]> bbs.cooldavid.org Git - net-next-2.6.git/blame - include/linux/skbuff.h
[PATCH] DocBook: fix <void/> xml tag
[net-next-2.6.git] / include / linux / skbuff.h
CommitLineData
1da177e4
LT
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
17#include <linux/config.h>
18#include <linux/kernel.h>
19#include <linux/compiler.h>
20#include <linux/time.h>
21#include <linux/cache.h>
22
23#include <asm/atomic.h>
24#include <asm/types.h>
25#include <linux/spinlock.h>
26#include <linux/mm.h>
27#include <linux/highmem.h>
28#include <linux/poll.h>
29#include <linux/net.h>
30#include <net/checksum.h>
31
32#define HAVE_ALLOC_SKB /* For the drivers to know */
33#define HAVE_ALIGNABLE_SKB /* Ditto 8) */
34#define SLAB_SKB /* Slabified skbuffs */
35
36#define CHECKSUM_NONE 0
37#define CHECKSUM_HW 1
38#define CHECKSUM_UNNECESSARY 2
39
40#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
41 ~(SMP_CACHE_BYTES - 1))
42#define SKB_MAX_ORDER(X, ORDER) (((PAGE_SIZE << (ORDER)) - (X) - \
43 sizeof(struct skb_shared_info)) & \
44 ~(SMP_CACHE_BYTES - 1))
45#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
46#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
47
48/* A. Checksumming of received packets by device.
49 *
50 * NONE: device failed to checksum this packet.
51 * skb->csum is undefined.
52 *
53 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
54 * skb->csum is undefined.
55 * It is bad option, but, unfortunately, many of vendors do this.
56 * Apparently with secret goal to sell you new device, when you
57 * will add new protocol to your host. F.e. IPv6. 8)
58 *
59 * HW: the most generic way. Device supplied checksum of _all_
60 * the packet as seen by netif_rx in skb->csum.
61 * NOTE: Even if device supports only some protocols, but
62 * is able to produce some skb->csum, it MUST use HW,
63 * not UNNECESSARY.
64 *
65 * B. Checksumming on output.
66 *
67 * NONE: skb is checksummed by protocol or csum is not required.
68 *
69 * HW: device is required to csum packet as seen by hard_start_xmit
70 * from skb->h.raw to the end and to record the checksum
71 * at skb->h.raw+skb->csum.
72 *
73 * Device must show its capabilities in dev->features, set
74 * at device setup time.
75 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
76 * everything.
77 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
78 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
79 * TCP/UDP over IPv4. Sigh. Vendors like this
80 * way by an unknown reason. Though, see comment above
81 * about CHECKSUM_UNNECESSARY. 8)
82 *
83 * Any questions? No questions, good. --ANK
84 */
85
1da177e4
LT
86struct net_device;
87
88#ifdef CONFIG_NETFILTER
89struct nf_conntrack {
90 atomic_t use;
91 void (*destroy)(struct nf_conntrack *);
92};
93
94#ifdef CONFIG_BRIDGE_NETFILTER
95struct nf_bridge_info {
96 atomic_t use;
97 struct net_device *physindev;
98 struct net_device *physoutdev;
99#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
100 struct net_device *netoutdev;
101#endif
102 unsigned int mask;
103 unsigned long data[32 / sizeof(unsigned long)];
104};
105#endif
106
107#endif
108
109struct sk_buff_head {
110 /* These two members must be first. */
111 struct sk_buff *next;
112 struct sk_buff *prev;
113
114 __u32 qlen;
115 spinlock_t lock;
116};
117
118struct sk_buff;
119
120/* To allow 64K frame to be packed as single skb without frag_list */
121#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
122
123typedef struct skb_frag_struct skb_frag_t;
124
125struct skb_frag_struct {
126 struct page *page;
127 __u16 page_offset;
128 __u16 size;
129};
130
131/* This data is invariant across clones and lives at
132 * the end of the header data, ie. at skb->end.
133 */
134struct skb_shared_info {
135 atomic_t dataref;
136 unsigned int nr_frags;
137 unsigned short tso_size;
138 unsigned short tso_segs;
139 struct sk_buff *frag_list;
140 skb_frag_t frags[MAX_SKB_FRAGS];
141};
142
143/* We divide dataref into two halves. The higher 16 bits hold references
144 * to the payload part of skb->data. The lower 16 bits hold references to
145 * the entire skb->data. It is up to the users of the skb to agree on
146 * where the payload starts.
147 *
148 * All users must obey the rule that the skb->data reference count must be
149 * greater than or equal to the payload reference count.
150 *
151 * Holding a reference to the payload part means that the user does not
152 * care about modifications to the header part of skb->data.
