;
2557
83874000 2558 q = rxq->qdisc;
8d50b53d 2559 if (q != &noop_qdisc) {
83874000 2560 spin_lock(qdisc_lock(q));
a9312ae8
DM
2561 if (likely(!test_bit(__QDISC_STATE_DEACTIVATED, &q->state)))
2562 result = qdisc_enqueue_root(skb, q);
83874000
DM
2563 spin_unlock(qdisc_lock(q));
2564 }
f697c3e8
HX
2565
2566 return result;
2567}
86e65da9 2568
f697c3e8
HX
2569static inline struct sk_buff *handle_ing(struct sk_buff *skb,
2570 struct packet_type **pt_prev,
2571 int *ret, struct net_device *orig_dev)
2572{
8d50b53d 2573 if (skb->dev->rx_queue.qdisc == &noop_qdisc)
f697c3e8 2574 goto out;
1da177e4 2575
f697c3e8
HX
2576 if (*pt_prev) {
2577 *ret = deliver_skb(skb, *pt_prev, orig_dev);
2578 *pt_prev = NULL;
2579 } else {
2580 /* Huh? Why does turning on AF_PACKET affect this? */
2581 skb->tc_verd = SET_TC_OK2MUNGE(skb->tc_verd);
1da177e4
LT
2582 }
2583
f697c3e8
HX
2584 switch (ing_filter(skb)) {
2585 case TC_ACT_SHOT:
2586 case TC_ACT_STOLEN:
2587 kfree_skb(skb);
2588 return NULL;
2589 }
2590
2591out:
2592 skb->tc_verd = 0;
2593 return skb;
1da177e4
LT
2594}
2595#endif
2596
bc1d0411
PM
2597/*
2598 * netif_nit_deliver - deliver received packets to network taps
2599 * @skb: buffer
2600 *
2601 * This function is used to deliver incoming packets to network
2602 * taps. It should be used when the normal netif_receive_skb path
2603 * is bypassed, for example because of VLAN acceleration.
2604 */
2605void netif_nit_deliver(struct sk_buff *skb)
2606{
2607 struct packet_type *ptype;
2608
2609 if (list_empty(&ptype_all))
2610 return;
2611
2612 skb_reset_network_header(skb);
2613 skb_reset_transport_header(skb);
2614 skb->mac_len = skb->network_header - skb->mac_header;
2615
2616 rcu_read_lock();
2617 list_for_each_entry_rcu(ptype, &ptype_all, list) {
2618 if (!ptype->dev || ptype->dev == skb->dev)
2619 deliver_skb(skb, ptype, skb->dev);
2620 }
2621 rcu_read_unlock();
2622}
2623
0a9627f2 2624int __netif_receive_skb(struct sk_buff *skb)
1da177e4
LT
2625{
2626 struct packet_type *ptype, *pt_prev;
f2ccd8fa 2627 struct net_device *orig_dev;
0641e4fb 2628 struct net_device *master;
0d7a3681 2629 struct net_device *null_or_orig;
ca8d9ea3 2630 struct net_device *null_or_bond;
1da177e4 2631 int ret = NET_RX_DROP;
252e3346 2632 __be16 type;
1da177e4 2633
81bbb3d4
ED
2634 if (!skb->tstamp.tv64)
2635 net_timestamp(skb);
2636
05423b24 2637 if (vlan_tx_tag_present(skb) && vlan_hwaccel_do_receive(skb))
9b22ea56
PM
2638 return NET_RX_SUCCESS;
2639
1da177e4 2640 /* if we've gotten here through NAPI, check netpoll */
bea3348e 2641 if (netpoll_receive_skb(skb))
1da177e4
LT
2642 return NET_RX_DROP;
2643
8964be4a
ED
2644 if (!skb->skb_iif)
2645 skb->skb_iif = skb->dev->ifindex;
86e65da9 2646
0d7a3681 2647 null_or_orig = NULL;
cc9bd5ce 2648 orig_dev = skb->dev;
0641e4fb
ED
2649 master = ACCESS_ONCE(orig_dev->master);
2650 if (master) {
2651 if (skb_bond_should_drop(skb, master))
0d7a3681
JE
2652 null_or_orig = orig_dev; /* deliver only exact match */
2653 else
0641e4fb 2654 skb->dev = master;
cc9bd5ce 2655 }
8f903c70 2656
1da177e4
LT
2657 __get_cpu_var(netdev_rx_stat).total++;
2658
c1d2bbe1 2659 skb_reset_network_header(skb);
badff6d0 2660 skb_reset_transport_header(skb);
b0e380b1 2661 skb->mac_len = skb->network_header - skb->mac_header;
1da177e4
LT
2662
2663 pt_prev = NULL;
2664
2665 rcu_read_lock();
2666
2667#ifdef CONFIG_NET_CLS_ACT
2668 if (skb->tc_verd & TC_NCLS) {
2669 skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
2670 goto ncls;
2671 }
2672#endif
2673
2674 list_for_each_entry_rcu(ptype, &ptype_all, list) {
f982307f
JE
2675 if (ptype->dev == null_or_orig || ptype->dev == skb->dev ||
2676 ptype->dev == orig_dev) {
4ec93edb 2677 if (pt_prev)
f2ccd8fa 2678 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
2679 pt_prev = ptype;
2680 }
2681 }
2682
2683#ifdef CONFIG_NET_CLS_ACT
f697c3e8
HX
2684 skb = handle_ing(skb, &pt_prev, &ret, orig_dev);
2685 if (!skb)
1da177e4 2686 goto out;
1da177e4
LT
2687ncls:
2688#endif
2689
6229e362 2690 skb = handle_bridge(skb, &pt_prev, &ret, orig_dev);
b863ceb7
PM
2691 if (!skb)
2692 goto out;
2693 skb = handle_macvlan(skb, &pt_prev, &ret, orig_dev);
6229e362 2694 if (!skb)
1da177e4
LT
2695 goto out;
2696
1f3c8804
AG
2697 /*
2698 * Make sure frames received on VLAN interfaces stacked on
2699 * bonding interfaces still make their way to any base bonding
2700 * device that may have registered for a specific ptype. The
2701 * handler may have to adjust skb->dev and orig_dev.
1f3c8804 2702 */
ca8d9ea3 2703 null_or_bond = NULL;
1f3c8804
AG
2704 if ((skb->dev->priv_flags & IFF_802_1Q_VLAN) &&
2705 (vlan_dev_real_dev(skb->dev)->priv_flags & IFF_BONDING)) {
ca8d9ea3 2706 null_or_bond = vlan_dev_real_dev(skb->dev);
1f3c8804
AG
2707 }
2708
1da177e4 2709 type = skb->protocol;
82d8a867
PE
2710 list_for_each_entry_rcu(ptype,
2711 &ptype_base[ntohs(type) & PTYPE_HASH_MASK], list) {
1f3c8804 2712 if (ptype->type == type && (ptype->dev == null_or_orig ||
ca8d9ea3
AG
2713 ptype->dev == skb->dev || ptype->dev == orig_dev ||
2714 ptype->dev == null_or_bond)) {
4ec93edb 2715 if (pt_prev)
f2ccd8fa 2716 ret = deliver_skb(skb, pt_prev, orig_dev);
1da177e4
LT
2717 pt_prev = ptype;
2718 }
2719 }
2720
2721 if (pt_prev) {
f2ccd8fa 2722 ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1da177e4
LT
2723 } else {
2724 kfree_skb(skb);
2725 /* Jamal, now you will not able to escape explaining
2726 * me how you were going to use this. :-)
2727 */
2728 ret = NET_RX_DROP;
2729 }
2730
2731out:
2732 rcu_read_unlock();
2733 return ret;
2734}
0a9627f2
TH
2735
2736/**
2737 * netif_receive_skb - process receive buffer from network
2738 * @skb: buffer to process
2739 *
2740 * netif_receive_skb() is the main receive data processing function.
2741 * It always succeeds. The buffer may be dropped during processing
2742 * for congestion control or by the protocol layers.
2743 *
2744 * This function may only be called from softirq context and interrupts
2745 * should be enabled.
2746 *
2747 * Return values (usually ignored):
2748 * NET_RX_SUCCESS: no congestion
2749 * NET_RX_DROP: packet was dropped
2750 */
2751int netif_receive_skb(struct sk_buff *skb)
2752{
df334545 2753#ifdef CONFIG_RPS
0a9627f2
TH
2754 int cpu;
2755
2756 cpu = get_rps_cpu(skb->dev, skb);
2757
2758 if (cpu < 0)
2759 return __netif_receive_skb(skb);
2760 else
2761 return enqueue_to_backlog(skb, cpu);
1e94d72f
TH
2762#else
2763 return __netif_receive_skb(skb);
2764#endif
0a9627f2 2765}
d1b19dff 2766EXPORT_SYMBOL(netif_receive_skb);
1da177e4 2767
6e583ce5 2768/* Network device is going away, flush any packets still pending */
e51d739a 2769static void flush_backlog(struct net_device *dev, int cpu)
6e583ce5 2770{
e51d739a 2771 struct softnet_data *queue = &per_cpu(softnet_data, cpu);
6e583ce5 2772 struct sk_buff *skb, *tmp;
e51d739a 2773 unsigned long flags;
6e583ce5 2774
e51d739a 2775 spin_lock_irqsave(&queue->input_pkt_queue.lock, flags);
6e583ce5
SH
2776 skb_queue_walk_safe(&queue->input_pkt_queue, skb, tmp)
2777 if (skb->dev == dev) {
2778 __skb_unlink(skb, &queue->input_pkt_queue);
2779 kfree_skb(skb);
2780 }
e51d739a 2781 spin_unlock_irqrestore(&queue->input_pkt_queue.lock, flags);
6e583ce5
SH
2782}
2783
d565b0a1
HX
2784static int napi_gro_complete(struct sk_buff *skb)
2785{
2786 struct packet_type *ptype;
2787 __be16 type = skb->protocol;
2788 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
2789 int err = -ENOENT;
2790
fc59f9a3
HX
2791 if (NAPI_GRO_CB(skb)->count == 1) {
2792 skb_shinfo(skb)->gso_size = 0;
d565b0a1 2793 goto out;
fc59f9a3 2794 }
d565b0a1
HX
2795
2796 rcu_read_lock();
2797 list_for_each_entry_rcu(ptype, head, list) {
2798 if (ptype->type != type || ptype->dev || !ptype->gro_complete)
2799 continue;
2800
2801 err = ptype->gro_complete(skb);
2802 break;
2803 }
2804 rcu_read_unlock();
2805
2806 if (err) {
2807 WARN_ON(&ptype->list == head);
2808 kfree_skb(skb);
2809 return NET_RX_SUCCESS;
2810 }
2811
2812out:
d565b0a1
HX
2813 return netif_receive_skb(skb);
2814}
2815
11380a4b 2816static void napi_gro_flush(struct napi_struct *napi)
d565b0a1
HX
2817{
2818 struct sk_buff *skb, *next;
2819
2820 for (skb = napi->gro_list; skb; skb = next) {
2821 next = skb->next;
2822 skb->next = NULL;
2823 napi_gro_complete(skb);
2824 }
2825
4ae5544f 2826 napi->gro_count = 0;
d565b0a1
HX
2827 napi->gro_list = NULL;
2828}
d565b0a1 2829
5b252f0c 2830enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
d565b0a1
HX
2831{
2832 struct sk_buff **pp = NULL;
2833 struct packet_type *ptype;
2834 __be16 type = skb->protocol;
2835 struct list_head *head = &ptype_base[ntohs(type) & PTYPE_HASH_MASK];
0da2afd5 2836 int same_flow;
d565b0a1 2837 int mac_len;
5b252f0c 2838 enum gro_result ret;
d565b0a1
HX
2839
2840 if (!(skb->dev->features & NETIF_F_GRO))
2841 goto normal;
2842
4cf704fb 2843 if (skb_is_gso(skb) || skb_has_frags(skb))
f17f5c91
HX
2844 goto normal;
2845
d565b0a1
HX
2846 rcu_read_lock();
2847 list_for_each_entry_rcu(ptype, head, list) {
d565b0a1
HX
2848 if (ptype->type != type || ptype->dev || !ptype->gro_receive)
2849 continue;
2850
86911732 2851 skb_set_network_header(skb, skb_gro_offset(skb));
d565b0a1
HX
2852 mac_len = skb->network_header - skb->mac_header;
2853 skb->mac_len = mac_len;
2854 NAPI_GRO_CB(skb)->same_flow = 0;
2855 NAPI_GRO_CB(skb)->flush = 0;
5d38a079 2856 NAPI_GRO_CB(skb)->free = 0;
d565b0a1 2857
d565b0a1
HX
2858 pp = ptype->gro_receive(&napi->gro_list, skb);
2859 break;
2860 }
2861 rcu_read_unlock();
2862
2863 if (&ptype->list == head)
2864 goto normal;
2865
0da2afd5 2866 same_flow = NAPI_GRO_CB(skb)->same_flow;
5d0d9be8 2867 ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
0da2afd5 2868
d565b0a1
HX
2869 if (pp) {
2870 struct sk_buff *nskb = *pp;
2871
2872 *pp = nskb->next;
2873 nskb->next = NULL;
2874 napi_gro_complete(nskb);
4ae5544f 2875 napi->gro_count--;
d565b0a1
HX
2876 }
2877
0da2afd5 2878 if (same_flow)
d565b0a1
HX
2879 goto ok;
2880
4ae5544f 2881 if (NAPI_GRO_CB(skb)->flush || napi->gro_count >= MAX_GRO_SKBS)
d565b0a1 2882 goto normal;
d565b0a1 2883
4ae5544f 2884 napi->gro_count++;
d565b0a1 2885 NAPI_GRO_CB(skb)->count = 1;
86911732 2886 skb_shinfo(skb)->gso_size = skb_gro_len(skb);
d565b0a1
HX
2887 skb->next = napi->gro_list;
2888 napi->gro_list = skb;
5d0d9be8 2889 ret = GRO_HELD;
d565b0a1 2890
ad0f9904 2891pull:
cb18978c
HX
2892 if (skb_headlen(skb) < skb_gro_offset(skb)) {
2893 int grow = skb_gro_offset(skb) - skb_headlen(skb);
2894
2895 BUG_ON(skb->end - skb->tail < grow);
2896
2897 memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
2898
2899 skb->tail += grow;
2900 skb->data_len -= grow;
2901
2902 skb_shinfo(skb)->frags[0].page_offset += grow;
2903 skb_shinfo(skb)->frags[0].size -= grow;
2904
2905 if (unlikely(!skb_shinfo(skb)->frags[0].size)) {
2906 put_page(skb_shinfo(skb)->frags[0].page);
2907 memmove(skb_shinfo(skb)->frags,
2908 skb_shinfo(skb)->frags + 1,
2909 --skb_shinfo(skb)->nr_frags);
2910 }
ad0f9904
HX
2911 }
2912
d565b0a1 2913ok:
5d0d9be8 2914 return ret;
d565b0a1
HX
2915
2916normal:
ad0f9904
HX
2917 ret = GRO_NORMAL;
2918 goto pull;
5d38a079 2919}
96e93eab
HX
2920EXPORT_SYMBOL(dev_gro_receive);
2921
5b252f0c
BH
2922static gro_result_t
2923__napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
96e93eab
HX
2924{
2925 struct sk_buff *p;
2926
d1c76af9
HX
2927 if (netpoll_rx_on(skb))
2928 return GRO_NORMAL;
2929
96e93eab 2930 for (p = napi->gro_list; p; p = p->next) {
f64f9e71
JP
2931 NAPI_GRO_CB(p)->same_flow =
2932 (p->dev == skb->dev) &&
2933 !compare_ether_header(skb_mac_header(p),
2934 skb_gro_mac_header(skb));
96e93eab
HX
2935 NAPI_GRO_CB(p)->flush = 0;
2936 }
2937
2938 return dev_gro_receive(napi, skb);
2939}
5d38a079 2940
c7c4b3b6 2941gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
5d38a079 2942{
5d0d9be8
HX
2943 switch (ret) {
2944 case GRO_NORMAL:
c7c4b3b6
BH
2945 if (netif_receive_skb(skb))
2946 ret = GRO_DROP;
2947 break;
5d38a079 2948
5d0d9be8 2949 case GRO_DROP:
5d0d9be8 2950 case GRO_MERGED_FREE:
5d38a079
HX
2951 kfree_skb(skb);
2952 break;
5b252f0c
BH
2953
2954 case GRO_HELD:
2955 case GRO_MERGED:
2956 break;
5d38a079
HX
2957 }
2958
c7c4b3b6 2959 return ret;
5d0d9be8
HX
2960}
2961EXPORT_SYMBOL(napi_skb_finish);
2962
78a478d0
HX
2963void skb_gro_reset_offset(struct sk_buff *skb)
2964{
2965 NAPI_GRO_CB(skb)->data_offset = 0;
2966 NAPI_GRO_CB(skb)->frag0 = NULL;
7489594c 2967 NAPI_GRO_CB(skb)->frag0_len = 0;
78a478d0 2968
78d3fd0b 2969 if (skb->mac_header == skb->tail &&
7489594c 2970 !PageHighMem(skb_shinfo(skb)->frags[0].page)) {
78a478d0
HX
2971 NAPI_GRO_CB(skb)->frag0 =
2972 page_address(skb_shinfo(skb)->frags[0].page) +
2973 skb_shinfo(skb)->frags[0].page_offset;
7489594c
HX
2974 NAPI_GRO_CB(skb)->frag0_len = skb_shinfo(skb)->frags[0].size;
2975 }
78a478d0
HX
2976}
2977EXPORT_SYMBOL(skb_gro_reset_offset);
2978
c7c4b3b6 2979gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
5d0d9be8 2980{
86911732
HX
2981 skb_gro_reset_offset(skb);
2982
5d0d9be8 2983 return napi_skb_finish(__napi_gro_receive(napi, skb), skb);
d565b0a1
HX
2984}
2985EXPORT_SYMBOL(napi_gro_receive);
2986
96e93eab
HX
2987void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
2988{
96e93eab
HX
2989 __skb_pull(skb, skb_headlen(skb));
2990 skb_reserve(skb, NET_IP_ALIGN - skb_headroom(skb));
2991
2992 napi->skb = skb;
2993}
2994EXPORT_SYMBOL(napi_reuse_skb);
2995
76620aaf 2996struct sk_buff *napi_get_frags(struct napi_struct *napi)
5d38a079 2997{
5d38a079 2998 struct sk_buff *skb = napi->skb;
5d38a079
HX
2999
3000 if (!skb) {
89d71a66
ED
3001 skb = netdev_alloc_skb_ip_align(napi->dev, GRO_MAX_HEAD);
3002 if (skb)
3003 napi->skb = skb;
80595d59 3004 }
96e93eab
HX
3005 return skb;
3006}
76620aaf 3007EXPORT_SYMBOL(napi_get_frags);
96e93eab 3008
c7c4b3b6
BH
3009gro_result_t napi_frags_finish(struct napi_struct *napi, struct sk_buff *skb,
3010 gro_result_t ret)
96e93eab 3011{
5d0d9be8
HX
3012 switch (ret) {
3013 case GRO_NORMAL:
86911732 3014 case GRO_HELD:
e76b69cc 3015 skb->protocol = eth_type_trans(skb, skb->dev);
86911732 3016
c7c4b3b6
BH
3017 if (ret == GRO_HELD)
3018 skb_gro_pull(skb, -ETH_HLEN);
3019 else if (netif_receive_skb(skb))
3020 ret = GRO_DROP;
86911732 3021 break;
5d38a079 3022
5d0d9be8 3023 case GRO_DROP:
5d0d9be8
HX
3024 case GRO_MERGED_FREE:
3025 napi_reuse_skb(napi, skb);
3026 break;
5b252f0c
BH
3027
3028 case GRO_MERGED:
3029 break;
5d0d9be8 3030 }
5d38a079 3031
c7c4b3b6 3032 return ret;
5d38a079 3033}
5d0d9be8
HX
3034EXPORT_SYMBOL(napi_frags_finish);
3035
76620aaf
HX
3036struct sk_buff *napi_frags_skb(struct napi_struct *napi)
3037{
3038 struct sk_buff *skb = napi->skb;
3039 struct ethhdr *eth;
a5b1cf28
HX
3040 unsigned int hlen;
3041 unsigned int off;
76620aaf
HX
3042
3043 napi->skb = NULL;
3044
3045 skb_reset_mac_header(skb);
3046 skb_gro_reset_offset(skb);
3047
a5b1cf28
HX
3048 off = skb_gro_offset(skb);
3049 hlen = off + sizeof(*eth);
3050 eth = skb_gro_header_fast(skb, off);
3051 if (skb_gro_header_hard(skb, hlen)) {
3052 eth = skb_gro_header_slow(skb, hlen, off);
3053 if (unlikely(!eth)) {
3054 napi_reuse_skb(napi, skb);
3055 skb = NULL;
3056 goto out;
3057 }
76620aaf
HX
3058 }
3059
3060 skb_gro_pull(skb, sizeof(*eth));
3061
3062 /*
3063 * This works because the only protocols we care about don't require
3064 * special handling. We'll fix it up properly at the end.
