]> bbs.cooldavid.org Git - net-next-2.6.git/blame - mm/page_alloc.c
x86: Make 64 bit use early_res instead of bootmem before slab
[net-next-2.6.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4
LT
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
b1eeab67 26#include <linux/kmemcheck.h>
1da177e4
LT
27#include <linux/module.h>
28#include <linux/suspend.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/slab.h>
5a3135c2 32#include <linux/oom.h>
1da177e4
LT
33#include <linux/notifier.h>
34#include <linux/topology.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/cpuset.h>
bdc8cb98 38#include <linux/memory_hotplug.h>
1da177e4
LT
39#include <linux/nodemask.h>
40#include <linux/vmalloc.h>
4be38e35 41#include <linux/mempolicy.h>
6811378e 42#include <linux/stop_machine.h>
c713216d
MG
43#include <linux/sort.h>
44#include <linux/pfn.h>
3fcfab16 45#include <linux/backing-dev.h>
933e312e 46#include <linux/fault-inject.h>
a5d76b54 47#include <linux/page-isolation.h>
52d4b9ac 48#include <linux/page_cgroup.h>
3ac7fe5a 49#include <linux/debugobjects.h>
dbb1f81c 50#include <linux/kmemleak.h>
925cc71e 51#include <linux/memory.h>
0d3d062a 52#include <trace/events/kmem.h>
1da177e4
LT
53
54#include <asm/tlbflush.h>
ac924c60 55#include <asm/div64.h>
1da177e4
LT
56#include "internal.h"
57
58/*
13808910 59 * Array of node states.
1da177e4 60 */
13808910
CL
61nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
62 [N_POSSIBLE] = NODE_MASK_ALL,
63 [N_ONLINE] = { { [0] = 1UL } },
64#ifndef CONFIG_NUMA
65 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
66#ifdef CONFIG_HIGHMEM
67 [N_HIGH_MEMORY] = { { [0] = 1UL } },
68#endif
69 [N_CPU] = { { [0] = 1UL } },
70#endif /* NUMA */
71};
72EXPORT_SYMBOL(node_states);
73
6c231b7b 74unsigned long totalram_pages __read_mostly;
cb45b0e9 75unsigned long totalreserve_pages __read_mostly;
8ad4b1fb 76int percpu_pagelist_fraction;
dcce284a 77gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 78
d9c23400
MG
79#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
80int pageblock_order __read_mostly;
81#endif
82
d98c7a09 83static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 84
1da177e4
LT
85/*
86 * results with 256, 32 in the lowmem_reserve sysctl:
87 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
88 * 1G machine -> (16M dma, 784M normal, 224M high)
89 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
90 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
91 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
92 *
93 * TBD: should special case ZONE_DMA32 machines here - in those we normally
94 * don't need any ZONE_NORMAL reservation
1da177e4 95 */
2f1b6248 96int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 97#ifdef CONFIG_ZONE_DMA
2f1b6248 98 256,
4b51d669 99#endif
fb0e7942 100#ifdef CONFIG_ZONE_DMA32
2f1b6248 101 256,
fb0e7942 102#endif
e53ef38d 103#ifdef CONFIG_HIGHMEM
2a1e274a 104 32,
e53ef38d 105#endif
2a1e274a 106 32,
2f1b6248 107};
1da177e4
LT
108
109EXPORT_SYMBOL(totalram_pages);
1da177e4 110
15ad7cdc 111static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 112#ifdef CONFIG_ZONE_DMA
2f1b6248 113 "DMA",
4b51d669 114#endif
fb0e7942 115#ifdef CONFIG_ZONE_DMA32
2f1b6248 116 "DMA32",
fb0e7942 117#endif
2f1b6248 118 "Normal",
e53ef38d 119#ifdef CONFIG_HIGHMEM
2a1e274a 120 "HighMem",
e53ef38d 121#endif
2a1e274a 122 "Movable",
2f1b6248
CL
123};
124
1da177e4
LT
125int min_free_kbytes = 1024;
126
2c85f51d
JB
127static unsigned long __meminitdata nr_kernel_pages;
128static unsigned long __meminitdata nr_all_pages;
a3142c8e 129static unsigned long __meminitdata dma_reserve;
1da177e4 130
c713216d
MG
131#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
132 /*
183ff22b 133 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
134 * ranges of memory (RAM) that may be registered with add_active_range().
135 * Ranges passed to add_active_range() will be merged if possible
136 * so the number of times add_active_range() can be called is
137 * related to the number of nodes and the number of holes
138 */
139 #ifdef CONFIG_MAX_ACTIVE_REGIONS
140 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
141 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
142 #else
143 #if MAX_NUMNODES >= 32
144 /* If there can be many nodes, allow up to 50 holes per node */
145 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
146 #else
147 /* By default, allow up to 256 distinct regions */
148 #define MAX_ACTIVE_REGIONS 256
149 #endif
150 #endif
151
98011f56
JB
152 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
153 static int __meminitdata nr_nodemap_entries;
154 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
155 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 156 static unsigned long __initdata required_kernelcore;
484f51f8 157 static unsigned long __initdata required_movablecore;
b69a7288 158 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
159
160 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
161 int movable_zone;
162 EXPORT_SYMBOL(movable_zone);
c713216d
MG
163#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
164
418508c1
MS
165#if MAX_NUMNODES > 1
166int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 167int nr_online_nodes __read_mostly = 1;
418508c1 168EXPORT_SYMBOL(nr_node_ids);
62bc62a8 169EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
170#endif
171
9ef9acb0
MG
172int page_group_by_mobility_disabled __read_mostly;
173
b2a0ac88
MG
174static void set_pageblock_migratetype(struct page *page, int migratetype)
175{
49255c61
MG
176
177 if (unlikely(page_group_by_mobility_disabled))
178 migratetype = MIGRATE_UNMOVABLE;
179
b2a0ac88
MG
180 set_pageblock_flags_group(page, (unsigned long)migratetype,
181 PB_migrate, PB_migrate_end);
182}
183
7f33d49a
RW
184bool oom_killer_disabled __read_mostly;
185
13e7444b 186#ifdef CONFIG_DEBUG_VM
c6a57e19 187static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 188{
bdc8cb98
DH
189 int ret = 0;
190 unsigned seq;
191 unsigned long pfn = page_to_pfn(page);
c6a57e19 192
bdc8cb98
DH
193 do {
194 seq = zone_span_seqbegin(zone);
195 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
196 ret = 1;
197 else if (pfn < zone->zone_start_pfn)
198 ret = 1;
199 } while (zone_span_seqretry(zone, seq));
200
201 return ret;
c6a57e19
DH
202}
203
204static int page_is_consistent(struct zone *zone, struct page *page)
205{
14e07298 206 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 207 return 0;
1da177e4 208 if (zone != page_zone(page))
c6a57e19
DH
209 return 0;
210
211 return 1;
212}
213/*
214 * Temporary debugging check for pages not lying within a given zone.
215 */
216static int bad_range(struct zone *zone, struct page *page)
217{
218 if (page_outside_zone_boundaries(zone, page))
1da177e4 219 return 1;
c6a57e19
DH
220 if (!page_is_consistent(zone, page))
221 return 1;
222
1da177e4
LT
223 return 0;
224}
13e7444b
NP
225#else
226static inline int bad_range(struct zone *zone, struct page *page)
227{
228 return 0;
229}
230#endif
231
224abf92 232static void bad_page(struct page *page)
1da177e4 233{
d936cf9b
HD
234 static unsigned long resume;
235 static unsigned long nr_shown;
236 static unsigned long nr_unshown;
237
2a7684a2
WF
238 /* Don't complain about poisoned pages */
239 if (PageHWPoison(page)) {
240 __ClearPageBuddy(page);
241 return;
242 }
243
d936cf9b
HD
244 /*
245 * Allow a burst of 60 reports, then keep quiet for that minute;
246 * or allow a steady drip of one report per second.
247 */
248 if (nr_shown == 60) {
249 if (time_before(jiffies, resume)) {
250 nr_unshown++;
251 goto out;
252 }
253 if (nr_unshown) {
1e9e6365
HD
254 printk(KERN_ALERT
255 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
256 nr_unshown);
257 nr_unshown = 0;
258 }
259 nr_shown = 0;
260 }
261 if (nr_shown++ == 0)
262 resume = jiffies + 60 * HZ;
263
1e9e6365 264 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 265 current->comm, page_to_pfn(page));
1e9e6365 266 printk(KERN_ALERT
3dc14741
HD
267 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
268 page, (void *)page->flags, page_count(page),
269 page_mapcount(page), page->mapping, page->index);
3dc14741 270
1da177e4 271 dump_stack();
d936cf9b 272out:
8cc3b392
HD
273 /* Leave bad fields for debug, except PageBuddy could make trouble */
274 __ClearPageBuddy(page);
9f158333 275 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
276}
277
1da177e4
LT
278/*
279 * Higher-order pages are called "compound pages". They are structured thusly:
280 *
281 * The first PAGE_SIZE page is called the "head page".
282 *
283 * The remaining PAGE_SIZE pages are called "tail pages".
284 *
285 * All pages have PG_compound set. All pages have their ->private pointing at
286 * the head page (even the head page has this).
287 *
41d78ba5
HD
288 * The first tail page's ->lru.next holds the address of the compound page's
289 * put_page() function. Its ->lru.prev holds the order of allocation.
290 * This usage means that zero-order pages may not be compound.
1da177e4 291 */
d98c7a09
HD
292
293static void free_compound_page(struct page *page)
294{
d85f3385 295 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
296}
297
01ad1c08 298void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
299{
300 int i;
301 int nr_pages = 1 << order;
302
303 set_compound_page_dtor(page, free_compound_page);
304 set_compound_order(page, order);
305 __SetPageHead(page);
306 for (i = 1; i < nr_pages; i++) {
307 struct page *p = page + i;
308
309 __SetPageTail(p);
310 p->first_page = page;
311 }
312}
313
8cc3b392 314static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
315{
316 int i;
317 int nr_pages = 1 << order;
8cc3b392 318 int bad = 0;
1da177e4 319
8cc3b392
HD
320 if (unlikely(compound_order(page) != order) ||
321 unlikely(!PageHead(page))) {
224abf92 322 bad_page(page);
8cc3b392
HD
323 bad++;
324 }
1da177e4 325
6d777953 326 __ClearPageHead(page);
8cc3b392 327
18229df5
AW
328 for (i = 1; i < nr_pages; i++) {
329 struct page *p = page + i;
1da177e4 330
e713a21d 331 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 332 bad_page(page);
8cc3b392
HD
333 bad++;
334 }
d85f3385 335 __ClearPageTail(p);
1da177e4 336 }
8cc3b392
HD
337
338 return bad;
1da177e4 339}
1da177e4 340
17cf4406
NP
341static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
342{
343 int i;
344
6626c5d5
AM
345 /*
346 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
347 * and __GFP_HIGHMEM from hard or soft interrupt context.
348 */
725d704e 349 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
350 for (i = 0; i < (1 << order); i++)
351 clear_highpage(page + i);
352}
353
6aa3001b
AM
354static inline void set_page_order(struct page *page, int order)
355{
4c21e2f2 356 set_page_private(page, order);
676165a8 357 __SetPageBuddy(page);
1da177e4
LT
358}
359
360static inline void rmv_page_order(struct page *page)
361{
676165a8 362 __ClearPageBuddy(page);
4c21e2f2 363 set_page_private(page, 0);
1da177e4
LT
364}
365
366/*
367 * Locate the struct page for both the matching buddy in our
368 * pair (buddy1) and the combined O(n+1) page they form (page).
369 *
370 * 1) Any buddy B1 will have an order O twin B2 which satisfies
371 * the following equation:
372 * B2 = B1 ^ (1 << O)
373 * For example, if the starting buddy (buddy2) is #8 its order
374 * 1 buddy is #10:
375 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
376 *
377 * 2) Any buddy B will have an order O+1 parent P which
378 * satisfies the following equation:
379 * P = B & ~(1 << O)
380 *
d6e05edc 381 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
382 */
383static inline struct page *
384__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
385{
386 unsigned long buddy_idx = page_idx ^ (1 << order);
387
388 return page + (buddy_idx - page_idx);
389}
390
391static inline unsigned long
392__find_combined_index(unsigned long page_idx, unsigned int order)
393{
394 return (page_idx & ~(1 << order));
395}
396
397/*
398 * This function checks whether a page is free && is the buddy
399 * we can do coalesce a page and its buddy if
13e7444b 400 * (a) the buddy is not in a hole &&
676165a8 401 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
402 * (c) a page and its buddy have the same order &&
403 * (d) a page and its buddy are in the same zone.
676165a8
NP
404 *
405 * For recording whether a page is in the buddy system, we use PG_buddy.
406 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 407 *
676165a8 408 * For recording page's order, we use page_private(page).
1da177e4 409 */
cb2b95e1
AW
410static inline int page_is_buddy(struct page *page, struct page *buddy,
411 int order)
1da177e4 412{
14e07298 413 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 414 return 0;
13e7444b 415
cb2b95e1
AW
416 if (page_zone_id(page) != page_zone_id(buddy))
417 return 0;
418
419 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 420 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 421 return 1;
676165a8 422 }
6aa3001b 423 return 0;
1da177e4
LT
424}
425
426/*
427 * Freeing function for a buddy system allocator.
428 *
429 * The concept of a buddy system is to maintain direct-mapped table
430 * (containing bit values) for memory blocks of various "orders".
431 * The bottom level table contains the map for the smallest allocatable
432 * units of memory (here, pages), and each level above it describes
433 * pairs of units from the levels below, hence, "buddies".
434 * At a high level, all that happens here is marking the table entry
435 * at the bottom level available, and propagating the changes upward
436 * as necessary, plus some accounting needed to play nicely with other
437 * parts of the VM system.
438 * At each level, we keep a list of pages, which are heads of continuous
676165a8 439 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 440 * order is recorded in page_private(page) field.
1da177e4
LT
441 * So when we are allocating or freeing one, we can derive the state of the
442 * other. That is, if we allocate a small block, and both were
443 * free, the remainder of the region must be split into blocks.
444 * If a block is freed, and its buddy is also free, then this
445 * triggers coalescing into a block of larger size.
446 *
447 * -- wli
448 */
449
48db57f8 450static inline void __free_one_page(struct page *page,
ed0ae21d
MG
451 struct zone *zone, unsigned int order,
452 int migratetype)
1da177e4
LT
453{
454 unsigned long page_idx;
1da177e4 455
224abf92 456 if (unlikely(PageCompound(page)))
8cc3b392
HD
457 if (unlikely(destroy_compound_page(page, order)))
458 return;
1da177e4 459
ed0ae21d
MG
460 VM_BUG_ON(migratetype == -1);
461
1da177e4
LT
462 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
463
f2260e6b 464 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 465 VM_BUG_ON(bad_range(zone, page));
1da177e4 466
1da177e4
LT
467 while (order < MAX_ORDER-1) {
468 unsigned long combined_idx;
1da177e4
LT
469 struct page *buddy;
470
1da177e4 471 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 472 if (!page_is_buddy(page, buddy, order))
3c82d0ce 473 break;
13e7444b 474
3c82d0ce 475 /* Our buddy is free, merge with it and move up one order. */
1da177e4 476 list_del(&buddy->lru);
b2a0ac88 477 zone->free_area[order].nr_free--;
1da177e4 478 rmv_page_order(buddy);
13e7444b 479 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
480 page = page + (combined_idx - page_idx);
481 page_idx = combined_idx;
482 order++;
483 }
484 set_page_order(page, order);
b2a0ac88
MG
485 list_add(&page->lru,
486 &zone->free_area[order].free_list[migratetype]);
1da177e4
LT
487 zone->free_area[order].nr_free++;
488}
489
092cead6
KM
490/*
491 * free_page_mlock() -- clean up attempts to free and mlocked() page.
492 * Page should not be on lru, so no need to fix that up.
493 * free_pages_check() will verify...
494 */
495static inline void free_page_mlock(struct page *page)
496{
092cead6
KM
497 __dec_zone_page_state(page, NR_MLOCK);
498 __count_vm_event(UNEVICTABLE_MLOCKFREED);
499}
092cead6 500
224abf92 501static inline int free_pages_check(struct page *page)
1da177e4 502{
92be2e33
NP
503 if (unlikely(page_mapcount(page) |
504 (page->mapping != NULL) |
a3af9c38 505 (atomic_read(&page->_count) != 0) |
8cc3b392 506 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 507 bad_page(page);
79f4b7bf 508 return 1;
8cc3b392 509 }
79f4b7bf
HD
510 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
511 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
512 return 0;
1da177e4
LT
513}
514
515/*
5f8dcc21 516 * Frees a number of pages from the PCP lists
1da177e4 517 * Assumes all pages on list are in same zone, and of same order.
207f36ee 518 * count is the number of pages to free.
1da177e4
LT
519 *
520 * If the zone was previously in an "all pages pinned" state then look to
521 * see if this freeing clears that state.
522 *
523 * And clear the zone's pages_scanned counter, to hold off the "all pages are
524 * pinned" detection logic.
525 */
5f8dcc21
MG
526static void free_pcppages_bulk(struct zone *zone, int count,
527 struct per_cpu_pages *pcp)
1da177e4 528{
5f8dcc21 529 int migratetype = 0;
a6f9edd6 530 int batch_free = 0;
5f8dcc21 531
c54ad30c 532 spin_lock(&zone->lock);
e815af95 533 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
1da177e4 534 zone->pages_scanned = 0;
f2260e6b 535
5f8dcc21 536 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
a6f9edd6 537 while (count) {
48db57f8 538 struct page *page;
5f8dcc21
MG
539 struct list_head *list;
540
541 /*
a6f9edd6
MG
542 * Remove pages from lists in a round-robin fashion. A
543 * batch_free count is maintained that is incremented when an
544 * empty list is encountered. This is so more pages are freed
545 * off fuller lists instead of spinning excessively around empty
546 * lists
5f8dcc21
MG
547 */
548 do {
a6f9edd6 549 batch_free++;
5f8dcc21
MG
550 if (++migratetype == MIGRATE_PCPTYPES)
551 migratetype = 0;
552 list = &pcp->lists[migratetype];
553 } while (list_empty(list));
48db57f8 554
a6f9edd6
MG
555 do {
556 page = list_entry(list->prev, struct page, lru);
557 /* must delete as __free_one_page list manipulates */
558 list_del(&page->lru);
a7016235
HD
559 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
560 __free_one_page(page, zone, 0, page_private(page));
561 trace_mm_page_pcpu_drain(page, 0, page_private(page));
a6f9edd6 562 } while (--count && --batch_free && !list_empty(list));
1da177e4 563 }
c54ad30c 564 spin_unlock(&zone->lock);
1da177e4
LT
565}
566
ed0ae21d
MG
567static void free_one_page(struct zone *zone, struct page *page, int order,
568 int migratetype)
1da177e4 569{
006d22d9 570 spin_lock(&zone->lock);
e815af95 571 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
006d22d9 572 zone->pages_scanned = 0;
f2260e6b
MG
573
574 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
ed0ae21d 575 __free_one_page(page, zone, order, migratetype);
006d22d9 576 spin_unlock(&zone->lock);
48db57f8
NP
577}
578
579static void __free_pages_ok(struct page *page, unsigned int order)
580{
581 unsigned long flags;
1da177e4 582 int i;
8cc3b392 583 int bad = 0;
451ea25d 584 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 585
b1eeab67
VN
586 kmemcheck_free_shadow(page, order);
587
1da177e4 588 for (i = 0 ; i < (1 << order) ; ++i)
8cc3b392
HD
589 bad += free_pages_check(page + i);
590 if (bad)
689bcebf
HD
591 return;
592
3ac7fe5a 593 if (!PageHighMem(page)) {
9858db50 594 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
595 debug_check_no_obj_freed(page_address(page),
596 PAGE_SIZE << order);
597 }
dafb1367 598 arch_free_page(page, order);
48db57f8 599 kernel_map_pages(page, 1 << order, 0);
dafb1367 600
c54ad30c 601 local_irq_save(flags);
c277331d 602 if (unlikely(wasMlocked))
da456f14 603 free_page_mlock(page);
f8891e5e 604 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
605 free_one_page(page_zone(page), page, order,
606 get_pageblock_migratetype(page));
c54ad30c 607 local_irq_restore(flags);
1da177e4
LT
608}
609
a226f6c8
DH
610/*
611 * permit the bootmem allocator to evade page validation on high-order frees
612 */
af370fb8 613void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
614{
615 if (order == 0) {
616 __ClearPageReserved(page);
617 set_page_count(page, 0);
7835e98b 618 set_page_refcounted(page);
545b1ea9 619 __free_page(page);
a226f6c8 620 } else {
a226f6c8
DH
621 int loop;
622
545b1ea9 623 prefetchw(page);
a226f6c8
DH
624 for (loop = 0; loop < BITS_PER_LONG; loop++) {
625 struct page *p = &page[loop];
626
545b1ea9
NP
627 if (loop + 1 < BITS_PER_LONG)
628 prefetchw(p + 1);
a226f6c8
DH
629 __ClearPageReserved(p);
630 set_page_count(p, 0);
631 }
632
7835e98b 633 set_page_refcounted(page);
545b1ea9 634 __free_pages(page, order);
a226f6c8
DH
635 }
636}
637
1da177e4
LT
638
639/*
640 * The order of subdivision here is critical for the IO subsystem.