153 */
154#define SKB_DATAREF_SHIFT 16
155#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
156
157/**
158 * struct sk_buff - socket buffer
159 * @next: Next buffer in list
160 * @prev: Previous buffer in list
161 * @list: List we are on
162 * @sk: Socket we are owned by
163 * @stamp: Time we arrived
164 * @dev: Device we arrived on/are leaving by
165 * @input_dev: Device we arrived on
166 * @real_dev: The real device we are using
167 * @h: Transport layer header
168 * @nh: Network layer header
169 * @mac: Link layer header
170 * @dst: FIXME: Describe this field
171 * @cb: Control buffer. Free for use by every layer. Put private vars here
172 * @len: Length of actual data
173 * @data_len: Data length
174 * @mac_len: Length of link layer header
175 * @csum: Checksum
176 * @__unused: Dead field, may be reused
177 * @cloned: Head may be cloned (check refcnt to be sure)
178 * @nohdr: Payload reference only, must not modify header
179 * @pkt_type: Packet class
180 * @ip_summed: Driver fed us an IP checksum
181 * @priority: Packet queueing priority
182 * @users: User count - see {datagram,tcp}.c
183 * @protocol: Packet protocol from driver
184 * @security: Security level of packet
185 * @truesize: Buffer size
186 * @head: Head of buffer
187 * @data: Data head pointer
188 * @tail: Tail pointer
189 * @end: End pointer
190 * @destructor: Destruct function
191 * @nfmark: Can be used for communication between hooks
192 * @nfcache: Cache info
193 * @nfct: Associated connection, if any
194 * @nfctinfo: Relationship of this skb to the connection
195 * @nf_debug: Netfilter debugging
196 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
197 * @private: Data which is private to the HIPPI implementation
198 * @tc_index: Traffic control index
199 * @tc_verd: traffic control verdict
200 * @tc_classid: traffic control classid
201 */
202
203struct sk_buff {
204 /* These two members must be first. */
205 struct sk_buff *next;
206 struct sk_buff *prev;
207
208 struct sk_buff_head *list;
209 struct sock *sk;
210 struct timeval stamp;
211 struct net_device *dev;
212 struct net_device *input_dev;
213 struct net_device *real_dev;
214
215 union {
216 struct tcphdr *th;
217 struct udphdr *uh;
218 struct icmphdr *icmph;
219 struct igmphdr *igmph;
220 struct iphdr *ipiph;
221 struct ipv6hdr *ipv6h;
222 unsigned char *raw;
223 } h;
224
225 union {
226 struct iphdr *iph;
227 struct ipv6hdr *ipv6h;
228 struct arphdr *arph;
229 unsigned char *raw;
230 } nh;
231
232 union {
233 unsigned char *raw;
234 } mac;
235
236 struct dst_entry *dst;
237 struct sec_path *sp;
238
239 /*
240 * This is the control buffer. It is free to use for every
241 * layer. Please put your private variables there. If you
242 * want to keep them across layers you have to do a skb_clone()
243 * first. This is owned by whoever has the skb queued ATM.
244 */
245 char cb[40];
246
247 unsigned int len,
248 data_len,
249 mac_len,
250 csum;
251 unsigned char local_df,
252 cloned:1,
253 nohdr:1,
254 pkt_type,
255 ip_summed;
256 __u32 priority;
257 unsigned short protocol,
258 security;
259
260 void (*destructor)(struct sk_buff *skb);
261#ifdef CONFIG_NETFILTER
262 unsigned long nfmark;
263 __u32 nfcache;
264 __u32 nfctinfo;
265 struct nf_conntrack *nfct;
266#ifdef CONFIG_NETFILTER_DEBUG
267 unsigned int nf_debug;
268#endif
269#ifdef CONFIG_BRIDGE_NETFILTER
270 struct nf_bridge_info *nf_bridge;
271#endif
272#endif /* CONFIG_NETFILTER */
273#if defined(CONFIG_HIPPI)
274 union {
275 __u32 ifield;
276 } private;
277#endif
278#ifdef CONFIG_NET_SCHED
279 __u32 tc_index; /* traffic control index */
280#ifdef CONFIG_NET_CLS_ACT
281 __u32 tc_verd; /* traffic control verdict */
282 __u32 tc_classid; /* traffic control classid */
283#endif
284
285#endif
286
287
288 /* These elements must be at the end, see alloc_skb() for details. */
289 unsigned int truesize;
290 atomic_t users;
291 unsigned char *head,
292 *data,
293 *tail,
294 *end;
295};
296
297#ifdef __KERNEL__
298/*
299 * Handling routines are only of interest to the kernel
300 */
301#include <linux/slab.h>
302
303#include <asm/system.h>
304
305extern void __kfree_skb(struct sk_buff *skb);
306extern struct sk_buff *alloc_skb(unsigned int size, int priority);
307extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
308 unsigned int size, int priority);
309extern void kfree_skbmem(struct sk_buff *skb);
310extern struct sk_buff *skb_clone(struct sk_buff *skb, int priority);
311extern struct sk_buff *skb_copy(const struct sk_buff *skb, int priority);
312extern struct sk_buff *pskb_copy(struct sk_buff *skb, int gfp_mask);
313extern int pskb_expand_head(struct sk_buff *skb,
314 int nhead, int ntail, int gfp_mask);
315extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
316 unsigned int headroom);
317extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
318 int newheadroom, int newtailroom,
319 int priority);
320extern struct sk_buff * skb_pad(struct sk_buff *skb, int pad);
321#define dev_kfree_skb(a) kfree_skb(a)
322extern void skb_over_panic(struct sk_buff *skb, int len,
323 void *here);
324extern void skb_under_panic(struct sk_buff *skb, int len,
325 void *here);
326
327/* Internal */
328#define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end))
329
330/**
331 * skb_queue_empty - check if a queue is empty
332 * @list: queue head
333 *
334 * Returns true if the queue is empty, false otherwise.
