]> bbs.cooldavid.org Git - net-next-2.6.git/blame - fs/buffer.c
[PATCH] Make address_space_operations->sync_page return void
[net-next-2.6.git] / fs / buffer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/buffer.c
3 *
4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
5 */
6
7/*
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9 *
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12 *
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
15 *
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17 *
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19 */
20
21#include <linux/config.h>
22#include <linux/kernel.h>
23#include <linux/syscalls.h>
24#include <linux/fs.h>
25#include <linux/mm.h>
26#include <linux/percpu.h>
27#include <linux/slab.h>
28#include <linux/smp_lock.h>
16f7e0fe 29#include <linux/capability.h>
1da177e4
LT
30#include <linux/blkdev.h>
31#include <linux/file.h>
32#include <linux/quotaops.h>
33#include <linux/highmem.h>
34#include <linux/module.h>
35#include <linux/writeback.h>
36#include <linux/hash.h>
37#include <linux/suspend.h>
38#include <linux/buffer_head.h>
39#include <linux/bio.h>
40#include <linux/notifier.h>
41#include <linux/cpu.h>
42#include <linux/bitops.h>
43#include <linux/mpage.h>
fb1c8f93 44#include <linux/bit_spinlock.h>
1da177e4
LT
45
46static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
47static void invalidate_bh_lrus(void);
48
49#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
50
51inline void
52init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
53{
54 bh->b_end_io = handler;
55 bh->b_private = private;
56}
57
58static int sync_buffer(void *word)
59{
60 struct block_device *bd;
61 struct buffer_head *bh
62 = container_of(word, struct buffer_head, b_state);
63
64 smp_mb();
65 bd = bh->b_bdev;
66 if (bd)
67 blk_run_address_space(bd->bd_inode->i_mapping);
68 io_schedule();
69 return 0;
70}
71
72void fastcall __lock_buffer(struct buffer_head *bh)
73{
74 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
75 TASK_UNINTERRUPTIBLE);
76}
77EXPORT_SYMBOL(__lock_buffer);
78
79void fastcall unlock_buffer(struct buffer_head *bh)
80{
81 clear_buffer_locked(bh);
82 smp_mb__after_clear_bit();
83 wake_up_bit(&bh->b_state, BH_Lock);
84}
85
86/*
87 * Block until a buffer comes unlocked. This doesn't stop it
88 * from becoming locked again - you have to lock it yourself
89 * if you want to preserve its state.
90 */
91void __wait_on_buffer(struct buffer_head * bh)
92{
93 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
94}
95
96static void
97__clear_page_buffers(struct page *page)
98{
99 ClearPagePrivate(page);
4c21e2f2 100 set_page_private(page, 0);
1da177e4
LT
101 page_cache_release(page);
102}
103
104static void buffer_io_error(struct buffer_head *bh)
105{
106 char b[BDEVNAME_SIZE];
107
108 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
109 bdevname(bh->b_bdev, b),
110 (unsigned long long)bh->b_blocknr);
111}
112
113/*
114 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
115 * unlock the buffer. This is what ll_rw_block uses too.
116 */
117void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
118{
119 if (uptodate) {
120 set_buffer_uptodate(bh);
121 } else {
122 /* This happens, due to failed READA attempts. */
123 clear_buffer_uptodate(bh);
124 }
125 unlock_buffer(bh);
126 put_bh(bh);
127}
128
129void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
130{
131 char b[BDEVNAME_SIZE];
132
133 if (uptodate) {
134 set_buffer_uptodate(bh);
135 } else {
136 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
137 buffer_io_error(bh);
138 printk(KERN_WARNING "lost page write due to "
139 "I/O error on %s\n",
140 bdevname(bh->b_bdev, b));
141 }
142 set_buffer_write_io_error(bh);
143 clear_buffer_uptodate(bh);
144 }
145 unlock_buffer(bh);
146 put_bh(bh);
147}
148
149/*
150 * Write out and wait upon all the dirty data associated with a block
151 * device via its mapping. Does not take the superblock lock.
152 */
153int sync_blockdev(struct block_device *bdev)
154{
155 int ret = 0;
156
28fd1298
OH
157 if (bdev)
158 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
1da177e4
LT
159 return ret;
160}
161EXPORT_SYMBOL(sync_blockdev);
162
d25b9a1f 163static void __fsync_super(struct super_block *sb)
1da177e4
LT
164{
165 sync_inodes_sb(sb, 0);
166 DQUOT_SYNC(sb);
167 lock_super(sb);
168 if (sb->s_dirt && sb->s_op->write_super)
169 sb->s_op->write_super(sb);
170 unlock_super(sb);
171 if (sb->s_op->sync_fs)
172 sb->s_op->sync_fs(sb, 1);
173 sync_blockdev(sb->s_bdev);
174 sync_inodes_sb(sb, 1);
d25b9a1f 175}
1da177e4 176
d25b9a1f
OH
177/*
178 * Write out and wait upon all dirty data associated with this
179 * superblock. Filesystem data as well as the underlying block
180 * device. Takes the superblock lock.
181 */
182int fsync_super(struct super_block *sb)
183{
184 __fsync_super(sb);
1da177e4
LT
185 return sync_blockdev(sb->s_bdev);
186}
187
188/*
189 * Write out and wait upon all dirty data associated with this
190 * device. Filesystem data as well as the underlying block
191 * device. Takes the superblock lock.
192 */
193int fsync_bdev(struct block_device *bdev)
194{
195 struct super_block *sb = get_super(bdev);
196 if (sb) {
197 int res = fsync_super(sb);
198 drop_super(sb);
199 return res;
200 }
201 return sync_blockdev(bdev);
202}
203
204/**
205 * freeze_bdev -- lock a filesystem and force it into a consistent state
206 * @bdev: blockdevice to lock
207 *
c039e313 208 * This takes the block device bd_mount_mutex to make sure no new mounts
1da177e4
LT
209 * happen on bdev until thaw_bdev() is called.
210 * If a superblock is found on this device, we take the s_umount semaphore
211 * on it to make sure nobody unmounts until the snapshot creation is done.
212 */
213struct super_block *freeze_bdev(struct block_device *bdev)
214{
215 struct super_block *sb;
216
c039e313 217 mutex_lock(&bdev->bd_mount_mutex);
1da177e4
LT
218 sb = get_super(bdev);
219 if (sb && !(sb->s_flags & MS_RDONLY)) {
220 sb->s_frozen = SB_FREEZE_WRITE;
d59dd462 221 smp_wmb();
1da177e4 222
d25b9a1f 223 __fsync_super(sb);
1da177e4
LT
224
225 sb->s_frozen = SB_FREEZE_TRANS;
d59dd462 226 smp_wmb();
1da177e4
LT
227
228 sync_blockdev(sb->s_bdev);
229
230 if (sb->s_op->write_super_lockfs)
231 sb->s_op->write_super_lockfs(sb);
232 }
233
234 sync_blockdev(bdev);
235 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */
236}
237EXPORT_SYMBOL(freeze_bdev);
238
239/**
240 * thaw_bdev -- unlock filesystem
241 * @bdev: blockdevice to unlock
242 * @sb: associated superblock
243 *
244 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
245 */
246void thaw_bdev(struct block_device *bdev, struct super_block *sb)
247{
248 if (sb) {
249 BUG_ON(sb->s_bdev != bdev);
250
251 if (sb->s_op->unlockfs)
252 sb->s_op->unlockfs(sb);
253 sb->s_frozen = SB_UNFROZEN;
d59dd462 254 smp_wmb();
1da177e4
LT
255 wake_up(&sb->s_wait_unfrozen);
256 drop_super(sb);
257 }
258
c039e313 259 mutex_unlock(&bdev->bd_mount_mutex);
1da177e4
LT
260}
261EXPORT_SYMBOL(thaw_bdev);
262
263/*
264 * sync everything. Start out by waking pdflush, because that writes back
265 * all queues in parallel.
266 */
267static void do_sync(unsigned long wait)
268{
687a21ce 269 wakeup_pdflush(0);
1da177e4
LT
270 sync_inodes(0); /* All mappings, inodes and their blockdevs */
271 DQUOT_SYNC(NULL);
272 sync_supers(); /* Write the superblocks */
273 sync_filesystems(0); /* Start syncing the filesystems */
274 sync_filesystems(wait); /* Waitingly sync the filesystems */
275 sync_inodes(wait); /* Mappings, inodes and blockdevs, again. */
276 if (!wait)
277 printk("Emergency Sync complete\n");
278 if (unlikely(laptop_mode))
279 laptop_sync_completion();
280}
281
282asmlinkage long sys_sync(void)
283{
284 do_sync(1);
285 return 0;
286}
287
288void emergency_sync(void)
289{
290 pdflush_operation(do_sync, 0);
291}
292
293/*
294 * Generic function to fsync a file.
295 *
296 * filp may be NULL if called via the msync of a vma.
297 */
298
299int file_fsync(struct file *filp, struct dentry *dentry, int datasync)
300{
301 struct inode * inode = dentry->d_inode;
302 struct super_block * sb;
303 int ret, err;
304
305 /* sync the inode to buffers */
306 ret = write_inode_now(inode, 0);
307
308 /* sync the superblock to buffers */
309 sb = inode->i_sb;
310 lock_super(sb);
311 if (sb->s_op->write_super)
312 sb->s_op->write_super(sb);
313 unlock_super(sb);
314
315 /* .. finally sync the buffers to disk */
316 err = sync_blockdev(sb->s_bdev);
317 if (!ret)
318 ret = err;
319 return ret;
320}
321
18e79b40 322long do_fsync(struct file *file, int datasync)
1da177e4 323{
18e79b40
AM
324 int ret;
325 int err;
326 struct address_space *mapping = file->f_mapping;
1da177e4 327
1da177e4
LT
328 if (!file->f_op || !file->f_op->fsync) {
329 /* Why? We can still call filemap_fdatawrite */
18e79b40
AM
330 ret = -EINVAL;
331 goto out;
1da177e4
LT
332 }
333
334 current->flags |= PF_SYNCWRITE;
335 ret = filemap_fdatawrite(mapping);
336
337 /*
18e79b40
AM
338 * We need to protect against concurrent writers, which could cause
339 * livelocks in fsync_buffers_list().
1da177e4 340 */
1b1dcc1b 341 mutex_lock(&mapping->host->i_mutex);
dfb388bf 342 err = file->f_op->fsync(file, file->f_dentry, datasync);
1da177e4
LT
343 if (!ret)
344 ret = err;
1b1dcc1b 345 mutex_unlock(&mapping->host->i_mutex);
1da177e4
LT
346 err = filemap_fdatawait(mapping);
347 if (!ret)
348 ret = err;
349 current->flags &= ~PF_SYNCWRITE;
1da177e4
LT
350out:
351 return ret;
352}
353
18e79b40
AM
354static long __do_fsync(unsigned int fd, int datasync)
355{
356 struct file *file;
357 int ret = -EBADF;
358
359 file = fget(fd);
360 if (file) {
361 ret = do_fsync(file, datasync);
362 fput(file);
363 }
364 return ret;
365}
366
dfb388bf 367asmlinkage long sys_fsync(unsigned int fd)
1da177e4 368{
18e79b40 369 return __do_fsync(fd, 0);
dfb388bf 370}
1da177e4 371
dfb388bf
ON
372asmlinkage long sys_fdatasync(unsigned int fd)
373{
18e79b40 374 return __do_fsync(fd, 1);
1da177e4
LT
375}
376
377/*
378 * Various filesystems appear to want __find_get_block to be non-blocking.
379 * But it's the page lock which protects the buffers. To get around this,
380 * we get exclusion from try_to_free_buffers with the blockdev mapping's
381 * private_lock.
382 *
383 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
384 * may be quite high. This code could TryLock the page, and if that
385 * succeeds, there is no need to take private_lock. (But if
386 * private_lock is contended then so is mapping->tree_lock).
387 */
388static struct buffer_head *
385fd4c5 389__find_get_block_slow(struct block_device *bdev, sector_t block)
1da177e4
LT
390{
391 struct inode *bd_inode = bdev->bd_inode;
392 struct address_space *bd_mapping = bd_inode->i_mapping;
393 struct buffer_head *ret = NULL;
394 pgoff_t index;
395 struct buffer_head *bh;
396 struct buffer_head *head;
397 struct page *page;
398 int all_mapped = 1;
399
400 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
401 page = find_get_page(bd_mapping, index);
402 if (!page)
403 goto out;
404
405 spin_lock(&bd_mapping->private_lock);
406 if (!page_has_buffers(page))
407 goto out_unlock;
408 head = page_buffers(page);
409 bh = head;
410 do {
411 if (bh->b_blocknr == block) {
412 ret = bh;
413 get_bh(bh);
414 goto out_unlock;
415 }
416 if (!buffer_mapped(bh))
417 all_mapped = 0;
418 bh = bh->b_this_page;
419 } while (bh != head);
420
421 /* we might be here because some of the buffers on this page are
422 * not mapped. This is due to various races between
423 * file io on the block device and getblk. It gets dealt with
424 * elsewhere, don't buffer_error if we had some unmapped buffers
425 */
426 if (all_mapped) {
427 printk("__find_get_block_slow() failed. "
428 "block=%llu, b_blocknr=%llu\n",
429 (unsigned long long)block, (unsigned long long)bh->b_blocknr);
430 printk("b_state=0x%08lx, b_size=%u\n", bh->b_state, bh->b_size);
431 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
432 }
433out_unlock:
434 spin_unlock(&bd_mapping->private_lock);
435 page_cache_release(page);
436out:
437 return ret;
438}
439
440/* If invalidate_buffers() will trash dirty buffers, it means some kind
441 of fs corruption is going on. Trashing dirty data always imply losing
442 information that was supposed to be just stored on the physical layer
443 by the user.
