]> bbs.cooldavid.org Git - net-next-2.6.git/blame - include/linux/skbuff.h
Fix AGP compile on non-x86 architectures
[net-next-2.6.git] / include / linux / skbuff.h
CommitLineData
1da177e4
LT
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
17#include <linux/config.h>
18#include <linux/kernel.h>
19#include <linux/compiler.h>
20#include <linux/time.h>
21#include <linux/cache.h>
22
23#include <asm/atomic.h>
24#include <asm/types.h>
25#include <linux/spinlock.h>
26#include <linux/mm.h>
27#include <linux/highmem.h>
28#include <linux/poll.h>
29#include <linux/net.h>
3fc7e8a6 30#include <linux/textsearch.h>
1da177e4
LT
31#include <net/checksum.h>
32
33#define HAVE_ALLOC_SKB /* For the drivers to know */
34#define HAVE_ALIGNABLE_SKB /* Ditto 8) */
35#define SLAB_SKB /* Slabified skbuffs */
36
37#define CHECKSUM_NONE 0
38#define CHECKSUM_HW 1
39#define CHECKSUM_UNNECESSARY 2
40
41#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43#define SKB_MAX_ORDER(X, ORDER) (((PAGE_SIZE << (ORDER)) - (X) - \
44 sizeof(struct skb_shared_info)) & \
45 ~(SMP_CACHE_BYTES - 1))
46#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
47#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
48
49/* A. Checksumming of received packets by device.
50 *
51 * NONE: device failed to checksum this packet.
52 * skb->csum is undefined.
53 *
54 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
55 * skb->csum is undefined.
56 * It is bad option, but, unfortunately, many of vendors do this.
57 * Apparently with secret goal to sell you new device, when you
58 * will add new protocol to your host. F.e. IPv6. 8)
59 *
60 * HW: the most generic way. Device supplied checksum of _all_
61 * the packet as seen by netif_rx in skb->csum.
62 * NOTE: Even if device supports only some protocols, but
63 * is able to produce some skb->csum, it MUST use HW,
64 * not UNNECESSARY.
65 *
66 * B. Checksumming on output.
67 *
68 * NONE: skb is checksummed by protocol or csum is not required.
69 *
70 * HW: device is required to csum packet as seen by hard_start_xmit
71 * from skb->h.raw to the end and to record the checksum
72 * at skb->h.raw+skb->csum.
73 *
74 * Device must show its capabilities in dev->features, set
75 * at device setup time.
76 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
77 * everything.
78 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
79 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
80 * TCP/UDP over IPv4. Sigh. Vendors like this
81 * way by an unknown reason. Though, see comment above
82 * about CHECKSUM_UNNECESSARY. 8)
83 *
84 * Any questions? No questions, good. --ANK
85 */
86
1da177e4
LT
87struct net_device;
88
89#ifdef CONFIG_NETFILTER
90struct nf_conntrack {
91 atomic_t use;
92 void (*destroy)(struct nf_conntrack *);
93};
94
95#ifdef CONFIG_BRIDGE_NETFILTER
96struct nf_bridge_info {
97 atomic_t use;
98 struct net_device *physindev;
99 struct net_device *physoutdev;
100#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
101 struct net_device *netoutdev;
102#endif
103 unsigned int mask;
104 unsigned long data[32 / sizeof(unsigned long)];
105};
106#endif
107
108#endif
109
110struct sk_buff_head {
111 /* These two members must be first. */
112 struct sk_buff *next;
113 struct sk_buff *prev;
114
115 __u32 qlen;
116 spinlock_t lock;
117};
118
119struct sk_buff;
120
121/* To allow 64K frame to be packed as single skb without frag_list */
122#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
123
124typedef struct skb_frag_struct skb_frag_t;
125
126struct skb_frag_struct {
127 struct page *page;
128 __u16 page_offset;
129 __u16 size;
130};
131
132/* This data is invariant across clones and lives at
133 * the end of the header data, ie. at skb->end.
134 */
135struct skb_shared_info {
136 atomic_t dataref;
137 unsigned int nr_frags;
138 unsigned short tso_size;
139 unsigned short tso_segs;
e89e9cf5
AR
140 unsigned short ufo_size;
141 unsigned int ip6_frag_id;
1da177e4
LT
142 struct sk_buff *frag_list;
143 skb_frag_t frags[MAX_SKB_FRAGS];
144};
145
146/* We divide dataref into two halves. The higher 16 bits hold references
147 * to the payload part of skb->data. The lower 16 bits hold references to
148 * the entire skb->data. It is up to the users of the skb to agree on
149 * where the payload starts.
150 *
151 * All users must obey the rule that the skb->data reference count must be
152 * greater than or equal to the payload reference count.
153 *
154 * Holding a reference to the payload part means that the user does not
155 * care about modifications to the header part of skb->data.