335 */
336static inline int skb_queue_empty(const struct sk_buff_head *list)
337{
338 return list->next == (struct sk_buff *)list;
339}
340
341/**
342 * skb_get - reference buffer
343 * @skb: buffer to reference
344 *
345 * Makes another reference to a socket buffer and returns a pointer
346 * to the buffer.
347 */
348static inline struct sk_buff *skb_get(struct sk_buff *skb)
349{
350 atomic_inc(&skb->users);
351 return skb;
352}
353
354/*
355 * If users == 1, we are the only owner and are can avoid redundant
356 * atomic change.
357 */
358
359/**
360 * kfree_skb - free an sk_buff
361 * @skb: buffer to free
362 *
363 * Drop a reference to the buffer and free it if the usage count has
364 * hit zero.
365 */
366static inline void kfree_skb(struct sk_buff *skb)
367{
368 if (likely(atomic_read(&skb->users) == 1))
369 smp_rmb();
370 else if (likely(!atomic_dec_and_test(&skb->users)))
371 return;
372 __kfree_skb(skb);
373}
374
375/**
376 * skb_cloned - is the buffer a clone
377 * @skb: buffer to check
378 *
379 * Returns true if the buffer was generated with skb_clone() and is
380 * one of multiple shared copies of the buffer. Cloned buffers are
381 * shared data so must not be written to under normal circumstances.
382 */
383static inline int skb_cloned(const struct sk_buff *skb)
384{
385 return skb->cloned &&
386 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
387}
388
389/**
390 * skb_header_cloned - is the header a clone
391 * @skb: buffer to check
392 *
393 * Returns true if modifying the header part of the buffer requires
394 * the data to be copied.
395 */
396static inline int skb_header_cloned(const struct sk_buff *skb)
397{
398 int dataref;
399
400 if (!skb->cloned)
401 return 0;
402
403 dataref = atomic_read(&skb_shinfo(skb)->dataref);
404 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
405 return dataref != 1;
406}
407
408/**
409 * skb_header_release - release reference to header
410 * @skb: buffer to operate on
411 *
412 * Drop a reference to the header part of the buffer. This is done
413 * by acquiring a payload reference. You must not read from the header
414 * part of skb->data after this.
415 */
416static inline void skb_header_release(struct sk_buff *skb)
417{
418 BUG_ON(skb->nohdr);
419 skb->nohdr = 1;
420 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
421}
422
423/**
424 * skb_shared - is the buffer shared
425 * @skb: buffer to check
426 *
427 * Returns true if more than one person has a reference to this
428 * buffer.
429 */
430static inline int skb_shared(const struct sk_buff *skb)
431{
432 return atomic_read(&skb->users) != 1;
433}
434
435/**
436 * skb_share_check - check if buffer is shared and if so clone it
437 * @skb: buffer to check
438 * @pri: priority for memory allocation
439 *
440 * If the buffer is shared the buffer is cloned and the old copy
441 * drops a reference. A new clone with a single reference is returned.
442 * If the buffer is not shared the original buffer is returned. When
443 * being called from interrupt status or with spinlocks held pri must
444 * be GFP_ATOMIC.
445 *
446 * NULL is returned on a memory allocation failure.
