]> bbs.cooldavid.org Git - net-next-2.6.git/blame - include/linux/skbuff.h
[DCCP]: Send SYNCACK packets in response to SYNC packets
[net-next-2.6.git] / include / linux / skbuff.h
CommitLineData
1da177e4
LT
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
17#include <linux/config.h>
18#include <linux/kernel.h>
19#include <linux/compiler.h>
20#include <linux/time.h>
21#include <linux/cache.h>
22
23#include <asm/atomic.h>
24#include <asm/types.h>
25#include <linux/spinlock.h>
26#include <linux/mm.h>
27#include <linux/highmem.h>
28#include <linux/poll.h>
29#include <linux/net.h>
3fc7e8a6 30#include <linux/textsearch.h>
1da177e4
LT
31#include <net/checksum.h>
32
33#define HAVE_ALLOC_SKB /* For the drivers to know */
34#define HAVE_ALIGNABLE_SKB /* Ditto 8) */
35#define SLAB_SKB /* Slabified skbuffs */
36
37#define CHECKSUM_NONE 0
38#define CHECKSUM_HW 1
39#define CHECKSUM_UNNECESSARY 2
40
41#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43#define SKB_MAX_ORDER(X, ORDER) (((PAGE_SIZE << (ORDER)) - (X) - \
44 sizeof(struct skb_shared_info)) & \
45 ~(SMP_CACHE_BYTES - 1))
46#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
47#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
48
49/* A. Checksumming of received packets by device.
50 *
51 * NONE: device failed to checksum this packet.
52 * skb->csum is undefined.
53 *
54 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
55 * skb->csum is undefined.
56 * It is bad option, but, unfortunately, many of vendors do this.
57 * Apparently with secret goal to sell you new device, when you
58 * will add new protocol to your host. F.e. IPv6. 8)
59 *
60 * HW: the most generic way. Device supplied checksum of _all_
61 * the packet as seen by netif_rx in skb->csum.
62 * NOTE: Even if device supports only some protocols, but
63 * is able to produce some skb->csum, it MUST use HW,
64 * not UNNECESSARY.
65 *
66 * B. Checksumming on output.
67 *
68 * NONE: skb is checksummed by protocol or csum is not required.
69 *
70 * HW: device is required to csum packet as seen by hard_start_xmit
71 * from skb->h.raw to the end and to record the checksum
72 * at skb->h.raw+skb->csum.
73 *
74 * Device must show its capabilities in dev->features, set
75 * at device setup time.
76 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
77 * everything.
78 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
79 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
80 * TCP/UDP over IPv4. Sigh. Vendors like this
81 * way by an unknown reason. Though, see comment above
82 * about CHECKSUM_UNNECESSARY. 8)
83 *
84 * Any questions? No questions, good. --ANK
85 */
86
1da177e4
LT
87struct net_device;
88
89#ifdef CONFIG_NETFILTER
90struct nf_conntrack {
91 atomic_t use;
92 void (*destroy)(struct nf_conntrack *);
93};
94
95#ifdef CONFIG_BRIDGE_NETFILTER
96struct nf_bridge_info {
97 atomic_t use;
98 struct net_device *physindev;
99 struct net_device *physoutdev;
100#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
101 struct net_device *netoutdev;
102#endif
103 unsigned int mask;
104 unsigned long data[32 / sizeof(unsigned long)];
105};
106#endif
107
108#endif
109
110struct sk_buff_head {
111 /* These two members must be first. */
112 struct sk_buff *next;
113 struct sk_buff *prev;
114
115 __u32 qlen;
116 spinlock_t lock;
117};
118
119struct sk_buff;
120
121/* To allow 64K frame to be packed as single skb without frag_list */
122#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
123
124typedef struct skb_frag_struct skb_frag_t;
125
126struct skb_frag_struct {
127 struct page *page;
128 __u16 page_offset;
129 __u16 size;
130};
131
132/* This data is invariant across clones and lives at
133 * the end of the header data, ie. at skb->end.
134 */
135struct skb_shared_info {
136 atomic_t dataref;
137 unsigned int nr_frags;
138 unsigned short tso_size;
139 unsigned short tso_segs;
140 struct sk_buff *frag_list;
141 skb_frag_t frags[MAX_SKB_FRAGS];
142};
143
144/* We divide dataref into two halves. The higher 16 bits hold references
145 * to the payload part of skb->data. The lower 16 bits hold references to
146 * the entire skb->data. It is up to the users of the skb to agree on
147 * where the payload starts.
148 *
149 * All users must obey the rule that the skb->data reference count must be
150 * greater than or equal to the payload reference count.
151 *
152 * Holding a reference to the payload part means that the user does not
153 * care about modifications to the header part of skb->data.