3065 */
3066 skb->protocol = eth->h_proto;
3067
3068out:
3069 return skb;
3070}
3071EXPORT_SYMBOL(napi_frags_skb);
3072
c7c4b3b6 3073gro_result_t napi_gro_frags(struct napi_struct *napi)
5d0d9be8 3074{
76620aaf 3075 struct sk_buff *skb = napi_frags_skb(napi);
5d0d9be8
HX
3076
3077 if (!skb)
c7c4b3b6 3078 return GRO_DROP;
5d0d9be8
HX
3079
3080 return napi_frags_finish(napi, skb, __napi_gro_receive(napi, skb));
3081}
5d38a079
HX
3082EXPORT_SYMBOL(napi_gro_frags);
3083
bea3348e 3084static int process_backlog(struct napi_struct *napi, int quota)
1da177e4
LT
3085{
3086 int work = 0;
1da177e4
LT
3087 struct softnet_data *queue = &__get_cpu_var(softnet_data);
3088 unsigned long start_time = jiffies;
3089
bea3348e
SH
3090 napi->weight = weight_p;
3091 do {
1da177e4 3092 struct sk_buff *skb;
1da177e4 3093
0a9627f2 3094 spin_lock_irq(&queue->input_pkt_queue.lock);
1da177e4 3095 skb = __skb_dequeue(&queue->input_pkt_queue);
bea3348e 3096 if (!skb) {
8f1ead2d 3097 __napi_complete(napi);
0a9627f2 3098 spin_unlock_irq(&queue->input_pkt_queue.lock);
8f1ead2d 3099 break;
bea3348e 3100 }
0a9627f2 3101 spin_unlock_irq(&queue->input_pkt_queue.lock);
1da177e4 3102
0a9627f2 3103 __netif_receive_skb(skb);
bea3348e 3104 } while (++work < quota && jiffies == start_time);
1da177e4 3105
bea3348e
SH
3106 return work;
3107}
1da177e4 3108
bea3348e
SH
3109/**
3110 * __napi_schedule - schedule for receive
c4ea43c5 3111 * @n: entry to schedule
bea3348e
SH
3112 *
3113 * The entry's receive function will be scheduled to run
3114 */
b5606c2d 3115void __napi_schedule(struct napi_struct *n)
bea3348e
SH
3116{
3117 unsigned long flags;
1da177e4 3118
bea3348e
SH
3119 local_irq_save(flags);
3120 list_add_tail(&n->poll_list, &__get_cpu_var(softnet_data).poll_list);
3121 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3122 local_irq_restore(flags);
1da177e4 3123}
bea3348e
SH
3124EXPORT_SYMBOL(__napi_schedule);
3125
d565b0a1
HX
3126void __napi_complete(struct napi_struct *n)
3127{
3128 BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
3129 BUG_ON(n->gro_list);
3130
3131 list_del(&n->poll_list);
3132 smp_mb__before_clear_bit();
3133 clear_bit(NAPI_STATE_SCHED, &n->state);
3134}
3135EXPORT_SYMBOL(__napi_complete);
3136
3137void napi_complete(struct napi_struct *n)
3138{
3139 unsigned long flags;
3140
3141 /*
3142 * don't let napi dequeue from the cpu poll list
3143 * just in case its running on a different cpu
3144 */
3145 if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
3146 return;
3147
3148 napi_gro_flush(n);
3149 local_irq_save(flags);
3150 __napi_complete(n);
3151 local_irq_restore(flags);
3152}
3153EXPORT_SYMBOL(napi_complete);
3154
3155void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
3156 int (*poll)(struct napi_struct *, int), int weight)
3157{
3158 INIT_LIST_HEAD(&napi->poll_list);
4ae5544f 3159 napi->gro_count = 0;
d565b0a1 3160 napi->gro_list = NULL;
5d38a079 3161 napi->skb = NULL;
d565b0a1
HX
3162 napi->poll = poll;
3163 napi->weight = weight;
3164 list_add(&napi->dev_list, &dev->napi_list);
d565b0a1 3165 napi->dev = dev;
5d38a079 3166#ifdef CONFIG_NETPOLL
d565b0a1
HX
3167 spin_lock_init(&napi->poll_lock);
3168 napi->poll_owner = -1;
3169#endif
3170 set_bit(NAPI_STATE_SCHED, &napi->state);
3171}
3172EXPORT_SYMBOL(netif_napi_add);
3173
3174void netif_napi_del(struct napi_struct *napi)
3175{
3176 struct sk_buff *skb, *next;
3177
d7b06636 3178 list_del_init(&napi->dev_list);
76620aaf 3179 napi_free_frags(napi);
d565b0a1
HX
3180
3181 for (skb = napi->gro_list; skb; skb = next) {
3182 next = skb->next;
3183 skb->next = NULL;
3184 kfree_skb(skb);
3185 }
3186
3187 napi->gro_list = NULL;
4ae5544f 3188 napi->gro_count = 0;
d565b0a1
HX
3189}
3190EXPORT_SYMBOL(netif_napi_del);
3191
df334545 3192#ifdef CONFIG_RPS
0a9627f2
TH
3193/*
3194 * net_rps_action sends any pending IPI's for rps. This is only called from
3195 * softirq and interrupts must be enabled.
3196 */
3197static void net_rps_action(cpumask_t *mask)
3198{
3199 int cpu;
3200
3201 /* Send pending IPI's to kick RPS processing on remote cpus. */
3202 for_each_cpu_mask_nr(cpu, *mask) {
3203 struct softnet_data *queue = &per_cpu(softnet_data, cpu);
3204 if (cpu_online(cpu))
3205 __smp_call_function_single(cpu, &queue->csd, 0);
3206 }
3207 cpus_clear(*mask);
3208}
1e94d72f 3209#endif
1da177e4
LT
3210
3211static void net_rx_action(struct softirq_action *h)
3212{
bea3348e 3213 struct list_head *list = &__get_cpu_var(softnet_data).poll_list;
24f8b238 3214 unsigned long time_limit = jiffies + 2;
51b0bded 3215 int budget = netdev_budget;
53fb95d3 3216 void *have;
df334545 3217#ifdef CONFIG_RPS
0a9627f2
TH
3218 int select;
3219 struct rps_remote_softirq_cpus *rcpus;
1e94d72f 3220#endif
53fb95d3 3221
1da177e4
LT
3222 local_irq_disable();
3223
bea3348e
SH
3224 while (!list_empty(list)) {
3225 struct napi_struct *n;
3226 int work, weight;
1da177e4 3227
bea3348e 3228 /* If softirq window is exhuasted then punt.
24f8b238
SH
3229 * Allow this to run for 2 jiffies since which will allow
3230 * an average latency of 1.5/HZ.
bea3348e 3231 */
24f8b238 3232 if (unlikely(budget <= 0 || time_after(jiffies, time_limit)))
1da177e4
LT
3233 goto softnet_break;
3234
3235 local_irq_enable();
3236
bea3348e
SH
3237 /* Even though interrupts have been re-enabled, this
3238 * access is safe because interrupts can only add new
3239 * entries to the tail of this list, and only ->poll()
3240 * calls can remove this head entry from the list.
3241 */
e5e26d75 3242 n = list_first_entry(list, struct napi_struct, poll_list);
1da177e4 3243
bea3348e
SH
3244 have = netpoll_poll_lock(n);
3245
3246 weight = n->weight;
3247
0a7606c1
DM
3248 /* This NAPI_STATE_SCHED test is for avoiding a race
3249 * with netpoll's poll_napi(). Only the entity which
3250 * obtains the lock and sees NAPI_STATE_SCHED set will
3251 * actually make the ->poll() call. Therefore we avoid
3252 * accidently calling ->poll() when NAPI is not scheduled.
3253 */
3254 work = 0;
4ea7e386 3255 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
0a7606c1 3256 work = n->poll(n, weight);
4ea7e386
NH
3257 trace_napi_poll(n);
3258 }
bea3348e
SH
3259
3260 WARN_ON_ONCE(work > weight);
3261
3262 budget -= work;
3263
3264 local_irq_disable();
3265
3266 /* Drivers must not modify the NAPI state if they
3267 * consume the entire weight. In such cases this code
3268 * still "owns" the NAPI instance and therefore can
3269 * move the instance around on the list at-will.
3270 */
fed17f30 3271 if (unlikely(work == weight)) {
ff780cd8
HX
3272 if (unlikely(napi_disable_pending(n))) {
3273 local_irq_enable();
3274 napi_complete(n);
3275 local_irq_disable();
3276 } else
fed17f30
DM
3277 list_move_tail(&n->poll_list, list);
3278 }
bea3348e
SH
3279
3280 netpoll_poll_unlock(have);
1da177e4
LT
3281 }
3282out:
df334545 3283#ifdef CONFIG_RPS
0a9627f2
TH
3284 rcpus = &__get_cpu_var(rps_remote_softirq_cpus);
3285 select = rcpus->select;
3286 rcpus->select ^= 1;
3287
515e06c4 3288 local_irq_enable();
bea3348e 3289
0a9627f2 3290 net_rps_action(&rcpus->mask[select]);
1e94d72f
TH
3291#else
3292 local_irq_enable();
3293#endif
0a9627f2 3294
db217334
CL
3295#ifdef CONFIG_NET_DMA
3296 /*
3297 * There may not be any more sk_buffs coming right now, so push
3298 * any pending DMA copies to hardware
3299 */
2ba05622 3300 dma_issue_pending_all();
db217334 3301#endif
bea3348e 3302
1da177e4
LT
3303 return;
3304
3305softnet_break:
3306 __get_cpu_var(netdev_rx_stat).time_squeeze++;
3307 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
3308 goto out;
3309}
3310
d1b19dff 3311static gifconf_func_t *gifconf_list[NPROTO];
1da177e4
LT
3312
3313/**
3314 * register_gifconf - register a SIOCGIF handler
3315 * @family: Address family
3316 * @gifconf: Function handler
3317 *
3318 * Register protocol dependent address dumping routines. The handler
3319 * that is passed must not be freed or reused until it has been replaced
3320 * by another handler.
3321 */
d1b19dff 3322int register_gifconf(unsigned int family, gifconf_func_t *gifconf)
1da177e4
LT
3323{
3324 if (family >= NPROTO)
3325 return -EINVAL;
3326 gifconf_list[family] = gifconf;
3327 return 0;
3328}
d1b19dff 3329EXPORT_SYMBOL(register_gifconf);
1da177e4
LT
3330
3331
3332/*
3333 * Map an interface index to its name (SIOCGIFNAME)
3334 */
3335
3336/*
3337 * We need this ioctl for efficient implementation of the
3338 * if_indextoname() function required by the IPv6 API. Without
3339 * it, we would have to search all the interfaces to find a
3340 * match. --pb
3341 */
3342
881d966b 3343static int dev_ifname(struct net *net, struct ifreq __user *arg)
1da177e4
LT
3344{
3345 struct net_device *dev;
3346 struct ifreq ifr;
3347
3348 /*
3349 * Fetch the caller's info block.
3350 */
3351
3352 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
3353 return -EFAULT;
3354
fb699dfd
ED
3355 rcu_read_lock();
3356 dev = dev_get_by_index_rcu(net, ifr.ifr_ifindex);
1da177e4 3357 if (!dev) {
fb699dfd 3358 rcu_read_unlock();
1da177e4
LT
3359 return -ENODEV;
3360 }
3361
3362 strcpy(ifr.ifr_name, dev->name);
fb699dfd 3363 rcu_read_unlock();
1da177e4
LT
3364
3365 if (copy_to_user(arg, &ifr, sizeof(struct ifreq)))
3366 return -EFAULT;
3367 return 0;
3368}
3369
3370/*
3371 * Perform a SIOCGIFCONF call. This structure will change
3372 * size eventually, and there is nothing I can do about it.
3373 * Thus we will need a 'compatibility mode'.
3374 */
3375
881d966b 3376static int dev_ifconf(struct net *net, char __user *arg)
1da177e4
LT
3377{
3378 struct ifconf ifc;
3379 struct net_device *dev;
3380 char __user *pos;
3381 int len;
3382 int total;
3383 int i;
3384
3385 /*
3386 * Fetch the caller's info block.
3387 */
3388
3389 if (copy_from_user(&ifc, arg, sizeof(struct ifconf)))
3390 return -EFAULT;
3391
3392 pos = ifc.ifc_buf;
3393 len = ifc.ifc_len;
3394
3395 /*
3396 * Loop over the interfaces, and write an info block for each.
3397 */
3398
3399 total = 0;
881d966b 3400 for_each_netdev(net, dev) {
1da177e4
LT
3401 for (i = 0; i < NPROTO; i++) {
3402 if (gifconf_list[i]) {
3403 int done;
3404 if (!pos)
3405 done = gifconf_list[i](dev, NULL, 0);
3406 else
3407 done = gifconf_list[i](dev, pos + total,
3408 len - total);
3409 if (done < 0)
3410 return -EFAULT;
3411 total += done;
3412 }
3413 }
4ec93edb 3414 }
1da177e4
LT
3415
3416 /*
3417 * All done. Write the updated control block back to the caller.
3418 */
3419 ifc.ifc_len = total;
3420
3421 /*
3422 * Both BSD and Solaris return 0 here, so we do too.
3423 */
3424 return copy_to_user(arg, &ifc, sizeof(struct ifconf)) ? -EFAULT : 0;
3425}
3426
3427#ifdef CONFIG_PROC_FS
3428/*
3429 * This is invoked by the /proc filesystem handler to display a device
3430 * in detail.
3431 */
7562f876 3432void *dev_seq_start(struct seq_file *seq, loff_t *pos)
c6d14c84 3433 __acquires(RCU)
1da177e4 3434{
e372c414 3435 struct net *net = seq_file_net(seq);
7562f876 3436 loff_t off;
1da177e4 3437 struct net_device *dev;
1da177e4 3438
c6d14c84 3439 rcu_read_lock();
7562f876
PE
3440 if (!*pos)
3441 return SEQ_START_TOKEN;
1da177e4 3442
7562f876 3443 off = 1;
c6d14c84 3444 for_each_netdev_rcu(net, dev)
7562f876
PE
3445 if (off++ == *pos)
3446 return dev;
1da177e4 3447
7562f876 3448 return NULL;
1da177e4
LT
3449}
3450
3451void *dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3452{
c6d14c84
ED
3453 struct net_device *dev = (v == SEQ_START_TOKEN) ?