447 */
448static inline struct sk_buff *skb_share_check(struct sk_buff *skb, int pri)
449{
450 might_sleep_if(pri & __GFP_WAIT);
451 if (skb_shared(skb)) {
452 struct sk_buff *nskb = skb_clone(skb, pri);
453 kfree_skb(skb);
454 skb = nskb;
455 }
456 return skb;
457}
458
459/*
460 * Copy shared buffers into a new sk_buff. We effectively do COW on
461 * packets to handle cases where we have a local reader and forward
462 * and a couple of other messy ones. The normal one is tcpdumping
463 * a packet thats being forwarded.
464 */
465
466/**
467 * skb_unshare - make a copy of a shared buffer
468 * @skb: buffer to check
469 * @pri: priority for memory allocation
470 *
471 * If the socket buffer is a clone then this function creates a new
472 * copy of the data, drops a reference count on the old copy and returns
473 * the new copy with the reference count at 1. If the buffer is not a clone
474 * the original buffer is returned. When called with a spinlock held or
475 * from interrupt state @pri must be %GFP_ATOMIC
476 *
477 * %NULL is returned on a memory allocation failure.
478 */
479static inline struct sk_buff *skb_unshare(struct sk_buff *skb, int pri)
480{
481 might_sleep_if(pri & __GFP_WAIT);
482 if (skb_cloned(skb)) {
483 struct sk_buff *nskb = skb_copy(skb, pri);
484 kfree_skb(skb); /* Free our shared copy */
485 skb = nskb;
486 }
487 return skb;
488}
489
490/**
491 * skb_peek
492 * @list_: list to peek at
493 *
494 * Peek an &sk_buff. Unlike most other operations you _MUST_
495 * be careful with this one. A peek leaves the buffer on the
496 * list and someone else may run off with it. You must hold
497 * the appropriate locks or have a private queue to do this.
498 *
499 * Returns %NULL for an empty list or a pointer to the head element.
500 * The reference count is not incremented and the reference is therefore
501 * volatile. Use with caution.
502 */
503static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
504{
505 struct sk_buff *list = ((struct sk_buff *)list_)->next;
506 if (list == (struct sk_buff *)list_)
507 list = NULL;
508 return list;
509}
510
511/**
512 * skb_peek_tail
513 * @list_: list to peek at
514 *
515 * Peek an &sk_buff. Unlike most other operations you _MUST_
516 * be careful with this one. A peek leaves the buffer on the
517 * list and someone else may run off with it. You must hold
518 * the appropriate locks or have a private queue to do this.
519 *
520 * Returns %NULL for an empty list or a pointer to the tail element.
521 * The reference count is not incremented and the reference is therefore
522 * volatile. Use with caution.
523 */
524static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
525{
526 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
527 if (list == (struct sk_buff *)list_)
528 list = NULL;
529 return list;
530}
531
532/**
533 * skb_queue_len - get queue length
534 * @list_: list to measure
535 *
536 * Return the length of an &sk_buff queue.
537 */
538static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
539{
540 return list_->qlen;
541}
542
543static inline void skb_queue_head_init(struct sk_buff_head *list)
544{
545 spin_lock_init(&list->lock);
546 list->prev = list->next = (struct sk_buff *)list;
547 list->qlen = 0;
548}
549
550/*
551 * Insert an sk_buff at the start of a list.
552 *
553 * The "__skb_xxxx()" functions are the non-atomic ones that
554 * can only be called with interrupts disabled.
555 */
556
557/**
558 * __skb_queue_head - queue a buffer at the list head
559 * @list: list to use
560 * @newsk: buffer to queue
561 *
562 * Queue a buffer at the start of a list. This function takes no locks
563 * and you must therefore hold required locks before calling it.
564 *
565 * A buffer cannot be placed on two lists at the same time.
566 */
567extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
568static inline void __skb_queue_head(struct sk_buff_head *list,
569 struct sk_buff *newsk)
570{
571 struct sk_buff *prev, *next;
572
573 newsk->list = list;
574 list->qlen++;
575 prev = (struct sk_buff *)list;
576 next = prev->next;
577 newsk->next = next;
578 newsk->prev = prev;
579 next->prev = prev->next = newsk;
580}
581
582/**
583 * __skb_queue_tail - queue a buffer at the list tail
584 * @list: list to use
585 * @newsk: buffer to queue
586 *
587 * Queue a buffer at the end of a list. This function takes no locks
588 * and you must therefore hold required locks before calling it.
589 *
590 * A buffer cannot be placed on two lists at the same time.