641 * Please do not alter this order without good reasons and regression
642 * testing. Specifically, as large blocks of memory are subdivided,
643 * the order in which smaller blocks are delivered depends on the order
644 * they're subdivided in this function. This is the primary factor
645 * influencing the order in which pages are delivered to the IO
646 * subsystem according to empirical testing, and this is also justified
647 * by considering the behavior of a buddy system containing a single
648 * large block of memory acted on by a series of small allocations.
649 * This behavior is a critical factor in sglist merging's success.
650 *
651 * -- wli
652 */
085cc7d5 653static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
654 int low, int high, struct free_area *area,
655 int migratetype)
1da177e4
LT
656{
657 unsigned long size = 1 << high;
658
659 while (high > low) {
660 area--;
661 high--;
662 size >>= 1;
725d704e 663 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 664 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
665 area->nr_free++;
666 set_page_order(&page[size], high);
667 }
1da177e4
LT
668}
669
1da177e4
LT
670/*
671 * This page is about to be returned from the page allocator
672 */
2a7684a2 673static inline int check_new_page(struct page *page)
1da177e4 674{
92be2e33
NP
675 if (unlikely(page_mapcount(page) |
676 (page->mapping != NULL) |
a3af9c38 677 (atomic_read(&page->_count) != 0) |
8cc3b392 678 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 679 bad_page(page);
689bcebf 680 return 1;
8cc3b392 681 }
2a7684a2
WF
682 return 0;
683}
684
685static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
686{
687 int i;
688
689 for (i = 0; i < (1 << order); i++) {
690 struct page *p = page + i;
691 if (unlikely(check_new_page(p)))
692 return 1;
693 }
689bcebf 694
4c21e2f2 695 set_page_private(page, 0);
7835e98b 696 set_page_refcounted(page);
cc102509
NP
697
698 arch_alloc_page(page, order);
1da177e4 699 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
700
701 if (gfp_flags & __GFP_ZERO)
702 prep_zero_page(page, order, gfp_flags);
703
704 if (order && (gfp_flags & __GFP_COMP))
705 prep_compound_page(page, order);
706
689bcebf 707 return 0;
1da177e4
LT
708}
709
56fd56b8
MG
710/*
711 * Go through the free lists for the given migratetype and remove
712 * the smallest available page from the freelists
713 */
728ec980
MG
714static inline
715struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
716 int migratetype)
717{
718 unsigned int current_order;
719 struct free_area * area;
720 struct page *page;
721
722 /* Find a page of the appropriate size in the preferred list */
723 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
724 area = &(zone->free_area[current_order]);
725 if (list_empty(&area->free_list[migratetype]))
726 continue;
727
728 page = list_entry(area->free_list[migratetype].next,
729 struct page, lru);
730 list_del(&page->lru);
731 rmv_page_order(page);
732 area->nr_free--;
56fd56b8
MG
733 expand(zone, page, order, current_order, area, migratetype);
734 return page;
735 }
736
737 return NULL;
738}
739
740
b2a0ac88
MG
741/*
742 * This array describes the order lists are fallen back to when
743 * the free lists for the desirable migrate type are depleted
744 */
745static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
746 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
747 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
748 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
749 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
750};
751
c361be55
MG
752/*
753 * Move the free pages in a range to the free lists of the requested type.
d9c23400 754 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
755 * boundary. If alignment is required, use move_freepages_block()
756 */
b69a7288
AB
757static int move_freepages(struct zone *zone,
758 struct page *start_page, struct page *end_page,
759 int migratetype)
c361be55
MG
760{
761 struct page *page;
762 unsigned long order;
d100313f 763 int pages_moved = 0;
c361be55
MG
764
765#ifndef CONFIG_HOLES_IN_ZONE
766 /*
767 * page_zone is not safe to call in this context when
768 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
769 * anyway as we check zone boundaries in move_freepages_block().
770 * Remove at a later date when no bug reports exist related to
ac0e5b7a 771 * grouping pages by mobility
c361be55
MG
772 */
773 BUG_ON(page_zone(start_page) != page_zone(end_page));
774#endif
775
776 for (page = start_page; page <= end_page;) {
344c790e
AL
777 /* Make sure we are not inadvertently changing nodes */
778 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
779
c361be55
MG
780 if (!pfn_valid_within(page_to_pfn(page))) {
781 page++;
782 continue;
783 }
784
785 if (!PageBuddy(page)) {
786 page++;
787 continue;
788 }
789
790 order = page_order(page);
791 list_del(&page->lru);
792 list_add(&page->lru,
793 &zone->free_area[order].free_list[migratetype]);
794 page += 1 << order;
d100313f 795 pages_moved += 1 << order;
c361be55
MG
796 }
797
d100313f 798 return pages_moved;
c361be55
MG
799}
800
b69a7288
AB
801static int move_freepages_block(struct zone *zone, struct page *page,
802 int migratetype)
c361be55
MG
803{
804 unsigned long start_pfn, end_pfn;
805 struct page *start_page, *end_page;
806
807 start_pfn = page_to_pfn(page);
d9c23400 808 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 809 start_page = pfn_to_page(start_pfn);
d9c23400
MG
810 end_page = start_page + pageblock_nr_pages - 1;
811 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
812
813 /* Do not cross zone boundaries */
814 if (start_pfn < zone->zone_start_pfn)
815 start_page = page;
816 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
817 return 0;
818
819 return move_freepages(zone, start_page, end_page, migratetype);
820}
821
2f66a68f
MG
822static void change_pageblock_range(struct page *pageblock_page,
823 int start_order, int migratetype)
824{
825 int nr_pageblocks = 1 << (start_order - pageblock_order);
826
827 while (nr_pageblocks--) {
828 set_pageblock_migratetype(pageblock_page, migratetype);
829 pageblock_page += pageblock_nr_pages;
830 }
831}
832
b2a0ac88 833/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
834static inline struct page *
835__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
836{
837 struct free_area * area;
838 int current_order;
839 struct page *page;
840 int migratetype, i;
841
842 /* Find the largest possible block of pages in the other list */
843 for (current_order = MAX_ORDER-1; current_order >= order;
844 --current_order) {
845 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
846 migratetype = fallbacks[start_migratetype][i];
847
56fd56b8
MG
848 /* MIGRATE_RESERVE handled later if necessary */
849 if (migratetype == MIGRATE_RESERVE)
850 continue;
e010487d 851
b2a0ac88
MG
852 area = &(zone->free_area[current_order]);
853 if (list_empty(&area->free_list[migratetype]))
854 continue;
855
856 page = list_entry(area->free_list[migratetype].next,
857 struct page, lru);
858 area->nr_free--;
859
860 /*
c361be55 861 * If breaking a large block of pages, move all free
46dafbca
MG
862 * pages to the preferred allocation list. If falling
863 * back for a reclaimable kernel allocation, be more
864 * agressive about taking ownership of free pages
b2a0ac88 865 */
d9c23400 866 if (unlikely(current_order >= (pageblock_order >> 1)) ||
dd5d241e
MG
867 start_migratetype == MIGRATE_RECLAIMABLE ||
868 page_group_by_mobility_disabled) {
46dafbca
MG
869 unsigned long pages;
870 pages = move_freepages_block(zone, page,
871 start_migratetype);
872
873 /* Claim the whole block if over half of it is free */
dd5d241e
MG
874 if (pages >= (1 << (pageblock_order-1)) ||
875 page_group_by_mobility_disabled)
46dafbca
MG
876 set_pageblock_migratetype(page,
877 start_migratetype);
878
b2a0ac88 879 migratetype = start_migratetype;
c361be55 880 }
b2a0ac88
MG
881
882 /* Remove the page from the freelists */
883 list_del(&page->lru);
884 rmv_page_order(page);
b2a0ac88 885
2f66a68f
MG
886 /* Take ownership for orders >= pageblock_order */
887 if (current_order >= pageblock_order)
888 change_pageblock_range(page, current_order,
b2a0ac88
MG
889 start_migratetype);
890
891 expand(zone, page, order, current_order, area, migratetype);
e0fff1bd
MG
892
893 trace_mm_page_alloc_extfrag(page, order, current_order,
894 start_migratetype, migratetype);
895
b2a0ac88
MG
896 return page;
897 }
898 }
899
728ec980 900 return NULL;
b2a0ac88
MG
901}
902
56fd56b8 903/*
1da177e4
LT
904 * Do the hard work of removing an element from the buddy allocator.
905 * Call me with the zone->lock already held.
906 */
b2a0ac88
MG
907static struct page *__rmqueue(struct zone *zone, unsigned int order,
908 int migratetype)
1da177e4 909{
1da177e4
LT
910 struct page *page;
911
728ec980 912retry_reserve:
56fd56b8 913 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 914
728ec980 915 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 916 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 917
728ec980
MG
918 /*
919 * Use MIGRATE_RESERVE rather than fail an allocation. goto
920 * is used because __rmqueue_smallest is an inline function
921 * and we want just one call site
922 */
923 if (!page) {
924 migratetype = MIGRATE_RESERVE;
925 goto retry_reserve;
926 }
927 }
928
0d3d062a 929 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 930 return page;
1da177e4
LT
931}
932
933/*
934 * Obtain a specified number of elements from the buddy allocator, all under
935 * a single hold of the lock, for efficiency. Add them to the supplied list.
936 * Returns the number of new pages which were placed at *list.
937 */
938static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 939 unsigned long count, struct list_head *list,
e084b2d9 940 int migratetype, int cold)
1da177e4 941{
1da177e4 942 int i;
1da177e4 943
c54ad30c 944 spin_lock(&zone->lock);
1da177e4 945 for (i = 0; i < count; ++i) {
b2a0ac88 946 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 947 if (unlikely(page == NULL))
1da177e4 948 break;
81eabcbe
MG
949
950 /*
951 * Split buddy pages returned by expand() are received here
952 * in physical page order. The page is added to the callers and
953 * list and the list head then moves forward. From the callers
954 * perspective, the linked list is ordered by page number in
955 * some conditions. This is useful for IO devices that can
956 * merge IO requests if the physical pages are ordered
957 * properly.
958 */
e084b2d9
MG
959 if (likely(cold == 0))
960 list_add(&page->lru, list);
961 else
962 list_add_tail(&page->lru, list);
535131e6 963 set_page_private(page, migratetype);
81eabcbe 964 list = &page->lru;
1da177e4 965 }
f2260e6b 966 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 967 spin_unlock(&zone->lock);
085cc7d5 968 return i;
1da177e4
LT
969}
970
4ae7c039 971#ifdef CONFIG_NUMA
8fce4d8e 972/*
4037d452
CL
973 * Called from the vmstat counter updater to drain pagesets of this
974 * currently executing processor on remote nodes after they have
975 * expired.
976 *
879336c3
CL
977 * Note that this function must be called with the thread pinned to
978 * a single processor.
8fce4d8e 979 */
4037d452 980void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 981{
4ae7c039 982 unsigned long flags;
4037d452 983 int to_drain;
4ae7c039 984
4037d452
CL
985 local_irq_save(flags);
986 if (pcp->count >= pcp->batch)
987 to_drain = pcp->batch;
988 else
989 to_drain = pcp->count;
5f8dcc21 990 free_pcppages_bulk(zone, to_drain, pcp);
4037d452
CL
991 pcp->count -= to_drain;
992 local_irq_restore(flags);
4ae7c039
CL
993}
994#endif
995
9f8f2172
CL
996/*
997 * Drain pages of the indicated processor.
998 *
999 * The processor must either be the current processor and the
1000 * thread pinned to the current processor or a processor that
1001 * is not online.
1002 */
1003static void drain_pages(unsigned int cpu)
1da177e4 1004{
c54ad30c 1005 unsigned long flags;
1da177e4 1006 struct zone *zone;
1da177e4 1007
ee99c71c 1008 for_each_populated_zone(zone) {
1da177e4 1009 struct per_cpu_pageset *pset;
3dfa5721 1010 struct per_cpu_pages *pcp;
1da177e4 1011
e7c8d5c9 1012 pset = zone_pcp(zone, cpu);
3dfa5721
CL
1013
1014 pcp = &pset->pcp;
1015 local_irq_save(flags);
5f8dcc21 1016 free_pcppages_bulk(zone, pcp->count, pcp);
3dfa5721
CL
1017 pcp->count = 0;
1018 local_irq_restore(flags);
1da177e4
LT
1019 }
1020}
1da177e4 1021
9f8f2172
CL
1022/*
1023 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1024 */
1025void drain_local_pages(void *arg)
1026{
1027 drain_pages(smp_processor_id());
1028}
1029
1030/*
1031 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1032 */
1033void drain_all_pages(void)
1034{
15c8b6c1 1035 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
1036}
1037
296699de 1038#ifdef CONFIG_HIBERNATION
1da177e4
LT
1039
1040void mark_free_pages(struct zone *zone)
1041{
f623f0db
RW
1042 unsigned long pfn, max_zone_pfn;
1043 unsigned long flags;
b2a0ac88 1044 int order, t;
1da177e4
LT
1045 struct list_head *curr;
1046
1047 if (!zone->spanned_pages)
1048 return;
1049
1050 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1051
1052 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1053 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1054 if (pfn_valid(pfn)) {
1055 struct page *page = pfn_to_page(pfn);
1056
7be98234
RW
1057 if (!swsusp_page_is_forbidden(page))
1058 swsusp_unset_page_free(page);
f623f0db 1059 }
1da177e4 1060
b2a0ac88
MG
1061 for_each_migratetype_order(order, t) {
1062 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1063 unsigned long i;
1da177e4 1064
f623f0db
RW
1065 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1066 for (i = 0; i < (1UL << order); i++)
7be98234 1067 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1068 }
b2a0ac88 1069 }
1da177e4
LT
1070 spin_unlock_irqrestore(&zone->lock, flags);
1071}
e2c55dc8 1072#endif /* CONFIG_PM */
1da177e4 1073
1da177e4
LT
1074/*
1075 * Free a 0-order page
1076 */
920c7a5d 1077static void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1078{
1079 struct zone *zone = page_zone(page);
1080 struct per_cpu_pages *pcp;
1081 unsigned long flags;
5f8dcc21 1082 int migratetype;
451ea25d 1083 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1084
b1eeab67
VN
1085 kmemcheck_free_shadow(page, 0);
1086
1da177e4
LT
1087 if (PageAnon(page))
1088 page->mapping = NULL;
224abf92 1089 if (free_pages_check(page))
689bcebf
HD
1090 return;
1091
3ac7fe5a 1092 if (!PageHighMem(page)) {
9858db50 1093 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
3ac7fe5a
TG
1094 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1095 }
dafb1367 1096 arch_free_page(page, 0);
689bcebf
HD
1097 kernel_map_pages(page, 1, 0);
1098
3dfa5721 1099 pcp = &zone_pcp(zone, get_cpu())->pcp;
5f8dcc21
MG
1100 migratetype = get_pageblock_migratetype(page);
1101 set_page_private(page, migratetype);
1da177e4 1102 local_irq_save(flags);
c277331d 1103 if (unlikely(wasMlocked))
da456f14 1104 free_page_mlock(page);
f8891e5e 1105 __count_vm_event(PGFREE);
da456f14 1106
5f8dcc21
MG
1107 /*
1108 * We only track unmovable, reclaimable and movable on pcp lists.
1109 * Free ISOLATE pages back to the allocator because they are being
1110 * offlined but treat RESERVE as movable pages so we can get those
1111 * areas back if necessary. Otherwise, we may have to free
1112 * excessively into the page allocator
1113 */
1114 if (migratetype >= MIGRATE_PCPTYPES) {
1115 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1116 free_one_page(zone, page, 0, migratetype);
1117 goto out;
1118 }
1119 migratetype = MIGRATE_MOVABLE;
1120 }
1121
3dfa5721 1122 if (cold)
5f8dcc21 1123 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1124 else
5f8dcc21 1125 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1126 pcp->count++;
48db57f8 1127 if (pcp->count >= pcp->high) {
5f8dcc21 1128 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1129 pcp->count -= pcp->batch;
1130 }
5f8dcc21
MG
1131
1132out:
1da177e4
LT
1133 local_irq_restore(flags);
1134 put_cpu();
1135}
1136
920c7a5d 1137void free_hot_page(struct page *page)
1da177e4 1138{
4b4f278c 1139 trace_mm_page_free_direct(page, 0);
1da177e4
LT
1140 free_hot_cold_page(page, 0);
1141}
1142
8dfcc9ba
NP
1143/*
1144 * split_page takes a non-compound higher-order page, and splits it into
1145 * n (1<<order) sub-pages: page[0..n]
1146 * Each sub-page must be freed individually.
1147 *
1148 * Note: this is probably too low level an operation for use in drivers.
1149 * Please consult with lkml before using this in your driver.
1150 */
1151void split_page(struct page *page, unsigned int order)
1152{
1153 int i;
1154
725d704e
NP
1155 VM_BUG_ON(PageCompound(page));
1156 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1157
1158#ifdef CONFIG_KMEMCHECK
1159 /*
1160 * Split shadow pages too, because free(page[0]) would
1161 * otherwise free the whole shadow.
1162 */
1163 if (kmemcheck_page_is_tracked(page))
1164 split_page(virt_to_page(page[0].shadow), order);
1165#endif
1166
7835e98b
NP
1167 for (i = 1; i < (1 << order); i++)
1168 set_page_refcounted(page + i);
8dfcc9ba 1169}
8dfcc9ba 1170
1da177e4
LT
1171/*
1172 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1173 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1174 * or two.
1175 */
0a15c3e9
MG
1176static inline
1177struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1178 struct zone *zone, int order, gfp_t gfp_flags,
1179 int migratetype)
1da177e4
LT
1180{
1181 unsigned long flags;
689bcebf 1182 struct page *page;
1da177e4 1183 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 1184 int cpu;
1da177e4 1185
689bcebf 1186again:
a74609fa 1187 cpu = get_cpu();
48db57f8 1188 if (likely(order == 0)) {
1da177e4 1189 struct per_cpu_pages *pcp;
5f8dcc21 1190 struct list_head *list;
1da177e4 1191
3dfa5721 1192 pcp = &zone_pcp(zone, cpu)->pcp;
5f8dcc21 1193 list = &pcp->lists[migratetype];
1da177e4 1194 local_irq_save(flags);
5f8dcc21 1195 if (list_empty(list)) {
535131e6 1196 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1197 pcp->batch, list,
e084b2d9 1198 migratetype, cold);
5f8dcc21 1199 if (unlikely(list_empty(list)))
6fb332fa 1200 goto failed;
535131e6 1201 }
b92a6edd 1202
5f8dcc21
MG
1203 if (cold)
1204 page = list_entry(list->prev, struct page, lru);
1205 else
1206 page = list_entry(list->next, struct page, lru);
1207
b92a6edd
MG
1208 list_del(&page->lru);
1209 pcp->count--;
7fb1d9fc 1210 } else {
dab48dab
AM
1211 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1212 /*
1213 * __GFP_NOFAIL is not to be used in new code.
1214 *
1215 * All __GFP_NOFAIL callers should be fixed so that they
1216 * properly detect and handle allocation failures.
1217 *
1218 * We most definitely don't want callers attempting to
4923abf9 1219 * allocate greater than order-1 page units with
dab48dab
AM
1220 * __GFP_NOFAIL.
1221 */
4923abf9 1222 WARN_ON_ONCE(order > 1);
dab48dab 1223 }
1da177e4 1224 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1225 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1226 spin_unlock(&zone->lock);
1227 if (!page)
1228 goto failed;
6ccf80eb 1229 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1da177e4
LT
1230 }
1231
f8891e5e 1232 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1233 zone_statistics(preferred_zone, zone);
a74609fa
NP
1234 local_irq_restore(flags);
1235 put_cpu();
1da177e4 1236
725d704e 1237 VM_BUG_ON(bad_range(zone, page));
17cf4406 1238 if (prep_new_page(page, order, gfp_flags))
a74609fa 1239 goto again;
1da177e4 1240 return page;
a74609fa
NP
1241
1242failed:
1243 local_irq_restore(flags);
1244 put_cpu();
1245 return NULL;
1da177e4
LT
1246}
1247
41858966
MG
1248/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1249#define ALLOC_WMARK_MIN WMARK_MIN
1250#define ALLOC_WMARK_LOW WMARK_LOW
1251#define ALLOC_WMARK_HIGH WMARK_HIGH
1252#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1253
1254/* Mask to get the watermark bits */
1255#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1256
3148890b
NP
1257#define ALLOC_HARDER 0x10 /* try to alloc harder */
1258#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1259#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1260
933e312e
AM
1261#ifdef CONFIG_FAIL_PAGE_ALLOC
1262
1263static struct fail_page_alloc_attr {
1264 struct fault_attr attr;
1265
1266 u32 ignore_gfp_highmem;
1267 u32 ignore_gfp_wait;
54114994 1268 u32 min_order;
933e312e
AM
1269
1270#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1271
1272 struct dentry *ignore_gfp_highmem_file;
1273 struct dentry *ignore_gfp_wait_file;
54114994 1274 struct dentry *min_order_file;
933e312e
AM
1275
1276#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1277
1278} fail_page_alloc = {
1279 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1280 .ignore_gfp_wait = 1,
1281 .ignore_gfp_highmem = 1,
54114994 1282 .min_order = 1,
933e312e
AM
1283};
1284
1285static int __init setup_fail_page_alloc(char *str)
1286{
1287 return setup_fault_attr(&fail_page_alloc.attr, str);
1288}
1289__setup("fail_page_alloc=", setup_fail_page_alloc);
1290
1291static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1292{
54114994
AM
1293 if (order < fail_page_alloc.min_order)
1294 return 0;
933e312e
AM
1295 if (gfp_mask & __GFP_NOFAIL)
1296 return 0;
1297 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1298 return 0;
1299 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1300 return 0;
1301
1302 return should_fail(&fail_page_alloc.attr, 1 << order);
1303}
1304
1305#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1306
1307static int __init fail_page_alloc_debugfs(void)
1308{
1309 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1310 struct dentry *dir;
1311 int err;
1312
1313 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1314 "fail_page_alloc");
1315 if (err)
1316 return err;
1317 dir = fail_page_alloc.attr.dentries.dir;
1318
1319 fail_page_alloc.ignore_gfp_wait_file =
1320 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1321 &fail_page_alloc.ignore_gfp_wait);
1322
1323 fail_page_alloc.ignore_gfp_highmem_file =
1324 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1325 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1326 fail_page_alloc.min_order_file =
1327 debugfs_create_u32("min-order", mode, dir,
1328 &fail_page_alloc.min_order);
933e312e
AM
1329
1330 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1331 !fail_page_alloc.ignore_gfp_highmem_file ||
1332 !fail_page_alloc.min_order_file) {
933e312e
AM
1333 err = -ENOMEM;
1334 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1335 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1336 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1337 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1338 }
1339
1340 return err;
1341}
1342
1343late_initcall(fail_page_alloc_debugfs);
1344
1345#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1346
1347#else /* CONFIG_FAIL_PAGE_ALLOC */
1348
1349static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1350{
1351 return 0;
1352}
1353
1354#endif /* CONFIG_FAIL_PAGE_ALLOC */
1355
1da177e4
LT
1356/*
1357 * Return 1 if free pages are above 'mark'. This takes into account the order
1358 * of the allocation.
