]> bbs.cooldavid.org Git - net-next-2.6.git/blame - include/linux/skbuff.h
[NET]: Zerocopy sequential reading of skb data
[net-next-2.6.git] / include / linux / skbuff.h
CommitLineData
1da177e4
LT
1/*
2 * Definitions for the 'struct sk_buff' memory handlers.
3 *
4 * Authors:
5 * Alan Cox, <gw4pts@gw4pts.ampr.org>
6 * Florian La Roche, <rzsfl@rz.uni-sb.de>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14#ifndef _LINUX_SKBUFF_H
15#define _LINUX_SKBUFF_H
16
17#include <linux/config.h>
18#include <linux/kernel.h>
19#include <linux/compiler.h>
20#include <linux/time.h>
21#include <linux/cache.h>
22
23#include <asm/atomic.h>
24#include <asm/types.h>
25#include <linux/spinlock.h>
26#include <linux/mm.h>
27#include <linux/highmem.h>
28#include <linux/poll.h>
29#include <linux/net.h>
30#include <net/checksum.h>
31
32#define HAVE_ALLOC_SKB /* For the drivers to know */
33#define HAVE_ALIGNABLE_SKB /* Ditto 8) */
34#define SLAB_SKB /* Slabified skbuffs */
35
36#define CHECKSUM_NONE 0
37#define CHECKSUM_HW 1
38#define CHECKSUM_UNNECESSARY 2
39
40#define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
41 ~(SMP_CACHE_BYTES - 1))
42#define SKB_MAX_ORDER(X, ORDER) (((PAGE_SIZE << (ORDER)) - (X) - \
43 sizeof(struct skb_shared_info)) & \
44 ~(SMP_CACHE_BYTES - 1))
45#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
46#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
47
48/* A. Checksumming of received packets by device.
49 *
50 * NONE: device failed to checksum this packet.
51 * skb->csum is undefined.
52 *
53 * UNNECESSARY: device parsed packet and wouldbe verified checksum.
54 * skb->csum is undefined.
55 * It is bad option, but, unfortunately, many of vendors do this.
56 * Apparently with secret goal to sell you new device, when you
57 * will add new protocol to your host. F.e. IPv6. 8)
58 *
59 * HW: the most generic way. Device supplied checksum of _all_
60 * the packet as seen by netif_rx in skb->csum.
61 * NOTE: Even if device supports only some protocols, but
62 * is able to produce some skb->csum, it MUST use HW,
63 * not UNNECESSARY.
64 *
65 * B. Checksumming on output.
66 *
67 * NONE: skb is checksummed by protocol or csum is not required.
68 *
69 * HW: device is required to csum packet as seen by hard_start_xmit
70 * from skb->h.raw to the end and to record the checksum
71 * at skb->h.raw+skb->csum.
72 *
73 * Device must show its capabilities in dev->features, set
74 * at device setup time.
75 * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
76 * everything.
77 * NETIF_F_NO_CSUM - loopback or reliable single hop media.
78 * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
79 * TCP/UDP over IPv4. Sigh. Vendors like this
80 * way by an unknown reason. Though, see comment above
81 * about CHECKSUM_UNNECESSARY. 8)
82 *
83 * Any questions? No questions, good. --ANK
84 */
85
1da177e4
LT
86struct net_device;
87
88#ifdef CONFIG_NETFILTER
89struct nf_conntrack {
90 atomic_t use;
91 void (*destroy)(struct nf_conntrack *);
92};
93
94#ifdef CONFIG_BRIDGE_NETFILTER
95struct nf_bridge_info {
96 atomic_t use;
97 struct net_device *physindev;
98 struct net_device *physoutdev;
99#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
100 struct net_device *netoutdev;
101#endif
102 unsigned int mask;
103 unsigned long data[32 / sizeof(unsigned long)];
104};
105#endif
106
107#endif
108
109struct sk_buff_head {
110 /* These two members must be first. */
111 struct sk_buff *next;
112 struct sk_buff *prev;
113
114 __u32 qlen;
115 spinlock_t lock;
116};
117
118struct sk_buff;
119
120/* To allow 64K frame to be packed as single skb without frag_list */
121#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
122
123typedef struct skb_frag_struct skb_frag_t;
124
125struct skb_frag_struct {
126 struct page *page;
127 __u16 page_offset;
128 __u16 size;
129};
130
131/* This data is invariant across clones and lives at
132 * the end of the header data, ie. at skb->end.
133 */
134struct skb_shared_info {
135 atomic_t dataref;
136 unsigned int nr_frags;
137 unsigned short tso_size;
138 unsigned short tso_segs;
139 struct sk_buff *frag_list;
140 skb_frag_t frags[MAX_SKB_FRAGS];
141};
142
143/* We divide dataref into two halves. The higher 16 bits hold references
144 * to the payload part of skb->data. The lower 16 bits hold references to
145 * the entire skb->data. It is up to the users of the skb to agree on
146 * where the payload starts.