591 */
592extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
593static inline void __skb_queue_tail(struct sk_buff_head *list,
594 struct sk_buff *newsk)
595{
596 struct sk_buff *prev, *next;
597
598 newsk->list = list;
599 list->qlen++;
600 next = (struct sk_buff *)list;
601 prev = next->prev;
602 newsk->next = next;
603 newsk->prev = prev;
604 next->prev = prev->next = newsk;
605}
606
607
608/**
609 * __skb_dequeue - remove from the head of the queue
610 * @list: list to dequeue from
611 *
612 * Remove the head of the list. This function does not take any locks
613 * so must be used with appropriate locks held only. The head item is
614 * returned or %NULL if the list is empty.
615 */
616extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
617static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
618{
619 struct sk_buff *next, *prev, *result;
620
621 prev = (struct sk_buff *) list;
622 next = prev->next;
623 result = NULL;
624 if (next != prev) {
625 result = next;
626 next = next->next;
627 list->qlen--;
628 next->prev = prev;
629 prev->next = next;
630 result->next = result->prev = NULL;
631 result->list = NULL;
632 }
633 return result;
634}
635
636
637/*
638 * Insert a packet on a list.
639 */
640extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk);
641static inline void __skb_insert(struct sk_buff *newsk,
642 struct sk_buff *prev, struct sk_buff *next,
643 struct sk_buff_head *list)
644{
645 newsk->next = next;
646 newsk->prev = prev;
647 next->prev = prev->next = newsk;
648 newsk->list = list;
649 list->qlen++;
650}
651
652/*
653 * Place a packet after a given packet in a list.
654 */
655extern void skb_append(struct sk_buff *old, struct sk_buff *newsk);
656static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk)
657{
658 __skb_insert(newsk, old, old->next, old->list);
659}
660
661/*
662 * remove sk_buff from list. _Must_ be called atomically, and with
663 * the list known..
664 */
665extern void skb_unlink(struct sk_buff *skb);
666static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
667{
668 struct sk_buff *next, *prev;
669
670 list->qlen--;
671 next = skb->next;
672 prev = skb->prev;
673 skb->next = skb->prev = NULL;
674 skb->list = NULL;
675 next->prev = prev;
676 prev->next = next;
677}
678
679
680/* XXX: more streamlined implementation */
681
682/**
683 * __skb_dequeue_tail - remove from the tail of the queue
684 * @list: list to dequeue from
685 *
686 * Remove the tail of the list. This function does not take any locks
687 * so must be used with appropriate locks held only. The tail item is
688 * returned or %NULL if the list is empty.
689 */
690extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
691static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
692{
693 struct sk_buff *skb = skb_peek_tail(list);
694 if (skb)
695 __skb_unlink(skb, list);
696 return skb;
697}
698
699
700static inline int skb_is_nonlinear(const struct sk_buff *skb)
701{
702 return skb->data_len;
703}
704
705static inline unsigned int skb_headlen(const struct sk_buff *skb)
706{
707 return skb->len - skb->data_len;
708}
709
710static inline int skb_pagelen(const struct sk_buff *skb)
711{
712 int i, len = 0;
713
714 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
715 len += skb_shinfo(skb)->frags[i].size;
716 return len + skb_headlen(skb);
717}
718
719static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
720 struct page *page, int off, int size)
721{
722 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
723
724 frag->page = page;
725 frag->page_offset = off;
726 frag->size = size;
727 skb_shinfo(skb)->nr_frags = i + 1;
728}
729
730#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
731#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
732#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
733
734/*
735 * Add data to an sk_buff
736 */
737static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
738{
739 unsigned char *tmp = skb->tail;
740 SKB_LINEAR_ASSERT(skb);
741 skb->tail += len;
742 skb->len += len;
743 return tmp;
744}
745
746/**
747 * skb_put - add data to a buffer
748 * @skb: buffer to use
749 * @len: amount of data to add
750 *
751 * This function extends the used data area of the buffer. If this would
752 * exceed the total buffer size the kernel will panic. A pointer to the
753 * first byte of the extra data is returned.
754 */
755static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
756{
757 unsigned char *tmp = skb->tail;
758 SKB_LINEAR_ASSERT(skb);
759 skb->tail += len;
760 skb->len += len;
761 if (unlikely(skb->tail>skb->end))
762 skb_over_panic(skb, len, current_text_addr());
763 return tmp;
764}
765
766static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
767{
768 skb->data -= len;
769 skb->len += len;
770 return skb->data;
771}
772
773/**
774 * skb_push - add data to the start of a buffer
775 * @skb: buffer to use
776 * @len: amount of data to add
777 *
778 * This function extends the used data area of the buffer at the buffer
779 * start. If this would exceed the total buffer headroom the kernel will
780 * panic. A pointer to the first byte of the extra data is returned.
