]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/buffer.c
kill BH_Ordered flag
[net-next-2.6.git] / fs / buffer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
1da177e4
LT
21#include <linux/kernel.h>
22#include <linux/syscalls.h>
23#include <linux/fs.h>
24#include <linux/mm.h>
25#include <linux/percpu.h>
26#include <linux/slab.h>
16f7e0fe 27#include <linux/capability.h>
1da177e4
LT
28#include <linux/blkdev.h>
29#include <linux/file.h>
30#include <linux/quotaops.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
33#include <linux/writeback.h>
34#include <linux/hash.h>
35#include <linux/suspend.h>
36#include <linux/buffer_head.h>
55e829af 37#include <linux/task_io_accounting_ops.h>
1da177e4
LT
38#include <linux/bio.h>
39#include <linux/notifier.h>
40#include <linux/cpu.h>
41#include <linux/bitops.h>
42#include <linux/mpage.h>
fb1c8f93 43#include <linux/bit_spinlock.h>
1da177e4
LT
44
45static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
1da177e4
LT
46
47#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48
49inline void
50init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51{
52 bh->b_end_io = handler;
53 bh->b_private = private;
54}
1fe72eaa 55EXPORT_SYMBOL(init_buffer);
1da177e4
LT
56
57static int sync_buffer(void *word)
58{
59 struct block_device *bd;
60 struct buffer_head *bh
61 = container_of(word, struct buffer_head, b_state);
62
63 smp_mb();
64 bd = bh->b_bdev;
65 if (bd)
66 blk_run_address_space(bd->bd_inode->i_mapping);
67 io_schedule();
68 return 0;
69}
70
fc9b52cd 71void __lock_buffer(struct buffer_head *bh)
1da177e4
LT
72{
73 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74 TASK_UNINTERRUPTIBLE);
75}
76EXPORT_SYMBOL(__lock_buffer);
77
fc9b52cd 78void unlock_buffer(struct buffer_head *bh)
1da177e4 79{
51b07fc3 80 clear_bit_unlock(BH_Lock, &bh->b_state);
1da177e4
LT
81 smp_mb__after_clear_bit();
82 wake_up_bit(&bh->b_state, BH_Lock);
83}
1fe72eaa 84EXPORT_SYMBOL(unlock_buffer);
1da177e4
LT
85
86/*
87 * Block until a buffer comes unlocked. This doesn't stop it
88 * from becoming locked again - you have to lock it yourself
89 * if you want to preserve its state.
90 */
91void __wait_on_buffer(struct buffer_head * bh)
92{
93 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
94}
1fe72eaa 95EXPORT_SYMBOL(__wait_on_buffer);
1da177e4
LT
96
97static void
98__clear_page_buffers(struct page *page)
99{
100 ClearPagePrivate(page);
4c21e2f2 101 set_page_private(page, 0);
1da177e4
LT
102 page_cache_release(page);
103}
104
08bafc03
KM
105
106static int quiet_error(struct buffer_head *bh)
107{
108 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
109 return 0;
110 return 1;
111}
112
113
1da177e4
LT
114static void buffer_io_error(struct buffer_head *bh)
115{
116 char b[BDEVNAME_SIZE];
1da177e4
LT
117 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
118 bdevname(bh->b_bdev, b),
119 (unsigned long long)bh->b_blocknr);
120}
121
122/*
68671f35
DM
123 * End-of-IO handler helper function which does not touch the bh after
124 * unlocking it.
125 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
126 * a race there is benign: unlock_buffer() only use the bh's address for
127 * hashing after unlocking the buffer, so it doesn't actually touch the bh
128 * itself.
1da177e4 129 */
68671f35 130static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
1da177e4
LT
131{
132 if (uptodate) {
133 set_buffer_uptodate(bh);
134 } else {
135 /* This happens, due to failed READA attempts. */
136 clear_buffer_uptodate(bh);
137 }
138 unlock_buffer(bh);
68671f35
DM
139}
140
141/*
142 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
143 * unlock the buffer. This is what ll_rw_block uses too.
144 */
145void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
146{
147 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
148 put_bh(bh);
149}
1fe72eaa 150EXPORT_SYMBOL(end_buffer_read_sync);
1da177e4
LT
151
152void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
153{
154 char b[BDEVNAME_SIZE];
155
156 if (uptodate) {
157 set_buffer_uptodate(bh);
158 } else {
08bafc03 159 if (!buffer_eopnotsupp(bh) && !quiet_error(bh)) {
1da177e4
LT
160 buffer_io_error(bh);
161 printk(KERN_WARNING "lost page write due to "
162 "I/O error on %s\n",
163 bdevname(bh->b_bdev, b));
164 }
165 set_buffer_write_io_error(bh);
166 clear_buffer_uptodate(bh);
167 }
168 unlock_buffer(bh);
169 put_bh(bh);
170}
1fe72eaa 171EXPORT_SYMBOL(end_buffer_write_sync);
1da177e4 172
1da177e4
LT
173/*
174 * Various filesystems appear to want __find_get_block to be non-blocking.
175 * But it's the page lock which protects the buffers. To get around this,
176 * we get exclusion from try_to_free_buffers with the blockdev mapping's
177 * private_lock.
178 *
179 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
180 * may be quite high. This code could TryLock the page, and if that
181 * succeeds, there is no need to take private_lock. (But if
182 * private_lock is contended then so is mapping->tree_lock).
183 */
184static struct buffer_head *
385fd4c5 185__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4
LT
186{
187 struct inode *bd_inode = bdev->bd_inode;
188 struct address_space *bd_mapping = bd_inode->i_mapping;
189 struct buffer_head *ret = NULL;
190 pgoff_t index;
191 struct buffer_head *bh;
192 struct buffer_head *head;
193 struct page *page;
194 int all_mapped = 1;
195
196 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
197 page = find_get_page(bd_mapping, index);
198 if (!page)
199 goto out;
200
201 spin_lock(&bd_mapping->private_lock);
202 if (!page_has_buffers(page))
203 goto out_unlock;
204 head = page_buffers(page);
205 bh = head;
206 do {
97f76d3d
NK
207 if (!buffer_mapped(bh))
208 all_mapped = 0;
209 else if (bh->b_blocknr == block) {
1da177e4
LT
210 ret = bh;
211 get_bh(bh);
212 goto out_unlock;
213 }
1da177e4
LT
214 bh = bh->b_this_page;
215 } while (bh != head);
216
217 /* we might be here because some of the buffers on this page are
218 * not mapped. This is due to various races between
219 * file io on the block device and getblk. It gets dealt with
220 * elsewhere, don't buffer_error if we had some unmapped buffers
221 */
222 if (all_mapped) {
223 printk("__find_get_block_slow() failed. "
224 "block=%llu, b_blocknr=%llu\n",
205f87f6
BP
225 (unsigned long long)block,
226 (unsigned long long)bh->b_blocknr);
227 printk("b_state=0x%08lx, b_size=%zu\n",
228 bh->b_state, bh->b_size);
1da177e4
LT
229 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
230 }
231out_unlock:
232 spin_unlock(&bd_mapping->private_lock);
233 page_cache_release(page);
234out:
235 return ret;
236}
237
238/* If invalidate_buffers() will trash dirty buffers, it means some kind
239 of fs corruption is going on. Trashing dirty data always imply losing
240 information that was supposed to be just stored on the physical layer
241 by the user.
242
243 Thus invalidate_buffers in general usage is not allwowed to trash
244 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
245 be preserved. These buffers are simply skipped.
246
247 We also skip buffers which are still in use. For example this can
248 happen if a userspace program is reading the block device.
249
250 NOTE: In the case where the user removed a removable-media-disk even if
251 there's still dirty data not synced on disk (due a bug in the device driver
252 or due an error of the user), by not destroying the dirty buffers we could
253 generate corruption also on the next media inserted, thus a parameter is
254 necessary to handle this case in the most safe way possible (trying
255 to not corrupt also the new disk inserted with the data belonging to
256 the old now corrupted disk). Also for the ramdisk the natural thing
257 to do in order to release the ramdisk memory is to destroy dirty buffers.
258
259 These are two special cases. Normal usage imply the device driver
260 to issue a sync on the device (without waiting I/O completion) and
261 then an invalidate_buffers call that doesn't trash dirty buffers.
262
263 For handling cache coherency with the blkdev pagecache the 'update' case
264 is been introduced. It is needed to re-read from disk any pinned
265 buffer. NOTE: re-reading from disk is destructive so we can do it only
266 when we assume nobody is changing the buffercache under our I/O and when
267 we think the disk contains more recent information than the buffercache.
268 The update == 1 pass marks the buffers we need to update, the update == 2
269 pass does the actual I/O. */
f98393a6 270void invalidate_bdev(struct block_device *bdev)
1da177e4 271{
0e1dfc66
AM
272 struct address_space *mapping = bdev->bd_inode->i_mapping;
273
274 if (mapping->nrpages == 0)
275 return;
276
1da177e4 277 invalidate_bh_lrus();
fa4b9074 278 lru_add_drain_all(); /* make sure all lru add caches are flushed */
fc0ecff6 279 invalidate_mapping_pages(mapping, 0, -1);
1da177e4 280}
1fe72eaa 281EXPORT_SYMBOL(invalidate_bdev);
1da177e4
LT
282
283/*
5b0830cb 284 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
1da177e4
LT
285 */
286static void free_more_memory(void)
287{
19770b32 288 struct zone *zone;
0e88460d 289 int nid;
1da177e4 290
03ba3782 291 wakeup_flusher_threads(1024);
1da177e4
LT
292 yield();
293
0e88460d 294 for_each_online_node(nid) {
19770b32
MG
295 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
296 gfp_zone(GFP_NOFS), NULL,
297 &zone);
298 if (zone)
54a6eb5c 299 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
327c0e96 300 GFP_NOFS, NULL);
1da177e4
LT
301 }
302}
303
304/*
305 * I/O completion handler for block_read_full_page() - pages
306 * which come unlocked at the end of I/O.
307 */
308static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
309{
1da177e4 310 unsigned long flags;
a3972203 311 struct buffer_head *first;
1da177e4
LT
312 struct buffer_head *tmp;
313 struct page *page;
314 int page_uptodate = 1;
315
316 BUG_ON(!buffer_async_read(bh));
317
318 page = bh->b_page;
319 if (uptodate) {
320 set_buffer_uptodate(bh);
321 } else {
322 clear_buffer_uptodate(bh);
08bafc03 323 if (!quiet_error(bh))
1da177e4
LT
324 buffer_io_error(bh);
325 SetPageError(page);
326 }
327
328 /*
329 * Be _very_ careful from here on. Bad things can happen if
330 * two buffer heads end IO at almost the same time and both
331 * decide that the page is now completely done.
332 */
a3972203
NP
333 first = page_buffers(page);
334 local_irq_save(flags);
335 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
1da177e4
LT
336 clear_buffer_async_read(bh);
337 unlock_buffer(bh);
338 tmp = bh;
339 do {
340 if (!buffer_uptodate(tmp))
341 page_uptodate = 0;
342 if (buffer_async_read(tmp)) {
343 BUG_ON(!buffer_locked(tmp));
344 goto still_busy;
345 }
346 tmp = tmp->b_this_page;
347 } while (tmp != bh);
a3972203
NP
348 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
349 local_irq_restore(flags);
1da177e4
LT
350
351 /*
352 * If none of the buffers had errors and they are all
353 * uptodate then we can set the page uptodate.
354 */
355 if (page_uptodate && !PageError(page))
356 SetPageUptodate(page);
357 unlock_page(page);
358 return;
359
360still_busy:
a3972203
NP
361 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
362 local_irq_restore(flags);
1da177e4
LT
363 return;
364}
365
366/*
367 * Completion handler for block_write_full_page() - pages which are unlocked
368 * during I/O, and which have PageWriteback cleared upon I/O completion.
369 */
35c80d5f 370void end_buffer_async_write(struct buffer_head *bh, int uptodate)
1da177e4
LT
371{
372 char b[BDEVNAME_SIZE];
1da177e4 373 unsigned long flags;
a3972203 374 struct buffer_head *first;
1da177e4
LT
375 struct buffer_head *tmp;
376 struct page *page;
377
378 BUG_ON(!buffer_async_write(bh));
379
380 page = bh->b_page;
381 if (uptodate) {
382 set_buffer_uptodate(bh);
383 } else {
08bafc03 384 if (!quiet_error(bh)) {
1da177e4
LT
385 buffer_io_error(bh);
386 printk(KERN_WARNING "lost page write due to "
387 "I/O error on %s\n",
388 bdevname(bh->b_bdev, b));
389 }
390 set_bit(AS_EIO, &page->mapping->flags);
58ff407b 391 set_buffer_write_io_error(bh);
1da177e4
LT
392 clear_buffer_uptodate(bh);
393 SetPageError(page);
394 }
395
a3972203
NP
396 first = page_buffers(page);
397 local_irq_save(flags);
398 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
399
1da177e4
LT
400 clear_buffer_async_write(bh);
401 unlock_buffer(bh);
402 tmp = bh->b_this_page;
403 while (tmp != bh) {
404 if (buffer_async_write(tmp)) {
405 BUG_ON(!buffer_locked(tmp));
406 goto still_busy;
407 }
408 tmp = tmp->b_this_page;
409 }
a3972203
NP
410 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
411 local_irq_restore(flags);
1da177e4
LT
412 end_page_writeback(page);
413 return;
414
415still_busy:
a3972203
NP
416 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
417 local_irq_restore(flags);
1da177e4
LT
418 return;
419}
1fe72eaa 420EXPORT_SYMBOL(end_buffer_async_write);
1da177e4
LT
421
422/*
423 * If a page's buffers are under async readin (end_buffer_async_read
424 * completion) then there is a possibility that another thread of
425 * control could lock one of the buffers after it has completed
426 * but while some of the other buffers have not completed. This
427 * locked buffer would confuse end_buffer_async_read() into not unlocking
428 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
429 * that this buffer is not under async I/O.
430 *
431 * The page comes unlocked when it has no locked buffer_async buffers
432 * left.
433 *
434 * PageLocked prevents anyone starting new async I/O reads any of
435 * the buffers.
436 *
437 * PageWriteback is used to prevent simultaneous writeout of the same
438 * page.
439 *
440 * PageLocked prevents anyone from starting writeback of a page which is
441 * under read I/O (PageWriteback is only ever set against a locked page).