444
445 Thus invalidate_buffers in general usage is not allwowed to trash
446 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
447 be preserved. These buffers are simply skipped.
448
449 We also skip buffers which are still in use. For example this can
450 happen if a userspace program is reading the block device.
451
452 NOTE: In the case where the user removed a removable-media-disk even if
453 there's still dirty data not synced on disk (due a bug in the device driver
454 or due an error of the user), by not destroying the dirty buffers we could
455 generate corruption also on the next media inserted, thus a parameter is
456 necessary to handle this case in the most safe way possible (trying
457 to not corrupt also the new disk inserted with the data belonging to
458 the old now corrupted disk). Also for the ramdisk the natural thing
459 to do in order to release the ramdisk memory is to destroy dirty buffers.
460
461 These are two special cases. Normal usage imply the device driver
462 to issue a sync on the device (without waiting I/O completion) and
463 then an invalidate_buffers call that doesn't trash dirty buffers.
464
465 For handling cache coherency with the blkdev pagecache the 'update' case
466 is been introduced. It is needed to re-read from disk any pinned
467 buffer. NOTE: re-reading from disk is destructive so we can do it only
468 when we assume nobody is changing the buffercache under our I/O and when
469 we think the disk contains more recent information than the buffercache.
470 The update == 1 pass marks the buffers we need to update, the update == 2
471 pass does the actual I/O. */
472void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
473{
474 invalidate_bh_lrus();
475 /*
476 * FIXME: what about destroy_dirty_buffers?
477 * We really want to use invalidate_inode_pages2() for
478 * that, but not until that's cleaned up.
479 */
480 invalidate_inode_pages(bdev->bd_inode->i_mapping);
481}
482
483/*
484 * Kick pdflush then try to free up some ZONE_NORMAL memory.
485 */
486static void free_more_memory(void)
487{
488 struct zone **zones;
489 pg_data_t *pgdat;
490
687a21ce 491 wakeup_pdflush(1024);
1da177e4
LT
492 yield();
493
494 for_each_pgdat(pgdat) {
af4ca457 495 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
1da177e4 496 if (*zones)
1ad539b2 497 try_to_free_pages(zones, GFP_NOFS);
1da177e4
LT
498 }
499}
500
501/*
502 * I/O completion handler for block_read_full_page() - pages
503 * which come unlocked at the end of I/O.
504 */
505static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
506{
1da177e4 507 unsigned long flags;
a3972203 508 struct buffer_head *first;
1da177e4
LT
509 struct buffer_head *tmp;
510 struct page *page;
511 int page_uptodate = 1;
512
513 BUG_ON(!buffer_async_read(bh));
514
515 page = bh->b_page;
516 if (uptodate) {
517 set_buffer_uptodate(bh);
518 } else {
519 clear_buffer_uptodate(bh);
520 if (printk_ratelimit())
521 buffer_io_error(bh);
522 SetPageError(page);
523 }
524
525 /*
526 * Be _very_ careful from here on. Bad things can happen if
527 * two buffer heads end IO at almost the same time and both
528 * decide that the page is now completely done.
529 */
a3972203
NP
530 first = page_buffers(page);
531 local_irq_save(flags);
532 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
1da177e4
LT
533 clear_buffer_async_read(bh);
534 unlock_buffer(bh);
535 tmp = bh;
536 do {
537 if (!buffer_uptodate(tmp))
538 page_uptodate = 0;
539 if (buffer_async_read(tmp)) {
540 BUG_ON(!buffer_locked(tmp));
541 goto still_busy;
542 }
543 tmp = tmp->b_this_page;
544 } while (tmp != bh);
a3972203
NP
545 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
546 local_irq_restore(flags);
1da177e4
LT
547
548 /*
549 * If none of the buffers had errors and they are all
550 * uptodate then we can set the page uptodate.
551 */
552 if (page_uptodate && !PageError(page))
553 SetPageUptodate(page);
554 unlock_page(page);
555 return;
556
557still_busy:
a3972203
NP
558 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
559 local_irq_restore(flags);
1da177e4
LT
560 return;
561}
562
563/*
564 * Completion handler for block_write_full_page() - pages which are unlocked
565 * during I/O, and which have PageWriteback cleared upon I/O completion.
566 */
567void end_buffer_async_write(struct buffer_head *bh, int uptodate)
568{
569 char b[BDEVNAME_SIZE];
1da177e4 570 unsigned long flags;
a3972203 571 struct buffer_head *first;
1da177e4
LT
572 struct buffer_head *tmp;
573 struct page *page;
574
575 BUG_ON(!buffer_async_write(bh));
576
577 page = bh->b_page;
578 if (uptodate) {
579 set_buffer_uptodate(bh);
580 } else {
581 if (printk_ratelimit()) {
582 buffer_io_error(bh);
583 printk(KERN_WARNING "lost page write due to "
584 "I/O error on %s\n",
585 bdevname(bh->b_bdev, b));
586 }
587 set_bit(AS_EIO, &page->mapping->flags);
588 clear_buffer_uptodate(bh);
589 SetPageError(page);
590 }
591
a3972203
NP
592 first = page_buffers(page);
593 local_irq_save(flags);
594 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
595
1da177e4
LT
596 clear_buffer_async_write(bh);
597 unlock_buffer(bh);
598 tmp = bh->b_this_page;
599 while (tmp != bh) {
600 if (buffer_async_write(tmp)) {
601 BUG_ON(!buffer_locked(tmp));
602 goto still_busy;
603 }
604 tmp = tmp->b_this_page;
605 }
a3972203
NP
606 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
607 local_irq_restore(flags);
1da177e4
LT
608 end_page_writeback(page);
609 return;
610
611still_busy:
a3972203
NP
612 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
613 local_irq_restore(flags);
1da177e4
LT
614 return;
615}
616
617/*
618 * If a page's buffers are under async readin (end_buffer_async_read
619 * completion) then there is a possibility that another thread of
620 * control could lock one of the buffers after it has completed
621 * but while some of the other buffers have not completed. This
622 * locked buffer would confuse end_buffer_async_read() into not unlocking
623 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
624 * that this buffer is not under async I/O.
625 *
626 * The page comes unlocked when it has no locked buffer_async buffers
627 * left.
628 *
629 * PageLocked prevents anyone starting new async I/O reads any of
630 * the buffers.
631 *
632 * PageWriteback is used to prevent simultaneous writeout of the same
633 * page.
634 *
635 * PageLocked prevents anyone from starting writeback of a page which is
636 * under read I/O (PageWriteback is only ever set against a locked page).
637 */
638static void mark_buffer_async_read(struct buffer_head *bh)
639{
640 bh->b_end_io = end_buffer_async_read;
641 set_buffer_async_read(bh);
642}
643
644void mark_buffer_async_write(struct buffer_head *bh)
645{
646 bh->b_end_io = end_buffer_async_write;
647 set_buffer_async_write(bh);
648}
649EXPORT_SYMBOL(mark_buffer_async_write);
650
651
652/*
653 * fs/buffer.c contains helper functions for buffer-backed address space's
654 * fsync functions. A common requirement for buffer-based filesystems is
655 * that certain data from the backing blockdev needs to be written out for
656 * a successful fsync(). For example, ext2 indirect blocks need to be
657 * written back and waited upon before fsync() returns.
658 *
659 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
660 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
661 * management of a list of dependent buffers at ->i_mapping->private_list.
662 *
663 * Locking is a little subtle: try_to_free_buffers() will remove buffers
664 * from their controlling inode's queue when they are being freed. But
665 * try_to_free_buffers() will be operating against the *blockdev* mapping
666 * at the time, not against the S_ISREG file which depends on those buffers.
667 * So the locking for private_list is via the private_lock in the address_space
668 * which backs the buffers. Which is different from the address_space
669 * against which the buffers are listed. So for a particular address_space,
670 * mapping->private_lock does *not* protect mapping->private_list! In fact,
671 * mapping->private_list will always be protected by the backing blockdev's
672 * ->private_lock.
673 *
674 * Which introduces a requirement: all buffers on an address_space's
675 * ->private_list must be from the same address_space: the blockdev's.
676 *
677 * address_spaces which do not place buffers at ->private_list via these
678 * utility functions are free to use private_lock and private_list for
679 * whatever they want. The only requirement is that list_empty(private_list)
680 * be true at clear_inode() time.
681 *
682 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
683 * filesystems should do that. invalidate_inode_buffers() should just go
684 * BUG_ON(!list_empty).
685 *
686 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
687 * take an address_space, not an inode. And it should be called
688 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
689 * queued up.
690 *
691 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
692 * list if it is already on a list. Because if the buffer is on a list,
693 * it *must* already be on the right one. If not, the filesystem is being
694 * silly. This will save a ton of locking. But first we have to ensure
695 * that buffers are taken *off* the old inode's list when they are freed
696 * (presumably in truncate). That requires careful auditing of all
697 * filesystems (do it inside bforget()). It could also be done by bringing
698 * b_inode back.
699 */
700
701/*
702 * The buffer's backing address_space's private_lock must be held
703 */
704static inline void __remove_assoc_queue(struct buffer_head *bh)
705{
706 list_del_init(&bh->b_assoc_buffers);
707}
708
709int inode_has_buffers(struct inode *inode)
710{
711 return !list_empty(&inode->i_data.private_list);
712}
713
714/*
715 * osync is designed to support O_SYNC io. It waits synchronously for
716 * all already-submitted IO to complete, but does not queue any new
717 * writes to the disk.
718 *
719 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
720 * you dirty the buffers, and then use osync_inode_buffers to wait for
721 * completion. Any other dirty buffers which are not yet queued for
722 * write will not be flushed to disk by the osync.
723 */
724static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
725{
726 struct buffer_head *bh;
727 struct list_head *p;
728 int err = 0;
729
730 spin_lock(lock);
731repeat:
732 list_for_each_prev(p, list) {
733 bh = BH_ENTRY(p);
734 if (buffer_locked(bh)) {
735 get_bh(bh);
736 spin_unlock(lock);
737 wait_on_buffer(bh);
738 if (!buffer_uptodate(bh))
739 err = -EIO;
740 brelse(bh);
741 spin_lock(lock);
742 goto repeat;
743 }
744 }
745 spin_unlock(lock);
746 return err;
747}
748
749/**
750 * sync_mapping_buffers - write out and wait upon a mapping's "associated"
751 * buffers
67be2dd1 752 * @mapping: the mapping which wants those buffers written
1da177e4
LT
753 *
754 * Starts I/O against the buffers at mapping->private_list, and waits upon
755 * that I/O.
756 *
67be2dd1
MW
757 * Basically, this is a convenience function for fsync().
758 * @mapping is a file or directory which needs those buffers to be written for
759 * a successful fsync().
1da177e4
LT
760 */
761int sync_mapping_buffers(struct address_space *mapping)
762{
763 struct address_space *buffer_mapping = mapping->assoc_mapping;
764
765 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
766 return 0;
767
768 return fsync_buffers_list(&buffer_mapping->private_lock,
769 &mapping->private_list);
770}
771EXPORT_SYMBOL(sync_mapping_buffers);
772
773/*
774 * Called when we've recently written block `bblock', and it is known that
775 * `bblock' was for a buffer_boundary() buffer. This means that the block at
776 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
777 * dirty, schedule it for IO. So that indirects merge nicely with their data.
778 */
779void write_boundary_block(struct block_device *bdev,
780 sector_t bblock, unsigned blocksize)
781{
782 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
783 if (bh) {
784 if (buffer_dirty(bh))
785 ll_rw_block(WRITE, 1, &bh);
786 put_bh(bh);
787 }
788}
789
790void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
791{
792 struct address_space *mapping = inode->i_mapping;
793 struct address_space *buffer_mapping = bh->b_page->mapping;
794
795 mark_buffer_dirty(bh);
796 if (!mapping->assoc_mapping) {
797 mapping->assoc_mapping = buffer_mapping;
798 } else {
799 if (mapping->assoc_mapping != buffer_mapping)
800 BUG();
801 }
802 if (list_empty(&bh->b_assoc_buffers)) {
803 spin_lock(&buffer_mapping->private_lock);
804 list_move_tail(&bh->b_assoc_buffers,
805 &mapping->private_list);
806 spin_unlock(&buffer_mapping->private_lock);
807 }
808}
809EXPORT_SYMBOL(mark_buffer_dirty_inode);
810
811/*
812 * Add a page to the dirty page list.