781 */
782static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
783{
784 skb->data -= len;
785 skb->len += len;
786 if (unlikely(skb->data<skb->head))
787 skb_under_panic(skb, len, current_text_addr());
788 return skb->data;
789}
790
791static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
792{
793 skb->len -= len;
794 BUG_ON(skb->len < skb->data_len);
795 return skb->data += len;
796}
797
798/**
799 * skb_pull - remove data from the start of a buffer
800 * @skb: buffer to use
801 * @len: amount of data to remove
802 *
803 * This function removes data from the start of a buffer, returning
804 * the memory to the headroom. A pointer to the next data in the buffer
805 * is returned. Once the data has been pulled future pushes will overwrite
806 * the old data.
807 */
808static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
809{
810 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
811}
812
813extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
814
815static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
816{
817 if (len > skb_headlen(skb) &&
818 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
819 return NULL;
820 skb->len -= len;
821 return skb->data += len;
822}
823
824static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
825{
826 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
827}
828
829static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
830{
831 if (likely(len <= skb_headlen(skb)))
832 return 1;
833 if (unlikely(len > skb->len))
834 return 0;
835 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
836}
837
838/**
839 * skb_headroom - bytes at buffer head
840 * @skb: buffer to check
841 *
842 * Return the number of bytes of free space at the head of an &sk_buff.
843 */
844static inline int skb_headroom(const struct sk_buff *skb)
845{
846 return skb->data - skb->head;
847}
848
849/**
850 * skb_tailroom - bytes at buffer end
851 * @skb: buffer to check
852 *
853 * Return the number of bytes of free space at the tail of an sk_buff
854 */
855static inline int skb_tailroom(const struct sk_buff *skb)
856{
857 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
858}
859
860/**
861 * skb_reserve - adjust headroom
862 * @skb: buffer to alter
863 * @len: bytes to move
864 *
865 * Increase the headroom of an empty &sk_buff by reducing the tail
866 * room. This is only allowed for an empty buffer.
867 */
868static inline void skb_reserve(struct sk_buff *skb, unsigned int len)
869{
870 skb->data += len;
871 skb->tail += len;
872}
873
874/*
875 * CPUs often take a performance hit when accessing unaligned memory
876 * locations. The actual performance hit varies, it can be small if the
877 * hardware handles it or large if we have to take an exception and fix it
878 * in software.
879 *
880 * Since an ethernet header is 14 bytes network drivers often end up with
881 * the IP header at an unaligned offset. The IP header can be aligned by
882 * shifting the start of the packet by 2 bytes. Drivers should do this
883 * with:
884 *
885 * skb_reserve(NET_IP_ALIGN);
886 *
887 * The downside to this alignment of the IP header is that the DMA is now
888 * unaligned. On some architectures the cost of an unaligned DMA is high
889 * and this cost outweighs the gains made by aligning the IP header.
890 *
891 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
892 * to be overridden.
893 */
894#ifndef NET_IP_ALIGN
895#define NET_IP_ALIGN 2
896#endif
897
898extern int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc);
899
900static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
901{
902 if (!skb->data_len) {
903 skb->len = len;
904 skb->tail = skb->data + len;
905 } else
906 ___pskb_trim(skb, len, 0);
907}
908
909/**
910 * skb_trim - remove end from a buffer
911 * @skb: buffer to alter
912 * @len: new length
913 *
914 * Cut the length of a buffer down by removing data from the tail. If
915 * the buffer is already under the length specified it is not modified.
916 */
917static inline void skb_trim(struct sk_buff *skb, unsigned int len)
918{
919 if (skb->len > len)
920 __skb_trim(skb, len);
921}
922
923
924static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
925{
926 if (!skb->data_len) {
927 skb->len = len;
928 skb->tail = skb->data+len;
929 return 0;
930 }
931 return ___pskb_trim(skb, len, 1);
932}
933
934static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
935{
936 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
937}
938
939/**
940 * skb_orphan - orphan a buffer
941 * @skb: buffer to orphan
942 *
943 * If a buffer currently has an owner then we call the owner's
944 * destructor function and make the @skb unowned. The buffer continues
945 * to exist but is no longer charged to its former owner.
946 */
947static inline void skb_orphan(struct sk_buff *skb)
948{
949 if (skb->destructor)
950 skb->destructor(skb);
951 skb->destructor = NULL;
952 skb->sk = NULL;
953}
954
955/**
956 * __skb_queue_purge - empty a list
957 * @list: list to empty
958 *
959 * Delete all buffers on an &sk_buff list. Each buffer is removed from
960 * the list and one reference dropped. This function does not take the
961 * list lock and the caller must hold the relevant locks to use it.
