]> bbs.cooldavid.org Git - net-next-2.6.git/blame - include/linux/skbuff.h
[NETFILTER]: convert nfmark and conntrack mark to 32bit
[net-next-2.6.git] / include / linux / skbuff.h
CommitLineData
1da177e4
LT
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
17#include <linux/config.h>
18#include <linux/kernel.h>
19#include <linux/compiler.h>
20#include <linux/time.h>
21#include <linux/cache.h>
22
23#include <asm/atomic.h>
24#include <asm/types.h>
25#include <linux/spinlock.h>
26#include <linux/mm.h>
27#include <linux/highmem.h>
28#include <linux/poll.h>
29#include <linux/net.h>
3fc7e8a6 30#include <linux/textsearch.h>
1da177e4
LT
31#include <net/checksum.h>
32
33#define HAVE_ALLOC_SKB /* For the drivers to know */
34#define HAVE_ALIGNABLE_SKB /* Ditto 8) */
35#define SLAB_SKB /* Slabified skbuffs */
36
37#define CHECKSUM_NONE 0
38#define CHECKSUM_HW 1
39#define CHECKSUM_UNNECESSARY 2
40
41#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
42 ~(SMP_CACHE_BYTES - 1))
43#define SKB_MAX_ORDER(X, ORDER) (((PAGE_SIZE << (ORDER)) - (X) - \
44 sizeof(struct skb_shared_info)) & \
45 ~(SMP_CACHE_BYTES - 1))
46#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
47#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
48
49/* A. Checksumming of received packets by device.
50 *
51 * NONE: device failed to checksum this packet.
52 * skb->csum is undefined.
53 *
54 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
55 * skb->csum is undefined.
56 * It is bad option, but, unfortunately, many of vendors do this.
57 * Apparently with secret goal to sell you new device, when you
58 * will add new protocol to your host. F.e. IPv6. 8)
59 *
60 * HW: the most generic way. Device supplied checksum of _all_
61 * the packet as seen by netif_rx in skb->csum.
62 * NOTE: Even if device supports only some protocols, but
63 * is able to produce some skb->csum, it MUST use HW,
64 * not UNNECESSARY.
65 *
66 * B. Checksumming on output.
67 *
68 * NONE: skb is checksummed by protocol or csum is not required.
69 *
70 * HW: device is required to csum packet as seen by hard_start_xmit
71 * from skb->h.raw to the end and to record the checksum
72 * at skb->h.raw+skb->csum.
73 *
74 * Device must show its capabilities in dev->features, set
75 * at device setup time.
76 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
77 * everything.
78 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
79 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
80 * TCP/UDP over IPv4. Sigh. Vendors like this
81 * way by an unknown reason. Though, see comment above
82 * about CHECKSUM_UNNECESSARY. 8)
83 *
84 * Any questions? No questions, good. --ANK
85 */
86
1da177e4
LT
87struct net_device;
88
89#ifdef CONFIG_NETFILTER
90struct nf_conntrack {
91 atomic_t use;
92 void (*destroy)(struct nf_conntrack *);
93};
94
95#ifdef CONFIG_BRIDGE_NETFILTER
96struct nf_bridge_info {
97 atomic_t use;
98 struct net_device *physindev;
99 struct net_device *physoutdev;
100#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
101 struct net_device *netoutdev;
102#endif
103 unsigned int mask;
104 unsigned long data[32 / sizeof(unsigned long)];
105};
106#endif
107
108#endif
109
110struct sk_buff_head {
111 /* These two members must be first. */
112 struct sk_buff *next;
113 struct sk_buff *prev;
114
115 __u32 qlen;
116 spinlock_t lock;
117};
118
119struct sk_buff;
120
121/* To allow 64K frame to be packed as single skb without frag_list */
122#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
123
124typedef struct skb_frag_struct skb_frag_t;
125
126struct skb_frag_struct {
127 struct page *page;
128 __u16 page_offset;
129 __u16 size;
130};
131
132/* This data is invariant across clones and lives at
133 * the end of the header data, ie. at skb->end.
134 */
135struct skb_shared_info {
136 atomic_t dataref;
137 unsigned int nr_frags;
138 unsigned short tso_size;
139 unsigned short tso_segs;
140 struct sk_buff *frag_list;
141 skb_frag_t frags[MAX_SKB_FRAGS];
142};
143
144/* We divide dataref into two halves. The higher 16 bits hold references
145 * to the payload part of skb->data. The lower 16 bits hold references to
146 * the entire skb->data. It is up to the users of the skb to agree on
147 * where the payload starts.
148 *
149 * All users must obey the rule that the skb->data reference count must be
150 * greater than or equal to the payload reference count.
151 *
152 * Holding a reference to the payload part means that the user does not
153 * care about modifications to the header part of skb->data.