3454 first_net_device(seq_file_net(seq)) :
3455 next_net_device((struct net_device *)v);
3456
1da177e4 3457 ++*pos;
c6d14c84 3458 return rcu_dereference(dev);
1da177e4
LT
3459}
3460
3461void dev_seq_stop(struct seq_file *seq, void *v)
c6d14c84 3462 __releases(RCU)
1da177e4 3463{
c6d14c84 3464 rcu_read_unlock();
1da177e4
LT
3465}
3466
3467static void dev_seq_printf_stats(struct seq_file *seq, struct net_device *dev)
3468{
eeda3fd6 3469 const struct net_device_stats *stats = dev_get_stats(dev);
1da177e4 3470
2d13bafe 3471 seq_printf(seq, "%6s: %7lu %7lu %4lu %4lu %4lu %5lu %10lu %9lu "
5a1b5898
RR
3472 "%8lu %7lu %4lu %4lu %4lu %5lu %7lu %10lu\n",
3473 dev->name, stats->rx_bytes, stats->rx_packets,
3474 stats->rx_errors,
3475 stats->rx_dropped + stats->rx_missed_errors,
3476 stats->rx_fifo_errors,
3477 stats->rx_length_errors + stats->rx_over_errors +
3478 stats->rx_crc_errors + stats->rx_frame_errors,
3479 stats->rx_compressed, stats->multicast,
3480 stats->tx_bytes, stats->tx_packets,
3481 stats->tx_errors, stats->tx_dropped,
3482 stats->tx_fifo_errors, stats->collisions,
3483 stats->tx_carrier_errors +
3484 stats->tx_aborted_errors +
3485 stats->tx_window_errors +
3486 stats->tx_heartbeat_errors,
3487 stats->tx_compressed);
1da177e4
LT
3488}
3489
3490/*
3491 * Called from the PROCfs module. This now uses the new arbitrary sized
3492 * /proc/net interface to create /proc/net/dev
3493 */
3494static int dev_seq_show(struct seq_file *seq, void *v)
3495{
3496 if (v == SEQ_START_TOKEN)
3497 seq_puts(seq, "Inter-| Receive "
3498 " | Transmit\n"
3499 " face |bytes packets errs drop fifo frame "
3500 "compressed multicast|bytes packets errs "
3501 "drop fifo colls carrier compressed\n");
3502 else
3503 dev_seq_printf_stats(seq, v);
3504 return 0;
3505}
3506
3507static struct netif_rx_stats *softnet_get_online(loff_t *pos)
3508{
3509 struct netif_rx_stats *rc = NULL;
3510
0c0b0aca 3511 while (*pos < nr_cpu_ids)
4ec93edb 3512 if (cpu_online(*pos)) {
1da177e4
LT
3513 rc = &per_cpu(netdev_rx_stat, *pos);
3514 break;
3515 } else
3516 ++*pos;
3517 return rc;
3518}
3519
3520static void *softnet_seq_start(struct seq_file *seq, loff_t *pos)
3521{
3522 return softnet_get_online(pos);
3523}
3524
3525static void *softnet_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3526{
3527 ++*pos;
3528 return softnet_get_online(pos);
3529}
3530
3531static void softnet_seq_stop(struct seq_file *seq, void *v)
3532{
3533}
3534
3535static int softnet_seq_show(struct seq_file *seq, void *v)
3536{
3537 struct netif_rx_stats *s = v;
3538
0a9627f2 3539 seq_printf(seq, "%08x %08x %08x %08x %08x %08x %08x %08x %08x %08x\n",
31aa02c5 3540 s->total, s->dropped, s->time_squeeze, 0,
c1ebcdb8 3541 0, 0, 0, 0, /* was fastroute */
0a9627f2 3542 s->cpu_collision, s->received_rps);
1da177e4
LT
3543 return 0;
3544}
3545
f690808e 3546static const struct seq_operations dev_seq_ops = {
1da177e4
LT
3547 .start = dev_seq_start,
3548 .next = dev_seq_next,
3549 .stop = dev_seq_stop,
3550 .show = dev_seq_show,
3551};
3552
3553static int dev_seq_open(struct inode *inode, struct file *file)
3554{
e372c414
DL
3555 return seq_open_net(inode, file, &dev_seq_ops,
3556 sizeof(struct seq_net_private));
1da177e4
LT
3557}
3558
9a32144e 3559static const struct file_operations dev_seq_fops = {
1da177e4
LT
3560 .owner = THIS_MODULE,
3561 .open = dev_seq_open,
3562 .read = seq_read,
3563 .llseek = seq_lseek,
e372c414 3564 .release = seq_release_net,
1da177e4
LT
3565};
3566
f690808e 3567static const struct seq_operations softnet_seq_ops = {
1da177e4
LT
3568 .start = softnet_seq_start,
3569 .next = softnet_seq_next,
3570 .stop = softnet_seq_stop,
3571 .show = softnet_seq_show,
3572};
3573
3574static int softnet_seq_open(struct inode *inode, struct file *file)
3575{
3576 return seq_open(file, &softnet_seq_ops);
3577}
3578
9a32144e 3579static const struct file_operations softnet_seq_fops = {
1da177e4
LT
3580 .owner = THIS_MODULE,
3581 .open = softnet_seq_open,
3582 .read = seq_read,
3583 .llseek = seq_lseek,
3584 .release = seq_release,
3585};
3586
0e1256ff
SH
3587static void *ptype_get_idx(loff_t pos)
3588{
3589 struct packet_type *pt = NULL;
3590 loff_t i = 0;
3591 int t;
3592
3593 list_for_each_entry_rcu(pt, &ptype_all, list) {
3594 if (i == pos)
3595 return pt;
3596 ++i;
3597 }
3598
82d8a867 3599 for (t = 0; t < PTYPE_HASH_SIZE; t++) {
0e1256ff
SH
3600 list_for_each_entry_rcu(pt, &ptype_base[t], list) {
3601 if (i == pos)
3602 return pt;
3603 ++i;
3604 }
3605 }
3606 return NULL;
3607}
3608
3609static void *ptype_seq_start(struct seq_file *seq, loff_t *pos)
72348a42 3610 __acquires(RCU)
0e1256ff
SH
3611{
3612 rcu_read_lock();
3613 return *pos ? ptype_get_idx(*pos - 1) : SEQ_START_TOKEN;
3614}
3615
3616static void *ptype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3617{
3618 struct packet_type *pt;
3619 struct list_head *nxt;
3620 int hash;
3621
3622 ++*pos;
3623 if (v == SEQ_START_TOKEN)
3624 return ptype_get_idx(0);
3625
3626 pt = v;
3627 nxt = pt->list.next;
3628 if (pt->type == htons(ETH_P_ALL)) {
3629 if (nxt != &ptype_all)
3630 goto found;
3631 hash = 0;
3632 nxt = ptype_base[0].next;
3633 } else
82d8a867 3634 hash = ntohs(pt->type) & PTYPE_HASH_MASK;
0e1256ff
SH
3635
3636 while (nxt == &ptype_base[hash]) {
82d8a867 3637 if (++hash >= PTYPE_HASH_SIZE)
0e1256ff
SH
3638 return NULL;
3639 nxt = ptype_base[hash].next;
3640 }
3641found:
3642 return list_entry(nxt, struct packet_type, list);
3643}
3644
3645static void ptype_seq_stop(struct seq_file *seq, void *v)
72348a42 3646 __releases(RCU)
0e1256ff
SH
3647{
3648 rcu_read_unlock();
3649}
3650
0e1256ff
SH
3651static int ptype_seq_show(struct seq_file *seq, void *v)
3652{
3653 struct packet_type *pt = v;
3654
3655 if (v == SEQ_START_TOKEN)
3656 seq_puts(seq, "Type Device Function\n");
c346dca1 3657 else if (pt->dev == NULL || dev_net(pt->dev) == seq_file_net(seq)) {
0e1256ff
SH
3658 if (pt->type == htons(ETH_P_ALL))
3659 seq_puts(seq, "ALL ");
3660 else
3661 seq_printf(seq, "%04x", ntohs(pt->type));
3662
908cd2da
AD
3663 seq_printf(seq, " %-8s %pF\n",
3664 pt->dev ? pt->dev->name : "", pt->func);
0e1256ff
SH
3665 }
3666
3667 return 0;
3668}
3669
3670static const struct seq_operations ptype_seq_ops = {
3671 .start = ptype_seq_start,
3672 .next = ptype_seq_next,
3673 .stop = ptype_seq_stop,
3674 .show = ptype_seq_show,
3675};
3676
3677static int ptype_seq_open(struct inode *inode, struct file *file)
3678{
2feb27db
PE
3679 return seq_open_net(inode, file, &ptype_seq_ops,
3680 sizeof(struct seq_net_private));
0e1256ff
SH
3681}
3682
3683static const struct file_operations ptype_seq_fops = {
3684 .owner = THIS_MODULE,
3685 .open = ptype_seq_open,
3686 .read = seq_read,
3687 .llseek = seq_lseek,
2feb27db 3688 .release = seq_release_net,
0e1256ff
SH
3689};
3690
3691
4665079c 3692static int __net_init dev_proc_net_init(struct net *net)
1da177e4
LT
3693{
3694 int rc = -ENOMEM;
3695
881d966b 3696 if (!proc_net_fops_create(net, "dev", S_IRUGO, &dev_seq_fops))
1da177e4 3697 goto out;
881d966b 3698 if (!proc_net_fops_create(net, "softnet_stat", S_IRUGO, &softnet_seq_fops))
1da177e4 3699 goto out_dev;
881d966b 3700 if (!proc_net_fops_create(net, "ptype", S_IRUGO, &ptype_seq_fops))
457c4cbc 3701 goto out_softnet;
0e1256ff 3702
881d966b 3703 if (wext_proc_init(net))
457c4cbc 3704 goto out_ptype;
1da177e4
LT
3705 rc = 0;
3706out:
3707 return rc;
457c4cbc 3708out_ptype:
881d966b 3709 proc_net_remove(net, "ptype");
1da177e4 3710out_softnet:
881d966b 3711 proc_net_remove(net, "softnet_stat");
1da177e4 3712out_dev:
881d966b 3713 proc_net_remove(net, "dev");
1da177e4
LT
3714 goto out;
3715}
881d966b 3716
4665079c 3717static void __net_exit dev_proc_net_exit(struct net *net)
881d966b
EB
3718{
3719 wext_proc_exit(net);
3720
3721 proc_net_remove(net, "ptype");
3722 proc_net_remove(net, "softnet_stat");
3723 proc_net_remove(net, "dev");
3724}
3725
022cbae6 3726static struct pernet_operations __net_initdata dev_proc_ops = {
881d966b
EB
3727 .init = dev_proc_net_init,
3728 .exit = dev_proc_net_exit,
3729};
3730
3731static int __init dev_proc_init(void)
3732{
3733 return register_pernet_subsys(&dev_proc_ops);
3734}
1da177e4
LT
3735#else
3736#define dev_proc_init() 0
3737#endif /* CONFIG_PROC_FS */
3738
3739
3740/**
3741 * netdev_set_master - set up master/slave pair
3742 * @slave: slave device
3743 * @master: new master device
3744 *
3745 * Changes the master device of the slave. Pass %NULL to break the
3746 * bonding. The caller must hold the RTNL semaphore. On a failure
3747 * a negative errno code is returned. On success the reference counts
3748 * are adjusted, %RTM_NEWLINK is sent to the routing socket and the
3749 * function returns zero.
3750 */
3751int netdev_set_master(struct net_device *slave, struct net_device *master)
3752{
3753 struct net_device *old = slave->master;
3754
3755 ASSERT_RTNL();
3756
3757 if (master) {
3758 if (old)
3759 return -EBUSY;
3760 dev_hold(master);
3761 }
3762
3763 slave->master = master;
4ec93edb 3764
283f2fe8
ED
3765 if (old) {
3766 synchronize_net();
1da177e4 3767 dev_put(old);
283f2fe8 3768 }
1da177e4
LT
3769 if (master)
3770 slave->flags |= IFF_SLAVE;
3771 else
3772 slave->flags &= ~IFF_SLAVE;
3773
3774 rtmsg_ifinfo(RTM_NEWLINK, slave, IFF_SLAVE);
3775 return 0;
3776}
d1b19dff 3777EXPORT_SYMBOL(netdev_set_master);
1da177e4 3778
b6c40d68
PM
3779static void dev_change_rx_flags(struct net_device *dev, int flags)
3780{
d314774c
SH
3781 const struct net_device_ops *ops = dev->netdev_ops;
3782
3783 if ((dev->flags & IFF_UP) && ops->ndo_change_rx_flags)
3784 ops->ndo_change_rx_flags(dev, flags);
b6c40d68
PM
3785}
3786
dad9b335 3787static int __dev_set_promiscuity(struct net_device *dev, int inc)
1da177e4
LT
3788{
3789 unsigned short old_flags = dev->flags;
8192b0c4
DH
3790 uid_t uid;
3791 gid_t gid;
1da177e4 3792
24023451
PM
3793 ASSERT_RTNL();
3794
dad9b335
WC
3795 dev->flags |= IFF_PROMISC;
3796 dev->promiscuity += inc;
3797 if (dev->promiscuity == 0) {
3798 /*
3799 * Avoid overflow.
3800 * If inc causes overflow, untouch promisc and return error.
3801 */
3802 if (inc < 0)
3803 dev->flags &= ~IFF_PROMISC;
3804 else {
3805 dev->promiscuity -= inc;
3806 printk(KERN_WARNING "%s: promiscuity touches roof, "
3807 "set promiscuity failed, promiscuity feature "
3808 "of device might be broken.\n", dev->name);
3809 return -EOVERFLOW;
3810 }
3811 }
52609c0b 3812 if (dev->flags != old_flags) {
1da177e4
LT
3813 printk(KERN_INFO "device %s %s promiscuous mode\n",
3814 dev->name, (dev->flags & IFF_PROMISC) ? "entered" :
4ec93edb 3815 "left");
8192b0c4
DH
3816 if (audit_enabled) {
3817 current_uid_gid(&uid, &gid);
7759db82
KHK
3818 audit_log(current->audit_context, GFP_ATOMIC,
3819 AUDIT_ANOM_PROMISCUOUS,
3820 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
3821 dev->name, (dev->flags & IFF_PROMISC),
3822 (old_flags & IFF_PROMISC),
3823 audit_get_loginuid(current),
8192b0c4 3824 uid, gid,
7759db82 3825 audit_get_sessionid(current));
8192b0c4 3826 }
24023451 3827
b6c40d68 3828 dev_change_rx_flags(dev, IFF_PROMISC);
1da177e4 3829 }
dad9b335 3830 return 0;
1da177e4
LT
3831}
3832
4417da66
PM
3833/**
3834 * dev_set_promiscuity - update promiscuity count on a device
3835 * @dev: device
3836 * @inc: modifier
3837 *
3838 * Add or remove promiscuity from a device. While the count in the device
3839 * remains above zero the interface remains promiscuous. Once it hits zero
3840 * the device reverts back to normal filtering operation. A negative inc
3841 * value is used to drop promiscuity on the device.
dad9b335 3842 * Return 0 if successful or a negative errno code on error.
4417da66 3843 */
dad9b335 3844int dev_set_promiscuity(struct net_device *dev, int inc)
4417da66
PM
3845{
3846 unsigned short old_flags = dev->flags;
dad9b335 3847 int err;
4417da66 3848
dad9b335 3849 err = __dev_set_promiscuity(dev, inc);
4b5a698e 3850 if (err < 0)
dad9b335 3851 return err;
4417da66
PM
3852 if (dev->flags != old_flags)
3853 dev_set_rx_mode(dev);
dad9b335 3854 return err;
4417da66 3855}
d1b19dff 3856EXPORT_SYMBOL(dev_set_promiscuity);
4417da66 3857
1da177e4
LT
3858/**
3859 * dev_set_allmulti - update allmulti count on a device
3860 * @dev: device
3861 * @inc: modifier
3862 *
3863 * Add or remove reception of all multicast frames to a device. While the
3864 * count in the device remains above zero the interface remains listening
3865 * to all interfaces. Once it hits zero the device reverts back to normal
3866 * filtering operation. A negative @inc value is used to drop the counter
3867 * when releasing a resource needing all multicasts.
dad9b335 3868 * Return 0 if successful or a negative errno code on error.
1da177e4
LT
3869 */
3870
dad9b335 3871int dev_set_allmulti(struct net_device *dev, int inc)
1da177e4
LT
3872{
3873 unsigned short old_flags = dev->flags;
3874
24023451
PM
3875 ASSERT_RTNL();
3876
1da177e4 3877 dev->flags |= IFF_ALLMULTI;
dad9b335
WC
3878 dev->allmulti += inc;
3879 if (dev->allmulti == 0) {
3880 /*
3881 * Avoid overflow.
3882 * If inc causes overflow, untouch allmulti and return error.
3883 */
3884 if (inc < 0)
3885 dev->flags &= ~IFF_ALLMULTI;
3886 else {
3887 dev->allmulti -= inc;
3888 printk(KERN_WARNING "%s: allmulti touches roof, "
3889 "set allmulti failed, allmulti feature of "
3890 "device might be broken.\n", dev->name);
3891 return -EOVERFLOW;
3892 }
3893 }
24023451 3894 if (dev->flags ^ old_flags) {
b6c40d68 3895 dev_change_rx_flags(dev, IFF_ALLMULTI);
4417da66 3896 dev_set_rx_mode(dev);
24023451 3897 }
dad9b335 3898 return 0;
4417da66 3899}
d1b19dff 3900EXPORT_SYMBOL(dev_set_allmulti);
4417da66
PM
3901
3902/*
3903 * Upload unicast and multicast address lists to device and
3904 * configure RX filtering. When the device doesn't support unicast
53ccaae1 3905 * filtering it is put in promiscuous mode while unicast addresses
4417da66
PM
3906 * are present.
3907 */
3908void __dev_set_rx_mode(struct net_device *dev)
3909{
d314774c
SH
3910 const struct net_device_ops *ops = dev->netdev_ops;
3911
4417da66
PM
3912 /* dev_open will call this function so the list will stay sane. */
3913 if (!(dev->flags&IFF_UP))
3914 return;
3915
3916 if (!netif_device_present(dev))
40b77c94 3917 return;
4417da66 3918
d314774c
SH
3919 if (ops->ndo_set_rx_mode)
3920 ops->ndo_set_rx_mode(dev);
4417da66
PM
3921 else {
3922 /* Unicast addresses changes may only happen under the rtnl,
3923 * therefore calling __dev_set_promiscuity here is safe.