962 */
963extern void skb_queue_purge(struct sk_buff_head *list);
964static inline void __skb_queue_purge(struct sk_buff_head *list)
965{
966 struct sk_buff *skb;
967 while ((skb = __skb_dequeue(list)) != NULL)
968 kfree_skb(skb);
969}
970
4dc3b16b 971#ifndef CONFIG_HAVE_ARCH_DEV_ALLOC_SKB
1da177e4
LT
972/**
973 * __dev_alloc_skb - allocate an skbuff for sending
974 * @length: length to allocate
975 * @gfp_mask: get_free_pages mask, passed to alloc_skb
976 *
977 * Allocate a new &sk_buff and assign it a usage count of one. The
978 * buffer has unspecified headroom built in. Users should allocate
979 * the headroom they think they need without accounting for the
980 * built in space. The built in space is used for optimisations.
981 *
982 * %NULL is returned in there is no free memory.
983 */
1da177e4
LT
984static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
985 int gfp_mask)
986{
987 struct sk_buff *skb = alloc_skb(length + 16, gfp_mask);
988 if (likely(skb))
989 skb_reserve(skb, 16);
990 return skb;
991}
992#else
993extern struct sk_buff *__dev_alloc_skb(unsigned int length, int gfp_mask);
994#endif
995
996/**
997 * dev_alloc_skb - allocate an skbuff for sending
998 * @length: length to allocate
999 *
1000 * Allocate a new &sk_buff and assign it a usage count of one. The
1001 * buffer has unspecified headroom built in. Users should allocate
1002 * the headroom they think they need without accounting for the
1003 * built in space. The built in space is used for optimisations.
1004 *
1005 * %NULL is returned in there is no free memory. Although this function
1006 * allocates memory it can be called from an interrupt.
1007 */
1008static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1009{
1010 return __dev_alloc_skb(length, GFP_ATOMIC);
1011}
1012
1013/**
1014 * skb_cow - copy header of skb when it is required
1015 * @skb: buffer to cow
1016 * @headroom: needed headroom
1017 *
1018 * If the skb passed lacks sufficient headroom or its data part
1019 * is shared, data is reallocated. If reallocation fails, an error
1020 * is returned and original skb is not changed.
1021 *
1022 * The result is skb with writable area skb->head...skb->tail
1023 * and at least @headroom of space at head.
1024 */
1025static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1026{
1027 int delta = (headroom > 16 ? headroom : 16) - skb_headroom(skb);
1028
1029 if (delta < 0)
1030 delta = 0;
1031
1032 if (delta || skb_cloned(skb))
1033 return pskb_expand_head(skb, (delta + 15) & ~15, 0, GFP_ATOMIC);
1034 return 0;
1035}
1036
1037/**
1038 * skb_padto - pad an skbuff up to a minimal size
1039 * @skb: buffer to pad
1040 * @len: minimal length
1041 *
1042 * Pads up a buffer to ensure the trailing bytes exist and are
1043 * blanked. If the buffer already contains sufficient data it
1044 * is untouched. Returns the buffer, which may be a replacement
1045 * for the original, or NULL for out of memory - in which case
1046 * the original buffer is still freed.
1047 */
1048
1049static inline struct sk_buff *skb_padto(struct sk_buff *skb, unsigned int len)
1050{
1051 unsigned int size = skb->len;
1052 if (likely(size >= len))
1053 return skb;
1054 return skb_pad(skb, len-size);
1055}
1056
1057static inline int skb_add_data(struct sk_buff *skb,
1058 char __user *from, int copy)
1059{
1060 const int off = skb->len;
1061
1062 if (skb->ip_summed == CHECKSUM_NONE) {
1063 int err = 0;
1064 unsigned int csum = csum_and_copy_from_user(from,
1065 skb_put(skb, copy),
1066 copy, 0, &err);
1067 if (!err) {
1068 skb->csum = csum_block_add(skb->csum, csum, off);
1069 return 0;
1070 }
1071 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1072 return 0;
1073
1074 __skb_trim(skb, off);
1075 return -EFAULT;
1076}
1077
1078static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1079 struct page *page, int off)
1080{
1081 if (i) {
1082 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1083
1084 return page == frag->page &&
1085 off == frag->page_offset + frag->size;
1086 }
1087 return 0;
1088}
1089
1090/**
1091 * skb_linearize - convert paged skb to linear one
1092 * @skb: buffer to linarize
1093 * @gfp: allocation mode
1094 *
1095 * If there is no free memory -ENOMEM is returned, otherwise zero
1096 * is returned and the old skb data released.