442 */
443static void mark_buffer_async_read(struct buffer_head *bh)
444{
445 bh->b_end_io = end_buffer_async_read;
446 set_buffer_async_read(bh);
447}
448
1fe72eaa
HS
449static void mark_buffer_async_write_endio(struct buffer_head *bh,
450 bh_end_io_t *handler)
1da177e4 451{
35c80d5f 452 bh->b_end_io = handler;
1da177e4
LT
453 set_buffer_async_write(bh);
454}
35c80d5f
CM
455
456void mark_buffer_async_write(struct buffer_head *bh)
457{
458 mark_buffer_async_write_endio(bh, end_buffer_async_write);
459}
1da177e4
LT
460EXPORT_SYMBOL(mark_buffer_async_write);
461
462
463/*
464 * fs/buffer.c contains helper functions for buffer-backed address space's
465 * fsync functions. A common requirement for buffer-based filesystems is
466 * that certain data from the backing blockdev needs to be written out for
467 * a successful fsync(). For example, ext2 indirect blocks need to be
468 * written back and waited upon before fsync() returns.
469 *
470 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
471 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
472 * management of a list of dependent buffers at ->i_mapping->private_list.
473 *
474 * Locking is a little subtle: try_to_free_buffers() will remove buffers
475 * from their controlling inode's queue when they are being freed. But
476 * try_to_free_buffers() will be operating against the *blockdev* mapping
477 * at the time, not against the S_ISREG file which depends on those buffers.
478 * So the locking for private_list is via the private_lock in the address_space
479 * which backs the buffers. Which is different from the address_space
480 * against which the buffers are listed. So for a particular address_space,
481 * mapping->private_lock does *not* protect mapping->private_list! In fact,
482 * mapping->private_list will always be protected by the backing blockdev's
483 * ->private_lock.
484 *
485 * Which introduces a requirement: all buffers on an address_space's
486 * ->private_list must be from the same address_space: the blockdev's.
487 *
488 * address_spaces which do not place buffers at ->private_list via these
489 * utility functions are free to use private_lock and private_list for
490 * whatever they want. The only requirement is that list_empty(private_list)
491 * be true at clear_inode() time.
492 *
493 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
494 * filesystems should do that. invalidate_inode_buffers() should just go
495 * BUG_ON(!list_empty).
496 *
497 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
498 * take an address_space, not an inode. And it should be called
499 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
500 * queued up.
501 *
502 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
503 * list if it is already on a list. Because if the buffer is on a list,
504 * it *must* already be on the right one. If not, the filesystem is being
505 * silly. This will save a ton of locking. But first we have to ensure
506 * that buffers are taken *off* the old inode's list when they are freed
507 * (presumably in truncate). That requires careful auditing of all
508 * filesystems (do it inside bforget()). It could also be done by bringing
509 * b_inode back.
510 */
511
512/*
513 * The buffer's backing address_space's private_lock must be held
514 */
dbacefc9 515static void __remove_assoc_queue(struct buffer_head *bh)
1da177e4
LT
516{
517 list_del_init(&bh->b_assoc_buffers);
58ff407b
JK
518 WARN_ON(!bh->b_assoc_map);
519 if (buffer_write_io_error(bh))
520 set_bit(AS_EIO, &bh->b_assoc_map->flags);
521 bh->b_assoc_map = NULL;
1da177e4
LT
522}
523
524int inode_has_buffers(struct inode *inode)
525{
526 return !list_empty(&inode->i_data.private_list);
527}
528
529/*
530 * osync is designed to support O_SYNC io. It waits synchronously for
531 * all already-submitted IO to complete, but does not queue any new
532 * writes to the disk.
533 *
534 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
535 * you dirty the buffers, and then use osync_inode_buffers to wait for
536 * completion. Any other dirty buffers which are not yet queued for
537 * write will not be flushed to disk by the osync.
538 */
539static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
540{
541 struct buffer_head *bh;
542 struct list_head *p;
543 int err = 0;
544
545 spin_lock(lock);
546repeat:
547 list_for_each_prev(p, list) {
548 bh = BH_ENTRY(p);
549 if (buffer_locked(bh)) {
550 get_bh(bh);
551 spin_unlock(lock);
552 wait_on_buffer(bh);
553 if (!buffer_uptodate(bh))
554 err = -EIO;
555 brelse(bh);
556 spin_lock(lock);
557 goto repeat;
558 }
559 }
560 spin_unlock(lock);
561 return err;
562}
563
01a05b33 564static void do_thaw_one(struct super_block *sb, void *unused)
c2d75438 565{
c2d75438 566 char b[BDEVNAME_SIZE];
01a05b33
AV
567 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
568 printk(KERN_WARNING "Emergency Thaw on %s\n",
569 bdevname(sb->s_bdev, b));
570}
c2d75438 571
01a05b33
AV
572static void do_thaw_all(struct work_struct *work)
573{
574 iterate_supers(do_thaw_one, NULL);
053c525f 575 kfree(work);
c2d75438
ES
576 printk(KERN_WARNING "Emergency Thaw complete\n");
577}
578
579/**
580 * emergency_thaw_all -- forcibly thaw every frozen filesystem
581 *
582 * Used for emergency unfreeze of all filesystems via SysRq
583 */
584void emergency_thaw_all(void)
585{
053c525f
JA
586 struct work_struct *work;
587
588 work = kmalloc(sizeof(*work), GFP_ATOMIC);
589 if (work) {
590 INIT_WORK(work, do_thaw_all);
591 schedule_work(work);
592 }
c2d75438
ES
593}
594
1da177e4 595/**
78a4a50a 596 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
67be2dd1 597 * @mapping: the mapping which wants those buffers written
1da177e4
LT
598 *
599 * Starts I/O against the buffers at mapping->private_list, and waits upon
600 * that I/O.
601 *
67be2dd1
MW
602 * Basically, this is a convenience function for fsync().
603 * @mapping is a file or directory which needs those buffers to be written for
604 * a successful fsync().
1da177e4
LT
605 */
606int sync_mapping_buffers(struct address_space *mapping)
607{
608 struct address_space *buffer_mapping = mapping->assoc_mapping;
609
610 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
611 return 0;
612
613 return fsync_buffers_list(&buffer_mapping->private_lock,
614 &mapping->private_list);
615}
616EXPORT_SYMBOL(sync_mapping_buffers);
617
618/*
619 * Called when we've recently written block `bblock', and it is known that
620 * `bblock' was for a buffer_boundary() buffer. This means that the block at
621 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
622 * dirty, schedule it for IO. So that indirects merge nicely with their data.
623 */
624void write_boundary_block(struct block_device *bdev,
625 sector_t bblock, unsigned blocksize)
626{
627 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
628 if (bh) {
629 if (buffer_dirty(bh))
630 ll_rw_block(WRITE, 1, &bh);
631 put_bh(bh);
632 }
633}
634
635void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
636{
637 struct address_space *mapping = inode->i_mapping;
638 struct address_space *buffer_mapping = bh->b_page->mapping;
639
640 mark_buffer_dirty(bh);
641 if (!mapping->assoc_mapping) {
642 mapping->assoc_mapping = buffer_mapping;
643 } else {
e827f923 644 BUG_ON(mapping->assoc_mapping != buffer_mapping);
1da177e4 645 }
535ee2fb 646 if (!bh->b_assoc_map) {
1da177e4
LT
647 spin_lock(&buffer_mapping->private_lock);
648 list_move_tail(&bh->b_assoc_buffers,
649 &mapping->private_list);
58ff407b 650 bh->b_assoc_map = mapping;
1da177e4
LT
651 spin_unlock(&buffer_mapping->private_lock);
652 }
653}
654EXPORT_SYMBOL(mark_buffer_dirty_inode);
655
787d2214
NP
656/*
657 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
658 * dirty.
659 *
660 * If warn is true, then emit a warning if the page is not uptodate and has
661 * not been truncated.
662 */
a8e7d49a 663static void __set_page_dirty(struct page *page,
787d2214
NP
664 struct address_space *mapping, int warn)
665{
19fd6231 666 spin_lock_irq(&mapping->tree_lock);
787d2214
NP
667 if (page->mapping) { /* Race with truncate? */
668 WARN_ON_ONCE(warn && !PageUptodate(page));
e3a7cca1 669 account_page_dirtied(page, mapping);
787d2214
NP
670 radix_tree_tag_set(&mapping->page_tree,
671 page_index(page), PAGECACHE_TAG_DIRTY);
672 }
19fd6231 673 spin_unlock_irq(&mapping->tree_lock);
787d2214 674 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
787d2214
NP
675}
676
1da177e4
LT
677/*
678 * Add a page to the dirty page list.
679 *
680 * It is a sad fact of life that this function is called from several places
681 * deeply under spinlocking. It may not sleep.
682 *
683 * If the page has buffers, the uptodate buffers are set dirty, to preserve
684 * dirty-state coherency between the page and the buffers. It the page does
685 * not have buffers then when they are later attached they will all be set
686 * dirty.
687 *
688 * The buffers are dirtied before the page is dirtied. There's a small race
689 * window in which a writepage caller may see the page cleanness but not the
690 * buffer dirtiness. That's fine. If this code were to set the page dirty
691 * before the buffers, a concurrent writepage caller could clear the page dirty
692 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
693 * page on the dirty page list.
694 *
695 * We use private_lock to lock against try_to_free_buffers while using the
696 * page's buffer list. Also use this to protect against clean buffers being
697 * added to the page after it was set dirty.
698 *
699 * FIXME: may need to call ->reservepage here as well. That's rather up to the
700 * address_space though.
701 */
702int __set_page_dirty_buffers(struct page *page)
703{
a8e7d49a 704 int newly_dirty;
787d2214 705 struct address_space *mapping = page_mapping(page);
ebf7a227
NP
706
707 if (unlikely(!mapping))
708 return !TestSetPageDirty(page);
1da177e4
LT
709
710 spin_lock(&mapping->private_lock);
711 if (page_has_buffers(page)) {
712 struct buffer_head *head = page_buffers(page);
713 struct buffer_head *bh = head;
714
715 do {
716 set_buffer_dirty(bh);
717 bh = bh->b_this_page;
718 } while (bh != head);
719 }
a8e7d49a 720 newly_dirty = !TestSetPageDirty(page);
1da177e4
LT
721 spin_unlock(&mapping->private_lock);
722
a8e7d49a
LT
723 if (newly_dirty)
724 __set_page_dirty(page, mapping, 1);
725 return newly_dirty;
1da177e4
LT
726}
727EXPORT_SYMBOL(__set_page_dirty_buffers);
728
729/*
730 * Write out and wait upon a list of buffers.
731 *
732 * We have conflicting pressures: we want to make sure that all
733 * initially dirty buffers get waited on, but that any subsequently
734 * dirtied buffers don't. After all, we don't want fsync to last
735 * forever if somebody is actively writing to the file.
736 *
737 * Do this in two main stages: first we copy dirty buffers to a
738 * temporary inode list, queueing the writes as we go. Then we clean
739 * up, waiting for those writes to complete.
740 *
741 * During this second stage, any subsequent updates to the file may end
742 * up refiling the buffer on the original inode's dirty list again, so
743 * there is a chance we will end up with a buffer queued for write but
744 * not yet completed on that list. So, as a final cleanup we go through
745 * the osync code to catch these locked, dirty buffers without requeuing
746 * any newly dirty buffers for write.
747 */
748static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
749{
750 struct buffer_head *bh;
751 struct list_head tmp;
9cf6b720 752 struct address_space *mapping, *prev_mapping = NULL;
1da177e4
LT
753 int err = 0, err2;
754
755 INIT_LIST_HEAD(&tmp);
756
757 spin_lock(lock);
758 while (!list_empty(list)) {
759 bh = BH_ENTRY(list->next);
535ee2fb 760 mapping = bh->b_assoc_map;
58ff407b 761 __remove_assoc_queue(bh);
535ee2fb
JK
762 /* Avoid race with mark_buffer_dirty_inode() which does
763 * a lockless check and we rely on seeing the dirty bit */
764 smp_mb();
1da177e4
LT
765 if (buffer_dirty(bh) || buffer_locked(bh)) {
766 list_add(&bh->b_assoc_buffers, &tmp);
535ee2fb 767 bh->b_assoc_map = mapping;
1da177e4
LT
768 if (buffer_dirty(bh)) {
769 get_bh(bh);
770 spin_unlock(lock);
771 /*
772 * Ensure any pending I/O completes so that
773 * ll_rw_block() actually writes the current
774 * contents - it is a noop if I/O is still in
775 * flight on potentially older contents.
776 */
9cf6b720
JA
777 ll_rw_block(SWRITE_SYNC_PLUG, 1, &bh);
778
779 /*
780 * Kick off IO for the previous mapping. Note
781 * that we will not run the very last mapping,
782 * wait_on_buffer() will do that for us
783 * through sync_buffer().
784 */
785 if (prev_mapping && prev_mapping != mapping)
786 blk_run_address_space(prev_mapping);
787 prev_mapping = mapping;
788
1da177e4
LT
789 brelse(bh);
790 spin_lock(lock);
791 }
792 }
793 }
794
795 while (!list_empty(&tmp)) {
796 bh = BH_ENTRY(tmp.prev);
1da177e4 797 get_bh(bh);
535ee2fb
JK
798 mapping = bh->b_assoc_map;
799 __remove_assoc_queue(bh);
800 /* Avoid race with mark_buffer_dirty_inode() which does
801 * a lockless check and we rely on seeing the dirty bit */
802 smp_mb();
803 if (buffer_dirty(bh)) {
804 list_add(&bh->b_assoc_buffers,
e3892296 805 &mapping->private_list);
535ee2fb
JK
806 bh->b_assoc_map = mapping;
807 }
1da177e4
LT
808 spin_unlock(lock);
809 wait_on_buffer(bh);
810 if (!buffer_uptodate(bh))
811 err = -EIO;
812 brelse(bh);
813 spin_lock(lock);
814 }
815
816 spin_unlock(lock);
817 err2 = osync_buffers_list(lock, list);
818 if (err)
819 return err;
820 else
821 return err2;
822}
823
824/*
825 * Invalidate any and all dirty buffers on a given inode. We are
826 * probably unmounting the fs, but that doesn't mean we have already
827 * done a sync(). Just drop the buffers from the inode list.
828 *
829 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
830 * assumes that all the buffers are against the blockdev. Not true
831 * for reiserfs.
832 */
833void invalidate_inode_buffers(struct inode *inode)
834{
835 if (inode_has_buffers(inode)) {
836 struct address_space *mapping = &inode->i_data;
837 struct list_head *list = &mapping->private_list;
838 struct address_space *buffer_mapping = mapping->assoc_mapping;
839
840 spin_lock(&buffer_mapping->private_lock);
841 while (!list_empty(list))
842 __remove_assoc_queue(BH_ENTRY(list->next));
843 spin_unlock(&buffer_mapping->private_lock);
844 }
845}
52b19ac9 846EXPORT_SYMBOL(invalidate_inode_buffers);
1da177e4
LT
847
848/*
849 * Remove any clean buffers from the inode's buffer list. This is called
850 * when we're trying to free the inode itself. Those buffers can pin it.