3924 */
32e7bfc4 3925 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
4417da66
PM
3926 __dev_set_promiscuity(dev, 1);
3927 dev->uc_promisc = 1;
32e7bfc4 3928 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
4417da66
PM
3929 __dev_set_promiscuity(dev, -1);
3930 dev->uc_promisc = 0;
3931 }
3932
d314774c
SH
3933 if (ops->ndo_set_multicast_list)
3934 ops->ndo_set_multicast_list(dev);
4417da66
PM
3935 }
3936}
3937
3938void dev_set_rx_mode(struct net_device *dev)
3939{
b9e40857 3940 netif_addr_lock_bh(dev);
4417da66 3941 __dev_set_rx_mode(dev);
b9e40857 3942 netif_addr_unlock_bh(dev);
1da177e4
LT
3943}
3944
f001fde5
JP
3945/* hw addresses list handling functions */
3946
31278e71
JP
3947static int __hw_addr_add(struct netdev_hw_addr_list *list, unsigned char *addr,
3948 int addr_len, unsigned char addr_type)
f001fde5
JP
3949{
3950 struct netdev_hw_addr *ha;
3951 int alloc_size;
3952
3953 if (addr_len > MAX_ADDR_LEN)
3954 return -EINVAL;
3955
31278e71 3956 list_for_each_entry(ha, &list->list, list) {
ccffad25
JP
3957 if (!memcmp(ha->addr, addr, addr_len) &&
3958 ha->type == addr_type) {
3959 ha->refcount++;
3960 return 0;
3961 }
3962 }
3963
3964
f001fde5
JP
3965 alloc_size = sizeof(*ha);
3966 if (alloc_size < L1_CACHE_BYTES)
3967 alloc_size = L1_CACHE_BYTES;
3968 ha = kmalloc(alloc_size, GFP_ATOMIC);
3969 if (!ha)
3970 return -ENOMEM;
3971 memcpy(ha->addr, addr, addr_len);
3972 ha->type = addr_type;
ccffad25
JP
3973 ha->refcount = 1;
3974 ha->synced = false;
31278e71
JP
3975 list_add_tail_rcu(&ha->list, &list->list);
3976 list->count++;
f001fde5
JP
3977 return 0;
3978}
3979
3980static void ha_rcu_free(struct rcu_head *head)
3981{
3982 struct netdev_hw_addr *ha;
3983
3984 ha = container_of(head, struct netdev_hw_addr, rcu_head);
3985 kfree(ha);
3986}
3987
31278e71
JP
3988static int __hw_addr_del(struct netdev_hw_addr_list *list, unsigned char *addr,
3989 int addr_len, unsigned char addr_type)
f001fde5
JP
3990{
3991 struct netdev_hw_addr *ha;
f001fde5 3992
31278e71 3993 list_for_each_entry(ha, &list->list, list) {
ccffad25 3994 if (!memcmp(ha->addr, addr, addr_len) &&
f001fde5 3995 (ha->type == addr_type || !addr_type)) {
ccffad25
JP
3996 if (--ha->refcount)
3997 return 0;
f001fde5
JP
3998 list_del_rcu(&ha->list);
3999 call_rcu(&ha->rcu_head, ha_rcu_free);
31278e71 4000 list->count--;
f001fde5
JP
4001 return 0;
4002 }
4003 }
4004 return -ENOENT;
4005}
4006
31278e71
JP
4007static int __hw_addr_add_multiple(struct netdev_hw_addr_list *to_list,
4008 struct netdev_hw_addr_list *from_list,
4009 int addr_len,
ccffad25 4010 unsigned char addr_type)
f001fde5
JP
4011{
4012 int err;
4013 struct netdev_hw_addr *ha, *ha2;
4014 unsigned char type;
4015
31278e71 4016 list_for_each_entry(ha, &from_list->list, list) {
f001fde5 4017 type = addr_type ? addr_type : ha->type;
31278e71 4018 err = __hw_addr_add(to_list, ha->addr, addr_len, type);
f001fde5
JP
4019 if (err)
4020 goto unroll;
4021 }
4022 return 0;
4023
4024unroll:
31278e71 4025 list_for_each_entry(ha2, &from_list->list, list) {
f001fde5
JP
4026 if (ha2 == ha)
4027 break;
4028 type = addr_type ? addr_type : ha2->type;
31278e71 4029 __hw_addr_del(to_list, ha2->addr, addr_len, type);
f001fde5
JP
4030 }
4031 return err;
4032}
4033
31278e71
JP
4034static void __hw_addr_del_multiple(struct netdev_hw_addr_list *to_list,
4035 struct netdev_hw_addr_list *from_list,
4036 int addr_len,
ccffad25 4037 unsigned char addr_type)
f001fde5
JP
4038{
4039 struct netdev_hw_addr *ha;
4040 unsigned char type;
4041
31278e71 4042 list_for_each_entry(ha, &from_list->list, list) {
f001fde5 4043 type = addr_type ? addr_type : ha->type;
31278e71 4044 __hw_addr_del(to_list, ha->addr, addr_len, addr_type);
ccffad25
JP
4045 }
4046}
4047
31278e71
JP
4048static int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4049 struct netdev_hw_addr_list *from_list,
ccffad25
JP
4050 int addr_len)
4051{
4052 int err = 0;
4053 struct netdev_hw_addr *ha, *tmp;
4054
31278e71 4055 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
ccffad25 4056 if (!ha->synced) {
31278e71 4057 err = __hw_addr_add(to_list, ha->addr,
ccffad25
JP
4058 addr_len, ha->type);
4059 if (err)
4060 break;
4061 ha->synced = true;
4062 ha->refcount++;
4063 } else if (ha->refcount == 1) {
31278e71
JP
4064 __hw_addr_del(to_list, ha->addr, addr_len, ha->type);
4065 __hw_addr_del(from_list, ha->addr, addr_len, ha->type);
ccffad25 4066 }
f001fde5 4067 }
ccffad25 4068 return err;
f001fde5
JP
4069}
4070
31278e71
JP
4071static void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4072 struct netdev_hw_addr_list *from_list,
ccffad25
JP
4073 int addr_len)
4074{
4075 struct netdev_hw_addr *ha, *tmp;
4076
31278e71 4077 list_for_each_entry_safe(ha, tmp, &from_list->list, list) {
ccffad25 4078 if (ha->synced) {
31278e71 4079 __hw_addr_del(to_list, ha->addr,
ccffad25
JP
4080 addr_len, ha->type);
4081 ha->synced = false;
31278e71 4082 __hw_addr_del(from_list, ha->addr,
ccffad25
JP
4083 addr_len, ha->type);
4084 }
4085 }
4086}
4087
31278e71 4088static void __hw_addr_flush(struct netdev_hw_addr_list *list)
f001fde5
JP
4089{
4090 struct netdev_hw_addr *ha, *tmp;
4091
31278e71 4092 list_for_each_entry_safe(ha, tmp, &list->list, list) {
f001fde5
JP
4093 list_del_rcu(&ha->list);
4094 call_rcu(&ha->rcu_head, ha_rcu_free);
4095 }
31278e71
JP
4096 list->count = 0;
4097}
4098
4099static void __hw_addr_init(struct netdev_hw_addr_list *list)
4100{
4101 INIT_LIST_HEAD(&list->list);
4102 list->count = 0;
f001fde5
JP
4103}
4104
4105/* Device addresses handling functions */
4106
4107static void dev_addr_flush(struct net_device *dev)
4108{
4109 /* rtnl_mutex must be held here */
4110
31278e71 4111 __hw_addr_flush(&dev->dev_addrs);
f001fde5
JP
4112 dev->dev_addr = NULL;
4113}
4114
4115static int dev_addr_init(struct net_device *dev)
4116{
4117 unsigned char addr[MAX_ADDR_LEN];
4118 struct netdev_hw_addr *ha;
4119 int err;
4120
4121 /* rtnl_mutex must be held here */
4122
31278e71 4123 __hw_addr_init(&dev->dev_addrs);
0c27922e 4124 memset(addr, 0, sizeof(addr));
31278e71 4125 err = __hw_addr_add(&dev->dev_addrs, addr, sizeof(addr),
f001fde5
JP
4126 NETDEV_HW_ADDR_T_LAN);
4127 if (!err) {
4128 /*
4129 * Get the first (previously created) address from the list
4130 * and set dev_addr pointer to this location.
4131 */
31278e71 4132 ha = list_first_entry(&dev->dev_addrs.list,
f001fde5
JP
4133 struct netdev_hw_addr, list);
4134 dev->dev_addr = ha->addr;
4135 }
4136 return err;
4137}
4138
4139/**
4140 * dev_addr_add - Add a device address
4141 * @dev: device
4142 * @addr: address to add
4143 * @addr_type: address type
4144 *
4145 * Add a device address to the device or increase the reference count if
4146 * it already exists.
4147 *
4148 * The caller must hold the rtnl_mutex.
4149 */
4150int dev_addr_add(struct net_device *dev, unsigned char *addr,
4151 unsigned char addr_type)
4152{
4153 int err;
4154
4155 ASSERT_RTNL();
4156
31278e71 4157 err = __hw_addr_add(&dev->dev_addrs, addr, dev->addr_len, addr_type);
f001fde5
JP
4158 if (!err)
4159 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4160 return err;
4161}
4162EXPORT_SYMBOL(dev_addr_add);
4163
4164/**
4165 * dev_addr_del - Release a device address.
4166 * @dev: device
4167 * @addr: address to delete
4168 * @addr_type: address type
4169 *
4170 * Release reference to a device address and remove it from the device
4171 * if the reference count drops to zero.
4172 *
4173 * The caller must hold the rtnl_mutex.
4174 */
4175int dev_addr_del(struct net_device *dev, unsigned char *addr,
4176 unsigned char addr_type)
4177{
4178 int err;
ccffad25 4179 struct netdev_hw_addr *ha;
f001fde5
JP
4180
4181 ASSERT_RTNL();
4182
ccffad25
JP
4183 /*
4184 * We can not remove the first address from the list because
4185 * dev->dev_addr points to that.
4186 */
31278e71
JP
4187 ha = list_first_entry(&dev->dev_addrs.list,
4188 struct netdev_hw_addr, list);
ccffad25
JP
4189 if (ha->addr == dev->dev_addr && ha->refcount == 1)
4190 return -ENOENT;
4191
31278e71 4192 err = __hw_addr_del(&dev->dev_addrs, addr, dev->addr_len,
ccffad25 4193 addr_type);
f001fde5
JP
4194 if (!err)
4195 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4196 return err;
4197}
4198EXPORT_SYMBOL(dev_addr_del);
4199
4200/**
4201 * dev_addr_add_multiple - Add device addresses from another device
4202 * @to_dev: device to which addresses will be added
4203 * @from_dev: device from which addresses will be added
4204 * @addr_type: address type - 0 means type will be used from from_dev
4205 *
4206 * Add device addresses of the one device to another.
4207 **
4208 * The caller must hold the rtnl_mutex.
4209 */
4210int dev_addr_add_multiple(struct net_device *to_dev,
4211 struct net_device *from_dev,
4212 unsigned char addr_type)
4213{
4214 int err;
4215
4216 ASSERT_RTNL();
4217
4218 if (from_dev->addr_len != to_dev->addr_len)
4219 return -EINVAL;
31278e71 4220 err = __hw_addr_add_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
ccffad25 4221 to_dev->addr_len, addr_type);
f001fde5
JP
4222 if (!err)
4223 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
4224 return err;
4225}
4226EXPORT_SYMBOL(dev_addr_add_multiple);
4227
4228/**
4229 * dev_addr_del_multiple - Delete device addresses by another device
4230 * @to_dev: device where the addresses will be deleted
4231 * @from_dev: device by which addresses the addresses will be deleted
4232 * @addr_type: address type - 0 means type will used from from_dev
4233 *
4234 * Deletes addresses in to device by the list of addresses in from device.
4235 *
4236 * The caller must hold the rtnl_mutex.
4237 */
4238int dev_addr_del_multiple(struct net_device *to_dev,
4239 struct net_device *from_dev,
4240 unsigned char addr_type)
4241{
4242 ASSERT_RTNL();
4243
4244 if (from_dev->addr_len != to_dev->addr_len)
4245 return -EINVAL;
31278e71 4246 __hw_addr_del_multiple(&to_dev->dev_addrs, &from_dev->dev_addrs,
ccffad25 4247 to_dev->addr_len, addr_type);
f001fde5
JP
4248 call_netdevice_notifiers(NETDEV_CHANGEADDR, to_dev);
4249 return 0;
4250}
4251EXPORT_SYMBOL(dev_addr_del_multiple);
4252
31278e71 4253/* multicast addresses handling functions */
f001fde5 4254
61cbc2fc
PM
4255int __dev_addr_delete(struct dev_addr_list **list, int *count,
4256 void *addr, int alen, int glbl)
bf742482
PM
4257{
4258 struct dev_addr_list *da;
4259
4260 for (; (da = *list) != NULL; list = &da->next) {
4261 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4262 alen == da->da_addrlen) {
4263 if (glbl) {
4264 int old_glbl = da->da_gusers;
4265 da->da_gusers = 0;
4266 if (old_glbl == 0)
4267 break;
4268 }
4269 if (--da->da_users)
4270 return 0;
4271
4272 *list = da->next;
4273 kfree(da);
61cbc2fc 4274 (*count)--;
bf742482
PM
4275 return 0;
4276 }
4277 }
4278 return -ENOENT;
4279}
4280
61cbc2fc
PM
4281int __dev_addr_add(struct dev_addr_list **list, int *count,
4282 void *addr, int alen, int glbl)
bf742482
PM
4283{
4284 struct dev_addr_list *da;
4285
4286 for (da = *list; da != NULL; da = da->next) {
4287 if (memcmp(da->da_addr, addr, da->da_addrlen) == 0 &&
4288 da->da_addrlen == alen) {
4289 if (glbl) {
4290 int old_glbl = da->da_gusers;
4291 da->da_gusers = 1;
4292 if (old_glbl)
4293 return 0;
4294 }
4295 da->da_users++;
4296 return 0;
4297 }
4298 }
4299
12aa343a 4300 da = kzalloc(sizeof(*da), GFP_ATOMIC);
bf742482
PM
4301 if (da == NULL)
4302 return -ENOMEM;
4303 memcpy(da->da_addr, addr, alen);
4304 da->da_addrlen = alen;
4305 da->da_users = 1;
4306 da->da_gusers = glbl ? 1 : 0;
4307 da->next = *list;
4308 *list = da;
61cbc2fc 4309 (*count)++;
bf742482
PM
4310 return 0;
4311}
4312
4417da66
PM
4313/**
4314 * dev_unicast_delete - Release secondary unicast address.
4315 * @dev: device
0ed72ec4 4316 * @addr: address to delete
4417da66
PM
4317 *
4318 * Release reference to a secondary unicast address and remove it
0ed72ec4 4319 * from the device if the reference count drops to zero.
4417da66
PM
4320 *
4321 * The caller must hold the rtnl_mutex.
4322 */
ccffad25 4323int dev_unicast_delete(struct net_device *dev, void *addr)
4417da66
PM
4324{
4325 int err;
4326
4327 ASSERT_RTNL();
4328
a6ac65db 4329 netif_addr_lock_bh(dev);
31278e71
JP
4330 err = __hw_addr_del(&dev->uc, addr, dev->addr_len,
4331 NETDEV_HW_ADDR_T_UNICAST);
61cbc2fc 4332 if (!err)
4417da66 4333 __dev_set_rx_mode(dev);
a6ac65db 4334 netif_addr_unlock_bh(dev);
4417da66
PM
4335 return err;
4336}
4337EXPORT_SYMBOL(dev_unicast_delete);
4338
4339/**
4340 * dev_unicast_add - add a secondary unicast address
4341 * @dev: device
5dbaec5d 4342 * @addr: address to add
4417da66
PM
4343 *
4344 * Add a secondary unicast address to the device or increase
4345 * the reference count if it already exists.
4346 *
4347 * The caller must hold the rtnl_mutex.
4348 */
ccffad25 4349int dev_unicast_add(struct net_device *dev, void *addr)
4417da66
PM
4350{
4351 int err;
4352
4353 ASSERT_RTNL();
4354
a6ac65db 4355 netif_addr_lock_bh(dev);
31278e71
JP
4356 err = __hw_addr_add(&dev->uc, addr, dev->addr_len,
4357 NETDEV_HW_ADDR_T_UNICAST);
61cbc2fc 4358 if (!err)
4417da66 4359 __dev_set_rx_mode(dev);
a6ac65db 4360 netif_addr_unlock_bh(dev);
4417da66
PM
4361 return err;
4362}
4363EXPORT_SYMBOL(dev_unicast_add);
4364
e83a2ea8
CL
4365int __dev_addr_sync(struct dev_addr_list **to, int *to_count,
4366 struct dev_addr_list **from, int *from_count)
4367{
4368 struct dev_addr_list *da, *next;
4369 int err = 0;
4370
4371 da = *from;
4372 while (da != NULL) {
4373 next = da->next;
4374 if (!da->da_synced) {
4375 err = __dev_addr_add(to, to_count,
4376 da->da_addr, da->da_addrlen, 0);
4377 if (err < 0)
4378 break;
4379 da->da_synced = 1;
4380 da->da_users++;
4381 } else if (da->da_users == 1) {
4382 __dev_addr_delete(to, to_count,
4383 da->da_addr, da->da_addrlen, 0);
4384 __dev_addr_delete(from, from_count,
4385 da->da_addr, da->da_addrlen, 0);
4386 }
4387 da = next;
4388 }
4389 return err;
4390}
c4029083 4391EXPORT_SYMBOL_GPL(__dev_addr_sync);
e83a2ea8
CL
4392
4393void __dev_addr_unsync(struct dev_addr_list **to, int *to_count,
4394 struct dev_addr_list **from, int *from_count)
4395{
4396 struct dev_addr_list *da, *next;
4397
4398 da = *from;
4399 while (da != NULL) {
4400 next = da->next;
4401 if (da->da_synced) {
4402 __dev_addr_delete(to, to_count,
4403 da->da_addr, da->da_addrlen, 0);
4404 da->da_synced = 0;
4405 __dev_addr_delete(from, from_count,
4406 da->da_addr, da->da_addrlen, 0);
4407 }
4408 da = next;
4409 }
4410}
c4029083 4411EXPORT_SYMBOL_GPL(__dev_addr_unsync);
e83a2ea8
CL
4412
4413/**
4414 * dev_unicast_sync - Synchronize device's unicast list to another device
4415 * @to: destination device
4416 * @from: source device
4417 *
4418 * Add newly added addresses to the destination device and release
a6ac65db
JP
4419 * addresses that have no users left. The source device must be
4420 * locked by netif_tx_lock_bh.
e83a2ea8
CL
4421 *
4422 * This function is intended to be called from the dev->set_rx_mode
4423 * function of layered software devices.