154 */
155#define SKB_DATAREF_SHIFT 16
156#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
157
a61bbcf2
PM
158extern struct timeval skb_tv_base;
159
160struct skb_timeval {
161 u32 off_sec;
162 u32 off_usec;
163};
164
1da177e4
LT
165/**
166 * struct sk_buff - socket buffer
167 * @next: Next buffer in list
168 * @prev: Previous buffer in list
169 * @list: List we are on
170 * @sk: Socket we are owned by
a61bbcf2 171 * @tstamp: Time we arrived stored as offset to skb_tv_base
1da177e4
LT
172 * @dev: Device we arrived on/are leaving by
173 * @input_dev: Device we arrived on
1da177e4
LT
174 * @h: Transport layer header
175 * @nh: Network layer header
176 * @mac: Link layer header
67be2dd1
MW
177 * @dst: destination entry
178 * @sp: the security path, used for xfrm
1da177e4
LT
179 * @cb: Control buffer. Free for use by every layer. Put private vars here
180 * @len: Length of actual data
181 * @data_len: Data length
182 * @mac_len: Length of link layer header
183 * @csum: Checksum
67be2dd1 184 * @local_df: allow local fragmentation
1da177e4
LT
185 * @cloned: Head may be cloned (check refcnt to be sure)
186 * @nohdr: Payload reference only, must not modify header
187 * @pkt_type: Packet class
188 * @ip_summed: Driver fed us an IP checksum
189 * @priority: Packet queueing priority
190 * @users: User count - see {datagram,tcp}.c
191 * @protocol: Packet protocol from driver
1da177e4
LT
192 * @truesize: Buffer size
193 * @head: Head of buffer
194 * @data: Data head pointer
195 * @tail: Tail pointer
196 * @end: End pointer
197 * @destructor: Destruct function
198 * @nfmark: Can be used for communication between hooks
1da177e4
LT
199 * @nfct: Associated connection, if any
200 * @nfctinfo: Relationship of this skb to the connection
1da177e4 201 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
1da177e4
LT
202 * @tc_index: Traffic control index
203 * @tc_verd: traffic control verdict
1da177e4
LT
204 */
205
206struct sk_buff {
207 /* These two members must be first. */
208 struct sk_buff *next;
209 struct sk_buff *prev;
210
1da177e4 211 struct sock *sk;
a61bbcf2 212 struct skb_timeval tstamp;
1da177e4
LT
213 struct net_device *dev;
214 struct net_device *input_dev;
1da177e4
LT
215
216 union {
217 struct tcphdr *th;
218 struct udphdr *uh;
219 struct icmphdr *icmph;
220 struct igmphdr *igmph;
221 struct iphdr *ipiph;
222 struct ipv6hdr *ipv6h;
223 unsigned char *raw;
224 } h;
225
226 union {
227 struct iphdr *iph;
228 struct ipv6hdr *ipv6h;
229 struct arphdr *arph;
230 unsigned char *raw;
231 } nh;
232
233 union {
234 unsigned char *raw;
235 } mac;
236
237 struct dst_entry *dst;
238 struct sec_path *sp;
239
240 /*
241 * This is the control buffer. It is free to use for every
242 * layer. Please put your private variables there. If you
243 * want to keep them across layers you have to do a skb_clone()
244 * first. This is owned by whoever has the skb queued ATM.
245 */
246 char cb[40];
247
248 unsigned int len,
249 data_len,
250 mac_len,
251 csum;
1da177e4 252 __u32 priority;
1cbb3380
TG
253 __u8 local_df:1,
254 cloned:1,
255 ip_summed:2,
6869c4d8
HW
256 nohdr:1,
257 nfctinfo:3;
1cbb3380 258 __u8 pkt_type;
a0d3bea3 259 __be16 protocol;
1da177e4
LT
260
261 void (*destructor)(struct sk_buff *skb);
262#ifdef CONFIG_NETFILTER
bf3a46aa 263 __u32 nfmark;
1da177e4 264 struct nf_conntrack *nfct;
6869c4d8
HW
265#if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
266 __u8 ipvs_property:1;
267#endif
1da177e4
LT
268#ifdef CONFIG_BRIDGE_NETFILTER
269 struct nf_bridge_info *nf_bridge;
270#endif
271#endif /* CONFIG_NETFILTER */
1da177e4 272#ifdef CONFIG_NET_SCHED
b6b99eb5 273 __u16 tc_index; /* traffic control index */
1da177e4 274#ifdef CONFIG_NET_CLS_ACT
b6b99eb5 275 __u16 tc_verd; /* traffic control verdict */
1da177e4 276#endif
1da177e4
LT
277#endif
278
279
280 /* These elements must be at the end, see alloc_skb() for details. */
281 unsigned int truesize;
282 atomic_t users;
283 unsigned char *head,
284 *data,
285 *tail,
286 *end;
287};
288
289#ifdef __KERNEL__
290/*
291 * Handling routines are only of interest to the kernel
292 */
293#include <linux/slab.h>
294
295#include <asm/system.h>
296
297extern void __kfree_skb(struct sk_buff *skb);
86a76caf
VF
298extern struct sk_buff *alloc_skb(unsigned int size,
299 unsigned int __nocast priority);
1da177e4 300extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
86a76caf
VF
301 unsigned int size,
302 unsigned int __nocast priority);
1da177e4 303extern void kfree_skbmem(struct sk_buff *skb);
86a76caf
VF
304extern struct sk_buff *skb_clone(struct sk_buff *skb,
305 unsigned int __nocast priority);