813 *
814 * It is a sad fact of life that this function is called from several places
815 * deeply under spinlocking. It may not sleep.
816 *
817 * If the page has buffers, the uptodate buffers are set dirty, to preserve
818 * dirty-state coherency between the page and the buffers. It the page does
819 * not have buffers then when they are later attached they will all be set
820 * dirty.
821 *
822 * The buffers are dirtied before the page is dirtied. There's a small race
823 * window in which a writepage caller may see the page cleanness but not the
824 * buffer dirtiness. That's fine. If this code were to set the page dirty
825 * before the buffers, a concurrent writepage caller could clear the page dirty
826 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
827 * page on the dirty page list.
828 *
829 * We use private_lock to lock against try_to_free_buffers while using the
830 * page's buffer list. Also use this to protect against clean buffers being
831 * added to the page after it was set dirty.
832 *
833 * FIXME: may need to call ->reservepage here as well. That's rather up to the
834 * address_space though.
835 */
836int __set_page_dirty_buffers(struct page *page)
837{
838 struct address_space * const mapping = page->mapping;
839
840 spin_lock(&mapping->private_lock);
841 if (page_has_buffers(page)) {
842 struct buffer_head *head = page_buffers(page);
843 struct buffer_head *bh = head;
844
845 do {
846 set_buffer_dirty(bh);
847 bh = bh->b_this_page;
848 } while (bh != head);
849 }
850 spin_unlock(&mapping->private_lock);
851
852 if (!TestSetPageDirty(page)) {
853 write_lock_irq(&mapping->tree_lock);
854 if (page->mapping) { /* Race with truncate? */
855 if (mapping_cap_account_dirty(mapping))
856 inc_page_state(nr_dirty);
857 radix_tree_tag_set(&mapping->page_tree,
858 page_index(page),
859 PAGECACHE_TAG_DIRTY);
860 }
861 write_unlock_irq(&mapping->tree_lock);
862 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
4741c9fd 863 return 1;
1da177e4 864 }
1da177e4
LT
865 return 0;
866}
867EXPORT_SYMBOL(__set_page_dirty_buffers);
868
869/*
870 * Write out and wait upon a list of buffers.
871 *
872 * We have conflicting pressures: we want to make sure that all
873 * initially dirty buffers get waited on, but that any subsequently
874 * dirtied buffers don't. After all, we don't want fsync to last
875 * forever if somebody is actively writing to the file.
876 *
877 * Do this in two main stages: first we copy dirty buffers to a
878 * temporary inode list, queueing the writes as we go. Then we clean
879 * up, waiting for those writes to complete.
880 *
881 * During this second stage, any subsequent updates to the file may end
882 * up refiling the buffer on the original inode's dirty list again, so
883 * there is a chance we will end up with a buffer queued for write but
884 * not yet completed on that list. So, as a final cleanup we go through
885 * the osync code to catch these locked, dirty buffers without requeuing
886 * any newly dirty buffers for write.
887 */
888static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
889{
890 struct buffer_head *bh;
891 struct list_head tmp;
892 int err = 0, err2;
893
894 INIT_LIST_HEAD(&tmp);
895
896 spin_lock(lock);
897 while (!list_empty(list)) {
898 bh = BH_ENTRY(list->next);
899 list_del_init(&bh->b_assoc_buffers);
900 if (buffer_dirty(bh) || buffer_locked(bh)) {
901 list_add(&bh->b_assoc_buffers, &tmp);
902 if (buffer_dirty(bh)) {
903 get_bh(bh);
904 spin_unlock(lock);
905 /*
906 * Ensure any pending I/O completes so that
907 * ll_rw_block() actually writes the current
908 * contents - it is a noop if I/O is still in
909 * flight on potentially older contents.
910 */
a7662236 911 ll_rw_block(SWRITE, 1, &bh);
1da177e4
LT
912 brelse(bh);
913 spin_lock(lock);
914 }
915 }
916 }
917
918 while (!list_empty(&tmp)) {
919 bh = BH_ENTRY(tmp.prev);
920 __remove_assoc_queue(bh);
921 get_bh(bh);
922 spin_unlock(lock);
923 wait_on_buffer(bh);
924 if (!buffer_uptodate(bh))
925 err = -EIO;
926 brelse(bh);
927 spin_lock(lock);
928 }
929
930 spin_unlock(lock);
931 err2 = osync_buffers_list(lock, list);
932 if (err)
933 return err;
934 else
935 return err2;
936}
937
938/*
939 * Invalidate any and all dirty buffers on a given inode. We are
940 * probably unmounting the fs, but that doesn't mean we have already
941 * done a sync(). Just drop the buffers from the inode list.
942 *
943 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
944 * assumes that all the buffers are against the blockdev. Not true
945 * for reiserfs.
946 */
947void invalidate_inode_buffers(struct inode *inode)
948{
949 if (inode_has_buffers(inode)) {
950 struct address_space *mapping = &inode->i_data;
951 struct list_head *list = &mapping->private_list;
952 struct address_space *buffer_mapping = mapping->assoc_mapping;
953
954 spin_lock(&buffer_mapping->private_lock);
955 while (!list_empty(list))
956 __remove_assoc_queue(BH_ENTRY(list->next));
957 spin_unlock(&buffer_mapping->private_lock);
958 }
959}
960
961/*
962 * Remove any clean buffers from the inode's buffer list. This is called
963 * when we're trying to free the inode itself. Those buffers can pin it.
964 *
965 * Returns true if all buffers were removed.
966 */
967int remove_inode_buffers(struct inode *inode)
968{
969 int ret = 1;
970
971 if (inode_has_buffers(inode)) {
972 struct address_space *mapping = &inode->i_data;
973 struct list_head *list = &mapping->private_list;
974 struct address_space *buffer_mapping = mapping->assoc_mapping;
975
976 spin_lock(&buffer_mapping->private_lock);
977 while (!list_empty(list)) {
978 struct buffer_head *bh = BH_ENTRY(list->next);
979 if (buffer_dirty(bh)) {
980 ret = 0;
981 break;
982 }
983 __remove_assoc_queue(bh);
984 }
985 spin_unlock(&buffer_mapping->private_lock);
986 }
987 return ret;
988}
989
990/*
991 * Create the appropriate buffers when given a page for data area and
992 * the size of each buffer.. Use the bh->b_this_page linked list to
993 * follow the buffers created. Return NULL if unable to create more
994 * buffers.
995 *
996 * The retry flag is used to differentiate async IO (paging, swapping)
997 * which may not fail from ordinary buffer allocations.
998 */
999struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
1000 int retry)
1001{
1002 struct buffer_head *bh, *head;
1003 long offset;
1004
1005try_again:
1006 head = NULL;
1007 offset = PAGE_SIZE;
1008 while ((offset -= size) >= 0) {
1009 bh = alloc_buffer_head(GFP_NOFS);
1010 if (!bh)
1011 goto no_grow;
1012
1013 bh->b_bdev = NULL;
1014 bh->b_this_page = head;
1015 bh->b_blocknr = -1;
1016 head = bh;
1017
1018 bh->b_state = 0;
1019 atomic_set(&bh->b_count, 0);
fc5cd582 1020 bh->b_private = NULL;
1da177e4
LT
1021 bh->b_size = size;
1022
1023 /* Link the buffer to its page */
1024 set_bh_page(bh, page, offset);
1025
01ffe339 1026 init_buffer(bh, NULL, NULL);
1da177e4
LT
1027 }
1028 return head;
1029/*
1030 * In case anything failed, we just free everything we got.
1031 */
1032no_grow:
1033 if (head) {
1034 do {
1035 bh = head;
1036 head = head->b_this_page;
1037 free_buffer_head(bh);
1038 } while (head);
1039 }
1040
1041 /*
1042 * Return failure for non-async IO requests. Async IO requests
1043 * are not allowed to fail, so we have to wait until buffer heads
1044 * become available. But we don't want tasks sleeping with
1045 * partially complete buffers, so all were released above.
1046 */
1047 if (!retry)
1048 return NULL;
1049
1050 /* We're _really_ low on memory. Now we just
1051 * wait for old buffer heads to become free due to
1052 * finishing IO. Since this is an async request and
1053 * the reserve list is empty, we're sure there are
1054 * async buffer heads in use.
1055 */
1056 free_more_memory();
1057 goto try_again;
1058}
1059EXPORT_SYMBOL_GPL(alloc_page_buffers);
1060
1061static inline void
1062link_dev_buffers(struct page *page, struct buffer_head *head)
1063{
1064 struct buffer_head *bh, *tail;
1065
1066 bh = head;
1067 do {
1068 tail = bh;
1069 bh = bh->b_this_page;
1070 } while (bh);
1071 tail->b_this_page = head;
1072 attach_page_buffers(page, head);
1073}
1074
1075/*
1076 * Initialise the state of a blockdev page's buffers.
1077 */
1078static void
1079init_page_buffers(struct page *page, struct block_device *bdev,
1080 sector_t block, int size)
1081{
1082 struct buffer_head *head = page_buffers(page);
1083 struct buffer_head *bh = head;
1084 int uptodate = PageUptodate(page);
1085
1086 do {
1087 if (!buffer_mapped(bh)) {
1088 init_buffer(bh, NULL, NULL);
1089 bh->b_bdev = bdev;
1090 bh->b_blocknr = block;
1091 if (uptodate)
1092 set_buffer_uptodate(bh);
1093 set_buffer_mapped(bh);
1094 }
1095 block++;
1096 bh = bh->b_this_page;
1097 } while (bh != head);
1098}
1099
1100/*
1101 * Create the page-cache page that contains the requested block.
1102 *
1103 * This is user purely for blockdev mappings.
1104 */
1105static struct page *
1106grow_dev_page(struct block_device *bdev, sector_t block,
1107 pgoff_t index, int size)
1108{
1109 struct inode *inode = bdev->bd_inode;
1110 struct page *page;
1111 struct buffer_head *bh;
1112
1113 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
1114 if (!page)
1115 return NULL;
1116
1117 if (!PageLocked(page))
1118 BUG();
1119
1120 if (page_has_buffers(page)) {
1121 bh = page_buffers(page);
1122 if (bh->b_size == size) {
1123 init_page_buffers(page, bdev, block, size);
1124 return page;
1125 }
1126 if (!try_to_free_buffers(page))
1127 goto failed;
1128 }
1129
1130 /*
1131 * Allocate some buffers for this page
1132 */
1133 bh = alloc_page_buffers(page, size, 0);
1134 if (!bh)
1135 goto failed;
1136
1137 /*
1138 * Link the page to the buffers and initialise them. Take the
1139 * lock to be atomic wrt __find_get_block(), which does not
1140 * run under the page lock.
1141 */
1142 spin_lock(&inode->i_mapping->private_lock);
1143 link_dev_buffers(page, bh);
1144 init_page_buffers(page, bdev, block, size);
1145 spin_unlock(&inode->i_mapping->private_lock);
1146 return page;
1147
1148failed:
1149 BUG();
1150 unlock_page(page);
1151 page_cache_release(page);
1152 return NULL;
1153}
1154
1155/*
1156 * Create buffers for the specified block device block's page. If
1157 * that page was dirty, the buffers are set dirty also.
1158 *
1159 * Except that's a bug. Attaching dirty buffers to a dirty
1160 * blockdev's page can result in filesystem corruption, because
1161 * some of those buffers may be aliases of filesystem data.
1162 * grow_dev_page() will go BUG() if this happens.
1163 */
858119e1 1164static int
1da177e4
LT
1165grow_buffers(struct block_device *bdev, sector_t block, int size)
1166{
1167 struct page *page;
1168 pgoff_t index;
1169 int sizebits;
1170
1171 sizebits = -1;
1172 do {
1173 sizebits++;
1174 } while ((size << sizebits) < PAGE_SIZE);
1175
1176 index = block >> sizebits;
1177 block = index << sizebits;
1178
1179 /* Create a page with the proper size buffers.. */
1180 page = grow_dev_page(bdev, block, index, size);
1181 if (!page)
1182 return 0;
1183 unlock_page(page);
1184 page_cache_release(page);
1185 return 1;
1186}
1187
75c96f85 1188static struct buffer_head *
1da177e4
LT
1189__getblk_slow(struct block_device *bdev, sector_t block, int size)
1190{
1191 /* Size must be multiple of hard sectorsize */
1192 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1193 (size < 512 || size > PAGE_SIZE))) {
1194 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1195 size);
1196 printk(KERN_ERR "hardsect size: %d\n",
1197 bdev_hardsect_size(bdev));
1198
1199 dump_stack();
1200 return NULL;
1201 }
1202
1203 for (;;) {
1204 struct buffer_head * bh;
1205
1206 bh = __find_get_block(bdev, block, size);
1207 if (bh)
1208 return bh;
1209
1210 if (!grow_buffers(bdev, block, size))
1211 free_more_memory();
1212 }
1213}
1214
1215/*
1216 * The relationship between dirty buffers and dirty pages:
1217 *
1218 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1219 * the page is tagged dirty in its radix tree.