156 */
157#define SKB_DATAREF_SHIFT 16
158#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
159
a61bbcf2
PM
160struct skb_timeval {
161 u32 off_sec;
162 u32 off_usec;
163};
164
d179cd12
DM
165
166enum {
167 SKB_FCLONE_UNAVAILABLE,
168 SKB_FCLONE_ORIG,
169 SKB_FCLONE_CLONE,
170};
171
1da177e4
LT
172/**
173 * struct sk_buff - socket buffer
174 * @next: Next buffer in list
175 * @prev: Previous buffer in list
1da177e4 176 * @sk: Socket we are owned by
325ed823 177 * @tstamp: Time we arrived
1da177e4
LT
178 * @dev: Device we arrived on/are leaving by
179 * @input_dev: Device we arrived on
1da177e4
LT
180 * @h: Transport layer header
181 * @nh: Network layer header
182 * @mac: Link layer header
67be2dd1
MW
183 * @dst: destination entry
184 * @sp: the security path, used for xfrm
1da177e4
LT
185 * @cb: Control buffer. Free for use by every layer. Put private vars here
186 * @len: Length of actual data
187 * @data_len: Data length
188 * @mac_len: Length of link layer header
189 * @csum: Checksum
67be2dd1 190 * @local_df: allow local fragmentation
1da177e4
LT
191 * @cloned: Head may be cloned (check refcnt to be sure)
192 * @nohdr: Payload reference only, must not modify header
193 * @pkt_type: Packet class
c83c2486 194 * @fclone: skbuff clone status
1da177e4
LT
195 * @ip_summed: Driver fed us an IP checksum
196 * @priority: Packet queueing priority
197 * @users: User count - see {datagram,tcp}.c
198 * @protocol: Packet protocol from driver
1da177e4
LT
199 * @truesize: Buffer size
200 * @head: Head of buffer
201 * @data: Data head pointer
202 * @tail: Tail pointer
203 * @end: End pointer
204 * @destructor: Destruct function
205 * @nfmark: Can be used for communication between hooks
1da177e4 206 * @nfct: Associated connection, if any
c83c2486 207 * @ipvs_property: skbuff is owned by ipvs
1da177e4 208 * @nfctinfo: Relationship of this skb to the connection
1da177e4 209 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
1da177e4
LT
210 * @tc_index: Traffic control index
211 * @tc_verd: traffic control verdict
1da177e4
LT
212 */
213
214struct sk_buff {
215 /* These two members must be first. */
216 struct sk_buff *next;
217 struct sk_buff *prev;
218
1da177e4 219 struct sock *sk;
a61bbcf2 220 struct skb_timeval tstamp;
1da177e4
LT
221 struct net_device *dev;
222 struct net_device *input_dev;
1da177e4
LT
223
224 union {
225 struct tcphdr *th;
226 struct udphdr *uh;
227 struct icmphdr *icmph;
228 struct igmphdr *igmph;
229 struct iphdr *ipiph;
230 struct ipv6hdr *ipv6h;
231 unsigned char *raw;
232 } h;
233
234 union {
235 struct iphdr *iph;
236 struct ipv6hdr *ipv6h;
237 struct arphdr *arph;
238 unsigned char *raw;
239 } nh;
240
241 union {
242 unsigned char *raw;
243 } mac;
244
245 struct dst_entry *dst;
246 struct sec_path *sp;
247
248 /*
249 * This is the control buffer. It is free to use for every
250 * layer. Please put your private variables there. If you
251 * want to keep them across layers you have to do a skb_clone()
252 * first. This is owned by whoever has the skb queued ATM.
253 */
254 char cb[40];
255
256 unsigned int len,
257 data_len,
258 mac_len,
259 csum;
1da177e4 260 __u32 priority;
1cbb3380
TG
261 __u8 local_df:1,
262 cloned:1,
263 ip_summed:2,
6869c4d8
HW
264 nohdr:1,
265 nfctinfo:3;
d179cd12
DM
266 __u8 pkt_type:3,
267 fclone:2;
a0d3bea3 268 __be16 protocol;
1da177e4
LT
269
270 void (*destructor)(struct sk_buff *skb);
271#ifdef CONFIG_NETFILTER
bf3a46aa 272 __u32 nfmark;
1da177e4 273 struct nf_conntrack *nfct;
6869c4d8
HW
274#if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
275 __u8 ipvs_property:1;
276#endif
1da177e4
LT
277#ifdef CONFIG_BRIDGE_NETFILTER
278 struct nf_bridge_info *nf_bridge;
279#endif
280#endif /* CONFIG_NETFILTER */
1da177e4 281#ifdef CONFIG_NET_SCHED
b6b99eb5 282 __u16 tc_index; /* traffic control index */
1da177e4 283#ifdef CONFIG_NET_CLS_ACT
b6b99eb5 284 __u16 tc_verd; /* traffic control verdict */
1da177e4 285#endif
1da177e4
LT
286#endif
287
288
289 /* These elements must be at the end, see alloc_skb() for details. */
290 unsigned int truesize;
291 atomic_t users;
292 unsigned char *head,
293 *data,
294 *tail,
295 *end;
296};
297
298#ifdef __KERNEL__
299/*
300 * Handling routines are only of interest to the kernel
301 */
302#include <linux/slab.h>
303
304#include <asm/system.h>
305
306extern void __kfree_skb(struct sk_buff *skb);
d179cd12 307extern struct sk_buff *__alloc_skb(unsigned int size,
dd0fc66f 308 gfp_t priority, int fclone);
d179cd12 309static inline struct sk_buff *alloc_skb(unsigned int size,
dd0fc66f 310 gfp_t priority)
d179cd12
DM
311{
312 return __alloc_skb(size, priority, 0);
313}
314
315static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
dd0fc66f 316 gfp_t priority)
d179cd12
DM
317{