306extern struct sk_buff *skb_copy(const struct sk_buff *skb,
307 unsigned int __nocast priority);
308extern struct sk_buff *pskb_copy(struct sk_buff *skb,
309 unsigned int __nocast gfp_mask);
1da177e4 310extern int pskb_expand_head(struct sk_buff *skb,
86a76caf
VF
311 int nhead, int ntail,
312 unsigned int __nocast gfp_mask);
1da177e4
LT
313extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
314 unsigned int headroom);
315extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
316 int newheadroom, int newtailroom,
86a76caf 317 unsigned int __nocast priority);
1da177e4
LT
318extern struct sk_buff * skb_pad(struct sk_buff *skb, int pad);
319#define dev_kfree_skb(a) kfree_skb(a)
320extern void skb_over_panic(struct sk_buff *skb, int len,
321 void *here);
322extern void skb_under_panic(struct sk_buff *skb, int len,
323 void *here);
324
677e90ed
TG
325struct skb_seq_state
326{
327 __u32 lower_offset;
328 __u32 upper_offset;
329 __u32 frag_idx;
330 __u32 stepped_offset;
331 struct sk_buff *root_skb;
332 struct sk_buff *cur_skb;
333 __u8 *frag_data;
334};
335
336extern void skb_prepare_seq_read(struct sk_buff *skb,
337 unsigned int from, unsigned int to,
338 struct skb_seq_state *st);
339extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
340 struct skb_seq_state *st);
341extern void skb_abort_seq_read(struct skb_seq_state *st);
342
3fc7e8a6
TG
343extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
344 unsigned int to, struct ts_config *config,
345 struct ts_state *state);
346
1da177e4
LT
347/* Internal */
348#define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end))
349
350/**
351 * skb_queue_empty - check if a queue is empty
352 * @list: queue head
353 *
354 * Returns true if the queue is empty, false otherwise.
355 */
356static inline int skb_queue_empty(const struct sk_buff_head *list)
357{
358 return list->next == (struct sk_buff *)list;
359}
360
361/**
362 * skb_get - reference buffer
363 * @skb: buffer to reference
364 *
365 * Makes another reference to a socket buffer and returns a pointer
366 * to the buffer.
367 */
368static inline struct sk_buff *skb_get(struct sk_buff *skb)
369{
370 atomic_inc(&skb->users);
371 return skb;
372}
373
374/*
375 * If users == 1, we are the only owner and are can avoid redundant
376 * atomic change.
377 */
378
379/**
380 * kfree_skb - free an sk_buff
381 * @skb: buffer to free
382 *
383 * Drop a reference to the buffer and free it if the usage count has
384 * hit zero.
385 */
386static inline void kfree_skb(struct sk_buff *skb)
387{
388 if (likely(atomic_read(&skb->users) == 1))
389 smp_rmb();
390 else if (likely(!atomic_dec_and_test(&skb->users)))
391 return;
392 __kfree_skb(skb);
393}
394
395/**
396 * skb_cloned - is the buffer a clone
397 * @skb: buffer to check
398 *
399 * Returns true if the buffer was generated with skb_clone() and is
400 * one of multiple shared copies of the buffer. Cloned buffers are
401 * shared data so must not be written to under normal circumstances.
402 */
403static inline int skb_cloned(const struct sk_buff *skb)
404{
405 return skb->cloned &&
406 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
407}
408
409/**
410 * skb_header_cloned - is the header a clone
411 * @skb: buffer to check
412 *
413 * Returns true if modifying the header part of the buffer requires
414 * the data to be copied.
415 */
416static inline int skb_header_cloned(const struct sk_buff *skb)
417{
418 int dataref;
419
420 if (!skb->cloned)
421 return 0;
422
423 dataref = atomic_read(&skb_shinfo(skb)->dataref);
424 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
425 return dataref != 1;
426}
427
428/**
429 * skb_header_release - release reference to header
430 * @skb: buffer to operate on
431 *
432 * Drop a reference to the header part of the buffer. This is done
433 * by acquiring a payload reference. You must not read from the header
434 * part of skb->data after this.
435 */
436static inline void skb_header_release(struct sk_buff *skb)
437{
438 BUG_ON(skb->nohdr);
439 skb->nohdr = 1;
440 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
441}
442
443/**
444 * skb_shared - is the buffer shared
445 * @skb: buffer to check
446 *
447 * Returns true if more than one person has a reference to this
448 * buffer.
449 */
450static inline int skb_shared(const struct sk_buff *skb)
451{
452 return atomic_read(&skb->users) != 1;
453}
454
455/**
456 * skb_share_check - check if buffer is shared and if so clone it
457 * @skb: buffer to check
458 * @pri: priority for memory allocation
459 *
460 * If the buffer is shared the buffer is cloned and the old copy
461 * drops a reference. A new clone with a single reference is returned.