4424 */
4425int dev_unicast_sync(struct net_device *to, struct net_device *from)
4426{
4427 int err = 0;
4428
ccffad25
JP
4429 if (to->addr_len != from->addr_len)
4430 return -EINVAL;
4431
a6ac65db 4432 netif_addr_lock_bh(to);
31278e71 4433 err = __hw_addr_sync(&to->uc, &from->uc, to->addr_len);
e83a2ea8
CL
4434 if (!err)
4435 __dev_set_rx_mode(to);
a6ac65db 4436 netif_addr_unlock_bh(to);
e83a2ea8
CL
4437 return err;
4438}
4439EXPORT_SYMBOL(dev_unicast_sync);
4440
4441/**
bc2cda1e 4442 * dev_unicast_unsync - Remove synchronized addresses from the destination device
e83a2ea8
CL
4443 * @to: destination device
4444 * @from: source device
4445 *
4446 * Remove all addresses that were added to the destination device by
4447 * dev_unicast_sync(). This function is intended to be called from the
4448 * dev->stop function of layered software devices.
4449 */
4450void dev_unicast_unsync(struct net_device *to, struct net_device *from)
4451{
ccffad25
JP
4452 if (to->addr_len != from->addr_len)
4453 return;
e83a2ea8 4454
a6ac65db
JP
4455 netif_addr_lock_bh(from);
4456 netif_addr_lock(to);
31278e71 4457 __hw_addr_unsync(&to->uc, &from->uc, to->addr_len);
ccffad25 4458 __dev_set_rx_mode(to);
a6ac65db
JP
4459 netif_addr_unlock(to);
4460 netif_addr_unlock_bh(from);
e83a2ea8
CL
4461}
4462EXPORT_SYMBOL(dev_unicast_unsync);
4463
32a806c1 4464void dev_unicast_flush(struct net_device *dev)
ccffad25 4465{
a6ac65db 4466 netif_addr_lock_bh(dev);
31278e71 4467 __hw_addr_flush(&dev->uc);
a6ac65db 4468 netif_addr_unlock_bh(dev);
ccffad25 4469}
32a806c1 4470EXPORT_SYMBOL(dev_unicast_flush);
ccffad25
JP
4471
4472static void dev_unicast_init(struct net_device *dev)
4473{
31278e71 4474 __hw_addr_init(&dev->uc);
ccffad25
JP
4475}
4476
4477
12972621
DC
4478static void __dev_addr_discard(struct dev_addr_list **list)
4479{
4480 struct dev_addr_list *tmp;
4481
4482 while (*list != NULL) {
4483 tmp = *list;
4484 *list = tmp->next;
4485 if (tmp->da_users > tmp->da_gusers)
4486 printk("__dev_addr_discard: address leakage! "
4487 "da_users=%d\n", tmp->da_users);
4488 kfree(tmp);
4489 }
4490}
4491
32a806c1 4492void dev_addr_discard(struct net_device *dev)
4417da66 4493{
b9e40857 4494 netif_addr_lock_bh(dev);
26cc2522 4495
456ad75c 4496 __dev_addr_discard(&dev->mc_list);
4cd24eaf 4497 netdev_mc_count(dev) = 0;
26cc2522 4498
b9e40857 4499 netif_addr_unlock_bh(dev);
456ad75c 4500}
32a806c1 4501EXPORT_SYMBOL(dev_addr_discard);
456ad75c 4502
f0db275a
SH
4503/**
4504 * dev_get_flags - get flags reported to userspace
4505 * @dev: device
4506 *
4507 * Get the combination of flag bits exported through APIs to userspace.
4508 */
1da177e4
LT
4509unsigned dev_get_flags(const struct net_device *dev)
4510{
4511 unsigned flags;
4512
4513 flags = (dev->flags & ~(IFF_PROMISC |
4514 IFF_ALLMULTI |
b00055aa
SR
4515 IFF_RUNNING |
4516 IFF_LOWER_UP |
4517 IFF_DORMANT)) |
1da177e4
LT
4518 (dev->gflags & (IFF_PROMISC |
4519 IFF_ALLMULTI));
4520
b00055aa
SR
4521 if (netif_running(dev)) {
4522 if (netif_oper_up(dev))
4523 flags |= IFF_RUNNING;
4524 if (netif_carrier_ok(dev))
4525 flags |= IFF_LOWER_UP;
4526 if (netif_dormant(dev))
4527 flags |= IFF_DORMANT;
4528 }
1da177e4
LT
4529
4530 return flags;
4531}
d1b19dff 4532EXPORT_SYMBOL(dev_get_flags);
1da177e4 4533
bd380811 4534int __dev_change_flags(struct net_device *dev, unsigned int flags)
1da177e4 4535{
1da177e4 4536 int old_flags = dev->flags;
bd380811 4537 int ret;
1da177e4 4538
24023451
PM
4539 ASSERT_RTNL();
4540
1da177e4
LT
4541 /*
4542 * Set the flags on our device.
4543 */
4544
4545 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
4546 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
4547 IFF_AUTOMEDIA)) |
4548 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
4549 IFF_ALLMULTI));
4550
4551 /*
4552 * Load in the correct multicast list now the flags have changed.
4553 */
4554
b6c40d68
PM
4555 if ((old_flags ^ flags) & IFF_MULTICAST)
4556 dev_change_rx_flags(dev, IFF_MULTICAST);
24023451 4557
4417da66 4558 dev_set_rx_mode(dev);
1da177e4
LT
4559
4560 /*
4561 * Have we downed the interface. We handle IFF_UP ourselves
4562 * according to user attempts to set it, rather than blindly
4563 * setting it.
4564 */
4565
4566 ret = 0;
4567 if ((old_flags ^ flags) & IFF_UP) { /* Bit is different ? */
bd380811 4568 ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
1da177e4
LT
4569
4570 if (!ret)
4417da66 4571 dev_set_rx_mode(dev);
1da177e4
LT
4572 }
4573
1da177e4 4574 if ((flags ^ dev->gflags) & IFF_PROMISC) {
d1b19dff
ED
4575 int inc = (flags & IFF_PROMISC) ? 1 : -1;
4576
1da177e4
LT
4577 dev->gflags ^= IFF_PROMISC;
4578 dev_set_promiscuity(dev, inc);
4579 }
4580
4581 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
4582 is important. Some (broken) drivers set IFF_PROMISC, when
4583 IFF_ALLMULTI is requested not asking us and not reporting.
4584 */
4585 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
d1b19dff
ED
4586 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
4587
1da177e4
LT
4588 dev->gflags ^= IFF_ALLMULTI;
4589 dev_set_allmulti(dev, inc);
4590 }
4591
bd380811
PM
4592 return ret;
4593}
4594
4595void __dev_notify_flags(struct net_device *dev, unsigned int old_flags)
4596{
4597 unsigned int changes = dev->flags ^ old_flags;
4598
4599 if (changes & IFF_UP) {
4600 if (dev->flags & IFF_UP)
4601 call_netdevice_notifiers(NETDEV_UP, dev);
4602 else
4603 call_netdevice_notifiers(NETDEV_DOWN, dev);
4604 }
4605
4606 if (dev->flags & IFF_UP &&
4607 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE)))
4608 call_netdevice_notifiers(NETDEV_CHANGE, dev);
4609}
4610
4611/**
4612 * dev_change_flags - change device settings
4613 * @dev: device
4614 * @flags: device state flags
4615 *
4616 * Change settings on device based state flags. The flags are
4617 * in the userspace exported format.
4618 */
4619int dev_change_flags(struct net_device *dev, unsigned flags)
4620{
4621 int ret, changes;
4622 int old_flags = dev->flags;
4623
4624 ret = __dev_change_flags(dev, flags);
4625 if (ret < 0)
4626 return ret;
4627
4628 changes = old_flags ^ dev->flags;
7c355f53
TG
4629 if (changes)
4630 rtmsg_ifinfo(RTM_NEWLINK, dev, changes);
1da177e4 4631
bd380811 4632 __dev_notify_flags(dev, old_flags);
1da177e4
LT
4633 return ret;
4634}
d1b19dff 4635EXPORT_SYMBOL(dev_change_flags);
1da177e4 4636
f0db275a
SH
4637/**
4638 * dev_set_mtu - Change maximum transfer unit
4639 * @dev: device
4640 * @new_mtu: new transfer unit
4641 *
4642 * Change the maximum transfer size of the network device.
4643 */
1da177e4
LT
4644int dev_set_mtu(struct net_device *dev, int new_mtu)
4645{
d314774c 4646 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
4647 int err;
4648
4649 if (new_mtu == dev->mtu)
4650 return 0;
4651
4652 /* MTU must be positive. */
4653 if (new_mtu < 0)
4654 return -EINVAL;
4655
4656 if (!netif_device_present(dev))
4657 return -ENODEV;
4658
4659 err = 0;
d314774c
SH
4660 if (ops->ndo_change_mtu)
4661 err = ops->ndo_change_mtu(dev, new_mtu);
1da177e4
LT
4662 else
4663 dev->mtu = new_mtu;
d314774c 4664
1da177e4 4665 if (!err && dev->flags & IFF_UP)
056925ab 4666 call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
1da177e4
LT
4667 return err;
4668}
d1b19dff 4669EXPORT_SYMBOL(dev_set_mtu);
1da177e4 4670
f0db275a
SH
4671/**
4672 * dev_set_mac_address - Change Media Access Control Address
4673 * @dev: device
4674 * @sa: new address
4675 *
4676 * Change the hardware (MAC) address of the device
4677 */
1da177e4
LT
4678int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
4679{
d314774c 4680 const struct net_device_ops *ops = dev->netdev_ops;
1da177e4
LT
4681 int err;
4682
d314774c 4683 if (!ops->ndo_set_mac_address)
1da177e4
LT
4684 return -EOPNOTSUPP;
4685 if (sa->sa_family != dev->type)
4686 return -EINVAL;
4687 if (!netif_device_present(dev))
4688 return -ENODEV;
d314774c 4689 err = ops->ndo_set_mac_address(dev, sa);
1da177e4 4690 if (!err)
056925ab 4691 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
1da177e4
LT
4692 return err;
4693}
d1b19dff 4694EXPORT_SYMBOL(dev_set_mac_address);
1da177e4
LT
4695
4696/*
3710becf 4697 * Perform the SIOCxIFxxx calls, inside rcu_read_lock()
1da177e4 4698 */
14e3e079 4699static int dev_ifsioc_locked(struct net *net, struct ifreq *ifr, unsigned int cmd)
1da177e4
LT
4700{
4701 int err;
3710becf 4702 struct net_device *dev = dev_get_by_name_rcu(net, ifr->ifr_name);
1da177e4
LT
4703
4704 if (!dev)
4705 return -ENODEV;
4706
4707 switch (cmd) {
d1b19dff
ED
4708 case SIOCGIFFLAGS: /* Get interface flags */
4709 ifr->ifr_flags = (short) dev_get_flags(dev);
4710 return 0;
1da177e4 4711
d1b19dff
ED
4712 case SIOCGIFMETRIC: /* Get the metric on the interface
4713 (currently unused) */
4714 ifr->ifr_metric = 0;
4715 return 0;
1da177e4 4716
d1b19dff
ED
4717 case SIOCGIFMTU: /* Get the MTU of a device */
4718 ifr->ifr_mtu = dev->mtu;
4719 return 0;
1da177e4 4720
d1b19dff
ED
4721 case SIOCGIFHWADDR:
4722 if (!dev->addr_len)
4723 memset(ifr->ifr_hwaddr.sa_data, 0, sizeof ifr->ifr_hwaddr.sa_data);
4724 else
4725 memcpy(ifr->ifr_hwaddr.sa_data, dev->dev_addr,
4726 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4727 ifr->ifr_hwaddr.sa_family = dev->type;
4728 return 0;
1da177e4 4729
d1b19dff
ED
4730 case SIOCGIFSLAVE:
4731 err = -EINVAL;
4732 break;
14e3e079 4733
d1b19dff
ED
4734 case SIOCGIFMAP:
4735 ifr->ifr_map.mem_start = dev->mem_start;
4736 ifr->ifr_map.mem_end = dev->mem_end;
4737 ifr->ifr_map.base_addr = dev->base_addr;
4738 ifr->ifr_map.irq = dev->irq;
4739 ifr->ifr_map.dma = dev->dma;
4740 ifr->ifr_map.port = dev->if_port;
4741 return 0;
14e3e079 4742
d1b19dff
ED
4743 case SIOCGIFINDEX:
4744 ifr->ifr_ifindex = dev->ifindex;
4745 return 0;
14e3e079 4746
d1b19dff
ED
4747 case SIOCGIFTXQLEN:
4748 ifr->ifr_qlen = dev->tx_queue_len;
4749 return 0;
14e3e079 4750
d1b19dff
ED
4751 default:
4752 /* dev_ioctl() should ensure this case
4753 * is never reached
4754 */
4755 WARN_ON(1);
4756 err = -EINVAL;
4757 break;
14e3e079
JG
4758
4759 }
4760 return err;
4761}
4762
4763/*
4764 * Perform the SIOCxIFxxx calls, inside rtnl_lock()
4765 */
4766static int dev_ifsioc(struct net *net, struct ifreq *ifr, unsigned int cmd)
4767{
4768 int err;
4769 struct net_device *dev = __dev_get_by_name(net, ifr->ifr_name);
5f2f6da7 4770 const struct net_device_ops *ops;
14e3e079
JG
4771
4772 if (!dev)
4773 return -ENODEV;
4774
5f2f6da7
JP
4775 ops = dev->netdev_ops;
4776
14e3e079 4777 switch (cmd) {
d1b19dff
ED
4778 case SIOCSIFFLAGS: /* Set interface flags */
4779 return dev_change_flags(dev, ifr->ifr_flags);
14e3e079 4780
d1b19dff
ED
4781 case SIOCSIFMETRIC: /* Set the metric on the interface
4782 (currently unused) */
4783 return -EOPNOTSUPP;
14e3e079 4784
d1b19dff
ED
4785 case SIOCSIFMTU: /* Set the MTU of a device */
4786 return dev_set_mtu(dev, ifr->ifr_mtu);
1da177e4 4787
d1b19dff
ED
4788 case SIOCSIFHWADDR:
4789 return dev_set_mac_address(dev, &ifr->ifr_hwaddr);
1da177e4 4790
d1b19dff
ED
4791 case SIOCSIFHWBROADCAST:
4792 if (ifr->ifr_hwaddr.sa_family != dev->type)
4793 return -EINVAL;
4794 memcpy(dev->broadcast, ifr->ifr_hwaddr.sa_data,
4795 min(sizeof ifr->ifr_hwaddr.sa_data, (size_t) dev->addr_len));
4796 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
4797 return 0;
1da177e4 4798
d1b19dff
ED
4799 case SIOCSIFMAP:
4800 if (ops->ndo_set_config) {
1da177e4
LT
4801 if (!netif_device_present(dev))
4802 return -ENODEV;
d1b19dff
ED
4803 return ops->ndo_set_config(dev, &ifr->ifr_map);
4804 }
4805 return -EOPNOTSUPP;
1da177e4 4806
d1b19dff
ED
4807 case SIOCADDMULTI:
4808 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4809 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4810 return -EINVAL;
4811 if (!netif_device_present(dev))
4812 return -ENODEV;
4813 return dev_mc_add(dev, ifr->ifr_hwaddr.sa_data,
4814 dev->addr_len, 1);
4815
4816 case SIOCDELMULTI:
4817 if ((!ops->ndo_set_multicast_list && !ops->ndo_set_rx_mode) ||
4818 ifr->ifr_hwaddr.sa_family != AF_UNSPEC)
4819 return -EINVAL;
4820 if (!netif_device_present(dev))
4821 return -ENODEV;
4822 return dev_mc_delete(dev, ifr->ifr_hwaddr.sa_data,
4823 dev->addr_len, 1);
1da177e4 4824
d1b19dff
ED
4825 case SIOCSIFTXQLEN:
4826 if (ifr->ifr_qlen < 0)
4827 return -EINVAL;
4828 dev->tx_queue_len = ifr->ifr_qlen;
4829 return 0;
1da177e4 4830
d1b19dff
ED
4831 case SIOCSIFNAME:
4832 ifr->ifr_newname[IFNAMSIZ-1] = '\0';
4833 return dev_change_name(dev, ifr->ifr_newname);
1da177e4 4834
d1b19dff
ED
4835 /*
4836 * Unknown or private ioctl
4837 */
4838 default:
4839 if ((cmd >= SIOCDEVPRIVATE &&
4840 cmd <= SIOCDEVPRIVATE + 15) ||
4841 cmd == SIOCBONDENSLAVE ||
4842 cmd == SIOCBONDRELEASE ||
4843 cmd == SIOCBONDSETHWADDR ||
4844 cmd == SIOCBONDSLAVEINFOQUERY ||
4845 cmd == SIOCBONDINFOQUERY ||
4846 cmd == SIOCBONDCHANGEACTIVE ||
4847 cmd == SIOCGMIIPHY ||
4848 cmd == SIOCGMIIREG ||
4849 cmd == SIOCSMIIREG ||
4850 cmd == SIOCBRADDIF ||
4851 cmd == SIOCBRDELIF ||
4852 cmd == SIOCSHWTSTAMP ||
4853 cmd == SIOCWANDEV) {
4854 err = -EOPNOTSUPP;
4855 if (ops->ndo_do_ioctl) {
4856 if (netif_device_present(dev))
4857 err = ops->ndo_do_ioctl(dev, ifr, cmd);
4858 else
4859 err = -ENODEV;
4860 }
4861 } else
4862 err = -EINVAL;
1da177e4
LT
4863
4864 }
4865 return err;
4866}
4867
4868/*
4869 * This function handles all "interface"-type I/O control requests. The actual
4870 * 'doing' part of this is dev_ifsioc above.
4871 */
4872
4873/**
4874 * dev_ioctl - network device ioctl
c4ea43c5 4875 * @net: the applicable net namespace
1da177e4
LT
4876 * @cmd: command to issue
4877 * @arg: pointer to a struct ifreq in user space
4878 *
4879 * Issue ioctl functions to devices. This is normally called by the
4880 * user space syscall interfaces but can sometimes be useful for
4881 * other purposes. The return value is the return from the syscall if
4882 * positive or a negative errno code on error.