318 return __alloc_skb(size, priority, 1);
319}
320
1da177e4 321extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
86a76caf 322 unsigned int size,
dd0fc66f 323 gfp_t priority);
1da177e4 324extern void kfree_skbmem(struct sk_buff *skb);
86a76caf 325extern struct sk_buff *skb_clone(struct sk_buff *skb,
dd0fc66f 326 gfp_t priority);
86a76caf 327extern struct sk_buff *skb_copy(const struct sk_buff *skb,
dd0fc66f 328 gfp_t priority);
86a76caf 329extern struct sk_buff *pskb_copy(struct sk_buff *skb,
dd0fc66f 330 gfp_t gfp_mask);
1da177e4 331extern int pskb_expand_head(struct sk_buff *skb,
86a76caf 332 int nhead, int ntail,
dd0fc66f 333 gfp_t gfp_mask);
1da177e4
LT
334extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
335 unsigned int headroom);
336extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
337 int newheadroom, int newtailroom,
dd0fc66f 338 gfp_t priority);
1da177e4
LT
339extern struct sk_buff * skb_pad(struct sk_buff *skb, int pad);
340#define dev_kfree_skb(a) kfree_skb(a)
341extern void skb_over_panic(struct sk_buff *skb, int len,
342 void *here);
343extern void skb_under_panic(struct sk_buff *skb, int len,
344 void *here);
345
e89e9cf5
AR
346extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
347 int getfrag(void *from, char *to, int offset,
348 int len,int odd, struct sk_buff *skb),
349 void *from, int length);
350
677e90ed
TG
351struct skb_seq_state
352{
353 __u32 lower_offset;
354 __u32 upper_offset;
355 __u32 frag_idx;
356 __u32 stepped_offset;
357 struct sk_buff *root_skb;
358 struct sk_buff *cur_skb;
359 __u8 *frag_data;
360};
361
362extern void skb_prepare_seq_read(struct sk_buff *skb,
363 unsigned int from, unsigned int to,
364 struct skb_seq_state *st);
365extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
366 struct skb_seq_state *st);
367extern void skb_abort_seq_read(struct skb_seq_state *st);
368
3fc7e8a6
TG
369extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
370 unsigned int to, struct ts_config *config,
371 struct ts_state *state);
372
1da177e4
LT
373/* Internal */
374#define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end))
375
376/**
377 * skb_queue_empty - check if a queue is empty
378 * @list: queue head
379 *
380 * Returns true if the queue is empty, false otherwise.
381 */
382static inline int skb_queue_empty(const struct sk_buff_head *list)
383{
384 return list->next == (struct sk_buff *)list;
385}
386
387/**
388 * skb_get - reference buffer
389 * @skb: buffer to reference
390 *
391 * Makes another reference to a socket buffer and returns a pointer
392 * to the buffer.
393 */
394static inline struct sk_buff *skb_get(struct sk_buff *skb)
395{
396 atomic_inc(&skb->users);
397 return skb;
398}
399
400/*
401 * If users == 1, we are the only owner and are can avoid redundant
402 * atomic change.
403 */
404
405/**
406 * kfree_skb - free an sk_buff
407 * @skb: buffer to free
408 *
409 * Drop a reference to the buffer and free it if the usage count has
410 * hit zero.
411 */
412static inline void kfree_skb(struct sk_buff *skb)
413{
414 if (likely(atomic_read(&skb->users) == 1))
415 smp_rmb();
416 else if (likely(!atomic_dec_and_test(&skb->users)))
417 return;
418 __kfree_skb(skb);
419}
420
421/**
422 * skb_cloned - is the buffer a clone
423 * @skb: buffer to check
424 *
425 * Returns true if the buffer was generated with skb_clone() and is
426 * one of multiple shared copies of the buffer. Cloned buffers are
427 * shared data so must not be written to under normal circumstances.
428 */
429static inline int skb_cloned(const struct sk_buff *skb)
430{
431 return skb->cloned &&
432 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
433}
434
435/**
436 * skb_header_cloned - is the header a clone
437 * @skb: buffer to check
438 *
439 * Returns true if modifying the header part of the buffer requires
440 * the data to be copied.
441 */
442static inline int skb_header_cloned(const struct sk_buff *skb)
443{
444 int dataref;
445
446 if (!skb->cloned)
447 return 0;
448
449 dataref = atomic_read(&skb_shinfo(skb)->dataref);
450 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
451 return dataref != 1;
452}
453
454/**
455 * skb_header_release - release reference to header
456 * @skb: buffer to operate on
457 *
458 * Drop a reference to the header part of the buffer. This is done
459 * by acquiring a payload reference. You must not read from the header
460 * part of skb->data after this.
461 */
462static inline void skb_header_release(struct sk_buff *skb)
463{
464 BUG_ON(skb->nohdr);
465 skb->nohdr = 1;
466 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
467}
468
469/**
470 * skb_shared - is the buffer shared
471 * @skb: buffer to check
472 *
473 * Returns true if more than one person has a reference to this
474 * buffer.