462 * If the buffer is not shared the original buffer is returned. When
463 * being called from interrupt status or with spinlocks held pri must
464 * be GFP_ATOMIC.
465 *
466 * NULL is returned on a memory allocation failure.
467 */
86a76caf
VF
468static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
469 unsigned int __nocast pri)
1da177e4
LT
470{
471 might_sleep_if(pri & __GFP_WAIT);
472 if (skb_shared(skb)) {
473 struct sk_buff *nskb = skb_clone(skb, pri);
474 kfree_skb(skb);
475 skb = nskb;
476 }
477 return skb;
478}
479
480/*
481 * Copy shared buffers into a new sk_buff. We effectively do COW on
482 * packets to handle cases where we have a local reader and forward
483 * and a couple of other messy ones. The normal one is tcpdumping
484 * a packet thats being forwarded.
485 */
486
487/**
488 * skb_unshare - make a copy of a shared buffer
489 * @skb: buffer to check
490 * @pri: priority for memory allocation
491 *
492 * If the socket buffer is a clone then this function creates a new
493 * copy of the data, drops a reference count on the old copy and returns
494 * the new copy with the reference count at 1. If the buffer is not a clone
495 * the original buffer is returned. When called with a spinlock held or
496 * from interrupt state @pri must be %GFP_ATOMIC
497 *
498 * %NULL is returned on a memory allocation failure.
499 */
e2bf521d
VF
500static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
501 unsigned int __nocast pri)
1da177e4
LT
502{
503 might_sleep_if(pri & __GFP_WAIT);
504 if (skb_cloned(skb)) {
505 struct sk_buff *nskb = skb_copy(skb, pri);
506 kfree_skb(skb); /* Free our shared copy */
507 skb = nskb;
508 }
509 return skb;
510}
511
512/**
513 * skb_peek
514 * @list_: list to peek at
515 *
516 * Peek an &sk_buff. Unlike most other operations you _MUST_
517 * be careful with this one. A peek leaves the buffer on the
518 * list and someone else may run off with it. You must hold
519 * the appropriate locks or have a private queue to do this.
520 *
521 * Returns %NULL for an empty list or a pointer to the head element.
522 * The reference count is not incremented and the reference is therefore
523 * volatile. Use with caution.
524 */
525static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
526{
527 struct sk_buff *list = ((struct sk_buff *)list_)->next;
528 if (list == (struct sk_buff *)list_)
529 list = NULL;
530 return list;
531}
532
533/**
534 * skb_peek_tail
535 * @list_: list to peek at
536 *
537 * Peek an &sk_buff. Unlike most other operations you _MUST_
538 * be careful with this one. A peek leaves the buffer on the
539 * list and someone else may run off with it. You must hold
540 * the appropriate locks or have a private queue to do this.
541 *
542 * Returns %NULL for an empty list or a pointer to the tail element.
543 * The reference count is not incremented and the reference is therefore
544 * volatile. Use with caution.
545 */
546static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
547{
548 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
549 if (list == (struct sk_buff *)list_)
550 list = NULL;
551 return list;
552}
553
554/**
555 * skb_queue_len - get queue length
556 * @list_: list to measure
557 *
558 * Return the length of an &sk_buff queue.
559 */
560static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
561{
562 return list_->qlen;
563}
564
565static inline void skb_queue_head_init(struct sk_buff_head *list)
566{
567 spin_lock_init(&list->lock);
568 list->prev = list->next = (struct sk_buff *)list;
569 list->qlen = 0;
570}
571
572/*
573 * Insert an sk_buff at the start of a list.
574 *
575 * The "__skb_xxxx()" functions are the non-atomic ones that
576 * can only be called with interrupts disabled.
577 */
578
579/**
580 * __skb_queue_head - queue a buffer at the list head
581 * @list: list to use
582 * @newsk: buffer to queue
583 *
584 * Queue a buffer at the start of a list. This function takes no locks
585 * and you must therefore hold required locks before calling it.
586 *
587 * A buffer cannot be placed on two lists at the same time.
588 */
589extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
590static inline void __skb_queue_head(struct sk_buff_head *list,
591 struct sk_buff *newsk)
592{
593 struct sk_buff *prev, *next;
594
1da177e4
LT
595 list->qlen++;
596 prev = (struct sk_buff *)list;
597 next = prev->next;
598 newsk->next = next;
599 newsk->prev = prev;
600 next->prev = prev->next = newsk;
601}
602
603/**
604 * __skb_queue_tail - queue a buffer at the list tail
605 * @list: list to use
606 * @newsk: buffer to queue
607 *
608 * Queue a buffer at the end of a list. This function takes no locks
609 * and you must therefore hold required locks before calling it.
610 *
611 * A buffer cannot be placed on two lists at the same time.