1359 */
1360int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1361 int classzone_idx, int alloc_flags)
1da177e4
LT
1362{
1363 /* free_pages my go negative - that's OK */
d23ad423
CL
1364 long min = mark;
1365 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1366 int o;
1367
7fb1d9fc 1368 if (alloc_flags & ALLOC_HIGH)
1da177e4 1369 min -= min / 2;
7fb1d9fc 1370 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1371 min -= min / 4;
1372
1373 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1374 return 0;
1375 for (o = 0; o < order; o++) {
1376 /* At the next order, this order's pages become unavailable */
1377 free_pages -= z->free_area[o].nr_free << o;
1378
1379 /* Require fewer higher order pages to be free */
1380 min >>= 1;
1381
1382 if (free_pages <= min)
1383 return 0;
1384 }
1385 return 1;
1386}
1387
9276b1bc
PJ
1388#ifdef CONFIG_NUMA
1389/*
1390 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1391 * skip over zones that are not allowed by the cpuset, or that have
1392 * been recently (in last second) found to be nearly full. See further
1393 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1394 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1395 *
1396 * If the zonelist cache is present in the passed in zonelist, then
1397 * returns a pointer to the allowed node mask (either the current
37b07e41 1398 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1399 *
1400 * If the zonelist cache is not available for this zonelist, does
1401 * nothing and returns NULL.
1402 *
1403 * If the fullzones BITMAP in the zonelist cache is stale (more than
1404 * a second since last zap'd) then we zap it out (clear its bits.)
1405 *
1406 * We hold off even calling zlc_setup, until after we've checked the
1407 * first zone in the zonelist, on the theory that most allocations will
1408 * be satisfied from that first zone, so best to examine that zone as
1409 * quickly as we can.
1410 */
1411static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1412{
1413 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1414 nodemask_t *allowednodes; /* zonelist_cache approximation */
1415
1416 zlc = zonelist->zlcache_ptr;
1417 if (!zlc)
1418 return NULL;
1419
f05111f5 1420 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1421 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1422 zlc->last_full_zap = jiffies;
1423 }
1424
1425 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1426 &cpuset_current_mems_allowed :
37b07e41 1427 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1428 return allowednodes;
1429}
1430
1431/*
1432 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1433 * if it is worth looking at further for free memory:
1434 * 1) Check that the zone isn't thought to be full (doesn't have its
1435 * bit set in the zonelist_cache fullzones BITMAP).
1436 * 2) Check that the zones node (obtained from the zonelist_cache
1437 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1438 * Return true (non-zero) if zone is worth looking at further, or
1439 * else return false (zero) if it is not.
1440 *
1441 * This check -ignores- the distinction between various watermarks,
1442 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1443 * found to be full for any variation of these watermarks, it will
1444 * be considered full for up to one second by all requests, unless
1445 * we are so low on memory on all allowed nodes that we are forced
1446 * into the second scan of the zonelist.
1447 *
1448 * In the second scan we ignore this zonelist cache and exactly
1449 * apply the watermarks to all zones, even it is slower to do so.
1450 * We are low on memory in the second scan, and should leave no stone
1451 * unturned looking for a free page.
1452 */
dd1a239f 1453static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1454 nodemask_t *allowednodes)
1455{
1456 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1457 int i; /* index of *z in zonelist zones */
1458 int n; /* node that zone *z is on */
1459
1460 zlc = zonelist->zlcache_ptr;
1461 if (!zlc)
1462 return 1;
1463
dd1a239f 1464 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1465 n = zlc->z_to_n[i];
1466
1467 /* This zone is worth trying if it is allowed but not full */
1468 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1469}
1470
1471/*
1472 * Given 'z' scanning a zonelist, set the corresponding bit in
1473 * zlc->fullzones, so that subsequent attempts to allocate a page
1474 * from that zone don't waste time re-examining it.
1475 */
dd1a239f 1476static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1477{
1478 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1479 int i; /* index of *z in zonelist zones */
1480
1481 zlc = zonelist->zlcache_ptr;
1482 if (!zlc)
1483 return;
1484
dd1a239f 1485 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1486
1487 set_bit(i, zlc->fullzones);
1488}
1489
1490#else /* CONFIG_NUMA */
1491
1492static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1493{
1494 return NULL;
1495}
1496
dd1a239f 1497static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1498 nodemask_t *allowednodes)
1499{
1500 return 1;
1501}
1502
dd1a239f 1503static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1504{
1505}
1506#endif /* CONFIG_NUMA */
1507
7fb1d9fc 1508/*
0798e519 1509 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1510 * a page.
1511 */
1512static struct page *
19770b32 1513get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1514 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1515 struct zone *preferred_zone, int migratetype)
753ee728 1516{
dd1a239f 1517 struct zoneref *z;
7fb1d9fc 1518 struct page *page = NULL;
54a6eb5c 1519 int classzone_idx;
5117f45d 1520 struct zone *zone;
9276b1bc
PJ
1521 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1522 int zlc_active = 0; /* set if using zonelist_cache */
1523 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1524
19770b32 1525 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1526zonelist_scan:
7fb1d9fc 1527 /*
9276b1bc 1528 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1529 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1530 */
19770b32
MG
1531 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1532 high_zoneidx, nodemask) {
9276b1bc
PJ
1533 if (NUMA_BUILD && zlc_active &&
1534 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1535 continue;
7fb1d9fc 1536 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1537 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1538 goto try_next_zone;
7fb1d9fc 1539
41858966 1540 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1541 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1542 unsigned long mark;
fa5e084e
MG
1543 int ret;
1544
41858966 1545 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1546 if (zone_watermark_ok(zone, order, mark,
1547 classzone_idx, alloc_flags))
1548 goto try_this_zone;
1549
1550 if (zone_reclaim_mode == 0)
1551 goto this_zone_full;
1552
1553 ret = zone_reclaim(zone, gfp_mask, order);
1554 switch (ret) {
1555 case ZONE_RECLAIM_NOSCAN:
1556 /* did not scan */
1557 goto try_next_zone;
1558 case ZONE_RECLAIM_FULL:
1559 /* scanned but unreclaimable */
1560 goto this_zone_full;
1561 default:
1562 /* did we reclaim enough */
1563 if (!zone_watermark_ok(zone, order, mark,
1564 classzone_idx, alloc_flags))
9276b1bc 1565 goto this_zone_full;
0798e519 1566 }
7fb1d9fc
RS
1567 }
1568
fa5e084e 1569try_this_zone:
3dd28266
MG
1570 page = buffered_rmqueue(preferred_zone, zone, order,
1571 gfp_mask, migratetype);
0798e519 1572 if (page)
7fb1d9fc 1573 break;
9276b1bc
PJ
1574this_zone_full:
1575 if (NUMA_BUILD)
1576 zlc_mark_zone_full(zonelist, z);
1577try_next_zone:
62bc62a8 1578 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
d395b734
MG
1579 /*
1580 * we do zlc_setup after the first zone is tried but only
1581 * if there are multiple nodes make it worthwhile
1582 */
9276b1bc
PJ
1583 allowednodes = zlc_setup(zonelist, alloc_flags);
1584 zlc_active = 1;
1585 did_zlc_setup = 1;
1586 }
54a6eb5c 1587 }
9276b1bc
PJ
1588
1589 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1590 /* Disable zlc cache for second zonelist scan */
1591 zlc_active = 0;
1592 goto zonelist_scan;
1593 }
7fb1d9fc 1594 return page;
753ee728
MH
1595}
1596
11e33f6a
MG
1597static inline int
1598should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1599 unsigned long pages_reclaimed)
1da177e4 1600{
11e33f6a
MG
1601 /* Do not loop if specifically requested */
1602 if (gfp_mask & __GFP_NORETRY)
1603 return 0;
1da177e4 1604
11e33f6a
MG
1605 /*
1606 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1607 * means __GFP_NOFAIL, but that may not be true in other
1608 * implementations.
1609 */
1610 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1611 return 1;
1612
1613 /*
1614 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1615 * specified, then we retry until we no longer reclaim any pages
1616 * (above), or we've reclaimed an order of pages at least as
1617 * large as the allocation's order. In both cases, if the
1618 * allocation still fails, we stop retrying.
1619 */
1620 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1621 return 1;
cf40bd16 1622
11e33f6a
MG
1623 /*
1624 * Don't let big-order allocations loop unless the caller
1625 * explicitly requests that.
1626 */
1627 if (gfp_mask & __GFP_NOFAIL)
1628 return 1;
1da177e4 1629
11e33f6a
MG
1630 return 0;
1631}
933e312e 1632
11e33f6a
MG
1633static inline struct page *
1634__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1635 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1636 nodemask_t *nodemask, struct zone *preferred_zone,
1637 int migratetype)
11e33f6a
MG
1638{
1639 struct page *page;
1640
1641 /* Acquire the OOM killer lock for the zones in zonelist */
1642 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1643 schedule_timeout_uninterruptible(1);
1da177e4
LT
1644 return NULL;
1645 }
6b1de916 1646
11e33f6a
MG
1647 /*
1648 * Go through the zonelist yet one more time, keep very high watermark
1649 * here, this is only to catch a parallel oom killing, we must fail if
1650 * we're still under heavy pressure.
1651 */
1652 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1653 order, zonelist, high_zoneidx,
5117f45d 1654 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1655 preferred_zone, migratetype);
7fb1d9fc 1656 if (page)
11e33f6a
MG
1657 goto out;
1658
4365a567
KH
1659 if (!(gfp_mask & __GFP_NOFAIL)) {
1660 /* The OOM killer will not help higher order allocs */
1661 if (order > PAGE_ALLOC_COSTLY_ORDER)
1662 goto out;
1663 /*
1664 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1665 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1666 * The caller should handle page allocation failure by itself if
1667 * it specifies __GFP_THISNODE.
1668 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1669 */
1670 if (gfp_mask & __GFP_THISNODE)
1671 goto out;
1672 }
11e33f6a 1673 /* Exhausted what can be done so it's blamo time */
4365a567 1674 out_of_memory(zonelist, gfp_mask, order, nodemask);
11e33f6a
MG
1675
1676out:
1677 clear_zonelist_oom(zonelist, gfp_mask);
1678 return page;
1679}
1680
1681/* The really slow allocator path where we enter direct reclaim */
1682static inline struct page *
1683__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1684 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1685 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1686 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1687{
1688 struct page *page = NULL;
1689 struct reclaim_state reclaim_state;
1690 struct task_struct *p = current;
1691
1692 cond_resched();
1693
1694 /* We now go into synchronous reclaim */
1695 cpuset_memory_pressure_bump();
11e33f6a
MG
1696 p->flags |= PF_MEMALLOC;
1697 lockdep_set_current_reclaim_state(gfp_mask);
1698 reclaim_state.reclaimed_slab = 0;
1699 p->reclaim_state = &reclaim_state;
1700
1701 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1702
1703 p->reclaim_state = NULL;
1704 lockdep_clear_current_reclaim_state();
1705 p->flags &= ~PF_MEMALLOC;
1706
1707 cond_resched();
1708
1709 if (order != 0)
1710 drain_all_pages();
1711
1712 if (likely(*did_some_progress))
1713 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1714 zonelist, high_zoneidx,
3dd28266
MG
1715 alloc_flags, preferred_zone,
1716 migratetype);
11e33f6a
MG
1717 return page;
1718}
1719
1da177e4 1720/*
11e33f6a
MG
1721 * This is called in the allocator slow-path if the allocation request is of
1722 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 1723 */
11e33f6a
MG
1724static inline struct page *
1725__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1726 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1727 nodemask_t *nodemask, struct zone *preferred_zone,
1728 int migratetype)
11e33f6a
MG
1729{
1730 struct page *page;
1731
1732 do {
1733 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1734 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 1735 preferred_zone, migratetype);
11e33f6a
MG
1736
1737 if (!page && gfp_mask & __GFP_NOFAIL)
8aa7e847 1738 congestion_wait(BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
1739 } while (!page && (gfp_mask & __GFP_NOFAIL));
1740
1741 return page;
1742}
1743
1744static inline
1745void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1746 enum zone_type high_zoneidx)
1da177e4 1747{
dd1a239f
MG
1748 struct zoneref *z;
1749 struct zone *zone;
1da177e4 1750
11e33f6a
MG
1751 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1752 wakeup_kswapd(zone, order);
1753}
cf40bd16 1754
341ce06f
PZ
1755static inline int
1756gfp_to_alloc_flags(gfp_t gfp_mask)
1757{
1758 struct task_struct *p = current;
1759 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1760 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 1761
a56f57ff
MG
1762 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1763 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
933e312e 1764
341ce06f
PZ
1765 /*
1766 * The caller may dip into page reserves a bit more if the caller
1767 * cannot run direct reclaim, or if the caller has realtime scheduling
1768 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1769 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1770 */
a56f57ff 1771 alloc_flags |= (gfp_mask & __GFP_HIGH);
1da177e4 1772
341ce06f
PZ
1773 if (!wait) {
1774 alloc_flags |= ALLOC_HARDER;
523b9458 1775 /*
341ce06f
PZ
1776 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1777 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 1778 */
341ce06f 1779 alloc_flags &= ~ALLOC_CPUSET;
9d0ed60f 1780 } else if (unlikely(rt_task(p)) && !in_interrupt())
341ce06f
PZ
1781 alloc_flags |= ALLOC_HARDER;
1782
1783 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1784 if (!in_interrupt() &&
1785 ((p->flags & PF_MEMALLOC) ||
1786 unlikely(test_thread_flag(TIF_MEMDIE))))
1787 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 1788 }
6b1de916 1789
341ce06f
PZ
1790 return alloc_flags;
1791}
1792
11e33f6a
MG
1793static inline struct page *
1794__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1795 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1796 nodemask_t *nodemask, struct zone *preferred_zone,
1797 int migratetype)
11e33f6a
MG
1798{
1799 const gfp_t wait = gfp_mask & __GFP_WAIT;
1800 struct page *page = NULL;
1801 int alloc_flags;
1802 unsigned long pages_reclaimed = 0;
1803 unsigned long did_some_progress;
1804 struct task_struct *p = current;
1da177e4 1805
72807a74
MG
1806 /*
1807 * In the slowpath, we sanity check order to avoid ever trying to
1808 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1809 * be using allocators in order of preference for an area that is
1810 * too large.
1811 */
1fc28b70
MG
1812 if (order >= MAX_ORDER) {
1813 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 1814 return NULL;
1fc28b70 1815 }
1da177e4 1816
952f3b51
CL
1817 /*
1818 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1819 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1820 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1821 * using a larger set of nodes after it has established that the
1822 * allowed per node queues are empty and that nodes are
1823 * over allocated.
1824 */
1825 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1826 goto nopage;
1827
cc4a6851 1828restart:
11e33f6a 1829 wake_all_kswapd(order, zonelist, high_zoneidx);
1da177e4 1830
9bf2229f 1831 /*
7fb1d9fc
RS
1832 * OK, we're below the kswapd watermark and have kicked background
1833 * reclaim. Now things get more complex, so set up alloc_flags according
1834 * to how we want to proceed.
9bf2229f 1835 */
341ce06f 1836 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 1837
341ce06f 1838 /* This is the last chance, in general, before the goto nopage. */
19770b32 1839 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
1840 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1841 preferred_zone, migratetype);
7fb1d9fc
RS
1842 if (page)
1843 goto got_pg;
1da177e4 1844
b43a57bb 1845rebalance:
11e33f6a 1846 /* Allocate without watermarks if the context allows */
341ce06f
PZ
1847 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1848 page = __alloc_pages_high_priority(gfp_mask, order,
1849 zonelist, high_zoneidx, nodemask,
1850 preferred_zone, migratetype);
1851 if (page)
1852 goto got_pg;
1da177e4
LT
1853 }
1854
1855 /* Atomic allocations - we can't balance anything */
1856 if (!wait)
1857 goto nopage;
1858
341ce06f
PZ
1859 /* Avoid recursion of direct reclaim */
1860 if (p->flags & PF_MEMALLOC)
1861 goto nopage;
1862
6583bb64
DR
1863 /* Avoid allocations with no watermarks from looping endlessly */
1864 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1865 goto nopage;
1866
11e33f6a
MG
1867 /* Try direct reclaim and then allocating */
1868 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1869 zonelist, high_zoneidx,
1870 nodemask,
5117f45d 1871 alloc_flags, preferred_zone,
3dd28266 1872 migratetype, &did_some_progress);
11e33f6a
MG
1873 if (page)
1874 goto got_pg;
1da177e4 1875
e33c3b5e 1876 /*
11e33f6a
MG
1877 * If we failed to make any progress reclaiming, then we are
1878 * running out of options and have to consider going OOM
e33c3b5e 1879 */
11e33f6a
MG
1880 if (!did_some_progress) {
1881 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
1882 if (oom_killer_disabled)
1883 goto nopage;
11e33f6a
MG
1884 page = __alloc_pages_may_oom(gfp_mask, order,
1885 zonelist, high_zoneidx,
3dd28266
MG
1886 nodemask, preferred_zone,
1887 migratetype);
11e33f6a
MG
1888 if (page)
1889 goto got_pg;
1da177e4 1890
11e33f6a 1891 /*
82553a93
DR
1892 * The OOM killer does not trigger for high-order
1893 * ~__GFP_NOFAIL allocations so if no progress is being
1894 * made, there are no other options and retrying is
1895 * unlikely to help.
11e33f6a 1896 */
82553a93
DR
1897 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1898 !(gfp_mask & __GFP_NOFAIL))
11e33f6a 1899 goto nopage;
e2c55dc8 1900
ff0ceb9d
DR
1901 goto restart;
1902 }
1da177e4
LT
1903 }
1904
11e33f6a 1905 /* Check if we should retry the allocation */
a41f24ea 1906 pages_reclaimed += did_some_progress;
11e33f6a
MG
1907 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1908 /* Wait for some write requests to complete then retry */
8aa7e847 1909 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
1910 goto rebalance;
1911 }
1912
1913nopage:
1914 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1915 printk(KERN_WARNING "%s: page allocation failure."
1916 " order:%d, mode:0x%x\n",
1917 p->comm, order, gfp_mask);
1918 dump_stack();
578c2fd6 1919 show_mem();
1da177e4 1920 }
b1eeab67 1921 return page;
1da177e4 1922got_pg:
b1eeab67
VN
1923 if (kmemcheck_enabled)
1924 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 1925 return page;
11e33f6a 1926
1da177e4 1927}
11e33f6a
MG
1928
1929/*
1930 * This is the 'heart' of the zoned buddy allocator.
1931 */
1932struct page *
1933__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1934 struct zonelist *zonelist, nodemask_t *nodemask)
1935{
1936 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 1937 struct zone *preferred_zone;
11e33f6a 1938 struct page *page;
3dd28266 1939 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a 1940
dcce284a
BH
1941 gfp_mask &= gfp_allowed_mask;
1942
11e33f6a
MG
1943 lockdep_trace_alloc(gfp_mask);
1944
1945 might_sleep_if(gfp_mask & __GFP_WAIT);
1946
1947 if (should_fail_alloc_page(gfp_mask, order))
1948 return NULL;
1949
1950 /*
1951 * Check the zones suitable for the gfp_mask contain at least one
1952 * valid zone. It's possible to have an empty zonelist as a result
1953 * of GFP_THISNODE and a memoryless node
1954 */
1955 if (unlikely(!zonelist->_zonerefs->zone))
1956 return NULL;
1957
5117f45d
MG
1958 /* The preferred zone is used for statistics later */
1959 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1960 if (!preferred_zone)
1961 return NULL;
1962
1963 /* First allocation attempt */
11e33f6a 1964 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 1965 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 1966 preferred_zone, migratetype);
11e33f6a
MG
1967 if (unlikely(!page))
1968 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 1969 zonelist, high_zoneidx, nodemask,
3dd28266 1970 preferred_zone, migratetype);
11e33f6a 1971
4b4f278c 1972 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
11e33f6a 1973 return page;
1da177e4 1974}
d239171e 1975EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
1976
1977/*
1978 * Common helper functions.