147 *
148 * All users must obey the rule that the skb->data reference count must be
149 * greater than or equal to the payload reference count.
150 *
151 * Holding a reference to the payload part means that the user does not
152 * care about modifications to the header part of skb->data.
153 */
154#define SKB_DATAREF_SHIFT 16
155#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
156
157/**
158 * struct sk_buff - socket buffer
159 * @next: Next buffer in list
160 * @prev: Previous buffer in list
161 * @list: List we are on
162 * @sk: Socket we are owned by
163 * @stamp: Time we arrived
164 * @dev: Device we arrived on/are leaving by
165 * @input_dev: Device we arrived on
166 * @real_dev: The real device we are using
167 * @h: Transport layer header
168 * @nh: Network layer header
169 * @mac: Link layer header
67be2dd1
MW
170 * @dst: destination entry
171 * @sp: the security path, used for xfrm
1da177e4
LT
172 * @cb: Control buffer. Free for use by every layer. Put private vars here
173 * @len: Length of actual data
174 * @data_len: Data length
175 * @mac_len: Length of link layer header
176 * @csum: Checksum
67be2dd1 177 * @local_df: allow local fragmentation
1da177e4
LT
178 * @cloned: Head may be cloned (check refcnt to be sure)
179 * @nohdr: Payload reference only, must not modify header
180 * @pkt_type: Packet class
181 * @ip_summed: Driver fed us an IP checksum
182 * @priority: Packet queueing priority
183 * @users: User count - see {datagram,tcp}.c
184 * @protocol: Packet protocol from driver
185 * @security: Security level of packet
186 * @truesize: Buffer size
187 * @head: Head of buffer
188 * @data: Data head pointer
189 * @tail: Tail pointer
190 * @end: End pointer
191 * @destructor: Destruct function
192 * @nfmark: Can be used for communication between hooks
193 * @nfcache: Cache info
194 * @nfct: Associated connection, if any
195 * @nfctinfo: Relationship of this skb to the connection
1da177e4
LT
196 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
197 * @private: Data which is private to the HIPPI implementation
198 * @tc_index: Traffic control index
199 * @tc_verd: traffic control verdict
200 * @tc_classid: traffic control classid
201 */
202
203struct sk_buff {
204 /* These two members must be first. */
205 struct sk_buff *next;
206 struct sk_buff *prev;
207
208 struct sk_buff_head *list;
209 struct sock *sk;
210 struct timeval stamp;
211 struct net_device *dev;
212 struct net_device *input_dev;
213 struct net_device *real_dev;
214
215 union {
216 struct tcphdr *th;
217 struct udphdr *uh;
218 struct icmphdr *icmph;
219 struct igmphdr *igmph;
220 struct iphdr *ipiph;
221 struct ipv6hdr *ipv6h;
222 unsigned char *raw;
223 } h;
224
225 union {
226 struct iphdr *iph;
227 struct ipv6hdr *ipv6h;
228 struct arphdr *arph;
229 unsigned char *raw;
230 } nh;
231
232 union {
233 unsigned char *raw;
234 } mac;
235
236 struct dst_entry *dst;
237 struct sec_path *sp;
238
239 /*
240 * This is the control buffer. It is free to use for every
241 * layer. Please put your private variables there. If you
242 * want to keep them across layers you have to do a skb_clone()
243 * first. This is owned by whoever has the skb queued ATM.