612 */
613extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
614static inline void __skb_queue_tail(struct sk_buff_head *list,
615 struct sk_buff *newsk)
616{
617 struct sk_buff *prev, *next;
618
1da177e4
LT
619 list->qlen++;
620 next = (struct sk_buff *)list;
621 prev = next->prev;
622 newsk->next = next;
623 newsk->prev = prev;
624 next->prev = prev->next = newsk;
625}
626
627
628/**
629 * __skb_dequeue - remove from the head of the queue
630 * @list: list to dequeue from
631 *
632 * Remove the head of the list. This function does not take any locks
633 * so must be used with appropriate locks held only. The head item is
634 * returned or %NULL if the list is empty.
635 */
636extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
637static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
638{
639 struct sk_buff *next, *prev, *result;
640
641 prev = (struct sk_buff *) list;
642 next = prev->next;
643 result = NULL;
644 if (next != prev) {
645 result = next;
646 next = next->next;
647 list->qlen--;
648 next->prev = prev;
649 prev->next = next;
650 result->next = result->prev = NULL;
1da177e4
LT
651 }
652 return result;
653}
654
655
656/*
657 * Insert a packet on a list.
658 */
8728b834 659extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
1da177e4
LT
660static inline void __skb_insert(struct sk_buff *newsk,
661 struct sk_buff *prev, struct sk_buff *next,
662 struct sk_buff_head *list)
663{
664 newsk->next = next;
665 newsk->prev = prev;
666 next->prev = prev->next = newsk;
1da177e4
LT
667 list->qlen++;
668}
669
670/*
671 * Place a packet after a given packet in a list.
672 */
8728b834
DM
673extern void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
674static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
1da177e4 675{
8728b834 676 __skb_insert(newsk, old, old->next, list);
1da177e4
LT
677}
678
679/*
680 * remove sk_buff from list. _Must_ be called atomically, and with
681 * the list known..
682 */
8728b834 683extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1da177e4
LT
684static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
685{
686 struct sk_buff *next, *prev;
687
688 list->qlen--;
689 next = skb->next;
690 prev = skb->prev;
691 skb->next = skb->prev = NULL;
1da177e4
LT
692 next->prev = prev;
693 prev->next = next;
694}
695
696
697/* XXX: more streamlined implementation */
698
699/**
700 * __skb_dequeue_tail - remove from the tail of the queue
701 * @list: list to dequeue from
702 *
703 * Remove the tail of the list. This function does not take any locks
704 * so must be used with appropriate locks held only. The tail item is
705 * returned or %NULL if the list is empty.
706 */
707extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
708static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
709{
710 struct sk_buff *skb = skb_peek_tail(list);
711 if (skb)
712 __skb_unlink(skb, list);
713 return skb;
714}
715
716
717static inline int skb_is_nonlinear(const struct sk_buff *skb)
718{
719 return skb->data_len;
720}
721
722static inline unsigned int skb_headlen(const struct sk_buff *skb)
723{
724 return skb->len - skb->data_len;
725}
726
727static inline int skb_pagelen(const struct sk_buff *skb)
728{
729 int i, len = 0;
730
731 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
732 len += skb_shinfo(skb)->frags[i].size;
733 return len + skb_headlen(skb);
734}
735
736static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
737 struct page *page, int off, int size)
738{
739 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
740
741 frag->page = page;
742 frag->page_offset = off;
743 frag->size = size;
744 skb_shinfo(skb)->nr_frags = i + 1;
745}
746
747#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
748#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
749#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
750
751/*
752 * Add data to an sk_buff
753 */
754static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
755{
756 unsigned char *tmp = skb->tail;
757 SKB_LINEAR_ASSERT(skb);
758 skb->tail += len;
759 skb->len += len;
760 return tmp;
761}
762
763/**
764 * skb_put - add data to a buffer
765 * @skb: buffer to use
766 * @len: amount of data to add
767 *
768 * This function extends the used data area of the buffer. If this would
769 * exceed the total buffer size the kernel will panic. A pointer to the
770 * first byte of the extra data is returned.
771 */
772static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
773{
774 unsigned char *tmp = skb->tail;
775 SKB_LINEAR_ASSERT(skb);
776 skb->tail += len;
777 skb->len += len;
778 if (unlikely(skb->tail>skb->end))
779 skb_over_panic(skb, len, current_text_addr());
780 return tmp;
781}
782
783static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
784{
785 skb->data -= len;
786 skb->len += len;
787 return skb->data;
788}
789
790/**
791 * skb_push - add data to the start of a buffer
792 * @skb: buffer to use
793 * @len: amount of data to add
794 *
795 * This function extends the used data area of the buffer at the buffer
796 * start. If this would exceed the total buffer headroom the kernel will
797 * panic. A pointer to the first byte of the extra data is returned.
798 */
799static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
800{
801 skb->data -= len;
802 skb->len += len;
803 if (unlikely(skb->data<skb->head))
804 skb_under_panic(skb, len, current_text_addr());
805 return skb->data;
806}
807
808static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
809{
810 skb->len -= len;
811 BUG_ON(skb->len < skb->data_len);
812 return skb->data += len;
813}
814
815/**
816 * skb_pull - remove data from the start of a buffer
817 * @skb: buffer to use
818 * @len: amount of data to remove
819 *
820 * This function removes data from the start of a buffer, returning
821 * the memory to the headroom. A pointer to the next data in the buffer
822 * is returned. Once the data has been pulled future pushes will overwrite
823 * the old data.