475 */
476static inline int skb_shared(const struct sk_buff *skb)
477{
478 return atomic_read(&skb->users) != 1;
479}
480
481/**
482 * skb_share_check - check if buffer is shared and if so clone it
483 * @skb: buffer to check
484 * @pri: priority for memory allocation
485 *
486 * If the buffer is shared the buffer is cloned and the old copy
487 * drops a reference. A new clone with a single reference is returned.
488 * If the buffer is not shared the original buffer is returned. When
489 * being called from interrupt status or with spinlocks held pri must
490 * be GFP_ATOMIC.
491 *
492 * NULL is returned on a memory allocation failure.
493 */
86a76caf 494static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
dd0fc66f 495 gfp_t pri)
1da177e4
LT
496{
497 might_sleep_if(pri & __GFP_WAIT);
498 if (skb_shared(skb)) {
499 struct sk_buff *nskb = skb_clone(skb, pri);
500 kfree_skb(skb);
501 skb = nskb;
502 }
503 return skb;
504}
505
506/*
507 * Copy shared buffers into a new sk_buff. We effectively do COW on
508 * packets to handle cases where we have a local reader and forward
509 * and a couple of other messy ones. The normal one is tcpdumping
510 * a packet thats being forwarded.
511 */
512
513/**
514 * skb_unshare - make a copy of a shared buffer
515 * @skb: buffer to check
516 * @pri: priority for memory allocation
517 *
518 * If the socket buffer is a clone then this function creates a new
519 * copy of the data, drops a reference count on the old copy and returns
520 * the new copy with the reference count at 1. If the buffer is not a clone
521 * the original buffer is returned. When called with a spinlock held or
522 * from interrupt state @pri must be %GFP_ATOMIC
523 *
524 * %NULL is returned on a memory allocation failure.
525 */
e2bf521d 526static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
dd0fc66f 527 gfp_t pri)
1da177e4
LT
528{
529 might_sleep_if(pri & __GFP_WAIT);
530 if (skb_cloned(skb)) {
531 struct sk_buff *nskb = skb_copy(skb, pri);
532 kfree_skb(skb); /* Free our shared copy */
533 skb = nskb;
534 }
535 return skb;
536}
537
538/**
539 * skb_peek
540 * @list_: list to peek at
541 *
542 * Peek an &sk_buff. Unlike most other operations you _MUST_
543 * be careful with this one. A peek leaves the buffer on the
544 * list and someone else may run off with it. You must hold
545 * the appropriate locks or have a private queue to do this.
546 *
547 * Returns %NULL for an empty list or a pointer to the head element.
548 * The reference count is not incremented and the reference is therefore
549 * volatile. Use with caution.
550 */
551static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
552{
553 struct sk_buff *list = ((struct sk_buff *)list_)->next;
554 if (list == (struct sk_buff *)list_)
555 list = NULL;
556 return list;
557}
558
559/**
560 * skb_peek_tail
561 * @list_: list to peek at
562 *
563 * Peek an &sk_buff. Unlike most other operations you _MUST_
564 * be careful with this one. A peek leaves the buffer on the
565 * list and someone else may run off with it. You must hold
566 * the appropriate locks or have a private queue to do this.
567 *
568 * Returns %NULL for an empty list or a pointer to the tail element.
569 * The reference count is not incremented and the reference is therefore
570 * volatile. Use with caution.
571 */
572static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
573{
574 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
575 if (list == (struct sk_buff *)list_)
576 list = NULL;
577 return list;
578}
579
580/**
581 * skb_queue_len - get queue length
582 * @list_: list to measure
583 *
584 * Return the length of an &sk_buff queue.
585 */
586static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
587{
588 return list_->qlen;
589}
590
591static inline void skb_queue_head_init(struct sk_buff_head *list)
592{
593 spin_lock_init(&list->lock);
594 list->prev = list->next = (struct sk_buff *)list;
595 list->qlen = 0;
596}
597
598/*
599 * Insert an sk_buff at the start of a list.
600 *
601 * The "__skb_xxxx()" functions are the non-atomic ones that
602 * can only be called with interrupts disabled.
603 */
604
605/**
300ce174 606 * __skb_queue_after - queue a buffer at the list head
1da177e4 607 * @list: list to use
300ce174 608 * @prev: place after this buffer
1da177e4
LT
609 * @newsk: buffer to queue
610 *
300ce174 611 * Queue a buffer int the middle of a list. This function takes no locks
1da177e4
LT
612 * and you must therefore hold required locks before calling it.
613 *
614 * A buffer cannot be placed on two lists at the same time.
615 */
300ce174
SH
616static inline void __skb_queue_after(struct sk_buff_head *list,
617 struct sk_buff *prev,
618 struct sk_buff *newsk)
1da177e4 619{
300ce174 620 struct sk_buff *next;
1da177e4 621 list->qlen++;
300ce174 622
1da177e4
LT
623 next = prev->next;
624 newsk->next = next;
625 newsk->prev = prev;
626 next->prev = prev->next = newsk;
627}
628
300ce174
SH
629/**
630 * __skb_queue_head - queue a buffer at the list head
631 * @list: list to use
632 * @newsk: buffer to queue
633 *
634 * Queue a buffer at the start of a list. This function takes no locks
635 * and you must therefore hold required locks before calling it.