1220 *
1221 * At all times, the dirtiness of the buffers represents the dirtiness of
1222 * subsections of the page. If the page has buffers, the page dirty bit is
1223 * merely a hint about the true dirty state.
1224 *
1225 * When a page is set dirty in its entirety, all its buffers are marked dirty
1226 * (if the page has buffers).
1227 *
1228 * When a buffer is marked dirty, its page is dirtied, but the page's other
1229 * buffers are not.
1230 *
1231 * Also. When blockdev buffers are explicitly read with bread(), they
1232 * individually become uptodate. But their backing page remains not
1233 * uptodate - even if all of its buffers are uptodate. A subsequent
1234 * block_read_full_page() against that page will discover all the uptodate
1235 * buffers, will set the page uptodate and will perform no I/O.
1236 */
1237
1238/**
1239 * mark_buffer_dirty - mark a buffer_head as needing writeout
67be2dd1 1240 * @bh: the buffer_head to mark dirty
1da177e4
LT
1241 *
1242 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1243 * backing page dirty, then tag the page as dirty in its address_space's radix
1244 * tree and then attach the address_space's inode to its superblock's dirty
1245 * inode list.
1246 *
1247 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1248 * mapping->tree_lock and the global inode_lock.
1249 */
1250void fastcall mark_buffer_dirty(struct buffer_head *bh)
1251{
1252 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1253 __set_page_dirty_nobuffers(bh->b_page);
1254}
1255
1256/*
1257 * Decrement a buffer_head's reference count. If all buffers against a page
1258 * have zero reference count, are clean and unlocked, and if the page is clean
1259 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1260 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1261 * a page but it ends up not being freed, and buffers may later be reattached).
1262 */
1263void __brelse(struct buffer_head * buf)
1264{
1265 if (atomic_read(&buf->b_count)) {
1266 put_bh(buf);
1267 return;
1268 }
1269 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1270 WARN_ON(1);
1271}
1272
1273/*
1274 * bforget() is like brelse(), except it discards any
1275 * potentially dirty data.
1276 */
1277void __bforget(struct buffer_head *bh)
1278{
1279 clear_buffer_dirty(bh);
1280 if (!list_empty(&bh->b_assoc_buffers)) {
1281 struct address_space *buffer_mapping = bh->b_page->mapping;
1282
1283 spin_lock(&buffer_mapping->private_lock);
1284 list_del_init(&bh->b_assoc_buffers);
1285 spin_unlock(&buffer_mapping->private_lock);
1286 }
1287 __brelse(bh);
1288}
1289
1290static struct buffer_head *__bread_slow(struct buffer_head *bh)
1291{
1292 lock_buffer(bh);
1293 if (buffer_uptodate(bh)) {
1294 unlock_buffer(bh);
1295 return bh;
1296 } else {
1297 get_bh(bh);
1298 bh->b_end_io = end_buffer_read_sync;
1299 submit_bh(READ, bh);
1300 wait_on_buffer(bh);
1301 if (buffer_uptodate(bh))
1302 return bh;
1303 }
1304 brelse(bh);
1305 return NULL;
1306}
1307
1308/*
1309 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1310 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1311 * refcount elevated by one when they're in an LRU. A buffer can only appear
1312 * once in a particular CPU's LRU. A single buffer can be present in multiple
1313 * CPU's LRUs at the same time.
1314 *
1315 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1316 * sb_find_get_block().
1317 *
1318 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1319 * a local interrupt disable for that.
1320 */
1321
1322#define BH_LRU_SIZE 8
1323
1324struct bh_lru {
1325 struct buffer_head *bhs[BH_LRU_SIZE];
1326};
1327
1328static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1329
1330#ifdef CONFIG_SMP
1331#define bh_lru_lock() local_irq_disable()
1332#define bh_lru_unlock() local_irq_enable()
1333#else
1334#define bh_lru_lock() preempt_disable()
1335#define bh_lru_unlock() preempt_enable()
1336#endif
1337
1338static inline void check_irqs_on(void)
1339{
1340#ifdef irqs_disabled
1341 BUG_ON(irqs_disabled());
1342#endif
1343}
1344
1345/*
1346 * The LRU management algorithm is dopey-but-simple. Sorry.
1347 */
1348static void bh_lru_install(struct buffer_head *bh)
1349{
1350 struct buffer_head *evictee = NULL;
1351 struct bh_lru *lru;
1352
1353 check_irqs_on();
1354 bh_lru_lock();
1355 lru = &__get_cpu_var(bh_lrus);
1356 if (lru->bhs[0] != bh) {
1357 struct buffer_head *bhs[BH_LRU_SIZE];
1358 int in;
1359 int out = 0;
1360
1361 get_bh(bh);
1362 bhs[out++] = bh;
1363 for (in = 0; in < BH_LRU_SIZE; in++) {
1364 struct buffer_head *bh2 = lru->bhs[in];
1365
1366 if (bh2 == bh) {
1367 __brelse(bh2);
1368 } else {
1369 if (out >= BH_LRU_SIZE) {
1370 BUG_ON(evictee != NULL);
1371 evictee = bh2;
1372 } else {
1373 bhs[out++] = bh2;
1374 }
1375 }
1376 }
1377 while (out < BH_LRU_SIZE)
1378 bhs[out++] = NULL;
1379 memcpy(lru->bhs, bhs, sizeof(bhs));
1380 }
1381 bh_lru_unlock();
1382
1383 if (evictee)
1384 __brelse(evictee);
1385}
1386
1387/*
1388 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1389 */
858119e1 1390static struct buffer_head *
1da177e4
LT
1391lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1392{
1393 struct buffer_head *ret = NULL;
1394 struct bh_lru *lru;
1395 int i;
1396
1397 check_irqs_on();
1398 bh_lru_lock();
1399 lru = &__get_cpu_var(bh_lrus);
1400 for (i = 0; i < BH_LRU_SIZE; i++) {
1401 struct buffer_head *bh = lru->bhs[i];
1402
1403 if (bh && bh->b_bdev == bdev &&
1404 bh->b_blocknr == block && bh->b_size == size) {
1405 if (i) {
1406 while (i) {
1407 lru->bhs[i] = lru->bhs[i - 1];
1408 i--;
1409 }
1410 lru->bhs[0] = bh;
1411 }
1412 get_bh(bh);
1413 ret = bh;
1414 break;
1415 }
1416 }
1417 bh_lru_unlock();
1418 return ret;
1419}
1420
1421/*
1422 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1423 * it in the LRU and mark it as accessed. If it is not present then return
1424 * NULL
1425 */
1426struct buffer_head *
1427__find_get_block(struct block_device *bdev, sector_t block, int size)
1428{
1429 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1430
1431 if (bh == NULL) {
385fd4c5 1432 bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1433 if (bh)
1434 bh_lru_install(bh);
1435 }
1436 if (bh)
1437 touch_buffer(bh);
1438 return bh;
1439}
1440EXPORT_SYMBOL(__find_get_block);
1441
1442/*
1443 * __getblk will locate (and, if necessary, create) the buffer_head
1444 * which corresponds to the passed block_device, block and size. The
1445 * returned buffer has its reference count incremented.
1446 *
1447 * __getblk() cannot fail - it just keeps trying. If you pass it an
1448 * illegal block number, __getblk() will happily return a buffer_head
1449 * which represents the non-existent block. Very weird.
1450 *
1451 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1452 * attempt is failing. FIXME, perhaps?
1453 */
1454struct buffer_head *
1455__getblk(struct block_device *bdev, sector_t block, int size)
1456{
1457 struct buffer_head *bh = __find_get_block(bdev, block, size);
1458
1459 might_sleep();
1460 if (bh == NULL)
1461 bh = __getblk_slow(bdev, block, size);
1462 return bh;
1463}
1464EXPORT_SYMBOL(__getblk);
1465
1466/*
1467 * Do async read-ahead on a buffer..
1468 */
1469void __breadahead(struct block_device *bdev, sector_t block, int size)
1470{
1471 struct buffer_head *bh = __getblk(bdev, block, size);
a3e713b5
AM
1472 if (likely(bh)) {
1473 ll_rw_block(READA, 1, &bh);
1474 brelse(bh);
1475 }
1da177e4
LT
1476}
1477EXPORT_SYMBOL(__breadahead);
1478
1479/**
1480 * __bread() - reads a specified block and returns the bh
67be2dd1 1481 * @bdev: the block_device to read from
1da177e4
LT
1482 * @block: number of block
1483 * @size: size (in bytes) to read
1484 *
1485 * Reads a specified block, and returns buffer head that contains it.
1486 * It returns NULL if the block was unreadable.
1487 */
1488struct buffer_head *
1489__bread(struct block_device *bdev, sector_t block, int size)
1490{
1491 struct buffer_head *bh = __getblk(bdev, block, size);
1492
a3e713b5 1493 if (likely(bh) && !buffer_uptodate(bh))
1da177e4
LT
1494 bh = __bread_slow(bh);
1495 return bh;
1496}
1497EXPORT_SYMBOL(__bread);
1498
1499/*
1500 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1501 * This doesn't race because it runs in each cpu either in irq
1502 * or with preempt disabled.
1503 */
1504static void invalidate_bh_lru(void *arg)
1505{
1506 struct bh_lru *b = &get_cpu_var(bh_lrus);
1507 int i;
1508
1509 for (i = 0; i < BH_LRU_SIZE; i++) {
1510 brelse(b->bhs[i]);
1511 b->bhs[i] = NULL;
1512 }
1513 put_cpu_var(bh_lrus);
1514}
1515
1516static void invalidate_bh_lrus(void)
1517{
1518 on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1519}
1520
1521void set_bh_page(struct buffer_head *bh,
1522 struct page *page, unsigned long offset)
1523{
1524 bh->b_page = page;
1525 if (offset >= PAGE_SIZE)
1526 BUG();
1527 if (PageHighMem(page))
1528 /*
1529 * This catches illegal uses and preserves the offset:
1530 */
1531 bh->b_data = (char *)(0 + offset);
1532 else
1533 bh->b_data = page_address(page) + offset;
1534}
1535EXPORT_SYMBOL(set_bh_page);
1536
1537/*
1538 * Called when truncating a buffer on a page completely.
1539 */
858119e1 1540static void discard_buffer(struct buffer_head * bh)
1da177e4
LT
1541{
1542 lock_buffer(bh);
1543 clear_buffer_dirty(bh);
1544 bh->b_bdev = NULL;
1545 clear_buffer_mapped(bh);
1546 clear_buffer_req(bh);
1547 clear_buffer_new(bh);
1548 clear_buffer_delay(bh);
1549 unlock_buffer(bh);
1550}
1551
1552/**
1553 * try_to_release_page() - release old fs-specific metadata on a page
1554 *
1555 * @page: the page which the kernel is trying to free
1556 * @gfp_mask: memory allocation flags (and I/O mode)
1557 *
1558 * The address_space is to try to release any data against the page
1559 * (presumably at page->private). If the release was successful, return `1'.
1560 * Otherwise return zero.
1561 *
1562 * The @gfp_mask argument specifies whether I/O may be performed to release
1563 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
1564 *
1565 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
1566 */
27496a8c 1567int try_to_release_page(struct page *page, gfp_t gfp_mask)
1da177e4
LT
1568{
1569 struct address_space * const mapping = page->mapping;
1570
1571 BUG_ON(!PageLocked(page));
1572 if (PageWriteback(page))
1573 return 0;
1574
1575 if (mapping && mapping->a_ops->releasepage)
1576 return mapping->a_ops->releasepage(page, gfp_mask);
1577 return try_to_free_buffers(page);
1578}
1579EXPORT_SYMBOL(try_to_release_page);
1580
1581/**
1582 * block_invalidatepage - invalidate part of all of a buffer-backed page
1583 *
1584 * @page: the page which is affected
1585 * @offset: the index of the truncation point
1586 *
1587 * block_invalidatepage() is called when all or part of the page has become
1588 * invalidatedby a truncate operation.
1589 *
1590 * block_invalidatepage() does not have to release all buffers, but it must
1591 * ensure that no dirty buffer is left outside @offset and that no I/O
1592 * is underway against any of the blocks which are outside the truncation
1593 * point. Because the caller is about to free (and possibly reuse) those
1594 * blocks on-disk.
1595 */
1596int block_invalidatepage(struct page *page, unsigned long offset)
1597{
1598 struct buffer_head *head, *bh, *next;
1599 unsigned int curr_off = 0;
1600 int ret = 1;
1601
1602 BUG_ON(!PageLocked(page));
1603 if (!page_has_buffers(page))
1604 goto out;
1605
1606 head = page_buffers(page);
1607 bh = head;
1608 do {
1609 unsigned int next_off = curr_off + bh->b_size;
1610 next = bh->b_this_page;
1611
1612 /*
1613 * is this block fully invalidated?
1614 */
1615 if (offset <= curr_off)
1616 discard_buffer(bh);
1617 curr_off = next_off;
1618 bh = next;
1619 } while (bh != head);
1620
1621 /*
1622 * We release buffers only if the entire page is being invalidated.
1623 * The get_block cached value has been unconditionally invalidated,
1624 * so real IO is not possible anymore.