244 */
245 char cb[40];
246
247 unsigned int len,
248 data_len,
249 mac_len,
250 csum;
251 unsigned char local_df,
252 cloned:1,
253 nohdr:1,
254 pkt_type,
255 ip_summed;
256 __u32 priority;
257 unsigned short protocol,
258 security;
259
260 void (*destructor)(struct sk_buff *skb);
261#ifdef CONFIG_NETFILTER
262 unsigned long nfmark;
263 __u32 nfcache;
264 __u32 nfctinfo;
265 struct nf_conntrack *nfct;
1da177e4
LT
266#ifdef CONFIG_BRIDGE_NETFILTER
267 struct nf_bridge_info *nf_bridge;
268#endif
269#endif /* CONFIG_NETFILTER */
270#if defined(CONFIG_HIPPI)
271 union {
272 __u32 ifield;
273 } private;
274#endif
275#ifdef CONFIG_NET_SCHED
276 __u32 tc_index; /* traffic control index */
277#ifdef CONFIG_NET_CLS_ACT
278 __u32 tc_verd; /* traffic control verdict */
279 __u32 tc_classid; /* traffic control classid */
280#endif
281
282#endif
283
284
285 /* These elements must be at the end, see alloc_skb() for details. */
286 unsigned int truesize;
287 atomic_t users;
288 unsigned char *head,
289 *data,
290 *tail,
291 *end;
292};
293
294#ifdef __KERNEL__
295/*
296 * Handling routines are only of interest to the kernel
297 */
298#include <linux/slab.h>
299
300#include <asm/system.h>
301
302extern void __kfree_skb(struct sk_buff *skb);
303extern struct sk_buff *alloc_skb(unsigned int size, int priority);
304extern struct sk_buff *alloc_skb_from_cache(kmem_cache_t *cp,
305 unsigned int size, int priority);
306extern void kfree_skbmem(struct sk_buff *skb);
307extern struct sk_buff *skb_clone(struct sk_buff *skb, int priority);
308extern struct sk_buff *skb_copy(const struct sk_buff *skb, int priority);
309extern struct sk_buff *pskb_copy(struct sk_buff *skb, int gfp_mask);
310extern int pskb_expand_head(struct sk_buff *skb,
311 int nhead, int ntail, int gfp_mask);
312extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
313 unsigned int headroom);
314extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
315 int newheadroom, int newtailroom,
316 int priority);
317extern struct sk_buff * skb_pad(struct sk_buff *skb, int pad);
318#define dev_kfree_skb(a) kfree_skb(a)
319extern void skb_over_panic(struct sk_buff *skb, int len,
320 void *here);
321extern void skb_under_panic(struct sk_buff *skb, int len,
322 void *here);
323
677e90ed
TG
324struct skb_seq_state
325{
326 __u32 lower_offset;
327 __u32 upper_offset;
328 __u32 frag_idx;
329 __u32 stepped_offset;
330 struct sk_buff *root_skb;
331 struct sk_buff *cur_skb;
332 __u8 *frag_data;
333};
334
335extern void skb_prepare_seq_read(struct sk_buff *skb,
336 unsigned int from, unsigned int to,
337 struct skb_seq_state *st);
338extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
339 struct skb_seq_state *st);
340extern void skb_abort_seq_read(struct skb_seq_state *st);
341
1da177e4
LT
342/* Internal */
343#define skb_shinfo(SKB) ((struct skb_shared_info *)((SKB)->end))
344
345/**
346 * skb_queue_empty - check if a queue is empty
347 * @list: queue head
348 *
349 * Returns true if the queue is empty, false otherwise.
350 */
351static inline int skb_queue_empty(const struct sk_buff_head *list)
352{
353 return list->next == (struct sk_buff *)list;
354}
355
356/**
357 * skb_get - reference buffer
358 * @skb: buffer to reference
359 *
360 * Makes another reference to a socket buffer and returns a pointer
361 * to the buffer.
362 */
363static inline struct sk_buff *skb_get(struct sk_buff *skb)
364{
365 atomic_inc(&skb->users);
366 return skb;
367}
368
369/*
370 * If users == 1, we are the only owner and are can avoid redundant
371 * atomic change.
372 */
373
374/**
375 * kfree_skb - free an sk_buff
376 * @skb: buffer to free
377 *
378 * Drop a reference to the buffer and free it if the usage count has
379 * hit zero.
380 */
381static inline void kfree_skb(struct sk_buff *skb)
382{
383 if (likely(atomic_read(&skb->users) == 1))
384 smp_rmb();
385 else if (likely(!atomic_dec_and_test(&skb->users)))
386 return;
387 __kfree_skb(skb);
388}
389
390/**
391 * skb_cloned - is the buffer a clone
392 * @skb: buffer to check
393 *
394 * Returns true if the buffer was generated with skb_clone() and is
395 * one of multiple shared copies of the buffer. Cloned buffers are
396 * shared data so must not be written to under normal circumstances.
397 */
398static inline int skb_cloned(const struct sk_buff *skb)
399{
400 return skb->cloned &&
401 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
402}
403
404/**
405 * skb_header_cloned - is the header a clone
406 * @skb: buffer to check
407 *
408 * Returns true if modifying the header part of the buffer requires
409 * the data to be copied.
410 */
411static inline int skb_header_cloned(const struct sk_buff *skb)
412{
413 int dataref;
414
415 if (!skb->cloned)
416 return 0;
417
418 dataref = atomic_read(&skb_shinfo(skb)->dataref);
419 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
420 return dataref != 1;
421}
422
423/**
424 * skb_header_release - release reference to header
425 * @skb: buffer to operate on
426 *
427 * Drop a reference to the header part of the buffer. This is done
428 * by acquiring a payload reference. You must not read from the header
429 * part of skb->data after this.
430 */
431static inline void skb_header_release(struct sk_buff *skb)
432{
433 BUG_ON(skb->nohdr);
434 skb->nohdr = 1;
435 atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
436}
437
438/**
439 * skb_shared - is the buffer shared
440 * @skb: buffer to check
441 *
442 * Returns true if more than one person has a reference to this
443 * buffer.