851 *
852 * Returns true if all buffers were removed.
853 */
854int remove_inode_buffers(struct inode *inode)
855{
856 int ret = 1;
857
858 if (inode_has_buffers(inode)) {
859 struct address_space *mapping = &inode->i_data;
860 struct list_head *list = &mapping->private_list;
861 struct address_space *buffer_mapping = mapping->assoc_mapping;
862
863 spin_lock(&buffer_mapping->private_lock);
864 while (!list_empty(list)) {
865 struct buffer_head *bh = BH_ENTRY(list->next);
866 if (buffer_dirty(bh)) {
867 ret = 0;
868 break;
869 }
870 __remove_assoc_queue(bh);
871 }
872 spin_unlock(&buffer_mapping->private_lock);
873 }
874 return ret;
875}
876
877/*
878 * Create the appropriate buffers when given a page for data area and
879 * the size of each buffer.. Use the bh->b_this_page linked list to
880 * follow the buffers created. Return NULL if unable to create more
881 * buffers.
882 *
883 * The retry flag is used to differentiate async IO (paging, swapping)
884 * which may not fail from ordinary buffer allocations.
885 */
886struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
887 int retry)
888{
889 struct buffer_head *bh, *head;
890 long offset;
891
892try_again:
893 head = NULL;
894 offset = PAGE_SIZE;
895 while ((offset -= size) >= 0) {
896 bh = alloc_buffer_head(GFP_NOFS);
897 if (!bh)
898 goto no_grow;
899
900 bh->b_bdev = NULL;
901 bh->b_this_page = head;
902 bh->b_blocknr = -1;
903 head = bh;
904
905 bh->b_state = 0;
906 atomic_set(&bh->b_count, 0);
fc5cd582 907 bh->b_private = NULL;
1da177e4
LT
908 bh->b_size = size;
909
910 /* Link the buffer to its page */
911 set_bh_page(bh, page, offset);
912
01ffe339 913 init_buffer(bh, NULL, NULL);
1da177e4
LT
914 }
915 return head;
916/*
917 * In case anything failed, we just free everything we got.
918 */
919no_grow:
920 if (head) {
921 do {
922 bh = head;
923 head = head->b_this_page;
924 free_buffer_head(bh);
925 } while (head);
926 }
927
928 /*
929 * Return failure for non-async IO requests. Async IO requests
930 * are not allowed to fail, so we have to wait until buffer heads
931 * become available. But we don't want tasks sleeping with
932 * partially complete buffers, so all were released above.
933 */
934 if (!retry)
935 return NULL;
936
937 /* We're _really_ low on memory. Now we just
938 * wait for old buffer heads to become free due to
939 * finishing IO. Since this is an async request and
940 * the reserve list is empty, we're sure there are
941 * async buffer heads in use.
942 */
943 free_more_memory();
944 goto try_again;
945}
946EXPORT_SYMBOL_GPL(alloc_page_buffers);
947
948static inline void
949link_dev_buffers(struct page *page, struct buffer_head *head)
950{
951 struct buffer_head *bh, *tail;
952
953 bh = head;
954 do {
955 tail = bh;
956 bh = bh->b_this_page;
957 } while (bh);
958 tail->b_this_page = head;
959 attach_page_buffers(page, head);
960}
961
962/*
963 * Initialise the state of a blockdev page's buffers.
964 */
965static void
966init_page_buffers(struct page *page, struct block_device *bdev,
967 sector_t block, int size)
968{
969 struct buffer_head *head = page_buffers(page);
970 struct buffer_head *bh = head;
971 int uptodate = PageUptodate(page);
972
973 do {
974 if (!buffer_mapped(bh)) {
975 init_buffer(bh, NULL, NULL);
976 bh->b_bdev = bdev;
977 bh->b_blocknr = block;
978 if (uptodate)
979 set_buffer_uptodate(bh);
980 set_buffer_mapped(bh);
981 }
982 block++;
983 bh = bh->b_this_page;
984 } while (bh != head);
985}
986
987/*
988 * Create the page-cache page that contains the requested block.
989 *
990 * This is user purely for blockdev mappings.
991 */
992static struct page *
993grow_dev_page(struct block_device *bdev, sector_t block,
994 pgoff_t index, int size)
995{
996 struct inode *inode = bdev->bd_inode;
997 struct page *page;
998 struct buffer_head *bh;
999
ea125892 1000 page = find_or_create_page(inode->i_mapping, index,
769848c0 1001 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1da177e4
LT
1002 if (!page)
1003 return NULL;
1004
e827f923 1005 BUG_ON(!PageLocked(page));
1da177e4
LT
1006
1007 if (page_has_buffers(page)) {
1008 bh = page_buffers(page);
1009 if (bh->b_size == size) {
1010 init_page_buffers(page, bdev, block, size);
1011 return page;
1012 }
1013 if (!try_to_free_buffers(page))
1014 goto failed;
1015 }
1016
1017 /*
1018 * Allocate some buffers for this page
1019 */
1020 bh = alloc_page_buffers(page, size, 0);
1021 if (!bh)
1022 goto failed;
1023
1024 /*
1025 * Link the page to the buffers and initialise them. Take the
1026 * lock to be atomic wrt __find_get_block(), which does not
1027 * run under the page lock.
1028 */
1029 spin_lock(&inode->i_mapping->private_lock);
1030 link_dev_buffers(page, bh);
1031 init_page_buffers(page, bdev, block, size);
1032 spin_unlock(&inode->i_mapping->private_lock);
1033 return page;
1034
1035failed:
1036 BUG();
1037 unlock_page(page);
1038 page_cache_release(page);
1039 return NULL;
1040}
1041
1042/*
1043 * Create buffers for the specified block device block's page. If
1044 * that page was dirty, the buffers are set dirty also.
1da177e4 1045 */
858119e1 1046static int
1da177e4
LT
1047grow_buffers(struct block_device *bdev, sector_t block, int size)
1048{
1049 struct page *page;
1050 pgoff_t index;
1051 int sizebits;
1052
1053 sizebits = -1;
1054 do {
1055 sizebits++;
1056 } while ((size << sizebits) < PAGE_SIZE);
1057
1058 index = block >> sizebits;
1da177e4 1059
e5657933
AM
1060 /*
1061 * Check for a block which wants to lie outside our maximum possible
1062 * pagecache index. (this comparison is done using sector_t types).
1063 */
1064 if (unlikely(index != block >> sizebits)) {
1065 char b[BDEVNAME_SIZE];
1066
1067 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1068 "device %s\n",
8e24eea7 1069 __func__, (unsigned long long)block,
e5657933
AM
1070 bdevname(bdev, b));
1071 return -EIO;
1072 }
1073 block = index << sizebits;
1da177e4
LT
1074 /* Create a page with the proper size buffers.. */
1075 page = grow_dev_page(bdev, block, index, size);
1076 if (!page)
1077 return 0;
1078 unlock_page(page);
1079 page_cache_release(page);
1080 return 1;
1081}
1082
75c96f85 1083static struct buffer_head *
1da177e4
LT
1084__getblk_slow(struct block_device *bdev, sector_t block, int size)
1085{
1086 /* Size must be multiple of hard sectorsize */
e1defc4f 1087 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1da177e4
LT
1088 (size < 512 || size > PAGE_SIZE))) {
1089 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1090 size);
e1defc4f
MP
1091 printk(KERN_ERR "logical block size: %d\n",
1092 bdev_logical_block_size(bdev));
1da177e4
LT
1093
1094 dump_stack();
1095 return NULL;
1096 }
1097
1098 for (;;) {
1099 struct buffer_head * bh;
e5657933 1100 int ret;
1da177e4
LT
1101
1102 bh = __find_get_block(bdev, block, size);
1103 if (bh)
1104 return bh;
1105
e5657933
AM
1106 ret = grow_buffers(bdev, block, size);
1107 if (ret < 0)
1108 return NULL;
1109 if (ret == 0)
1da177e4
LT
1110 free_more_memory();
1111 }
1112}
1113
1114/*
1115 * The relationship between dirty buffers and dirty pages:
1116 *
1117 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1118 * the page is tagged dirty in its radix tree.
1119 *
1120 * At all times, the dirtiness of the buffers represents the dirtiness of
1121 * subsections of the page. If the page has buffers, the page dirty bit is
1122 * merely a hint about the true dirty state.
1123 *
1124 * When a page is set dirty in its entirety, all its buffers are marked dirty
1125 * (if the page has buffers).
1126 *
1127 * When a buffer is marked dirty, its page is dirtied, but the page's other
1128 * buffers are not.
1129 *
1130 * Also. When blockdev buffers are explicitly read with bread(), they
1131 * individually become uptodate. But their backing page remains not
1132 * uptodate - even if all of its buffers are uptodate. A subsequent
1133 * block_read_full_page() against that page will discover all the uptodate
1134 * buffers, will set the page uptodate and will perform no I/O.
1135 */
1136
1137/**
1138 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1139 * @bh: the buffer_head to mark dirty
1da177e4
LT
1140 *
1141 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1142 * backing page dirty, then tag the page as dirty in its address_space's radix
1143 * tree and then attach the address_space's inode to its superblock's dirty
1144 * inode list.
1145 *
1146 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1147 * mapping->tree_lock and the global inode_lock.
1148 */
fc9b52cd 1149void mark_buffer_dirty(struct buffer_head *bh)
1da177e4 1150{
787d2214 1151 WARN_ON_ONCE(!buffer_uptodate(bh));
1be62dc1
LT
1152
1153 /*
1154 * Very *carefully* optimize the it-is-already-dirty case.
1155 *
1156 * Don't let the final "is it dirty" escape to before we
1157 * perhaps modified the buffer.
1158 */
1159 if (buffer_dirty(bh)) {
1160 smp_mb();
1161 if (buffer_dirty(bh))
1162 return;
1163 }
1164
a8e7d49a
LT
1165 if (!test_set_buffer_dirty(bh)) {
1166 struct page *page = bh->b_page;
8e9d78ed
LT
1167 if (!TestSetPageDirty(page)) {
1168 struct address_space *mapping = page_mapping(page);
1169 if (mapping)
1170 __set_page_dirty(page, mapping, 0);
1171 }
a8e7d49a 1172 }
1da177e4 1173}
1fe72eaa 1174EXPORT_SYMBOL(mark_buffer_dirty);
1da177e4
LT
1175
1176/*
1177 * Decrement a buffer_head's reference count. If all buffers against a page
1178 * have zero reference count, are clean and unlocked, and if the page is clean
1179 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1180 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1181 * a page but it ends up not being freed, and buffers may later be reattached).
1182 */
1183void __brelse(struct buffer_head * buf)
1184{
1185 if (atomic_read(&buf->b_count)) {
1186 put_bh(buf);
1187 return;
1188 }
5c752ad9 1189 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1da177e4 1190}
1fe72eaa 1191EXPORT_SYMBOL(__brelse);
1da177e4
LT
1192
1193/*
1194 * bforget() is like brelse(), except it discards any
1195 * potentially dirty data.
1196 */
1197void __bforget(struct buffer_head *bh)
1198{
1199 clear_buffer_dirty(bh);
535ee2fb 1200 if (bh->b_assoc_map) {
1da177e4
LT
1201 struct address_space *buffer_mapping = bh->b_page->mapping;
1202
1203 spin_lock(&buffer_mapping->private_lock);
1204 list_del_init(&bh->b_assoc_buffers);
58ff407b 1205 bh->b_assoc_map = NULL;
1da177e4
LT
1206 spin_unlock(&buffer_mapping->private_lock);
1207 }
1208 __brelse(bh);
1209}
1fe72eaa 1210EXPORT_SYMBOL(__bforget);
1da177e4
LT
1211
1212static struct buffer_head *__bread_slow(struct buffer_head *bh)
1213{
1214 lock_buffer(bh);
1215 if (buffer_uptodate(bh)) {
1216 unlock_buffer(bh);
1217 return bh;
1218 } else {
1219 get_bh(bh);
1220 bh->b_end_io = end_buffer_read_sync;
1221 submit_bh(READ, bh);
1222 wait_on_buffer(bh);
1223 if (buffer_uptodate(bh))
1224 return bh;
1225 }
1226 brelse(bh);
1227 return NULL;
1228}
1229
1230/*
1231 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1232 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1233 * refcount elevated by one when they're in an LRU. A buffer can only appear
1234 * once in a particular CPU's LRU. A single buffer can be present in multiple
1235 * CPU's LRUs at the same time.
1236 *
1237 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1238 * sb_find_get_block().
1239 *
1240 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1241 * a local interrupt disable for that.
1242 */
1243
1244#define BH_LRU_SIZE 8
1245
1246struct bh_lru {
1247 struct buffer_head *bhs[BH_LRU_SIZE];
1248};
1249
1250static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1251
1252#ifdef CONFIG_SMP
1253#define bh_lru_lock() local_irq_disable()
1254#define bh_lru_unlock() local_irq_enable()
1255#else
1256#define bh_lru_lock() preempt_disable()
1257#define bh_lru_unlock() preempt_enable()
1258#endif
1259
1260static inline void check_irqs_on(void)
1261{
1262#ifdef irqs_disabled
1263 BUG_ON(irqs_disabled());
1264#endif
1265}
1266
1267/*
1268 * The LRU management algorithm is dopey-but-simple. Sorry.