154 */
155#define SKB_DATAREF_SHIFT 16
156#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
157
158/**
159 * struct sk_buff - socket buffer
160 * @next: Next buffer in list
161 * @prev: Previous buffer in list
162 * @list: List we are on
163 * @sk: Socket we are owned by
164 * @stamp: Time we arrived
165 * @dev: Device we arrived on/are leaving by
166 * @input_dev: Device we arrived on
167 * @real_dev: The real device we are using
168 * @h: Transport layer header
169 * @nh: Network layer header
170 * @mac: Link layer header
67be2dd1
MW
171 * @dst: destination entry
172 * @sp: the security path, used for xfrm
1da177e4
LT
173 * @cb: Control buffer. Free for use by every layer. Put private vars here
174 * @len: Length of actual data
175 * @data_len: Data length
176 * @mac_len: Length of link layer header
177 * @csum: Checksum
67be2dd1 178 * @local_df: allow local fragmentation
1da177e4
LT
179 * @cloned: Head may be cloned (check refcnt to be sure)
180 * @nohdr: Payload reference only, must not modify header
181 * @pkt_type: Packet class
182 * @ip_summed: Driver fed us an IP checksum
183 * @priority: Packet queueing priority
184 * @users: User count - see {datagram,tcp}.c
185 * @protocol: Packet protocol from driver
1da177e4
LT
186 * @truesize: Buffer size
187 * @head: Head of buffer
188 * @data: Data head pointer
189 * @tail: Tail pointer
190 * @end: End pointer
191 * @destructor: Destruct function
192 * @nfmark: Can be used for communication between hooks
193 * @nfcache: Cache info
194 * @nfct: Associated connection, if any
195 * @nfctinfo: Relationship of this skb to the connection
1da177e4
LT
196 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
197 * @private: Data which is private to the HIPPI implementation
198 * @tc_index: Traffic control index
199 * @tc_verd: traffic control verdict
200 * @tc_classid: traffic control classid
201 */
202
203struct sk_buff {
204 /* These two members must be first. */
205 struct sk_buff *next;
206 struct sk_buff *prev;
207
208 struct sk_buff_head *list;
209 struct sock *sk;
210 struct timeval stamp;
211 struct net_device *dev;
212 struct net_device *input_dev;
213 struct net_device *real_dev;
214
215 union {
216 struct tcphdr *th;
217 struct udphdr *uh;
218 struct icmphdr *icmph;
219 struct igmphdr *igmph;
220 struct iphdr *ipiph;
221 struct ipv6hdr *ipv6h;
222 unsigned char *raw;
223 } h;
224
225 union {
226 struct iphdr *iph;
227 struct ipv6hdr *ipv6h;
228 struct arphdr *arph;
229 unsigned char *raw;
230 } nh;
231
232 union {
233 unsigned char *raw;
234 } mac;
235
236 struct dst_entry *dst;
237 struct sec_path *sp;
238
239 /*
240 * This is the control buffer. It is free to use for every
241 * layer. Please put your private variables there. If you
242 * want to keep them across layers you have to do a skb_clone()
243 * first. This is owned by whoever has the skb queued ATM.
244 */
245 char cb[40];
246
247 unsigned int len,
248 data_len,
249 mac_len,
250 csum;
1da177e4 251 __u32 priority;
1cbb3380
TG
252 __u8 local_df:1,
253 cloned:1,
254 ip_summed:2,
255 nohdr:1;
256 /* 3 bits spare */
257 __u8 pkt_type;
a0d3bea3 258 __be16 protocol;
1da177e4
LT
259
260 void (*destructor)(struct sk_buff *skb);
261#ifdef CONFIG_NETFILTER
bf3a46aa 262 __u32 nfmark;
1da177e4
LT
263 __u32 nfcache;
264 __u32 nfctinfo;
265 struct nf_conntrack *nfct;
1da177e4
LT
266#ifdef CONFIG_BRIDGE_NETFILTER
267 struct nf_bridge_info *nf_bridge;
268#endif
269#endif /* CONFIG_NETFILTER */
270#if defined(CONFIG_HIPPI)
271 union {
272 __u32 ifield;
273 } private;
274#endif
275#ifdef CONFIG_NET_SCHED
276 __u32 tc_index; /* traffic control index */
277#ifdef CONFIG_NET_CLS_ACT
278 __u32 tc_verd; /* traffic control verdict */
279 __u32 tc_classid; /* traffic control classid */
280#endif
281
282#endif
283
284
285 /* These elements must be at the end, see alloc_skb() for details. */
286 unsigned int truesize;
287 atomic_t users;
288 unsigned char *head,
289 *data,
290 *tail,
291 *end;
292};
293
294#ifdef __KERNEL__
295/*
296 * Handling routines are only of interest to the kernel
297 */
298#include <linux/slab.h>
299
300#include <asm/system.h>
301
302extern void __kfree_skb(struct sk_buff *skb);
86a76caf
VF
303extern struct sk_buff *alloc_skb(unsigned int size,