444 */
445static inline int skb_shared(const struct sk_buff *skb)
446{
447 return atomic_read(&skb->users) != 1;
448}
449
450/**
451 * skb_share_check - check if buffer is shared and if so clone it
452 * @skb: buffer to check
453 * @pri: priority for memory allocation
454 *
455 * If the buffer is shared the buffer is cloned and the old copy
456 * drops a reference. A new clone with a single reference is returned.
457 * If the buffer is not shared the original buffer is returned. When
458 * being called from interrupt status or with spinlocks held pri must
459 * be GFP_ATOMIC.
460 *
461 * NULL is returned on a memory allocation failure.
462 */
463static inline struct sk_buff *skb_share_check(struct sk_buff *skb, int pri)
464{
465 might_sleep_if(pri & __GFP_WAIT);
466 if (skb_shared(skb)) {
467 struct sk_buff *nskb = skb_clone(skb, pri);
468 kfree_skb(skb);
469 skb = nskb;
470 }
471 return skb;
472}
473
474/*
475 * Copy shared buffers into a new sk_buff. We effectively do COW on
476 * packets to handle cases where we have a local reader and forward
477 * and a couple of other messy ones. The normal one is tcpdumping
478 * a packet thats being forwarded.
479 */
480
481/**
482 * skb_unshare - make a copy of a shared buffer
483 * @skb: buffer to check
484 * @pri: priority for memory allocation
485 *
486 * If the socket buffer is a clone then this function creates a new
487 * copy of the data, drops a reference count on the old copy and returns
488 * the new copy with the reference count at 1. If the buffer is not a clone
489 * the original buffer is returned. When called with a spinlock held or
490 * from interrupt state @pri must be %GFP_ATOMIC
491 *
492 * %NULL is returned on a memory allocation failure.
493 */
494static inline struct sk_buff *skb_unshare(struct sk_buff *skb, int pri)
495{
496 might_sleep_if(pri & __GFP_WAIT);
497 if (skb_cloned(skb)) {
498 struct sk_buff *nskb = skb_copy(skb, pri);
499 kfree_skb(skb); /* Free our shared copy */
500 skb = nskb;
501 }
502 return skb;
503}
504
505/**
506 * skb_peek
507 * @list_: list to peek at
508 *
509 * Peek an &sk_buff. Unlike most other operations you _MUST_
510 * be careful with this one. A peek leaves the buffer on the
511 * list and someone else may run off with it. You must hold
512 * the appropriate locks or have a private queue to do this.
513 *
514 * Returns %NULL for an empty list or a pointer to the head element.
515 * The reference count is not incremented and the reference is therefore
516 * volatile. Use with caution.
517 */
518static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
519{
520 struct sk_buff *list = ((struct sk_buff *)list_)->next;
521 if (list == (struct sk_buff *)list_)
522 list = NULL;
523 return list;
524}
525
526/**
527 * skb_peek_tail
528 * @list_: list to peek at
529 *
530 * Peek an &sk_buff. Unlike most other operations you _MUST_
531 * be careful with this one. A peek leaves the buffer on the
532 * list and someone else may run off with it. You must hold
533 * the appropriate locks or have a private queue to do this.
534 *
535 * Returns %NULL for an empty list or a pointer to the tail element.
536 * The reference count is not incremented and the reference is therefore
537 * volatile. Use with caution.
538 */
539static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
540{
541 struct sk_buff *list = ((struct sk_buff *)list_)->prev;
542 if (list == (struct sk_buff *)list_)
543 list = NULL;
544 return list;
545}
546
547/**
548 * skb_queue_len - get queue length
549 * @list_: list to measure
550 *
551 * Return the length of an &sk_buff queue.
552 */
553static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
554{
555 return list_->qlen;
556}
557
558static inline void skb_queue_head_init(struct sk_buff_head *list)
559{
560 spin_lock_init(&list->lock);
561 list->prev = list->next = (struct sk_buff *)list;
562 list->qlen = 0;
563}
564
565/*
566 * Insert an sk_buff at the start of a list.
567 *
568 * The "__skb_xxxx()" functions are the non-atomic ones that
569 * can only be called with interrupts disabled.
570 */
571
572/**
573 * __skb_queue_head - queue a buffer at the list head
574 * @list: list to use
575 * @newsk: buffer to queue
576 *
577 * Queue a buffer at the start of a list. This function takes no locks
578 * and you must therefore hold required locks before calling it.
579 *
580 * A buffer cannot be placed on two lists at the same time.
581 */
582extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
583static inline void __skb_queue_head(struct sk_buff_head *list,
584 struct sk_buff *newsk)
585{
586 struct sk_buff *prev, *next;
587
588 newsk->list = list;
589 list->qlen++;
590 prev = (struct sk_buff *)list;
591 next = prev->next;
592 newsk->next = next;
593 newsk->prev = prev;
594 next->prev = prev->next = newsk;
595}
596
597/**
598 * __skb_queue_tail - queue a buffer at the list tail
599 * @list: list to use
600 * @newsk: buffer to queue
601 *
602 * Queue a buffer at the end of a list. This function takes no locks
603 * and you must therefore hold required locks before calling it.