4883 */
4884
881d966b 4885int dev_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1da177e4
LT
4886{
4887 struct ifreq ifr;
4888 int ret;
4889 char *colon;
4890
4891 /* One special case: SIOCGIFCONF takes ifconf argument
4892 and requires shared lock, because it sleeps writing
4893 to user space.
4894 */
4895
4896 if (cmd == SIOCGIFCONF) {
6756ae4b 4897 rtnl_lock();
881d966b 4898 ret = dev_ifconf(net, (char __user *) arg);
6756ae4b 4899 rtnl_unlock();
1da177e4
LT
4900 return ret;
4901 }
4902 if (cmd == SIOCGIFNAME)
881d966b 4903 return dev_ifname(net, (struct ifreq __user *)arg);
1da177e4
LT
4904
4905 if (copy_from_user(&ifr, arg, sizeof(struct ifreq)))
4906 return -EFAULT;
4907
4908 ifr.ifr_name[IFNAMSIZ-1] = 0;
4909
4910 colon = strchr(ifr.ifr_name, ':');
4911 if (colon)
4912 *colon = 0;
4913
4914 /*
4915 * See which interface the caller is talking about.
4916 */
4917
4918 switch (cmd) {
d1b19dff
ED
4919 /*
4920 * These ioctl calls:
4921 * - can be done by all.
4922 * - atomic and do not require locking.
4923 * - return a value
4924 */
4925 case SIOCGIFFLAGS:
4926 case SIOCGIFMETRIC:
4927 case SIOCGIFMTU:
4928 case SIOCGIFHWADDR:
4929 case SIOCGIFSLAVE:
4930 case SIOCGIFMAP:
4931 case SIOCGIFINDEX:
4932 case SIOCGIFTXQLEN:
4933 dev_load(net, ifr.ifr_name);
3710becf 4934 rcu_read_lock();
d1b19dff 4935 ret = dev_ifsioc_locked(net, &ifr, cmd);
3710becf 4936 rcu_read_unlock();
d1b19dff
ED
4937 if (!ret) {
4938 if (colon)
4939 *colon = ':';
4940 if (copy_to_user(arg, &ifr,
4941 sizeof(struct ifreq)))
4942 ret = -EFAULT;
4943 }
4944 return ret;
1da177e4 4945
d1b19dff
ED
4946 case SIOCETHTOOL:
4947 dev_load(net, ifr.ifr_name);
4948 rtnl_lock();
4949 ret = dev_ethtool(net, &ifr);
4950 rtnl_unlock();
4951 if (!ret) {
4952 if (colon)
4953 *colon = ':';
4954 if (copy_to_user(arg, &ifr,
4955 sizeof(struct ifreq)))
4956 ret = -EFAULT;
4957 }
4958 return ret;
1da177e4 4959
d1b19dff
ED
4960 /*
4961 * These ioctl calls:
4962 * - require superuser power.
4963 * - require strict serialization.
4964 * - return a value
4965 */
4966 case SIOCGMIIPHY:
4967 case SIOCGMIIREG:
4968 case SIOCSIFNAME:
4969 if (!capable(CAP_NET_ADMIN))
4970 return -EPERM;
4971 dev_load(net, ifr.ifr_name);
4972 rtnl_lock();
4973 ret = dev_ifsioc(net, &ifr, cmd);
4974 rtnl_unlock();
4975 if (!ret) {
4976 if (colon)
4977 *colon = ':';
4978 if (copy_to_user(arg, &ifr,
4979 sizeof(struct ifreq)))
4980 ret = -EFAULT;
4981 }
4982 return ret;
1da177e4 4983
d1b19dff
ED
4984 /*
4985 * These ioctl calls:
4986 * - require superuser power.
4987 * - require strict serialization.
4988 * - do not return a value
4989 */
4990 case SIOCSIFFLAGS:
4991 case SIOCSIFMETRIC:
4992 case SIOCSIFMTU:
4993 case SIOCSIFMAP:
4994 case SIOCSIFHWADDR:
4995 case SIOCSIFSLAVE:
4996 case SIOCADDMULTI:
4997 case SIOCDELMULTI:
4998 case SIOCSIFHWBROADCAST:
4999 case SIOCSIFTXQLEN:
5000 case SIOCSMIIREG:
5001 case SIOCBONDENSLAVE:
5002 case SIOCBONDRELEASE:
5003 case SIOCBONDSETHWADDR:
5004 case SIOCBONDCHANGEACTIVE:
5005 case SIOCBRADDIF:
5006 case SIOCBRDELIF:
5007 case SIOCSHWTSTAMP:
5008 if (!capable(CAP_NET_ADMIN))
5009 return -EPERM;
5010 /* fall through */
5011 case SIOCBONDSLAVEINFOQUERY:
5012 case SIOCBONDINFOQUERY:
5013 dev_load(net, ifr.ifr_name);
5014 rtnl_lock();
5015 ret = dev_ifsioc(net, &ifr, cmd);
5016 rtnl_unlock();
5017 return ret;
5018
5019 case SIOCGIFMEM:
5020 /* Get the per device memory space. We can add this but
5021 * currently do not support it */
5022 case SIOCSIFMEM:
5023 /* Set the per device memory buffer space.
5024 * Not applicable in our case */
5025 case SIOCSIFLINK:
5026 return -EINVAL;
5027
5028 /*
5029 * Unknown or private ioctl.
5030 */
5031 default:
5032 if (cmd == SIOCWANDEV ||
5033 (cmd >= SIOCDEVPRIVATE &&
5034 cmd <= SIOCDEVPRIVATE + 15)) {
881d966b 5035 dev_load(net, ifr.ifr_name);
1da177e4 5036 rtnl_lock();
881d966b 5037 ret = dev_ifsioc(net, &ifr, cmd);
1da177e4 5038 rtnl_unlock();
d1b19dff
ED
5039 if (!ret && copy_to_user(arg, &ifr,
5040 sizeof(struct ifreq)))
5041 ret = -EFAULT;
1da177e4 5042 return ret;
d1b19dff
ED
5043 }
5044 /* Take care of Wireless Extensions */
5045 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST)
5046 return wext_handle_ioctl(net, &ifr, cmd, arg);
5047 return -EINVAL;
1da177e4
LT
5048 }
5049}
5050
5051
5052/**
5053 * dev_new_index - allocate an ifindex
c4ea43c5 5054 * @net: the applicable net namespace
1da177e4
LT
5055 *
5056 * Returns a suitable unique value for a new device interface
5057 * number. The caller must hold the rtnl semaphore or the
5058 * dev_base_lock to be sure it remains unique.
5059 */
881d966b 5060static int dev_new_index(struct net *net)
1da177e4
LT
5061{
5062 static int ifindex;
5063 for (;;) {
5064 if (++ifindex <= 0)
5065 ifindex = 1;
881d966b 5066 if (!__dev_get_by_index(net, ifindex))
1da177e4
LT
5067 return ifindex;
5068 }
5069}
5070
1da177e4 5071/* Delayed registration/unregisteration */
3b5b34fd 5072static LIST_HEAD(net_todo_list);
1da177e4 5073
6f05f629 5074static void net_set_todo(struct net_device *dev)
1da177e4 5075{
1da177e4 5076 list_add_tail(&dev->todo_list, &net_todo_list);
1da177e4
LT
5077}
5078
9b5e383c 5079static void rollback_registered_many(struct list_head *head)
93ee31f1 5080{
e93737b0 5081 struct net_device *dev, *tmp;
9b5e383c 5082
93ee31f1
DL
5083 BUG_ON(dev_boot_phase);
5084 ASSERT_RTNL();
5085
e93737b0 5086 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
9b5e383c 5087 /* Some devices call without registering
e93737b0
KK
5088 * for initialization unwind. Remove those
5089 * devices and proceed with the remaining.
9b5e383c
ED
5090 */
5091 if (dev->reg_state == NETREG_UNINITIALIZED) {
5092 pr_debug("unregister_netdevice: device %s/%p never "
5093 "was registered\n", dev->name, dev);
93ee31f1 5094
9b5e383c 5095 WARN_ON(1);
e93737b0
KK
5096 list_del(&dev->unreg_list);
5097 continue;
9b5e383c 5098 }
93ee31f1 5099
9b5e383c 5100 BUG_ON(dev->reg_state != NETREG_REGISTERED);
93ee31f1 5101
9b5e383c
ED
5102 /* If device is running, close it first. */
5103 dev_close(dev);
93ee31f1 5104
9b5e383c
ED
5105 /* And unlink it from device chain. */
5106 unlist_netdevice(dev);
93ee31f1 5107
9b5e383c
ED
5108 dev->reg_state = NETREG_UNREGISTERING;
5109 }
93ee31f1
DL
5110
5111 synchronize_net();
5112
9b5e383c
ED
5113 list_for_each_entry(dev, head, unreg_list) {
5114 /* Shutdown queueing discipline. */
5115 dev_shutdown(dev);
93ee31f1
DL
5116
5117
9b5e383c
ED
5118 /* Notify protocols, that we are about to destroy
5119 this device. They should clean all the things.
5120 */
5121 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
93ee31f1 5122
a2835763
PM
5123 if (!dev->rtnl_link_ops ||
5124 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5125 rtmsg_ifinfo(RTM_DELLINK, dev, ~0U);
5126
9b5e383c
ED
5127 /*
5128 * Flush the unicast and multicast chains
5129 */
5130 dev_unicast_flush(dev);
5131 dev_addr_discard(dev);
93ee31f1 5132
9b5e383c
ED
5133 if (dev->netdev_ops->ndo_uninit)
5134 dev->netdev_ops->ndo_uninit(dev);
93ee31f1 5135
9b5e383c
ED
5136 /* Notifier chain MUST detach us from master device. */
5137 WARN_ON(dev->master);
93ee31f1 5138
9b5e383c
ED
5139 /* Remove entries from kobject tree */
5140 netdev_unregister_kobject(dev);
5141 }
93ee31f1 5142
a5ee1551 5143 /* Process any work delayed until the end of the batch */
e5e26d75 5144 dev = list_first_entry(head, struct net_device, unreg_list);
a5ee1551 5145 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
93ee31f1 5146
a5ee1551 5147 synchronize_net();
395264d5 5148
a5ee1551 5149 list_for_each_entry(dev, head, unreg_list)
9b5e383c
ED
5150 dev_put(dev);
5151}
5152
5153static void rollback_registered(struct net_device *dev)
5154{
5155 LIST_HEAD(single);
5156
5157 list_add(&dev->unreg_list, &single);
5158 rollback_registered_many(&single);
93ee31f1
DL
5159}
5160
e8a0464c
DM
5161static void __netdev_init_queue_locks_one(struct net_device *dev,
5162 struct netdev_queue *dev_queue,
5163 void *_unused)
c773e847
DM
5164{
5165 spin_lock_init(&dev_queue->_xmit_lock);
cf508b12 5166 netdev_set_xmit_lockdep_class(&dev_queue->_xmit_lock, dev->type);
c773e847
DM
5167 dev_queue->xmit_lock_owner = -1;
5168}
5169
5170static void netdev_init_queue_locks(struct net_device *dev)
5171{
e8a0464c
DM
5172 netdev_for_each_tx_queue(dev, __netdev_init_queue_locks_one, NULL);
5173 __netdev_init_queue_locks_one(dev, &dev->rx_queue, NULL);
c773e847
DM
5174}
5175
b63365a2
HX
5176unsigned long netdev_fix_features(unsigned long features, const char *name)
5177{
5178 /* Fix illegal SG+CSUM combinations. */
5179 if ((features & NETIF_F_SG) &&
5180 !(features & NETIF_F_ALL_CSUM)) {
5181 if (name)
5182 printk(KERN_NOTICE "%s: Dropping NETIF_F_SG since no "
5183 "checksum feature.\n", name);
5184 features &= ~NETIF_F_SG;
5185 }
5186
5187 /* TSO requires that SG is present as well. */
5188 if ((features & NETIF_F_TSO) && !(features & NETIF_F_SG)) {
5189 if (name)
5190 printk(KERN_NOTICE "%s: Dropping NETIF_F_TSO since no "
5191 "SG feature.\n", name);
5192 features &= ~NETIF_F_TSO;
5193 }
5194
5195 if (features & NETIF_F_UFO) {
5196 if (!(features & NETIF_F_GEN_CSUM)) {
5197 if (name)
5198 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5199 "since no NETIF_F_HW_CSUM feature.\n",
5200 name);
5201 features &= ~NETIF_F_UFO;
5202 }
5203
5204 if (!(features & NETIF_F_SG)) {
5205 if (name)
5206 printk(KERN_ERR "%s: Dropping NETIF_F_UFO "
5207 "since no NETIF_F_SG feature.\n", name);
5208 features &= ~NETIF_F_UFO;
5209 }
5210 }
5211
5212 return features;
5213}
5214EXPORT_SYMBOL(netdev_fix_features);
5215
fc4a7489
PM
5216/**
5217 * netif_stacked_transfer_operstate - transfer operstate
5218 * @rootdev: the root or lower level device to transfer state from
5219 * @dev: the device to transfer operstate to
5220 *
5221 * Transfer operational state from root to device. This is normally
5222 * called when a stacking relationship exists between the root
5223 * device and the device(a leaf device).
5224 */
5225void netif_stacked_transfer_operstate(const struct net_device *rootdev,
5226 struct net_device *dev)
5227{
5228 if (rootdev->operstate == IF_OPER_DORMANT)
5229 netif_dormant_on(dev);
5230 else
5231 netif_dormant_off(dev);
5232
5233 if (netif_carrier_ok(rootdev)) {
5234 if (!netif_carrier_ok(dev))
5235 netif_carrier_on(dev);
5236 } else {
5237 if (netif_carrier_ok(dev))
5238 netif_carrier_off(dev);
5239 }
5240}
5241EXPORT_SYMBOL(netif_stacked_transfer_operstate);
5242
1da177e4
LT
5243/**
5244 * register_netdevice - register a network device
5245 * @dev: device to register
5246 *
5247 * Take a completed network device structure and add it to the kernel
5248 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5249 * chain. 0 is returned on success. A negative errno code is returned
5250 * on a failure to set up the device, or if the name is a duplicate.
5251 *
5252 * Callers must hold the rtnl semaphore. You may want
5253 * register_netdev() instead of this.
5254 *
5255 * BUGS:
5256 * The locking appears insufficient to guarantee two parallel registers
5257 * will not get the same name.
5258 */
5259
5260int register_netdevice(struct net_device *dev)
5261{
1da177e4 5262 int ret;
d314774c 5263 struct net *net = dev_net(dev);
1da177e4
LT
5264
5265 BUG_ON(dev_boot_phase);
5266 ASSERT_RTNL();
5267
b17a7c17
SH
5268 might_sleep();
5269
1da177e4
LT
5270 /* When net_device's are persistent, this will be fatal. */
5271 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
d314774c 5272 BUG_ON(!net);
1da177e4 5273
f1f28aa3 5274 spin_lock_init(&dev->addr_list_lock);
cf508b12 5275 netdev_set_addr_lockdep_class(dev);
c773e847 5276 netdev_init_queue_locks(dev);
1da177e4 5277
1da177e4
LT
5278 dev->iflink = -1;
5279
df334545 5280#ifdef CONFIG_RPS
0a9627f2
TH
5281 if (!dev->num_rx_queues) {
5282 /*
5283 * Allocate a single RX queue if driver never called
5284 * alloc_netdev_mq
5285 */
5286
5287 dev->_rx = kzalloc(sizeof(struct netdev_rx_queue), GFP_KERNEL);
5288 if (!dev->_rx) {
5289 ret = -ENOMEM;
5290 goto out;
5291 }
5292
5293 dev->_rx->first = dev->_rx;
5294 atomic_set(&dev->_rx->count, 1);
5295 dev->num_rx_queues = 1;
5296 }
df334545 5297#endif
1da177e4 5298 /* Init, if this function is available */
d314774c
SH
5299 if (dev->netdev_ops->ndo_init) {
5300 ret = dev->netdev_ops->ndo_init(dev);
1da177e4
LT
5301 if (ret) {
5302 if (ret > 0)
5303 ret = -EIO;
90833aa4 5304 goto out;
1da177e4
LT
5305 }
5306 }
4ec93edb 5307
d9031024
OP
5308 ret = dev_get_valid_name(net, dev->name, dev->name, 0);
5309 if (ret)
7ce1b0ed 5310 goto err_uninit;
1da177e4 5311
881d966b 5312 dev->ifindex = dev_new_index(net);
1da177e4
LT
5313 if (dev->iflink == -1)
5314 dev->iflink = dev->ifindex;
5315
d212f87b
SH
5316 /* Fix illegal checksum combinations */
5317 if ((dev->features & NETIF_F_HW_CSUM) &&
5318 (dev->features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5319 printk(KERN_NOTICE "%s: mixed HW and IP checksum settings.\n",
5320 dev->name);
5321 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
5322 }
5323
5324 if ((dev->features & NETIF_F_NO_CSUM) &&
5325 (dev->features & (NETIF_F_HW_CSUM|NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
5326 printk(KERN_NOTICE "%s: mixed no checksumming and other settings.\n",
5327 dev->name);
5328 dev->features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM|NETIF_F_HW_CSUM);
5329 }
5330
b63365a2 5331 dev->features = netdev_fix_features(dev->features, dev->name);
1da177e4 5332
e5a4a72d
LB
5333 /* Enable software GSO if SG is supported. */
5334 if (dev->features & NETIF_F_SG)
5335 dev->features |= NETIF_F_GSO;
5336
aaf8cdc3 5337 netdev_initialize_kobject(dev);
7ffbe3fd
JB
5338
5339 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
5340 ret = notifier_to_errno(ret);
5341 if (ret)
5342 goto err_uninit;
5343
8b41d188 5344 ret = netdev_register_kobject(dev);
b17a7c17 5345 if (ret)
7ce1b0ed 5346 goto err_uninit;
b17a7c17
SH
5347 dev->reg_state = NETREG_REGISTERED;
5348
1da177e4
LT
5349 /*
5350 * Default initial state at registry is that the
5351 * device is present.