304 unsigned int __nocast priority);
1da177e4 305extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
86a76caf
VF
306 unsigned int size,
307 unsigned int __nocast priority);
1da177e4 308extern void kfree_skbmem(struct sk_buff *skb);
86a76caf
VF
309extern struct sk_buff *skb_clone(struct sk_buff *skb,
310 unsigned int __nocast priority);
311extern struct sk_buff *skb_copy(const struct sk_buff *skb,
312 unsigned int __nocast priority);
313extern struct sk_buff *pskb_copy(struct sk_buff *skb,
314 unsigned int __nocast gfp_mask);
1da177e4 315extern int pskb_expand_head(struct sk_buff *skb,
86a76caf
VF
316 int nhead, int ntail,
317 unsigned int __nocast gfp_mask);
1da177e4
LT
318extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
319 unsigned int headroom);
320extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
321 int newheadroom, int newtailroom,
86a76caf 322 unsigned int __nocast priority);
1da177e4
LT
323extern struct sk_buff * skb_pad(struct sk_buff *skb, int pad);
324#define dev_kfree_skb(a) kfree_skb(a)
325extern void skb_over_panic(struct sk_buff *skb, int len,
326 void *here);
327extern void skb_under_panic(struct sk_buff *skb, int len,
328 void *here);
329
677e90ed
TG
330struct skb_seq_state
331{
332 __u32 lower_offset;
333 __u32 upper_offset;
334 __u32 frag_idx;
335 __u32 stepped_offset;
336 struct sk_buff *root_skb;
337 struct sk_buff *cur_skb;
338 __u8 *frag_data;
339};
340
341extern void skb_prepare_seq_read(struct sk_buff *skb,
342 unsigned int from, unsigned int to,
343 struct skb_seq_state *st);
344extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
345 struct skb_seq_state *st);
346extern void skb_abort_seq_read(struct skb_seq_state *st);
347
3fc7e8a6
TG
348extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
349 unsigned int to, struct ts_config *config,
350 struct ts_state *state);
351
1da177e4
LT
352/* Internal */
353#define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end))
354
355/**
356 * skb_queue_empty - check if a queue is empty
357 * @list: queue head
358 *
359 * Returns true if the queue is empty, false otherwise.
360 */
361static inline int skb_queue_empty(const struct sk_buff_head *list)
362{
363 return list->next == (struct sk_buff *)list;
364}
365
366/**
367 * skb_get - reference buffer
368 * @skb: buffer to reference
369 *
370 * Makes another reference to a socket buffer and returns a pointer
371 * to the buffer.
372 */
373static inline struct sk_buff *skb_get(struct sk_buff *skb)
374{
375 atomic_inc(&skb->users);
376 return skb;
377}
378
379/*
380 * If users == 1, we are the only owner and are can avoid redundant
381 * atomic change.
382 */
383
384/**
385 * kfree_skb - free an sk_buff
386 * @skb: buffer to free
387 *
388 * Drop a reference to the buffer and free it if the usage count has
389 * hit zero.
390 */
391static inline void kfree_skb(struct sk_buff *skb)
392{
393 if (likely(atomic_read(&skb->users) == 1))
394 smp_rmb();
395 else if (likely(!atomic_dec_and_test(&skb->users)))
396 return;
397 __kfree_skb(skb);
398}
399
400/**
401 * skb_cloned - is the buffer a clone
402 * @skb: buffer to check
403 *
404 * Returns true if the buffer was generated with skb_clone() and is
405 * one of multiple shared copies of the buffer. Cloned buffers are
406 * shared data so must not be written to under normal circumstances.
407 */
408static inline int skb_cloned(const struct sk_buff *skb)
409{
410 return skb->cloned &&
411 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
412}
413
414/**
415 * skb_header_cloned - is the header a clone
416 * @skb: buffer to check
417 *
418 * Returns true if modifying the header part of the buffer requires
419 * the data to be copied.
420 */
421static inline int skb_header_cloned(const struct sk_buff *skb)
422{
423 int dataref;
424
425 if (!skb->cloned)
426 return 0;
427
428 dataref = atomic_read(&skb_shinfo(skb)->dataref);
429 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
430 return dataref != 1;
431}
432
433/**
434 * skb_header_release - release reference to header
435 * @skb: buffer to operate on
436 *
437 * Drop a reference to the header part of the buffer. This is done
438 * by acquiring a payload reference. You must not read from the header
439 * part of skb->data after this.