636 *
637 * A buffer cannot be placed on two lists at the same time.
638 */
639extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
640static inline void __skb_queue_head(struct sk_buff_head *list,
641 struct sk_buff *newsk)
642{
643 __skb_queue_after(list, (struct sk_buff *)list, newsk);
644}
645
1da177e4
LT
646/**
647 * __skb_queue_tail - queue a buffer at the list tail
648 * @list: list to use
649 * @newsk: buffer to queue
650 *
651 * Queue a buffer at the end of a list. This function takes no locks
652 * and you must therefore hold required locks before calling it.
653 *
654 * A buffer cannot be placed on two lists at the same time.
655 */
656extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
657static inline void __skb_queue_tail(struct sk_buff_head *list,
658 struct sk_buff *newsk)
659{
660 struct sk_buff *prev, *next;
661
1da177e4
LT
662 list->qlen++;
663 next = (struct sk_buff *)list;
664 prev = next->prev;
665 newsk->next = next;
666 newsk->prev = prev;
667 next->prev = prev->next = newsk;
668}
669
670
671/**
672 * __skb_dequeue - remove from the head of the queue
673 * @list: list to dequeue from
674 *
675 * Remove the head of the list. This function does not take any locks
676 * so must be used with appropriate locks held only. The head item is
677 * returned or %NULL if the list is empty.
678 */
679extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
680static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
681{
682 struct sk_buff *next, *prev, *result;
683
684 prev = (struct sk_buff *) list;
685 next = prev->next;
686 result = NULL;
687 if (next != prev) {
688 result = next;
689 next = next->next;
690 list->qlen--;
691 next->prev = prev;
692 prev->next = next;
693 result->next = result->prev = NULL;
1da177e4
LT
694 }
695 return result;
696}
697
698
699/*
700 * Insert a packet on a list.
701 */
8728b834 702extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
1da177e4
LT
703static inline void __skb_insert(struct sk_buff *newsk,
704 struct sk_buff *prev, struct sk_buff *next,
705 struct sk_buff_head *list)
706{
707 newsk->next = next;
708 newsk->prev = prev;
709 next->prev = prev->next = newsk;
1da177e4
LT
710 list->qlen++;
711}
712
713/*
714 * Place a packet after a given packet in a list.
715 */
8728b834
DM
716extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
717static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1da177e4 718{
8728b834 719 __skb_insert(newsk, old, old->next, list);
1da177e4
LT
720}
721
722/*
723 * remove sk_buff from list. _Must_ be called atomically, and with
724 * the list known..
725 */
8728b834 726extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1da177e4
LT
727static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
728{
729 struct sk_buff *next, *prev;
730
731 list->qlen--;
732 next = skb->next;
733 prev = skb->prev;
734 skb->next = skb->prev = NULL;
1da177e4
LT
735 next->prev = prev;
736 prev->next = next;
737}
738
739
740/* XXX: more streamlined implementation */
741
742/**
743 * __skb_dequeue_tail - remove from the tail of the queue
744 * @list: list to dequeue from
745 *
746 * Remove the tail of the list. This function does not take any locks
747 * so must be used with appropriate locks held only. The tail item is
748 * returned or %NULL if the list is empty.
749 */
750extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
751static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
752{
753 struct sk_buff *skb = skb_peek_tail(list);
754 if (skb)
755 __skb_unlink(skb, list);
756 return skb;
757}
758
759
760static inline int skb_is_nonlinear(const struct sk_buff *skb)
761{
762 return skb->data_len;
763}
764
765static inline unsigned int skb_headlen(const struct sk_buff *skb)
766{
767 return skb->len - skb->data_len;
768}
769
770static inline int skb_pagelen(const struct sk_buff *skb)
771{
772 int i, len = 0;
773
774 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
775 len += skb_shinfo(skb)->frags[i].size;
776 return len + skb_headlen(skb);
777}
778
779static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
780 struct page *page, int off, int size)
781{
782 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
783
784 frag->page = page;
785 frag->page_offset = off;
786 frag->size = size;
787 skb_shinfo(skb)->nr_frags = i + 1;
788}
789
790#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
791#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
792#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
793
794/*
795 * Add data to an sk_buff
796 */
797static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
798{
799 unsigned char *tmp = skb->tail;
800 SKB_LINEAR_ASSERT(skb);
801 skb->tail += len;
802 skb->len += len;
803 return tmp;
804}
805
806/**
807 * skb_put - add data to a buffer
808 * @skb: buffer to use
809 * @len: amount of data to add
810 *
811 * This function extends the used data area of the buffer. If this would
812 * exceed the total buffer size the kernel will panic. A pointer to the
813 * first byte of the extra data is returned.
814 */
815static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
816{
817 unsigned char *tmp = skb->tail;
818 SKB_LINEAR_ASSERT(skb);
819 skb->tail += len;
820 skb->len += len;
821 if (unlikely(skb->tail>skb->end))
822 skb_over_panic(skb, len, current_text_addr());
823 return tmp;
824}
825
826static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
827{
828 skb->data -= len;
829 skb->len += len;
830 return skb->data;
831}
832
833/**
834 * skb_push - add data to the start of a buffer
835 * @skb: buffer to use
836 * @len: amount of data to add
837 *
838 * This function extends the used data area of the buffer at the buffer
839 * start. If this would exceed the total buffer headroom the kernel will
840 * panic. A pointer to the first byte of the extra data is returned.