1625 */
1626 if (offset == 0)
1627 ret = try_to_release_page(page, 0);
1628out:
1629 return ret;
1630}
1631EXPORT_SYMBOL(block_invalidatepage);
1632
aaa4059b
JK
1633int do_invalidatepage(struct page *page, unsigned long offset)
1634{
1635 int (*invalidatepage)(struct page *, unsigned long);
1636 invalidatepage = page->mapping->a_ops->invalidatepage;
1637 if (invalidatepage == NULL)
1638 invalidatepage = block_invalidatepage;
1639 return (*invalidatepage)(page, offset);
1640}
1641
1da177e4
LT
1642/*
1643 * We attach and possibly dirty the buffers atomically wrt
1644 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1645 * is already excluded via the page lock.
1646 */
1647void create_empty_buffers(struct page *page,
1648 unsigned long blocksize, unsigned long b_state)
1649{
1650 struct buffer_head *bh, *head, *tail;
1651
1652 head = alloc_page_buffers(page, blocksize, 1);
1653 bh = head;
1654 do {
1655 bh->b_state |= b_state;
1656 tail = bh;
1657 bh = bh->b_this_page;
1658 } while (bh);
1659 tail->b_this_page = head;
1660
1661 spin_lock(&page->mapping->private_lock);
1662 if (PageUptodate(page) || PageDirty(page)) {
1663 bh = head;
1664 do {
1665 if (PageDirty(page))
1666 set_buffer_dirty(bh);
1667 if (PageUptodate(page))
1668 set_buffer_uptodate(bh);
1669 bh = bh->b_this_page;
1670 } while (bh != head);
1671 }
1672 attach_page_buffers(page, head);
1673 spin_unlock(&page->mapping->private_lock);
1674}
1675EXPORT_SYMBOL(create_empty_buffers);
1676
1677/*
1678 * We are taking a block for data and we don't want any output from any
1679 * buffer-cache aliases starting from return from that function and
1680 * until the moment when something will explicitly mark the buffer
1681 * dirty (hopefully that will not happen until we will free that block ;-)
1682 * We don't even need to mark it not-uptodate - nobody can expect
1683 * anything from a newly allocated buffer anyway. We used to used
1684 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1685 * don't want to mark the alias unmapped, for example - it would confuse
1686 * anyone who might pick it with bread() afterwards...
1687 *
1688 * Also.. Note that bforget() doesn't lock the buffer. So there can
1689 * be writeout I/O going on against recently-freed buffers. We don't
1690 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1691 * only if we really need to. That happens here.
1692 */
1693void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1694{
1695 struct buffer_head *old_bh;
1696
1697 might_sleep();
1698
385fd4c5 1699 old_bh = __find_get_block_slow(bdev, block);
1da177e4
LT
1700 if (old_bh) {
1701 clear_buffer_dirty(old_bh);
1702 wait_on_buffer(old_bh);
1703 clear_buffer_req(old_bh);
1704 __brelse(old_bh);
1705 }
1706}
1707EXPORT_SYMBOL(unmap_underlying_metadata);
1708
1709/*
1710 * NOTE! All mapped/uptodate combinations are valid:
1711 *
1712 * Mapped Uptodate Meaning
1713 *
1714 * No No "unknown" - must do get_block()
1715 * No Yes "hole" - zero-filled
1716 * Yes No "allocated" - allocated on disk, not read in
1717 * Yes Yes "valid" - allocated and up-to-date in memory.
1718 *
1719 * "Dirty" is valid only with the last case (mapped+uptodate).
1720 */
1721
1722/*
1723 * While block_write_full_page is writing back the dirty buffers under
1724 * the page lock, whoever dirtied the buffers may decide to clean them
1725 * again at any time. We handle that by only looking at the buffer
1726 * state inside lock_buffer().
1727 *
1728 * If block_write_full_page() is called for regular writeback
1729 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1730 * locked buffer. This only can happen if someone has written the buffer
1731 * directly, with submit_bh(). At the address_space level PageWriteback
1732 * prevents this contention from occurring.
1733 */
1734static int __block_write_full_page(struct inode *inode, struct page *page,
1735 get_block_t *get_block, struct writeback_control *wbc)
1736{
1737 int err;
1738 sector_t block;
1739 sector_t last_block;
f0fbd5fc 1740 struct buffer_head *bh, *head;
1da177e4
LT
1741 int nr_underway = 0;
1742
1743 BUG_ON(!PageLocked(page));
1744
1745 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1746
1747 if (!page_has_buffers(page)) {
1748 create_empty_buffers(page, 1 << inode->i_blkbits,
1749 (1 << BH_Dirty)|(1 << BH_Uptodate));
1750 }
1751
1752 /*
1753 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1754 * here, and the (potentially unmapped) buffers may become dirty at
1755 * any time. If a buffer becomes dirty here after we've inspected it
1756 * then we just miss that fact, and the page stays dirty.
1757 *
1758 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1759 * handle that here by just cleaning them.
1760 */
1761
54b21a79 1762 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4
LT
1763 head = page_buffers(page);
1764 bh = head;
1765
1766 /*
1767 * Get all the dirty buffers mapped to disk addresses and
1768 * handle any aliases from the underlying blockdev's mapping.
1769 */
1770 do {
1771 if (block > last_block) {
1772 /*
1773 * mapped buffers outside i_size will occur, because
1774 * this page can be outside i_size when there is a
1775 * truncate in progress.
1776 */
1777 /*
1778 * The buffer was zeroed by block_write_full_page()
1779 */
1780 clear_buffer_dirty(bh);
1781 set_buffer_uptodate(bh);
1782 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1783 err = get_block(inode, block, bh, 1);
1784 if (err)
1785 goto recover;
1786 if (buffer_new(bh)) {
1787 /* blockdev mappings never come here */
1788 clear_buffer_new(bh);
1789 unmap_underlying_metadata(bh->b_bdev,
1790 bh->b_blocknr);
1791 }
1792 }
1793 bh = bh->b_this_page;
1794 block++;
1795 } while (bh != head);
1796
1797 do {
1da177e4
LT
1798 if (!buffer_mapped(bh))
1799 continue;
1800 /*
1801 * If it's a fully non-blocking write attempt and we cannot
1802 * lock the buffer then redirty the page. Note that this can
1803 * potentially cause a busy-wait loop from pdflush and kswapd
1804 * activity, but those code paths have their own higher-level
1805 * throttling.
1806 */
1807 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1808 lock_buffer(bh);
1809 } else if (test_set_buffer_locked(bh)) {
1810 redirty_page_for_writepage(wbc, page);
1811 continue;
1812 }
1813 if (test_clear_buffer_dirty(bh)) {
1814 mark_buffer_async_write(bh);
1815 } else {
1816 unlock_buffer(bh);
1817 }
1818 } while ((bh = bh->b_this_page) != head);
1819
1820 /*
1821 * The page and its buffers are protected by PageWriteback(), so we can
1822 * drop the bh refcounts early.
1823 */
1824 BUG_ON(PageWriteback(page));
1825 set_page_writeback(page);
1da177e4
LT
1826
1827 do {
1828 struct buffer_head *next = bh->b_this_page;
1829 if (buffer_async_write(bh)) {
1830 submit_bh(WRITE, bh);
1831 nr_underway++;
1832 }
1da177e4
LT
1833 bh = next;
1834 } while (bh != head);
05937baa 1835 unlock_page(page);
1da177e4
LT
1836
1837 err = 0;
1838done:
1839 if (nr_underway == 0) {
1840 /*
1841 * The page was marked dirty, but the buffers were
1842 * clean. Someone wrote them back by hand with
1843 * ll_rw_block/submit_bh. A rare case.
1844 */
1845 int uptodate = 1;
1846 do {
1847 if (!buffer_uptodate(bh)) {
1848 uptodate = 0;
1849 break;
1850 }
1851 bh = bh->b_this_page;
1852 } while (bh != head);
1853 if (uptodate)
1854 SetPageUptodate(page);
1855 end_page_writeback(page);
1856 /*
1857 * The page and buffer_heads can be released at any time from
1858 * here on.
1859 */
1860 wbc->pages_skipped++; /* We didn't write this page */
1861 }
1862 return err;
1863
1864recover:
1865 /*
1866 * ENOSPC, or some other error. We may already have added some
1867 * blocks to the file, so we need to write these out to avoid
1868 * exposing stale data.
1869 * The page is currently locked and not marked for writeback
1870 */
1871 bh = head;
1872 /* Recovery: lock and submit the mapped buffers */
1873 do {
1da177e4
LT
1874 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1875 lock_buffer(bh);
1876 mark_buffer_async_write(bh);
1877 } else {
1878 /*
1879 * The buffer may have been set dirty during
1880 * attachment to a dirty page.
1881 */
1882 clear_buffer_dirty(bh);
1883 }
1884 } while ((bh = bh->b_this_page) != head);
1885 SetPageError(page);
1886 BUG_ON(PageWriteback(page));
1887 set_page_writeback(page);
1888 unlock_page(page);
1889 do {
1890 struct buffer_head *next = bh->b_this_page;
1891 if (buffer_async_write(bh)) {
1892 clear_buffer_dirty(bh);
1893 submit_bh(WRITE, bh);
1894 nr_underway++;
1895 }
1da177e4
LT
1896 bh = next;
1897 } while (bh != head);
1898 goto done;
1899}
1900
1901static int __block_prepare_write(struct inode *inode, struct page *page,
1902 unsigned from, unsigned to, get_block_t *get_block)
1903{
1904 unsigned block_start, block_end;
1905 sector_t block;
1906 int err = 0;
1907 unsigned blocksize, bbits;
1908 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1909
1910 BUG_ON(!PageLocked(page));
1911 BUG_ON(from > PAGE_CACHE_SIZE);
1912 BUG_ON(to > PAGE_CACHE_SIZE);
1913 BUG_ON(from > to);
1914
1915 blocksize = 1 << inode->i_blkbits;
1916 if (!page_has_buffers(page))
1917 create_empty_buffers(page, blocksize, 0);
1918 head = page_buffers(page);
1919
1920 bbits = inode->i_blkbits;
1921 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1922
1923 for(bh = head, block_start = 0; bh != head || !block_start;
1924 block++, block_start=block_end, bh = bh->b_this_page) {
1925 block_end = block_start + blocksize;
1926 if (block_end <= from || block_start >= to) {
1927 if (PageUptodate(page)) {
1928 if (!buffer_uptodate(bh))
1929 set_buffer_uptodate(bh);
1930 }
1931 continue;
1932 }
1933 if (buffer_new(bh))
1934 clear_buffer_new(bh);
1935 if (!buffer_mapped(bh)) {
1936 err = get_block(inode, block, bh, 1);
1937 if (err)
f3ddbdc6 1938 break;
1da177e4 1939 if (buffer_new(bh)) {
1da177e4
LT
1940 unmap_underlying_metadata(bh->b_bdev,
1941 bh->b_blocknr);
1942 if (PageUptodate(page)) {
1943 set_buffer_uptodate(bh);
1944 continue;
1945 }
1946 if (block_end > to || block_start < from) {
1947 void *kaddr;
1948
1949 kaddr = kmap_atomic(page, KM_USER0);
1950 if (block_end > to)
1951 memset(kaddr+to, 0,
1952 block_end-to);
1953 if (block_start < from)
1954 memset(kaddr+block_start,
1955 0, from-block_start);
1956 flush_dcache_page(page);
1957 kunmap_atomic(kaddr, KM_USER0);
1958 }
1959 continue;
1960 }
1961 }
1962 if (PageUptodate(page)) {
1963 if (!buffer_uptodate(bh))
1964 set_buffer_uptodate(bh);
1965 continue;
1966 }
1967 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1968 (block_start < from || block_end > to)) {
1969 ll_rw_block(READ, 1, &bh);
1970 *wait_bh++=bh;
1971 }
1972 }
1973 /*
1974 * If we issued read requests - let them complete.
1975 */
1976 while(wait_bh > wait) {
1977 wait_on_buffer(*--wait_bh);
1978 if (!buffer_uptodate(*wait_bh))
f3ddbdc6 1979 err = -EIO;
1da177e4 1980 }
152becd2
AA
1981 if (!err) {
1982 bh = head;
1983 do {
1984 if (buffer_new(bh))
1985 clear_buffer_new(bh);
1986 } while ((bh = bh->b_this_page) != head);
1987 return 0;
1988 }
f3ddbdc6 1989 /* Error case: */
1da177e4
LT
1990 /*
1991 * Zero out any newly allocated blocks to avoid exposing stale
1992 * data. If BH_New is set, we know that the block was newly
1993 * allocated in the above loop.