604 *
605 * A buffer cannot be placed on two lists at the same time.
606 */
607extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
608static inline void __skb_queue_tail(struct sk_buff_head *list,
609 struct sk_buff *newsk)
610{
611 struct sk_buff *prev, *next;
612
613 newsk->list = list;
614 list->qlen++;
615 next = (struct sk_buff *)list;
616 prev = next->prev;
617 newsk->next = next;
618 newsk->prev = prev;
619 next->prev = prev->next = newsk;
620}
621
622
623/**
624 * __skb_dequeue - remove from the head of the queue
625 * @list: list to dequeue from
626 *
627 * Remove the head of the list. This function does not take any locks
628 * so must be used with appropriate locks held only. The head item is
629 * returned or %NULL if the list is empty.
630 */
631extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
632static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
633{
634 struct sk_buff *next, *prev, *result;
635
636 prev = (struct sk_buff *) list;
637 next = prev->next;
638 result = NULL;
639 if (next != prev) {
640 result = next;
641 next = next->next;
642 list->qlen--;
643 next->prev = prev;
644 prev->next = next;
645 result->next = result->prev = NULL;
646 result->list = NULL;
647 }
648 return result;
649}
650
651
652/*
653 * Insert a packet on a list.
654 */
655extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk);
656static inline void __skb_insert(struct sk_buff *newsk,
657 struct sk_buff *prev, struct sk_buff *next,
658 struct sk_buff_head *list)
659{
660 newsk->next = next;
661 newsk->prev = prev;
662 next->prev = prev->next = newsk;
663 newsk->list = list;
664 list->qlen++;
665}
666
667/*
668 * Place a packet after a given packet in a list.
669 */
670extern void skb_append(struct sk_buff *old, struct sk_buff *newsk);
671static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk)
672{
673 __skb_insert(newsk, old, old->next, old->list);
674}
675
676/*
677 * remove sk_buff from list. _Must_ be called atomically, and with
678 * the list known..
679 */
680extern void skb_unlink(struct sk_buff *skb);
681static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
682{
683 struct sk_buff *next, *prev;
684
685 list->qlen--;
686 next = skb->next;
687 prev = skb->prev;
688 skb->next = skb->prev = NULL;
689 skb->list = NULL;
690 next->prev = prev;
691 prev->next = next;
692}
693
694
695/* XXX: more streamlined implementation */
696
697/**
698 * __skb_dequeue_tail - remove from the tail of the queue
699 * @list: list to dequeue from
700 *
701 * Remove the tail of the list. This function does not take any locks
702 * so must be used with appropriate locks held only. The tail item is
703 * returned or %NULL if the list is empty.
704 */
705extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
706static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
707{
708 struct sk_buff *skb = skb_peek_tail(list);
709 if (skb)
710 __skb_unlink(skb, list);
711 return skb;
712}
713
714
715static inline int skb_is_nonlinear(const struct sk_buff *skb)
716{
717 return skb->data_len;
718}
719
720static inline unsigned int skb_headlen(const struct sk_buff *skb)
721{
722 return skb->len - skb->data_len;
723}
724
725static inline int skb_pagelen(const struct sk_buff *skb)
726{
727 int i, len = 0;
728
729 for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
730 len += skb_shinfo(skb)->frags[i].size;
731 return len + skb_headlen(skb);
732}
733
734static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
735 struct page *page, int off, int size)
736{
737 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
738
739 frag->page = page;
740 frag->page_offset = off;
741 frag->size = size;
742 skb_shinfo(skb)->nr_frags = i + 1;
743}
744
745#define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
746#define SKB_FRAG_ASSERT(skb) BUG_ON(skb_shinfo(skb)->frag_list)
747#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
748
749/*
750 * Add data to an sk_buff
751 */
752static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
753{
754 unsigned char *tmp = skb->tail;
755 SKB_LINEAR_ASSERT(skb);
756 skb->tail += len;
757 skb->len += len;
758 return tmp;
759}
760
761/**
762 * skb_put - add data to a buffer
763 * @skb: buffer to use
764 * @len: amount of data to add
765 *
766 * This function extends the used data area of the buffer. If this would
767 * exceed the total buffer size the kernel will panic. A pointer to the
768 * first byte of the extra data is returned.
769 */
770static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
771{
772 unsigned char *tmp = skb->tail;
773 SKB_LINEAR_ASSERT(skb);
774 skb->tail += len;
775 skb->len += len;
776 if (unlikely(skb->tail>skb->end))
777 skb_over_panic(skb, len, current_text_addr());
778 return tmp;
779}
780
781static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
782{
783 skb->data -= len;
784 skb->len += len;
785 return skb->data;
786}
787
788/**
789 * skb_push - add data to the start of a buffer
790 * @skb: buffer to use
791 * @len: amount of data to add
792 *
793 * This function extends the used data area of the buffer at the buffer
794 * start. If this would exceed the total buffer headroom the kernel will
795 * panic. A pointer to the first byte of the extra data is returned.