440 */
441static inline void skb_header_release(struct sk_buff *skb)
442{
443 BUG_ON(skb->nohdr);
444 skb->nohdr = 1;
445 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
446}
447
448/**
449 * skb_shared - is the buffer shared
450 * @skb: buffer to check
451 *
452 * Returns true if more than one person has a reference to this
453 * buffer.
454 */
455static inline int skb_shared(const struct sk_buff *skb)
456{
457 return atomic_read(&skb->users) != 1;
458}
459
460/**
461 * skb_share_check - check if buffer is shared and if so clone it
462 * @skb: buffer to check
463 * @pri: priority for memory allocation
464 *
465 * If the buffer is shared the buffer is cloned and the old copy
466 * drops a reference. A new clone with a single reference is returned.
467 * If the buffer is not shared the original buffer is returned. When
468 * being called from interrupt status or with spinlocks held pri must
469 * be GFP_ATOMIC.
470 *
471 * NULL is returned on a memory allocation failure.
472 */
86a76caf
VF
473static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
474 unsigned int __nocast pri)
1da177e4
LT
475{
476 might_sleep_if(pri & __GFP_WAIT);
477 if (skb_shared(skb)) {
478 struct sk_buff *nskb = skb_clone(skb, pri);
479 kfree_skb(skb);
480 skb = nskb;
481 }
482 return skb;
483}
484
485/*
486 * Copy shared buffers into a new sk_buff. We effectively do COW on
487 * packets to handle cases where we have a local reader and forward
488 * and a couple of other messy ones. The normal one is tcpdumping
489 * a packet thats being forwarded.
490 */
491
492/**
493 * skb_unshare - make a copy of a shared buffer
494 * @skb: buffer to check
495 * @pri: priority for memory allocation
496 *
497 * If the socket buffer is a clone then this function creates a new
498 * copy of the data, drops a reference count on the old copy and returns
499 * the new copy with the reference count at 1. If the buffer is not a clone
500 * the original buffer is returned. When called with a spinlock held or
501 * from interrupt state @pri must be %GFP_ATOMIC
502 *
503 * %NULL is returned on a memory allocation failure.
504 */
e2bf521d
VF
505static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
506 unsigned int __nocast pri)
1da177e4
LT
507{
508 might_sleep_if(pri & __GFP_WAIT);
509 if (skb_cloned(skb)) {
510 struct sk_buff *nskb = skb_copy(skb, pri);
511 kfree_skb(skb); /* Free our shared copy */
512 skb = nskb;
513 }
514 return skb;
515}
516
517/**
518 * skb_peek
519 * @list_: list to peek at
520 *
521 * Peek an &sk_buff. Unlike most other operations you _MUST_
522 * be careful with this one. A peek leaves the buffer on the
523 * list and someone else may run off with it. You must hold
524 * the appropriate locks or have a private queue to do this.
525 *
526 * Returns %NULL for an empty list or a pointer to the head element.
527 * The reference count is not incremented and the reference is therefore
528 * volatile. Use with caution.
529 */
530static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
531{
532 struct sk_buff *list = ((struct sk_buff *)list_)->next;
533 if (list == (struct sk_buff *)list_)
534 list = NULL;
535 return list;
536}
537
538/**
539 * skb_peek_tail
540 * @list_: list to peek at
541 *
542 * Peek an &sk_buff. Unlike most other operations you _MUST_
543 * be careful with this one. A peek leaves the buffer on the
544 * list and someone else may run off with it. You must hold
545 * the appropriate locks or have a private queue to do this.
546 *
547 * Returns %NULL for an empty list or a pointer to the tail element.
548 * The reference count is not incremented and the reference is therefore
549 * volatile. Use with caution.
550 */
551static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
552{
553 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
554 if (list == (struct sk_buff *)list_)
555 list = NULL;
556 return list;
557}
558
559/**
560 * skb_queue_len - get queue length
561 * @list_: list to measure
562 *
563 * Return the length of an &sk_buff queue.
564 */
565static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
566{
567 return list_->qlen;
568}
569
570static inline void skb_queue_head_init(struct sk_buff_head *list)
571{
572 spin_lock_init(&list->lock);
573 list->prev = list->next = (struct sk_buff *)list;
574 list->qlen = 0;
575}
576
577/*
578 * Insert an sk_buff at the start of a list.
579 *
580 * The "__skb_xxxx()" functions are the non-atomic ones that
581 * can only be called with interrupts disabled.
582 */
583
584/**
585 * __skb_queue_head - queue a buffer at the list head
586 * @list: list to use
587 * @newsk: buffer to queue
588 *
589 * Queue a buffer at the start of a list. This function takes no locks
590 * and you must therefore hold required locks before calling it.
591 *
592 * A buffer cannot be placed on two lists at the same time.