1994 */
1995 bh = head;
1996 block_start = 0;
1997 do {
1998 block_end = block_start+blocksize;
1999 if (block_end <= from)
2000 goto next_bh;
2001 if (block_start >= to)
2002 break;
2003 if (buffer_new(bh)) {
2004 void *kaddr;
2005
2006 clear_buffer_new(bh);
2007 kaddr = kmap_atomic(page, KM_USER0);
2008 memset(kaddr+block_start, 0, bh->b_size);
2009 kunmap_atomic(kaddr, KM_USER0);
2010 set_buffer_uptodate(bh);
2011 mark_buffer_dirty(bh);
2012 }
2013next_bh:
2014 block_start = block_end;
2015 bh = bh->b_this_page;
2016 } while (bh != head);
2017 return err;
2018}
2019
2020static int __block_commit_write(struct inode *inode, struct page *page,
2021 unsigned from, unsigned to)
2022{
2023 unsigned block_start, block_end;
2024 int partial = 0;
2025 unsigned blocksize;
2026 struct buffer_head *bh, *head;
2027
2028 blocksize = 1 << inode->i_blkbits;
2029
2030 for(bh = head = page_buffers(page), block_start = 0;
2031 bh != head || !block_start;
2032 block_start=block_end, bh = bh->b_this_page) {
2033 block_end = block_start + blocksize;
2034 if (block_end <= from || block_start >= to) {
2035 if (!buffer_uptodate(bh))
2036 partial = 1;
2037 } else {
2038 set_buffer_uptodate(bh);
2039 mark_buffer_dirty(bh);
2040 }
2041 }
2042
2043 /*
2044 * If this is a partial write which happened to make all buffers
2045 * uptodate then we can optimize away a bogus readpage() for
2046 * the next read(). Here we 'discover' whether the page went
2047 * uptodate as a result of this (potentially partial) write.
2048 */
2049 if (!partial)
2050 SetPageUptodate(page);
2051 return 0;
2052}
2053
2054/*
2055 * Generic "read page" function for block devices that have the normal
2056 * get_block functionality. This is most of the block device filesystems.
2057 * Reads the page asynchronously --- the unlock_buffer() and
2058 * set/clear_buffer_uptodate() functions propagate buffer state into the
2059 * page struct once IO has completed.
2060 */
2061int block_read_full_page(struct page *page, get_block_t *get_block)
2062{
2063 struct inode *inode = page->mapping->host;
2064 sector_t iblock, lblock;
2065 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2066 unsigned int blocksize;
2067 int nr, i;
2068 int fully_mapped = 1;
2069
cd7619d6 2070 BUG_ON(!PageLocked(page));
1da177e4
LT
2071 blocksize = 1 << inode->i_blkbits;
2072 if (!page_has_buffers(page))
2073 create_empty_buffers(page, blocksize, 0);
2074 head = page_buffers(page);
2075
2076 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2077 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2078 bh = head;
2079 nr = 0;
2080 i = 0;
2081
2082 do {
2083 if (buffer_uptodate(bh))
2084 continue;
2085
2086 if (!buffer_mapped(bh)) {
c64610ba
AM
2087 int err = 0;
2088
1da177e4
LT
2089 fully_mapped = 0;
2090 if (iblock < lblock) {
c64610ba
AM
2091 err = get_block(inode, iblock, bh, 0);
2092 if (err)
1da177e4
LT
2093 SetPageError(page);
2094 }
2095 if (!buffer_mapped(bh)) {
2096 void *kaddr = kmap_atomic(page, KM_USER0);
2097 memset(kaddr + i * blocksize, 0, blocksize);
2098 flush_dcache_page(page);
2099 kunmap_atomic(kaddr, KM_USER0);
c64610ba
AM
2100 if (!err)
2101 set_buffer_uptodate(bh);
1da177e4
LT
2102 continue;
2103 }
2104 /*
2105 * get_block() might have updated the buffer
2106 * synchronously
2107 */
2108 if (buffer_uptodate(bh))
2109 continue;
2110 }
2111 arr[nr++] = bh;
2112 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2113
2114 if (fully_mapped)
2115 SetPageMappedToDisk(page);
2116
2117 if (!nr) {
2118 /*
2119 * All buffers are uptodate - we can set the page uptodate
2120 * as well. But not if get_block() returned an error.
2121 */
2122 if (!PageError(page))
2123 SetPageUptodate(page);
2124 unlock_page(page);
2125 return 0;
2126 }
2127
2128 /* Stage two: lock the buffers */
2129 for (i = 0; i < nr; i++) {
2130 bh = arr[i];
2131 lock_buffer(bh);
2132 mark_buffer_async_read(bh);
2133 }
2134
2135 /*
2136 * Stage 3: start the IO. Check for uptodateness
2137 * inside the buffer lock in case another process reading
2138 * the underlying blockdev brought it uptodate (the sct fix).
2139 */
2140 for (i = 0; i < nr; i++) {
2141 bh = arr[i];
2142 if (buffer_uptodate(bh))
2143 end_buffer_async_read(bh, 1);
2144 else
2145 submit_bh(READ, bh);
2146 }
2147 return 0;
2148}
2149
2150/* utility function for filesystems that need to do work on expanding
2151 * truncates. Uses prepare/commit_write to allow the filesystem to
2152 * deal with the hole.
2153 */
05eb0b51
OH
2154static int __generic_cont_expand(struct inode *inode, loff_t size,
2155 pgoff_t index, unsigned int offset)
1da177e4
LT
2156{
2157 struct address_space *mapping = inode->i_mapping;
2158 struct page *page;
05eb0b51 2159 unsigned long limit;
1da177e4
LT
2160 int err;
2161
2162 err = -EFBIG;
2163 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2164 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2165 send_sig(SIGXFSZ, current, 0);
2166 goto out;
2167 }
2168 if (size > inode->i_sb->s_maxbytes)
2169 goto out;
2170
1da177e4
LT
2171 err = -ENOMEM;
2172 page = grab_cache_page(mapping, index);
2173 if (!page)
2174 goto out;
2175 err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
05eb0b51
OH
2176 if (err) {
2177 /*
2178 * ->prepare_write() may have instantiated a few blocks
2179 * outside i_size. Trim these off again.
2180 */
2181 unlock_page(page);
2182 page_cache_release(page);
2183 vmtruncate(inode, inode->i_size);
2184 goto out;
1da177e4 2185 }
05eb0b51
OH
2186
2187 err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2188
1da177e4
LT
2189 unlock_page(page);
2190 page_cache_release(page);
2191 if (err > 0)
2192 err = 0;
2193out:
2194 return err;
2195}
2196
05eb0b51
OH
2197int generic_cont_expand(struct inode *inode, loff_t size)
2198{
2199 pgoff_t index;
2200 unsigned int offset;
2201
2202 offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2203
2204 /* ugh. in prepare/commit_write, if from==to==start of block, we
2205 ** skip the prepare. make sure we never send an offset for the start
2206 ** of a block
2207 */
2208 if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2209 /* caller must handle this extra byte. */
2210 offset++;
2211 }
2212 index = size >> PAGE_CACHE_SHIFT;
2213
2214 return __generic_cont_expand(inode, size, index, offset);
2215}
2216
2217int generic_cont_expand_simple(struct inode *inode, loff_t size)
2218{
2219 loff_t pos = size - 1;
2220 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2221 unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2222
2223 /* prepare/commit_write can handle even if from==to==start of block. */
2224 return __generic_cont_expand(inode, size, index, offset);
2225}
2226
1da177e4
LT
2227/*
2228 * For moronic filesystems that do not allow holes in file.
2229 * We may have to extend the file.
2230 */
2231
2232int cont_prepare_write(struct page *page, unsigned offset,
2233 unsigned to, get_block_t *get_block, loff_t *bytes)
2234{
2235 struct address_space *mapping = page->mapping;
2236 struct inode *inode = mapping->host;
2237 struct page *new_page;
2238 pgoff_t pgpos;
2239 long status;
2240 unsigned zerofrom;
2241 unsigned blocksize = 1 << inode->i_blkbits;
2242 void *kaddr;
2243
2244 while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2245 status = -ENOMEM;
2246 new_page = grab_cache_page(mapping, pgpos);
2247 if (!new_page)
2248 goto out;
2249 /* we might sleep */
2250 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2251 unlock_page(new_page);
2252 page_cache_release(new_page);
2253 continue;
2254 }
2255 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2256 if (zerofrom & (blocksize-1)) {
2257 *bytes |= (blocksize-1);
2258 (*bytes)++;
2259 }
2260 status = __block_prepare_write(inode, new_page, zerofrom,
2261 PAGE_CACHE_SIZE, get_block);
2262 if (status)
2263 goto out_unmap;
2264 kaddr = kmap_atomic(new_page, KM_USER0);
2265 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2266 flush_dcache_page(new_page);
2267 kunmap_atomic(kaddr, KM_USER0);
2268 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2269 unlock_page(new_page);
2270 page_cache_release(new_page);
2271 }
2272
2273 if (page->index < pgpos) {
2274 /* completely inside the area */
2275 zerofrom = offset;
2276 } else {
2277 /* page covers the boundary, find the boundary offset */
2278 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2279
2280 /* if we will expand the thing last block will be filled */
2281 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2282 *bytes |= (blocksize-1);
2283 (*bytes)++;
2284 }
2285
2286 /* starting below the boundary? Nothing to zero out */
2287 if (offset <= zerofrom)
2288 zerofrom = offset;
2289 }
2290 status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2291 if (status)
2292 goto out1;
2293 if (zerofrom < offset) {
2294 kaddr = kmap_atomic(page, KM_USER0);
2295 memset(kaddr+zerofrom, 0, offset-zerofrom);
2296 flush_dcache_page(page);
2297 kunmap_atomic(kaddr, KM_USER0);
2298 __block_commit_write(inode, page, zerofrom, offset);
2299 }
2300 return 0;
2301out1:
2302 ClearPageUptodate(page);
2303 return status;
2304
2305out_unmap:
2306 ClearPageUptodate(new_page);
2307 unlock_page(new_page);
2308 page_cache_release(new_page);
2309out:
2310 return status;
2311}
2312
2313int block_prepare_write(struct page *page, unsigned from, unsigned to,
2314 get_block_t *get_block)
2315{
2316 struct inode *inode = page->mapping->host;
2317 int err = __block_prepare_write(inode, page, from, to, get_block);
2318 if (err)
2319 ClearPageUptodate(page);
2320 return err;
2321}
2322
2323int block_commit_write(struct page *page, unsigned from, unsigned to)
2324{
2325 struct inode *inode = page->mapping->host;
2326 __block_commit_write(inode,page,from,to);
2327 return 0;
2328}
2329
2330int generic_commit_write(struct file *file, struct page *page,
2331 unsigned from, unsigned to)
2332{
2333 struct inode *inode = page->mapping->host;
2334 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2335 __block_commit_write(inode,page,from,to);
2336 /*
2337 * No need to use i_size_read() here, the i_size
1b1dcc1b 2338 * cannot change under us because we hold i_mutex.
1da177e4
LT
2339 */
2340 if (pos > inode->i_size) {
2341 i_size_write(inode, pos);
2342 mark_inode_dirty(inode);
2343 }
2344 return 0;
2345}
2346
2347
2348/*
2349 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2350 * immediately, while under the page lock. So it needs a special end_io
2351 * handler which does not touch the bh after unlocking it.
2352 *
2353 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2354 * a race there is benign: unlock_buffer() only use the bh's address for
2355 * hashing after unlocking the buffer, so it doesn't actually touch the bh
2356 * itself.
2357 */
2358static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2359{
2360 if (uptodate) {
2361 set_buffer_uptodate(bh);
2362 } else {
2363 /* This happens, due to failed READA attempts. */
2364 clear_buffer_uptodate(bh);
2365 }
2366 unlock_buffer(bh);
2367}
2368
2369/*
2370 * On entry, the page is fully not uptodate.
2371 * On exit the page is fully uptodate in the areas outside (from,to)
2372 */
2373int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2374 get_block_t *get_block)
2375{
2376 struct inode *inode = page->mapping->host;
2377 const unsigned blkbits = inode->i_blkbits;
2378 const unsigned blocksize = 1 << blkbits;
2379 struct buffer_head map_bh;
2380 struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2381 unsigned block_in_page;
2382 unsigned block_start;
2383 sector_t block_in_file;
2384 char *kaddr;
2385 int nr_reads = 0;
2386 int i;
2387 int ret = 0;
2388 int is_mapped_to_disk = 1;
2389 int dirtied_it = 0;
2390
2391 if (PageMappedToDisk(page))
2392 return 0;
2393
2394 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2395 map_bh.b_page = page;
2396
2397 /*
2398 * We loop across all blocks in the page, whether or not they are
2399 * part of the affected region. This is so we can discover if the
2400 * page is fully mapped-to-disk.