824 */
825static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
826{
827 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
828}
829
830extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
831
832static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
833{
834 if (len > skb_headlen(skb) &&
835 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
836 return NULL;
837 skb->len -= len;
838 return skb->data += len;
839}
840
841static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
842{
843 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
844}
845
846static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
847{
848 if (likely(len <= skb_headlen(skb)))
849 return 1;
850 if (unlikely(len > skb->len))
851 return 0;
852 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
853}
854
855/**
856 * skb_headroom - bytes at buffer head
857 * @skb: buffer to check
858 *
859 * Return the number of bytes of free space at the head of an &sk_buff.
860 */
861static inline int skb_headroom(const struct sk_buff *skb)
862{
863 return skb->data - skb->head;
864}
865
866/**
867 * skb_tailroom - bytes at buffer end
868 * @skb: buffer to check
869 *
870 * Return the number of bytes of free space at the tail of an sk_buff
871 */
872static inline int skb_tailroom(const struct sk_buff *skb)
873{
874 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
875}
876
877/**
878 * skb_reserve - adjust headroom
879 * @skb: buffer to alter
880 * @len: bytes to move
881 *
882 * Increase the headroom of an empty &sk_buff by reducing the tail
883 * room. This is only allowed for an empty buffer.
884 */
885static inline void skb_reserve(struct sk_buff *skb, unsigned int len)
886{
887 skb->data += len;
888 skb->tail += len;
889}
890
891/*
892 * CPUs often take a performance hit when accessing unaligned memory
893 * locations. The actual performance hit varies, it can be small if the
894 * hardware handles it or large if we have to take an exception and fix it
895 * in software.
896 *
897 * Since an ethernet header is 14 bytes network drivers often end up with
898 * the IP header at an unaligned offset. The IP header can be aligned by
899 * shifting the start of the packet by 2 bytes. Drivers should do this
900 * with:
901 *
902 * skb_reserve(NET_IP_ALIGN);
903 *
904 * The downside to this alignment of the IP header is that the DMA is now
905 * unaligned. On some architectures the cost of an unaligned DMA is high
906 * and this cost outweighs the gains made by aligning the IP header.
907 *
908 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
909 * to be overridden.
910 */
911#ifndef NET_IP_ALIGN
912#define NET_IP_ALIGN 2
913#endif
914
915extern int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc);
916
917static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
918{
919 if (!skb->data_len) {
920 skb->len = len;
921 skb->tail = skb->data + len;
922 } else
923 ___pskb_trim(skb, len, 0);
924}
925
926/**
927 * skb_trim - remove end from a buffer
928 * @skb: buffer to alter
929 * @len: new length
930 *
931 * Cut the length of a buffer down by removing data from the tail. If
932 * the buffer is already under the length specified it is not modified.
933 */
934static inline void skb_trim(struct sk_buff *skb, unsigned int len)
935{
936 if (skb->len > len)
937 __skb_trim(skb, len);
938}
939
940
941static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
942{
943 if (!skb->data_len) {
944 skb->len = len;
945 skb->tail = skb->data+len;
946 return 0;
947 }
948 return ___pskb_trim(skb, len, 1);
949}
950
951static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
952{
953 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
954}
955
956/**
957 * skb_orphan - orphan a buffer
958 * @skb: buffer to orphan
959 *
960 * If a buffer currently has an owner then we call the owner's
961 * destructor function and make the @skb unowned. The buffer continues
962 * to exist but is no longer charged to its former owner.
963 */
964static inline void skb_orphan(struct sk_buff *skb)
965{
966 if (skb->destructor)
967 skb->destructor(skb);
968 skb->destructor = NULL;
969 skb->sk = NULL;
970}
971
972/**
973 * __skb_queue_purge - empty a list
974 * @list: list to empty
975 *
976 * Delete all buffers on an &sk_buff list. Each buffer is removed from
977 * the list and one reference dropped. This function does not take the
978 * list lock and the caller must hold the relevant locks to use it.
979 */
980extern void skb_queue_purge(struct sk_buff_head *list);
981static inline void __skb_queue_purge(struct sk_buff_head *list)
982{
983 struct sk_buff *skb;
984 while ((skb = __skb_dequeue(list)) != NULL)
985 kfree_skb(skb);
986}
987
4dc3b16b 988#ifndef CONFIG_HAVE_ARCH_DEV_ALLOC_SKB
1da177e4
LT
989/**
990 * __dev_alloc_skb - allocate an skbuff for sending
991 * @length: length to allocate
992 * @gfp_mask: get_free_pages mask, passed to alloc_skb
993 *
994 * Allocate a new &sk_buff and assign it a usage count of one. The
995 * buffer has unspecified headroom built in. Users should allocate
996 * the headroom they think they need without accounting for the
997 * built in space. The built in space is used for optimisations.