593 */
594extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
595static inline void __skb_queue_head(struct sk_buff_head *list,
596 struct sk_buff *newsk)
597{
598 struct sk_buff *prev, *next;
599
600 newsk->list = list;
601 list->qlen++;
602 prev = (struct sk_buff *)list;
603 next = prev->next;
604 newsk->next = next;
605 newsk->prev = prev;
606 next->prev = prev->next = newsk;
607}
608
609/**
610 * __skb_queue_tail - queue a buffer at the list tail
611 * @list: list to use
612 * @newsk: buffer to queue
613 *
614 * Queue a buffer at the end of a list. This function takes no locks
615 * and you must therefore hold required locks before calling it.
616 *
617 * A buffer cannot be placed on two lists at the same time.
618 */
619extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
620static inline void __skb_queue_tail(struct sk_buff_head *list,
621 struct sk_buff *newsk)
622{
623 struct sk_buff *prev, *next;
624
625 newsk->list = list;
626 list->qlen++;
627 next = (struct sk_buff *)list;
628 prev = next->prev;
629 newsk->next = next;
630 newsk->prev = prev;
631 next->prev = prev->next = newsk;
632}
633
634
635/**
636 * __skb_dequeue - remove from the head of the queue
637 * @list: list to dequeue from
638 *
639 * Remove the head of the list. This function does not take any locks
640 * so must be used with appropriate locks held only. The head item is
641 * returned or %NULL if the list is empty.
642 */
643extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
644static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
645{
646 struct sk_buff *next, *prev, *result;
647
648 prev = (struct sk_buff *) list;
649 next = prev->next;
650 result = NULL;
651 if (next != prev) {
652 result = next;
653 next = next->next;
654 list->qlen--;
655 next->prev = prev;
656 prev->next = next;
657 result->next = result->prev = NULL;
658 result->list = NULL;
659 }
660 return result;
661}
662
663
664/*
665 * Insert a packet on a list.
666 */
667extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk);
668static inline void __skb_insert(struct sk_buff *newsk,
669 struct sk_buff *prev, struct sk_buff *next,
670 struct sk_buff_head *list)
671{
672 newsk->next = next;
673 newsk->prev = prev;
674 next->prev = prev->next = newsk;
675 newsk->list = list;
676 list->qlen++;
677}
678
679/*
680 * Place a packet after a given packet in a list.
681 */
682extern void skb_append(struct sk_buff *old, struct sk_buff *newsk);
683static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk)
684{
685 __skb_insert(newsk, old, old->next, old->list);
686}
687
688/*
689 * remove sk_buff from list. _Must_ be called atomically, and with
690 * the list known..
691 */
692extern void skb_unlink(struct sk_buff *skb);
693static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
694{
695 struct sk_buff *next, *prev;
696
697 list->qlen--;
698 next = skb->next;
699 prev = skb->prev;
700 skb->next = skb->prev = NULL;
701 skb->list = NULL;
702 next->prev = prev;
703 prev->next = next;
704}
705
706
707/* XXX: more streamlined implementation */
708
709/**
710 * __skb_dequeue_tail - remove from the tail of the queue
711 * @list: list to dequeue from
712 *
713 * Remove the tail of the list. This function does not take any locks
714 * so must be used with appropriate locks held only. The tail item is
715 * returned or %NULL if the list is empty.
716 */
717extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
718static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
719{
720 struct sk_buff *skb = skb_peek_tail(list);
721 if (skb)
722 __skb_unlink(skb, list);
723 return skb;
724}
725
726
727static inline int skb_is_nonlinear(const struct sk_buff *skb)
728{
729 return skb->data_len;
730}
731
732static inline unsigned int skb_headlen(const struct sk_buff *skb)
733{
734 return skb->len - skb->data_len;
735}
736
737static inline int skb_pagelen(const struct sk_buff *skb)
738{
739 int i, len = 0;
740
741 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
742 len += skb_shinfo(skb)->frags[i].size;
743 return len + skb_headlen(skb);
744}
745
746static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
747 struct page *page, int off, int size)
748{
749 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
750
751 frag->page = page;
752 frag->page_offset = off;
753 frag->size = size;
754 skb_shinfo(skb)->nr_frags = i + 1;
755}
756
757#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
758#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
759#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
760
761/*
762 * Add data to an sk_buff
763 */
764static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
765{
766 unsigned char *tmp = skb->tail;
767 SKB_LINEAR_ASSERT(skb);
768 skb->tail += len;
769 skb->len += len;
770 return tmp;
771}
772
773/**
774 * skb_put - add data to a buffer
775 * @skb: buffer to use
776 * @len: amount of data to add
777 *
778 * This function extends the used data area of the buffer. If this would
779 * exceed the total buffer size the kernel will panic. A pointer to the
780 * first byte of the extra data is returned.