5352 */
5353
5354 set_bit(__LINK_STATE_PRESENT, &dev->state);
5355
1da177e4 5356 dev_init_scheduler(dev);
1da177e4 5357 dev_hold(dev);
ce286d32 5358 list_netdevice(dev);
1da177e4
LT
5359
5360 /* Notify protocols, that a new device appeared. */
056925ab 5361 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
fcc5a03a 5362 ret = notifier_to_errno(ret);
93ee31f1
DL
5363 if (ret) {
5364 rollback_registered(dev);
5365 dev->reg_state = NETREG_UNREGISTERED;
5366 }
d90a909e
EB
5367 /*
5368 * Prevent userspace races by waiting until the network
5369 * device is fully setup before sending notifications.
5370 */
a2835763
PM
5371 if (!dev->rtnl_link_ops ||
5372 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
5373 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
1da177e4
LT
5374
5375out:
5376 return ret;
7ce1b0ed
HX
5377
5378err_uninit:
d314774c
SH
5379 if (dev->netdev_ops->ndo_uninit)
5380 dev->netdev_ops->ndo_uninit(dev);
7ce1b0ed 5381 goto out;
1da177e4 5382}
d1b19dff 5383EXPORT_SYMBOL(register_netdevice);
1da177e4 5384
937f1ba5
BH
5385/**
5386 * init_dummy_netdev - init a dummy network device for NAPI
5387 * @dev: device to init
5388 *
5389 * This takes a network device structure and initialize the minimum
5390 * amount of fields so it can be used to schedule NAPI polls without
5391 * registering a full blown interface. This is to be used by drivers
5392 * that need to tie several hardware interfaces to a single NAPI
5393 * poll scheduler due to HW limitations.
5394 */
5395int init_dummy_netdev(struct net_device *dev)
5396{
5397 /* Clear everything. Note we don't initialize spinlocks
5398 * are they aren't supposed to be taken by any of the
5399 * NAPI code and this dummy netdev is supposed to be
5400 * only ever used for NAPI polls
5401 */
5402 memset(dev, 0, sizeof(struct net_device));
5403
5404 /* make sure we BUG if trying to hit standard
5405 * register/unregister code path
5406 */
5407 dev->reg_state = NETREG_DUMMY;
5408
5409 /* initialize the ref count */
5410 atomic_set(&dev->refcnt, 1);
5411
5412 /* NAPI wants this */
5413 INIT_LIST_HEAD(&dev->napi_list);
5414
5415 /* a dummy interface is started by default */
5416 set_bit(__LINK_STATE_PRESENT, &dev->state);
5417 set_bit(__LINK_STATE_START, &dev->state);
5418
5419 return 0;
5420}
5421EXPORT_SYMBOL_GPL(init_dummy_netdev);
5422
5423
1da177e4
LT
5424/**
5425 * register_netdev - register a network device
5426 * @dev: device to register
5427 *
5428 * Take a completed network device structure and add it to the kernel
5429 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
5430 * chain. 0 is returned on success. A negative errno code is returned
5431 * on a failure to set up the device, or if the name is a duplicate.
5432 *
38b4da38 5433 * This is a wrapper around register_netdevice that takes the rtnl semaphore
1da177e4
LT
5434 * and expands the device name if you passed a format string to
5435 * alloc_netdev.
5436 */
5437int register_netdev(struct net_device *dev)
5438{
5439 int err;
5440
5441 rtnl_lock();
5442
5443 /*
5444 * If the name is a format string the caller wants us to do a
5445 * name allocation.
5446 */
5447 if (strchr(dev->name, '%')) {
5448 err = dev_alloc_name(dev, dev->name);
5449 if (err < 0)
5450 goto out;
5451 }
4ec93edb 5452
1da177e4
LT
5453 err = register_netdevice(dev);
5454out:
5455 rtnl_unlock();
5456 return err;
5457}
5458EXPORT_SYMBOL(register_netdev);
5459
5460/*
5461 * netdev_wait_allrefs - wait until all references are gone.
5462 *
5463 * This is called when unregistering network devices.
5464 *
5465 * Any protocol or device that holds a reference should register
5466 * for netdevice notification, and cleanup and put back the
5467 * reference if they receive an UNREGISTER event.
5468 * We can get stuck here if buggy protocols don't correctly
4ec93edb 5469 * call dev_put.
1da177e4
LT
5470 */
5471static void netdev_wait_allrefs(struct net_device *dev)
5472{
5473 unsigned long rebroadcast_time, warning_time;
5474
e014debe
ED
5475 linkwatch_forget_dev(dev);
5476
1da177e4
LT
5477 rebroadcast_time = warning_time = jiffies;
5478 while (atomic_read(&dev->refcnt) != 0) {
5479 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
6756ae4b 5480 rtnl_lock();
1da177e4
LT
5481
5482 /* Rebroadcast unregister notification */
056925ab 5483 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
a5ee1551 5484 /* don't resend NETDEV_UNREGISTER_BATCH, _BATCH users
395264d5 5485 * should have already handle it the first time */
1da177e4
LT
5486
5487 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
5488 &dev->state)) {
5489 /* We must not have linkwatch events
5490 * pending on unregister. If this
5491 * happens, we simply run the queue
5492 * unscheduled, resulting in a noop
5493 * for this device.
5494 */
5495 linkwatch_run_queue();
5496 }
5497
6756ae4b 5498 __rtnl_unlock();
1da177e4
LT
5499
5500 rebroadcast_time = jiffies;
5501 }
5502
5503 msleep(250);
5504
5505 if (time_after(jiffies, warning_time + 10 * HZ)) {
5506 printk(KERN_EMERG "unregister_netdevice: "
5507 "waiting for %s to become free. Usage "
5508 "count = %d\n",
5509 dev->name, atomic_read(&dev->refcnt));
5510 warning_time = jiffies;
5511 }
5512 }
5513}
5514
5515/* The sequence is:
5516 *
5517 * rtnl_lock();
5518 * ...
5519 * register_netdevice(x1);
5520 * register_netdevice(x2);
5521 * ...
5522 * unregister_netdevice(y1);
5523 * unregister_netdevice(y2);
5524 * ...
5525 * rtnl_unlock();
5526 * free_netdev(y1);
5527 * free_netdev(y2);
5528 *
58ec3b4d 5529 * We are invoked by rtnl_unlock().
1da177e4 5530 * This allows us to deal with problems:
b17a7c17 5531 * 1) We can delete sysfs objects which invoke hotplug
1da177e4
LT
5532 * without deadlocking with linkwatch via keventd.
5533 * 2) Since we run with the RTNL semaphore not held, we can sleep
5534 * safely in order to wait for the netdev refcnt to drop to zero.
58ec3b4d
HX
5535 *
5536 * We must not return until all unregister events added during
5537 * the interval the lock was held have been completed.
1da177e4 5538 */
1da177e4
LT
5539void netdev_run_todo(void)
5540{
626ab0e6 5541 struct list_head list;
1da177e4 5542
1da177e4 5543 /* Snapshot list, allow later requests */
626ab0e6 5544 list_replace_init(&net_todo_list, &list);
58ec3b4d
HX
5545
5546 __rtnl_unlock();
626ab0e6 5547
1da177e4
LT
5548 while (!list_empty(&list)) {
5549 struct net_device *dev
e5e26d75 5550 = list_first_entry(&list, struct net_device, todo_list);
e51d739a 5551 int i;
1da177e4
LT
5552 list_del(&dev->todo_list);
5553
b17a7c17
SH
5554 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
5555 printk(KERN_ERR "network todo '%s' but state %d\n",
5556 dev->name, dev->reg_state);
5557 dump_stack();
5558 continue;
5559 }
1da177e4 5560
b17a7c17 5561 dev->reg_state = NETREG_UNREGISTERED;
1da177e4 5562
e51d739a
TH
5563 for_each_online_cpu(i)
5564 flush_backlog(dev, i);
6e583ce5 5565
b17a7c17 5566 netdev_wait_allrefs(dev);
1da177e4 5567
b17a7c17
SH
5568 /* paranoia */
5569 BUG_ON(atomic_read(&dev->refcnt));
547b792c
IJ
5570 WARN_ON(dev->ip_ptr);
5571 WARN_ON(dev->ip6_ptr);
5572 WARN_ON(dev->dn_ptr);
1da177e4 5573
b17a7c17
SH
5574 if (dev->destructor)
5575 dev->destructor(dev);
9093bbb2
SH
5576
5577 /* Free network device */
5578 kobject_put(&dev->dev.kobj);
1da177e4 5579 }
1da177e4
LT
5580}
5581
d83345ad
ED
5582/**
5583 * dev_txq_stats_fold - fold tx_queues stats
5584 * @dev: device to get statistics from
5585 * @stats: struct net_device_stats to hold results
5586 */
5587void dev_txq_stats_fold(const struct net_device *dev,
5588 struct net_device_stats *stats)
5589{
5590 unsigned long tx_bytes = 0, tx_packets = 0, tx_dropped = 0;
5591 unsigned int i;
5592 struct netdev_queue *txq;
5593
5594 for (i = 0; i < dev->num_tx_queues; i++) {
5595 txq = netdev_get_tx_queue(dev, i);
5596 tx_bytes += txq->tx_bytes;
5597 tx_packets += txq->tx_packets;
5598 tx_dropped += txq->tx_dropped;
5599 }
5600 if (tx_bytes || tx_packets || tx_dropped) {
5601 stats->tx_bytes = tx_bytes;
5602 stats->tx_packets = tx_packets;
5603 stats->tx_dropped = tx_dropped;
5604 }
5605}
5606EXPORT_SYMBOL(dev_txq_stats_fold);
5607
eeda3fd6
SH
5608/**
5609 * dev_get_stats - get network device statistics
5610 * @dev: device to get statistics from
5611 *
5612 * Get network statistics from device. The device driver may provide
5613 * its own method by setting dev->netdev_ops->get_stats; otherwise
5614 * the internal statistics structure is used.
5615 */
5616const struct net_device_stats *dev_get_stats(struct net_device *dev)
7004bf25 5617{
eeda3fd6
SH
5618 const struct net_device_ops *ops = dev->netdev_ops;
5619
5620 if (ops->ndo_get_stats)
5621 return ops->ndo_get_stats(dev);
d83345ad
ED
5622
5623 dev_txq_stats_fold(dev, &dev->stats);
5624 return &dev->stats;
c45d286e 5625}
eeda3fd6 5626EXPORT_SYMBOL(dev_get_stats);
c45d286e 5627
dc2b4847 5628static void netdev_init_one_queue(struct net_device *dev,
e8a0464c
DM
5629 struct netdev_queue *queue,
5630 void *_unused)
dc2b4847 5631{
dc2b4847
DM
5632 queue->dev = dev;
5633}
5634
bb949fbd
DM
5635static void netdev_init_queues(struct net_device *dev)
5636{
e8a0464c
DM
5637 netdev_init_one_queue(dev, &dev->rx_queue, NULL);
5638 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
c3f26a26 5639 spin_lock_init(&dev->tx_global_lock);
bb949fbd
DM
5640}
5641
1da177e4 5642/**
f25f4e44 5643 * alloc_netdev_mq - allocate network device
1da177e4
LT
5644 * @sizeof_priv: size of private data to allocate space for
5645 * @name: device name format string
5646 * @setup: callback to initialize device
f25f4e44 5647 * @queue_count: the number of subqueues to allocate
1da177e4
LT
5648 *
5649 * Allocates a struct net_device with private data area for driver use
f25f4e44
PWJ
5650 * and performs basic initialization. Also allocates subquue structs
5651 * for each queue on the device at the end of the netdevice.
1da177e4 5652 */
f25f4e44
PWJ
5653struct net_device *alloc_netdev_mq(int sizeof_priv, const char *name,
5654 void (*setup)(struct net_device *), unsigned int queue_count)
1da177e4 5655{
e8a0464c 5656 struct netdev_queue *tx;
1da177e4 5657 struct net_device *dev;
7943986c 5658 size_t alloc_size;
1ce8e7b5 5659 struct net_device *p;
df334545
ED
5660#ifdef CONFIG_RPS
5661 struct netdev_rx_queue *rx;
0a9627f2 5662 int i;
df334545 5663#endif
1da177e4 5664
b6fe17d6
SH
5665 BUG_ON(strlen(name) >= sizeof(dev->name));
5666
fd2ea0a7 5667 alloc_size = sizeof(struct net_device);
d1643d24
AD
5668 if (sizeof_priv) {
5669 /* ensure 32-byte alignment of private area */
1ce8e7b5 5670 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
d1643d24
AD
5671 alloc_size += sizeof_priv;
5672 }
5673 /* ensure 32-byte alignment of whole construct */
1ce8e7b5 5674 alloc_size += NETDEV_ALIGN - 1;
1da177e4 5675
31380de9 5676 p = kzalloc(alloc_size, GFP_KERNEL);
1da177e4 5677 if (!p) {
b6fe17d6 5678 printk(KERN_ERR "alloc_netdev: Unable to allocate device.\n");
1da177e4
LT
5679 return NULL;
5680 }
1da177e4 5681
7943986c 5682 tx = kcalloc(queue_count, sizeof(struct netdev_queue), GFP_KERNEL);
e8a0464c
DM
5683 if (!tx) {
5684 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5685 "tx qdiscs.\n");
ab9c73cc 5686 goto free_p;
e8a0464c
DM
5687 }
5688
df334545 5689#ifdef CONFIG_RPS
0a9627f2
TH
5690 rx = kcalloc(queue_count, sizeof(struct netdev_rx_queue), GFP_KERNEL);
5691 if (!rx) {
5692 printk(KERN_ERR "alloc_netdev: Unable to allocate "
5693 "rx queues.\n");
5694 goto free_tx;
5695 }
5696
5697 atomic_set(&rx->count, queue_count);
5698
5699 /*
5700 * Set a pointer to first element in the array which holds the
5701 * reference count.
5702 */
5703 for (i = 0; i < queue_count; i++)
5704 rx[i].first = rx;
df334545 5705#endif
0a9627f2 5706
1ce8e7b5 5707 dev = PTR_ALIGN(p, NETDEV_ALIGN);
1da177e4 5708 dev->padded = (char *)dev - (char *)p;
ab9c73cc
JP
5709
5710 if (dev_addr_init(dev))
0a9627f2 5711 goto free_rx;
ab9c73cc 5712
ccffad25
JP
5713 dev_unicast_init(dev);
5714
c346dca1 5715 dev_net_set(dev, &init_net);
1da177e4 5716
e8a0464c
DM
5717 dev->_tx = tx;
5718 dev->num_tx_queues = queue_count;
fd2ea0a7 5719 dev->real_num_tx_queues = queue_count;
e8a0464c 5720
df334545 5721#ifdef CONFIG_RPS
0a9627f2
TH
5722 dev->_rx = rx;
5723 dev->num_rx_queues = queue_count;
df334545 5724#endif
0a9627f2 5725
82cc1a7a 5726 dev->gso_max_size = GSO_MAX_SIZE;
1da177e4 5727
bb949fbd
DM
5728 netdev_init_queues(dev);
5729
15682bc4
PWJ
5730 INIT_LIST_HEAD(&dev->ethtool_ntuple_list.list);
5731 dev->ethtool_ntuple_list.count = 0;
d565b0a1 5732 INIT_LIST_HEAD(&dev->napi_list);
9fdce099 5733 INIT_LIST_HEAD(&dev->unreg_list);
e014debe 5734 INIT_LIST_HEAD(&dev->link_watch_list);
93f154b5 5735 dev->priv_flags = IFF_XMIT_DST_RELEASE;
1da177e4
LT
5736 setup(dev);
5737 strcpy(dev->name, name);
5738 return dev;
ab9c73cc 5739
0a9627f2 5740free_rx:
df334545 5741#ifdef CONFIG_RPS
0a9627f2 5742 kfree(rx);
ab9c73cc 5743free_tx:
df334545 5744#endif
ab9c73cc 5745 kfree(tx);
ab9c73cc
JP
5746free_p:
5747 kfree(p);
5748 return NULL;
1da177e4 5749}
f25f4e44 5750EXPORT_SYMBOL(alloc_netdev_mq);
1da177e4
LT
5751
5752/**
5753 * free_netdev - free network device
5754 * @dev: device
5755 *
4ec93edb
YH
5756 * This function does the last stage of destroying an allocated device
5757 * interface. The reference to the device object is released.
1da177e4
LT
5758 * If this is the last reference then it will be freed.
5759 */
5760void free_netdev(struct net_device *dev)
5761{
d565b0a1
HX
5762 struct napi_struct *p, *n;
5763
f3005d7f
DL
5764 release_net(dev_net(dev));
5765
e8a0464c
DM
5766 kfree(dev->_tx);
5767
f001fde5
JP
5768 /* Flush device addresses */
5769 dev_addr_flush(dev);
5770
15682bc4
PWJ
5771 /* Clear ethtool n-tuple list */
5772 ethtool_ntuple_flush(dev);
5773
d565b0a1
HX
5774 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
5775 netif_napi_del(p);
5776
3041a069 5777 /* Compatibility with error handling in drivers */
1da177e4
LT
5778 if (dev->reg_state == NETREG_UNINITIALIZED) {
5779 kfree((char *)dev - dev->padded);
5780 return;
5781 }
5782
5783 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
5784 dev->reg_state = NETREG_RELEASED;
5785
43cb76d9
GKH
5786 /* will free via device release */
5787 put_device(&dev->dev);
1da177e4 5788}
d1b19dff 5789EXPORT_SYMBOL(free_netdev);
4ec93edb 5790
f0db275a
SH
5791/**
5792 * synchronize_net - Synchronize with packet receive processing
5793 *
5794 * Wait for packets currently being received to be done.
5795 * Does not block later packets from starting.
5796 */
4ec93edb 5797void synchronize_net(void)
1da177e4
LT
5798{
5799 might_sleep();
fbd568a3 5800 synchronize_rcu();
1da177e4 5801}
d1b19dff 5802EXPORT_SYMBOL(synchronize_net);
1da177e4
LT
5803
5804/**
44a0873d 5805 * unregister_netdevice_queue - remove device from the kernel
1da177e4 5806 * @dev: device
44a0873d 5807 * @head: list
6ebfbc06 5808 *
1da177e4 5809 * This function shuts down a device interface and removes it
d59b54b1 5810 * from the kernel tables.