1979 */
920c7a5d 1980unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 1981{
945a1113
AM
1982 struct page *page;
1983
1984 /*
1985 * __get_free_pages() returns a 32-bit address, which cannot represent
1986 * a highmem page
1987 */
1988 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1989
1da177e4
LT
1990 page = alloc_pages(gfp_mask, order);
1991 if (!page)
1992 return 0;
1993 return (unsigned long) page_address(page);
1994}
1da177e4
LT
1995EXPORT_SYMBOL(__get_free_pages);
1996
920c7a5d 1997unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 1998{
945a1113 1999 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2000}
1da177e4
LT
2001EXPORT_SYMBOL(get_zeroed_page);
2002
2003void __pagevec_free(struct pagevec *pvec)
2004{
2005 int i = pagevec_count(pvec);
2006
4b4f278c
MG
2007 while (--i >= 0) {
2008 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
1da177e4 2009 free_hot_cold_page(pvec->pages[i], pvec->cold);
4b4f278c 2010 }
1da177e4
LT
2011}
2012
920c7a5d 2013void __free_pages(struct page *page, unsigned int order)
1da177e4 2014{
b5810039 2015 if (put_page_testzero(page)) {
4b4f278c 2016 trace_mm_page_free_direct(page, order);
1da177e4
LT
2017 if (order == 0)
2018 free_hot_page(page);
2019 else
2020 __free_pages_ok(page, order);
2021 }
2022}
2023
2024EXPORT_SYMBOL(__free_pages);
2025
920c7a5d 2026void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2027{
2028 if (addr != 0) {
725d704e 2029 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2030 __free_pages(virt_to_page((void *)addr), order);
2031 }
2032}
2033
2034EXPORT_SYMBOL(free_pages);
2035
2be0ffe2
TT
2036/**
2037 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2038 * @size: the number of bytes to allocate
2039 * @gfp_mask: GFP flags for the allocation
2040 *
2041 * This function is similar to alloc_pages(), except that it allocates the
2042 * minimum number of pages to satisfy the request. alloc_pages() can only
2043 * allocate memory in power-of-two pages.
2044 *
2045 * This function is also limited by MAX_ORDER.
2046 *
2047 * Memory allocated by this function must be released by free_pages_exact().
2048 */
2049void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2050{
2051 unsigned int order = get_order(size);
2052 unsigned long addr;
2053
2054 addr = __get_free_pages(gfp_mask, order);
2055 if (addr) {
2056 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2057 unsigned long used = addr + PAGE_ALIGN(size);
2058
5bfd7560 2059 split_page(virt_to_page((void *)addr), order);
2be0ffe2
TT
2060 while (used < alloc_end) {
2061 free_page(used);
2062 used += PAGE_SIZE;
2063 }
2064 }
2065
2066 return (void *)addr;
2067}
2068EXPORT_SYMBOL(alloc_pages_exact);
2069
2070/**
2071 * free_pages_exact - release memory allocated via alloc_pages_exact()
2072 * @virt: the value returned by alloc_pages_exact.
2073 * @size: size of allocation, same value as passed to alloc_pages_exact().
2074 *
2075 * Release the memory allocated by a previous call to alloc_pages_exact.
2076 */
2077void free_pages_exact(void *virt, size_t size)
2078{
2079 unsigned long addr = (unsigned long)virt;
2080 unsigned long end = addr + PAGE_ALIGN(size);
2081
2082 while (addr < end) {
2083 free_page(addr);
2084 addr += PAGE_SIZE;
2085 }
2086}
2087EXPORT_SYMBOL(free_pages_exact);
2088
1da177e4
LT
2089static unsigned int nr_free_zone_pages(int offset)
2090{
dd1a239f 2091 struct zoneref *z;
54a6eb5c
MG
2092 struct zone *zone;
2093
e310fd43 2094 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2095 unsigned int sum = 0;
2096
0e88460d 2097 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2098
54a6eb5c 2099 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2100 unsigned long size = zone->present_pages;
41858966 2101 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2102 if (size > high)
2103 sum += size - high;
1da177e4
LT
2104 }
2105
2106 return sum;
2107}
2108
2109/*
2110 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2111 */
2112unsigned int nr_free_buffer_pages(void)
2113{
af4ca457 2114 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2115}
c2f1a551 2116EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2117
2118/*
2119 * Amount of free RAM allocatable within all zones
2120 */
2121unsigned int nr_free_pagecache_pages(void)
2122{
2a1e274a 2123 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2124}
08e0f6a9
CL
2125
2126static inline void show_node(struct zone *zone)
1da177e4 2127{
08e0f6a9 2128 if (NUMA_BUILD)
25ba77c1 2129 printk("Node %d ", zone_to_nid(zone));
1da177e4 2130}
1da177e4 2131
1da177e4
LT
2132void si_meminfo(struct sysinfo *val)
2133{
2134 val->totalram = totalram_pages;
2135 val->sharedram = 0;
d23ad423 2136 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2137 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2138 val->totalhigh = totalhigh_pages;
2139 val->freehigh = nr_free_highpages();
1da177e4
LT
2140 val->mem_unit = PAGE_SIZE;
2141}
2142
2143EXPORT_SYMBOL(si_meminfo);
2144
2145#ifdef CONFIG_NUMA
2146void si_meminfo_node(struct sysinfo *val, int nid)
2147{
2148 pg_data_t *pgdat = NODE_DATA(nid);
2149
2150 val->totalram = pgdat->node_present_pages;
d23ad423 2151 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2152#ifdef CONFIG_HIGHMEM
1da177e4 2153 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2154 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2155 NR_FREE_PAGES);
98d2b0eb
CL
2156#else
2157 val->totalhigh = 0;
2158 val->freehigh = 0;
2159#endif
1da177e4
LT
2160 val->mem_unit = PAGE_SIZE;
2161}
2162#endif
2163
2164#define K(x) ((x) << (PAGE_SHIFT-10))
2165
2166/*
2167 * Show free area list (used inside shift_scroll-lock stuff)
2168 * We also calculate the percentage fragmentation. We do this by counting the
2169 * memory on each free list with the exception of the first item on the list.
2170 */
2171void show_free_areas(void)
2172{
c7241913 2173 int cpu;
1da177e4
LT
2174 struct zone *zone;
2175
ee99c71c 2176 for_each_populated_zone(zone) {
c7241913
JS
2177 show_node(zone);
2178 printk("%s per-cpu:\n", zone->name);
1da177e4 2179
6b482c67 2180 for_each_online_cpu(cpu) {
1da177e4
LT
2181 struct per_cpu_pageset *pageset;
2182
e7c8d5c9 2183 pageset = zone_pcp(zone, cpu);
1da177e4 2184
3dfa5721
CL
2185 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2186 cpu, pageset->pcp.high,
2187 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2188 }
2189 }
2190
a731286d
KM
2191 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2192 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2193 " unevictable:%lu"
b76146ed 2194 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2195 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2196 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2197 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2198 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2199 global_page_state(NR_ISOLATED_ANON),
2200 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2201 global_page_state(NR_INACTIVE_FILE),
a731286d 2202 global_page_state(NR_ISOLATED_FILE),
7b854121 2203 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2204 global_page_state(NR_FILE_DIRTY),
ce866b34 2205 global_page_state(NR_WRITEBACK),
fd39fc85 2206 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2207 global_page_state(NR_FREE_PAGES),
3701b033
KM
2208 global_page_state(NR_SLAB_RECLAIMABLE),
2209 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2210 global_page_state(NR_FILE_MAPPED),
4b02108a 2211 global_page_state(NR_SHMEM),
a25700a5
AM
2212 global_page_state(NR_PAGETABLE),
2213 global_page_state(NR_BOUNCE));
1da177e4 2214
ee99c71c 2215 for_each_populated_zone(zone) {
1da177e4
LT
2216 int i;
2217
2218 show_node(zone);
2219 printk("%s"
2220 " free:%lukB"
2221 " min:%lukB"
2222 " low:%lukB"
2223 " high:%lukB"
4f98a2fe
RR
2224 " active_anon:%lukB"
2225 " inactive_anon:%lukB"
2226 " active_file:%lukB"
2227 " inactive_file:%lukB"
7b854121 2228 " unevictable:%lukB"
a731286d
KM
2229 " isolated(anon):%lukB"
2230 " isolated(file):%lukB"
1da177e4 2231 " present:%lukB"
4a0aa73f
KM
2232 " mlocked:%lukB"
2233 " dirty:%lukB"
2234 " writeback:%lukB"
2235 " mapped:%lukB"
4b02108a 2236 " shmem:%lukB"
4a0aa73f
KM
2237 " slab_reclaimable:%lukB"
2238 " slab_unreclaimable:%lukB"
c6a7f572 2239 " kernel_stack:%lukB"
4a0aa73f
KM
2240 " pagetables:%lukB"
2241 " unstable:%lukB"
2242 " bounce:%lukB"
2243 " writeback_tmp:%lukB"
1da177e4
LT
2244 " pages_scanned:%lu"
2245 " all_unreclaimable? %s"
2246 "\n",
2247 zone->name,
d23ad423 2248 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2249 K(min_wmark_pages(zone)),
2250 K(low_wmark_pages(zone)),
2251 K(high_wmark_pages(zone)),
4f98a2fe
RR
2252 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2253 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2254 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2255 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2256 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2257 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2258 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2259 K(zone->present_pages),
4a0aa73f
KM
2260 K(zone_page_state(zone, NR_MLOCK)),
2261 K(zone_page_state(zone, NR_FILE_DIRTY)),
2262 K(zone_page_state(zone, NR_WRITEBACK)),
2263 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2264 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2265 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2266 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2267 zone_page_state(zone, NR_KERNEL_STACK) *
2268 THREAD_SIZE / 1024,
4a0aa73f
KM
2269 K(zone_page_state(zone, NR_PAGETABLE)),
2270 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2271 K(zone_page_state(zone, NR_BOUNCE)),
2272 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2273 zone->pages_scanned,
e815af95 2274 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1da177e4
LT
2275 );
2276 printk("lowmem_reserve[]:");
2277 for (i = 0; i < MAX_NR_ZONES; i++)
2278 printk(" %lu", zone->lowmem_reserve[i]);
2279 printk("\n");
2280 }
2281
ee99c71c 2282 for_each_populated_zone(zone) {
8f9de51a 2283 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
2284
2285 show_node(zone);
2286 printk("%s: ", zone->name);
1da177e4
LT
2287
2288 spin_lock_irqsave(&zone->lock, flags);
2289 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2290 nr[order] = zone->free_area[order].nr_free;
2291 total += nr[order] << order;
1da177e4
LT
2292 }
2293 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2294 for (order = 0; order < MAX_ORDER; order++)
2295 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2296 printk("= %lukB\n", K(total));
2297 }
2298
e6f3602d
LW
2299 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2300
1da177e4
LT
2301 show_swap_cache_info();
2302}
2303
19770b32
MG
2304static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2305{
2306 zoneref->zone = zone;
2307 zoneref->zone_idx = zone_idx(zone);
2308}
2309
1da177e4
LT
2310/*
2311 * Builds allocation fallback zone lists.
1a93205b
CL
2312 *
2313 * Add all populated zones of a node to the zonelist.
1da177e4 2314 */
f0c0b2b8
KH
2315static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2316 int nr_zones, enum zone_type zone_type)
1da177e4 2317{
1a93205b
CL
2318 struct zone *zone;
2319
98d2b0eb 2320 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2321 zone_type++;
02a68a5e
CL
2322
2323 do {
2f6726e5 2324 zone_type--;
070f8032 2325 zone = pgdat->node_zones + zone_type;
1a93205b 2326 if (populated_zone(zone)) {
dd1a239f
MG
2327 zoneref_set_zone(zone,
2328 &zonelist->_zonerefs[nr_zones++]);
070f8032 2329 check_highest_zone(zone_type);
1da177e4 2330 }
02a68a5e 2331
2f6726e5 2332 } while (zone_type);
070f8032 2333 return nr_zones;
1da177e4
LT
2334}
2335
f0c0b2b8
KH
2336
2337/*
2338 * zonelist_order:
2339 * 0 = automatic detection of better ordering.
2340 * 1 = order by ([node] distance, -zonetype)
2341 * 2 = order by (-zonetype, [node] distance)
2342 *
2343 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2344 * the same zonelist. So only NUMA can configure this param.
2345 */
2346#define ZONELIST_ORDER_DEFAULT 0
2347#define ZONELIST_ORDER_NODE 1
2348#define ZONELIST_ORDER_ZONE 2
2349
2350/* zonelist order in the kernel.
2351 * set_zonelist_order() will set this to NODE or ZONE.
2352 */
2353static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2354static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2355
2356
1da177e4 2357#ifdef CONFIG_NUMA
f0c0b2b8
KH
2358/* The value user specified ....changed by config */
2359static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2360/* string for sysctl */
2361#define NUMA_ZONELIST_ORDER_LEN 16
2362char numa_zonelist_order[16] = "default";
2363
2364/*
2365 * interface for configure zonelist ordering.
2366 * command line option "numa_zonelist_order"
2367 * = "[dD]efault - default, automatic configuration.
2368 * = "[nN]ode - order by node locality, then by zone within node
2369 * = "[zZ]one - order by zone, then by locality within zone
2370 */
2371
2372static int __parse_numa_zonelist_order(char *s)
2373{
2374 if (*s == 'd' || *s == 'D') {
2375 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2376 } else if (*s == 'n' || *s == 'N') {
2377 user_zonelist_order = ZONELIST_ORDER_NODE;
2378 } else if (*s == 'z' || *s == 'Z') {
2379 user_zonelist_order = ZONELIST_ORDER_ZONE;
2380 } else {
2381 printk(KERN_WARNING
2382 "Ignoring invalid numa_zonelist_order value: "
2383 "%s\n", s);
2384 return -EINVAL;
2385 }
2386 return 0;
2387}
2388
2389static __init int setup_numa_zonelist_order(char *s)
2390{
2391 if (s)
2392 return __parse_numa_zonelist_order(s);
2393 return 0;
2394}
2395early_param("numa_zonelist_order", setup_numa_zonelist_order);
2396
2397/*
2398 * sysctl handler for numa_zonelist_order
2399 */
2400int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 2401 void __user *buffer, size_t *length,
f0c0b2b8
KH
2402 loff_t *ppos)
2403{
2404 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2405 int ret;
443c6f14 2406 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 2407
443c6f14 2408 mutex_lock(&zl_order_mutex);
f0c0b2b8 2409 if (write)
443c6f14 2410 strcpy(saved_string, (char*)table->data);
8d65af78 2411 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 2412 if (ret)
443c6f14 2413 goto out;
f0c0b2b8
KH
2414 if (write) {
2415 int oldval = user_zonelist_order;
2416 if (__parse_numa_zonelist_order((char*)table->data)) {
2417 /*
2418 * bogus value. restore saved string
2419 */
2420 strncpy((char*)table->data, saved_string,
2421 NUMA_ZONELIST_ORDER_LEN);
2422 user_zonelist_order = oldval;
2423 } else if (oldval != user_zonelist_order)
2424 build_all_zonelists();
2425 }
443c6f14
AK
2426out:
2427 mutex_unlock(&zl_order_mutex);
2428 return ret;
f0c0b2b8
KH
2429}
2430
2431
62bc62a8 2432#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2433static int node_load[MAX_NUMNODES];
2434
1da177e4 2435/**
4dc3b16b 2436 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2437 * @node: node whose fallback list we're appending
2438 * @used_node_mask: nodemask_t of already used nodes
2439 *
2440 * We use a number of factors to determine which is the next node that should
2441 * appear on a given node's fallback list. The node should not have appeared
2442 * already in @node's fallback list, and it should be the next closest node
2443 * according to the distance array (which contains arbitrary distance values
2444 * from each node to each node in the system), and should also prefer nodes
2445 * with no CPUs, since presumably they'll have very little allocation pressure
2446 * on them otherwise.
2447 * It returns -1 if no node is found.
2448 */
f0c0b2b8 2449static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2450{
4cf808eb 2451 int n, val;
1da177e4
LT
2452 int min_val = INT_MAX;
2453 int best_node = -1;
a70f7302 2454 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2455
4cf808eb
LT
2456 /* Use the local node if we haven't already */
2457 if (!node_isset(node, *used_node_mask)) {
2458 node_set(node, *used_node_mask);
2459 return node;
2460 }
1da177e4 2461
37b07e41 2462 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2463
2464 /* Don't want a node to appear more than once */
2465 if (node_isset(n, *used_node_mask))
2466 continue;
2467
1da177e4
LT
2468 /* Use the distance array to find the distance */
2469 val = node_distance(node, n);
2470
4cf808eb
LT
2471 /* Penalize nodes under us ("prefer the next node") */
2472 val += (n < node);
2473
1da177e4 2474 /* Give preference to headless and unused nodes */
a70f7302
RR
2475 tmp = cpumask_of_node(n);
2476 if (!cpumask_empty(tmp))
1da177e4
LT
2477 val += PENALTY_FOR_NODE_WITH_CPUS;
2478
2479 /* Slight preference for less loaded node */
2480 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2481 val += node_load[n];
2482
2483 if (val < min_val) {
2484 min_val = val;
2485 best_node = n;
2486 }
2487 }
2488
2489 if (best_node >= 0)
2490 node_set(best_node, *used_node_mask);
2491
2492 return best_node;
2493}
2494
f0c0b2b8
KH
2495
2496/*
2497 * Build zonelists ordered by node and zones within node.
2498 * This results in maximum locality--normal zone overflows into local
2499 * DMA zone, if any--but risks exhausting DMA zone.
2500 */
2501static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2502{
f0c0b2b8 2503 int j;
1da177e4 2504 struct zonelist *zonelist;
f0c0b2b8 2505
54a6eb5c 2506 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2507 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2508 ;
2509 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2510 MAX_NR_ZONES - 1);
dd1a239f
MG
2511 zonelist->_zonerefs[j].zone = NULL;
2512 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2513}
2514
523b9458
CL
2515/*
2516 * Build gfp_thisnode zonelists
2517 */
2518static void build_thisnode_zonelists(pg_data_t *pgdat)
2519{
523b9458
CL
2520 int j;
2521 struct zonelist *zonelist;
2522
54a6eb5c
MG
2523 zonelist = &pgdat->node_zonelists[1];
2524 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2525 zonelist->_zonerefs[j].zone = NULL;
2526 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2527}
2528
f0c0b2b8
KH
2529/*
2530 * Build zonelists ordered by zone and nodes within zones.
2531 * This results in conserving DMA zone[s] until all Normal memory is
2532 * exhausted, but results in overflowing to remote node while memory
2533 * may still exist in local DMA zone.
2534 */
2535static int node_order[MAX_NUMNODES];
2536
2537static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2538{
f0c0b2b8
KH
2539 int pos, j, node;
2540 int zone_type; /* needs to be signed */
2541 struct zone *z;
2542 struct zonelist *zonelist;
2543
54a6eb5c
MG
2544 zonelist = &pgdat->node_zonelists[0];
2545 pos = 0;
2546 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2547 for (j = 0; j < nr_nodes; j++) {
2548 node = node_order[j];
2549 z = &NODE_DATA(node)->node_zones[zone_type];
2550 if (populated_zone(z)) {
dd1a239f
MG
2551 zoneref_set_zone(z,
2552 &zonelist->_zonerefs[pos++]);
54a6eb5c 2553 check_highest_zone(zone_type);
f0c0b2b8
KH
2554 }
2555 }
f0c0b2b8 2556 }
dd1a239f
MG
2557 zonelist->_zonerefs[pos].zone = NULL;
2558 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2559}
2560
2561static int default_zonelist_order(void)
2562{
2563 int nid, zone_type;
2564 unsigned long low_kmem_size,total_size;
2565 struct zone *z;
2566 int average_size;
2567 /*
2568 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2569 * If they are really small and used heavily, the system can fall
2570 * into OOM very easily.
2571 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2572 */
2573 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2574 low_kmem_size = 0;
2575 total_size = 0;
2576 for_each_online_node(nid) {
2577 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2578 z = &NODE_DATA(nid)->node_zones[zone_type];
2579 if (populated_zone(z)) {
2580 if (zone_type < ZONE_NORMAL)
2581 low_kmem_size += z->present_pages;
2582 total_size += z->present_pages;
2583 }
2584 }
2585 }
2586 if (!low_kmem_size || /* there are no DMA area. */
2587 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2588 return ZONELIST_ORDER_NODE;
2589 /*
2590 * look into each node's config.
2591 * If there is a node whose DMA/DMA32 memory is very big area on
2592 * local memory, NODE_ORDER may be suitable.