2401 */
2402 for (block_start = 0, block_in_page = 0;
2403 block_start < PAGE_CACHE_SIZE;
2404 block_in_page++, block_start += blocksize) {
2405 unsigned block_end = block_start + blocksize;
2406 int create;
2407
2408 map_bh.b_state = 0;
2409 create = 1;
2410 if (block_start >= to)
2411 create = 0;
2412 ret = get_block(inode, block_in_file + block_in_page,
2413 &map_bh, create);
2414 if (ret)
2415 goto failed;
2416 if (!buffer_mapped(&map_bh))
2417 is_mapped_to_disk = 0;
2418 if (buffer_new(&map_bh))
2419 unmap_underlying_metadata(map_bh.b_bdev,
2420 map_bh.b_blocknr);
2421 if (PageUptodate(page))
2422 continue;
2423 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2424 kaddr = kmap_atomic(page, KM_USER0);
2425 if (block_start < from) {
2426 memset(kaddr+block_start, 0, from-block_start);
2427 dirtied_it = 1;
2428 }
2429 if (block_end > to) {
2430 memset(kaddr + to, 0, block_end - to);
2431 dirtied_it = 1;
2432 }
2433 flush_dcache_page(page);
2434 kunmap_atomic(kaddr, KM_USER0);
2435 continue;
2436 }
2437 if (buffer_uptodate(&map_bh))
2438 continue; /* reiserfs does this */
2439 if (block_start < from || block_end > to) {
2440 struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2441
2442 if (!bh) {
2443 ret = -ENOMEM;
2444 goto failed;
2445 }
2446 bh->b_state = map_bh.b_state;
2447 atomic_set(&bh->b_count, 0);
2448 bh->b_this_page = NULL;
2449 bh->b_page = page;
2450 bh->b_blocknr = map_bh.b_blocknr;
2451 bh->b_size = blocksize;
2452 bh->b_data = (char *)(long)block_start;
2453 bh->b_bdev = map_bh.b_bdev;
2454 bh->b_private = NULL;
2455 read_bh[nr_reads++] = bh;
2456 }
2457 }
2458
2459 if (nr_reads) {
2460 struct buffer_head *bh;
2461
2462 /*
2463 * The page is locked, so these buffers are protected from
2464 * any VM or truncate activity. Hence we don't need to care
2465 * for the buffer_head refcounts.
2466 */
2467 for (i = 0; i < nr_reads; i++) {
2468 bh = read_bh[i];
2469 lock_buffer(bh);
2470 bh->b_end_io = end_buffer_read_nobh;
2471 submit_bh(READ, bh);
2472 }
2473 for (i = 0; i < nr_reads; i++) {
2474 bh = read_bh[i];
2475 wait_on_buffer(bh);
2476 if (!buffer_uptodate(bh))
2477 ret = -EIO;
2478 free_buffer_head(bh);
2479 read_bh[i] = NULL;
2480 }
2481 if (ret)
2482 goto failed;
2483 }
2484
2485 if (is_mapped_to_disk)
2486 SetPageMappedToDisk(page);
2487 SetPageUptodate(page);
2488
2489 /*
2490 * Setting the page dirty here isn't necessary for the prepare_write
2491 * function - commit_write will do that. But if/when this function is
2492 * used within the pagefault handler to ensure that all mmapped pages
2493 * have backing space in the filesystem, we will need to dirty the page
2494 * if its contents were altered.
2495 */
2496 if (dirtied_it)
2497 set_page_dirty(page);
2498
2499 return 0;
2500
2501failed:
2502 for (i = 0; i < nr_reads; i++) {
2503 if (read_bh[i])
2504 free_buffer_head(read_bh[i]);
2505 }
2506
2507 /*
2508 * Error recovery is pretty slack. Clear the page and mark it dirty
2509 * so we'll later zero out any blocks which _were_ allocated.
2510 */
2511 kaddr = kmap_atomic(page, KM_USER0);
2512 memset(kaddr, 0, PAGE_CACHE_SIZE);
2513 kunmap_atomic(kaddr, KM_USER0);
2514 SetPageUptodate(page);
2515 set_page_dirty(page);
2516 return ret;
2517}
2518EXPORT_SYMBOL(nobh_prepare_write);
2519
2520int nobh_commit_write(struct file *file, struct page *page,
2521 unsigned from, unsigned to)
2522{
2523 struct inode *inode = page->mapping->host;
2524 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2525
2526 set_page_dirty(page);
2527 if (pos > inode->i_size) {
2528 i_size_write(inode, pos);
2529 mark_inode_dirty(inode);
2530 }
2531 return 0;
2532}
2533EXPORT_SYMBOL(nobh_commit_write);
2534
2535/*
2536 * nobh_writepage() - based on block_full_write_page() except
2537 * that it tries to operate without attaching bufferheads to
2538 * the page.
2539 */
2540int nobh_writepage(struct page *page, get_block_t *get_block,
2541 struct writeback_control *wbc)
2542{
2543 struct inode * const inode = page->mapping->host;
2544 loff_t i_size = i_size_read(inode);
2545 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2546 unsigned offset;
2547 void *kaddr;
2548 int ret;
2549
2550 /* Is the page fully inside i_size? */
2551 if (page->index < end_index)
2552 goto out;
2553
2554 /* Is the page fully outside i_size? (truncate in progress) */
2555 offset = i_size & (PAGE_CACHE_SIZE-1);
2556 if (page->index >= end_index+1 || !offset) {
2557 /*
2558 * The page may have dirty, unmapped buffers. For example,
2559 * they may have been added in ext3_writepage(). Make them
2560 * freeable here, so the page does not leak.
2561 */
2562#if 0
2563 /* Not really sure about this - do we need this ? */
2564 if (page->mapping->a_ops->invalidatepage)
2565 page->mapping->a_ops->invalidatepage(page, offset);
2566#endif
2567 unlock_page(page);
2568 return 0; /* don't care */
2569 }
2570
2571 /*
2572 * The page straddles i_size. It must be zeroed out on each and every
2573 * writepage invocation because it may be mmapped. "A file is mapped
2574 * in multiples of the page size. For a file that is not a multiple of
2575 * the page size, the remaining memory is zeroed when mapped, and
2576 * writes to that region are not written out to the file."
2577 */
2578 kaddr = kmap_atomic(page, KM_USER0);
2579 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2580 flush_dcache_page(page);
2581 kunmap_atomic(kaddr, KM_USER0);
2582out:
2583 ret = mpage_writepage(page, get_block, wbc);
2584 if (ret == -EAGAIN)
2585 ret = __block_write_full_page(inode, page, get_block, wbc);
2586 return ret;
2587}
2588EXPORT_SYMBOL(nobh_writepage);
2589
2590/*
2591 * This function assumes that ->prepare_write() uses nobh_prepare_write().
2592 */
2593int nobh_truncate_page(struct address_space *mapping, loff_t from)
2594{
2595 struct inode *inode = mapping->host;
2596 unsigned blocksize = 1 << inode->i_blkbits;
2597 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2598 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2599 unsigned to;
2600 struct page *page;
2601 struct address_space_operations *a_ops = mapping->a_ops;
2602 char *kaddr;
2603 int ret = 0;
2604
2605 if ((offset & (blocksize - 1)) == 0)
2606 goto out;
2607
2608 ret = -ENOMEM;
2609 page = grab_cache_page(mapping, index);
2610 if (!page)
2611 goto out;
2612
2613 to = (offset + blocksize) & ~(blocksize - 1);
2614 ret = a_ops->prepare_write(NULL, page, offset, to);
2615 if (ret == 0) {
2616 kaddr = kmap_atomic(page, KM_USER0);
2617 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2618 flush_dcache_page(page);
2619 kunmap_atomic(kaddr, KM_USER0);
2620 set_page_dirty(page);
2621 }
2622 unlock_page(page);
2623 page_cache_release(page);
2624out:
2625 return ret;
2626}
2627EXPORT_SYMBOL(nobh_truncate_page);
2628
2629int block_truncate_page(struct address_space *mapping,
2630 loff_t from, get_block_t *get_block)
2631{
2632 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2633 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2634 unsigned blocksize;
54b21a79 2635 sector_t iblock;
1da177e4
LT
2636 unsigned length, pos;
2637 struct inode *inode = mapping->host;
2638 struct page *page;
2639 struct buffer_head *bh;
2640 void *kaddr;
2641 int err;
2642
2643 blocksize = 1 << inode->i_blkbits;
2644 length = offset & (blocksize - 1);
2645
2646 /* Block boundary? Nothing to do */
2647 if (!length)
2648 return 0;
2649
2650 length = blocksize - length;
54b21a79 2651 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1da177e4
LT
2652
2653 page = grab_cache_page(mapping, index);
2654 err = -ENOMEM;
2655 if (!page)
2656 goto out;
2657
2658 if (!page_has_buffers(page))
2659 create_empty_buffers(page, blocksize, 0);
2660
2661 /* Find the buffer that contains "offset" */
2662 bh = page_buffers(page);
2663 pos = blocksize;
2664 while (offset >= pos) {
2665 bh = bh->b_this_page;
2666 iblock++;
2667 pos += blocksize;
2668 }
2669
2670 err = 0;
2671 if (!buffer_mapped(bh)) {
2672 err = get_block(inode, iblock, bh, 0);
2673 if (err)
2674 goto unlock;
2675 /* unmapped? It's a hole - nothing to do */
2676 if (!buffer_mapped(bh))
2677 goto unlock;
2678 }
2679
2680 /* Ok, it's mapped. Make sure it's up-to-date */
2681 if (PageUptodate(page))
2682 set_buffer_uptodate(bh);
2683
2684 if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2685 err = -EIO;
2686 ll_rw_block(READ, 1, &bh);
2687 wait_on_buffer(bh);
2688 /* Uhhuh. Read error. Complain and punt. */
2689 if (!buffer_uptodate(bh))
2690 goto unlock;
2691 }
2692
2693 kaddr = kmap_atomic(page, KM_USER0);
2694 memset(kaddr + offset, 0, length);
2695 flush_dcache_page(page);
2696 kunmap_atomic(kaddr, KM_USER0);
2697
2698 mark_buffer_dirty(bh);
2699 err = 0;
2700
2701unlock:
2702 unlock_page(page);
2703 page_cache_release(page);
2704out:
2705 return err;
2706}
2707
2708/*
2709 * The generic ->writepage function for buffer-backed address_spaces
2710 */
2711int block_write_full_page(struct page *page, get_block_t *get_block,
2712 struct writeback_control *wbc)
2713{
2714 struct inode * const inode = page->mapping->host;
2715 loff_t i_size = i_size_read(inode);
2716 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2717 unsigned offset;
2718 void *kaddr;
2719
2720 /* Is the page fully inside i_size? */
2721 if (page->index < end_index)
2722 return __block_write_full_page(inode, page, get_block, wbc);
2723
2724 /* Is the page fully outside i_size? (truncate in progress) */
2725 offset = i_size & (PAGE_CACHE_SIZE-1);
2726 if (page->index >= end_index+1 || !offset) {
2727 /*
2728 * The page may have dirty, unmapped buffers. For example,
2729 * they may have been added in ext3_writepage(). Make them
2730 * freeable here, so the page does not leak.
2731 */
aaa4059b 2732 do_invalidatepage(page, 0);
1da177e4
LT
2733 unlock_page(page);
2734 return 0; /* don't care */
2735 }
2736
2737 /*
2738 * The page straddles i_size. It must be zeroed out on each and every
2739 * writepage invokation because it may be mmapped. "A file is mapped
2740 * in multiples of the page size. For a file that is not a multiple of
2741 * the page size, the remaining memory is zeroed when mapped, and
2742 * writes to that region are not written out to the file."
2743 */
2744 kaddr = kmap_atomic(page, KM_USER0);
2745 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2746 flush_dcache_page(page);
2747 kunmap_atomic(kaddr, KM_USER0);
2748 return __block_write_full_page(inode, page, get_block, wbc);
2749}
2750
2751sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2752 get_block_t *get_block)
2753{
2754 struct buffer_head tmp;
2755 struct inode *inode = mapping->host;
2756 tmp.b_state = 0;
2757 tmp.b_blocknr = 0;
2758 get_block(inode, block, &tmp, 0);
2759 return tmp.b_blocknr;
2760}
2761
2762static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2763{
2764 struct buffer_head *bh = bio->bi_private;
2765
2766 if (bio->bi_size)
2767 return 1;
2768
2769 if (err == -EOPNOTSUPP) {
2770 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2771 set_bit(BH_Eopnotsupp, &bh->b_state);
2772 }
2773
2774 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2775 bio_put(bio);
2776 return 0;
2777}
2778
2779int submit_bh(int rw, struct buffer_head * bh)
2780{
2781 struct bio *bio;
2782 int ret = 0;
2783
2784 BUG_ON(!buffer_locked(bh));
2785 BUG_ON(!buffer_mapped(bh));
2786 BUG_ON(!bh->b_end_io);
2787
2788 if (buffer_ordered(bh) && (rw == WRITE))
2789 rw = WRITE_BARRIER;
2790
2791 /*
2792 * Only clear out a write error when rewriting, should this
2793 * include WRITE_SYNC as well?