796 */
797static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
798{
799 skb->data -= len;
800 skb->len += len;
801 if (unlikely(skb->data<skb->head))
802 skb_under_panic(skb, len, current_text_addr());
803 return skb->data;
804}
805
806static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
807{
808 skb->len -= len;
809 BUG_ON(skb->len < skb->data_len);
810 return skb->data += len;
811}
812
813/**
814 * skb_pull - remove data from the start of a buffer
815 * @skb: buffer to use
816 * @len: amount of data to remove
817 *
818 * This function removes data from the start of a buffer, returning
819 * the memory to the headroom. A pointer to the next data in the buffer
820 * is returned. Once the data has been pulled future pushes will overwrite
821 * the old data.
822 */
823static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
824{
825 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
826}
827
828extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
829
830static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
831{
832 if (len > skb_headlen(skb) &&
833 !__pskb_pull_tail(skb, len-skb_headlen(skb)))
834 return NULL;
835 skb->len -= len;
836 return skb->data += len;
837}
838
839static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
840{
841 return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
842}
843
844static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
845{
846 if (likely(len <= skb_headlen(skb)))
847 return 1;
848 if (unlikely(len > skb->len))
849 return 0;
850 return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
851}
852
853/**
854 * skb_headroom - bytes at buffer head
855 * @skb: buffer to check
856 *
857 * Return the number of bytes of free space at the head of an &sk_buff.
858 */
859static inline int skb_headroom(const struct sk_buff *skb)
860{
861 return skb->data - skb->head;
862}
863
864/**
865 * skb_tailroom - bytes at buffer end
866 * @skb: buffer to check
867 *
868 * Return the number of bytes of free space at the tail of an sk_buff
869 */
870static inline int skb_tailroom(const struct sk_buff *skb)
871{
872 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
873}
874
875/**
876 * skb_reserve - adjust headroom
877 * @skb: buffer to alter
878 * @len: bytes to move
879 *
880 * Increase the headroom of an empty &sk_buff by reducing the tail
881 * room. This is only allowed for an empty buffer.
882 */
883static inline void skb_reserve(struct sk_buff *skb, unsigned int len)
884{
885 skb->data += len;
886 skb->tail += len;
887}
888
889/*
890 * CPUs often take a performance hit when accessing unaligned memory
891 * locations. The actual performance hit varies, it can be small if the
892 * hardware handles it or large if we have to take an exception and fix it
893 * in software.
894 *
895 * Since an ethernet header is 14 bytes network drivers often end up with
896 * the IP header at an unaligned offset. The IP header can be aligned by
897 * shifting the start of the packet by 2 bytes. Drivers should do this
898 * with:
899 *
900 * skb_reserve(NET_IP_ALIGN);
901 *
902 * The downside to this alignment of the IP header is that the DMA is now
903 * unaligned. On some architectures the cost of an unaligned DMA is high
904 * and this cost outweighs the gains made by aligning the IP header.
905 *
906 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
907 * to be overridden.
908 */
909#ifndef NET_IP_ALIGN
910#define NET_IP_ALIGN 2
911#endif
912
913extern int ___pskb_trim(struct sk_buff *skb, unsigned int len, int realloc);
914
915static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
916{
917 if (!skb->data_len) {
918 skb->len = len;
919 skb->tail = skb->data + len;
920 } else
921 ___pskb_trim(skb, len, 0);
922}
923
924/**
925 * skb_trim - remove end from a buffer
926 * @skb: buffer to alter
927 * @len: new length
928 *
929 * Cut the length of a buffer down by removing data from the tail. If
930 * the buffer is already under the length specified it is not modified.
931 */
932static inline void skb_trim(struct sk_buff *skb, unsigned int len)
933{
934 if (skb->len > len)
935 __skb_trim(skb, len);
936}
937
938
939static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
940{
941 if (!skb->data_len) {
942 skb->len = len;
943 skb->tail = skb->data+len;
944 return 0;
945 }
946 return ___pskb_trim(skb, len, 1);
947}
948
949static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
950{
951 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
952}
953
954/**
955 * skb_orphan - orphan a buffer
956 * @skb: buffer to orphan
957 *
958 * If a buffer currently has an owner then we call the owner's
959 * destructor function and make the @skb unowned. The buffer continues
960 * to exist but is no longer charged to its former owner.