841 */
842static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
843{
844 skb->data -= len;
845 skb->len += len;
846 if (unlikely(skb->data<skb->head))
847 skb_under_panic(skb, len, current_text_addr());
848 return skb->data;
849}
850
851static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
852{
853 skb->len -= len;
854 BUG_ON(skb->len < skb->data_len);
855 return skb->data += len;
856}
857
858/**
859 * skb_pull - remove data from the start of a buffer
860 * @skb: buffer to use
861 * @len: amount of data to remove
862 *
863 * This function removes data from the start of a buffer, returning
864 * the memory to the headroom. A pointer to the next data in the buffer
865 * is returned. Once the data has been pulled future pushes will overwrite
866 * the old data.
867 */
868static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
869{
870 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
871}
872
873extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
874
875static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
876{
877 if (len > skb_headlen(skb) &&
878 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
879 return NULL;
880 skb->len -= len;
881 return skb->data += len;
882}
883
884static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
885{
886 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
887}
888
889static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
890{
891 if (likely(len <= skb_headlen(skb)))
892 return 1;
893 if (unlikely(len > skb->len))
894 return 0;
895 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
896}
897
898/**
899 * skb_headroom - bytes at buffer head
900 * @skb: buffer to check
901 *
902 * Return the number of bytes of free space at the head of an &sk_buff.
903 */
904static inline int skb_headroom(const struct sk_buff *skb)
905{
906 return skb->data - skb->head;
907}
908
909/**
910 * skb_tailroom - bytes at buffer end
911 * @skb: buffer to check
912 *
913 * Return the number of bytes of free space at the tail of an sk_buff
914 */
915static inline int skb_tailroom(const struct sk_buff *skb)
916{
917 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
918}
919
920/**
921 * skb_reserve - adjust headroom
922 * @skb: buffer to alter
923 * @len: bytes to move
924 *
925 * Increase the headroom of an empty &sk_buff by reducing the tail
926 * room. This is only allowed for an empty buffer.
927 */
928static inline void skb_reserve(struct sk_buff *skb, unsigned int len)
929{
930 skb->data += len;
931 skb->tail += len;
932}
933
934/*
935 * CPUs often take a performance hit when accessing unaligned memory
936 * locations. The actual performance hit varies, it can be small if the
937 * hardware handles it or large if we have to take an exception and fix it
938 * in software.
939 *
940 * Since an ethernet header is 14 bytes network drivers often end up with
941 * the IP header at an unaligned offset. The IP header can be aligned by
942 * shifting the start of the packet by 2 bytes. Drivers should do this
943 * with:
944 *
945 * skb_reserve(NET_IP_ALIGN);
946 *
947 * The downside to this alignment of the IP header is that the DMA is now
948 * unaligned. On some architectures the cost of an unaligned DMA is high
949 * and this cost outweighs the gains made by aligning the IP header.
950 *
951 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
952 * to be overridden.
953 */
954#ifndef NET_IP_ALIGN
955#define NET_IP_ALIGN 2
956#endif
957
958extern int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc);
959
960static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
961{
962 if (!skb->data_len) {
963 skb->len = len;
964 skb->tail = skb->data + len;
965 } else
966 ___pskb_trim(skb, len, 0);
967}
968
969/**
970 * skb_trim - remove end from a buffer
971 * @skb: buffer to alter
972 * @len: new length
973 *
974 * Cut the length of a buffer down by removing data from the tail. If
975 * the buffer is already under the length specified it is not modified.
976 */
977static inline void skb_trim(struct sk_buff *skb, unsigned int len)
978{
979 if (skb->len > len)
980 __skb_trim(skb, len);
981}
982
983
984static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
985{
986 if (!skb->data_len) {
987 skb->len = len;
988 skb->tail = skb->data+len;
989 return 0;
990 }
991 return ___pskb_trim(skb, len, 1);
992}
993
994static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
995{
996 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
997}
998
999/**
1000 * skb_orphan - orphan a buffer
1001 * @skb: buffer to orphan
1002 *
1003 * If a buffer currently has an owner then we call the owner's
1004 * destructor function and make the @skb unowned. The buffer continues
1005 * to exist but is no longer charged to its former owner.
1006 */
1007static inline void skb_orphan(struct sk_buff *skb)
1008{
1009 if (skb->destructor)
1010 skb->destructor(skb);
1011 skb->destructor = NULL;
1012 skb->sk = NULL;
1013}
1014
1015/**
1016 * __skb_queue_purge - empty a list
1017 * @list: list to empty
1018 *
1019 * Delete all buffers on an &sk_buff list. Each buffer is removed from
1020 * the list and one reference dropped. This function does not take the
1021 * list lock and the caller must hold the relevant locks to use it.