2794 */
2795 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2796 clear_buffer_write_io_error(bh);
2797
2798 /*
2799 * from here on down, it's all bio -- do the initial mapping,
2800 * submit_bio -> generic_make_request may further map this bio around
2801 */
2802 bio = bio_alloc(GFP_NOIO, 1);
2803
2804 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2805 bio->bi_bdev = bh->b_bdev;
2806 bio->bi_io_vec[0].bv_page = bh->b_page;
2807 bio->bi_io_vec[0].bv_len = bh->b_size;
2808 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2809
2810 bio->bi_vcnt = 1;
2811 bio->bi_idx = 0;
2812 bio->bi_size = bh->b_size;
2813
2814 bio->bi_end_io = end_bio_bh_io_sync;
2815 bio->bi_private = bh;
2816
2817 bio_get(bio);
2818 submit_bio(rw, bio);
2819
2820 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2821 ret = -EOPNOTSUPP;
2822
2823 bio_put(bio);
2824 return ret;
2825}
2826
2827/**
2828 * ll_rw_block: low-level access to block devices (DEPRECATED)
a7662236 2829 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
1da177e4
LT
2830 * @nr: number of &struct buffer_heads in the array
2831 * @bhs: array of pointers to &struct buffer_head
2832 *
a7662236
JK
2833 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2834 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2835 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2836 * are sent to disk. The fourth %READA option is described in the documentation
2837 * for generic_make_request() which ll_rw_block() calls.
1da177e4
LT
2838 *
2839 * This function drops any buffer that it cannot get a lock on (with the
a7662236
JK
2840 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2841 * clean when doing a write request, and any buffer that appears to be
2842 * up-to-date when doing read request. Further it marks as clean buffers that
2843 * are processed for writing (the buffer cache won't assume that they are
2844 * actually clean until the buffer gets unlocked).
1da177e4
LT
2845 *
2846 * ll_rw_block sets b_end_io to simple completion handler that marks
2847 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2848 * any waiters.
2849 *
2850 * All of the buffers must be for the same device, and must also be a
2851 * multiple of the current approved size for the device.
2852 */
2853void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2854{
2855 int i;
2856
2857 for (i = 0; i < nr; i++) {
2858 struct buffer_head *bh = bhs[i];
2859
a7662236
JK
2860 if (rw == SWRITE)
2861 lock_buffer(bh);
2862 else if (test_set_buffer_locked(bh))
1da177e4
LT
2863 continue;
2864
a7662236 2865 if (rw == WRITE || rw == SWRITE) {
1da177e4 2866 if (test_clear_buffer_dirty(bh)) {
76c3073a 2867 bh->b_end_io = end_buffer_write_sync;
e60e5c50 2868 get_bh(bh);
1da177e4
LT
2869 submit_bh(WRITE, bh);
2870 continue;
2871 }
2872 } else {
1da177e4 2873 if (!buffer_uptodate(bh)) {
76c3073a 2874 bh->b_end_io = end_buffer_read_sync;
e60e5c50 2875 get_bh(bh);
1da177e4
LT
2876 submit_bh(rw, bh);
2877 continue;
2878 }
2879 }
2880 unlock_buffer(bh);
1da177e4
LT
2881 }
2882}
2883
2884/*
2885 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2886 * and then start new I/O and then wait upon it. The caller must have a ref on
2887 * the buffer_head.
2888 */
2889int sync_dirty_buffer(struct buffer_head *bh)
2890{
2891 int ret = 0;
2892
2893 WARN_ON(atomic_read(&bh->b_count) < 1);
2894 lock_buffer(bh);
2895 if (test_clear_buffer_dirty(bh)) {
2896 get_bh(bh);
2897 bh->b_end_io = end_buffer_write_sync;
2898 ret = submit_bh(WRITE, bh);
2899 wait_on_buffer(bh);
2900 if (buffer_eopnotsupp(bh)) {
2901 clear_buffer_eopnotsupp(bh);
2902 ret = -EOPNOTSUPP;
2903 }
2904 if (!ret && !buffer_uptodate(bh))
2905 ret = -EIO;
2906 } else {
2907 unlock_buffer(bh);
2908 }
2909 return ret;
2910}
2911
2912/*
2913 * try_to_free_buffers() checks if all the buffers on this particular page
2914 * are unused, and releases them if so.
2915 *
2916 * Exclusion against try_to_free_buffers may be obtained by either
2917 * locking the page or by holding its mapping's private_lock.
2918 *
2919 * If the page is dirty but all the buffers are clean then we need to
2920 * be sure to mark the page clean as well. This is because the page
2921 * may be against a block device, and a later reattachment of buffers
2922 * to a dirty page will set *all* buffers dirty. Which would corrupt
2923 * filesystem data on the same device.
2924 *
2925 * The same applies to regular filesystem pages: if all the buffers are
2926 * clean then we set the page clean and proceed. To do that, we require
2927 * total exclusion from __set_page_dirty_buffers(). That is obtained with
2928 * private_lock.
2929 *
2930 * try_to_free_buffers() is non-blocking.
2931 */
2932static inline int buffer_busy(struct buffer_head *bh)
2933{
2934 return atomic_read(&bh->b_count) |
2935 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2936}
2937
2938static int
2939drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2940{
2941 struct buffer_head *head = page_buffers(page);
2942 struct buffer_head *bh;
2943
2944 bh = head;
2945 do {
de7d5a3b 2946 if (buffer_write_io_error(bh) && page->mapping)
1da177e4
LT
2947 set_bit(AS_EIO, &page->mapping->flags);
2948 if (buffer_busy(bh))
2949 goto failed;
2950 bh = bh->b_this_page;
2951 } while (bh != head);
2952
2953 do {
2954 struct buffer_head *next = bh->b_this_page;
2955
2956 if (!list_empty(&bh->b_assoc_buffers))
2957 __remove_assoc_queue(bh);
2958 bh = next;
2959 } while (bh != head);
2960 *buffers_to_free = head;
2961 __clear_page_buffers(page);
2962 return 1;
2963failed:
2964 return 0;
2965}
2966
2967int try_to_free_buffers(struct page *page)
2968{
2969 struct address_space * const mapping = page->mapping;
2970 struct buffer_head *buffers_to_free = NULL;
2971 int ret = 0;
2972
2973 BUG_ON(!PageLocked(page));
2974 if (PageWriteback(page))
2975 return 0;
2976
2977 if (mapping == NULL) { /* can this still happen? */
2978 ret = drop_buffers(page, &buffers_to_free);
2979 goto out;
2980 }
2981
2982 spin_lock(&mapping->private_lock);
2983 ret = drop_buffers(page, &buffers_to_free);
2984 if (ret) {
2985 /*
2986 * If the filesystem writes its buffers by hand (eg ext3)
2987 * then we can have clean buffers against a dirty page. We
2988 * clean the page here; otherwise later reattachment of buffers
2989 * could encounter a non-uptodate page, which is unresolvable.
2990 * This only applies in the rare case where try_to_free_buffers
2991 * succeeds but the page is not freed.
2992 */
2993 clear_page_dirty(page);
2994 }
2995 spin_unlock(&mapping->private_lock);
2996out:
2997 if (buffers_to_free) {
2998 struct buffer_head *bh = buffers_to_free;
2999
3000 do {
3001 struct buffer_head *next = bh->b_this_page;
3002 free_buffer_head(bh);
3003 bh = next;
3004 } while (bh != buffers_to_free);
3005 }
3006 return ret;
3007}
3008EXPORT_SYMBOL(try_to_free_buffers);
3009
3978d717 3010void block_sync_page(struct page *page)
1da177e4
LT
3011{
3012 struct address_space *mapping;
3013
3014 smp_mb();
3015 mapping = page_mapping(page);
3016 if (mapping)
3017 blk_run_backing_dev(mapping->backing_dev_info, page);
1da177e4
LT
3018}
3019
3020/*
3021 * There are no bdflush tunables left. But distributions are
3022 * still running obsolete flush daemons, so we terminate them here.
3023 *
3024 * Use of bdflush() is deprecated and will be removed in a future kernel.
3025 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3026 */
3027asmlinkage long sys_bdflush(int func, long data)
3028{
3029 static int msg_count;
3030
3031 if (!capable(CAP_SYS_ADMIN))
3032 return -EPERM;
3033
3034 if (msg_count < 5) {
3035 msg_count++;
3036 printk(KERN_INFO
3037 "warning: process `%s' used the obsolete bdflush"
3038 " system call\n", current->comm);
3039 printk(KERN_INFO "Fix your initscripts?\n");
3040 }
3041
3042 if (func == 1)
3043 do_exit(0);
3044 return 0;
3045}
3046
3047/*
3048 * Buffer-head allocation
3049 */
3050static kmem_cache_t *bh_cachep;
3051
3052/*
3053 * Once the number of bh's in the machine exceeds this level, we start
3054 * stripping them in writeback.
3055 */
3056static int max_buffer_heads;
3057
3058int buffer_heads_over_limit;
3059
3060struct bh_accounting {
3061 int nr; /* Number of live bh's */
3062 int ratelimit; /* Limit cacheline bouncing */
3063};
3064
3065static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3066
3067static void recalc_bh_state(void)
3068{
3069 int i;
3070 int tot = 0;
3071
3072 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3073 return;
3074 __get_cpu_var(bh_accounting).ratelimit = 0;
8a143426 3075 for_each_online_cpu(i)
1da177e4
LT
3076 tot += per_cpu(bh_accounting, i).nr;
3077 buffer_heads_over_limit = (tot > max_buffer_heads);
3078}
3079
dd0fc66f 3080struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
1da177e4
LT
3081{
3082 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3083 if (ret) {
736c7b80 3084 get_cpu_var(bh_accounting).nr++;
1da177e4 3085 recalc_bh_state();
736c7b80 3086 put_cpu_var(bh_accounting);
1da177e4
LT
3087 }
3088 return ret;
3089}
3090EXPORT_SYMBOL(alloc_buffer_head);
3091
3092void free_buffer_head(struct buffer_head *bh)
3093{
3094 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3095 kmem_cache_free(bh_cachep, bh);
736c7b80 3096 get_cpu_var(bh_accounting).nr--;
1da177e4 3097 recalc_bh_state();
736c7b80 3098 put_cpu_var(bh_accounting);
1da177e4
LT
3099}
3100EXPORT_SYMBOL(free_buffer_head);
3101
3102static void
3103init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags)
3104{
3105 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
3106 SLAB_CTOR_CONSTRUCTOR) {
3107 struct buffer_head * bh = (struct buffer_head *)data;
3108
3109 memset(bh, 0, sizeof(*bh));
3110 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3111 }
3112}
3113
3114#ifdef CONFIG_HOTPLUG_CPU
3115static void buffer_exit_cpu(int cpu)
3116{
3117 int i;
3118 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3119
3120 for (i = 0; i < BH_LRU_SIZE; i++) {
3121 brelse(b->bhs[i]);
3122 b->bhs[i] = NULL;
3123 }
8a143426
ED
3124 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3125 per_cpu(bh_accounting, cpu).nr = 0;
3126 put_cpu_var(bh_accounting);
1da177e4
LT
3127}
3128
3129static int buffer_cpu_notify(struct notifier_block *self,
3130 unsigned long action, void *hcpu)
3131{
3132 if (action == CPU_DEAD)
3133 buffer_exit_cpu((unsigned long)hcpu);
3134 return NOTIFY_OK;
3135}
3136#endif /* CONFIG_HOTPLUG_CPU */
3137
3138void __init buffer_init(void)
3139{
3140 int nrpages;
3141
3142 bh_cachep = kmem_cache_create("buffer_head",
b0196009
PJ
3143 sizeof(struct buffer_head), 0,
3144 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3145 SLAB_MEM_SPREAD),
3146 init_buffer_head,
3147 NULL);
1da177e4
LT
3148
3149 /*
3150 * Limit the bh occupancy to 10% of ZONE_NORMAL
3151 */
3152 nrpages = (nr_free_buffer_pages() * 10) / 100;
3153 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3154 hotcpu_notifier(buffer_cpu_notify, 0);
3155}
3156
3157EXPORT_SYMBOL(__bforget);
3158EXPORT_SYMBOL(__brelse);
3159EXPORT_SYMBOL(__wait_on_buffer);
3160EXPORT_SYMBOL(block_commit_write);
3161EXPORT_SYMBOL(block_prepare_write);
3162EXPORT_SYMBOL(block_read_full_page);
3163EXPORT_SYMBOL(block_sync_page);
3164EXPORT_SYMBOL(block_truncate_page);
3165EXPORT_SYMBOL(block_write_full_page);
3166EXPORT_SYMBOL(cont_prepare_write);
3167EXPORT_SYMBOL(end_buffer_async_write);
3168EXPORT_SYMBOL(end_buffer_read_sync);
3169EXPORT_SYMBOL(end_buffer_write_sync);
3170EXPORT_SYMBOL(file_fsync);
3171EXPORT_SYMBOL(fsync_bdev);
3172EXPORT_SYMBOL(generic_block_bmap);
3173EXPORT_SYMBOL(generic_commit_write);
3174EXPORT_SYMBOL(generic_cont_expand);
05eb0b51 3175EXPORT_SYMBOL(generic_cont_expand_simple);
1da177e4
LT
3176EXPORT_SYMBOL(init_buffer);
3177EXPORT_SYMBOL(invalidate_bdev);
3178EXPORT_SYMBOL(ll_rw_block);
3179EXPORT_SYMBOL(mark_buffer_dirty);
3180EXPORT_SYMBOL(submit_bh);
3181EXPORT_SYMBOL(sync_dirty_buffer);
3182EXPORT_SYMBOL(unlock_buffer);