961 */
962static inline void skb_orphan(struct sk_buff *skb)
963{
964 if (skb->destructor)
965 skb->destructor(skb);
966 skb->destructor = NULL;
967 skb->sk = NULL;
968}
969
970/**
971 * __skb_queue_purge - empty a list
972 * @list: list to empty
973 *
974 * Delete all buffers on an &sk_buff list. Each buffer is removed from
975 * the list and one reference dropped. This function does not take the
976 * list lock and the caller must hold the relevant locks to use it.
977 */
978extern void skb_queue_purge(struct sk_buff_head *list);
979static inline void __skb_queue_purge(struct sk_buff_head *list)
980{
981 struct sk_buff *skb;
982 while ((skb = __skb_dequeue(list)) != NULL)
983 kfree_skb(skb);
984}
985
4dc3b16b 986#ifndef CONFIG_HAVE_ARCH_DEV_ALLOC_SKB
1da177e4
LT
987/**
988 * __dev_alloc_skb - allocate an skbuff for sending
989 * @length: length to allocate
990 * @gfp_mask: get_free_pages mask, passed to alloc_skb
991 *
992 * Allocate a new &sk_buff and assign it a usage count of one. The
993 * buffer has unspecified headroom built in. Users should allocate
994 * the headroom they think they need without accounting for the
995 * built in space. The built in space is used for optimisations.
996 *
997 * %NULL is returned in there is no free memory.
998 */
1da177e4
LT
999static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1000 int gfp_mask)
1001{
1002 struct sk_buff *skb = alloc_skb(length + 16, gfp_mask);
1003 if (likely(skb))
1004 skb_reserve(skb, 16);
1005 return skb;
1006}
1007#else
1008extern struct sk_buff *__dev_alloc_skb(unsigned int length, int gfp_mask);
1009#endif
1010
1011/**
1012 * dev_alloc_skb - allocate an skbuff for sending
1013 * @length: length to allocate
1014 *
1015 * Allocate a new &sk_buff and assign it a usage count of one. The
1016 * buffer has unspecified headroom built in. Users should allocate
1017 * the headroom they think they need without accounting for the
1018 * built in space. The built in space is used for optimisations.
1019 *
1020 * %NULL is returned in there is no free memory. Although this function
1021 * allocates memory it can be called from an interrupt.
1022 */
1023static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1024{
1025 return __dev_alloc_skb(length, GFP_ATOMIC);
1026}
1027
1028/**
1029 * skb_cow - copy header of skb when it is required
1030 * @skb: buffer to cow
1031 * @headroom: needed headroom
1032 *
1033 * If the skb passed lacks sufficient headroom or its data part
1034 * is shared, data is reallocated. If reallocation fails, an error
1035 * is returned and original skb is not changed.
1036 *
1037 * The result is skb with writable area skb->head...skb->tail
1038 * and at least @headroom of space at head.
1039 */
1040static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1041{
1042 int delta = (headroom > 16 ? headroom : 16) - skb_headroom(skb);
1043
1044 if (delta < 0)
1045 delta = 0;
1046
1047 if (delta || skb_cloned(skb))
1048 return pskb_expand_head(skb, (delta + 15) & ~15, 0, GFP_ATOMIC);
1049 return 0;
1050}
1051
1052/**
1053 * skb_padto - pad an skbuff up to a minimal size
1054 * @skb: buffer to pad
1055 * @len: minimal length
1056 *
1057 * Pads up a buffer to ensure the trailing bytes exist and are
1058 * blanked. If the buffer already contains sufficient data it
1059 * is untouched. Returns the buffer, which may be a replacement
1060 * for the original, or NULL for out of memory - in which case
1061 * the original buffer is still freed.
1062 */
1063
1064static inline struct sk_buff *skb_padto(struct sk_buff *skb, unsigned int len)
1065{
1066 unsigned int size = skb->len;
1067 if (likely(size >= len))
1068 return skb;
1069 return skb_pad(skb, len-size);
1070}
1071
1072static inline int skb_add_data(struct sk_buff *skb,
1073 char __user *from, int copy)
1074{
1075 const int off = skb->len;
1076
1077 if (skb->ip_summed == CHECKSUM_NONE) {
1078 int err = 0;
1079 unsigned int csum = csum_and_copy_from_user(from,
1080 skb_put(skb, copy),
1081 copy, 0, &err);
1082 if (!err) {
1083 skb->csum = csum_block_add(skb->csum, csum, off);
1084 return 0;
1085 }
1086 } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1087 return 0;
1088
1089 __skb_trim(skb, off);
1090 return -EFAULT;
1091}
1092
1093static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1094 struct page *page, int off)
1095{
1096 if (i) {
1097 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1098
1099 return page == frag->page &&
1100 off == frag->page_offset + frag->size;
1101 }
1102 return 0;
1103}
1104
1105/**
1106 * skb_linearize - convert paged skb to linear one
1107 * @skb: buffer to linarize
1108 * @gfp: allocation mode
1109 *
1110 * If there is no free memory -ENOMEM is returned, otherwise zero
1111 * is returned and the old skb data released.