1022 */
1023extern void skb_queue_purge(struct sk_buff_head *list);
1024static inline void __skb_queue_purge(struct sk_buff_head *list)
1025{
1026 struct sk_buff *skb;
1027 while ((skb = __skb_dequeue(list)) != NULL)
1028 kfree_skb(skb);
1029}
1030
4dc3b16b 1031#ifndef CONFIG_HAVE_ARCH_DEV_ALLOC_SKB
1da177e4
LT
1032/**
1033 * __dev_alloc_skb - allocate an skbuff for sending
1034 * @length: length to allocate
1035 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1036 *
1037 * Allocate a new &sk_buff and assign it a usage count of one. The
1038 * buffer has unspecified headroom built in. Users should allocate
1039 * the headroom they think they need without accounting for the
1040 * built in space. The built in space is used for optimisations.
1041 *
1042 * %NULL is returned in there is no free memory.
1043 */
1da177e4 1044static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
dd0fc66f 1045 gfp_t gfp_mask)
1da177e4
LT
1046{
1047 struct sk_buff *skb = alloc_skb(length + 16, gfp_mask);
1048 if (likely(skb))
1049 skb_reserve(skb, 16);
1050 return skb;
1051}
1052#else
1053extern struct sk_buff *__dev_alloc_skb(unsigned int length, int gfp_mask);
1054#endif
1055
1056/**
1057 * dev_alloc_skb - allocate an skbuff for sending
1058 * @length: length to allocate
1059 *
1060 * Allocate a new &sk_buff and assign it a usage count of one. The
1061 * buffer has unspecified headroom built in. Users should allocate
1062 * the headroom they think they need without accounting for the
1063 * built in space. The built in space is used for optimisations.
1064 *
1065 * %NULL is returned in there is no free memory. Although this function
1066 * allocates memory it can be called from an interrupt.
1067 */
1068static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1069{
1070 return __dev_alloc_skb(length, GFP_ATOMIC);
1071}
1072
1073/**
1074 * skb_cow - copy header of skb when it is required
1075 * @skb: buffer to cow
1076 * @headroom: needed headroom
1077 *
1078 * If the skb passed lacks sufficient headroom or its data part
1079 * is shared, data is reallocated. If reallocation fails, an error
1080 * is returned and original skb is not changed.
1081 *
1082 * The result is skb with writable area skb->head...skb->tail
1083 * and at least @headroom of space at head.
1084 */
1085static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1086{
1087 int delta = (headroom > 16 ? headroom : 16) - skb_headroom(skb);
1088
1089 if (delta < 0)
1090 delta = 0;
1091
1092 if (delta || skb_cloned(skb))
1093 return pskb_expand_head(skb, (delta + 15) & ~15, 0, GFP_ATOMIC);
1094 return 0;
1095}
1096
1097/**
1098 * skb_padto - pad an skbuff up to a minimal size
1099 * @skb: buffer to pad
1100 * @len: minimal length
1101 *
1102 * Pads up a buffer to ensure the trailing bytes exist and are
1103 * blanked. If the buffer already contains sufficient data it
1104 * is untouched. Returns the buffer, which may be a replacement
1105 * for the original, or NULL for out of memory - in which case
1106 * the original buffer is still freed.
1107 */
1108
1109static inline struct sk_buff *skb_padto(struct sk_buff *skb, unsigned int len)
1110{
1111 unsigned int size = skb->len;
1112 if (likely(size >= len))
1113 return skb;
1114 return skb_pad(skb, len-size);
1115}
1116
1117static inline int skb_add_data(struct sk_buff *skb,
1118 char __user *from, int copy)
1119{
1120 const int off = skb->len;
1121
1122 if (skb->ip_summed == CHECKSUM_NONE) {
1123 int err = 0;
1124 unsigned int csum = csum_and_copy_from_user(from,
1125 skb_put(skb, copy),
1126 copy, 0, &err);
1127 if (!err) {
1128 skb->csum = csum_block_add(skb->csum, csum, off);
1129 return 0;
1130 }
1131 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1132 return 0;
1133
1134 __skb_trim(skb, off);
1135 return -EFAULT;
1136}
1137
1138static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1139 struct page *page, int off)
1140{
1141 if (i) {
1142 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1143
1144 return page == frag->page &&
1145 off == frag->page_offset + frag->size;
1146 }
1147 return 0;
1148}
1149
1150/**
1151 * skb_linearize - convert paged skb to linear one
1152 * @skb: buffer to linarize
1153 * @gfp: allocation mode
1154 *
1155 * If there is no free memory -ENOMEM is returned, otherwise zero
1156 * is returned and the old skb data released.
1157 */
dd0fc66f
AV
1158extern int __skb_linearize(struct sk_buff *skb, gfp_t gfp);
1159static inline int skb_linearize(struct sk_buff *skb, gfp_t gfp)
1da177e4
LT
1160{
1161 return __skb_linearize(skb, gfp);
1162}
1163
1164/**
1165 * skb_postpull_rcsum - update checksum for received skb after pull
1166 * @skb: buffer to update
1167 * @start: start of data before pull
1168 * @len: length of data pulled
1169 *
1170 * After doing a pull on a received packet, you need to call this to
1171 * update the CHECKSUM_HW checksum, or set ip_summed to CHECKSUM_NONE
1172 * so that it can be recomputed from scratch.
1173 */
1174
1175static inline void skb_postpull_rcsum(struct sk_buff *skb,
1176 const void *start, int len)
1177{
1178 if (skb->ip_summed == CHECKSUM_HW)
1179 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1180}
1181
1182/**
1183 * pskb_trim_rcsum - trim received skb and update checksum
1184 * @skb: buffer to trim
1185 * @len: new length
1186 *
1187 * This is exactly the same as pskb_trim except that it ensures the
1188 * checksum of received packets are still valid after the operation.