1269 */
1270static void bh_lru_install(struct buffer_head *bh)
1271{
1272 struct buffer_head *evictee = NULL;
1273 struct bh_lru *lru;
1274
1275 check_irqs_on();
1276 bh_lru_lock();
1277 lru = &__get_cpu_var(bh_lrus);
1278 if (lru->bhs[0] != bh) {
1279 struct buffer_head *bhs[BH_LRU_SIZE];
1280 int in;
1281 int out = 0;
1282
1283 get_bh(bh);
1284 bhs[out++] = bh;
1285 for (in = 0; in < BH_LRU_SIZE; in++) {
1286 struct buffer_head *bh2 = lru->bhs[in];
1287
1288 if (bh2 == bh) {
1289 __brelse(bh2);
1290 } else {
1291 if (out >= BH_LRU_SIZE) {
1292 BUG_ON(evictee != NULL);
1293 evictee = bh2;
1294 } else {
1295 bhs[out++] = bh2;
1296 }
1297 }
1298 }
1299 while (out < BH_LRU_SIZE)
1300 bhs[out++] = NULL;
1301 memcpy(lru->bhs, bhs, sizeof(bhs));
1302 }
1303 bh_lru_unlock();
1304
1305 if (evictee)
1306 __brelse(evictee);
1307}
1308
1309/*
1310 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1311 */
858119e1 1312static struct buffer_head *
3991d3bd 1313lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1314{
1315 struct buffer_head *ret = NULL;
1316 struct bh_lru *lru;
3991d3bd 1317 unsigned int i;
1da177e4
LT
1318
1319 check_irqs_on();
1320 bh_lru_lock();
1321 lru = &__get_cpu_var(bh_lrus);
1322 for (i = 0; i < BH_LRU_SIZE; i++) {
1323 struct buffer_head *bh = lru->bhs[i];
1324
1325 if (bh && bh->b_bdev == bdev &&
1326 bh->b_blocknr == block && bh->b_size == size) {
1327 if (i) {
1328 while (i) {
1329 lru->bhs[i] = lru->bhs[i - 1];
1330 i--;
1331 }
1332 lru->bhs[0] = bh;
1333 }
1334 get_bh(bh);
1335 ret = bh;
1336 break;
1337 }
1338 }
1339 bh_lru_unlock();
1340 return ret;
1341}
1342
1343/*
1344 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1345 * it in the LRU and mark it as accessed. If it is not present then return
1346 * NULL
1347 */
1348struct buffer_head *
3991d3bd 1349__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1350{
1351 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1352
1353 if (bh == NULL) {
385fd4c5 1354 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1355 if (bh)
1356 bh_lru_install(bh);
1357 }
1358 if (bh)
1359 touch_buffer(bh);
1360 return bh;
1361}
1362EXPORT_SYMBOL(__find_get_block);
1363
1364/*
1365 * __getblk will locate (and, if necessary, create) the buffer_head
1366 * which corresponds to the passed block_device, block and size. The
1367 * returned buffer has its reference count incremented.
1368 *
1369 * __getblk() cannot fail - it just keeps trying. If you pass it an
1370 * illegal block number, __getblk() will happily return a buffer_head
1371 * which represents the non-existent block. Very weird.
1372 *
1373 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1374 * attempt is failing. FIXME, perhaps?
1375 */
1376struct buffer_head *
3991d3bd 1377__getblk(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1378{
1379 struct buffer_head *bh = __find_get_block(bdev, block, size);
1380
1381 might_sleep();
1382 if (bh == NULL)
1383 bh = __getblk_slow(bdev, block, size);
1384 return bh;
1385}
1386EXPORT_SYMBOL(__getblk);
1387
1388/*
1389 * Do async read-ahead on a buffer..
1390 */
3991d3bd 1391void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1392{
1393 struct buffer_head *bh = __getblk(bdev, block, size);
a3e713b5
AM
1394 if (likely(bh)) {
1395 ll_rw_block(READA, 1, &bh);
1396 brelse(bh);
1397 }
1da177e4
LT
1398}
1399EXPORT_SYMBOL(__breadahead);
1400
1401/**
1402 * __bread() - reads a specified block and returns the bh
67be2dd1 1403 * @bdev: the block_device to read from
1da177e4
LT
1404 * @block: number of block
1405 * @size: size (in bytes) to read
1406 *
1407 * Reads a specified block, and returns buffer head that contains it.
1408 * It returns NULL if the block was unreadable.
1409 */
1410struct buffer_head *
3991d3bd 1411__bread(struct block_device *bdev, sector_t block, unsigned size)
1da177e4
LT
1412{
1413 struct buffer_head *bh = __getblk(bdev, block, size);
1414
a3e713b5 1415 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1416 bh = __bread_slow(bh);
1417 return bh;
1418}
1419EXPORT_SYMBOL(__bread);
1420
1421/*
1422 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1423 * This doesn't race because it runs in each cpu either in irq
1424 * or with preempt disabled.
1425 */
1426static void invalidate_bh_lru(void *arg)
1427{
1428 struct bh_lru *b = &get_cpu_var(bh_lrus);
1429 int i;
1430
1431 for (i = 0; i < BH_LRU_SIZE; i++) {
1432 brelse(b->bhs[i]);
1433 b->bhs[i] = NULL;
1434 }
1435 put_cpu_var(bh_lrus);
1436}
1437
f9a14399 1438void invalidate_bh_lrus(void)
1da177e4 1439{
15c8b6c1 1440 on_each_cpu(invalidate_bh_lru, NULL, 1);
1da177e4 1441}
9db5579b 1442EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1da177e4
LT
1443
1444void set_bh_page(struct buffer_head *bh,
1445 struct page *page, unsigned long offset)
1446{
1447 bh->b_page = page;
e827f923 1448 BUG_ON(offset >= PAGE_SIZE);
1da177e4
LT
1449 if (PageHighMem(page))
1450 /*
1451 * This catches illegal uses and preserves the offset:
1452 */
1453 bh->b_data = (char *)(0 + offset);
1454 else
1455 bh->b_data = page_address(page) + offset;
1456}
1457EXPORT_SYMBOL(set_bh_page);
1458
1459/*
1460 * Called when truncating a buffer on a page completely.
1461 */
858119e1 1462static void discard_buffer(struct buffer_head * bh)
1da177e4
LT
1463{
1464 lock_buffer(bh);
1465 clear_buffer_dirty(bh);
1466 bh->b_bdev = NULL;
1467 clear_buffer_mapped(bh);
1468 clear_buffer_req(bh);
1469 clear_buffer_new(bh);
1470 clear_buffer_delay(bh);
33a266dd 1471 clear_buffer_unwritten(bh);
1da177e4
LT
1472 unlock_buffer(bh);
1473}
1474
1da177e4
LT
1475/**
1476 * block_invalidatepage - invalidate part of all of a buffer-backed page
1477 *
1478 * @page: the page which is affected
1479 * @offset: the index of the truncation point
1480 *
1481 * block_invalidatepage() is called when all or part of the page has become
1482 * invalidatedby a truncate operation.
1483 *
1484 * block_invalidatepage() does not have to release all buffers, but it must
1485 * ensure that no dirty buffer is left outside @offset and that no I/O
1486 * is underway against any of the blocks which are outside the truncation
1487 * point. Because the caller is about to free (and possibly reuse) those
1488 * blocks on-disk.
1489 */
2ff28e22 1490void block_invalidatepage(struct page *page, unsigned long offset)
1da177e4
LT
1491{
1492 struct buffer_head *head, *bh, *next;
1493 unsigned int curr_off = 0;
1da177e4
LT
1494
1495 BUG_ON(!PageLocked(page));
1496 if (!page_has_buffers(page))
1497 goto out;
1498
1499 head = page_buffers(page);
1500 bh = head;
1501 do {
1502 unsigned int next_off = curr_off + bh->b_size;
1503 next = bh->b_this_page;
1504
1505 /*
1506 * is this block fully invalidated?
1507 */
1508 if (offset <= curr_off)
1509 discard_buffer(bh);
1510 curr_off = next_off;
1511 bh = next;
1512 } while (bh != head);
1513
1514 /*
1515 * We release buffers only if the entire page is being invalidated.
1516 * The get_block cached value has been unconditionally invalidated,
1517 * so real IO is not possible anymore.
1518 */
1519 if (offset == 0)
2ff28e22 1520 try_to_release_page(page, 0);
1da177e4 1521out:
2ff28e22 1522 return;
1da177e4
LT
1523}
1524EXPORT_SYMBOL(block_invalidatepage);
1525
1526/*
1527 * We attach and possibly dirty the buffers atomically wrt
1528 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1529 * is already excluded via the page lock.
1530 */
1531void create_empty_buffers(struct page *page,
1532 unsigned long blocksize, unsigned long b_state)
1533{
1534 struct buffer_head *bh, *head, *tail;
1535
1536 head = alloc_page_buffers(page, blocksize, 1);
1537 bh = head;
1538 do {
1539 bh->b_state |= b_state;
1540 tail = bh;
1541 bh = bh->b_this_page;
1542 } while (bh);
1543 tail->b_this_page = head;
1544
1545 spin_lock(&page->mapping->private_lock);
1546 if (PageUptodate(page) || PageDirty(page)) {
1547 bh = head;
1548 do {
1549 if (PageDirty(page))
1550 set_buffer_dirty(bh);
1551 if (PageUptodate(page))
1552 set_buffer_uptodate(bh);
1553 bh = bh->b_this_page;
1554 } while (bh != head);
1555 }
1556 attach_page_buffers(page, head);
1557 spin_unlock(&page->mapping->private_lock);
1558}
1559EXPORT_SYMBOL(create_empty_buffers);
1560
1561/*
1562 * We are taking a block for data and we don't want any output from any
1563 * buffer-cache aliases starting from return from that function and
1564 * until the moment when something will explicitly mark the buffer
1565 * dirty (hopefully that will not happen until we will free that block ;-)
1566 * We don't even need to mark it not-uptodate - nobody can expect
1567 * anything from a newly allocated buffer anyway. We used to used
1568 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1569 * don't want to mark the alias unmapped, for example - it would confuse
1570 * anyone who might pick it with bread() afterwards...
1571 *
1572 * Also.. Note that bforget() doesn't lock the buffer. So there can
1573 * be writeout I/O going on against recently-freed buffers. We don't
1574 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1575 * only if we really need to. That happens here.
1576 */
1577void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1578{
1579 struct buffer_head *old_bh;
1580
1581 might_sleep();
1582
385fd4c5 1583 old_bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1584 if (old_bh) {
1585 clear_buffer_dirty(old_bh);
1586 wait_on_buffer(old_bh);
1587 clear_buffer_req(old_bh);
1588 __brelse(old_bh);
1589 }
1590}
1591EXPORT_SYMBOL(unmap_underlying_metadata);
1592
1593/*
1594 * NOTE! All mapped/uptodate combinations are valid:
1595 *
1596 * Mapped Uptodate Meaning
1597 *
1598 * No No "unknown" - must do get_block()
1599 * No Yes "hole" - zero-filled
1600 * Yes No "allocated" - allocated on disk, not read in
1601 * Yes Yes "valid" - allocated and up-to-date in memory.
1602 *
1603 * "Dirty" is valid only with the last case (mapped+uptodate).
1604 */
1605
1606/*
1607 * While block_write_full_page is writing back the dirty buffers under
1608 * the page lock, whoever dirtied the buffers may decide to clean them
1609 * again at any time. We handle that by only looking at the buffer
1610 * state inside lock_buffer().
1611 *
1612 * If block_write_full_page() is called for regular writeback
1613 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1614 * locked buffer. This only can happen if someone has written the buffer
1615 * directly, with submit_bh(). At the address_space level PageWriteback
1616 * prevents this contention from occurring.
6e34eedd
TT
1617 *
1618 * If block_write_full_page() is called with wbc->sync_mode ==
1619 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC_PLUG; this
1620 * causes the writes to be flagged as synchronous writes, but the
1621 * block device queue will NOT be unplugged, since usually many pages
1622 * will be pushed to the out before the higher-level caller actually
1623 * waits for the writes to be completed. The various wait functions,
1624 * such as wait_on_writeback_range() will ultimately call sync_page()
1625 * which will ultimately call blk_run_backing_dev(), which will end up
1626 * unplugging the device queue.
1da177e4
LT
1627 */
1628static int __block_write_full_page(struct inode *inode, struct page *page,
35c80d5f
CM
1629 get_block_t *get_block, struct writeback_control *wbc,
1630 bh_end_io_t *handler)
1da177e4
LT
1631{
1632 int err;
1633 sector_t block;
1634 sector_t last_block;
f0fbd5fc 1635 struct buffer_head *bh, *head;
b0cf2321 1636 const unsigned blocksize = 1 << inode->i_blkbits;
1da177e4 1637 int nr_underway = 0;
6e34eedd
TT
1638 int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1639 WRITE_SYNC_PLUG : WRITE);
1da177e4
LT
1640
1641 BUG_ON(!PageLocked(page));
1642
1643 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1644
1645 if (!page_has_buffers(page)) {
b0cf2321 1646 create_empty_buffers(page, blocksize,
1da177e4
LT
1647 (1 << BH_Dirty)|(1 << BH_Uptodate));
1648 }
1649
1650 /*
1651 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1652 * here, and the (potentially unmapped) buffers may become dirty at
1653 * any time. If a buffer becomes dirty here after we've inspected it
1654 * then we just miss that fact, and the page stays dirty.
1655 *
1656 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1657 * handle that here by just cleaning them.
1658 */
1659
54b21a79 1660 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4
LT
1661 head = page_buffers(page);
1662 bh = head;
1663
1664 /*
1665 * Get all the dirty buffers mapped to disk addresses and
1666 * handle any aliases from the underlying blockdev's mapping.
1667 */
1668 do {
1669 if (block > last_block) {
1670 /*
1671 * mapped buffers outside i_size will occur, because
1672 * this page can be outside i_size when there is a
1673 * truncate in progress.
1674 */
1675 /*
1676 * The buffer was zeroed by block_write_full_page()
1677 */
1678 clear_buffer_dirty(bh);
1679 set_buffer_uptodate(bh);
29a814d2
AT
1680 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1681 buffer_dirty(bh)) {
b0cf2321 1682 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1683 err = get_block(inode, block, bh, 1);
1684 if (err)
1685 goto recover;
29a814d2 1686 clear_buffer_delay(bh);
1da177e4
LT
1687 if (buffer_new(bh)) {
1688 /* blockdev mappings never come here */
1689 clear_buffer_new(bh);
1690 unmap_underlying_metadata(bh->b_bdev,
1691 bh->b_blocknr);
1692 }
1693 }
1694 bh = bh->b_this_page;
1695 block++;
1696 } while (bh != head);
1697
1698 do {
1da177e4
LT
1699 if (!buffer_mapped(bh))
1700 continue;
1701 /*
1702 * If it's a fully non-blocking write attempt and we cannot
1703 * lock the buffer then redirty the page. Note that this can
5b0830cb
JA
1704 * potentially cause a busy-wait loop from writeback threads
1705 * and kswapd activity, but those code paths have their own
1706 * higher-level throttling.
1da177e4
LT
1707 */
1708 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1709 lock_buffer(bh);
ca5de404 1710 } else if (!trylock_buffer(bh)) {
1da177e4
LT
1711 redirty_page_for_writepage(wbc, page);
1712 continue;
1713 }
1714 if (test_clear_buffer_dirty(bh)) {
35c80d5f 1715 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1716 } else {
1717 unlock_buffer(bh);
1718 }
1719 } while ((bh = bh->b_this_page) != head);
1720
1721 /*
1722 * The page and its buffers are protected by PageWriteback(), so we can
1723 * drop the bh refcounts early.