998 *
999 * %NULL is returned in there is no free memory.
1000 */
1da177e4 1001static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
86a76caf 1002 unsigned int __nocast gfp_mask)
1da177e4
LT
1003{
1004 struct sk_buff *skb = alloc_skb(length + 16, gfp_mask);
1005 if (likely(skb))
1006 skb_reserve(skb, 16);
1007 return skb;
1008}
1009#else
1010extern struct sk_buff *__dev_alloc_skb(unsigned int length, int gfp_mask);
1011#endif
1012
1013/**
1014 * dev_alloc_skb - allocate an skbuff for sending
1015 * @length: length to allocate
1016 *
1017 * Allocate a new &sk_buff and assign it a usage count of one. The
1018 * buffer has unspecified headroom built in. Users should allocate
1019 * the headroom they think they need without accounting for the
1020 * built in space. The built in space is used for optimisations.
1021 *
1022 * %NULL is returned in there is no free memory. Although this function
1023 * allocates memory it can be called from an interrupt.
1024 */
1025static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1026{
1027 return __dev_alloc_skb(length, GFP_ATOMIC);
1028}
1029
1030/**
1031 * skb_cow - copy header of skb when it is required
1032 * @skb: buffer to cow
1033 * @headroom: needed headroom
1034 *
1035 * If the skb passed lacks sufficient headroom or its data part
1036 * is shared, data is reallocated. If reallocation fails, an error
1037 * is returned and original skb is not changed.
1038 *
1039 * The result is skb with writable area skb->head...skb->tail
1040 * and at least @headroom of space at head.
1041 */
1042static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1043{
1044 int delta = (headroom > 16 ? headroom : 16) - skb_headroom(skb);
1045
1046 if (delta < 0)
1047 delta = 0;
1048
1049 if (delta || skb_cloned(skb))
1050 return pskb_expand_head(skb, (delta + 15) & ~15, 0, GFP_ATOMIC);
1051 return 0;
1052}
1053
1054/**
1055 * skb_padto - pad an skbuff up to a minimal size
1056 * @skb: buffer to pad
1057 * @len: minimal length
1058 *
1059 * Pads up a buffer to ensure the trailing bytes exist and are
1060 * blanked. If the buffer already contains sufficient data it
1061 * is untouched. Returns the buffer, which may be a replacement
1062 * for the original, or NULL for out of memory - in which case
1063 * the original buffer is still freed.
1064 */
1065
1066static inline struct sk_buff *skb_padto(struct sk_buff *skb, unsigned int len)
1067{
1068 unsigned int size = skb->len;
1069 if (likely(size >= len))
1070 return skb;
1071 return skb_pad(skb, len-size);
1072}
1073
1074static inline int skb_add_data(struct sk_buff *skb,
1075 char __user *from, int copy)
1076{
1077 const int off = skb->len;
1078
1079 if (skb->ip_summed == CHECKSUM_NONE) {
1080 int err = 0;
1081 unsigned int csum = csum_and_copy_from_user(from,
1082 skb_put(skb, copy),
1083 copy, 0, &err);
1084 if (!err) {
1085 skb->csum = csum_block_add(skb->csum, csum, off);
1086 return 0;
1087 }
1088 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1089 return 0;
1090
1091 __skb_trim(skb, off);
1092 return -EFAULT;
1093}
1094
1095static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1096 struct page *page, int off)
1097{
1098 if (i) {
1099 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1100
1101 return page == frag->page &&
1102 off == frag->page_offset + frag->size;
1103 }
1104 return 0;
1105}
1106
1107/**
1108 * skb_linearize - convert paged skb to linear one
1109 * @skb: buffer to linarize
1110 * @gfp: allocation mode
1111 *
1112 * If there is no free memory -ENOMEM is returned, otherwise zero
1113 * is returned and the old skb data released.
1114 */
86a76caf
VF
1115extern int __skb_linearize(struct sk_buff *skb, unsigned int __nocast gfp);
1116static inline int skb_linearize(struct sk_buff *skb, unsigned int __nocast gfp)
1da177e4
LT
1117{
1118 return __skb_linearize(skb, gfp);
1119}
1120
1121/**
1122 * skb_postpull_rcsum - update checksum for received skb after pull
1123 * @skb: buffer to update
1124 * @start: start of data before pull
1125 * @len: length of data pulled
1126 *
1127 * After doing a pull on a received packet, you need to call this to
1128 * update the CHECKSUM_HW checksum, or set ip_summed to CHECKSUM_NONE
1129 * so that it can be recomputed from scratch.
1130 */
1131
1132static inline void skb_postpull_rcsum(struct sk_buff *skb,
1133 const void *start, int len)
1134{
1135 if (skb->ip_summed == CHECKSUM_HW)
1136 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1137}
1138
1139/**
1140 * pskb_trim_rcsum - trim received skb and update checksum
1141 * @skb: buffer to trim
1142 * @len: new length
1143 *
1144 * This is exactly the same as pskb_trim except that it ensures the
1145 * checksum of received packets are still valid after the operation.