44a0873d 5811 * If head not NULL, device is queued to be unregistered later.
1da177e4
LT
5812 *
5813 * Callers must hold the rtnl semaphore. You may want
5814 * unregister_netdev() instead of this.
5815 */
5816
44a0873d 5817void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
1da177e4 5818{
a6620712
HX
5819 ASSERT_RTNL();
5820
44a0873d 5821 if (head) {
9fdce099 5822 list_move_tail(&dev->unreg_list, head);
44a0873d
ED
5823 } else {
5824 rollback_registered(dev);
5825 /* Finish processing unregister after unlock */
5826 net_set_todo(dev);
5827 }
1da177e4 5828}
44a0873d 5829EXPORT_SYMBOL(unregister_netdevice_queue);
1da177e4 5830
9b5e383c
ED
5831/**
5832 * unregister_netdevice_many - unregister many devices
5833 * @head: list of devices
9b5e383c
ED
5834 */
5835void unregister_netdevice_many(struct list_head *head)
5836{
5837 struct net_device *dev;
5838
5839 if (!list_empty(head)) {
5840 rollback_registered_many(head);
5841 list_for_each_entry(dev, head, unreg_list)
5842 net_set_todo(dev);
5843 }
5844}
63c8099d 5845EXPORT_SYMBOL(unregister_netdevice_many);
9b5e383c 5846
1da177e4
LT
5847/**
5848 * unregister_netdev - remove device from the kernel
5849 * @dev: device
5850 *
5851 * This function shuts down a device interface and removes it
d59b54b1 5852 * from the kernel tables.
1da177e4
LT
5853 *
5854 * This is just a wrapper for unregister_netdevice that takes
5855 * the rtnl semaphore. In general you want to use this and not
5856 * unregister_netdevice.
5857 */
5858void unregister_netdev(struct net_device *dev)
5859{
5860 rtnl_lock();
5861 unregister_netdevice(dev);
5862 rtnl_unlock();
5863}
1da177e4
LT
5864EXPORT_SYMBOL(unregister_netdev);
5865
ce286d32
EB
5866/**
5867 * dev_change_net_namespace - move device to different nethost namespace
5868 * @dev: device
5869 * @net: network namespace
5870 * @pat: If not NULL name pattern to try if the current device name
5871 * is already taken in the destination network namespace.
5872 *
5873 * This function shuts down a device interface and moves it
5874 * to a new network namespace. On success 0 is returned, on
5875 * a failure a netagive errno code is returned.
5876 *
5877 * Callers must hold the rtnl semaphore.
5878 */
5879
5880int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
5881{
ce286d32
EB
5882 int err;
5883
5884 ASSERT_RTNL();
5885
5886 /* Don't allow namespace local devices to be moved. */
5887 err = -EINVAL;
5888 if (dev->features & NETIF_F_NETNS_LOCAL)
5889 goto out;
5890
3891845e
EB
5891#ifdef CONFIG_SYSFS
5892 /* Don't allow real devices to be moved when sysfs
5893 * is enabled.
5894 */
5895 err = -EINVAL;
5896 if (dev->dev.parent)
5897 goto out;
5898#endif
5899
ce286d32
EB
5900 /* Ensure the device has been registrered */
5901 err = -EINVAL;
5902 if (dev->reg_state != NETREG_REGISTERED)
5903 goto out;
5904
5905 /* Get out if there is nothing todo */
5906 err = 0;
878628fb 5907 if (net_eq(dev_net(dev), net))
ce286d32
EB
5908 goto out;
5909
5910 /* Pick the destination device name, and ensure
5911 * we can use it in the destination network namespace.
5912 */
5913 err = -EEXIST;
d9031024 5914 if (__dev_get_by_name(net, dev->name)) {
ce286d32
EB
5915 /* We get here if we can't use the current device name */
5916 if (!pat)
5917 goto out;
d9031024 5918 if (dev_get_valid_name(net, pat, dev->name, 1))
ce286d32
EB
5919 goto out;
5920 }
5921
5922 /*
5923 * And now a mini version of register_netdevice unregister_netdevice.
5924 */
5925
5926 /* If device is running close it first. */
9b772652 5927 dev_close(dev);
ce286d32
EB
5928
5929 /* And unlink it from device chain */
5930 err = -ENODEV;
5931 unlist_netdevice(dev);
5932
5933 synchronize_net();
5934
5935 /* Shutdown queueing discipline. */
5936 dev_shutdown(dev);
5937
5938 /* Notify protocols, that we are about to destroy
5939 this device. They should clean all the things.
5940 */
5941 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
a5ee1551 5942 call_netdevice_notifiers(NETDEV_UNREGISTER_BATCH, dev);
ce286d32
EB
5943
5944 /*
5945 * Flush the unicast and multicast chains
5946 */
ccffad25 5947 dev_unicast_flush(dev);
ce286d32
EB
5948 dev_addr_discard(dev);
5949
3891845e
EB
5950 netdev_unregister_kobject(dev);
5951
ce286d32 5952 /* Actually switch the network namespace */
c346dca1 5953 dev_net_set(dev, net);
ce286d32 5954
ce286d32
EB
5955 /* If there is an ifindex conflict assign a new one */
5956 if (__dev_get_by_index(net, dev->ifindex)) {
5957 int iflink = (dev->iflink == dev->ifindex);
5958 dev->ifindex = dev_new_index(net);
5959 if (iflink)
5960 dev->iflink = dev->ifindex;
5961 }
5962
8b41d188 5963 /* Fixup kobjects */
aaf8cdc3 5964 err = netdev_register_kobject(dev);
8b41d188 5965 WARN_ON(err);
ce286d32
EB
5966
5967 /* Add the device back in the hashes */
5968 list_netdevice(dev);
5969
5970 /* Notify protocols, that a new device appeared. */
5971 call_netdevice_notifiers(NETDEV_REGISTER, dev);
5972
d90a909e
EB
5973 /*
5974 * Prevent userspace races by waiting until the network
5975 * device is fully setup before sending notifications.
5976 */
5977 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U);
5978
ce286d32
EB
5979 synchronize_net();
5980 err = 0;
5981out:
5982 return err;
5983}
463d0183 5984EXPORT_SYMBOL_GPL(dev_change_net_namespace);
ce286d32 5985
1da177e4
LT
5986static int dev_cpu_callback(struct notifier_block *nfb,
5987 unsigned long action,
5988 void *ocpu)
5989{
5990 struct sk_buff **list_skb;
37437bb2 5991 struct Qdisc **list_net;
1da177e4
LT
5992 struct sk_buff *skb;
5993 unsigned int cpu, oldcpu = (unsigned long)ocpu;
5994 struct softnet_data *sd, *oldsd;
5995
8bb78442 5996 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1da177e4
LT
5997 return NOTIFY_OK;
5998
5999 local_irq_disable();
6000 cpu = smp_processor_id();
6001 sd = &per_cpu(softnet_data, cpu);
6002 oldsd = &per_cpu(softnet_data, oldcpu);
6003
6004 /* Find end of our completion_queue. */
6005 list_skb = &sd->completion_queue;
6006 while (*list_skb)
6007 list_skb = &(*list_skb)->next;
6008 /* Append completion queue from offline CPU. */
6009 *list_skb = oldsd->completion_queue;
6010 oldsd->completion_queue = NULL;
6011
6012 /* Find end of our output_queue. */
6013 list_net = &sd->output_queue;
6014 while (*list_net)
6015 list_net = &(*list_net)->next_sched;
6016 /* Append output queue from offline CPU. */
6017 *list_net = oldsd->output_queue;
6018 oldsd->output_queue = NULL;
6019
6020 raise_softirq_irqoff(NET_TX_SOFTIRQ);
6021 local_irq_enable();
6022
6023 /* Process offline CPU's input_pkt_queue */
6024 while ((skb = __skb_dequeue(&oldsd->input_pkt_queue)))
6025 netif_rx(skb);
6026
6027 return NOTIFY_OK;
6028}
1da177e4
LT
6029
6030
7f353bf2 6031/**
b63365a2
HX
6032 * netdev_increment_features - increment feature set by one
6033 * @all: current feature set
6034 * @one: new feature set
6035 * @mask: mask feature set
7f353bf2
HX
6036 *
6037 * Computes a new feature set after adding a device with feature set
b63365a2
HX
6038 * @one to the master device with current feature set @all. Will not
6039 * enable anything that is off in @mask. Returns the new feature set.
7f353bf2 6040 */
b63365a2
HX
6041unsigned long netdev_increment_features(unsigned long all, unsigned long one,
6042 unsigned long mask)
6043{
6044 /* If device needs checksumming, downgrade to it. */
d1b19dff 6045 if (all & NETIF_F_NO_CSUM && !(one & NETIF_F_NO_CSUM))
b63365a2
HX
6046 all ^= NETIF_F_NO_CSUM | (one & NETIF_F_ALL_CSUM);
6047 else if (mask & NETIF_F_ALL_CSUM) {
6048 /* If one device supports v4/v6 checksumming, set for all. */
6049 if (one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM) &&
6050 !(all & NETIF_F_GEN_CSUM)) {
6051 all &= ~NETIF_F_ALL_CSUM;
6052 all |= one & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
6053 }
e2a6b852 6054
b63365a2
HX
6055 /* If one device supports hw checksumming, set for all. */
6056 if (one & NETIF_F_GEN_CSUM && !(all & NETIF_F_GEN_CSUM)) {
6057 all &= ~NETIF_F_ALL_CSUM;
6058 all |= NETIF_F_HW_CSUM;
6059 }
6060 }
7f353bf2 6061
b63365a2 6062 one |= NETIF_F_ALL_CSUM;
7f353bf2 6063
b63365a2 6064 one |= all & NETIF_F_ONE_FOR_ALL;
d9f5950f 6065 all &= one | NETIF_F_LLTX | NETIF_F_GSO | NETIF_F_UFO;
b63365a2 6066 all |= one & mask & NETIF_F_ONE_FOR_ALL;
7f353bf2
HX
6067
6068 return all;
6069}
b63365a2 6070EXPORT_SYMBOL(netdev_increment_features);
7f353bf2 6071
30d97d35
PE
6072static struct hlist_head *netdev_create_hash(void)
6073{
6074 int i;
6075 struct hlist_head *hash;
6076
6077 hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
6078 if (hash != NULL)
6079 for (i = 0; i < NETDEV_HASHENTRIES; i++)
6080 INIT_HLIST_HEAD(&hash[i]);
6081
6082 return hash;
6083}
6084
881d966b 6085/* Initialize per network namespace state */
4665079c 6086static int __net_init netdev_init(struct net *net)
881d966b 6087{
881d966b 6088 INIT_LIST_HEAD(&net->dev_base_head);
881d966b 6089
30d97d35
PE
6090 net->dev_name_head = netdev_create_hash();
6091 if (net->dev_name_head == NULL)
6092 goto err_name;
881d966b 6093
30d97d35
PE
6094 net->dev_index_head = netdev_create_hash();
6095 if (net->dev_index_head == NULL)
6096 goto err_idx;
881d966b
EB
6097
6098 return 0;
30d97d35
PE
6099
6100err_idx:
6101 kfree(net->dev_name_head);
6102err_name:
6103 return -ENOMEM;
881d966b
EB
6104}
6105
f0db275a
SH
6106/**
6107 * netdev_drivername - network driver for the device
6108 * @dev: network device
6109 * @buffer: buffer for resulting name
6110 * @len: size of buffer
6111 *
6112 * Determine network driver for device.
6113 */
cf04a4c7 6114char *netdev_drivername(const struct net_device *dev, char *buffer, int len)
6579e57b 6115{
cf04a4c7
SH
6116 const struct device_driver *driver;
6117 const struct device *parent;
6579e57b
AV
6118
6119 if (len <= 0 || !buffer)
6120 return buffer;
6121 buffer[0] = 0;
6122
6123 parent = dev->dev.parent;
6124
6125 if (!parent)
6126 return buffer;
6127
6128 driver = parent->driver;
6129 if (driver && driver->name)
6130 strlcpy(buffer, driver->name, len);
6131 return buffer;
6132}
6133
4665079c 6134static void __net_exit netdev_exit(struct net *net)
881d966b
EB
6135{
6136 kfree(net->dev_name_head);
6137 kfree(net->dev_index_head);
6138}
6139
022cbae6 6140static struct pernet_operations __net_initdata netdev_net_ops = {
881d966b
EB
6141 .init = netdev_init,
6142 .exit = netdev_exit,
6143};
6144
4665079c 6145static void __net_exit default_device_exit(struct net *net)
ce286d32 6146{
e008b5fc 6147 struct net_device *dev, *aux;
ce286d32 6148 /*
e008b5fc 6149 * Push all migratable network devices back to the
ce286d32
EB
6150 * initial network namespace
6151 */
6152 rtnl_lock();
e008b5fc 6153 for_each_netdev_safe(net, dev, aux) {
ce286d32 6154 int err;
aca51397 6155 char fb_name[IFNAMSIZ];
ce286d32
EB
6156
6157 /* Ignore unmoveable devices (i.e. loopback) */
6158 if (dev->features & NETIF_F_NETNS_LOCAL)
6159 continue;
6160
e008b5fc
EB
6161 /* Leave virtual devices for the generic cleanup */
6162 if (dev->rtnl_link_ops)
6163 continue;
d0c082ce 6164
ce286d32 6165 /* Push remaing network devices to init_net */
aca51397
PE
6166 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
6167 err = dev_change_net_namespace(dev, &init_net, fb_name);
ce286d32 6168 if (err) {
aca51397 6169 printk(KERN_EMERG "%s: failed to move %s to init_net: %d\n",
ce286d32 6170 __func__, dev->name, err);
aca51397 6171 BUG();
ce286d32
EB
6172 }
6173 }
6174 rtnl_unlock();
6175}
6176
04dc7f6b
EB
6177static void __net_exit default_device_exit_batch(struct list_head *net_list)
6178{
6179 /* At exit all network devices most be removed from a network
6180 * namespace. Do this in the reverse order of registeration.
6181 * Do this across as many network namespaces as possible to
6182 * improve batching efficiency.
6183 */
6184 struct net_device *dev;
6185 struct net *net;
6186 LIST_HEAD(dev_kill_list);
6187
6188 rtnl_lock();
6189 list_for_each_entry(net, net_list, exit_list) {
6190 for_each_netdev_reverse(net, dev) {
6191 if (dev->rtnl_link_ops)
6192 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
6193 else
6194 unregister_netdevice_queue(dev, &dev_kill_list);
6195 }
6196 }
6197 unregister_netdevice_many(&dev_kill_list);
6198 rtnl_unlock();
6199}
6200
022cbae6 6201static struct pernet_operations __net_initdata default_device_ops = {
ce286d32 6202 .exit = default_device_exit,
04dc7f6b 6203 .exit_batch = default_device_exit_batch,
ce286d32
EB
6204};
6205
1da177e4
LT
6206/*
6207 * Initialize the DEV module. At boot time this walks the device list and
6208 * unhooks any devices that fail to initialise (normally hardware not
6209 * present) and leaves us with a valid list of present and active devices.
6210 *
6211 */
6212
6213/*
6214 * This is called single threaded during boot, so no need
6215 * to take the rtnl semaphore.
6216 */
6217static int __init net_dev_init(void)
6218{
6219 int i, rc = -ENOMEM;
6220
6221 BUG_ON(!dev_boot_phase);
6222
1da177e4
LT
6223 if (dev_proc_init())
6224 goto out;
6225
8b41d188 6226 if (netdev_kobject_init())
1da177e4
LT
6227 goto out;
6228
6229 INIT_LIST_HEAD(&ptype_all);
82d8a867 6230 for (i = 0; i < PTYPE_HASH_SIZE; i++)
1da177e4
LT
6231 INIT_LIST_HEAD(&ptype_base[i]);
6232
881d966b
EB
6233 if (register_pernet_subsys(&netdev_net_ops))
6234 goto out;
1da177e4
LT
6235
6236 /*
6237 * Initialise the packet receive queues.
6238 */
6239
6f912042 6240 for_each_possible_cpu(i) {
1da177e4
LT
6241 struct softnet_data *queue;
6242
6243 queue = &per_cpu(softnet_data, i);
6244 skb_queue_head_init(&queue->input_pkt_queue);
1da177e4
LT
6245 queue->completion_queue = NULL;
6246 INIT_LIST_HEAD(&queue->poll_list);
bea3348e 6247
df334545 6248#ifdef CONFIG_RPS
0a9627f2
TH
6249 queue->csd.func = trigger_softirq;
6250 queue->csd.info = queue;
6251 queue->csd.flags = 0;
1e94d72f 6252#endif
0a9627f2 6253
bea3348e
SH
6254 queue->backlog.poll = process_backlog;
6255 queue->backlog.weight = weight_p;
d565b0a1 6256 queue->backlog.gro_list = NULL;
4ae5544f 6257 queue->backlog.gro_count = 0;
1da177e4
LT
6258 }
6259
1da177e4
LT
6260 dev_boot_phase = 0;
6261
505d4f73
EB
6262 /* The loopback device is special if any other network devices
6263 * is present in a network namespace the loopback device must
6264 * be present. Since we now dynamically allocate and free the
6265 * loopback device ensure this invariant is maintained by
6266 * keeping the loopback device as the first device on the
6267 * list of network devices. Ensuring the loopback devices
6268 * is the first device that appears and the last network device
6269 * that disappears.
6270 */
6271 if (register_pernet_device(&loopback_net_ops))
6272 goto out;
6273
6274 if (register_pernet_device(&default_device_ops))
6275 goto out;
6276
962cf36c
CM
6277 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
6278 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
1da177e4
LT
6279
6280 hotcpu_notifier(dev_cpu_callback, 0);
6281 dst_init();
6282 dev_mcast_init();
6283 rc = 0;
6284out:
6285 return rc;
6286}
6287
6288subsys_initcall(net_dev_init);
6289
e88721f8
KK
6290static int __init initialize_hashrnd(void)
6291{
0a9627f2 6292 get_random_bytes(&hashrnd, sizeof(hashrnd));
e88721f8
KK
6293 return 0;
6294}
6295
6296late_initcall_sync(initialize_hashrnd);
6297