1724 */
1725 BUG_ON(PageWriteback(page));
1726 set_page_writeback(page);
1da177e4
LT
1727
1728 do {
1729 struct buffer_head *next = bh->b_this_page;
1730 if (buffer_async_write(bh)) {
a64c8610 1731 submit_bh(write_op, bh);
1da177e4
LT
1732 nr_underway++;
1733 }
1da177e4
LT
1734 bh = next;
1735 } while (bh != head);
05937baa 1736 unlock_page(page);
1da177e4
LT
1737
1738 err = 0;
1739done:
1740 if (nr_underway == 0) {
1741 /*
1742 * The page was marked dirty, but the buffers were
1743 * clean. Someone wrote them back by hand with
1744 * ll_rw_block/submit_bh. A rare case.
1745 */
1da177e4 1746 end_page_writeback(page);
3d67f2d7 1747
1da177e4
LT
1748 /*
1749 * The page and buffer_heads can be released at any time from
1750 * here on.
1751 */
1da177e4
LT
1752 }
1753 return err;
1754
1755recover:
1756 /*
1757 * ENOSPC, or some other error. We may already have added some
1758 * blocks to the file, so we need to write these out to avoid
1759 * exposing stale data.
1760 * The page is currently locked and not marked for writeback
1761 */
1762 bh = head;
1763 /* Recovery: lock and submit the mapped buffers */
1764 do {
29a814d2
AT
1765 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1766 !buffer_delay(bh)) {
1da177e4 1767 lock_buffer(bh);
35c80d5f 1768 mark_buffer_async_write_endio(bh, handler);
1da177e4
LT
1769 } else {
1770 /*
1771 * The buffer may have been set dirty during
1772 * attachment to a dirty page.
1773 */
1774 clear_buffer_dirty(bh);
1775 }
1776 } while ((bh = bh->b_this_page) != head);
1777 SetPageError(page);
1778 BUG_ON(PageWriteback(page));
7e4c3690 1779 mapping_set_error(page->mapping, err);
1da177e4 1780 set_page_writeback(page);
1da177e4
LT
1781 do {
1782 struct buffer_head *next = bh->b_this_page;
1783 if (buffer_async_write(bh)) {
1784 clear_buffer_dirty(bh);
a64c8610 1785 submit_bh(write_op, bh);
1da177e4
LT
1786 nr_underway++;
1787 }
1da177e4
LT
1788 bh = next;
1789 } while (bh != head);
ffda9d30 1790 unlock_page(page);
1da177e4
LT
1791 goto done;
1792}
1793
afddba49
NP
1794/*
1795 * If a page has any new buffers, zero them out here, and mark them uptodate
1796 * and dirty so they'll be written out (in order to prevent uninitialised
1797 * block data from leaking). And clear the new bit.
1798 */
1799void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1800{
1801 unsigned int block_start, block_end;
1802 struct buffer_head *head, *bh;
1803
1804 BUG_ON(!PageLocked(page));
1805 if (!page_has_buffers(page))
1806 return;
1807
1808 bh = head = page_buffers(page);
1809 block_start = 0;
1810 do {
1811 block_end = block_start + bh->b_size;
1812
1813 if (buffer_new(bh)) {
1814 if (block_end > from && block_start < to) {
1815 if (!PageUptodate(page)) {
1816 unsigned start, size;
1817
1818 start = max(from, block_start);
1819 size = min(to, block_end) - start;
1820
eebd2aa3 1821 zero_user(page, start, size);
afddba49
NP
1822 set_buffer_uptodate(bh);
1823 }
1824
1825 clear_buffer_new(bh);
1826 mark_buffer_dirty(bh);
1827 }
1828 }
1829
1830 block_start = block_end;
1831 bh = bh->b_this_page;
1832 } while (bh != head);
1833}
1834EXPORT_SYMBOL(page_zero_new_buffers);
1835
6e1db88d
CH
1836int block_prepare_write(struct page *page, unsigned from, unsigned to,
1837 get_block_t *get_block)
1da177e4 1838{
6e1db88d 1839 struct inode *inode = page->mapping->host;
1da177e4
LT
1840 unsigned block_start, block_end;
1841 sector_t block;
1842 int err = 0;
1843 unsigned blocksize, bbits;
1844 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1845
1846 BUG_ON(!PageLocked(page));
1847 BUG_ON(from > PAGE_CACHE_SIZE);
1848 BUG_ON(to > PAGE_CACHE_SIZE);
1849 BUG_ON(from > to);
1850
1851 blocksize = 1 << inode->i_blkbits;
1852 if (!page_has_buffers(page))
1853 create_empty_buffers(page, blocksize, 0);
1854 head = page_buffers(page);
1855
1856 bbits = inode->i_blkbits;
1857 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1858
1859 for(bh = head, block_start = 0; bh != head || !block_start;
1860 block++, block_start=block_end, bh = bh->b_this_page) {
1861 block_end = block_start + blocksize;
1862 if (block_end <= from || block_start >= to) {
1863 if (PageUptodate(page)) {
1864 if (!buffer_uptodate(bh))
1865 set_buffer_uptodate(bh);
1866 }
1867 continue;
1868 }
1869 if (buffer_new(bh))
1870 clear_buffer_new(bh);
1871 if (!buffer_mapped(bh)) {
b0cf2321 1872 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
1873 err = get_block(inode, block, bh, 1);
1874 if (err)
f3ddbdc6 1875 break;
1da177e4 1876 if (buffer_new(bh)) {
1da177e4
LT
1877 unmap_underlying_metadata(bh->b_bdev,
1878 bh->b_blocknr);
1879 if (PageUptodate(page)) {
637aff46 1880 clear_buffer_new(bh);
1da177e4 1881 set_buffer_uptodate(bh);
637aff46 1882 mark_buffer_dirty(bh);
1da177e4
LT
1883 continue;
1884 }
eebd2aa3
CL
1885 if (block_end > to || block_start < from)
1886 zero_user_segments(page,
1887 to, block_end,
1888 block_start, from);
1da177e4
LT
1889 continue;
1890 }
1891 }
1892 if (PageUptodate(page)) {
1893 if (!buffer_uptodate(bh))
1894 set_buffer_uptodate(bh);
1895 continue;
1896 }
1897 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
33a266dd 1898 !buffer_unwritten(bh) &&
1da177e4
LT
1899 (block_start < from || block_end > to)) {
1900 ll_rw_block(READ, 1, &bh);
1901 *wait_bh++=bh;
1902 }
1903 }
1904 /*
1905 * If we issued read requests - let them complete.
1906 */
1907 while(wait_bh > wait) {
1908 wait_on_buffer(*--wait_bh);
1909 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 1910 err = -EIO;
1da177e4 1911 }
6e1db88d 1912 if (unlikely(err)) {
afddba49 1913 page_zero_new_buffers(page, from, to);
6e1db88d
CH
1914 ClearPageUptodate(page);
1915 }
1da177e4
LT
1916 return err;
1917}
6e1db88d 1918EXPORT_SYMBOL(block_prepare_write);
1da177e4
LT
1919
1920static int __block_commit_write(struct inode *inode, struct page *page,
1921 unsigned from, unsigned to)
1922{
1923 unsigned block_start, block_end;
1924 int partial = 0;
1925 unsigned blocksize;
1926 struct buffer_head *bh, *head;
1927
1928 blocksize = 1 << inode->i_blkbits;
1929
1930 for(bh = head = page_buffers(page), block_start = 0;
1931 bh != head || !block_start;
1932 block_start=block_end, bh = bh->b_this_page) {
1933 block_end = block_start + blocksize;
1934 if (block_end <= from || block_start >= to) {
1935 if (!buffer_uptodate(bh))
1936 partial = 1;
1937 } else {
1938 set_buffer_uptodate(bh);
1939 mark_buffer_dirty(bh);
1940 }
afddba49 1941 clear_buffer_new(bh);
1da177e4
LT
1942 }
1943
1944 /*
1945 * If this is a partial write which happened to make all buffers
1946 * uptodate then we can optimize away a bogus readpage() for
1947 * the next read(). Here we 'discover' whether the page went
1948 * uptodate as a result of this (potentially partial) write.
1949 */
1950 if (!partial)
1951 SetPageUptodate(page);
1952 return 0;
1953}
1954
6e1db88d
CH
1955int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1956 get_block_t *get_block)
1957{
1958 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1959
1960 return block_prepare_write(page, start, start + len, get_block);
1961}
1962EXPORT_SYMBOL(__block_write_begin);
1963
afddba49 1964/*
155130a4
CH
1965 * block_write_begin takes care of the basic task of block allocation and
1966 * bringing partial write blocks uptodate first.
1967 *
7bb46a67 1968 * The filesystem needs to handle block truncation upon failure.
afddba49 1969 */
155130a4
CH
1970int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1971 unsigned flags, struct page **pagep, get_block_t *get_block)
afddba49 1972{
6e1db88d 1973 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
afddba49 1974 struct page *page;
6e1db88d 1975 int status;
afddba49 1976
6e1db88d
CH
1977 page = grab_cache_page_write_begin(mapping, index, flags);
1978 if (!page)
1979 return -ENOMEM;
afddba49 1980
6e1db88d 1981 status = __block_write_begin(page, pos, len, get_block);
afddba49 1982 if (unlikely(status)) {
6e1db88d
CH
1983 unlock_page(page);
1984 page_cache_release(page);
1985 page = NULL;
afddba49
NP
1986 }
1987
6e1db88d 1988 *pagep = page;
afddba49
NP
1989 return status;
1990}
1991EXPORT_SYMBOL(block_write_begin);
1992
1993int block_write_end(struct file *file, struct address_space *mapping,
1994 loff_t pos, unsigned len, unsigned copied,
1995 struct page *page, void *fsdata)
1996{
1997 struct inode *inode = mapping->host;
1998 unsigned start;
1999
2000 start = pos & (PAGE_CACHE_SIZE - 1);
2001
2002 if (unlikely(copied < len)) {
2003 /*
2004 * The buffers that were written will now be uptodate, so we
2005 * don't have to worry about a readpage reading them and
2006 * overwriting a partial write. However if we have encountered
2007 * a short write and only partially written into a buffer, it
2008 * will not be marked uptodate, so a readpage might come in and
2009 * destroy our partial write.
2010 *
2011 * Do the simplest thing, and just treat any short write to a
2012 * non uptodate page as a zero-length write, and force the
2013 * caller to redo the whole thing.
2014 */
2015 if (!PageUptodate(page))
2016 copied = 0;
2017
2018 page_zero_new_buffers(page, start+copied, start+len);
2019 }
2020 flush_dcache_page(page);
2021
2022 /* This could be a short (even 0-length) commit */
2023 __block_commit_write(inode, page, start, start+copied);
2024
2025 return copied;
2026}
2027EXPORT_SYMBOL(block_write_end);
2028
2029int generic_write_end(struct file *file, struct address_space *mapping,
2030 loff_t pos, unsigned len, unsigned copied,
2031 struct page *page, void *fsdata)
2032{
2033 struct inode *inode = mapping->host;
c7d206b3 2034 int i_size_changed = 0;
afddba49
NP
2035
2036 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2037
2038 /*
2039 * No need to use i_size_read() here, the i_size
2040 * cannot change under us because we hold i_mutex.
2041 *
2042 * But it's important to update i_size while still holding page lock:
2043 * page writeout could otherwise come in and zero beyond i_size.
2044 */
2045 if (pos+copied > inode->i_size) {
2046 i_size_write(inode, pos+copied);
c7d206b3 2047 i_size_changed = 1;
afddba49
NP
2048 }
2049
2050 unlock_page(page);
2051 page_cache_release(page);
2052
c7d206b3
JK
2053 /*
2054 * Don't mark the inode dirty under page lock. First, it unnecessarily
2055 * makes the holding time of page lock longer. Second, it forces lock
2056 * ordering of page lock and transaction start for journaling
2057 * filesystems.
2058 */
2059 if (i_size_changed)
2060 mark_inode_dirty(inode);
2061
afddba49
NP
2062 return copied;
2063}
2064EXPORT_SYMBOL(generic_write_end);
2065
8ab22b9a
HH
2066/*
2067 * block_is_partially_uptodate checks whether buffers within a page are
2068 * uptodate or not.
2069 *
2070 * Returns true if all buffers which correspond to a file portion
2071 * we want to read are uptodate.
2072 */
2073int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2074 unsigned long from)
2075{
2076 struct inode *inode = page->mapping->host;
2077 unsigned block_start, block_end, blocksize;
2078 unsigned to;
2079 struct buffer_head *bh, *head;
2080 int ret = 1;
2081
2082 if (!page_has_buffers(page))
2083 return 0;
2084
2085 blocksize = 1 << inode->i_blkbits;
2086 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2087 to = from + to;
2088 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2089 return 0;
2090
2091 head = page_buffers(page);
2092 bh = head;
2093 block_start = 0;
2094 do {
2095 block_end = block_start + blocksize;
2096 if (block_end > from && block_start < to) {
2097 if (!buffer_uptodate(bh)) {
2098 ret = 0;
2099 break;
2100 }
2101 if (block_end >= to)
2102 break;
2103 }
2104 block_start = block_end;
2105 bh = bh->b_this_page;
2106 } while (bh != head);
2107
2108 return ret;
2109}
2110EXPORT_SYMBOL(block_is_partially_uptodate);
2111
1da177e4
LT
2112/*
2113 * Generic "read page" function for block devices that have the normal
2114 * get_block functionality. This is most of the block device filesystems.
2115 * Reads the page asynchronously --- the unlock_buffer() and
2116 * set/clear_buffer_uptodate() functions propagate buffer state into the
2117 * page struct once IO has completed.
2118 */
2119int block_read_full_page(struct page *page, get_block_t *get_block)
2120{
2121 struct inode *inode = page->mapping->host;
2122 sector_t iblock, lblock;
2123 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2124 unsigned int blocksize;
2125 int nr, i;
2126 int fully_mapped = 1;
2127
cd7619d6 2128 BUG_ON(!PageLocked(page));
1da177e4
LT
2129 blocksize = 1 << inode->i_blkbits;
2130 if (!page_has_buffers(page))
2131 create_empty_buffers(page, blocksize, 0);
2132 head = page_buffers(page);
2133
2134 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2135 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2136 bh = head;
2137 nr = 0;
2138 i = 0;
2139
2140 do {
2141 if (buffer_uptodate(bh))
2142 continue;
2143
2144 if (!buffer_mapped(bh)) {
c64610ba
AM
2145 int err = 0;
2146
1da177e4
LT
2147 fully_mapped = 0;
2148 if (iblock < lblock) {
b0cf2321 2149 WARN_ON(bh->b_size != blocksize);
c64610ba
AM
2150 err = get_block(inode, iblock, bh, 0);
2151 if (err)
1da177e4
LT
2152 SetPageError(page);
2153 }
2154 if (!buffer_mapped(bh)) {
eebd2aa3 2155 zero_user(page, i * blocksize, blocksize);
c64610ba
AM
2156 if (!err)
2157 set_buffer_uptodate(bh);
1da177e4
LT
2158 continue;
2159 }
2160 /*
2161 * get_block() might have updated the buffer
2162 * synchronously
2163 */
2164 if (buffer_uptodate(bh))
2165 continue;
2166 }
2167 arr[nr++] = bh;
2168 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2169
2170 if (fully_mapped)
2171 SetPageMappedToDisk(page);
2172
2173 if (!nr) {
2174 /*
2175 * All buffers are uptodate - we can set the page uptodate
2176 * as well. But not if get_block() returned an error.