1112 */
1113extern int __skb_linearize(struct sk_buff *skb, int gfp);
1114static inline int skb_linearize(struct sk_buff *skb, int gfp)
1115{
1116 return __skb_linearize(skb, gfp);
1117}
1118
1119/**
1120 * skb_postpull_rcsum - update checksum for received skb after pull
1121 * @skb: buffer to update
1122 * @start: start of data before pull
1123 * @len: length of data pulled
1124 *
1125 * After doing a pull on a received packet, you need to call this to
1126 * update the CHECKSUM_HW checksum, or set ip_summed to CHECKSUM_NONE
1127 * so that it can be recomputed from scratch.
1128 */
1129
1130static inline void skb_postpull_rcsum(struct sk_buff *skb,
1131 const void *start, int len)
1132{
1133 if (skb->ip_summed == CHECKSUM_HW)
1134 skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1135}
1136
1137/**
1138 * pskb_trim_rcsum - trim received skb and update checksum
1139 * @skb: buffer to trim
1140 * @len: new length
1141 *
1142 * This is exactly the same as pskb_trim except that it ensures the
1143 * checksum of received packets are still valid after the operation.
1144 */
1145
1146static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1147{
1148 if (len >= skb->len)
1149 return 0;
1150 if (skb->ip_summed == CHECKSUM_HW)
1151 skb->ip_summed = CHECKSUM_NONE;
1152 return __pskb_trim(skb, len);
1153}
1154
1155static inline void *kmap_skb_frag(const skb_frag_t *frag)
1156{
1157#ifdef CONFIG_HIGHMEM
1158 BUG_ON(in_irq());
1159
1160 local_bh_disable();
1161#endif
1162 return kmap_atomic(frag->page, KM_SKB_DATA_SOFTIRQ);
1163}
1164
1165static inline void kunmap_skb_frag(void *vaddr)
1166{
1167 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
1168#ifdef CONFIG_HIGHMEM
1169 local_bh_enable();
1170#endif
1171}
1172
1173#define skb_queue_walk(queue, skb) \
1174 for (skb = (queue)->next; \
1175 prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \
1176 skb = skb->next)
1177
1178
1179extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1180 int noblock, int *err);
1181extern unsigned int datagram_poll(struct file *file, struct socket *sock,
1182 struct poll_table_struct *wait);
1183extern int skb_copy_datagram_iovec(const struct sk_buff *from,
1184 int offset, struct iovec *to,
1185 int size);
1186extern int skb_copy_and_csum_datagram_iovec(const
1187 struct sk_buff *skb,
1188 int hlen,
1189 struct iovec *iov);
1190extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1191extern unsigned int skb_checksum(const struct sk_buff *skb, int offset,
1192 int len, unsigned int csum);
1193extern int skb_copy_bits(const struct sk_buff *skb, int offset,
1194 void *to, int len);
357b40a1
HX
1195extern int skb_store_bits(const struct sk_buff *skb, int offset,
1196 void *from, int len);
1da177e4
LT
1197extern unsigned int skb_copy_and_csum_bits(const struct sk_buff *skb,
1198 int offset, u8 *to, int len,
1199 unsigned int csum);
1200extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1201extern void skb_split(struct sk_buff *skb,
1202 struct sk_buff *skb1, const u32 len);
1203
1204static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1205 int len, void *buffer)
1206{
1207 int hlen = skb_headlen(skb);
1208
1209 if (offset + len <= hlen)
1210 return skb->data + offset;
1211
1212 if (skb_copy_bits(skb, offset, buffer, len) < 0)
1213 return NULL;
1214
1215 return buffer;
1216}
1217
1218extern void skb_init(void);
1219extern void skb_add_mtu(int mtu);
1220
1221#ifdef CONFIG_NETFILTER
1222static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1223{
1224 if (nfct && atomic_dec_and_test(&nfct->use))
1225 nfct->destroy(nfct);
1226}
1227static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1228{
1229 if (nfct)
1230 atomic_inc(&nfct->use);
1231}
1232static inline void nf_reset(struct sk_buff *skb)
1233{
1234 nf_conntrack_put(skb->nfct);
1235 skb->nfct = NULL;
1da177e4
LT
1236}
1237
1238#ifdef CONFIG_BRIDGE_NETFILTER
1239static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1240{
1241 if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1242 kfree(nf_bridge);
1243}
1244static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1245{
1246 if (nf_bridge)
1247 atomic_inc(&nf_bridge->use);
1248}
1249#endif /* CONFIG_BRIDGE_NETFILTER */
1250#else /* CONFIG_NETFILTER */
1251static inline void nf_reset(struct sk_buff *skb) {}
1252#endif /* CONFIG_NETFILTER */
1253
1254#endif /* __KERNEL__ */
1255#endif /* _LINUX_SKBUFF_H */