781 */
782static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
783{
784 unsigned char *tmp = skb->tail;
785 SKB_LINEAR_ASSERT(skb);
786 skb->tail += len;
787 skb->len += len;
788 if (unlikely(skb->tail>skb->end))
789 skb_over_panic(skb, len, current_text_addr());
790 return tmp;
791}
792
793static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
794{
795 skb->data -= len;
796 skb->len += len;
797 return skb->data;
798}
799
800/**
801 * skb_push - add data to the start of a buffer
802 * @skb: buffer to use
803 * @len: amount of data to add
804 *
805 * This function extends the used data area of the buffer at the buffer
806 * start. If this would exceed the total buffer headroom the kernel will
807 * panic. A pointer to the first byte of the extra data is returned.
808 */
809static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
810{
811 skb->data -= len;
812 skb->len += len;
813 if (unlikely(skb->data<skb->head))
814 skb_under_panic(skb, len, current_text_addr());
815 return skb->data;
816}
817
818static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
819{
820 skb->len -= len;
821 BUG_ON(skb->len < skb->data_len);
822 return skb->data += len;
823}
824
825/**
826 * skb_pull - remove data from the start of a buffer
827 * @skb: buffer to use
828 * @len: amount of data to remove
829 *
830 * This function removes data from the start of a buffer, returning
831 * the memory to the headroom. A pointer to the next data in the buffer
832 * is returned. Once the data has been pulled future pushes will overwrite
833 * the old data.
834 */
835static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
836{
837 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
838}
839
840extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
841
842static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
843{
844 if (len > skb_headlen(skb) &&
845 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
846 return NULL;
847 skb->len -= len;
848 return skb->data += len;
849}
850
851static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
852{
853 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
854}
855
856static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
857{
858 if (likely(len <= skb_headlen(skb)))
859 return 1;
860 if (unlikely(len > skb->len))
861 return 0;
862 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
863}
864
865/**
866 * skb_headroom - bytes at buffer head
867 * @skb: buffer to check
868 *
869 * Return the number of bytes of free space at the head of an &sk_buff.
870 */
871static inline int skb_headroom(const struct sk_buff *skb)
872{
873 return skb->data - skb->head;
874}
875
876/**
877 * skb_tailroom - bytes at buffer end
878 * @skb: buffer to check
879 *
880 * Return the number of bytes of free space at the tail of an sk_buff
881 */
882static inline int skb_tailroom(const struct sk_buff *skb)
883{
884 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
885}
886
887/**
888 * skb_reserve - adjust headroom
889 * @skb: buffer to alter
890 * @len: bytes to move
891 *
892 * Increase the headroom of an empty &sk_buff by reducing the tail
893 * room. This is only allowed for an empty buffer.
894 */
895static inline void skb_reserve(struct sk_buff *skb, unsigned int len)
896{
897 skb->data += len;
898 skb->tail += len;
899}
900
901/*
902 * CPUs often take a performance hit when accessing unaligned memory
903 * locations. The actual performance hit varies, it can be small if the
904 * hardware handles it or large if we have to take an exception and fix it
905 * in software.
906 *
907 * Since an ethernet header is 14 bytes network drivers often end up with
908 * the IP header at an unaligned offset. The IP header can be aligned by
909 * shifting the start of the packet by 2 bytes. Drivers should do this
910 * with:
911 *
912 * skb_reserve(NET_IP_ALIGN);
913 *
914 * The downside to this alignment of the IP header is that the DMA is now
915 * unaligned. On some architectures the cost of an unaligned DMA is high
916 * and this cost outweighs the gains made by aligning the IP header.
917 *
918 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
919 * to be overridden.
920 */
921#ifndef NET_IP_ALIGN
922#define NET_IP_ALIGN 2
923#endif
924
925extern int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc);
926
927static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
928{
929 if (!skb->data_len) {
930 skb->len = len;
931 skb->tail = skb->data + len;
932 } else
933 ___pskb_trim(skb, len, 0);
934}
935
936/**
937 * skb_trim - remove end from a buffer
938 * @skb: buffer to alter
939 * @len: new length
940 *
941 * Cut the length of a buffer down by removing data from the tail. If
942 * the buffer is already under the length specified it is not modified.
943 */
944static inline void skb_trim(struct sk_buff *skb, unsigned int len)
945{
946 if (skb->len > len)
947 __skb_trim(skb, len);
948}
949
950
951static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
952{
953 if (!skb->data_len) {
954 skb->len = len;
955 skb->tail = skb->data+len;
956 return 0;
957 }
958 return ___pskb_trim(skb, len, 1);
959}
960
961static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
962{
963 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
964}
965
966/**
967 * skb_orphan - orphan a buffer
968 * @skb: buffer to orphan
969 *
970 * If a buffer currently has an owner then we call the owner's
971 * destructor function and make the @skb unowned. The buffer continues
972 * to exist but is no longer charged to its former owner.