2177 */
2178 if (!PageError(page))
2179 SetPageUptodate(page);
2180 unlock_page(page);
2181 return 0;
2182 }
2183
2184 /* Stage two: lock the buffers */
2185 for (i = 0; i < nr; i++) {
2186 bh = arr[i];
2187 lock_buffer(bh);
2188 mark_buffer_async_read(bh);
2189 }
2190
2191 /*
2192 * Stage 3: start the IO. Check for uptodateness
2193 * inside the buffer lock in case another process reading
2194 * the underlying blockdev brought it uptodate (the sct fix).
2195 */
2196 for (i = 0; i < nr; i++) {
2197 bh = arr[i];
2198 if (buffer_uptodate(bh))
2199 end_buffer_async_read(bh, 1);
2200 else
2201 submit_bh(READ, bh);
2202 }
2203 return 0;
2204}
1fe72eaa 2205EXPORT_SYMBOL(block_read_full_page);
1da177e4
LT
2206
2207/* utility function for filesystems that need to do work on expanding
89e10787 2208 * truncates. Uses filesystem pagecache writes to allow the filesystem to
1da177e4
LT
2209 * deal with the hole.
2210 */
89e10787 2211int generic_cont_expand_simple(struct inode *inode, loff_t size)
1da177e4
LT
2212{
2213 struct address_space *mapping = inode->i_mapping;
2214 struct page *page;
89e10787 2215 void *fsdata;
1da177e4
LT
2216 int err;
2217
c08d3b0e 2218 err = inode_newsize_ok(inode, size);
2219 if (err)
1da177e4
LT
2220 goto out;
2221
89e10787
NP
2222 err = pagecache_write_begin(NULL, mapping, size, 0,
2223 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2224 &page, &fsdata);
2225 if (err)
05eb0b51 2226 goto out;
05eb0b51 2227
89e10787
NP
2228 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2229 BUG_ON(err > 0);
05eb0b51 2230
1da177e4
LT
2231out:
2232 return err;
2233}
1fe72eaa 2234EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4 2235
f1e3af72
AB
2236static int cont_expand_zero(struct file *file, struct address_space *mapping,
2237 loff_t pos, loff_t *bytes)
1da177e4 2238{
1da177e4 2239 struct inode *inode = mapping->host;
1da177e4 2240 unsigned blocksize = 1 << inode->i_blkbits;
89e10787
NP
2241 struct page *page;
2242 void *fsdata;
2243 pgoff_t index, curidx;
2244 loff_t curpos;
2245 unsigned zerofrom, offset, len;
2246 int err = 0;
1da177e4 2247
89e10787
NP
2248 index = pos >> PAGE_CACHE_SHIFT;
2249 offset = pos & ~PAGE_CACHE_MASK;
2250
2251 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2252 zerofrom = curpos & ~PAGE_CACHE_MASK;
1da177e4
LT
2253 if (zerofrom & (blocksize-1)) {
2254 *bytes |= (blocksize-1);
2255 (*bytes)++;
2256 }
89e10787 2257 len = PAGE_CACHE_SIZE - zerofrom;
1da177e4 2258
89e10787
NP
2259 err = pagecache_write_begin(file, mapping, curpos, len,
2260 AOP_FLAG_UNINTERRUPTIBLE,
2261 &page, &fsdata);
2262 if (err)
2263 goto out;
eebd2aa3 2264 zero_user(page, zerofrom, len);
89e10787
NP
2265 err = pagecache_write_end(file, mapping, curpos, len, len,
2266 page, fsdata);
2267 if (err < 0)
2268 goto out;
2269 BUG_ON(err != len);
2270 err = 0;
061e9746
OH
2271
2272 balance_dirty_pages_ratelimited(mapping);
89e10787 2273 }
1da177e4 2274
89e10787
NP
2275 /* page covers the boundary, find the boundary offset */
2276 if (index == curidx) {
2277 zerofrom = curpos & ~PAGE_CACHE_MASK;
1da177e4 2278 /* if we will expand the thing last block will be filled */
89e10787
NP
2279 if (offset <= zerofrom) {
2280 goto out;
2281 }
2282 if (zerofrom & (blocksize-1)) {
1da177e4
LT
2283 *bytes |= (blocksize-1);
2284 (*bytes)++;
2285 }
89e10787 2286 len = offset - zerofrom;
1da177e4 2287
89e10787
NP
2288 err = pagecache_write_begin(file, mapping, curpos, len,
2289 AOP_FLAG_UNINTERRUPTIBLE,
2290 &page, &fsdata);
2291 if (err)
2292 goto out;
eebd2aa3 2293 zero_user(page, zerofrom, len);
89e10787
NP
2294 err = pagecache_write_end(file, mapping, curpos, len, len,
2295 page, fsdata);
2296 if (err < 0)
2297 goto out;
2298 BUG_ON(err != len);
2299 err = 0;
1da177e4 2300 }
89e10787
NP
2301out:
2302 return err;
2303}
2304
2305/*
2306 * For moronic filesystems that do not allow holes in file.
2307 * We may have to extend the file.
2308 */
282dc178 2309int cont_write_begin(struct file *file, struct address_space *mapping,
89e10787
NP
2310 loff_t pos, unsigned len, unsigned flags,
2311 struct page **pagep, void **fsdata,
2312 get_block_t *get_block, loff_t *bytes)
2313{
2314 struct inode *inode = mapping->host;
2315 unsigned blocksize = 1 << inode->i_blkbits;
2316 unsigned zerofrom;
2317 int err;
2318
2319 err = cont_expand_zero(file, mapping, pos, bytes);
2320 if (err)
155130a4 2321 return err;
89e10787
NP
2322
2323 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2324 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2325 *bytes |= (blocksize-1);
2326 (*bytes)++;
1da177e4 2327 }
1da177e4 2328
155130a4 2329 return block_write_begin(mapping, pos, len, flags, pagep, get_block);
1da177e4 2330}
1fe72eaa 2331EXPORT_SYMBOL(cont_write_begin);
1da177e4 2332
1da177e4
LT
2333int block_commit_write(struct page *page, unsigned from, unsigned to)
2334{
2335 struct inode *inode = page->mapping->host;
2336 __block_commit_write(inode,page,from,to);
2337 return 0;
2338}
1fe72eaa 2339EXPORT_SYMBOL(block_commit_write);
1da177e4 2340
54171690
DC
2341/*
2342 * block_page_mkwrite() is not allowed to change the file size as it gets
2343 * called from a page fault handler when a page is first dirtied. Hence we must
2344 * be careful to check for EOF conditions here. We set the page up correctly
2345 * for a written page which means we get ENOSPC checking when writing into
2346 * holes and correct delalloc and unwritten extent mapping on filesystems that
2347 * support these features.
2348 *
2349 * We are not allowed to take the i_mutex here so we have to play games to
2350 * protect against truncate races as the page could now be beyond EOF. Because
7bb46a67 2351 * truncate writes the inode size before removing pages, once we have the
54171690
DC
2352 * page lock we can determine safely if the page is beyond EOF. If it is not
2353 * beyond EOF, then the page is guaranteed safe against truncation until we
2354 * unlock the page.
2355 */
2356int
c2ec175c 2357block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
54171690
DC
2358 get_block_t get_block)
2359{
c2ec175c 2360 struct page *page = vmf->page;
54171690
DC
2361 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2362 unsigned long end;
2363 loff_t size;
56a76f82 2364 int ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
54171690
DC
2365
2366 lock_page(page);
2367 size = i_size_read(inode);
2368 if ((page->mapping != inode->i_mapping) ||
18336338 2369 (page_offset(page) > size)) {
54171690 2370 /* page got truncated out from underneath us */
b827e496
NP
2371 unlock_page(page);
2372 goto out;
54171690
DC
2373 }
2374
2375 /* page is wholly or partially inside EOF */
2376 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2377 end = size & ~PAGE_CACHE_MASK;
2378 else
2379 end = PAGE_CACHE_SIZE;
2380
2381 ret = block_prepare_write(page, 0, end, get_block);
2382 if (!ret)
2383 ret = block_commit_write(page, 0, end);
2384
56a76f82 2385 if (unlikely(ret)) {
b827e496 2386 unlock_page(page);
56a76f82
NP
2387 if (ret == -ENOMEM)
2388 ret = VM_FAULT_OOM;
2389 else /* -ENOSPC, -EIO, etc */
2390 ret = VM_FAULT_SIGBUS;
b827e496
NP
2391 } else
2392 ret = VM_FAULT_LOCKED;
c2ec175c 2393
b827e496 2394out:
54171690
DC
2395 return ret;
2396}
1fe72eaa 2397EXPORT_SYMBOL(block_page_mkwrite);
1da177e4
LT
2398
2399/*
03158cd7 2400 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
1da177e4
LT
2401 * immediately, while under the page lock. So it needs a special end_io
2402 * handler which does not touch the bh after unlocking it.
1da177e4
LT
2403 */
2404static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2405{
68671f35 2406 __end_buffer_read_notouch(bh, uptodate);
1da177e4
LT
2407}
2408
03158cd7
NP
2409/*
2410 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2411 * the page (converting it to circular linked list and taking care of page
2412 * dirty races).
2413 */
2414static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2415{
2416 struct buffer_head *bh;
2417
2418 BUG_ON(!PageLocked(page));
2419
2420 spin_lock(&page->mapping->private_lock);
2421 bh = head;
2422 do {
2423 if (PageDirty(page))
2424 set_buffer_dirty(bh);
2425 if (!bh->b_this_page)
2426 bh->b_this_page = head;
2427 bh = bh->b_this_page;
2428 } while (bh != head);
2429 attach_page_buffers(page, head);
2430 spin_unlock(&page->mapping->private_lock);
2431}
2432
1da177e4 2433/*
ea0f04e5
CH
2434 * On entry, the page is fully not uptodate.
2435 * On exit the page is fully uptodate in the areas outside (from,to)
7bb46a67 2436 * The filesystem needs to handle block truncation upon failure.
1da177e4 2437 */
ea0f04e5 2438int nobh_write_begin(struct address_space *mapping,
03158cd7
NP
2439 loff_t pos, unsigned len, unsigned flags,
2440 struct page **pagep, void **fsdata,
1da177e4
LT
2441 get_block_t *get_block)
2442{
03158cd7 2443 struct inode *inode = mapping->host;
1da177e4
LT
2444 const unsigned blkbits = inode->i_blkbits;
2445 const unsigned blocksize = 1 << blkbits;
a4b0672d 2446 struct buffer_head *head, *bh;
03158cd7
NP
2447 struct page *page;
2448 pgoff_t index;
2449 unsigned from, to;
1da177e4 2450 unsigned block_in_page;
a4b0672d 2451 unsigned block_start, block_end;
1da177e4 2452 sector_t block_in_file;
1da177e4 2453 int nr_reads = 0;
1da177e4
LT
2454 int ret = 0;
2455 int is_mapped_to_disk = 1;
1da177e4 2456
03158cd7
NP
2457 index = pos >> PAGE_CACHE_SHIFT;
2458 from = pos & (PAGE_CACHE_SIZE - 1);
2459 to = from + len;
2460
54566b2c 2461 page = grab_cache_page_write_begin(mapping, index, flags);
03158cd7
NP
2462 if (!page)
2463 return -ENOMEM;
2464 *pagep = page;
2465 *fsdata = NULL;
2466
2467 if (page_has_buffers(page)) {
2468 unlock_page(page);
2469 page_cache_release(page);
2470 *pagep = NULL;
155130a4
CH
2471 return block_write_begin(mapping, pos, len, flags, pagep,
2472 get_block);
03158cd7 2473 }
a4b0672d 2474
1da177e4
LT
2475 if (PageMappedToDisk(page))
2476 return 0;
2477
a4b0672d
NP
2478 /*
2479 * Allocate buffers so that we can keep track of state, and potentially
2480 * attach them to the page if an error occurs. In the common case of
2481 * no error, they will just be freed again without ever being attached
2482 * to the page (which is all OK, because we're under the page lock).
2483 *
2484 * Be careful: the buffer linked list is a NULL terminated one, rather
2485 * than the circular one we're used to.
2486 */
2487 head = alloc_page_buffers(page, blocksize, 0);
03158cd7
NP
2488 if (!head) {
2489 ret = -ENOMEM;
2490 goto out_release;
2491 }
a4b0672d 2492
1da177e4 2493 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
1da177e4
LT
2494
2495 /*
2496 * We loop across all blocks in the page, whether or not they are
2497 * part of the affected region. This is so we can discover if the
2498 * page is fully mapped-to-disk.
2499 */
a4b0672d 2500 for (block_start = 0, block_in_page = 0, bh = head;
1da177e4 2501 block_start < PAGE_CACHE_SIZE;
a4b0672d 2502 block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
1da177e4
LT
2503 int create;
2504
a4b0672d
NP
2505 block_end = block_start + blocksize;
2506 bh->b_state = 0;
1da177e4
LT
2507 create = 1;
2508 if (block_start >= to)
2509 create = 0;
2510 ret = get_block(inode, block_in_file + block_in_page,
a4b0672d 2511 bh, create);
1da177e4
LT
2512 if (ret)
2513 goto failed;
a4b0672d 2514 if (!buffer_mapped(bh))
1da177e4 2515 is_mapped_to_disk = 0;
a4b0672d
NP
2516 if (buffer_new(bh))
2517 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2518 if (PageUptodate(page)) {
2519 set_buffer_uptodate(bh);
1da177e4 2520 continue;
a4b0672d
NP
2521 }
2522 if (buffer_new(bh) || !buffer_mapped(bh)) {
eebd2aa3
CL
2523 zero_user_segments(page, block_start, from,
2524 to, block_end);
1da177e4
LT
2525 continue;
2526 }
a4b0672d 2527 if (buffer_uptodate(bh))
1da177e4
LT
2528 continue; /* reiserfs does this */
2529 if (block_start < from || block_end > to) {
a4b0672d
NP
2530 lock_buffer(bh);
2531 bh->b_end_io = end_buffer_read_nobh;
2532 submit_bh(READ, bh);
2533 nr_reads++;
1da177e4
LT
2534 }
2535 }
2536
2537 if (nr_reads) {
1da177e4
LT
2538 /*
2539 * The page is locked, so these buffers are protected from
2540 * any VM or truncate activity. Hence we don't need to care
2541 * for the buffer_head refcounts.