2593 */
37b07e41
LS
2594 average_size = total_size /
2595 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2596 for_each_online_node(nid) {
2597 low_kmem_size = 0;
2598 total_size = 0;
2599 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2600 z = &NODE_DATA(nid)->node_zones[zone_type];
2601 if (populated_zone(z)) {
2602 if (zone_type < ZONE_NORMAL)
2603 low_kmem_size += z->present_pages;
2604 total_size += z->present_pages;
2605 }
2606 }
2607 if (low_kmem_size &&
2608 total_size > average_size && /* ignore small node */
2609 low_kmem_size > total_size * 70/100)
2610 return ZONELIST_ORDER_NODE;
2611 }
2612 return ZONELIST_ORDER_ZONE;
2613}
2614
2615static void set_zonelist_order(void)
2616{
2617 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2618 current_zonelist_order = default_zonelist_order();
2619 else
2620 current_zonelist_order = user_zonelist_order;
2621}
2622
2623static void build_zonelists(pg_data_t *pgdat)
2624{
2625 int j, node, load;
2626 enum zone_type i;
1da177e4 2627 nodemask_t used_mask;
f0c0b2b8
KH
2628 int local_node, prev_node;
2629 struct zonelist *zonelist;
2630 int order = current_zonelist_order;
1da177e4
LT
2631
2632 /* initialize zonelists */
523b9458 2633 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2634 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2635 zonelist->_zonerefs[0].zone = NULL;
2636 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2637 }
2638
2639 /* NUMA-aware ordering of nodes */
2640 local_node = pgdat->node_id;
62bc62a8 2641 load = nr_online_nodes;
1da177e4
LT
2642 prev_node = local_node;
2643 nodes_clear(used_mask);
f0c0b2b8 2644
f0c0b2b8
KH
2645 memset(node_order, 0, sizeof(node_order));
2646 j = 0;
2647
1da177e4 2648 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2649 int distance = node_distance(local_node, node);
2650
2651 /*
2652 * If another node is sufficiently far away then it is better
2653 * to reclaim pages in a zone before going off node.
2654 */
2655 if (distance > RECLAIM_DISTANCE)
2656 zone_reclaim_mode = 1;
2657
1da177e4
LT
2658 /*
2659 * We don't want to pressure a particular node.
2660 * So adding penalty to the first node in same
2661 * distance group to make it round-robin.
2662 */
9eeff239 2663 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2664 node_load[node] = load;
2665
1da177e4
LT
2666 prev_node = node;
2667 load--;
f0c0b2b8
KH
2668 if (order == ZONELIST_ORDER_NODE)
2669 build_zonelists_in_node_order(pgdat, node);
2670 else
2671 node_order[j++] = node; /* remember order */
2672 }
1da177e4 2673
f0c0b2b8
KH
2674 if (order == ZONELIST_ORDER_ZONE) {
2675 /* calculate node order -- i.e., DMA last! */
2676 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2677 }
523b9458
CL
2678
2679 build_thisnode_zonelists(pgdat);
1da177e4
LT
2680}
2681
9276b1bc 2682/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2683static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2684{
54a6eb5c
MG
2685 struct zonelist *zonelist;
2686 struct zonelist_cache *zlc;
dd1a239f 2687 struct zoneref *z;
9276b1bc 2688
54a6eb5c
MG
2689 zonelist = &pgdat->node_zonelists[0];
2690 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2691 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2692 for (z = zonelist->_zonerefs; z->zone; z++)
2693 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2694}
2695
f0c0b2b8 2696
1da177e4
LT
2697#else /* CONFIG_NUMA */
2698
f0c0b2b8
KH
2699static void set_zonelist_order(void)
2700{
2701 current_zonelist_order = ZONELIST_ORDER_ZONE;
2702}
2703
2704static void build_zonelists(pg_data_t *pgdat)
1da177e4 2705{
19655d34 2706 int node, local_node;
54a6eb5c
MG
2707 enum zone_type j;
2708 struct zonelist *zonelist;
1da177e4
LT
2709
2710 local_node = pgdat->node_id;
1da177e4 2711
54a6eb5c
MG
2712 zonelist = &pgdat->node_zonelists[0];
2713 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2714
54a6eb5c
MG
2715 /*
2716 * Now we build the zonelist so that it contains the zones
2717 * of all the other nodes.
2718 * We don't want to pressure a particular node, so when
2719 * building the zones for node N, we make sure that the
2720 * zones coming right after the local ones are those from
2721 * node N+1 (modulo N)
2722 */
2723 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2724 if (!node_online(node))
2725 continue;
2726 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2727 MAX_NR_ZONES - 1);
1da177e4 2728 }
54a6eb5c
MG
2729 for (node = 0; node < local_node; node++) {
2730 if (!node_online(node))
2731 continue;
2732 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2733 MAX_NR_ZONES - 1);
2734 }
2735
dd1a239f
MG
2736 zonelist->_zonerefs[j].zone = NULL;
2737 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
2738}
2739
9276b1bc 2740/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2741static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2742{
54a6eb5c 2743 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
2744}
2745
1da177e4
LT
2746#endif /* CONFIG_NUMA */
2747
9b1a4d38 2748/* return values int ....just for stop_machine() */
f0c0b2b8 2749static int __build_all_zonelists(void *dummy)
1da177e4 2750{
6811378e 2751 int nid;
9276b1bc 2752
7f9cfb31
BL
2753#ifdef CONFIG_NUMA
2754 memset(node_load, 0, sizeof(node_load));
2755#endif
9276b1bc 2756 for_each_online_node(nid) {
7ea1530a
CL
2757 pg_data_t *pgdat = NODE_DATA(nid);
2758
2759 build_zonelists(pgdat);
2760 build_zonelist_cache(pgdat);
9276b1bc 2761 }
6811378e
YG
2762 return 0;
2763}
2764
f0c0b2b8 2765void build_all_zonelists(void)
6811378e 2766{
f0c0b2b8
KH
2767 set_zonelist_order();
2768
6811378e 2769 if (system_state == SYSTEM_BOOTING) {
423b41d7 2770 __build_all_zonelists(NULL);
68ad8df4 2771 mminit_verify_zonelist();
6811378e
YG
2772 cpuset_init_current_mems_allowed();
2773 } else {
183ff22b 2774 /* we have to stop all cpus to guarantee there is no user
6811378e 2775 of zonelist */
9b1a4d38 2776 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
2777 /* cpuset refresh routine should be here */
2778 }
bd1e22b8 2779 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
2780 /*
2781 * Disable grouping by mobility if the number of pages in the
2782 * system is too low to allow the mechanism to work. It would be
2783 * more accurate, but expensive to check per-zone. This check is
2784 * made on memory-hotadd so a system can start with mobility
2785 * disabled and enable it later
2786 */
d9c23400 2787 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
2788 page_group_by_mobility_disabled = 1;
2789 else
2790 page_group_by_mobility_disabled = 0;
2791
2792 printk("Built %i zonelists in %s order, mobility grouping %s. "
2793 "Total pages: %ld\n",
62bc62a8 2794 nr_online_nodes,
f0c0b2b8 2795 zonelist_order_name[current_zonelist_order],
9ef9acb0 2796 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
2797 vm_total_pages);
2798#ifdef CONFIG_NUMA
2799 printk("Policy zone: %s\n", zone_names[policy_zone]);
2800#endif
1da177e4
LT
2801}
2802
2803/*
2804 * Helper functions to size the waitqueue hash table.
2805 * Essentially these want to choose hash table sizes sufficiently
2806 * large so that collisions trying to wait on pages are rare.
2807 * But in fact, the number of active page waitqueues on typical
2808 * systems is ridiculously low, less than 200. So this is even
2809 * conservative, even though it seems large.
2810 *
2811 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2812 * waitqueues, i.e. the size of the waitq table given the number of pages.
2813 */
2814#define PAGES_PER_WAITQUEUE 256
2815
cca448fe 2816#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 2817static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
2818{
2819 unsigned long size = 1;
2820
2821 pages /= PAGES_PER_WAITQUEUE;
2822
2823 while (size < pages)
2824 size <<= 1;
2825
2826 /*
2827 * Once we have dozens or even hundreds of threads sleeping
2828 * on IO we've got bigger problems than wait queue collision.
2829 * Limit the size of the wait table to a reasonable size.
2830 */
2831 size = min(size, 4096UL);
2832
2833 return max(size, 4UL);
2834}
cca448fe
YG
2835#else
2836/*
2837 * A zone's size might be changed by hot-add, so it is not possible to determine
2838 * a suitable size for its wait_table. So we use the maximum size now.
2839 *
2840 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2841 *
2842 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2843 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2844 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2845 *
2846 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2847 * or more by the traditional way. (See above). It equals:
2848 *
2849 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2850 * ia64(16K page size) : = ( 8G + 4M)byte.
2851 * powerpc (64K page size) : = (32G +16M)byte.
2852 */
2853static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2854{
2855 return 4096UL;
2856}
2857#endif
1da177e4
LT
2858
2859/*
2860 * This is an integer logarithm so that shifts can be used later
2861 * to extract the more random high bits from the multiplicative
2862 * hash function before the remainder is taken.
2863 */
2864static inline unsigned long wait_table_bits(unsigned long size)
2865{
2866 return ffz(~size);
2867}
2868
2869#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2870
56fd56b8 2871/*
d9c23400 2872 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
2873 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2874 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
2875 * higher will lead to a bigger reserve which will get freed as contiguous
2876 * blocks as reclaim kicks in
2877 */
2878static void setup_zone_migrate_reserve(struct zone *zone)
2879{
2880 unsigned long start_pfn, pfn, end_pfn;
2881 struct page *page;
78986a67
MG
2882 unsigned long block_migratetype;
2883 int reserve;
56fd56b8
MG
2884
2885 /* Get the start pfn, end pfn and the number of blocks to reserve */
2886 start_pfn = zone->zone_start_pfn;
2887 end_pfn = start_pfn + zone->spanned_pages;
41858966 2888 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 2889 pageblock_order;
56fd56b8 2890
78986a67
MG
2891 /*
2892 * Reserve blocks are generally in place to help high-order atomic
2893 * allocations that are short-lived. A min_free_kbytes value that
2894 * would result in more than 2 reserve blocks for atomic allocations
2895 * is assumed to be in place to help anti-fragmentation for the
2896 * future allocation of hugepages at runtime.
2897 */
2898 reserve = min(2, reserve);
2899
d9c23400 2900 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
2901 if (!pfn_valid(pfn))
2902 continue;
2903 page = pfn_to_page(pfn);
2904
344c790e
AL
2905 /* Watch out for overlapping nodes */
2906 if (page_to_nid(page) != zone_to_nid(zone))
2907 continue;
2908
56fd56b8
MG
2909 /* Blocks with reserved pages will never free, skip them. */
2910 if (PageReserved(page))
2911 continue;
2912
2913 block_migratetype = get_pageblock_migratetype(page);
2914
2915 /* If this block is reserved, account for it */
2916 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2917 reserve--;
2918 continue;
2919 }
2920
2921 /* Suitable for reserving if this block is movable */
2922 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2923 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2924 move_freepages_block(zone, page, MIGRATE_RESERVE);
2925 reserve--;
2926 continue;
2927 }
2928
2929 /*
2930 * If the reserve is met and this is a previous reserved block,
2931 * take it back
2932 */
2933 if (block_migratetype == MIGRATE_RESERVE) {
2934 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2935 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2936 }
2937 }
2938}
ac0e5b7a 2939
1da177e4
LT
2940/*
2941 * Initially all pages are reserved - free ones are freed
2942 * up by free_all_bootmem() once the early boot process is
2943 * done. Non-atomic initialization, single-pass.
2944 */
c09b4240 2945void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 2946 unsigned long start_pfn, enum memmap_context context)
1da177e4 2947{
1da177e4 2948 struct page *page;
29751f69
AW
2949 unsigned long end_pfn = start_pfn + size;
2950 unsigned long pfn;
86051ca5 2951 struct zone *z;
1da177e4 2952
22b31eec
HD
2953 if (highest_memmap_pfn < end_pfn - 1)
2954 highest_memmap_pfn = end_pfn - 1;
2955
86051ca5 2956 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 2957 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
2958 /*
2959 * There can be holes in boot-time mem_map[]s
2960 * handed to this function. They do not
2961 * exist on hotplugged memory.
2962 */
2963 if (context == MEMMAP_EARLY) {
2964 if (!early_pfn_valid(pfn))
2965 continue;
2966 if (!early_pfn_in_nid(pfn, nid))
2967 continue;
2968 }
d41dee36
AW
2969 page = pfn_to_page(pfn);
2970 set_page_links(page, zone, nid, pfn);
708614e6 2971 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 2972 init_page_count(page);
1da177e4
LT
2973 reset_page_mapcount(page);
2974 SetPageReserved(page);
b2a0ac88
MG
2975 /*
2976 * Mark the block movable so that blocks are reserved for
2977 * movable at startup. This will force kernel allocations
2978 * to reserve their blocks rather than leaking throughout
2979 * the address space during boot when many long-lived
56fd56b8
MG
2980 * kernel allocations are made. Later some blocks near
2981 * the start are marked MIGRATE_RESERVE by
2982 * setup_zone_migrate_reserve()
86051ca5
KH
2983 *
2984 * bitmap is created for zone's valid pfn range. but memmap
2985 * can be created for invalid pages (for alignment)
2986 * check here not to call set_pageblock_migratetype() against
2987 * pfn out of zone.
b2a0ac88 2988 */
86051ca5
KH
2989 if ((z->zone_start_pfn <= pfn)
2990 && (pfn < z->zone_start_pfn + z->spanned_pages)
2991 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 2992 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 2993
1da177e4
LT
2994 INIT_LIST_HEAD(&page->lru);
2995#ifdef WANT_PAGE_VIRTUAL
2996 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2997 if (!is_highmem_idx(zone))
3212c6be 2998 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 2999#endif
1da177e4
LT
3000 }
3001}
3002
1e548deb 3003static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3004{
b2a0ac88
MG
3005 int order, t;
3006 for_each_migratetype_order(order, t) {
3007 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3008 zone->free_area[order].nr_free = 0;
3009 }
3010}
3011
3012#ifndef __HAVE_ARCH_MEMMAP_INIT
3013#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3014 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3015#endif
3016
1d6f4e60 3017static int zone_batchsize(struct zone *zone)
e7c8d5c9 3018{
3a6be87f 3019#ifdef CONFIG_MMU
e7c8d5c9
CL
3020 int batch;
3021
3022 /*
3023 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3024 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3025 *
3026 * OK, so we don't know how big the cache is. So guess.
3027 */
3028 batch = zone->present_pages / 1024;
ba56e91c
SR
3029 if (batch * PAGE_SIZE > 512 * 1024)
3030 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3031 batch /= 4; /* We effectively *= 4 below */
3032 if (batch < 1)
3033 batch = 1;
3034
3035 /*
0ceaacc9
NP
3036 * Clamp the batch to a 2^n - 1 value. Having a power
3037 * of 2 value was found to be more likely to have
3038 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3039 *
0ceaacc9
NP
3040 * For example if 2 tasks are alternately allocating
3041 * batches of pages, one task can end up with a lot
3042 * of pages of one half of the possible page colors
3043 * and the other with pages of the other colors.
e7c8d5c9 3044 */
9155203a 3045 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3046
e7c8d5c9 3047 return batch;
3a6be87f
DH
3048
3049#else
3050 /* The deferral and batching of frees should be suppressed under NOMMU
3051 * conditions.
3052 *
3053 * The problem is that NOMMU needs to be able to allocate large chunks
3054 * of contiguous memory as there's no hardware page translation to
3055 * assemble apparent contiguous memory from discontiguous pages.
3056 *
3057 * Queueing large contiguous runs of pages for batching, however,
3058 * causes the pages to actually be freed in smaller chunks. As there
3059 * can be a significant delay between the individual batches being
3060 * recycled, this leads to the once large chunks of space being
3061 * fragmented and becoming unavailable for high-order allocations.
3062 */
3063 return 0;
3064#endif
e7c8d5c9
CL
3065}
3066
b69a7288 3067static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3068{
3069 struct per_cpu_pages *pcp;
5f8dcc21 3070 int migratetype;
2caaad41 3071
1c6fe946
MD
3072 memset(p, 0, sizeof(*p));
3073
3dfa5721 3074 pcp = &p->pcp;
2caaad41 3075 pcp->count = 0;
2caaad41
CL
3076 pcp->high = 6 * batch;
3077 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3078 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3079 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3080}
3081
8ad4b1fb
RS
3082/*
3083 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3084 * to the value high for the pageset p.
3085 */
3086
3087static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3088 unsigned long high)
3089{
3090 struct per_cpu_pages *pcp;
3091
3dfa5721 3092 pcp = &p->pcp;
8ad4b1fb
RS
3093 pcp->high = high;
3094 pcp->batch = max(1UL, high/4);
3095 if ((high/4) > (PAGE_SHIFT * 8))
3096 pcp->batch = PAGE_SHIFT * 8;
3097}
3098
3099
e7c8d5c9
CL
3100#ifdef CONFIG_NUMA
3101/*
2caaad41
CL
3102 * Boot pageset table. One per cpu which is going to be used for all
3103 * zones and all nodes. The parameters will be set in such a way
3104 * that an item put on a list will immediately be handed over to
3105 * the buddy list. This is safe since pageset manipulation is done
3106 * with interrupts disabled.
3107 *
3108 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
3109 *
3110 * The boot_pagesets must be kept even after bootup is complete for
3111 * unused processors and/or zones. They do play a role for bootstrapping
3112 * hotplugged processors.
3113 *
3114 * zoneinfo_show() and maybe other functions do
3115 * not check if the processor is online before following the pageset pointer.
3116 * Other parts of the kernel may not check if the zone is available.
2caaad41 3117 */
88a2a4ac 3118static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
3119
3120/*
3121 * Dynamically allocate memory for the
e7c8d5c9
CL
3122 * per cpu pageset array in struct zone.
3123 */
6292d9aa 3124static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
3125{
3126 struct zone *zone, *dzone;
37c0708d
CL
3127 int node = cpu_to_node(cpu);
3128
3129 node_set_state(node, N_CPU); /* this node has a cpu */
e7c8d5c9 3130
ee99c71c 3131 for_each_populated_zone(zone) {
23316bc8 3132 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
37c0708d 3133 GFP_KERNEL, node);
23316bc8 3134 if (!zone_pcp(zone, cpu))
e7c8d5c9 3135 goto bad;
e7c8d5c9 3136
23316bc8 3137 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
3138
3139 if (percpu_pagelist_fraction)
3140 setup_pagelist_highmark(zone_pcp(zone, cpu),
4365a567 3141 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
3142 }
3143
3144 return 0;
3145bad:
3146 for_each_zone(dzone) {
64191688
AM
3147 if (!populated_zone(dzone))
3148 continue;
e7c8d5c9
CL
3149 if (dzone == zone)
3150 break;
23316bc8 3151 kfree(zone_pcp(dzone, cpu));
364df0eb 3152 zone_pcp(dzone, cpu) = &boot_pageset[cpu];
e7c8d5c9
CL
3153 }
3154 return -ENOMEM;
3155}
3156
3157static inline void free_zone_pagesets(int cpu)
3158{
e7c8d5c9
CL
3159 struct zone *zone;
3160
3161 for_each_zone(zone) {
3162 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3163
f3ef9ead
DR
3164 /* Free per_cpu_pageset if it is slab allocated */
3165 if (pset != &boot_pageset[cpu])
3166 kfree(pset);
364df0eb 3167 zone_pcp(zone, cpu) = &boot_pageset[cpu];
e7c8d5c9 3168 }
e7c8d5c9
CL
3169}
3170
9c7b216d 3171static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
3172 unsigned long action,
3173 void *hcpu)
3174{
3175 int cpu = (long)hcpu;
3176 int ret = NOTIFY_OK;
3177
3178 switch (action) {
ce421c79 3179 case CPU_UP_PREPARE:
8bb78442 3180 case CPU_UP_PREPARE_FROZEN:
ce421c79
AW
3181 if (process_zones(cpu))
3182 ret = NOTIFY_BAD;
3183 break;
3184 case CPU_UP_CANCELED:
8bb78442 3185 case CPU_UP_CANCELED_FROZEN:
ce421c79 3186 case CPU_DEAD:
8bb78442 3187 case CPU_DEAD_FROZEN:
ce421c79
AW
3188 free_zone_pagesets(cpu);
3189 break;
3190 default:
3191 break;
e7c8d5c9
CL
3192 }
3193 return ret;
3194}
3195
74b85f37 3196static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
3197 { &pageset_cpuup_callback, NULL, 0 };
3198
78d9955b 3199void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
3200{
3201 int err;
3202
3203 /* Initialize per_cpu_pageset for cpu 0.
3204 * A cpuup callback will do this for every cpu
3205 * as it comes online
3206 */
3207 err = process_zones(smp_processor_id());
3208 BUG_ON(err);
3209 register_cpu_notifier(&pageset_notifier);
3210}
3211
3212#endif
3213
577a32f6 3214static noinline __init_refok
cca448fe 3215int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3216{
3217 int i;
3218 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3219 size_t alloc_size;
ed8ece2e
DH
3220
3221 /*
3222 * The per-page waitqueue mechanism uses hashed waitqueues
3223 * per zone.
3224 */
02b694de
YG
3225 zone->wait_table_hash_nr_entries =
3226 wait_table_hash_nr_entries(zone_size_pages);
3227 zone->wait_table_bits =
3228 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3229 alloc_size = zone->wait_table_hash_nr_entries
3230 * sizeof(wait_queue_head_t);
3231
cd94b9db 3232 if (!slab_is_available()) {
cca448fe
YG
3233 zone->wait_table = (wait_queue_head_t *)
3234 alloc_bootmem_node(pgdat, alloc_size);
3235 } else {
3236 /*
3237 * This case means that a zone whose size was 0 gets new memory
3238 * via memory hot-add.