1097 */
1098extern int __skb_linearize(struct sk_buff *skb, int gfp);
1099static inline int skb_linearize(struct sk_buff *skb, int gfp)
1100{
1101 return __skb_linearize(skb, gfp);
1102}
1103
1104/**
1105 * skb_postpull_rcsum - update checksum for received skb after pull
1106 * @skb: buffer to update
1107 * @start: start of data before pull
1108 * @len: length of data pulled
1109 *
1110 * After doing a pull on a received packet, you need to call this to
1111 * update the CHECKSUM_HW checksum, or set ip_summed to CHECKSUM_NONE
1112 * so that it can be recomputed from scratch.
1113 */
1114
1115static inline void skb_postpull_rcsum(struct sk_buff *skb,
1116 const void *start, int len)
1117{
1118 if (skb->ip_summed == CHECKSUM_HW)
1119 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1120}
1121
1122/**
1123 * pskb_trim_rcsum - trim received skb and update checksum
1124 * @skb: buffer to trim
1125 * @len: new length
1126 *
1127 * This is exactly the same as pskb_trim except that it ensures the
1128 * checksum of received packets are still valid after the operation.
1129 */
1130
1131static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1132{
1133 if (len >= skb->len)
1134 return 0;
1135 if (skb->ip_summed == CHECKSUM_HW)
1136 skb->ip_summed = CHECKSUM_NONE;
1137 return __pskb_trim(skb, len);
1138}
1139
1140static inline void *kmap_skb_frag(const skb_frag_t *frag)
1141{
1142#ifdef CONFIG_HIGHMEM
1143 BUG_ON(in_irq());
1144
1145 local_bh_disable();
1146#endif
1147 return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ);
1148}
1149
1150static inline void kunmap_skb_frag(void *vaddr)
1151{
1152 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1153#ifdef CONFIG_HIGHMEM
1154 local_bh_enable();
1155#endif
1156}
1157
1158#define skb_queue_walk(queue, skb) \
1159 for (skb = (queue)->next; \
1160 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1161 skb = skb->next)
1162
1163
1164extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1165 int noblock, int *err);
1166extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1167 struct poll_table_struct *wait);
1168extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1169 int offset, struct iovec *to,
1170 int size);
1171extern int skb_copy_and_csum_datagram_iovec(const
1172 struct sk_buff *skb,
1173 int hlen,
1174 struct iovec *iov);
1175extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1176extern unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1177 int len, unsigned int csum);
1178extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1179 void *to, int len);
357b40a1
HX
1180extern int skb_store_bits(const struct sk_buff *skb, int offset,
1181 void *from, int len);
1da177e4
LT
1182extern unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb,
1183 int offset, u8 *to, int len,
1184 unsigned int csum);
1185extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1186extern void skb_split(struct sk_buff *skb,
1187 struct sk_buff *skb1, const u32 len);
1188
1189static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1190 int len, void *buffer)
1191{
1192 int hlen = skb_headlen(skb);
1193
1194 if (offset + len <= hlen)
1195 return skb->data + offset;
1196
1197 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1198 return NULL;
1199
1200 return buffer;
1201}
1202
1203extern void skb_init(void);
1204extern void skb_add_mtu(int mtu);
1205
1206#ifdef CONFIG_NETFILTER
1207static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1208{
1209 if (nfct && atomic_dec_and_test(&nfct->use))
1210 nfct->destroy(nfct);
1211}
1212static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1213{
1214 if (nfct)
1215 atomic_inc(&nfct->use);
1216}
1217static inline void nf_reset(struct sk_buff *skb)
1218{
1219 nf_conntrack_put(skb->nfct);
1220 skb->nfct = NULL;
1221#ifdef CONFIG_NETFILTER_DEBUG
1222 skb->nf_debug = 0;
1223#endif
1224}
1225static inline void nf_reset_debug(struct sk_buff *skb)
1226{
1227#ifdef CONFIG_NETFILTER_DEBUG
1228 skb->nf_debug = 0;
1229#endif
1230}
1231
1232#ifdef CONFIG_BRIDGE_NETFILTER
1233static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1234{
1235 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1236 kfree(nf_bridge);
1237}
1238static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1239{
1240 if (nf_bridge)
1241 atomic_inc(&nf_bridge->use);
1242}
1243#endif /* CONFIG_BRIDGE_NETFILTER */
1244#else /* CONFIG_NETFILTER */
1245static inline void nf_reset(struct sk_buff *skb) {}
1246#endif /* CONFIG_NETFILTER */
1247
1248#endif /* __KERNEL__ */
1249#endif /* _LINUX_SKBUFF_H */