2542 */
a4b0672d 2543 for (bh = head; bh; bh = bh->b_this_page) {
1da177e4
LT
2544 wait_on_buffer(bh);
2545 if (!buffer_uptodate(bh))
2546 ret = -EIO;
1da177e4
LT
2547 }
2548 if (ret)
2549 goto failed;
2550 }
2551
2552 if (is_mapped_to_disk)
2553 SetPageMappedToDisk(page);
1da177e4 2554
03158cd7 2555 *fsdata = head; /* to be released by nobh_write_end */
a4b0672d 2556
1da177e4
LT
2557 return 0;
2558
2559failed:
03158cd7 2560 BUG_ON(!ret);
1da177e4 2561 /*
a4b0672d
NP
2562 * Error recovery is a bit difficult. We need to zero out blocks that
2563 * were newly allocated, and dirty them to ensure they get written out.
2564 * Buffers need to be attached to the page at this point, otherwise
2565 * the handling of potential IO errors during writeout would be hard
2566 * (could try doing synchronous writeout, but what if that fails too?)
1da177e4 2567 */
03158cd7
NP
2568 attach_nobh_buffers(page, head);
2569 page_zero_new_buffers(page, from, to);
a4b0672d 2570
03158cd7
NP
2571out_release:
2572 unlock_page(page);
2573 page_cache_release(page);
2574 *pagep = NULL;
a4b0672d 2575
7bb46a67 2576 return ret;
2577}
03158cd7 2578EXPORT_SYMBOL(nobh_write_begin);
1da177e4 2579
03158cd7
NP
2580int nobh_write_end(struct file *file, struct address_space *mapping,
2581 loff_t pos, unsigned len, unsigned copied,
2582 struct page *page, void *fsdata)
1da177e4
LT
2583{
2584 struct inode *inode = page->mapping->host;
efdc3131 2585 struct buffer_head *head = fsdata;
03158cd7 2586 struct buffer_head *bh;
5b41e74a 2587 BUG_ON(fsdata != NULL && page_has_buffers(page));
1da177e4 2588
d4cf109f 2589 if (unlikely(copied < len) && head)
5b41e74a
DM
2590 attach_nobh_buffers(page, head);
2591 if (page_has_buffers(page))
2592 return generic_write_end(file, mapping, pos, len,
2593 copied, page, fsdata);
a4b0672d 2594
22c8ca78 2595 SetPageUptodate(page);
1da177e4 2596 set_page_dirty(page);
03158cd7
NP
2597 if (pos+copied > inode->i_size) {
2598 i_size_write(inode, pos+copied);
1da177e4
LT
2599 mark_inode_dirty(inode);
2600 }
03158cd7
NP
2601
2602 unlock_page(page);
2603 page_cache_release(page);
2604
03158cd7
NP
2605 while (head) {
2606 bh = head;
2607 head = head->b_this_page;
2608 free_buffer_head(bh);
2609 }
2610
2611 return copied;
1da177e4 2612}
03158cd7 2613EXPORT_SYMBOL(nobh_write_end);
1da177e4
LT
2614
2615/*
2616 * nobh_writepage() - based on block_full_write_page() except
2617 * that it tries to operate without attaching bufferheads to
2618 * the page.
2619 */
2620int nobh_writepage(struct page *page, get_block_t *get_block,
2621 struct writeback_control *wbc)
2622{
2623 struct inode * const inode = page->mapping->host;
2624 loff_t i_size = i_size_read(inode);
2625 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2626 unsigned offset;
1da177e4
LT
2627 int ret;
2628
2629 /* Is the page fully inside i_size? */
2630 if (page->index < end_index)
2631 goto out;
2632
2633 /* Is the page fully outside i_size? (truncate in progress) */
2634 offset = i_size & (PAGE_CACHE_SIZE-1);
2635 if (page->index >= end_index+1 || !offset) {
2636 /*
2637 * The page may have dirty, unmapped buffers. For example,
2638 * they may have been added in ext3_writepage(). Make them
2639 * freeable here, so the page does not leak.
2640 */
2641#if 0
2642 /* Not really sure about this - do we need this ? */
2643 if (page->mapping->a_ops->invalidatepage)
2644 page->mapping->a_ops->invalidatepage(page, offset);
2645#endif
2646 unlock_page(page);
2647 return 0; /* don't care */
2648 }
2649
2650 /*
2651 * The page straddles i_size. It must be zeroed out on each and every
2652 * writepage invocation because it may be mmapped. "A file is mapped
2653 * in multiples of the page size. For a file that is not a multiple of
2654 * the page size, the remaining memory is zeroed when mapped, and
2655 * writes to that region are not written out to the file."
2656 */
eebd2aa3 2657 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
1da177e4
LT
2658out:
2659 ret = mpage_writepage(page, get_block, wbc);
2660 if (ret == -EAGAIN)
35c80d5f
CM
2661 ret = __block_write_full_page(inode, page, get_block, wbc,
2662 end_buffer_async_write);
1da177e4
LT
2663 return ret;
2664}
2665EXPORT_SYMBOL(nobh_writepage);
2666
03158cd7
NP
2667int nobh_truncate_page(struct address_space *mapping,
2668 loff_t from, get_block_t *get_block)
1da177e4 2669{
1da177e4
LT
2670 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2671 unsigned offset = from & (PAGE_CACHE_SIZE-1);
03158cd7
NP
2672 unsigned blocksize;
2673 sector_t iblock;
2674 unsigned length, pos;
2675 struct inode *inode = mapping->host;
1da177e4 2676 struct page *page;
03158cd7
NP
2677 struct buffer_head map_bh;
2678 int err;
1da177e4 2679
03158cd7
NP
2680 blocksize = 1 << inode->i_blkbits;
2681 length = offset & (blocksize - 1);
2682
2683 /* Block boundary? Nothing to do */
2684 if (!length)
2685 return 0;
2686
2687 length = blocksize - length;
2688 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4 2689
1da177e4 2690 page = grab_cache_page(mapping, index);
03158cd7 2691 err = -ENOMEM;
1da177e4
LT
2692 if (!page)
2693 goto out;
2694
03158cd7
NP
2695 if (page_has_buffers(page)) {
2696has_buffers:
2697 unlock_page(page);
2698 page_cache_release(page);
2699 return block_truncate_page(mapping, from, get_block);
2700 }
2701
2702 /* Find the buffer that contains "offset" */
2703 pos = blocksize;
2704 while (offset >= pos) {
2705 iblock++;
2706 pos += blocksize;
2707 }
2708
460bcf57
TT
2709 map_bh.b_size = blocksize;
2710 map_bh.b_state = 0;
03158cd7
NP
2711 err = get_block(inode, iblock, &map_bh, 0);
2712 if (err)
2713 goto unlock;
2714 /* unmapped? It's a hole - nothing to do */
2715 if (!buffer_mapped(&map_bh))
2716 goto unlock;
2717
2718 /* Ok, it's mapped. Make sure it's up-to-date */
2719 if (!PageUptodate(page)) {
2720 err = mapping->a_ops->readpage(NULL, page);
2721 if (err) {
2722 page_cache_release(page);
2723 goto out;
2724 }
2725 lock_page(page);
2726 if (!PageUptodate(page)) {
2727 err = -EIO;
2728 goto unlock;
2729 }
2730 if (page_has_buffers(page))
2731 goto has_buffers;
1da177e4 2732 }
eebd2aa3 2733 zero_user(page, offset, length);
03158cd7
NP
2734 set_page_dirty(page);
2735 err = 0;
2736
2737unlock:
1da177e4
LT
2738 unlock_page(page);
2739 page_cache_release(page);
2740out:
03158cd7 2741 return err;
1da177e4
LT
2742}
2743EXPORT_SYMBOL(nobh_truncate_page);
2744
2745int block_truncate_page(struct address_space *mapping,
2746 loff_t from, get_block_t *get_block)
2747{
2748 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2749 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2750 unsigned blocksize;
54b21a79 2751 sector_t iblock;
1da177e4
LT
2752 unsigned length, pos;
2753 struct inode *inode = mapping->host;
2754 struct page *page;
2755 struct buffer_head *bh;
1da177e4
LT
2756 int err;
2757
2758 blocksize = 1 << inode->i_blkbits;
2759 length = offset & (blocksize - 1);
2760
2761 /* Block boundary? Nothing to do */
2762 if (!length)
2763 return 0;
2764
2765 length = blocksize - length;
54b21a79 2766 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4
LT
2767
2768 page = grab_cache_page(mapping, index);
2769 err = -ENOMEM;
2770 if (!page)
2771 goto out;
2772
2773 if (!page_has_buffers(page))
2774 create_empty_buffers(page, blocksize, 0);
2775
2776 /* Find the buffer that contains "offset" */
2777 bh = page_buffers(page);
2778 pos = blocksize;
2779 while (offset >= pos) {
2780 bh = bh->b_this_page;
2781 iblock++;
2782 pos += blocksize;
2783 }
2784
2785 err = 0;
2786 if (!buffer_mapped(bh)) {
b0cf2321 2787 WARN_ON(bh->b_size != blocksize);
1da177e4
LT
2788 err = get_block(inode, iblock, bh, 0);
2789 if (err)
2790 goto unlock;
2791 /* unmapped? It's a hole - nothing to do */
2792 if (!buffer_mapped(bh))
2793 goto unlock;
2794 }
2795
2796 /* Ok, it's mapped. Make sure it's up-to-date */
2797 if (PageUptodate(page))
2798 set_buffer_uptodate(bh);
2799
33a266dd 2800 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
1da177e4
LT
2801 err = -EIO;
2802 ll_rw_block(READ, 1, &bh);
2803 wait_on_buffer(bh);
2804 /* Uhhuh. Read error. Complain and punt. */
2805 if (!buffer_uptodate(bh))
2806 goto unlock;
2807 }
2808
eebd2aa3 2809 zero_user(page, offset, length);
1da177e4
LT
2810 mark_buffer_dirty(bh);
2811 err = 0;
2812
2813unlock:
2814 unlock_page(page);
2815 page_cache_release(page);
2816out:
2817 return err;
2818}
1fe72eaa 2819EXPORT_SYMBOL(block_truncate_page);
1da177e4
LT
2820
2821/*
2822 * The generic ->writepage function for buffer-backed address_spaces
35c80d5f 2823 * this form passes in the end_io handler used to finish the IO.
1da177e4 2824 */
35c80d5f
CM
2825int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2826 struct writeback_control *wbc, bh_end_io_t *handler)
1da177e4
LT
2827{
2828 struct inode * const inode = page->mapping->host;
2829 loff_t i_size = i_size_read(inode);
2830 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2831 unsigned offset;
1da177e4
LT
2832
2833 /* Is the page fully inside i_size? */
2834 if (page->index < end_index)
35c80d5f
CM
2835 return __block_write_full_page(inode, page, get_block, wbc,
2836 handler);
1da177e4
LT
2837
2838 /* Is the page fully outside i_size? (truncate in progress) */
2839 offset = i_size & (PAGE_CACHE_SIZE-1);
2840 if (page->index >= end_index+1 || !offset) {
2841 /*
2842 * The page may have dirty, unmapped buffers. For example,
2843 * they may have been added in ext3_writepage(). Make them
2844 * freeable here, so the page does not leak.
2845 */
aaa4059b 2846 do_invalidatepage(page, 0);
1da177e4
LT
2847 unlock_page(page);
2848 return 0; /* don't care */
2849 }
2850
2851 /*
2852 * The page straddles i_size. It must be zeroed out on each and every
2a61aa40 2853 * writepage invocation because it may be mmapped. "A file is mapped
1da177e4
LT
2854 * in multiples of the page size. For a file that is not a multiple of
2855 * the page size, the remaining memory is zeroed when mapped, and
2856 * writes to that region are not written out to the file."
2857 */
eebd2aa3 2858 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
35c80d5f 2859 return __block_write_full_page(inode, page, get_block, wbc, handler);
1da177e4 2860}
1fe72eaa 2861EXPORT_SYMBOL(block_write_full_page_endio);
1da177e4 2862
35c80d5f
CM
2863/*
2864 * The generic ->writepage function for buffer-backed address_spaces
2865 */
2866int block_write_full_page(struct page *page, get_block_t *get_block,
2867 struct writeback_control *wbc)
2868{
2869 return block_write_full_page_endio(page, get_block, wbc,
2870 end_buffer_async_write);
2871}
1fe72eaa 2872EXPORT_SYMBOL(block_write_full_page);
35c80d5f 2873
1da177e4
LT
2874sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2875 get_block_t *get_block)
2876{
2877 struct buffer_head tmp;
2878 struct inode *inode = mapping->host;
2879 tmp.b_state = 0;
2880 tmp.b_blocknr = 0;
b0cf2321 2881 tmp.b_size = 1 << inode->i_blkbits;
1da177e4
LT
2882 get_block(inode, block, &tmp, 0);
2883 return tmp.b_blocknr;
2884}
1fe72eaa 2885EXPORT_SYMBOL(generic_block_bmap);
1da177e4 2886
6712ecf8 2887static void end_bio_bh_io_sync(struct bio *bio, int err)
1da177e4
LT
2888{
2889 struct buffer_head *bh = bio->bi_private;
2890
1da177e4
LT
2891 if (err == -EOPNOTSUPP) {
2892 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2893 set_bit(BH_Eopnotsupp, &bh->b_state);
2894 }
2895
08bafc03
KM
2896 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2897 set_bit(BH_Quiet, &bh->b_state);
2898
1da177e4
LT
2899 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2900 bio_put(bio);
1da177e4
LT
2901}
2902
2903int submit_bh(int rw, struct buffer_head * bh)
2904{
2905 struct bio *bio;
2906 int ret = 0;
2907
2908 BUG_ON(!buffer_locked(bh));
2909 BUG_ON(!buffer_mapped(bh));
2910 BUG_ON(!bh->b_end_io);
8fb0e342
AK
2911 BUG_ON(buffer_delay(bh));
2912 BUG_ON(buffer_unwritten(bh));
1da177e4 2913
1da177e4 2914 /*
48fd4f93 2915 * Only clear out a write error when rewriting
1da177e4 2916 */
48fd4f93 2917 if (test_set_buffer_req(bh) && (rw & WRITE))
1da177e4
LT
2918 clear_buffer_write_io_error(bh);
2919
2920 /*
2921 * from here on down, it's all bio -- do the initial mapping,
2922 * submit_bio -> generic_make_request may further map this bio around
2923 */
2924 bio = bio_alloc(GFP_NOIO, 1);
2925
2926 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2927 bio->bi_bdev = bh->b_bdev;
2928 bio->bi_io_vec[0].bv_page = bh->b_page;
2929 bio->bi_io_vec[0].bv_len = bh->b_size;
2930 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2931
2932 bio->bi_vcnt = 1;
2933 bio->bi_idx = 0;
2934 bio->bi_size = bh->b_size;
2935
2936 bio->bi_end_io = end_bio_bh_io_sync;
2937 bio->bi_private = bh;
2938
2939 bio_get(bio);
2940 submit_bio(rw, bio);
2941
2942 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2943 ret = -EOPNOTSUPP;
2944
2945 bio_put(bio);
2946 return ret;
2947}
1fe72eaa 2948EXPORT_SYMBOL(submit_bh);
1da177e4
LT
2949
2950/**
2951 * ll_rw_block: low-level access to block devices (DEPRECATED)
a7662236 2952 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
1da177e4
LT
2953 * @nr: number of &struct buffer_heads in the array
2954 * @bhs: array of pointers to &struct buffer_head
2955 *
a7662236
JK
2956 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2957 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2958 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2959 * are sent to disk. The fourth %READA option is described in the documentation
2960 * for generic_make_request() which ll_rw_block() calls.