3239 * But it may be the case that a new node was hot-added. In
3240 * this case vmalloc() will not be able to use this new node's
3241 * memory - this wait_table must be initialized to use this new
3242 * node itself as well.
3243 * To use this new node's memory, further consideration will be
3244 * necessary.
3245 */
8691f3a7 3246 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3247 }
3248 if (!zone->wait_table)
3249 return -ENOMEM;
ed8ece2e 3250
02b694de 3251 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3252 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3253
3254 return 0;
ed8ece2e
DH
3255}
3256
112067f0
SL
3257static int __zone_pcp_update(void *data)
3258{
3259 struct zone *zone = data;
3260 int cpu;
3261 unsigned long batch = zone_batchsize(zone), flags;
3262
3263 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3264 struct per_cpu_pageset *pset;
3265 struct per_cpu_pages *pcp;
3266
3267 pset = zone_pcp(zone, cpu);
3268 pcp = &pset->pcp;
3269
3270 local_irq_save(flags);
5f8dcc21 3271 free_pcppages_bulk(zone, pcp->count, pcp);
112067f0
SL
3272 setup_pageset(pset, batch);
3273 local_irq_restore(flags);
3274 }
3275 return 0;
3276}
3277
3278void zone_pcp_update(struct zone *zone)
3279{
3280 stop_machine(__zone_pcp_update, zone, NULL);
3281}
3282
c09b4240 3283static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
3284{
3285 int cpu;
3286 unsigned long batch = zone_batchsize(zone);
3287
3288 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3289#ifdef CONFIG_NUMA
3290 /* Early boot. Slab allocator not functional yet */
23316bc8 3291 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
3292 setup_pageset(&boot_pageset[cpu],0);
3293#else
3294 setup_pageset(zone_pcp(zone,cpu), batch);
3295#endif
3296 }
f5335c0f
AB
3297 if (zone->present_pages)
3298 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3299 zone->name, zone->present_pages, batch);
ed8ece2e
DH
3300}
3301
718127cc
YG
3302__meminit int init_currently_empty_zone(struct zone *zone,
3303 unsigned long zone_start_pfn,
a2f3aa02
DH
3304 unsigned long size,
3305 enum memmap_context context)
ed8ece2e
DH
3306{
3307 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3308 int ret;
3309 ret = zone_wait_table_init(zone, size);
3310 if (ret)
3311 return ret;
ed8ece2e
DH
3312 pgdat->nr_zones = zone_idx(zone) + 1;
3313
ed8ece2e
DH
3314 zone->zone_start_pfn = zone_start_pfn;
3315
708614e6
MG
3316 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3317 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3318 pgdat->node_id,
3319 (unsigned long)zone_idx(zone),
3320 zone_start_pfn, (zone_start_pfn + size));
3321
1e548deb 3322 zone_init_free_lists(zone);
718127cc
YG
3323
3324 return 0;
ed8ece2e
DH
3325}
3326
c713216d
MG
3327#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3328/*
3329 * Basic iterator support. Return the first range of PFNs for a node
3330 * Note: nid == MAX_NUMNODES returns first region regardless of node
3331 */
a3142c8e 3332static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3333{
3334 int i;
3335
3336 for (i = 0; i < nr_nodemap_entries; i++)
3337 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3338 return i;
3339
3340 return -1;
3341}
3342
3343/*
3344 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3345 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3346 */
a3142c8e 3347static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3348{
3349 for (index = index + 1; index < nr_nodemap_entries; index++)
3350 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3351 return index;
3352
3353 return -1;
3354}
3355
3356#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3357/*
3358 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3359 * Architectures may implement their own version but if add_active_range()
3360 * was used and there are no special requirements, this is a convenient
3361 * alternative
3362 */
f2dbcfa7 3363int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3364{
3365 int i;
3366
3367 for (i = 0; i < nr_nodemap_entries; i++) {
3368 unsigned long start_pfn = early_node_map[i].start_pfn;
3369 unsigned long end_pfn = early_node_map[i].end_pfn;
3370
3371 if (start_pfn <= pfn && pfn < end_pfn)
3372 return early_node_map[i].nid;
3373 }
cc2559bc
KH
3374 /* This is a memory hole */
3375 return -1;
c713216d
MG
3376}
3377#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3378
f2dbcfa7
KH
3379int __meminit early_pfn_to_nid(unsigned long pfn)
3380{
cc2559bc
KH
3381 int nid;
3382
3383 nid = __early_pfn_to_nid(pfn);
3384 if (nid >= 0)
3385 return nid;
3386 /* just returns 0 */
3387 return 0;
f2dbcfa7
KH
3388}
3389
cc2559bc
KH
3390#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3391bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3392{
3393 int nid;
3394
3395 nid = __early_pfn_to_nid(pfn);
3396 if (nid >= 0 && nid != node)
3397 return false;
3398 return true;
3399}
3400#endif
f2dbcfa7 3401
c713216d
MG
3402/* Basic iterator support to walk early_node_map[] */
3403#define for_each_active_range_index_in_nid(i, nid) \
3404 for (i = first_active_region_index_in_nid(nid); i != -1; \
3405 i = next_active_region_index_in_nid(i, nid))
3406
3407/**
3408 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3409 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3410 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3411 *
3412 * If an architecture guarantees that all ranges registered with
3413 * add_active_ranges() contain no holes and may be freed, this
3414 * this function may be used instead of calling free_bootmem() manually.
3415 */
3416void __init free_bootmem_with_active_regions(int nid,
3417 unsigned long max_low_pfn)
3418{
3419 int i;
3420
3421 for_each_active_range_index_in_nid(i, nid) {
3422 unsigned long size_pages = 0;
3423 unsigned long end_pfn = early_node_map[i].end_pfn;
3424
3425 if (early_node_map[i].start_pfn >= max_low_pfn)
3426 continue;
3427
3428 if (end_pfn > max_low_pfn)
3429 end_pfn = max_low_pfn;
3430
3431 size_pages = end_pfn - early_node_map[i].start_pfn;
3432 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3433 PFN_PHYS(early_node_map[i].start_pfn),
3434 size_pages << PAGE_SHIFT);
3435 }
3436}
3437
08677214
YL
3438int __init add_from_early_node_map(struct range *range, int az,
3439 int nr_range, int nid)
3440{
3441 int i;
3442 u64 start, end;
3443
3444 /* need to go over early_node_map to find out good range for node */
3445 for_each_active_range_index_in_nid(i, nid) {
3446 start = early_node_map[i].start_pfn;
3447 end = early_node_map[i].end_pfn;
3448 nr_range = add_range(range, az, nr_range, start, end);
3449 }
3450 return nr_range;
3451}
3452
3453void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3454 u64 goal, u64 limit)
3455{
3456 int i;
3457 void *ptr;
3458
3459 /* need to go over early_node_map to find out good range for node */
3460 for_each_active_range_index_in_nid(i, nid) {
3461 u64 addr;
3462 u64 ei_start, ei_last;
3463
3464 ei_last = early_node_map[i].end_pfn;
3465 ei_last <<= PAGE_SHIFT;
3466 ei_start = early_node_map[i].start_pfn;
3467 ei_start <<= PAGE_SHIFT;
3468 addr = find_early_area(ei_start, ei_last,
3469 goal, limit, size, align);
3470
3471 if (addr == -1ULL)
3472 continue;
3473
3474#if 0
3475 printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
3476 nid,
3477 ei_start, ei_last, goal, limit, size,
3478 align, addr);
3479#endif
3480
3481 ptr = phys_to_virt(addr);
3482 memset(ptr, 0, size);
3483 reserve_early_without_check(addr, addr + size, "BOOTMEM");
3484 return ptr;
3485 }
3486
3487 return NULL;
3488}
3489
3490
b5bc6c0e
YL
3491void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3492{
3493 int i;
d52d53b8 3494 int ret;
b5bc6c0e 3495
d52d53b8
YL
3496 for_each_active_range_index_in_nid(i, nid) {
3497 ret = work_fn(early_node_map[i].start_pfn,
3498 early_node_map[i].end_pfn, data);
3499 if (ret)
3500 break;
3501 }
b5bc6c0e 3502}
c713216d
MG
3503/**
3504 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3505 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3506 *
3507 * If an architecture guarantees that all ranges registered with
3508 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3509 * function may be used instead of calling memory_present() manually.
c713216d
MG
3510 */
3511void __init sparse_memory_present_with_active_regions(int nid)
3512{
3513 int i;
3514
3515 for_each_active_range_index_in_nid(i, nid)
3516 memory_present(early_node_map[i].nid,
3517 early_node_map[i].start_pfn,
3518 early_node_map[i].end_pfn);
3519}
3520
3521/**
3522 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3523 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3524 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3525 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3526 *
3527 * It returns the start and end page frame of a node based on information
3528 * provided by an arch calling add_active_range(). If called for a node
3529 * with no available memory, a warning is printed and the start and end
88ca3b94 3530 * PFNs will be 0.
c713216d 3531 */
a3142c8e 3532void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3533 unsigned long *start_pfn, unsigned long *end_pfn)
3534{
3535 int i;
3536 *start_pfn = -1UL;
3537 *end_pfn = 0;
3538
3539 for_each_active_range_index_in_nid(i, nid) {
3540 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3541 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3542 }
3543
633c0666 3544 if (*start_pfn == -1UL)
c713216d 3545 *start_pfn = 0;
c713216d
MG
3546}
3547
2a1e274a
MG
3548/*
3549 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3550 * assumption is made that zones within a node are ordered in monotonic
3551 * increasing memory addresses so that the "highest" populated zone is used
3552 */
b69a7288 3553static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3554{
3555 int zone_index;
3556 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3557 if (zone_index == ZONE_MOVABLE)
3558 continue;
3559
3560 if (arch_zone_highest_possible_pfn[zone_index] >
3561 arch_zone_lowest_possible_pfn[zone_index])
3562 break;
3563 }
3564
3565 VM_BUG_ON(zone_index == -1);
3566 movable_zone = zone_index;
3567}
3568
3569/*
3570 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3571 * because it is sized independant of architecture. Unlike the other zones,
3572 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3573 * in each node depending on the size of each node and how evenly kernelcore
3574 * is distributed. This helper function adjusts the zone ranges
3575 * provided by the architecture for a given node by using the end of the
3576 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3577 * zones within a node are in order of monotonic increases memory addresses
3578 */
b69a7288 3579static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3580 unsigned long zone_type,
3581 unsigned long node_start_pfn,
3582 unsigned long node_end_pfn,
3583 unsigned long *zone_start_pfn,
3584 unsigned long *zone_end_pfn)
3585{
3586 /* Only adjust if ZONE_MOVABLE is on this node */
3587 if (zone_movable_pfn[nid]) {
3588 /* Size ZONE_MOVABLE */
3589 if (zone_type == ZONE_MOVABLE) {
3590 *zone_start_pfn = zone_movable_pfn[nid];
3591 *zone_end_pfn = min(node_end_pfn,
3592 arch_zone_highest_possible_pfn[movable_zone]);
3593
3594 /* Adjust for ZONE_MOVABLE starting within this range */
3595 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3596 *zone_end_pfn > zone_movable_pfn[nid]) {
3597 *zone_end_pfn = zone_movable_pfn[nid];
3598
3599 /* Check if this whole range is within ZONE_MOVABLE */
3600 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3601 *zone_start_pfn = *zone_end_pfn;
3602 }
3603}
3604
c713216d
MG
3605/*
3606 * Return the number of pages a zone spans in a node, including holes
3607 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3608 */
6ea6e688 3609static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3610 unsigned long zone_type,
3611 unsigned long *ignored)
3612{
3613 unsigned long node_start_pfn, node_end_pfn;
3614 unsigned long zone_start_pfn, zone_end_pfn;
3615
3616 /* Get the start and end of the node and zone */
3617 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3618 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3619 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3620 adjust_zone_range_for_zone_movable(nid, zone_type,
3621 node_start_pfn, node_end_pfn,
3622 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3623
3624 /* Check that this node has pages within the zone's required range */
3625 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3626 return 0;
3627
3628 /* Move the zone boundaries inside the node if necessary */
3629 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3630 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3631
3632 /* Return the spanned pages */
3633 return zone_end_pfn - zone_start_pfn;
3634}
3635
3636/*
3637 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3638 * then all holes in the requested range will be accounted for.
c713216d 3639 */
32996250 3640unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3641 unsigned long range_start_pfn,
3642 unsigned long range_end_pfn)
3643{
3644 int i = 0;
3645 unsigned long prev_end_pfn = 0, hole_pages = 0;
3646 unsigned long start_pfn;
3647
3648 /* Find the end_pfn of the first active range of pfns in the node */
3649 i = first_active_region_index_in_nid(nid);
3650 if (i == -1)
3651 return 0;
3652
b5445f95
MG
3653 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3654
9c7cd687
MG
3655 /* Account for ranges before physical memory on this node */
3656 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3657 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3658
3659 /* Find all holes for the zone within the node */
3660 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3661
3662 /* No need to continue if prev_end_pfn is outside the zone */
3663 if (prev_end_pfn >= range_end_pfn)
3664 break;
3665
3666 /* Make sure the end of the zone is not within the hole */
3667 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3668 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3669
3670 /* Update the hole size cound and move on */
3671 if (start_pfn > range_start_pfn) {
3672 BUG_ON(prev_end_pfn > start_pfn);
3673 hole_pages += start_pfn - prev_end_pfn;
3674 }
3675 prev_end_pfn = early_node_map[i].end_pfn;
3676 }
3677
9c7cd687
MG
3678 /* Account for ranges past physical memory on this node */
3679 if (range_end_pfn > prev_end_pfn)
0c6cb974 3680 hole_pages += range_end_pfn -
9c7cd687
MG
3681 max(range_start_pfn, prev_end_pfn);
3682
c713216d
MG
3683 return hole_pages;
3684}
3685
3686/**
3687 * absent_pages_in_range - Return number of page frames in holes within a range
3688 * @start_pfn: The start PFN to start searching for holes
3689 * @end_pfn: The end PFN to stop searching for holes
3690 *
88ca3b94 3691 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3692 */
3693unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3694 unsigned long end_pfn)
3695{
3696 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3697}
3698
3699/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3700static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3701 unsigned long zone_type,
3702 unsigned long *ignored)
3703{
9c7cd687
MG
3704 unsigned long node_start_pfn, node_end_pfn;
3705 unsigned long zone_start_pfn, zone_end_pfn;
3706
3707 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3708 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3709 node_start_pfn);
3710 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3711 node_end_pfn);
3712
2a1e274a
MG
3713 adjust_zone_range_for_zone_movable(nid, zone_type,
3714 node_start_pfn, node_end_pfn,
3715 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3716 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3717}
0e0b864e 3718
c713216d 3719#else
6ea6e688 3720static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3721 unsigned long zone_type,
3722 unsigned long *zones_size)
3723{
3724 return zones_size[zone_type];
3725}
3726
6ea6e688 3727static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3728 unsigned long zone_type,
3729 unsigned long *zholes_size)
3730{
3731 if (!zholes_size)
3732 return 0;
3733
3734 return zholes_size[zone_type];
3735}
0e0b864e 3736
c713216d
MG
3737#endif
3738
a3142c8e 3739static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3740 unsigned long *zones_size, unsigned long *zholes_size)
3741{
3742 unsigned long realtotalpages, totalpages = 0;
3743 enum zone_type i;
3744
3745 for (i = 0; i < MAX_NR_ZONES; i++)
3746 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3747 zones_size);
3748 pgdat->node_spanned_pages = totalpages;
3749
3750 realtotalpages = totalpages;
3751 for (i = 0; i < MAX_NR_ZONES; i++)
3752 realtotalpages -=
3753 zone_absent_pages_in_node(pgdat->node_id, i,
3754 zholes_size);
3755 pgdat->node_present_pages = realtotalpages;
3756 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3757 realtotalpages);
3758}
3759
835c134e
MG
3760#ifndef CONFIG_SPARSEMEM
3761/*
3762 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
3763 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3764 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
3765 * round what is now in bits to nearest long in bits, then return it in
3766 * bytes.
3767 */
3768static unsigned long __init usemap_size(unsigned long zonesize)
3769{
3770 unsigned long usemapsize;
3771
d9c23400
MG
3772 usemapsize = roundup(zonesize, pageblock_nr_pages);
3773 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
3774 usemapsize *= NR_PAGEBLOCK_BITS;
3775 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3776
3777 return usemapsize / 8;
3778}
3779
3780static void __init setup_usemap(struct pglist_data *pgdat,
3781 struct zone *zone, unsigned long zonesize)
3782{
3783 unsigned long usemapsize = usemap_size(zonesize);
3784 zone->pageblock_flags = NULL;
58a01a45 3785 if (usemapsize)
835c134e 3786 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
3787}
3788#else
3789static void inline setup_usemap(struct pglist_data *pgdat,
3790 struct zone *zone, unsigned long zonesize) {}
3791#endif /* CONFIG_SPARSEMEM */
3792
d9c23400 3793#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
3794
3795/* Return a sensible default order for the pageblock size. */
3796static inline int pageblock_default_order(void)
3797{
3798 if (HPAGE_SHIFT > PAGE_SHIFT)
3799 return HUGETLB_PAGE_ORDER;
3800
3801 return MAX_ORDER-1;
3802}
3803
d9c23400
MG
3804/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3805static inline void __init set_pageblock_order(unsigned int order)
3806{
3807 /* Check that pageblock_nr_pages has not already been setup */
3808 if (pageblock_order)
3809 return;
3810
3811 /*
3812 * Assume the largest contiguous order of interest is a huge page.
3813 * This value may be variable depending on boot parameters on IA64
3814 */
3815 pageblock_order = order;
3816}
3817#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3818
ba72cb8c
MG
3819/*
3820 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3821 * and pageblock_default_order() are unused as pageblock_order is set
3822 * at compile-time. See include/linux/pageblock-flags.h for the values of
3823 * pageblock_order based on the kernel config
3824 */
3825static inline int pageblock_default_order(unsigned int order)
3826{
3827 return MAX_ORDER-1;
3828}
d9c23400
MG
3829#define set_pageblock_order(x) do {} while (0)
3830
3831#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3832
1da177e4
LT
3833/*
3834 * Set up the zone data structures:
3835 * - mark all pages reserved
3836 * - mark all memory queues empty
3837 * - clear the memory bitmaps
3838 */
b5a0e011 3839static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3840 unsigned long *zones_size, unsigned long *zholes_size)
3841{
2f1b6248 3842 enum zone_type j;
ed8ece2e 3843 int nid = pgdat->node_id;
1da177e4 3844 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3845 int ret;
1da177e4 3846
208d54e5 3847 pgdat_resize_init(pgdat);
1da177e4
LT
3848 pgdat->nr_zones = 0;
3849 init_waitqueue_head(&pgdat->kswapd_wait);
3850 pgdat->kswapd_max_order = 0;
52d4b9ac 3851 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
3852
3853 for (j = 0; j < MAX_NR_ZONES; j++) {
3854 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3855 unsigned long size, realsize, memmap_pages;
b69408e8 3856 enum lru_list l;
1da177e4 3857
c713216d
MG
3858 size = zone_spanned_pages_in_node(nid, j, zones_size);
3859 realsize = size - zone_absent_pages_in_node(nid, j,
3860 zholes_size);
1da177e4 3861
0e0b864e
MG
3862 /*
3863 * Adjust realsize so that it accounts for how much memory
3864 * is used by this zone for memmap. This affects the watermark
3865 * and per-cpu initialisations
3866 */
f7232154
JW
3867 memmap_pages =
3868 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
3869 if (realsize >= memmap_pages) {
3870 realsize -= memmap_pages;
5594c8c8
YL
3871 if (memmap_pages)
3872 printk(KERN_DEBUG
3873 " %s zone: %lu pages used for memmap\n",
3874 zone_names[j], memmap_pages);
0e0b864e
MG
3875 } else
3876 printk(KERN_WARNING
3877 " %s zone: %lu pages exceeds realsize %lu\n",
3878 zone_names[j], memmap_pages, realsize);
3879
6267276f
CL
3880 /* Account for reserved pages */
3881 if (j == 0 && realsize > dma_reserve) {
0e0b864e 3882 realsize -= dma_reserve;
d903ef9f 3883 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 3884 zone_names[0], dma_reserve);
0e0b864e
MG
3885 }
3886
98d2b0eb 3887 if (!is_highmem_idx(j))
1da177e4
LT
3888 nr_kernel_pages += realsize;
3889 nr_all_pages += realsize;
3890
3891 zone->spanned_pages = size;
3892 zone->present_pages = realsize;
9614634f 3893#ifdef CONFIG_NUMA
d5f541ed 3894 zone->node = nid;
8417bba4 3895 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 3896 / 100;
0ff38490 3897 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 3898#endif
1da177e4
LT
3899 zone->name = zone_names[j];
3900 spin_lock_init(&zone->lock);
3901 spin_lock_init(&zone->lru_lock);
bdc8cb98 3902 zone_seqlock_init(zone);
1da177e4 3903 zone->zone_pgdat = pgdat;
1da177e4 3904
3bb1a852 3905 zone->prev_priority = DEF_PRIORITY;
1da177e4 3906
ed8ece2e 3907 zone_pcp_init(zone);
b69408e8
CL
3908 for_each_lru(l) {
3909 INIT_LIST_HEAD(&zone->lru[l].list);
f8629631 3910 zone->reclaim_stat.nr_saved_scan[l] = 0;
b69408e8 3911 }
6e901571
KM
3912 zone->reclaim_stat.recent_rotated[0] = 0;
3913 zone->reclaim_stat.recent_rotated[1] = 0;
3914 zone->reclaim_stat.recent_scanned[0] = 0;
3915 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 3916 zap_zone_vm_stats(zone);
e815af95 3917 zone->flags = 0;
1da177e4
LT
3918 if (!size)
3919 continue;
3920
ba72cb8c 3921 set_pageblock_order(pageblock_default_order());
835c134e 3922 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
3923 ret = init_currently_empty_zone(zone, zone_start_pfn,
3924 size, MEMMAP_EARLY);
718127cc 3925 BUG_ON(ret);
76cdd58e 3926 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 3927 zone_start_pfn += size;
1da177e4
LT
3928 }
3929}
3930
577a32f6 3931static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 3932{
1da177e4
LT
3933 /* Skip empty nodes */
3934 if (!pgdat->node_spanned_pages)
3935 return;
3936
d41dee36 3937#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
3938 /* ia64 gets its own node_mem_map, before this, without bootmem */
3939 if (!pgdat->node_mem_map) {
e984bb43 3940 unsigned long size, start, end;
d41dee36
AW
3941 struct page *map;
3942
e984bb43
BP
3943 /*
3944 * The zone's endpoints aren't required to be MAX_ORDER
3945 * aligned but the node_mem_map endpoints must be in order
3946 * for the buddy allocator to function correctly.