1189 */
1190
1191static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1192{
0e4e4220 1193 if (likely(len >= skb->len))
1da177e4
LT
1194 return 0;
1195 if (skb->ip_summed == CHECKSUM_HW)
1196 skb->ip_summed = CHECKSUM_NONE;
1197 return __pskb_trim(skb, len);
1198}
1199
1200static inline void *kmap_skb_frag(const skb_frag_t *frag)
1201{
1202#ifdef CONFIG_HIGHMEM
1203 BUG_ON(in_irq());
1204
1205 local_bh_disable();
1206#endif
1207 return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ);
1208}
1209
1210static inline void kunmap_skb_frag(void *vaddr)
1211{
1212 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1213#ifdef CONFIG_HIGHMEM
1214 local_bh_enable();
1215#endif
1216}
1217
1218#define skb_queue_walk(queue, skb) \
1219 for (skb = (queue)->next; \
1220 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1221 skb = skb->next)
1222
300ce174
SH
1223#define skb_queue_reverse_walk(queue, skb) \
1224 for (skb = (queue)->prev; \
1225 prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \
1226 skb = skb->prev)
1227
1da177e4
LT
1228
1229extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1230 int noblock, int *err);
1231extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1232 struct poll_table_struct *wait);
1233extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1234 int offset, struct iovec *to,
1235 int size);
1236extern int skb_copy_and_csum_datagram_iovec(const
1237 struct sk_buff *skb,
1238 int hlen,
1239 struct iovec *iov);
1240extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1241extern unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1242 int len, unsigned int csum);
1243extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1244 void *to, int len);
357b40a1
HX
1245extern int skb_store_bits(const struct sk_buff *skb, int offset,
1246 void *from, int len);
1da177e4
LT
1247extern unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb,
1248 int offset, u8 *to, int len,
1249 unsigned int csum);
1250extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1251extern void skb_split(struct sk_buff *skb,
1252 struct sk_buff *skb1, const u32 len);
1253
20380731
ACM
1254extern void skb_release_data(struct sk_buff *skb);
1255
1da177e4
LT
1256static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1257 int len, void *buffer)
1258{
1259 int hlen = skb_headlen(skb);
1260
55820ee2 1261 if (hlen - offset >= len)
1da177e4
LT
1262 return skb->data + offset;
1263
1264 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1265 return NULL;
1266
1267 return buffer;
1268}
1269
1270extern void skb_init(void);
1271extern void skb_add_mtu(int mtu);
1272
a61bbcf2
PM
1273/**
1274 * skb_get_timestamp - get timestamp from a skb
1275 * @skb: skb to get stamp from
1276 * @stamp: pointer to struct timeval to store stamp in
1277 *
1278 * Timestamps are stored in the skb as offsets to a base timestamp.
1279 * This function converts the offset back to a struct timeval and stores
1280 * it in stamp.
1281 */
f2c38398 1282static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
a61bbcf2
PM
1283{
1284 stamp->tv_sec = skb->tstamp.off_sec;
1285 stamp->tv_usec = skb->tstamp.off_usec;
a61bbcf2
PM
1286}
1287
1288/**
1289 * skb_set_timestamp - set timestamp of a skb
1290 * @skb: skb to set stamp of
1291 * @stamp: pointer to struct timeval to get stamp from
1292 *
1293 * Timestamps are stored in the skb as offsets to a base timestamp.
1294 * This function converts a struct timeval to an offset and stores
1295 * it in the skb.
1296 */
f2c38398 1297static inline void skb_set_timestamp(struct sk_buff *skb, const struct timeval *stamp)
a61bbcf2 1298{
325ed823
HX
1299 skb->tstamp.off_sec = stamp->tv_sec;
1300 skb->tstamp.off_usec = stamp->tv_usec;
a61bbcf2
PM
1301}
1302
1303extern void __net_timestamp(struct sk_buff *skb);
1304
1da177e4
LT
1305#ifdef CONFIG_NETFILTER
1306static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1307{
1308 if (nfct && atomic_dec_and_test(&nfct->use))
1309 nfct->destroy(nfct);
1310}
1311static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1312{
1313 if (nfct)
1314 atomic_inc(&nfct->use);
1315}
1316static inline void nf_reset(struct sk_buff *skb)
1317{
1318 nf_conntrack_put(skb->nfct);
1319 skb->nfct = NULL;
1da177e4
LT
1320}
1321
1322#ifdef CONFIG_BRIDGE_NETFILTER
1323static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1324{
1325 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1326 kfree(nf_bridge);
1327}
1328static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1329{
1330 if (nf_bridge)
1331 atomic_inc(&nf_bridge->use);
1332}
1333#endif /* CONFIG_BRIDGE_NETFILTER */
1334#else /* CONFIG_NETFILTER */
1335static inline void nf_reset(struct sk_buff *skb) {}
1336#endif /* CONFIG_NETFILTER */
1337
1338#endif /* __KERNEL__ */
1339#endif /* _LINUX_SKBUFF_H */