1da177e4
LT
2961 *
2962 * This function drops any buffer that it cannot get a lock on (with the
a7662236
JK
2963 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2964 * clean when doing a write request, and any buffer that appears to be
2965 * up-to-date when doing read request. Further it marks as clean buffers that
2966 * are processed for writing (the buffer cache won't assume that they are
2967 * actually clean until the buffer gets unlocked).
1da177e4
LT
2968 *
2969 * ll_rw_block sets b_end_io to simple completion handler that marks
2970 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2971 * any waiters.
2972 *
2973 * All of the buffers must be for the same device, and must also be a
2974 * multiple of the current approved size for the device.
2975 */
2976void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2977{
2978 int i;
2979
2980 for (i = 0; i < nr; i++) {
2981 struct buffer_head *bh = bhs[i];
2982
9cf6b720 2983 if (rw == SWRITE || rw == SWRITE_SYNC || rw == SWRITE_SYNC_PLUG)
a7662236 2984 lock_buffer(bh);
ca5de404 2985 else if (!trylock_buffer(bh))
1da177e4
LT
2986 continue;
2987
9cf6b720
JA
2988 if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC ||
2989 rw == SWRITE_SYNC_PLUG) {
1da177e4 2990 if (test_clear_buffer_dirty(bh)) {
76c3073a 2991 bh->b_end_io = end_buffer_write_sync;
e60e5c50 2992 get_bh(bh);
18ce3751
JA
2993 if (rw == SWRITE_SYNC)
2994 submit_bh(WRITE_SYNC, bh);
2995 else
2996 submit_bh(WRITE, bh);
1da177e4
LT
2997 continue;
2998 }
2999 } else {
1da177e4 3000 if (!buffer_uptodate(bh)) {
76c3073a 3001 bh->b_end_io = end_buffer_read_sync;
e60e5c50 3002 get_bh(bh);
1da177e4
LT
3003 submit_bh(rw, bh);
3004 continue;
3005 }
3006 }
3007 unlock_buffer(bh);
1da177e4
LT
3008 }
3009}
1fe72eaa 3010EXPORT_SYMBOL(ll_rw_block);
1da177e4
LT
3011
3012/*
3013 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3014 * and then start new I/O and then wait upon it. The caller must have a ref on
3015 * the buffer_head.
3016 */
87e99511 3017int __sync_dirty_buffer(struct buffer_head *bh, int rw)
1da177e4
LT
3018{
3019 int ret = 0;
3020
3021 WARN_ON(atomic_read(&bh->b_count) < 1);
3022 lock_buffer(bh);
3023 if (test_clear_buffer_dirty(bh)) {
3024 get_bh(bh);
3025 bh->b_end_io = end_buffer_write_sync;
87e99511 3026 ret = submit_bh(rw, bh);
1da177e4
LT
3027 wait_on_buffer(bh);
3028 if (buffer_eopnotsupp(bh)) {
3029 clear_buffer_eopnotsupp(bh);
3030 ret = -EOPNOTSUPP;
3031 }
3032 if (!ret && !buffer_uptodate(bh))
3033 ret = -EIO;
3034 } else {
3035 unlock_buffer(bh);
3036 }
3037 return ret;
3038}
87e99511
CH
3039EXPORT_SYMBOL(__sync_dirty_buffer);
3040
3041int sync_dirty_buffer(struct buffer_head *bh)
3042{
3043 return __sync_dirty_buffer(bh, WRITE_SYNC);
3044}
1fe72eaa 3045EXPORT_SYMBOL(sync_dirty_buffer);
1da177e4
LT
3046
3047/*
3048 * try_to_free_buffers() checks if all the buffers on this particular page
3049 * are unused, and releases them if so.
3050 *
3051 * Exclusion against try_to_free_buffers may be obtained by either
3052 * locking the page or by holding its mapping's private_lock.
3053 *
3054 * If the page is dirty but all the buffers are clean then we need to
3055 * be sure to mark the page clean as well. This is because the page
3056 * may be against a block device, and a later reattachment of buffers
3057 * to a dirty page will set *all* buffers dirty. Which would corrupt
3058 * filesystem data on the same device.
3059 *
3060 * The same applies to regular filesystem pages: if all the buffers are
3061 * clean then we set the page clean and proceed. To do that, we require
3062 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3063 * private_lock.
3064 *
3065 * try_to_free_buffers() is non-blocking.
3066 */
3067static inline int buffer_busy(struct buffer_head *bh)
3068{
3069 return atomic_read(&bh->b_count) |
3070 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3071}
3072
3073static int
3074drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3075{
3076 struct buffer_head *head = page_buffers(page);
3077 struct buffer_head *bh;
3078
3079 bh = head;
3080 do {
de7d5a3b 3081 if (buffer_write_io_error(bh) && page->mapping)
1da177e4
LT
3082 set_bit(AS_EIO, &page->mapping->flags);
3083 if (buffer_busy(bh))
3084 goto failed;
3085 bh = bh->b_this_page;
3086 } while (bh != head);
3087
3088 do {
3089 struct buffer_head *next = bh->b_this_page;
3090
535ee2fb 3091 if (bh->b_assoc_map)
1da177e4
LT
3092 __remove_assoc_queue(bh);
3093 bh = next;
3094 } while (bh != head);
3095 *buffers_to_free = head;
3096 __clear_page_buffers(page);
3097 return 1;
3098failed:
3099 return 0;
3100}
3101
3102int try_to_free_buffers(struct page *page)
3103{
3104 struct address_space * const mapping = page->mapping;
3105 struct buffer_head *buffers_to_free = NULL;
3106 int ret = 0;
3107
3108 BUG_ON(!PageLocked(page));
ecdfc978 3109 if (PageWriteback(page))
1da177e4
LT
3110 return 0;
3111
3112 if (mapping == NULL) { /* can this still happen? */
3113 ret = drop_buffers(page, &buffers_to_free);
3114 goto out;
3115 }
3116
3117 spin_lock(&mapping->private_lock);
3118 ret = drop_buffers(page, &buffers_to_free);
ecdfc978
LT
3119
3120 /*
3121 * If the filesystem writes its buffers by hand (eg ext3)
3122 * then we can have clean buffers against a dirty page. We
3123 * clean the page here; otherwise the VM will never notice
3124 * that the filesystem did any IO at all.
3125 *
3126 * Also, during truncate, discard_buffer will have marked all
3127 * the page's buffers clean. We discover that here and clean
3128 * the page also.
87df7241
NP
3129 *
3130 * private_lock must be held over this entire operation in order
3131 * to synchronise against __set_page_dirty_buffers and prevent the
3132 * dirty bit from being lost.
ecdfc978
LT
3133 */
3134 if (ret)
3135 cancel_dirty_page(page, PAGE_CACHE_SIZE);
87df7241 3136 spin_unlock(&mapping->private_lock);
1da177e4
LT
3137out:
3138 if (buffers_to_free) {
3139 struct buffer_head *bh = buffers_to_free;
3140
3141 do {
3142 struct buffer_head *next = bh->b_this_page;
3143 free_buffer_head(bh);
3144 bh = next;
3145 } while (bh != buffers_to_free);
3146 }
3147 return ret;
3148}
3149EXPORT_SYMBOL(try_to_free_buffers);
3150
3978d717 3151void block_sync_page(struct page *page)
1da177e4
LT
3152{
3153 struct address_space *mapping;
3154
3155 smp_mb();
3156 mapping = page_mapping(page);
3157 if (mapping)
3158 blk_run_backing_dev(mapping->backing_dev_info, page);
1da177e4 3159}
1fe72eaa 3160EXPORT_SYMBOL(block_sync_page);
1da177e4
LT
3161
3162/*
3163 * There are no bdflush tunables left. But distributions are
3164 * still running obsolete flush daemons, so we terminate them here.
3165 *
3166 * Use of bdflush() is deprecated and will be removed in a future kernel.
5b0830cb 3167 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
1da177e4 3168 */
bdc480e3 3169SYSCALL_DEFINE2(bdflush, int, func, long, data)
1da177e4
LT
3170{
3171 static int msg_count;
3172
3173 if (!capable(CAP_SYS_ADMIN))
3174 return -EPERM;
3175
3176 if (msg_count < 5) {
3177 msg_count++;
3178 printk(KERN_INFO
3179 "warning: process `%s' used the obsolete bdflush"
3180 " system call\n", current->comm);
3181 printk(KERN_INFO "Fix your initscripts?\n");
3182 }
3183
3184 if (func == 1)
3185 do_exit(0);
3186 return 0;
3187}
3188
3189/*
3190 * Buffer-head allocation
3191 */
e18b890b 3192static struct kmem_cache *bh_cachep;
1da177e4
LT
3193
3194/*
3195 * Once the number of bh's in the machine exceeds this level, we start
3196 * stripping them in writeback.
3197 */
3198static int max_buffer_heads;
3199
3200int buffer_heads_over_limit;
3201
3202struct bh_accounting {
3203 int nr; /* Number of live bh's */
3204 int ratelimit; /* Limit cacheline bouncing */
3205};
3206
3207static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3208
3209static void recalc_bh_state(void)
3210{
3211 int i;
3212 int tot = 0;
3213
3214 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3215 return;
3216 __get_cpu_var(bh_accounting).ratelimit = 0;
8a143426 3217 for_each_online_cpu(i)
1da177e4
LT
3218 tot += per_cpu(bh_accounting, i).nr;
3219 buffer_heads_over_limit = (tot > max_buffer_heads);
3220}
3221
dd0fc66f 3222struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4 3223{
019b4d12 3224 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
1da177e4 3225 if (ret) {
a35afb83 3226 INIT_LIST_HEAD(&ret->b_assoc_buffers);
736c7b80 3227 get_cpu_var(bh_accounting).nr++;
1da177e4 3228 recalc_bh_state();
736c7b80 3229 put_cpu_var(bh_accounting);
1da177e4
LT
3230 }
3231 return ret;
3232}
3233EXPORT_SYMBOL(alloc_buffer_head);
3234
3235void free_buffer_head(struct buffer_head *bh)
3236{
3237 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3238 kmem_cache_free(bh_cachep, bh);
736c7b80 3239 get_cpu_var(bh_accounting).nr--;
1da177e4 3240 recalc_bh_state();
736c7b80 3241 put_cpu_var(bh_accounting);
1da177e4
LT
3242}
3243EXPORT_SYMBOL(free_buffer_head);
3244
1da177e4
LT
3245static void buffer_exit_cpu(int cpu)
3246{
3247 int i;
3248 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3249
3250 for (i = 0; i < BH_LRU_SIZE; i++) {
3251 brelse(b->bhs[i]);
3252 b->bhs[i] = NULL;
3253 }
8a143426
ED
3254 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3255 per_cpu(bh_accounting, cpu).nr = 0;
3256 put_cpu_var(bh_accounting);
1da177e4
LT
3257}
3258
3259static int buffer_cpu_notify(struct notifier_block *self,
3260 unsigned long action, void *hcpu)
3261{
8bb78442 3262 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1da177e4
LT
3263 buffer_exit_cpu((unsigned long)hcpu);
3264 return NOTIFY_OK;
3265}
1da177e4 3266
389d1b08 3267/**
a6b91919 3268 * bh_uptodate_or_lock - Test whether the buffer is uptodate
389d1b08
AK
3269 * @bh: struct buffer_head
3270 *
3271 * Return true if the buffer is up-to-date and false,
3272 * with the buffer locked, if not.
3273 */
3274int bh_uptodate_or_lock(struct buffer_head *bh)
3275{
3276 if (!buffer_uptodate(bh)) {
3277 lock_buffer(bh);
3278 if (!buffer_uptodate(bh))
3279 return 0;
3280 unlock_buffer(bh);
3281 }
3282 return 1;
3283}
3284EXPORT_SYMBOL(bh_uptodate_or_lock);
3285
3286/**
a6b91919 3287 * bh_submit_read - Submit a locked buffer for reading
389d1b08
AK
3288 * @bh: struct buffer_head
3289 *
3290 * Returns zero on success and -EIO on error.
3291 */
3292int bh_submit_read(struct buffer_head *bh)
3293{
3294 BUG_ON(!buffer_locked(bh));
3295
3296 if (buffer_uptodate(bh)) {
3297 unlock_buffer(bh);
3298 return 0;
3299 }
3300
3301 get_bh(bh);
3302 bh->b_end_io = end_buffer_read_sync;
3303 submit_bh(READ, bh);
3304 wait_on_buffer(bh);
3305 if (buffer_uptodate(bh))
3306 return 0;
3307 return -EIO;
3308}
3309EXPORT_SYMBOL(bh_submit_read);
3310
1da177e4
LT
3311void __init buffer_init(void)
3312{
3313 int nrpages;
3314
b98938c3
CL
3315 bh_cachep = kmem_cache_create("buffer_head",
3316 sizeof(struct buffer_head), 0,
3317 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3318 SLAB_MEM_SPREAD),
019b4d12 3319 NULL);
1da177e4
LT
3320
3321 /*
3322 * Limit the bh occupancy to 10% of ZONE_NORMAL
3323 */
3324 nrpages = (nr_free_buffer_pages() * 10) / 100;
3325 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3326 hotcpu_notifier(buffer_cpu_notify, 0);
3327}