3947 */
3948 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3949 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3950 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3951 size = (end - start) * sizeof(struct page);
6f167ec7
DH
3952 map = alloc_remap(pgdat->node_id, size);
3953 if (!map)
3954 map = alloc_bootmem_node(pgdat, size);
e984bb43 3955 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 3956 }
12d810c1 3957#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3958 /*
3959 * With no DISCONTIG, the global mem_map is just set as node 0's
3960 */
c713216d 3961 if (pgdat == NODE_DATA(0)) {
1da177e4 3962 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
3963#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3964 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 3965 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
3966#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3967 }
1da177e4 3968#endif
d41dee36 3969#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
3970}
3971
9109fb7b
JW
3972void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3973 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 3974{
9109fb7b
JW
3975 pg_data_t *pgdat = NODE_DATA(nid);
3976
1da177e4
LT
3977 pgdat->node_id = nid;
3978 pgdat->node_start_pfn = node_start_pfn;
c713216d 3979 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
3980
3981 alloc_node_mem_map(pgdat);
e8c27ac9
YL
3982#ifdef CONFIG_FLAT_NODE_MEM_MAP
3983 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3984 nid, (unsigned long)pgdat,
3985 (unsigned long)pgdat->node_mem_map);
3986#endif
1da177e4
LT
3987
3988 free_area_init_core(pgdat, zones_size, zholes_size);
3989}
3990
c713216d 3991#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
3992
3993#if MAX_NUMNODES > 1
3994/*
3995 * Figure out the number of possible node ids.
3996 */
3997static void __init setup_nr_node_ids(void)
3998{
3999 unsigned int node;
4000 unsigned int highest = 0;
4001
4002 for_each_node_mask(node, node_possible_map)
4003 highest = node;
4004 nr_node_ids = highest + 1;
4005}
4006#else
4007static inline void setup_nr_node_ids(void)
4008{
4009}
4010#endif
4011
c713216d
MG
4012/**
4013 * add_active_range - Register a range of PFNs backed by physical memory
4014 * @nid: The node ID the range resides on
4015 * @start_pfn: The start PFN of the available physical memory
4016 * @end_pfn: The end PFN of the available physical memory
4017 *
4018 * These ranges are stored in an early_node_map[] and later used by
4019 * free_area_init_nodes() to calculate zone sizes and holes. If the
4020 * range spans a memory hole, it is up to the architecture to ensure
4021 * the memory is not freed by the bootmem allocator. If possible
4022 * the range being registered will be merged with existing ranges.
4023 */
4024void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4025 unsigned long end_pfn)
4026{
4027 int i;
4028
6b74ab97
MG
4029 mminit_dprintk(MMINIT_TRACE, "memory_register",
4030 "Entering add_active_range(%d, %#lx, %#lx) "
4031 "%d entries of %d used\n",
4032 nid, start_pfn, end_pfn,
4033 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 4034
2dbb51c4
MG
4035 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4036
c713216d
MG
4037 /* Merge with existing active regions if possible */
4038 for (i = 0; i < nr_nodemap_entries; i++) {
4039 if (early_node_map[i].nid != nid)
4040 continue;
4041
4042 /* Skip if an existing region covers this new one */
4043 if (start_pfn >= early_node_map[i].start_pfn &&
4044 end_pfn <= early_node_map[i].end_pfn)
4045 return;
4046
4047 /* Merge forward if suitable */
4048 if (start_pfn <= early_node_map[i].end_pfn &&
4049 end_pfn > early_node_map[i].end_pfn) {
4050 early_node_map[i].end_pfn = end_pfn;
4051 return;
4052 }
4053
4054 /* Merge backward if suitable */
d2dbe08d 4055 if (start_pfn < early_node_map[i].start_pfn &&
c713216d
MG
4056 end_pfn >= early_node_map[i].start_pfn) {
4057 early_node_map[i].start_pfn = start_pfn;
4058 return;
4059 }
4060 }
4061
4062 /* Check that early_node_map is large enough */
4063 if (i >= MAX_ACTIVE_REGIONS) {
4064 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4065 MAX_ACTIVE_REGIONS);
4066 return;
4067 }
4068
4069 early_node_map[i].nid = nid;
4070 early_node_map[i].start_pfn = start_pfn;
4071 early_node_map[i].end_pfn = end_pfn;
4072 nr_nodemap_entries = i + 1;
4073}
4074
4075/**
cc1050ba 4076 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 4077 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
4078 * @start_pfn: The new PFN of the range
4079 * @end_pfn: The new PFN of the range
c713216d
MG
4080 *
4081 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
4082 * The map is kept near the end physical page range that has already been
4083 * registered. This function allows an arch to shrink an existing registered
4084 * range.
c713216d 4085 */
cc1050ba
YL
4086void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4087 unsigned long end_pfn)
c713216d 4088{
cc1a9d86
YL
4089 int i, j;
4090 int removed = 0;
c713216d 4091
cc1050ba
YL
4092 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4093 nid, start_pfn, end_pfn);
4094
c713216d 4095 /* Find the old active region end and shrink */
cc1a9d86 4096 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
4097 if (early_node_map[i].start_pfn >= start_pfn &&
4098 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 4099 /* clear it */
cc1050ba 4100 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
4101 early_node_map[i].end_pfn = 0;
4102 removed = 1;
4103 continue;
4104 }
cc1050ba
YL
4105 if (early_node_map[i].start_pfn < start_pfn &&
4106 early_node_map[i].end_pfn > start_pfn) {
4107 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4108 early_node_map[i].end_pfn = start_pfn;
4109 if (temp_end_pfn > end_pfn)
4110 add_active_range(nid, end_pfn, temp_end_pfn);
4111 continue;
4112 }
4113 if (early_node_map[i].start_pfn >= start_pfn &&
4114 early_node_map[i].end_pfn > end_pfn &&
4115 early_node_map[i].start_pfn < end_pfn) {
4116 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 4117 continue;
c713216d 4118 }
cc1a9d86
YL
4119 }
4120
4121 if (!removed)
4122 return;
4123
4124 /* remove the blank ones */
4125 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4126 if (early_node_map[i].nid != nid)
4127 continue;
4128 if (early_node_map[i].end_pfn)
4129 continue;
4130 /* we found it, get rid of it */
4131 for (j = i; j < nr_nodemap_entries - 1; j++)
4132 memcpy(&early_node_map[j], &early_node_map[j+1],
4133 sizeof(early_node_map[j]));
4134 j = nr_nodemap_entries - 1;
4135 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4136 nr_nodemap_entries--;
4137 }
c713216d
MG
4138}
4139
4140/**
4141 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 4142 *
c713216d
MG
4143 * During discovery, it may be found that a table like SRAT is invalid
4144 * and an alternative discovery method must be used. This function removes
4145 * all currently registered regions.
4146 */
88ca3b94 4147void __init remove_all_active_ranges(void)
c713216d
MG
4148{
4149 memset(early_node_map, 0, sizeof(early_node_map));
4150 nr_nodemap_entries = 0;
4151}
4152
4153/* Compare two active node_active_regions */
4154static int __init cmp_node_active_region(const void *a, const void *b)
4155{
4156 struct node_active_region *arange = (struct node_active_region *)a;
4157 struct node_active_region *brange = (struct node_active_region *)b;
4158
4159 /* Done this way to avoid overflows */
4160 if (arange->start_pfn > brange->start_pfn)
4161 return 1;
4162 if (arange->start_pfn < brange->start_pfn)
4163 return -1;
4164
4165 return 0;
4166}
4167
4168/* sort the node_map by start_pfn */
32996250 4169void __init sort_node_map(void)
c713216d
MG
4170{
4171 sort(early_node_map, (size_t)nr_nodemap_entries,
4172 sizeof(struct node_active_region),
4173 cmp_node_active_region, NULL);
4174}
4175
a6af2bc3 4176/* Find the lowest pfn for a node */
b69a7288 4177static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
4178{
4179 int i;
a6af2bc3 4180 unsigned long min_pfn = ULONG_MAX;
1abbfb41 4181
c713216d
MG
4182 /* Assuming a sorted map, the first range found has the starting pfn */
4183 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 4184 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 4185
a6af2bc3
MG
4186 if (min_pfn == ULONG_MAX) {
4187 printk(KERN_WARNING
2bc0d261 4188 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4189 return 0;
4190 }
4191
4192 return min_pfn;
c713216d
MG
4193}
4194
4195/**
4196 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4197 *
4198 * It returns the minimum PFN based on information provided via
88ca3b94 4199 * add_active_range().
c713216d
MG
4200 */
4201unsigned long __init find_min_pfn_with_active_regions(void)
4202{
4203 return find_min_pfn_for_node(MAX_NUMNODES);
4204}
4205
37b07e41
LS
4206/*
4207 * early_calculate_totalpages()
4208 * Sum pages in active regions for movable zone.
4209 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4210 */
484f51f8 4211static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
4212{
4213 int i;
4214 unsigned long totalpages = 0;
4215
37b07e41
LS
4216 for (i = 0; i < nr_nodemap_entries; i++) {
4217 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 4218 early_node_map[i].start_pfn;
37b07e41
LS
4219 totalpages += pages;
4220 if (pages)
4221 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4222 }
4223 return totalpages;
7e63efef
MG
4224}
4225
2a1e274a
MG
4226/*
4227 * Find the PFN the Movable zone begins in each node. Kernel memory
4228 * is spread evenly between nodes as long as the nodes have enough
4229 * memory. When they don't, some nodes will have more kernelcore than
4230 * others
4231 */
b69a7288 4232static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
4233{
4234 int i, nid;
4235 unsigned long usable_startpfn;
4236 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4237 /* save the state before borrow the nodemask */
4238 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4239 unsigned long totalpages = early_calculate_totalpages();
4240 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4241
7e63efef
MG
4242 /*
4243 * If movablecore was specified, calculate what size of
4244 * kernelcore that corresponds so that memory usable for
4245 * any allocation type is evenly spread. If both kernelcore
4246 * and movablecore are specified, then the value of kernelcore
4247 * will be used for required_kernelcore if it's greater than
4248 * what movablecore would have allowed.
4249 */
4250 if (required_movablecore) {
7e63efef
MG
4251 unsigned long corepages;
4252
4253 /*
4254 * Round-up so that ZONE_MOVABLE is at least as large as what
4255 * was requested by the user
4256 */
4257 required_movablecore =
4258 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4259 corepages = totalpages - required_movablecore;
4260
4261 required_kernelcore = max(required_kernelcore, corepages);
4262 }
4263
2a1e274a
MG
4264 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4265 if (!required_kernelcore)
66918dcd 4266 goto out;
2a1e274a
MG
4267
4268 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4269 find_usable_zone_for_movable();
4270 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4271
4272restart:
4273 /* Spread kernelcore memory as evenly as possible throughout nodes */
4274 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4275 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
4276 /*
4277 * Recalculate kernelcore_node if the division per node
4278 * now exceeds what is necessary to satisfy the requested
4279 * amount of memory for the kernel
4280 */
4281 if (required_kernelcore < kernelcore_node)
4282 kernelcore_node = required_kernelcore / usable_nodes;
4283
4284 /*
4285 * As the map is walked, we track how much memory is usable
4286 * by the kernel using kernelcore_remaining. When it is
4287 * 0, the rest of the node is usable by ZONE_MOVABLE
4288 */
4289 kernelcore_remaining = kernelcore_node;
4290
4291 /* Go through each range of PFNs within this node */
4292 for_each_active_range_index_in_nid(i, nid) {
4293 unsigned long start_pfn, end_pfn;
4294 unsigned long size_pages;
4295
4296 start_pfn = max(early_node_map[i].start_pfn,
4297 zone_movable_pfn[nid]);
4298 end_pfn = early_node_map[i].end_pfn;
4299 if (start_pfn >= end_pfn)
4300 continue;
4301
4302 /* Account for what is only usable for kernelcore */
4303 if (start_pfn < usable_startpfn) {
4304 unsigned long kernel_pages;
4305 kernel_pages = min(end_pfn, usable_startpfn)
4306 - start_pfn;
4307
4308 kernelcore_remaining -= min(kernel_pages,
4309 kernelcore_remaining);
4310 required_kernelcore -= min(kernel_pages,
4311 required_kernelcore);
4312
4313 /* Continue if range is now fully accounted */
4314 if (end_pfn <= usable_startpfn) {
4315
4316 /*
4317 * Push zone_movable_pfn to the end so
4318 * that if we have to rebalance
4319 * kernelcore across nodes, we will
4320 * not double account here
4321 */
4322 zone_movable_pfn[nid] = end_pfn;
4323 continue;
4324 }
4325 start_pfn = usable_startpfn;
4326 }
4327
4328 /*
4329 * The usable PFN range for ZONE_MOVABLE is from
4330 * start_pfn->end_pfn. Calculate size_pages as the
4331 * number of pages used as kernelcore
4332 */
4333 size_pages = end_pfn - start_pfn;
4334 if (size_pages > kernelcore_remaining)
4335 size_pages = kernelcore_remaining;
4336 zone_movable_pfn[nid] = start_pfn + size_pages;
4337
4338 /*
4339 * Some kernelcore has been met, update counts and
4340 * break if the kernelcore for this node has been
4341 * satisified
4342 */
4343 required_kernelcore -= min(required_kernelcore,
4344 size_pages);
4345 kernelcore_remaining -= size_pages;
4346 if (!kernelcore_remaining)
4347 break;
4348 }
4349 }
4350
4351 /*
4352 * If there is still required_kernelcore, we do another pass with one
4353 * less node in the count. This will push zone_movable_pfn[nid] further
4354 * along on the nodes that still have memory until kernelcore is
4355 * satisified
4356 */
4357 usable_nodes--;
4358 if (usable_nodes && required_kernelcore > usable_nodes)
4359 goto restart;
4360
4361 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4362 for (nid = 0; nid < MAX_NUMNODES; nid++)
4363 zone_movable_pfn[nid] =
4364 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4365
4366out:
4367 /* restore the node_state */
4368 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4369}
4370
37b07e41
LS
4371/* Any regular memory on that node ? */
4372static void check_for_regular_memory(pg_data_t *pgdat)
4373{
4374#ifdef CONFIG_HIGHMEM
4375 enum zone_type zone_type;
4376
4377 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4378 struct zone *zone = &pgdat->node_zones[zone_type];
4379 if (zone->present_pages)
4380 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4381 }
4382#endif
4383}
4384
c713216d
MG
4385/**
4386 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4387 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4388 *
4389 * This will call free_area_init_node() for each active node in the system.
4390 * Using the page ranges provided by add_active_range(), the size of each
4391 * zone in each node and their holes is calculated. If the maximum PFN
4392 * between two adjacent zones match, it is assumed that the zone is empty.
4393 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4394 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4395 * starts where the previous one ended. For example, ZONE_DMA32 starts
4396 * at arch_max_dma_pfn.
4397 */
4398void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4399{
4400 unsigned long nid;
db99100d 4401 int i;
c713216d 4402
a6af2bc3
MG
4403 /* Sort early_node_map as initialisation assumes it is sorted */
4404 sort_node_map();
4405
c713216d
MG
4406 /* Record where the zone boundaries are */
4407 memset(arch_zone_lowest_possible_pfn, 0,
4408 sizeof(arch_zone_lowest_possible_pfn));
4409 memset(arch_zone_highest_possible_pfn, 0,
4410 sizeof(arch_zone_highest_possible_pfn));
4411 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4412 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4413 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4414 if (i == ZONE_MOVABLE)
4415 continue;
c713216d
MG
4416 arch_zone_lowest_possible_pfn[i] =
4417 arch_zone_highest_possible_pfn[i-1];
4418 arch_zone_highest_possible_pfn[i] =
4419 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4420 }
2a1e274a
MG
4421 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4422 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4423
4424 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4425 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4426 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4427
c713216d
MG
4428 /* Print out the zone ranges */
4429 printk("Zone PFN ranges:\n");
2a1e274a
MG
4430 for (i = 0; i < MAX_NR_ZONES; i++) {
4431 if (i == ZONE_MOVABLE)
4432 continue;
5dab8ec1 4433 printk(" %-8s %0#10lx -> %0#10lx\n",
c713216d
MG
4434 zone_names[i],
4435 arch_zone_lowest_possible_pfn[i],
4436 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4437 }
4438
4439 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4440 printk("Movable zone start PFN for each node\n");
4441 for (i = 0; i < MAX_NUMNODES; i++) {
4442 if (zone_movable_pfn[i])
4443 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4444 }
c713216d
MG
4445
4446 /* Print out the early_node_map[] */
4447 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4448 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4449 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4450 early_node_map[i].start_pfn,
4451 early_node_map[i].end_pfn);
4452
4453 /* Initialise every node */
708614e6 4454 mminit_verify_pageflags_layout();
8ef82866 4455 setup_nr_node_ids();
c713216d
MG
4456 for_each_online_node(nid) {
4457 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4458 free_area_init_node(nid, NULL,
c713216d 4459 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4460
4461 /* Any memory on that node */
4462 if (pgdat->node_present_pages)
4463 node_set_state(nid, N_HIGH_MEMORY);
4464 check_for_regular_memory(pgdat);
c713216d
MG
4465 }
4466}
2a1e274a 4467
7e63efef 4468static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4469{
4470 unsigned long long coremem;
4471 if (!p)
4472 return -EINVAL;
4473
4474 coremem = memparse(p, &p);
7e63efef 4475 *core = coremem >> PAGE_SHIFT;
2a1e274a 4476
7e63efef 4477 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4478 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4479
4480 return 0;
4481}
ed7ed365 4482
7e63efef
MG
4483/*
4484 * kernelcore=size sets the amount of memory for use for allocations that
4485 * cannot be reclaimed or migrated.
4486 */
4487static int __init cmdline_parse_kernelcore(char *p)
4488{
4489 return cmdline_parse_core(p, &required_kernelcore);
4490}
4491
4492/*
4493 * movablecore=size sets the amount of memory for use for allocations that
4494 * can be reclaimed or migrated.
4495 */
4496static int __init cmdline_parse_movablecore(char *p)
4497{
4498 return cmdline_parse_core(p, &required_movablecore);
4499}
4500
ed7ed365 4501early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4502early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4503
c713216d
MG
4504#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4505
0e0b864e 4506/**
88ca3b94
RD
4507 * set_dma_reserve - set the specified number of pages reserved in the first zone
4508 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4509 *
4510 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4511 * In the DMA zone, a significant percentage may be consumed by kernel image
4512 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4513 * function may optionally be used to account for unfreeable pages in the
4514 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4515 * smaller per-cpu batchsize.
0e0b864e
MG
4516 */
4517void __init set_dma_reserve(unsigned long new_dma_reserve)
4518{
4519 dma_reserve = new_dma_reserve;
4520}
4521
93b7504e 4522#ifndef CONFIG_NEED_MULTIPLE_NODES
08677214
YL
4523struct pglist_data __refdata contig_page_data = {
4524#ifndef CONFIG_NO_BOOTMEM
4525 .bdata = &bootmem_node_data[0]
4526#endif
4527 };
1da177e4 4528EXPORT_SYMBOL(contig_page_data);
93b7504e 4529#endif
1da177e4
LT
4530
4531void __init free_area_init(unsigned long *zones_size)
4532{
9109fb7b 4533 free_area_init_node(0, zones_size,
1da177e4
LT
4534 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4535}
1da177e4 4536
1da177e4
LT
4537static int page_alloc_cpu_notify(struct notifier_block *self,
4538 unsigned long action, void *hcpu)
4539{
4540 int cpu = (unsigned long)hcpu;
1da177e4 4541
8bb78442 4542 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4543 drain_pages(cpu);
4544
4545 /*
4546 * Spill the event counters of the dead processor
4547 * into the current processors event counters.
4548 * This artificially elevates the count of the current
4549 * processor.
4550 */
f8891e5e 4551 vm_events_fold_cpu(cpu);
9f8f2172
CL
4552
4553 /*
4554 * Zero the differential counters of the dead processor
4555 * so that the vm statistics are consistent.