973 */
974static inline void skb_orphan(struct sk_buff *skb)
975{
976 if (skb->destructor)
977 skb->destructor(skb);
978 skb->destructor = NULL;
979 skb->sk = NULL;
980}
981
982/**
983 * __skb_queue_purge - empty a list
984 * @list: list to empty
985 *
986 * Delete all buffers on an &sk_buff list. Each buffer is removed from
987 * the list and one reference dropped. This function does not take the
988 * list lock and the caller must hold the relevant locks to use it.
989 */
990extern void skb_queue_purge(struct sk_buff_head *list);
991static inline void __skb_queue_purge(struct sk_buff_head *list)
992{
993 struct sk_buff *skb;
994 while ((skb = __skb_dequeue(list)) != NULL)
995 kfree_skb(skb);
996}
997
4dc3b16b 998#ifndef CONFIG_HAVE_ARCH_DEV_ALLOC_SKB
1da177e4
LT
999/**
1000 * __dev_alloc_skb - allocate an skbuff for sending
1001 * @length: length to allocate
1002 * @gfp_mask: get_free_pages mask, passed to alloc_skb
1003 *
1004 * Allocate a new &sk_buff and assign it a usage count of one. The
1005 * buffer has unspecified headroom built in. Users should allocate
1006 * the headroom they think they need without accounting for the
1007 * built in space. The built in space is used for optimisations.
1008 *
1009 * %NULL is returned in there is no free memory.
1010 */
1da177e4 1011static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
86a76caf 1012 unsigned int __nocast gfp_mask)
1da177e4
LT
1013{
1014 struct sk_buff *skb = alloc_skb(length + 16, gfp_mask);
1015 if (likely(skb))
1016 skb_reserve(skb, 16);
1017 return skb;
1018}
1019#else
1020extern struct sk_buff *__dev_alloc_skb(unsigned int length, int gfp_mask);
1021#endif
1022
1023/**
1024 * dev_alloc_skb - allocate an skbuff for sending
1025 * @length: length to allocate
1026 *
1027 * Allocate a new &sk_buff and assign it a usage count of one. The
1028 * buffer has unspecified headroom built in. Users should allocate
1029 * the headroom they think they need without accounting for the
1030 * built in space. The built in space is used for optimisations.
1031 *
1032 * %NULL is returned in there is no free memory. Although this function
1033 * allocates memory it can be called from an interrupt.
1034 */
1035static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1036{
1037 return __dev_alloc_skb(length, GFP_ATOMIC);
1038}
1039
1040/**
1041 * skb_cow - copy header of skb when it is required
1042 * @skb: buffer to cow
1043 * @headroom: needed headroom
1044 *
1045 * If the skb passed lacks sufficient headroom or its data part
1046 * is shared, data is reallocated. If reallocation fails, an error
1047 * is returned and original skb is not changed.
1048 *
1049 * The result is skb with writable area skb->head...skb->tail
1050 * and at least @headroom of space at head.
1051 */
1052static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1053{
1054 int delta = (headroom > 16 ? headroom : 16) - skb_headroom(skb);
1055
1056 if (delta < 0)
1057 delta = 0;
1058
1059 if (delta || skb_cloned(skb))
1060 return pskb_expand_head(skb, (delta + 15) & ~15, 0, GFP_ATOMIC);
1061 return 0;
1062}
1063
1064/**
1065 * skb_padto - pad an skbuff up to a minimal size
1066 * @skb: buffer to pad
1067 * @len: minimal length
1068 *
1069 * Pads up a buffer to ensure the trailing bytes exist and are
1070 * blanked. If the buffer already contains sufficient data it
1071 * is untouched. Returns the buffer, which may be a replacement
1072 * for the original, or NULL for out of memory - in which case
1073 * the original buffer is still freed.
1074 */
1075
1076static inline struct sk_buff *skb_padto(struct sk_buff *skb, unsigned int len)
1077{
1078 unsigned int size = skb->len;
1079 if (likely(size >= len))
1080 return skb;
1081 return skb_pad(skb, len-size);
1082}
1083
1084static inline int skb_add_data(struct sk_buff *skb,
1085 char __user *from, int copy)
1086{
1087 const int off = skb->len;
1088
1089 if (skb->ip_summed == CHECKSUM_NONE) {
1090 int err = 0;
1091 unsigned int csum = csum_and_copy_from_user(from,
1092 skb_put(skb, copy),
1093 copy, 0, &err);
1094 if (!err) {
1095 skb->csum = csum_block_add(skb->csum, csum, off);
1096 return 0;
1097 }
1098 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1099 return 0;
1100
1101 __skb_trim(skb, off);
1102 return -EFAULT;
1103}
1104
1105static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1106 struct page *page, int off)
1107{
1108 if (i) {
1109 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1110
1111 return page == frag->page &&
1112 off == frag->page_offset + frag->size;
1113 }
1114 return 0;
1115}
1116
1117/**
1118 * skb_linearize - convert paged skb to linear one
1119 * @skb: buffer to linarize
1120 * @gfp: allocation mode
1121 *
1122 * If there is no free memory -ENOMEM is returned, otherwise zero
1123 * is returned and the old skb data released.