1146 */
1147
1148static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1149{
1150 if (len >= skb->len)
1151 return 0;
1152 if (skb->ip_summed == CHECKSUM_HW)
1153 skb->ip_summed = CHECKSUM_NONE;
1154 return __pskb_trim(skb, len);
1155}
1156
1157static inline void *kmap_skb_frag(const skb_frag_t *frag)
1158{
1159#ifdef CONFIG_HIGHMEM
1160 BUG_ON(in_irq());
1161
1162 local_bh_disable();
1163#endif
1164 return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ);
1165}
1166
1167static inline void kunmap_skb_frag(void *vaddr)
1168{
1169 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1170#ifdef CONFIG_HIGHMEM
1171 local_bh_enable();
1172#endif
1173}
1174
1175#define skb_queue_walk(queue, skb) \
1176 for (skb = (queue)->next; \
1177 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1178 skb = skb->next)
1179
1180
1181extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1182 int noblock, int *err);
1183extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1184 struct poll_table_struct *wait);
1185extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1186 int offset, struct iovec *to,
1187 int size);
1188extern int skb_copy_and_csum_datagram_iovec(const
1189 struct sk_buff *skb,
1190 int hlen,
1191 struct iovec *iov);
1192extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1193extern unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1194 int len, unsigned int csum);
1195extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1196 void *to, int len);
357b40a1
HX
1197extern int skb_store_bits(const struct sk_buff *skb, int offset,
1198 void *from, int len);
1da177e4
LT
1199extern unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb,
1200 int offset, u8 *to, int len,
1201 unsigned int csum);
1202extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1203extern void skb_split(struct sk_buff *skb,
1204 struct sk_buff *skb1, const u32 len);
1205
20380731
ACM
1206extern void skb_release_data(struct sk_buff *skb);
1207
1da177e4
LT
1208static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1209 int len, void *buffer)
1210{
1211 int hlen = skb_headlen(skb);
1212
55820ee2 1213 if (hlen - offset >= len)
1da177e4
LT
1214 return skb->data + offset;
1215
1216 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1217 return NULL;
1218
1219 return buffer;
1220}
1221
1222extern void skb_init(void);
1223extern void skb_add_mtu(int mtu);
1224
a61bbcf2
PM
1225/**
1226 * skb_get_timestamp - get timestamp from a skb
1227 * @skb: skb to get stamp from
1228 * @stamp: pointer to struct timeval to store stamp in
1229 *
1230 * Timestamps are stored in the skb as offsets to a base timestamp.
1231 * This function converts the offset back to a struct timeval and stores
1232 * it in stamp.
1233 */
1234static inline void skb_get_timestamp(struct sk_buff *skb, struct timeval *stamp)
1235{
1236 stamp->tv_sec = skb->tstamp.off_sec;
1237 stamp->tv_usec = skb->tstamp.off_usec;
1238 if (skb->tstamp.off_sec) {
1239 stamp->tv_sec += skb_tv_base.tv_sec;
1240 stamp->tv_usec += skb_tv_base.tv_usec;
1241 }
1242}
1243
1244/**
1245 * skb_set_timestamp - set timestamp of a skb
1246 * @skb: skb to set stamp of
1247 * @stamp: pointer to struct timeval to get stamp from
1248 *
1249 * Timestamps are stored in the skb as offsets to a base timestamp.
1250 * This function converts a struct timeval to an offset and stores
1251 * it in the skb.
1252 */
1253static inline void skb_set_timestamp(struct sk_buff *skb, struct timeval *stamp)
1254{
1255 skb->tstamp.off_sec = stamp->tv_sec - skb_tv_base.tv_sec;
1256 skb->tstamp.off_usec = stamp->tv_usec - skb_tv_base.tv_usec;
1257}
1258
1259extern void __net_timestamp(struct sk_buff *skb);
1260
1da177e4
LT
1261#ifdef CONFIG_NETFILTER
1262static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1263{
1264 if (nfct && atomic_dec_and_test(&nfct->use))
1265 nfct->destroy(nfct);
1266}
1267static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1268{
1269 if (nfct)
1270 atomic_inc(&nfct->use);
1271}
1272static inline void nf_reset(struct sk_buff *skb)
1273{
1274 nf_conntrack_put(skb->nfct);
1275 skb->nfct = NULL;
1da177e4
LT
1276}
1277
1278#ifdef CONFIG_BRIDGE_NETFILTER
1279static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1280{
1281 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1282 kfree(nf_bridge);
1283}
1284static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1285{
1286 if (nf_bridge)
1287 atomic_inc(&nf_bridge->use);
1288}
1289#endif /* CONFIG_BRIDGE_NETFILTER */
1290#else /* CONFIG_NETFILTER */
1291static inline void nf_reset(struct sk_buff *skb) {}
1292#endif /* CONFIG_NETFILTER */
1293
1294#endif /* __KERNEL__ */
1295#endif /* _LINUX_SKBUFF_H */