4556 *
4557 * This is only okay since the processor is dead and cannot
4558 * race with what we are doing.
4559 */
2244b95a 4560 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4561 }
4562 return NOTIFY_OK;
4563}
1da177e4
LT
4564
4565void __init page_alloc_init(void)
4566{
4567 hotcpu_notifier(page_alloc_cpu_notify, 0);
4568}
4569
cb45b0e9
HA
4570/*
4571 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4572 * or min_free_kbytes changes.
4573 */
4574static void calculate_totalreserve_pages(void)
4575{
4576 struct pglist_data *pgdat;
4577 unsigned long reserve_pages = 0;
2f6726e5 4578 enum zone_type i, j;
cb45b0e9
HA
4579
4580 for_each_online_pgdat(pgdat) {
4581 for (i = 0; i < MAX_NR_ZONES; i++) {
4582 struct zone *zone = pgdat->node_zones + i;
4583 unsigned long max = 0;
4584
4585 /* Find valid and maximum lowmem_reserve in the zone */
4586 for (j = i; j < MAX_NR_ZONES; j++) {
4587 if (zone->lowmem_reserve[j] > max)
4588 max = zone->lowmem_reserve[j];
4589 }
4590
41858966
MG
4591 /* we treat the high watermark as reserved pages. */
4592 max += high_wmark_pages(zone);
cb45b0e9
HA
4593
4594 if (max > zone->present_pages)
4595 max = zone->present_pages;
4596 reserve_pages += max;
4597 }
4598 }
4599 totalreserve_pages = reserve_pages;
4600}
4601
1da177e4
LT
4602/*
4603 * setup_per_zone_lowmem_reserve - called whenever
4604 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4605 * has a correct pages reserved value, so an adequate number of
4606 * pages are left in the zone after a successful __alloc_pages().
4607 */
4608static void setup_per_zone_lowmem_reserve(void)
4609{
4610 struct pglist_data *pgdat;
2f6726e5 4611 enum zone_type j, idx;
1da177e4 4612
ec936fc5 4613 for_each_online_pgdat(pgdat) {
1da177e4
LT
4614 for (j = 0; j < MAX_NR_ZONES; j++) {
4615 struct zone *zone = pgdat->node_zones + j;
4616 unsigned long present_pages = zone->present_pages;
4617
4618 zone->lowmem_reserve[j] = 0;
4619
2f6726e5
CL
4620 idx = j;
4621 while (idx) {
1da177e4
LT
4622 struct zone *lower_zone;
4623
2f6726e5
CL
4624 idx--;
4625
1da177e4
LT
4626 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4627 sysctl_lowmem_reserve_ratio[idx] = 1;
4628
4629 lower_zone = pgdat->node_zones + idx;
4630 lower_zone->lowmem_reserve[j] = present_pages /
4631 sysctl_lowmem_reserve_ratio[idx];
4632 present_pages += lower_zone->present_pages;
4633 }
4634 }
4635 }
cb45b0e9
HA
4636
4637 /* update totalreserve_pages */
4638 calculate_totalreserve_pages();
1da177e4
LT
4639}
4640
88ca3b94 4641/**
bc75d33f 4642 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 4643 * or when memory is hot-{added|removed}
88ca3b94 4644 *
bc75d33f
MK
4645 * Ensures that the watermark[min,low,high] values for each zone are set
4646 * correctly with respect to min_free_kbytes.
1da177e4 4647 */
bc75d33f 4648void setup_per_zone_wmarks(void)
1da177e4
LT
4649{
4650 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4651 unsigned long lowmem_pages = 0;
4652 struct zone *zone;
4653 unsigned long flags;
4654
4655 /* Calculate total number of !ZONE_HIGHMEM pages */
4656 for_each_zone(zone) {
4657 if (!is_highmem(zone))
4658 lowmem_pages += zone->present_pages;
4659 }
4660
4661 for_each_zone(zone) {
ac924c60
AM
4662 u64 tmp;
4663
1125b4e3 4664 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4665 tmp = (u64)pages_min * zone->present_pages;
4666 do_div(tmp, lowmem_pages);
1da177e4
LT
4667 if (is_highmem(zone)) {
4668 /*
669ed175
NP
4669 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4670 * need highmem pages, so cap pages_min to a small
4671 * value here.
4672 *
41858966 4673 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
4674 * deltas controls asynch page reclaim, and so should
4675 * not be capped for highmem.
1da177e4
LT
4676 */
4677 int min_pages;
4678
4679 min_pages = zone->present_pages / 1024;
4680 if (min_pages < SWAP_CLUSTER_MAX)
4681 min_pages = SWAP_CLUSTER_MAX;
4682 if (min_pages > 128)
4683 min_pages = 128;
41858966 4684 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 4685 } else {
669ed175
NP
4686 /*
4687 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4688 * proportionate to the zone's size.
4689 */
41858966 4690 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
4691 }
4692
41858966
MG
4693 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4694 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 4695 setup_zone_migrate_reserve(zone);
1125b4e3 4696 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4697 }
cb45b0e9
HA
4698
4699 /* update totalreserve_pages */
4700 calculate_totalreserve_pages();
1da177e4
LT
4701}
4702
55a4462a 4703/*
556adecb
RR
4704 * The inactive anon list should be small enough that the VM never has to
4705 * do too much work, but large enough that each inactive page has a chance
4706 * to be referenced again before it is swapped out.
4707 *
4708 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4709 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4710 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4711 * the anonymous pages are kept on the inactive list.
4712 *
4713 * total target max
4714 * memory ratio inactive anon
4715 * -------------------------------------
4716 * 10MB 1 5MB
4717 * 100MB 1 50MB
4718 * 1GB 3 250MB
4719 * 10GB 10 0.9GB
4720 * 100GB 31 3GB
4721 * 1TB 101 10GB
4722 * 10TB 320 32GB
4723 */
96cb4df5 4724void calculate_zone_inactive_ratio(struct zone *zone)
556adecb 4725{
96cb4df5 4726 unsigned int gb, ratio;
556adecb 4727
96cb4df5
MK
4728 /* Zone size in gigabytes */
4729 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4730 if (gb)
556adecb 4731 ratio = int_sqrt(10 * gb);
96cb4df5
MK
4732 else
4733 ratio = 1;
556adecb 4734
96cb4df5
MK
4735 zone->inactive_ratio = ratio;
4736}
556adecb 4737
96cb4df5
MK
4738static void __init setup_per_zone_inactive_ratio(void)
4739{
4740 struct zone *zone;
4741
4742 for_each_zone(zone)
4743 calculate_zone_inactive_ratio(zone);
556adecb
RR
4744}
4745
1da177e4
LT
4746/*
4747 * Initialise min_free_kbytes.
4748 *
4749 * For small machines we want it small (128k min). For large machines
4750 * we want it large (64MB max). But it is not linear, because network
4751 * bandwidth does not increase linearly with machine size. We use
4752 *
4753 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4754 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4755 *
4756 * which yields
4757 *
4758 * 16MB: 512k
4759 * 32MB: 724k
4760 * 64MB: 1024k
4761 * 128MB: 1448k
4762 * 256MB: 2048k
4763 * 512MB: 2896k
4764 * 1024MB: 4096k
4765 * 2048MB: 5792k
4766 * 4096MB: 8192k
4767 * 8192MB: 11584k
4768 * 16384MB: 16384k
4769 */
bc75d33f 4770static int __init init_per_zone_wmark_min(void)
1da177e4
LT
4771{
4772 unsigned long lowmem_kbytes;
4773
4774 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4775
4776 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4777 if (min_free_kbytes < 128)
4778 min_free_kbytes = 128;
4779 if (min_free_kbytes > 65536)
4780 min_free_kbytes = 65536;
bc75d33f 4781 setup_per_zone_wmarks();
1da177e4 4782 setup_per_zone_lowmem_reserve();
556adecb 4783 setup_per_zone_inactive_ratio();
1da177e4
LT
4784 return 0;
4785}
bc75d33f 4786module_init(init_per_zone_wmark_min)
1da177e4
LT
4787
4788/*
4789 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4790 * that we can call two helper functions whenever min_free_kbytes
4791 * changes.
4792 */
4793int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 4794 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 4795{
8d65af78 4796 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 4797 if (write)
bc75d33f 4798 setup_per_zone_wmarks();
1da177e4
LT
4799 return 0;
4800}
4801
9614634f
CL
4802#ifdef CONFIG_NUMA
4803int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 4804 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
4805{
4806 struct zone *zone;
4807 int rc;
4808
8d65af78 4809 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
4810 if (rc)
4811 return rc;
4812
4813 for_each_zone(zone)
8417bba4 4814 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4815 sysctl_min_unmapped_ratio) / 100;
4816 return 0;
4817}
0ff38490
CL
4818
4819int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 4820 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
4821{
4822 struct zone *zone;
4823 int rc;
4824
8d65af78 4825 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
4826 if (rc)
4827 return rc;
4828
4829 for_each_zone(zone)
4830 zone->min_slab_pages = (zone->present_pages *
4831 sysctl_min_slab_ratio) / 100;
4832 return 0;
4833}
9614634f
CL
4834#endif
4835
1da177e4
LT
4836/*
4837 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4838 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4839 * whenever sysctl_lowmem_reserve_ratio changes.
4840 *
4841 * The reserve ratio obviously has absolutely no relation with the
41858966 4842 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
4843 * if in function of the boot time zone sizes.
4844 */
4845int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 4846 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 4847{
8d65af78 4848 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
4849 setup_per_zone_lowmem_reserve();
4850 return 0;
4851}
4852
8ad4b1fb
RS
4853/*
4854 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4855 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4856 * can have before it gets flushed back to buddy allocator.
4857 */
4858
4859int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 4860 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
4861{
4862 struct zone *zone;
4863 unsigned int cpu;
4864 int ret;
4865
8d65af78 4866 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8ad4b1fb
RS
4867 if (!write || (ret == -EINVAL))
4868 return ret;
364df0eb 4869 for_each_populated_zone(zone) {
8ad4b1fb
RS
4870 for_each_online_cpu(cpu) {
4871 unsigned long high;
4872 high = zone->present_pages / percpu_pagelist_fraction;
4873 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4874 }
4875 }
4876 return 0;
4877}
4878
f034b5d4 4879int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
4880
4881#ifdef CONFIG_NUMA
4882static int __init set_hashdist(char *str)
4883{
4884 if (!str)
4885 return 0;
4886 hashdist = simple_strtoul(str, &str, 0);
4887 return 1;
4888}
4889__setup("hashdist=", set_hashdist);
4890#endif
4891
4892/*
4893 * allocate a large system hash table from bootmem
4894 * - it is assumed that the hash table must contain an exact power-of-2
4895 * quantity of entries
4896 * - limit is the number of hash buckets, not the total allocation size
4897 */
4898void *__init alloc_large_system_hash(const char *tablename,
4899 unsigned long bucketsize,
4900 unsigned long numentries,
4901 int scale,
4902 int flags,
4903 unsigned int *_hash_shift,
4904 unsigned int *_hash_mask,
4905 unsigned long limit)
4906{
4907 unsigned long long max = limit;
4908 unsigned long log2qty, size;
4909 void *table = NULL;
4910
4911 /* allow the kernel cmdline to have a say */
4912 if (!numentries) {
4913 /* round applicable memory size up to nearest megabyte */
04903664 4914 numentries = nr_kernel_pages;
1da177e4
LT
4915 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4916 numentries >>= 20 - PAGE_SHIFT;
4917 numentries <<= 20 - PAGE_SHIFT;
4918
4919 /* limit to 1 bucket per 2^scale bytes of low memory */
4920 if (scale > PAGE_SHIFT)
4921 numentries >>= (scale - PAGE_SHIFT);
4922 else
4923 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
4924
4925 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
4926 if (unlikely(flags & HASH_SMALL)) {
4927 /* Makes no sense without HASH_EARLY */
4928 WARN_ON(!(flags & HASH_EARLY));
4929 if (!(numentries >> *_hash_shift)) {
4930 numentries = 1UL << *_hash_shift;
4931 BUG_ON(!numentries);
4932 }
4933 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 4934 numentries = PAGE_SIZE / bucketsize;
1da177e4 4935 }
6e692ed3 4936 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
4937
4938 /* limit allocation size to 1/16 total memory by default */
4939 if (max == 0) {
4940 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4941 do_div(max, bucketsize);
4942 }
4943
4944 if (numentries > max)
4945 numentries = max;
4946
f0d1b0b3 4947 log2qty = ilog2(numentries);
1da177e4
LT
4948
4949 do {
4950 size = bucketsize << log2qty;
4951 if (flags & HASH_EARLY)
74768ed8 4952 table = alloc_bootmem_nopanic(size);
1da177e4
LT
4953 else if (hashdist)
4954 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4955 else {
1037b83b
ED
4956 /*
4957 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
4958 * some pages at the end of hash table which
4959 * alloc_pages_exact() automatically does
1037b83b 4960 */
264ef8a9 4961 if (get_order(size) < MAX_ORDER) {
a1dd268c 4962 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
4963 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4964 }
1da177e4
LT
4965 }
4966 } while (!table && size > PAGE_SIZE && --log2qty);
4967
4968 if (!table)
4969 panic("Failed to allocate %s hash table\n", tablename);
4970
b49ad484 4971 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
4972 tablename,
4973 (1U << log2qty),
f0d1b0b3 4974 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
4975 size);
4976
4977 if (_hash_shift)
4978 *_hash_shift = log2qty;
4979 if (_hash_mask)
4980 *_hash_mask = (1 << log2qty) - 1;
4981
4982 return table;
4983}
a117e66e 4984
835c134e
MG
4985/* Return a pointer to the bitmap storing bits affecting a block of pages */
4986static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4987 unsigned long pfn)
4988{
4989#ifdef CONFIG_SPARSEMEM
4990 return __pfn_to_section(pfn)->pageblock_flags;
4991#else
4992 return zone->pageblock_flags;
4993#endif /* CONFIG_SPARSEMEM */
4994}
4995
4996static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4997{
4998#ifdef CONFIG_SPARSEMEM
4999 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5000 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5001#else
5002 pfn = pfn - zone->zone_start_pfn;
d9c23400 5003 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5004#endif /* CONFIG_SPARSEMEM */
5005}
5006
5007/**
d9c23400 5008 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5009 * @page: The page within the block of interest
5010 * @start_bitidx: The first bit of interest to retrieve
5011 * @end_bitidx: The last bit of interest
5012 * returns pageblock_bits flags
5013 */
5014unsigned long get_pageblock_flags_group(struct page *page,
5015 int start_bitidx, int end_bitidx)
5016{
5017 struct zone *zone;
5018 unsigned long *bitmap;
5019 unsigned long pfn, bitidx;
5020 unsigned long flags = 0;
5021 unsigned long value = 1;
5022
5023 zone = page_zone(page);
5024 pfn = page_to_pfn(page);
5025 bitmap = get_pageblock_bitmap(zone, pfn);
5026 bitidx = pfn_to_bitidx(zone, pfn);
5027
5028 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5029 if (test_bit(bitidx + start_bitidx, bitmap))
5030 flags |= value;
6220ec78 5031
835c134e
MG
5032 return flags;
5033}
5034
5035/**
d9c23400 5036 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5037 * @page: The page within the block of interest
5038 * @start_bitidx: The first bit of interest
5039 * @end_bitidx: The last bit of interest
5040 * @flags: The flags to set
5041 */
5042void set_pageblock_flags_group(struct page *page, unsigned long flags,
5043 int start_bitidx, int end_bitidx)
5044{
5045 struct zone *zone;
5046 unsigned long *bitmap;
5047 unsigned long pfn, bitidx;
5048 unsigned long value = 1;
5049
5050 zone = page_zone(page);
5051 pfn = page_to_pfn(page);
5052 bitmap = get_pageblock_bitmap(zone, pfn);
5053 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5054 VM_BUG_ON(pfn < zone->zone_start_pfn);
5055 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5056
5057 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5058 if (flags & value)
5059 __set_bit(bitidx + start_bitidx, bitmap);
5060 else
5061 __clear_bit(bitidx + start_bitidx, bitmap);
5062}
a5d76b54
KH
5063
5064/*
5065 * This is designed as sub function...plz see page_isolation.c also.
5066 * set/clear page block's type to be ISOLATE.
5067 * page allocater never alloc memory from ISOLATE block.
5068 */
5069
5070int set_migratetype_isolate(struct page *page)
5071{
5072 struct zone *zone;
925cc71e
RJ
5073 struct page *curr_page;
5074 unsigned long flags, pfn, iter;
5075 unsigned long immobile = 0;
5076 struct memory_isolate_notify arg;
5077 int notifier_ret;
a5d76b54 5078 int ret = -EBUSY;
8e7e40d9 5079 int zone_idx;
a5d76b54
KH
5080
5081 zone = page_zone(page);
8e7e40d9 5082 zone_idx = zone_idx(zone);
925cc71e 5083
a5d76b54 5084 spin_lock_irqsave(&zone->lock, flags);
925cc71e
RJ
5085 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
5086 zone_idx == ZONE_MOVABLE) {
5087 ret = 0;
5088 goto out;
5089 }
5090
5091 pfn = page_to_pfn(page);
5092 arg.start_pfn = pfn;
5093 arg.nr_pages = pageblock_nr_pages;
5094 arg.pages_found = 0;
5095
a5d76b54 5096 /*
925cc71e
RJ
5097 * It may be possible to isolate a pageblock even if the
5098 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5099 * notifier chain is used by balloon drivers to return the
5100 * number of pages in a range that are held by the balloon
5101 * driver to shrink memory. If all the pages are accounted for
5102 * by balloons, are free, or on the LRU, isolation can continue.
5103 * Later, for example, when memory hotplug notifier runs, these
5104 * pages reported as "can be isolated" should be isolated(freed)
5105 * by the balloon driver through the memory notifier chain.
a5d76b54 5106 */
925cc71e
RJ
5107 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5108 notifier_ret = notifier_to_errno(notifier_ret);
5109 if (notifier_ret || !arg.pages_found)
a5d76b54 5110 goto out;
925cc71e
RJ
5111
5112 for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
5113 if (!pfn_valid_within(pfn))
5114 continue;
5115
5116 curr_page = pfn_to_page(iter);
5117 if (!page_count(curr_page) || PageLRU(curr_page))
5118 continue;
5119
5120 immobile++;
5121 }
5122
5123 if (arg.pages_found == immobile)
5124 ret = 0;
5125
a5d76b54 5126out:
925cc71e
RJ
5127 if (!ret) {
5128 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5129 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5130 }
5131
a5d76b54
KH
5132 spin_unlock_irqrestore(&zone->lock, flags);
5133 if (!ret)
9f8f2172 5134 drain_all_pages();
a5d76b54
KH
5135 return ret;
5136}
5137
5138void unset_migratetype_isolate(struct page *page)
5139{
5140 struct zone *zone;
5141 unsigned long flags;
5142 zone = page_zone(page);
5143 spin_lock_irqsave(&zone->lock, flags);
5144 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5145 goto out;
5146 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5147 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5148out:
5149 spin_unlock_irqrestore(&zone->lock, flags);
5150}
0c0e6195
KH
5151
5152#ifdef CONFIG_MEMORY_HOTREMOVE
5153/*
5154 * All pages in the range must be isolated before calling this.
5155 */
5156void
5157__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5158{
5159 struct page *page;
5160 struct zone *zone;
5161 int order, i;
5162 unsigned long pfn;
5163 unsigned long flags;
5164 /* find the first valid pfn */
5165 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5166 if (pfn_valid(pfn))
5167 break;
5168 if (pfn == end_pfn)
5169 return;
5170 zone = page_zone(pfn_to_page(pfn));
5171 spin_lock_irqsave(&zone->lock, flags);
5172 pfn = start_pfn;
5173 while (pfn < end_pfn) {
5174 if (!pfn_valid(pfn)) {
5175 pfn++;
5176 continue;
5177 }
5178 page = pfn_to_page(pfn);
5179 BUG_ON(page_count(page));
5180 BUG_ON(!PageBuddy(page));
5181 order = page_order(page);
5182#ifdef CONFIG_DEBUG_VM
5183 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5184 pfn, 1 << order, end_pfn);
5185#endif
5186 list_del(&page->lru);
5187 rmv_page_order(page);
5188 zone->free_area[order].nr_free--;
5189 __mod_zone_page_state(zone, NR_FREE_PAGES,
5190 - (1UL << order));
5191 for (i = 0; i < (1 << order); i++)
5192 SetPageReserved((page+i));
5193 pfn += (1 << order);
5194 }
5195 spin_unlock_irqrestore(&zone->lock, flags);
5196}
5197#endif
8d22ba1b
WF
5198
5199#ifdef CONFIG_MEMORY_FAILURE
5200bool is_free_buddy_page(struct page *page)
5201{
5202 struct zone *zone = page_zone(page);
5203 unsigned long pfn = page_to_pfn(page);
5204 unsigned long flags;
5205 int order;
5206
5207 spin_lock_irqsave(&zone->lock, flags);
5208 for (order = 0; order < MAX_ORDER; order++) {
5209 struct page *page_head = page - (pfn & ((1 << order) - 1));
5210
5211 if (PageBuddy(page_head) && page_order(page_head) >= order)
5212 break;
5213 }
5214 spin_unlock_irqrestore(&zone->lock, flags);
5215
5216 return order < MAX_ORDER;
5217}
5218#endif