1124 */
86a76caf
VF
1125extern int __skb_linearize(struct sk_buff *skb, unsigned int __nocast gfp);
1126static inline int skb_linearize(struct sk_buff *skb, unsigned int __nocast gfp)
1da177e4
LT
1127{
1128 return __skb_linearize(skb, gfp);
1129}
1130
1131/**
1132 * skb_postpull_rcsum - update checksum for received skb after pull
1133 * @skb: buffer to update
1134 * @start: start of data before pull
1135 * @len: length of data pulled
1136 *
1137 * After doing a pull on a received packet, you need to call this to
1138 * update the CHECKSUM_HW checksum, or set ip_summed to CHECKSUM_NONE
1139 * so that it can be recomputed from scratch.
1140 */
1141
1142static inline void skb_postpull_rcsum(struct sk_buff *skb,
1143 const void *start, int len)
1144{
1145 if (skb->ip_summed == CHECKSUM_HW)
1146 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1147}
1148
1149/**
1150 * pskb_trim_rcsum - trim received skb and update checksum
1151 * @skb: buffer to trim
1152 * @len: new length
1153 *
1154 * This is exactly the same as pskb_trim except that it ensures the
1155 * checksum of received packets are still valid after the operation.
1156 */
1157
1158static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1159{
1160 if (len >= skb->len)
1161 return 0;
1162 if (skb->ip_summed == CHECKSUM_HW)
1163 skb->ip_summed = CHECKSUM_NONE;
1164 return __pskb_trim(skb, len);
1165}
1166
1167static inline void *kmap_skb_frag(const skb_frag_t *frag)
1168{
1169#ifdef CONFIG_HIGHMEM
1170 BUG_ON(in_irq());
1171
1172 local_bh_disable();
1173#endif
1174 return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ);
1175}
1176
1177static inline void kunmap_skb_frag(void *vaddr)
1178{
1179 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1180#ifdef CONFIG_HIGHMEM
1181 local_bh_enable();
1182#endif
1183}
1184
1185#define skb_queue_walk(queue, skb) \
1186 for (skb = (queue)->next; \
1187 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1188 skb = skb->next)
1189
1190
1191extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1192 int noblock, int *err);
1193extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1194 struct poll_table_struct *wait);
1195extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1196 int offset, struct iovec *to,
1197 int size);
1198extern int skb_copy_and_csum_datagram_iovec(const
1199 struct sk_buff *skb,
1200 int hlen,
1201 struct iovec *iov);
1202extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1203extern unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1204 int len, unsigned int csum);
1205extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1206 void *to, int len);
357b40a1
HX
1207extern int skb_store_bits(const struct sk_buff *skb, int offset,
1208 void *from, int len);
1da177e4
LT
1209extern unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb,
1210 int offset, u8 *to, int len,
1211 unsigned int csum);
1212extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1213extern void skb_split(struct sk_buff *skb,
1214 struct sk_buff *skb1, const u32 len);
1215
1216static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1217 int len, void *buffer)
1218{
1219 int hlen = skb_headlen(skb);
1220
55820ee2 1221 if (hlen - offset >= len)
1da177e4
LT
1222 return skb->data + offset;
1223
1224 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1225 return NULL;
1226
1227 return buffer;
1228}
1229
1230extern void skb_init(void);
1231extern void skb_add_mtu(int mtu);
1232
1233#ifdef CONFIG_NETFILTER
1234static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1235{
1236 if (nfct && atomic_dec_and_test(&nfct->use))
1237 nfct->destroy(nfct);
1238}
1239static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1240{
1241 if (nfct)
1242 atomic_inc(&nfct->use);
1243}
1244static inline void nf_reset(struct sk_buff *skb)
1245{
1246 nf_conntrack_put(skb->nfct);
1247 skb->nfct = NULL;
1da177e4
LT
1248}
1249
1250#ifdef CONFIG_BRIDGE_NETFILTER
1251static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1252{
1253 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1254 kfree(nf_bridge);
1255}
1256static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1257{
1258 if (nf_bridge)
1259 atomic_inc(&nf_bridge->use);
1260}
1261#endif /* CONFIG_BRIDGE_NETFILTER */
1262#else /* CONFIG_NETFILTER */
1263static inline void nf_reset(struct sk_buff *skb) {}
1264#endif /* CONFIG_NETFILTER */
1265
1266#endif /* __KERNEL__ */
1267#endif /* _LINUX_SKBUFF_H */